

Oracle® Retail Active Retail Intelligence

Operations Guide
Release 13.2

January 2011

Oracle® Retail Active Retail Intelligence Operations Guide, Release 13.2

Copyright © 2011, Oracle. All rights reserved.

Primary Author: Nathan Young

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or
display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and
technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, the use, duplication, disclosure, modification, and
adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December
2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It
is not developed or intended for use in any inherently dangerous applications, including
applications which may create a risk of personal injury. If you use this software in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy,
and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages
incurred due to your access to or use of third-party content, products, or services.

iii

Value-Added Reseller (VAR) Language

Oracle Retail VAR Applications
The following restrictions and provisions only apply to the programs referred to in this section and
licensed to you. You acknowledge that the programs may contain third party software (VAR
applications) licensed to Oracle. Depending upon your product and its version number, the VAR
applications may include:

(i) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail
Data Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(ii) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of
Kirkland, Washington, to Oracle and imbedded in Oracle Retail Mobile Store Inventory
Management.

(iii) the software component known as Access Via™ licensed by Access Via of Seattle, Washington,
and imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(iv) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of
San Jose, California, and imbedded in Oracle Retail Promotion Planning & Optimization
application.

You acknowledge and confirm that Oracle grants you use of only the object code of the VAR
Applications. Oracle will not deliver source code to the VAR Applications to you.
Notwithstanding any other term or condition of the agreement and this ordering document, you
shall not cause or permit alteration of any VAR Applications. For purposes of this section,
“alteration” refers to all alterations, translations, upgrades, enhancements, customizations or
modifications of all or any portion of the VAR Applications including all reconfigurations,
reassembly or reverse assembly, re-engineering or reverse engineering and recompilations or
reverse compilations of the VAR Applications or any derivatives of the VAR Applications. You
acknowledge that it shall be a breach of the agreement to utilize the relationship, and/or
confidential information of the VAR Applications for purposes of competitive discovery.

The VAR Applications contain trade secrets of Oracle and Oracle’s licensors and Customer shall
not attempt, cause, or permit the alteration, decompilation, reverse engineering, disassembly or
other reduction of the VAR Applications to a human perceivable form. Oracle reserves the right to
replace, with functional equivalent software, any of the VAR Applications in future releases of the
applicable program

.

v

Contents
Send Us Your Comments.. ix

Preface .. xi
Audience .. xi
Related Documents... xi
Customer Support... xi
Review Patch Documentation .. xii
Oracle Retail Documentation on the Oracle Technology Network............................... xii
Conventions.. xii

1 Introduction .. 1
How and When to Use this Guide..1

2 Process Overview.. 3
ARI Shutdown...3
Metadata Modification...3
Rule Construction and Modification..4

Import Export Tool (IET) ..4
Code Generation ...4
ARI Start ...5
Summary..6

3 Process Details .. 7
ARI Logs...7

Understanding Log Types ..7
Setting the Log Level ...7
Reviewing the Log...7
Purging the Log..7

DBA_JOBS Queue ...8
Scheduler..8
Exception Validation Engine (EVE)..8
Code Generation ...9
History Purge ..9
Administrator Groups..9

4 Product Integration.. 11
Metadata...11

Oracle Retail Merchandise System (RMS)..11
Multilanguage Support ..12
Translation ...12

Key ARI Tables Related to Internationalization ..13
Presentation Interface...14
Integration with Oracle Retail Workspace ..14

vi

A Appendix: Architectural Reference.. 16
Analyst Process Definition...16

1. Metadata Maintenance..17
2. User/Group Maintenance ..17
3. Schedule Maintenance...17
4. Exception Type Maintenance ...17
5. Event Type Maintenance ..17

System Process Management ..18
1. ARI Control...18
2. Queue Manager..18
3. Validation Builder..19
4. Scan Code Builder..19
5. Validation Builder..19
6. Evaluation Builder ...19

Exception Candidate Detection...20
1. Real-Time Monitor...21
2. Periodic Monitor ..21
3. Scanner Builder ..21
4. External API Monitor ..21
5. Trickle Data Monitor ...21

Candidate Validation and Event Creation ..22
1. Validate Engine ..22
2. Realm Queue Process ..23
3. Exception Creation and Validation ...23
4. Event Creation and Evaluation..23

User-Initiated and Automated Event Resolution ...24
1. Alert Viewer ...24
2. Event Management..25
3. Exception Reevaluation...25
4. Event Reevaluation..25
5. Schedule Reevaluation ..25
6. Action Execution..25

B Appendix: API List ... 27
Error and Activity Logging ...27

Changing the Log Level..27
Stopping and Starting the Backend ..27

Starting the Master Processes...27
Starting EVE Only..27
Stopping the Master Processes...27
Stopping EVE Only..28
Stopping All ARI Processes..28

vii

Code Generation ...28
Scheduler..29

Starting the Scheduler ...29
Stopping the Scheduler ...29
Signal-Driven Scheduler Signaler..29

EVE (Exception Validation Engine)..29
Starting EVE ...29
Stopping EVE ...30

Periodic Purges..30
Event Purge ..30
Event History Purge ..30

ARI Alert Notification API ..30
End User Cases...31
Architecture ..31
Implementation..31

C Appendix: ARI Options ... 33
EVE_NUM_THREADS ..33
EVE_QUEUE_REFRESH_INTERVAL ...33
INTERNAL_SCHEMA...33
MASTER_SCHEMA ...33
MAX_EVENT_RECURSION...33
REEVAL_STATUS_LOCKOUT ..33
PRIMARY_LANGUAGE_NUMBER..34
ANALYST_ADMIN_GROUP_ID...34
CLOSE_EVENT_REALM_ID ..34
CLOSE_EVENT_REALM_ID ..34
ERROR_ADMIN_GROUP_ID...34
EVENT_INSTANCE_PARM_ID...34
EXCEPTION_CREATE_DATE_PARM_ID ...34
EXCEPTION_CREATE_DATE_USER_ID...34
LOG_LEVEL ..34
FORWARD_GENERATION_HOURS ...34

ix

Send Us Your Comments
Oracle Retail Active Retail Intelligence Operations Guide, Release 13.2

Oracle welcomes customers' comments and suggestions on the quality and usefulness of
this document.
Your feedback is important, and helps us to best meet your needs as a user of our
products. For example:
 Are the implementation steps correct and complete?
 Did you understand the context of the procedures?
 Did you find any errors in the information?
 Does the structure of the information help you with your tasks?
 Do you need different information or graphics? If so, where, and in what format?
 Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell us
your name, the name of the company who has licensed our products, the title and part
number of the documentation and the chapter, section, and page number (if available).

Note: Before sending us your comments, you might like to
check that you have the latest version of the document and if
any concerns are already addressed. To do this, access the
new Applications Release Online Documentation CD
available on My Oracle Support and www.oracle.com. It
contains the most current Documentation Library plus all
documents revised or released recently.

Send your comments to us using the electronic mail address: retail-doc_us@oracle.com
Please give your name, address, electronic mail address, and telephone number
(optional).
If you need assistance with Oracle software, then please contact your support
representative or Oracle Support Services.
If you require training or instruction in using Oracle software, then please contact your
Oracle local office and inquire about our Oracle University offerings. A list of Oracle
offices is available on our Web site at www.oracle.com.

http://www.oracle.com/
mailto:retail-doc_us@oracle.com
http://www.oracle.com/

xi

Preface
Oracle Retail Operations Guides are designed so that you can view and understand the
application’s behind-the-scenes processing. Including such information as the following:
 Key system administration configuration settings
 Technical architecture
 Functional integration dataflow across the enterprise
 Batch processing

Audience
Anyone who has an interest in better understanding the inner workings of the Active
Retail Intelligence system can find valuable information in this guide. There are three
audiences in general for whom this guide is written:
 System analysts and system operation personnel who need information about Active

Retail Intelligence processes.
 Integrators and implementers who are responsible for implementing Active Retail

Intelligence.
 Business analysts who need information about Active Retail Intelligence processes

and interfaces.

Related Documents
For more information, see the following documents in the Oracle Retail Document
Template Release 13.2 documentation set:
 Oracle Retail Active Retail Intelligence Release Notes
 Oracle Retail Active Retail Intelligence Installation Guide
 Oracle Retail Active Retail Intelligence User Guide
 Oracle Retail Active Retail Intelligence Online Help
 Oracle Retail Merchandising Implementation Guide

Customer Support
To contact Oracle Customer Support, access My Oracle Support at the following URL:
https://support.oracle.com
When contacting Customer Support, please provide the following:
 Product version and program/module name
 Functional and technical description of the problem (include business impact)
 Detailed step-by-step instructions to re-create
 Exact error message received
 Screen shots of each step you take

https://support.oracle.com/

xii

Review Patch Documentation
When you install the application for the first time, you install either a base release (for
example, 13.1) or a later patch release (for example, 13.1.2). If you are installing the base
release and additional patch and bundled hot fix releases, read the documentation for all
releases that have occurred since the base release before you begin installation.
Documentation for patch and bundled hot fix releases can contain critical information
related to the base release, as well as information about code changes since the base
release.

Oracle Retail Documentation on the Oracle Technology Network
Documentation is packaged with each Oracle Retail product release. Oracle Retail
product documentation is also available on the following Web site:
http://www.oracle.com/technology/documentation/oracle_retail.html
(Data Model documents are not available through Oracle Technology Network. These
documents are packaged with released code, or you can obtain them through My Oracle
Support.)
Documentation should be available on this Web site within a month after a product
release.

Conventions
Navigate: This is a navigate statement. It tells you how to get to the start of the procedure
and ends with a screen shot of the starting point and the statement “the Window Name
window opens.”
This is a code sample
 It is used to display examples of code

http://www.oracle.com/technology/documentation/oracle_retail.html

Operations Guide 1

1
Introduction

This guide is designed to explain the administrative processes that support the operation
of Oracle Retail Active Retail Intelligence (ARI).

How and When to Use this Guide
None of the processes described here should be undertaken until after ARI installation is
complete. Appropriate administration of ARI is critical to its successful operation, and
although many of the tasks, once in a production, are primarily the responsibility of the
database administrator, significant collaboration between the database administrator and
business analyst is required throughout the rule definition process. Database
administrators should read and understand this guide after installation and before doing
any additional ARI work. Business analysts should read and understand this guide
before creating any ARI rules.
One of the first things to do after reading and understanding this guide is to make sure
the ARI Options table values are all set correctly (see Appendix C for details of the
options).

Operations Guide 3

2
Process Overview

As discussed in the Overview sections of the online help, ARI is only a tool that helps
with several steps of a larger process, which, for context, is reviewed here. This larger
process, to implement a new business process, or existing process modification, involves
first gathering requirements and conducting user walkthroughs, designing possible
implementation strategies, reviewing impact, choosing a strategy and conducting
additional walkthroughs. This is followed by development of rules, test implementations
and user acceptance. Finally, the rules are moved into production. The sub-process
relevant to ARI administration is essentially the same in development, test and
production.
More than a single, specific process, the sub-process relevant to database administrators
is a set of processes that can be linked in a number of different ways depending on the
operational environment. Factors such as, whether the database is shut down regularly
or not, and how the shutdown occurs (shutdown immediate or otherwise), will impact
exactly how these sub-processes should be implemented.

ARI Shutdown
ARI uses the DBA_JOBS queue to control the background processes essential to
exception detection and validation. ARI also uses generated code in these detection
processes. (A more detailed architectural overview can be found in Appendix A.) Before
making any DDL changes in any ARI schema or in any schema monitored by ARI,
including recompiling packages, alter tables, creating new functions, or even running the
ARI code generator, it is critical that the Exception Validation Engine (EVE) be halted
from processing exception candidates. (Stopping EVE can be done using one of the many
stop methods described along with the other APIs in Appendix B.)
EVE uses persistent variables to control multi-threading and other aspects of its
operation. Because of this, EVE should be stopped before bringing down the database
and restarted when the database is brought back up. If EVE is not stopped, either due to
an unexpected shutdown or shutdown before EVE is cleared from the DBA_JOBS queue
(EVE may take a few minutes to finish processing after the shutdown script is run), the
shut down request should be sent immediately after the database is restarted. Once it has
cleared the DBA_JOBS queue, EVE can then be restarted.

Metadata Modification
As a rule, metadata should be synchronized with the actual DDL and other objects
(Oracle Forms, for example) it describes at all times. Because such instantaneous
synchronization is essentially impossible, the next best thing is that these tasks are
performed in immediate sequence. This is not terribly difficult since the DDL and Forms
should change very little during production, and when they do, non-administrative users
usually must be logged out while the DDL changes are taking place.

Note: While the DDL and metadata changes are made, EVE
should NOT be running.

Rule Construction and Modification

4 Oracle Retail Active Retail Intelligence

In series with actual DDL changes and metadata modification, the code generator must
also be run immediately while database users are still logged out. DDL changes can
invalidate generated code, but the generated code can only be corrected accordingly after
the metadata is changed, so this third thing, code generation, must be done in sequence
with its precedents. EVE should not be running during code generation either, as will be
discussed.
A possible exception to this rigorously limited circumstance under which metadata can
be changed is when new actions or functions are added to the system. By the time you
have gone through development and test, you should have the expectation that
migration of the new packages or Forms will be routine. Create the metadata for these
objects, before shutting down EVE, and complete the other two steps in the process:
1. Actually install the changes
2. Run the code generator.
If you choose to make modifications to the metadata, other than the times when EVE is
shut down, it is critical that you only add or change the metadata that you just added and
actually add the new code prior to running the metadata generator.

Rule Construction and Modification
Rules can be constructed or modified at any time except while the code generator is
running. New rules appear in the system only after the code generator is run.
Modifications involving an exception or event end date require that the code generator
be run before they will take effect. Other modifications, such as the linking between
exceptions and event, or schedule to either exceptions or events are dynamic, and will
take effect as soon as they are applied. There is no significant administrative task here,
but this process is highly dependent on the code generation process that it is worth
highlighting. Rule construction drives the need for code generation, so database
administrators and business analysts may like to stay coordinated about how and when
the new rules are likely to be created.

Import Export Tool (IET)
IET is a tool for copying rules into and out of an ARI instance. It allows ARI consultants
to supply retailers with pre-packaged rules. It allows retailers, to replicate rules between
different testing and production instances. This is preferable to manually recreating rules
within each ARI instance. Rules are exported to .xml documents in a database-
independent form. From these documents, the rules can be imported to a different ARI
instance, where IET will attempt to resolve metadata references within the rule to
corresponding metadata in the new ARI instance. ARI consultants can also package up
supporting actions and data that will be added to new ARI instance with the rule during
import. Select Enter to create blank line under the last line of text. This is where you will
insert the new graphic.

Code Generation
Two processes require code generation. Rule construction/modification, and metadata
changes. After either of these occurs, code generation is required. Code generation is
required immediately after metadata changes (except in the instance of new metadata
where delayed code generation may be deferred), and in a reasonable timeframe after
rule construction/modification. (For details on executing code generation, see the API
details in Appendix B.)

 ARI Start

Operations Guide 5

One of the issues with when to run code generation is how soon it needs to be run after
rule construction or modification. The code generator builds supporting code for
exceptions and events for all new exceptions and events configured to start before some
future time; specifically, now (the time the code generator is started) plus the number of
hours defined by the FORWARD_ GENERATION_HOURS option. (For forward
generation details reference Appendix C on configuring ARI options).
Obviously code cannot be generated constantly, so forward generation is done in
anticipation of a business analyst defining an exception or event several hours, or even a
few days, before they actually want it to take effect. Generally, significant planning and
design effort are put into defining exceptions and events, so planning well enough ahead
that, the code generator need not be run immediately is typical in a production
environment. Certainly the code generator can be run at any time that EVE is stopped,
but ideally in a production environment it is run at an off-hours time so that any issues
can be handled with minimal impact on the production environment.
Exceptions and events can be linked even after code generation, both linked to each other
and to schedules. However, rules cannot be modified after code generation, and the
consequence of forward generation is that changes to effective dates do not take effect
until the code generator is run again. An exception or event set up to start immediately
will only start after the code generator is run. Once scheduled to stop in three weeks, but
you want to stop it now instead, can be stopped as soon as you set the end date andrun
the code generator again.
Both of these cases can be handled as they occur by simply stopping EVE and running
the generator on demand, but a typical configuration might be to forward generate by 30
hours and run the generator daily at approximately the same time (as a scheduled job
even) every day. This typical configuration does not preclude on-demand generation as
well (alternatives and other issues are in Appendix C).

ARI Start
Once the first rules are built and the code generator run, EVE and the other continuously
running processes (Scheduler) should be active whenever the database is running.
Running the appropriate ARI start program can start all of these programs. If only EVE is
shut down (perhaps during a code generation run) and in need of starting, then a
different program can be used to start EVE only (see Appendix B).

Summary

6 Oracle Retail Active Retail Intelligence

Summary
The following diagram summarizes four possible options (vertically) for performing key
routine ARI tasks. The critical processes for which EVE is not running and users are
logged out are highlighted in darker boxes, specifically Change Metadata and Modify
DDL. The left-hand column shows the status of the DBA_JOBS queue each step of the
way.

Add
Metadata

Add
Metadata

Stop EVE Stop EVE

EVE
Scheduler

Shutdown and Restart Database, Disable Login

Stop EVE Stop EVE

Scheduler
Change

Metadata
Change

Metadata

Change DLL

Enable Login

Generate Code

Start EVE EVE
Scheduler

1 2 3 4

Diagram: DBA_JOBS Queue

Operations Guide 7

3
Process Details

ARI has several continuously running processes whose progress should be checked
periodically. The processes write to an activity log and an error log table,
ARI_ACTIVITY_LOG and ARI_ERROR_LOG respectively. The continuously running
processes and the additional processes they spawn are queued in the DBA_JOBS queue.
Both business analysts and database administrators will need to be familiar with these
tables and processes, and at least the database administrator, with some escalation
procedure to the business analyst, will want to review the tables and processes on at least
a daily basis.

ARI Logs

Understanding Log Types
ARI_ERROR_LOG should usually be empty. When it is not, then the errors should be
reviewed. Certain types of errors may be non-critical, but a repeated number of such
errors may indicate some action is required. Everything written to the error log is also in
ARI_ACTIVITY_LOG (the activity log), but the activity log contains many more details of
what the system is doing and can be helpful for troubleshooting.

Setting the Log Level
ARI backend processes have message levels assigned to log entries. Level 1 messages are
the most important, with level 3 messages being at a fine detail level. Typically we only
run level 2 at Oracle Retail, but level 1 may be sufficient for production. The log level is
cached for a given database session, so to change it requires starting a new session. In the
case of EVE or the Scheduler this means stopping them, resetting the LOG_LEVEL option
on ARI_OPTIONS (see Appendix C) and creating a new database session when restarting
them.

Reviewing the Log
When the error log is empty the activity log usually does not need review (unless things
are not happening as the way it should be, in which case lack of recent entries in either
log may indicate ARI is not running). When any errors have been debugged the logs can
be truncated.

Purging the Log
There is no automated process for purging the error and activity logs; however, these
tables can become quite large if they are not truncated periodically. This truncation is at
the discretion of the business analyst and database administrator reviewing the logs. In
production daily truncation after review, it should be a standard procedure.

DBA_JOBS Queue

8 Oracle Retail Active Retail Intelligence

DBA_JOBS Queue
DBA_JOBS will usually contain a scheduler job, an EVE job and a number of validation
threads (spawned by EVE) and a number of batch scans and event reevaluation jobs
(spawned by the scheduler). Broken jobs indicate something not working correctly.
Broken validation threads typically mean that EVE is not going to be spawning as many
threads as it could because it will be waiting for the broken thread to return. After
troubleshooting, broken jobs should be removed (DBMS_JOB.REMOVE) and, if any of
the jobs were validation threads, EVE should be shutdown and restarted.

Scheduler
The scheduler lives in the DBA_JOBS queue. Every five minutes it determines what ARI
schedules are due for execution, and generates batch exception scans and event
reevaluation blocks, and inserts them into the DBA_JOBS queue. If an exception has
multiple schedules and is already being scanned by a function still in queue, that
exception will not be added to the new scan if it is scheduled again. The scheduler should
remain in the DBA_JOBS whenever the database is running after ARI is installed. It is not
harmful for the schedule to be out of the queue, but scheduled jobs will get backed up
until it is restarted and will not run on schedule.
Multiple instances of this job should not be running. You must decide from a scheduling
standpoint, whether to remove it at shutdown (and again at startup if the typical
shutdown is a shutdown immediate) or whether just to leave it in the queue past
shutdown (it should start up when the database restarts). In the latter case the DBA_JOBS
should be checked daily to make sure it is still an active job (this can be validated by an
entry in ARI_ACTIVITY_LOG approximately every five minutes indicating the scheduler
is running looking for things to do.

Exception Validation Engine (EVE)
EVE uses the REALM_QUEUE_CTL table to track which realms it is currently processing
and which ones to do next. EVE creates validation threads that work on individual
realms. These threads get added to DBA_JOBS and when they are complete they tell EVE
they are finished so that even can updated the control table and create a new thread on a
different realm. Throughout all of this, EVE and its validation threads write to the log
extensively.
EVE and its validation threads should be removed from the DBA_JOBS queue before
shutdown, or, if they are not because the shutdown is immediate, they should be
removed on restart. This is necessary because EVE uses memory persistent information
to control its threading process. The issue is primarily one of conserving system
resources. Other undesirable behaviors can also result from having too many additional
validation threads that EVE creates when not properly stopped either before shutdown
or immediately after restart. Before shutting down or running the code generator, it is
important to check the DBA_JOBS queue to make sure that EVE is actually done; since its
shutdown procedure may not be immediate.

 Code Generation

Operations Guide 9

Code Generation
Please note that for code generation, EVE should not be running and the metadata and
DDL and Forms must all be synchronized when run. Provided these conditions are met it
can be run anytime, though it is generally recommended that it be scheduled periodically
and during off-hours to reduce the impact of any code generation errors that might
occur. The code generator logs heavily. For troubleshooting it is sometimes helpful to
stop both the scheduler during code generation just to simplify reading the log activity.

History Purge
The history purge process should be scheduled often, perhaps even daily. Unless it
produces an error it should not require any special attention. History purge removes
events older than the history retention days specified in the event definition.

Administrator Groups
ARI uses special user groups, an error group and an analyst group. These groups must
always have at least one user each. Both the key database administrator and business
analyst should be added to each group before any rules are put into production. If not
these users, then someone who will be involved in the daily administration of ARI must
be added before building any rules. The error group is the assignment target group for all
events that enter an error state; the analyst group is the assignment target group for all
events that are assigned to otherwise empty groups.
Both groups may also be useful for additional analyst and error monitors that you might
like to create with ARI (or that Oracle Retail might in some future release deliver or help
build from standard templates during a consulting engagement). The analyst group
might be used to build a security function for a custom modification to enforce
application security on access to the ARI administrative forms.

Note: Such access level modifications are allowed in spite of
the general ceveat that all custom modifications of ARI are
unsupported – such a modification is not strictly a functional
modification.

Operations Guide 11

4
Product Integration

ARI is a tool intended for use with one or more applications, so integration with other
products is an inevitable post-installation configuration requirement for useful
production operation. Generic integration issues include creating metadata for the
systems ARI will work with, linking ARI into the main application presentation interface
of these systems (or not), and multi-language support. Some specific assistance is
provided to simplify integration with Oracle Retail’s Merchandise System (RMS).

Metadata
Once the seed data has been installed, metadata needs to be created for the systems that
ARI will work with. Metadata is the foundation of all ARI rule building, so it is critical
that it be accurate. Metadata maintenance is a database administrator task that should
become part of the routine that goes with changing Form specifications or table
definitions. Fortunately, this does not occur very often in a production system, so it
should not be a particularly time consuming task.
Metadata maintenance must be done in sync with DDL changes. Users should not be in
the system trying to work with ARI Alerts during the gap in time between when DDL
changes are made and when the system is updated. Furthermore, EVE cannot be running
during this time. The exception to this rule is when metadata is being added to the
system either initially or even after production use of the system has begun. In this case,
the metadata can be added during production hours provided the code generator is not
run until after the DDL changes are made. This means for initial setup of metadata the
entire process can be done during production (and you do not have to log users out for 3
days while you do it).

Note: It is not necessary that the entire system be described
in metadata, but the metadata that is described needs to be
accurate.

This can be a time saver since you only need to create metadata for the rules you plan to
build. There may be some tables in the system that you will require to select data from or
monitor, and hence there will be more Forms and PL/SQL actions that you will not need.
Analysis before implementing an ARI rule should clearly identify what physical data
entities and actions will be needed. So creating appropriate metadata, if it was not
already created for another ARI rule, could be treated as part of the rule development
process.

Oracle Retail Merchandise System (RMS)
For owners of the Oracle Retail Merchandise System, Oracle Retail has pre-defined the
metadata for all of the tables in the system. This metadata can be populated (provided it
is the first metadata added after running the seed data scripts that are required in the
ARI Installation Guide) by executing in order the scripts provided: mts_parm_type.sql,
mts_realm.sql and mts_parm.sql.

Multilanguage Support

12 Oracle Retail Active Retail Intelligence

Multilanguage Support
The technical infrastructure of ARI supports languages other than English. The software
can efficiently handle multiple languages. Tables have been added to ARI to
accommodate internationalization. The retailer sets up the user’s language preferences
on the ARI_USER_ATTRIB table. At login, the LANG column on the ARI_USER_ATTRIB
table determines the user’s language setting and displays the code string associated with
it. ARI has a fail/safe mechanism built into the code. If the user’s preferred language is
not found, then ARI displays English in the user interface.

Note: A retailer has the two options below regarding
internationalization when installing the application. See the
ARI Installation Guide for the procedures related to each.

 English and multiple secondary languages

 Install English first and then update with a translated
language (fully translated non-English installation). No
secondary languages are installed when your primary
language is one other than English.

Translation
Translation is the process of interpreting and adapting text from one language into
another. Although the code itself is not translated, components of the application that are
translated include the following:
 Graphical user interface (GUI)
 Error messages

The following components are not translated:
 Documentation (online help, release notes, installation guide, user guide, operations

guide)
 Batch programs and messages
 Log files
 Configuration tools
 Reports
 Demonstration data
 Training materials

The user interface for ARI has been translated into:
 Chinese (Simplified)
 Chinese (Traditional)
 Croatian
 Dutch
 English
 French
 German
 Greek
 Hungarian
 Italian

 Translation

Operations Guide 13

 Japanese
 Korean
 Polish
 Portuguese (Brazilian)
 Russian
 Spanish
 Swedish
 Turkish

Key ARI Tables Related to Internationalization
Several tables were created to handle displayable text that can also be translated.
If the retailer creates a new form, a new menu, or a new object on a form, then the retailer
will need to populate these tables with the corresponding information. If the retailer
customizes the information in any of the tables ARI_FORM_ELEMENTS,
ARI_FORM_ELEMENTS_LANGS, ARI_MENU_ELEMENTS, or
ARI_MENU_ELEMENTS_LANGS, the base_ind field in customized records must
contain ‘N’. Any record with BASE_IND=N will be preserved in a temp table during
future patches.

ARI_FORM_ELEMENTS
This table is used for screen display and holds the master list of items for all forms whose
labels/prompts are translated. This information will always be in English. The
BASE_IND=Y means that the item is part of the base Oracle Retail code set. BASE_IND
=N indicates that the item was added as part of retailer customization. Anything with the
BASE_IND =N will be preserved at upgrade time on the FORM_ELEMENTS_TEMP, but
the retailer is responsible for moving the data back to FORM_ELEMENTS.

ARI_FORM_ELEMENTS_LANGS
This table is used for screen display. This table holds translated values for
labels/prompts on forms. This information is in a language that is defined on the lang
column of the ARI_USER_ATTRIB table. All users see data from this table; the retailer
may customize the text of a given field. The access key for a button is defined by filling in
the DEFAULT_ACCESS_KEY field. At runtime, that character will be marked in the
string, and function as the access key. Any time the retailer changes the
DEFAULT_LABEL_PROMPT or DEFAULT_ACCESS_KEY, the BASE_IND should be
updated to N because it is not part of the base language translations provided by Oracle
Retail. Anything with the BASE_IND=N will be preserved at upgrade time on the
FORM_ELEMENTS_LANGS_TEMP, but the retailer is responsible for moving the data
back to FORM_ELEMENTS_LANGS.

ARI_MENU_ELEMENTS
This table is used for screen display. This table holds the master list for all menus whose
items are translated. This information will always be in English. The access key for a
menu option is defined by using the ampersand (&) before the character that is the access
key in the default description. The BASE_IND=Y means that the item is part of the base
Oracle Retail code set. BASE_IND=N indicates that the item was added as part of retailer
customization. Anything with the BASE_IND=N will be preserved at upgrade time on
the MENU_ELEMENTS_TEMP, but the retailer is responsible for moving the data back
to MENU_ELEMENTS.

Presentation Interface

14 Oracle Retail Active Retail Intelligence

ARI_MENU_ELEMENTS_LANGS
This table is used for screen display. This table holds the values for all menus whose
items are translated. This information will be in a language that is defined on the lang
table. Even English language users see data from this table, as the retailer may customize
the text of a given menu option. Any time the retailer changes the LANG_LABEL, the
BASE_IND should be updated to N because it is not part of the base language
translations provided by Oracle Retail. Anything with the BASE_IND=N will be
preserved at upgrade time on the MENU_ELEMENTS_LANGS_TEMP, but the retailer is
responsible for moving the data back to MENU_ELEMENTS_LANGS.

ARI_FORM_MENU_LINK
This table is used for screen display. This table holds the intersection of form and menu
files, mapping each form to the menu that it displays.

Presentation Interface
A key feature of ARI is to be able to be notified in your operational applications that an
alert has occurred in ARI. To that end ARI provides an API set that will enable you to put
a button on the toolbar of yours Forms applications. The button can represent whether
any new (undeterred) alerts exist for the user logged into the database, and pressing it
will launch the ARI Alert Viewer. For non-Forms applications, it is possible to bypass the
Forms library and simply access the PL/SQL procedure that does all of the work. (For
details on the API, consult Appendix B.)
ARI has a startup form (aristart.fmb) that allows access to the ARI forms. This form is
primarily intended for administrative, full functionality access users to get into ARI. The
integrated end-user entry point into the system will typically be through a notification
button on the toolbar of the applications that ARI is monitoring, as just described.
However, if that entry point is not used, you likely will want to add role-based security
to the menus in the ARISTART form to restrict end-user access.

Note: The ARI launch/notification button already exists in
RMS, and the API interface is already installed.

To make the interface operational, simply drop the PL/SQL portion of the interface
(ARI_INTERFACE_SQL) from the RMS product schema and replace it with a synonym
to that same package in the ARI schema.

Integration with Oracle Retail Workspace
The Oracle Retail Workspace installer prompts you to enter the URL for your supported
Oracle Retail applications. However, if a client installs a new application after Oracle
Retail Workspace is installed, the retail-workspace-page-config.xml file needs to be
edited to reflect the new application.
The file as supplied comes with all appropriate products configured, but the
configurations of non-installed products have been "turned off". Therefore, when
"turning on" a product, locate the appropriate entry, set "rendered" to "true", and enter
the correct URL and parameters for the new application.
The entry consists of the main URL string plus one parameter named "config". The value
of the config parameter is inserted by the installer. Somewhere in the installer property
files there is a value for the properties "deploy.retail.product.rms.url" and
"deploy.retail.product.rms.config".

 Integration with Oracle Retail Workspace

Operations Guide 15

For example, suppose ARI was installed on mycomputer.mycompany.com, port 7777,
using a standard install and rms configured with the application name of "ari13intsso ". If
you were to access ARI directly from your browser, you would type in:
http://mycomputer.mycompany.com:7777/forms/frmservlet?config=ari13intsso

The entry in the retail-workspace-page-config.xml after installation would resemble the
following:
<secure-work-item id="ari"
 display-string="#{confMsgs.ariTitle}"
 rendered="true"
 launchable="true"
 show-in-content-area="false">
 <url>http://mycomputer.mycompany.com:7777/forms/frmservlet</url>
 <parameters>
 <parameter name="config">
 <value>ari13intsso</value>
 </parameter>
 </parameters>
 </secure-work-item>

Note: See Appendix A: Architectural Reference for
information on single sign-on and how to set up ARI with
single sign-on.

http://mycomputer.mycompany.com:7777/forms/frmservlet?config=ari13intsso%20

Operations Guide 16

A
Appendix: Architectural Reference

This section provides diagrams and descriptions of the processes that drive ARI. These
processes are grouped according to the main functional uses of ARI.

Analyst Process Definition
Before ARI will perform any functions, several processes must be completed to tell ARI
what to do. The following diagram and description walk through these processes.

Metadata
Maintenance

Exception
Type

Maintenance

Event Type
Maintenance

User/Group
Maintenance

Schedule
Maintenance

Meta Data

Users
and

Groups

ARI
Options

End User
Graphical Interfaces

ARI
Control

Trigger
Builder

Oracle Retail
Code Builder

Scanner
Builder

Queue
Manager

Validation
Builder

Evaluation
Builder

History
Purge

Routing
Resolution

Action
Engine

Schedule
Monitor

RealmQ
Process

Validation
Engine

Exception
Validation

Scanner

Trigger

Alert
Viewer

Event
Viewer

Report
Generation

OD
Source
Process

Internal
Processes
and User
Interfaces

External
Processes
and User
Interfaces

Schedule
API

External
Data API

Schedule
Definition

OD Source
Shadow

Realm
Queue

External

Internal Oracle
Retail Suite

(Other Data)
OD Source

Job
Queue

Event
Definition

Exception
Definition

Exception
Instance

Event
Instance

Event
Evaluation

Trigger

Analyst
Graphical

User Interfaces

Interface
Layer

ARI DDL Manager Processes

Analyst
Process
Definition

1

2

3

4

5

Process Diagram: Analyst Process Defintion

Appendix: Architectural Reference

Operations Guide 17

Descriptions of the processes shown in the diagram follow. The numbers in the headings
correspond to numbered processes in the diagram.

1. Metadata Maintenance
Database administrators keep metadata and Oracle DDL synchronized. In a production
environment, the DDL should seldom, if ever, change. So, once set up, maintaining the
metadata is not a time-consuming task. Metadata for new functions/actions to support
ARI processes defined by business analysts can be set up and maintained by either a
DBA or a business analyst.

2. User/Group Maintenance
Performed by business analysts, user and group maintenance supports event assignment
and event supervision assignment. Users entered here must be defined as Oracle users in
the database.

3. Schedule Maintenance
Schedules indicate when a task will occur. These are maintained by business analysts and
assigned to exception and event definitions to determine when periodic exception scans
and automatic event re-evaluations will occur.

4. Exception Type Maintenance
Business analysts maintain exception definitions. They define when to monitor for
specific data conditions, what the minimal actionable data conditions are, and what
event(s) should be created to help resolve the exception.

5. Event Type Maintenance
Also performed by business analysts, event definition maintenance determines the
presentation of exception-related information in the form of alerts. An event contains an
alert definition and an exception link, plus information about which users are notified,
what actions are available to resolve the event, and what new data conditions will
determine that the event is, in fact, resolved.

Appendix: Architectural Reference

18 Oracle Retail Active Retail Intelligence

System Process Management
Using analysts’ definitions, ARI prepares to monitor exceptions and present events.

Process Diagram: System Process Management

Descriptions of the processes shown in the diagram follow. The numbers in the headings
correspond to numbered processes in the diagram.

1. ARI Control
The daily ARI control program is run at the beginning of the batch window. After all
users are cleared, it shuts down the currently active ARI processes, rebuilds exception
and event management code (processes 2-6), and then restarts the ARI processes.

2. Queue Manager
This process creates a realm queue table for every monitored realm (if one does not
already exist) and deletes those realm queue tables no longer needed. It also
builds/drops (as appropriate) realm queue procedures, one per queue, to manage
queued data. Finally, it builds the shadow tables that hold data input from external (non-
Oracle) data systems.

Appendix: Architectural Reference

Operations Guide 19

3. Validation Builder
Drops and creates triggers to monitor real-time exceptions on the Oracle Retail suite that
is part of the same DDL as ARI. Also drops/creates triggers on the external source
shadow tables that make externally sources data not real-time monitored but trickle-
monitored. (The data is moved into the queue real-time as it is received).

4. Scan Code Builder
The scan code builder prepares appropriate clauses to select only rows of interest (based
on the exception definition) from tables that are monitored via periodic scanning. This
data is stored with the exception definition for easy retrieval by the Scanner builder.

5. Validation Builder
Exception candidates must be validated to determine whether an exception exists. This
involves selecting additional information from other parameters and processing the
conditions on those parameters. The procedure generator creates this business logic in a
static package.

6. Evaluation Builder
Once an exception candidate is known to exist, it can create one or more events.
Underlying data conditions may change the way an event should be presented (what
actions are available) or who should be dealing with it. The reevaluation logic is
encapsulated in a static package.

Appendix: Architectural Reference

20 Oracle Retail Active Retail Intelligence

Exception Candidate Detection
To minimize performance impact on other systems, ARI first identifies candidate
exceptions by imposing some of the exception conditions on the data set being
monitored. This is done in order to filter out those that could be exceptions, based on
complete condition evaluation after additional information is fetched, from those that
could not be data states of interest, irrespective of what other information might be
gathered up during the exception process. Candidates are queued and processed as
systems resources are available.

Exception
Candidate
Detection

History
Purge

Metadata
Maintenance

Schedule
Maintenance

User/Group
Maintenance

Event Type
Maintenance

Exception
Type

Maintenance

Metadata

Users and
Groups

ARI
Options

Exception
Definition

Event
Definition

Schedule
Definition

Routing
Resolution

Schedule
Monitor

Job
Queue

Exception
Instance

Event
Instance

Action
Engine

Realm
Queue

Realm Q
Process

Validation
engine

Exception
Validation

Event
Evaluation

Scanner

Trigger

OD Source
Shadow

Schedule
API

Trigger

Internal
Oracle

Retail Suite

External
Oracle

Retail Suite

(Other
Data) OD
Source

Internal
Processes
and User
Interfaces

External
Processes
and User
Interfaces

ARI
Control

Trigger
Builder

Scan
Code

Builder

Scanner
Builder

Queue
Manager

Validation
Builder

Evaluation
Builder

3b 3a

2b

External
Data APIInterface Layer

ARI DDL Manager Processes

2a

3c

3d

5

4b

OD
Source
Process

4a

2a

2a

1a

1b

2a

Alert Viewer Event Viewer

End User Graphical
User Interfaces

1

Start of
Process

Direction of
Process

1a

Multistep
Process

Alternate
Process

Resource
Utilization

Process Diagram: Exception Candidate Detection

Appendix: Architectural Reference

Operations Guide 21

Descriptions of the processes shown in the diagram follow. The numbers in the headings
correspond to numbered processes in the diagram.

1. Real-Time Monitor
When a user makes changes to the database, triggers write candidates directly into their
corresponding realm queue.

2. Periodic Monitor
When changes occur in the database that cannot be monitored in real-time due to high
volume of changes type considerations or just because the change is time-based (that is,
the data is aging), periodic monitoring must be used. The actual monitoring occurs either
when a signal is sent to the schedule monitor from the schedule API or when the
schedule monitor is periodically prompted by the Job Queue, finds a schedule in need of
execution, and runs all of the monitors associated with that schedule.

3. Scanner Builder
The scanner builder assembles the scan code for all exceptions scheduled to occur
simultaneously, and places a job in the Job Queue to run those scans. As threads become
available for processing, the Job Queue initiates the scans that populate data representing
exception candidates into the realm queue tables.

4. External API Monitor
This API is used to feed in data from an external (non-Oracle Retail) system. As the API
is called from the external system it writes data to an appropriate shadow table within
ARI.

5. Trickle Data Monitor
The trickle data monitor takes data as it arrives from non-Oracle systems through an
appropriate monitor and pre-filters it, putting the candidates into the appropriate realm
queue.

Appendix: Architectural Reference

22 Oracle Retail Active Retail Intelligence

Candidate Validation and Event Creation
Once candidates have been filtered, it is necessary to validate the exceptions and create
an event with which the valid ones are associated.

Candidate
Validation &

Event Creation

History
Purge

Metadata
Maintenance

Schedule
Maintenance

User/Group
Maintenance

Event Type
Maintenance

Exception
Type

Maintenance

Analyst Graphical
User Interface

Metadata

Users
and

Groups

ARI
Options

Exception
Definition

Event
Definition

Schedule
Definition

Routing
Resolution

Schedule
Monitor

Job
Queue

Exception
Instance

Event
Instance

Action
Engine

Realm
Queue

Realm Q
Process

Validation
engine

Exception
Validation

Event
Evaluation

Scanner

Trigger

OD Source
Shadow

Schedule
API

Trigger

Internal
Oracle

Retail Suite

External
Oracle

Retail Suite

(Other
Data) OD
Source

Internal
Processes
and User
Interfaces

External
Processes
and User
Interfaces

Report
Generation

ARI
Control

Trigger
Builder

Scan
Code

Builder

Scanner
Builder

Queue
Manager

Validation
Builder

Evaluation
Builder

External
Data API

Interface Layer

1a

2a

1a 2c

2b

1b

3a

3b

4b

4c
4a

OD
Source
Process

ARI DDL Manager Processes

Alert Viewer Event Viewer
End User Graphical User Interfaces

Process Diagram: Candidate Validation and Event Creation

Descriptions of the processes shown in the diagram follow. The numbers in the headings
correspond to numbered processes in the diagram.

1. Validate Engine
The validation engine regulates realm queue processes. The Job Queue occasionally
attempts to start the validation engine because; it is self-terminating when there are no
candidates to process. Once started, the validation engine places realm queue processing
jobs into the queue (rotating through the queues and checking whether any candidates
exist). The validation engine will only queue up a finite number of jobs at any given time,
as set in the ARI Option setting “EVE_NUM_THREADS”. Once a realm queue job
finishes (either because it runs out of candidates or exceeds the time allocated by the
validation engine for processing jobs in the queue), it notifies the validation engine,
which can then queue up more jobs.

Appendix: Architectural Reference

Operations Guide 23

2. Realm Queue Process
The Job Queue starts these processes when threads become available. They read
candidate exceptions and call the generated validation procedures for each candidate.
After each candidate, the time-slice allocation is checked. When that allocation is
exceeded, realm queue processing is terminated and the validation engine is notified.

3. Exception Creation and Validation
Valid candidates become exception instances, and then event evaluation is invoked to
determine which events should be created or, if they already exist, re-evaluated.

4. Event Creation and Evaluation
Event instances for each event type linked to the exception instances type, must be either
refreshed, if an event with the same key values already exists, or created. Evaluation
occurs to determine alert routing. Then, the instance is created and, if the appropriate
rules are met for a particular instance, an action may be taken automatically.

Appendix: Architectural Reference

24 Oracle Retail Active Retail Intelligence

User-Initiated and Automated Event Resolution

History
Purge

Metadata
Maintenance

Schedule
Maintenance

User/Group
Maintenance

Event Type
Maintenance

Exception
Type

Maintenance

Analyst Graphical
User Interface

Metadata

Users
and

Groups

ARI
Options

Exception
Definition

Event
Definition

Schedule
Definition

Routing
Resolution

Schedule
Monitor

Job
Queue

Exception
Instance

Event
Instance

Action
Engine

Realm
Queue

Realm Q
Process

Validation
engine

Exception
Validation

Event
Evaluation

Scanner

Trigger

OD Source
Shadow

Schedule
API

Trigger

Internal
Oracle

Retail Suite

External
Oracle

Retail Suite

(Other
Data) OD
Source

Internal
Processes
and User
Interfaces

External
Processes
and User
Interfaces

Report
Generation

ARI
Control

Trigger
Builder

Scan
Code

Builder

Scanner
Builder

Queue
Manager

Validation
Builder

Evaluation
Builder

5b

External
Data APIInterface Layer

OD Source
Process

ARI DDL Manger Processes

5a
5c

6b

6c
2c

3a4
6a

3b

Alert
Viewer

Event
Viewer

1
2a

2b 2t

2t

Process Diagram: User Initiated and Automated Event Resolution

Descriptions of the processes shown in the diagram follow. The numbers in the headings
correspond to numbered processes in the diagram.

1. Alert Viewer
End users initially view events as alerts, which are just event summaries, in the Alert
Viewer. This viewer allows sorting and categorization by event type, state, priority,
occurrence data, and even whether the user has deferred (marked as having been
viewed) the alert. In the Alert Viewer, events are grouped by type state and priority with
a count of how many of each type of state and priority exist.

Appendix: Architectural Reference

Operations Guide 25

2. Event Management
The Event Viewer shows all events of a single type and state at any given time, and also
shows all the details of those events. The user initially is shown the most recently
refreshed event data (which may or may not be very recent, depending on whether it is
done periodically as defined in the event type). The user may choose to reevaluate the
events before proceeding, since re-evaluation may show that some events are already
resolved. The user may also drill into the monitored systems to view even more
information than what is presented on the event. In addition, the user may take an action
to resolve the event or move it along in its process. If an action is taken, the event is still
reevaluated beforehand to ensure that the event is still in the state in which the action is
valid.

3. Exception Reevaluation
Because the data source for many event parameters is an exception, before an event is
reevaluated, its associated exception instances are revalidated. This process is just like
validation, except that the exception itself is treated like a new candidate, and is removed
from the event and deleted if it is found to be invalid.

4. Event Reevaluation
Once the exceptions are revalidated, event reevaluation refreshes the event parameters
and processes its defining rules to determine whether the event is resolved, and should
be closed, whether it is in the same state as it was in, and to whom it should be assigned
and with what priority. If the reevaluation is user-requested either directly or as a
consequence of the user attempting to take an action, and if the state and user assignment
are unchanged, then the action can be executed, or if user requested, the user may
continue to view and act on the event. Because the Event Viewer shows only a single
state at a time, events that change state, although the same user may still own them, will
not continue to be seen in the view of the event’s previous state.

5. Schedule Reevaluation
Evaluation can be user initiated via one of the previously described processes and may
also occur on a scheduled basis. As with scheduled scans for exception candidates, the
Job Queue notifies the scheduler to look for tasks that need to be done, which in turn
places the tasks in to the Job Queue. As threads become available, these evaluation jobs,
specific to an event type, are started. Each job loops through all open instances of their
event type and initiates the reevaluation process.

6. Action Execution
Actions are always executed after an evaluation occurs. If an action is user-requested, the
event is always evaluated first. Alternatively, as a result of an evaluation, whether
prompted by a user request or a schedule, an action may be taken automatically if the
event is so defined. After the action is taken, the event is always reevaluated, which may
prompt another action, and so on. A well-defined event should never get into an infinite
loop, but it is theoretically possible. Therefore, checks are in place to prevent an infinite
evaluation-action-evaluation loop from occurring.

Operations Guide 27

B
Appendix: API List

Error and Activity Logging
There are PL/SQL APIs related to error and activity logging that can be incorporated into
scripts or used in other contexts.

Changing the Log Level
Within a particular database session, calling ari_error_logging.set_log_cutoff_level can
change the log level. The set value will override the ARI options setting within that
session unless the function is called again. This can be a useful debugging tool.

Stopping and Starting the Backend
The ARI Backend includes these master processes: the Scheduler and EVE. These
processes live in the DBA_JOBS queue from which they run periodically. The Scheduler
also creates Batch Scans that it adds to DBA_JOBS, and EVE creates Validator Threads.
EVE manages the Validator Threads, and the Batch Scans manage themselves (by simply
disappearing from the queue when they are done executing). There are several start and
stop methods for the master processes that may be added to database start and stop
scripts or executed on a regular schedule, as detailed in the Process Overview.

Starting the Master Processes
ari_control_sql, start_ari calls the start methods for EVE and the Scheduler. It must be
run as the ARI master schema owner to ensure that all of the processes will have
appropriate privileges when they execute. This is typically placed in a start up script, or,
if you prefer to let the Scheduler simply live in the queue at all times, it may only be
executed very rarely with the second start method (Start EVE) being the one that is
scheduled.

Starting EVE Only
ari_control_sql.start_eve calls the start method for EVE. It must be run as the ARI master
schema owner to ensure that EVE will have appropriate privileges when it runs.

Stopping the Master Processes
ari_control_sql.stop_ari calls the stop methods for EVE and the Scheduler. It must be run
as the ARI master schema user to ensure that the jobs are actually removed from
DBA_JOBS. This is typically placed in the database shutdown script, though often daily
bouncing just uses a shutdown immediate, so it is placed in the database start script
instead to ensure appropriate shutdown before EVE and the other master processes are
restarted.

Note: The Validator Threads must have completed and
exited the queue (which can have a slight delay after the
Stop Process is run) before EVE is restarted.

Appendix: API List

28 Oracle Retail Active Retail Intelligence

When EVE is terminated it signals the Validator Threads to abort and exit the queue, but
it can (rarely) take the threads a few minutes to acknowledge the signal. This delay may
be either that, (a) they are queued but not yet running, in which case they must first start
running as other threads are killed and become available, or (b) they are in the process of
opening a cursor.
Also note that Batch Scans are not removed by this script, which is generally what is
desired since Batch Scans removed from the DBA_JOBS queue mean that those
exceptions contained in the scan will not be scanned again until their next scheduled
date. Batch Scans can and should survive database outages. Individual scans can be
removed using DBMS_JOB.REMOVE if their execution is meant to be halted (the
corresponding database server process will have to be killed as well).
Finally note that if all you typically do is start and stop EVE, leaving the other master
processes running, then you will want to schedule the second stop method (that stops
EVE only).

Stopping EVE Only
ari_control_sql.stop_eve calls the stop method for EVE. It must be run as the ARI master
schema owner to ensure that it will remove the process from DBA_JOBS correctly.

Stopping All ARI Processes
ari_control_sql.stop_all_ari is the same as stopping the master processes, but also kills all
of the Batch Scans in the queue. In production this is almost never used, because you do
not want to lose those scans, this is more of a development utility. During development
an undesirable scan or set of scans may be created by mistake, in which case, killing all
processes may be the simplest thing to do, rather than removing them one at a time.
Often this is done in conjunction with a quick database shutdown and restart to save the
trouble of finding the appropriate database server processes to kill, which may be
necessary since jobs in the queue once started run even if they are removed from the
queue.

Code Generation
Along with EVE, this is the most critical process to ARI. The code generator must be run
as the ARI master schema user to ensure that all of the code can be created properly.
Also, it must only be run when EVE and its associated Validator Threads have all been
removed from the DBA_JOBS queue. Other operational issues associated with code
generation are discussed throughout the Process Overview, such as scheduling it on a
periodic basis or running it on demand. Re-summarizing, code generation is tied up very
closely with DDL changes and EVE. Whereas users cannot be logged in during DDL
changes, they can usually be logged in during code generation. The exception in the
above case is when DDL changes in the metadata impact any database objects used by
any exceptions or events. In such a case, before the user logins are enabled, the code
generator must be run again, after the metadata changes are made.

Appendix: API List

Operations Guide 29

Scheduler
The scheduler checks to see which scheduler are currently due to execute and creates
Batch Scans, and anonymous Event Revalidation Blocks to be added to the DBA_JOBS
queue. The scheduler is typically started and stopped via one of the many ARI start/stop
control processes, but those methods can be accessed stand-alone for custom scripting
etc. The scheduler also contains an API for sending signals to set the next execute date for
signal-driven schedule to the current date and time, thus causing the schedule to be
executed the next time the scheduler checks schedules due for execution (approximately
once every five minutes).

Starting the Scheduler
ari_auto_scheduler.start_scheduler adds the check_schedule procedure (the Scheduler) to
the DBA_JOBS queue. This procedure must be run as the ARI master user to ensure that
check_schedule has the appropriate privileges when it executes. Typically this program
is run from one of the many ARI start/stop methods and is not run stand-alone.

Stopping the Scheduler
ari_auto_scheduler.stop_scheduler removes the check_schedule procedure from the
DBA_JOBS queue. This procedure must be run as the ARI master user to ensure that
check_schedule is correctly removed. Typically this program is run from one of the many
ARI start/stop methods and is not run stand-alone.

Signal-Driven Scheduler Signaler
This API can be added to other programs so that exception detection and/or event
reevaluation can be attached to some other thing happening in the operational system.
Each signal driven schedule has a signal text string. This string is passed in the
appropriate argument of the ari_schedule_sql.accept_signal function to update the next
execution date of the schedule associated with the signal text to the current date and
time. This then causes processes associated with the schedule to be executed when the
scheduler checker next executes.

Note: This function conatins a commit, so likely placement
of it in another procedure is just after a successful
completion and commit of the procedure.

EVE (Exception Validation Engine)
EVE is the key threading process that governs ARI exception processing. It is typically
started and stopped through one of the many ARI start/stop control methods, but the
direct APIs for this functionality exist as well.

Starting EVE
ari_eve_process.start_eve adds the schedule_jobs procedure (EVE itself) to DBA_JOBS.
This procedure must be run as the ARI master user to ensure that it has the appropriate
privileges when it is executed by the DBA_JOBS queue manager process. Typically this
program is run from one of the many ARI start/stop methods and is not run stand-alone.

Appendix: API List

30 Oracle Retail Active Retail Intelligence

Stopping EVE
ari_eve_process.stop_eve removes the schedule_jobs procedure (EVE itself) from the
DBA_JOBS queue, and signals to the running process that it should terminate. The EVE
process sends terminate signals to its Validator Threads and the EVE process self
terminates. This procedure must be run as the ARI master user to ensure that it has the
appropriate privileges when it executes in the queue. Typically this program is run from
one of the many ARI start/stop methods and is not run stand-alone.

Periodic Purges
ARI uses a significant amount of data in two special areas, tracking events and tracking
event history. Closed events that do not have a time-to-live (meaning almost all events –
see the Online Help for reasons to create non-zero time-to-live events) are immediately
removed from the system once they are closed. Events that do have a non-zero time-to-
live must be periodically purged or they will remain in the system in a closed state
indefinitely. Event History is retained after the event itself is closed for at least as long as
it is specified in the event type definition, and is only removed by running the history
purge process.

Event Purge
Because there will typically not be many events with a non-zero time-to-live, the need to
periodically purge them is small, so the appropriate function
ari_event_instance_sql.delete_expired need not be scheduled very often. On the other
hand, because not many records will need purge, it should not take very long if run
often, so it could equally be scheduled to run daily or weekly or even less often
depending on the number and kinds of events in your system.

Event History Purge
Event history should probably be purged daily or at least weekly. Times to execute will
vary based on volume of events, but presumably in full production the reason for setting
a history interval is to somehow regulate table sizes. For this to work correctly the history
tables themselves will need the periodic purging of event history that is older than the
number of retention days specified in the event type definitions. The function to schedule
for history purging is ari_event_hist_sql.purge_expired.

ARI Alert Notification API
The purpose of this API is to enable displaying a button on the toolbar of an application
other than ARI itself. The ARI Alert Viewer button serves two functions: as a gateway for
launching the alert viewer and as a visual indicator of the overall contents of the alert
viewer. Launching the alert viewer simply means opening that Form. The visual
indicator is that the button changes appearance depending on whether or not new alerts
exist.
The API is implemented as a Forms library, a package and a table. The Forms library may
not be appropriate if the application needing to interface with ARI is not a Forms
application, but the substitution of that part of the API for a non-Forms application is an
implementation issue not addressed by the product.

Appendix: API List

Operations Guide 31

End User Cases
From the end-user standpoint, this API has the following cases:
 If the user is an ARI user with no new alerts, the button should be displayed on the

toolbar with the mailbox closed icon (ari_ari0.ico).
 If the user is an ARI user with new alerts, the button should be displayed on the

toolbar with the mailbox open icon (ari_ari6.ico).
 If the user is not an ARI user, the button is not displayed.
 In either scenario 1 or 2, the button should be pressed to attempt to launch the alert

viewer. (This will display an error message if ARI is not truly installed.)
 When switching from either scenario 1 or 2 to scenario 3 (removing a user as an ARI

user), the button will remain until the Form containing the button is closed and re-
launched (which should give scenario 3). Attempting to launch the alert viewer from
this button after being removed as a user will give an error. This seems annoying but
is acceptable because removing an ARI user is very difficult unless the user has no
events, and almost never happens in production unless a user has no events.
Moreover, by simply exiting and re-launching the form the error is self-correcting.

 When switching from 3 to 1 or 2, the button will not appear until the Form
containing the button is closed and re-launched.

 When switching between 1 and 2, the icon should change accordingly when focus is
changed from the window and back again. Minimizing and then reselecting a
window is one way to do this.

Architecture
ARI provides an API that gets installed in the external Forms application. This API is like
a socket. The socket is only able to accept specific values and the ARI plug is constrained
to only deliver those specific values.
ARI also provides a tester module that can be configured to simulate all three end-user
cases so the external application can test application behavior for all potential plug
outputs/ARI interactions. The tester configured to drive the third end-user case (so that
no user is an ARI user) is essentially the safety cap mode that will be deployed if the
external application, in spite of installing the socket, is never deployed with ARI. This is
the socket that is already installed in Oracle Retail’s Merchandise Transaction System as
mentioned in the Process Details section of this document.
When ARI is implemented, the safety cap is replaced with a plug into ARI. This plug
must have been tested in ARI to conform to the API specification that returns only three
modes of operation corresponding to the first three end-user cases (the fourth case is an
extension of one of the first two).

Implementation
Putting this all together, the socket part of the API is the Forms library. ariiflib.pll was
installed in RMS. (That version is full compatible with the other components of the API
and does not need to be replaced with the latest version ariif90.pll that is shipped with
ARI for use with any other (non-RMS) applications.) The tester part is the stub version of
the ari_interface_sql package and the ari_interface_test table. To plug this into ARI, the
non-ARI application simply drops its ari_interface_sql package and uses a synonym to
the ARI master schema version of this package instead.

Appendix: API List

32 Oracle Retail Active Retail Intelligence

Note: The localized modification of this package body for
more sophisticated button icon display criteria, or entirely
different return values (requires more API modification) is
allowed in spite of statements elsewhere in this
documentation that no modifications of this product are
supported.

To install the socket the external application must add a button to the toolbar (or
wherever they want a button) and must invoke the GET_IS_ARI_USER function to
determine, based on whether the user is an ARI user, whether to display the button or
enable its operation. This function should be installed so that the decision whether to
display/enable the button is made with some frequency, depending on whether users
are actively being added to and removed from the list of ARI users. Adding and
removing users is non-trivial so the required frequency for such an action is minimal.
On some event-driven or periodic basis, including immediately after the button is
displayed/enabled, the external application must invoke the REFRESH_ALERT_ICON
function to update the button’s displayed icon. The recommended implementation of this
function is when the window focus changes (in the Forms When-Window-Activate
trigger).
On pressing the alert viewer button the LAUNCH_ALERT_VIEWER procedure must be
called. If ARI is installed on the same version of Forms as the application with which it
will be working, this is a simple OPEN_FORM call. Otherwise, this is a remote call
through the plug to tell ARI to launch, so the actual launching is external to the non-ARI
application.

Operations Guide 33

C
Appendix: ARI Options

The following ARI configuration options are on the ARI options table. These
configuration options are critical settings that affect the performance and processing of
ARI. However, once they are set, they can largely be ignored. These options are set by a
database administrator using Oracle SQL*Plus doing simple option value updates based
on option name.

EVE_NUM_THREADS
This is the number of realm queue processes, the validation engine should run at any one
time. Generally this is the number of CPUs in the machine + 1, but not more than 32.

EVE_QUEUE_REFRESH_INTERVAL
This is the time slice in minutes given to each realm queue process. Ten minutes is
recommended. It may need to be shorter to get reasonable real-time notification of
exceptions if there are some very large queues and some very small ones. On the other
hand, if the number of large queues is small enough, the entire time slice may only be
used by one or two queues. If so, several processes will always be available for other
processes, so a longer limit may improve the efficiency of processing those larger queues.

INTERNAL_SCHEMA
This is the name of the ARI user that is supposed to be created with the main ARI
schema. This user has several explicit grants as described in the installation guide. It is in
this schema that the ARI generated code and tables reside.

MASTER_SCHEMA
This is the main ARI schema. All of the static ARI code and tables are owned by this user,
as described in the ARI Installation Guide.

MAX_EVENT_RECURSION
This value determines how many times an event will reevaluate itself as the result of
auto-actions occurring before it raises an error. The value depends on the complexity of
the states, an auto-action structure of the defined event types. Five is a reasonable value
and no adjustment should be necessary except in the unlikely case of an event that needs
to reevaluate legitimately (not though a mistake in the event definition) more than 5
times is created.

REEVAL_STATUS_LOCKOUT
This is the number of minutes between attempts to reevaluate events that could not be
reevaluated either because they are locked or because their data values from remote data
sources could not be fetched (e.g. because of a down database link).

Appendix: ARI Options

34 Oracle Retail Active Retail Intelligence

PRIMARY_LANGUAGE_NUMBER
This is the number that identifies the language that will be considered the primary
language for a multi-language ARI implementation. The primary language is also the
only language in a single language implementation. The default value is based on the
assumption that customers will use value 1 to represent their primary language.

ANALYST_ADMIN_GROUP_ID
This is here for reference by the ARI programs and should not be changed.

CLOSE_EVENT_REALM_ID
This is here for reference by the ARI programs and should not be changed unless the
metadata for the close event action is altered by some mistake.

CLOSE_EVENT_REALM_ID
This is here for reference by the ARI programs and should not be changed unless the
metadata for the close event action is altered by some mistake.

ERROR_ADMIN_GROUP_ID
This is here for reference by the ARI programs and should not be changed.

EVENT_INSTANCE_PARM_ID
This is here for reference by the ARI programs and should not be changed.

EXCEPTION_CREATE_DATE_PARM_ID
This is here for reference by the ARI programs and should not be changed.

EXCEPTION_CREATE_DATE_USER_ID
This is here for reference by the ARI programs and should not be changed.

LOG_LEVEL
Determines the log level of messages to be written to the ARI_ACTIVITY_LOG table.
Valid levels are 1, 2 and 3. 3 is the most verbose logging and 1 only logs at a very high
level. The default setting is 2, though this also may be unnecessarily verbose in a
production environment.

FORWARD_GENERATION_HOURS
The value is number of hours and determines how far ahead the event and exception
support code is generated before the definitions specify they are to become active. A
detailed discussion exists in an earlier section on code generation. The default option is
30 hours allows some leeway if the code generator is schedule to run daily.

Appendix: ARI Options

Operations Guide 35

An alternative to routinely scheduled generation, supplemented by the occasional on-
demand generation, might be to generate only at the business analyst’s request, but the
business analyst must then be careful that everything is a new start within the generation
window or else it may not get generated. Starting something far in the future either
requires a large generation window or a periodic generation so that, as the start time
approaches, the analyst does not risk forgetting that the code generator (if it is not run
periodically) needs to be run.
The downside of a large generation window is that, by generating far into the future, you
cannot continue to modify a definition during the several days preceding its activation as
you could with a 30-hour window and a daily code generation. To render such future-
generated, no longer modifiable rules inactive, set the end date equal to the start data and
regenerate code before the start date passes.

Note: However, in production, modifications before
deployment should not be necessary since all such issues
should have been worked out in development.

Hence the definitions going into the production instance should have a solid foundation
and a large generation window may be a perfectly fine approach. The issue is more
significant in a development environment.

	Contents
	Send Us Your Comments
	Preface
	Audience
	Related Documents
	Customer Support
	Review Patch Documentation
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	Introduction
	How and When to Use this Guide

	Process Overview
	ARI Shutdown
	Metadata Modification
	Rule Construction and Modification
	Import Export Tool (IET)

	Code Generation
	ARI Start
	 Summary

	Process Details
	ARI Logs
	Understanding Log Types
	Setting the Log Level
	Reviewing the Log
	Purging the Log

	DBA_JOBS Queue
	Scheduler
	Exception Validation Engine (EVE)
	Code Generation
	History Purge
	Administrator Groups

	Product Integration
	Metadata
	Oracle Retail Merchandise System (RMS)

	Multilanguage Support
	Translation
	Key ARI Tables Related to Internationalization

	Presentation Interface
	Integration with Oracle Retail Workspace

	Appendix: Architectural Reference
	Analyst Process Definition
	1. Metadata Maintenance
	2. User/Group Maintenance
	3. Schedule Maintenance
	4. Exception Type Maintenance
	5. Event Type Maintenance

	System Process Management
	1. ARI Control
	2. Queue Manager
	3. Validation Builder
	4. Scan Code Builder
	5. Validation Builder
	6. Evaluation Builder

	Exception Candidate Detection
	1. Real-Time Monitor
	2. Periodic Monitor
	3. Scanner Builder
	4. External API Monitor
	5. Trickle Data Monitor

	Candidate Validation and Event Creation
	1. Validate Engine
	2. Realm Queue Process
	3. Exception Creation and Validation
	4. Event Creation and Evaluation

	User-Initiated and Automated Event Resolution
	1. Alert Viewer
	 2. Event Management
	3. Exception Reevaluation
	4. Event Reevaluation
	5. Schedule Reevaluation
	6. Action Execution

	Appendix: API List
	Error and Activity Logging
	Changing the Log Level

	Stopping and Starting the Backend
	Starting the Master Processes
	Starting EVE Only
	Stopping the Master Processes
	Stopping EVE Only
	Stopping All ARI Processes

	Code Generation
	Scheduler
	Starting the Scheduler
	Stopping the Scheduler
	Signal-Driven Scheduler Signaler

	EVE (Exception Validation Engine)
	Starting EVE
	 Stopping EVE

	Periodic Purges
	Event Purge
	Event History Purge

	ARI Alert Notification API
	End User Cases
	Architecture
	Implementation

	Appendix: ARI Options
	EVE_NUM_THREADS
	EVE_QUEUE_REFRESH_INTERVAL
	INTERNAL_SCHEMA
	MASTER_SCHEMA
	MAX_EVENT_RECURSION
	REEVAL_STATUS_LOCKOUT
	PRIMARY_LANGUAGE_NUMBER
	ANALYST_ADMIN_GROUP_ID
	CLOSE_EVENT_REALM_ID
	CLOSE_EVENT_REALM_ID
	ERROR_ADMIN_GROUP_ID
	EVENT_INSTANCE_PARM_ID
	EXCEPTION_CREATE_DATE_PARM_ID
	EXCEPTION_CREATE_DATE_USER_ID
	LOG_LEVEL
	FORWARD_GENERATION_HOURS

