
Oracle® Retail Price Management
Operations Guide

Release 13.0.1

June 2008

Oracle Retail Price Management Operations Guide, Release 13.0.1

Copyright © 2008, Oracle. All rights reserved.

Primary Author: Susan McKibbon

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Value-Added Reseller (VAR) Language

(i) the software component known as ACUMATE developed and licensed by Lucent Technologies Inc. of
Murray Hill, New Jersey, to Oracle and imbedded in the Oracle Retail Predictive Application Server -
Enterprise Engine, Oracle Retail Category Management, Oracle Retail Item Planning, Oracle Retail
Merchandise Financial Planning, Oracle Retail Advanced Inventory Planning and Oracle Retail Demand
Forecasting applications.

(ii) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail Data
Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(iii) the SeeBeyond component developed and licensed by Sun MicroSystems, Inc. (Sun) of Santa Clara,
California, to Oracle and imbedded in the Oracle Retail Integration Bus application.

(iv) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of Kirkland,
Washington, to Oracle and imbedded in Oracle Retail Store Inventory Management.

(v) the software component known as Crystal Enterprise Professional and/or Crystal Reports Professional
licensed by Business Objects Software Limited ("Business Objects") and imbedded in Oracle Retail Store
Inventory Management.

(vi) the software component known as Access Via™ licensed by Access Via of Seattle, Washington, and
imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(vii) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of San Jose,
California, and imbedded in Oracle Retail Promotion Planning & Optimization application.

(viii) the software component known as Style Report™ developed and licensed by InetSoft Technology
Corp. of Piscataway, New Jersey, to Oracle and imbedded in the Oracle Retail Value Chain Collaboration
application.

(ix) the software component known as WebLogic™ developed and licensed by BEA Systems, Inc. of San
Jose, California, to Oracle and imbedded in the Oracle Retail Value Chain Collaboration application.

(x) the software component known as DataBeacon™ developed and licensed by Cognos Incorporated of
Ottawa, Ontario, Canada, to Oracle and imbedded in the Oracle Retail Value Chain Collaboration
application.

v

Contents

Preface ... xv

Audience... xv
Related Documents ... xv
Conventions ... xvi
Third-Party Open-Source Applications ... xvi

1 Introduction

Overview-What Is RPM? .. 1-1

2 Backend System Administration and Configuration

Supported Environments.. 2-1
Exception Handling ... 2-1
Configuration Files .. 2-1

rpm.jnlp ... 2-2
Data Source Configuration in Container .. 2-2
rib_user.properties ... 2-2
security.properties ... 2-2

For LDAP Authentication.. 2-2
For User Search ... 2-3
For Audit Logging .. 2-4
Single Sign-On with Oracle Technology ... 2-4
LoginModule Configuraton Information .. 2-4
For Mapping LDAP to Directory Schema ... 2-4
User Signature Information... 2-5
User Authentication Information ... 2-5

dao_rpm.xml... 2-6
users_rsm.xml... 2-6
Configuration for Oracle Retail Service Layer (RSL) with services_rpm.xml........................... 2-7

Logging... 2-7
Jakarta Commons Logging ... 2-7
Log4j.xml ... 2-8
Logging Levels ... 2-8
Output Files... 2-8
Hibernate Logging ... 2-9

Transaction Timeout and Client Inactivity Timeout ... 2-9

vi

RPMTaskMDB .. 2-9
EJBs Used by RPMTaskMDB.. 2-9
Tables Used by RPMTaskMDB ... 2-10

Simplified RPM... 2-10
Enhanced Pricing Functionality.. 2-11
Simplified RPM Batch Program Notes... 2-11

Configuring RPM without the RIB.. 2-11
Configurable RIB Batch Program Notes .. 2-12

Disabling RIB Publishing in RPM .. 2-12
Internationalization .. 2-13

Translation ... 2-13
Set the Client Operating System to the Applicable Locale ... 2-13
Translated RPM Files.. 2-14
Translated RSM Files .. 2-14

Properties files .. 2-14
The RSM_NAMED_PERMISSION_DSC Table ... 2-14

Price Management Status Page... 2-15
Sample Output... 2-15

3 Technical Architecture

Overview .. 3-1
The Layered Model .. 3-1

Client .. 3-2
Application Services Layer (Stateless Session Beans)... 3-2
Core Services Layer.. 3-3
Persistence Layer.. 3-4
Database Layer ... 3-4
Security .. 3-4

User Repository (Such As a Third-Party Directory Server).. 3-4
Asynchronous Processing ... 3-5

Synchronous as Opposed to Asynchronous Processing .. 3-5
Asynchronous Processing Flow... 3-6

RPM Cached Objects ... 3-7
RPM-related Java Terms and Standards .. 3-8
Conflict Checking .. 3-9

4 Integration Methods and Communication Flow

Functional Dataflow .. 4-1
A Note about the Merchandising System Interface .. 4-1

Integration Interface Dataflow Diagram ... 4-2
Integration Interface Dataflow Description.. 4-2

From Oracle Retail Allocation to RPM.. 4-2
From RPM to Oracle Retail Allocation.. 4-2
From RPM to RMS ... 4-2
From RMS to RPM ... 4-3
From RPM to RSM ... 4-4
From RSM to RPM ... 4-4

vii

From RPM to ReSA .. 4-4
From RPM to SIM and from SIM to RPM... 4-5
From RPM to the RIB and from the RIB to RPM ... 4-6
From RPM to RDW .. 4-6

Pricing Communication Flow Diagram .. 4-7
Approved Price Events.. 4-7
Price Events... 4-7
Price Inquiry.. 4-7
Promotion Detail .. 4-8

RPM and the Oracle Retail Integration Bus (RIB) ... 4-8
The XML Message Format .. 4-8
Message Publication Processing .. 4-8
Message Subscription Processing .. 4-9
Publishers Mapping Table .. 4-10
Subscribers Mapping Table .. 4-10
Functional Descriptions of Messages ... 4-11

 RPM and the Oracle Retail Service Layer (RSL) .. 4-13
Functional Description of the Class Using RSL .. 4-13

 Persistence Layer Integration... 4-14
RMS Tables Accessed through the Persistence Layer.. 4-14
 RMS Packages and Methods Accessed through RPM's Persistence Layer 4-15
RPM Views Based on RMS Tables.. 4-16
RPM Packages Called by RMS .. 4-16

Oracle Retail Strategic Store Solutions - RPM Integration... 4-16
Overview .. 4-16

Oracle Retail Strategic Store Solutions Overview ... 4-16
Integration Overview .. 4-16
File Details... 4-17

Integration Dataflow... 4-17
Functional Description of Dataflow ... 4-18

From RPM to ORBO .. 4-18
Data Bundling... 4-18

Known Issues... 4-19
Mismatch in Promotion Functionality .. 4-19
Other gaps between RMP and Oracle Retail Strategic Store Solutions............................ 4-19

5 Functional Design

Overview .. 5-1
Functional Assumptions ... 5-1
Functional Overviews.. 5-1

Zone Structures ... 5-1
Codes.. 5-2

Market Basket Codes .. 5-2
Link Codes ... 5-3

Price Changes, Promotions, Clearances, and Promotion Constraint ... 5-3
Overview.. 5-3
 Price Changes ... 5-3

viii

Promotions... 5-4
Clearances .. 5-4
Promotion Constraint... 5-5

Pricing Strategies.. 5-5
Area Differentials ... 5-5
Clearance Strategy .. 5-8
Clearance Default Strategy .. 5-9
Competitive Strategy.. 5-9
Margin Strategy.. 5-10
Maintain Margin Strategy and Auto Approve .. 5-11

Price Inquiry... 5-12
Worksheet .. 5-13

Merchandise Extract .. 5-14
Calendar ... 5-15
Aggregation Level... 5-16
Location Moves ... 5-16

Application Security ... 5-17
Named Permissions .. 5-17
Actions and Named Permissions.. 5-17
Content Models and Named Permissions... 5-18
Hierarchy (Data Level) Permissions... 5-18
Roles and Users ... 5-18

Concurrency Considerations... 5-19
Pessimistic Data Locking ... 5-19
Pessimistic Workflow Locking.. 5-19
Last User Wins... 5-20
Optimistic Data Locking .. 5-20
Concurrency Solution/Functional Area Matrix ... 5-20

6 Single Sign-on Overview

What is Single Sign-On? ... 6-1
What Do I Need for Oracle Single Sign-On?.. 6-1
Can Oracle Single Sign-On Work with Other SSO Implementations? ... 6-2
Oracle Single Sign-on Terms and Definitions.. 6-2

Authentication .. 6-2
Dynamically Protected URLs ... 6-2
Identity Management Infrastructure... 6-2
MOD_OSSO .. 6-2
Oracle Internet Directory .. 6-2
Partner Application.. 6-2
Realm ... 6-3
Statically Protected URLs.. 6-3

What Single Sign-On is not.. 6-3
How Oracle Single Sign-On Works .. 6-3

Statically Protected URLs.. 6-3
Dynamically Protected URLs ... 6-4
Single Sign-on Topology ... 6-5

ix

Installation Overview .. 6-5
Infrastructure Installation and Configuration ... 6-5
OID User Data .. 6-5
OID with Multiple Realms.. 6-6

User Management .. 6-6
OID DAS.. 6-6
LDIF Scripts... 6-6
User Data Synchronization ... 6-6

Configuring RSM for Single Sign-on .. 6-7

7 Java and RETL Batch Processes

Java Batch Processes... 7-1
Java Batch Process Architectural Overview... 7-1
Running a Java-based Batch Process... 7-1

Additional Notes... 7-2
Script Catalog.. 7-2
Scheduler and the Command Line .. 7-3
Functional Descriptions and Dependencies... 7-3
Batch Process Scheduling.. 7-4
Threading and the RPM_BATCH_CONTROL Table ... 7-4
Return Value Batch Standards ... 7-5
Return Values ... 7-5
Batch Logging ... 7-5
Conflict Checking... 7-5

Merge Validator Conflict Checking Rules... 7-5
Post-Merge Conflict Checking Rules (rpm_conflict_query_control Table)........................ 7-6
Rules Controlled by System Options ... 7-8
Adding User-Defined Conflict Checking Rules ... 7-9
Bulk Conflict Checking ... 7-11

ClearancePriceChangePublishBatch Batch Design .. 7-13
Usage.. 7-13
Detail ... 7-14
Output File .. 7-14
Output File Layout .. 7-15
Assumptions and Scheduling Notes... 7-15
Primary Tables Involved... 7-16
Threading .. 7-16
Configuration ... 7-16

InjectorPriceEventBatch Batch Design ... 7-16
Usage.. 7-16
Examples ... 7-16
Additional Notes.. 7-17
Details .. 7-17
Importing Staged Price Changes. .. 7-17
Importing Staged Clearances ... 7-18
Importing Staged Simple Promotions... 7-18
Main Steps Taken by the Batch .. 7-19

x

Assumptions and Scheduling Notes... 7-20
Primary Tables Involved... 7-20
Threading .. 7-20

InjectorPriceEventBatch Batch—Rollback and Reprocessing... 7-20
ItemLocDeleteBatch Batch ... 7-21

Usage.. 7-21
Scheduling Notes ... 7-22

itemReclassBatch Batch Design... 7-22
Usage.. 7-22
Detail ... 7-22
Assumptions and Scheduling Notes... 7-23
Threading .. 7-23
PL/SQL Interface Point... 7-23

LocationMoveBatch Batch Design .. 7-23
Usage.. 7-23
Detail ... 7-23
Assumptions and Scheduling Notes... 7-24
Primary Tables Involved... 7-24
Threading .. 7-24

MerchExtractKickOffBatch Batch Design.. 7-24
Usage.. 7-24
Detail ... 7-24
Assumptions and Scheduling Notes... 7-25
Primary (RPM) Tables Involved .. 7-26
Threading .. 7-26
PL/SQL Interface Point... 7-26

NewItemLocBatch Batch Design .. 7-26
Usage.. 7-27
Detail ... 7-28
Assumptions and Scheduling Notes... 7-28
Primary Tables Involved... 7-28
Threading .. 7-28
Bulk Conflict Checking ... 7-28
Processing Stage Rows in Error Status ... 7-28

PriceChangeAreaDifferentialBatch Batch Design .. 7-28
Usage ... 7-28
Additional Notes ... 7-29
Details ... 7-29
Assumptions and Scheduling Notes .. 7-29
Primary Tables Involved .. 7-29

PriceChangeAutoApproveResultsPurgeBatch Batch Design... 7-29
Usage.. 7-29
Detail ... 7-29
Assumptions and Scheduling Notes... 7-29
Primary Tables Involved... 7-29
Threading .. 7-30

PriceChangePurgeBatch Batch Design... 7-30

xi

Usage.. 7-30
Detail ... 7-30
Assumptions and Scheduling Notes... 7-30
Primary Tables Involved... 7-30
Threading .. 7-30

PriceChangePurgeWorkspaceBatch Batch Design... 7-30
Usage.. 7-30
Detail ... 7-30
Assumptions and Scheduling Notes... 7-30
Primary Tables Involved... 7-30
Threading .. 7-31

Price Event Execution Batch Processes .. 7-31
Usage.. 7-31
Detail.. 7-31
Assumptions and Scheduling Notes... 7-32
Primary Tables Involved... 7-32
RMS Interface Point ... 7-32
Threading .. 7-32

PriceStrategyCalendarBatch Batch Design.. 7-32
Usage.. 7-32
Detail ... 7-33
Assumptions and Scheduling Notes... 7-33
Primary Tables Involved... 7-33
Threading .. 7-33

PromotionPriceChangePublishBatch batch design.. 7-33
Usage.. 7-33
Detail ... 7-33
Input Tables .. 7-34
Output File Record Types... 7-34
Output File Layout .. 7-35
Assumptions and Scheduling Notes... 7-37
Threading .. 7-37
Configuration ... 7-37

PromotionPurgeBatch batch Design .. 7-37
Usage.. 7-37
Detail ... 7-37
Assumptions and Scheduling Notes... 7-37
Primary Tables Involved... 7-37
Threading .. 7-38

PurgeBulkConflictCheckArtifacts Batch Design .. 7-38
Usage.. 7-38
Detail.. 7-38
Assumptions and Scheduling Notes... 7-38
Primary Tables Involved... 7-38

PurgeExpiredExecutedOrApprovedClearancesBatch Batch Design 7-39
Usage.. 7-39
Detail ... 7-39

xii

Assumptions and Scheduling Notes... 7-39
Primary Tables Involved... 7-39
Threading .. 7-39

PurgeLocationMovesBatch Batch Design.. 7-39
Usage.. 7-39
Detail ... 7-39
Assumptions and Scheduling Notes... 7-39
Primary Tables Involved... 7-40
Threading .. 7-40

PurgeUnusedAndAbandonedClearancesBatch Batch Design ... 7-40
Usage.. 7-40
Detail ... 7-40
Assumptions and Scheduling Notes... 7-40
Primary Tables Involved... 7-40
Threading .. 7-41

RegularPriceChangePublishBatch Batch Design.. 7-41
Usage.. 7-41
Detail ... 7-41
Output File .. 7-41
Output File Layout .. 7-42
Assumptions and Scheduling Notes... 7-43
Primary Tables Involved... 7-43
Threading .. 7-43
Configuration ... 7-43

RPMtoORPOSPublishBatch Batch Design .. 7-43
Overview... 7-43
Usage.. 7-43
Detail.. 7-43
Output ... 7-44
Assumptions and Scheduling Notes... 7-44
Primary Tables Involved... 7-44
Configuration ... 7-44

RPMtoORPOSPublishExport Batch Design .. 7-45
Overview... 7-45
Usage.. 7-45
Detail.. 7-45
OutputFile ... 7-45
Assumptions and Scheduling Notes... 7-46
Primary Tables Involved... 7-46

statusPageCommandLineApplication Batch Design... 7-46
TaskPurgeBatch Batch Design... 7-49

Usage.. 7-49
Detail ... 7-49
Assumptions and Scheduling Notes... 7-49
Primary Tables Involved... 7-50
Threading .. 7-50

WorksheetAutoApproveBatch Batch Design.. 7-50

xiii

Usage.. 7-50
Detail ... 7-50
Assumptions and Scheduling Notes... 7-51
Primary Tables Involved... 7-51
Threading .. 7-51

ZoneFutureRetailPurgeBatch Batch Design.. 7-51
Usage.. 7-51
Detail ... 7-51
Assumptions and Scheduling Notes... 7-52
Primary Tables Involved... 7-52
Threading .. 7-52

RETL Program Overview for RPM Extractions ... 7-52
Architectural Design... 7-52
RPM Extraction Architecture .. 7-52
Configuration... 7-53

RETL .. 7-53
RETL User and Permissions ... 7-53
Environment Variables ... 7-53
dwi_config.env Settings .. 7-53

Program Features .. 7-54
Program Status Control Files... 7-54

File Naming Conventions... 7-54
Restart and Recovery.. 7-55
Message Logging... 7-55
Daily Log File... 7-55
Format... 7-55
Program Error File .. 7-56
Schema Files... 7-56
Resource Files .. 7-56
Typical Run and Debugging Situations... 7-56
RETL Extractions Program List... 7-58
Application Programming Interface (API) Flat File Specifications ... 7-58
API Format ... 7-58
File Layout.. 7-58
General Business Rules and Standards Common to all APIs... 7-59

prmdtldm.txt .. 7-60
prmevtdm.txt.. 7-61
prmhdrdm.txt ... 7-61

xiv

xv

Preface

Oracle Retail Operations Guides are designed so that you can view and understand
the application's 'behind-the-scenes' processing, including such information as the
following:

■ Key system administration configuration settings

■ Technical architecture

■ Functional integration dataflow across the enterprise

■ Batch processing

Audience
Anyone who has an interest in better understanding the inner workings of the RPM
system can find valuable information in this guide. There are three audiences in
general for whom this guide is written:

■ System analysts and system operation personnel:

– who are looking for information about RPM's processes internally or in
relation to the systems across the enterprise.

– who operate RPM on a regular basis.

■ Integrators and implementation staff who have the overall responsibility for
implementing RPM into their enterprise.

■ Business analysts who are looking for information about processes and interfaces
to validate the support for business scenarios within RPM and other systems
across the enterprise.

Related Documents
For more information, see the following documents in the Oracle Retail Price
Management Release 13.0 documentation set:

■ Oracle Retail Price Management Installation Guide

■ Oracle Retail Price Management Release Notes

■ Oracle Retail Price Management User Guide

■ Oracle Retail Price Management Online Help

■ Oracle Retail Price Management Data Model

xvi

■ Oracle Retail Merchandising Batch Schedule

■ Oracle Retail Merchandising Implementation Guide

Conventions
The following text conventions are used in this document:

Third-Party Open-Source Applications
Oracle Retail Security Manager includes the following third-party open-source
applications:

Software Provider: Object Web
Software Name: ASM
Software Version: 1.4.3
Jar File Name: asm-1.4.3.jar
Provider Web Site: http://forge.objectweb.org/projects/asm

Software Provider: Bouncy Castle
Software Name: JCE Provider
Software Version: JDK 1.4 v1.2.4
Jar File Name: bcprov-jdk14-124.jar
Provider Web Site: http://www.bouncycastle.org

Software Provider: Bean Shell
Software Name: Bean Shell
Software Version: 2.0
Jar File Name: bsh-2.0b1.jar
Provider Web Site: http://www.beanshell.org/

Software Provider: Intalio Inc., and others
Software Name: Castor
Software Version: 0.9.5.2
Jar File Name: castor-0.9.5.2.jar
Provider Web Site: http://www.castor.org/

Software Provider: Apache Software Foundation
Software Name: cglib
Software Version: 2.0.2
Jar File Name: cglib-2.0.2.jar
Provider Web Site: http://cglib.sourceforge.net/

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xvii

Software Provider: Apache Software Foundation
Software Name: org.apache.commons.beanutils-bean-collections
Software Version: 1.6
Jar File Name: commons-beanutils-bean-collections.jar
Provider Web Site: http://jakarta.apache.org/commons/

Software Provider: Apache Software Foundation
Software Name: org.apache.commons.beanutils
Software Version: 1.6
Jar File Name: commons-beanutils-core.jar
Provider Web Site: http://jakarta.apache.org/commons/

Software Provider: Apache Software Foundation
Software Name: org.apache.commons.collections
Software Version: 2.1
Jar File Name: commons-collections.jar
Provider Web Site: http://jakarta.apache.org/commons/

Software Provider: Apache Software Foundation
Software Name: Commons Database Connection Pooling
Software Version: 1.1
Jar File Name: commons-dbcp-1.1.jar
Provider Web Site: http://jakarta.apache.org/commons/

Software Provider: Apache Software Foundation
Software Name: Jakarta Commons Digester
Software Version: 1.6
Jar File Name: commons-digester.jar
Provider Web Site: http://jakarta.apache.org/commons/

Software Provider: Apache Software Foundation
Software Name: Jakarta Commons Lang
Software Version: 2.0
Jar File Name: commons-lang.jar
Provider Web Site: http://jakarta.apache.org/commons/

Software Provider: Apache Software Foundation
Software Name: org.apache.commons.logging
Software Version: 1.0.4
Jar File Name: commons-logging.jar
Provider Web Site: http://jakarta.apache.org/commons/

Software Provider: Apache Software Foundation
Software Name: Commons Object Pooling Library
Software Version: 1.1
Jar File Name: commons-pool-1.1.jar
Provider Web Site: http://jakarta.apache.org/commons/

xviii

Software Provider: Apache Software Foundation
Software Name: Commons Validator
Software Version: 1.1.3
Jar File Name: commons-validator-1.1.3.jar
Provider Web Site: http://jakarta.apache.org/commons/

Software Provider: METASTUFF, LTD.
Software Name: dom4j
Software Version: 1.3
Jar File Name: dom4j.jar
Provider Web Site: http://www.dom4j.org/

Software Provider: Apache Software Foundation
Software Name: Ehcache
Software Version: 1.1
Jar File Name: ehcache-1.1.jar
Provider Web Site: http://ehcache.sourceforge.net/

Software Provider: JGoodies
Software Name: JGoodies Forms
Software Version: 1.0.3
Jar File Name: forms-1.0.3.jar
Provider Web Site: http://www.jgoodies.com/freeware/forms/

Software Provider: Hibernate
Software Name: Hibernate
Software Version: 2.1.7
Jar File Name: hibernate2.jar
Provider Web Site: http://www.hibernate.org/

Software Provider: IBM
Software Name: com.ibm.jvm.classloader
Software Version:
Jar File Name: ibmext.jar
Provider Web Site: www.ibm.com

Software Provider: Apache Software Foundation
Software Name: Jakarta Regexp
Software Version: n/a
Jar File Name: jakarta-regexp.jar
Provider Web Site: http://jakarta.apache.org/regexp/

Software Provider: JDOM.org
Software Name: JDOM
Software Version: 1.0beta9
Jar File Name: jdom.jar
Provider Web Site: http://www.jdom.org/

xix

Software Provider: ObjectWeb
Software Name: JOTM
Software Version: 1.4.1
Jar File Name: jotm.jar
Provider Web Site: http://www.objectweb.org/

Software Provider: Apache Software Foundation
Software Name: org/apache/log4j/
Software Version: 1.2.13
Jar File Name: log4j.jar
Provider Web Site: http://logging.apache.org/log4j/docs/

Software Provider: JGoodies Karsten Lentzsch
Software Name: JGoodies Looks
Software Version: 1.1.3
Jar File Name: looks-1.1.3.jar
Provider Web Site: http://www.jgoodies.com/freeware/looks/index.html

Software Provider: P6Spy
Software Name: P6Spy
Software Version: n/a
Jar File Name: p6spy.jar
Provider Web Site: http://www.p6spy.com/

Software Provider: Manfred Duchrow Consulting & Software
Software Name: Programmer's Friend Java Libraries
Software Version: 2.2
Jar File Name: pf.jar
Provider Web Site: http://www.programmers-friend.org/

Software Provider: Manfred Duchrow Consulting & Software
Software Name: Programmer's Friend Java Object Inspector
Software Version: 2.0
Jar File Name: pf-joi-full.jar
Provider Web Site: http://www.programmers-friend.org/

Software Provider: IBM Corp.
Software Name: adapter
Software Version: 5.0
Jar File Name: rsadapterspi.jar
Provider Web Site: www.ibm.com

Software Provider: IBM Corp.
Software Name: adapter
Software Version: 5.0
Jar File Name: rsaexternal.jar
Provider Web Site: www.ibm.com

xx

Software Provider: Apache Software Foundation
Software Name: Apache Xerces
Software Version: n/a
Jar File Name: xerces.jar
Provider Web Site: http://xerces.apache.org/

1

Introduction 1-1

1Introduction

Overview-What Is RPM?
RPM is a pricing and promotions execution system. RPM's functionality includes the
definition, maintenance, and review of price changes, clearances and promotions. The
system's capabilities range from simple item price changes at a single location to
multi-buy promotions across zones.

RPM contains three primary pricing execution dialogs for creating and maintaining
regular price changes, clearances, and promotions. Although each of the three pricing
activities is unique, the system displays these dialogs using a common look and feel.
Each of these dialogs uses the conflict checking engine which leverages RPM's future
retail table.

The future retail table provides a forward looking view of all pending approved
pricing events affecting an item at a given location.

RPM pricing events are defined against the zone structure. The zone structure
represents groups of locations organized to support a retailers pricing strategy. RPM
allows the user to break out of the zone structure and create location level events as
needed.

RPM supports the definition and application of price guides to these pricing events.
Price guides allow the retailer to smooth retails and provide ends in logic to derive a
final consumer price.

The system also supports area differential pricing strategies for regular retail price
changes. This functionality allows a retailer to define pricing relationships that ease
pricing maintenance across the organization.

Overview-What Is RPM?

1-2 Oracle Retail Price Management Operations Guide

2

Backend System Administration and Configuration 2-1

2Backend System Administration and
Configuration

This chapter of the operations guide is intended for administrators who provide
support and monitor the running system.

The content in this chapter is not procedural, but is meant to provide descriptive
overviews of the key system parameters.

Supported Environments
See the Oracle Retail Price Management Installation Guide for information about
requirements for the following:

■ RDBMS operating system

■ RDBMS version

■ Middle tier server operating system

■ Middle tier

■ Compiler

Exception Handling
The two primary types of exceptions within the RPM system are the following:

■ System exceptions

For example, server connection and/or database issues are system exceptions.
System exceptions can bring the system to a halt. For example, the connection to
the server is lost.

■ "Business exceptions

This exception indicates that a business rule has been violated. Most exceptions
that arise in the system are business exceptions. For example, a user tries to
approve a price change that causes a negative retail.

Configuration Files
Key system configuration parameters are described in this section. Many parameters
have been omitted from this section that retailers should not have to change. When
retailers install RPM into an environment, they must update these values to their
specific settings.

Configuration Files

2-2 Oracle Retail Price Management Operations Guide

rpm.jnlp
The Java Network Launching Protocol (JNLP) launch file is an XML document for Java
Web Start. This file describes various locations of code and dynamically downloads
updates. This file includes the web server information that is hosting port(s). This file
also includes the RMI port on which the application server communicates. For
example, if a retailer were to change a host name or change the port that the web
server is running on, the retailer would make applicable changes to this file.

Data Source Configuration in Container
Data source settings for the RPM application in AS10g are kept inside of the ear file
deployment. The RPM application installer configures all necessary settings for the
data source. To change the data source settings for the RPM application after it has
been deployed, you must perform the following steps:

1. Log into the Enterprise Manager Web interface and then navigate to the OC4J
instance running the RPM application.

2. Click the Administration tab.

3. Under Services, click JDBC Resources.

4. Under Connection Pools, click RPM Connection Pool.

5. Make any necessary changes to the JDBC URL, username, and password, and click
Apply.

6. If you are changing the schema owner, you must also make this change in the
rpm.properties file in the deployment. Log into the UNIX server and change
directories to <ORACLE_HOME>/j2ee/<rpm_oc4j_
instance>/applications/<rpm_app_name>/conf and modify the rpm.properties
file with the new schema_owner value. This value must be in all capital letters.
Save the file.

7. Restart the OC4J instance running RPM.

rib_user.properties
There must be a rib_user.properties file located in conf/retek. This properties file is
used to log on to the system at the beginning of each injector. Any data changes that
happen as a result of the RIB has this user listed if users are tracked with regard to
create/update/approve actions. The file is populated with the values below. For more
information about the RIB, see "Chapter 4 - Integration Methods and Communication
Flow" and RIB documentation.

■ rib.user=valid user for the system

■ rib.password=password for the above user

security.properties
There must be a security.properties file located in conf/retek. This properties file is
used to configure the embedded RSM. The file is populated with the values below.

For LDAP Authentication
These values are used for the configuration of the authentication process as it is run
through LDAP. Once an LDAP schema is established, a retailer enters applicable
LDAP properties to point to that schema.

Configuration Files

Backend System Administration and Configuration 2-3

ldap.initialcontextfactory

This internal Java-specific setting should not change from its initial value.

For example:

ldap.initialcontextfactory=com.sun.jndi.ldap.LdapCtxFactory

ldap.authenticationprovider.url

This value represents the authentication provider's URL. In a production environment,
this setting would contain the retailer's address for its directory server.

For example:

ldap.authenticationprovider.url=ldap://64.238.67.60:379/

ldap.user.basedn

The values in this entry must correspond to entries in the LDAP server. DN stands for
distinguished name. The top level of the LDAP directory tree is the base, referred to as
the "base DN." This value represents the user base DN property.

For example:

ldap.user.basedn=ou=RSM,dc=rsmad,dc=local

ldap.authenticationmode

This value represents the authentication mode property. LDAP uses various ways to
authenticate against a directory server, and the method of authentication can be set up.
For almost all environments integrated with RSM, the value should be simple.

For example:

ldap.authenticationmode=simple

ldap.securityprotocol

This value represents RSM's encryption protocol. SSL stands for secure socket layer
(SSL). SSL is a protocol developed for private transmissions. SSL works by using a
private key to encrypt data that's transferred over the SSL connection.

For User Search
These settings provide the "behind the scenes" login information for the system to
connect to the directory server. For example, when an RSM user wishes to search on
the directory server for a user, the RSM system must have a username and password
to log in to the directory server to enable the search to occur. The filter property value
represents the directory server-specific way of filtering user information by attribute
(when the directory server is finding users and then limiting the results). Because
various directory servers use different attributes to represent a username, this value
must be updated if the retailer were to change directory servers.

For example:

ldap.usersearch.user=cn=Administrator,cn=users,dc=rcomad,dc=local
ldap.usersearch.password=PaSsW0rD
ldap.user.filter=(&(objectCategory=person)(objectClass=user) %v)

Note: This setting is currently not used by RSM.

Configuration Files

2-4 Oracle Retail Price Management Operations Guide

For Audit Logging

audit.logger

This setting allows you to direct security audit information to a specific Log4J logger.
This value must match a logger/appender in the RSM server log4j.xml file. If a match
does not occur, the root logger and appender are used.

For example:

audit.logger=Security.Audit.Logger

Single Sign-On with Oracle Technology

enable.oracle.sso

This value should always be set to false.

For example:

enable.oracle.sso=false

LoginModule Configuraton Information
This setting configures RSM to point to the applicable user repository (such as a
directory server or xml file) for authentication. The login modules must also be
defined in the application server. See the Oracle Retail Price Management Installation
Guide for detailed information pertaining to login module configuration.

The following example illustrates an authentication against an LDAP compliant
directory server:

loginmodule.class=com.retek.rsm.domain.security.dao.LdapLoginModule
The following example illustrates an authentication against the RSM users XML file:

loginmodule.class=com.retek.rsm.domain.security.dao.XMLLoginModule

For Mapping LDAP to Directory Schema
The table below contains directory server-specific attributes concerning user
information.

Various directory servers use different attributes to represent user information. If a
retailer were to change directory servers, these values must be configured to reflect the
new directory server.

Note: This setting must correspond with the user DAO
implementation setting found in the file DAO_RSM.xml. For more
information about this file, see the section, "dao_rsm.xml," later in this
chapter.

Note: If the XMLLoginModule is used, users must be added to the
file, users_rsm.xml. For more information about this file, see the
section, "users_rsm.xml," later in this chapter.

Configuration Files

Backend System Administration and Configuration 2-5

User Signature Information
To facilitate single sign on functionality, a user signature may be passed among a
retailer's RSM-integrated applications. The steps below describe how the user
signature is created and could be used.

1. When a user first logs on to an Oracle Retail application secured by RSM, it sends
RSM the user and password data required for authentication.

2. RSM calls the retailer's LDAP compliant directory service to authenticate the
username and password data. Once a user is authenticated, RSM creates an
encrypted user signature, which is returned to the calling Oracle Retail
application.

3. If a user launches other RSM-integrated applications, the user signature can be
passed to these applications. The application being launched accepts the user
signature and calls RSM to determine whether the user signature is valid. If the
validation step is successful, the user accesses the application without having to go
through that application's login screen.

user.signature.cipher.algorithm

RSM uses an algorithm to generate a user signature. A retailer may change this
algorithm and configure this property value to reflect the different algorithm being
used.

For example:

user.signature.cipher.algorithm=HmacSHA1

user.signature.secretkey

To generate user signatures, the algorithm needs a secret key. Oracle Retail
recommends that the retailer updates this value on a regular basis. A retailer can
change this secret key if a compromise in security has occurred.

For example:

user.signature.secretkey=gjgh6382nEDmxMLc3DSkhYP0ah347495

user.signature.salt

The system uses the salt value to avoid dictionary attacks. Salt adds characters to what
is being created (in this case, a user signature). Because of the salt value, for example,
the encrypted value might have 100 digits rather than 10 digits. Breaking the
encryption thus becomes more difficult.

For example:

user.signature.salt=¥!asdfghlll©ñ¤?#¥³1966

User Authentication Information

Element Definition

ldap.firstname.attrname LDAP first name attribute name property

ldap.lastname.attrname LDAP last name attribute name property

ldap.username.attrname LDAP username attribute name property

Configuration Files

2-6 Oracle Retail Price Management Operations Guide

user.max.allowable.authentication.failures

This value represents the maximum number of times that a user can fail authentication
before the user's account is locked.

For example:

user.max.allowable.authentication.failures=5

user.max.time.lock.useraccount

This value represents the maximum number of hours a user's account remains locked.
If the account is locked and over the maximum time value, the next time that user logs
onto the system, the lock releases.

For example:

user.max.time.lock.useraccount=30

dao_rpm.xml
There must be a dao_rpm.xml file located in conf/retek. This configuration file is used
to configure the mapping between DAO interfaces and their implementation.
Generally there is no need to make changes to this file except if there is a need to
configure the user repository that is used by RSM for user searches. The default value
is to use an LDAP compliant directory server as the user repository. Besides LDAP,
XML file based searches are also supported. To switch between LDAP and XML,
comment or uncomment the "impl package" tags (shown below).

For example:

<dao-config>
<customizations>
<!-- There can only be one impl per interface. Use the XMLImpl to xml file(s) as
the user repository. -->
<interface package="com.retek.rsm.domain.security.dao.user">
<impl package="com.retek.rsm.domain.security.dao.impl.user" prefix=""
suffix="LDAPImpl"/>
<!--
<impl package="com.retek.rsm.domain.security.dao.impl.user" prefix=""
suffix="XMLImpl"/>
-->
 </interface>
</customizations>
</dao-config>

users_rsm.xml
There is a users_rsm.xml file located in conf/retek. This XML configuration is used for
authentication and user searching, this file is used as the repository for the users. This
file must contain the userNames, first names, last names and passwords of all valid
users. This file is located in the conf/retek directory within the RSM ear file.

Note: This setting should correspond with the LoginModule
configuration information found in the security.properties file. For
details about this setting, see the section, 'LoginModule configuration
information', earlier in this chapter.

Logging

Backend System Administration and Configuration 2-7

For example:

<users>
<user username="Valid.User" firstname="Valid" lastname="User"
password="PaSsW0rD"/>
<user username="JoeUser" firstname="Joe" lastname="User"
password="retekPassword"/>
</users>

Configuration for Oracle Retail Service Layer (RSL) with services_rpm.xml
RPM's service factory configuration file, services_rpm.xml, specifies the mapping
between RPM's application and its application services interfaces and their associated
implementations. Within this file are flavorsets, which are used to configure the
ServiceFactory. RSL requires a flavorset of businesslogic, which is used to distinguish
the correct implementation of business logic to use for RPM. For more information
about RSL, see "Chapter 4 - Integration Methods and Communication Flow."

For example:

retek/services_rpm.xml:
<?xml version="1.0" encoding="UTF-8"?>
<services-config>
<customizations>
<interface package="com.retek.rsl.rpm">
<impl package="com.retek.rpm.app.core.service" />
</interface>
</customizations>
</services-config>

retek/service_flavors.xml:
<?xml version="1.0" encoding="UTF-8"?>
<services-config>
<flavors set="businesslogic">
<flavor name="java" locator="com.retek.platform.service.SimpleServiceLocator"
suffix="Java"/>
</flavors>
</services-config>

Logging

Jakarta Commons Logging
The API that RPM components work with is built using Jakarta's Commons Logging
package. Commons logging provides 'an ultra-thin bridge between different logging
libraries', enabling the RPM application to remain reasonably 'pluggable' with respect
to different logger implementations. Objects in RPM that require logging functionality
maintain a handle to a Log object, which adapts logging requests to the (runtime
configurable) logging provider.

In RPM, Log4j is the library under commons logging.

Note: If LDAP is used for authentication and user searching, this file
is ignored.

Logging

2-8 Oracle Retail Price Management Operations Guide

Additional information about Jakarta Commons Logging can be found at the
following websites:

■ http://jakarta.apache.org/commons/logging/

■ http://jakarta.apache.org/commons/logging/api/index.html

Log4j.xml
The logging mechanism that is used for RPM is log4j.xml, which is the same as the
server's flat text log file. This logging mechanism reveals errors and other significant
events that occur during the system's runtime processing. In most cases, business
exceptions and system exceptions 'rise' to the user interface. If an exception is
displayed, it is logged. Log4j.xml is an open source product.

Significant application server logging occurs in RPM that should also be configured
and monitored. See applicable application server documentation for more information.

Additional information about log4j can be found at the following website:

■ "http://jakarta.apache.org/log4j/docs/index.html

log4j.xml for RPM is found in the following location: <ORACLE_
HOME>/j2ee/<rpm_oc4j_instance>/applications/<rpm_app_name>/conf/.

Logging Levels
The level setting established in log4j.xml instructs the system to log that level of error
and errors above that level. The logging levels are the following:

■ Fatal

■ Error

■ Warning

■ Info

■ Debug

The level is established in the log4j.xml file.

For example:

<!-- ======================= -->
 <!-- Setup the loggers -->
 <!-- ======================= -->

 <logger name="com.retek">
 <level value="ERROR"/>
 </logger>

Output Files
RPM's logging output is sent to the console, and is thus written to files by the
application server. In a default AS10g configuration, the output is written to a file of
the format OC4J~<rpm_oc4j_instance>~default_group~1 under <ORACLE_

Note: In a production environment, the logging setting should be set
to Error or Warn, so that system performance is not adversely
impacted.

RPMTaskMDB

Backend System Administration and Configuration 2-9

HOME>/opmn/logs. You can also configure the OC4J instance to write logs to a
different location (for example: <ORACLE_HOME>/j2ee/<rpm_oc4j_instance>/log),
and to roll them according to file size. For instructions related to this procedure, see
the OC4J Configuration and Administration Guide.

Hibernate Logging
Hibernate's internal logging setting is established in log4j.xml. The commons-logging
service directs output to log4j. To use log4j, the log4j.properties file must be in the
classpath. An example properties file is distributed with Hibernate. The class to be
logged and the logging level can be specified. For a general description of Hibernate,
see "Chapter 3 - Technical Architecture".

For example:

!-- == -->
 <!-- Hibernate trace at this level to log SQL parameters -->
 <!-- == -->

 <logger name="net.sf.hibernate.engine.QueryParameters">
 <level value="TRACE"/>
 </logger>

Transaction Timeout and Client Inactivity Timeout
This section describes how to establish settings for a transaction timeout. A transaction
timeout is the maximum duration, in seconds, for transactions on the application
server. Any transaction that is not requested to complete before this timeout is rolled
back.

To set up these timeouts, please follow these steps:

1. Log into the Enterprise Manager web interface and then navigate to the OC4J
instance running the RPM application.

2. Click on the Administration tab.

3. Under Services, click the Transaction Manager (JTA).

4. Click the Administration tab.

5. Under General, set the Transaction Timeout setting (for example, 600 seconds).

RPMTaskMDB
RPMTaskMDB is a message driven bean used to facilitate RPM's asynchronous
processing capability. Message driven beans act as listeners to specified queues for
messages. As soon as a message arrives in the queue, the container triggers execution
of this bean.

When a background task is created by RPM, a message is published to the queue as a
trigger to start processing of tasks.

The jndi names for queueName and ConnectionFactory are specified in
retek/system.properties.

EJBs Used by RPMTaskMDB
com.retek.rpm.app.task.service.RPMTaskAppServiceBmtEjb

Simplified RPM

2-10 Oracle Retail Price Management Operations Guide

Tables Used by RPMTaskMDB
■ RPM_TASK, RPM_CONFLICT_CHECK_TASK, RPM_LOCATION_MOVE_TASK

Current, past, and pending tasks to be executed.

■ ALERTS, ALERT_RECEIVER, ALERT_STATUS, ALERT_STATUS_DSC

Tables used for sending alerts to users about task status.

Simplified RPM
In order to satisfy the needs of clients who want a less complex version of RPM and
the lower costs of ownership associated with it, a simplified version of RPM is offered.

The simplified version of RPM has the amount of functionality it offers limited by the
security settings in RSM (which is established at the time of installation).

Simplified RPM is configured through RSM seed scripts. Running the simplified
version of the RSM seed scripts populates the named_permission and named_
permission_dsc tables with only the tasks that are available for Simplified RPM. Only
those tasks are then available within RSM when assigning task permissions to roles.
The configuration of the security settings is determined by install scripts that are
available with the RSM installation:

■ RSM_RPM_SE_named_permission.sql - This script defines the named permissions
and actions associated with them for RSM. This script should be run when
simplified RPM is installed.

■ RSM_RPM_named_permission.sql - This script defines the named permissions
and actions associated with them for RSM. This script should be run in addition to
the RSM_RPM_SE_named_permission.sql script when a client is using enterprise
RPM.

■ RSM_RPM_SE_named_permission_dsc.sql - This set of scripts defines the named
permission descriptions and the language settings for the named permissions.
These scripts should be run when simplified RPM is installed. There is one script
for each supported language. They are named "RSM_RPM_SE_named_
permission_dsc_*.sql where * is the language code with an optional country code.

■ RSM_RPM_named_permission_dsc.sql - This set of scripts defines the named
permission descriptions and the language settings for the named permissions.
These scripts should be run in addition to the RSM_RPM_SE_named_permission_
dsc.sql scripts when enterprise RPM is installed. There is one script for each
supported language. They are named "RSM_RPM_named_permission_dsc_*.sql
where * is the language code with an optional country code.

The functionality offered by both versions of RPM is outlined below:

■ System Options

■ Foundation

■ Link Codes

■ Zone Structure

■ Price Guides

■ Price Changes

■ Clearances

■ Promotion Events

Configuring RPM without the RIB

Backend System Administration and Configuration 2-11

■ Promotions

■ Promotion Threshold

■ Promotion Constraints

■ Vendor Funding Defaults

■ Conflict Checking Results

■ Price Inquiry

Enhanced Pricing Functionality
This functionality is NOT available in simplified RPM:

■ Pricing Strategies

■ Worksheets

■ Candidate Rules

■ Calendars

■ Market Basket Codes

■ Aggregation Level

Simplified RPM Batch Program Notes
When Simplified RPM is enabled (RPM Simplified Indicator is enabled) then the
following batch programs need to be turned off from the integrated batch schedule.

■ PriceStrategyCalendarBatch

■ WorksheetAutoApproveBatch

■ MerchExtractKickOffBatch

Configuring RPM without the RIB
RPM integrates with RMS through the RIB. Since both RPM and RMS reside on the
same database, the RIB integration may not be necessary for all clients. Therefore, the
client can configure their system to either use the RIB or by-pass the RIB for
RMS/RPM integration, depending on the value of the RPM_RIB_IND ('N' for the
No-RIB configuration; 'Y' otherwise) parameter from the system_options table. See the
Oracle Retail Merchandising System Installation Guide for additional information on
setting the value of the system_options table.

1. Log into the UNIX server as the user who has write access under ORACLE_
HOME.

2. Change directories to <ORACLE_HOME>/opmn/conf.

3. Make a backup of opmn.xml and then edit the file. Locate the process-type
element for the OC4J instance running the RPM application.

Note: It is assumed that RibForRPM is not installed and does not
need to be configured to stop processing incoming RIB messages from
RMS.

Disabling RIB Publishing in RPM

2-12 Oracle Retail Price Management Operations Guide

4. Under the process-type, under start-parameters -> java-options, add the following
value:

 -Dretek.no.rib=true
For example:

<process-type id="rpm-oc4j-instance" module-id="OC4J" status="enabled">
 <module-data>
 <category id="start-parameters">
 <data id="java-options" value="-Dretek.no.rib=true …

5. To publish price events using the Publish/Export batches, add the following
property/value to rpm.properties on the server:

delete_staged_rib_payloads=false
6. The following triggers need to be enabled so that data is written to the staging

table for RMS-RPM integration:

■ RMS_TABLE_RPM_DEP_AIR (on DEPS table)

■ RMS_TABLE_RPM_ITL_AIUDR (on ITEM_LOC table)

They can be enabled with the following syntax:

ALTER TRIGGER [schema.]trigger ENABLE

Configurable RIB Batch Program Notes
When the RIB is used for exchanging all messages between RMS and RPM, then the
following batch programs need to be turned off from the integrated batch schedule.

■ NewItemLocBatch

■ ItemLocDeleteBatch

Disabling RIB Publishing in RPM
The steps below describe how a retailer can disable RIB publishing in RPM. One
reason for this procedure is that a retailer may wish to run a test but not want results
published to the RIB. For more information about the RIB, see "Chapter 4 - Integration
Methods and Communication Flow" and RIB documentation.

1. Log into the UNIX server as the user who has write access under ORACLE_
HOME.

2. Change directories to <ORACLE_HOME>/opmn/conf.

3. Make a backup of opmn.xml and then edit the file. Locate the process-type
element for the OC4J instance running the RPM application.

4. Under the process-type, under start-parameters -> java-options, add the following
value:

 -Dretek.no.rib=true
For example:

<process-type id="rpm-oc4j-instance" module-id="OC4J" status="enabled">
 <module-data>
 <category id="start-parameters">
 <data id="java-options" value="-Dretek.no.rib=true …

5. Save opmn.xml

6. Reload OPMN and restart the OC4J instance running the RPM application.

For example:

Internationalization

Backend System Administration and Configuration 2-13

$ORACLE_HOME/opmn/bin/opmnctl reload
$ORACLE_HOME/opmn/bin/opmnctl restartproc process-type=rpm-oc4j-instance

Internationalization
Internationalization is the process of creating software that can be translated more
easily. Changes to the code are not specific to any particular market. RPM and RSM
have been internationalized to support multiple languages.

This section describes configuration settings and features of the software that ensure
that the base application can handle multiple languages.

Translation
Translation is the process of interpreting and adapting text from one language into
another. Although the code itself is not translated, components of the application that
are translated include the following, among others:

■ Graphical user interface (GUI)

■ Error messages

The user interface for RPM and RSM has been translated into:

■ German

■ French

■ Spanish

■ Japanese

■ Traditional Chinese

■ Simplified Chinese

■ Korean

■ Brazilian Portuguese

■ Russian

■ Italian

Set the Client Operating System to the Applicable Locale
For a client machine to use the translated interface, you should set the client machine's
operating system to the appropriate locale. Below is the procedure for setting a
Microsoft Windows XP OS to a particular language. For other operating systems,
please consult the operating system's guide.

1. From the Control Panel, select Regional and Language Options. The Regional and
Language Options window appears.

2. Select the required language from the Standards and formats drop-down field.

3. Click OK.

Note: You must install the required language according to
Microsoft's instructions before setting regional and language options.

Internationalization

2-14 Oracle Retail Price Management Operations Guide

Translated RPM Files
The text in the .properties files below is translated so that the interface of RPM
functions in local settings. Much of what is locale specific in RPM has been pulled out
of the code and placed into the following files. The _xx in the filename designates the
locale of the file. The locale can be the language alone (e.g., _en, _fr), or a language_
country combination (e.g., _en_GB, _fr_FR). Refer to the "Supported Locales" section of
the Java Internationalization documentation appropriate for the version of Java that
you are using.

■ messages.properties and messages_xx.properties

■ resources.properties and resources_xx.properties

■ codes.properties and codes_xx.properties

■ application_definition_rpm_messages.properties (contains labels that are
displayed in the RSM GUI for data security setup)

■ worksheet_column_names.properties and worksheet_column_names_
xx.properties (contains the labels from the worksheet details table's columns)

As shown below, the properties files can be found in rpm_client_properties.jar and
rpm_server_properties.jar.

■ rpm_client_properties.jar

– rpm11-ui/src/com/retek/rpm/gui/Resources.properties

– rpm11-ui/src/com/retek/rpm/gui/worksheet/Worksheet_column_
names.properties

■ rpm_server_properties.jar

– rpm11-server/conf/retek/messages.properties

– rpm11-server/conf/retek/codes.properties

– rpm11-server/conf/retek/application_definition_rpm_messages.properties

■ "RPM resides on platform code that has its own resource bundles. They are in the
platform-resources.jar file.

Translated RSM Files

Properties files
The majority of the locale-specific functionality in RSM resides in two spots: A
description table located in the RSM database table, and the Resource_xx.properties
files located in the rsm13-client-resource.jar. The _xx in the filename designates the
locale of the file. The locale can be the language alone (e.g., _en, _fr), or a language_
country combination (e.g., _en_GB, _fr_FR). Refer to the "Supported Locales" section of
the Java Internationalization documentation appropriate for the version of Java that
you are using.

The RSM_NAMED_PERMISSION_DSC Table
On the server side, one description table exists that contains localized information.
Table RSM_NAMED_PERMISSION_DSC contains displayable fields used in
administering workflow permissions. A retailer must populate and/or edit the rows in
this table.

Price Management Status Page

Backend System Administration and Configuration 2-15

Updates are required to the following columns:

■ Language: The language to be translated to (e.g., fr, en)

■ Country: The country of the locale (e.g., FR, US)

■ Label: A short description of the named permission

■ Dsc: A long description of the named permission

Price Management Status Page
Because RPM is dependent upon a number of servers, and a number of Oracle Retail
products are dependent on RPM, a status page helps the retailer determine quickly
whether RPM and the servers upon which it depends are up and running correctly.
The privileges to this page can be set in Oracle Retail Security Manager and these
privileges are typically reserved for administrators. The status page application
displays the answers to the following questions:

■ Is the RPM/RMS_Database up and running?

■ Is the RPM JMS Server up and running?

■ Is RSM up and running?

■ Can the application get access to the RPM service?

■ Can the application log in to RPM?

■ Can RPM data be retrieved?

■ Can RMS data be retrieved?

■ Is the application able to publish to RIB each message type?

Sample Output
The text below represents a sample output. The example represents a case in which the
questions above have all been answered in the affirmative.

The new command usage is as follows:

statusPageCommandLineApplication.sh username password [phase-choice]
[max-rows-choice]
Valid values for phase-choice are as follows:

The value specified for max-rows-choice is the maximum row count for the query. By
default, the query is run for the full count.

For example:

./statusPageCommandLineApplication.sh alain.frecon retek S

Performing System Check
The following RpmRibMessageStatusException is normal.
We need to throw an exception to ensure that the test messages are rolled back.
10:30:04,599 ERROR [ServiceAccessor] InvocationTargetException received on a
service call...

S System check only

D Data integrity check only

B (Default) Both

Price Management Status Page

2-16 Oracle Retail Price Management Operations Guide

java.lang.reflect.InvocationTargetException
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:79)
at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java(
Compiled Code))
at java.lang.reflect.Method.invoke(Method.java(Compiled Code))
at org.apache.commons.beanutils.MethodUtils.invokeMethod(MethodUtils.java:216)
at
com.retek.platform.service.ServiceAccessor.callRemoteMethod(ServiceAccessor.java:3
00)
at
com.retek.platform.service.ServiceAccessor.remoteTransaction(ServiceAccessor.java:
485)
at
com.retek.platform.service.ServiceAccessorProxy.invoke(ServiceAccessorProxy.java:5
1)
at $Proxy4.performRibMessageCheck(Unknown Source)
at com.retek.rpm.statuspage.RpmRibMessageCheck.execute(RpmRibMessageCheck.java:25)
at com.retek.rpm.statuspage.StatusPageCheck.runTest(StatusPageCheck.java:15)
at
com.retek.rpm.statuspage.StatusPageProcessor.execute(StatusPageProcessor.java:19)
at
com.retek.rpm.statuspage.StatusPageCommandLineApplication.performAction(StatusPage
CommandLineApplication.java:80)
at
com.retek.rpm.statuspage.StatusPageCommandLineApplication.main(StatusPageCommandLi
neApplication.java:65)
Caused by:
<com.retek.rpm.app.statuspage.service.RpmRibMessageStatusException>
<message>
 No cause associated
</message>
</com.retek.rpm.app.statuspage.service.RpmRibMessageStatusException>

at
com.retek.rpm.app.statuspage.service.StatusPageAppServiceImpl.performRibMessageChe
ck(StatusPageAppServiceImpl.java:71)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java(Compiled
Code))
at
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java(Compiled
Code))
at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java(
Compiled Code))
at java.lang.reflect.Method.invoke(Method.java(Compiled Code))
at org.apache.commons.beanutils.MethodUtils.invokeMethod(MethodUtils.java(Compiled
Code))
at
com.retek.platform.service.ServiceCommandImpl.execute(ServiceCommandImpl.java(Comp
iled Code))
at
com.retek.platform.service.impl.CommandExecutionServiceEjb.executeCommand(CommandE
xecutionServiceEjb.java(Compiled Code))
at com.retek.platform.service.impl.EJSRemoteStatelessCommandExecutionService_
76208b17.executeCommand(Unknown Source)
at com.retek.platform.service.impl._EJSRemoteStatelessCommandExecutionService_

Price Management Status Page

Backend System Administration and Configuration 2-17

76208b17_Tie.executeCommand__com_retek_platform_service_ServiceCommand(_
EJSRemoteStatelessCommandExecutionService_76208b17_Tie.java(Compiled Code))
at com.retek.platform.service.impl._EJSRemoteStatelessCommandExecutionService_
76208b17_Tie._invoke(_EJSRemoteStatelessCommandExecutionService_76208b17_
Tie.java(Compiled Code))
at
com.ibm.CORBA.iiop.ServerDelegate.dispatchInvokeHandler(ServerDelegate.java(Compil
ed Code))
at com.ibm.CORBA.iiop.ServerDelegate.dispatch(ServerDelegate.java(Compiled Code))
at com.ibm.rmi.iiop.ORB.process(ORB.java(Compiled Code))
at com.ibm.CORBA.iiop.ORB.process(ORB.java(Compiled Code))
at com.ibm.rmi.iiop.Connection.doWork(Connection.java(Compiled Code))
at com.ibm.rmi.iiop.WorkUnitImpl.doWork(WorkUnitImpl.java(Compiled Code))
at com.ibm.ejs.oa.pool.PooledThread.run(ThreadPool.java(Compiled Code))
at com.ibm.ws.util.ThreadPool$Worker.run(ThreadPool.java(Compiled Code))

Starting Report
com.retek.rpm.statuspage.RsmServerCheck Passed

Starting Report
com.retek.rpm.statuspage.RpmLoginCheck Passed

Starting Report
com.retek.rpm.statuspage.RpmDataAccessCheck Passed

Starting Report
com.retek.rpm.statuspage.RpmRibMessageCheck Passed REGPRCCHG.REGPRCCHGCRE is ON
************************The above exception indicates that we have passed

Starting Report
com.retek.rpm.statuspage.RpmRibMessageCheck Passed REGPRCCHG.REGPRCCHGMOD is ON
************************The above exception indicates that we have passed

Starting Report
com.retek.rpm.statuspage.RpmRibMessageCheck Passed REGPRCCHG.REGPRCCHGDEL is ON
************************The above exception indicates that we have passed

Starting Report
com.retek.rpm.statuspage.RpmRibMessageCheck Passed CLRPRCCHG.CLRPRCCHGCRE is ON
************************The above exception indicates that we have passed

Starting Report
com.retek.rpm.statuspage.RpmRibMessageCheck Passed CLRPRCCHG.CLRPRCCHGMOD is ON
************************The above exception indicates that we have passed

Starting Report
com.retek.rpm.statuspage.RpmRibMessageCheck Passed CLRPRCCHG.CLRPRCCHGDEL is ON
************************The above exception indicates that we have passed

Starting Report
com.retek.rpm.statuspage.RpmRibMessageCheck Passed PRMPRCCHG. is ON
************************The above exception indicates that we have passed

Price Management Status Page

2-18 Oracle Retail Price Management Operations Guide

Starting Report
com.retek.rpm.statuspage.RpmRibMessageCheck Passed PRMPRCCHG. is ON
************************The above exception indicates that we have passed

Starting Report
com.retek.rpm.statuspage.RpmRibMessageCheck Passed PRMPRCCHG. is ON
************************The above exception indicates that we have passed

Starting Report
RpmJmsServerCheck Passed

Done.

3

Technical Architecture 3-1

3Technical Architecture

This chapter describes the overall software architecture for RPM. The chapter provides
a high-level discussion of the general structure of the system, including the various
layers of Java code. From the content, integrators can learn both about the pieces of the
system and how they interact.

A description of RPM-related Java terms and standards is provided for your reference
at the end of this chapter.

Overview
RPM's architecture is built upon a layered model. That is, layers of the application
communicate with one another through an established hierarchy and are only able to
communicate with neighboring layers. Any given layer need not be concerned with
the internal functional tasks of any other layer.

Conceptually, RPM's J2EE architecture is built upon 4-layers and implements what is
defined as a service-oriented architecture. Such an architecture is essentially a
collection of services that pass data, perform business processing, coordinate system
activities, and render data into abstract objects. Defined in the abstract, a service is a
function that is well-defined, self-contained, and does not depend on the context or
state of other services within the system.

The application's layered Java architecture has the following advantages, among
others:

■ The separation of presentation, business logic, and data makes the software
cleaner, more maintainable, and easier to modify.

■ The look and feel of the application can be updated more easily because the GUI is
not tightly coupled to the backend.

■ Java applications have enhanced portability which means the application is not
'locked' into a single platform. Upgrades are easier to implement, and hardware is
easier to change.

■ Logic is implemented using Java objects within a core services layer that is
designed around proven architecture concepts.

The Layered Model
The following diagram, together with the explanations that follow, offer a high-level
conceptual view of RPM's service-oriented architecture. The diagram highlights the
separation of layers as well as their responsibilities within the overall architecture. Key
areas of the diagram are described in more detail in the sections that follow.

The Layered Model

3-2 Oracle Retail Price Management Operations Guide

Figure 3–1 RPM's Technical Architecture

Client
The application's client layer is comprised both of the GUI and interfaces. The GUI is
responsible for presenting data to the user and for receiving data directly from the user
through the 'front end'. The GUI was developed using a Java Swing framework, which
is a toolkit for creating rich presentation in Java applications. A design library defines
look and feel issues.

The Oracle Retail Service Layer (RSL) and batch processing interfaces also behave as
clients to the application. They are interface points that interact with the system's
application services layer.

For more information about how RSL integrates with RPM, see "Chapter 4 -
Integration Methods and Communication Flow" For more information about batch
processing, see "Chapter 6 - Java and RETL Batch Processes."

Application Services Layer (Stateless Session Beans)
Application services are designed to provide specific services and specific data
requirements to a particular client. What application services a client calls depends
upon its needs and the data formats it has. Application services are concerned with

The Layered Model

Technical Architecture 3-3

somewhat narrow processes. Not surprisingly, the names of application services often
correspond to client-related processes.

The application services layer of RPM's architecture implements the enterprise Java
bean (EJB) type called stateless session beans (SSB). An SSB is a type of EJB that
provides stateless service to a client. For example, a stateless session bean could be
designed for the GUI. The application services reside on the server side of the process
boundary (also known as the remote call boundary).

The application-specific services layer provides an interface between a particular client
and the adjacent core services layer. To solve a business problem, application services
call one or more core services. (Note that application services could also call other
application services. For example, one application service has a large granularity and
needs another one to perform minor grain transformations, and so on.)

An important way that application services accept incoming data from a client is via
value objects and/or payloads. A 'value object' is a data holder in a highly flat form
(similar to a bean). Value objects facilitate improved system performance. For example,
from the GUI, the value object data only has to be what is needed by an applicable
screen or set of screens. A 'payload' holds the data that satisfies the needs of the
applicable interface (RSL, for example).

The application services layer's primary function is to facilitate the conversion of value
objects/payloads to business objects and business objects to value objects/payloads
which are required by the adjacent layers. The value objects/payloads accepted from
and returned to the application services layer are nothing more than data-centric
classes which encapsulate closely related items. Value objects/payloads are used to
provide a quick and lightweight method to transfer flat data items. The value
objects/payloads passed between the application services layer and the application
services layer contain very little, if any, data processing logic and in the context of the
RPM are used solely to transfer data.

The application services depend upon both core services and business objects,
translating back and forth between input from the client and business objects in the
core services layer. The application services call the applicable core service at the
applicable time.

Core Services Layer
This layer consists of a collection of separate and distinct services that encapsulate the
RPM application's core business logic. Core services are 'core' in the sense that they
work with the business object model, and they contain the business object rules for the
application. Unlike application services, core services make no presumptions about
how they might be used. In other words, core services contain generic views of
business functionality as opposed to a narrow application service process.

Residing very close to the core services, business objects represent business problems.
Business objects contain behaviors. For example, they perform validation and guard
themselves from being used improperly. To ensure the atomicity, consistency, isolation,
and durability (ACID) properties of state transitions, RPM implements some business
logic using a state machine (a workflow engine). Each object that has a lifecycle has a
state machine, which describes the object's lifecycle.

Sometimes core services drive processes with business objects, but more often, core
services are responsible for finding the business objects and sending them back to the
persistence layer. The core services layer is thus responsible for managing object
persistence by interacting with the data access objects residing in the supporting
persistence layer.

The Layered Model

3-4 Oracle Retail Price Management Operations Guide

To summarize, the core service layer consists of a collection of Java classes that
implement an application's business related logic via one or more high-level methods.
The core services represent all logical tasks that can be performed on an application's
business objects.

Persistence Layer
RPM uses Hibernate, an object/relational persistence and query service for Java. This
object-relational framework provides the ability to map business objects residing in the
core services layer to relational tables contained within the data store.

Conceptually, Hibernate encompasses most of the persistence layer. Hibernate
interacts with core services by passing/accepting business objects to/from the core
services layer. Internally, Hibernate manages the conversion of RPM's business object
to relational data elements required by the supporting relational database
management system (RDMS).

For information about Hibernate-related logging, see "Chapter 2 - Backend System
Administration and Configuration."

Database Layer
The database tier is the application's storage platform, containing the physical data
used throughout the application. The system is designed to include two RDMS
datasources, RPM and RMS.

Security
The embedded RSM application provides basic authorization and authentication
functionality during user logon. To perform authentication, RPM has a set of APIs that
calls the API tier within Oracle Retail Security Manager (RSM).

User Repository (Such As a Third-Party Directory Server)
To facilitate the authentication of users, RSM is integrated with a 3rd party directory
service application. Core services interact using Light Directory Access Protocol
(LDAP) which allows RSM to "talk" with the 3rd party directory service. The LDAP
standard defines a network protocol for accessing information in a directory.

Though RSM is configurable to use any LDAP-compliant directory server, the system
is certified to work with Oracle's Oracle Internet Directory (OID), Microsoft's Active
Directory® (AD) and OpenLDAP®.

Oracle Internet Directory is an LDAPv3 directory that leverages the scalability, high
availability and security features of the Oracle Database. Active Directory is an
LDAP-compliant directory server that stores enterprise user information. Microsoft's
website describes Active Directory as having a "single-logon capability and a central
repository for information for your entire infrastructure, vastly simplifying user and
computer management and providing superior access to networked resources."
OpenLDAP is an open source implementation of the Lightweight Directory Access
Protocol. RSM queries LDAP for user information. No implementation specific
enhancements are utilized.

RSM uses LDAP for two purposes:

■ As the master repository of user information

■ As a third-party authentication service

Asynchronous Processing

Technical Architecture 3-5

In the second case, RSM authenticates users by binding to the LDAP Directory Server
as the user who is attempting to log in to RSM. The user's password is never stored in
RSM; it is passed along when RSM tries to connect to the Directory Server. If the
connection to the directory server succeeds, the user is considered authenticated in
RSM.

If RSM cannot connect to a directory server; the user is not able to log in.

For additional information about Oracle Internet Directory (OID), see the following
website:

■ http://www.oracle.com/technology/products/oid/index.html

For additional information about Active Directory, see the following website:

■ http://www.microsoft.com/

For additional information about OpenLDAP, see the following website:

■ http://www.openldap.org/

Asynchronous Processing
Conflict checking is done in RPM to ensure that rules are followed in order to avert
potential pricing problems. Examples of conflict checks include ensuring that a given
item/location does not have more than one retail value assigned for a given date, and
ensuring that parameters of regular price change, clearance, and/or promotions are
not causing the retail value of the item/location to go below zero.

The conflict check process in RPM can be either a synchronous or an asynchronous
process. If processing is synchronous, it can be kicked off by itself or as part of another
action, (for example, approving a price change), but it always blocks the user while it
runs. When conflict checking is set as asynchronous, it is a mechanism by which
applications can execute long running operations in the background while allowing
work to be done simultaneously.

Three system options have been introduced in the RPM application to allow the choice
of either synchronous or asynchronous processing during conflict checking. They are
as follows:

■ Price Changes/Clearances

■ Promotions

■ Worksheet

Synchronous as Opposed to Asynchronous Processing
When conflict checking is performed synchronously, the system performs conflict
checks immediately when the Conflict Check option is selected from the Price Change,
Promotions, or Clearances workspaces. It also is performed when state changes occur
that require conflict check. The system displays a pop-up dialog showing the conflicts
whenever they are found.

Note: RSM never writes data to the LDAP Directory Server.

Note: By selecting any of the above options, you enable
asynchronous conflict checking for that functional area.

Asynchronous Processing

3-6 Oracle Retail Price Management Operations Guide

Conflict checking is always done synchronously in the following situations:

■ RSL calls

■ RIB calls

■ Location Move Batch

■ Auto-generated price changes

When conflict checking is done asynchronously, the conflict check processing happens
in a background task or when the system is not busy performing other tasks. You
receive an alert once conflict checking is done.

The Conflict Check Results workspace allows you to review the results of background
conflict checking for worksheets, price changes, promotions, and clearances. An alert
appears in the Conflict column of the worksheet, price change, promotion, or clearance
maintenance pane when conflict checking is complete. See the Oracle Retail Price
Management User Guide for instructions on how to view the results of background
conflict checking.

Conflict checking for location move scheduling is expected to operate on extremely
large volume of data. It is not acceptable for the user to wait long periods of time for
the processing of their request. Thus, conflict checking for location move scheduling is
always done asynchronously.

Constraints are performed asynchronously at the same time as the conflict check.
When you execute an action that kicks off a conflict check, you indicate whether you
want constraints checked. If constraints are checked, they are handled just like conflict
check errors.

Asynchronous Processing Flow
1. The client requests the application server to perform a process on a business object

or set of business objects.

2. The server's application service layer extracts information about the request (type
of business object, identifying ID, and requested action).

3. When RPM determines that a task is eligible for asynchronous processing:

■ A JMS message is published to the queue that contains specific information
about the task.

■ A record is inserted into the TASK table. The task-specific information about
the task is persisted as a Blob in the table. This task-specific information is a
Java object that, when read from the database, is capable of calling an RPM
application service to perform asynchronous processing and generate an alert
when the processing is completed.

4. As soon as a message arrives in the queue, the container triggers execution of the
RPMTaskMDB. RPMTaskMDB is a message driven bean used to facilitate RPM's
asynchronous processing capability. Message Driven Beans acts as listeners to
specified queues for messages.

5. The task passes information to the application service layer.

6. The application service layer performs a state transition on the requested business
object (for example, approving a particular price change) based on the information
passed by the task.

7. The results of this transition (for example, success or failure messages, conflict
details) are recorded in the RPM_CONFLICT_CHECK_RESULT table.

RPM Cached Objects

Technical Architecture 3-7

8. The application service inserts a record into the ALERT table.

9. The client periodically polls the Alerts application service which looks for new
alerts in the ALERTS table.

RPM Cached Objects
RPM can cache objects within the server in order to reduce repeated creation and
loading of frequently accessed information from the database. This strategy helps in
reducing database access latency and bottlenecks. The object caches are accessible
across requests and users and are configured to be refreshed at configurable time
intervals.

RPM caches certain types of business objects and database query results. The business
objects that RPM caches are those that are frequently accessed but infrequently
changed. RPM sets a cache for each of the following business objects:

■ System Date (VDATE)

■ System Options

■ System Defaults

■ Divisions

■ Groups

■ Departments

■ Districts

■ Stores

■ Warehouses

■ Suppliers

■ Partners

■ Dynamic Codes

■ Units Of Measure

■ Zone Groups

■ Zones

■ Differentiators

■ Differentiator Types

■ Reference Items

■ Class Hierarchies

■ Subclasses

■ Deal Status Codes

■ Deal Type Codes

RPM also caches results from non-parameterized database queries.
Non-parameterized database queries usually happen when RPM needs data that are
not of specific criteria. An example would be to retrieve all clearance information for
the Clearance Workflow. In contrast, parameterized database queries retrieve data that
fall under a specific criteria such as retrieving all clearances affecting a given location.

RPM-related Java Terms and Standards

3-8 Oracle Retail Price Management Operations Guide

RPM uses an open-source product called EHCache as a caching framework. EHCache
features both memory and disk cache storage options and flexible configuration.
Further information about this framework can be found at
http://ehcache.sourceforge.net/.

With the exception of the Virtual System Date, the cache for business objects and
database query results are configured as follows:

■ RPM can store in the memory cache up to 10,000 instances within a business object
cache and 10,000 database query result sets. If there are more than 10,000 elements
to be stored, the overflow is stored onto disk.

■ A cache is refreshed if they have not been accessed for 3600 seconds.

The Virtual System Date (VDATE) differs in configuration in such a way that there is
only one instance of a VDATE within its cache and there's no expiration of that
instance.

RPM-related Java Terms and Standards
RPM is deployed using the J2EE-related technologies, coding standards, and design
patterns defined in this section.

ACID

ACID represents the four properties of every transaction:

■ Atomicity: Either all of the operations bundled in the transaction are performed
successfully or none of them are performed.

■ Consistency: The transaction must leave any and all datastores that are affected by
the transaction in a consistent state.

■ Isolation: From the application's perspective, the current transaction is
independent, in terms of application logic, from all other transactions running
concurrently.

■ Durability: The transaction's operations against a datastore must persist.

Data access object (DAO)

This design pattern isolates data access and persistence logic. The rest of the
component can thus ignore the persistence details (the database type or version, for
example).

Java Development Kit (JDK)

Standard Java development tools from Sun Microsystems.

Enterprise Java Beans (EJB)

EJB technology is from Sun. See http://java.sun.com/products/ejb/. EJB refers to a
specification for a server-side component model. RPM uses stateless, session EJBs,
which are stateless and clusterable, and which offer a remotely accessible entry point
to an application server.

Enterprise Java Beans (EJB) container

An EJB container is the physical context in which EJBs exist. A container is a physical
entity responsible for managing transactions, connection pooling, clustering, and so
on. This container manages the execution of enterprise beans for J2EE applications.

J2EE server

Conflict Checking

Technical Architecture 3-9

The runtime portion of a J2EE product. A J2EE server provides EJB and Web
containers.

The Java 2 Enterprise Edition (J2EE)

The Java standard infrastructure for developing and deploying multi-tier applications.
Implementations of J2EE provide enterprise-level infrastructure tools that enable such
important features as database access, client-server connectivity, distributed
transaction management, and security.

Naming conventions in Java

■ Packages: The prefix of a unique package name is always written in all-lowercase
letters.

■ Classes: These descriptive names are unabbreviated nouns that have both lower
and upper case letters. The first letter of each internal word is capitalized.

■ Interfaces: These descriptive names are unabbreviated nouns that have both lower
and upper case letters. The first letter of each internal word is capitalized.

■ Methods: Methods begin with a lowercased verb. The first letter of each internal
word is capitalized.

Persistence

The protocol for transferring the state of an entity bean between variables and an
underlying database.

Remote interface

The client side interface to a service. This interface defines the server-side methods
available in the client tier.

Conflict Checking
The major components of Conflict Checking in RPM are performed by PL/SQL and
are executed on the database server instead of the application server. This addresses
performance concerns around this functionality. A number of PL/SQL package files
need to be installed on the database.

Conflict Checking

3-10 Oracle Retail Price Management Operations Guide

4

Integration Methods and Communication Flow 4-1

4Integration Methods and Communication
Flow

This chapter provides information that addresses how RPM integrates with other
systems (including other Oracle Retail systems).

This chapter is divided into the following sections that address RPM's methods of
integration:

■ Functional dataflow

■ Communication flow diagram and explanation

■ Oracle Retail Integration Bus (RIB)-based integration

■ Oracle Retail Service Layer (RSL)-based integration

■ Persistence layer integration

Functional Dataflow
The diagram below details the overall direction of the dataflow among the various
systems. The accompanying explanations of this diagram are written from a
system-to-system perspective, illustrating the movement of data throughout the
RPM-related portion of the enterprise. Note that this discussion focuses on a high-level
functional use of data. For a technical description of the dataflow, see the sections later
in this chapter.

A Note about the Merchandising System Interface
Many tables and functions within RPM are held in common with the Oracle Retail
Merchandising System (RMS). This integration provides the following two important
benefits:

■ The number of interface points that need to be maintained is minimized.

■ The amount of redundant data (required if the rest of the Oracle Retail product
suite is installed) is limited.

Integration Interface Dataflow Diagram

4-2 Oracle Retail Price Management Operations Guide

Integration Interface Dataflow Diagram

Figure 4–1 RPM-related Dataflow Across the Enterprise

Integration Interface Dataflow Description

From Oracle Retail Allocation to RPM
■ Request for future retail price data

This request is based on information provided by Oracle Retail Allocation (for
example, item, location, date).

From RPM to Oracle Retail Allocation
■ Future retail price data

Oracle Retail Allocation uses this data to provide the user with the future retail
price value of the entire allocation (based on its quantities). The future retail price
data is stored in RPM and consists of approved pricing events (price change,
clearance, promotion) that affect an item/location throughout its pricing life.
These future retail price values are retrieved by location, date, and item. RPM
provides the retail price, the currency and the price type (regular, clearance,
promotion). RPM plans to provide this retail value in the location's currency.

From RPM to RMS
■ Price change approval/execution

RPM publishes price change approvals to RMS so that RMS can generate a ticket
request for the specified item/location. RPM also owns price change execution,
which is the process of updating the retail information stored in RMS with the new
regular retail prices determined by the regular price change going into effect. RPM
processing asks: are there any price changes going into effect tomorrow? If there

Integration Interface Dataflow Description

Integration Methods and Communication Flow 4-3

are, RPM notifies RMS, and RMS updates the retail information with the new
regular retail prices. In other words, RMS table updates occur through RMS code.

■ Promotion execution

RPM processing asks: are there any promotions (for example, 25% of the retail
price of an item) going into effect tomorrow or ending today? If there are, RPM
notifies RMS, and RMS updates the promotional retail information. In other
words, RMS table updates occur through RMS code. The promotion of items is
frequently driven by a particular event such as a holiday or the overstock of an
item. RPM also provides promotion information to RMS so that RMS can associate
promotions to orders and/or transfers.

■ Clearance execution

Clearances in RPM are a series of markdowns designed to move inventory out of a
store. Clearances always result in the price of an item going down. RPM
processing asks: if there are any clearances going into effect tomorrow or resetting
tomorrow? If there are, RPM notifies RMS, and RMS updates the clearance retail
information. In other words, RMS table updates occur through RMS code.

■ Initial price data

Initial retail prices in RMS are derived using various pieces of information stored
in RPM. To successfully initially price items in RMS, a primary zone group must
be defined in RPM for the merchandise hierarchy assigned to the new item. The
primary zone group definition in RPM consists of the following elements:

– Primary zone group

The primary zone group determines the structure that is used to initially price
the item. When users access the retail by zone link in RMS, they see an initial
price for each zone with the primary zone group.

– Markup percent

The markup percent is the markup applied to the cost of the item.

– Markup percent type

The markup percent type is either cost type or retail type and determines what
formula to use when marking up the cost.

– Price guides

Pricing guides are used to help create a uniform pricing strategy. They are
used to smooth the proposed retails in order to maintain a consistent set of
price points.

From RMS to RPM
There are several instances when RMS must notify RPM of actions that occur within
RMS. These actions are as follows:

■ Store/Warehouse creation

This message is used to notify RPM when stores and/or warehouses are added to
RMS. RPM needs the new store/warehouse and its associated pricing location in

Note: Price changes, clearances, and/or promotions are not applied
to item/locations in RMS with a status of 'Deleted'.

Integration Interface Dataflow Description

4-4 Oracle Retail Price Management Operations Guide

order to assign the new store/warehouse to the zone structure. The message also
contains the currency of the new store/warehouse in the event that the pricing
location assigned does not share the same currency as the new store/warehouse.

■ Item/Location creation

This message is used to notify RPM when a new item/location relationship has
been created. RPM processes this message and makes sure that this item/location
combination does not have existing future retail records. If the item is sellable,
RPM then creates an initial future retail record for this item/location combination
along with its retail value. If there are approved promotions/clearances/price
changes at the intersection of any level between the merchandise and zone
hierarchies, RPM proceeds to attach this new item/location to those price events,
and, eventually, as new records in the RPM_FUTURE_RETAIL table.

■ Item modification

This message is used to notify RPM when there is an item reclassification in RMS.
RPM uses this information to update the department, class, and subclass
information in the RPM_ITEM_MODIFICATION table. When the next scheduled
batch process runs, the RPM_FUTURE_RETAIL table is updated with these new
values.

■ Department creation

This message is used to notify RPM when a new department is created in RMS.
RPM creates aggregation level information for the new department using
predefined system defaults. The user can modify these values via the Maintain
Aggregation Levels workflow.

From RPM to RSM
■ User and password data that requires authentication

RPM sends RSM the user and password data that requires authentication. RSM
calls the retailer's LDAP compliant directory service to authenticate username and
password data. Once a user is authenticated, RSM creates an encrypted user
signature (a ticket).

From RSM to RPM
■ Encrypted user signature

The login credentials (user signature) are encrypted because the information is
being sent 'over the wire'.

■ Names permissions data

This data maps users to roles and roles to specific functionality ('named
permissions').

■ Data permissions data

RSM administers data level permissions. To facilitate this functionality, any Oracle
Retail application utilizing RSM for data level permissions initially populates RSM
tables with its hierarchy types (for example, merchandise and location).

From RPM to ReSA
ReSA needs to receive promotion data from RPM and ReSa retrieves this data via the
RETL extract program. Included in this data is promotion detail, promotion events,

Integration Interface Dataflow Description

Integration Methods and Communication Flow 4-5

and promotion headers. For more information regarding this, see 'RETL Program
Overview for RPM Extractions' in "Chapter 6 - Java and RETL Batch Processes."

From RPM to SIM and from SIM to RPM
RPM publishes information to Oracle Retail Store Inventory Management (SIM) to
communicate the status of price changes, clearances, and promotions within the
application. The messages are published at a transaction item/location level and
include the following price change events:

■ Price changes

– RPM publishes approved price changes at the location level and they are
published as 'fixed price' price changes, with the price change type and the
price guides already applied.

– RPM publishes price changes that were once approved (published) but are
now cancelled/deleted.

– SIM requests new price changes. RPM checks the submitted price change for
conflicts. If the conflict checking is successful, RPM assigns a reason code and
price change ID and publishes the approved results. If the conflict checking is
unsuccessful, RPM informs SIM of the failure.

– SIM edits existing price changes. RPM validates the edits to ensure that they
do not create conflicts or a negative retail. If conflict checking is successful,
approved updates are published. If conflict checking is unsuccessful, RPM
publishes a status record relating that the price change was unable to be
updated.

■ Clearances

– RPM publishes approved clearance price changes at the location level and
they are published as fixed price clearances with the change type and price
guides already applied. Clearance changes include a markdown number.

– RPM publishes the reset when a clearance price changes with a reset date is
approved (and therefore the reset date record created).

– SIM requests a new clearance price change. RPM checks the submitted
clearance for conflicts and, if successful, assigns a sequence, reason code and
ID and then publishes the approved result. If the conflict checking is
unsuccessful, RPM informs SIM of the failure.

– SIM edits existing clearance price changes. RPM validates the edits to ensure
that they do not create conflicts, negative retails, or clearance price raises
above the previous clearance retail. Approved updates are published, and SIM
is able to implement the clearance. If RPM validation is unsuccessful, RPM
informs SIM of the failure.

– RPM publishes clearances that were once approved (published) but are now
cancelled/deleted.

■ Promotions

– RPM publishes approved promotions, including the promotion details. Simple
promotions are published with the promotional retail and change type so SIM
can apply them to the current regular price or clearance based on the
promotion settings. Multi-buy promotions are published with their details, as
a specific promotional retail cannot be calculated.

Integration Interface Dataflow Description

4-6 Oracle Retail Price Management Operations Guide

– SIM creates simple promotions at the item/location level. RPM checks the
submitted promotion for conflicts and overlaps. RPM also checks for negative
retails to insure that the promo retail is not above the regular retail. Approved
promotions are published, and SIM is able to implement the promotion. If
RPM validation is unsuccessful, RPM informs SIM of the failure.

– SIM edits existing simple promotions. RPM validates the edits to ensure they
don't create conflicts, negative retails or promotional retails above the regular
retail. Approved changes to promotions are published, and SIM is able to
implement the changes to the promotion. If RPM validation is unsuccessful,
RPM informs SIM of the failure.

– RPM publishes promotions that were once approved (published) but are now
cancelled/deleted.

From RPM to the RIB and from the RIB to RPM
RPM publishes information to the RIB to communicate the status of price changes,
clearances, and promotions within the application. The messages are published at a
transaction item/location level and include the following price change events:

■ Price changes

– RPM publishes approved price changes at the location level and they are
published as 'fixed price' price changes, with the price change type and the
price guides already applied.

– RPM publishes price changes that were once approved (published) but are
now cancelled/deleted.

■ Clearances

– RPM publishes approved clearance price changes at the location level and
they are published as fixed price clearances with the change type and price
guides already applied. Clearance changes include a markdown number.

– RPM publishes the reset when a clearance price changes with a reset date is
approved (and therefore the reset date record created).

– RPM publishes clearances that were once approved (published) but are now
cancelled/deleted.

■ Promotions

– RPM publishes approved promotions, including the promotion details. Simple
promotions are published with the promotional retail and change type so that
another application can apply them to the current regular price or clearance
based on the promotion settings. Multi-buy promotions are published with
their details, as a specific promotional retail cannot be calculated.

– RPM publishes promotions that were once approved (published) but are now
cancelled/deleted.

From RPM to RDW
RDW needs to receive promotion data from RPM, and RDW retrieves this data via the
RETL extract program. Included in this data is promotion detail, promotion events,
and promotion headers. For more information regarding this, see 'RETL Program
Overview for RPM Extractions' in "Chapter 6 - Java and RETL Batch Processes."

Pricing Communication Flow Diagram

Integration Methods and Communication Flow 4-7

Pricing Communication Flow Diagram
Pricing detail is communicated from RPM to other applications through different
means. The four primary communication components of pricing information are
described in this section. A functional explanation of the data follows the diagram.

Figure 4–2 Pricing Communication Flow Diagram

Approved Price Events
When a price change, clearance or promotion is approved in RPM, the system
publishes those events to the Oracle Retail Integration Bus (RIB). Another application
can subscribe to the message in order to pass the pricing event information on to the
RIB. RPM also publishes messages when approved events are unapproved. This
message informs the other application that the event previously sent will not take
place.

Price Events
SIM has the ability to create, modify, or delete price changes, clearances and
promotions on a store by store basis. SIM communicates these requests via the Oracle
Retail Service Layer (RSL) and RPM runs the requests through conflict checking. If the
requests pass conflict checking then they become approved price events. RPM sends a
confirmation back to SIM for creation and modification requests, but not deletions. As
stated above, the approved price events and details are then communicated via the
RIB.

Price Inquiry
Oracle Retail Allocation must know the price of an item is on a given day for a given
location. Oracle Retail Allocation usually requests a future date. The requests are
communicated to RPM via RSL and processed by RPM from the future retail table.
RPM sends back the price information for the requested item/location/date
combination.

RPM and the Oracle Retail Integration Bus (RIB)

4-8 Oracle Retail Price Management Operations Guide

Promotion Detail
When Oracle Retail Allocation requires promotion detail, it is able to retrieve the data
via RMS from RPM. There are two direct package calls involved - Oracle Retail
Allocation calling the RMS package, and the RMS package calling an RPM package.
This provides Oracle Retail Allocation with the promotional detail beyond what
would be provided in a price inquiry request.

RPM and the Oracle Retail Integration Bus (RIB)
The flow diagrams and explanations in this section provide a brief overview of
publication and subscription processing. See the latest Oracle Retail Integration
documentation for additional information. For information about RIB-related
configuration within the RPM application, see the sections 'rib_user.properties' and
'Disabling RIB Publishing in RPM' in "Chapter 2 - Backend System Administration and
Configuration".

The XML Message Format
As shown by the diagram below, the messages to which RPM subscribes and which
RPM publishes are in an XML format and have their data structure defined by XML
Schema Definitions (XSDs).

Figure 4–3 Data Across the RIB in XML Format

Message Publication Processing
As shown by the diagram below, an event within RPM's core service layer (that is, an
insert, update, or delete) leads it to write out a payload that is published to the RIB.
The RIB engages in polling the JMS queue, searching for the existence of a message. A
publishable message that appears on the queue is processed. The RIB is unconcerned
about how RPM gets its message to the JMS queue table.

RPM and the Oracle Retail Integration Bus (RIB)

Integration Methods and Communication Flow 4-9

Figure 4–4 RPM Message Publication Processing

Message Subscription Processing
As shown by the diagram below, based on the message family and the message type,
an injector.properties file within RPM knows which injector to instantiate. Note that
one injector can handle multiple .XML Schema Definition (XSD) messages. The injector
'injects' the data into the application's core service layer, which is configured to act
upon and/or validate the data.

Note: Under ordinary runtime conditions, the injector-related
properties files shown in the diagram do not have to be modified.

RPM and the Oracle Retail Integration Bus (RIB)

4-10 Oracle Retail Price Management Operations Guide

Figure 4–5 RPM Message Subscription Processing

Publishers Mapping Table
This table illustrates the relationship among the message family, message type and
XSD/payload. For additional information, see the latest Oracle Retail Integration
documentation.

Subscribers Mapping Table
The following table lists the message family and message type name, the XML Schema
Definition (XSD) that describes the XML message, and the subscribing classes that
facilitate the data's entry into the application's core service layer. These classes are

Family Type XSD/Payload

regprcchg regprcchgcre RegPrcChgDtl

regprcchg regprcchgmod RegPrcChgDtl

regprcchg regprcchgdel RegPrcChgDtlRef

clrprcchg clrprcchgcre ClrPrcChgDtl

clrprcchg clrprcchgmod ClrPrcChgDtl

clrprcchg clrprcchgdel ClrPrcChgDtlRef

prmprcchg MULTIBUYPROMOCRE PromotionDesc

prmprcchg MULTIBUYPROMOD PromotionDesc

prmprcchg MULTIBUYPROMODEL PromotionRef

RPM and the Oracle Retail Integration Bus (RIB)

Integration Methods and Communication Flow 4-11

described in the code as 'injectors'. For additional information, see the latest Oracle
Retail Integration documentation.

Functional Descriptions of Messages
The table below briefly describes the functional role that messages play with regard to
RPM functionality. The table also illustrates whether RPM is publishing the message to
the RIB or subscribing to the message from the RIB, and the Oracle Retail products that
are involved with the RIB integration. For additional information, see the latest RIB
documentation.

Family Type XSD/Payload Injector (subscribing class)

store storecre StoreDesc NewLocationInjector

wh whcre WHDesc NewLocationInjector

itemloc itemloccre ItemLocDesc NewItemLocInjector

merchHier deptcre MrchHrDeptDesc NewDepartmentInjector

items itemhdrmod ItemHdrDesc ItemModificationInjector

Functional Area
Subscription/
Publication

Integration to
products Description

Store Creation Subscribe RMS This message is used to notify RPM when
stores are added to RMS. RPM needs the new
store and its associated pricing location in
order to assign the new store to the zone
structure. The message also contains the
currency of the new store in the event that
the pricing location assigned does not share
the same currency as the new store.

Warehouse Creation Subscribe RMS This message is used to notify RPM when
warehouses are added to RMS. RPM needs
the new warehouse and its associated pricing
location in order to assign the new
warehouse to the zone structure. The
message also contains the currency of the
new warehouse in the event that the pricing
location assigned does not share the same
currency as the new warehouse.

Item/Location
Creation

Subscribe RMS This message is used to notify RPM when a
new item/location relationship has been
created. RPM processes this message and
makes sure that this item/location
combination does not have existing future
retail records. If the item is sellable, RPM
then creates an initial future retail record for
this item/location combination along with its
retail value. If there are approved
promotions/clearances/price changes at the
intersection of any level between the
merchandise and zone hierarchies, RPM
proceeds to attach this new item/location to
those price events, and, eventually, insert
new records in the RPM_FUTURE_RETAIL
table.

RPM and the Oracle Retail Integration Bus (RIB)

4-12 Oracle Retail Price Management Operations Guide

Item Modification Subscribe RMS This message is used to notify RPM when
there is an item reclassification in RMS. RPM
uses this information to update the
department, class, and subclass information
in the RPM_ITEM_MODIFICATION table.
When the next scheduled batch process runs,
the RPM_FUTURE_RETAIL table is updated
with these new values.

Department Creation Subscribe RMS This message is used to notify RPM when a
new department is created in RMS. RPM
creates and sets default aggregation level
data for the new department when the
message is processed.

Price Change Creation Publish RMS, SIM This message is used by RPM to
communicate the approval of a price change
within the application. This message is
published at a transaction item/location
level.

Price Change
Modification

Publish RMS, SIM This message is used by RPM to
communicate the modification of a new retail
on an already approved price change. This
message is published at a transaction
item/location level.

Price Change Deletion Publish RMS, SIM This message is used by RPM to
communicate the deletion (un-approval
included) of an already approved price
change. This message is published at a
transaction item/location level.

Clearance Creation Publish SIM These messages are used by RPM to
communicate the approval of a clearance
price change within the application. This
message is published at a transaction
item/location level, and is used by SIM for
visibility to the new clearance retail on the
effective date for the clearance price change.

Clearance
Modification

Publish SIM This message is used by RPM to
communicate the approval of a new retail on
an already approved clearance price change.
This message is published at a transaction
item/location level. It is used by SIM for
visibility to the modified clearance retail on
the effective date for the clearance price
change.

Clearance Deletion Publish SIM This message is used by RPM to
communicate the deletion (un-approval
included) of an already approved clearance
price change. This message is published at a
transaction level/location level, and is used
to notify SIM of the deletion of the clearance
price change.

Promotion Creation Publish SIM These messages are used by RPM to
communicate the approval of a promotion
within the application. This message is
published at a transaction item/location
level, and is used by SIM for visibility to the
new promotional retail on the effective date
for the promotion.

Functional Area
Subscription/
Publication

Integration to
products Description

RPM and the Oracle Retail Service Layer (RSL)

Integration Methods and Communication Flow 4-13

 RPM and the Oracle Retail Service Layer (RSL)
RSL is a framework that allows Oracle Retail applications to expose APIs to other
Oracle Retail applications. As shown in the diagram below, in RSL terms, there is a
'client application layer' and a 'service provider layer'. RPM includes the 'service
provider layer' that owns the business logic.

The RPM implementation of RSL exposes a synchronous method to communicate with
other applications (RIB-facilitated processing is asynchronous). All RSL services are
contained within an interface offered by a Stateless Session Bean (SSB). To a client
application, each service appears to be merely a method call.

For information about RSL-related configuration within the RPM application, see
"Chapter 2 - Backend System Administration and Configuration."

Figure 4–6 Client Application and Service Provider Processing Through RSL

Functional Description of the Class Using RSL
The table below briefly describes the functional role that RPM's RSL class has within
the application.

Promotion
Modification

Publish SIM This message is used by RPM to
communicate the modification of a new retail
on an already approved promotion. This
message is at a transaction item/location
level. It is used by SIM for visibility to the
modified promotional retail on the effective
date for the the promotion.

Promotion Deletion Publish SIM This message is used by RPM to
communicate the deletion (un-approval
included) of an already approved promotion.
This message is published at a transaction
item/location level, and is used to notify SIM
of the deletion of a promotion.

Functional Area
Subscription/
Publication

Integration to
products Description

Persistence Layer Integration

4-14 Oracle Retail Price Management Operations Guide

 Persistence Layer Integration
The system is designed to include two RDMS datasources, RPM and RMS. RPM and
RMS share certain database tables and processing logic. RPM exchanges data and
processing with RMS in four ways:

■ By reading directly from RMS tables.

■ By directly calling RMS packages.

■ By reading RPM views based on RMS tables.

■ RMS utilizes RPM packages in order to access processing and information
available only in RPM. This type of interaction is only done through package calls.

For more information about RPM's persistence layer and database layer, see "Chapter 3
- Technical Architecture."

RMS Tables Accessed through the Persistence Layer
RPM uses the tables shown below through the persistence layer:

Class Description

PriceInquiryServiceJava.java This service, provided by RPM, allows an inquiring system to
request the effective retail for an item at a specified location on a
given date. RPM provides the retail value and indicates whether
the value is promotional, clearance or regular.

RMS tables accessed through the persistence layer

AREA

CHAIN

CLASS

CODE_DETAIL

CODE_HEAD

COMP_PRICE_HIST

COMP_STORE

COMPETITOR

DEAL_COMP_PROM

DEAL_DETAIL

DEAL_HEAD

DEAL_ITEMLOC

DEPS

DIFF_GROUP_DETAIL

DIFF_GROUP_HEAD

DIFF_IDS

DIFF_TYPE

DISTRICT

DIVISION

Persistence Layer Integration

Integration Methods and Communication Flow 4-15

 RMS Packages and Methods Accessed through RPM's Persistence Layer
RPM uses the packages and methods shown in the table below through the persistence
layer:

FUTURE_COST

GROUPS

ITEM_LOC

ITEM_MASTER

ITEM_SEASONS

ITEM_SUPPLIER

LOC_LIST_DETAIL

LOC_LIST_HEAD

PARTNER

PHASES

REGION

SEASONS

SKULIST_DETAIL

SKULIST_HEAD

STORE

SUBCLASS

SUPS

SYSTEM_OPTIONS

UDA

UDA_ITEM_FF

UDA_ITEM_LOV

UDA_ITEMDATE

UDA_VALUES

UOM_CLASS

WH

RMS packages RMS methods

RPM_WRAPPER uom_convert_value

valid_uom_for_items

get_vat_rate_include_ind

currency_convert_value

PM_DEALS_API_SQL create_deal

new_deal_comp

RMSSUB_PRICECHANGE get_price_change

RMS tables accessed through the persistence layer

Oracle Retail Strategic Store Solutions - RPM Integration

4-16 Oracle Retail Price Management Operations Guide

RPM Views Based on RMS Tables

RPM Packages Called by RMS

Oracle Retail Strategic Store Solutions - RPM Integration
Integration between RPM and Oracle Retail Strategic Store Solutions is optional. If you
are not integrating RPM with Oracle Retail Strategic Store Solutions, you can skip this
section.

Overview

Oracle Retail Strategic Store Solutions Overview
RPM integrates with Oracle Retail Strategic Store Solutions. Applications within
Oracle Retail Strategic Store Solutions include the following and more:

■ Oracle Retail Point-of-Service (ORPOS)

■ Oracle Retail Back Office (ORBO)

■ Oracle Retail Central Office (ORCO)

Integration Overview
This section provides an overview as to how RPM is integrated with Oracle Retail
Strategic Store Solutions.

RPM Views RMS Tables

rpm_item_diff ITEM_MASTER

DIFF_GROUP_DETAIL

DIFF_GROUP_HEAD

rpm_deal_head DEAL_HEAD

rpm_primary_ref_item ITEM_MASTER

rpm_future_cost FUTURE_COST

SUPS

ITEM_LOC

rpm_rms_system_options SYSTEM_OPTIONS

rpm_uda_view UDA

UDA_ITEM_DATE

UDA_ITEM_FF

UDA_ITEM_LOV

Packages

MERCH_API_SQL

MERCH_DEALS_API_SQL

MERCH_RETAIL_API_SQL

Oracle Retail Strategic Store Solutions - RPM Integration

Integration Methods and Communication Flow 4-17

A diagram shows the overall direction of the data among the products. The
accompanying explanations of this diagram are written from a system-to-system
perspective, illustrating the movement of data. For additional information on RMS,
ReSA, and RPM integration with Oracle Retail Strategic Store Solutions, see the Oracle
Retail Strategic Store Solutions Implementation Guide.

RPM sends store-specific information to the Oracle Retail Back Office (ORBO)
application. In order to integrate with ORBO, the RPM extract data output format
matches the format that ORBO recognizes. RPM sends three different store specific
XML record types:

■ Price Change includes both clearance and regular price changes

■ Price Promotion includes simple promotions

■ Discount Rules includes Threshold and Multi-buy promotions

RPM uses the RPMtoORPOSPublishBatch program to format and stage output of
different price events and the RPMtoORPOSPublishExport shell script to produce an
xml file based on the output of the RPMtoORPOSPublishBatch. See the Java and RETL
Batch Processes chapter for additional details on the batch processes.

File Details
■ Provide one file per store in XML format.

■ One file is sent per day

■ Each file contains data specific to that store only.

■ Each file contains data for items that have changed price since the last file was
created for that store.

Integration Dataflow
The diagram below details the overall direction of the dataflow among the various
systems. The accompanying explanations of these diagrams are written from a
system-to-system perspective, illustrating the movement of data throughout the
RPM-related portion of the enterprise.

Oracle Retail Strategic Store Solutions - RPM Integration

4-18 Oracle Retail Price Management Operations Guide

Figure 4–7 RPM/Oracle Retail Strategic Store Solutions Communication Flow Diagram

Functional Description of Dataflow

From RPM to ORBO
RMS and RPM pass data to Oracle Retail Back Office (ORBO). RPM passes pricing
data. This data is combined with organizational hierarchy, merchandise hierarchy, and
item data from RMS, the data is bundled, reorganized by store, and then sent to
ORBO.

RPM creates the following data files for ORBO:

Data Bundling
The data bundling process within RPM reads the price location data and bundles it to
create separate files for each ORPOS store.

Data bundling specific to the RRPM to Oracle Retail Strategic Store Solutions
integration is done by jarring the XML files generated by SQL extract scripts. This
jarring (bundling) is performed by the batch_orpos_extract.ksh. The extract batch also

File

Data (in the file
Stores will
consume) Description

Full Load or
Incremental

Price Promotion data,
Clearance data, and
Regular price data

Contains promotion
data, clearance data,
and regular price
data.

Incremental

Oracle Retail Strategic Store Solutions - RPM Integration

Integration Methods and Communication Flow 4-19

creates a manifest file that defines the interdependencies of the XML files and is
included in the bundle too. This is the flow:

1. batch_orpos_extract.ksh runs and calls the SQL extract scripts.

2. SQL extract scripts generates the XML files needed by ORPOS.

3. Batch_orpos_extract.ksh checks these files for valid data and creates the manifest
file.

4. Batch_orpos_extract.ksh creates the bundle via jar command and clears the
temporary files.

Known Issues

Mismatch in Promotion Functionality
There is a mismatch in promotion functionality between what RPM supports and what
Oracle Retail Strategic Store Solutions supports. The promotion types that RPM
supports that are not currently supported by Oracle Retail Strategic Store Solutions are
listed below. If the user creates one of these promotion types, it will not be sent to
Oracle Retail Strategic Store Solutions since it does not fit in the current model of the
XML report.

■ BuyGet promotions with Buy type are all excluded.

■ Threshold promotions with more than one level are excluded (for example,
qty1=20% off, qty 2=30% off, qty 3=40% off). Only threshold promotions with one
level are sent to Stores.

■ Threshold promotions with a threshold type of 'Amount' are excluded.

■ Threshold promotions with a qualification type of 'Item level' are excluded.

Other gaps between RMP and Oracle Retail Strategic Store Solutions
■ While multi-unit pricing can be set up in RPM it is out of scope for ORPOS

integration.

■ 'Fixed price' price changes and promotions can be set-up with a unit of measure
(UOM) other than EA (eaches). However, UOM is not sent to Oracle Retail
Strategic Store Solutions on the Pricing extract file.

■ RPM clearance price changes are treated the same as regular price changes as
Oracle Retail Strategic Store Solutions does not distinguish the clearance price
change type.

Oracle Retail Strategic Store Solutions - RPM Integration

4-20 Oracle Retail Price Management Operations Guide

5

Functional Design 5-1

5Functional Design

Overview
This chapter provides information concerning the various aspects of RPM's functional
areas. Topics include:

■ Functional assumptions

■ Functional overviews

■ Concurrency considerations

Functional Assumptions
■ Initial price setting does not respect link codes.

■ RPM uses RMS's VDATE to represent today's date rather than the server's system
date.

■ RPM only recognizes sellable items.

■ If the retailer includes VAT as part of the retail, VAT regions, VAT items, and VAT
codes must be set up in the merchandising system (such as RMS).

■ All market basket codes (competitive and margin) must be entered and
maintained in a codes table by a database administrator (DBA). There is no
associated user interface (UI) to enter and/or maintain the codes.

■ Link codes are only used for regular price changes and are considered a
'point-in-time' price change creation. If the link code relationship is updated,
future price changes are not dynamically updated to reflect the change.

Functional Overviews

Zone Structures
Zone structures in RPM allow you to define groupings of locations for pricing
purposes and eliminate the need to manage pricing at a location level. At the highest
level, these groupings are divided into categories called 'zone groups'. While these
zone groups may be flexibly defined, they are primarily defined by their pricing
scheme. The three types of zone groups in RPM are regular zone groups, clearance
zone groups, and promotion zone groups.

Functional Overviews

5-2 Oracle Retail Price Management Operations Guide

In addition to being defined by pricing, zone groups are defined by the item(s) being
priced. The following are examples of zone groups:

■ Regular price beverage zone group

■ Regular price footwear zone group

■ Promotion price beverage zone group

Within zone groups in RPM are groupings of locations (stores and/or warehouses)
called 'zones'. The function of these zones is to group locations together in a manner
that best facilitates company pricing strategies. These zones may be flexibly defined.
For example, you may choose to create zones based on geographic regions such as the
following:

■ US East region

■ US West region

■ Mexico stores

Similarly, you may create zones with locations that share similar characteristics such as
the following:

■ US urban stores

■ US rural stores

Contained within zones are 'locations'. These locations can be stores or warehouses.
There are no restrictions on the number of locations a zone can contain. However,
there are two rules that apply to the relationship between locations and zones.

■ A location cannot exist in more than one zone within a zone group. A location
can, however, exist in multiple zone groups. For example, a New York City store
might exist in the US urban stores zone group as well as the US East region zone
group.

■ All locations within the same zone must use the same currency.

Once zone groups have been created in RPM, users are able to assign them to primary
zone group definitions. The primary zone group definition allows the user to specify
the zone structure to use when pricing merchandise hierarchies, and how to initially
price items in these hierarchies (markup %, markup type). These definitions can be
created at the department, class, or subclass level.

Codes

Market Basket Codes
A market basket code is a mechanism for grouping items within a hierarchy level in
order to apply similar pricing rules (margin target or competitiveness). Market basket
codes cannot vary across locations in a zone. RPM thus assigns and stores market

Note: When locations are deleted from an existing zone, RPM
handles this processing in the same way that it handles location
moves processing and deletes all future retail data for that
zone/location. See Location Moves in this chapter for further
information.

Functional Overviews

Functional Design 5-3

basket codes against an item/zone. An RPM user can set up the following two market
basket codes per item/zone:

■ One used in conjunction with the competitive pricing strategy (competitive market
basket code).

■ One used in conjunction with the margin and maintain margin pricing strategy
(margin market basket code).

When the merchandise extract batch process runs, the program identifies the pricing
strategy being executed and uses the items extracted, the zone information on the
strategy, and the type of strategy to determine what market basket codes to use when
proposing retails.

Link Codes
Link codes are used to associate items to each other at a location and price them
exactly the same. RPM users set up and maintain item/location link code assignments.

Link codes are only used for regular price changes and are considered a 'point-in-time'
price change creation. If the link code relationship is updated, future price changes are
not dynamically updated to reflect the change.

Price Changes, Promotions, Clearances, and Promotion Constraint

Overview
Pricing events in RPM are broken into three primary categories. Although these
pricing activities are unique, they have a common look and feel. The three primary
pricing events in RPM are discussed in this section and include:

■ Price changes

■ Promotions

■ Clearances

This section also addresses promotion constraint functionality, where users are warned
if they are creating a price change within a set number of days of the start of an
approved promotion.

 Price Changes
Price changes are the pricing events in RPM that affect the regular retail price. There
are several factors, such as competitor pricing and desired profit margin, that compel
retailers to create a manual price change. When a price change is created, you are
specifying the following:

■ What item is receiving the price change

■ Where the price change is occurring

■ How the price of the item is changing

■ When the price change will take effect

The highest item level that a price change can be applied to is the parent level, and the
highest location level that a price change can be applied to is the zone level. You have
the option of creating exceptions to price changes created at one of these higher levels
(such as, mark all men's turtleneck sweaters down 10%, but mark the large size down
5%).

Functional Overviews

5-4 Oracle Retail Price Management Operations Guide

When price changes are approved in RPM, they are published to RMS for ticketing
purposes. The night before an approved price change is scheduled to go into effect,
RMS pricing information is updated with the new regular retail resulting from the
price change.

Promotions
Promotions is another pricing event in RPM and while it shares similar characteristics
to that of price changes, there are several factors that distinguish promotions from
price changes and clearances. The promotion of items is frequently driven by a
particular event such as a holiday or the overstock of an item.

When a promotion is entered in RPM, you specify the duration of the promotional
price, what kind of promotion will take effect, and to which item(s)/location(s) you
will apply the promotional price. Unlike price changes, where the highest item level
you can specify is parent, the highest level a promotion can be set is at the department
level (for example, Men's clothing). Promotions can be set up to apply to the regular
retail price, the clearance retail price, or both, and when the promotion ends, the price
reverts back to the retail price that existed prior to the promotion.

You also have the option of creating exceptions to promotions created at one of these
higher levels (such as, mark all men's turtleneck sweaters down 10%, except mark
down the large size 5%). You also have the option to exclude item/locations from a
promotion.

Some examples of promotion types in RPM are:

■ Complex promotion:

– Meal Deal/Link Saver Promotion: for example, buy a sandwich, chips, and
soft drink comination for $5.00, or get 25% off the total purchase.

– Multi-Buy Promotion: For example, buy 3 of item A for $3.50 total.

– Cheapest Item Promotion: For example, buy any three pairs of shoes from a
list and get the least-expensive pair free.

■ Simple promotion: 25% off the retail price of an item

■ Threshold promotion: Spend $100, get $10 off.

Clearances
Clearances in RPM are defined as a markdown or a series of markdowns designed to
increase demand and therefore move inventory out of a store. Subsequent clearances
always result in the price of an item decreasing. When a clearance is created, you are
specifying the item(s) and locations where the clearance is in effect and the discount or
set price for the markdown.

Clearances can be applied at the following item levels: parent, parent/differentiator,
and transaction level. Clearances can be applied at the location or price zone level.

When a clearance price is created, you can specify a reset date on which the clearance
price reverts back to regular retail price. Reset dates are optional.

Note: Promotion and clearance events are not communicated to RMS
for the purpose of ticketing.

Functional Overviews

Functional Design 5-5

Promotion Constraint
Users are stopped if they are creating a price change within a set number of days of the
start of an approved promotion or vice versa. Conflict checking stops the user from
approving the price change or promotion. The number of days is determined by a
promotion constraint variable that is stored at the subclass/location level.

When the user runs conflict checking on a price change record, promotion record, or
worksheet status record, promotion constraint checks are run. If a promotion
constraint is violated, the user sees a conflict in either the price change or promotion
dialog and the price event is not approved. The user is able to optionally select to
ignore promotion constraints on individual price change, promotion or worksheet
detail record so promotion constraint checks are not performed when conflict checking
is run.

Pricing Strategies
The pricing strategies frontend allows you to define how item retails are proposed
when pricing worksheets are generated. The strategies can be defined at department,
class or subclass in order to represent which items are affected. The strategies are
grouped into two categories, regular and clearance. An item/location can be on one
maintain margin strategy and one other strategy.

When setting up pricing strategies, the first task is to specify what type of pricing
strategy is to be applied, and at what merchandise hierarchy/location hierarchy
combination it is applied to. The pricing strategy types are described in this functional
overview and include the following:

■ Area differentials

■ Clearance

■ Competitive

■ Clearance Default

■ Margin

■ Maintain margin

When determining what merchandise level a pricing strategy is applied to, the lowest
definable level (from aggregation) is taken into consideration.

Other contributing factors when establishing pricing strategies include attaching price
guides to the strategy, specifying a calendar to run against the pricing strategy, and
attaching warehouses (if they are not recognized as pricing locations), to a strategy for
the purpose of inventory visibility.

Area Differentials
Area differential pricing allows a buyer to perform the following:

■ Set prices for items against a primary zone.

■ Price other zones 'off of' the primary zone using a defined differential.

This functionality allows the user to focus on establishing a primary retail, which
drives system generated prices for other secondary areas.

Secondary area retails can change based on primary area changes, regardless of the
status of the primary areas. Secondary area retails are generated when the primary
area retail is changed due to a competitive retail change or a margin strategy retail
change. Secondary area proposed price changes can be created in worksheet status to

Functional Overviews

5-6 Oracle Retail Price Management Operations Guide

allow for user approval or can be dynamically updated to allow the user to work
through multiple zone worksheets at the same time (primary zone included). If
dynamic update is chosen, the system provides a dynamic update of the worksheet
changes from the primary area to the secondary area. Following the same logic as that
which resides in a 'what if' scenario, price changes are not actually created in the
worksheet dialog until the user approves a worksheet. A system option signifies
whether this process is used.

Layered Competitive Pricing Comparisons in the Worksheet

In the worksheet, competitive pricing comparisons are 'layered' on top of the area
differential pricing rules for secondary areas. Note that layering is not carried out
throughout the RPM application. The area differentials front end allows the user to set
up and maintain competitive pricing strategies that are specifically associated to the
differential.

The area differential price acts as a guide. The retail proposed based on the defined
area differential is compared to the proposed retail based on the competitor rules
defined. The lower of the two retails is the retail that RPM proposes. After the
resulting retails are compared and the lower chosen, the pricing guidelines are
applied.

Scenarios

This section illustrates the retails that are derived under various scenarios.

Setup Data

The following setup data applies to all the scenarios.

Scenario 1

Note that the proposed retails are displayed based on the percent higher or lower for
the secondary zones.

Figure 5–1

Scenario 2

Note that because the basis retail for Item A in zone 1000 was already $5.00, no
proposed retail is displayed. The secondary area proposed retail was calculated using
the current retail of the primary area.

Zone Group ID Zone Rule %

Primary 1000 1000

Secondary 1000 2000 Percent Higher 5

Secondary 1000 3000 Percent Lower 5

Functional Overviews

Functional Design 5-7

Figure 5–2

Scenario 3

Note that the proposed retails all end in 6 due to the pricing rule in place.

Figure 5–3

Scenario 4

Note the proposed retails for the secondary areas are equal to the competitor price due
to the competitor strategy in place.

Figure 5–4

Scenario 5

Note the proposed retail for zone 3000 did not change to $4.85 even though the
competitive strategy is match and the competitor retail is $4.85. The competitor
strategy should never cause a price to increase.

Functional Overviews

5-8 Oracle Retail Price Management Operations Guide

Figure 5–5

Scenario 6

Note the pricing rule was applied after the competitive strategy causing the
competitor price to be matched to the $4.85 and then adjusted to $4.86 to account for
the pricing guide.

Figure 5–6

Clearance Strategy
The clearance strategy allows you to define the markdowns that should be proposed
for items in the specified merchandise hierarchy/location hierarchy level. Each
markdown specified in the strategy has an associated markdown percent, and the
strategy also details to what retail the markdown percent should be applied (regular
retail or clearance retail). This section illustrates the retails that are derived under
various scenarios.

Scenario 1

Item/Zone is currently not on clearance.Regular Retail: $35.00
Clearance Retail: n/a
Proposed Markdown/Retail for Item/Zone: Markdown 1/$28.00

Item/Zone is currently on its first markdown.
Regular Retail: $35.00
Clearance Retail: $28.00
Proposed Markdown/Retail for Item/Zone: Markdown 2/$24.50

Markdown Number Markdown Percent

1 20

2 30

3 50

4 75

Functional Overviews

Functional Design 5-9

Item/Zone is currently on its second markdown.
Regular Retail: $35.00
Clearance Retail: $24.50
Proposed Markdown/Retail for Item/Zone: Markdown 3/$17.50

Item/Zone is currently on its third markdown.
Regular Retail: $35.00
Clearance Retail: $17.50
Proposed Markdown/Retail for Item/Zone: Markdown 4/$8.75

Scenario 2

Apply To Type: Clearance Retail

Item/Zone is currently not on clearance.
Regular Retail: $35.00
Clearance Retail: n/a
Proposed Markdown/Retail for Item/Zone: Markdown 1/$26.25

Item/Zone is currently on its first markdown.
Regular Retail: $35.00
Clearance Retail: $26.25
Proposed Markdown/Retail for Item/Zone: Markdown 2/$23.63

Item/Zone is currently on its second markdown.
Regular Retail: $35.00
Clearance Retail: $23.63
Proposed Markdown/Retail for Item/Zone: Markdown 3/$21.27

Item/Zone is currently on its third markdown.
Regular Retail: $35.00
Clearance Retail: $21.27
Proposed Markdown/Retail for Item/Zone: Markdown 4/$19.14

Clearance Default Strategy
This strategy allows the user to specify clearance defaults as low as the subclass level.
Pricing Worksheets are not generated for this pricing strategy. The markdown defaults
(or subsequent markdown cadence) is set up in the pricing strategy dialog and then
applied in the manual clearance dialog. When the user creates a manual clearance,
they need to click 'Apply subclass defaults' in order for the subsequent markdowns to
be automatically generated. Once they click 'Apply' the user sees the clearance they
manually created as well as a clearance ID(s) for subsequent markdowns generated
from the clearance default strategy. The subsequent markdowns that are created can be
updated to have reset dates and out of stock dates. Because worksheets are not
generated for this new strategy, a calendar is not attached

Competitive Strategy
This strategy allows you to define which competitor's retails to reference and how to
make comparisons to those retails when proposing new retails.

Markdown Number Markdown Percent

1 25

2 10

3 10

4 10

Functional Overviews

5-10 Oracle Retail Price Management Operations Guide

In other words, the competitive strategy allows you to define the following:

■ A primary competitor retail that should be referenced when proposing retails for
items in the specified merchandise hierarchy/location hierarchy level.

■ How to propose new retails based on that primary competitor's retail (for
example, price above a certain percent, price below a certain percent, or match the
competitor's retail).

This section illustrates the retails that are derived under various scenarios.

Scenario 1

Regular Retail for Item/Zone: $26.00
Primary Competitor Retail for Item: $25.00
Strategy: Price Above - 10%
Acceptable Range: 8% - 12% Above
Proposed Retail: 27.50

Scenario 2

Regular Retail for Item/Zone: $27.50
Primary Competitor Retail for Item: $25.00
Strategy: Price Above - 10%
Acceptable Range: 8% - 12% Above
Proposed Retail: No proposal

Scenario 3

Regular Retail for Item/Zone: $22.50
Primary Competitor Retail for Item: $25
Strategy: Price Below - 10%
Acceptable Range: 8% - 12% Below
Proposed Retail: No proposal

Scenario 4

Regular Retail for Item/Zone: $21.00
Primary Competitor Retail for Item: $25
Strategy: Price Below - 10%
Acceptable Range: 8% - 12% Above
Proposed Retail: 22.50

Scenario 5

Regular Retail for Item/Zone: $28.00
Primary Competitor Retail for Item: $25
Strategy: Match
Acceptable Range: n/a
Proposed Retail: $25.00

Margin Strategy
This strategy allows you to define the target amount of markup you want to have
above the cost (margin target). The system uses this value to propose new retails for
the items in the specified merchandise hierarchy/location hierarchy level. This section
illustrates the retails that are derived under various scenarios

Scenario 1

Regular Retail for Item/Zone: $25.00
Cost of the Item: $18.00
Margin Target: 25%

Functional Overviews

Functional Design 5-11

Acceptable Range: 23% - 27%
Markup Type: Retail
Proposed Retail: $24.00

Scenario 2

Regular Retail for Item/Zone: $23.50
Cost of the Item: $18.00
Margin Target: 25%
Acceptable Range: 23% - 27%
Markup Type: Retail
Proposed Retail: No proposal

Maintain Margin Strategy and Auto Approve
The maintain margin strategy allows a retailer to receive proposed retail changes
based upon impending cost changes. Proposed retail changes are dependant on either
the retail margin or cost margin. The formulas and calculations for both methods are
illustrated later in this overview.

The maintain margin strategy retrieves all cost changes related to a specified
zone/merchandise hierarchy on a 'look forward' basis and generates proposed retail
changes. In the unlikely event that there are multiple cost changes in the forward
looking review period, the system bases the proposed retail on the last cost change to
occur during that forward looking review period. The retail changes proposed can be
based on the current margin percent between the item's retail and the cost, or the
market basket code margin associated with the item. The user also has the ability to
specify how to apply the increase/decrease in retail in one of two ways:

■ As a margin percent (current or market basket) applied to the new cost.

■ As the monetary amount change to the cost applied to the retail (for example, a 5
cent increase in cost results in a 5 cent increase in retail).

Reference competitors can be attached to the maintain margin strategy. Note, however,
that these competitors do not drive price proposals. They are visible via the worksheet
once a price change proposal has been created.

Merch Extract Calculations

Market basket margin

Cost method:

Proposed retail = ((New Cost * Margin Target%) + New Cost) + VAT rate if applicable.

Retail method:

Proposed retail = (New Cost / (1- Margin Target%)) + VAT rate if applicable

Current margin

Current margin % =

Cost method: (Retail on Review period start date - Cost on review period start date) /
Cost on review period start date

Note: For all calculations below, if price guides are assigned to the
strategy, they are applied after the above stated calculations have been
completed.

Functional Overviews

5-12 Oracle Retail Price Management Operations Guide

Retail method: (Retail on Review period start date - Cost on review period start date) /
Retail on review period start date

Using the current margin % calculated above, the retail can be proposed.

Cost Method

Proposed retail = ((New Cost * Current Margin %) + New Cost) + VAT rate if
applicable.

Retail Method:

Proposed retail = (New Cost / (1- Current Margin%)) + VAT rate if applicable

Change by cost change amount

Proposed retail = (New cost - Cost on the day before the New Cost date) + Retail on
day before the New Cost Date. This retail value includes VAT if applicable.

Examples:

Cost method

Retail method

Price Inquiry
Price inquiry is designed to allow retailers to retrieve the price of an item at an exact
point in time. This price may be the current price of a particular item or the future
price. You can search for prices based on the following search criteria:

Market Basket % 40

Current Margin % (cost) 50

Current Margin % (retail) 33

Current Retail 0.75

Current Cost 0.5

Method Application Option Future Calculation

Market
Basket %

Current
Margin % Margin %

Change by
Cost Change
Amount Future Cost

Future
Retail

X X 0.55 0.77 (0.55*40%) + 0.55

X X 0.55 0.61 (0.55*50%) + 0.55

X X 0.55 0.8 (0.55-0.5) + 0.75

Method Application Option Future Calculation

Market
Basket %

Current
Margin % Margin %

Change by
Cost Change
Amount Future Cost Future Retail

X X 0.55 0.92 (0.55/(1-.4))

X X 0.55 0.61 (0.55/(1-..33))

X X 0.55 0.8 (0.55-0.5) + 0.75

Functional Overviews

Functional Design 5-13

■ Merchandise hierarchy

■ Item

■ Zone group

■ Zone

■ Location

■ Location (warehouse or store)

■ Date

After the search criteria has been specified, a list of item/location combinations are
displayed with their corresponding dates, and prices on those dates. Included in the
display are the item/location regular, clearance, and promotion prices. Items can be
retrieved at the parent, parent/differential, or transaction level, and valid locations are
price zone or location. After you have retrieved the desired pricing information, you
have the option of exporting the information outside of the system. For maximum
performance, Price inquiry search limitations should be set in the system option
dialog. For more information regarding the Price inquiry dialog, please see the Oracle
Retail Price Management User Guide.

Worksheet
The RPM worksheet functionality is designed to allow for the maintenance of
automatically generated price change and clearance proposals resulting from the RPM
merchandise extract batch program. These proposed price changes/clearances are the
product of existing strategies, calendars and item/location information. The
merchandise extract program outputs them to worksheet at the transaction item level
for zone. Worksheet groups these values together and while not all items have a
proposed price change, each item in the pricing strategy is represented; with the
exception of worksheet generation for the maintain margin strategy. Only item/zones
that have a proposed retail are populated in a worksheet that is generated from a
maintain margin strategy.

The worksheet dialog has two main screens: the worksheet status screen and the
worksheet detail screen. In the worksheet status screen, a table is displayed with each
row of the table representing an individual worksheet. You are able to access these
worksheets and depending on the status of the worksheet, your user role and the
records within the worksheet, you are able to perform the following:

■ Submit

■ Approve

■ Reject

■ Reset

■ Delete

Note: When an action is taken and applied, that action is only be
taken against the detail records within the worksheet that can have
that specific action applied. For example, if a detail is in 'approved'
status, if the action 'submit' is taken, it is not applied to the record in
'approved' status.

Functional Overviews

5-14 Oracle Retail Price Management Operations Guide

The Worksheet detail form displays information about the records contained in a given
worksheet. Among the information displayed is the proposed price change generated
by the merchandise extract program and other information that can assist you in
making determinations on whether to accept, reject, or modify proposed pricing in the
worksheet. After these determinations have been made, you can submit the worksheet
for approval, rejection, and so on.

A worksheet does not exist until the merchandise extract program has run. These
worksheets then have a 'new' status. However, the exception to this process is for those
items/zones involved in an area differential pricing strategy. The locations that are
part of a secondary area have a worksheet and corresponding rows in either 'pending'
or 'new' status based on the Dynamic Area Differential system option. If the system
option is unchecked, the secondary areas contain no detailed information for
individual rows until price changes for the primary area are approved. If the system
option is checked, the secondary areas contain detailed retail information derived from
the retails proposed for the primary area.

Merchandise Extract
The merchandise extract batch process is responsible for creating worksheets based on
calendars and pricing strategies.

This is a three-step process:

1. Identify the work to be processed.

2. Extract RMS data into RPM.

3. Use extracted data to propose retails (based on strategies) and build the
worksheets.

The merchandise extract batch program initially finds calendars with review periods
that start tomorrow and the pricing strategies that use those calendars. This processing
determines which item/locations are pulled into the worksheet. There are attributes
associated with calendar review periods, and these help to determine whether
candidate rules or exceptions are run for that particular review period.

Candidate rules: This set of rules is run against the items/locations being extracted
from the merchandise system to determine if they should be flagged for review. They
are defined at the corporate level and can contain variables at the department level.
Candidate rules can be inclusive or exclusive. If they are inclusive, and the candidate
rule is met, the item/location is flagged in the worksheet. When exclusive candidate
rules are met, the item/location is excluded from the review when the merchandise
extract program builds the worksheet. Candidate rules can also be active or inactive,
allowing the user to suspend rules that are only needed at certain times of the year.
Candidate rules are only run against the worksheet the first time the worksheet is
created.

Exceptions: Each review period has an indicator stating whether or not to run
exceptions. If the indicator is set to 'Y'es, the merchandise extract should tag those
Item/Location records that are pulled into the worksheet with an exception flag if any
of the following occur during a review period where exceptions are processed:
competitor regular retail price changes, cost changes, and new item/location
relationships.

For every item/location pulled into the worksheet, RPM attempts to propose a new
retail based on the strategy attached to that item/location. When the worksheet is first
created, the details of the strategy are saved. Updates to the strategy do not affect any
worksheets that are currently being reviewed. The updates are only reflected in

Functional Overviews

Functional Design 5-15

worksheets generated after the updates to the strategy are made. Until the worksheet
has been locked, new retails should continue to be proposed using the strategy details
every night the batch program is run.

Below is a list of reasons why item/locations are not included in the worksheet.

■ Any item that does not have a record on the future cost table for the location on a
margin strategy.

■ If there are varying link codes across the item/locations.

■ If the strategy is set up at a zone level, and the unit of measure for the item varies
across the locations in the zone.

■ If the merchandise extract program is running a margin strategy or competitive
strategy against a zone, and all of the locations within the zone do not share the
same market basket code.

■ If the merchandise extract program in running against a strategy setup at the zone
level (where the zone is not the primary zone for the item) and all of the locations
within that zone do not share the same BASIS selling unit of measure.

■ If there is an exclusion candidate rule that is met.

■ If the item is not ranged in the location or if the strategy is at the zone level and the
item is not ranged to any location in that zone.

■ Items are on the exclude list of an area differential strategy.

See "Chapter 6 - Java and RETL Batch Processes" for additional information about this
batch process.

Calendar
Calendars are set up in RPM for the primary purpose of attaching them to pricing
strategies. When you create a calendar in RPM, initially select a start date. This date
can be no earlier than tomorrow's date. In addition, for the calendar to be valid, you
must specify an end date that is later than the start date.

Once the time frame of the calendar has been established, you can specify review
periods for the calendar, which is comprised of numbers of days. You can also specify
the number of days between those review periods. Collectively, these completely span
the date range of the new calendar. When establishing the review period duration, the
review periods and the time between them must exactly reach the specified end date.
If these actions are not performed properly, RPM suggests an end date that makes this
calendar valid. The following is an example of a valid calendar:

Start Date: 01/01/04
End Date: 01/20/04
Review Period Duration: 3 Days
Days Between Review Periods: 3 Days

Start Date End Date

01/01/04 01/03/04

01/07/04 01/09/04

01/13/04 01/15/04

01/19/04 01/21/04

Functional Overviews

5-16 Oracle Retail Price Management Operations Guide

Aggregation Level
Aggregation level functionality is used in RPM to define parameters that vary at the
department level. Within this functional area, you select a department and specify the
'lowest definable level' at which the pricing strategies can be defined. The merchandise
hierarchy levels at which a pricing strategy can be defined are department, class, and
subclass.

When the merchandise extract runs to generate worksheets the 'Worksheet Level'
setting is used to determine the level at which the worksheets should be generated.
Merchandise hierarchy levels with varying strategies can be aggregated into the same
worksheet based on this aggregation level setting. For example, the strategies for a
worksheet may be defined at the class level but if the worksheet level for the
department that class is in is set to department then a single worksheet status row
exists per zone with all the classes rolled up to the department.

The sales settings on the aggregation level screen determine the sales types that are
pulled during the extract process and represented in the worksheet as historical sales.
The inventory settings determine how warehouse inventory is utilized and which
inventory the sell through calculations use.

Location Moves
Location moves in RPM allow you to select a location that exists in a zone and move to
a different zone within a zone group on a scheduled date. The user chooses to
"approve" the location move. A batch processes all approved location move records,
run them for conflict checking and update them to scheduled status. The batch runs
immediately before the Location Move Execution batch.

After conflict checking is complete, the process also allows the location to persist most
valid pricing events through the move and to smoothly transition out of their old zone
pricing strategies into the new zones' pricing strategies. System options provide the
user the flexibility to configure location moves in the following ways:

■ System option that specifies location move rules in regards to existing pending
and active zone level promotions that a location is moving from or into. The
overlap options are as follows -

– Extend old zone's promotion and do not inherit new zones overlapping
promotions: The location keeps running the old zones promotion. The location
does not inherit any zone level promotion for the new zone if it overlaps the
move date.

– End old zone's promotion and inherit new zones overlapping promotions: The
promotion ends at the location the evening before the location move date. The
location inherits the new zones promotion that overlaps the move date, but
the promotion only starts on the location move date.

– Do not start old zone's overlapping promotions and inherit new zones
overlapping promotions: The location does not start the promotion if the zone
promotion overlaps the move date. The location inherits the new zones
promotion that overlaps the move date and starts the same day the zone level
promotion starts or starts the day the move is scheduled if the zone level
promotion is already active.

■ System options which determine whether the location should inherit the zone
retail for the new zone it is moving into.

■ System option to distinguish how location move validation handles pricing
strategies with review periods that overlap a move date

Application Security

Functional Design 5-17

When a location move is successfully scheduled in RPM, all future retail data for the
old zone/ location are removed. Location level pricing events remain intact but
exclusions are created if the new zone's pricing events create conflicts such as a
negative retail.

Application Security

Named Permissions
One of RSM's primary purposes is to establish who has access to what business
functionality. To facilitate this processing, any application (Oracle Retail or non- Oracle
Retail) that is utilizing RSM populates RSM tables with named permissions. These are
pieces of business functionality around which the application has security. For
example, if RPM has "promotions" functionality surrounded by security, RPM creates a
"promotions" named permission. Named permissions data is sent to the RSM database
during installation.

An RSM user could never change a named permission because the applicable outside
application must respond to it. That is, once a user logs into an application (Oracle
Retail or non- Oracle Retail), the application accesses RSM to request all the named
permissions for this user. Within RSM, a user has a collection of roles, and roles have a
collection of named permissions. For example, when the RPM user logs in, RSM
provides the named permissions. RPM, in turn, asks "does this user have 'promotion'
capability?" If the user does not have the capability, RPM does not display that
functionality for the user.

Actions and Named Permissions
When each RSM-integrated application populates the RSM database with named
permissions (during installation), the application specifies potential actions that are
possible against a named permission. Named permissions contain flags that determine
specific actions (shown below) that can be taken in the system. For example, RPM
might have a named permission script for Promotions that specifies the following for
the actions:

■ Edit: "true"

■ View: "true"

■ Approve: "false"

■ Submit: "false"

■ Emergency: "false"

The result of RPM's script would be that users in the RPM system could only be
assigned "view", "edit" or no action with respect to Promotions functionality.

Type of action Description

None Users associated with the role have access to the permission but
no actions.

Edit Users associated with the role are allowed to create, update, and
save any changes to a workflow.

Application Security

5-18 Oracle Retail Price Management Operations Guide

Content Models and Named Permissions
A content model defines in an xml document the task groups and tasks that are
displayed in the task pad of an Oracle Retail GUI application window. By defining a
content model and assigning named permissions to the content model attributes,
applications can login to RSM and retrieve secure content in return. For example, an
administrator can configure an application's content model to restrict certain tasks that
are visible and/or editable by specific users. This is done by configuring named
permissions in conjunction with content model tasks.

For RSM to manage another Oracle Retail application's content, the application's
content model must be deployed with the RSM server. See the Oracle Retail
application's documentation before modifying an application's named permission
settings.

Hierarchy (Data Level) Permissions
RSM administers hierarchy (data level) permissions. To facilitate this functionality, any
Oracle Retail application utilizing RSM for data level permissions populates RSM
tables with its hierarchy types (that is, merchandise and location). Applications either
provide the details of these types up front with SQL scripts or dynamically by
implementing an RSM interface and exposing it to the RSM service. RSM does not
understand application specific data (for example, RSM does not know the difference
between departments and locations). To RSM, the data is a tag (for example,
department) and a specific value (for example, 1000). This information is passed back
to calling applications, and it is the applications responsibility to apply the data level
permissions appropriately.

For example, when an RPM user logs in, RSM provides the hierarchy permissions for
the user. RPM, in turn, asks "does this user have access to 'Department 1000?" If the
user does not have access, RPM does not display data from this department to the
user. Like named permissions, within RSM a user has a collection of roles, and roles
have a collection of hierarchy permissions.

Roles and Users
RSM allows for the creation of security roles. Roles consist of a unique identifier, an
arbitrary name, and any number of permissions. Roles are created by the retailer and
are used as a mechanism for administering its security requirements.

As the diagram below illustrates, roles are used as a mechanism for grouping any
number of permissions. The role then is assigned to various users.

View Users associated with the role are allowed to see to all secured
information in a workflow, but not make any changes to the data
in the workflow.

Approve Users associated with the role are allowed to change the status of
a workflow to Approved

Submit Users associated with the role are allowed to change the status of
a workflow from Worksheet to Submitted.

Emergency Users associated with the role are granted special access that
goes beyond normal day-to-day access to functionality. They can
thus bypass normal delays in processing.

Type of action Description

Concurrency Considerations

Functional Design 5-19

The security administrator assigns permissions to roles. To continue the earlier
example, the security administrator could only assign a role with "view" or "edit"
promotions functionality. Suppose that the security administrator decided to assign a
role with "view" (a "true" flag behind the scenes) but not edit (a "false" flag behind the
scenes), the security administrator could then assign a user, John Smith, to that role.
John Smith could only view Promotions functionality.

Figure 5–7 The Relationship Among Permissions, Roles, and Users

Concurrency Considerations
This section contains currency considerations and solutions within the RPM system. If
multiple users are using the same data, RPM has concurrency solutions to prevent the
persistence of invalid or inaccurate data in the RPM database.

Pessimistic Data Locking
Pessimistic locking prevents data integrity issues that are missed by business
rules/validation due to overlapping transactions.

For example, suppose two users working on the same set of data kick off the approval
process for a price event. If the second user's process is started after the first user's
process has completed, the application business rules handle the concurrency issues.

Although this scenario only arises in a very specific case within a specific time
window, ramifications of the resulting overwrites can be quite severe due to the loss of
data integrity (especially with respect to retails going below zero, events at locations
that have been moved or are scheduled to be moved, incorrect basis value retails, and
so on).

With pessimistic locking, the first user in locks the data until he or she is finished with
that transaction's processing. If a second user tries to lock the same data, he or she
receives a message notifying them that the data is currently locked by another user.
Because a user can only update data that he or she has locked, data integrity is
guaranteed.

Pessimistic Workflow Locking
With pessimistic workflow locking, you are not allowed to edit within a workflow that
is currently in use by another user.

Scenario:

Two pricing managers have security access to the same department for price change
decisions. User one selects a worksheet in the worksheet status screen for Dept 100 in
Zone 100 and enters into the detail screen. User two enters the worksheet status screen
and decides to review the same worksheet. When user two selects and attempts to

Concurrency Considerations

5-20 Oracle Retail Price Management Operations Guide

enter that worksheet, the system stops them. They are informed that user one is
currently in the worksheet and they are not able to access it at this time.

Last User Wins
Data submitted by the second user overwrites data submitted by the first user. With
Last User Wins, there is no warning or message to notify the second user that they
overwrote data modified by the first user.

If the second user's changes are incompatible with the first user's changes, business
validation/rules will protect data integrity. In this case, the second user receives the
appropriate business exception message.

Scenario:

Two users have been told to update a pricing strategy. User one enters the strategy and
changes the value. User two enters the strategy. Since user one has not saved their
change yet, user two still sees the original value and makes the change. User one then
saves the change and leaves the dialog. User two then saves their change. Since there
is no validation that has been broken, the second user's change is also saved resulting
in no difference from the first user. If the second user changed the value and validation
failed, they are prompted with an error to fix the problem, just as though they created
the validation error themselves.

Optimistic Data Locking
The second user receives an error message if they attempt to overwrite data modified
by the first user. The message notifies the user that they have been working with stale
data, so they should re-load and re-process their changes. With, Optimistic Data
Locking, the first user wins; therefore, it is the opposite of the Last User Wins
approach.

Concurrency Solution/Functional Area Matrix

Pessimistic Data
Locking

Pessimistic
Workflow
Locking Last User Wins

Optimistic Data
Locking

Clearance Price Changes √ √
Price Changes √ √
Promotions √ √
Future Retail/Conflict Checking √ √
Location Moves √ √
Worksheet √
Aggregation Level √
Area Differentials √
Calendar √
Candidate Rules √
Foundation √

Concurrency Considerations

Functional Design 5-21

Initial Price Settings √
Pricing Attributes √
Pricing Guides √
Pricing Strategies √
Promotional Funding √
Security √
System Options √
Zone Structure √
Link Codes √
Merch Extract √
Zone Future Retail √

Pessimistic Data
Locking

Pessimistic
Workflow
Locking Last User Wins

Optimistic Data
Locking

Concurrency Considerations

5-22 Oracle Retail Price Management Operations Guide

6

Single Sign-on Overview 6-1

6Single Sign-on Overview

What is Single Sign-On?
Single Sign-On (SSO) is a term for the ability to sign onto multiple web applications
via a single user ID/Password. There are many implementations of SSO - Oracle
currently provides three different implementations: Oracle Single Sign-On (SSO), Java
SSO (with the 10.1.3.1 release of OC4J) and Oracle Access Manager (provides more
comprehensive user access capabilities).

Most, if not all, SSO technologies use a session cookie to hold encrypted data passed to
each application. The SSO infrastructure has the responsibility to validate these
cookies and, possibly, update this information. The user is directed to log on only if the
cookie is not present or has become invalid. These session cookies are restricted to a
single browser session and are never written to a file.

Another facet of SSO is how these technologies redirect a user's Web browser to
various servlets. The SSO implementation determines when and where these redirects
occur and what the final screen shown to the user is.

Most SSO implementations are performed in an application's infrastructure and not in
the application logic itself. Applications that leverage infrastructure managed
authentication (such as deploying specifying "Basic" or "Form" authentication)
typically have little or no code changes when adapted to work in an SSO environment.

What Do I Need for Oracle Single Sign-On?
The nexus of an Oracle Single Sign-On system is the Oracle Identity Management
Infrastructure installation. This consists of the following components:

■ An Oracle Internet Directory (OID) LDAP server, used to store user, role, security,
and other information. OID uses an Oracle database as the back-end storage of
this information.

■ An Oracle Single Sign-On servlet, used to authenticate the user and create the SSO
session cookie. This servlet is deployed within the infrastructure Oracle
Application Server (OAS).

■ The Delegated Administration Services (DAS) application, used to administer
users and group information. This information may also be loaded or modified
via standard LDAP Data Interchange Format (LDIF) scripts.

■ Additional administrative scripts for configuring the SSO system and registering
HTTP servers.

Can Oracle Single Sign-On Work with Other SSO Implementations?

6-2 Oracle Retail Price Management Operations Guide

Additional OAS servers are needed to deploy the business applications leveraging the
SSO technology.

Can Oracle Single Sign-On Work with Other SSO Implementations?
Yes, SSO has the ability to interoperate with many other SSO implementations, but
some restrictions exist.

Oracle Single Sign-on Terms and Definitions

Authentication
Authentication is the process of establishing a user's identity. There are many types of
authentication. The most common authentication process involves a user ID and
password.

Dynamically Protected URLs
A "Dynamically Protected URL" is a URL whose implementing application is aware of
the SSO environment. The application may allow a user limited access when the user
has not been authenticated. Applications that implement dynamic SSO protection
typically display a "Login" link to provide user authentication and gain greater access
to the application's resources.

Identity Management Infrastructure
The Identity Management Infrastructure is the collection of product and services
which provide Oracle Single Sign-on functionality. This includes the Oracle Internet
Directory, an Oracle HTTP server, and the Oracle Single Sign-On services. The Oracle
Application Server deployed with these components is typically referred as the
"Infrastructure" instance.

MOD_OSSO
mod_osso is an Apache Web Server module an Oracle HTTP Server uses to function as
a partner application within an Oracle Single Sign-On environment. The Oracle HTTP
Server is based on the Apache HTTP Server.

Oracle Internet Directory
Oracle Internet Directory (OID) is an LDAP-compliant directory service. It contains
user ids, passwords, group membership, privileges, and other attributes for users who
are authenticated using Oracle Single Sign-On.

Partner Application
A partner application is an application that delegates authentication to the Oracle
Identity Management Infrastructure. One such partner application is the Oracle HTTP
Server (OHS) supplied with the Oracle Application Server. OHS uses the MOD_OSSO
module to configure this functionality.

How Oracle Single Sign-On Works

Single Sign-on Overview 6-3

All partner applications must be registered with the Oracle Single Sign-On server. An
output product of this registration is a configuration file the partner application uses to
verify a user has been previously authenticated.

Realm
A Realm is a collection users and groups (roles) managed by a single password policy.
This policy controls what may be used for authentication (for example, passwords,
X.509 certificates, and biometric devices). A Realm also contains an authorization
policy used for controlling access to applications or resources used by one or more
applications.

A single OID can contain multiple Realms. This feature can consolidate security for
retailers with multiple banners or to consolidate security for multiple development
and test environments.

Statically Protected URLs
A URL is considered to be "Statically Protected" when an Oracle HTTP server is
configured to limit access to this URL to only SSO authenticated users. Any attempt to
access a "Statically Protected URL" results in the display of a login page or an error
page to the user.

Servlets, static HTML pages, and JSP pages may be statically protected.

What Single Sign-On is not
Single Sign-On is NOT a user ID/password mapping technology.

However, some applications can store and retrieve user IDs and passwords for
non-SSO applications within an OID LDAP server. An example of this is the Oracle
Forms Web Application framework, which maps SSO user IDs to a database logins on
a per-application basis.

How Oracle Single Sign-On Works
Oracle Single Sign-On involves a couple of different components. These are:

■ The Oracle Single Sign-On servlet, which is responsible for the back-end
authentication of the user.

■ The Oracle Internet Directory LDAP server, which stores user IDs, passwords, and
group (role) membership.

■ The Oracle HTTP Server associated with the web application, which verifies and
controls browser redirection to the SSO servlet.

■ If the web application implements dynamic protection, then the web application
itself is involved with the SSO system.

Statically Protected URLs
When an unauthenticated user accesses a statically protected URL, the following
occurs:

1. The Oracle HTTP server recognizes the user has not been authenticated and
redirects the browser to the Oracle Single Sign-On servlet.

How Oracle Single Sign-On Works

6-4 Oracle Retail Price Management Operations Guide

2. The SSO servlet determines the user must authenticate, and displays the SSO login
page.

3. The user must sign in via a valid user ID and password. If the SSO servlet has
been configured to support multiple Realms, a valid realm must also be entered.
The user ID, password, and realm information is validated against the Oracle
Internet Directory LDAP server.

4. The SSO servlet creates and sends the user's browser an SSO session cookie. This
cookie is never persisted to disk and is specific only to the current browser session.
This cookie contains the user's authenticated identity. It does NOT contain the
user's password.

5. The SSO servlet redirects the user back to the Oracle HTTP Server, along with SSO
specific information.

6. The Oracle HTTP Server decodes the SSO information, stores it with the user's
session, and allows the user access to the original URL.

Dynamically Protected URLs
When an unauthenticated user accesses a dynamically protected URL, the following
occurs:

1. The Oracle HTTP server recognizes the user has not been authenticated, but
allows the user to access the URL.

2. The application determines the user must be authenticated and sends the Oracle
HTTP server a specific status to begin the authentication process.

3. The Oracle HTTP Server redirects the user's browser session to the SSO Servlet.

4. The SSO servlet determines the user must authenticate, and displays the SSO login
page.

5. The user must sign in via a valid user ID and password. If the SSO servlet has
been configured to support multiple Realms, a valid realm must also be entered.
The user ID, password, and realm information is validated against the Oracle
Internet Directory LDAP server.

6. The SSO servlet creates and sends the user's browser an SSO session cookie. This
cookie is never persisted to disk and is specific only to the current browser session.
This cookie contains the user's authenticated identity. It does NOT contain the
user's password.

7. The SSO servlet redirects the user back to the Oracle HTTP Server, along with SSO
specific information.

8. The Oracle HTTP Server decodes the SSO information, stores it with the user's
session, and allows the user access to the original URL.

Installation Overview

Single Sign-on Overview 6-5

Single Sign-on Topology

Figure 6–1 Single Sign-on Topology

Installation Overview
Installing Oracle Single Sign-On consists of installing the following components:

1. Installing the Oracle Internet Directory (OID) LDAP server and the Infrastructure
Oracle Application Server (OAS). These are typically performed using a single
session of the Oracle Universal Installer and are performed at the same time. OID
requires an Oracle relational database and if one is not available, the installer also
installs this as well.

The Infrastructure OAS includes the Delegated Administration Services (DAS)
application as well as the SSO servlet. The DAS application can be used for user
and realm management within OID.

2. Installing additional OAS 10.1.2 midtier instances for the Oracle Retail
applications, such as RMS, that are based on Oracle Forms technologies. These
instances must be registered with the Infrastructure OAS installed in step 1).

3. Installing additional application servers to deploy other Oracle Retail applications
and performing application specific initialization and deployment activities.

Infrastructure Installation and Configuration
The Infrastructure installation for SSO is dependent on the environment and
requirements for its use. Deploying an Infrastructure OAS to be used in a test
environment does not have the same availability requirements as for a production
environment. Similarly, the Oracle Internet Directory (OID) LDAP server can be
deployed in a variety of different configurations. See the Oracle Application Server
Installation Guide and the Oracle Internet Directory Installation Guide for more
details.

OID User Data
Oracle Internet Directory is an LDAP v3 compliant directory server. It provides
standards-based user definitions out of the box.

User Management

6-6 Oracle Retail Price Management Operations Guide

The current version of Oracle Single Sign-On only supports OID as its user storage
facility. Customers with existing corporate LDAP implementations may need to
synchronize user information between their existing LDAP directory servers and OID.
OID supports standard LDIF file formats and provides a JNDI compliant set of Java
classes as well. Moreover, OID provides additional synchronization and replication
facilities to integrate with other corporate LDAP implementations.

Each user ID stored in OID has a specific record containing user specific information.
For role-based access, groups of users can be defined and managed within OID.
Applications can thus grant access based on group (role) membership saving
administration time and providing a more secure implementation.

OID with Multiple Realms
OID and SSO can be configured to support multiple user Realms. Each realm is
independent from each other and contains its own set of user IDs. As such, creating a
new realm is an alternative to installing multiple OID and Infrastructure instances.
Hence, a single Infrastructure OAS can be used to support many development and test
environments by defining one realm for each environment.

Realms may also be used to support multiple groups of external users, such as those
from partner companies. For more information on Realms, see the Oracle Internet
Directory Administrators Guide.

User Management
User Management consists of displaying, creating, updating or removing user
information. There are two basic methods of performing user management: LDIF
scripts and the Delegate Administration Services (DAS) application.

OID DAS
The DAS application is a web based application designed for both administrators and
users. A user may update their password, change their telephone number of record,
or modify other user information. Users may search for other users based on partial
strings of the user's name or ID. An administrator may create new users, unlock
passwords, or delete users.

The DAS application is fully customizable. Administrators may define what user
attributes are required, optional or even prompted for when a new user is created.

Furthermore, the DAS application is secure. Administrators may also what user
attributes are displayed to other users. Administration is based on permission grants,
so different users may have different capabilities for user management based on their
roles within their organization.

LDIF Scripts
Script based user management can be used to synchronize data between multiple
LDAP servers. The standard format for these scripts is the LDAP Data Interchange
Format (LDIF). OID supports LDIF script for importing and exporting user
information. LDIF scripts may also be used for bulk user load operations.

User Data Synchronization
The user store for Oracle Single Sign-On resides within the Oracle Internet Directory
(OID) LDAP server. Oracle Retail applications may require additional information

Configuring RSM for Single Sign-on

Single Sign-on Overview 6-7

attached to a user name for application-specific purposes and may be stored in an
application-specific database. Currently, there are no Oracle Retail tools for
synchronizing changes in OID stored information with application-specific user stores.
Implementers should plan appropriate time and resources for this process. Oracle
Retail strongly suggests that you configure any Oracle Retail application using an
LDAP for its user store to point to the same OID server used with Oracle Single
Sign-On.

Configuring RSM for Single Sign-on
The Oracle Retail Workspace installer prompts you to enter the URL for your
supported Oracle Retail applications. However, if a client installs a new application
after Oracle Retail Workspace is installed, the retail-workspace-page-config.xml file
needs to be edited to reflect the new application.

The file as supplied comes with all appropriate products configured, but the
configurations of non-installed products have been "turned off". Therefore, when
"turning on" a product, locate the appropriate entry, set "rendered" to "true", and enter
the correct URL and parameters for the new application.

The entry consists of the main URL string plus one parameter named "template". The
value of the template parameter is inserted by the installer. Somewhere in the installer
property files there is a value for the properties "deploy.retail.product.rpm.url" and
"deploy.retail.product.rpm.template".

For example, suppose RPM was installed on mycomputer.mycompany.com, port 7777,
using a standard install and RPM configured with the application name of
"rpm13int1". If you were to access RPM directly from your browser, you would type
in:

http://mycomputer.mycompany.com:7777/rpm13int1/launch?template=rpm_jnlp_
template.vm
The entry in the retail-workspace-page-config.xml after installation would resemble
the following:

 <secure-work-item id="rpm"
 display-string="#{confMsgs.rpmTitle}"
 rendered="true"
 launchable="true"
 show-in-content-area="false"
 target-frame="_self">
 <url>http://mycomputer.mycompany.com:7777/rpm13int1/launch</url>
 <parameters>
 <parameter name="template">
 <value>rpm_jnlp_template.vm</value>
 </parameter>
 </parameters>
 </secure-work-item>

Configuring RSM for Single Sign-on

6-8 Oracle Retail Price Management Operations Guide

7

Java and RETL Batch Processes 7-1

7Java and RETL Batch Processes

This chapter is divided into two sections. The first section reflects Java-based batch
processing within RPM. The second section concerns RETL extract batch processing
(for a data warehouse such as RDW, for example).

Java Batch Processes
This section provides the following:

■ An overview of RPM’s batch processing

■ A description of how to run batch processes, along with key parameters

■ A functional summary of each batch process, along with its dependencies

■ A description of some of the features of the batch processes (batch return values,
and so on)

Java Batch Process Architectural Overview
The goal of much of RPM’s Java batch processing is to select business objects from the
persisted mechanism (for example, a database) by a certain criteria and then to
transform them by their state. These RPM Java-based batch processes remove some of
the processing load from the real-time online system and are run periodically.

Note the following characteristics of RPM’s batch processes:

■ RPM’s batch processes are run in Java. For the most part, batch processes engage
in their own primary processing.

■ They are not accessible through a graphical user interface (GUI).

■ They are scheduled by the retailer.

■ They are designed to process large volumes of data, depending upon the
circumstances and process.

■ They are not file-based batch processes.

Running a Java-based Batch Process
Java processes are scheduled through executable shell scripts (.sh files). Oracle Retail
provides each of these shell scripts. During the installation process, the batch shell
scripts and the .jar files on which they depend are copied to a client-specified directory
structure. See the Oracle Retail Price Management Installation Guide for details. The
batch shell scripts must be run from within that directory structure.

Each script performs the following internally:

Java Batch Processes

7-2 Oracle Retail Price Management Operations Guide

■ sets up the Java runtime environment before the Java process is run.

■ triggers the Java batch process.

To use the scripts, confirm that the scripts are executable (using ls –l) and run
“chmod +x *.sh” if necessary. The shell scripts take two arguments: username and
password. The output can be redirected to a log file (as shown in the example below).

The following is an example of how to use a batch shell script:

./locationMoveBatch.sh MyUsername MyPassword > log 2>&1

Additional Notes
■ All the output (including errors) is sent to the log file.

■ The scripts are meant to run in Bash. They have problems with other shells.

■ If the scripts are edited on a Windows computer and then transferred to UNIX,
they may have carriage returns (^M) added to the line ends. These carriage returns
(^M) cause problems and should be removed.

Script Catalog

Note: The script launchRpmBatch.sh must be modified to include
the correct environment information before any of the batch scripts
run correctly.

Script Batch program executed

clearancePriceChangePublishBatch.sh ClearancePriceChangePublishBatch

injectorPriceEventBatch.sh injectorPriceEventBatch

itemLocDeleteBatch.sh ItemLocDeleteBatch

itemReclassBatch.sh itemReclassBatch

locationMoveBatch.sh LocationMoveBatch

merchExtractKickOffBatch.sh MerchExtractKickOffBatch

newItemLocationBatch.sh NewItemLocationBatch

PriceChangeAreaDifferentialBatch.sh PriceChangeAreaDifferentialBatch

priceChangeAutoApproveResultsPurgeBatch.sh PriceChangeAutoApproveResultsPurgeBatch

priceChangePurgeBatch.sh PriceChangePurgeBatch

priceChangePurgeWorkspaceBatch.sh PriceChangePurgeWorkspaceBatch

priceEventExecutionBatch.sh PriceEventExecutionBatch

priceStrategyCalendarBatch.sh PriceStrategyCalendarBatch

promotionPriceChangePublishBatch.sh PromotionPriceChangePublishBatch

promotionPurgeBatch.sh PromotionPurgeBatch

purgeBulkConflictCheckArtifacts.sh purgeBulkConflictCheckArtifacts

purgeExpiredExecutedOrApprovedClearancesBatch.sh PurgeExpiredExecutedOrApprovedClearancesBatch

purgeLocationMovesBatch.sh PurgeLocationMovesBatch

purgeUnusedAndAbandonedClearancesBatch.sh PurgeUnusedAndAbandonedClearancesBatch

Java Batch Processes

Java and RETL Batch Processes 7-3

Scheduler and the Command Line
If the retailer uses a scheduler, arguments are placed into the scheduler.

If the retailer does not use a scheduler, arguments must be passed in at the UNIX
command line.

The Java batch processes are to be called via the shell scripts. These scripts take any
and all arguments that their corresponding batch process would take when executing.

Functional Descriptions and Dependencies
The following table summarizes RPM’s batch processes and includes a description of
each batch process’s business functionality.

regularPriceChangePublishBatch.sh RegularPriceChangePublishBatch

RPMtoORPOSPublishBatch RPMtoORPOSPublishBatch

RPMtoORPOSPublishExport RPMtoORPOSPublishExport

statusPageCommandLineApplication.sh statusPageCommandLineApplication

taskPurgeBatch.sh TaskPurgeBatch

worksheetAutoApproveBatch.sh WorksheetAutoApproveBatch

launchRpmBatch.sh The retailer does not schedule this script. Other batch
programs call this script behind the scenes. Note that this
script sets up environment information and takes as a
parameter the name of the batch program to run.

zoneFutureRetailPurgeBatch.sh ZoneFutureRetailPurgeBatch

Batch processes Details

ClearancePriceChangePublishBatch This batch process formats and stages output of clearance price change
price events.

InjectorPriceEventBatch This batch program performs the necessary work to import pricing events
(regular price changes, clearance price changes and simple promotions)
and optionally submit the events for approval.

ItemLocDeleteBatch This batch program handles RMS deletions of item locations.

itemReclassBatch When items are moved from one department/class/subclass to another
in the merchandising system, this batch process accordingly sets the
correct department/class/subclass for these items in the RPM_FUTURE_
RETAIL table.

LocationMoveBatch This batch process moves locations between zones in a zone group.

MerchExtractKickOffBatch This batch process builds worksheets in RPM.
MerchExtractKickOffBatch.java either creates or updates worksheets
based on price strategies and the calendars attached to them.

NewItemLocationBatch The NewItemLocationBatch process is utilized when you are operating
RPM without the RIB.

This batch process replaces the Item/Location Creation RIB message. It
ranges item locations by putting them into the future retail table. Item
and location are fed to this program via the RPM_STAGE_ITEM_LOC
table, which is populated by an RMS process.

PriceChangeAreaDifferentialBatch This batch program allows the user to generate and approve Price
Changes for selected secondary areas of an Area Differential.

Script Batch program executed

Java Batch Processes

7-4 Oracle Retail Price Management Operations Guide

Batch Process Scheduling
Before setting up an RPM process schedule, familiarize yourself with Batch Schedule
document published in conjunction with this release.

Threading and the RPM_BATCH_CONTROL Table
Some RPM batch processes use the RPM_BATCH_CONTROL table, which is a
database administrator (DBA) maintained table and is populated by the retailer. This
table defines the following:

PriceChangeAutoApproveResultsPu
rgeBatch

This batch process deletes old error message from the price change auto
approve batch program.

PriceChangePurgeBatch This batch process deletes past price changes.

PriceChangePurgeWorkspaceBatch This batch process deletes abandoned price change workspace records.

PriceEventExecutionBatch This batch process performs the necessary work to start (regular price
change, clearance price change, promotions) and end (price change,
promotions) pricing events.

PriceStrategyCalendarBatch This batch process maintains calendars assigned to price strategies.

PromotionPriceChangePublishBatch This batch process formats and stages output of promotion price change
price events.

PromotionPurgeBatch This batch process deletes old and rejected promotions.

purgeBulkConflictCheckArtifacts This batch program allows you to clean up the working tables in the case
that there are environment issues that cause records to be left in these
tables.

PurgeExpiredExecutedOrApproved
ClearancesBatch

This batch process deletes expired clearances in ‘Executed’ or ‘Approved’
statuses.

PurgeLocationMovesBatch This batch process cleans up expired/executed location moves

PurgeUnusedAndAbandonedCleara
ncesBatch

This batch process deletes unused and rejected clearances.

RegularPriceChangePublishBatch This batch process formats and stages output of regular price change
price events.

RPMtoORPOSPublishBatch The RPMtoORPOSPublishBatch program formats and stages output of
different price events like PriceChange, Clearance and Promotions.

RPMtoORPOSPublishExport The RPMtoORPOSPublishExport program calls a sql script
"RPMtoORPOSSpoolMsg.sql". This script spools the data collected from
different publish tables of different price events (Price Change, Clearance
and Promotion).

statusPageCommandLineApplicatio
n

The status page batch program (statusPageCommandLineApplication.sh)
performs some data checks, to verify that some of the assumptions that
the application makes about the data are not violated.

TaskPurgeBatch The TaskPurgeBatch purges the entries from RPM_*TASK tables based on
the entered purge days and the status indicator.

WorksheetAutoApproveBatch This batch process approves maintain margin strategy worksheets that
have not been acted upon by the end of the review period. The strategies
must be marked as auto-approve in order to be processed.

ZoneFutureRetailPurgeBatch This batch process deletes past zone/item price change actions.

Batch processes Details

Java Batch Processes

Java and RETL Batch Processes 7-5

■ The batch process that is to be threaded.

■ The number of threads that should be run at a time.

■ How much data each thread should process (for example, 2 strategies per thread,
500 item/location/price changes by thread, and so on).

Each batch design later in this chapter states the following in its ‘Threading’ section:

■ Whether the batch process utilizes the RPM_BATCH_CONTROL table.

■ Whether or not the batch process is threaded.

■ How the batch process is threaded (by strategy, by department, and so on).

Return Value Batch Standards
All batch processes in RPM conform to the Oracle Retail batch standards. They are
executed and terminated in the same manner as other batch processes in the Oracle
Retail suite of products. The following guidelines describe the return values that
RPM’s batch processes utilize:

Return Values
0 – The function completed without error.

1 – A fatal error occurred. The error messages are logged, and the process is halted.

Batch Logging
Relevant progress messages are logged with regard to batch program runtime
information. The setting for these log messages is at the Info level in log4j.

For more information, see “Chapter 2 – Backend System Administration and
Configuration”.

Conflict Checking
This section describes conflict checking rules, with an example of a user-defined rule.

Conflict checking is made up of 23 rules that determine whether or not a price event
can be approved.

The rules are broken up into three different categories.

■ Merge validator conflict checking rules

These rules are “pre-merge,” meaning that the effect of the new price event cannot
be added to rpm_future_retail.

■ Post-merge conflict checking rules

These rules are “post-merge,” meaning that the effect of the new price event has
been added to the RPM_FUTURE_RETAIL table before these 12 rules are run.

■ Conflict checking rules controlled by system options

There are three rules that can be turned on or off by disabling or enabling system
options in RPM.

Merge Validator Conflict Checking Rules
Merge Validator is the first step in conflict checking. The price events (regular price
changes, clearances, or promotions) that are proposed by the user are rejected before

Java Batch Processes

7-6 Oracle Retail Price Management Operations Guide

they populate the future timeline. This conflict checking is required, and the user
cannot choose whether to run these checks.

1. One fixed-price promotion maximum

Only one fixed-price promotion can affect an item/location combination on the
timeline. This conflict check verifies that only one fixed-price promotion exists on
the same effective day per item/location.

There can be only one fixed-price promotion in the current promotion, or across all
existing promotions.

2. Duplicate price change

This rule ensures that the new event does not cause multiple price changes for a
given date at any point in time on an item/location timeline. If the date of the
price change is equal to the VDATE, it is allowed. This allows multiple emergency
price changes for the current day.

3. Duplicate clearance price change

This rule ensures that the new clearance does not cause multiple clearances for a
given date at any point on an item/location timeline. If the date of the clearance is
equal to the VDATE, it is allowed. This allows multiple emergency clearances for
the current day.

4. Multiple clearance events

Reset dates for clearances must be in the past before another clearance event can
populate the timeline.

This rule ensures that only one markdown series can exist at any point for an
item/location on the future timeline. Only clearance resets that have a date
greater or equal to the VDATE are considered.

5. Two promotions maximum for item/location combination

This rule ensures that the new event does not cause more than two promotions to
affect an item/location’s timeline.

6. One promotion component detail maximum for item/location detail

This rule ensures that the new event does not cause more than one promotion
component detail from a single promotion component to affect an item/location at
any point on an item/location timeline.

7. Two promotion components maximum for item/location combination

This rule ensures that the event does not cause more than two promotion
components from a single promotion to affect an item/location at any point on an
item/location timeline.

8. Two exclusions maximum for item/location detail

There can be no more than two approved exclusions on the timeline for an
item/location combination.

Post-Merge Conflict Checking Rules (rpm_conflict_query_control Table)
This is the final series in the conflict check process. After the effect of the price event
has been added to the RPM_FUTURE_RETAIL table, the validation is done by
processing the following rules to ensure that the price event is valid.

The RPM_CONFLICT_QUERY_CONTROL table provides the ability to add some
configuration your conflict checking. The configuration capabilities are as follows:

Java Batch Processes

Java and RETL Batch Processes 7-7

■ The user can add custom conflict checking rules.

■ The user can override the promotion constraint conflict checking rule. The rule
that can be turned off is RPM_CC_PROMO_CONSTRAINT.VALIDATE.

■ RPM_CC_NEG_RETAIL.VALIDATE

Future retail cannot be negative. The retail cannot become negative as a result of
adding or deleting a price change. Conflict checking is done for any row that is
added to RPM_FUTURE_RETAIL.

■ RPM_CC_CLEAR_LT_REG.VALIDATE

Clearance retail must be less than or equal to the regular retail (item/location). The
first markdown can be equal to the regular retail, but any additional markdowns
must reduce retail.

■ RPM_CC_CLEAR_MKDN.VALIDATE

The clearance markdown must be less than the previous markdown. The new
event cannot cause a clearance retail to increase from markdown to markdown at
any point on an item/location timeline. The first markdown can make no change,
but each additional markdown must be lower than the previous markdown.

■ RPM_CC_CLEARUOM_SELLUOM.VALIDATE

The clearance fixed price change unit of measure (UOM) must be the same as the
regular price UOM. For example, if the regular price is $2 each, a conflict occurs if
you try to run a fixed price clearance for $20 per dozen.

■ RPM_CC_FIXED_CLR_PROM_OVER.VALIDATE

The fixed price clearance cannot overlap with a fixed price promotion if the
promotion is defined as “apply to clearance.”

This rule ensures that the new event does not cause a fixed amount clearance to
overlap with a promotion that has an “apply to” code of “clearance only” or
“regular and clearance” at any point on an item/location timeline.

■ RPM_CC_PROM_LT_CLEAR_REG.VALIDATE

The new selling retail cannot be lower than the promotional retail (simple or
complex).

This rule ensures that the new event does not cause the selling or clearance retail
to be less than the promotional retail at any point on the item/loc timeline. This
rule applies only if the clearance overlap indicator is ‘Y’.

■ RPM_CC_AMOUNT_OFF_UOM.VALIDATE

Amount-off changes cannot change the unit of measure.

This rule ensures that the new price change does not cause a fixed amount change
value UOM to differ from the retail UOM at any point on the item/location
timeline. For example, it would stop the scenario if the selling retail is $8 each and
the price change is $2 off per ounce. This conflict check applies to price changes,
clearances, and promotions.

Note: It is possible for the user to override any of the remaining 11
conflict checking rules for performance reasons, but this is not
supported in base RPM. Turning off any of these rules could cause
corrupt date in the RPM_FUTURE_RETAIL table.

Java Batch Processes

7-8 Oracle Retail Price Management Operations Guide

■ RPM_CC_MULTI_UNIT_UOM.VALIDATE

Multi-unit retail cannot be less than the selling retail.

This rule ensures that the new event does not cause the multi-unit retail to be less
than the selling retail, or the selling retail to be more than purchase of two of the
multi-units at any point on the item/location timeline. For example, if the single
unit retail is $1 each and the multi-unit retail is $1.50 for two, the check ensures
that the multi-unit retail is greater than the selling unit (yes), and the multi-unit
retail is less than the multi-unit quantity times the selling retail: $1.50 is less than
$1.00 times 2 (yes).

■ RPM_CC_PC_PROM_OV.VALIDATE

A regular price change cannot occur during a promotion.

New price changes cannot overlap with a promotion at any point on the
item/location timeline if the price change overlap indicator is ‘N’.

■ RPM_CC_CL_PROM_OV.VALIDATE

Clearances and promotions cannot overlap.

Clearance price changes and promotional price changes cannot run concurrently
unless the clearance overlap indicator is ‘Y’.

■ RPM_CC_PROM_COMP_CNT.VALIDATE

An item/location can exist on more than one promotion at a time.

If Multiple Promotions Ind = ‘N’, the new promotion must be the only promotion
component active within the current promotion, or across other promotions.

■ RPM_CC_PROMO_CONSTRAINT.VALIDATE

Validate new item/location price events against Promotion Constraint.

This is the only rule in the table that can be overridden (turned off). If the rule
action is set to ‘N’, all promotion constraints that are set up in RPM are ignored.

Rules Controlled by System Options
The following rules can be turned on or off by changing system options settings:

■ An item/location can exist on more than one promotion at a given time.

If the indicator is set to ‘Yes’ (checked), an item can have its retail price affected by
more than one promotional discount at a single time in a given location. If the
indicator is set to ‘No’ (unchecked), only one promotional discount can exist at the
same time for a given item/location.

■ A regular price chance cannot occur during a promotion.

Note: This rule can also be configured by changing the system
option.

Note: This rule can also be configured by changing the system
option.

Java Batch Processes

Java and RETL Batch Processes 7-9

If Price change/Promotion overlap Ind = ‘N’, a price change cannot overlap with a
promotion at any point on the item/loc timeline. If Price change/Promotion
overlap Ind = ‘Y’, then a price change can be approved during a promotion.

■ Clearances and promotions cannot overlap.

If Clearance/Promotion overlap Ind = ‘N’, a clearance cannot overlap with a
promotion at any point on the item/loc timeline. If Clearance/Promotion overlap
Ind = ‘Y’, a clearance can be approved during a promotion.

Adding User-Defined Conflict Checking Rules
The RPM_CONFLICT_QUERY_CONTROL table allows the addition of user-defined
rules. When a row is added to the RPM_CONFLICT_QUERY_CONTROL table and a
conflict function is implemented that fits the expected prototype, the rule is executed
during all conflict check runs.

The conflict checking functions are executed after the new price event has been added
to the RPM_FUTURE_RETAIL table so that the effect of the change can be seen by the
rule checking function.

The following is an example of how to add a rule.

Rule definition: No item should sell for less than $5.

1. Add a row to the rpm_conflict_query_control

insert into RPM_CONFLICT_QUERY_CONTROL (
 CONFLICT_QUERY_CONTROL_ID,
 CONFLICT_QUERY_FUNCTION_NAME,
 CONFLICT_QUERY_DESC,
 ACTIVE,
 OVERRIDE_ALLOWED,
 EXECUTION_ORDER,
 BASE_GENERATED,
 BASE_REQUIRED,
 LOCK_VERSION)
select RPM_CONFLICT_QUERY_CONTROL_SEQ.nextval,
 'CUSTOM_RULE.BELOW_FIVE_CHECK',
 '$5 check',
 'Y',
 'Y',
 20,
 'N',
 'N',
 null
from dual;

2. Implement CUSTOM_RULE.BELOW_FIVE_CHECK to fit the expected prototype.
The function should take no input parameters. The function should return a
CONFLICT_CHECK_ERROR_TBL as an output parameter to hold any error or
conflict information. The function should return 0 for failure and 1 for success.

CREATE OR REPLACE PACKAGE BODY CUSTOM_RULE AS
--
FUNCTION BELOW_FIVE_CHECK(IO_error_table IN OUT CONFLICT_CHECK_ERROR_TBL)
RETURN NUMBER IS

 L_error_key VARCHAR2(255) := NULL;
 L_error_type VARCHAR2(255) := NULL;
 L_function VARCHAR2(61) := 'RPM_CC_NEG_RETAIL.VALIDATE';

Java Batch Processes

7-10 Oracle Retail Price Management Operations Guide

 L_error_rec CONFLICT_CHECK_ERROR_REC := NULL;
 L_error_tbl CONFLICT_CHECK_ERROR_TBL := CONFLICT_CHECK_ERROR_TBL();

 cursor c_check is
 select price_event_id,
 future_retail_id
 from rpm_future_retail_gtt gtt
 where gtt.price_event_id NOT IN (select ccet.price_event_id
 from table(cast(L_error_tbl as
conflict_check_error_tbl)) ccet)
 and (selling_retail < 5
 or clear_retail < 5
 or simple_promo_retail < 5
 or complex_promo_retail < 5);

BEGIN

 if IO_error_table is NOT NULL and
 IO_error_table.count > 0 then
 L_error_tbl := IO_error_table;
 else
 L_error_rec := CONFLICT_CHECK_ERROR_REC(-99999, null, null, null);
 L_error_tbl := CONFLICT_CHECK_ERROR_TBL(L_error_rec);
 end if;

 for rec in c_check LOOP
 L_error_rec := CONFLICT_CHECK_ERROR_REC(rec.price_event_id, rec.future_
retail_id,
 RPM_CONFLICT_LIBRARY.CONFLICT_
ERROR, 'below_five_check_string');
 if IO_error_table is null then
 IO_error_table := CONFLICT_CHECK_ERROR_TBL(L_error_rec);
 else
 IO_error_table.EXTEND;
 IO_error_table(IO_error_table.COUNT) := L_error_rec;
 end if;
 end LOOP;

 return 1;

EXCEPTION
 when OTHERS then
 L_error_rec := CONFLICT_CHECK_ERROR_REC(null, null,
 RPM_CONFLICT_LIBRARY.PLSQL_ERROR,
 SQL_LIB.CREATE_MSG('PACKAGE_
ERROR',
 SQLERRM,
 L_function,
 to_
char(SQLCODE)));
 IO_error_table := CONFLICT_CHECK_ERROR_TBL(L_error_rec);
 return 0;
END BELOW_FIVE_CHECK;
--
END;
/

3. Define the error string below_five_check_string for the new rule in the Java
property file (messages.properties).

Java Batch Processes

Java and RETL Batch Processes 7-11

Bulk Conflict Checking
This section describes:

■ Bulk conflict checking and its impact on performance

■ Functional areas affected by bulk conflict checking

■ Batch design updates, including any additional parameters, for batch programs
that have changed

Overview of Bulk Conflict Checking and Its Impact on Performance

In the previous RPM release, the conflict check engine in RPM is limited to conflict
checking only one price event at a time. So when the user sends multiple price events
for conflict checking (for example by multi selecting several price events within the
Price Change, Clearance or Promotion Component Detail maintenance screen; Price
Change Generation for Area Differential; Worksheet approval), RPM would loop
through this collection of price events and does the conflict checking for each price
event one at a time.

The fact that running the conflict checking for 100 price events with 10 item/locations
in each price event took a lot of more time compared to running the conflict checking
for one price event with 1000 item/locations proved that there was a great deal of
overhead calling the conflict checking process multiple times.

Allowing RPM to do Conflict Checking for a collection of Price Events at a time
improves RPM performance, especially in this functionality:

■ Price Change generation for Area Differential.

■ Worksheet approval.

■ Location Move execution (with the new requirement to adjust the Item/Location
selling retail following the new zone selling retail).

■ External system interface.

■ General Price Event approval (i.e., when the user is using the UI to multi select a
large number of price events and trying to approve them).

In this release, RPM has been modified so that its Conflict Checking engine is able to
process in bulk (that is, multiple price events at a time). The approach taken to modify
RPM to be able to do conflict checking for a collection of price events was based on the
assumptions below:

■ The collection of price events is of the same type (for example, Price Change,
Clearance, Simple Promotion, Threshold Promotion and Multi-buy Promotion).

■ The item/locations that are affected by each price event in the collection are not
overlapping. If they are overlapping, then the price events are split into several
smaller collections with price events which item/location are not overlapping.
These new collections are then conflict checked separately one collection at a time.

■ If RIB is turned on, and there is some problem during the publishing, then the
whole collection is rolled backed.

■ Failures in the below areas (which are executed in the same transaction of the
conflict checking process) result in the entire collection in a thread (see explanation
on Threading mechanism below) being rolled back

– Purge of old Future Retails records

– Population of the payload tables

Java Batch Processes

7-12 Oracle Retail Price Management Operations Guide

– Zone Future Retail processing (for primary zone price changes).

– Unexpected error during the transaction (e.g. Table Locking or other Database
error).

To illustrate how the conflict checking engine processes the collection of price events,
please refer to the example below.

Assume that one user sent this collection of price changes to RPM to be approved:

In the table above, Zone 1 contains the following locations:

Location 1
Location 2
Location 3
Location 4
And Zone 2 contains the following locations:

Location 5
Location 6
Location 7
Location 8
Location 9
The first process is to separate these price changes into several collections (referred to
as sequence) based on the item/location combination so that there are no
item/locaiton overlapping in the sequence. From the example above, it can be seen
that the PC1 and PC2 are overlapping. This collection of price changes is then divided
into two sequences:

The above sequences are then processed one at a time, to ensure that there is a
database locking issue. Note that for the overlapping price changes (PC1 and PC2), the
decision of which price changes should go to the first or second sequence is based on
the effective date of the price change.

To further make this conflict checking process runs faster, the sequences are divided
into several threads. These threads within the sequence are processed simultaneously.
To decide the number of threads within the sequence, there is a row in the RPM_
BATCH_CONTROL table with PROGRAM_NAME column equals to
‘com.retek.rpm.app.bulkcc.service.BulkConflictCheckAppService’.

The value of the THREAD_LUW_COUNT column decides the maximum number of
item/location in the thread. The clients can adjust this number (based on the number

Price Change Effective Date Item / Location Status

PC 1 9/7/07 Item 1 / Zone 1 WORKSHEET

PC 2 9/28/07 Item 1 / Location 1 WORKSHEET

PC 3 9/15/07 Item 2 / Zone 2 WORKSHEET

PC 4 9/30/07 Item 3 / Zone 1 WORKSHEET

Sequence Price Change(s) Effective Date Item / Location(s)

1 PC 1

PC 3

PC 4

9/7/07

9/15/07

9/30/07

Item 1 / Zone 1

Item 2 / Zone 2

Item 3 / Zone 1

2 PC 2 9/28/07 Item 1 / Location 1

Java Batch Processes

Java and RETL Batch Processes 7-13

of processors, size of the processors, and size of the datasets being processed, among
other things) to optimize this conflict checking process in their environment. The
default value that is set right now is 10,000.

From the example of the price changes above, if the THREAD_LUW_COUNT is set to
10 then the sequences are divided into threads similar to the table below:

Processed First: Sequence One:

Processed Second: Sequence Two:

Even though the Item3/Location 1 of PC 4 can fit into Thread 1 of sequence 1, there is
an additional rule that prevents that. This rule is “Item/locations of one price change
cannot be processed across multiple threads”.

ClearancePriceChangePublishBatch Batch Design
The ClearancePriceChangePublishBatch program formats and stages output of
clearance price change price events.

The corresponding clearancePriceChangePublishExport shell script produces a pipe
(‘|’) delimited flat-file export based on the output of the
ClearancePriceChangePublishBatch.

Usage
The following command runs the ClearancePriceChangePublishBatch job:

ClearancePriceChangePublishBatch userid password
Where the first argument is the RPM user id and the second argument is the password.

The following command runs the clearancePriceChangePublishExport job:

clearancePriceChangePublishExport.sh database-connect-string path
Where the first argument is the database connect string (user/pwd@database) and the
second argument is the path where the file should be written. The path is optional and
if not supplied, the path ../output is used.

Sequence Thread Price Change Item / Location(s)

1 1 PC 1 Item 1 / Location 1

Item 1 / Location 2

Item 1 / Location 3

Item 1 / Location 4

1 1 PC 3 Item 2 / Location 5

Item 2 / Location 6

Item 2 / Location 7

Item 2 / Location 8

Item 2 / Location 9

1 2 PC 4 Item 3 / Location 1

Item 3 / Location 2

Item 3 / Location 3

Item 3 / Location 4

Sequence Thread Price Change Item / Location(s)

2 1 PC 2 Item 1 / Location 1

Java Batch Processes

7-14 Oracle Retail Price Management Operations Guide

Detail
The batch looks for price events in the RPM_PRICE_EVENT_PAYLOAD table with a
RIB_FAMILY of “CLRPRCCHG” and distributes those events to multiple threads
based on the settings in the RPM_BATCH_CONTROL table. Each thread reads in its
set of clearance price change events from tables RPM_PRICE_EVENT_PAYLOAD and
RPM_CLEARANCE_PAYLOAD and generates output in RPM_PRICE_PUBLISH_
DATA. After the flat file is successfully generated by the Export script (see format
below), the associated records in the payload tables are deleted.

A single flat-file is created with the name: CLRPC_<timestamp>.pub

Where <timestamp> is the current system time stamp.

Output File
FHEAD – REQUIRED: File identification, one line per file.

FDETL – OPTIONAL: Price Change Event (Create or Modify)

FDELE – OPTIONAL: Price Change Event (Delete)

FTAIL – REQUIRED: End of file marker, one line per file.

Java Batch Processes

Java and RETL Batch Processes 7-15

Output File Layout

Assumptions and Scheduling Notes
ClearancePriceChangePublishBatch should be run after the

WorksheetAutoApproveBatch.

ClearancePriceChangePublishExport should be run after every successful run of
ClearancePriceChangePublishBatch.

Record Name Field Name Field Type Default Value Description

FHEAD Record
Descriptor

Char(5) FHEAD File head marker

Line id Number(10) 1 Unique line id

File Type Char(5) CLRPC Clearance Price Changes

Export
timestamp

Timestamp System clock timestamp
(YYYYMMDDHHMISS)

FDETL Record
Descriptor

Char(5) FDETL File Detail Marker (1 per clearance create
or modify)

Line id Number(10) Unique line id

Event Type Char(3) “CRE” = Create, “MOD” = Modify

Id Number(15) Clearance identifier

Item Char(25) Item identifier

Location Number(10) Location identifier

Location Type Char(1) ‘S’ = Store, ‘W’ = Warehouse

Effective Date Date Clearance Effective Date (DD-MMM-YY)

Selling Retail Number(20,4) Selling retail with price change applied

Selling Retail
UOM

Char(4) Selling retail unit of measure

Selling Retail
Currency

Char(3) Selling retail currency

Reset Clearance
Id

Number(15) Id of clearance reset

FDELE Record
Descriptor

Char(5) FDELE File Detail Delete Marker (1 per clearance
delete)

Line id Number(10) Unique line id

Id Number(15) Clearance identifier

Item Char(25) Item identifier

Location Number(10) Location identifier

Location Type Char(1) ‘S’ = Store, ‘W’ = Warehouse

FTAIL Record
Descriptor

Char(5) FTAIL File tail marker

Line id Number(10) Unique line id

Number of
lines

Number(10) Number of lines in file not counting
FHEAD and FTAIL

Java Batch Processes

7-16 Oracle Retail Price Management Operations Guide

Primary Tables Involved
■ RPM_PRICE_EVENT_PAYLOAD

■ RPM_CLEARANCE_PAYLOAD

Threading
This program is threaded. The LUW is a single clearance price change event.

Configuration
The following property must be set in rpm.properties on the application server when
using this batch program to publish clearance price events:

delete_staged_rib_payloads=false

InjectorPriceEventBatch Batch Design
The price events injecting batch process (InjectorPriceEventBatch.java) performs the
necessary work to import pricing events (regular price changes, clearance price
changes and simple promotions) and optionally submit the events for approval.

Usage
Use the following command to run the job:

InjectorPriceEventBatch user_name password status=status_value event_type=event_
type_value polling_interval=polling_interval_value
Where:

■ user_name – a required argument. The user id of a valid RPM user.

■ password – a required argument. The password that confirms credentials for the
user.

■ status_value – an optional argument. Defines the status for the imported data to
process. The valid options are N (New), E (Error), W (Worksheet) or F (Failure) - N
(New) is the default.

■ event_type_value – an optional argument. Defines the type of pricing event to
process. The valid options are PC (price change), CL (clearance) or SP (simple
promo) - PC (price change) is the default.

■ polling_interval_value – an optional argument. Defines the interval in seconds for
the batch to verify if conflict checking is complete. Valid diapason for the interval
is 1 to 1000 – 10 seconds is a default.

Please note that the first mandatory arguments (username and password) have a
predefine position and order in the list of arguments. The mandatory arguments
should be the first in the list of arguments before the optional arguments. The optional
arguments may be present in any order after the mandatory arguments. Each optional
argument should be preceded by the argument identifier. So to define that the batch
needs to process clearances the event type would be defined as

event_type=PC

Examples
■ Only mandatory arguments are defined by the user

InjectorPriceEventBatch alain.frecon retek
The batch processes price changes from the staging table in New status, checking
the approval process for completion every ten seconds.

Java Batch Processes

Java and RETL Batch Processes 7-17

■ All arguments are defined by the user

InjectorPriceEventBatch alain.frecon retek event_type=CL status=W polling_
interval=300
The batch processes clearances from the staging table in Worksheet status,
checking the approval process for completion every five minutes (300 seconds).

Additional Notes
The batch should be run by means of shell script injectorPriceEventBatch.sh.

Details
The batch program imports regular price changes, clearance, and simple promotions
that have been generated by an external to RPM application. The batch doesn’t make
any assumptions about the source of the price event data. The only requirement for the
data is to adhere to the predefined importing data format. The contract on the
incoming data is defined by the structure of the staging tables the batch depends on.
The staging tables work as the interface point between RPM and the external system
providing the data. All the necessary data transformation possibly required to
accommodate RPM price event data requirements should be done before populating
the staging tables and is a client responsibility.

Importing Staged Price Changes.
Staged price changes data should be placed by the system administrator into RPM_
STAGE_PRICE_CHANGE table. The table has the structure similar to that of RPM_
PRICE_CHANGE but with some limitations. The limitations are:

■ No price change exceptions are allowed.

■ No parent exceptions are allowed.

■ No vendor funding is allowed.

■ No deals are allowed.

Besides field carrying data payload the table holds fields facilitating data processing.

■ Auto approve indicator defines whether the processing batch should attempt to
approve the price change after successfully importing the data

■ Status defines the current state of the data in the staging table. The status should
not be confused with the status of the price event in RPM, even though there are
some correlations. Possible statuses are N (New), W (Worksheet), A (Approved), E
(Error) and F (Failed). Initial data should be created in the New status. The rest of
the statuses are the result of data lifecycle. The records in all but Approved
statuses are eligible for processing by the batch. New status indicates that the data
hasn’t been processed yet. Worksheet status indicates that the data has been
processed and has successfully been imported into RPM. It also indicates that at
the time of import the approval wasn’t required. Error status indicates that the
data has been processed but import has failed due to invalid data. Data
administrator can correct the data and the processing can be retried. Failed status
indicates that the data has been successfully imported but some conflicts have
been encountered. Data administrator can correct the data (for example to change
the effective date of the event to eliminate the conflict) and the processing can be
retried. Approved status indicates that the data has been successfully imported
and successfully approved without any conflicts.

■ Error message holds the message for the first error encountered while importing
data. The field actually holds an error message key rather that the actual error

Java Batch Processes

7-18 Oracle Retail Price Management Operations Guide

message. When conflict was encountered on approval attempt the field holds
CONFLICT_EXISTS key.

■ Process id uniquely identifies the batch run. The field is populated for records in
all statuses but New.

■ Price change display id is populated only on successful import of the data.

Importing Staged Clearances
Staged clearance data should be placed by the system data administrator into RPM_
STAGE_CLEARANCE table. The table has the structure similar to that of RPM_
CLEARANCE but with some limitations. The limitations are:

■ No clearance exceptions are allowed.

■ No reset records are allowed.

■ No vendor funding is allowed.

■ No deals are allowed.

Besides field carrying data payload the table holds fields facilitating processing.

■ Auto approve indicator defines if the processing batch should attempt to approve
the clearance after successfully importing the data

■ Status defines the current state of the data. Possible statuses are N (New), W
(Worksheet), A (Approved), E (Error) and F (Failed). Initial data should be created
in the N (New) status. The rest of the statuses are the result of data lifecycle. The
records in all but Approved statuses are eligible for processing. New status
indicates that the data hasn’t been processed yet. Worksheet status indicates that
the data has been processed and has successfully been imported into RPM. It also
indicates that at the time of import the approval wasn’t required. Error status
indicates that the data has been processed but import has failed due to invalid
data. Data administrator can correct the data and the processing can be retried.
Failed status indicates that the data has been successfully imported but some
conflicts have been encountered. Data administrator can correct the data and the
processing can be retried. Approved status indicates that the data has been
successfully imported and successfully approved without any conflicts.

■ Error message holds the message for the first error encountered while importing
data. The field actually holds an error message key rather that the actual error
message. When conflict was encountered on approval attempt the field holds
CONFLICT_EXISTS key.

■ Process id uniquely identifies the batch run. The field is populated for records in
all statuses but New.

■ Clearance display id is populated only on successful import of the data.

Importing Staged Simple Promotions
Staged simple promo data should be placed by the system data administrator into
RPM_STAGE_PROMO_COMP_SIMPLE table. The table has the structure similar to
that of RPM_PROMO_COMP_SIMPLE but with the limitation that no exceptions are
allowed.

Besides field carrying data payload the table holds fields facilitating processing.

■ Auto approve indicator defines if the processing batch should attempt to approve
the promotion after successfully importing the data

Java Batch Processes

Java and RETL Batch Processes 7-19

■ Status defines the current state of the data. Possible statuses are N (New), W
(Worksheet), A (Approved), E (Error) and F (Failed). Initial data should be created
in the N (New) status. The rest of the statuses are the result of data lifecycle. The
records in all but Approved statuses are eligible for processing. New status
indicates that the data hasn’t been processed yet. Worksheet status indicates that
the data has been processed and has successfully been imported into RPM. It also
indicates that at the time of import the approval wasn’t required. Error status
indicates that the data has been processed but import has failed due to invalid
data. Data administrator can correct the data and the processing can be retried.
Failed status indicates that the data has been successfully imported but some
conflicts have been encountered. Data administrator can correct the data and the
processing can be retried. Approved status indicates that the data has been
successfully imported and successfully approved without any conflicts.

■ Error message holds the message for the first error encountered while importing
the data. The field actually holds an error message key rather that the actual error
message.

■ Process id uniquely identifies the batch run. The field is populated for records in
all statuses but New.

Main Steps Taken by the Batch
■ Generate the pricing events (import pricing events). This step loads data from the

staging table (actual table depends on the event type specified as a batch
argument). The batch validates the data based on RPM validity rules. If at least a
single field for a record isn’t valid, the record is rejected. The first encountered
error is reported (ERROR_MESSAGE column in the staging table is populated)
and the status is set to ERROR. The records with multiple incorrect data fields
would need to be processed multiple times unless corrected by the data
administrator all at once. If no pricing events have been generated the batch
terminates at this stage. All records in the staging table that match the run
argument criteria is processed at once. At the same time all records are
independent in terms that data errors encountered on one record do not impact
processing of other records.

■ If at least a single pricing event was generated the batch proceeds with an optional
approval step. For the batch to attempt the approval on a record, the data
administrator populating the staging data should set auto approval flag on the
record to ON (AUTO_APPRVE_IND should be set to 1). In this case the batch
attempts to approve the price event. This involves conflict checking. This process
can take quit a long time depending on the volume of data. This step ends only
when the approval process reports completion of all threads responsible for
conflict checking. Depending on the volume of data, the interval the batch uses to
poll conflict checking logic for completion should be adjusted accordingly.

■ If auto approval was not requested or approval process failed, the data is left in
appropriate RPM table in Worksheet status. If the approval was successful, then
the data is in Approved status. The status on the staging table after the approval
step is either Approved or Failed, depending on how the process terminated.

■ The conflict checking logic does not purge intermediate data to allow the batch to
inquire on the state of the conflict checking process. After it was determined that
the CC logic is complete the batch purges CC intermediate data.

■ The final step for the batch process is to generate report. The report gives the
system administrator statistics on the batch run. The following information is
provided:

Java Batch Processes

7-20 Oracle Retail Price Management Operations Guide

– What initial status to batch was processing

– What was event type

– How many records have been imported

– How many records required approval

– How many records have been successfully approved

Assumptions and Scheduling Notes
■ It is assumed that a single instance of the batch is running at a time so a single

event type is processed at a time.

■ Approved pricing events on the staging tables can’t be processed again.

Primary Tables Involved
■ RPM_STAGE_PRICE_CHANGE and RPM_PRICE_CHANGE

■ RPM_STAGE_CLEARANCE and RPM_CLEARANCE

■ RPM_STAGE_PROMO_COMP_SIMPLE and RPM_PROMO_COMP_SIMPLE and
RPM_PROMO_COMP_DETAIL

These tables provide data to be imported by the batch. Each record is independently
processed.

Threading
This program is not threaded by itself. The main batch logic is executed as part of a
single thread. At the same time the batch rely for approval on a multi-threaded conflict
checking logic. The batch polls this logic with the interval defined by the polling_
interval parameter to identify the completion point.

InjectorPriceEventBatch Batch—Rollback and Reprocessing
If there is a mistake (such as a wrong date or retail) in the data file and bulk numbers
of price events are created with the data, it is necessary to roll back all data to
reprocess the file with the correct values.

The following are the steps to change a price change or clearance and promotion from
Approved to Worksheet status:

1. Set up the data in the appropriate staging table with item/locations, status of N
and auto_approve = 1.

2. Run the price injector batch, status parameter of N.

3. Price events are created in the user interface and the staging table is updated with
status of A (Approved).

4. To set the approved events back to Worksheet status, leave the same
item/locations in the table from step 1. Run the price injector batch with a status
parameter of A. This means that all of the price events should be executed with
status of A; doing so sets the price event back to Worksheet status.

5. Verify that the price events are set back to Worksheet status in the staging table
and the user interface.

Java Batch Processes

Java and RETL Batch Processes 7-21

ItemLocDeleteBatch Batch
The ItemLocDeleteBatch program handles RMS deletions of item locations. When
RMS deletes an item location, RPM now removes the Item/Location rows from the
RPM_FUTURE_RETAIL table so that pricing events are no longer published out of
RPM.

These item location deletions can be processed through either of two methods:

■ The RMS_TABLE_RPM_ITL_AIR trigger

■ A RIB message

In the batch mode, the RPM_STAGE_DELETED_ITEM_LOC table is populated by the
trigger RMS_TABLE_RPM_ITL_AIR. In RIB mode, the RPM_STAGE_DELETED_
ITEM_LOC table is populated by subscribing to the itemlocmod and itemlocdel
messages from RMS.

Usage
The following command runs the ItemLocDeleteBatch job:

ItemLocDeleteBatch.sh userid password
The first argument is the user ID and the second argument is the password.

Follow these steps to prepare to use this batch when the RIB is turned off:

1. Delete existing records from the table RPM_STAGE_DELETED_ITEM_LOC.

2. Enable the new trigger RMS_TABLE_RPM_ITL_AIR on table ITEM_LOC.

3. Stop the listener for Item/Location Creation RIB messages, as follows:

4. Log in to the Websphere administration console.

5. Select the RIBforRPM server from Servers > Application Servers.

6. Click the Message Listener Service link.

7. Click the Listener Ports link.

8. Select the check box next to ItemLocToRPMPort.

9. Click Stop. The listener is now stopped.

10. Click the ItemLocToRPMPort link to configure the port.

11. Select “Stopped” from the Initial State combo box.

12. Click OK.

13. Restart the RIBforRPM application server and verify that ItemLocToRPMPort is
stopped.

14. Delete JMS subscriber in Egate, as follows:

15. Log in to the Egate Schema Manager.

16. Click the JMS Administrator button in the toolbar.

17. Expand the item etItmLocFromRMS.

18. Right-click on the RPM subscriber (it should have “RPM” in its name) and select
“delete subscriber.”

To reconfigure the system to process Item/Location deletion and modification
messages through the RIB, follow these steps:

Java Batch Processes

7-22 Oracle Retail Price Management Operations Guide

Modify the filter in the rib.properties file for RIBforRPM as follows, for RPM to
subscribe to itemlocmod and itemlocdel:

tafr.types.filter.itemloc=ItemLocCre,ItemLocMod,ItemLocDel
1. Start the listener for Item/Location Creation RIB messages, as follows:

2. Log in to the Websphere administration console.

3. Select the RIBforRPM server from Servers > Application Servers.

4. Click the Message Listener Service link.

5. Click the Listener Ports link.

6. Select the check box next to ItemLocToRPMPort.

7. Click Start. The listener is now started.

8. Click the ItemLocToRPMPort link to configure the port.

9. Select “Started” from the Initial State combo box.

10. Click OK.

11. Restart the RIBforRPM app server and verify that ItemLocToRPMPort is started.

12. Create a JMS subscriber in Egate.

13. Disable the new trigger RMS_TABLE_RPM_ITL_AIR on ITEM_LOC.

14. Run the new batch (ItemLocDeleteBatch.sh) one time to process any records
remaining in the RPM_STAGE_DELETED_ITEM_LOC table.

Scheduling Notes
This batch can be run ad hoc.

itemReclassBatch Batch Design
When items are moved from one department/class/subclass to another in the
merchandising system, this batch process accordingly sets the correct
department/class/subclass for these items in the RPM_FUTURE_RETAIL table.

Usage
The following command runs the ItemReclassBatch job:

ItemReclassBatch userid password
Where the first argument is the user id and the second argument is the password.

Detail
The batch calls the package RPM_ITEM_RECLASS_SQL.RECLASS_FUTURE_RETAIL.
This package looks for items in the RPM_ITEM_MODIFICATION table and updates
the table RPM_FUTURE_RETAIL with the new department/class/subclass. The
package then subsequently deletes all the records in the RPM_ITEM_MODIFICATION
table.

Note: No action is needed.

Java Batch Processes

Java and RETL Batch Processes 7-23

Assumptions and Scheduling Notes
The RPM_ITEM_MODIFICATION table must have been already populated with the
reclassed items by the ItemModification injector.

Primary Tables Involved

■ RPM_ITEM_MODIFICATION

■ RPM_FUTURE_RETAIL

Threading
This program is not threaded.

PL/SQL Interface Point
Package: RPM_ITEM_RECLASS

LocationMoveBatch Batch Design
The LocationMoveBatch program moves locations between zones in a zone group.

Usage
The following command runs the LocationMoveBatch job:

LocationMoveBatch userid password <RETRY_NUMBER>
Where the first argument is the user id and the second argument is the password. The
third argument is optional and starts the batch in RESTART mode if the original batch
run has failures. The RETRY_NUMBER argument is the maximum number of retry
attempts for processing error records.

Detail
The batch looks for scheduled zone location move and updates the zone structure
tables with the new zone structure.

■ Remove the location from the old zone.

■ Add the location to the new zone.

Update FUTURE_RETAIL table to reflect the location move.

■ Price events (standard price change, clearance price change, promotion) scheduled
for item/locations effected by the move at the old zone level are removed from
FUTURE_RETAIL

■ Price events (standard price change, clearance price change, promotion) scheduled
for item/locations effected by the move at the new zone are added to FUTURE_
RETAIL

■ Conflict checking is run on FUTURE_RETAIL after event from the old zone are
removed and events from the new zone are added. If conflicts are encountered
during conflict checking, exceptions / exclusions are pulled off the conflicting
event.

Report any exception / exclusions that were created during the FUTURE_RETAIL
update process. Changes made are held on:

■ RPM_LOC_MOVE_PRC_CHNG_EX

■ RPM_LOC_MOVE_CLEARANCE_EX

■ RPM_LOC_MOVE_PROMO_COMP_DTL_EX

Java Batch Processes

7-24 Oracle Retail Price Management Operations Guide

Update the status of the location move to ‘Executed.’

If errors occur during processing, the Location Move Batch finishes and logs the errors
to the RPM_LOCATION_MOVE_ERROR table. Users can use this table to ascertain
the source of the problems, correct them, and then start the Location Move batch
Restart mode. The batch running in Restart mode attempts to apply the price events
for the location move to FUTURE_RETAIL.

To start the batch in Restart mode, an additional parameter (third parameter) must be
passed into the batch program indicating the maximum number of retries. If this
parameter is set, then the batch is driven off of the RPM_LOCATION_MOVE_ERROR
table for records that have less retry attempts than the maximum number of retries flag
(RETRY_NUMBER). If there is still an error in processing in Restart mode, the error
record is updated and the RETRY_NUMBER is incremented.

Assumptions and Scheduling Notes
LocationMoveBatch must run before the following programs:

■ PriceEventExecutionBatch,

■ MerchExtractKickOffBatch

Primary Tables Involved
RPM_FUTURE_RETAIL

Threading
This program is threaded. Each location move request is given its own thread.

MerchExtractKickOffBatch Batch Design
The MerchExtractKickOffBatch.java batch program builds worksheets in RPM.
MerchExtractKickOffBatch.java either creates or updates worksheets based on price
strategies and the calendars attached to them.

Usage
The following command runs the MerchExtractKickOffBatch job:

MerchExtractKickOffBatch userid password <mode>
where userid is the user ID and password is the password. The optional mode
argument can be used to split the processing into three components: pre-process,
process, and post-process. The valid values for the mode argument are PRE,
PROCESS, POST, and ALL. ALL is the default value for the mode argument when no
value is provided.

The program is split into sections for performance and functional reasons. The
population of the RPM_PRE_ME tables in the setup section allows access to the largest
RMS tables in the most performant manner. The splitting of the worksheet creation
section ensures that a worksheet is not reprocessed in the case of a failure in a different
worksheet. The splitting of a post process helps to avoid locking issues.

Detail
Setup: (included in modes: ALL and PRE) clean up expired worksheets and prepare
for creation of new worksheets.

■ Delete worksheets that are at the end of their review period.

Java Batch Processes

Java and RETL Batch Processes 7-25

■ Get list of all strategies that need to be processed today. Create copies of the
strategies as needed.

■ Determine what strategies need to be grouped together based on the RPM_DEPT_
AGGREGATION. WORKSHEET_LEVEL.

■ Stages date in RPM_PRE_ME_AGGREGATION, RPM_PRE_ME_ITEM_LOC,
RPM_PRE_ME_COST, and RPM_PRE_ME_RETAIL. This is done for performance
reasons. This allows the program to access large tables in an efficient as possible
manner.

Worksheet Creation: (included in modes: ALL and PROCESS)

■ Start threads based on the values in RPM_BATCH_CONTRL for
MerchExtractKickOffBatch.java.

■ Call RPM_EXT_SQL, a PL/SQL package, to extract RPM information. The package
is called at the strategy and RPM_DEPT_AGGREGATION. WORKSHEET_LEVEL.
level. It pulls large amounts of data from various RMS tables and populates the
RPM_WORKSHEET_DATA table. The RPM_MERCH_EXTRACT_CONFIG table
is used to exclude certain families of data from being included in the population.
If this table is not populated all values are included in the population of RPM_
WORKSHEET_DATA.

■ For each RPM_WORKSHEET_DETAIL record created, perform the following:

– Use the price strategy to propose a retail value.

– Apply candidate rules.

– Apply price guides.

The following are potential reasons why item/locations are not included in a
worksheet:

■ The item/location falls under an exclusion type candidate rule.

■ The item/location does not have a cost on RMS’s FUTURE_COST table.

■ The item’s market basket codes vary across locations in a zone.

■ The item’s link code varies across locations in a zone.

■ If a link code is identified on an item/location, and there is any item within that
link code (at that location) that has not been brought into the worksheet, all of the
item/locations with that link code are excluded from the worksheet.

■ The item’s selling unit of measure varies across locations in a zone.

■ The item is part of an area differential item exclusion.

■ Item/locations in a single link code have varying selling unit of measures.

If an item does not make it into a worksheet, a row is inserted into the RPM_MERCH_
EXTRACT_DELETIONS table for each item location along with a reason that the item
location was not included in the worksheet.

Post process: (included in modes: ALL and POST)

■ Update the COMP_PRICE_HIST table. This logic needs to be in a post process to
avoid locking issues as multiple threads can share competitive pricing
information.

Assumptions and Scheduling Notes
The following programs must run before PriceStrategyCalendarBatch:

Java Batch Processes

7-26 Oracle Retail Price Management Operations Guide

■ PriceStrategyCalendarBatch

■ LocationMoveBatch

Primary (RPM) Tables Involved
■ RPM_WORKSHEET_STATUS

■ RPM_WORKSHEET_DATA

■ RPM_STRATEGY

– RPM_STRATEGY_CLEARANCE

– RPM_STRATEGY_CLEARANCE_MKDN

– RPM_STRATEGY_COMPETITIVE

– RPM_STRATEGY_DETAIL

– RPM_STRATEGY_MARGIN

– RPM_STRATEGY_REF_COMP

– RPM_STRATEGY_WH

■ RPM_AREA_DIFF

– RPM_AREA_DIFF_EXCLUDE

– RPM_AREA_DIFF_PRIM

– RPM_AREA_DIFF_WH

■ RPM_CALENDAR

– RPM_CALENDAR_PERIOD

■ RPM_CANDIDATE_RULE

– RPM_CONDITION

– RPM_VARIABLE

– RPM_VARIABLE_DEPT_LINK

■ RPM_PRICE_GUIDE

– RPM_PRICE_GUIDE_DEPT

– RPM_PRICE_GUIDE_INTERVAL

Threading
MerchExtractKickOffBatch.java is threaded. The RPM_BATCH_CONTROL table must
include a record for MerchExtractKickOffBatch.java for it to run in threaded mode.
MerchExtractKickOffBatch.java is threaded by strategies and the RPM_DEPT_
AGGREGATION. WORKSHEET_LEVEL setting.

PL/SQL Interface Point
Package: RPM_EXT_SQL

NewItemLocBatch Batch Design
The NewItemLocBatch program replaces the Item/Location Creation RIB message. It
ranges item locations by putting them into the future retail table. Item and location are

Java Batch Processes

Java and RETL Batch Processes 7-27

fed to this program via the RPM_STAGE_ITEM_LOC table, which is populated by an
RMS process.

Usage
The following command runs the NewItemLocBatch job:

NewItemLocBatch <userid> <password> [<status> <logical commit count>]
Where the first argument is the user id and the second argument is the password. The
last two arguments are optional and direct the application as to what “status” (the
rows in the stage table with a status of N or E (new or error) and logical unit of work
per thread to process. If none is indicated the logical unit of work is used for
processing new rows.

Since this batch is a replacement for the Item/Location Creation RIB message, the
following steps should be followed in preparation for using this batch in place of the
RIB:

■ Delete existing records from table RPM_STAGE_ITEM_LOC

■ Enable the new trigger RMS_TABLE_RPM_ITL_AIUDR in table ITEM_LOC.

■ Stop the MDB for Item/Location Creation RIB messages:

– Log in to Oracle Application Server Enterprise Manager.

– Expand the ribrpm-oc4j-instance server from All Application Servers.

– Click the rib-rpm application link.

– Click the rib-rpmEJB link.

– In the Message Driven Beans section, select ItemLocToRPM.

– Click Yes on the confirmation screen.

– Restart the ribrpm-oc4j-instance and verify that ItemLocToRPM is stopped.

■ Delete JMS subscriber in Egate

– Login to the Egate Schema Manager

– Click the “JMS Administrator” button in the toolbar.

– Expand item “etItmLocFromRMS”

– Right click on the RPM subscriber (it should have “RPM” in its name) and
select “delete subscriber”

■ Add a record to table RPM_BATCH_CONTROL with PROGRAM_NAME of
‘com.retek.rpm.batch.NewItemLocBatch’ to control threading.

To reconfigure the system to process Item/Location Creation messages through the
RIB, follow these steps:

■ Start the MDB for Item/Location Creation RIB messages:

– Log in to Oracle Application Server Enterprise Manager.

– Expand the ribrpm-oc4j-instance server from All Application Servers.

– Click the rib-rpm application link

– Click the rib-rpmEJB link

– In the Message Driven Beans section, select ItemLocToRPM.

– Restart the ribrpm-oc4j-instance and verify that ItemLocToRPM is up.

Java Batch Processes

7-28 Oracle Retail Price Management Operations Guide

■ Create JMS subscriber in Egate

– No action is needed.

■ Disable the new trigger RMS_TABLE_RPM_ITL_AIUDR on ITEM_LOC.

■ Run the new batch (NewItemLocBatch.sh) one time to process any records
remaining in RPM_STAGE_ITEM_LOC.

Detail
The batch selects rows from the stage table and updates the FUTURE_RETAIL table to
reflect the new item/location combination. If any approved price
changes/promotions/clearances exist at a parent/zone level that encompasses the
new item/location, these are also added to the FUTURE_RETAIL table for the new
item/location.

Assumptions and Scheduling Notes
This batch may be run ad-hoc. However, it should be noted that the item/locations to
be processed only inherit pricing events that are approved (or active) at the time of the
run.

Primary Tables Involved
■ RPM_STAGE_ITEM_LOC

■ RPM_STAGE_ITEM_LOC_CLEAN

■ RPM_FUTURE_RETAIL

Threading
This program is threaded. If no row exists in the RPM_BATCH_CONTROL table for
com.retek.rpm.batch.NewItemLocBatch, then the application is executed with one
thread and transactions are committed for each item-loc combination.

Bulk Conflict Checking
This program now utilizes the new bulk conflict checking framework inside of RPM.
Each thread that is spawned by the RPM batch threading framework (threaded by
item/loc) may spawn other threads (by pricing events) during its processing. See the
Bulk Conflict Checking documentation for more details.

Processing Stage Rows in Error Status
This program is set up to re-process (re-attempt) rows that end up in error status. In
the event that an error occurs during the processing of “new” status rows, the program
should update the status on the stage table with “E” along with an error message.
Once the error has been fixed, you can re-run this program with status “E” in an
attempt to get the item/loc into RPM.

PriceChangeAreaDifferentialBatch Batch Design
The Price Change Area Differential batch process
(PriceChangeAreaDifferentialBatch.java) allows the user to generate and approve Price
Changes for selected secondary areas of an Area Differential.

Usage
Use the following command to run the job:

Java Batch Processes

Java and RETL Batch Processes 7-29

PriceChangeAreaDifferentialBatch password user_name
Where:

■ user_name is a required argument. The user id of a valid RPM user.

■ password is a required argument. The password that confirms credentials for the
user.

Additional Notes
The batch should be run by means of the shell script named
priceChangeAreaDifferentialBatch.sh.

Details
■ The Bulk Conflict Checking engine is used to conflict check the generated Price

Changes

■ Instead of the batch process spawning multiple threads to do the approval, the
threading is done by the Bulk Conflict Checking engine

Assumptions and Scheduling Notes
Only one instance of the batch (per database) may be run at a time.

Primary Tables Involved
■ RPM_AREA_DIFF

■ RPM_PRICE_CHANGE

■ RPM_FUTURE_RETAIL (if auto-approve)

PriceChangeAutoApproveResultsPurgeBatch Batch Design
The PriceChangeAutoApproveResultsPurgeBatch program deletes old error message
from the price change auto approve batch program.

Usage
The following command runs the PriceChangeAutoApproveResultsPurgeBatch job:

PriceChangeAutoApproveResultsPurgeBatch userid password
Where the first argument is the user id and the second argument is the password.

Detail
The PriceChangeAutoApproveResultsPurgeBatch program deletes price change auto
approve errors. These errors are generated when the WorksheetAutoApproveBatch
cannot approve a price change that it has created. The price change auto approve
errors are deleted based on the effective dates of the price changes associated with the
error. The price change auto approve errors are delete when the effective date of the
price changes attempted to be approved is less than or equal to the vdate.

Assumptions and Scheduling Notes
PriceChangeAutoApproveResultsPurgeBatch can be run ad hoc.

Primary Tables Involved
■ RPM_MAINT_MARGIN_ERR

■ RPM_MAINT_MARGIN_ERR_DTL

Java Batch Processes

7-30 Oracle Retail Price Management Operations Guide

Threading
This program is not threaded.

PriceChangePurgeBatch Batch Design
The PriceChangePurgeBatch program deletes past price changes.

Usage
The following command runs the PriceChangePurgeBatch job:

PriceChangePurgeBatch userid password
Where the first argument is the user id and the second argument is the password.

Detail
The PriceChangePurgeBatch program deletes price changes that have an effective date
that is less than the vdate.

Assumptions and Scheduling Notes
PriceChangePurgeBatch can be run ad hoc.

Primary Tables Involved
RPM_PRICE_CHANGE

Threading
This program is not threaded.

PriceChangePurgeWorkspaceBatch Batch Design
The PriceChangePurgeWorkspaceBatch program deletes abandoned price change
workspace records.

Usage
The following command runs the PriceChangePurgeWorkspaceBatch job:

PriceChangePurgeWorkspaceBatch userid password
Where the first argument is the user id and the second argument is the password.

Detail
When users access the price change dialogue, records are created in workspace tables.
These records are typically removed when the user exits the price change dialogue.
However, it is possible that the workspace records may be abandoned. When this
action occurs, the PriceChangePurgeWorkspaceBatch deletes them. The
PriceChangePurgeWorkspaceBatch deletes records in the workspace table that are over
n days old, where n is a system defined number of days.

Assumptions and Scheduling Notes
PriceChangePurgeWorkspaceBatch can be run ad hoc.

Primary Tables Involved
■ RPM_PRICE_WORKSPACE

■ RPM_PRICE_WORKSPACE_DETAIL

Java Batch Processes

Java and RETL Batch Processes 7-31

Threading
This program is not threaded.

Price Event Execution Batch Processes
The price event execution batch processes perform the necessary work to start (regular
price change, clearance price change, promotions) and end (price change, promotions)
pricing events.

Executing price events require running three batch programs. These are:

■ PriceEventExecutionBatch.java identifies the events that need to be executed and
stages the affected item-locations for the next batch to process. If this batch fails to
process a particular price event, that event remains in “approved” status and the
next-day batch run is guaranteed to pick up this failed price event for
re-processing.

■ PriceEventExecutionRMSBatch.java processes the item-locations affected by the
price events being executed RMS. If this batch fails to process a particular
item-location for one or more price events, the affected events are in “executed”
status and the item-locations that failed to process remains staged in RPM_
EVENT_ITEMLOC. These item-locations is picked up again by the next-day batch
run.

■ PriceEventExecutionDealsBatch.java processes the deals affected by the price
events being executed. If this batch fails to process a particular item-location deal
for one or more price events, the affected events is in “executed” status and their
associated item-locations are posted in RMS ITEM_LOC and PRICE_HIST tables.
However, the item-location deals that failed to process remains in RPM_EVENT_
ITEMLOC_DEALS and the next-day batch run is guaranteed to pick these up.

Usage
The following commands need to be executed in order:

PriceEventExecutionBatch userid password
PriceEventExecutionRMSBatch userid password
PriceEventExecutionDealsBatch userid password
Where the first argument is the user id and the second argument is the password.

Detail
The batch programs process regular price changes, clearance price changes, and
promotions events that are scheduled for the run date. Restartability features allow
events missed in past runs of the batch to be picked up in later runs. When posting
information in the ITEM_LOC and PRICE_HIST table, the batch process respects the
active dates of their associated price events.

■ Promotions:

– Promotions that are scheduled to start are activated. These include all
approved promotions whose start dates are <= VDATE+1.

– Promotions that are scheduled to end are completed. These include all active
promotions whose end dates are <= VDATE.

■ Clearances:

– Clearance markdowns that are scheduled to take place are executed. These
include all clearances whose effective dates are <= VDATE+1.

– Clearances that are scheduled to be completed (reset) are completed.

Java Batch Processes

7-32 Oracle Retail Price Management Operations Guide

■ Regular price changes:

– Regular price changes that are scheduled to take place are executed. These
include all price changes whose effective dates are <= VDATE+1.

Assumptions and Scheduling Notes
The batch processes must run in the following order:

■ PriceEventExecutionBatch

■ PriceEventExecutionRMSBatch

■ PriceEventExecutionDealsBatch

The previous three processes must run before the following programs:

■ Storeadd (RMS)

■ MerchExtractKickOffBatch

The following programs must run before the PriceEventExecution batch processes:

■ Salstage (RMS)

■ LocationMoveBatch

Primary Tables Involved
■ RPM_PRICE_CHANGE

■ RPM_CLEARANCE

■ RPM_PROMO_COMP_DETAIL

RMS Interface Point
The PriceEventExecutionRMSBatch interfaces with the RMS price change subscription
package RMSSUB_PRICE_CHANGE. All price change, clearance, and promotion
prices are passed along to this RMS package at the item location level and are applied
in RMS.

Threading
Two of the three batch programs involved in price event execution utilize concurrent
processing. These are PriceEventExecutionBatch and PriceEventExecutionRMSBatch.
The threading strategies for these two batch programs are different from each other.

PriceEventExecutionBatch is threaded by a variable number of pricing events to be
executed (i.e., price changes, clearances, and promotions).

PriceEventExecutionRMSBatch is threaded by a variable number of item-locations
affected by the pricing events to be executed.

PriceStrategyCalendarBatch Batch Design
The calendar expiration batch process (PriceStrategyCalendarBatch.java) maintains
calendars assigned to price strategies.

Usage
The following command runs the PriceStrategyCalendarBatch job:

PriceStrategyCalendarBatch userid password
Where the first argument is the user id and the second argument is the password.

Java Batch Processes

Java and RETL Batch Processes 7-33

Detail
The batch looks at price strategies that have expired or suspended calendars.

If a strategy has new calendars setup, the batch replaces the strategies’ current
calendar with the new calendar.

If a strategy does not have a new calendars setup and the expired calendar has a
replacement calendar specified, the batch replaces the strategies’ current calendar with
the current calendar’s replacement calendar.

Assumptions and Scheduling Notes
PriceStrategyCalendarBatch must run before the following programs:

■ PriceEventExecutionBatch,

■ MerchExtractKickOffBatch

Primary Tables Involved
■ RPM_STRATEGY

■ RPM_CALENDAR

■ RPM_CALENDAR_PERIOD

Threading
This program is not threaded.

PromotionPriceChangePublishBatch batch design
The PromotionPriceChangePublishBatch program formats and stages output of
promotion price change price events.

The corresponding promotionPriceChangePublishExport shell script produces a pipe
(‘|’) delimited flat-file export based on the output of the
PromotionPriceChangePublishBatch.

Usage
The following command runs the PromotionPriceChangePublishBatch job:

PromotionPriceChangePublishBatch userid password
Where the first argument is the RPM user id and the second argument is the password.

The following command runs the promotionPriceChangePublishExport job:

promotionPriceChangePublishExport.sh database-connect-string path
Where the first argument is the database connect string (user/pwd@database) and the
second argument is the path where the file should be written. The path is optional and
if not supplied, the path ../output is used.

Detail
The batch looks for price events in the RPM_PRICE_EVENT_PAYLOAD table with a
RIB_FAMILY of “PRMPRCCHG” and distributes those events to multiple threads
based on the settings in the RPM_BATCH_CONTROL table. Each thread reads in its
set of promotion price change events from tables RPM_PRICE_EVENT_PAYLOAD
and the related promotion payload tables (see below) and generates output in RPM_
PRICE_PUBLISH_DATA. After the flat file is successfully generated by the Export
script (see format below), the associated records in the payload tables are deleted.

Java Batch Processes

7-34 Oracle Retail Price Management Operations Guide

A single flat-file is created with the name: PRMPC_<timestamp>.pub

Where <timestamp> is the current system time stamp.

Input Tables
■ RPM_PRICE_EVENT_PAYLOAD

■ rpm_promo_item_payload;

■ rpm_promo_location_payload;

■ rpm_promo_disc_ldr_payload;

■ rpm_promo_dtl_list_payload;

■ rpm_promo_dtl_list_grp_payload;

■ rpm_promo_dtl_payload;

■ rpm_promo_item_loc_sr_payload;

Output File Record Types
■ FHEAD – REQUIRED: File identification, one line per file.

■ TMBPE - OPTIONAL: Event Type

■ TPDTL - REQUIRED: Promotion Component Detail

■ TLLST - REQUIRED: Promotion Location List (1 or more per TPDTL)

■ TPGRP - REQUIRED: Promotion Group (1 or more per TPDTL)

■ TGLST - REQUIRED: Promotion List (1 or more per TPGRP)

■ TLITM - REQUIRED: Promotion Item (1 or more per TGLST)

■ TPDSC - REQUIRED: Promotion Discount (1 or more per TGLST)

■ TPILSR - OPTIONAL: Promotion Item Location Selling retail(1 or more per
TPDTL)

■ TTAIL - REQUIRED: Transaction tail (1 per promotion)

■ FPDEL - OPTIONAL: Promotion Delete

■ FTAIL - REQUIRED: End of file marker, one line per file.

Java Batch Processes

Java and RETL Batch Processes 7-35

Output File Layout
Record Name Field Name Field Type Default Value Description

FHEAD Record
Descriptor

Char(5) FHEAD File head marker

Line id Number(10) 1 Unique line id

File Type Char(5) PROMO Promotions

Export
timestamp

Timestamp System clock timestamp
(YYYYMMDDHHMISS)

Format Version Char(5) 1.0 File Format Version

TMBPE Record
Descriptor

Char(5) TMBPE Promotion (transaction head)

Line id Number(10) Unique line id

Event Type Char(3) “CRE” = Create, “MOD” = Modify

TPDTL Record
Descriptor

Char(5) TPDTL Promotion Detail Component

Line id Number(10) Unique line id

Promo Id Number(10) Promotion Id

Promo Comp Id Number(10) Promotion Component Id

Promo Name Char(160) Ptomotion Header Name

Promo Desc Char(640) Promotion Header Description

Promot Comp
Desc

Char(160) Promotion Component Name

Promo Type Number(2) Promotion Component Type

Promo Comp
Detail Id

Number(10) Promotion Component Detail Id

Start Date Date Start Date of Promotion Component Detail
(DD-MMM-YY)

End Date Date End Date of Promotion Component Detail
(DD-MMM-YY)

Apply Order Number(1) Application Order of the Promotion

Threshold Id Number(6) Threshold Id

Threshold
Name

Char(120) Threshold Name

TLLST Record
Descriptor

Char(5) TLLST Promotion Detail Component

Line id Number(10) Unique line id

Location Id Number(10) Org Node [Store or Warehouse] identifier

Location Type Char(1) Org Node Type [’S’tore or ’W’arehouse]

TPGRP Record
Descriptor

Char(5) TPGRP Promotion Detail Group

Line id Number(10) Unique line id

Group Id Number(10) Group Number

TGLIST Record
Descriptor

Char(5) TGLIST Promotion Group List

Java Batch Processes

7-36 Oracle Retail Price Management Operations Guide

Line id Number(10) Unique line id

List Id Number(10) List id

Description Char(120) Description

TLITM Record
Descriptor

Char(5) TLITM Promotion Group List

Line id Number(10) Unique line id

Item Id Char(25) Transaction Item Identifier

TPDSC Record
Descriptor

Char(5) TPDSC Discount Detail for List

Line id Number(10) Unique line id

Change Type Number(2) Change Type

Change
Amount

Number(20,4) Change Amount

Change
Currency

Char(3) Change Currency

Change Percent
t

Number(20,4) Change Percent

Change Selling
UOM

Char(4) Change Selling UOM

Qual Type Number(2) Qualification Type

Qual Value Number(2) Qualification Value

TPILSR Record
Descriptor

Char(5) TPILSR Items in Promotion

Line id Number(10) Unique line id

Item Id Char(25) TTAIL Transaction Item Identifier

Selling Retail Number(20,4) Selling retail of the item

Selling UOM Char(4) Selling UOM of the item

Location Id Number(10) Org Node [Store or Warehouse] identifer

TTAIL Record
Descriptor

Char(5) TTAIL Transaction Tail

Line id Number(10) Unique line id

FPDEL Record
Descriptor

Char(5) FPDEL Delete Promotion

Line id Number(10) Unique line id

Promo Comp Id Number(10) Promotion Component Id

Promo Comp
Detail Id

Number(10) Promotion Component Detail Id

Group Id Number(10) Group Number

List Id Number(10) List id

Item Id Char(25) Transaction Item Identifer for item

Location Id Number(10) Org Node [Store or Warehouse] identifier

Record Name Field Name Field Type Default Value Description

Java Batch Processes

Java and RETL Batch Processes 7-37

Assumptions and Scheduling Notes
PromotionPriceChangePublishBatch should be run after the
WorksheetAutoApproveBatch.
PromotionPriceChangePublishExport should be run after every successful run of
PromotionPriceChangePublishBatch.

Threading
This program is threaded. The LUW is a single rpm_price_event_payload record.
(Multi-buy promotions are not split across threads but Simple and Threshold
promotions may be.)

Configuration
The following property must be set in rpm.properties on the application server when
using this batch program to publish promotion price events:

delete_staged_rib_payloads=false

PromotionPurgeBatch batch Design
The PromotionPurgeBatch program deletes old and rejected promotions.

Usage
The following command runs the PromotionPurgeBatch job:

PromotionPurgeBatch userid password
Where the first argument is the user id and the second argument is the password.

Detail
PromotionPurgeBatch deletes promotions based on two system options. RPM_
SYSTEM_OPTIONS.PROMOTION_HIST_MONTHS and RPM_SYSTEM_
OPTIONS.REJECT_HOLD_DAYS_PROMO. RPM_SYSTEM_OPTIONS.PROMOTION_
HIST_MONTHS controls how long non-rejected promotions are held. RPM_SYSTEM_
OPTIONS.REJECT_HOLD_DAYS_PROMO controls how long rejected promotions are
held.

Assumptions and Scheduling Notes
PromotionPurgeBatch can be run ad hoc.

Primary Tables Involved
■ RPM_PROMO_EVENT

■ RPM_PROMO

■ RPM_PROMO_DEAL_LINK

■ RPM_PROMO_COMP

FTAIL Record
Descriptor

Char(5) FTAIL File tail marker

Line id Number(10) Unique line id

Number of
lines

Number(10) Number of lines in file not counting
FHEAD and FTAIL

Record Name Field Name Field Type Default Value Description

Java Batch Processes

7-38 Oracle Retail Price Management Operations Guide

■ RPM_PROMO_COMP_THRESH_LINK

■ RPM_PROMO_DEAL_COMP_LINK

■ RPM_PROMO_DTL

■ RPM_PROMO_DTL_LIST_GRP

■ RPM_PROMO_DTL_DISC_LADDER

■ RPM_PROMO_DTL_LIST

■ RPM_PROMO_ZONE_LOCATION

■ RPM_PROMO_DTL_MERCH_NODE

■ RPM_PENDING_DEAL

■ RPM_PENDING_DEAL_DETAIL

Threading
This program is threaded.

PurgeBulkConflictCheckArtifacts Batch Design
The purgeBulkConflictCheckArtifacts program cleans up the working tables used by
Bulk Conflict Checking engine.

Usage
The following command runs the purgeBulkConflictCheckArtifacts job:

purgeBulkConflictCheckArtifacts userid password
Where the first argument is the user id and the second argument is the password.

Detail
The current release of RPM comes with the Bulk Conflict Checking engine. This engine
is using several working table in order to do its process. In normal condition, these
tables are supposed to be deleted at the end of the Bulk Conflict Checking process. But
if there is any environment issue, it is possible that there are some records left in these
tables. This batch program cleans up those working table. This batch makes sure that
system has a clean set of working tables for Bulk Conflict checking for the next day.
Users using the application with too many records left in these working tables could
deter the performance of Bulk Conflict Checking.

Assumptions and Scheduling Notes
purgeBulkConflictCheckArtifacts needs to run at the end of all other batch programs.

Primary Tables Involved
■ RPM_BULK_CC_PE

■ RPM_BULK_CC_PE_SEQUENCE

■ RPM_BULK_CC_PE_THREAD

■ RPM_BULK_CC_PE_IL

Java Batch Processes

Java and RETL Batch Processes 7-39

PurgeExpiredExecutedOrApprovedClearancesBatch Batch Design
The PurgeExpiredExecutedOrApprovedClearancesBatch program deletes expired
clearances in ‘Executed’ or ‘Approved’ statuses.

Usage
The following command runs the PurgeExpiredExecutedOrApprovedClearancesBatch
job:

PurgeExpiredExecutedOrApprovedClearancesBatch userid password
Where the first argument is the user id and the second argument is the password.

Detail
The PurgeExpiredExecutedOrApprovedClearancesBatch deletes clearances that meet
the following criteria:

■ Clearance effective date is older than the CLEARANCE_HIST_MONTHS system
option.

■ Clearance is on a valid future retail timeline (RPM_FUTURE_RETAIL).

■ Clearance is in an Approved or Executed status.

Assumptions and Scheduling Notes
PurgeExpiredExecutedOrApprovedClearancesBatch can be run ad hoc.

Primary Tables Involved
RPM_CLEARANCE

Threading
This program is not threaded.

PurgeLocationMovesBatch Batch Design
The PurgeLocationMovesBatch program deletes old expired and executed zone
location moves.

Usage
The following command runs the PurgeLocationMovesBatch job:

PurgeLocationMovesBatch userid password
Where the first argument is the user id and the second argument is the password.

Detail
The PurgeLocationMovesBatch program deletes location moves based on their
effective date. Location moves are purged regardless whether or not they have been
executed. Location moves are purged when their effective date is RPM_SYSTEM_
OPTIONS. LOCATION_MOVE_PURGE_DAYS days in the past.

Assumptions and Scheduling Notes
PurgeLocationMovesBatch can be run ad hoc.

Java Batch Processes

7-40 Oracle Retail Price Management Operations Guide

Primary Tables Involved
■ RPM_LOCATION_MOVE

■ RPM_LOC_MOVE_PROMO_ERROR

■ RPM_LOC_MOVE_PRC_STRT_ERR

■ RPM_LOC_MOVE_PRC_CHNG_EX

■ RPM_LOC_MOVE_CLEARANCE_EX

■ RPM_LOC_MOVE_PROMO_COMP_DTL_EX

Threading
PurgeLocationMovesBatch.java is not threaded.

PurgeUnusedAndAbandonedClearancesBatch Batch Design
The PurgeUnusedAndAbandonedClearancesBatch program deletes unused and
rejected clearances.

Usage
The following command runs the PurgeUnusedAndAbandonedClearancesBatch job:

PurgeUnusedAndAbandonedClearancesBatch userid password
Where the first argument is the user id and the second argument is the password.

Detail
The PurgeUnusedAndAbandonedClearancesBatch program deletes clearances from
the RPM_CLEARANCE table that meet one of the following three criteria:

■ Clearance effective date is older than the CLEARANCE_HIST_MONTHS system
option.

■ Clearance is in ‘Worksheet’ or ‘Submitted’ status.

Or

■ Clearance effective date is older than the CLEARANCE_HIST_MONTHS system
option.

■ Clearance is in ‘Execute’ or ‘Approved’ status.

■ Clearance is not on a future retail timeline

Or

■ Clearance effective date is older than the REJECT_HOLD_DAYS_PC_CLEAR
system option.

■ Clearance is in ‘Rejected’ status.

Assumptions and Scheduling Notes
PurgeUnusedAndAbandonedClearancesBatch can be run ad hoc.

Primary Tables Involved
RPM_CLEARANCE

Java Batch Processes

Java and RETL Batch Processes 7-41

Threading
This program is not threaded.

RegularPriceChangePublishBatch Batch Design
The RegularPriceChangePublishBatch program formats and stages output of regular
price change price events.

The corresponding regularPriceChangePublishExport shell script produces a pipe (‘|’)
delimited flat-file export based on the output of the RegularPriceChangePublishBatch.

Usage
The following command runs the RegularPriceChangePublishBatch job:

RegularPriceChangePublishBatch userid password
Where the first argument is the RPM user id and the second argument is the password.

The following command runs the regularPriceChangePublishExport job:

regularPriceChangePublishExport.sh database-connect-string path
Where the first argument is the database connect string (user/pwd@database) and the
second argument is the path where the file should be written. The path is optional and
if not supplied, the path ../output is used.

Detail
The batch looks for price events in the RPM_PRICE_EVENT_PAYLOAD table with a
RIB_FAMILY of “REGPRCCHG” and distributes those events to multiple threads
based on the settings in the RPM_BATCH_CONTROL table. Each thread reads in its
set of regular price change events from tables RPM_PRICE_EVENT_PAYLOAD and
RPM_PRICE_CHG_PAYLOAD and generates output in RPM_PRICE_PUBLISH_
DATA. After the flat file is successfully generated by the Export script (see format
below), the associated records in the payload tables are deleted.

A single flat-file is created with the name: REGPC_<timestamp>.pub

Where <timestamp> is the current system time stamp.

Output File
FHEAD – REQUIRED: File identification, one line per file.

FDETL – OPTIONAL: Price Change Event (Create or Modify)

FDELE – OPTIONAL: Price Change Event (Delete)

FTAIL – REQUIRED: End of file marker, one line per file.

Java Batch Processes

7-42 Oracle Retail Price Management Operations Guide

Output File Layout
Record Name Field Name Field Type Default Value Description

FHEAD Record Descriptor Char(5) FHEAD File head marker

Line id Number(10) 1 Unique line id

File Type Char(5) REGPC Regular Price Changes

Export timestamp Timestamp System clock timestamp
(YYYYMMDDHHMISS)

Format Version Char(5) 1.0 File Format Version

FDETL Record Descriptor Char(5) FDETL File Detail Marker (1 per price
change create or modify)

Line id Number(10) Unique line id

Event Type Char(3) “CRE” = Create, “MOD” =
Modify

Id Number(15) Price Change identifier

Item Char(25) Item identifier

Location Number(10) Location identifier

Location Type Char(1) ‘S’ = Store, ‘W’ = Warehouse

Effective Date Date Effective Date of price change

(DD-MMM-YY)

Selling Unit
Change Ind

Number(1) Did selling unit retail change
with this price event (0 = no
change, 1 = changed)

Selling Retail Number(20,4) Selling retail with price
change applied

Selling Retail UOM Char(4) Selling retail unit of measure

Selling Retail
Currency

Char(3) Selling retail currency

Multi-Unit Change
Ind

Number(1) Did multi unit retail change
with this price event (0 = no
change, 1 = changed)

Multi-Units Number(12,4) Number Multi Units

Multi-Unit Retail Number(20,4) Multi Unit Retail

Multi-Unit UOM Char(4) Multi Unit Retail Unit Of
Measure

Multi-Unit
Currency

Char(3) Multi Unit Retail Currency

FDELE Record Descriptor Char(5) FDELE File Detail Delete Marker (1
per price change delete)

Line id Number(10) Unique line id

Id Number(15) Price Change identifier

Item Char(25) Item identifier

Location Number(10) Location identifier

Location Type Char(1) ‘S’ = Store, ‘W’ = Warehouse

Java Batch Processes

Java and RETL Batch Processes 7-43

Assumptions and Scheduling Notes
RegularPriceChangePublishBatch should be run after the
WorksheetAutoApproveBatch.
RegularPriceChangePublishExport should be run after every successful run of
RegularPriceChangePublishBatch.

Primary Tables Involved
■ RPM_PRICE_EVENT_PAYLOAD

■ RPM_PRICE_CHG_PAYLOAD

Threading
This program is threaded. The LUW is a single regular price change event.

Configuration
The following property must be set in rpm.properties on the application server when
using this batch program to publish regular price events:

delete_staged_rib_payloads=false

RPMtoORPOSPublishBatch Batch Design

Overview
The RPMtoORPOSPublishBatch program formats and stages output of different price
events like PriceChange, Clearance and Promotions. The RPMtoORPOSPublishExport
shell script produces an xml file based on the output of the
RPMtoORPOSPublishBatch.

Usage
The following command runs the RPMtoORPOSPublishBatch job:

RPMtoORPOSPublishBatch <database-connect-string> <log path> <error path>

Where the first argument is the RPM database-connect-string (user/pwd@database),
the second argument is the log path where the log file is written and the third
argument is the error path where the error file is written.

Detail
The batch took data for different price events in the payload and price event tables.
Each price events have their own payload tables.

FTAIL Record Descriptor Char(5) FTAIL File tail marker

Line id Number(10) Unique line id

Number of lines Number(10) Number of lines in file not
counting FHEAD and FTAIL

Record Name Field Name Field Type Default Value Description

Java Batch Processes

7-44 Oracle Retail Price Management Operations Guide

The data collected from all these payload tables are formatted and inserted in different
tables.

Output
There is no separate output. The data mentioned in the above tables are the output of
the batch program.

Assumptions and Scheduling Notes
RPMtoORPOSPublishBatch should be run after WorksheetAutoApproveBatch. This
batch should be executed before the following batches.

■ RegularPriceChangePublishBatch

■ RegularPriceChangePublishExport

■ ClearancePriceChangePublishBatch

■ ClearancePriceChangePublishExport

■ PromotionPriceChangePublishBatch

■ PromotionPriceChangePublishExport

Primary Tables Involved
■ RPM_ORPOS_PRICE_CHANGE_PUBLISH

■ RPM_ORPOS_SIMPLE_PROMOTION_PUBLISH

Configuration
The following property must be set in rpm.properties on the application server when
using this batch program to publish all price events:

S.No. Price Event Related Tables

1 Regular Price Change RPM_PRICE_CHG_PAYLOAD,

 RPM_PRICE_EVENT_PAYLOAD

2 Clearance RPM_CLEARANCE_PAYLOAD,

 RPM_PRICE_EVENT_PAYLOAD

3 Promotion RPM_PROMO_DTL_PAYLOAD

 RPM_PRICE_EVENT_PAYLOAD

 RPM_PROMO_LOCATION_PAYLOAD

RPM_PROMO_DTL_LIST_GRP_PAYLOAD

 RPM_PROMO_DTL_LIST_PAYLOAD

 RPM_PROMO_ITEM_PAYLOAD

S.No. Price Event Related Tables

1 Price Change RPM_ORPOS_PRICE_CHANGE_PUBLISH

2 Clearance RPM_ORPOS_PRICE_CHANGE_PUBLISH

3 Simple Promo RPM_ORPOS_SIMPLE_PROMO_PUBLISH

4 Threshold Promo RPM_ORPOS_CMPLX_PROMO_PUBLISH

5 Complex Promo RPM_ORPOS_CMPLX_PROMO_PUBLISH

Java Batch Processes

Java and RETL Batch Processes 7-45

delete_staged_rib_payloads=false

RPMtoORPOSPublishExport Batch Design

Overview
The RPMtoORPOSPublishExport program calls a sql script
"RPMtoORPOSSpoolMsg.sql". This script spools the data collected from different
publish tables of different price events (Price Change, Clearance and Promotion).
Spooled file contains the data in xml format. The XML file complies with the given
XSD standard.

Usage
The following command runs the RPMtoORPOSPublishExport job:

RPMtoORPOSPublishExport <database-connect-string> <Number of slots> <log path>
<error path> <Export path>
Where the first argument is the RPM database-connect-string (user/pwd@database),
the second argument in the Number of slots which denotes the number of threads to
be executed parallely, the third argument is the log path where the log file is written,
the fourth argument is the error path where the error file is written, and the fifth
argument is the Export path or Result path where the generated xml files are written.
The export path is optional and if it is not supplied, the "pwd" (present working
directory) will be used for the same.

Detail
The batch looks for data in different publish tables. The batch invokes a sql script by
passing the store_id. In the sql script, the spool filename is generated in the following
way "PricingExtract_<store_id>.xml". A file will be generated for all the stores
irrespective of price events exist or not. Each price events possess different structures.
These structures and values comply with the XSD standard.

OutputFile
The output file is an xml file generated per store basis. The XML file should comply
with the XSD standard. The xml file contains three different types of tag structures.
The three types of tag structures are

Note: The number of slots variable must be greater than zero.

Note: The log and error path parameters must be a valid directory at
the same level as PWD.

S.No.
RPM Price Event
Name

ORPOS Equivalent Name / Tag Structure
Name

1. Price
Change/Clearance

Price Change

2. Simple Promotion Price Promotion

3. Threshold/Multi-buy
Promotion

Discount Rule

Java Batch Processes

7-46 Oracle Retail Price Management Operations Guide

Assumptions and Scheduling Notes
RPMtoORPOSPublishExport should be run after every successful run of

RPMtoORPOSPublishBatch. This batch should be executed before the following
batches.

■ RegularPriceChangePublishBatch

■ RegularPriceChangePublishExport

■ ClearancePriceChangePublishBatch

■ ClearancePriceChangePublishExport

■ PromotionPriceChangePublishBatch

■ PromotionPriceChangePublishExport

Primary Tables Involved
■ RPM_ORPOS_PRICE_CHANGE_PUBLISH

■ RPM_ORPOS_SIMPLE_PROMOTION_PUBLISH

■ RPM_ORPOS_COMPLEX_PROMOTION_PUBLISH

Threading This program is threaded. The LUW is a single store.

Configuration The following property must be set in rpm.properties on the application
server when using this batch program to publish all price events:

delete_staged_rib_payloads=false

statusPageCommandLineApplication Batch Design
The status page batch program (statusPageCommandLineApplication.sh) performs
some data checks, to verify that some of the assumptions that the application makes
about the data are not violated. The checks are done with SQL counts; each check
should return 0 rows.

These are the data checks that are performed:

■ Missing department aggregations—When departments are created in RMS, a row
should be inserted into the RPM_DEPT_AGGREGATION table.

■ Missing primary zone groups—Each merchandise hierarchy (department or
lower) should have a row in the RPM_MERCH_RETAIL_DEF table.

■ Missing item/locations from future retail—When an item is ranged to a location in
RMS, a row should be inserted into the RPM_FUTURE_RETAIL table.

■ Duplicate future retail—There should only be one row in the the RPM_FUTURE_
RETAIL table per item, location, and action date.

The new command usage is as follows:

statusPageCommandLineApplication.sh username password [phase-choice]
 [max-rows-choice]
Valid values for phase choice are as follows:

Choice Description

S System check only

D Data integrity check only

Java Batch Processes

Java and RETL Batch Processes 7-47

The value specified for max-rows-choice is the maximum row count for the query. By
default, the query is run for the full count.

For example:

./statusPageCommandLineApplication.sh alain.frecon retek S
Here is sample output of the batch program.

Performing System Check
The following RpmRibMessageStatusException is normal.
We need to throw an exception to ensure that the test messages are rolled back.
10:30:04,599 ERROR [ServiceAccessor] InvocationTargetException received on a
service call...
java.lang.reflect.InvocationTargetException
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:79)
at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java(
Compiled Code))
at java.lang.reflect.Method.invoke(Method.java(Compiled Code))
at org.apache.commons.beanutils.MethodUtils.invokeMethod(MethodUtils.java:216)
at
com.retek.platform.service.ServiceAccessor.callRemoteMethod(ServiceAccessor.java:3
00)
at
com.retek.platform.service.ServiceAccessor.remoteTransaction(ServiceAccessor.java:
485)
at
com.retek.platform.service.ServiceAccessorProxy.invoke(ServiceAccessorProxy.java:5
1)
at $Proxy4.performRibMessageCheck(Unknown Source)
at com.retek.rpm.statuspage.RpmRibMessageCheck.execute(RpmRibMessageCheck.java:25)
at com.retek.rpm.statuspage.StatusPageCheck.runTest(StatusPageCheck.java:15)
at
com.retek.rpm.statuspage.StatusPageProcessor.execute(StatusPageProcessor.java:19)
at
com.retek.rpm.statuspage.StatusPageCommandLineApplication.performAction(StatusPage
CommandLineApplication.java:80)
at
com.retek.rpm.statuspage.StatusPageCommandLineApplication.main(StatusPageCommandLi
neApplication.java:65)
Caused by:
<com.retek.rpm.app.statuspage.service.RpmRibMessageStatusException>
<message>
 No cause associated
</message>
</com.retek.rpm.app.statuspage.service.RpmRibMessageStatusException>

at
com.retek.rpm.app.statuspage.service.StatusPageAppServiceImpl.performRibMessageChe
ck(StatusPageAppServiceImpl.java:71)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java(Compiled
Code))
at
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java(Compiled

B (default) Both

Choice Description

Java Batch Processes

7-48 Oracle Retail Price Management Operations Guide

Code))
at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java(
Compiled Code))
at java.lang.reflect.Method.invoke(Method.java(Compiled Code))
at org.apache.commons.beanutils.MethodUtils.invokeMethod(MethodUtils.java(Compiled
Code))
at
com.retek.platform.service.ServiceCommandImpl.execute(ServiceCommandImpl.java(Comp
iled Code))
at
com.retek.platform.service.impl.CommandExecutionServiceEjb.executeCommand(CommandE
xecutionServiceEjb.java(Compiled Code))
at com.retek.platform.service.impl.EJSRemoteStatelessCommandExecutionService_
76208b17.executeCommand(Unknown Source)
at com.retek.platform.service.impl._EJSRemoteStatelessCommandExecutionService_
76208b17_Tie.executeCommand__com_retek_platform_service_ServiceCommand(_
EJSRemoteStatelessCommandExecutionService_76208b17_Tie.java(Compiled Code))
at com.retek.platform.service.impl._EJSRemoteStatelessCommandExecutionService_
76208b17_Tie._invoke(_EJSRemoteStatelessCommandExecutionService_76208b17_
Tie.java(Compiled Code))
at
com.ibm.CORBA.iiop.ServerDelegate.dispatchInvokeHandler(ServerDelegate.java(Compil
ed Code))
at com.ibm.CORBA.iiop.ServerDelegate.dispatch(ServerDelegate.java(Compiled Code))
at com.ibm.rmi.iiop.ORB.process(ORB.java(Compiled Code))
at com.ibm.CORBA.iiop.ORB.process(ORB.java(Compiled Code))
at com.ibm.rmi.iiop.Connection.doWork(Connection.java(Compiled Code))
at com.ibm.rmi.iiop.WorkUnitImpl.doWork(WorkUnitImpl.java(Compiled Code))
at com.ibm.ejs.oa.pool.PooledThread.run(ThreadPool.java(Compiled Code))
at com.ibm.ws.util.ThreadPool$Worker.run(ThreadPool.java(Compiled Code))

Starting Report
com.retek.rpm.statuspage.RsmServerCheck Passed

Starting Report
com.retek.rpm.statuspage.RpmLoginCheck Passed

Starting Report
com.retek.rpm.statuspage.RpmDataAccessCheck Passed

Starting Report
com.retek.rpm.statuspage.RpmRibMessageCheck Passed REGPRCCHG.REGPRCCHGCRE is ON
************************The above exception indicates that we have passed

Starting Report
com.retek.rpm.statuspage.RpmRibMessageCheck Passed REGPRCCHG.REGPRCCHGMOD is ON
************************The above exception indicates that we have passed

Starting Report
com.retek.rpm.statuspage.RpmRibMessageCheck Passed REGPRCCHG.REGPRCCHGDEL is ON
************************The above exception indicates that we have passed

Starting Report
com.retek.rpm.statuspage.RpmRibMessageCheck Passed CLRPRCCHG.CLRPRCCHGCRE is ON
************************The above exception indicates that we have passed

Java Batch Processes

Java and RETL Batch Processes 7-49

Starting Report
com.retek.rpm.statuspage.RpmRibMessageCheck Passed CLRPRCCHG.CLRPRCCHGMOD is ON
************************The above exception indicates that we have passed

Starting Report
com.retek.rpm.statuspage.RpmRibMessageCheck Passed CLRPRCCHG.CLRPRCCHGDEL is ON
************************The above exception indicates that we have passed

Starting Report
com.retek.rpm.statuspage.RpmRibMessageCheck Passed PRMPRCCHG.PRMPRCCHGCRE
MULTIBUYPROMOCRE is ON ************************The above exception indicates that
we have passed ***************************

Starting Report
com.retek.rpm.statuspage.RpmRibMessageCheck Passed PRMPRCCHG.PRMPRCCHGMOD
MULTIBUYPROMOMOD is ON ************************The above exception indicates that
we have passed ***************************

Starting Report
com.retek.rpm.statuspage.RpmRibMessageCheck Passed PRMPRCCHG.PRMPRCCHGDEL
MULTIBUYPROMODEL is ON ************************The above exception indicates that
we have passed ***************************

Starting Report
RpmJmsServerCheck Passed

Done.

TaskPurgeBatch Batch Design
The TaskPurgeBatch program purges entries related to location move, conflict check,
bulk conflict check and worksheet conflict check tables. In short all RPM_*TASK
tables.

Usage
The following command runs the TaskPurgeBatch job:

taskPurgeBatch.sh <username> <password> [<purgeDays>] [Y/N]
Where the first argument is the user id, the second argument is the password, third
argument is number if purge days (positive integer) and the last argument is the
complete status indicator which is either Y or N.

Detail
The TaskPurgeBatch purges the entries from RPM_*TASK tables based on the entered
purge days and the status indicator. The purge days is taken with respect to the
VDATE in PERIOD table. All the entries before VDATE – purgeDays are purged. Also
the status indicator is considered while the values are being purged. If the status
indicator is Y, then only tasks with completed status are purged otherwise status is not
considered while purging.

Assumptions and Scheduling Notes
TaskPurgeBatch can be run ad hoc.

Java Batch Processes

7-50 Oracle Retail Price Management Operations Guide

Primary Tables Involved
■ RPM_LOCATION_MOVE_TASK

■ RPM_CONFLICT_CHECK_TASK

■ RPM_BULK_CC_TASK

■ RPM_WORKSHEET_CC_TASK

■ RPM_TASK

Threading
TaskPurgeBatch.java is not threaded.

WorksheetAutoApproveBatch Batch Design
The WorksheetAutoApproveBatch program approves maintain margin strategy
worksheets that have not been acted upon by the end of the review period. The
strategies must be marked as auto-approve in order to be processed.

Usage
The following command runs the WorksheetAutoApproveBatch job:

WorksheetAutoApproveBatch userid password
Where the first argument is the user id and the second argument is the password.

Detail
The WorksheetAutoApproveBatch first finds strategies to process. In order to qualify
the strategies must meet the below criteria:

■ The strategies must be a maintain margin strategy with its auto-approve indicator
set.

■ The strategies must be associated with a calendar review period that is ending.

For each strategy that qualifies, worksheet detail records are processed. In order to be
processed the worksheet detail records must meet the following criteria:

■ The worksheet detail must be marked as either undecided or take.

■ The worksheet detail record must be represent an actual change in the retail

■ The worksheet detail must be in one of the below states:

– New

– In progress

– Pending

– Submitted

– Submit rejected

– Updated

Each worksheet detail that meets the above criteria have run through the approval
logic. The approval logic attempts to create and approve a price change. If the price
change cannot be approved, the reason is written to the Conflict Check Results
Dialogue. Additionally, area differential logic is executed.

If dynamic area differentials are being used in the system, any secondary area
worksheet detail records that exist are also processed. If the secondary area is marked

Java Batch Processes

Java and RETL Batch Processes 7-51

as auto approve, the secondary worksheet detail record goes through the same logic as
the original worksheet detail (depending on its state). If the secondary area is not
marked as auto approve, the secondary worksheet detail record has a retail proposed
for it and moves into new status and becomes available for review by online users.

After all the worksheet details for the working strategy have been run through their
approval logic, the worksheet status is updated to reflect the changes made to the
details.

Assumptions and Scheduling Notes
WorksheetAutoApproveBatch can be run ad hoc.

Primary Tables Involved
■ RPM_STRATEGY_MAINT_MARGIN

■ RPM_WORKSHEET_STATUS

■ RPM_WORKSHEET_DATA

■ RPM_PRICE_CHANGE

■ RPM_CLEARANCE

■ RPM_FUTURE_RETAIL

■ RPM_AREA_DIFF_PRIM

■ RPM_AREA_DIFF

■ RPM_MAINT_MARGIN_ERR

■ RPM_MAINT_MARGIN_ERR_DTL

Threading
This program is threaded but does not use the RPM_BATCH_CONTROL table. Please
see the documentation for Bulk Conflict Check for thread configuration details.

ZoneFutureRetailPurgeBatch Batch Design
The ZoneFutureRetailPurgeBatch program deletes old error message from the price
change auto approve batch program.

Usage
The following command runs the PriceChangeAutoApproveResultsPurgeBatch job:

ZoneFutureRetailPurgeBatch userid password
Where the first argument is the user id and the second argument is the password.

Detail
The ZoneFutureRetailPurgeBatch program deletes all zone/item price change actions
which:

■ Have an ACTION_DATE value prior to VDATE, and

■ Have been superseded by at least one other change action whose ACTION_DATE
is also prior to VDATE.

The effect is that, for each zone/item with a price change history, the most recent such
action, prior to VDATE, remains after the purge is complete.

RETL Program Overview for RPM Extractions

7-52 Oracle Retail Price Management Operations Guide

Assumptions and Scheduling Notes
ZoneFutureRetailPurgeBatch can be run ad hoc.

Primary Tables Involved
RPM_ZONE_FUTURE_RETAIL

Threading
This program is not threaded.

RETL Program Overview for RPM Extractions
To facilitate the extraction of data from RPM (that could be eventually loaded into a
data warehouse for reporting purposes, for example), RPM works in conjunction with
the Oracle Retail Extract Transform and Load (RETL) framework. This architecture
optimizes a high performance data processing tool that can let database batch
processes take advantage of parallel processing capabilities. The RETL framework
runs and parses through the valid operators composed in XML scripts.

Oracle Retail’s streamlined RETL code provides for less data storage, easier
implementation, and reduced maintenance requirements through decreased code
volume and complexity. The RETL scripts are Korn shell scripts that are executable
from a UNIX prompt. A typical run and debugging situation is provided later in this
chapter.

These extractions were initially designed for Oracle Retail Data Warehouse (RDW) but
can be used for some other application in the retailer’s enterprise.

For more information about the RETL tool, see the RETL Programmer’s Guide.

Architectural Design
The diagram below illustrates the extraction processing architecture for RPM. Instead
of managing the change captures as they occur in the source system during the day,
the process involves extracting the current data from the source system. The extracted
data is output to flat files. These flat files are then available for consumption by a
product such as Oracle Retail Data Warehouse (RDW).

The target system, (RDW, for example), has its own way of completing the
transformations and loading the necessary data into its system, where it can be used
for further processing in the environment.

RPM modules use the same libraries, resource files and configuration files as RMS. All
these libraries, resource files and configure files are packed with RMS. An RPM retailer
must install RMS first, before “kicking off” any RPM RETL scripts.

RPM Extraction Architecture
The architecture relies upon the use of well-defined flows specific to the RPM
database. The resulting output is comprised of data files written in a well-defined
schema file format. This extraction includes no destination specific code.

RETL Program Overview for RPM Extractions

Java and RETL Batch Processes 7-53

Figure 7–1 RETL Extraction Processing for RPM

Configuration

RETL
Before trying to configure and run RPM RETL, install RETL version 12.0 or later,
which is required to run RPM RETL. Run the ‘verify_retl’ script (included as part of
the RETL installation) to ensure that RETL is working properly before proceeding.

RETL User and Permissions
RPM ETL is installed and run as the RETL user. Additionally, the permissions are set
up as per the RETL Programmer’s Guide. RPM ETL reads data, creates, deletes and
updates tables. If these permissions are not set up properly, extractions fail.

Environment Variables
See the RETL Programmer’s Guide for RETL environment variables that must be set
up for your version of RETL. You need to set MMHOME to your base directory for
RPM RETL. This is the top level directory that you selected during the installation
process. In your .kshrc, you should add a line such as the following:

export MMHOME=<base directory for RMS ETL>\dwi12.0\dev

dwi_config.env Settings
Make sure to review the environmental parameters in the dwi_config.env file before
executing batch modules. There are several variables you must change depending
upon your local settings:

For example:

export DBNAME=int9i
export RPM_OWNER=steffej_RPM1101
export BA_OWNER=rmsint1101
export ORACLE_PORT="1524"
export ORACLE_HOST="mspdev38"

Note: Because RPM modules share the same libraries and configure
files with RMS, the MMHOME is the same as the one defined in RMS.

RETL Program Overview for RPM Extractions

7-54 Oracle Retail Price Management Operations Guide

You can set up the environment variable PASSWORD in dwi_config.env or in a
different location specified by the retailer. In the example below, adding the line to the
dwi_config.env causes the password ‘mypasswd’ to be used to log into the database:

export PASSWORD=mypasswd

Steps to Configure RETL

1. Log in to the UNIX server with a UNIX account that runs the RETL scripts.

2. Change directories to $MMHOME/rfx/etc.

3. Modify the dwi_config.env script:

a. Change the DBNAME variable to the name of the RPM database.

b. Change the RPM_OWNER variable to the username of the RPM schema
owner.

c. Change the BA_OWNER variable to the username of the RPME batch user.

d. Change the ORACLE_HOST variable to the database server name.

e. Change the ORACLE_PORT variable to the database port number

f. Change the MAX_NUM_COLS variable to modify the maximum number of
columns from which RETL selects records.

Program Features
RETL programs use one return code to indicate successful completion. If the program
successfully runs, a zero (0) is returned. If the program fails, a non-zero is returned.

Program Status Control Files
To prevent a program from running while the same program is already running
against the same set of data, the RPME code utilizes a program status control file. At
the beginning of each module, dwi_config.env is run. It checks for the existence of the
program status control file. If the file exists, then a message stating, ‘${PROGRAM_
NAME} has already started’, is logged and the module exits. If the file does not exist, a
program status control file is created and the module executes.

If the module fails at any point, the program status control file is not removed, and the
user is responsible for removing the control file before re-running the module.

File Naming Conventions
The naming convention of the program status control file allows a program whose
input is a text file to be run multiple times at the same time against different files.

The name and directory of the program status control file is set in the configuration file
(dwi_config.env). The directory defaults to $MMHOME/error. The naming
convention for the program status control file itself defaults to the following dot
separated file name:

Note: All RPM tables have to be under the RMS database. It has the
same BA_OWNER as RMS. Thus, the only piece that RPM must
modify in the dwi_config.env file is to assign a value to RPM_
OWNER. The configuration file, dwi_config.env, as well as all other
configure files are packed with RMS.

RETL Program Overview for RPM Extractions

Java and RETL Batch Processes 7-55

■ The program name

■ The first filename, if one is specified on the command line

■ ‘status’

■ The business virtual date for which the module was run

For example, the program status control file for the prmevtex.ksh program would be
named as follows for the VDATE of March 21, 2004:

$MMHOME/error/prmevtex.status.20040321

Restart and Recovery
Because RETL processes all records as a set, as opposed to one record at a time, the
method for restart and recovery must be different from the method that is used for
Pro*C. The restart and recovery process serves the following two purposes:

■ It prevents the loss of data due to program or database failure.

■ It increases performance when restarting after a program or database failure by
limiting the amount of reprocessing that needs to occur.

The RPME extract modules extract from a source transaction database and write to a
text file.

Most modules use a single RETL flow and do not require the use of restart and
recovery. If the extraction process fails for any reason, the problem can be fixed, and
the entire process can be run from the beginning without the loss of data.

There is no restart/recovery logic in any RPM RETL extraction module.

Message Logging
Message logs are written daily in a format described in this section.

Daily Log File
Every RETL program writes a message to the daily log file when it starts and when it
finishes. The name and directory of the daily log file is set in the configuration file
(dwi_config.env). The directory defaults to $MMHOME/log. All log files are encoded
UTF-8.

The naming convention of the daily log file defaults to the following ‘dot’ separated
file name:

■ The business virtual date for which the modules are run

■ ‘.log’

For example, the location and the name of the log file for the business virtual date
(VDATE) of March 21, 2004 would be the following:

$MMHOME/log/20040321.log

Format
As the following examples illustrate, every message written to a log file has the name
of the program, a timestamp, and either an informational or error message:

prmevtex 15:47:14: Program started...
prmevtex 15:47:18: Program completed successfully

RETL Program Overview for RPM Extractions

7-56 Oracle Retail Price Management Operations Guide

If a program finishes unsuccessfully, an error file is usually written that indicates
where the problem occurred in the process. There are some error messages written to
the log file, such as ‘No output file specified’, that require no further explanation
written to the error file.

Program Error File
In addition to the daily log file, each program also writes its own detail flow and error
messages. Rather than clutter the daily log file with these messages, each program
writes out its errors to a separate error file unique to each execution.

The name and directory of the program error file is set in the configuration file (dwi_
config.env). The directory defaults to $MMHOME/error. All errors and all routine
processing messages for a given program on a given day go into this error file (for
example, it contains both the stderr and stdout from the call to RETL). All error files
are encoded UTF-8.

The naming convention for the program’s error file defaults to the following ‘dot’
separated file name:

■ The program name

■ The first filename, if one is specified on the command line

■ The business virtual date for which the module was run

For example, all errors and detail log information for the prmevtex.ksh program
would be placed in the following file for the batch run of March 21, 2004:

$MMHOME/error/prmevtex.20040321

Schema Files
RETL uses schema files to specify the format of incoming or outgoing datasets. The
schema file defines each column’s data type and format, which is then used within
RETL to format/handle the data. For more information about schema files, see the
latest RETL Programmer’s Guide. Schema file names are hard-coded within each
module since they do not change on a day-to-day basis. All schema files end with
“.schema” and are placed in the rfx/schema directory.

Resource Files
RPME Kornshell programs use resource files so that the same RETL programs can run
in various language environments. For each language, there is one resource file.

Resource files contain hard-coded strings that are used by extract programs. The name
and directory of the resource file is set in the configuration file (dwi_config.env). The
default directory is ${MMHOME}/rfx/include.

The naming convention for the resource file follows the two-letter SIM code standard
abbreviation for languages (for example, en for English, fr for French, ja for Japanese,
es for Spanish, de for German, and so on).

Typical Run and Debugging Situations
The following examples illustrate typical run and debugging situations for types of
programs. The log, error, and so on file names referenced below assume that the

Note: Resource files are only packed with RMS.

RETL Program Overview for RPM Extractions

Java and RETL Batch Processes 7-57

module is run on the business virtual date of March 9, 2004. See the previously
described naming conventions for the location of each file.

For example:

To run prmevtex.ksh:

1. Change directories to $MMHOME/rfx/src.

2. At a Unix prompt enter the following:

%prmevtex.ksh
If the module runs successfully, the following results:

■ Log file

Today’s log file, 20040309.log, contains the messages “Program started …” and
“Program completed successfully” for prmevtex.ksh.

■ Data

The prmevtdm.txt file exists in the $MMHOME/data directory and contains the
extracted records.

■ Error file

The program’s error file, prmevtex.20040309, contains the standard RETL flow
(ending with “All threads complete” and “Flow ran successfully”) and no
additional error messages.

■ Program status control

The program status control file, prmevtex .status.20040309, does not exist.

If the module does not run successfully, the following results:

■ Log file

Today’s log file, 20040309.log, does not contain the “Program completed
successfully” message for prmevtex.ksh.

■ Data

The prmevtdm.txt file may exist in the data directory but may not contain all the
extracted records.

■ Error file

The program’s error file,prmevtex.txt.20040309, may contain an error message.

■ Program status control

The program status control file, prmevtex.status.20040309, exists.

To re-run a module from the beginning, perform the following actions:

1. Determine and fix the problem causing the error.

2. Remove the program’s status control file.

3. Change directories to $MMHOME/rfx/src. At a Unix prompt, enter:

%prmevtex.ksh

Note: To understand how to engage in the restart and recovery
process, see the section, ‘Restart and recovery’ earlier in this chapter.

RETL Program Overview for RPM Extractions

7-58 Oracle Retail Price Management Operations Guide

RETL Extractions Program List
This section serves as a reference to the RETL extraction RPM programs.

Application Programming Interface (API) Flat File Specifications
This section contains APIs that describe the file format specifications for all text files.

In addition to providing individual field description and formatting information, the
APIs provide basic business rules for the incoming data.

API Format
Each API contains a business rules section and a file layout. Some general business
rules and standards are common to all APIs. The business rules are used to ensure the
integrity of the information held within RDW. In addition, each API contains a list of
rules that are specific to that particular API.

File Layout
■ Field Name: Provides the name of the field in the text file.

■ Description: Provides a brief explanation of the information held in the field.

■ Data Type/Bytes: Includes both data type and maximum column length. Data
type identifies one of three valid data types: character, number, or date. Bytes
identifies the maximum bytes available for a field. A field may not exceed the
maximum number of bytes (note that ASCII characters usually have a ratio of 1
byte = 1 character)

– Character: Can hold letters (a,b,c…), numbers (1,2,3…), and special characters
($,#,&…)

– Numbers: Can hold only numbers (1,2,3…)

– Date: Holds a specific year, month, day combination. The format is
“YYYYMMDD”, unless otherwise specified.

■ Any required formatting for a field is conveyed in the Bytes section. For example,
Number(18,4) refers to number precision and scale. The first value is the precision
and always matches the maximum number of digits for that field; the second

Note: See the Oracle Retail Merchandising Batch Schedule for
information on the batch schedule and program flow diagrams.

Program
Functional
Area Source Table or File Schema File Target File or Table

prmdtlex.ksh Promotion RPM_PROMO_COMP, RPM_
PROMO_COMP_BUY_GET,
RPM_PROMO_COMP_DETAIL,
RPM_PROMO, RPM_PROMO_
COMP_THRESHOLD, RPM_
PROMO_COMP_SIMPLE

prmdtldm.sche
ma

prmdtldm.txt

prmevtex.ksh Promotion RPM_PROMO_EVENT prmevtdm.sche
ma

prmevtdm.txt

prmhdrex.ksh Promotion RPM_PROMO prmhdrdm.sche
ma

prmhdrdm.txt

RETL Program Overview for RPM Extractions

Java and RETL Batch Processes 7-59

value is the scale and specifies, of the total digits in the field, how many digits
exist to the right of the decimal point. For example, the number
–12345678901234.1234 would take up twenty ASCII characters in the flat file;
however, the overall precision of the number is still (18,4).

■ Field Order: Identifies the order of the field in the schema file.

■ Required Field: Identifies whether the field can hold a null value. This section
holds either a ‘yes’ or a ‘no’. A ‘yes’ signifies the field may not hold a null value. A
‘no’ signifies that the field may, but is not required, to hold a null value.

General Business Rules and Standards Common to all APIs
■ Complete snapshot (of what RDW refers to as dimension data):

A majority of RDW’s dimension code requires a complete view of all current
dimensional data (regardless of whether the dimension information has changed)
once at the end of every business day. If a complete view of the dimensional data
is not provided in the text file, invalid or incorrect dimensional data can result. For
instance, not including an active item in the prditmdm.txt file causes that item to
be closed (as of the extract date) in the data warehouse. When a sale for the item is
processed, the fact program does not find a matching ‘active’ dimension record.
Therefore, it is essential, unless otherwise noted in each API’s specific business
rules section, that a complete snapshot of the dimensional data be provided in
each text file.

If there are no records for the day, an empty flat file must still be provided.

■ Updated and new records of (what RDW refers to as fact data):

Facts being loaded to RDW can either be new or updated facts. Unlike dimension
snapshots, fact flat files only contain new/updated facts exported from the source
system once per day (or week, in some cases). Refer to each API’s specific business
rules section for more details.

If there are no new or changed records for the day, an empty flat file must still be
provided.

■ Primary and local currency amount fields

Amounts are stored in both primary and local currencies for most fact tables. If the
source system uses multi-currency, then the primary currency column holds the
primary currency amount, and the local currency column holds the local currency
amount. If the location happens to use the primary currency, then both primary
and local amounts hold the primary currency amount. If the source system does
not use multi-currency, then only the primary currency fields are populated and
the local fields hold NULL values.

■ Leading/trailing values:

Values entered into the text files are the exact values processed and loaded into the
datamart tables. Therefore, the values with leading and/or trailing zeros,
characters, or nulls are processed as such. RDW does not strip any of these leading
or trailing values, unless otherwise noted in the individual API’s business rules
section.

■ Indicator columns:

Indicator columns are assumed to hold one of two values, either Y for yes or N for
no.

■ Delimiters:

RETL Program Overview for RPM Extractions

7-60 Oracle Retail Price Management Operations Guide

– Dimension Flat File Delimiter Standards (as defined by RDW): Within
dimension text files, each field must be separated by a pipe (|) character, for
example a record from prddivdm.txt may look like the following:

1000|1|Homewares|2006|Henry Stubbs|2302|Craig Swanson

– Fact Flat File Delimiter Standards (as defined by RDW): Within facts text files,
each field must be separated by a semi-colon character (;). For example a
record from exchngratedm.txt may look like the following:

WIS;20010311;1.73527820592648544918

See the latest RETL Programmer’s Guide for additional information.

■ End of Record Carriage Return:

Each record in the text file must be separated by an end of line carriage return. For
example, the three records below, in which each record holds four values, should
be entered as:

1|2|3|4

5|6|7|8

9|10|11|12

and not as a continuous string of data, such as:

1|2|3|4|5|6|7|8|9|10|11|12

prmdtldm.txt
Business rules:

■ This interface file cannot contain duplicate records for an event_idnt, head_idnt,
prmtn_dtl_idnt combination.

■ This interface file contains the complete snapshot of active information.

■ If a dimension identifier is required but is not available, a value of -1 is needed.

■ This interface file follows the dimension flat file interface layout standard.

■ event_idnt is -2 for promotion without event.

Note: Make sure the delimiter is never part of your data.

Name Description Data Type/Bytes
Field
order Required field

PRMTN_DTL_IDNT The unique identifier of a
promotion detail.

VARCHAR2(10) 1 Yes

HEAD_IDNT The unique identifier of a
promotion head.

VARCHAR2(10) 2 Yes

EVENT_IDNT The unique identifier of a
promotion event.

VARCHAR2(10) 3 Yes

PRMTN_TRIG_TYPE_
IDNT

The unique identifier of the
promotion trigger type. Valid
values can be ‘offer code’,
‘media code’, and so on.

NUMBER(10) 4 Yes

RETL Program Overview for RPM Extractions

Java and RETL Batch Processes 7-61

prmevtdm.txt
Business rules:

■ This interface file contains promotion events and related attributes. Events are
time periods used to group promotions for analysis.

■ This interface file cannot contain duplicate records for an event_idnt.

■ This interface file follows the dimension flat file interface layout standard.

■ This interface file contains the complete snapshot of active information.

prmhdrdm.txt
Business rules:

■ This interface file contains promotion headers and their attributes. Headers define
a promotion and its start/end dates.

■ This interface file cannot contain duplicate records for a head_idnt.

■ All promotion head_idnt records require a beginning date, even if they are
dummy values such as 4444-04-04.

■ This interface file follows the dimension flat file interface layout standard.

■ This interface file contains the complete snapshot of active information.

PRMTN_SRC_CDE The unique identifier of a
promotion source. Valid
values can be 'DTC', 'RPM' or
any other promotion source
chosen by client.

VARCHAR2(6) 5 Yes

PRMTN_SVC_TYPE_
IDNT

The unique identifier of a
promotion service type.

VARCHAR2(10) 6 Yes

PRMTN_FMT_IDNT The unique identifier of a
promotion format.

VARCHAR2(10) 7 Yes

BEG_DT The date the promotion
begins.

DATE 8 Yes

PRMTN_DTL_DESC Description for the promotion
detail identifier.

VARCHAR2(160) 9 No

PRMTN_SVC_TYPE_
DESC

Description for the promotion
service type.

VARCHAR2(120) 10 No

PRMTN_FMT_DESC Description for the promotion
format.

VARCHAR2(120) 11 No

END_DT The date the promotion ends. DATE 12 No

Name Description Data Type/Bytes
Field
order Required field

EVENT_IDNT The unique identifier of a
promotion event.

VARCHAR2(10) 1 Yes

EVENT_DESC Description for the
promotion event.

VARCHAR2(1000) 2 No

THEME_DESC Description for the
promotion theme.

VARCHAR2(120) 3 No

Name Description Data Type/Bytes
Field
order Required field

RETL Program Overview for RPM Extractions

7-62 Oracle Retail Price Management Operations Guide

■ event_idnt is -2 for promotion without event.

Name Description Data Type/Bytes
Field
order

Required
field

HEAD_IDNT The unique identifier of a
promotion head.

VARCHAR2(10) 1 Yes

EVENT_IDNT The unique identifier of a
promotion event.

VARCHAR2(10) 2 Yes

HEAD_NAME Name for the promotion head. VARCHAR2(120) 3 No

HEAD_DESC Description for the promotion
head.

VARCHAR2(255) 4 No

BEG_DT The date the promotion begins. DATE 5 Yes

END_DT The date the promotion ends. DATE 6 No

	Preface
	Audience
	Related Documents
	Conventions
	Third-Party Open-Source Applications

	1 Introduction
	Overview-What Is RPM?

	2 Backend System Administration and Configuration
	Supported Environments
	Exception Handling
	Configuration Files
	rpm.jnlp
	Data Source Configuration in Container
	rib_user.properties
	security.properties
	For LDAP Authentication
	For User Search
	For Audit Logging
	Single Sign-On with Oracle Technology
	LoginModule Configuraton Information
	For Mapping LDAP to Directory Schema
	User Signature Information
	User Authentication Information

	dao_rpm.xml
	users_rsm.xml
	Configuration for Oracle Retail Service Layer (RSL) with services_rpm.xml

	Logging
	Jakarta Commons Logging
	Log4j.xml
	Logging Levels
	Output Files
	Hibernate Logging

	Transaction Timeout and Client Inactivity Timeout
	RPMTaskMDB
	EJBs Used by RPMTaskMDB
	Tables Used by RPMTaskMDB

	Simplified RPM
	Enhanced Pricing Functionality
	Simplified RPM Batch Program Notes

	Configuring RPM without the RIB
	Configurable RIB Batch Program Notes

	Disabling RIB Publishing in RPM
	Internationalization
	Translation
	Set the Client Operating System to the Applicable Locale
	Translated RPM Files
	Translated RSM Files
	Properties files
	The RSM_NAMED_PERMISSION_DSC Table

	Price Management Status Page
	Sample Output

	3 Technical Architecture
	Overview
	The Layered Model
	Client
	Application Services Layer (Stateless Session Beans)
	Core Services Layer
	Persistence Layer
	Database Layer
	Security
	User Repository (Such As a Third-Party Directory Server)

	Asynchronous Processing
	Synchronous as Opposed to Asynchronous Processing
	Asynchronous Processing Flow

	RPM Cached Objects
	RPM-related Java Terms and Standards
	Conflict Checking

	4 Integration Methods and Communication Flow
	Functional Dataflow
	A Note about the Merchandising System Interface

	Integration Interface Dataflow Diagram
	Integration Interface Dataflow Description
	From Oracle Retail Allocation to RPM
	From RPM to Oracle Retail Allocation
	From RPM to RMS
	From RMS to RPM
	From RPM to RSM
	From RSM to RPM
	From RPM to ReSA
	From RPM to SIM and from SIM to RPM
	From RPM to the RIB and from the RIB to RPM
	From RPM to RDW

	Pricing Communication Flow Diagram
	Approved Price Events
	Price Events
	Price Inquiry
	Promotion Detail

	RPM and the Oracle Retail Integration Bus (RIB)
	The XML Message Format
	Message Publication Processing
	Message Subscription Processing
	Publishers Mapping Table
	Subscribers Mapping Table
	Functional Descriptions of Messages

	RPM and the Oracle Retail Service Layer (RSL)
	Functional Description of the Class Using RSL

	Persistence Layer Integration
	RMS Tables Accessed through the Persistence Layer
	RMS Packages and Methods Accessed through RPM's Persistence Layer
	RPM Views Based on RMS Tables
	RPM Packages Called by RMS

	Oracle Retail Strategic Store Solutions - RPM Integration
	Overview
	Oracle Retail Strategic Store Solutions Overview
	Integration Overview
	File Details

	Integration Dataflow
	Functional Description of Dataflow
	From RPM to ORBO
	Data Bundling

	Known Issues
	Mismatch in Promotion Functionality
	Other gaps between RMP and Oracle Retail Strategic Store Solutions

	5 Functional Design
	Overview
	Functional Assumptions
	Functional Overviews
	Zone Structures
	Codes
	Market Basket Codes
	Link Codes

	Price Changes, Promotions, Clearances, and Promotion Constraint
	Overview
	Price Changes
	Promotions
	Clearances
	Promotion Constraint

	Pricing Strategies
	Area Differentials
	Clearance Strategy
	Clearance Default Strategy
	Competitive Strategy
	Margin Strategy
	Maintain Margin Strategy and Auto Approve

	Price Inquiry
	Worksheet
	Merchandise Extract

	Calendar
	Aggregation Level
	Location Moves

	Application Security
	Named Permissions
	Actions and Named Permissions
	Content Models and Named Permissions
	Hierarchy (Data Level) Permissions
	Roles and Users

	Concurrency Considerations
	Pessimistic Data Locking
	Pessimistic Workflow Locking
	Last User Wins
	Optimistic Data Locking
	Concurrency Solution/Functional Area Matrix

	6 Single Sign-on Overview
	What is Single Sign-On?
	What Do I Need for Oracle Single Sign-On?
	Can Oracle Single Sign-On Work with Other SSO Implementations?
	Oracle Single Sign-on Terms and Definitions
	Authentication
	Dynamically Protected URLs
	Identity Management Infrastructure
	MOD_OSSO
	Oracle Internet Directory
	Partner Application
	Realm
	Statically Protected URLs

	What Single Sign-On is not
	How Oracle Single Sign-On Works
	Statically Protected URLs
	Dynamically Protected URLs
	Single Sign-on Topology

	Installation Overview
	Infrastructure Installation and Configuration
	OID User Data
	OID with Multiple Realms

	User Management
	OID DAS
	LDIF Scripts
	User Data Synchronization

	Configuring RSM for Single Sign-on

	7 Java and RETL Batch Processes
	Java Batch Processes
	Java Batch Process Architectural Overview
	Running a Java-based Batch Process
	Additional Notes

	Script Catalog
	Scheduler and the Command Line
	Functional Descriptions and Dependencies
	Batch Process Scheduling
	Threading and the RPM_BATCH_CONTROL Table
	Return Value Batch Standards
	Return Values
	Batch Logging
	Conflict Checking
	Merge Validator Conflict Checking Rules
	Post-Merge Conflict Checking Rules (rpm_conflict_query_control Table)
	Rules Controlled by System Options
	Adding User-Defined Conflict Checking Rules
	Bulk Conflict Checking

	ClearancePriceChangePublishBatch Batch Design
	Usage
	Detail
	Output File
	Output File Layout
	Assumptions and Scheduling Notes
	Primary Tables Involved
	Threading
	Configuration

	InjectorPriceEventBatch Batch Design
	Usage
	Examples
	Additional Notes
	Details
	Importing Staged Price Changes.
	Importing Staged Clearances
	Importing Staged Simple Promotions
	Main Steps Taken by the Batch
	Assumptions and Scheduling Notes
	Primary Tables Involved
	Threading

	InjectorPriceEventBatch Batch-Rollback and Reprocessing
	ItemLocDeleteBatch Batch
	Usage
	Scheduling Notes

	itemReclassBatch Batch Design
	Usage
	Detail
	Assumptions and Scheduling Notes
	Threading
	PL/SQL Interface Point

	LocationMoveBatch Batch Design
	Usage
	Detail
	Assumptions and Scheduling Notes
	Primary Tables Involved
	Threading

	MerchExtractKickOffBatch Batch Design
	Usage
	Detail
	Assumptions and Scheduling Notes
	Primary (RPM) Tables Involved
	Threading
	PL/SQL Interface Point

	NewItemLocBatch Batch Design
	Usage
	Detail
	Assumptions and Scheduling Notes
	Primary Tables Involved
	Threading
	Bulk Conflict Checking
	Processing Stage Rows in Error Status

	PriceChangeAreaDifferentialBatch Batch Design
	Usage
	Additional Notes
	Details
	Assumptions and Scheduling Notes
	Primary Tables Involved

	PriceChangeAutoApproveResultsPurgeBatch Batch Design
	Usage
	Detail
	Assumptions and Scheduling Notes
	Primary Tables Involved
	Threading

	PriceChangePurgeBatch Batch Design
	Usage
	Detail
	Assumptions and Scheduling Notes
	Primary Tables Involved
	Threading

	PriceChangePurgeWorkspaceBatch Batch Design
	Usage
	Detail
	Assumptions and Scheduling Notes
	Primary Tables Involved
	Threading

	Price Event Execution Batch Processes
	Usage
	Detail
	Assumptions and Scheduling Notes
	Primary Tables Involved
	RMS Interface Point
	Threading

	PriceStrategyCalendarBatch Batch Design
	Usage
	Detail
	Assumptions and Scheduling Notes
	Primary Tables Involved
	Threading

	PromotionPriceChangePublishBatch batch design
	Usage
	Detail
	Input Tables
	Output File Record Types
	Output File Layout
	Assumptions and Scheduling Notes
	Threading
	Configuration

	PromotionPurgeBatch batch Design
	Usage
	Detail
	Assumptions and Scheduling Notes
	Primary Tables Involved
	Threading

	PurgeBulkConflictCheckArtifacts Batch Design
	Usage
	Detail
	Assumptions and Scheduling Notes
	Primary Tables Involved

	PurgeExpiredExecutedOrApprovedClearancesBatch Batch Design
	Usage
	Detail
	Assumptions and Scheduling Notes
	Primary Tables Involved
	Threading

	PurgeLocationMovesBatch Batch Design
	Usage
	Detail
	Assumptions and Scheduling Notes
	Primary Tables Involved
	Threading

	PurgeUnusedAndAbandonedClearancesBatch Batch Design
	Usage
	Detail
	Assumptions and Scheduling Notes
	Primary Tables Involved
	Threading

	RegularPriceChangePublishBatch Batch Design
	Usage
	Detail
	Output File
	Output File Layout
	Assumptions and Scheduling Notes
	Primary Tables Involved
	Threading
	Configuration

	RPMtoORPOSPublishBatch Batch Design
	Overview
	Usage
	Detail
	Output
	Assumptions and Scheduling Notes
	Primary Tables Involved
	Configuration

	RPMtoORPOSPublishExport Batch Design
	Overview
	Usage
	Detail
	OutputFile
	Assumptions and Scheduling Notes
	Primary Tables Involved

	statusPageCommandLineApplication Batch Design
	TaskPurgeBatch Batch Design
	Usage
	Detail
	Assumptions and Scheduling Notes
	Primary Tables Involved
	Threading

	WorksheetAutoApproveBatch Batch Design
	Usage
	Detail
	Assumptions and Scheduling Notes
	Primary Tables Involved
	Threading

	ZoneFutureRetailPurgeBatch Batch Design
	Usage
	Detail
	Assumptions and Scheduling Notes
	Primary Tables Involved
	Threading

	RETL Program Overview for RPM Extractions
	Architectural Design
	RPM Extraction Architecture
	Configuration
	RETL
	RETL User and Permissions
	Environment Variables
	dwi_config.env Settings

	Program Features
	Program Status Control Files
	File Naming Conventions

	Restart and Recovery
	Message Logging
	Daily Log File
	Format
	Program Error File
	Schema Files
	Resource Files
	Typical Run and Debugging Situations
	RETL Extractions Program List
	Application Programming Interface (API) Flat File Specifications
	API Format
	File Layout
	General Business Rules and Standards Common to all APIs
	prmdtldm.txt
	prmevtdm.txt
	prmhdrdm.txt

