

Oracle® Retail Extract, Transform, and Load
Programmer’s Guide

Release 13.1.3

August 2010

Oracle Retail Extract, Transform, and Load Programmer's Guide, Release 13.1.3 for Windows

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Primary Author: Susan McKibbon

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Value-Added Reseller (VAR) Language

Oracle Retail VAR Applications

The following restrictions and provisions only apply to the programs referred to in this section and licensed
to you. You acknowledge that the programs may contain third party software (VAR applications) licensed to
Oracle. Depending upon your product and its version number, the VAR applications may include:

(i) the software component known as ACUMATE developed and licensed by Lucent Technologies Inc. of
Murray Hill, New Jersey, to Oracle and imbedded in the Oracle Retail Predictive Application Server -
Enterprise Engine, Oracle Retail Category Management, Oracle Retail Item Planning, Oracle Retail
Merchandise Financial Planning, Oracle Retail Advanced Inventory Planning, Oracle Retail Demand
Forecasting, Oracle Retail Regular Price Optimization, Oracle Retail Size Profile Optimization, Oracle Retail
Replenishment Optimization applications.

(ii) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail Data
Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(iii) the SeeBeyond component developed and licensed by Sun MicroSystems, Inc. (Sun) of Santa Clara,
California, to Oracle and imbedded in the Oracle Retail Integration Bus application.

(iv) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of Kirkland,
Washington, to Oracle and imbedded in Oracle Retail Mobile Store Inventory Management.

(v) the software component known as Crystal Enterprise Professional and/or Crystal Reports Professional
licensed by SAP and imbedded in Oracle Retail Store Inventory Management.

(vi) the software component known as Access Via™ licensed by Access Via of Seattle, Washington, and
imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(vii) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of San Jose,
California, and imbedded in Oracle Retail Promotion Planning & Optimization application.

(viii) the software component known as Style Report™ developed and licensed by InetSoft Technology
Corp. of Piscataway, New Jersey, to Oracle and imbedded in the Oracle Retail Value Chain Collaboration
application.

(ix) the software component known as DataBeacon™ developed and licensed by Cognos Incorporated of
Ottawa, Ontario, Canada, to Oracle and imbedded in the Oracle Retail Value Chain Collaboration
application.

You acknowledge and confirm that Oracle grants you use of only the object code of the VAR Applications.
Oracle will not deliver source code to the VAR Applications to you. Notwithstanding any other term or
condition of the agreement and this ordering document, you shall not cause or permit alteration of any VAR
Applications. For purposes of this section, "alteration" refers to all alterations, translations, upgrades,
enhancements, customizations or modifications of all or any portion of the VAR Applications including all
reconfigurations, reassembly or reverse assembly, re-engineering or reverse engineering and recompilations
or reverse compilations of the VAR Applications or any derivatives of the VAR Applications. You
acknowledge that it shall be a breach of the agreement to utilize the relationship, and/or confidential
information of the VAR Applications for purposes of competitive discovery.

The VAR Applications contain trade secrets of Oracle and Oracle's licensors and Customer shall not attempt,
cause, or permit the alteration, decompilation, reverse engineering, disassembly or other reduction of the
VAR Applications to a human perceivable form. Oracle reserves the right to replace, with functional
equivalent software, any of the VAR Applications in future releases of the applicable program.

Contents

Preface ... xiii

Audience... xiii
Related Documents ... xiii
Customer Support ... xiii
Review Patch Documentation ... xiii
Oracle Retail Documentation on the Oracle Technology Network ... xiv
Conventions ... xiv

1 Introduction

Technical Specifications .. 1-2
Supported Operating Systems ... 1-2
Supported Oracle Retail Products ... 1-3

Data Integration.. 1-3

2 Installation and System Configuration

Installation... 2-1
Setup ... 2-3
Upgrading from Earlier Releases of RETL .. 2-4
RETL Package Verification Tool (verify_retl) ... 2-4
Backward Compatibility Notes ... 2-5

XML Flow Interface/Operator Differences Between 10.x and Later Releases.......................... 2-6
Hardware Requirements Differences Between RETL 10 and Later Versions 2-7

rfx Command Line Options.. 2-7
RETL Environment Variables .. 2-9
Configuration ... 2-10

Configuration Field Descriptions .. 2-10
Temporary Space Configuration... 2-13
Logger Configuration ... 2-14

Performance Logger ... 2-14
Output Logger.. 2-15

Multibyte Character Support .. 2-15
v

3 RETL Interface

Terms... 3-1
RETL XML Interface .. 3-2
Operator Nesting .. 3-3
RETL Java Interface ... 3-3

Initialization .. 3-4
Flows .. 3-4
Operators... 3-4
Properties... 3-4
Datasets.. 3-4

4 RETL Program Flow

Program Flow Overview ... 4-1
General Flow ... 4-1
A Simple Flow... 4-2
A More Complex Flow .. 4-3
Online Help ... 4-4
Debugging with RETL .. 4-4
Producing Graphical Output of Flows with RETL .. 4-5
Performance Logging with RETL.. 4-6

Sample Log File .. 4-7

5 RETL Schema Files

Schema File Requirements ... 5-1
Schema File XML Specification... 5-2
Delimited Record Schema .. 5-4

Example Delimited Schema File .. 5-4
Fixed-Length Record Schema... 5-5

Example Fixed-Length Schema File .. 5-5
nullvalue Considerations .. 5-6

Configure RETL to Print Schema Output in Schema File Format.. 5-7

6 Database Operators

ORAREAD... 6-1
ORAWRITE ... 6-1
UPDATE ... 6-1
DELETE .. 6-1
INSERT... 6-1
PREPAREDSTATEMENT ... 6-2
Database Operators XML Specification Table.. 6-3

ORAREAD .. 6-3
ORAWRITE... 6-4
UPDATE .. 6-8
vi

DELETE ... 6-9
INSERT ... 6-10
PREPAREDSTATEMENT.. 6-10

Database Operator Examples .. 6-11
ORAREAD ... 6-11
ORAWRITE.. 6-12
UPDATE ... 6-12
DELETE .. 6-13
INSERT ... 6-13
PREPAREDSTATEMENT.. 6-14

7 RETL Parallel Processing

RETL Parallelism Overview ... 7-1
Pipeline Parallelism ... 7-1
Framework Parallelism .. 7-1

RETL Data Partitioning... 7-2
Enabling RETL Data Partitioning .. 7-2
Partition Construction ... 7-2
Partitioning Types.. 7-4

Keyed Partitioning.. 7-4
Nonkeyed Partitioning... 7-5

Partitioners .. 7-5
HASH.. 7-5
IMPORT.. 7-6
SPLITTER ... 7-8
DBREAD, ORAREAD .. 7-9

Operators and Partitioning Types .. 7-11
Parallel Property.. 7-14
Partitioned EXPORT ... 7-14
Partitioned GENERATOR.. 7-15
Partitioned LOOKUP and CHANGECAPTURELOOKUP... 7-16
Partitioned ORAWRITE ... 7-17
Flows with Multiple Partitioners .. 7-17

HASH Within a Partition.. 7-17
SPLITTER Within a SPLITTER Partition .. 7-20
Two HASH Operators Joined .. 7-21
Funneled Partitions.. 7-22

Data Partitioning Guidelines... 7-22
Operator Configuration for Data Partitioning .. 7-23
A Final Word on Data Partitioning .. 7-24
vii

8 Input and Output Operators

DEBUG ... 8-1
NOOP ... 8-1
EXPORT.. 8-1
IMPORT ... 8-1
Input and Output Operators XML Specification Tables .. 8-2

DEBUG... 8-2
NOOP... 8-2
IMPORT... 8-2
EXPORT... 8-3

Input and Output Operators Examples.. 8-4
IMPORT... 8-4
EXPORT... 8-4

9 Join Operators

INNERJOIN... 9-1
LEFTOUTERJOIN .. 9-1
RIGHTOUTERJOIN .. 9-1
FULLOUTERJOIN ... 9-1
LOOKUP .. 9-2
DBLOOKUP .. 9-2
Special Notes about Join Operators.. 9-2
Join Operators XML Specification Tables ... 9-3

INNERJOIN .. 9-3
LEFTOUTERJOIN, RIGHTOUTERJOIN, FULLOUTERJOIN ... 9-3
LOOKUP.. 9-3
DBLOOKUP.. 9-4

Join Operators Examples... 9-5
INNERJOIN .. 9-5
LEFTOUTERJOIN .. 9-5
RIGHTOUTERJOIN... 9-5
FULLOUTERJOIN ... 9-5
LOOKUP.. 9-6
DBLOOKUP.. 9-6

10 Sort, Merge, and Partitioning Operators

COLLECT and FUNNEL .. 10-1
SORTCOLLECT and SORTFUNNEL.. 10-1
HASH... 10-1
SPLITTER ... 10-2
SORT.. 10-2
MERGE.. 10-2
viii

Sort and Merge Operators XML Specification Tables.. 10-2
COLLECT/FUNNEL.. 10-2
HASH.. 10-2
SPLITTER ... 10-3
SORT ... 10-3
SORTCOLLECT/SORTFUNNEL ... 10-4
MERGE ... 10-4

Sort, Merge, and Partitioning Operators Tag Usage Examples .. 10-4
COLLECT ... 10-4
HASH.. 10-4
SORTCOLLECT... 10-5
MERGE ... 10-5

11 Mathematical Operators

BINOP.. 11-1
GROUPBY .. 11-1
GROUPBY on Multiple Partitions... 11-2
Mathematical Operators XML Specification Tables... 11-2

BINOP... 11-2
GROUPBY .. 11-3

Mathematical Operators Examples .. 11-4
BINOP... 11-4
GROUPBY .. 11-4

12 Structures and Data Manipulation Operators

CONVERT .. 12-1
Conversion Functions... 12-2

FIELDMOD .. 12-3
FILTER ... 12-3
GENERATOR ... 12-3
REMOVEDUP.. 12-4
Structures and Data Manipulation Operators XML Specification Tables 12-5

CONVERT.. 12-5
FIELDMOD .. 12-5
FILTER .. 12-6
GENERATOR .. 12-6
REMOVEDUP.. 12-7

Filter Expressions ... 12-7
Structures and Data Manipulation Operators Examples... 12-8

CONVERT.. 12-8
FIELDMOD .. 12-9
FILTER .. 12-9
GENERATOR .. 12-10
REMOVEDUP.. 12-10
ix

13 Other Operators

COMPARE .. 13-1
SWITCH .. 13-2
CHANGECAPTURE and CHANGECAPTURELOOKUP... 13-2
COPY.. 13-3
DIFF.. 13-3
CLIPROWS ... 13-4
PARSER ... 13-4
EXIT.. 13-5
Other Operators XML Specifications .. 13-6

COPY... 13-6
COMPARE ... 13-6
CLIPROWS... 13-6
DIFF... 13-7
CHANGECAPTURE and CHANGECAPTURELOOKUP ... 13-8
SWITCH.. 13-9
PARSER .. 13-10
EXIT... 13-10

Other Operators Examples .. 13-10
COPY... 13-10
SWITCH.. 13-11
COMPARE ... 13-11
CHANGECAPTURE... 13-11
CHANGECAPTURELOOKUP ... 13-11
CLIPROWS... 13-12
DIFF... 13-12
PARSER .. 13-12
EXIT... 13-12
PARSER .. 13-12

14 Common Operator Properties

Common Operator XML Specification ... 14-1

15 Best Practices

Introduction and Objectives ... 15-1
Prerequisites... 15-2

Project Initiation/Design/Functional Specification Best Practices .. 15-2
Ask Discovery Questions First .. 15-2

Generic Integration Questions ... 15-2
Application Domain Questions ... 15-3
Data-related and Performance Questions .. 15-3

Map Out The Movement of Data Visually .. 15-3
Define Concrete Functional Requirements for Each Module ... 15-4
Define Concrete Functional Designs for Each Module.. 15-4
Design a Test Plan Early in the Process ... 15-4
Design for Future Usage and Minimize Impact of Potential Changes.................................... 15-4
x

Agree on Acceptance Criteria.. 15-4
Document Design Assumptions, Issues, and Risks ... 15-5

Code/Implementation/Test Best Practices .. 15-5
Korn Shell Best Practices .. 15-5

Execute Commands Using $(command) and Not 'command' .. 15-5
Ensure 'set -f' is set in a Configuration File .. 15-5
Write Flow to an Intermediate File and then Call RETL on that File............................... 15-5
Secure/Protect Files and Directories that may Contain Sensitive Information.............. 15-6
Make Often-used Portions of the Module Parameters or Functions................................ 15-6
Make Function Calls Only a Few Layers Deep ... 15-6
Separate Environment Data from the Flow ... 15-6
Enclose Function Parameters in Double Quotes ... 15-6
Set Environment Variable Literals in Double Quotes .. 15-6
Use Environment Variables as ${VARIABLE} Rather than $VARIABLE........................ 15-7
Follow Module Naming Conventions .. 15-7
Log Relevant Events in Module Processing... 15-8
Place Relevant Log Files in Well-known Directories.. 15-8
Use .ksh Templates .. 15-8
Document Each Flow's Behavior ... 15-8

RETL Flow Best Practices... 15-8
Review/Product Handoff ... 15-12

Involve Support Personnel Early in the Project.. 15-12
Assign a Long-term Owner to the Project/Product/Interface... 15-12

A Appendix: Default Conversions

Default Conversions from UINT8 ... A-1
Default Conversions from INT8... A-1
Default Conversions from UINT16 ... A-2
Default Conversions from INT16... A-2
Default Conversions from UINT32 ... A-2
Default Conversions from INT32... A-3
Default Conversions from UINT64 ... A-3
Default Conversions from INT64... A-3
Default Conversions from SFLOAT .. A-4
Default Conversions from DEFLOAT ... A-4

B Appendix: Database Configuration and Troubleshooting Guide

RETL Database Configuration and Maintenance Notes ... B-1
Debugging Database ETL Utilities ... B-1
Database Semaphore Problems... B-1
Runaway Loader Processes ... B-1

Troubleshooting RETL with Your Database .. B-2
xi

C Appendix: Troubleshooting Guide

D Appendix: FAQ

E Appendix: RETL Data Types

RETL Data Type Properties ... E-1
RETL Data Type/Database Data Type Mapping ... E-2

RETL Data Type to Oracle Data Type (ORAWRITE) .. E-3
Oracle Data Type to RETL Data Type (ORAREAD).. E-3

F Appendix: Data Partitioning Quick Reference

Partitioning the Data .. F-1
Continuing the Partition .. F-2
Hash Partitioning .. F-2
Ending the Data Partition .. F-2

G Appendix: Database Connections Quick Reference

Setting the Environment Variables .. G-1
ORAREAD.. G-1
ORAWRITE .. G-2

H Appendix: Installation Order

Enterprise Installation Order .. H-1
xii

Preface

The Oracle Retail Extract Transform and Load (RETL) Programmer's Guide contains a
complete description of the RETL programming language, as well as installation,
configuration, and maintenance instructions.

Audience
The RETL Programmer's Guide is intended for all RETL flow developers.

Related Documents
For more information, see the following document in the Oracle Retail Extract,
Transform, and Load Release 13.1.3 documentation set:

■ Oracle Retail Extract, Transform, and Load Release Notes

Customer Support
To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com

When contacting Customer Support, please provide the following:

■ Product version and program/module name

■ Functional and technical description of the problem (include business impact)

■ Detailed step-by-step instructions to re-create

■ Exact error message received

■ Screen shots of each step you take

Review Patch Documentation
When you install the application for the first time, you install either a base release (for
example, 13.1) or a later patch release (for example, 13.1.2). If you are installing the
base release, additional patch, and bundled hot fix releases, read the documentation
for all releases that have occurred since the base release before you begin installation.
Documentation for patch and bundled hot fix releases can contain critical information
related to the base release, as well as information about code changes since the base
release.
xiii

Oracle Retail Documentation on the Oracle Technology Network
Documentation is packaged with each Oracle Retail product release. Oracle Retail
product documentation is also available on the following Web site:

http://www.oracle.com/technology/documentation/oracle_retail.html

(Data Model documents are not available through Oracle Technology Network. These
documents are packaged with released code, or you can obtain them through My
Oracle Support.)

Documentation should be available on this Web site within a month after a product
release.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.
xiv

Introdu
1

Introduction

Oracle Retail Extract Transform and Load (RETL) is a high-performance, scalable,
platform-independent, parallel processing data movement tool. RETL addresses
several primary needs:

■ Database-independent applications

■ Platform-independent applications

■ Developing applications more quickly than possible with conventional coding
methods (such as custom-crafted C or C++ code)

■ High-performance data processing

To provide for these needs, RETL defines an interface in XML that applications can call
to define ETL functions. This interface is in a well-defined XML form that allows
access to any database that RETL supports.

RETL is a cross-platform development tool supported on Oracle Enterprise Linux. The
XML definitions do not change on a per-platform basis, so moving between hardware
platforms is simplified.

Development of the XML instructions for RETL is simpler, faster, and less error-prone
than writing C or C++ code. Applications can be completed much faster than possible
with previous methods.

This guide shows the application developer how to rapidly deploy RETL in an
application, and how to use it to manage your parallel processing system. This guide
provides information on how to:

■ Install and set up RETL

■ Configure RETL

■ Administer RETL

■ Develop applications using RETL

Select the RETL operators you need to perform your application's data processing
tasks. Manage your system resources to scale your application by partitioning data
across multiple processing nodes.

RETL resides as an executable on your application platform, and on any other system
that serves as a source or target of data.
ction 1-1

Technical Specifications
Technical Specifications
RETL is certified on the platform listed in this section. For historical reasons, the
executable for RETL is called rfx. That executable name is used in this document.

The current configuration included with the RETL install package is documented in
the Release Notes. If you have a configuration that is not included in the Release
Notes, verify with Oracle Retail Customer Support whether your configuration is
supported.

Check Database Server Requirements

Supported On Versions Supported

Database OS OS certified with Oracle Database 11gR1 and 11gR2
Enterprise Edition. Options are:

■ Oracle Enterprise Linux 5 Update 2 (OEL 5.2) for
x86-64

■ Oracle Enterprise Linux 5 Update 3 (OEL5.3) for
x86-64

■ Red Hat Enterprise Linux 5 Update 2 (RHEL 5.2) for
x86-64

■ Red Hat Enterprise Linux 5 Update 3 (RHEL 5.3) for
x86-64

■ AIX 6.1, minimum TL1

■ Solaris 10 Sparc (Actual hardware or Logical
Domains)

■ HP-UX 11.31 Integrity (Actual hardware or HPVM)
1-2 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Technical Specifications
Database Server 11gR1 Oracle Database Enterprise Edition 11gR1(minimum
patchset 11.1.0.7) with the following additional one off
patches:

Patches:

■ 7036284 (LOADJAVA RUN IN A DV
ENVIRONMENT CANNOT LOAD CLASSES WITH
A NAME LONGER THAN 128)

■ 7378322 (ORA-00600: internal error code, arguments:
[6704], [1], [532241], [532237])

■ 6800649 - (AIX only) when non-oracle user uses client
utilities sqlldr/sqlplus/impdp/expdp, core dump is
generated. Need to "relink all" after applying the
patch

■ 7697360 (RAC only) ORA-00600: internal error code,
arguments: [k2vcbk_6], Database crashed during
transaction recovery.

■ 9582272 - ORA-600 [KKDLREADONDISKDEFVAL:
ERROR] OCCURS WHEN ALTER TRIGGER IS
EXECUTED.

Components:

■ Oracle Database 11g

■ Oracle Partitioning

■ Oracle Net Services

■ Oracle Call Interface (OCI)

■ Oracle Programmer

■ Oracle XML Development Kit

■ Examples CD (Formerly the companion CD)

Other components:

■ Perl compiler 5.0 or later

■ X-Windows interface

Database Server 11gR2 Oracle Database 11g Release 2 (11.2.0.1) Enterprise Edition
with the following components:

■ Oracle Partitioning

■ Example CD

Patches:

■ 9582272 - ORA-600 [KKDLREADONDISKDEFVAL:
ERROR] OCCURS WHEN ALTER TRIGGER IS
EXECUTED.

The following two patches need to be applied together in
order to correct the JDBC bug:

■ 9367425 -- PROCESS CRASHED WHEN USING
11GR2 JDBC/OCI

■ 9495959 -- HANG WHEN TWO THREADS TRY TO
CREATE THE ENV HANDLE AT THE SAME

Other components:

■ Perl compiler 5.0 or later

■ X-Windows interface

Supported On Versions Supported
Introduction 1-3

Data Integration
Supported Oracle Retail Products

Data Integration
Integrate external data of these forms:

■ UNIX flat files

■ Oracle database tables

Supported On Versions Supported

RMS 13.1.3 RETL 13.1.3

RDW 13.1.3 RETL 13.1.3

RPM 13.1.3 RETL 13.1.3

ReIM 13.1.3 RETL 13.1.3
1-4 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Installation and System Configu
2

Installation and System Configuration

Installation
Install RETL on each server system that will be involved in input, output, or
processing data. For example, if one system outputs data files and another system
inputs that data and processes it, install RETL on both systems.

Follow these steps to install RETL:

1. Log in as the root user on the host.

2. Create a UNIX group for the rfx - group that owns the RETL software.

3. Create a UNIX operating system account on the appropriate host, using ksh as the
default shell.

rfx - rfx group
4. Create a directory where you will install this software.

5. Log in to the UNIX server as rfx.

6. Download retl_<version>_install.zip (the install package) and
retl_<version>_doc.zip (the documentation) from the Oracle Retail
Fulfillment center and place the RETL install package on your UNIX server.

7. Extract retl_<version>_install.zip:

$ unzip retl_<version>_install.zip

8. Change directories to the location where the package is installed at

<install_path>/<rfx_dir>

9. At the UNIX prompt, enter:

>./install.sh

10. Follow the prompts to install RETL for your configuration

$./install.sh
Enter directory for RETL software:
---> d:/temp/RETL1313
Is this the correct directory for the install? y or n
RFX_HOME: d:/temp/RETL1313
Copying Library Files...

Note: You must be in the <cdrom_path>/<rfx_dir> for the
installation to complete successfully.
ration 2-1

Installation
If you are using Oracle 11gR1 database enter 1 OR
If you are using Oracle 11gR2 database enter 2
---> 2
Copying Sample Files...
Copying Executables...
Copying Config File...
Successful completion of RETL Install

To complete the RETL setup and installation:
1) Place the following in a .kshrc/ .profile to retain setup variables:
 RFX_HOME=d:/temp/RETL1313
 PATH=d:/temp/RETL1313/bin:$PATH
2) Be sure to verify any additional environment setup as per the "Setup"
section of the Programmers Guide.
3) Verify the installation by running the following command:

$RFX_HOME/bin/verify_retl

11. Installation of RETL 13.1 version on Sun Solaris, IBM AIX, HP-UX, and Oracle
Linux platforms requires the installation of Java Runtime Environment 1.6 (JRE).
JRE 1.6 is required for RETL 13.1 to function properly. If it not included with your
operating system installation, it must be installed separately. The Java Runtime
Environment 1.6 (JRE) can be downloaded for the corresponding platforms at the
Web sites listed below:

For Sun Solaris: http://java.sun.com/javase/downloads/index.jsp

For IBM AIX:
http://www.ibm.com/developerworks/java/jdk/aix/service.html

For HP-UX:
http://h20392.www2.hp.com/portal/swdepot/displayProductInfo.d
o?productNumber=HPUXJAVAHOME

For Oracle Linux: http://java.sun.com/javase/index.jsp

12. Review the install.log file in the <base directory>/install directory to
verify that RETL was installed successfully.

13. Set up your environment variables before you proceed. See the "Setup" section on
the next page.

14. Verify the installation and setup by running the "verify_retl" script (see "RETL
Package Verification Tool (verify_retl)").
2-2 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Setup
Setup
1. After installation, set up your UNIX environment for RETL. The following

example shows the variables you need in your UNIX profile to run RETL properly.

export RFX_HOME=<base directory>
export PATH=$RFX_HOME/lib:$RFX_HOME/bin:${PATH}
export JAVA_HOME=<enter java 1.6 home here>

2. If you have selected an installation with database support, set up database and
environment variables required for basic database setup. Please refer to the
Appendix B, "Appendix: Database Configuration and Troubleshooting Guide" for
more information on setting up your database.

export ORACLE_HOME=/your/Oracle_home/directory
export PATH=$ORACLE_HOME/bin;$PATH

3. Log in to the UNIX server as rfx. At the UNIX prompt, enter the following:

>rfx

4. Make any changes to the operator defaults in rfx.conf. For example, Oracle
database operators require hostname/port to be specified. These changes can be
made to rfx.conf as DEFAULTS for convenience. See Example rfx.conf for
details.

5. Make any changes to the temporary directory settings in rfx.conf. See the
documentation for the TEMPDIR element in the "Configuration Field
Descriptions" section.

6. Make any changes to the default performance log file location configured in
logger.conf.

The distributed logger.conf specifies /tmp/rfx.log as the default
performance log file. If this file cannot be created, the log4j logging facility will
report an error.

To change the performance log file location, modify logger.conf and change the
value of the name parameter in the PERFORMANCE-APPENDER element. The
line has the following format:

<param name="file" value="/tmp/rfx.log"/>

Note: Creating Symbolic Link for Gsort under Linux OS.

On the Linux platforms, a link is to be created in the $RFX_
HOME/bin that links the default linux sort to gsort. This can be done
as below.

■ The user can find where sort resides on his Linux box using
"which sort" command.

■ Then create a symolic link for gsort in $RFX_HOME/bin folder
pointing to $RFX_HOME/bin/gsort.

Example: Lets us assume that on Linux box the sort resides under
/usr/bin/sort. Hence the user can create the symbolic link for gsort
pointing to $RFX_HOME/bin/gsort as

ln -s /usr/bin/sort $RFX_HOME/bin/gsort under $RFX_HOME/bin
folder.
Installation and System Configuration 2-3

Upgrading from Earlier Releases of RETL
For example, to change the performance log file location to
/var/tmp/rfx/rfx-performance.log, change the line as follows:

<param name="file" value="/var/tmp/rfx/rfx-performance.log"/>

7. If RETL is installed correctly and the .profile is correct, the following results:

Error : Flow file argument ('-f') required!

Upgrading from Earlier Releases of RETL
RETL releases are required to be backward compatible with the XML flow interface of
earlier releases. As a result, minimal changes to a setup should be necessary to
upgrade. These are the steps to follow:

1. Choose a new (and different) location to install the new version of RETL.

2. Install the new version of RETL using the previous installation instructions.

3. Change the environment in which RETL runs so that it refers to the new
RFX_HOME (for example, change within .kshrc or .cshrc).

4. Double check the environment variables to make sure that you were not explicitly
referring to old RETL directories.

5. Read the "Backward Compatibility Notes" section to determine if you need to
change any flows or scripts.

6. Make any changes necessary to correct your flows, so that you can run in the new
version.

7. Verify that your flows and scripts run as expected. If any scripts or flows fail in
running with the new release, but pass in running with the old release, and
changes are not otherwise noted in the "Backward Compatibility Notes" section,
Appendix D, "Appendix: FAQ", or RETL Release Notes, notify Customer Support.

To make future upgrades easier, separate the RETL-specific changes that you make to
your environment, so that the environment variables can be easily removed, modified,
or replaced when necessary.

RETL Package Verification Tool (verify_retl)
When setting up RETL in a new environment (or if you would just like to verify that
the RETL environment is set up properly) run the verify_retl script located in the
/bin directory of the RETL installation. (The verify_retl script is available as of
release 10.2.)

Note: If you have problems, see the troubleshooting information in
Appendix C, "Appendix: Troubleshooting Guide".

Note: RFX_HOME should be set properly prior to running verify_
retl.
2-4 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Backward Compatibility Notes
The RETL package verification tool performs the following checks:

1. Verifies environment variables/etc is set up properly.

2. Ensures that the RETL binary is installed properly and can run.

3. Runs a series of system tests derived from the samples directory.

4. Logs information about environment setup in a log file.

The usage for verify_retl is as follows:

verify_retl [-doracle] [-nodb] [-h]

This generates the following output if successful:

Checking RETL Environment...found ORACLE environment...passed!
Checking RETL binary...passed!
Running samples...passed!
===
Congratulations! Your RETL environment and installation passed all tests. See the
programmer's guide for more information about how to further test your database
installation (if applicable)
===
Exiting...saving output in /files0/retl/tmp/verifyretl-20384.log

Check the RETL ENVIRONMENT SETUP section of the log file for important
information on environment variables that must be set.

Backward Compatibility Notes
A major requirement for RETL releases is that they be backward-compatible in the
XML interface with earlier releases. There are a few small changes that must be made
for certain operators when upgrading to RETL 11 or RETL 12 from 10.x releases of
RETL.

Option Description

-doracle Checks environment variables, etc., for the Oracle installation of
RETL

-nodb Checks environment variables for the stand-alone version of
RETL

-h Displays the help message
Installation and System Configuration 2-5

Backward Compatibility Notes
XML Flow Interface/Operator Differences Between 10.x and Later Releases

Operator Property Backward Compatibility Notes

FILTER filter DEPRECATED SYNTAX—RETL 10.x versions produced
warning messages to correct 'filter' syntax. Later versions
do not accept the following syntax in the filter property :
>, <, >=, <=, =. These operations are replaced by GT, LT,
GE, LE, EQ, respectively.

ORAREAD query INVALID SYNTAX—RETL 10.x versions allowed input
of invalid XML in the query property of the dbread
operators. Characters such as '>' and '<' in the query
property will cause later versions to produce an error
message.

An example follows:

Previous XML valid in 10.x versions:

<PROPERTY name="query" value="SELECT * FROM ANY_
TABLE WHERE ANY_COLUMN > 1" />

Property should now appear as the following in later
versions:

<PROPERTY name="query">
 <![CDATA[
SELECT * FROM ANY_TABLE WHERE ANY_COLUMN > 1
]]>
</PROPERTY>

ORAREAD/
ORAWRITE

dbname NEW REQUIRED PROPERTY—The database to which
to connect. This property should be used instead of sid
from now on.

port NEW REQUIRED PROPERTY—The port on which the
database listener resides.

Note: For Oracle databases, use tnsping to obtain the
port number. The default for Oracle is 1521. This may
need to be specified only once in the rfx.conf
configuration file for convenience.

ORAWRITE jdbcdriver NEW PROPERTY—The type of JDBC driver required to
connect to database.

Note: By default, the operator creates the URL for
database connection as a thin client. This can be
overriden to create the URL as an OCI client by adding
this property in the XML flow file.

An example follows:

<PROPERTY name="jdbcdriver" value="oci" />

hostname NEW OPTIONAL PROPERTY—The fully specified
hostname or IP address where the database resides.

Note: This property should only be specified when it is
known that connections are being made to a remote
database. This may need to be specified only once in the
rfx.conf configuration file for convenience.
2-6 Oracle Retail Extract, Transform, and Load Programmer’s Guide

rfx Command Line Options
Examples (in operator for ORAWRITE):

Connection to database through THIN database driver:

<OPERATOR type="orawrite">
<OUTPUT name="test.v"/>

<PROPERTY name="dbname" value="databasename"/>
<PROPERTY name="connectstring" value="userid/password"/>
<PROPERTY name="tablename" value="mytable"/>
<PROPERTY name="createtablemode" value="recreate"/>
<PROPERTY name="hostname" value="myhostname"/>
<PROPERTY name="port" value="1521"/>

</OPERATOR>

Connection to database through OCI database driver:

<OPERATOR type="orawrite">
<INPUT name="test.v" />

<PROPERTY name="threadModel" value="start_thread" />
<PROPERTY name="dbuserid" value="username/password" />
<PROPERTY name="dbname" value="databasename" />
<PROPERTY name="jdbcdriver" value="oci" />
<PROPERTY name="tablename" value="mytable" />
<PROPERTY name="createtablemode" value="recreate" />

</OPERATOR>

Example (in rfx.conf):

<DEFAULTS operator="orawrite">
<PROPERTY name="hostname" value="myhostname"/>
<PROPERTY name="port" value="1521"/>

</OPERATOR>

Hardware Requirements Differences Between RETL 10 and Later Versions
In general, more physical memory is required in order to run the later versions of
RETL than in RETL 10. There is no general formula or guideline for the additional
memory requirement, because it strongly correlates to the flow, data, configuration,
and so on.

rfx Command Line Options
You can get help on rfx options on the command line by entering the following on the
command line:

rfx -h

The output is like the following:

>rfx -h
rfx [OPTIONS]

-h Print help and exit
-oOPNAME Print operator help. Valid values:
 operator name or 'ALL' for all ops
-e Print RETL environment variable usage
-v Print version and exit
-cFILE Configuration File
-nNUMPARTS Number of Partitions (SMP only)
-x Disable partitioning (default=off)
-sTYPE Display schema as TYPE. Valid values:
Installation and System Configuration 2-7

rfx Command Line Options
 NONE,SCHEMAFILE (default=NONE)
-lLOGFILE Log statistics/times to LOGFILE
-fFLOWFILE XML file containing flow
-d Produce daVinci files (default=off)
-g Produce flow graphs (default=off)

These options are described in the following table:

Option Default Value Description

-h Shows the help message shown above.

-oOPNAME Displays syntax usage for operator specified in
OPNAME, or for all operators if OPNAME is "ALL".
Valid operator names are the same as those operators
used in the XML flow interfaces. The intention with
this option is to provide online syntax help for flow
developers, reducing the need to refer to this
document for syntax usage. See the "Online Help"
section in Chapter 4, "RETL Program Flow" for more
information about this option.

-e Prints RETL environment variables that can be used
for things such as turning on verbose debugging,
setting JVM parameters, and so on. See "RETL
Environment Variables" for more information.

-V Displays the version and build number.

-cSTRING $RFX_HOME/etc/
rfx.conf

Overrides the default configuration file.

-nINT As specified in the
rfx.conf, or 1 if
no rfx.conf is
found

The number of partitions to use. This feature is
intended for RETL experts only.

-x Partitioning as
defined in the
rfx.conf

Disables partitioning.

-sTYPE NONE Prints the input and output schemas for each operator.
Valid values and descriptions:

NONE—rfx will not print any schema information.

SCHEMAFILE—If specified, this option prints the
input and output for each operator in schema file
format so that developers can quickly and easily cut
and paste rfx output to a file and break up flows.
Developers could then modify these files for the
purposes of specifying IMPORT and EXPORT schema
files.

Note: rfx should be run with the -sNONE option in
production systems where unnecessary output is not
needed. The -sSCHEMAFILE option is often useful in
development environments where it is desirable to
debug RETL flows by breaking them up into smaller
portions.
2-8 Oracle Retail Extract, Transform, and Load Programmer’s Guide

RETL Environment Variables
For more information on DOTTY, see the following:
http://www.research.att.com/sw/tools/graphviz/download.html

RETL Environment Variables
You can retrieve a list of environment variables that can be set with the following ksh
syntax:

export VARIABLE=VALUE

-lLOGFILE N/A Specifies the log file in which to log RETL
statistics/times. If the log file path is relative, the log
file will be placed in the directory as defined in the
TEMPDIR element of the RETL configuration file
(rfx.conf). This changes the default log file as specified
in rfx.conf and will turn on logging only if the log level
in rfx.conf is set to "1" or more. For more information
about the LOGGER feature, see "Logger
Configuration".

-fSTRING N/A Specifies the file to use as input to rfx. This is where
the XML flow is located. If no file is specified, rfx will
read from standard input. The following is the syntax
to use when reading from stdin via the korn shell
(ksh):

rfx -f - <<EOF
<FLOW>
…
</FLOW>
EOF

--davinci-f
iles

Off This option is not currently supported.

-g Off Produce visual graphs of a flow.

Note: The flow is not run.

See "Producing Graphical Output of Flows with RETL"
in Chapter 4, "RETL Program Flow" for more
information on how to use this option.

Option Description

RFX_DEBUG Option to turn on verbose RETL debugging to standard output.
Set to "1" to turn on. Default is "0".

RFX_SHOW_SQL Option to turn on verbose RETL database debugging to
standard output. Set to "1" to turn on. Default is "0".

RETL_ENABLE_
ASSERTIONS

Option to enable assertion checking in RETL (use only when
there appears to be a bug in RETL itself). Set to "1" to turn on.
Default is "0".

RETL_VM_MODE "highvol", "lowvol"

Volume option. Set to "highvol" to turn on JVM options for
RETL in high volume environments with longer-running
processes. Default is "highvol" and this should not be changed
unless the flow has been shown to run faster in "lowvol" mode.

Option Default Value Description
Installation and System Configuration 2-9

http://www.research.att.com/sw/tools/graphviz/download.html

Configuration
Configuration
You can specify a configuration file to control how RETL uses system resources, where
to store temporary files, and to set default values for operators.

Configuration Field Descriptions
These descriptions will assist you in modifying your configuration file. The RETL
configuration file rfx.conf is located in the <base_directory>/etc directory.

RETL_INIT_HEAP_SIZE xxxM, where xxx is a number in megabytes

Setting for the initial heap size for the Java Virtual Machine
(JVM). Default is 50M.

RETL_MAX_HEAP_SIZE xxxM, where xxx is a number in megabytes

Setting for the maximum heap size for the Java Virtual Machine
(JVM). Default is 300M.

RETL_JAVA_HOME Any path to a valid Java Runtime Environment (JRE)

Option to reset the location of the Java Runtime Environment
(JRE).

JAVA_ARGS Valid JVM arguments

Option to set any JVM parameters. These will be placed on the
command-line as arguments to the 'java' command. This option
should not be used unless instructed to do so by Oracle Retail
Support, or if the user is aware of the implications of setting
JVM parameters and has tested the results of making any
changes.

RETL_TMP Set for RETL flow temporary files (for example, temporary flow
files from "here" documents).

Defaults to "." or the local directory where the script is run from.
This can be either an absolute path name or relative to your
current directory.

RETL_ENABLE_64BIT_JVM Option to enable 64bit JVM. Set to 1 to enable a 64bit JVM if
available for the particular platform.

Option Description
2-10 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Configuration
Element Name Attribute Name Attribute Value/Description

CONFIG CONFIG is the root element of the RETL
Configuration file. This element can have either
NODE or DEFAULTS elements.

NODE NODE is a child element of the CONFIG element.

hostname The name of the UNIX server where RETL is
installed.

bufsize The number of records allowed between
operators at any given time. The default bufsize
is 2048 records. The bufsize can have a
significant impact on performance. Setting this
value too low causes a significant amount of
contention between processes, slowing down
RETL. A value that is too high can also slow
RETL down because it will consume more
memory than it needs to. Finding the right
value for your hardware configuration and
flow is part of tuning with RETL.

numpartitions Optional value, defaults to 1. See the following
sections on partitioning.

TEMPDIR TEMPDIR is a child element of the NODE
element. This element can be specified more
than one time. RETL will use the temporary
file directories in a round-robin fashion.

See "Temporary Space Configuration".

path Path to the directory where the RETL writes
temporary files.

GLOBAL The GLOBAL element is a child of CONFIG and
specifies values for global settings within RETL.

bytes_per_character This setting specifies the maximum number of
bytes that are in a character. Setting this value
is necessary for allowing RETL to work with
UNICODE data. See "Multibyte Character
Support".
Installation and System Configuration 2-11

Configuration
LOGGER The LOGGER element specifies a facility for
RETL performance logging. This gives a
dynamic view of RETL to allow developers to
get some information about the data that flows
through each operator. This also enables
developers to determine if/when deadlock
conditions occur, debug problems and tune
performance. See the properties that follow on
how to configure the LOGGER for RETL.

type "file"

The type of logging facility to use. Currently
the only value RETL allows is to log to a file.

dest An optional output destination to log to.
Currently, this value must be an absolute or
relative filename. If the filename is relative, the
log file will be placed in the directory as
defined in the TEMPDIR element of the RETL
configuration file (rfx.conf). The log file can be
overridden by specifying -lLOGFILE as a
command-line parameter to rfx. The default
value is "rfx.log".

Note: The dest filename overrides the first
performance log file location specified in
logger.conf. See the "Performance Logger"
section for more information.

level 0, 1, 2

Specifies the level of detailed information
recorded in the log file. Higher levels mean
more information is logged.

Log level values have the following meaning:

"0" = no logging.

"1" = logging of operator start times.

"2" = logging of the above plus:

■ Operator end times

■ Record count per operator

■ Records per second per operator

■ Start and stop times for major events that
are performed by RETL (e.g. query
execution, database utility execution,
external sorts, etc.)

If the flow name is provided in the FLOW
element, it is logged with each logger entry

When the log level is set to "2", a performance
report in HTML format will also be written at
the end of each RETL run. This report will show
hotspots in the RETL flow, in actual time spent
per operator.

Note: Leave logging turned off in production
systems where performance is a critical factor.
The logging feature is not designed to log
errors, but is intended to give rough measures
of flow performance characteristics and aid in
debugging flows. It is recommended to
periodically remove the log file to free
unneeded disk space.

Element Name Attribute Name Attribute Value/Description
2-12 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Configuration
The following is a sample resource configuration for RETL:

<CONFIG>
<NODE hostname="localhost" numpartitions="1" bufsize="2048" >

<TEMPDIR path="/u00/rfx/tmp"/>
<TEMPDIR path="/u01/rfx/tmp"/>

</NODE>
<GLOBAL bytes_per_character="1" >

<LOGGER type="file" dest="rfx.log" level="0" />
</GLOBAL>
<DEFAULTS operator="oraread">

<PROPERTY name="maxdescriptors" value="100"/>
<PROPERTY name="hostname" value="mspdev25"/>
<PROPERTY name="port" value="1521"/>

</DEFAULTS>
<DEFAULTS operator="orawrite">

<PROPERTY name="hostname" value="mspdev25"/>
<PROPERTY name="port" value="1521"/>

</DEFAULTS>
</CONFIG>

Temporary Space Configuration
The best performance can probably be attained when the number of temporary
directories specified in the configuration file is equal to the number of partitions.
Ideally, each temp directory should be on a separate disk controller.

DEFAULTS This element is a child of CONFIGURATION
element.

This section is used to define one or more
default PROPERTY values for operators that are
reused frequently. Care should be taken when
using and changing these defaults since they
can change the results of a RETL flow without
changing individual flows.

operator Operator type

Name of the operator to assign default values.
Refer to the following chapters for the
operators that are available.

PROPERTY The PROPERTY element is a child of the
DEFAULTS element.

name The name of the operator property to assign a
default value. See the following chapters for the
property names for each operator.

value The value assigned as the default for the
specified operator property. See the following
chapters for the property values for each
operator.

Note: These directories must always be local to the host where RETL
is running. Use of network drives can have a drastic impact on
performance.

Element Name Attribute Name Attribute Value/Description
Installation and System Configuration 2-13

Configuration
By default, TEMPDIR is set to /tmp. This should be changed to be a local disk after
installation, because /tmp on many platforms is a memory device used for O/S swap
space. If this is not changed, the system could be exhausted of physical memory.

Take care to protect the files within this directory, because they can contain userid and
password information. Check with your system administrator about setting the
permissions so that only the appropriate personnel can access these files (for example,
by setting: umask 077).

Temporary files should be removed from temporary directories on a daily or weekly
basis. This important server maintenance task aids in RETL debugging, reviewing
database-loading utility log files, and other activities. If a RETL module fails, you
should not rerun the module until after removing the temporary files that were
generated by the failing module.

Logger Configuration
Logging in to RETL is performed using the log4j logging facility. log4j is a flexible
open-source package maintained by the Apache Software Foundation.

log4j can be configured to send logged output to the console, a file, or even a file that
automatically rolls over at a given frequency. log4j can also send logged information to
more than one destination. Additionally, log4j loggers have a tunable logging level
that can control how much information is logged. For more information about log4j,
refer to the following:

http://logging.apache.org/log4j/docs/documentation.html

RETL uses two log4j loggers. The first logger is the performance logger. The second
logger, the output logger, handles RETL output that is normally sent to the terminal.

Performance Logger
The performance logger logs operator statistics such as start time, stop time, and
records processed per second. It also records the start and stop time of various system
events, such as sorts and database queries. See the "Configuration" section for more
information.

The performance logger is configured in the logger.conf file located in the
<base_directory>/etc directory. The performance logger's log4j name is
retek.retl.performance.

To turn on performance logging, edit logger.conf and find the logger XML element
where the name attribute is retek.retl.performance. Change the level to DEBUG. (By
default, the level is WARN.)

Performance information is logged to /tmp/rfx.log. To change the location of this
file, change the file specified in the PERFORMANCE-APPENDER appender.

Note: If a file is specified in the LOGGER element in the rfx.conf
file, it will override the first file specified in the logger.conf file.
2-14 Oracle Retail Extract, Transform, and Load Programmer’s Guide

http://logging.apache.org/log4j/docs/documentation.html

Multibyte Character Support
Output Logger
The output logger logs informational, warning, and error messages. By default, all of
these messages are written to the terminal. You can configure the output logger to
change the destination for these messages.

If you want to use any of the advanced features of log4j, change the output logger
settings in logger.conf. The log4j name of the output logger is retek.retl.

For example, if you want to log all errors into a file and also display them on the
terminal, make the following changes to the logger.conf file:

1. Add the following before the logger element for the "retek.retl" logger, replacing
file-name-for-RETL-errors with the name of the file you want to use:

<appender name="ERRORSTOFILE" class="org.apache.log4j.FileAppender">
<param name="file" value="file-name-for-RETL-errors"/>
<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern" value="[%d] %-5p - %m%n"/>
</layout>
<filter class="org.apache.log4j.varia.LevelRangeFilter">
<param name="acceptOnMatch" value="true"/>
<param name="levelMin" value="ERROR"/>
<param name="levelMax" value="FATAL"/>
</filter>
</appender>

2. Add the following to the retek.retl logger element:

<appender-ref ref="ERRORSTOFILE"/>

The first step creates an appender. Appenders tell the log4j logging system where and
how to log messages. The above example tells log4j that the ERRORSTOFILE
appender is a file appender that writes to the file specified in the file parameter. The
pattern layout shows how to format the message, and the filter dictates that only
messages logged at level ERROR or above are logged.

The second step associates the ERRORSTOFILE appender with the retek.retl. logger.

Multibyte Character Support
The bytes_per_character setting in the configuration file allows RETL to provide
multibyte character support. While this variable is optional, it is required to ensure
proper processing of data containing multibyte characters.

The setting of bytes_per_character is used mainly in the parsing of the schemas used
by IMPORT and EXPORT. The schema files allow field length specification in the
number of characters; RETL uses the bytes_per_character setting to convert the field
length from a number of characters into a number of bytes.

The field length is used in several other operators, so the setting of
bytes_per_character indirectly affects those operators as well. Most notably, it affects
ORAWRITE. When ORAWRITE is configured to create or recreate the target table,
RETL uses the field lengths to define the length of the table columns. For example, if
bytes_per_character is set to 3, and a field is specified with a length of 10 characters in
the IMPORT schema, the resulting database column will be 30 bytes wide.

No corresponding conversion takes place when data is read from an Oracle database,
because the database reports the field lengths in bytes.
Installation and System Configuration 2-15

Multibyte Character Support
Note: The Oracle database reports the length of string constants in a
query in the number of characters, instead of the number of bytes as it
does with the table columns. RETL does not correctly compensate for
the different units of measurement. Using a string constant with
multibyte characters in a query is therefore highly discouraged.

For example, the example query below contains a string constant with
multibyte characters in FIELD1. The Oracle database reports the
length of the FIELD1 field as 2 characters instead of 6 bytes, so RETL
has an incorrect field length for FIELD1.
2-16 Oracle Retail Extract, Transform, and Load Programmer’s Guide

RETL Inte
3

RETL Interface

There are two interfaces to RETL. The traditional interface is through a flow file, which
is a set of processing instructions in XML format. An additional interface that allows
direct access to RETL functionality through a Java class library was introduced in
RETL 11.3.

Terms

Note: Neither interface is preferred over the other. All functionality
in one interface is available in the other. Developers should choose the
interface to RETL depending on their specific integration
requirements.

Term Definition

Flow The instructions that RETL executes. A flow is a collection of
operators.

Record A RETL record is like a database record. It is a collection of
fields of different datatypes.

Dataset A dataset is a collection of records. It is similar to a database
table.

A dataset that is input to an operator is called an input dataset.
A dataset that is output from a record is called an output dataset.

Operator A RETL operator creates, transforms, or writes records in a
dataset.

When speaking of an operator independent of an interface type
in this document, all uppercase letters are used.

Property Operators have properties that tell the operator more
information on how it should perform its job.

For example, the IMPORT operator has an inputfile property
that tells the IMPORT operator which file to import.
rface 3-1

RETL XML Interface
RETL XML Interface
When using the RETL XML interface, the flow is specified in a file in XML format.
(Consult a reference manual or Web site if you are unfamiliar with XML.) The XML
format follows these rules:

■ The root node is named FLOW. That is, the entire XML file contents are contained
within <FLOW> and </FLOW> tags.

■ The FLOW element has an optional attribute named "name." The value of the
name attribute is used when logging information about the flow.

■ The FLOW element requires two or more OPERATOR children elements that
specify the operators.

■ The OPERATOR element has a mandatory attribute named "type." The value of
the type attribute specifies what type of operator is being specified. The operator
type is not case-sensitive, although all lowercase characters are recommended. The
different types of operators are described later in this document.

■ The properties of an operator are specified using a PROPERTY element of the
OPERATOR element. The PROPERTY element has two attributes named "name"
and "value." The name attribute specifies the name of the property, and the value
attribute specifies the value of the property. The valid properties for each operator
are detailed later in this document.

■ The input datasets to an operator are specified using the INPUT child element of
the OPERATOR element. The INPUT element requires a single attribute named
"name." Its value is the name of the dataset. Each input dataset must be an output
dataset of another operator.

■ The output datasets of an operator are specified using the OUTPUT child element
of the OPERATOR element. The OUTPUT element requires a single attribute
named "name." Its value is the name of the dataset. Each output dataset must be
an input dataset to some other operator.

■ XML comments are supported and encouraged.

Here is an example of a flow that reads in data from a file using the IMPORT operator
and writes the records to an Oracle database using the ORAWRITE operator:

<FLOW name="dataload_flow">
<!-- Import the data.txt file. -->
<OPERATOR type="import">

<PROPERTY name="inputfile" value="data.txt"/>
<PROPERTY name="schemafile" value="data.schema.xml"/>
<OUTPUT name="data.v"/>

</OPERATOR>

<!-- Write to the MYDATA table on MYDATABASE -->
<OPERATOR type="orawrite">

<INPUT name="data.v"/>
<PROPERTY name="dbuserid" value="username/password"/>
<PROPERTY name="dbname" value="MYDATABASE"/>
<PROPERTY name="tablename" value="MYDATA"/>

</OPERATOR>
</FLOW>
3-2 Oracle Retail Extract, Transform, and Load Programmer’s Guide

RETL Java Interface
Operator Nesting
Operator nesting is a way of tying together logically related operators, thus reducing
the number of lines in a flow. An OUTPUT for an operator can be replaced with the
operator that would receive the corresponding INPUT.

For example, the following two flows are equivalent. The second flow replaces
OUTPUT of sales.v in the IMPORT with the ORAWRITE, and the ORAWRITE does
not have an INPUT element:

<FLOW>
<OPERATOR type="import">

<PROPERTY name="inputfile" value="sales.txt"/>
<PROPERTY name="schemafile" value="sales-schema.xml"/>
<OUTPUT name="sales.v">

</OPERATOR>
<OPERATOR type="orawrite">

<INPUT name="sales.v">
<PROPERTY name="tablename" value="SALES"/>
...

</OPERATOR>
</FLOW>

<FLOW>
<OPERATOR type="import">

<PROPERTY name="inputfile" value="sales.txt"/>
<PROPERTY name="schemafile" value="sales-schema.xml"/>
<OPERATOR type="orawrite">

<PROPERTY name="tablename" value="SALES"/>
...

</OPERATOR>
</OPERATOR>

</FLOW>

RETL Java Interface
The RETL Java interface exposes the RETL functionality through a Java class library
(that is, an API). This section documents how the Java interface compares with the
XML interface. Documentation of each class can be found in the Javadocs distributed
with the other RETL documentation.

Unless otherwise noted, all classes reside in the com.retek.retl package.

Note: Using operator nesting does not change the performance of a
flow.

Note: When the RETL Java interface is used, RETL runs within the
same JVM as the initiating application. This could lead to resource
contention issues. The initiating application must be started with
appropriate settings for initial heap size, maximum heap size, and
thread stack size, as well as any garbage collection parameters.

For more information on parameters to set, consult the "Performance
Tuning Guide" and the RETL shell script.
RETL Interface 3-3

RETL Java Interface
Initialization
When the XML interface is used, the RETL run-time environment is set through
environment variables and command line options to the RETL shell script. In the Java
interface, the RETL runtime environment must be initialized using the RETL class.
This class has methods that allow you to set the run-time parameters. See the Javadoc
for more information.

Flows
Just like the XML interface, the Java interface runs flows. The difference is that in the
Java interface, a flow is an instance of the Flow class. Operators are added to the flow
using the the add()method. After all of the operators have been added to the flow, the
flow is executed using the run()method.

Operators
For each operator type in the XML interface, there is a corresponding class in the Java
interface. For example, the IMPORT operator functionality is contained in a class
named Import. The operators are documented in Chapters 7 through 13 of this guide.

The class name is always an uppercase first letter followed by lowercase letters, even
for operator names that consist of more than one word. For example, the class name
for the CHANGECAPTURE operator is Changecapture, not ChangeCapture.

Properties
Each operator property is set through a method that has the same name as the
property. The valid properties for each operator are documented in chapters 7 through
13.

The method name for setting a property is all lowercase, even when the property name
consists of more than one word. For example, the schemafile property of the IMPORT
operator is set through the Import.schemafile() method, not
Import.schemaFile(). There are only setter methods; no getter methods are
implemented.

Datasets
Operators have input()and output()methods that set the name of the input and
output datasets of an operator. These methods correspond to the INPUT and OUTPUT
elements of the XML interface.

The following Java class runs a flow that is identical to the dataload_flow example
flow from the XML interface:

import com.retek.retl.*;
import com.retek.retl.base.RETLException;

...

try
{

RETLProperties retlProperties = new RETLProperties();
retlProperties.setRETLHomeDirectory(...);
RETL.initialize(retlProperties);
3-4 Oracle Retail Extract, Transform, and Load Programmer’s Guide

RETL Java Interface
Flow flow = new Flow();

Import opImport = new Import();
opImport.inputfile("data.txt");
opImport.schemafile("data.schema.xml");
opImport.output("data.v");
flow.add(opImport);

Orawrite opOrawrite = new Orawrite();
opOrawrite.input("data.v");
opOrawrite.dbuserid("username/password");
opOrawrite.dbname("MYDATABASE");
opOrawrite.tablename("MYDATA");
flow.add(opOrawrite);

flow.run();
}

catch (RETLException e)
{

RETL.handleException(e);
System.exit(1);

}

RETL Interface 3-5

RETL Java Interface
3-6 Oracle Retail Extract, Transform, and Load Programmer’s Guide

RETL Program
4

RETL Program Flow

Program Flow Overview
The following text and diagram provides an overview of the RETL
input-process-output model. The data input operators to RETL processing include the
following:

■ DBREAD, where data is read directly from a database

■ IMPORT, where RETL accepts a data file

■ GENERATOR, where RETL itself creates data input

Data process operators commonly include those that transform data in the dataset
being processed, including GROUPBY, which can be used to sum values in a table
column.

The data output process can include the use of the following operators:

■ DBWRITE, where RETL writes data directly to the database

■ DEBUG, which can be used to print records directly to the screen (stdout)

■ EXPORT, which can export data to a flat file

General Flow
The following diagram is a general representation of the form that all flows take.
Every flow must have a data input (or source) and a data output (or sink). These flows
may optionally perform transformations on the input data before sending it to the data
output.
 Flow 4-1

A Simple Flow
Some things to note about all flows:

■ When an operator generates an output dataset, that output dataset must be input
into another operator. The data "flows" from one operator to another along the
datasets (the arrows between the operators above).

■ DATA INPUT operators have no dataset inputs - they get data from outside
sources such as an Oracle database or flat file.

■ Similarly, DATA OUTPUT operators are terminal points within the flow. They do
not generate output datasets. They export records to an external repository (for
example, Oracle databases or flat files).

The next sections describe specific flows.

A Simple Flow
The following diagram is one way to represent a simple flow. This flow contains three
operators: ORAREAD, FIELDMOD and EXPORT. This flow also contains two datasets;
these are the simple arrows that connect the operator boxes above. The arrow from
ORAREAD to FIELDMOD means that records flow from the ORAREAD operator to
the FIELDMOD operator. Likewise, the arrow from FIELDMOD to EXPORT indicates
that the records from the FIELDMOD operator are passed onto the EXPORT operator.

In this flow diagram, several attributes are also shown to give more information about
what exactly this flow does. This flow pulls the COMPHEAD table out of the ORA_
SID database (using the ORAREAD operator), renames the column CMPY_IDNT to
COMPANY (using the FIELDMOD operator), and exports the resulting records to the
file results.txt (using the EXPORT operator).

Here is XML for the above flow:

<FLOW name="cmpy.flw">
<OPERATOR type="oraread">
<PROPERTY name="dbname" value="ORA_SID"/>
<PROPERTY name="connectstring" value="userid/passwd"/>
<PROPERTY name="query">

<![CDATA[
select * from COMPHEAD

]]>
</PROPERTY>
<OUTPUT name = "data.v"/>

</OPERATOR>
 <!-- This is the format for a comment.
 -- They can of course be
 -- multi-line, but cannot be nested.
4-2 Oracle Retail Extract, Transform, and Load Programmer’s Guide

A More Complex Flow
 -->
<OPERATOR type="fieldmod">

<PROPERTY name="rename" value="CMPY_IDNT=COMPANY"/>
<INPUT name = "data.v"/>
<OUTPUT name = "comphead.v"/>

</OPERATOR>
<OPERATOR type="export">

<INPUT name="comphead.v"/>
<PROPERTY name="outputfile" value="results.txt"/>

</OPERATOR>
</FLOW>

A More Complex Flow
Flows can get much more complex than the simple flow shown previously.

The following flow pulls in data simultaneously from a flat file and an Oracle
database. The dataset from the file is filtered based upon the specified filter criterion,
then sorted. In parallel, the dataset from the Oracle database is modified using the
FIELDMOD operator, and then sorted. The resulting datasets are joined, and the
results are output to a flat file using the EXPORT operator.

Note the following:

■ RETL can deal with multiple data sources within a single flow.

■ RETL can output results to multiple files or database tables.
RETL Program Flow 4-3

Online Help
Online Help
RETL has an online help system you can use to obtain operator syntax and usage
information directly from the rfx binary. The following help is available:

■ Specify property names for each operator

■ Confirmation of whether a property is required or optional

■ Valid values for each property

■ A brief description of each property

■ Default values for each property (if the property is optional)

For more information about this feature, see information about the " -o" option in the
"rfx Command Line Options" section in Chapter 2, "Installation and System
Configuration".

Debugging with RETL
It is often useful for RETL flow programmers or system administrators to diagnose
what is happening inside of RETL. This can assist in tracking down errors or
performance bottlenecks. There are several mechanisms that RETL offers to aid in
debugging:

■ Verbose messages

Verbose can be turned on using the following variables:

export RFX_DEBUG=1
export RFX_SHOW_SQL=1

■ RFX_DEBUG turns on additional informational messages about RETL operations
to standard output.

■ RFX_SHOW_SQL turns on additional logging of database operations to standard
output.

For more information about printing in schema file format, see "Configure RETL to
Print Schema Output in Schema File Format" in Chapter 5, "RETL Schema Files".

For more information about printing graphical output of flows, see "Producing
Graphical Output of Flows with RETL".

For more information about performance logging, see "Logger Configuration" in
Chapter 2, "Installation and System Configuration".
4-4 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Producing Graphical Output of Flows with RETL
Producing Graphical Output of Flows with RETL
Beginning with version 11.2, RETL offers an option to print graphs of flows. This
allows a flow developer or user to get an actual picture of a RETL flow, and of RETL
operators and link names that connect each operator. In addition to a visual aid, this
graph is invaluable for tracing problems with a flow. RETL error messages often
denote which operator threw a particular error. By noting the link names that connect
operators, you can trace problems directly back to the source operator, fix the problem,
and rerun the flow. An example of running a flow with the -g command line option is
as follows:

1. Enter the following:

rfx -f <flow name.xml> -g

2. Load rfx<random#>_serial_flow.html in any Web browser to view the output.

XML Flow RETL Visual Graph

<FLOW name="example.flw">
 <OPERATOR type="import">
 <PROPERTY name="inputfile"
 value="input0.dat"/>
 <PROPERTY name="schemafile"
 value="schema0.xml"/>
 <OUTPUT name="import0.v" />
 </OPERATOR>
 <OPERATOR type="fieldmod">
 <INPUT name="import0.v"/>
 <PROPERTY name="keep"
 value="A D"/>
 <OUTPUT name="leftside.v"/>
 </OPERATOR>
 <OPERATOR type="import">
 <PROPERTY name="inputfile"
 value="input1.dat"/>
 <PROPERTY name="schemafile"
 value="schema1.xml"/>
 </OPERATOR>
 <OPERATOR type="fieldmod">
 <INPUT name="import1.v"/>
 <PROPERTY name="keep"
 value="B D"/>
 <OUTPUT name="rightside.v"/>
 </OPERATOR>

 <OPERATOR type="lookup">
 <INPUT name="leftside.v" />
 <INPUT name="rightside.v" />
 <PROPERTY name="tablekeys"
 value="D"/>
 <OUTPUT name="joined.v" />
 </OPERATOR>
 <OPERATOR type="debug">
 <INPUT name="joined.v"/>
 </OPERATOR>
</FLOW>
RETL Program Flow 4-5

Performance Logging with RETL
This is an invaluable tool when debugging a RETL flow. For example, RETL might
return the following error:

Exception in operator [lookup:1]
Record (A|B) can't be found in lookup relation!

To determine which lookup operator the error came from, follow these steps:

1. Print a RETL flow graph (see RETL syntax above).

2. Locate the operator with the name lookup:1 in the flow graph. (This can also be
located directly in the XML, by counting down to the first lookup operator in the
flow.)

3. Locate link names that connect to lookup:1, and search the XML flow file for the
lookup operator that contains these link names. For example, in the above flow,
lookup:1 has links named leftside.v and rightside.v as INPUTs, and joined.v as
OUTPUT. You can use any of these to search for the appropriate lookup in the
flow, because link names must be unique.

Performance Logging with RETL
RETL records the following diagnostic information when the retek.retl.performance
log4j logger is set to level DEBUG:

■ Processing time for each operator

■ Count of processed records for each operator

■ Throughput in records per second for each operator

■ Major events taking place within each operator (for example, start/stop times for
queries in DBREAD operators, calls to native database load utilities in DBWRITE
operators, or calls to external gsort in SORT)

This information is logged in the performance log file. Also, the first three items are
used to create an Operator Time Comparison Chart and a Performance Graph.

The file locations of the Operator Time Comparison Chart and the Performance Graph
are output when RETL completes processing:

All threads complete

Flow ran successfully
Open operator-time-comparison-chart-file in your browser to see the performance
page.
1 File written: performance-graph-file
To view the output, use this command to load the file into dotty:

dotty performance-graph-file
4-6 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Performance Logging with RETL
Sample Log File
[2004-12-08 16:04:15,193]PERF: oraread:3 Starting query 1 of 1: select * from
stresstests_1000000
[2004-12-08 16:04:15,256]PERF: oraread:3 Ending query 1
[2004-12-08 16:04:15,384]PERF: oraread:4 Starting query 1 of 1: select * from
stresstests_1000000 ORDER BY SEQFIELD
[2004-12-08 16:04:15,420]PERF: oraread:4 Ending query 1
[2004-12-08 16:04:15,479]User time: sortfunnel:1 started!
[2004-12-08 16:04:15,480]User time: sort:1 started!
[2004-12-08 16:04:15,480]User time: oraread:3 started!
[2004-12-08 16:04:15,481]User time: oraread:4 started!
[2004-12-08 16:05:06,460]User time: Operator "pipeline:2" finished - processed
1,000,000 records in 50.977 seconds (19,616.69 records/sec)
[2004-12-08 16:05:06,464]User time: Operator "oraread:3" finished - processed
1,000,000 records in 50.968 seconds (19,620.154 records/sec)
[2004-12-08 16:05:06,475]PERF: sort:1 Starting gsort
[2004-12-08 16:05:20,426]PERF: sort:1 Ending gsort
[2004-12-08 16:05:20,529]User time: export:1 started!
[2004-12-08 16:06:14,122]User time: Operator "import:1" finished - processed
1,000,000 records in 53.685 seconds (18,627.177 records/sec)
[2004-12-08 16:06:14,125]User time: Operator "pipeline:1" finished - processed
1,000,000 records in 118.643 seconds (8,428.647 records/sec)
[2004-12-08 16:06:14,128]User time: Operator "sort:1" finished - processed
1,000,000 records in 118.643 seconds (8,428.647 records/sec)
[2004-12-08 16:06:14,191]User time: Operator "pipeline:3" finished - processed
1,000,000 records in 118.708 seconds (8,424.032 records/sec)
[2004-12-08 16:06:14,193]User time: Operator "oraread:4" finished - processed
1,000,000 records in 118.708 seconds (8,424.032 records/sec)
[2004-12-08 16:06:14,201]User time: Operator "pipeline:0" finished - processed
2,000,000 records in 118.72 seconds (16,846.361 records/sec)
[2004-12-08 16:06:14,204]User time: Operator "sortfunnel:1" finished - processed
2,000,000 records in 118.72 seconds (16,846.361 records/sec)
[2004-12-08 16:06:14,206]User time: Operator "export:1" finished - processed
2,000,000 records in 53.675 seconds (37,261.295 records/sec)
RETL Program Flow 4-7

Performance Logging with RETL
Sample Operator Time Comparison Chart
4-8 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Performance Logging with RETL
Sample Performance Graph
RETL Program Flow 4-9

Performance Logging with RETL
4-10 Oracle Retail Extract, Transform, and Load Programmer’s Guide

RETL Schema
5

RETL Schema Files

RETL can process datasets directly from a database or from file-based systems.
Depending on the data source, one of two operators can perform this function:

■ For reading data directly from database tables, use the ORAREAD operator. See
Chapter 6, "Database Operators" for more information about how to use
ORAREAD.

■ For situations in which you expect RETL to process data in a file format, use the
IMPORT operator. This operator imports a disk file into RETL, translating the data
file into a RETL dataset.

Schema File Requirements
RETL stores information about each dataset that describes the data structures (the
metadata). The means by which you supply metadata is dependent of whether you
interface data using the DBREAD or IMPORT operator. When datasets are created
using DBREAD, the metadata is read along with the data directly from the database
table. In this case, RETL requires no further metadata. If the IMPORT operator is used
for dataset input, RETL requires the use of a schema.

The schema ensures that datasets are consistent from the source data to the target data.
RETL reads a schema file that is specific to the dataset that is being imported. RETL
uses the schema file to validate the input dataset structure. For example, if the dataset
ultimately populates a target table in a database, the schema file dictates the type and
order of the data, as well as the data characteristics such as the character type, length,
and nullability.

Two types of schema files are defined for use with an incoming text data file:

■ Delimited file type

■ Fixed length file type
 Files 5-1

Schema File XML Specification
Schema File XML Specification

Element Name Name Value/Description

RECORD RECORD is the root tag of the schema file.

type "delimited" or "fixed"

Required field. Specified whether the schema is fixed
records or delimited records.

final_
delimiter

Any character

Required field. End of record delimiter that is used
within the input file to distinguish the end of a record.
This is extremely important to help distinguish
between records in the event that the input data file is
corrupt. Generally this is a newline character for
readability.

len 1..n

Required only if the type attribute is "fixed". This is the
total length of the fixed length record. Note that this
must be equivalent to the sum of all aggregate field
lengths.

sortkeys Space separated list of keys

Optional property to specify what fields the records
are sorted by. This should be used only when it is
known that the records will always be sorted by
specified keys. This property must be specified in
conjunction with "sortorder".

sortorder "asc" or "desc"

Optional property to specify the sort order of the
record. Specify "asc" for ascending sorted order and
"desc" for descending sorted order. See the "sortkeys"
attribute.
5-2 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Schema File XML Specification
FIELD FIELD is a child element of RECORD.

name The name of the field.

delimiter field delimiter

This optional attribute is for delimited fields only. It
specifies the end-of-field delimiter, which can be any
character, but the default value is the pipe character
('|').

The delimiter can be specified in hexadecimal notation
by prefixing "0x" to the ASCII value of the character.
This allows specification of a delimiter that is highly
unlikely to appear in the data, such as 0x02.

datatype Any one of: "int8", "int16", "int32", "int64", "uint8",
"uint16", "uint32", "uint64", "dfloat", "sfloat", "string",
"date", "time", or "timestamp"

See Appendix E, "Appendix: RETL Data Types",
especially the note in RETL data type to Oracle data
type (ORAWRITE).

nullable "true" or "false"

Optional field describing whether null values are
allowed in the field. The default value is false. If true
then a nullvalue MUST be specified.

nullvalue Required if nullable is "true". This is the text string that
an IMPORT operator uses when reading flat files to
determine whether a field is null.

This should be a unique value that is not otherwise be
found within the dataset. For fixed-length fields, this
value must be equal in length to the field length, so
that the record length remains fixed.

Note: The null string ("") can specified for a
fixed-length field, rather than specifying a number of
blanks equivalent to the length of the field.

Null values must be a valid value for the type
specified. For example, '00000000' as a nullvalue for a
date is invalid.

maxlength Specifies the maximum allowable length of the string
field in characters. Required only for delimited string
fields.

len Specifies the length of the field in characters. Required
for all fixed length fields.

strip 'leading', 'trailing', 'both', or 'none'

Optional attribute used for delimited string fields, to
determine whether and how white space (tabs and
spaces) should be stripped from input field. The
default value is 'none'.

Element Name Name Value/Description
RETL Schema Files 5-3

Delimited Record Schema
Delimited Record Schema
When you create a schema for use with a delimited file type, follow these guidelines:

■ The delimiter can be any symbol.

■ To define the field's nullability, set nullable to "true" or "false".

■ If the field is nullable, set the default nullvalue. This is often set to "" (the null
string).

■ For the string data type, specify the maxlength.

Example Delimited Schema File
<RECORD type="delimited" final_delimiter="0x0A">
 <FIELD name="colname1" delimiter="|" datatype="int8" nullable="false"/>
 <FIELD name="colname2" delimiter="|" datatype="int16" nullable="true"
nullvalue=""/>
 <FIELD name="colname3" delimiter="|" datatype="int32"
nullable="true" nullvalue=""/>
 <FIELD name="colname4" delimiter="|" datatype="int64"
nullable="true" nullvalue=""/>
 <FIELD name="colname5" delimiter="|" datatype="dfloat"
nullable="true" nullvalue=""/>
 <FIELD name="colname6" delimiter="|" datatype="string" maxlength="5"
nullable="false" />
 <FIELD name="colname7" delimiter="|" datatype="date"
nullable="false" />
 <FIELD name="colname7" delimiter="|" datatype="timestamp"
nullable="false" />
 <FIELD name="colname8" delimiter="|" datatype="uint8"
nullable="false" />
 <FIELD name="colname9" delimiter="|" datatype="uint16"
nullable="true" nullvalue=""/>
 <FIELD name="colname10" delimiter="|" datatype="uint32"
nullable="true" nullvalue=""/>
 <FIELD name="colname11" delimiter="|" datatype="uint64"
nullable="true" nullvalue=""/>
 <FIELD name="colname12" delimiter="|" datatype="sfloat"
nullable="true" nullvalue=""/>
</RECORD>

Note: Make sure that the delimiter is never part of your data.
5-4 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Fixed-Length Record Schema
Fixed-Length Record Schema
When you create a schema for use with fixed-length records, follow these guidelines:

■ Specify the length (len) of the record.

■ Specify a len value for every field. The total of all fields must be equivalent to the
record length.

■ To define the field's nullability, set nullable to "true" or "false".

■ If the field is nullable, set the default nullvalue. Remember that since this is a fixed
length field the null value must be the correct length for the field.

■ If possible, specify the final_delimiter to ensure that input files are at least
record-delimited, so that RETL can recover in the event that data is corrupt or
invalid.

Example Fixed-Length Schema File
<RECORD type="fixed" len="99" final_delimiter="0x0A">
 <FIELD name="colname1" len="2" datatype="int8"
nullable="false" />
 <FIELD name="colname2" len="5" datatype="int16"
nullable="false"/>
 <FIELD name="colname3" len="10" datatype="int32"
nullable="false"/>
 <FIELD name="colname4" len="18" datatype="int64"
nullable="false"/>
 <FIELD name="colname5" len="6" datatype="dfloat"
nullable="true" nullvalue="NULVAL"/>
 <FIELD name="colname6" len="5" datatype="string" nullable="false"
/>
 <FIELD name="colname7" len="8" datatype="date"
nullable="false" />
 <FIELD name="colname7" len="14" datatype="timestamp"
nullable="false" />
 <FIELD name="colname8" len="2" datatype="uint8"
nullable="false" />
 <FIELD name="colname9" len="4" datatype="uint16"
nullable="true" nullvalue="XXXX"/>
 <FIELD name="colname10" len="5" datatype="uint32"
nullable="true" nullvalue=" "/>
 <FIELD name="colname11" len="18" datatype="uint64"
nullable="false"/>
 <FIELD name="colname12" len="18" datatype="sfloat"
nullable="false"/>
</RECORD>

Note: Make sure that the final_delimiter is never part of your data.
RETL Schema Files 5-5

Fixed-Length Record Schema
nullvalue Considerations
Because nullvalues can be changed between import and export schemas, it is possible
to lose data if you are not careful. However, this property can also be used to assign
default values to null fields on export. No matter how you use them, take care when
selecting values for a field's nullvalue. Unless you are assigning a default value to a
null field on export, do not use a value that can appear as a valid value within a given
dataset.

To illustrate consider the following schema (named 1.schema):

<RECORD type="delimited" final_delimiter="0x0A">
 <FIELD name="colname1" delimiter="|" datatype="int8" nullable="false" />
 <FIELD name="colname2" delimiter="|" datatype="dfloat" nullable="true"
nullvalue=""/>
 </RECORD>

Also consider this schema (named 2.schema), where the nullvalue has been modified
for the second field:

<RECORD type="delimited" final_delimiter="0x0A">
 <FIELD name="colname1" delimiter="|" datatype="int8" nullable="false" />
 <FIELD name="colname2" delimiter="|" datatype="dfloat" nullable="true"
nullvalue="0.000000"/>
 </RECORD>

When running through the following flow:

<FLOW>
<OPERATOR type="import">

<PROPERTY name="inputfile" value="1.dat" />
<PROPERTY name="schemafile" value="1.schema" />

<OUTPUT name="import.v" />
</OPERATOR>
<OPERATOR type="export">
<INPUT name="import.v" />
<PROPERTY name="outputfile" value="2.dat" />
<PROPERTY name="schemafile" value="2.schema" />

</OPERATOR>
</FLOW>

Where 1.dat contains the following data:

 2|
 3|4.000000
 4|5.000000
 5|0.000000

The following is the resulting output to 2.dat:

 2|0.000000
 3|4.000000
 4|5.000000
 5|0.000000

By using an export schema that has valid values to represent the nullvalue for the
second field, this flow has assigned a default value to all of the second field's null
values.
5-6 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Configure RETL to Print Schema Output in Schema File Format
Then if you change the input and schema files, as in the following flow:

<FLOW>
<OPERATOR type="import">

<PROPERTY name="inputfile" value="2.dat" />
<PROPERTY name="schemafile" value="2.schema" />
<OUTPUT name="import.v" />

</OPERATOR>
<OPERATOR type="export">

<INPUT name="import.v" />
<PROPERTY name="outputfile" value="3.dat" />
<PROPERTY name="schemafile" value="1.schema" />

</OPERATOR>
 </FLOW>

Output file 3.dat will look like this:

 2|
 3|4.000000
 4|5.000000
 5|

Configure RETL to Print Schema Output in Schema File Format
One error-prone area in the development of RETL flows is when developers break up
and put together flows. The schema files are the interface between flows that tell RETL
how to read and write files. Writing schema files manually is tedious and error-prone.
It is highly recommended that developers use the -sSCHEMAFILE command line
option to speed up development. For more information about this feature, see the "rfx
Command Line Options" section in Chapter 2, "Installation and System
Configuration".

Note: Null values are always considered the smallest value in a field.
That is, for any value n, null < n. In sorted order, null values precede
all other values in ascending order and follow all other values in
descending order.
RETL Schema Files 5-7

Configure RETL to Print Schema Output in Schema File Format
5-8 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Database Ope
6

Database Operators

ORAREAD
ORAREAD performs a read from Oracle databases. RETL uses JDBC technology to
read data out of Oracle databases.

ORAWRITE
ORAWRITE performs a load to Oracle databases. RETL uses SQL*Loader (sqlldr) to
load the records.

UPDATE
The UPDATE operator updates records in an Oracle database. Fields in the records are
used to provide updated values and also select records for updating.

DELETE
The DELETE operator deletes records from an Oracle database table. Fields in the
records are used to select records for deleting.

INSERT
The INSERT operator inserts records into an Oracle database table. This is the same
functionality that ORAWRITE performs, only using a different technology (JDBC
instead of SQL*Loader). ORAWRITE is preferred from a performance standpoint.

Note: The ORAWRITE operator may implicitly drop fields when
writing to the database, if fields in the incoming record schema do not
exist in the database table. Also, the incoming record schema
determines what is set for nullabilities and maxlengths of fields as
well. If there are any inconsistencies between the incoming record and
the format of the database table, RETL may not flag this as a problem;
instead, it relies on SQL*Loader to throw errors or reject inconsistent
records. This only happens when appending to an existing table and
does not affect database writes when specifically creating or recreating
a table.
rators 6-1

PREPAREDSTATEMENT
PREPAREDSTATEMENT
The PREPAREDSTATEMENT allows you to execute SQL commands using values
from the current record as input into the SQL command.

The PREPAREDSTATEMENT can perform inserts, deletes, and updates like the
INSERT, UPDATE, and DELETE operators, only there is much more flexibility. For
instance:

■ Record field names can be used more than once.

■ Complex WHERE clause logic can be used.

■ SQL calculations can be used.

The statement property specifies the SQL to execute. The SQL specified can contain
question marks (?) that act as placeholders for values from the current record. The
fields property contains the names of the fields that will be used to provide the values.
The fields must be specified in the same order as the question mark placeholders, but
the same field can be specified multiple times.

All of the following are valid values for the statement property:

■ UPDATE EMPLOYEES SET SALARY = ? WHERE EMPLOYEE_ID = ? AND
JOB_TITLE = 'SOFTWARE ENGINEER'

This statement applies the new salary only if the employee is a software engineer.
The JOB_TITLE field does not need to be in the RETL dataset.

■ UPDATE EMPLOYEES SET SALARY = SALARY * 1.10 WHERE EMPLOYEE_ID
= ?

This statement gives a 10% raise to an employee. The 10% calculation is performed
by the database, not RETL.

■ DELETE FROM EMPLOYEES WHERE EMPLOYEE_ID = ? AND LOCKED =
"false"

This statement deletes a record from the EMPLOYEES table, provided its
LOCKED column is set to "false".

■ INSERT INTO EMPLOYEES (LAST_NAME, FIRST_NAME, SALARY, JOB_
TITLE) VALUES (?, ?, 0, 'UNKNOWN')

This statement inserts a record into the employees table with a salary of 0 and a
title of 'UNKNOWN'. The input dataset does not need to have fields named
SALARY and JOB_TITLE.

Note: One important restriction is that there must be a database
column with the same name for any field specified in the fields
property.
6-2 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Database Operators XML Specification Table
Database Operators XML Specification Table
The following table outlines database read/write operators.

ORAREAD

Note: Throughout the RETL Programmer's Guide, schema can apply
to the data structure that the RETL applies to a dataset (such as a
schema file), or schema can apply to the database owner of a table (the
schemaowner property of a database write operator).

Element Name Name Value

PROPERTY dbname Name of the Oracle database.

PROPERTY connectstring username/password

PROPERTY maxdescriptors Maximum number of columns allowed to be
returned from the database. This is an optional
property. The default value is 70.

PROPERTY Query The SQL query (select statement) used to extract the
data from the database. SQL syntax must be
executable for the database environment.

Note: This property must be enclosed in a CDATA
tag in order to allow all SQL query types. See
examples for more information.

If any kind of function is applied to a column in the
select statement, the column will be extracted as a
DFLOAT even if the column in the database is
defined as an int or string type. You may have to
perform a CONVERT to change datatypes in order
to compensate for this behavior.

PROPERTY datetotimestamp This is an optional property. When it is set to "true",
ORAREAD returns DATE columns with the time
included. When false, the time is not included. The
default for this property is "false".

PROPERTY hostname Hostname or IP address

This is an optional property. The fully-specified
hostname or IP address where the database resides.
This defaults to the localhost if not specified.

Note: This property should only be specified when
it is known that connections are being made to a
remote database.

This can be specified as a default in rfx.conf for
convenience.

PROPERTY Port Port number

This is a required property. The port on which the
database resides. This defaults to 1521 if not
specified in an operator or in rfx.conf.

Note: There are preset defaults in rfx.conf for the
necessary port numbers. The default for Oracle is
1521. The Oracle utility tnsping can be used to
obtain the port number.

Verify with your database administrator the proper
port for your database installation.
Database Operators 6-3

Database Operators XML Specification Table
<PROPERTY name="jdbcdriverstring" value="oracle.jdbc.driver.OracleDriver" />
<PROPERTY name="jdbcconnectionstring" value="jdbc:oracle:oci:@" />

ORAWRITE

PROPERTY sp_prequery Special query that allows the flow developer to
specify a stored procedure to be run prior to the
main query that ORAREAD executes. The current
implementation does not allow variables to be
specified, and it does not allow data to be returned.

PROPERTY sp_postquery Special query that allows the flow developer to
specify a stored procedure to be run after the main
query that ORAREAD executes. The current
implementation does not allow variables to be
specified, and it does not allow data to be returned.

PROPERTY numpartitions Optional property indicating the number of data
partitions to create. A query must be specified for
data partition.

PROPERTY arraysize Optional property indicating the number of rows to
pre-fetch. The default is 100. Increasing this value
may improve performance, because fewer trips are
made to the database. However, memory usage
increases because more records are being held in
memory at one time.

PROPERTY useString Optional property used for testing the latin type
characters.

Note: When this property is added with value as
true, the method used will be getstring(). The
default method used is getbytes(). In the flow
XML, add the property as follows.

<PROPERTY name="useString" value="true" />
//

By default it is false.

OUTPUT The output dataset name.

Note: You can connect to database using the ORAREAD operator as
either a thin or oci client. To connect to the database as an OCI client,
add the following URL in the flow XML.

Element Name Name Value

PROPERTY Dbname Name of the Oracle database.

PROPERTY dbuserid username/password

PROPERTY maxdescriptors Maximum number of columns allowed to be written
to the database.

PROPERTY schemaowner The database owner of the table.

PROPERTY tablename Name of the Oracle table to which the data is
written.

Element Name Name Value
6-4 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Database Operators XML Specification Table
PROPERTY Method This is an optional property to specify the loading
method. The default is "conventional".

direct—Load the data using the SQL*Loader utility
with direct=true.

conventional—Load the data using SQL*Loader
utility with direct=false.

PROPERTY Mode This is an optional property.

append—Add the new data in addition to existing
data on the target table.

truncate—Delete the data from the target table
before loading the new data.

The default value is append.

PROPERTY createtablemode This is an optional property that allows the
developer to specify table creation mode. If this
property is not given, the flow will fail if the
specified table does not already exist.

recreate—Drops the table and recreates the same
table before writing the data.

create—Use this option when the target table does
not exist. It will create the table before writing the
data only if the table does not exist.

PROPERTY jdbcdriver Connects to the database through the specified
database driver, for example, Oracle Call Interface
(OCI).

This is an optional property that defaults to THIN.

PROPERTY allowedrejects A value greater than zero that indicates how many
errors are allowed before SQL*Loader exits with a
critical error. This is an optional property that
defaults to 50.

PROPERTY exit_threshold Optional property that allows configuration of the
level of errors or warnings from SQL*Loader to
cause RETL to abort. Valid values are as follows,
from most strict to least strict in causing RETL to
abort:

warning—Any SQL*Loader warnings or fatal errors
will cause RETL to abort.

exceeded_rejects—SQL*Loader rejects exceeding the
allowedreject property, or SQL*Loader fatal errors,
will cause RETL to abort.

fail_or_fatal—Only SQL*Loader failures or fatal
errors will cause RETL to abort.

The default value is fail_or_fatal.

PROPERTY numloaders Specifies the degree of parallelism by executing a
number of SQL*Loaders running in parallel. May be
specified in either conventional or direct mode,
although there are certain restrictions for each. (See
Oracle SQL*Loader syntax for information.)

Note: Multiple tempdir properties should be used
in conjunction with the numloaders property in a
one-to-one mapping to maximize performance. For
example, if running 8 ways parallel, 8 distinct
temporary directories should be specified to
maximize performance.

Element Name Name Value
Database Operators 6-5

Database Operators XML Specification Table
PROPERTY parallel true or false

Optional property that allows RETL to execute one
SQL*Loader per RETL partition. This behaves
similar to the numloaders property, but it connects
SQL*Loader sessions directly to each parallel RETL
partition.

Note: Parallel ORAWRITE automatically inherits
parallelism from the numpartitions property in
rfx.conf, in that one SQL*Loader session is spawned
for each partition (for example, if numpartitions is
set to 4, then 4 SQL*Loaders will be run in parallel).
See the "Configuration" section in Chapter 2,
"Installation and System Configuration" for more on
setting numpartitions.

To override parallelism in ORAWRITE, set parallel
to "false" and set numloaders to the desired number
of concurrent SQL*Loaders.

When running ORAWRITE in parallel mode, there
are restrictions imposed by SQL*Loader. Refer to
Oracle SQL*Loader syntax for more information on
these limitations.

PROPERTY tempdir The temporary directories to use for the SQL*Loader
data files. May be specified multiple times by
specifying separate properties.

Note: To maximize performance, temporary
directories should reside on separate disk controllers
when specifying tempdir with parallel SQL*Loaders
through the numloaders property.

PROPERTY partition Optional name of the partition of the Oracle table to
which data is written.

PROPERTY outputdelimiter Optional. Output delimiter to be used when sending
data to SQL*Loader.

Note: By default, SQL*Loader is sent fixed-format
data. The outputdelimiter property can significantly
speed up the performance of flows that have records
with many fields that are not populated with data.

The outputdelimiter should never be set to a value
that can be part of the data.

PROPERTY loaderoptions Optional. Name-value pair options to be passed to
SQL*Loader through the SQL*Loader parfile.

In particular, the rows setting can be tweaked to
improve performance. The setting specifies the
number of rows per commit and defaults to 5000.
Increasing this value will decrease the number of
commits per SQL*Loader session.

Note: See Oracle documentation on SQL*Loader for
more information about valid options. RETL does
not validate any options passed through this
parameter. If these options are incorrect,
SQL*Loader will cause RETL to fail.

PROPERTY rows Number of rows per commit.

Deprecated: Use rows=numrows in the
loaderoptions property.

Element Name Name Value
6-6 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Database Operators XML Specification Table
PROPERTY controlfileload
options

Optional. Options to pass in the control file LOAD
command. RETL handles the following:

■ LOAD keyword

■ INFILE clause

■ APPEND, TRUNCATE, REPLACE keywords

■ INTO TABLE clause

In particular, the controlfileloadoptions property can
be set to 'PRESERVE BLANKS' so that trailing
blanks are not stripped by SQL*Loader. The
outputdelimiter property should also be specified in
this case, so that the spaces used for padding a
fixed-width data file are not preserved.

PROPERTY sortedindexes Name of an existing database index.

Indicates data sent to SQL*Loader exists in the same
order as the specified database index. This
eliminates the need to sort the new index entries and
can give considerable performance increases when
the sorted order of the records is known to match
the index. Multiple sort indexes can be separated by
commas. May be used in direct mode only.

PROPERTY singlerow Specify "yes" to update indexes as each new row is
inserted. Default value is "no".

Note: The singlerow property should only be
specified as "yes" when it has been shown to
increase performance. In most cases, it will make the
load slower. Consult the Oracle SQL*Loader
documentation for more information about the
SINGLEROW option and when it makes sense to
use it.

PROPERTY preload This is a special query that allows the flow
developer to specify a stored procedure to be run
prior to SQL*Loader execution. The current
implementation does not allow variables to be
specified, and it does not allow data to be returned.
This is useful to drop indexes prior to a load, for
example.

PROPERTY postload This is a special query that allows the flow
developer to specify a stored procedure to be run
after SQL*Loader execution. The current
implementation does not allow variables to be
specified, and it does not allow data to be returned.
This is useful to rebuild indexes after a load.

PROPERTY hostname Hostname or IP address

This is an optional property. The fully-specified
hostname or IP address where the database resides.
This defaults to the localhost if not specified.

Note: This property should only be specified when
it is known that connections are being made to a
remote database.

This can be specified as a default in rfx.conf for
convenience.

Element Name Name Value
Database Operators 6-7

Database Operators XML Specification Table
UPDATE

PROPERTY port This is a required property. The port on which the
database resides. This defaults to 1521 if not
specified in an operator or in rfx.conf.

Note: There are preset defaults in rfx.conf for the
necessary port numbers. The default for Oracle is
1521. The Oracle utility tnsping can be used to
obtain the port number.

Verify with your database administrator the proper
port for your database installation.

PROPERTY tablespace Tablespace name

PROPERTY control_file File name of a valid a SQL*Loader control file that
RETL should specify to SQL*Loader, instead of
generating a control file dynamically. Using this
property provides the most control over the
SQL*Loader process. See the SQL*Loader
documentation for information on the control file
options.

The file specified by this property is not deleted
when the load is complete, unlike the dynamically
generated control file used when this property is not
specified.

PROPERTY data_file File name to use for the SQL*Loader data file. Using
this property allows you to control where the file
resides.

INPUT The input dataset name.

Element Name Name Value

PROPERTY dbname Name of the Oracle database.

PROPERTY sid Alias for dbname.

PROPERTY dbuserid username/password

PROPERTY maxdescriptors Maximum number of columns allowed to be written
to the database.

PROPERTY schemaowner The database owner of the table.

PROPERTY tablename Name of the Oracle table to which the data is
written.

PROPERTY table Alias for tablename.

PROPERTY hostname Hostname or IP address

This is an optional property. The fully-specified
hostname or IP address where the database resides.
This defaults to the localhost if not specified.

Note: This property should only be specified when it
is known that connections are being made to a
remote database.

This can be specified as a default in rfx.conf for
convenience.

Element Name Name Value
6-8 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Database Operators XML Specification Table
DELETE

PROPERTY port This is a required property. The port on which the
database resides. This defaults to 1521 if not
specified in an operator or in rfx.conf.

Note: There are preset defaults in rfx.conf for the
necessary port numbers. The default for Oracle is
1521. The Oracle utility tnsping can be used to obtain
the port number.

Verify with your database administrator the proper
port for your database installation.

PROPERTY fields Space-separated list of fields to use for selecting
records to update. Fields in the input schema but not
in the fields property are the fields that are updated.

PROPERTY batchcount Number of records to process between commit calls.
Default value is 1000.

INPUT The input dataset name.

Element Name Name Value

PROPERTY dbname Name of the Oracle database.

PROPERTY sid Alias for dbname.

PROPERTY dbuserid username/password

PROPERTY maxdescriptors Maximum number of columns allowed to be
written to the database.

PROPERTY schemaowner The database owner of the table.

PROPERTY tablename Name of the Oracle table to which the data is
written.

PROPERTY table Alias for tablename.

PROPERTY hostname Hostname or IP address

This is an optional property. The fully-specified
hostname or IP address where the database resides.
This defaults to the localhost if not specified.

Note: This property should only be specified when
it is known that connections are being made to a
remote database.

This can be specified as a default in rfx.conf for
convenience.

PROPERTY port This is a required property. The port on which the
database resides. This defaults to 1521 if not
specified in an operator or in rfx.conf.

Note: There are preset defaults in rfx.conf for the
necessary port numbers. The default for Oracle is
1521. The Oracle utility tnsping can be used to
obtain the port number.

Verify with your database administrator the proper
port for your database installation.

PROPERTY fields Space separated list of fields to use for selecting
records to delete.

Element Name Name Value
Database Operators 6-9

Database Operators XML Specification Table
INSERT

PREPAREDSTATEMENT

PROPERTY batchcount Number of records to process between commit
calls. Default value is 1000.

INPUT The input dataset name.

Element Name Name Value

PROPERTY dbname Name of the Oracle database.

PROPERTY sid Alias for dbname.

PROPERTY dbuserid username/password

PROPERTY maxdescriptors Maximum number of columns allowed to be written
to the database.

PROPERTY schemaowner The database owner of the table.

PROPERTY tablename Name of the Oracle table to which the data is written.

PROPERTY table Alias for tablename.

PROPERTY hostname Hostname or IP address

This is an optional property. The fully-specified
hostname or IP address where the database resides.
This defaults to the localhost if not specified.

Note: This property should only be specified when it
is known that connections are being made to a
remote database.

This can be specified as a default in rfx.conf for
convenience.

PROPERTY port This is a required property. It is the port on which the
database resides and defaults to 1521 if not specified
in an operator or in rfx.conf.

Note: There are preset defaults in rfx.conf for the
necessary port numbers. The default for Oracle is
1521. The Oracle utility tnsping can be used to obtain
the port number.

Verify with your database administrator the proper
port for your database installation.

PROPERTY fields Space-separated list of fields to insert into the
database table. Defaults to all fields.

PROPERTY batchcount Number of records to process between commit calls.
Default value is 1000.

INPUT The input dataset name.

Element Name Name Value

PROPERTY dbname Name of the Oracle database.

PROPERTY sid Alias for dbname.

PROPERTY dbuserid username/password

Element Name Name Value
6-10 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Database Operator Examples
Database Operator Examples

ORAREAD
Connection to database through THIN database driver:

<OPERATOR type="oraread">
<PROPERTY name="sp_prequery" value="exec pre_storedproc"/>
<PROPERTY name="dbname" value="RETLdb"/>
<PROPERTY name="connectstring" value="RETLdb/rpassword"/>
<!--Note: query must be enclosed in CDATA element otherwise -->
<!-- this query will contain invalid XML! -->
<PROPERTY name="query">
<![CDATA[

select * from rtbl where col > 1
]]>
</PROPERTY>
<PROPERTY name="maxdescriptors" value="100"/>
<PROPERTY name="datetotimestamp" value="false"/>"
<PROPERTY name="sp_postquery" value="exec post_storedproc"/>
<OUTPUT name="test.v"/>

PROPERTY maxdescriptors Maximum number of columns allowed to be written to
the database.

PROPERTY schemaowner The database owner of the table.

PROPERTY tablename Name of the Oracle table to which the data is written.

PROPERTY table Alias for tablename.

PROPERTY hostname Hostname or IP address

This is an optional property. The fully-specified
hostname or IP address where the database resides.
This defaults to the localhost if not specified.

Note: This property should only be specified when it is
known that connections are being made to a remote
database.

This can be specified as a default in rfx.conf for
convenience.

PROPERTY port This is a required property. The port on which the
database resides. This defaults to 1521 if not specified
in an operator or in rfx.conf.

Note: There are preset defaults in rfx.conf for the
necessary port numbers. The default for Oracle is 1521.
The Oracle utility tnsping can be used to obtain the
port number.

Verify with your database administrator the proper
port for your database installation.

PROPERTY statement SQL to execute for each input record. Use ? to denote a
value to be replaced by a field from the current record.

PROPERTY fields Space separated list of fields to use as the values for the
? placeholders in the statement property.

PROPERTY batchcount Number of records to process between commit calls.
Default value is 1000.

INPUT The input dataset name.

Element Name Name Value
Database Operators 6-11

Database Operator Examples
</OPERATOR>

Connection to database through OCI database driver:

<OPERATOR type="oraread">
 <OUTPUT name="oraread.v" />
 <PROPERTY name="connectstring" value=" username/password" />
 <PROPERTY name="dbname" value=" RETLdb " />
 <PROPERTY name="jdbcdriverstring"value="oracle.jdbc.driver.OracleDriver" />
 <PROPERTY name="jdbcconnectionstring" value="jdbc:oracle:oci:@" />
 <PROPERTY name="query" value="select * from test_jdbc"/>
</OPERATOR>

ORAWRITE
Connection to database through THIN database driver:

<OPERATOR type="orawrite">
<INPUT name="import0.v" />

 <PROPERTY name="threadModel" value="start_thread" />
 <PROPERTY name="dbuserid" value="username/password" />
 <PROPERTY name="dbname" value="RETLdb" />
 <PROPERTY name="tablename" value="ORG_LOC_DM" />
 <PROPERTY name="createtablemode" value="recreate" />
</OPERATOR>

Connection to database through OCI database driver:

<OPERATOR type="orawrite">
<INPUT name="import0.v" />

 <PROPERTY name="threadModel" value="start_thread" />
 <PROPERTY name="dbuserid" value="username/password" />
 <PROPERTY name="dbname" value="RETLdb" />
 <PROPERTY name="jdbcdriver" value="oci" />
 <PROPERTY name="tablename" value="ORG_LOC_DM" />
 <PROPERTY name="createtablemode" value="recreate" />
</OPERATOR>

UPDATE
Suppose that you have dataset with records reflecting new employee salaries with the
following fields:

■ EMPLOYEE_ID

■ SALARY

■ EFFECTIVE_DATE

To update a table named EMPLOYEE_SALARY with the new values using
EMPLOYEE_ID as the key field, use an UPDATE operator similar to the following:

Note: The steps to connect to an Oracle database using the Oracle
THIN/OCI driver are described in Appendix G, "Appendix: Database
Connections Quick Reference".
6-12 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Database Operator Examples
<OPERATOR type="update">
<INPUT name="salary_updates.v"/>
<PROPERTY name="dbname" value="dbname"/>
<PROPERTY name="schemaowner" value="schemaowner"/>
<PROPERTY name="dbuserid" value="username/password"/>
<PROPERTY name="tablename" value="EMPLOYEE_SALARY"/>
<PROPERTY name="fields" value="EMPLOYEE_ID"/>

</OPERATOR>

The SQL executed is:

UPDATE EMPLOYEE_SALARY SET SALARY = salary, EFFECTIVE_DATE = effective_date WHERE
EMPLOYEE_ID = employee_id

salary, effective_date, and employee_id are the values of the SALARY, EFFECTIVE_
DATE, and EMPLOYEE_ID fields of the current record being processed by RETL.

DELETE
Suppose that you have a dataset with information on stores that are being closed
keyed on STORE_ID and AREA, and you want to delete the corrsponding records in
the STORES table. Use a DELETE operator similar to the following:

<OPERATOR type="delete">
<INPUT name="closing_stores.v"/>
<PROPERTY name="dbname" value="dbname"/>
<PROPERTY name="schemaowner" value="schemaowner"/>
<PROPERTY name="dbuserid" value="username/password"/>
<PROPERTY name="tablename" value="STORES"/>
<PROPERTY name="fields" value="STORE_ID AREA"/>

</OPERATOR>

The SQL executed is:

DELETE FROM STORES WHERE STORE_ID = store_id AND AREA = area

store_id and area are the values of the STORE_ID and AREA fields of the current
record being processed by RETL.

INSERT
Suppose that you have a dataset with records containing purchase order information
that you need inserted into the PURCHASE_ORDER table. Use an INSERT operator
similar to the following:

<OPERATOR type="insert">
<INPUT name="purchase_orders.v"/>
<PROPERTY name="dbname" value="dbname"/>
<PROPERTY name="schemaowner" value="schemaowner"/>
<PROPERTY name="dbuserid" value="username/password"/>
<PROPERTY name="tablename" value="PURCHASE_ORDERS"/>

</OPERATOR>

The SQL executed is as follows:

INSERT INTO PURCHASE_ORDERS (PO_NUMBER, ORDER_DATE, BILL_TO_ADDRESS, COMMENT, ...)
VALUES (po_number, order_date, bill_to_address, comment, ...)

po_number, order_date, bill_to_address, and comment are the values of the PO_
NUMBER, ORDER_DATE, BILL_TO_ADDRESS, and COMMENT fields of the current
record being processed by RETL.
Database Operators 6-13

Database Operator Examples
To leave out fields, specify only the fields you want in the fields property:

<OPERATOR type="insert">
<INPUT name="purchase_orders.v"/>
<PROPERTY name="dbname" value="dbname"/>
<PROPERTY name="schemaowner" value="schemaowner"/>
<PROPERTY name="dbuserid" value="username/password"/>
<PROPERTY name="tablename" value="PURCHASE_ORDER_DATES"/>
<PROPERTY name="fields" value="PURCHASE_ORDER ORDER_DATE"/>

</OPERATOR>

The SQL executed is as follows:

INSERT INTO PURCHASE_ORDER_DATES (PO_NUMBER, ORDER_DATE) VALUES (po_number, order_
date)

PREPAREDSTATEMENT
The example for UPDATE above can be performed by a PREPAREDSTATEMENT
similar to the following:

<OPERATOR type="preparedstatement">
<INPUT name="salary_updates.v"/>
<PROPERTY name="dbname" value="dbname"/>
<PROPERTY name="schemaowner" value="schemaowner"/>
<PROPERTY name="dbuserid" value="username/password"/>
<PROPERTY name="tablename" value="EMPLOYEE_SALARY"/>
<PROPERTY name="statement"

<![CDATA[
UPDATE EMPLOYEE_SALARY
SET SALARY = ?,
EFFECTIVE_DATE = ?
WHERE EMPLOYEE_ID = ?

]]>
<PROPERTY name="fields" value="EMPLOYEE_ID SALARY EFFECTIVE_DATE"/>

</OPERATOR>

The preceding example for DELETE can be performed by a PREPAREDSTATEMENT
similar to the following:

<OPERATOR type="preparedstatement">
<INPUT name="closing_stores.v"/>
<PROPERTY name="dbname" value="dbname"/>
<PROPERTY name="schemaowner" value="schemaowner"/>
<PROPERTY name="dbuserid" value="username/password"/>
<PROPERTY name="tablename" value="STORES"/>
<PROPERTY name="statement" value="DELETE FROM STORES WHERE STORE_ID = ? AND

AREA = ?"/>
<PROPERTY name="fields" value="STORE_ID AREA"/>

</OPERATOR>

The example above for INSERT can be performed by a PREPAREDSTATEMENT
similar to the following:

<OPERATOR type="preparedstatement">
<INPUT name="purchase_orders.v"/>
<PROPERTY name="dbname" value="dbname"/>
<PROPERTY name="schemaowner" value="schemaowner"/>
<PROPERTY name="dbuserid" value="username/password"/>
<PROPERTY name="tablename" value="PURCHASE_ORDERS"/>
<PROPERTY name="statement">

<![CDATA[
6-14 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Database Operator Examples
INSERT INTO PURCHASE_ORDERS
(PO_NUMBER, ORDER_DATE, BILL_TO_ADDRESS, COMMENT)

VALUES (?, ?, ?, ?)
]]>

</PROPERTY>
<PROPERTY name="fields" value="PO_NUMBER ORDER_DATE BILL_TO_ADDRESS COMMENT"/>

</OPERATOR>
Database Operators 6-15

Database Operator Examples
6-16 Oracle Retail Extract, Transform, and Load Programmer’s Guide

RETL Parallel Proce
7

RETL Parallel Processing

RETL Parallelism Overview
Parallel processing is the ability to break divisible tasks into granular units of work,
and to execute those units of work concurrently and independently of one another.
The goal of parallelism is to achieve greater speed by executing tasks concurrently.
RETL uses parallelism in these ways:

■ Pipeline parallelism

■ Framework parallelism and data partitioning

Pipeline Parallelism
Pipeline parallelism can be demonstrated in manufacturing by an assembly line,
where each worker can operate on tasks independently of other workers. At each stage
in the assembly line, the worker is assigned a task and completes this task on the
evolving product. Many tasks can be completed simultaneously (after each worker has
product to work on). This is similar RETL pipeline parallelism. RETL operators
effectively act as workers on an assembly line, whose goal is to produce records of a
specific format. Each operator has its own assignment (for example, to sort, join, or
merge), and they execute these tasks independently of other operators' tasks.

Framework Parallelism
While pipeline parallelism is a means of increasing throughput, it only works to the
point at which each worker reaches capacity. Some workers may be slower at their
tasks than others, resulting in bottlenecks in the process. In the manufacturing world, a
way of solving this dilemma is to increase the number of assembly lines. Now each
assembly line can work independently of other assembly lines, uninhibited by
bottlenecks. This is similar to RETL's framework-based parallelism. RETL implements
framework-based parallelism in a concept called data partitioning. Data partitioning
splits data from the source and passes each chunk of data to separate and concurrent
pipelines.
ssing 7-1

RETL Data Partitioning
Where can bottlenecks arise? In the manufacturing example, there may be only one
inlet for transports to bring in raw materials, or one outlet for transports to ship out
final product. These both limit the productivity of all assembly lines. The same can be
said for RETL's processing. Input data being read from databases or files, and output
data being written to the same, need to be parallelized to fully maximize data
partitioning and be uninhibited by task bottlenecks. Starting with RETL release 11.2
and higher, RETL supports this additional enhancement to parallelize input and
output tasks, by multithreading file and database reads and writes.

RETL uses both framework data partitioning and pipeline parallelism to achieve
overall speed improvements in throughput.

Future versions of RETL will include support for Massively Parallel Processing (MPP),
which maximizes processing on multiple interconnected machines. In the
manufacturing example, this would be represented by a series of interconnected
factories, each working simultaneously to produce a finished product.

RETL Data Partitioning
This section assumes that you are familiar with the graphical representation of a flow.
(See Chapter 4, "RETL Program Flow" for more information.)

RETL data partitioning, or simply partitioning, is the process RETL uses to increase the
number of operators that are processing records, in an attempt to increase overall
throughput. Partitioning consists of splitting the datasets into subsets, and processing
each subset with additional pipelines constructed from the originals defined in the
flow.

Partitioning does not happen automatically in RETL; the flow must be configured to
tell RETL how to split up the data into subsets, and partitioning must be enabled.

Enabling RETL Data Partitioning
You enable partitioning in one of two ways:

■ By specifying a value greater than 1 for the numpartitions attribute of the NODE
element in the RETL configuration file. This method enables partitioning for all
invocations of RETL that use the configuration file.

■ By specifying a value greater than 1 for the -n command line parameter. This
method enables partitioning for just the single invocation of RETL and overrides
the setting in the configuration file.

Partition Construction
The partitioned data and the duplicated pipelines that process the partitioned data
together make up a partition.

Partitions are created by RETL when one or more partitioning operators are included
in the flow and configured for partitioning. A partitioning operator, also known as a
partitioner, is an operator that splits the data into subsets. The operators that partition
data are IMPORT, DBREAD, HASH, SPLITTER, and ORAREAD.

The partition pipelines are duplicated automatically by RETL from the operators
specified in the flow. For example, if the original flow has a BINOP operator, multiple
copies of the BINOP operator are created, one for each partition.
7-2 Oracle Retail Extract, Transform, and Load Programmer’s Guide

RETL Data Partitioning
A partition pipeline ends when an operator is encountered that does not support
partitioning, or does not support the type of partitioning performed by the partitioner.
If necessary, RETL inserts a funnel in order to "unpartition" the data subsets back into
a single dataset.

For a simple example, suppose you have a text file that contains records, and you need
to add two fields and write the sum to another file. If you wanted to use data
partitioning, the flow would look like this example:

<FLOW name="sumvalues">
<!-- Read in the values. -->
<OPERATOR type="import">

<PROPERTY name="inputfile" value="values.txt"/>
<PROPERTY name="schemafile" value="values-schema.xml"/>
<OUTPUT name="import.v"/>

</OPERATOR>
<!-- Partition into 3 partitions. -->
<OPERATOR type="splitter">

<INPUT name="import.v"/>
<PROPERTY name="numpartitions" value="3"/>
<OUTPUT name="splitter.v"/>

</OPERATOR>
<!-- Add the values. -->
<OPERATOR type="binop">

<INPUT name="splitter.v"/>
<PROPERTY name="left" value="VALUE1"/>
<PROPERTY name="right" value="VALUE2"/>
<PROPERTY name="operator" value="+"/>
<PROPERTY name="dest" value="SUM"/>
<OUTPUT name="binop.v"/>

</OPERATOR>
<!-Keep only the SUM field. -->
<OPERATOR type="fieldmod">

<INPUT name="binop.v"/>
<PROPERTY name="keep" value="SUM"/>
<OUTPUT name="fieldmod.v"/>

</OPERATOR>
<!-- Write the sum to sum.txt. -->
<OPERATOR type="export">

<INPUT name="fieldmod.v"/>
<PROPERTY name="outputfile" value="sum.txt"/>
<PROPERTY name="schemafile" value="sum-schema.xml"/>

</OPERATOR>
</FLOW>
RETL Parallel Processing 7-3

RETL Data Partitioning
The graphs of the unpartitioned and partitioned flow look like this:

In this example, the SPLITTER operator is the partitioner. It distributes the records
read by the IMPORT operator across three partitions. The BINOP and FIELDMOD
operators are duplicated across all three partitions by RETL. Finally, a funnel is
inserted before the EXPORT operator, to gather the partitioned records back into one
dataset.

Partitioning Types
The partitioners provide two different types of partitioning: keyed and non-keyed.

Keyed Partitioning
Keyed partitioning provides two guarantees:

■ Records with the same key are processed in the same partition.

■ The order of records is retained within the data subset. That is, any two records in
a partition are in the same order as they were in the original dataset.

Keyed partitioning is required to partition operators that require sorted input, such as
GROUPBY and CLIPROWS.

Unpartitioned Partitioned
7-4 Oracle Retail Extract, Transform, and Load Programmer’s Guide

RETL Data Partitioning
Nonkeyed Partitioning
Unlike keyed partitioning, nonkeyed partitioning makes no guarantee about which
partition will process a particular record. Thus, nonkeyed partitioning is inappropriate
for any operator that requires sorted input.

Partitioners
The following are the partitioners:

■ HASH

■ IMPORT

■ SPLITTER

■ DBREAD

■ ORAREAD

■ GENERATOR

The number of partitions created by a partitioner is specified in the numpartitions
property. The numpartitions property is common to all of the partitioners, although
some of the partitioners require specification of other properties.

HASH
The HASH operator is the only partitioner that performs keyed partitioning. The key
fields are specified in the key property. As each record is processed, the hash code of
the key fields is calculated, and records with the same hash code are sent to the same
partition.

If the numpartitions property is not specified in the HASH operator, RETL uses the
value from the -n command line option, if specified. If the -n command line option is
not specified, the value from the configuration file is used.

In the following example, the HASH operator splits the data into two partitions. RETL
automatically duplicates the GROUPBY operator and inserts the funnel. (The EXPORT
operator in this example is not configured to be partitionable.)

<FLOW name="hash-example">
<OPERATOR type="import">

<PROPERTY name="inputfile" value="input.txt"/>
<PROPERTY name="schemafile" value="in-schema.xml"/>
<OUTPUT name="import.v"/>

</OPERATOR>
<OPERATOR type="hash">

<INPUT name="import.v"/>
<PROPERTY name="numpartitions" value="2">
<PROPERTY name="key" value="KEY_FIELD">
<OUTPUT name="hash.v"/>

</OPERATOR>
<OPERATOR type="groupby">

<INPUT name="hash.v"/>
<PROPERTY name="key" value="KEY_FIELD">
<PROPERTY name="reduce" value="AMOUNT">
<PROPERTY name="sum" value="TOTAL_AMOUNT">

Note: Data partitioning must be enabled for the numpartitions
property to have any affect. If data partitioning is not enabled, the
property is ignored.
RETL Parallel Processing 7-5

RETL Data Partitioning
<OUTPUT name="groupby.v"/>
</OPERATOR>
<OPERATOR type="export">

<INPUT name="groupby.v"/>
<PROPERTY name="outputfile" value="output.txt">
<PROPERTY name="schemafile" value="out-schema.xml">

</OPERATOR>

IMPORT
IMPORT partitioning performs nonkeyed partitioning. If one input file is specified,
then roughly equal portions of the file are handled by each partition. If more than one
file is specified, the number of partitions must equal the number of files, and each file
is handled by one partition.

To enable IMPORT partitioning, the numpartitions property must be specified.
Because the main purpose of the IMPORT operator is not data partitioning, the default
number of partitions does not come from the configuration file or from the command
line.

In the following example, three IMPORT operators are created by RETL to read
records. RETL automatically duplicates the BINOP and FIELDMOD operators and
inserts the FUNNEL. (The EXPORT operator in this example is not configured to be
partitionable.)

Unpartitioned Partitioned
7-6 Oracle Retail Extract, Transform, and Load Programmer’s Guide

RETL Data Partitioning
<FLOW name="import-example">
<OPERATOR type="import">

<PROPERTY name="numpartitions" value="3">
<PROPERTY name="inputfile" value="input.txt"/>
<PROPERTY name="schemafile" value="in-schema.xml"/>
<OUTPUT name="import.v"/>

</OPERATOR>
<OPERATOR type="fieldmod">

<INPUT name="import.v"/>
<PROPERTY name="drop" value="UNNEEDED_FIELD">
<OUTPUT name="fieldmod.v"/>

</OPERATOR>
<OPERATOR type="binop">

<INPUT name="fieldmod.v"/>
<PROPERTY name="left" value="VALUE1"/>
<PROPERTY name="operator" value="+"/>
<PROPERTY name="right" value="VALUE2"/>
<PROPERTY name="dest" value="SUM"/>
<OUTPUT name="fieldmod.v"/>

</OPERATOR>
<OPERATOR type="export">

<INPUT name="fieldmod.v"/>
<PROPERTY name="outputfile" value="output.txt">
<PROPERTY name="schemafile" value="out-schema.xml">

</OPERATOR>

Unpartitioned Partitioned
RETL Parallel Processing 7-7

RETL Data Partitioning
SPLITTER
The SPLITTER operator performs nonkeyed partitioning by sending records to the
different partitions in round-robin fashion.

If the numpartitions property is not specified in the SPLITTER operator, RETL uses the
value from the -n command line option. If the -n command line option is not specified,
the value from the configuration file is used.

In the following example, the SPLITTER operator splits the data into two partitions.
RETL automatically duplicates the FIELDMOD and BINOP operators and inserts the
FUNNEL. (The EXPORT operator in this example is not configured to be
partitionable.)

<FLOW name="splitter-example">
<OPERATOR type="import">

<PROPERTY name="inputfile" value="input.txt"/>
<PROPERTY name="schemafile" value="in-schema.xml"/>
<OUTPUT name="import.v"/>

</OPERATOR>
<OPERATOR type="splitter">

<INPUT name="import.v"/>
<PROPERTY name="numpartitions" value="3">
<OUTPUT name="splitter.v"/>

</OPERATOR>
<OPERATOR type="fieldmod">

<INPUT name="splitter.v"/>
<PROPERTY name="drop" value="UNNEEDED_FIELD">
<OUTPUT name="fieldmod.v"/>

</OPERATOR>
<OPERATOR type="binop">

<INPUT name="fieldmod.v"/>
<PROPERTY name="left" value="VALUE1"/>
<PROPERTY name="operator" value="+"/>
<PROPERTY name="right" value="VALUE2"/>
<PROPERTY name="dest" value="SUM"/>
<OUTPUT name="fieldmod.v"/>

</OPERATOR>
<OPERATOR type="export">

<INPUT name="fieldmod.v"/>
<PROPERTY name="outputfile" value="output.txt">
<PROPERTY name="schemafile" value="out-schema.xml">

</OPERATOR>

Note: Although SPLITTER will be supported in future versions of
RETL, it is not guaranteed that it will use the round-robin algorithm.
Flows should not rely on SPLITTER partitioning records in a round
robin manner.
7-8 Oracle Retail Extract, Transform, and Load Programmer’s Guide

RETL Data Partitioning
DBREAD, ORAREAD
The database read partitioners implement nonkeyed partitioning by allowing
specification of multiple queries. Each query result set provides the data for one
partition.

The numpartitions property must be set to enable partitioning, and the value must
equal the number of queries. If the numpartitions property is not specified, the result
sets are funneled together into one dataset, instead of feeding into multiple partitions.

For example, suppose that you want to read all of the records from the table named
sourcetable. The unpartitioned DBREAD operator would have a query property like
this:

<PROPERTY name="query">
<![CDATA[

select * from sourcetable
]]>

</PROPERTY>

Unpartitioned Partitioned
RETL Parallel Processing 7-9

RETL Data Partitioning
If you wanted to partition the database read into three, the flow would have
something like this:

<PROPERTY name="numpartitions" value="3">
<PROPERTY name="query">

<![CDATA[
select * from sourcetable where keyfield between 0 and 100000

]]>
</PROPERTY>
<PROPERTY name="query">

<![CDATA[
select * from sourcetable where keyfield between 100001 and 200000

]]>
</PROPERTY>
<PROPERTY name="query">

<![CDATA[
select * from sourcetable where keyfield > 200000

]]>
</PROPERTY>

It is important to perform performance analysis on each of the queries. Adding a
WHERE clause to the unpartitioned SQL query may change the execution plan and
cause it to run many times slower, negating any time saved by partitioning.

Data partitioning with ORAREAD works particularly well with Oracle partitioned
tables, when each query reads from a different table partition. Consult Oracle database
documentation for information on partitioned tables.

The stored procedure specified by the sp_prequery property is run before any of the
queries are executed. Likewise, the stored procedure specified by the sp_postquery
property is run after the last query completes.

In the following example, two queries are specified, so RETL creates two ORAREAD
operators to read records from two different tables in an Oracle database. RETL
automatically duplicates the FIELDMOD and BINOP operators and inserts the funnel.

<FLOW name="oraread-example">
<OPERATOR type="oraread">

<!-- connection properties not shown -->
<PROPERTY name="numpartitions" value="2">
<PROPERTY name="query">

<![CDATA[
select * from table_a

]]>
</PROPERTY>
<PROPERTY name="query">

<![CDATA[
select * from table_b

]]>
</PROPERTY>
<OUTPUT name="oraread.v"/>

</OPERATOR>
<OPERATOR type="fieldmod">

<INPUT name="splitter.v"/>
<PROPERTY name="drop" value="UNNEEDED_FIELD">
<OUTPUT name="fieldmod.v"/>

</OPERATOR>
<OPERATOR type="binop">

<INPUT name="fieldmod.v"/>
<PROPERTY name="left" value="VALUE1"/>
<PROPERTY name="operator" value="+"/>
7-10 Oracle Retail Extract, Transform, and Load Programmer’s Guide

RETL Data Partitioning
<PROPERTY name="right" value="VALUE2"/>
<PROPERTY name="dest" value="SUM"/>
<OUTPUT name="fieldmod.v"/>

</OPERATOR>
<OPERATOR type="export">

<INPUT name="fieldmod.v"/>
<PROPERTY name="outputfile" value="output.txt">
<PROPERTY name="schemafile" value="out-schema.xml">

</OPERATOR>

Operators and Partitioning Types
When a flow uses an operator other than HASH to partition the data, RETL ends the
partition before any operator that requires sorted input, such as CLIPROWS or
GROUPBY. This is because only the HASH operator guarantees that records with the
same key are handled in the correct order by the same partition.

RETL ends the partition by inserting a funnel. Because a funnel does not put records
back into a sorted order, the operator that requires sorted input will display a warning
message about not having sorted input, and the results will be incorrect.

There are several ways to fix this problem. The best solution depends on the specifics
of the flow. In general:

■ If a SPLITTER operator is used to partition the data, change it to a HASH.

■ If an IMPORT operator is used to partition the data, change the IMPORT to be
unpartitioned, and insert a HASH operator after the IMPORT.

Unpartitioned Partitioned
RETL Parallel Processing 7-11

RETL Data Partitioning
■ If a database read operator is used to partition the data, replace the partitioned
database read operator with multiple database read operators, and insert a
SORTFUNNEL and a HASH, or combine all of the queries into one and insert a
HASH after the DBREAD. In either case, make sure that all queries return sorted
records.

■ If the operator requiring sorted order is a JOIN, consider using a LOOKUP
operator instead. The LOOKUP operator does not require sorted input. Keep in
mind that the LOOKUP operator requires more memory than a JOIN and is only
appropriate for small lookup table sizes.

■ If the operator requiring sorted order is CHANGECAPTURE, consider using a
CHANGECAPTURELOOKUP operator instead. The
CHANGECAPTURELOOKUP operator does not require sorted input. Keep in
mind that the CHANGECAPTURELOOKUP operator requires more memory than
a CHANGECAPTURE and is only appropriate for small lookup table sizes.

As an example, suppose that a SPLITTER is used to partition imported data and a
CLIPROWS operator is encountered. RETL inserts a FUNNEL before the CLIPROWS
and displays the following warning message:

[cliprows:1]: Warning: Input to cliprows:1 does not seem to be sorted! Data should
be sorted according to the proper keys or you may get unexpected results!

The flow graph looks like this:

Unpartitioned Partitioned
7-12 Oracle Retail Extract, Transform, and Load Programmer’s Guide

RETL Data Partitioning
To correct this flow, change the SPLITTER to a HASH:

The following operators require sorted input and support only keyed partitioning:

■ CHANGECAPTURE

■ CLIPROWS

■ COMPARE

■ DIFF

■ FULLOUTERJOIN

■ GROUPBY

■ INNERJOIN

■ LEFTOUTERJOIN

■ MERGE (MERGE does not require sorted input, but it does require that records be
processed in the same order, so HASH partitioning is required.)

■ REMOVEDUP

■ RIGHTOUTERJOIN

Unpartitioned Partitioned
RETL Parallel Processing 7-13

RETL Data Partitioning
Parallel Property
To be included in a partition, some operators require that the parallel property be set
to "true". The parallel property is typically required of an operator in any of the
following cases:

■ Partitioning the operator may sometimes produce incorrect results, and so the
default is not to partition the operator.

■ Partitioning the operator may improve performance on some platforms and not
others. For example, using a partitioned EXPORT may not always improve
performance.

■ The operator did not partition in earlier versions of RETL.

The following operators require the parallel property to be set to "true" to allow the
operator to be portioned:

■ CLIPROWS

■ DBWRITE

■ DEBUG

■ EXPORT

■ GENERATOR

■ GROUPBY

■ ORAWRITE

If the parallel property is not specified, RETL ends the partition before the operator by
inserting a funnel.

Partitioned EXPORT
When the parallel property of an EXPORT operator is set to "true", RETL includes the
EXPORT in the partition. The output from each partition is written to separate
temporary files. When all partitions have completed processing, the temporary files
are concatenated into the specified output file.

The temporary files are created in the TEMPDIR directories specified in the
configuration files. Best results are obtained when there is a temporary directory for
each partition and each directory is on a separate disk controller.

The following graph is for a flow identical to the simple flow described at the
beginning of this section, except that a partitioned EXPORT is specified. Note that two
EXPORT operators are created but that there is only one file exported.

Note: Partitioning the EXPORT operator may or may not improve
performance and should be tested before implementation.
7-14 Oracle Retail Extract, Transform, and Load Programmer’s Guide

RETL Data Partitioning
<FLOW>
<!-- Other operators same as in original example. -->
<!-- Write the sum to sum.txt. -->
<OPERATOR type="export">

<INPUT name="fieldmod.v"/>
<PROPERTY name="parallel" value="true"/>
<PROPERTY name="outputfile" value="sum.txt"/>
<PROPERTY name="schemafile" value="sum-schema.xml"/>

</OPERATOR>
</FLOW>

Partitioned GENERATOR
The GENERATOR operator uses two partitioning-related attributes when generating a
sequence field within a partition. Generally, these two attributes are used together to
allow the sequence field to contain unique values across all partitions:

■ When the partnum_offset property is set to "true," the initial value is incremented
by the zero-based partition number.

■ When the partnum_incr property is set to "true," the increment value is multiplied
by the number of partitions.

Unpartitioned Partitioned
RETL Parallel Processing 7-15

RETL Data Partitioning
For example, if there are three partitions, and the sequence field's initial value is
specified as 1, and the increment value is specified as 1, then the first generator will
generate values 1, 4, 7, …; the second 2, 5, 8, …; and the third 3, 6, 9, …

A suggestion for debugging purposes is to set init to 0, incr to 0, partnum_offset to
"true", and partnum_incr to "false". The generated field indicates the partition that
processed the record.

Partitioned LOOKUP and CHANGECAPTURELOOKUP
When both the source and lookup datasets of a LOOKUP or
CHANGECAPTURELOOKUP operator are partitioned by a HASH operator, each
partitioned LOOKUP or CHANGECAPTURELOOKUP operator uses a subset of the
lookup dataset and a subset of the source dataset.

However, if the source dataset is partitioned by any other partitioner, or the lookup
table is not partitioned at all, then the LOOKUP or CHANGECAPTURELOOKUP
operators in each partition will share the same lookup table. A SHARE operator is
inserted into the flow to accomplish the sharing and can be ignored. (The SHARE
operator is a special operator used for LOOKUP partitioning.)

Unpartitioned Partitioned
7-16 Oracle Retail Extract, Transform, and Load Programmer’s Guide

RETL Data Partitioning
From the graph, it appears that the inserted HASH operator is partitioning the data;
however, it actually is not. All of the lookup table records are sent to the first
partition's LOOKUP or CHANGECAPTURELOOKUP operator, which loads the
shared lookup table.

Partitioned ORAWRITE
The stored procedure specified in the preload property is run before any partitioned
ORAWRITE has started loading data. Likewise, the stored procedure specified in the
postload property is run after the last partition completes.

Flows with Multiple Partitioners
It is possible to use more than one partitioner in a flow. For example, both an IMPORT
and a database read can be partitioned.

HASH Within a Partition
If a HASH is found within a partition, a funnel is automatically inserted after the
HASH to gather records with the same keys into the same data subset.

Unpartitioned Partitioned

Note: This will not leave the data sorted by the new key fields. You
must enter the appropriate sort operator if the data needs to be sorted.
RETL Parallel Processing 7-17

RETL Data Partitioning
The following graph shows a flow that produces invalid results. The funnels inserted
after the HASH operators lose the sorted order required by GROUPBY.

Unpartitioned Partitioned
7-18 Oracle Retail Extract, Transform, and Load Programmer’s Guide

RETL Data Partitioning
The following graph shows a corrected version of the above flow. Note that there is a
sort in the unpartitioned flow immediately after the HASH.

Unpartitioned Partitioned
RETL Parallel Processing 7-19

RETL Data Partitioning
SPLITTER Within a SPLITTER Partition
If a SPLITTER is found within a partition, the partitioned data is repartitioned. For
example, if the first partitioner specifies two partitions and the SPLITTER specifies
three partitions, there are six partitions after the SPLITTER.

The following graph shows a flow with two partitions started by a SPLITTER
expanding to six partitions.

Unpartitioned Partitioned
7-20 Oracle Retail Extract, Transform, and Load Programmer’s Guide

RETL Data Partitioning
Two HASH Operators Joined
The join operators (such as INNERJOIN, LEFTOUTERJOIN) support keyed
partitioning. RETL ensures that records with identical keys are sent to the same
partitioned join operator. If the HASH operators specify a different number of
partitions, then the smaller numpartitions are used for both HASH operators.

Unpartitioned Partitioned
RETL Parallel Processing 7-21

RETL Data Partitioning
Funneled Partitions
The data from partitions started by multiple partitioners can be funneled using a
single FUNNEL operator. As of version 11.2, RETL requires that both partitioners have
the same number of partitions. This restriction will be lifted in a later release.

In the following example, an IMPORT creates two partitions and an ORAREAD
creates two partitions. The four partitions are funneled together using the same
FUNNEL.

Data Partitioning Guidelines
Keep these guidelines in mind when designing your flow:

■ Performance improvement is more likely when the inputs to the flow are
partitioned than when a HASH or a SPLITTER is used to partition. The input to
HASH or SPLITTER is serial, whereas IMPORT and database reads are parallel.

■ Because of the expense in funneling, performance improvement is more likely
when parallel database writes or EXPORT are performed than when the data is
unpartitioned using a funnel or sortfunnel before the output.

■ More partitions are not always better. More partitions require more threads, and
there is a limit to the optimum number of threads used to process the flow. This
limit depends on the hardware and the specifics of the flow. Thus, finding the
optimum number of partitions can be a difficult task.

Unpartitioned Partitioned
7-22 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Operator Configuration for Data Partitioning
Operator Configuration for Data Partitioning
The following table shows each operator that requires modifications to its properties to
allow it to create or process partitioned data. If an operator is not listed, it either
supports partitioned data without any configuration or it does not support data
partitioning at all.

Operator Property Name Property Value

CLIPROWS parallel true

DBREAD numpartitions greater than 1

query Specify a query for each partition.

DBWRITE parallel true

DEBUG parallel true

EXPORT parallel true

GENERATOR
(generating fields for
pre-exiting records)

parallel true

GENERATOR
(generating new
records)

numpartitions greater than 1

GROUPBY parallel true

IMPORT numpartitions greater than 1

inputfile Specify either one input file or numpartitions
input files.

ORAREAD numpartitions greater than 1

query Specify a query for each partition.

ORAWRITE parallel true

mode append

Note: Changing the mode property to "append"
from "truncate" may require changes to the batch
job, because the existing database rows will no
longer be deleted by RETL.
RETL Parallel Processing 7-23

A Final Word on Data Partitioning
Additionally, some operators only work correctly when keyed (hash) partitioning is
used. For a description of keyed partitioning, see "Partitioning Types". The following
operators require keyed partitioning:

■ CHANGECAPTURE

■ CLIPROWS

■ COMPARE

■ DIFF

■ FULLOUTERJOIN

■ GROUPBY

■ INNERJOIN

■ LEFTOUTERJOIN

■ MERGE

■ REMOVEDUP

■ RIGHTOUTERJOIN

A Final Word on Data Partitioning
Data partitioning does not necessarily correct performance problems in a flow. Just as
performance tuning cannot significantly improve a poorly designed application, data
partitioning cannot significantly improve a poorly designed flow.

Partitioning is not guaranteed to improve performance. In fact, carelessly adding
partitioners likely degrades performance, because of the overhead of the partitioning,
funneling, and additional threads.

If your flow is experiencing performance problems, do not look to partitioning first.
Perform a thorough analysis of your flow to determine where the performance
problem is taking place, and take appropriate steps. (See the RETL Performance
Tuning Guide for more information.)
7-24 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Input and Output Ope
8

Input and Output Operators

The following input and output operators are described in this chapter, along with tag
usage example code:

■ DEBUG

■ NOOP

■ EXPORT

■ IMPORT

DEBUG
The DEBUG operator prints all records to standard output.

NOOP
The NOOP operator acts as a terminator for datasets that does little more than purge
data.

EXPORT
The EXPORT operator writes a RETL dataset to a flat file, either as delimited or
fixed-length records, depending on the schema.

IMPORT
The IMPORT operator imports a flat file into RETL, translating the data file into a
RETL dataset.

Note: By default, EXPORT exports records in pipe-delimited format
(|). To change the output format, an export schema file should be used
to specify a different format.
rators 8-1

Input and Output Operators XML Specification Tables
Input and Output Operators XML Specification Tables

DEBUG

NOOP

IMPORT

Element Name Name Value

INPUT The input dataset name.

PROPERTY parallel true or false

Optional property.

When set to true, the DEBUG operator is included in
a partition.

When set to false, the DEBUG operator is not
included in a partition and a funnel is inserted before
the DEBUG operator to unpartition the data (default).

Ignored if not partitioning.

Element Name Name Value

INPUT The input dataset name.

Element Name Name Value

PROPERTY inputfile The name of the text file to import into RETL.

This property can be specified multiple times. If
numpartitions is not specified or is set to 1, records are
funneled into one dataset. Otherwise, a data partition is
created for each input file. This property can be specified
as one of the following: a filename in the current working
directory, a filename with a relative path to the current
working directory, or an absolute path to a file.

PROPERTY schemafile The name of the schema file describing the layout of the
data file. This property can be specified as one of the
following: a filename in the current working directory, a
filename with a relative path to the current working
directory, or an absolute path to a file.

PROPERTY rejectfile Optional property. The name of the file where records that
do not match the input schema are deposited. This
property can be specified as one of the following: a
filename in the current working directory, a filename with
a relative path to the current working directory, or an
absolute path to a file.
8-2 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Input and Output Operators XML Specification Tables
EXPORT

PROPERTY allowedreje
cts

Optional property. A value greater than zero indicates
how many errors are allowed before RETL exits with a
critical error.

Note: A zero indicates that any number of errors will be
accepted. This is the default setting. The allowedrejects
property is only valid when the rejectfile property is
specified.

PROPERTY verbosereje
cts

true or false

Optional property. A value of true means that RETL
prints granular warning messages about rejected records
to standard error. The default is true.

Note: Displaying rejected records to standard error will
degrade performance, but setting verboserejects to false
without specifying a rejectfile will result in lost records.

PROPERTY degreespara
llel

Optional property indicating the number of threads used
to read each file. Defaults to 1. Increasing this value may
increase performance.

PROPERTY numpartitio
ns

Optional property indicating the number of data
partitions to create. Defaults to 1.

If multiple input files are specified and numpartitions is
greater than 1, then numpartitions must equal the number
of input files. One data partition is created for each input
file.

OUTPUT The output dataset name.

Element Name Name Value

PROPERTY outputfile The output text file name. This property can be
specified as one of the following: a filename in the
current working directory, a filename with a relative
path to the current working directory, or an absolute
path to a file.

PROPERTY outputmode overwrite or append

Optional property that specifies whether EXPORT
overwrites an existing file or appends to it. Default is to
overwrite.

PROPERTY schemafile The name of the schema file that describes the layout of
the output file. If not specified, uses current schema (as
output from the previous dataset). The default
delimiter (|) is used if no schema file is specified. This
property can be specified as one of the following: a
filename in the current working directory, a filename
with a relative path to the current working directory, or
an absolute path to a file.

Note: This property can be used to reorder and drop
fields from the output and reformat the fixed length,
delimiter, and nullvalue characteristics of the schema.
However, if there are incompatible changes between
the incoming schema and output schemafile, RETL may
print warning messages or throw errors.

Element Name Name Value
Input and Output Operators 8-3

Input and Output Operators Examples
Input and Output Operators Examples

IMPORT
<OPERATOR type="import" name="import1,0">

<PROPERTY name="inputfile" value="import.dat"/>
<PROPERTY name="schemafile" value="ImportOp.schema"/>
<OUTPUT name="test.v"/>

</OPERATOR>

<OPERATOR type="import" name="import1,0">
<PROPERTY name="inputfile" value="import.dat"/>
<PROPERTY name="schemafile" value="ImportOp.schema"/>
<PROPERTY name="allowedrejects" value="100"/>
<PROPERTY name="rejectfile" value="import.rej"/>
<OUTPUT name="test.v"/>

</OPERATOR>

EXPORT
<OPERATOR type="export" name="export1,0">

<PROPERTY name="outputfile" value="output.dat"/>
<PROPERTY name="schemafile" value="outputOp.schema"/>
<INPUT name="test.v"/>

</OPERATOR>

PROPERTY parallel true or false

When set to true, each partition writes its data to a
temporary file; then the temporary files are
concatenated into the destination file.

When set to false, the EXPORT operator is not included
in a partition, and a funnel is inserted before the
EXPORT operator to unpartition the data. (default)

Optional property. Ignored if not partitioning.

OUTPUT The output dataset name.

Element Name Name Value
8-4 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Join Ope
9

Join Operators

RETL provides the following join operators, described in this chapter:

■ INNERJOIN

■ LEFTOUTERJOIN

■ RIGHTOUTERJOIN

■ FULLOUTERJOIN

■ LOOKUP

INNERJOIN
INNERJOIN transfers records from both input datasets whose key fields contain equal
values to the output dataset. Records with key fields that do not contain equal values
are dropped.

LEFTOUTERJOIN
LEFTOUTERJOIN transfers all values from the left dataset, and transfers values from
the right dataset only where key fields match. The operator drops the key field from
the right dataset. Otherwise, the operator writes default values.

RIGHTOUTERJOIN
RIGHTOUTERJOIN transfers all values from the right dataset, and transfers values
from the left dataset only where key fields match. The operator drops the key field
from the left dataset. Otherwise, the operator writes default values.

FULLOUTERJOIN
For records that contain key fields with identical and dissimilar content, the
FULLOUTERJOIN operator transfers records from both input datasets to the output
dataset.

Note: For INNERJOIN, LEFTOUTERJOIN, RIGHTOUTERJOIN, and
FULLOUTERJOIN, the input datasets must be sorted on the key.
LOOKUP does not require sorted input.
rators 9-1

LOOKUP
LOOKUP
LOOKUP is similar to the INNERJOIN operator. However, there is no need to do a sort
on the input datasets. Looks up a value from one dataset whose key fields match the
lookup dataset and outputs the matching values.

Remember that the lookup dataset must be small enough to fit in memory; otherwise
severe performance problems may result. If in doubt as to whether the lookup dataset
will fit in memory, always use one of the join operators.

DBLOOKUP
DBLOOKUP behaves in a manner similar to the LOOKUP operator, but it is used to
look up records directly in a database table. This is useful when a flow needs to join a
relatively small number of records with a relatively large database table. In this sense,
it behaves similar to a DBREAD with a LOOKUP. However, DBLOOKUP only pulls
records from the database as needed. DBLOOKUP also attempts to maximize
performance by caching database results and thus minimizing database accesses on
key-matched records.

Special Notes about Join Operators
Join operators favor data fields from the "dominant" side (usually, the first INPUT to
the operator) when joining datasets that contain the same nonkey fields on each side.
For example:

It is important to note that FULLOUTERJOIN will rename the data fields that have the
same name on each dataset, to left_<shared column name> and right_<shared column
name>. It is recommended to drop the unneeded same-name fields from each dataset
prior to joining, to make the functionality more explicit to those maintaining your
flows.

Left Dataset Right Dataset

Key
Same Nonkey
Field Nonkey field Key

Same Nonkey
Field Nonkey field

A B C A B C

Joined Dataset

Operator Key Same Nonkey Field Nonkey Field Nonkey Field

INNERJOIN A B (from LHS) C D

LEFTOUTERJOIN A B (from LHS) C D

RIGHTOUTERJOIN A B (from RHS) C D

FULLOUTERJOIN A left_B, right_B (from
LHS)

C D

LOOKUP A B (from LHS) C D
9-2 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Join Operators XML Specification Tables
Join Operators XML Specification Tables

INNERJOIN

LEFTOUTERJOIN, RIGHTOUTERJOIN, FULLOUTERJOIN

LOOKUP

Element Name Name Value

INPUT Input dataset 1 - sorted on the key columns.

INPUT Input dataset 2 - sorted on the key columns.

PROPERTY key Key columns to be joined.

OUTPUT The output dataset name.

Element Name Name Value

INPUT Input dataset 1. (left dataset) - sorted on the key columns

INPUT Input dataset 2. (right dataset) - sorted on the key
columns

PROPERTY key Key columns to be joined.

PROPERTY nullvalue column name=<null value>

The default null value that is assigned to the null column.

OUTPUT The output dataset name.

Element Name Name Value

INPUT The first input dataset is always the data that needs to
be processed.

INPUT The second input dataset is always the lookup dataset.

PROPERTY tablekeys Comma separated key columns to be looked up.

PROPERTY ifnotfound reject, continue, drop, or fail

What to do with the record if the result did not match.
If not specified, this option defaults to fail.

PROPERTY allowdups true or false

Optional property, defaults to true. This property
allows the lookup to return more than 1 record if the
lookup dataset has more than 1 matching set of keys.

OUTPUT The first output is the successful lookup output dataset
name.

OUTPUT The second will contain all records not matching the
tablekeys property. This needs to be specified if the
ifnotfound option is set to reject.
Join Operators 9-3

Join Operators XML Specification Tables
DBLOOKUP

Element Name Name Value

INPUT The data to be processed.

PROPERTY dbname Required property. Name of the database.

PROPERTY userid Required property. Database login name.

PROPERTY dbtype oracle or jdbc

Required property. The type of database to connect
to.

PROPERTY tablekeys Required property. Comma separated key columns
to be looked up in the database table or select_sql
result set.

PROPERTY table The table to look up in. This property can be used
generically instead of select_sql. Either table or
select_sql must be specified.

PROPERTY select_sql Simple SQL SELECT statement used instead of table.
Either table or select_sql must be specified.

Note: select_sql can only contain a SELECT
statement without the WHERE clause. RETL throws
an error on an invalid query.

Valid select_sql:

SELECT colA,colB from table

Invalid select_sql:

SELECT colA,colB from table WHERE colA > colB

PROPERTY hostname Hostname or IP address

This is an optional property. The fully-specified
hostname or IP address where the database resides.
This defaults to the localhost if not specified.

Note: This property should only be specified when it
is known that connections are being made to a
remote database.

This can be specified as a default in rfx.conf for
convenience.

PROPERTY port The port on which the database resides. This defaults
to 1521 if not specified in an operator or in rfx.conf.

Note: There are preset defaults in rfx.conf for the
necessary port numbers. The default for Oracle is
1521. The Oracle utility tnsping can be used to obtain
the port number.

Verify with your database administrator the proper
port for your database installation.

PROPERTY datetotimestamp true or false

This is an optional property that defaults to false.
When set to true, ORAREAD returns DATE columns
with the time included. When false, the time is not
included.

PROPERTY ifnotfound reject, continue, drop, or fail

Optional property, defaults to fail. What to do with
the record if the result did not match.
9-4 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Join Operators Examples
Join Operators Examples

INNERJOIN
<OPERATOR type="innerjoin" name="innerjoin,0">

<INPUT name="test_1.v"/>
<INPUT name="test_2.v"/>
<PROPERTY name="key" value="LOC_KEY"/>
<OUTPUT name="output.v"/>

</OPERATOR>

LEFTOUTERJOIN
<OPERATOR type="leftouterjoin" name="leftouterjoin,0">

<INPUT name="left.v"/>
<INPUT name="right.v"/>
<PROPERTY name="key" value="LOC_KEY"/>
<PROPERTY name="nullvalue" value="PROD_SEASN_KEY=-1"/>
<OUTPUT name="result.v"/>

</OPERATOR>

RIGHTOUTERJOIN
<OPERATOR type="rightouterjoin" name="rightouterjoin,0">

<INPUT name="right.v"/>
<INPUT name="left.v"/>
<PROPERTY name="key"value="LOC_KEY"/>
<PROPERTY name="nullvalue" value="PROD_SEASN_KEY=-1"/>
<OUTPUT name="output.v"/>

</OPERATOR>

FULLOUTERJOIN
<OPERATOR type="fullouterjoin" name="fullouterjoin,0">

<INPUT name="right.v"/>
<INPUT name="left.v"/>
<PROPERTY name="key" value="LOC_KEY"/>
<PROPERTY name="nullvalue" value="PROD_SEASN_KEY=-1"/>
<OUTPUT name="output.v"/>

</OPERATOR>

PROPERTY allowdups true or false

Optional property, defaults to true. This property
allows the lookup to return more than 1 record if the
lookup dataset has more than 1 matching set of keys.

PROPERTY usecache yes or no

Optional property, defaults to yes. Specifies whether
the results from the database lookup should be
cached.

OUTPUT The first output is the successful lookup output
dataset name.

OUTPUT The second will contain all records not matching the
tablekeys property. This needs to be specified if the
ifnotfound option is set to reject.

Element Name Name Value
Join Operators 9-5

Join Operators Examples
LOOKUP
<OPERATOR type="lookup">

<INPUT name="dataset.v"/>
<INPUT name="lookupdataset.v"/>
<PROPERTY name="tablekeys" value="LOC_KEY,SUPP_KEY"/>
<PROPERTY name="ifnotfound" value="reject"/>
<OUTPUT name="result.v"/>
<OUTPUT name="reject.v"/>

</OPERATOR>

<OPERATOR type="lookup">
<PROPERTY name="tablekeys" value="LOC_KEY"/>
<PROPERTY name="ifnotfound" value="continue"/>
<PROPERTY name="allowdups" value="true"/>
<INPUT name="dataset.v"/>
<INPUT name="lookupdataset.v"/>
<OUTPUT name="result.v"/>

</OPERATOR>

DBLOOKUP
<OPERATOR type="dblookup">

<INPUT name="dataset.v" />
<PROPERTY name="table" value="mytab"/>
<PROPERTY name="tablekeys" value="D"/>
<PROPERTY name="ifnotfound" value="fail"/>
<PROPERTY name="hostname" value="dbhostname"/>
<PROPERTY name="userid" value="myuserid" />
<PROPERTY name="password" value="mypassword" />
<PROPERTY name="dbname" value="mydatabase" />
<PROPERTY name="dbtype" value="oracle"/>
<OUTPUT name="joined.v" />

</OPERATOR>
9-6 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Sort, Merge, and Partitioning O
10

Sort, Merge, and Partitioning Operators

RETL provides the following sort and merge operators, described in this chapter:

■ COLLECT and FUNNEL

■ SORTCOLLECT and SORTFUNNEL

■ HASH

■ SORT

■ MERGE

COLLECT and FUNNEL
Both operators combine records from input datasets as they arrive. This can be used to
combine records that have the same schema from multiple sources. Note that these
operators are sometimes used implicitly by RETL to rejoin datasets that have been
divided during partitioning in parallel processing environments (where the number of
RETL partitions is greater than one).

SORTCOLLECT and SORTFUNNEL
Like COLLECT and FUNNEL these operators combine records from input datasets.
These operators maintain sorted order of multiple datasets already sorted by the key
fields. Records are collected in sorted order using a merge sort algorithm. If incoming
records are unsorted, FUNNEL followed by the SORT operator should be used
instead.

HASH
The HASH operator examines one or more fields of each input record, called hash key
fields, to assign records to a processing node. Records with the same values for all
hash key fields are assigned to the same processing node. This type of partitioning
method is useful when grouping or sorting data to perform a processing operation.

Note: The sort order (ascending or descending) of the input datasets
to SORTFUNNEL must be the same and must match the order
property of SORTFUNNEL. Otherwise, SORTFUNNEL may produce
unexpected results.
perators 10-1

SPLITTER
SPLITTER
The round-robin partitioning operator splits records among outputs in an ordered
record-by-record fashion. This is an alternative to the HASH operator and distributes
records more evenly than HASH.

SORT
SORT sorts the records in the RETL dataset based on one or more key fields in the
dataset.

MERGE
MERGE merges input dataset columns record-by-record. Each output record is the
union of the fields for each incoming record in the INPUT datasets. The number of
records contained in the input datasets must match. Columns are ordered by the order
of the input datasets: first input dataset, second input dataset, and so on.

Sort and Merge Operators XML Specification Tables

COLLECT/FUNNEL

HASH

Note: These operators are aliases for each other. FUNNEL is used as
a general rule, but either operator will work.

Element Name Name Value

INPUT Input dataset name. This can be specified 1 or
more times.

PROPERTY method monitor, poll, or cycle

Optional property. Defaults to "monitor". Specifies
the method used to determine which INPUT has a
record ready to be funneled. Changing this
property from the default can have major
performance and CPU usage implications.

OUTPUT The output dataset name.

Element Name Name Value

INPUT Input dataset.

PROPERTY key Key columns to be hashed.

PROPERTY numpartitions Number of data partitions to create. Defaults to
the number of partitions specified in rfx.conf.

OUTPUT The output dataset name.
10-2 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Sort and Merge Operators XML Specification Tables
SPLITTER

SORT

Element Name Name Value

INPUT The input dataset name.

PROPERTY numpartitions Optional property indicating the number of data
partitions to create. Defaults to the number of
partitions specified in rfx.conf.

OUTPUT The output dataset name.

Element Name Name Value

INPUT Input dataset name.

PROPERTY key Key columns to sort by.

When specifying multiple sort keys, the order that
they are specified is very important.

The records are ordered by the first key field. If there
is more than one record with the same first key field,
those records are ordered by the second key field,
and so on.

This behavior replicates the sorting that happens in
an SQL ORDER BY clause.

PROPERTY order desc or asc

Set to desc for descending sort order and asc for
ascending sort order. Default value is asc.

PROPERTY removedup true or false

If set, then duplicate records will be removed.
Default is false.

PROPERTY tmpdir Name of directory to use for temporary files.

Use of this property is not recommended.
Temporary directories should be specified in the
rfx.conf. This property allows one to override the
temporary directory to use for the sort command.

Note: If used, the directory should be periodically
cleaned as the TEMPDIR from the rfx.conf file (see
Chapter 2, "Installation and System Configuration")

PROPERTY delimiter Character to use as a delimiter when writing out the
records to a temporary file. Defaults to "|" (pipe
character).

If your data contains the pipe character, set this
property to a character that does not occur in your
data.

PROPERTY numsort Integer greater than 0, indicating the number of
threads used to sort the data. Defaults to 1.
Increasing the number of threads used to sort the
input may improve performance.

PROPERTY numpartitions Alias for numsort.

OUTPUT name.v The output dataset name.
Sort, Merge, and Partitioning Operators 10-3

Sort, Merge, and Partitioning Operators Tag Usage Examples
SORTCOLLECT/SORTFUNNEL

MERGE

Sort, Merge, and Partitioning Operators Tag Usage Examples

COLLECT
<OPERATOR type="collect">

<INPUT name="test_1.v"/>
<INPUT name="test_2.v"/>
<INPUT name="test_2.v"/>
<OUTPUT name="output.v"/>

</OPERATOR>

HASH
<OPERATOR type="hash">

<INPUT name="left.v"/>
<PROPERTY name="key"value="LOC_KEY"/>

<OPERATOR type="sort" >
<PROPERTY name="key"value="LOC_KEY"/>
<OUTPUT name="result.v"/>

</OPERATOR>
</OPERATOR>

Note: These operators are aliases for each other. SORTFUNNEL is
used as a general rule, but either operator will work.

Element Name Name Value

INPUT Input dataset name. This can be specified one or more
times.

PROPERTY key Key columns to sort by. Specify multiple keys by using
multiple key property instances. For example:

<PROPERTY name="key" value="k1"/>
<PROPERTY name="key" value="k2"/>

PROPERTY order desc or asc

Optional property that describes the sort order of the
incoming key fields. Default value is "asc", for
ascending order. Specify desc if keys are sorted in
descending order.

OUTPUT The output dataset name.

Element Name Name Value

INPUT Input dataset name. This can be specified one or
more times.

OUTPUT The output dataset name.
10-4 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Sort, Merge, and Partitioning Operators Tag Usage Examples
SORTCOLLECT
<OPERATOR type="sortcollect">

<PROPERTY name="key" value="LOC_KEY"/>
<INPUT name="test_1.v"/>
<INPUT name="test_2.v"/>
<OUTPUT name="output.v"/>

</OPERATOR>

MERGE
<OPERATOR type="merge">

<INPUT name="test_1.v"/>
<INPUT name="test_2.v"/>
<OUTPUT name="output.v"/>

</OPERATOR>
Sort, Merge, and Partitioning Operators 10-5

Sort, Merge, and Partitioning Operators Tag Usage Examples
10-6 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Mathematical
11

Mathematical Operators

RETL provides the following mathematical operators, described in this chapter:

■ BINOP

■ GROUPBY

■ GROUPBY on multiple partitions

BINOP
BINOP performs basic algebraic operations on two fields. Addition, subtraction,
multiplication, and division are supported for all numeric types. The left and right
operands can also be defined as constants. Note that division by zero produces a null
value. Only addition is supported for string fields; this becomes concatenation. BINOP
is not supported for date fields.

GROUPBY
The input to the GROUPBY operator is a dataset to be summarized; the output is a
dataset containing one record for each group in the input dataset. Each output record
contains the fields that define the group and the output summaries calculated by the
operator. One simple summary is a count of the number of records in each group.
Another kind of summary is a statistical value calculated on a particular field for all
records in a group.

Note: If all rows in a column are null, the GROUPBY operator
provides a null column total. GROUPBY requires sorted input only
when keys are specified. Otherwise, sorted input is not necessary.
 Operators 11-1

GROUPBY on Multiple Partitions
GROUPBY on Multiple Partitions
When running RETL using multiple partitions, run the GROUPBY operator with the
parallel property set to "true" to get the performance increase from the multiple
partitions. A HASH/SORT needs to be performed before the parallel GROUPBY. If the
same KEYS are used to GROUPBY that were used for the HASH/SORT, data with the
same KEY set is not spread to multiple partitions. If the next operator is a serial
operator, thereis an implied FUNNEL operator called by RETL after the GROUPBY to
gather the data from the different partitions together into a single dataset. If the next
operator is a parallel operator, RETL does not call a FUNNEL operator, and the
previous HASH/SORT is maintained. If you are not using the same KEYS to
GROUPBY, a SORTFUNNEL is required to collect the data from the multiple partitions
back into a single, sorted dataset. A final serial GROUPBY must then be performed,
because data may have been spread across multiple partitions and not included in the
GROUPBY calculation. If the next operator is a serial operator, nothing more needs to
be done. If the next operator is a parallel operator, another HASH/SORT must be
performed, because the HASH/SORT from the parallel GROUPBY is not maintained,
because a serial GROUPBY was performed after that.

Mathematical Operators XML Specification Tables

BINOP

Element Name Name Value

INPUT Input dataset name.

PROPERTY left Column name indicating the left operand. Only one
of left and constleft can be specified.

PROPERTY constleft Constant value indicating the left operand. Only one
of left and constleft can be specified.

PROPERTY right Column name indicating the right operand. Only one
of right and constright can be specified.

PROPERTY constright Column name indicating the right operand. Only one
of right and constright can be specified.

PROPERTY dest The result destination field name. This can be the
same field name as was specified in left or right
properties, to reuse existing fields.

PROPERTY desttype Optional field. The type of the destination field. The
default value is the type of the left field.

PROPERTY operator + for addition

- for subtraction

* for multiplication

/ for division

OUTPUT The output dataset name.
11-2 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Mathematical Operators XML Specification Tables
GROUPBY

Element Name Name Value

INPUT Input dataset name.

PROPERTY parallel true or false

true—If running in multiple partitions.

false—If running in a single partition (default).

PROPERTY key Key columns to group by. If key is not specified,
groupby considers all input data as one group.

Note: If the key property is not specified, GROUPBY
does not require sorted input.

PROPERTY reduce Column to be used in the calculation specified in the
following min, max, sum, first, last, or count
properties.

More than one operation (min, max, etc.) property can
be specified after a reduce property. The column
specified is used in all of the operations until the next
reduce property is specified.

PROPERTY min Name of the new column that will hold the minimum
of the values in the column specified in the preceding
reduce property.

PROPERTY max Name of the new column that will hold the maximum
of the values in the column specified in the preceding
reduce property.

PROPERTY sum Name of the new column that will hold the sum of the
values in the column specified in the preceding reduce
property.

PROPERTY first Name of the new column that will hold the first value
in the column specified in the preceding reduce
property.

PROPERTY last Name of the new column that will hold the last value
in the column specified in the preceding reduce
property.

PROPERTY count Name of the new column that will hold the count of
the values in the column specified in the preceding
reduce property.

OUTPUT The output dataset name.
Mathematical Operators 11-3

Mathematical Operators Examples
Mathematical Operators Examples

BINOP
<OPERATOR type="binop">

<INPUT name="import.v"/>
<PROPERTY name="left" value="field1"/>
<PROPERTY name="operator" value="+"/>
<PROPERTY name="constright" value="2"/>
<PROPERTY name="dest" value="destfield"/>
<OUTPUT name="binop.v"/>

</OPERATOR>

<OPERATOR type="binop">

<INPUT name="import.v" />
<PROPERTY name="left" value="field1"/>
<PROPERTY name="operator" value="-"/>
<PROPERTY name="right" value="field2"/>
<PROPERTY name="dest" value="destfield"/>
<OUTPUT name="binop.v"/>

</OPERATOR>

GROUPBY
<OPERATOR type="groupby">

<INPUT name="input_1.v"/>
<PROPERTY name="parallel" value="true "/>
<PROPERTY name="key" value="sex"/>
<PROPERTY name="reduce" value="age"/>
<PROPERTY name="min" value="min_age"/>
<PROPERTY name="max" value="max_age"/>
<PROPERTY name="first" value="first_age"/>
<PROPERTY name="last" value="last_age"/>
<PROPERTY name="count" value="count_age"/>
<PROPERTY name="sum" value="sum_age"/>
<PROPERTY name="reduce" value="birthday"/>
<PROPERTY name="min" value="min_birthDay"/>
<PROPERTY name="max" value="max_birthDay"/>
<PROPERTY name="first" value="first_birthDay"/>
<PROPERTY name="last" value="last_birthday"/>
<PROPERTY name="count" value="count_birthday"/>
<OUTPUT name="output.v"/>

</OPERATOR>

The following example shows what happens if the dataset was previously hashed and
sorted on a different key from the group by key in the GROUPBY operator, and if the
GROUPBY was run in multiple partitions.
11-4 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Mathematical Operators Examples
In this case additional SORTCOLLECT and GROUPBY operators need to be used to
guarantee the correct result.

<OPERATOR type="hash">
<PROPERTY name="key" value="ZIP_CODE"/>
<PROPERTY name="key" value="NAME"/>
<OPERATOR type="sort">

<PROPERTY name="key" value="ZIP_CODE"/>
<PROPERTY name="key" value="NAME"/>
<OUTPUT name="output1.v"/>

</OPERATOR>
</OPERATOR>

<OPERATOR type="groupby">
<INPUT name="output1.v"/>
<PROPERTY name="parallel" value="true"/>
<PROPERTY name="key" value="sex"/>
<PROPERTY name="reduce" value="age"/>
<PROPERTY name="count" value="count_age"/>
<PROPERTY name="reduce" value="birthday"/>
<PROPERTY name="max" value="max_birthday"/>
<OPERATOR type="sortcollect">

<PROPERTY name="key" value="sex"/>
<OPERATOR type="groupby">

<PROPERTY name="parallel" value="true"/>
<PROPERTY name="key" value="sex"/>
<PROPERTY name="reduce" value="age"/>
<PROPERTY name="count" value="count_age"/>
<PROPERTY name="reduce" value="birthday"/>
<PROPERTY name="max" value="max_birthday"/>
<OUTPUT name="output2.v"/>

</OPERATOR>
</OPERATOR>

</OPERATOR>
Mathematical Operators 11-5

Mathematical Operators Examples
11-6 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Structures and Data Manipulation O
12

Structures and Data Manipulation Operators

RETL provides the following operators for the manipulation of structures and data,
described in this chapter:

■ CONVERT

■ FIELDMOD

■ FILTER

■ GENERATOR

■ REMOVEDUP

CONVERT
The convert operator is used to convert an existing datatype to a new datatype from
an input dataset. The following paragraph describes the syntax of the CONVERT
property.

■ The root tag <CONVERT>, containing one or more <CONVERTFUNCTION> or
<TYPEPROPERTY> tags

■ The <CONVERT> tag requires the following attributes:

■ The <CONVERTFUNCTION> tag allows conversion of a column from one data
type to a different data type and has the following attribute:

destfield Destination field name or new name

sourcefield Original field name or old field name

newtype New data type

name The value of the name attribute of the conversion function
determines what conversion is done. The name generally
follows the form:
<typeTo>_from_<typeFrom>. Conversions are defined between
all numeric values and from numbers to strings as well. The
table below shows some example conversions.
perators 12-1

CONVERT
■ The <TYPEPROPERTY> tag allows turning the column into nullable or not null
and has the following attributes:

Conversion Functions
There are many conversion functions to allow conversion between types. Much of this
is done with default conversions between types (see Appendix A, "Appendix: Default
Conversions"). When using a default conversion, you simply specify 'default' as the
name of the conversion.

Here are the other (nondefault) conversion functions:

name nullable

value true or false

Conversion Name Description

make_not_nullable Converts nullable field to not null. Requires specification of a
functionarg tag. The value specified in the nullvalue functionarg is
used to replace any null fields that are found.

See "Structures and Data Manipulation Operators Examples".

make_nullable Converts non-nullable field to nullable field. Requires specification
of a functionarg tag. The value specified in the "nullvalue"
functionarg is used as the field's null value.

See "Structures and Data Manipulation Operators Examples".

string_length Converts a string to a UINT32 with a value equivalent to the
string's length.

string_from_int32 Converts to STRING from INT32.

string_from_int64 Converts to STRING from INT64.

string_from_int16 Converts to STRING from INT16.

string_from_int8 Converts to STRING from INT8.

int32_from_dfloat Converts to INT32 from DFLOAT rounding the result to the nearest
integer value.

int64_from_dfloat Converts to INT64 from DFLOAT rounding the result to the nearest
integer value.

string_from_date Converts to STRING from DATE.

dfloat_from_string Converts to DFLOAT from STRING.

string_from_dfloat Converts to STRING from DFLOAT.

Note: RETL reports invalid conversions, but RETL does not handle
certain conversions well. Take care to ensure that the data is
well-formed by the time a conversion takes place. Overflow and
underflow conversion errors are not detected by RETL. For example,
converting the INT16 "-12" to a UINT16 will result in undefined
behavior.
12-2 Oracle Retail Extract, Transform, and Load Programmer’s Guide

GENERATOR
FIELDMOD
FIELDMOD is used to remove, duplicate, drop and rename columns within RETL.
There are several optional parameters that you can use in the fieldmod operator. Here
are some notes on how to use the fieldmod operator:

■ Use the keep property when you need to drop a large number of columns and/or
ignore columns that you do not know about (allowing your flows to be more
resilient to change). Any columns that are not specified in the keep property are
dropped. The column names are separated by spaces. Multiple keep properties can
be specified.

■ If you want to keep most of columns and just drop a few columns, use the drop
property. The columns to drop are separated by spaces. The drop property is
processed after the keep property, which means that a column is dropped if it is
specified on both the keep and drop properties. Multiple drop properties can be
specified. Duplicated columns in single or multiple drop properties will generate
an error (for example, "Delete of field failed (field 'Emp_Age' not found)"), since
the column has been dropped.

■ The rename and duplicate properties affect the dataset after keep and drop
properties have been processed. If you attempt to rename or duplicate a column
that has been dropped, RETL generates an error (for example,." Error: the column
'Emp_Name' has been dropped and can not be duplicated").

FILTER
FILTER is used to filter a dataset into two categories, those that meet the filter criterion
and those that do not.

Possible uses are as follows:

■ To filter records where a field must be equivalent to a certain string

■ To filter on records where a certain field is less than 10, or filter on records where
two fields are equal (somewhat like the WHERE clause of a SQL statement)

GENERATOR
GENERATOR is used to create new datasets for testing or for combining with other
data sources. It can act as a stand-alone operator that generates the dataset from
scratch, or as an operator that can add fields to an existing dataset. The following
paragraph describes the syntax of the SCHEMA property, which in the following
example is represented within the CDATA tag.
Structures and Data Manipulation Operators 12-3

REMOVEDUP
The SCHEMA property should specify the XML that will generate the fields. The basic
outline is:

■ The root tag <GENERATE>, containing one or more <FIELD> tags

■ The <FIELD> tag specifies the name and type of the field as attributes, and it can
contain exactly one field generation tag. Field generation tags include:

– <SEQUENCE> tag with the following attributes:

– The <CONST> tag allows the specification of a single attribute, value, which is
the value that the field will take on.

– The <VALUELIST> tag has no attributes, but has multiple <CONST> tags
within it, specifying the list of values that should be cycled through

The following are the only data types that can be used within the GENERATOR
operator:

■ int8

■ int16

■ int32

■ int64

■ dfloat

■ string

■ date

REMOVEDUP
The REMOVEDUP operator performs a record-by-record comparison of a sorted
dataset to remove duplicate records. Duplicates are determined based upon the key
fields specified.

init Starting number in sequence. The default is 0.

incr Increment to add for each record in sequence. The default is 1.

limit Max number, once reached, will start from beginning. Optional,
unlimited if not specified.

partnum_offset (true/false) Adds the partition number to the init value for
parallel operation. The default is false.

partcount_incr (true/false) Multiplies the incr value by the number of
partitions. The default is false.
12-4 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Structures and Data Manipulation Operators XML Specification Tables
Structures and Data Manipulation Operators XML Specification Tables

CONVERT

FIELDMOD

Element Name Name Value

INPUT The input dataset name.

PROPERTY convertspec Describes the new column data structure to be converted.
See the convert specification and the example for more
detail.

OUTPUT The output dataset name.

Element Name Name Value

INPUT The input dataset name.

PROPERTY keep Space-separated list of the columns to be kept. The
named fields are retained and all others are dropped.
This property can be specified multiple times. Optional

PROPERTY drop Space-separated list of the columns to be dropped. The
named fields are dropped and all other fields are
retained. This property can be specified multiple times.
Optional

PROPERTY rename Column to be renamed. The format is:

new_column_name=existing_column_name

PROPERTY duplicate Column to be duplicated. The format is:

new_column=existing_column

Duplicate one column to another column. The source
column is separated by an equal sign from the target
column name.

OUTPUT The output dataset name.
Structures and Data Manipulation Operators 12-5

Structures and Data Manipulation Operators XML Specification Tables
FILTER

GENERATOR

Element Name Name Value

INPUT The input dataset name.

PROPERTY filter Filter expression

The following operations are supported. See the
"Filter Expressions" section for more detail.

Operation

NOT

AND

OR

IS_NULL

IS_NOT_NULL

GE

GT

LE

LT

EQ

NE

Description

Logical NOT

Logical AND

Logical OR

True if field is null.

True if field is not
null.

Logical >=

Logical >

Logical <=

Logical <

True if right and left
fields are equal.

True if right and left
fields are not equal.

PROPERTY rejects "true" or "false"

Optional filter value, default value "false". If
"true", then the operator will expect a second
OUTPUT to be specified into which rejected
(filtered) records will be deposited.

OUTPUT The first output dataset specified contains all of
the records for which the filter expression
evaluates to "true".

OUTPUT The second output is required if the rejects
property (above) is specified. This output dataset
is the set of records for which the filter
expression evaluates to "false".

Element Name Name Value

INPUT This property is optional. If specified, this is the
input dataset. If not specified, numrecords must
be specified.

PROPERTY parallel "true" or "false"

"true"—GENERATOR should be run in parallel.

"false"—GENERATOR should be run in a single
partition (default).
12-6 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Filter Expressions
REMOVEDUP

Filter Expressions
Filter expressions consist of fields, constants, and comparison operators, much like the
WHERE clause of a SQL SELECT statement.

Simple filter expressions are in one of the following forms:

operand comparison-operator operand

or

field null-comparison-operator

where:

operand can be the name of a field or a constant.

comparison-operator is one of the following:

■ GE (greater than or equal to)

■ GT (greater than)

■ LE (less than or equal to)

■ LT (less than)

PROPERTY numpartitions Optional property indicating the number of data
partitions to create.

PROPERTY numrecords This optional field is used when no INPUT is
specified to determine how many records are
generated. If an input is specified this value is
ignored. The default value is 1.

PROPERTY schema Describes the new column data structure to be
generated. See the GENERATOR specification
and the example for more detail.

OUTPUT name.v The output dataset name.

Element Name Name Value

INPUT The input dataset name.

PROPERTY key Column names of columns to use to detect
duplicate records. More than one column
property can be specified.

PROPERTY keep "first" or "last"

Either keeps the first or last data if key fields are
the same. It defaults to 'first'.

Note: Specify "first" as the value for the keep
property when sort order makes it possible. This
increases REMOVEDUP performance.

OUTPUT The output dataset name.

Element Name Name Value
Structures and Data Manipulation Operators 12-7

Structures and Data Manipulation Operators Examples
■ EQ (equal to)

■ NE (not equal to)

null-comparison-operator is one of the following:

■ IS_NULL

■ IS_NOT_NULL

For example:

CUST_KEY EQ -1
CUST_DT_OF_BIRTH IS_NOT_NULL

Simple filter expressions can be chained together using AND and OR to form more
complex expressions. The complex expression is always evaluated from left to right.
That is, AND and OR are at the same order of evaluation.

Starting with RETL 11.3, parentheses are supported to alter the order of evaluation.
Subexpressions within parentheses are evaluated first.

For example:

TRAN_CODE EQ 30 OR TRAN_CODE EQ 31
START_DATE LE DAY_DT AND END_DATE GE DAY_DT
CUST_DT_OF_BIRTH EQ '20050101' OR CUST_DT_OF_BIRTH IS_NULL
(TRAN_CODE EQ 30 AND TRAN_TYPE EQ 'A') OR (TRAN_CODE EQ 31 AND TRAN_TYPE EQ 'B')

■ Note that without the parentheses, the filter expression above would not evaluate
as intended because the order of evaluation is left to right and would be
equivalent to

(((TRAN_CODE EQ 30 AND TRAN_TYPE EQ 'A') OR TRAN_CODE EQ 31) AND TRAN_TYPE EQ
'B')

■ In this case, a record with TRAN_CODE = 30 and TRAN_TYPE = 'A' would
evaluate to false.

Structures and Data Manipulation Operators Examples

CONVERT
<OPERATOR type="convert">

<INPUT name="input.v"/>
<PROPERTY name="convertspec">

<![CDATA[
<CONVERTSPECS>

<CONVERT destfield="SUPP_IDNT" sourcefield="SUPPLIER"
newtype="string">
<CONVERTFUNCTION name="string_from_int64"/>

</CONVERT>
<CONVERT destfield="LOC_IDNT" sourcefield="LOCATION"

newtype="string">
<CONVERTFUNCTION name="string_from_int32"/>
<TYPEPROPERTY name="nullable" value="true"/>

</CONVERT>

Note: This order of evaluation is different from the order used by
SQL.
12-8 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Structures and Data Manipulation Operators Examples
</CONVERTSPECS>
]]>

</PROPERTY>
<OPERATOR type="debug"/>

</OPERATOR>

<OPERATOR type="convert">
<INPUT name="inv_sbc_lw_dm.v"/>
<PROPERTY name="convertspec">

<![CDATA[
<CONVERTSPECS>

<CONVERT destfield="SBCLASS_KEY"
sourcefield="SBCLASS_KEY">
<CONVERTFUNCTION name="make_not_nullable">

<FUNCTIONARG name="nullvalue" value="-1"/>
</CONVERTFUNCTION>
</CONVERT>

</CONVERTSPECS>
]]>

</PROPERTY>
<OUTPUT name="converted.v"/>

</OPERATOR>

FIELDMOD
<OPERATOR type="fieldmod">

<INPUT name="input.v"/>
<PROPERTY name="keep" value="Emp_Name Emp_Age"/>
<PROPERTY name="keep" value="Emp_ID"/>
<OUTPUT name="output.v"/>

</OPERATOR>

<OPERATOR type="fieldmod">
<INPUT name="input.v" />
<PROPERTY name="rename" value="Emp_Name=EmpName"/>
<OUTPUT name="output.v"/>

</OPERATOR>

<OPERATOR type="fieldmod">
<INPUT name="input.v"/>
<PROPERTY name="drop" value="Emp_Title"/>
<OUTPUT name="output.v" />

</OPERATOR>

<OPERATOR type="fieldmod">
<INPUT name="input.v" />
<PROPERTY name="duplicate" value="Emp_Name=Name"/>
<OUTPUT name="output.v"/>

</OPERATOR>

FILTER
<OPERATOR type="filter">

<INPUT name="input.v"/>
<PROPERTY name="filter" value="SSN EQ '123456789' AND

SALARY GT '124.22' AND DOB LT '19981010'"/>
<PROPERTY name="rejects" value="true"/>
<OUTPUT name="valid.v"/>
<OUTPUT name="reject.v"/>

</OPERATOR>
Structures and Data Manipulation Operators 12-9

Structures and Data Manipulation Operators Examples
GENERATOR
<OPERATOR type="generator">

<PROPERTY name="numrecords" value="5"/>
<PROPERTY name="schema">

<![CDATA[
<GENERATE>

<FIELD name="DM_RECD_LOAD_DT" type="date"
nullable="false">
<CONST value="19800101"/>

</FIELD>
<FIELD name="LOC_KEY" type="int8" nullable="true">

<SEQUENCE init="1" incr="1"/>
</FIELD>

</GENERATE>
]]>

</PROPERTY>
</OPERATOR>

<OPERATOR type="generator">
<INPUT name="input.v"/>
<PROPERTY name="schema">

<![CDATA[
<GENERATE>

<FIELD name="F_FULL_PO_COUNT" type="int64"
 nullable="true">

<CONST value="1"/>
</FIELD>
<FIELD name="F_PART_PO_COUNT" type="int64"

nullable="true">
<CONST value="0"/>

</FIELD>
</GENERATE>

]]>
</PROPERTY>
<OPERATOR type="debug"/>

</OPERATOR>

REMOVEDUP
<OPERATOR type="removedup">

<INPUT name="input.v"/>
<PROPERTY name="key" value="SKU_KEY"/>
<PROPERTY name="key" value="LOC_KEY"/>
<PROPERTY name="keep" value="LAST"/>
<OUTPUT name="output.v"/>

</OPERATOR>
12-10 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Other O
13

Other Operators

This chapter describes these RETL operators and their usage:

■ COMPARE

■ SWITCH

■ CHANGECAPTURE

■ COPY

■ DIFF

■ CLIPROWS

■ PARSER

■ EXIT

COMPARE
COMPARE performs a field-by-field comparison of records in two presorted input
datasets. This operator compares the values of top-level, non-vector data types such as
strings. All appropriate comparison parameters are supported (for example, case
sensitivity and insensitivity for string comparisons). The assumption is that the
original dataset is used as a basis for the comparison to the second dataset. The
comparison results are recorded in the output dataset.

COMPARE appends a compare result to the beginning of each record with a value set
as follows:

Code Other

-1 First dataset FIELD is LESS THAN second dataset FIELD.

0 First dataset FIELD is the SAME AS second dataset FIELD.

-2 Record does not exist in the first dataset.

1 First dataset FIELD is GREATER THAN second dataset FIELD.

2 Record does not exist in the second dataset.
perators 13-1

SWITCH
Here is an example to illustrate:

The resulting output would look like this:

Note that the Compare Result column above is only for illustration. Only the Result
above would be added to the actual output dataset.

SWITCH
SWITCH assigns each record of an input dataset to an output dataset, based on the
value of a specified field.

CHANGECAPTURE and CHANGECAPTURELOOKUP
Use CHANGECAPTURE or CHANGECAPTURELOOKUP to compare two datasets.
The assumption is that the flow is comparing an original dataset with a modified copy
(changed) dataset. The output is a description of what modifications have been made
to the original dataset. Here are the changes that are captured:

■ Inserts: Records added to the original dataset.

■ Deletes: Records deleted from the original dataset.

■ Edits: Records matching the given keys fields whose other fields have values have
been modified from the original records.

■ Copies: Records not changed from the original.

The operator works based on these conditions:

■ Two inputs (the original and changed datasets), one output containing the
combination of the two (edits are taken from the modified side) and a new field to
show what change (if any) occurred between the original and the changed dataset.

■ The two input datasets must have the same schemas

■ For CHANGECAPTURE, the two datasets must be previously sorted on specified
key fields. CHANGECAPTURELOOKUP does not require sorted input.

Original Key Compare Key

A A

B A

C E

D

Key Result Compare Result

A 0 Keys match.

B 1 Original key is greater than compare key.

C -1 Original key is less than compare key.

D 2 Original key does not exist in the compare dataset.
13-2 Oracle Retail Extract, Transform, and Load Programmer’s Guide

DIFF
CHANGECAPTURE and CHANGECAPTURELOOKUP identify duplicate records
between two datasets by comparing specified key fields. It then compares the value of
the fields between the two datasets. The operator adds a field to the output records
that contain one of four possible values, representing the conditions noted earlier
(inserts, deletes, edits, or copies). The actual values assigned to each of the possibilities
can be changed from the default if desired. It is possible to assign the name of this field
and to indicate that records assigned into one or more of the above categories be
filtered from the output dataset, rather than being passed along with the change code.

To eliminate the need for sorted input, CHANGECAPTURELOOKUP reads the entire
changed dataset into memory into a lookup table. Thus, the memory requirements of
CHANGECAPTURELOOKUP are much higher than for CHANGECAPTURE.

Here is an example to illustrate:

The resulting OUTPUT would look like this:

Note that the Change column is just for illustration. Only the CodeField would be
added to the actual output dataset.

CHANGECAPTURE is often used in conjunction with the SWITCH operator.

COPY
The COPY operator copies a single input dataset to one or more output datasets.

DIFF
The DIFF operator performs a record-by-record comparison of two versions of the
same dataset (the "before" and "after" datasets) and outputs one dataset that contains
the difference between the compared datasets. DIFF is similar to CHANGECAPTURE;
the only differences are the default change codes and default drops.
CHANGECAPTURE is the recommended operator to use for these types of operations,
and DIFF is provided simply for backward compatibility.

Original Dataset Changed Dataset

Key Value Other Key Value Other

John 5 corn John 5 corn

Jill 10 beans George 7 olives

Allie 2 pizza Allie 5 pizza

Frank 14 42fas Frank 14 Bogo

Key Value Other Change CodeField

John 5 Corn Copy 0

Jill 10 Beans deletion 2

George 7 Olives insertion 1

Allie 5 Pizza Edit 3

Frank 14 Bogo Copy 0
Other Operators 13-3

CLIPROWS
CLIPROWS
The CLIPROWS operator performs a record-by-record comparison of a sorted dataset
to "clip" a number of rows from a group of records. For each group value of the input
keys, it returns up to the first or last n entries in the group. It sends to its OUTPUT
dataset the given records for further processing and discards the rest.

PARSER
The PARSER operator allows business logic to be coded in a Java-like script. As a
result, it is possible to:

■ Encapsulate several operators' functionality into one operator (for example,
BINOP, FILTER, COPY, NOOP)

■ Improve performance by reducing the number of operators in the flow

■ Improve maintenance costs by decreasing complexity of flows

Additionally, flows with the PARSER operator are more readily sizable with
partitioning.

Supported parser constructs:

Conditional operators:

■ ==, !=, >, !>, >=, !>=, <, <=, !<, !<=

Assignment operators:

■ =, +=, -=, /=, *=, %=

Mathematic operators:

■ +, -, *, /, %

Statements:

■ if/else

Datatypes and representations:

■ Strings: "test1", "-345"

■ Longs: 1, 2, 1000, -10000

■ Doubles: 1.0, 1e2

■ Nulls: null, ""

■ Fields: RECORD.FIELDNAME (e.g. RECORD.ITEM_LOC)

(RECORD must be in all capitals.)

■ Dataset output:

– A record can be sent to the nth output by using RECORD.OUTPUT[n-1] =
true;. (The OUTPUTs are indexed starting at 0, just like Java arrays.)
Additionally, RECORD.OUTPUT[n-1] = false; allows the nth OUTPUT to be
turned off.

– RECORD.OUTPUT[*] = true; sends the record to all defined OUTPUTs. While
RECORD.OUTPUT[*] = false; will turn all OUTPUTs off.

– A record can be conditionally sent to an OUTPUT, making PARSER act like a
filter or switch operator.
13-4 Oracle Retail Extract, Transform, and Load Programmer’s Guide

EXIT
– A record can be sent to more than one OUTPUT, making PARSER act like a
copy operator. When this is done, the allowcopy property must be set to true.

– A record can be sent to no OUTPUT and consumed like NOOP. All OUTPUT
settings must be set to false, individually or by using the * designation.

– RECORD.OUTPUT[n] can be used as a BOOLEAN value in comparisons, so
that you can check whether a RECORD is set to go to a specific OUTPUT.

if (RECORD.OUTPUT[0] == true) { …

Comparisons:

■ Comparisons are made based upon the left-hand-side datatype.

Assignments:

■ In an assignment, the right-hand side will be converted to the left-hand side
datatype. An error will be thrown for invalid conversions.

■ Strings can be concatenated with the + and += operators.

■ Assignments must end with a semicolon.

Field usage:

■ Fields can be used in assignments and comparisons by using
RECORD.FIELDNAME to refer to the FIELDNAME field of the current record.

■ Fields can only be used in an assignment to set other fields. For example,

-1 = RECORD.ITEM_LOC is an invalid assignment.

■ Multiple fields can be assigned or compared, but all fields come from the current
record.

Code Blocks:

■ All statements and expressions appear within a code block, which must be
surrounded by curly braces {}. The braces are not optional for single line code
blocks as they are in Java.

Comments:

■ PARSER supports both single line comments starting with // and block comments
delimited by /* and */.

EXIT
The EXIT operator aborts the RETL flow after a specified number of records have been
processed by the operator.
Other Operators 13-5

Other Operators XML Specifications
Other Operators XML Specifications

COPY

COMPARE

CLIPROWS

Element Name Name Value

INPUT The input dataset name.

OUTPUT The output dataset name. OUTPUT can be specified
multiple times.

Element Name Name Value

INPUT Input dataset 1.

INPUT Input dataset 2.

PROPERTY key Column name to be compared between the two
datasets defined above.

OUTPUT name.v Output dataset.

Element Name Name Value

INPUT The input dataset name.

PROPERTY key Required property. Indicates that the given column is
part of the group definition. Multiple keys can be
specified. If you are using partitioning with
CLIPROWS, make sure you are using a HASH
operator with the same key values. That is, the
cliprows keys and hash keys must be the same
otherwise incorrect results will be returned.

PROPERTY which first or last

Required property. Indicates that the given column is
part of the group definition. Multiple keys can be
specified.

PROPERTY count Required property. Indicates the number of rows to
clip.

PROPERTY parallel true or false

Optional property.

When set to true, the CLIPROWS operator will be
included in a partition.

When set to false, the CLIPROWS operator will not be
included in a partition, and a funnel will be inserted
before the CLIPROWS operator to unpartition the
data.(default).

Ignored if not partitioning.

OUTPUT The output dataset name.
13-6 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Other Operators XML Specifications
DIFF

Element Name Name Value

INPUT First input dataset name. This dataset represents
the original dataset.

INPUT Second input dataset name. This dataset represents
the modified dataset.

PROPERTY key Records that match key fields are considered to be
the same when determining existence in one
dataset versus the other. After the two records are
matched via the keys basis, the operator can
determine if there are copies or edits. If a record
exists in the original dataset but not the changed
dataset, it is considered to be a delete. Likewise, if a
record exists in the changed dataset but not the
original, it is an insertion. There can be multiple
instances of this property, allowing the use of
composite keys.

PROPERTY allvalues true or false

true—Compares all the values between the
datasets.

false—Does not compare all values. If this property
is false, then the value property should be set.

Note: If the values property is not set when
allvalues is false, DIFF acts as if allvalues is set to
true.

PROPERTY value After the key property has been used to join
datasets, the field specified by the value property is
used to determine differences among the records in
the joined datasets.

Must be present in both before and after schemas.
Determines if the record is a copy or a delete. The
fields are processed one by one in the order they
are present in the record.

PROPERTY codefield The field name to set the change code field to.
Defaults to codefield.

PROPERTY copycode The code that is written to the change code field for
a copy. The default value is 2.

PROPERTY editcode The code that is written to the change code field for
an edit. The default value is 3.

PROPERTY deletecode The code that is written to the change code field for
a delete. The default value is 1.

PROPERTY insertcode The code that is written to the change code field for
an insert. The default value is 0.

PROPERTY dropcopy true or false

If true, copy records are dropped from the output.
The default is false.

PROPERTY dropedit true or false

If true, edit records are dropped from the output.
The default is false.
Other Operators 13-7

Other Operators XML Specifications
CHANGECAPTURE and CHANGECAPTURELOOKUP

PROPERTY dropdelete true or false

If true, delete record are dropped from the output.
The default is false.

PROPERTY dropinsert true or false

If true, insert records are dropped from the output.
The default is false.

PROPERTY sortascending true or false

Deprecated.

OUTPUT The output dataset name.

Element Name Name Value

INPUT First input dataset name. This dataset represents
the original dataset.

INPUT Second input dataset name. This dataset represents
the modified dataset.

PROPERTY allvalues true or false

true—Compares all the values between the
datasets.

false—Does not compare all values. If this property
is false, then the value property should be set.

Note: If the values property is not set when
allvalues is false, CHANGECAPTURE and
CHANGECAPTURELOOKUP act as if allvalues is
set to true.

PROPERTY key Records that match key fields are considered to be
the same when determining existence in one
dataset versus the other. After the two records are
matched via the keys basis, the operator can
determine if there are copies or edits. If a record
exists in the original dataset but not the changed
dataset, it is considered to be a delete. Likewise, if
a record exists in the changed dataset but not the
original, it is an insertion. There can be multiple
instances of this property, allowing the use of
composite keys.

PROPERTY value This property indicates the fields to use to base the
comparisons after records have been matched on
key fields. When the given values match, the
records are considered to be copies. When the
values differ, the records are considered to be edits.
There can be multiple instances of this property,
allowing the use of composite values.

This is an optional property. When not specified,
all common fields are used in the comparison. This
is identical to setting the allvalues property to true.

PROPERTY dropcopy true or false

If true, copy records are dropped from the output.
The default is true.

Element Name Name Value
13-8 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Other Operators XML Specifications
SWITCH

PROPERTY dropedit true or false

If true, edit records are dropped from the output.
The default is false.

PROPERTY dropdelete true or false

If true, delete record are dropped from the output.
The default is false.

PROPERTY dropinsert true or false

If true, insert records are dropped from the output.
The default is false.

PROPERTY copycode The code that is written to the change code field for
a copy. The default value is 0.

PROPERTY insertcode The code that is written to the change code field for
an insert. The default value is 1.

PROPERTY deletecode The code that is written to the change code field for
a delete. The default value is 2.

PROPERTY editcode The code that is written to the change code field for
an edit. The default value is 3.

PROPERTY codefield The field name to set the change code field to.

PROPERTY sortascending true or false

Deprecated.

OUTPUT The output dataset name.

Element Name Name Value

INPUT The input dataset name.

PROPERTY switchfield Field name to determine the switch.

PROPERTY casevalues value1=0, value2=1

This property assigns the switch value base on a
comma-separated list of mappings from value to
output dataset.

Note: Output datasets are numbered starting from 0,
starting from first specified to the last.

PROPERTY discard Value to be discarded or dropped.

PROPERTY ifnotfound allow, fail, ignore

This property determines what to do with the record
if the casevalues are not found.

allow—The record is put on the last output dataset.
If the number of output datasets matches the
number of values in the casevalues property, then
records that match the last case value and those that
do not match any of the case values will share the
same dataset.

fail—Halts the process (default).

ignore—Drops the record. The record is not put on
any output dataset.

Element Name Name Value
Other Operators 13-9

Other Operators Examples
PARSER

EXIT

Other Operators Examples

COPY
<OPERATOR type="copy">

<INPUT name="input.v"/>
<OUPUT name="copy1.v"/>
<OUTPUT name="copy2.v"/>

</OPERATOR>

OUTPUT The valid output dataset. Number of outputs should
correspond to number of casevalues. For example,
value1=0, value2=1 should have two outputs (or
three if discard is specified)

OUTPUT The reject output dataset.

Element Name Name Value

INPUT The input dataset name.

PROPERTY expression Language expression the operator should use to
process records. Supports general Java-like syntax
and must be surrounded by CDATA tags. See the
examples that follow.

PROPERTY allowcopy true or false

Set allowcopy to true if the expression can copy the
same record to more than one OUTPUT.

OUTPUT First output dataset name. At least one OUTPUT is
required.

OUTPUT Multiple OUTPUTs can be specified.

To copy the current record to a specific OUTPUT,
use RECORD.OUTPUT[n] = true;, where n is
between 0 and the number of OUTPUTs minus 1.

Element Name Name Value

INPUT The input dataset name.

PROPERTY records When the number of records processed by the EXIT
operator reaches the number of records specified in the
records property, RETL aborts the flow. An error message
is displayed indicating that the EXIT operator terminated
the flow.

The default value is 0, which is interpreted to mean that
the EXIT operator should not terminate the flow.

OUTPUT The output dataset name.

Element Name Name Value
13-10 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Other Operators Examples
SWITCH
<OPERATOR type="switch">

<INPUT name="import1.v" />
<PROPERTY name="switchfield" value="COLOR" />
<PROPERTY name="casevalues" value=" RED=0, BLUE=1" />
<PROPERTY name="discard" value="YELLOW" />
<PROPERTY name="ifnotfound" value="allow" />
<OUTPUT name="red.v" />
<OUTPUT name="blue.v" />
<OUTPUT name="not_red_blue_or_yellow.v " />

</OPERATOR>

COMPARE
<OPERATOR type="compare">

<INPUT name="import1.v"/>
<INPUT name="import2.v"/>
<PROPERTY name="key" value="NAME"/>
<OUTPUT name="compare.v"/>

</OPERATOR>

CHANGECAPTURE
<OPERATOR type="changecapture">

<INPUT name="import1.v" />
<INPUT name="import2.v" />
<PROPERTY name="key" value="emp_age" />
<PROPERTY name="value" value="emp_name" />
<PROPERTY name="codefield" value="change_code" />
<PROPERTY name="copycode" value="0" />
<PROPERTY name="editcode" value="3" />
<PROPERTY name="deletecode" value="2" />
<PROPERTY name="insertcode" value="1" />
<PROPERTY name="dropcopy" value="false" />
<PROPERTY name="dropedit" value="true" />
<PROPERTY name="dropdelete" value="true" />
<PROPERTY name="dropinsert" value="true" />
<PROPERTY name="allvalues" value="true" />
<PROPERTY name="sortascending" value="false" />
<OUTPUT name="changecapture.v" />

</OPERATOR>

CHANGECAPTURELOOKUP
<OPERATOR type="changecapturelookup">

<INPUT name="import1.v" />
<INPUT name="import2.v" />
<PROPERTY name="key" value="emp_age" />
<PROPERTY name="value" value="emp_name" />
<PROPERTY name="codefield" value="change_code" />
<OUTPUT name="changecapture.v" />

</OPERATOR>
Other Operators 13-11

Other Operators Examples
CLIPROWS
<OPERATOR type="cliprows">

<INPUT name="import1.v"/>
<PROPERTY name="key" value="LOC"/>
<PROPERTY name="which" value="first"/>
<PROPERTY name="count" value="2"/>
<OUTPUT name="cliprows.v"/>

</OPERATOR>

DIFF
<OPERATOR type="diff">

<INPUT name="import1.v"/>
<INPUT name="import2.v"/>
<PROPERTY name="key" value="emp_name"/>
<PROPERTY name="allvalues" value="true"/>
<OUTPUT name="diff.v"/>

</OPERATOR>

PARSER
<OPERATOR type="parser">

<INPUT name="sales.v"/>
<PROPERTY name="expression">

<![CDATA[
if (RECORD.SALES_AMT == null)
{

RECORD.SALES_AMT = 0;
}

]]>
</PROPERTY>
<OUTPUT name="newsales.v"/>

</OPERATOR>

EXIT
<!-- Validates that CODE > 0. Terminates the flow on the first record found that
has an invalid CODE. -->
<OPERATOR type="filter">

<INPUT name="data.v"/>
<PROPERTY name="filter" value="CODE GT 0"/>
<PROPERTY name="rejects" value="true"/>
<OUTPUT name="valid_codes.v"/>
<OPERATOR type="exit">

<PROPERTY records="1"/>
</OPERATOR>

</OPERATOR>

PARSER
The expression value must be surrounded by CDATA tags:
<PROPERTY name="expression">

<![CDATA[
if (RECORD.D > 500000)
{

RECORD.D *= 10;
}
else
{

13-12 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Other Operators Examples
RECORD.D *= 5;
}

]]>

</PROPERTY>

Enclose date and string constants in double quotation marks:
<PROPERTY name="expression">

<![CDATA[
if (RECORD.A == "20020101")
{

RECORD.A = "20030101";
}
if (RECORD.B == "abc")
{

RECORD.B = "DWS";
}
else if (RECORD.B == "def")
{

RECORD.B = "CP";
}
else
{

if (RECORD.B == "hij")
{

RECORD.B = "2uy";
}
RECORD.B = "JC";

}
]]>

</PROPERTY>

Example of ==, <, <=, >, >=, +=, -=, *=, /=, and %= operators:
<PROPERTY name="expression">

<![CDATA[
if (RECORD.D == 1)
{

RECORD.D += 1;
}

if (RECORD.D < 10)
{

RECORD.D -= 2;
}

if (RECORD.D <= 1)
{

RECORD.D *= 3;
}

if (RECORD.D > 1)
{

RECORD.D /= 4;
}

if (RECORD.D >= 1)
{

RECORD.D %= 5;
}

Other Operators 13-13

Other Operators Examples
if (RECORD.DAY_DT !> "20030629")
{

RECORD.DAY_DT = "20030725";
}

]]>
</PROPERTY>
Setting RECORD(n) sends the record to the n+1 OUTOUT, making PARSER act like a
FILTER or SWITCH operator.
<PROPERTY name="expression">

<![CDATA[
if (RECORD.A == 1)
{

RECORD.OUTPUT[0] = true;
}
else
{

RECORD.OUTPUT[1] = true;
}

]]>
</PROPERTY>
Sending the record to multiple outputs makes PARSER act like a copy operator. The
allowcopy property must be set to "true" or you receive an error.
<PROPERTY name="allowcopy" value="true"/>
<PROPERTY name="expression">

<![CDATA[
// Either the code below
RECORD.OUTPUT[0] = true;
RECORD.OUTPUT[1] = true;

// Or the simpler syntax in the commented code below
//RECORD.OUTPUT[*] = true;

]]>
</PROPERTY>
PARSER can act like a filter and a copy at the same time. In this example, some
records are sent to the first OUTPUT and some are sent to the second OUTPUT. All
records are sent to the third OUTPUT.
<PROPERTY name="allowcopy" value="true"/>
<PROPERTY name="expression">

<![CDATA[
if (RECORD.A == 1)
{

RECORD.OUTPUT[0] = true;
}
else
{

RECORD.OUTPUT[1] = true;
}
RECORD.OUTPUT[2];

]]>
</PROPERTY>
PARSER can act like a FILTER, COPY, and a NOOP at the same time. In this example,
some records are sent to the first OUTPUT, some will be sent to both OUTPUTs, and
some are sent to no OUTPUTs.
<PROPERTY name="allowcopy" value="true"/>
<PROPERTY name="expression">

<![CDATA[
if (RECORD.A == 1)
{

RECORD.OUTPUT[0] = true;
}

13-14 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Other Operators Examples
else if (RECORD.A == 2)
{

RECORD.OUTPUT[*] = true;
}
else
{

RECORD.OUTPUT[*] = false;
}

]]>
</PROPERTY>
Other Operators 13-15

Other Operators Examples
13-16 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Common Operator
14

Common Operator Properties

This chapter describes properties common to all operators.

Common Operator XML Specification

Element Name Name Value

PROPERTY progind Progress indicator string displayed as records are
processed.

PROPERTY progfreq How often to display the progind string. The progind
string is displayed every progfreq records.
 Properties 14-1

Common Operator XML Specification
14-2 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Bes
15

Best Practices

Introduction and Objectives
Traditional application integration has been done in a point-to-point manner.
Developers are given an integration tool and told to integrate to a defined
file/database specification or to an API. The end result may be functionally valid
according to the single specification, but the means to get there, the implementation,
may be cumbersome, non-reusable, non-performant, and subject to heavy
maintenance costs. Worse yet, the design itself may not have accounted for all the
business process needs, invalidating the entire implementation.

This is why there is a need for best practice guidance when using any tool—so that the
tool can be used and the interface developed and deployed to the maximum
advantage in terms of costs and benefits. This chapter will cover simple and proven
practices that can be used when developing and designing integration flows using the
RETL tool.

RETL is a simple tool doing a very simple job—moving large amounts data in bulk.
However, managing the variety of disparate systems and pulling data together to form
a complete 'picture' can be very complex.

As a result of business process, integrated system, database and interface complexity, it
is imperative that the RETL tool be used correctly so that the end deliverable of RETL
flows is performant, maintainable, and of high quality.

This chapter will describe the following activities and what best practices should be
followed before, during, and after each activity:

1. Project Initiation/Design/functional specification—The best practices to follow
during requirements elicitation, interface analysis, and design.

2. Code/Implementation/Test—The best practices to follow when setting up the
environment, during flow construction and all phases of testing. This will be the
bulk of the chapter.

3. Review/product handoff—Activities to follow when reviewing the project and its
deliverables. This also provides guidance for handing off interface deliverables to
operations and support personnel.

This is a living chapter that will grow over time as we learn more about our customers
needs and can fill it with tips from experts from the different domains that RETL
touches upon.
t Practices 15-1

Project Initiation/Design/Functional Specification Best Practices
Prerequisites
There are two core skill sets needed when designing and developing RETL integration
flows:

1. Interface design skills—a functional/technical architect should design the
interfaces. The designer should have knowledge of the following:

a. Understand the source and target data sources. They should have in-depth
knowledge of the data models for each application, and how a transformation
may be performed in order to integrate the two applications

b. Can understand how each application and business process works and can
quickly interpret the data needs for an application based on the business
process(es) that need to be supported.

c. Has a general understanding of the schedule, data dependencies, batch jobs,
and volume of the application in question.

2. ETL technical skills—The ETL coder should have knowledge of the following:

a. Have strong Unix experience—in-depth Korn shell scripting and Unix in
general are a must

b. Have previous RETL Experience—familiarity with the RETL Programmer's
Guide is a must and previous experience with writing RETL flows is strongly
recommended

c. Have strong database Experience—familiarity with SQL statements and
database operations and utilities (e.g. SQL*Loader) is strongly recommended.

Project Initiation/Design/Functional Specification Best Practices
Before any development can be done, it is imperative to have a solid interface design
that is generic and re-usable for future applications. The following practices will help
ensure this:

Ask Discovery Questions First
An important part of the functional design is to ask pointed and relevant questions
that can answer the following:

Generic Integration Questions
■ What type of data integration is needed? Is there a potential for needing real-time or

near-real-time integration? If there is potentially a need for more
synchronous/real-time integration, perhaps consider using a different technology
such as the Oracle Retail Integration Bus (RIB) or direct access.

■ What business process is to be integrated? For any project manager or flow developer
to understand how they must construct the data flow, they must understand at a
high-level, what business process it is that they will support. Why do the users in
system x need the data created in system y? Without this understanding, RETL
users may not get a complete picture of what it is they need to integrate, nor
would they have the opportunity to ask questions that might reveal additional
interface capabilities, variations, or options that are needed by the business user
community.
15-2 Oracle Retail Extract, Transform, and Load Programmer's Guide

Project Initiation/Design/Functional Specification Best Practices
Application Domain Questions
■ What are the targeted versions for each application involved? This is important to

establish as a basis for integration development against each product and the
business features and functions available in a particular version.

■ What is the source and target for each module? For example, database to file, file to
file, file to database, etc.

■ On what DBMS and version does the source and target application reside, if any? If the
source/target database isn't supported by RETL, then consider using a different
technology or provide feedback to the RETL team to include that database support
in a future release.

■ What types of transformations might be expected for each module? This will affect the
complexity of each module.

■ Are there any constraints on the source(s) and target(s)? For example, does the target
database table need to maintain indexes, etc? Are there any referential integrity
issues to be aware of? There are implications when developing a flow against a
transaction database or a table that needs to maintain indexes or /referential
integrity.

■ What future applications might 're-use' these interfaces? Designs should be generic
and promote easy modification should any future applications need to re-use the
same interfaces.

Data-related and Performance Questions
■ How much data is passing through each module? High volume modules will need to

be further scrutinized when coding and performance testing.

■ What is the size of the source and target database tables/files? This is to raise any flags
around performance early in the project.

■ What is the frequency in which each module will be run? (e.g. nightly)

■ What is the time frame in which each module is expected to run in? For the entire set of
modules? This will need to be realistic as it will provide a baseline for
performance.

■ Is data going to need to be transferred over the network? There will be a negative effect
on performance if massive amounts of data will need to be transferred over the
network.

■ Are there potentially any high volume transformations that could be easily done inside the
database? If there are, these transformations may be done inside the database to
start with so as to eliminate rewrites later on. The idea here is to maximize and
balance each technology to what it does best.

Map Out The Movement of Data Visually
Use a tool to visually map out the movement of data from each source to each target.
Use a tool such as Visio or even simply Word to diagram the source, transformation
processing/staging, and target layers. (Use a database template or the 'basic
flowchart' in Visio to map these layers out). This should serve as a basis for design
discussions among application groups.
Best Practices 15-3

Project Initiation/Design/Functional Specification Best Practices
Define Concrete Functional Requirements for Each Module
As part of the design process, a logical description of how each module will extract,
transform, and load its data should be completed. Again, all stakeholders should sign
off on this.

Define Concrete Functional Designs for Each Module
As part of the design process, the following should be clearly defined:

■ Source and Target locations (e.g. table name, filename, etc)

■ Source and Target sizes/volumes

■ Designs and metadata definitions for each input and output

■ Mapping of the transformation process on how to get from input format to output
format

■ Name of the script/module

Design a Test Plan Early in the Process
Designs are not complete until the unit, system, integration and performance test plan
designs are complete. This can be completed once the data and test environment
needs are identified. Activities to complete for the test plan include the following:

■ Identification of the different combinations of data and the expected results.

■ Identification of degenerate cases and how errors should be handled.

■ Identification of how many and what type of test cases that need to be built.

■ Identification of configuration management and environment migration
procedures to ensure that quality control individuals know what code set it is that
they are testing.

■ Identification of test environment needs to ensure that unit, system, integration
and performance test can be done without negatively impacting each other.

■ Prioritization of relative importance of execution for each test case based on most
likely scenarios, highest risk code, etc.

■ Determine a go/no-go threshold for which tests must pass in order to release.

Design for Future Usage and Minimize Impact of Potential Changes
The design should take into account future applications that may need to live off the
same interfaces. Relevant questions to ask are the following: What is the superset of
data that an application needs or may need in the future? How can this flow be
designed so that any future changes will not break the interface specification?

Agree on Acceptance Criteria
The overall project should set requirements based on a number of acceptance criteria
set by the customer. A partial list of these may involve the following:

■ Functional criteria—the inputs, outputs, and expected functionality of each module

■ Test criteria—the types and how intensive must the testing be, and the threshold in
acceptance of defects.
15-4 Oracle Retail Extract, Transform, and Load Programmer's Guide

Code/Implementation/Test Best Practices
■ Performance criteria—the performance requirements for each module, and the
overall batch window in which the entire suite of modules must run in.

■ Documentation—Identify clearly the end deliverables needed to hand off the
interface deliverable to operations and support staff. A well-constructed interface
cannot be used and maintained successfully without documentation or
communication deliverables.

Document Design Assumptions, Issues, and Risks
Any design assumptions, issues and risks that have been purposely un-addressed
should be documented in an 'Assumptions/Issues/Risks' section of the design
documentation deliverables.

Code/Implementation/Test Best Practices
This section will break best practices to follow into these functional areas:

1. Korn shell module best practices—the .ksh module containing the RETL flow

2. RETL flow best practices—the XML flow that RETL runs

3. Database best practices

4. Testing best practices

Following this core set of best practices when developing and testing flow modules
will provide the basis for high quality, maintainable, performant, and re-usable flows.

Korn Shell Best Practices

Execute Commands Using $(command) and Not 'command'
This reduces the likelihood of typographical errors when entering backspaces versus
single quotes (` vs. ') and promotes better readability.

Ensure 'set -f' is set in a Configuration File
'set -f' disables filename generation. This should be set in the application's config file
(e.g. rdw_config.env). If filename generation isn't turned off, a flow that contains a '*'
in it (for example, a flow that contains a query 'select * from <table>') may end up
causing the module to incorrectly expand * to include filenames and incorrectly pass
these to RETL. This is because many modules may pass RETL a flow through standard
input. See best practice "Write flow to intermediate file and then call RETL on that file".

Write Flow to an Intermediate File and then Call RETL on that File
It is recommended to 'cat' or write to a flow file first before calling RETL, rather than
calling RETL and passing a flow through standard input. This aids in debugging,
helps support when it is necessary to recreate an issue, and also prevents various
nuances that may exist when sending the flow to RETL via standard input.

However, care should also be taken to protect source directories since these generated
.xml flow files may contain sensitive information such as database login information.
See the "Secure/Protect Files and Directories that may Contain Sensitive Information"
best practice for more on the topic of security.
Best Practices 15-5

Code/Implementation/Test Best Practices
Good

cat > ${PROGRAM_NAME}.xml << EOF
…
EOF
${RFX_EXE} ${RFX_OPTIONS} -f ${PROGRAM_NAME}.xml

Bad

$RFX_HOME/bin/$RFX_EXE -f - << EOF
…
EOF

Secure/Protect Files and Directories that may Contain Sensitive Information
Any directories that may contain sensitive information such as database logins and
passwords should be protected by the proper UNIX permissions. Namely, any
temporary directories that RETL uses, any source directories in which flows may be
written to, and any configuration files and directories should have strict permissions
on them. Only the userid that runs the flows should have access to these files and
directories.

Make Often-used Portions of the Module Parameters or Functions

Make Function Calls Only a Few Layers Deep
Use variables for portions of code that can be re-used (e.g. ${DBWRITE}), or create
entire shell script functions for methods that can be re-used. (e.g. simple_extract
"${QUERY}" "${OUTPUT_FILE}").

This can be taken to the extreme however, when functions call functions, which call
functions. In general, function calls should go only a few layers deep at most, and only
more when it makes sense from an abstraction and overall maintainability point of
view.

Separate Environment Data from the Flow
Variables that can change (for example, database login information/etc) should go in a
configuration file (for example, rdw_config.env). The idea here is to separate the
configurable environment data from the generic flow, which lends to more
maintainable and configurable code base.

Enclose Function Parameters in Double Quotes
When calling a function in ksh, care should be taken to place all arguments in double
quotes. For example,

do_delete "${TABLE1}" "${TABLE2}" "${JOIN_KEYS}"

If function parameters aren't placed in quotes, there is the potential for misalignment
of positions for variables and the function will likely not operate properly, if at all.

Set Environment Variable Literals in Double Quotes
When setting an environment variable, always use double quotes. For example,

export TARGET_TABLE="INV_ITEM_LD_DM"

If environment variable values aren't placed in quotes, there is the potential for losing
the portion of the value after a space. or having the shell interpret it as a command.
15-6 Oracle Retail Extract, Transform, and Load Programmer's Guide

Code/Implementation/Test Best Practices
Use Environment Variables as ${VARIABLE} Rather than $VARIABLE
Environment variables should be used as ${VARIABLE} so as to promote readability,
especially when they exist in the context of other non-variables and text.

Follow Module Naming Conventions
There are a number of naming conventions to follow, and in general, this should be the
standard for consistency among applications:

1. RETL modules/scripts (.ksh) should generally conform to the following
convention:

<application name><script type>_<program name>.ksh,

where

<application name> is the abbreviated application name,

<script type> is 'e' for an extract program, 't' for a transform program, or 'l' for a
load program. A program that contains all of the above will not have a script type
associated with it,

<program name> is the name of the program.

For example:

rmse_daily_sales.ksh (<rms><e>_<daily_sales>.ksh)

2. The program name in general doesn't have strict naming conventions, but it
should be representative of what the program actually does. Each word should be
separated by an underscore (_).

3. Custom modules/flows should be prefixed by the short client name.

4. Application log files should follow the format:

<application name><date>.log

5. Error files should follow the format:

<application name>.<module name>.<unique id>.<date>

where

<application name> is the abbreviated application,

<module name> is name of the module,

<unique id> is optional. If multiple copies of the module can be run concurrently,
this should be a reasonable unique identifier. For example, it might be the input
filename, thread #, etc.

For example:

rdw.slsildmdm.sls_100_1.txt.20020401

(<rdw>.<slsildmdm>.<datafile #>.<date>)
Best Practices 15-7

Code/Implementation/Test Best Practices
Log Relevant Events in Module Processing
As a general rule, it is better to log too much verbosity than too little. The following
should be completed:

1. Log the start and finish times for any significant processing events that occur in a
module.

2. Log the number of records in the input and output files.

3. Redirect standard output and standard error to the log/error file. For example:

exec 1>>$ERR_FILE 2>&1

Place Relevant Log Files in Well-known Directories
Each application log file should be placed in a well-known directory for consistency
and ease of accessibility. For example, RETL performance log files (as specified in
rfx.conf) are placed in temporary directories by default. rfx.conf should be changed so
that RETL performance log files places these log files in well-known directories rather
than in temporary directories.

Use .ksh Templates
Insert template on a standard flow (e.g. library sourcing first, then variable definitions,
function initionsdefs, and so on)

Document Each Flow's Behavior
Each flow should be documented as to its required inputs, required outputs, and
behavior in between.

RETL Flow Best Practices
■ Parameterize the Call to and any Options Passed to the RETL Binary

Use the ${RETL_EXE} environment variable to replace the call to the rfx executable
and use ${RETL_OPTIONS} to replace the command line option '-f -'. "rfx -f - "
should not be used to call RETL - it should be "${RETL_EXE} ${RETL_OPTIONS}".
$RETL_EXE and $RETL_OPTIONS should be defined in the configuration file (e.g.
rdw_config.env). The default call in the configuration file should be rfx - f -

■ Perform all Field Modifications as Soon as Possible in the Flow

Field modifications such as renaming and type conversion should be performed as
soon as possible in the flow to aid in tracking a field through the flow.

■ Use Care when Choosing and Managing your Temp Space

RETL temp space should be spread out on multiple disks and, as part of a normal
maintenance schedule, should be cleaned periodically as RETL may leave
miscellaneous files in temp space for tracking and debugging purposes.

■ Turn on Debug Code When in Development.

■ Turn Off Debug Code When in Production

RETL will print out extra messages in debug mode. The following environment
variables can be set to produce extra verbosity:

export RFX_DEBUG=1

export RFX_SHOW_SQL=1
15-8 Oracle Retail Extract, Transform, and Load Programmer's Guide

Code/Implementation/Test Best Practices
Additionally, there are certain warnings that may be printed to the screen in this
mode that will not be printed to the screen when verbose debugging is turned off.

Do not run with these options on in production as they produce additional files
and may leave around temporary/intermediate files.

■ Make Use of RETL Visual Graphs

In RETL 10.x versions and 11.2+, RETL offers a graphing option (--graphviz-files in
10.x or -g in 11.2+). This produces a visual graph of the flow and shows how each
operator is connected inside the flow. For more information, see "Producing
Graphical Output of Flows with RETL" in Chapter 4, "RETL Program Flow".

■ Delineate Input records from a File by a Newline ('\n')

Although RETL doesn't mandate having a newline record delimiter, it is
recommended to use this for debugging and supportability purposes. However, it
is also important to make sure that input data cannot contain the newline
character. See "DON'T - Choose a delimiter that can be part of your data" for more
information.

■ Run RETL With the '-s SCHEMAFILE' Option When in Development

The '-s SCHEMAFILE' command-line argument will tell RETL to print input and
output schemas of each operator in a schemafile format that can be used in an
import or export operator. This can be very useful when debugging and 'breaking
up' flows into smaller portions. For example, the call to RETL would be as follows:

rfx -f theFlow.xml -s SCHEMAFILE

■ Use the Latest Version of RETL Available

Future versions of RETL are always improving in error handling, debugging,
logging, and performance. It is recommended to use the latest version of RETL
that has been certified with the product being used.

■ Develop the RETL Flow First, Outside of the Shell Module

It is easier to develop the RETL flow outside the Korn shell module (.ksh) first, and
then when a stable cut of the flow has been produced, the flow can be
parameterized and retrofitted back into the Korn shell module (.ksh)

■ Specify Inputs, Properties, and Outputs, in that Order

In order to conceptually map out the flow of data from one operator to another,
place the INPUTs first, the OUTPUTs last, and the properties in between.

For example:

<OPERATOR type="changecapture">
 name="before_dataset.v"/
<INPUT name="after_dataset.v"/> name="key" value="CMPY_IDNT"/ name="value"
value="CMPY_DESC"/ name=:"changes.v"/</OPERATOR>

■ Group Business Logic Together with Nested Operators

■ Keep Connected Operators in Close Physical Proximity to Each Other in a Flow

■ Nest Operators No More Than a Few Layers Deep

When multiple operators are used to perform a logical step in the flow, nest the
operators together.
Best Practices 15-9

Code/Implementation/Test Best Practices
In the example below, the operators split the after_dataset.v dataset into separate
datasets for inserts, deletes, and edits. The switch operator is embedded within the
changecapture.

<!-Split up after_dataset.v into inserts, deletes, and edits. -->
<OPERATOR type="changecapture" >
<INPUT name = "before_dataset.v"/>
<INPUT name = "after_dataset.v"/>
<PROPERTY name="codefield" value="change_code" />
<PROPERTY name = "key" value = "CMPY_IDNT"/>
<PROPERTY name = "value" value = "CMPY_DESC"/>
<OPERATOR type="switch">
<PROPERTY name="switchfield" value="change_code"/>
<PROPERTY name="casevalues" value="1=0, 2=1, 3=2"/>
<OUTPUT name="inserts.v"/>
<OUTPUT name="deletes.v"/>
<OUTPUT name="edits.v"/>
</OPERATOR>
</OPERATOR>

As the operator nesting gets deeper, the flow becomes unreadable, so don't nest
operators more than a few layers deep.

■ Document Fixed Schema File Positions

In order to debug flows and to aid in documenting interface fixed-length files,
fixed-length schema files should include positions as a comment before each field
definition. However, this also adds additional overhead to schema file
maintenance, and could prompt for typographical errors. This should be taken
into account when making a decision to document a module's schema files.

Example:

<RECORD type="fixed" len="9" final_delimiter="0x0A">
<!-- start pos 1 --> <FIELD name="FIELD1" len="4" datatype="int16" …/>
<!-- start pos 5 --> <FIELD name="FIELD2" len="4" datatype="int16" …/>
<!-- end pos 9 -->
</RECORD>

■ Use Valid XML Syntax

10.x versions of RETL allowed users to enter invalid XML syntax. Later versions
are more strict about valid XML syntax, and will throw errors if syntax is invalid.
In particular, when calling RETL's filter operator, utilize 'GT' instead of '>', 'LT'
instead of '<', 'LE' instead of '<=', 'GE' instead of '>=', 'NOT … EQ …' instead of
'<>' and 'EQ' instead of '='. Also see the best practice Wrap dbread 'query' property
in a CDATA element.

■ Wrap dbread 'query' Properties in a CDATA Element

This is important to make sure flows are using valid XML syntax. In general, ALL
'query' properties of the dbread operators should be wrapped in a CDATA
element. This tells the XML parser to treat the enclosed text as a single chunk of
text rather than to parse it as XML. If this rule is not followed, RETL may not run
(see best practice 'Use valid XML syntax' for more info).

Bad

${DBREAD}
<PROPERTY name="query" value="SELECT * FROM TABLE WHERE COL1 > COL2"/>
...
15-10 Oracle Retail Extract, Transform, and Load Programmer's Guide

Code/Implementation/Test Best Practices
Good

${DBREAD}
<PROPERTY name="query">
<![CDATA[
SELECT * FROM TABLE WHERE COL1 > COL2
]]>
</PROPERTY>

■ Write Flows to be Insulated from Changes to a Database Table

In general, flows should be written so that any changes to database tables don't
affect the functionality of the flow. For example, the FIELDMOD operator can be
used with the "keep" property to keep only fields that are needed in the flow.

■ Avoid Implicit Schema Changes

Certain operators that take more than one input (such as funnel) can implicitly
change schemas for a field's nullability, max length, etc. Any desired schema
changes should be explicitly made with the CONVERT operator otherwise
undefined behavior may result.

■ Test Often

Testing often minimizes integration issues, increases quality, aids in easier defect
diagnosis, and improves morale.

■ Do RETL Performance Tuning

In general, there are a few practices to follow as a guideline:

– Achieve the optimal balance between the tools, hardware, and database.

– Use the database for what it does best - significant data handling operations
such as sorts, inter-table joins, and groupby's should be handled inside the
database when possible.

– Use RETL for what it does best - non-heterogeneous (for example, file,
different db vendor) joins, data integration and movement from one platform
to another, multiple source locations, etc.

– Performance test and profile early and continuously in the development cycle.
Don't delay this activity until the end of the project.

– Don't performance tune a flow before the flow functions according to design.

– Design a flow to make full use of parallelism. RETL internal parallelism
coupled with standard Oracle Retail 'multi-threading', or running multiple
RETL processes concurrently, can maximize the use of parallelism.

– Develop for clarity, maintenance, and re-use, but keep in mind performance at
all times. Other factors may be sacrificed if performance is of the utmost
importance.

■ Name Flows Appropriately in the <FLOW> Element

Flows should include a 'name' attribute in the FLOW element of the XML. This
eases debugging in RETL's logging mechanism. In general, the flow should be
named the same as the module in which the flow is run. For example,

<FLOW name="modulename.flw">
...
</FLOW>
Best Practices 15-11

Review/Product Handoff
■ Use SQL MERGE Statements When Doing Updates

As of this writing, RETL does not have update capabilities built in. The
recommended approach when doing updates is to use the Oracle MERGE
statement. This statement is akin to a delete followed by insert for each updated
record, although MERGE is much faster. The flow's processing would be as
follows: insert records to a temp table, and then MERGE into the target table.

■ Document Complex Portions of Code

As with general programming best practices, any complex portions of code that
could be misunderstood should be thoroughly documented. This aids in ease of
maintenance and helps future personnel to understand the original intent of the
code.

■ Define Field Names Without White Spaces

Many RETL operator properties allow specification of a list of fields. White space
within a field name will cause RETL to misinterpret the field list.

■ Choose a Delimiter That Cannot be Part of the Data

If a data can even possibly contain a delimiter, a different delimiter should be
chosen. Even to risk being redundant, it should be repeated - NEVER EVER
choose a delimiter that can be part of the data. For the most part, pipe-delimiters
('|') and semi-colon delimiters (';') should work. If no reasonable delimiter can be
found, then a fixed format file should be used.

Review/Product Handoff
A final product review and handoff to support is necessary to complete a successful
RETL project.

Involve Support Personnel Early in the Project
This will help the learning curve and make the impact less dramatic when the project
must be transitioned to support.

Identify clearly the end deliverables needed to hand off the interface deliverable to
operations and support staff. A well-constructed interface cannot be used and
maintained successfully without documentation or communication deliverables.

Assign a Long-term Owner to the Project/Product/Interface
Assigning ownership will allow the product to mature and develop properly and it
will reduce internal contention about areas of responsibility when multiple
applications/domains are involved.

Assigning ownership of the interface following handoff will also ensure that
appropriate operations and support personnel are involved and trained throughout
the life of the development effort.
15-12 Oracle Retail Extract, Transform, and Load Programmer's Guide

Appendix: Default Conver
A

Appendix: Default Conversions

These are the default conversions for use by the CONVERT operator.

Default Conversions from UINT8

Default Conversions from INT8

Conversion Name Description

default Converts to INT8 from UINT8.

default Converts to UINT16 from UINT8.

default Converts to INT16 from UINT8.

default Converts to UINT32 from UINT8.

default Converts to INT32 from UINT8.

default Converts to UINT64 from UINT8.

default Converts to INT64 from UINT8.

default Converts to FLOAT from UINT8.

default Converts to DFLOAT from UINT8.

Conversion Name Description

default Converts to UINT8 from INT8.

default Converts to UINT16 from INT8.

default Converts to INT16 from INT8.

default Converts to UINT32 from INT8

default Converts to INT32 from INT8.

default Converts to UINT64 from INT8.

default Converts to INT64 from INT8.

default Converts to FLOAT from INT8.

default Converts to DFLOAT from INT8.
sions A-1

Default Conversions from UINT16
Default Conversions from UINT16

Default Conversions from INT16

Default Conversions from UINT32

Conversion Name Description

default Converts to UINT8 from UINT16.

default Converts to INT8 from UINT16.

default Converts to INT16 from UINT16.

default Converts to UINT32 from UINT16.

default Converts to INT32 from UINT16.

default Converts to UINT64 from UINT16.

default Converts to INT64 from UINT16.

default Converts to FLOAT from UINT16.

default Converts to DFLOAT from UINT16.

Conversion Name Description

default Converts to UINT8 from INT16.

default Converts to INT8 from INT16.

default Converts to UINT16 from INT16.

default Converts to UINT32 from INT16.

default Converts to INT32 from INT16.

default Converts to UINT64 from INT16.

default Converts to INT64 from INT16.

default Converts to FLOAT from INT16.

default Converts to DFLOAT from INT16.

Conversion Name Description

default Converts to UINT8 from UINT32.

default Converts to INT8 from UINT32.

default Converts to UINT16 from UINT32.

default Converts to INT16 from UINT32.

default Converts to INT32 from UINT32.

default Converts to UINT64 from UINT32.

default Converts to INT64 from UINT32.

default Converts to FLOAT from UINT32.

default Converts to DFLOAT from UINT32.
A-2 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Default Conversions from INT64
Default Conversions from INT32

Default Conversions from UINT64

Default Conversions from INT64

Conversion Name Description

default Converts to UINT8 from INT32.

default Converts to INT8 from INT32.

default Converts to UINT16 from INT32.

default Converts to INT16 from INT32.

default Converts to UINT32 from INT32.

default Converts to UINT64 from INT32.

default Converts to INT64 from INT32.

default Converts to FLOAT from INT32.

default Converts to DFLOAT from INT32.

Conversion Name Description

default Converts to UINT8 from UINT64.

default Converts to INT8 from UINT64.

default Converts to UINT16 from UINT64.

default Converts to INT16 from UINT64.

default Converts to UINT32 from UINT64.

default Converts to INT32 from UINT64.

default Converts to INT64 from UINT64.

default Converts to FLOAT from UINT64.

default Converts to DFLOAT from UINT64.

Conversion Name Description

default Converts to UINT8 from INT64.

default Converts to INT8 from INT64.

default Converts to UINT16 from INT64.

default Converts to INT16 from INT64.

default Converts to UINT32 from INT64.

default Converts to INT32 from INT64.

default Converts to UINT64 from INT64.

default Converts to FLOAT from INT64.

default Converts to DFLOAT from INT64.
Appendix: Default Conversions A-3

Default Conversions from SFLOAT
Default Conversions from SFLOAT

Default Conversions from DEFLOAT

Conversion Name Description

default Converts to UINT8 from SFLOAT.

default Converts to INT8 from SFLOAT.

default Converts to UINT16 from SFLOAT.

default Converts to INT16 from SFLOAT.

default Converts to UINT32 from SFLOAT.

default Converts to INT32 from SFLOAT.

default Converts to UINT64 from SFLOAT.

default Converts to INT64 from SFLOAT.

Note: Conversions to integer types truncate decimal values.

Conversion Name Description

default Converts to UINT8 from DFLOAT.

default Converts to INT8 from DFLOAT.

default Converts to UINT16 from DFLOAT.

default Converts to INT16 from DFLOAT.

default Converts to UINT32 from DFLOAT.

default Converts to INT32 from DFLOAT.

default Converts to UINT64 from DFLOAT.

default Converts to INT64 from DFLOAT.

Note: Conversions to integer types truncate decimal values.
A-4 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Appendix: Database Configuration and Troubleshooting G
B

Appendix: Database Configuration and

Troubleshooting Guide

Since RETL database operators work with database severs and utilities, validating
RETL requires some background in database setup and administration. Specifically
this involves database setup, RETL database login id privileges, and database
connectivity, etc.

RETL Database Configuration and Maintenance Notes
RETL uses specific tools to access the different databases. RETL developers should be
sure that their database administrator is aware of what RETL does, and how the
database needs to be set up to support RETL activities. The following are notes
particular to certain databases and platforms.

Debugging Database ETL Utilities
The DBWRITE operators use the database specific import/export utilities. If you run
into problems specific to the database or database operators, take a look at the log files
or control files generated by the database operators (see the topic "How do I tell what
commands are being sent to the database?" in Appendix C, "Appendix:
Troubleshooting Guide"). You may be able to better diagnose these problems by
checking the utility's limitations, restrictions, environment, and privileges to see if
there is a configuration error, either with the database or within the RETL flow.

Database Semaphore Problems
Semaphores from database utilities and ODBC instances invoked by rfx may not be
properly cleaned up if an rfx process or job is killed from UNIX. To find and clean up
semaphores, use "ipcs -s" and "ipcrm -s" respectively.

Runaway Loader Processes
Sometimes when rfx is killed, some ancillary database utilities are left running. These
can be killed with the normal UNIX kill command. The name of the Oracle utility is
sqlldr.
uide B-1

Troubleshooting RETL with Your Database
Troubleshooting RETL with Your Database
The following RETL/ database setup validation steps will help you work with your
DBA and system administrator to verify and troubleshoot the RETL/database
installation.

In the following list, note the commands that should be executed from the command
line. These are written in Courier font. Additionally, variables such as machine names
and IP addresses that should be replaced by values particular to your environment are
surrounded in <> like this: <variable name>.

1. Run verify_retl.

If you have not already done so run the verify_retl script and correct any problems
as directed by the script. When this is running properly proceed to step 2.

2. Verify that your databases are setup properly.

For all databases go through RETL Database Configuration Notes to make sure
that the database is setup properly.

3. Verify database connectivity.

Check the connection between the rfx local machine and the remote database
machine, if the database and rfx are not on the same machine. We recommend that
RETL be located on the database machine for better performance.

ping <database machine name>

If this fails, try pinging the IP address directly:

ping <database machine IP address>

If this works, then your DNS is not set up properly. Contact your network
administrator to fix the problem by adding the IP address to the DNS.

If this second ping command fails then you need to contact your network
administrator to determine why you cannot contact the machine. Until this
problem is resolved, RETL will not work.

4. Check Oracle database server connectivity using the following command:

tnsping <Oracle Server Name>

If this fails, contact to your DBA for TNS name setup.

5. Verify database login id/password.

Log in to the database by using the following:

sqlplus userid/password@Oracle_database_server

Contact to your DBA if this step fails; your userid/password are not set up
correctly.

6. Check database user ID privileges.

Contact your DBA to ensure that the RETL user has privileges to select, insert,
update, create table, and so on. Because RETL database operators invoke database
utilities to extract and load (see Chapter 6, "Database Operators" for details), your
RETL DB user needs privileges to meet all of the utilities requirements.
B-2 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Troubleshooting RETL with Your Database
These are the privileges that each of the operators requires:

It is recommended that the RETL/database login id is set up with create/drop
table privileges during RETL/database setup phase. so that we can run the
RETL/database test flows to verify that the database is set up properly for RETL.

7. Run RETL/database testing scripts.

Note that these scripts require that the rfx userid has full privileges to run. If you
do not have the appropriate privileges to change tables, you can still run the read
scripts to verify that you can read from the database without problems (go to step
10).

$RFX_HOME/samples/verify_db/oracle.ksh <database name> <userid> <password>

These scripts:

■ Create a RETL_test table with two columns and two rows on the database
owned by the given userid.

■ Read the two rows from the database and verify that the rows contain the
correct information.

■ Compare the results from read and verify what was supposed to be written.

In short, this test verifies both RETL read operator and RETL write operator
appropriate to the database type.

If the scripts are working properly you see something like the following:

Testing a write to etlsun9i
Reading data back out of etlsun9i
Comparing data received from etlsun9i and expected output...
Test Passed!

If both tests succeed, congratulations! Your database seems to be properly
configured. Skip the following steps.

If the scripts are not working properly you will see the following:

Testing a write to etlsun9i
Exception in operator [oraread:1]
Error Message
Reading data back out of etlsun9i
Exception in operator [orawrite:1]
Error Message
Comparing data received from <database name> and expected output...
diff: filename: No such file or directory
Changes were detected! Test failed!

If either test fails, you need to move onto the following steps to try and diagnose
the problem. If the ORAWRITE operator passed but the ORAREAD operator did
not, move onto step 9. If both of the tests failed, then move onto step 8.

Operators Privilege

ORAREAD select

ORAWRITE select, insert, update, create table, drop table, load
Appendix: Database Configuration and Troubleshooting Guide B-3

Troubleshooting RETL with Your Database
8. Debug an ORAWRITE failure.

This step verifies that the database write operator is working properly.

orawrite.ksh <database_name> <userid> <password>

This flow works if the last line of output shows "Flow ran successfully". Go to step
9.

Here are some common failures and their causes:

Error Connecting to the database()

You have probably typed an invalid database name, userid, or password (see
"When running rfx I get the following error: 'Error connecting to the database'" in
Appendix C, "Appendix: Troubleshooting Guide"). Verify that these parameters
are correct (See step 4 above) and try again.

If you still cannot find the problems, you can try running step 10 on a table that
you know already exists.

9. Debug an ORAREAD failure.

This step will verify that the database read operator is working properly.

oraread.ksh <database name> <userid> <password>

If the last line of output shows "Flow ran successfully," your RETL/database setup
is working for reads-congratulations! You can run step 10 if you would like to try
extracting data from your own tables.

If it fails, there are several possible reasons (generally the same as those for the
write operator). Here are some common errors:

Error Connecting to the database()

You have probably typed an invalid database name, userid, or password (see
"When running rfx I get the following error: 'Error connecting to the database'" in
Appendix C, "Appendix: Troubleshooting Guide"). Verify that these parameters
are correct (see step 4) and try again.

If you are still running into problems and there are valid tables that you know
work, try step 10. Otherwise review the RETL Database Configuration Notes, to
verify that everything is set up correctly, and try again.

10. Run the ORAREAD script against user tables.

The database read scripts could be used to access any table to which you have read
privileges by simply specifying the table name as the last parameter.

oraread.ksh <database> <userid> <password> <table>

If the last line of output shows "Flow ran successfully," your RETL/database setup
is working for reads on this table.

If you still cannot find out the problems, contact Oracle Retail Support:

https://metalink.oracle.com
B-4 Oracle Retail Extract, Transform, and Load Programmer’s Guide

https://metalink.oracle.com

Appendix: Troubleshooting G
C

Appendix: Troubleshooting Guide

This troubleshooting guide provides RETL installation, development, and operation
suggestions for common support issues. The suggested resolutions are in response to
product and documentation feedback from RETL users to the RETL product team.

When trying to run rfx I get this error: ksh: rfx: cannot execute.

RETL is not installed or configured properly. Try running verify_retl from the
command line to get more information about the problem. Reinstalling RETL may also
resolve the problem.

Are there any suggestions for how best to develop and debug flows?

Yes, there are several important steps you should take when developing and
debugging to keep you on the right track:

1. Do not optimize until you have a working flow. Specifically, set numpartitions to
1. Do not use the HASH operator. Worry about tuning for performance after your
initial development is complete.

2. When building new flows, start small and work your way up. Add another
operator only after you have tested the smaller flow. Back up your work often, so
that you can look at the differences between flows to narrow problems to smaller
segments.

3. As you are coding, copy and paste from examples that you know work, to avoid
syntax and XML errors if you are using a text editor.

4. When you run into problems, try breaking up your flows. Insert DEBUG or
EXPORT operators to show that your flow is working to a certain point (think
binary search here). Move these operators further down the flow until you figure
out what is causing the flow to break. A feature that has been added since version
10.3 is the ability of RETL to print schema files for each dataset connecting
operators (by adding '-sSCHEMAFILE' to the command line options). This greatly
aids when breaking up and debugging flows, by printing out each input/output
schema in schema file format. See the section "rfx Command Line Options" in
Chapter 2, "Installation and System Configuration" for more information about the
'-sSCHEMAFILE' option.

5. As of release 10.3, you can look at the log file to see when operators start and stop
and how many records are flowing through them. Turn on more details by
specifying a higher level in the LOGGER section of the configuration (see the
"Configuration" in Chapter 2, "Installation and System Configuration" section for
more details).
uide C-1

When running rfx I get the following error: Error connecting to the database.

You have probably typed an invalid database name, userid, or password. Verify that
these parameters are correct (See steps 1-4 of "Troubleshooting RETL with Your
Database" in Appendix B, "Appendix: Database Configuration and Troubleshooting
Guide") and try again.

How do I tell what commands are being sent to the database?

Previous versions of RETL streamed database commands to the console by default. To
see these commands starting from version 1.7, you should ensure that the environment
variable RFX_SHOW_SQL is defined within your environment. Assuming that you are
using ksh, you can do this by putting the following statement into your .profile or
.kshrc, for example:

export RFX_SHOW_SQL=1

I got an error message about operator "sort:3". How do I figure out which operator
"sort:3" is?

RETL names operators internally based upon the type and their position within the
specified XML flow. Assuming that numpartitions is set to 1, sort:3 is the fourth sort
operator in the XML flow (RETL starts counting at 0).

This becomes a bit more complex if you are using partitioning (numpartitions>1). In
short, partitioning splits data and creates parallel data streams within the flow. In
effect, this multiplies the number of operators being used, depending on the position
within the flow and other factors.

There are two ways to determine which operator RETL is referring to in this case. The
easiest way is to set numpartitions to 1 and count the operators of that type within the
flow. If you cannot do this, then run the flow again, except specify the -g option. This
generates two .dot files that contain the flow before and after partitioning. In order to
view these, you need to download a copy of dotty, which is included with the
graphviz package available from AT&T Bell Labs:

http://www.research.att.com/sw/tools/graphviz/download.html

I've hashed and sorted my data, but for some reason my output data is not sorted.
What is wrong?

Your partitioning is probably set to a value greater than 1. Hashing your data allows
RETL to break up your data and parallelize your flow into separate data streams. Later
in the flow, RETL will rejoin these separate data streams. By default, RETL will do this
by using the COLLECT or FUNNEL operator. However, these operators do not keep
the dataset in sorted order, hence your unsorted output. You can correct this problem
by explicitly using a SORTCOLLECT to rejoin the data whenever you are rejoining
sorted data.

This problem is also avoided by not partitioning (set partitioning to 1, or do not
specify a HASH). As always, we recommend that you keep flows as simple as possible
until or unless you need the performance boost that partitioning can give you.

I'm using sortcollect (or sortfunnel), but my data is not sorted! What is wrong?

SORTFUNNEL performs a merge sort. It requires sorted input and can merge multiple
inputs maintaining sorted order. It cannot perform a full sort of the data. You should
use SORT to do a full sort of a single data stream. SORTFUNNEL can be used to merge
two data sources that are already sorted on the same keys; the result is a single data
stream sorted on the same key.
C-2 Oracle Retail Extract, Transform, and Load Programmer’s Guide

http://www.research.att.com/sw/tools/graphviz/download.html

I am missing fields within my flow. Where did they go?

Often the cause of this problem is that a schema file is incorrect (search for missing
quotes, extra quotes), or the database schema is not what you expected. If your flow is
not working correctly, take a look at the schemas that are output to stdout when RETL
first starts up (specify the -s option if necessary to make RETL output the schemas).
Look carefully at the schemas displayed for each operator within the flow. Make sure
that these display ALL of the fields that you expect to see for this part of the flow. If
you are missing fields or fields are of the wrong type, trace backwards to where the
schema originates, to try to find the source of the problem.

If you are using partitioning and are seeing operators that you do not expect, refer to
the preceding topic: 'I got an error message about operator "sort:3". How do I figure
out which operator "sort:3" is?' This section helps you understand exactly what
operators RETL is seeing so that you can more easily find the source of your problem.

How do I filter values from two different tables?

Currently, FILTER assumes that all values required for the filter are in one record. This
makes it a bit more difficult to compare values from multiple tables. The way to
handle this is to join the two tables, and then filter the values after the join.

How do I filter out a set of dynamic values from a data stream?

How do I filter out a set of values? For example, I want to remove any records whose
FIRST_NAME column does not have a value in the set {Joe, Susan, Mary} and keep all
the rest.

This is easily done with RETL using the LOOKUP operator. Simply use the filter set as
the key for the lookup. Import a flat file or table with a single column describing the
values to filter (FIRST_NAME = {Joe, Susan, Mary}), and use that as the input for the
lookup table of the lookup. Any matches are discarded and any misses are processed.

The actual lookup would look something like this:

<OPERATOR type="lookup">
<PROPERTY name="tablekeys" value="FIRST_NAME"/>
<PROPERTY name="ifnotfound" value="continue"/>
<INPUT name="records_to_filter.v"/>
<INPUT name="set_names_to_drop.v"/>
<OUTPUT name="records_in_set.v"/>
<OUTPUT name="records_not_in_set.v"/>

</OPERATOR>

How do I translate from database types (for example, NUMBER(12,4)) to RETL
types?

See Appendix E, "Appendix: RETL Data Types" for tables that show the conversion
from database data types to RETL data types and vice versa.

What RETL data types should I use when importing a file?

We recommend that you use the biggest numeric type you can (int64, uint64, or dfloat)
to ensure that data is properly preserved and the flow works for as many different sets
of data as possible. If you know your data very well and are sure that you can use a
small type, you may get a bit of a performance boost by making this a restriction.
RETL warns you on the IMPORT if your data cannot be represented by the type that
you have chosen.

See Appendix E, "Appendix: RETL Data Types" for a table that shows the range, size
and precision for each datatype.
Appendix: Troubleshooting Guide C-3

Why do I receive a warning about the output schema length being less than the
input schema length?

For example:

WARN - W115: export:1: Output schema length for field LOC_IDNT (10) is less than
the input schema length (25).
Data WILL NOT be truncated to match the output schema and the output data file may
be improperly formatted.

This warning is saying that the entire range of values that can be stored in the RETL
data type requires more characters than are specified in the export schema. To prevent
data loss, the entire value will be written to the file, thereby breaking the file's
fixed-length format.

The warning can be encountered when exporting NUMBER fields read from a
database. If you have a column defined as NUMBER(10), you need 11 characters (10 +
1 for the negative sign) to hold all possible values. However, RETL stores
NUMBER(10) values internally as int64. (See "RETL Data Type/Database Data Type
Mapping" in Appendix E, "Appendix: RETL Data Types".) The range of values for an
int64 (9223372036854775808 to 9223372036854775807) requires 25 characters.

This warning can be safely ignored if you know that the data length will not exceed
the width specified in the export schema. Exporting NUMBER columns from a
database as outlined above is one example.

Is there a common set of properties for all database operators?

Originally, RETL was developed to try to remain consistent with each of the database
vendors' terminology. However, this made it difficult to write code that was portable
between the different databases and to understand how to write flows for different
databases. Starting in release 10.2, the following common properties have been added
to each of the database operators:

■ userid

■ password

■ tablename

Over time, we will attempt to merge the database operators so that RETL is database
independent without the use of shell variables.

In my query, I am explicitly selecting the timestamp field as
'YYYYMMDDHH24MISS', but the data in the output file reads "invalid date." What
am I doing wrong?

Currently RETL cannot read DATE, TIME and TIMESTAMP types directly out of the
database. Because there is no conversion from string to these fields, if you must access
these fields as DATE, TIME, or TIMESTAMP, you will have to export your data to a file
and then import it as a date field.

When attempting an ORAWRITE, I get the following error: "SQL*Loader-951: Error
calling once/load initialization."

When you use the ORAWRITE operator with the method property set to "direct", you
may get the following error message in your SQL*Loader log file:

SQL*Loader-951: Error calling once/load initialization
ORA-26028: index name.name initially in unusable state

This is because SQL*Loader cannot maintain the index that is in IU state prior to the
beginning of a direct path load. Fix this problem by re-creating the table index.
C-4 Oracle Retail Extract, Transform, and Load Programmer’s Guide

How do I request help when all else fails?

You should contact Oracle Retail Support at https://metalink.oracle.com
when requesting help with a flow. Follow these guidelines to get a faster response:

1. Minimize the scope of the problem. Submit the minimal flow with the minimal set
of data and minimal schema that still reproduces the problem. This helps to ensure
that the support team does not waste time trying to understand a long
complicated flow or the data involved, allowing us to focus on the true problem.

2. If you have a database operator (for example, ORAREAD, ORAWRITE), separate
the data from the database. Usually the database is not the problem; therefore,
removing the database operator from the equation makes our job easier. Replace
the DB operator (for example, ORAREAD, ORAWRITE) with an IMPORT or
EXPORT operator. Use the exact same schema as in the database. Extract a sample
set of data into a flat file for the IMPORT operator. This should allow the support
team to reproduce your problem here and debug it if necessary. This drastically
reduces the amount of time it would take to look into the problem otherwise.

3. If removing the database operator removes the problem, then look very carefully
to make sure that there is not a syntax error in the database operator. If you cannot
find anything there, look at the IMPORT schema, and make sure that it matches
the database schema exactly (including null fields, etc.). Finally, look at the flat file
that the IMPORT operator is using. Make sure that you are using the correct
delimiter, that the delimiter is not within the data, and that the data is valid. Try
setting the rejectfile property to see if there are any rejected records. If all this looks
good, then there may be a problem with the DB operator. Contact us and let us
know what you have found.

4. Submit the flow and all data files associated with the flow, so that the support
team can run "rfx -f <yourflowname>" to reproduce the problem, along with the
log file from verify_retl so that they can reproduce your environment.

I've upgraded and now I get WARNINGS when I never did before! What's wrong!?

Each version of RETL brings better identification of errors, and what might have been
overlooked previously is now being caught. WARNING messages are generated if the
property names or values do not match the spelling/case noted in the Programmer's
Guide. It is very important to run the latest version of RETL and correct the warnings,
since they indicate that parameters are incorrect. If incorrect, they can produce
unexpected results or corrupt data. In the future, RETL will stop processing and
display error messages, rather than just providing warnings, to stop the flow until the
problem is fixed. Warnings are being used as an intermediate step, to minimize the
impact to existing product.
Appendix: Troubleshooting Guide C-5

https://metalink.oracle.com

C-6 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Appendix:
D

Appendix: FAQ

Does RETL call stored procedures?

RETL can call stored procedures only within the ORAWRITE operator via the sp_
prequery and sp_postquery, which run before and after the ORAWRITE operation.
These stored procedures can take static variables (not data from the flow) as
parameters. We anticipate expanding on this feature in the future. to allow lookups
based upon flow data and support for other database operators.

Can RETL handle text translations (for example, between EBCDIC and ASCII)?

Currently, RETL does not do textual translation of this type.

Can RETL handle data translations (for example, between numbers and strings)?

Data translations between different fields can be done with the LOOKUP and JOIN
operators.

Are clients able to obtain RETL performance metrics on RETL?

Generally, clients are interested in how a particular RETL flow runs, rather than how
RETL itself performs at a fundamental level. These are generally handled on a
case-by-case basis for the different product groups, because flows are very different
from product to product. and the environment is different for hardware and
configuration. Contact your product group to determine if they have benchmarking
numbers specific to your group. The RETL group does benchmark internal
performance results, and these are made available through the Product Enhancement
Review Board. Contact your product group for inclusion to this board.

Is it possible to join data from two different databases?

Yes. This is generally done with two ORAREAD operators and then a JOIN operator.

What error handling capabilities does RETL have?

There are many other areas where RETL does error handling, and this capability has
been expanding.

Flow-related problems. These are problems that an RETL flow developer might run
into while developing flows using RETL. There are many different areas that RETL
detects; because these are generally found only during development, RETL usually
exits with an error message describing one of these scenarios:

■ Schemas—Mismatched input schemas (for example, for FUNNEL), invalid schema
specified (for example, record length does not equal sum of field lengths).

■ Mismatched datasets—RETL enforces one-to-one correspondence between inputs
and outputs.

■ Validation of operators, properties and property values.
 FAQ D-1

Data-related problems. These are found after the flow is parsed and execution begins.
In these cases invalid or non-conforming data may be siphoned into a separate file for
later processing:

■ Improperly formatted fields via the IMPORT operator (invalid types, lengths, etc).

■ Improperly formatted records via the IMPORT operator (missing fields, etc).

■ Invalid schemas.

Additionally, flow developers can insert data validation to verify that various database
constraints are upheld, through a combination of LOOKUP, JOIN, and FILTER
operators.

What temp files does RETL create and how much space will they take up?

RETL generates temporary files dynamically to sort and store intermediate data. These
files are generally prefixed with "rfx", but this is not always the case. Therefore, place
separate rfx files into their own tmp (for example, /tmp/rfx) directory, so that they can
be easily purged on a regular basis.

How much space rfx will consume depends upon the complexity of the flows and how
large the source system is. A good starting point is twice the size of the data being
manipulated. A more conservative number is three times the size of the data being
moved. Many people start with 10GB and move up from there if needed.

However, a more precise way of calculating the minimum size of temporary space for
a particular flow would be as follows:

Total temp space for a particular flow =

 ((size of data file) * (# sort operators) * 2)

 + ((size of data file) * (# operators that need to expand datasets))

 + ((size of data file) * (# database write operators))

where:

sort operators is the number of sort operators in a flow.

operators that need to expand datasets are the operators that page to disk in a "diamond"
flow that contains circular loops.

database write operators is the number of database write operators, such as
ORAWRITE.

For example, on a flow IMPORT->SORT->ORAWRITE on a 2Gig input file would be as
follows:

 (2Gig*1*2) + (2Gig*0) + (2Gig*1) = 6 Gig

How do I participate in defining RETL requirements and future direction?

 The Product Enhancement Review Board (PERB) is the forum to assist Oracle Retail
product strategy in defining future enhancements to RETL. If you are not part of the
PERB, contact your point person or team lead to inquire about joining.

Note: It is recommended that system administrators clean up
temporary files in the RETL temporary directory on a regular basis.
D-2 Oracle Retail Extract, Transform, and Load Programmer’s Guide

I have been getting warnings about sorting/sort order such as the following. How
do I remove these warnings?

[<operator>]: Warning: mismatched sort order - <operator> specifies "ascending"
sort order and for the first INPUT to <operator> records are in "descending".
These should match - otherwise you may get unexpected results!

[<operator>]: Warning: Input to <operator> does not seem to be sorted! Data should
be sorted according to the proper keys or you may get unexpected results!

Certain operators require that incoming data be sorted. To remove these error
messages, place a sort operator that sorts by the required keys in the required order,
before the operator in question. If you know that your data is always going to be
sorted according to a particular set of keys, you can specify this in the schema file (see
the schema file documentation for more details on this). This last feature should be
used with care, because if data turns out to not be in the presumed sorted order,
certain operators may produce unexpected results.

Which operators require sorted input?

You should read this document in its entirety to assess the need for sorted input.
However, the following is a list of operators that do currently require sorted input:

■ INNERJOIN

■ LEFTOUTERJOIN

■ RIGHTOUTERJOIN

■ FULLOUTERJOIN

■ SORTFUNNEL

■ REMOVEDUP

■ COMPARE

■ CHANGECAPTURE

■ DIFF

■ GROUPBY (only if "key" properties are specified)

I have been getting errors when RETL tries to connect to the database such as the
following:

--- SQLException caught ---

java.sql.SQLException: Io exception: Connection
refused(DESCRIPTION=(TMP=)(VSNNUM=153092608)(ERR=12505)(ERROR_
STACK=(ERROR=(CODE=12505)(EMFI=4))))

Message: Io exception: Connection
refused(DESCRIPTION=(TMP=)(VSNNUM=153092608)(ERR=12505)(ERROR_
STACK=(ERROR=(CODE=12505)(EMFI=4))))

XOPEN SQL State: null

Database Vendor Driver/Source Error Code: 17002
Appendix: FAQ D-3

The hostname or port of the database read/write operator may be incorrect or not
specified, or the database is down or nonexistent. Make sure that the database instance
is up and running and located on the hostname/port specified in the flow or rfx.conf.
If you are using an Oracle database, check tnsnames.ora, or use tnsping to figure out
the hostname/port.

Why is my database field coming being translated to a RETL dfloat type?

If the SQL query contains a union, the precision of the NUMBER/DECIMAL fields is
reported as 0. To ensure that the RETL data type is large enough to hold the data,
dfloat is used.

RETL isn't handling international data correctly. What's wrong?

RETL relies on the locale being set correctly in the environment. Make sure that all
locale-related environment variables are set and exported correctly.

What is taking up so much memory?

The LOOKUP and CHANGECAPTURELOOKUP operators store the entire lookup
table in memory. Thus, if the lookup table has a large number of rows, the memory
requirements will be extensive. Consider sorting the data and using an INNERJOIN
instead of the LOOKUP, or a CHANGECAPTURE instead of the
CHANGECAPTURELOOKUP.

Since RETL is written in Java, can I run RETL on other platforms that have a JRE?

See the Compatibility Matrix in the Release Notes for supported platforms. While
running RETL on platforms other than these is not supported, it is technically feasible
that the core framework and operators should work on any platform that has a JRE
version 1.4 or higher. We would certainly like to hear from you when/if you have
successfully deployed on other platforms. If these types of requests happen with much
frequency or urgency, Oracle Retail will take this into account when setting priorities
for efforts for platform proliferation in future releases. Note that additional platform
support comes at much lower cost than with previous versions of RETL (10.x).

With the introduction of RETL 11.x, JDBC technology has been introduced as a
mechanism for connecting and reading from and writing to databases. Does this
mean I can connect to any database?

See the Supportability Matrix in the Release Notes for supported databases. While
running RETL against databases other than these is not supported, it is possible that
"snapping in" a JDBC-compliant driver by using the generic dbread/dbwrite operators
will work.

What changes do I need to make to my RETL 10.x flows in order for RETL 11.x and
12.x to run them?

RETL requirements specify that it must be backward-compatible in the XML flow
interface. As a result, only minor changes will need to be made. Read this document in
its entirety to assess the need for these changes.
D-4 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Appendix: RETL Data T
E

Appendix: RETL Data Types

Numbers work differently within RETL than they do within databases. This can cause
a good deal of confusion. In short, RETL does not currently support arbitrary precision
math and therefore has a limited amount of precision to deal with.

RETL Data Type Properties
This table shows the size and precision that each RETL type has available:

RETL Type Max Size Max Precision Validation/Numeric Range

DFLOAT 25 15 Min= -1.7976931348623157E+308

Max= 1.7976931348623157E+308

SFLOAT 25 6 Min=-3.40282347e+38

Max=3.40282347e+38

INT8 4 4 Min=-128

Max=127

INT16 6 6 Min=-32768

Max=32767

INT32 11 11 Min=-2147483648

Max=2147483647

INT64 20 20 Min=-9223372036854775808

Max=9223372036854775807

UINT8 3 3 Min=0

Max=255

UINT16 5 5 Min=0

Max=65535

UINT32 10 10 Min=0

Max=4294967295

UINT64 20 20 Min=0

Max=18446744073709551615

DATE 8 8 Is specified in YYYYMMDD where:

YYYY=0000-9999

MM=01-12

DD=01-31
ypes E-1

RETL Data Type/Database Data Type Mapping
Note the Max Precision column above. For integral types, the precision is roughly
equivalent to the size (the caveat being the min and max values in the table); however,
for floating point types (sfloat and dfloat), the precision indicates how many total
digits to the left of the decimal point (assuming that the float is written in scientific
form) you can look at before rounding errors are encountered.

Thus, a database column defined as NUMBER(12,4) will have a maximum length of
12, with 4 digits of precision right of the decimal place. For this datatype, an SFLOAT
field can be safely used to represent all numbers in that range.

RETL Data Type/Database Data Type Mapping
The following tables show the mapping RETL uses when reading from or writing to a
database.

Database data types that are merely synonyms for other data types are supported. For
example, a REAL in Oracle is actually a synonym for FLOAT(63), which is supported.

TIME 8 8 Is specified in HH24MISS format where:

HH24=00-23

MI=00-59

SS=00-59

TIMESTAMP 16 16 Is specified in YYYYMMDDHH24MISS format
where:

MM=01-12

DD=01-31

YYYY=0000-9999

HH24=00-23

MI=00-59

SS=00-59

Note: For integral RETL data types, not all possible values of the
RETL data type can be stored in the mapped Oracle data type. For
example, int8 can hold the value 100, but the mapped Oracle data
type, NUMBER(2,0) cannot.

When the data source is an Oracle table (directly or indirectly) the
incomplete range handling does not pose a problem because
ORAREAD chooses RETL data types that map back to the same or
larger Oracle data types in ORAWRITE.

Take care, however, if the data source is a flat file and the destination
is an Oracle table. Make sure that you choose the RETL data type that
maps to an Oracle data type that can hold the entire range of values.
Otherwise, ORAWRITE (through SQL*Loader) will reject a record if it
contains a field with a value outside of the Oracle data type's range.

RETL Type Max Size Max Precision Validation/Numeric Range
E-2 Oracle Retail Extract, Transform, and Load Programmer’s Guide

RETL Data Type/Database Data Type Mapping
RETL Data Type to Oracle Data Type (ORAWRITE)

Oracle Data Type to RETL Data Type (ORAREAD)

RETL Data Type Oracle Data Type Range

int8 NUMBER(2,0) [-99, 99]

int16 NUMBER(4,0) [-9999, 9999]

int32 NUMBER(9,0) [-999999999, 999999999]

int64 NUMBER(18,0) [-999999999999999999, 999999999999999999]

uint8 NUMBER(2,0) [0, 99]

uint16 NUMBER(4,0) [0, 9999]

uint32 NUMBER(9,0) [0, 999999999]

uint64 NUMBER(19,0) [0, 9999999999999999999]

dfloat NUMBER [-1.7976931348623157E+308,
1.7976931348623157E+308]

sfloat NUMBER [-3.40282347e+38, 3.40282347e+38]

string VARCHAR N/A

date DATE [1/1/0001, 12/31/9999]

time DATE [00:00:00, 23:59:59]

timestamp DATE [00:00:00 1/1/0001, 23:59:59 12/31/9999]

Oracle Data Type RETL Data Type

CHAR, VARCHAR string

DATE date or timestamp, depending on value of datetotimestamp
property

FLOAT, NUMBER,
INTEGER, DECIMAL

precision = 0: dfloat

scale > 0: dfloat

precision > 19: dfloat

precision = 19: uint64

precision >= 10, < 19: int64

precision >= 5, < 10: int32

precision >= 3, < 5: int16

otherwise: int8
Appendix: RETL Data Types E-3

RETL Data Type/Database Data Type Mapping
E-4 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Appendix: Data Partitioning Quick Refe
F

Appendix: Data Partitioning Quick Reference

This appendix describes how to set up a flow to have multiple data partitions. For
more detailed information, see Chapter 7, "RETL Parallel Processing".

Partitioning the Data
Data partitioning does not happen automatically in RETL; you must configure rfx.conf
and the operators in the flow.

In rfx.conf, set the numpartitions attribute in the NODE element to a value greater
than 1. This tells RETL to allow partitioning and also provides a default numpartitions
for HASH and SPLITTER.

The following table shows the operators that partition data and what must be done to
configure the operator:

Operator Configuration

DBREAD Set the numpartitions property to a value greater than 1.

Specify a query for each partition.

GENERATOR (generating
new records)

Set the numpartitions property to a value greater than 1.

Set partnum_incr and partnum_offset if appropriate.

HASH No configuration required, but numpartitions can be used to
override the numpartitions from rfx.conf.

IMPORT Set the numpartitions property to a value greater than 1.

Specify either one input file or numpartitions input files.

ORAREAD Set the numpartitions property to a value greater than 1.

Specify a query for each partition.

SPLITTER No configuration required, but numpartitions can be used to
override the numpartitions from rfx.conf.
rence F-1

Continuing the Partition
Continuing the Partition
Some operators must be configured to continue a data partition. If the operator is not
configured to continue the partition, RETL will end the data partition by inserting a
FUNNEL to collect the partitioned records. To configure an operator to continue a data
partition, set the parallel property to "true".

The following operators require the parallel property to be set to "true":

■ CLIPROWS

■ DBWRITE

■ DEBUG

■ EXPORT

■ GENERATOR (generating new fields)

■ GROUPBY

■ ORAWRITE

Hash Partitioning
Some operators only work correctly if the data is partitioned using the HASH
operator. These are typically operators that work with key fields. Using a HASH
operator to perform the data partitioning ensures that records with the same key end
up in the same data partition.

The following operators require a data partition started by a HASH operator:

■ CHANGECAPTURE

■ CLIPROWS

■ COMPARE

■ DIFF

■ FULLOUTERJOIN

■ GROUPBY

■ INNERJOIN

■ LEFTOUTERJOIN

■ MERGE

■ REMOVEDUP

■ RIGHTOUTERJOIN

Ending the Data Partition
RETL will continue a data partition until an operator is encountered that does not
support data partitioning (or is configured to not continue a data partition). At this
point, RETL inserts a FUNNEL to unpartition the records back into a single dataset.

Because FUNNEL and SORTFUNNEL do not support partitioning, you can insert a
FUNNEL or a SORTFUNNEL at any point to end a partition.
F-2 Oracle Retail Extract, Transform, and Load Programmer’s Guide

Appendix: Database Connections Quick Refer
G

Appendix: Database Connections Quick

Reference

This appendix is a quick reference on how to set up a flow to have database
connections using thin and oci clients for ORAREAD/ORAWRITE operators. For more
detailed information, see Chapter 6, "Database Operators".

Setting the Environment Variables
The variables that must be configured to connect RETL 13.1 to an Oracle database
using Oracle Thin/OCI driver are as follows.

■ Set ORACLE_HOME environment variable.

■ Add ORACLE_HOME/lib to LD_LIBRARY_PATH env variable.

■ Set CLASSPATH environment variable to use Oracle JDBC driver from ORACLE_
HOME/bin.

ORAREAD
ORAREAD performs a read from Oracle databases. RETL 13.1 uses JDBC technology
to read data out of Oracle databases. RETL 13.1 can connect to Oracle database as
either thin client or Oracle Call Interace (OCI) client. By default, operator will be
creating the URL for database connection as a thin client. This can be overriden to
create the URL for database connection as oci client.

The following examples illustrate the connection to the database using thin and OCI
database drivers in case of ORAREAD operator.

Note: ORACLE_HOME refers to the folder where Oracle Client or
Database has been installed.

Example: /home/oracle/product/10.2.0. This folder will have
sub-folders such as bin, sqlj, network, rdbms, jdbc, jlib, and lib.
ence G-1

ORAWRITE
Connection to database through thin database driver:

<OPERATOR type="oraread">
<PROPERTY name="sp_prequery" value="exec pre_storedproc"/>
<PROPERTY name="dbname" value="RETLdb"/>
<PROPERTY name="connectstring" value="username/password"/>
<!--Note: query must be enclosed in CDATA element otherwise -->
<!-- this query will contain invalid XML! -->
<PROPERTY name="query">

<![CDATA[
select * from rtbl where col > 1

]]>
</PROPERTY>
<PROPERTY name="maxdescriptors" value="100"/>
<PROPERTY name="datetotimestamp" value="false"/>"
<PROPERTY name="sp_postquery" value="exec post_storedproc"/>
<OUTPUT name="test.v"/>

</OPERATOR>

Connection to database through OCI database driver:

<OPERATOR type="oraread">
<OUTPUT name="oraread.v" />
<PROPERTY name="connectstring" value=" username/password" />
<PROPERTY name="dbname" value=" RETLdb " />
<PROPERTY name="jdbcdriverstring"value="oracle.jdbc.driver.OracleDriver" />
<PROPERTY name="jdbcconnectionstring" value="jdbc:oracle:oci:@" />
<PROPERTY name="datetotimestamp" value="true"/>
<PROPERTY name="query" value="select * from test_jdbc"/>

</OPERATOR>

ORAWRITE
ORAWRITE performs a load to Oracle databases. RETL 13.1 uses SQL*Loader (sqlldr)
to load the records. RETL 13.1 can connect to Oracle database using either thin client
or Oracle Call Interface (OCI) client. By default, the operator will be creating the URL
for database connection as a thin client. This can be overriden to create the URL for
database connection as and OCI client by adding the jdbcdriver property in the XML
flow file.

The following examples illustrate the connection to the database using thin and OCI
database drivers in case of ORAWRITE operator.

Connection to database through thin database driver:

<OPERATOR type="orawrite">
<INPUT name="import0.v" />
<PROPERTY name="threadModel" value="start_thread" />
<PROPERTY name="dbuserid" value="username/password" />
<PROPERTY name="dbname" value="RETLdb" />
<PROPERTY name="tablename" value="ORG_LOC_DM" />
<PROPERTY name="createtablemode" value="recreate" />

</OPERATOR>
G-2 Oracle Retail Extract, Transform, and Load Programmer’s Guide

ORAWRITE
Connection to database through OCI database driver:

<OPERATOR type="orawrite">
<INPUT name="import0.v" />
<PROPERTY name="threadModel" value="start_thread" />
<PROPERTY name="dbuserid" value="username/password" />
<PROPERTY name="dbname" value="RETLdb" />
<PROPERTY name="jdbcdriver" value="oci" />
<PROPERTY name="tablename" value="ORG_LOC_DM" />
<PROPERTY name="createtablemode" value="recreate" />

</OPERATOR>
Appendix: Database Connections Quick Reference G-3

ORAWRITE
G-4 Oracle Retail Extract, Transform, and Load Programmer’s Guide

H

Appendix: Installation Order H-1

HAppendix: Installation Order

This section provides a guideline for the order in which the Oracle Retail applications
should be installed. If a retailer has chosen to use only some of the applications, the
order is still valid, less the applications not being installed.

Enterprise Installation Order
1. Oracle Retail Merchandising System (RMS), Oracle Retail Trade Management

(RTM), Oracle Retail Sales Audit (ReSA)

2. Oracle Retail Service Layer (RSL)

3. Oracle Retail Extract, Transform, Load (RETL)

4. Oracle Retail Active Retail Intelligence (ARI)

5. Oracle Retail Warehouse Management System (RWMS)

6. Oracle Retail Allocation

7. Oracle Retail Invoice Matching (ReIM)

8. Oracle Retail Price Management (RPM)

9. Oracle Retail Central Office (ORCO)

10. Oracle Retail Back Office (ORBO) or Back Office with Labels and Tags (ORLAT)

11. Oracle Retail Store Inventory Management (SIM)

Note: The installation order is not meant to imply integration
between products.

Note: During installation of RPM, you are asked for the RIBforRPM
provider URL. Since RIB is installed after RPM, make a note of the
URL you enter. If you need to change the RIBforRPM provider URL
after you install RIB, you can do so by editing the jndi_provider.xml
file.

Note: During installation of SIM, you are asked for the AIP provider
URL. Since AIP is installed after SIM, make a note of the URL you
enter. If you need to change the AIP provider URL after you install
AIP, you can do so by editing the jndi_providers_ribclient.xml file.

Enterprise Installation Order

H-2 Product Title/BookTitle as a Variable

12. Oracle Retail Predictive Application Server (RPAS)

13. Oracle Retail Merchandise Financial Planning (MFP)

14. Oracle Retail Size Profile Optimization (SPO)

15. Oracle Retail Assortment Planning (AP)

16. Oracle Retail Item Planning (IP)

17. Oracle Retail Item Planning configured for COE (IPCOE)

18. Oracle Retail Advanced Inventory Planning (AIP)

19. Oracle Retail Integration Bus (RIB)

20. Oracle Retail Point-of-Service (ORPOS)

21. Orace Retail Mobile Point-of-Service (ORMPOS)

22. Oracle Retail Analytics Applications

23. Oracle Retail Data Warehouse (RDW)

24. Oracle Retail Workspace (ORW)

	Contents
	Preface
	1 Introduction
	Technical Specifications
	Check Database Server Requirements
	Supported Oracle Retail Products

	Data Integration

	2 Installation and System Configuration
	Installation
	Setup
	Upgrading from Earlier Releases of RETL
	RETL Package Verification Tool (verify_retl)
	Backward Compatibility Notes
	XML Flow Interface/Operator Differences Between 10.x and Later Releases
	Hardware Requirements Differences Between RETL 10 and Later Versions

	rfx Command Line Options
	RETL Environment Variables
	Configuration
	Configuration Field Descriptions
	Temporary Space Configuration
	Logger Configuration
	Performance Logger
	Output Logger

	Multibyte Character Support

	3 RETL Interface
	Terms
	RETL XML Interface
	Operator Nesting
	RETL Java Interface
	Initialization
	Flows
	Operators
	Properties
	Datasets

	4 RETL Program Flow
	Program Flow Overview
	General Flow
	A Simple Flow
	A More Complex Flow
	Online Help
	Debugging with RETL
	Producing Graphical Output of Flows with RETL
	Performance Logging with RETL
	Sample Log File

	5 RETL Schema Files
	Schema File Requirements
	Schema File XML Specification
	Delimited Record Schema
	Example Delimited Schema File

	Fixed-Length Record Schema
	Example Fixed-Length Schema File
	nullvalue Considerations

	Configure RETL to Print Schema Output in Schema File Format

	6 Database Operators
	ORAREAD
	ORAWRITE
	UPDATE
	DELETE
	INSERT
	PREPAREDSTATEMENT
	Database Operators XML Specification Table
	ORAREAD
	ORAWRITE
	UPDATE
	DELETE
	INSERT
	PREPAREDSTATEMENT

	Database Operator Examples
	ORAREAD
	ORAWRITE
	UPDATE
	DELETE
	INSERT
	PREPAREDSTATEMENT

	7 RETL Parallel Processing
	RETL Parallelism Overview
	Pipeline Parallelism
	Framework Parallelism

	RETL Data Partitioning
	Enabling RETL Data Partitioning
	Partition Construction
	Partitioning Types
	Keyed Partitioning
	Nonkeyed Partitioning

	Partitioners
	HASH
	IMPORT
	SPLITTER
	DBREAD, ORAREAD

	Operators and Partitioning Types
	Parallel Property
	Partitioned EXPORT
	Partitioned GENERATOR
	Partitioned LOOKUP and CHANGECAPTURELOOKUP
	Partitioned ORAWRITE
	Flows with Multiple Partitioners
	HASH Within a Partition
	SPLITTER Within a SPLITTER Partition
	Two HASH Operators Joined
	Funneled Partitions

	Data Partitioning Guidelines

	Operator Configuration for Data Partitioning
	A Final Word on Data Partitioning

	8 Input and Output Operators
	DEBUG
	NOOP
	EXPORT
	IMPORT
	Input and Output Operators XML Specification Tables
	DEBUG
	NOOP
	IMPORT
	EXPORT

	Input and Output Operators Examples
	IMPORT
	EXPORT

	9 Join Operators
	INNERJOIN
	LEFTOUTERJOIN
	RIGHTOUTERJOIN
	FULLOUTERJOIN
	LOOKUP
	DBLOOKUP
	Special Notes about Join Operators
	Join Operators XML Specification Tables
	INNERJOIN
	LEFTOUTERJOIN, RIGHTOUTERJOIN, FULLOUTERJOIN
	LOOKUP
	DBLOOKUP

	Join Operators Examples
	INNERJOIN
	LEFTOUTERJOIN
	RIGHTOUTERJOIN
	FULLOUTERJOIN
	LOOKUP
	DBLOOKUP

	10 Sort, Merge, and Partitioning Operators
	COLLECT and FUNNEL
	SORTCOLLECT and SORTFUNNEL
	HASH
	SPLITTER
	SORT
	MERGE
	Sort and Merge Operators XML Specification Tables
	COLLECT/FUNNEL
	HASH
	SPLITTER
	SORT
	SORTCOLLECT/SORTFUNNEL
	MERGE

	Sort, Merge, and Partitioning Operators Tag Usage Examples
	COLLECT
	HASH
	SORTCOLLECT
	MERGE

	11 Mathematical Operators
	BINOP
	GROUPBY
	GROUPBY on Multiple Partitions
	Mathematical Operators XML Specification Tables
	BINOP
	GROUPBY

	Mathematical Operators Examples
	BINOP
	GROUPBY

	12 Structures and Data Manipulation Operators
	CONVERT
	Conversion Functions

	FIELDMOD
	FILTER
	GENERATOR
	REMOVEDUP
	Structures and Data Manipulation Operators XML Specification Tables
	CONVERT
	FIELDMOD
	FILTER
	GENERATOR
	REMOVEDUP

	Filter Expressions
	Structures and Data Manipulation Operators Examples
	CONVERT
	FIELDMOD
	FILTER
	GENERATOR
	REMOVEDUP

	13 Other Operators
	COMPARE
	SWITCH
	CHANGECAPTURE and CHANGECAPTURELOOKUP
	COPY
	DIFF
	CLIPROWS
	PARSER
	EXIT
	Other Operators XML Specifications
	COPY
	COMPARE
	CLIPROWS
	DIFF
	CHANGECAPTURE and CHANGECAPTURELOOKUP
	SWITCH
	PARSER
	EXIT

	Other Operators Examples
	COPY
	SWITCH
	COMPARE
	CHANGECAPTURE
	CHANGECAPTURELOOKUP
	CLIPROWS
	DIFF
	PARSER
	EXIT
	PARSER

	14 Common Operator Properties
	Common Operator XML Specification

	15 Best Practices
	Introduction and Objectives
	Prerequisites

	Project Initiation/Design/Functional Specification Best Practices
	Ask Discovery Questions First
	Generic Integration Questions
	Application Domain Questions
	Data-related and Performance Questions

	Map Out The Movement of Data Visually
	Define Concrete Functional Requirements for Each Module
	Define Concrete Functional Designs for Each Module
	Design a Test Plan Early in the Process
	Design for Future Usage and Minimize Impact of Potential Changes
	Agree on Acceptance Criteria
	Document Design Assumptions, Issues, and Risks

	Code/Implementation/Test Best Practices
	Korn Shell Best Practices
	Execute Commands Using $(command) and Not 'command'
	Ensure 'set -f' is set in a Configuration File
	Write Flow to an Intermediate File and then Call RETL on that File
	Secure/Protect Files and Directories that may Contain Sensitive Information
	Make Often-used Portions of the Module Parameters or Functions
	Make Function Calls Only a Few Layers Deep
	Separate Environment Data from the Flow
	Enclose Function Parameters in Double Quotes
	Set Environment Variable Literals in Double Quotes
	Use Environment Variables as ${VARIABLE} Rather than $VARIABLE
	Follow Module Naming Conventions
	Log Relevant Events in Module Processing
	Place Relevant Log Files in Well-known Directories
	Use .ksh Templates
	Document Each Flow's Behavior

	RETL Flow Best Practices

	Review/Product Handoff
	Involve Support Personnel Early in the Project
	Assign a Long-term Owner to the Project/Product/Interface

	A Appendix: Default Conversions
	Default Conversions from UINT8
	Default Conversions from INT8
	Default Conversions from UINT16
	Default Conversions from INT16
	Default Conversions from UINT32
	Default Conversions from INT32
	Default Conversions from UINT64
	Default Conversions from INT64
	Default Conversions from SFLOAT
	Default Conversions from DEFLOAT

	B Appendix: Database Configuration and Troubleshooting Guide
	RETL Database Configuration and Maintenance Notes
	Debugging Database ETL Utilities
	Database Semaphore Problems
	Runaway Loader Processes

	Troubleshooting RETL with Your Database

	C Appendix: Troubleshooting Guide
	D Appendix: FAQ
	E Appendix: RETL Data Types
	RETL Data Type Properties
	RETL Data Type/Database Data Type Mapping
	RETL Data Type to Oracle Data Type (ORAWRITE)
	Oracle Data Type to RETL Data Type (ORAREAD)

	F Appendix: Data Partitioning Quick Reference
	Partitioning the Data
	Continuing the Partition
	Hash Partitioning
	Ending the Data Partition

	G Appendix: Database Connections Quick Reference
	Setting the Environment Variables
	ORAREAD
	ORAWRITE

	H Appendix: Installation Order
	Enterprise Installation Order

