

Oracle® Retail Merchandising System

Back-end Configuration and Operations Guide - Volume 3
Release 13.0

April 2008

Oracle® Reatil Merchandising System Back-end Configuration and Operations Guide - Volume 3,
Release 13.0

Copyright © 2008, Oracle. All rights reserved.

Primary Author: Nathan Young

The Programs (which include both the software and documentation) contain proprietary
information; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the
extent required to obtain interoperability with other independently created software or as specified
by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. This document is not
warranted to be error-free. Except as may be expressly permitted in your license agreement for
these Programs, no part of these Programs may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the
Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and
technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the Programs, including documentation and technical data, shall be subject to the
licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software—
Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate
fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the
Programs are used for such purposes, and we disclaim liability for any damages caused by such
use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation
and/or its affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from
third parties. Oracle is not responsible for the availability of, or any content provided on, third-
party Web sites. You bear all risks associated with the use of such content. If you choose to
purchase any products or services from a third party, the relationship is directly between you and
the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or
(b) fulfilling any of the terms of the agreement with the third party, including delivery of products
or services and warranty obligations related to purchased products or services. Oracle is not
responsible for any loss or damage of any sort that you may incur from dealing with any third
party.

iii

Value-Added Reseller (VAR) Language

(i) the software component known as ACUMATE developed and licensed by Lucent Technologies
Inc. of Murray Hill, New Jersey, to Oracle and imbedded in the Oracle Retail Predictive
Application Server – Enterprise Engine, Oracle Retail Category Management, Oracle Retail Item
Planning, Oracle Retail Merchandise Financial Planning, Oracle Retail Advanced Inventory
Planning and Oracle Retail Demand Forecasting applications.

(ii) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail
Data Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(iii) the SeeBeyond component developed and licensed by Sun MicroSystems, Inc. (Sun) of Santa
Clara, California, to Oracle and imbedded in the Oracle Retail Integration Bus application.

(iv) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of
Kirkland, Washington, to Oracle and imbedded in Oracle Retail Store Inventory Management.

(v) the software component known as Crystal Enterprise Professional and/or Crystal Reports
Professional licensed by Business Objects Software Limited (“Business Objects”) and imbedded in
Oracle Retail Store Inventory Management.

(vi) the software component known as Access Via™ licensed by Access Via of Seattle, Washington,
and imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(vii) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of
San Jose, California, and imbedded in Oracle Retail Promotion Planning & Optimization
application.

(viii) the software component known as Style Report™ developed and licensed by InetSoft
Technology Corp. of Piscataway, New Jersey, to Oracle and imbedded in the Oracle Retail Value
Chain Collaboration application.

(ix) the software component known as i-net Crystal-Clear™ developed and licensed by I-NET
Software Inc. of Berlin, Germany, to Oracle and imbedded in the Oracle Retail Central Office and
Oracle Retail Back Office applications.

(x) the software component known as WebLogic™ developed and licensed by BEA Systems, Inc. of
San Jose, California, to Oracle and imbedded in the Oracle Retail Value Chain Collaboration
application.

(xi) the software component known as DataBeacon™ developed and licensed by Cognos
Incorporated of Ottawa, Ontario, Canada, to Oracle and imbedded in the Oracle Retail Value Chain
Collaboration application.

v

Contents
Preface .. ix

Audience .. ix
Related Documents... ix
Customer Support... ix
Review Patch Documentation ...x
Oracle Retail Documentation on the Oracle Technology Network..................................x
Conventions...x

1 Pro*C Restart and Recovery... 1
Table Descriptions and Definitions ..1

restart_control ..2
restart_program_status ...3
restart_program_history ...4
restart_bookmark...5
v_restart_x...6

Data Model Discussion ..6
Why restart_program_status and restart_bookmark are Separate Tables...............6

Physical Set-Up..6
Table and File-Based Restart/Recovery...7
API Functional Descriptions..9

restart_init...9
restart_file_init ...10
restart_commit ...10
restart_file_commit..10
restart_close ..11
parse_array_args..11
restart_file_write ..11
restart_cat..11
Restart Headers and Libraries..12
Updated Restart Headers and Libraries ...13
New Restart/Recovery Functions ...14

Query-Based Commit Thresholds ..16
2 Pro*C Multi-Threading... 17

Threading Description ...17
Threading Function for Query-Based ..18
Restart View for Query-Based...18
Thread Scheme Maintenance ..20

File-Based..20
Query-Based ...21

Batch Maintenance..21

vi

Scheduling and Initialization of Restart Batch..22
Pre- and Post-Processing..22

3 Pro*C Array Processing .. 23
4 Pro*C Input and Output Formats.. 25

General Interface Discussion...25
Standard File Layouts ...25

Detail Only Files..25
Master and Detail Files..26

Electronic Data Interchange (EDI) ..28
5 RETL Program Overview for RMS/ReSA Extractions for RDW............................. 29

Overview..29
Architectural Design...29

RMS Extraction Architecture..30
ReSA Extraction Architecture ..30

Configuration ..31
RETL ..31
RETL User and Permissions ...31
Environment Variables ...31
dwi_config.env Settings..31

Program Features..33
Program Status Control Files ...33
Restart and Recovery...34
Bookmark File ..34
Message Logging ...34
Daily Log File ...35
Format ...35
Program Error File ...36
RMSE Reject Files...36
Schema Files ...37
Resource Files ...37
Command Line Parameters..37
Multi-Threading For RMSE ReSA Modules...38

Typical Run and Debugging Situations ...38
Running the Time 454 Extract Module ...39

6 RETL Program Overview for the RMS-RPAS Interface.. 41
Oracle Retail ETL Architecture ...41
RETL Program Overview ..42

Configuration ...42
Program Return Code ..45
Program Status Control Files...45

File Naming Conventions...45

vii

Restart and Recovery...45
Message Logging ..46

Daily Log File ...46
Format ...46
Program Error File ...46

RMSE Reject Files..47
Schema Files Overview ..47
Command Line Parameters ...48

rmse_rpas_config.env ...48
RMSE I/O File Names...49

Typical Run and Debugging Situations ...50
7 Internationalization.. 51

Translation ...51
RMS Client Language Settings..51
Key RMS Tables Related to Internationalization..52

FORM_ELEMENTS ...52
FORM_ELEMENTS_LANGS ...52
MENU_ELEMENTS ..52
MENU_ELEMENTS_LANGS ..52
FORM_MENU_LINK..53
CODE_DETAIL_TRANS ..53

8 Custom Post Processing .. 55
9 Configuring RMS for Single Sign-on ... 57

Overview..57
What is Single Sign-On?..57
What Do I Need for Oracle Single Sign-On?..57
Can Oracle Single Sign-On Work with Other SSO Implementations?57
Oracle Single Sign-on Terms and Definitions ..58
What Single Sign-On is not...59
How Oracle Single Sign-On Works ...59
Installation Overview..61
User Management..62

Setting up RMS for Single Sign-on ...62
Configuring formsweb.cfg..63
Creating a RAD Entry ...63

10 Integrating RMS with Oracle Retail Workspace.. 65
11 Setting up Oracle Business Intelligence Publisher.. 67

Setting up your JDBC Connection ..67
Verifying BI Publisher URLs ...69

ix

Preface
This operations guide serves as an Oracle Retail Merchandising System (RMS) solution
reference to explain ‘backend’ processes and configuration.

Audience
Anyone who has an interest in better understanding the inner workings of the Retail
Merchandising System can find valuable information in this guide. There are three
audiences in general for whom this guide is written:
 System analysts and system operation personnel:

– Who are looking for information about Retail Merchandising System processes
internally or in relation to the systems across the enterprise

– Who operate the Retail Merchandising System on a regular basis
 Integrators and implementation staff who have the overall responsibility for

implementing the Retail Merchandising System in their enterprise
 Business analysts who are looking for information about processes and interfaces to

validate the support for business scenarios within the Retail Merchandising System
and other systems across the enterprise

Related Documents
You can find more information about this product in these resources:
 Oracle Retail Merchandising System Installation Guide
 Oracle Retail Merchandising System Release Notes
 Oracle Retail Merchandising System Data Model
 Oracle Retail Merchandising System Online Help
 Oracle Retail Merchandising System User Guide
 Oracle Retail Merchandising System Operations Guide (Volumes 1 and 2)
 Oracle Retail Sales Audit User Guide
 Oracle Retail Trade Management User Guide
 Oracle Retail Merchandising Batch Schedule
 Oracle Retail Merchandising Data Conversion Operations Guide
 Oracle Retail Merchandising Implementation Guide

Customer Support
https://metalink.oracle.com
When contacting Customer Support, please provide the following:
 Product version and program/module name
 Functional and technical description of the problem (include business impact)
 Detailed step-by-step instructions to re-create
 Exact error message received
 Screen shots of each step you take

https://metalink.oracle.com/

x

Review Patch Documentation
For a base release (".0" release, such as 13.0), Oracle Retail strongly recommends that you
read all patch documentation before you begin installation procedures. Patch
documentation can contain critical information related to the base release, based on new
information and code changes that have been made since the base release.

Oracle Retail Documentation on the Oracle Technology Network
In addition to being packaged with each product release (on the base or patch level), all
Oracle Retail documentation is available on the following Web site:
http://www.oracle.com/technology/documentation/oracle_retail.html
Documentation should be available on this Web site within a month after a product
release. Note that documentation is always available with the packaged code on the
release date.

Conventions
Navigate: This is a navigate statement. It tells you how to get to the start of the procedure
and ends with a screen shot of the starting point and the statement “the Window Name
window opens.”

Note: This is a note. It is used to call out information that is
important, but not necessarily part of the procedure.

This is a code sample
 It is used to display examples of code

A hyperlink appears like this.

http://www.oracle.com/technology/documentation/oracle_retail.html

Back-end Configuration and Operations Guide - Volume 3 1

1
Pro*C Restart and Recovery

RMS has implemented a restart recovery process in most of its batch architecture. The
general purpose of restart/recovery is to:
 Recover a halted process from the point of failure
 Prevent system halts due to large numbers of transactions
 Allow multiple instances of a given process to be active at the same time

Further, the RMS restart/recovery tracks batch execution statistics and does not require
DBA authority to execute.
The restart capabilities revolve around a program’s logical unit of work (LUW). A batch
program processes transactions, and commit points are enabled based on the LUW.
LUWs consist of a relatively unique transaction key (such as sku/store) and a maximum
commit counter. Commit events take place after the number of processed transaction
keys meets or exceeds the maximum commit counter. For example, every 10,000
sku/store combinations, a commit occurs. At the time of the commit, key data
information that is necessary for restart is stored in the restart tables. In the event of a
handled or un-handled exception, transactions will be rolled back to the last commit
point, and upon restart the key information will be retrieved from the tables so that
processing can continue from the last commit point.

Table Descriptions and Definitions
The RMS restart/recovery process is driven by a set of four tables. Refer to the diagram
for the entity relationship diagram, followed by table descriptions.

restart control
(PK) program_name
program_desc
driver_name
num_threads
update_allowed
process_flag
commit_max_ ctr

restart program history
restart_name
thread_val
start_time
program_name

commit_max_ctr
restart_time
finish_time

restart program status
(PK) restart_name
(PK) thread_ val
start_time
program_name
program_status
restart_flag
restart_time
finish_time
current_pid
current_operator_id
err_message

restart bookmark
restart_name
thread_val
bookmark_string
application_image

current_oracle_sid *
current_shadow_pid *

out_file_string *
non_fatal_err_flag *
num_commits *
avg_time_btwn_commits *

num_threads

shadow_pid *
success_flag *
non_fatal_err_flag *
num_commits *
avg_time_btwn_commits *

Entity Relationship

Table Descriptions and Definitions

2 Oracle Retail Merchandising System

Note: The fields with asterisks (*) are only used by new
batch programs of release 9.0 or later.

restart_control
The restart_control table is the master table in the restart/recovery table set. One record
exists on this table for each batch program that is run with restart/recovery logic in
place. The restart/recovery process uses this table to determine:
 Whether the restart/recovery is table-based or file-based
 The total number of threads used for each batch program
 The maximum records that will be processed before a commit event takes place
 The driver for the threading (multi-processing) logic.

restart_control

(PK)
program_name

varchar2 25 Batch program name

program_desc varchar2 50 A brief description of the program function

driver_name varchar2 25 Driver on query, for example, department (non-updatable)

num_threads num 10 Number of threads used for current process

update_allowed varchar2 2 Indicates whether user can update thread numbers or if
done programmatically

process_flag varchar2 1 Indicates whether process is table-based (T) or file-based
(F)

commit_max_ctr num 6 Numeric maximum value for counter before commit
occurs

Table Descriptions and Definitions

Back-end Configuration and Operations Guide - Volume 3 3

restart_program_status
The restart_program_status table is the table that holds record keeping information about
current program processes. The number of rows for a program on the status table will be
equal to its num_threads value on the restart_control table. The status table is modified
during restart/recovery initialization and close logic. For table-based processing, the
restart/recovery initialization logic will assign the next available thread to a program
based on the program status and restart flag. For file-based processing, the thread value
is passed in from the input file name. Once a thread has been assigned the
program_status is updated to prevent the assignment of that thread to another process.
Information will be logged on the current status of a given thread, as well as record
keeping information such as operator and process timing information.

Setup Note: Allow row level locking and ‘dirty reads’ (do
not wait for rows to be unlocked for table read).

restart_program_status

(PK)restart_name varchar2 50 Program name

(PK)thread_val num 10 Thread counter

start_time date dd-mon-yy hh:mi:ss

program_name varchar2 25 Program name

program_status varchar2 25 Started, aborted, aborted in init, aborted in process,
aborted in final, completed, ready for start

restart_flag varchar2 1 Automatically set to ‘N’ after abnormal end, must be
manually set to ‘Y’ for program to restart

restart_time date dd-mon-yy hh:mi:ss

finish_time date dd-mon-yy hh:mi:ss

current_pid num 15 Starting program id

current_operator_id varchar2 20 Operator that started the program

err_message varchar2 255 Record that caused program abort & associated error
message

current_oracle_sid num 15 Oracle SID for the session associated with the current
process

current_shadow_pid num 15 O/S process ID for the shadow process associated with
the current process. It is used to locate the session trace
file when a process is not finished successfully.

Table Descriptions and Definitions

4 Oracle Retail Merchandising System

restart_program_history
The restart_program_history table will contain one record for every successfully
completed program thread with restart/recovery logic. Upon the successful completion
of a program thread, its record on the restart_program_status table will be inserted into
the history table. Table purgings will be at user discretion.

restart_program_history

restart_name varchar2 50 Program name

thread_val Num 10 Thread counter

start_time Date dd-mon-yy hh:mi:ss

program_name varchar2 25 Program name

num_threads Num 10 Number of threads

commit_max_ctr num 6 Numeric maximum value for counter before
commit occurs

restart_time date dd-mon-yy hh:mi:ss

finish_time date dd-mon-yy hh:mi:ss

shadow_pid num 15 O/S process ID for the shadow process
associated with the process. It is used to locate
the session trace file.

success_flag varchar2 1 Indicates whether the process finished
successfully (reserved for future use)

non_fatal_err_flag varchar2 1 Indicates whether non-fatal errors have occurred
for the process

num_commits num 12 Total number of commits for the process. The
possible last commit when restart/recovery is
closed is not counted.

avg_time_btwn_commits num 12 Accumulated average time between commits for
the process. The possible last commit when
restart/recovery is closed is not counted.

Table Descriptions and Definitions

Back-end Configuration and Operations Guide - Volume 3 5

restart_bookmark
When a restart/recovery program thread is currently active, its state is started or aborted,
and a record for it exists on the restart_bookmark table. Restart/recovery initialization
logic inserts the record into the table for a program thread. The restart/recovery commit
process updates the record with the following restart information:
 A concatenated string of key values for table processing
 A file pointer value for file processing
 Application context information such as counters and accumulators

The restart/recovery closing process will delete the program thread record if the
program finishes successfully. In the event of a restart, the program thread information
on this table will allow the process to begin from the last commit point.

restart_bookmark

(PK) restart_name varchar2 50 Program name

(PK) thread_val num 10 Thread counter

bookmark_string varchar2 255 Character string of key of last committed
record.

application_image varchar2 1000 application parameters from the last save point.

out_file_string varchar2 255 Concatenated file pointers (UNIX sometimes
refers to these as stream positions) of all the
output files from the last commit point of the
current process. It is used to return to the right
restart point for all the output files during
restart process.

non_fatal_err_flag varchar2 1 Indicates whether non-fatal errors have
occurred for the current process.

num_commits num 12 Number of commits for the current process.
The possible last commit when
restart/recovery is closed is not counted.

avg_time_btwn_commits num 12 Average time between commits for the current
process. The possible last commit when
restart/recovery is closed is not counted.

Data Model Discussion

6 Oracle Retail Merchandising System

v_restart_x
Restart views will be used for query-based programs that require multi-threading.
Separate views will be created for each threading driver, for example, department or
store. A join will be made to a view based on threading driver to force the separation of
discrete data into particular threads. Please see the threading discussion for more details.

v_restart_x

driver_name varchar2 - example dept, store, region, etc.

num_threads number total number of threads in set (defined on restart control)

driver_value number - will be the numeric value of the driver_name

thread_val number thread value defined for driver_value and num_threads
combination

Data Model Discussion
Why restart_program_status and restart_bookmark are Separate Tables

The initialization process needs to fetch all of the rows associated with
restart_name/schema, but will only update one row. The commit process will
continually lock a row with a specific restart_name and thread_val. The data involved
with these two processes is separated into two tables to reduce the number of hangs that
could occur due to locked rows. Even if you allow ‘dirty reads’ on locked rows, a process
will still hang if it attempts to do an update on a locked row. The commit process is only
interested in a unique row, so if we move the commit process data to a separate table
with row level (not page level) locking, there will not be contention issues during the
commit. With the separate tables, the initialization process will now see fewer problems
with contention because rows will only be locked twice, at the beginning and end of the
process.

Physical Set-Up
The restart/recovery process needs to be as robust as possible in the event of database
related failure. The costs outweigh the benefits of placing the restart/recovery tables in a
separate database. The tables should, however, be set up in a separate, mirrored table
space with a separate rollback segment.

Table and File-Based Restart/Recovery

Back-end Configuration and Operations Guide - Volume 3 7

Table and File-Based Restart/Recovery
The restart/recovery process works by storing all the data necessary to resume
processing from the last commit point. Therefore, the necessary information will be
updated on the restart_bookmark table before the processed data is committed. Query-
based and file-based modules will store different information on the restart tables, and
will therefore call different functions within the restart/recovery API to perform their
tasks.
When a program’s process is query-based, that is, a module is driven by a driving query
that processes the retrieved rows, then the information that is stored on the
restart_bookmark table is related to the data retrieved in the driving query. If the
program fails while processing, the information that is stored on the restart-tables can be
used in the conditional where-clause of the driving query to only retrieve data that has
yet to be processed since the last commit event.
File-based processing, however, simply needs to store the file location at the time of the
last commit point. This file’s byte location is stored on the restart_bookmark table and
will be retrieved at the time of a restart. This location information will be used to seek
forward in the re-opened file to the point at which the data was last committed.
Because there is different information being saved to and retrieved from the
restart_bookmark table for each of the different types of processing, different functions
will need to be called to perform the restart/recovery logic. The query-based processing
will call the restart_init or retek_init and restart_commit or retek_commit functions while
the file-based processing will call the restart_file_init and restart_file_commit functions.
In addition to the differences in API function calls, the batch processing flow of the
restart/recovery will differ between the files. Table-based restart/recovery will need to
use a priming fetch logical flow, while the file-based processing will usually read lines in
a batch. Table-based processing requires its structure to ensure that the LUW key has
changed before a commit event can be allowed to occur, while the file-based processing
does not need to evaluate the LUW, which can typically be thought of as the type of
transaction being processed by the input file.
The following diagram depicts table-based Restart/Recovery program flow:

Table and File-Based Restart/Recovery

8 Oracle Retail Merchandising System

Priming fetch

Process

Fetch

Commit

Close Logic

Initialization Logic
(call restart_init)

Process Function

Table-Based Restart/Recovery Program Flow

The following diagram depicts file-based Restart/Recovery program flow

Inner Loop
process individual records

Process

End Inner Loop

Commit

End Outer Loop

Initialization Logic
(call restart_init)

File Open & Seek

Outer Loop
feed multiple records into buffer

Close Logic

File-based Restart/Recovery Program Flow

API Functional Descriptions

Back-end Configuration and Operations Guide - Volume 3 9

Initialization logic:
 Variable declarations
 File initialization
 Call restart_init() or restart_file_init() function - will determine start or restart logic
 First fetch on driving query

Start logic: initialize counters/accumulators to start values
Restart logic:
 Parse application_image field on bookmark table into counters/accumulators
 Initialize counters/accumulators to values of parsed fields

Process/commit loop:
 Process updates and manipulations
 Fetch new record
 Create varchar from counters/accumulators to pass into application_image field on

restart_bookmark table
 Call restart_commit() or restart_file_commit()

Close logic:
 Reset pointers
 Close files/cursors
 Call restart_close()

API Functional Descriptions
restart_init

An initialization function for table-based batch processing.
The process gathers information from the restart control tables
 Total number of threads for a program and thread value assigned to current process.
 Number of records to loop through in driving cursor before commit (LUW).
 Start string - bookmark of last commit to be used for restart or a null string if current

process is an initial start and initializes the restart record-keeping
(restart_program_status).

 Program status is changed to ‘started’ for the first available thread.
 Operational information is updated: operator, process, start_time, etc. and

bookmarking (restart_bookmark) tables.
 On an initial start, a record is inserted.
 On restart, the start string and application context information from the last commit

is retrieved.

API Functional Descriptions

10 Oracle Retail Merchandising System

restart_file_init
An initialization function for file-based batch processing. It is called from program
modules.
1. The process gathers information from the restart control tables:

 number of records to read from file for array processing and for commit cycle
 file start point- bookmark of last commit to be used for restart or 0 for initial start

2. The process initializes the restart record-keeping (restart_program_status):
 program status is changed to ‘started’ for the current thread
 operational information is updated: operator, process, start_time, etc.

3. The process initializes the restart bookmarking (restart_bookmark) tables:
 on an initial start, a record is inserted
 on restart, the file starting point information and application context information

from the last commit is retrieved

restart_commit
A function that commits the processed transaction for a given number of driving query
fetches. It is called from program modules.
The process updates the restart_bookmark start string and application image information
if a commit event has taken place:
 the current number of driving query fetches is greater than or equal to the maximum

set in the restart_program_status table (and fetched in the restart_init function)
 the bookmark string of the last processed record is greater than or equal to the

maximum set in the restart_program_status table (and fetched in the restart_init
function)

 the bookmark string increments the counter
 the bookmark string sets the current string to be the most recently fetched key string

restart_file_commit
A function that commits processed transactions after reading a number of lines from a
flat file. It is called from program modules.
The process updates the restart_bookmark table:
 start_string is set to the file pointer location in the current read of the flat file
 application image is updated with context information

API Functional Descriptions

Back-end Configuration and Operations Guide - Volume 3 11

restart_close
A function that updates the restart tables after program completion.
The process determines whether the program was successful. If the program finished
successfully:
 the restart_program_status table is updated with finish information and the status is

reset
 the corresponding record in the restart_bookmark table is deleted
 the restart_program_history table has a copy of the restart_program_status table

record inserted into it
 the restart_program_status is re-initialized

If the program ends with errors
 the transactions are rolled back
 the program_status column on the restart_program_status table is set to ‘aborted in *’

where * is one of the three main functions in batch: init, process or final
 the changes are committed

parse_array_args
This function parses a string into components and places results into multidimensional
array. It is only called within API functions and will never be called in program modules.
The process is passed a string to parse and a pointer to an array of characters.
The first character of the passed string is the delimiter.

restart_file_write
This function will append output in temporary files to final output files when a commit
point is reached. It is called from program modules.

restart_cat
This function contains the logic that appends one file to another. It is only called within
the restart/recovery API functions and will never be called directly in program modules.

API Functional Descriptions

12 Oracle Retail Merchandising System

Restart Headers and Libraries
The restart.h and the std_err.h header files are included in retek.h to utilize the
restart/recovery functionality.

restart.h
This library header file contains constant, macro substitutions, and external global
variable definitions as well as restart/recovery function prototypes.
The global variables that are defined include:
 the thread number assigned to the current process
 the value of the current process’s thread maximum counter

– for table-based processing, it is equal to the number of iterations of the driving
query before a commit can take place

– for file-based processing, it is equal to the number of lines that will be read from
a flat file and processed using a structured array before a commit can take place

 the current count of driving query iterations used for table-based processing or the
current array index used in file-based processing

 the name assigned to the program/logical unit of work by the programmer. It is the
same as the restart_name column on the restart_program_status,
restart_program_history, and restart_bookmark tables

std_rest.h
This library header file contains standard restart variable declarations that are used
visible in program modules.
The variable definitions that are included are:
 the concatenated string value of the fetched driving query key that is currently being

processed
 the concatenated string value of the fetched driving query key that is next to be

processed
 the error message passed to the restart_close function and updated to

restart_program_status
 concatenated string of application context information, for example, counters &

accumulators
 the name of the threading driver, for example, department, store, warehouse, etc.
 the total number of threads used by this program
 the pointer to pass to initialization function to retail number of threads value

API Functional Descriptions

Back-end Configuration and Operations Guide - Volume 3 13

Updated Restart Headers and Libraries
Restart/recovery performs the following, among other capabilities:
 Organizes global variables associated with restart recovery
 Allows the batch developer full control of restart recovery variables parameter

passing during initialization
 Removes temporary write files to speed up the commit process
 Moves more information and processing from the batch code into the library code
 Adds more information into the restart recovery tables for tuning purposes

retek_2.h
This library header file is included by all C code within Retek and serves to centralize
system includes, macro defines, globals, function prototypes, and, especially, structs for
use in the new restart/recovery library.
The globals used by the old restart/recovery library are all discarded. Instead, each batch
program declares variables needed and calls retek_init() to get them populated from
restart/recovery tables. Therefore, only the following variables are declared:
 gi_no_commit: flag for NO_COMMIT command line option (used for tuning

purposes)
 gi_error_flag: fatal error flag
 gi_non_fatal_err_flag: non-fatal error flag

In addition, a rtk_file struct is defined to handle all file interfaces associated with
restart/recovery. Operation functions on the file struct are also defined.
#define NOT_PAD 1000 /* Flag not to pad thread_val */
#define PAD 1001 /* Flag to pad thread_val at the end */
#define TEMPLATE 1002 /* Flag to pad thread_val using filename template
*/
#define MAX_FILENAME_LEN 50
typedef struct
{
 FILE* fp; /* File pointer */
 char filename[MAX_FILENAME_LEN + 1]; /* Filename */
 int pad_flag; /* Flag whether to pad thread_val to filename */
} rtk_file;

int set_filename(rtk_file* file_struct, char* file_name, int pad_flag);
FILE* get_FILE(rtk_file* file_struct);
int rtk_print(rtk_file* file_struct, char* format, ...);
int rtk_seek(rtk_file* file_struct, long offset, int whence);

The parameters retek_init() needs to populate are required to be passed in using a format
known to retek_init(). A struct is defined here for this purpose. An array of parameters of
this struct type is needed at each batch program. Other requirements are:

API Functional Descriptions

14 Oracle Retail Merchandising System

Need to be initialized at each batch program.
 The lengths of name, type and sub_type should not exceed the definitions here.
 Type can only be: "int", “uint”, "long", "string", or "rtk_file".
 For type "int", “uint” or "long", use "" as sub_type.
 For type "string", sub_type can only be "S" (start string) unless the string is the thread

value or number of threads, in which case use “” as sub_type or "I" (image string).
 For type "rtk_file", sub_type can only be "I" (input) or "O" (output).
#define NULL_PARA_NAME 51
#define NULL_PARA_TYPE 21
#define NULL_PARA_SUB_TYPE 2
typedef struct
{
 char name[NULL_PARA_NAME];
 char type[NULL_PARA_TYPE];
 char sub_type[NULL_PARA_SUB_TYPE];
} init_parameter;

New Restart/Recovery Functions
Starting from release 9.0, all new batch programs are coded using the new
restart/recovery functions. Batch programs using the old restart/recovery API functions
are still in use. Therefore, Oracle Retail is currently maintaining two sets of
restart/recovery libraries.

int retek_init(int num_args, init_parameter *parameter, ...)
retek_init initializes restart/recovery (for both table- and file-based):
1. Pass in num_args as the number of elements in the init_parameter array, then the

init_parameter array, then variables a batch program needs to initialize in the order
and types defined in the init_parameter array. Note that all int, uint and long
variables need to be passes by reference.

2. Get all global and module level values from databases.
3. Initialize records for RESTART_PROGRAM_STATUS and RESTART_BOOKMARK.
4. Parse out user-specified initialization variables (variable arg list).
5. Return NO_THREAD_AVAILABLE if no qualified record in RESTART_CONTROL

or RESTART_PROGRAM_STATUS.
6. Commit work.

API Functional Descriptions

Back-end Configuration and Operations Guide - Volume 3 15

int retek_commit(int num_args, ...)
retek_commit checks and commits if needed (for both table- and file-based):
1. Pass in num_args, then variables for start_string first, and those for image string (if

needed) second. The num_args is the total number of these two groups. All are string
variables and are passed in the same order as in retek_init();

2. Concatenate start_string either from passed in variables (table-based) or from ftell of
input file pointers (file-based);

3. Check if commit point reached (counter check and, if table-based, start string
comparison);

4. If reached, concatenated image_string from passed in variables (if needed) and call
internal_commit() to get out_file_string and update RESTART_BOOKMARK;

5. If table-based, increment pl_current_count and update ps_cur_string.

int commit_point_reached(int num_args, ...)
commit_point_reached checks if the commit point has been reached (for both table- and
file-based). The difference between this function and the check in retek_commit() is that
here the pl_current_count and ps_cur_string are not updated. This checking function is
designed to be used with retek_force_commit(), and the logic to ensure integrity of LUW
exists in user batch program. It can also be used together with retek_commit() for extra
processing at the time of commit.
1. Pass in num_args, then all string variables for start_string in the same order as in

retek_init(). The num_args is the number of variables for start_string. If no
start_string (as in file-based), pass in NULL.

2. For table-based, if pl_curren_count reaches pl_max_counter and if newly
concatenated bookmark string is different from ps_cur_string, return 1; otherwise
return 0.

3. For file-based, if pl_curren_count reaches pl_max_counter return 1; otherwise return
0.

int retek_force_commit(int num_args, ...)
retek_force_commit always commits (for both table- and file-based):
1. Pass in num_args, then variables for start_string first, and those for image string (if

needed) second. The num_args is the total number of these two groups. All are string
variables and are passed in the same order as in retek_init().

2. Concatenate start_string either from passed in variables (table-based) or from ftell of
input file pointers (file-based).

3. Concatenated image_string from passed in variables (if needed) and call
internal_commit() to get out_file_string and update RESTART_BOOKMARK.

4. If table-based, increment pl_current_count and update ps_cur_string.

Query-Based Commit Thresholds

16 Oracle Retail Merchandising System

int retek_close(void)
retek_close closes restart/recovery (for both table- and file-based):
1. If gi_error_flag or NO_COMMIT command line option is TRUE, rollback all database

changes.
2. Update RESTART_PROGRAM_STATUS according to gi_error_flag.
3. If no gi_error_flag, insert record into RESTART_PROGRAM_HISTORY with

information fetched from RESTART_CONTROL,
RESTART_PROGRAM_BOOKMARK and RESTART_PROGRAM_STATUS tables.

4. If no gi_error_flag, delete RESTART_BOOKMARK record.
5. Commit work.
6. Close all opened file streams.

Int retek_refresh_thread(void)
Refreshes a program’s thread so that it can be run again.
1. Updates the RESTART_PROGRAM_STATUS record for the current program’s

PROGRAM_STATUS to be ‘ready for start’.
2. Deletes any RESTART_BOOKMARK records for the current program.
3. Commits work.

void increment_current_count(void)
increment_current_count increases pl_current_count by 1.

Note: This is called from get_record() of intrface.pc for file-
based I/O.

int parse_name_for_thread_val(char* name)
parse_name_for_thread_val parses thread value from the extension of the specified file
name.

int is_new_start(void)
is_new_start checks if current run is a new start; if yes, return 1; otherwise 0.

Query-Based Commit Thresholds
The restart capabilities revolve around a program’s logical unit of work (LUW). A batch
program processes transactions and enables commit points based on the LUW. An LUW
is comprised of a transaction key (such as item-store) and a maximum commit counter.
Commit events occur after a given number of transaction keys are processed. At the time
of the commit, key data information that is necessary for restart is stored in the restart
table. In the event of a handled or un-handled exception, transactions will be rolled back
to the last commit point. Upon restart the restart key information will be retrieved from
the tables so that processing can resume with the unprocessed data.

Back-end Configuration and Operations Guide - Volume 3 17

2
Pro*C Multi-Threading

Processing multiple instances of a given program can be accomplished through
“threading”. This requires driving cursors to be separated into discrete segments of data
to be processed by different threads. This will be accomplished through stored
procedures that will separate threading mechanisms (for example, departments or stores)
into particular threads given value (for example, department 1001) and the total number
of threads for a given process.
File-based processing will not truly “thread” its processing. The same data file will never
be acted upon by multiple processes. Multi-threading will be accomplished by dividing
the data into separate files each of which will be acted upon by a separate process. The
thread value is related to the input file. This is necessary to ensure that the appropriate
information can be tied back to the relevant file in the event of a restart.
RMS has a store length of ten digits. Therefore, thread values, which can be based upon
the store number, should allow ten digits as well. Due to the thread values being
declared as ‘C’ variables of type int (long), the system is restricting thread values to nine
digits.
This does not mean that you cannot use ten digit store numbers. It means that if you do
use ten digit store numbers you cannot use them as thread values.

Threading Description
The use of multiple threads or processes in Oracle Retail batch processing will increase
efficiency and decrease processing time. The design of the threading process has allowed
maximum flexibility to the end user in defining the number of processes over which a
program should be divided.
Originally, the threading function was going to be used directly in the driving queries.
This was found, however, to be unacceptably slow. Instead of using the function call
directly in the driving queries, the designs call for joining driving query tables to a view
(for example, v_restart_store) that includes the function.

Threading Function for Query-Based

18 Oracle Retail Merchandising System

Threading Function for Query-Based
A stored procedure has been created to determine thread values. Restart_thread_return
returns a thread value derived from a numeric driver value, such as department number,
and the total number of threads in a given process. Retailers should be able to determine
the best algorithm for their design, and if a different means of segmenting data is
required, then either the restart_thread_return function can be altered, or a different
function can be used in any of the views in which the function is contained.
Currently the restart_thread_return function is a very simple modulus routine:
CREATE OR REPLACE FUNCTION RESTART_THREAD_RETURN(in_unit_value NUMBER,
 in_total_threads NUMBER)
 RETURN NUMBER IS
 ret_val NUMBER;
BEGIN
 ret_val := MOD(ABS(in_unit_value),in_total_threads) + 1;
 RETURN ret_val;
END;

Restart View for Query-Based
Each restart view will have four elements:
 the name of the threading mechanism, driver_name
 the total number of threads in a grouping, num_threads
 the value of the driving mechanism, driver_value
 the thread value for that given combination of driver_name, num_threads, and

driver value, thread_val
The view will be based on the restart_control table and an information table such as
DEPS or STORES. A row will exist in the view for every driver value and every total
number of threads value. Therefore, if a retailer were to always use the same number of
threads for a given driver (dept, store, etc.), then the view would be relatively small. As
an example, if all of a retailer’s programs threaded by department have a total of 5
threads, then the view will contain only one value for each department. For example, if
there are 10 total departments, 10 rows will exist in v_restart_dept. However, if the
retailer wants to have one of the programs to have ten threads, then there will bet 2 rows
for every department: one for five total threads and one for ten total threads (for
example, if 10 total departments, 20 rows will exist in v_restart_dept). Obviously,
retailers should be advised to to keep the number of total thread values for a thread
driver to a minimum to reduce the scope of the table join of the driving cursor with the
view.
Below is an example of how the same driver value can result in differing thread values.
This example uses the restart_thread_return function as it currently is written to derive
thread values.

Restart View for Query-Based

Back-end Configuration and Operations Guide - Volume 3 19

Driver_name num_threads driver_val thread_val

DEPT 1 101 1

DEPT 2 101 2

DEPT 3 101 3

DEPT 4 101 2

DEPT 5 101 2

DEPT 6 101 6

DEPT 7 101 4

Below is an example of what a distribution of stores might look like given 10 stores and 5
total threads:

Driver_name num_threads driver_val thread_val

STORE 5 1 2

STORE 5 2 3

STORE 5 3 4

STORE 5 4 5

STORE 5 5 1

STORE 5 6 2

STORE 5 7 3

STORE 5 8 4

STORE 5 9 5

STORE 5 10 1

Thread Scheme Maintenance

20 Oracle Retail Merchandising System

View syntax:
The following is an example of the syntax needed to create the view for the multi-
threading join, created with script (see threading discussion for details on
restart_thread_return function):
create or replace view v_restart_store as
 select rc.driver_name driver_name,
 rc.num_threads num_threads,
 s.store driver_value,
 restart_thread_return(s.store, rc.num_threads) thread_val
 from restart_control rc, store s
 where rc.driver_name = 'STORE'

There is a different threading scheme used within Oracle Retail Sales Audit (ReSA).
Because ReSA needs to run 24 hours a day and seven days a week, there is no batch
window. This means that there may be batch programs running at the same time that
there are online users. ReSA solved this concurrency problem by creating a locking
mechanism for data that is organized by store days. These locks provide a natural
threading scheme. Programs that cycle through all of the store day data attempt to lock
the store day first. If the lock fails, the program simply goes on to the next store day. This
has the affect of automatically balancing the workload between all of the programs
executing.

Thread Scheme Maintenance
All program names will be stored on the restart_control table along with a functional
description, the query driver (dept, store, class, etc.) and the user-defined number of
threads associated with them. Users should be able to scroll through all programs to
view the name, description, and query driver, and if the update_allowed flag is set to
true, to modify the number of threads (update is set to true).

File-Based
File based processing does not truly “multi-thread” and therefore the number of threads
defined on restart_control will always be one. However, a restart_program_status record
will need to be created for each input file that is to be processed for the program module.
Further, the thread value that is assigned should be part of the input file name. The
restart_parse_name function that is included in the program module will parse the
thread value from the program name and use that to determine the availability and
restart requirements on the restart_program_status table.
Refer to the beginning of this multi-threading section for a discussion of limits on using
large (greater than nine digits) thread values.

Batch Maintenance

Back-end Configuration and Operations Guide - Volume 3 21

Query-Based
When the number of threads is modified in the restart_control table, the form should first
validate that no records for that program are currently being processed in the
restart_program_status_table (that is, all records = ‘Completed’). The program should
insert or delete rows depending on whether the new thread number is greater than or
less than the old thread number. In the event that the new number is less than the
previous number, all records for that program_name with a thread number greater than
the new thread number will be deleted. If the new number is greater than the old
number, new rows will be inserted. A new record will be inserted for each
restart_name/thread_val combination.
For example if the batch program SALDLY has its number of processes changed from 2
to 3, then an additional row (3) will be added to the restart_program_status table.
Likewise, if the number of threads was reduced to 1 in this example, rows 2 and 3 would
be deleted.
Original restart_program_status table:
row # restart_name thread_val program_name etc…
1 SALDLY 1 SALDLY …
2 SALDLY 2 SALDLY …
restart_program_status table after insert:
row # restart_name thread_val program_name etc…
1 SALDLY 1 SALDLY …
2 SALDLY 2 SALDLY …
3 SALDLY 3 SALDLY …
restart_program_status table after delete:
row # restart_name thread_val program_name etc…
1 SALDLY 1 SALDLY …
Users should also be able to modify the commit_max_ctr column in
restart_program_status table. This will control the number of iterations in driving query
or the number of lines read from a flat file that determine the logical unit of work (LUW).

Batch Maintenance
Users should be able to view the status of all records in restart_program_status table.
This is where the user will come to view error messages from aborted programs, and
statistics and histories of batch runs. The only fields that will be modifiable will be
program_status and restart_flag. The user should be able to reset the restart_flag to ‘Y’
from ‘N’ on records with a status of aborted, started records to aborted in the event of an
abend (abnormal termination), and all records in the event of a restore from tape/re-run
of all batch.

Scheduling and Initialization of Restart Batch

22 Oracle Retail Merchandising System

Scheduling and Initialization of Restart Batch
Before any batch with restart/recovery logic is run, an initialization program should be
run to update the status in the restart_program_status table. This program should update
the program_status to ‘ready for start’ wherever a record’s program_status is
‘completed.’ This will leave unchanged all programs that ended unsuccessfully in the last
batch run.

Pre- and Post-Processing
Due to the nature of the threading algorithm, individual programs might need a pre or a
post program run to initialize variables or files before any of the threads have run or to
update final data once all the threads are run. The decision was made to create pre-
programs and post-programs in these cases rather than let the restart/recovery logic
decide whether the currently processed thread is the first thread to start or the last thread
to end for a given program.

Back-end Configuration and Operations Guide - Volume 3 23

3
Pro*C Array Processing

Oracle Retail batch architecture uses array processing to improve performance wherever
possible. Instead of processing SQL statements using scalar data, data is grouped into
arrays and used as bind variables in SQL statements. This improves performance by
reducing the server/client and network traffic.
Array processing is used for select, insert, delete, and update statements. Oracle Retail
typically does not statically define the array sizes, but uses the restart maximum commit
variable as a sizing multiple. Users should keep this in mind when defining the system's
maximum commit counters.
An important factor to keep in mind when using array processing is that Oracle does not
allow a single array operation to be performed for more than 32000 records in one step.
The Oracle Retail restart/recovery libraries have been updated to define macros for this
value: MAX_ORACLE_ARRAY_SIZE.
All batch programs that use array processing need to limit the size of their array
operations to MAX_ORACLE_ARRAY_SIZE.
If the commit max counter is used for array processing size, check it after the call to
restart_init() and, if necessary, reset it to the maximum value if greater. If retek_init() is
used to initialize, check the returned commit max counter and reset it to the maximum
size if it is greater. In case of retek_init(), reset the library’s internal commit max counter
by calling extern int limit_commit_max_ctr(unsigned int new_max_ctr).
If some other variable is used for sizing the array processing, the actual array-processing
step will have to be encapsulated in a calling loop that performs the array operation in
sub segments of the total array size where each sub-segment is at most
MAX_ORACLE_ARRAY_SIZE large. Currently all Oracle Retail batch programs are
implemented this way.

Back-end Configuration and Operations Guide - Volume 3 25

4
Pro*C Input and Output Formats

Oracle Retail batch processing will utilize input from both tables and flat files. Further,
the outcome of processing can both modify data structures and write output data.
Interfacing Oracle Retail with external systems is the main use of file based I/O.

General Interface Discussion
To simplify the interface requirements, Oracle Retail requires that all in-bound and out-
bound file-based transactions adhere to standard file layouts. There are two types of file
layouts, detail-only and master-detail, which are described below.
An interfacing API exists within Oracle Retail to simplify the coding and the
maintenance of input files. The API provides functionality to read input from files,
ensure file layout integrity, and write and maintain files for rejected transactions.

Standard File Layouts
The RMS interface library supports two standard file layouts; one for master/detail
processing, and one for processing detail records only. True sub-details are not
supported within the RMS base package interface library functions.
A 5-character identification code or record type identifies all records within an I/O file,
regardless of file type. Valid record type values include the following:
 FHEAD—File Header
 FDETL—File Detail
 FTAIL—File Tail
 THEAD—Transaction Header
 TDETL—Transaction Detail
 TTAIL—Transaction Tail

Each line of the file must begin with the record type code followed by a 10-character
record ID.

Detail Only Files
File layouts have a standard file header record, a detail record for each transaction to be
processed, and a file trailer record. Valid record types are FHEAD, FDETL, and FTAIL.
Example:
FHEAD0000000001STKU1996010100000019960929
FDETL0000000002SKU100000040000011011
FDETL0000000003SKU100000050003002001
FDETL0000000004SKU100000050003002001
FTAIL00000000050000000003

Detail Only Files

26 Oracle Retail Merchandising System

Master and Detail Files
File layouts will have a standard file header record, a set of records for each transaction
to be processed, and a file trailer record. The transaction set will consist of a transaction
set header record, a transaction set detail for detail within the transaction, and a
transaction trailer record. Valid record types are FHEAD, THEAD, TDETL, TTAIL, and
FTAIL.
Example:
FHEAD0000000001RTV 19960908172000
THEAD000000000200000000000001199609091202000000000003R
TDETL000000000300000000000001000001SKU10000012
TTAIL0000000004000001
THEAD000000000500000000000002199609091202001215720131R
TDETL000000000600000000000002000001UPC400100002667
TDETL0000000007000000000000020000021UPC400100002643 0
TTAIL0000000008000002
FTAIL00000000090000000007

Record Name Field Name Field Type Default Value Description

File Header File Type Record
Descriptor

Char(5) FHEAD Identifies file
record type

 File Line
Identifier

Number(10) Specified by
external system

Line number of
the current file

 File Type
Definition

Char(4) n/a Identifies
transaction type

 File Create Date Date Create date Date file was
written by
external system

Transaction
Header

File Type Record
Descriptor

Char(5) THEAD Identifies file
record type

 File Line
Identifier

Number(10) Specified by
external system

Line number of
the current file

 Transaction Set
Control Number

Char(14) Specified by
external system

Used to force
unique transaction
check

 Transaction Date Char(14) Specified by
external system

Date the
transaction was
created in external
system

Transaction
Detail

File Type Record
Descriptor

Char(5) TDETL Identifies file
record type

 File Line
Identifier

Number(10) Specified by
external system

Line number of
the current file

 Transaction Set
Control Number

Char(14) Specified by
external system

Used to force
unique transaction
check

Detail Only Files

Back-end Configuration and Operations Guide - Volume 3 27

Record Name Field Name Field Type Default Value Description

 Detail Sequence
Number

Char(6) Specified by
external system

Sequential
number assigned
to detail records
within a
transaction

Transaction
Trailer

File Type Record
Descriptor

Char(5) TTAIL Identifies file
record type

 File Line
Identifier

Number(10) Specified by
external system

Line number of
the current file

 Transaction
Detail Line Count

Number(6) Sum of detail lines Sum of the detail
lines within a
transaction

File Trailer File Type Record
Descriptor

Char(5) FTAIL Identifies file
record type

 File Line
Identifier

Number(10) Specified by
external system

Line number of
the current file

 Total Transaction
Line Count

Number(10) Sum of all
transaction lines

All lines in file less
the file header and
trailer records

Electronic Data Interchange (EDI)

28 Oracle Retail Merchandising System

Electronic Data Interchange (EDI)
Starting with release 7.0, EDI files used or created by RMS are in a generic format: RMS
no longer supports particular EDI standards. By processing EDI output and input in a
generic format, RMS is no longer limited to a single standard, which allows Oracle Retail
customers to better utilize any and all standards they choose to use. Translating EDI
input and output files into any format from any format by third-party software is an
industry “best practice”.
Formerly, EDI transactions in RMS conformed to ASC X12/VICS (version 3040) and
ANA/TRADACOMS standards. EDI transactions are now expected to be in a format that
adheres to the RMS file interfacing standards. Both in-bound and out-bound files are
written in a fixed field layout with standard file header and trailer records. Transaction
information is included in master/detail or detail-only records. The layouts are
consistent with interface files used elsewhere in the RMS.
RMS EDI batch processes write out-bound transaction files into the generic layout
format, which are then translated by the third-party software into the standard required
by each trading partner. The post-translated versions are transmitted to the trading
partner. In-bound transactions should be formatted by the trading partner in a
predetermined standard, transmitted, and then translated by the Oracle Retail retailer’s
translation software into the generic file layout. The generic file is used as the input file
for RMS EDI batch processing.
It is impractical for Oracle Retail to continue to maintain code that supports any
particular EDI standard. There are multiple viable standards that are utilized by vendors
and retailers. Further, those standards have multiple versions. Most retailers are already
using software to map and translate EDI transactions into the required standard or
version. There are excellent third-party software packages, such as Sterling Software’s
Gentran™ translator, that effectively translate in-bound and out-bound transactions into
the necessary formats. The use of third-party translation software is not only the common
business practice, but also the best business practice of today’s retailer.

Back-end Configuration and Operations Guide - Volume 3 29

5
RETL Program Overview for RMS/ReSA

Extractions for RDW
This chapter summarizes the configuration, architecture and features for many RETL
programs utilized in RMS/ReSA extractions. These extractions were initially designed
for Oracle Retail Data Warehouse (RDW) and can be used for some other application in
the retailer’s enterprise.
For information about RMS RETL extractions for an application such as Advanced
Inventory Planning (AIP), see the RMS 10.1.9 Addendum to the Operations Guide.
For more information about the RETL tool, see the latest RETL Programmer’s Guide.

Overview
RMS works in conjunction with the RETL framework. This architecture optimizes a high
performance data processing tool that allows database batch processes to take advantage
of parallel processing capabilities.
The RETL framework runs and parses through the valid operators composed in XML
scripts.

Architectural Design
The diagrams below illustrate the extraction processing architecture for RMS and for
ReSA. Instead of managing the change captures as they occur in the source system
during the day, the process involves extracting the current data from the source system.
The extracted data is output to flat files. These flat files are then available for
consumption by a product such as RDW.
The target system, (RDW, for example), has its own way of completing the
transformations and loading the necessary data into its system, where it can be used for
further processing in the environment.

Architectural Design

30 Oracle Retail Merchandising System

RMS Extraction Architecture

The architecture relies upon the use of well-defined flows specific to the RMS database.
The resulting output is comprised of data files written in a well-defined schema file
format. This extraction includes no destination specific code.

 RMS RETL
extraction process

RMS DB

RMS extraction files
(in output schema format)

RETL Extraction Processing for RMS

ReSA Extraction Architecture

The architecture relies upon the use of well-defined flows specific to ReSA input schema
files. The resulting output is comprised of data files written in a well-defined schema file
format. This extraction includes no destination specific code.

 RETL extraction
process

ReSA extraction files in
output schema format

ReSA output files in input
schema format

RETL Extraction Processing for ReSA

Configuration

Back-end Configuration and Operations Guide - Volume 3 31

Configuration
RETL

Before trying to configure and run RMS ETL, install RETL version 12.0 or later, which is
required to run RMS RETL. Run the ‘verify_retl’ script (included as part of the RETL
installation) to ensure that RETL is working properly before proceeding.

RETL User and Permissions
RMS ETL is installed and run as the RETL user. Additionally, the permissions are set up
as per the RETL Programmer’s Guide. RMS ETL reads data, creates, deletes, and updates
tables. If these permissions are not set up properly, extractions fail.

Environment Variables
See the RETL Programmer’s Guide for RETL environment variables that must be set up
for your version of RETL. You will need to set MMHOME to your base directory for RMS
RETL. This is the top level directory that you selected during the installation process. In
your .kshrc, you should add a line such as the following:
export MMHOME=<base directory for RMS ETL>\dwi12.0\dev

dwi_config.env Settings
Make sure to review the environmental parameters in the dwi_config.env file before
executing batch modules. There are several variables you must change depending upon
your local settings:
For example:
export DBNAME=int9i
export RMS_OWNER=steffej_rms1011
export BA_OWNER=rmsint1011
export ORACLE_PORT="1524"
export ORACLE_HOST="mspdev38"
export CONN_TYPE="thin"

You must set up the environment variable PASSWORD in dwi_config.env. In the
example below, adding the line to the dwi_config.env causes the password ‘mypasswd’
to be used to log into the database:
export PASSWORD=mypasswd

Configuration

32 Oracle Retail Merchandising System

Steps to Configure RETL
1. Log in to the UNIX server with a UNIX account that will run the RETL scripts.
2. Change directories to $MMHOME/rfx/etc.
3. Modify the dwi_config.env script:

 DBNAME refers to the name of the RMS database.
 RMS_OWNER refers to the username of the RMS schema owner.
 BA_OWNER refers to the username of the RMSE batch user.
 ORACLE_HOST refers to the database server name.
 ORACLE_PORT refers to the database port number.
 MAX_NUM_COLS refers to the maximum number of columns from which RETL

selects records.
 CONN_TYPE refers to the driver type used in RMS connection to the database.

– CONN_TYPE=thin: Lighter weight, Java only driver.
– CONN_TYPE=oci: Oracle Client Interface (OCI) driver. To be used for Real

Application Clusters (RAC) implementations.
 LOAD_TYPE refers to the SQL*Loader method used to load data to the database.

Direct load can be used when you have a large amount of data to load quickly. A
direct path load can quickly load and index large amounts of data. It can also
load data into either an empty or non-empty table. Conventional, not direct load,
is the Oracle and RMS default. There are restrictions on when direct load can be
used. Before using direct load, clients should research direct vs conventional
load, and the restrictions to using direct load.
– LOAD_TYPE=conventional: loads the data using the conventional SQL-

loader method for Oracle.
– LOAD_TYPE=direct: loads the data using the direct SQL_loader method for

Oracle.
 IM_PROCESS refers to the method used to process item dimensional data. A

number of factors determine which method performs best, including the volume
of items a client has and how often changes are made to items. The higher the
ratio of item changes to total items, the more likely one would benefit from the
full snapshot method. Clients should test the methods to see what performs best
for them. The default value for this setting is full snapshot.
– IM_PROCESS=D: process the data using delta mode, which will process item

data based on daily changed data only.
– IM_PROCESS=F: process the data using snapshot mode, which will process

items based on a full snapshot of all data.
 ISCL_PROCESS refers to the method used to process item supplier location

dimension data. A number of factors determine which method performs best,
including the volume of item location and supplier combinations a client has and
how often changes are made to those. The higher the ratio of changes to the
combinations, the more likely one would benefit from the full snapshot method.
Clients should test the methods to see what performs best for them. The default
value for this setting is full snapshot.
– ISCL_PROCESS=D: process the data using delta mode, which will process

item supplier location data based on daily changed data only.

Program Features

Back-end Configuration and Operations Guide - Volume 3 33

 ISCL_PROCESS=F: process the data using snapshot mode, which will process
item supplier location data based on a full snapshot of all data.

 LANGUAGE refers to which language is to be used. The default is set to ‘en’ for
English.
– LANGUAGE=bpt: Brazilian Portuguese
– LANGUAGE=zhs: Chinese (Simplified)
– LANGUAGE=zht: Chinese (Traditional)
– LANGUAGE=en: English
– LANGUAGE=fr: French
– LANGUAGE=de: German
– LANGUAGE=ja: Japanese
– LANGUAGE=ko: Korean
– LANGUAGE=es: Spanish

Program Features
RETL programs use one return code to indicate successful completion. If the program
successfully runs, a zero (0) is returned. If the program fails, a non-zero is returned.

Program Status Control Files
To prevent a program from running while the same program is already running against
the same set of data, the RMSE code utilizes a program status control file. At the
beginning of each module, dwi_config.env is run. It checks for the existence of the
program status control file. If the file exists, then a message stating,
‘${PROGRAM_NAME} has already started’, is logged and the module exits. If the file
does not exist, a program status control file is created and the module executes.
If the module fails at any point, the program status control file is not removed, and the
user is responsible for removing the control file before re-running the module.

File Naming Conventions
The naming convention of the program status control file allows a program whose input
is a text file to be run multiple times at the same time against different files.
The name and directory of the program status control file is set in the configuration file
(dwi_config.env). The directory defaults to $MMHOME/error. The naming convention
for the program status control file itself defaults to the following dot separated file name:
 The program name
 The first filename, if one is specified on the command line
 ‘status’
 The business virtual date for which the module was run

For example, the program status control file for the invildex program would be named as
follows for the VDATE of March 21, 2004:
$MMHOME/error/invildex.invilddm.txt.status.20040321

Program Features

34 Oracle Retail Merchandising System

Restart and Recovery
Because RETL processes all records as a set, as opposed to one record at a time, the
method for restart and recovery must be different from the method that is used for
Pro*C. The restart and recovery process serves the following two purposes:
1. It prevents the loss of data due to program or database failure.
2. It increases performance when restarting after a program or database failure by

limiting the amount of reprocessing that needs to occur.
Most modules use a single RETL flow and do not require the use of restart and recovery.
If the extraction process fails for any reason, the problem can be fixed, and the entire
process can be run from the beginning without the loss of data. For a module that takes a
text file as its input, the following two choices are available that enable the module to be
re-run from the beginning:
1. Re-run the module with the entire input file.
2. Re-run the module with only the records that were not processed successfully the

first time and concatenate the resulting file with the output file from the first time.
To limit the amount of data that needs to be re-processed, more complicated modules
that require the use of multiple RETL flows utilize a bookmark method for restart and
recovery. This method allows the module to be restarted at the point of last success and
run to completion. The bookmark restart/recovery method incorporates the use of a
bookmark flag to indicate which step of the process should be run next. For each step in
the process, the bookmark flag is written to and read from a bookmark file.

Note: If the fix for the problem causing the failure requires
changing data in the source table or file, then the bookmark
file must be removed and the process must be re-run from
the beginning in order to extract the changed data.

Bookmark File
The name and directory of the restart and recovery bookmark file is set in the
configuration file (dwi_config.env). The directory defaults to
$MMHOME/rfx/bookmark. The naming convention for the bookmark file itself defaults
to the following ‘dot’-separated file name:
 The program name
 The first filename, if one is specified on the command line
 ‘bkm’
 The business virtual date for which the module was run

The example below illustrates the bookmark flag for the invildex program run on the
VDATE of January 5, 2004:
$MMHOME/rfx/bookmark/invildex.invilddm.txt.bkm.20040105

Message Logging
Message logs are written daily in a format described in this section.

Program Features

Back-end Configuration and Operations Guide - Volume 3 35

Daily Log File
Every RETL program writes a message to the daily log file when it starts and when it
finishes. The name and directory of the daily log file is set in the configuration file
(dwi_config.env). The directory defaults to $MMHOME/log. All log files are encoded
UTF-8.
The naming convention of the daily log file defaults to the following ‘dot’ separated file
name:
 The business virtual date for which the modules are run
 ‘.log’

For example, the location and the name of the log file for the business virtual date
(VDATE) of March 21, 2004 would be the following:
$MMHOME/log/20040321.log

Format
As the following examples illustrate, every message written to a log file has the name of
the program, a timestamp, and either an informational or error message:
invildex 16:22:52: Program starting...
invildex 16:22:52: Step1 - process current day data change
invildex 16:22:59: Analyze table rmsint110buser1.GET_ITEM_MASTER_TEMP
invildex 16:22:59: Step2 - Stock-on-hand and in-transit info
invildex 16:23:04: Analyze table rmsint110buser1.GET_ITEM_LOC_TEMP
invildex 16:23:04: Step3 - process on-order quantity and unit cost
invildex 16:23:12: Analyze table rmsint110buser1.FINAL_COMP_ITEM_ON_ORDER_TEMP
invildex 16:23:12: Step4 - Process on-order and original item/loc information
invildex 16:23:18: Drop table rmsint110buser1.GET_ITEM_LOC_TEMP
invildex 16:23:19: Drop table rmsint110buser1.GET_ITEM_MASTER_TEMP
invildex 16:23:19: Drop table rmsint110buser1.FINAL_COMP_ITEM_ON_ORDER_TEMP
invildex 16:23:19: Number of records in /projects/dwi11.0/dev/data/invilddm.txt =
37
invildex 16:23:19: Program completed successfully

If a program finishes unsuccessfully, an error file is usually written that indicates where
the problem occurred in the process. There are some error messages written to the log
file, such as ‘No output file specified’, that require no further explanation written to the
error file.

Program Features

36 Oracle Retail Merchandising System

Program Error File
In addition to the daily log file, each program also writes its own detail flow and error
messages. Rather than clutter the daily log file with these messages, each program writes
out its errors to a separate error file unique to each execution.
The name and directory of the program error file is set in the configuration file
(dwi_config.env). The directory defaults to $MMHOME/error. All errors and all routine
processing messages for a given program on a given day go into this error file (for example,
it will contain both the stderr and stdout from the call to RETL). All error files are
encoded UTF-8.
The naming convention for the program’s error file defaults to the following ‘dot’
separated file name:
 The program name
 The first filename, if one is specified on the command line
 The business virtual date for which the module was run

For example, all errors and detail log information for the invildex program would be
placed in the following file for the batch run of March 21, 2004:
$MMHOME/error/invildex.invilddm.txt.20040321

RMSE Reject Files
RMSE extract modules may produce a reject file if they encounter data related problems,
such as an inability to find data on required lookup tables. The module tries to process all
data and then indicates that records were rejected so that all data problems can be
identified in one pass and corrected; then, the module can be re-run to successful
completion. If a module does reject records, the reject file is not removed, and the user is
responsible for removing the reject file before re-running the module.
The records in the reject file contain an error message and key information from the
rejected record. The following example illustrates a record that is rejected due to
problems within the currency conversion library:
Unable to convert currency for LOC_IDNT, DAY_DT|3|20011002

The name and directory of the reject file is set in the configuration file (dwi_config.env).
The directory defaults to $MMHOME/data.

Note: A directory specific to reject files can be created. The
dwi_config.env file would need to be changed to point to
that directory.

Program Features

Back-end Configuration and Operations Guide - Volume 3 37

Schema Files
RETL uses schema files to specify the format of incoming or outgoing datasets. The
schema file defines each column’s data type and format, which is then used within RETL
to format/handle the data. For more information about schema files, see the latest RETL
Programmer’s Guide. Schema file names are hard-coded within each module since they
do not change on a day-to-day basis. All schema files end with “.schema” and are placed
in the “$MMHOME/rfx/schema” directory.

Resource Files
RMSE Kornshell programs use resource files so that the same RETL programs can run in
various language environments. For each language, there is one resource file.
Resource files contain hard-coded strings that are used by extract programs. The name
and directory of the resource file is set in the configuration file (dwi_config.env). The
default directory is ${MMHOME}/rfx/include.
The naming convention for the resource file follows the two-letter ISO code standard
abbreviation for languages (for example, en for English, fr for French, ja for Japanese, es
for Spanish, de for German, and so on).

Command Line Parameters
A module handles command line parameters in one of the three ways described in this
section.

Note: For some modules, default output file names and
schema names correspond to RDW program names.

Modules That Do Not Require Parameters
Some RMSE extraction modules do not require passing in any parameters. The output
path/filename defaults to $DATA_DIR/(RDW program name).txt. Similarly, the schema
format for the records in these files are specified in the file - $SCHEMA_DIR/(RDW
program name).schema.

Non-File Based Modules That Require Parameters
In order for some non-file based RETL modules to run, command line parameters need to
be passed in at the UNIX command line. These RMSE modules require an
output_file_path and output_file_name to be passed in. These modules may allow the
operator to specify more than one output file.
For example:
invildex.ksh output_file_path/output_file_name

ReSA Ffile-Based Modules That Require Parameters
In order for some file-based RETL modules to run, command line parameters need to be
passed in at the UNIX command line. ReSA file-based modules require the following to
be passed in:
 output_file_path and output_file_name
 input_file_path and input_file_name

For example:
lptotldex output_file_path/output_file_name input_file_path/input_file_name

Typical Run and Debugging Situations

38 Oracle Retail Merchandising System

Multi-Threading For RMSE ReSA Modules
In contrast to the way in which multi-threading is defined in UNIX, RMSE modules use
‘multi-threading’ to refer to the running of a single RETL program multiple times on
separate groups of data simultaneously. Multi-threading is only available for RMSE
ReSA extraction modules that take a text file as input. Depending upon how it is
implemented, multi-threading can reduce the total amount of processing time.
File-based extraction modules have to be run once for each input file. A different output
file must be specified for each input file. It is the responsibility of the client to set up, as
part of the daily batch operation, a process to combine all the resulting text files into one
file using the UNIX concatenation (‘cat’) command.
The example below represents a scenario in which the lptotldex.ksh module is run three
times for three input files.
lptotldex ${MMHOME}/data/lptotlddm.1000000009
${MMHOME}/data/RDWS_1000000009_20020310_20020311
lptotldex ${MMHOME}/data/lptotlddm.1000000010
${MMHOME}/data/RDWS_1000000010_20020310_20020311
lptotldex ${MMHOME}/data/lptotlddm.1000000011
${MMHOME}/data/RDWS_1000000011_20020310_20020311

To concatenate the three output files, run the following command in the
${MMHOME}/data directory:
cat lptotlddm.1000000009 lptotlddm.1000000010 lptotlddm.1000000011 > lptotlddm.txt

In this example, lptotlddm.txt becomes the combined text file.

Typical Run and Debugging Situations
The following examples illustrate typical run and debugging situations for types of
programs. The log, error, and so on file names referenced below assume that the module
is run on the business virtual date of March 9, 2004. See the previously described naming
conventions for the location of each file.
For example:
To run invildex.ksh:
1. Change directories to $MMHOME/rfx/src.
2. At a UNIX prompt enter:
%invildex.ksh $MMHOME/data/invilddm.txt

If the module runs successfully, the following results:
1. Log file: Today’s log file, 20040309.log, contains the messages “Program started …”

and “Program completed successfully” for invildex.ksh.
2. Data: The invilddm.txt file exists in the $MMHOME/data directory and contains the

extracted records.
3. Error file: The program’s error file, invildex.invilddm.txt.20040309, contains the

standard RETL flow (ending with “All threads complete” and “Flow ran
successfully”) and no additional error messages.

4. Program status control: The program status control file, invildex.invilddm.txt
.status.20040309, does not exist.

5. Reject file: The reject file, invildex.invilddm.txt.rej.20040309, does not exist.

Typical Run and Debugging Situations

Back-end Configuration and Operations Guide - Volume 3 39

If the module does not run successfully, the following results:
1. Log file: Today’s log file, 20040309.log, does not contain the “Program completed

successfully” message for invildex.ksh.
2. Data: The invilddm.txt file may exist in the data directory but may not contain all the

extracted records.
3. Error file: The program’s error file, invildex.invilddm.txt.20040309, may contain an

error message.
4. Program status control: The program status control file,

invildex.invilddm.txt.status.20040309, exists.
5. Reject file: The reject file, invildex.invilddm.txt.rej.20040309, does not exist because

this module does not reject records.
6. Bookmark file (in certain conditions): The bookmark file,

invildex.invilddm.txt.bkm.20040309, exists because this module contains more than
one flow. The error occurred after the first flow (for example, during the second
flow).

To re-run a module from the beginning, perform the following actions:
1. Determine and fix the problem causing the error.
2. Remove the program’s status control file.
3. Remove the bookmark file from $MMHOME/rfx/bookmark
4. Change directories to $MMHOME/rfx/src. At a UNIX prompt, enter:
%invildex.ksh $MMHOME/data/invilddm.txt

Note: To understand how to engage in the restart and
recovery process, see the section, ‘Restart and recovery’
earlier in this chapter.

Running the Time 454 Extract Module
The time 454 extract module requires the steps below to run successfully:
1. Log in to the RMS database server as RMS RETL-specific database user. Run the

profile and verify that the MMUSER and PASSWORD variables are set to the RETL-
sepcific database user, and the appropriate password. Verify the RETL executable is
in the path of your UNIX session by typing:

 %which rfx

2. Change directories to $MMHOME/install.
3. Modify the variable l_path in the extract_time.sql script to reference the UTL_FILE

directory specified in the RMS database parameter file.
4. At the UNIX prompt enter:
 %extract_time.ksh

This script generates three files called time_454*.txt, wkday*.txt, and
start_of_half_month*.txt located in the utl_file_dir directory specified in your RMS
database parameter file.

5. Change directories on the UNIX server to $MMHOME/log. Review the log file that
was created or modified.

6. Change directories on the UNIX server to $MMHOME/error. Review the error files
that were created.

7. Move the three output files to $MMHOME/install directory.

Back-end Configuration and Operations Guide - Volume 3 41

6
RETL Program Overview for the RMS-RPAS

Interface
Oracle Retail ETL Architecture

RMS works in conjunction with the Oracle Retail Extract Transform and Load (RETL)
framework. This architecture utilizes a high performance data processing tool that allows
database batch processes to take advantage of parallel processing capabilities.
The RETL framework runs and parses through the valid operators composed in XML
scripts.
More information about the RETL tool is available in the latest RETL Programmer’s
Guide.
The diagram below illustrates the extraction processing architecture. Instead of managing
the change captures as they occur in the source system during the day, the process
involves extracting the current data from the source system. The extracted data is output
to flat files. These flat files are then available for consumption by products such as RPAS.
The target system has its own way of completing the transformations and loading the
necessary data into its system, where it can be used for further processing in the
environment. See RPAS documentation for information related to transformations and
loadings.
The architecture relies upon two distinct stages, shown in the diagram below. Stage 1 is
the extraction from the RMS database using well-defined flows specific to the RMS
database. The resulting output is comprised of data files written in a well-defined schema
file format. This stage includes no destination specific code.
Stage 2 introduces a flow specific to the destination. In this case, flows for RPAS are
designed to transform the data so that RPAS can import the data properly.

RETL Program Overview

42 Oracle Retail Merchandising System

Stage 1
 RMS extraction

process

RMS extraction
flows and output

schemas

Stage 2
 Transformation

process
Transformation

flows

RMS DB

Destination DB

RMS extraction files
(in output schema format)

Load files

The two stages of RETL processing

RETL Program Overview
This section summarizes the RETL program features utilized in the RMS extractions and
loads. Installation information about the RETL tool is available in the latest RETL
Programmer’s Guide.

Configuration
Version of RETL
Before trying to configure and run RMS RETL, install RETL version 12.0 or later, which is
required to run RMS RETL. See the latest RETL Programmer’s Guide for thorough
installation information.

RETL User and Permissions
The permissions are set up as per the RETL Programmer’s Guide. RMS RETL reads and
writes data files and creates, deletes, updates and inserts into tables. If these permissions
are not set up properly, extractions fail.

RETL Program Overview

Back-end Configuration and Operations Guide - Volume 3 43

Environment Variables
See the RETL Programmer’s Guide for RETL environment variables that must be set up
for your version of RETL. You will need to set RDF_HOME to your base directory for
RMS RETL. This is the top level directory that you selected during the installation
process. In .profile, you should add a line such as the following:
export RDF_HOME=<base directory for RMS RETL>

rmse_rpas_config.env Settings for RPAS
There are several constants that must be set in rmse_rpas_config.env depending upon a
retailer’s preferences and the local environment. These are summarized in the following
table.

Constant Name Default Value Alternate Value Description

DATE_TYPE vdate current_date Determines whether the
date used in naming the
error, log, and status
files is the current date
or the VDATE value
found in the PERIOD
table.

DBNAME rtkdev01 Depends on
installation

The database schema
name.

RMS_OWNER RPASINT Depends on
installation

The username of the
RMS database schema
owner.

BA_OWNER Depends on
installation

The username of the
RMS batch user (not
currently used by RMS-
RPAS).

CONN_TYPE thin oci The way in which RMS
connects to the
database.

DBHOST mspdev17 Depends on
installation

The computer
hardware node name.

DBPORT 1524 Depends on
installation

The port on which the
database listener
resides.

LOC_ATTRIBUTES_
ACTIVE

False True Determines whether
rmse_rpas_attributes.ks
h is run or not.

PROD_
ATTRIBUTES_ACTIVE

False True Determines whether
rmse_rpas_attributes.ks
h is run or not.

DIFFS_ACTIVE True False Determines whether
rmse_rpas_merchhier.k
sh generates data files
that contain diff
allocation information.

RETL Program Overview

44 Oracle Retail Merchandising System

Constant Name Default Value Alternate Value Description

ISSUES_ACTIVE True False If set to ‘True’,
rmse_rpas_stock_on_ha
nd also extracts stock at
the warehouse level. If
set to ‘False’,
rmse_rpas_stock_on_ha
nd extracts stock at the
store level only.

LOAD_TYPE CONVENTIONAL DIRECT Data loading method to
be used by SQL*Loader
(Direct may be faster
than conventional.)

DB_ENV ORA DB2, TERA Database type
(Additional changes to
the software may be
needed if a database
other than Oracle is
selected.)

NO_OF_CPUS 4 Depends on
installation

Used in parallel
database query hints to
improve performance.

LANGUAGE en Various En = English

RFX_OPTIONS -c $RDF_HOME/
rfx/etc/rfx.conf
-s SCHEMAFILE

-c $RDF_
HOME/
rfx/etc/rfx
.conf

Processing speed may
be increased for some
extractions if the
 -s SCHEMAFILE
option is omitted

You must also set up the environment variable PASSWORD in the rmse_rpas_config.env,
.kshrc or some other location that can be referenced. In the example below, adding the
line to the rmse_rpas_config.env causes the password ‘mypasswd’ to be used to log into
the database:
export PASSWORD=mypasswd

Be sure to review the environmental parameters in the rmse_rpas_config.env file before
executing batch modules.

Steps to Configure RETL
1. Log in to the UNIX server with a UNIX account that will run the RETL scripts.
2. Change directories to <base_directory>/rfx/etc.
3. Modify the constants from the table above in the rmse_rpas_config.env script as

needed.

Program Return Code

Back-end Configuration and Operations Guide - Volume 3 45

Program Return Code
RETL programs use a return code to indicate successful completion. If the program
successfully runs, a zero (0) is returned. If the program fails, a non-zero is returned.

Program Status Control Files
To prevent a program from running while the same program is already running against
the same set of data, the code utilizes a program status control file. At the beginning of
each module, rmse_rpas_config.env is run. This script checks for the existence of the
program status control file. If the file exists, then a message stating, ‘${PROGRAM_NAME}
has already started’, is logged and the module exits. If the file does not exist, a
program status control file is created and the module executes.
If the module fails at any point, the program status control file is not removed, and the
user is responsible for removing the control file before re-running the module.

File Naming Conventions
The name and directory of the program status control file is set in the configuration script
(rmse_rpas_config.env). The directory defaults to $RDF_HOME/error. The naming
convention for the program status control file itself defaults to the following dot
separated file name:
 The program name
 ‘status’
 The business virtual date for which the module was run

For example, a program status control file for the rmse_rpas_daily_sales.ksh program
would be named as follows for a batch run on the business virtual date of January 5,
2001:
$RDF_HOME/error/rmse_rpas_daily_sales.status.20010105

Restart and Recovery
Because RETL processes all records as a set, as opposed to one record at a time, the
method for restart and recovery must be different from the method that is used for
Pro*C. The restart and recovery process serves the following two purposes:
1. It prevents the loss of data due to program or database failure.
2. It increases performance when restarting after a program or database failure by

limiting the amount of reprocessing that needs to occur.
The RMS extract (RMSE) modules extract from a source transaction database or text file
and write to a text file. The RMS load module imports data from flat files, performs
transformations if necessary, and then loads the data into the applicable RMS table.
Most modules use a single RETL flow and do not require the use of restart and recovery.
If the extraction process fails for any reason, the problem can be fixed, and the entire
process can be run from the beginning without the loss of data. No RMS to RPAS
extraction programs have any restart/recovery capability. The single RMS load program,
rmsl_rpas_forecast.ksh, takes a text file as its input, and the following two choices are
available that enable the program to complete the load in the event of an error:
 Re-run the program with the entire input file.
 Re-run the program with only the input records that were not processed successfully

the first time.

Message Logging

46 Oracle Retail Merchandising System

Message Logging
Message logs are written daily in a format described in this section.

Daily Log File
Every RETL program writes a message to the daily log file when it starts and when it
finishes. In some cases, progress messages are also written. The name and directory of
the daily log file is set in the configuration script (rmse_rpas_config.env). The directory
defaults to $RDF_HOME/log. All log files are encoded UTF-8.
The naming convention of the daily log file defaults to the following “dot” separated file
name:
 The business virtual date for which the modules are run
 ‘.log’

For example, the location and the name of the log file for the business virtual date of
January 5, 2001 would be the following:
$RDF_HOME/log/20010105.log

Format
As the following examples illustrate, every message written to a log file has the name of
the program, a timestamp, and either an informational or error message. For example:
rmse_rpas_item_retail 17:09:07: Program started ...
rmse_rpas_item_retail 17:09:12: Program completed successfully

Some error messages are also written to the log file, such as ‘No output file
specified’.

Program Error File
In addition to the daily log file, each program also writes its own detailed flow and error
messages. Rather than clutter the daily log file with these messages, each program writes
out its errors to a separate error file unique to each execution.
If a program finishes unsuccessfully, a message is usually written in the error file that
indicates where the problem occurred in the process.
The name and directory of the program error file is set in the applicable configuration file
(rmse_rpas_config.env). The directory defaults to $RDF_HOME/error. All errors and all
routine processing messages for a given program on a given day go into this error file (for
example, it will contain both the stderr and stdout produced during execution of the
program).
The naming convention for the program’s error file defaults to the following “dot”
separated file name:
 The program name
 The business virtual date for which the module was run

For example, all errors and detailed log information for the rms_item_master.ksh
program would be placed in the following file for the batch run on the business virtual
date of January 5, 2001:
$MMHOME/error/rms_item_master.20010105

RMSE Reject Files

Back-end Configuration and Operations Guide - Volume 3 47

RMSE Reject Files
RMSE extract modules may produce a reject file if they encounter data related problems,
such as the inability to find data on required lookup tables. The module tries to process
all data and then indicates that records were rejected so that all data problems can be
identified in one pass and corrected; then, the module can be re-run to successful
completion. If a module does reject records, the reject file is not removed, and the user is
responsible for removing the reject file before re-running the module. The records in the
reject file consist of the rejected records.
The name and directory of the reject file are defined in the applicable configuration script
(rmse_rpas_config.env). The directory defaults to $RDF_HOME/data.

Note: A directory specific to reject files can be created. The
rmse_rpas_config.env script would need to be changed to
define the reject directory constant such that it would point
to that directory.

The naming convention for the reject file defaults to the following “dot” separated file
name:
 The program name
 The first filename, if one is specified on the command line
 ‘rej’
 The business virtual date for which the module was run

Schema Files Overview
RETL uses schema files to specify the format of incoming or outgoing datasets. The
schema file defines each column’s data type and format, which is then used within RETL
to format/handle the data. For more information about schema files, see the latest RETL
Programmer’s Guide. Schema file names are hard-coded within each module because
they do not change on a day-to-day basis. All schema files end with “.schema” and are
placed in the “$RDF_HOME/rfx/schema” directory.

Command Line Parameters

48 Oracle Retail Merchandising System

Command Line Parameters
The only programs or scripts that allow command line parameters (or arguments) are the
rmse_rpas_config.env script and the pre_rmse_rpas.ksh and rmse_rpas.ksh programs.
All of the command line parameters for these modules are optional and are described
below (the square brackets indicate that the parameter is optional):

rmse_rpas_config.env
Usage: $RDF_HOME/rfx/etc/rmse_rpas_config.env [-t $*] [-r $*] [-s $*] [-v $* | -c
$*]

Description of Command Line Options

Note: See the end of this description for an explanation of
the need for the ‘$*’ that appears after each command line
option.

 -t: This option causes rmse_rpas_config.env to skip the initializing of the
environment variables that obtain their values from the ‘.txt’ files, except for VDATE
which is initialized with the date found in the vdate.txt file. This option is utilized by
pre_rmse_rpas.ksh, rmse_rpas.ksh, rdft.ksh and outage.ksh when they call
rmse_rpas_config.env.

 -r: This option prevents the redirection of all output (stdout and stderr) to the error
file. This can be useful during debugging and maintenance. This option can also be
utilized by rmse_rpas.ksh, rdft.ksh and outage.ksh when they call
rmse_rpas_config.env.

 The ‘-t’ and ‘-r’ options must be followed by ‘$*’ on the line which invokes this
script. This step is necessary in order to preserve the command line arguments or
options that may have been present on the command line for the RETL script that
invokes this script. However, the ‘$*’ should only appear once if both options are
used.

 -s: This option causes rmse_rpas_config.env to skip the STATUS_FILE test. This is
also useful during maintenance and debugging.

 -v: If DATE_TYPE (in rmse_rpas_config.env) is set to ‘vdate’, this option prevents
the normal exit with an error message when the vdate.txt file is empty or non-
existent; instead, it will use the current date to derive FILE_DATE. However, if
DATE_TYPE is set to ‘vdate’, and vdate.txt actually does exist and is non-empty, the
date in vdate.txt continues to be used even if this option is set. If DATE_TYPE is set
to ‘current_date’, this option has no effect.

 -c: This option overrides the DATE_TYPE switch setting and causes the current date
to be used to derive FILE_DATE regardless of what DATE_TYPE is set to. This
option is utilized by pre_rmse_rpas.ksh when it calls rmse_rpas_config.env, if it is
run with the -c option on its command line. The ‘-c’ option is normally only used
when rmse_rpas_config.env is called from pre_rmse_rpas.ksh.

 If only one command line option is used, it must be followed by ‘$*’. But if more
than one option is specified, then ‘$*’ must be entered on the command line only
once after all options have been entered. The ‘$*’ is necessary in order to preserve the
command line arguments or options (if there are any) that are present on the
command line that is used to execute the RETL script which invokes this script.

Command Line Parameters

Back-end Configuration and Operations Guide - Volume 3 49

 If more than one option is specified, options must appear on the command line in the
same order as shown on the “Usage” line, above.

pre_rmse_rpas.ksh
 Usage: pre_rmse_rpas.ksh [-c]
 The ‘-c’ option is used to specify what option is to be placed on the

rmse_rpas_config.env command line when it is called by this program. It is usually
used the first time that pre_rmse_rpas.ksh is run at a new installation or if the state of
the vdate.txt file is unknown. This option is passed directly to rmse_rpas_config.env
when it is called by pre_rmse_rpas.ksh. No other use is made of this parameter by
pre_rmse_rpas.ksh.

 This option causes rmse_rpas_config.env to use the current date to initialize
FILE_DATE instead of possibly setting it to VDATE, which is obtained from the
vdate.txt file. (FILE_DATE is the date that is used to name the error, log, and status
files.)

 The current date is used regardless of how DATE_TYPE is set in
rmse_rpas_config.env. By using the ‘-c’ option, there is no need to manually set up
the vdate.txt file before running this script.

 The normal mode for pre_rmse_rpas.ksh (without the -c option) is that when it calls
rmse_rpas_config.env, FILE_DATE is set to VDATE or the current date, depending
on how DATE_TYPE is set in rmse_rpas_config.env. If DATE_TYPE is set to ‘vdate’,
and if the vdate.txt file does not exist or is empty, rmse_rpas_config.env (and this
program) exits with an error message.

 The use of this option does not affect what date is used by any of the other RETL
scripts that run after this script is done. After pre_rmse_rpas.ksh has run, when the
other RETL scripts are run, they call rmse_rpas_config.env with no options on the
command line, and their files are named using VDATE or the current date,
depending on how DATE_TYPE is set in rmse_rpas_config.env.

rmse_rpas.ksh:
 Usage: rmse_rpas.ksh [-c]
 The presence of the ‘-c’ option causes FILE_DATE in rmse_rpas_config.env to be set

to the current date instead of possibly using VDATE (which gets its value from the
vdate.txt file), but only when it is called by rmse_rpas.ksh and pre_rmse_rpas.ksh
(pre_rmse_rpas.ksh is invoked by rmse_rpas.ksh). It has no effect when other extract
programs call rmse_rpas_config.env, at the time that they are invoked by
rmse_rpas.ksh. This option is passed directly to rmse_rpas_config.env and
pre_rmse_rpas.ksh when they are called by rmse_rpas.ksh. No other use is made of
this parameter by rmse_rpas.ksh.

RMSE I/O File Names
Most of the output path/filenames have the format,
$DATA_DIR/(RMSE_RPAS_program name).dat. Similarly, the schema format for the
records in these files are specified in the file - $SCHEMA_DIR/(RMSE_RPAS_program
name).schema.

Typical Run and Debugging Situations

50 Oracle Retail Merchandising System

Typical Run and Debugging Situations
The following examples illustrate typical run and debugging situations for programs.
The log, error, etc. file names referenced below assume that the module is run on the
business virtual date of March 9, 2001. See the previously described naming conventions
for the location of each file.
For example:
To run rmse_rpas_stores.ksh:
1. Change directories to $RDF_HOME/rfx/src.
2. At a UNIX prompt ($) enter:
$rmse_rpas_stores.ksh

If the module runs successfully, the following results:
1. Log file: Today’s log file, 20010309.log, contains the messages “Program started …”

and “Program completed successfully” for rmse_rpas_stores.
2. Data: The rmse_rpas_stores.dat file exists in the data directory and contains the

extracted records.
3. Schema: The rmse_rpas_stores.schema file exists in the schema directory and

contains the definition of the data file in #2 above.
4. Error file: The program’s error file, rmse_rpas_stores.20010309, contains the standard

RETL flow (ending with “All threads complete” and “Flow ran successfully”) and no
error messages.

5. Program status control: The program status control file,
rmse_rpas_stores.status.20010309, will not exist.

6. Reject file: The reject file, rmse_rpas_stores.rej.20010309, will not exist.
If the module does not run successfully, the following results:
1. Log file: Today’s log file, 20010309.log, does not contain the “Program completed

successfully” message for rmse_rpas_stores.
2. Data: The rmse_rpas_stores.dat file may exist in the data directory but may not

contain all the extracted records.
3. Schema: The rmse_rpas_stores.schema file exists in the schema directory and

contains the definition of the data file in #2 above.
4. Error file: The program’s error file, rmse_rpas_stores.20010309, may contain one or

more error messages.
5. Program status control: The program status control file,

rmse_rpas_stores.status.20010309, exists.
6. Reject file: The reject file, rmse_rpas_stores.status.20010309, does not exist because

this module does not reject records.
To re-run the module, perform the following actions:
1. Determine and fix the problem causing the error.
2. Remove the program’s status control file.
3. Change directories to $RDF_HOME/rfx/src. At a UNIX prompt, enter:
$rmse_rpas_stores.ksh

Back-end Configuration and Operations Guide - Volume 3 51

7
Internationalization

Internationalization is the process of creating software that is able to be translated more
easily. Changes to the code are not specific to any particular market. RMS has been
internationalized to support multiple languages.
This section describes configuration settings and features of the software that ensure that
the base application can handle multiple languages.

Translation
Translation is the process of interpreting and adapting text from one language into
another. Although the code itself is not translated, components of the application that are
translated may include the following, among others:
 Graphical user interface (GUI)
 Error messages

The user interface for RMS 13.0 has been translated into:
 German
 French
 Spanish
 Japanese
 Traditional Chinese
 Simplified Chinese
 Korean
 Brazilian Portuguese
 Russian
 Italian

RMS Client Language Settings
The client sets up the user’s language preferences. RMS determines the user’s language
setting and displays the code string associated with it. RMS has a fail/safe mechanism
built into the code. If the user’s preference language string is not found, then RMS rolls
back to English.

Note: A retailer has the two options below regarding
internationalization when installing the application. See the
RMS Installation Guide for the procedures related to each.

 English and multiple secondary languages
 Install English first and then update with a translated language (fully translated non-

English installation)

Key RMS Tables Related to Internationalization

52 Oracle Retail Merchandising System

Key RMS Tables Related to Internationalization
Several new tables were created to handle displayable text that can also be translated.
If the retailer creates a new form, a new menu, or a new object on a form, then the retailer
will need to populate these tables with the corresponding information. If the retailer
customizes the information in any of the tables FORM_ELEMENTS,
FORM_ELEMENTS_LANGS, MENU_ELEMENTS, or MENU_ELEMENTS_LANGS, the
base_ind field in customized records must contain ‘N’. Any record with BASE_IND=N
will be preserved in a temp table during future patches.

FORM_ELEMENTS
This table is used for screen display and holds the master list of items for all forms whose
labels/prompts are translated. This information will always be in English. The
BASE_IND=Y means that the item is part of the base Oracle Retail code set. BASE_IND
=N indicates that the item was added as part of retailer customization. Anything with the
BASE_IND =N will be preserved at upgrade time on the FORM_ELEMENTS_TEMP, but
the retailer is responsible for moving the data back to FORM_ELEMENTS.

FORM_ELEMENTS_LANGS
This table is used for screen display. This table holds translated values for
labels/prompts on forms. This information will be in a language that is defined on the
lang column of the user_attrib table. All users see data from this table, as the retailer may
customize the text of a given field. The access key for a button is defined by filling in the
DEFAULT_ACCESS_KEY field. At runtime, that character will be marked in the string,
and function as the access key. Any time the retailer changes the
DEFAULT_LABEL_PROMPT or DEFAULT_ACCESS_KEY, the BASE_IND should be
updated to N because it is not part of the base language translations provided by Oracle
Retail. Anything with the BASE_IND=N will be preserved at upgrade time on the
FORM_ELEMENTS_LANGS_TEMP, but the retailer is responsible for moving the data
back to FORM_ELEMENTS_LANGS.

MENU_ELEMENTS
This table is used for screen display. This table holds the master list for all menus whose
items are translated. This information will always be in English. The access key for a
menu option is defined by using the ampersand (&) before the character that is the access
key in the default description. The BASE_IND=Y means that the item is part of the base
Oracle Retail code set. BASE_IND=N indicates that the item was added as part of retailer
customization. Anything with the BASE_IND=N will be preserved at upgrade time on
the MENU_ELEMENTS_TEMP, but the retailer is responsible for moving the data back
to MENU_ELEMENTS.

MENU_ELEMENTS_LANGS
This table is used for screen display. This table holds the values for all menus whose
items are translated. This information will be in a language that is defined on the lang
table. Even English language users see data from this table, as the retailer may customize
the text of a given menu option. Any time the retailer changes the LANG_LABEL, the
BASE_IND should be updated to N because it is not part of the base language
translations provided by Oracle Retail. Anything with the BASE_IND=N will be

Key RMS Tables Related to Internationalization

Back-end Configuration and Operations Guide - Volume 3 53

preserved at upgrade time on the MENU_ELEMENTS_LANGS_TEMP, but the retailer is
responsible form moving the data back to MENU_ELEMENTS_LANGS.

FORM_MENU_LINK
This table is used for screen display. This table holds the intersection of form and menu
files, mapping each form to the menu that it displays.

CODE_DETAIL_TRANS
This table holds non-primary language descriptions of code types defined on the
CODE_DETAIL table. The retailer has a multi-language option.

Back-end Configuration and Operations Guide - Volume 3 55

8
Custom Post Processing

RMS has an optional method of handling unwanded cartons for customer post
processing. This only applies to stock order receiving. An unwanded carton occurs when
a carton was not scanned when the stock order was shipped, but is scanned at the time of
the receipt. These cartons do not contain any shipment records in RMS.
Since the carton contains items that did not go through the appropriate transfer out
procedure, the inventory for those items will not be accurate. As a result, the message
which contains the unwanded (unscanned) carton is rejected by RMS to the RIB error
hospital at the time of receiving. RMS will then publish to the warehouse management
system via the RIB of the unwanded cartons in the RcptAdjustDesc message. The
warehouse management system will then send RMS a shipment message containing the
appropriate BOL and the carton ID. RMS will process the message and create or update
the shipment records. The next time RMS tries to process the rejected receipt message
with the unwanded carton, RMS will be able to process it.
The client’s warehouse management system must be able to support the processing of the
RcptAdjustDesc message above in order for this functionality of unwanded carton to
work successfully.

Back-end Configuration and Operations Guide - Volume 3 57

9
Configuring RMS for Single Sign-on

Overview
What is Single Sign-On?

Single Sign-On (SSO) is a term for the ability to sign onto multiple web applications via a
single user ID/Password. There are many implementations of SSO – Oracle currently
provides three different implementations: Oracle Single Sign-On (SSO), Java SSO (with
the 10.1.3.1 release of OC4J) and Oracle Access Manager (provides more comprehensive
user access capabilities).
Most, if not all, SSO technologies use a session cookie to hold encrypted data passed to
each application. The SSO infrastructure has the responsibility to validate these cookies
and, possibly, update this information. The user is directed to log on only if the cookie is
not present or has become invalid. These session cookies are restricted to a single
browser session and are never written to a file.
Another facet of SSO is how these technologies redirect a user’s Web browser to various
servlets. The SSO implementation determines when and where these redirects occur and
what the final screen shown to the user is.
Most SSO implementations are performed in an application’s infrastructure and not in
the application logic itself. Applications that leverage infrastructure managed
authentication (such as deploying specifying “Basic” or “Form” authentication) typically
have little or no code changes when adapted to work in an SSO environment.

What Do I Need for Oracle Single Sign-On?
The nexus of an Oracle Single Sign-On system is the Oracle Identity Management
Infrastructure installation. This consists of the following components:
 An Oracle Internet Directory (OID) LDAP server, used to store user, role, security,

and other information. OID uses an Oracle database as the back-end storage of this
information.

 An Oracle Single Sign-On servlet, used to authenticate the user and create the SSO
session cookie. This servlet is deployed within the infrastructure Oracle Application
Server (OAS).

 The Delegated Administration Services (DAS) application, used to administer users
and group information. This information may also be loaded or modified via
standard LDAP Data Interchange Format (LDIF) scripts.

 Additional administrative scripts for configuring the OSSO system and registering
HTTP servers.

Additional OAS servers will be needed to deploy the business applications leveraging
the OSSO technology.

Can Oracle Single Sign-On Work with Other SSO Implementations?
Yes, OSSO has the ability to interoperate with many other SSO implementations, but
some restrictions exist.

Overview

58 Oracle Retail Merchandising System

Oracle Single Sign-on Terms and Definitions
Authentication

Authentication is the process of establishing a user’s identity. There are many types
of authentication. The most common authentication process involves a user ID and
password.

Dynamically Protected URLs
A “Dynamically Protected URL” is a URL whose implementing application is aware
of the OSSO environment. The application may allow a user limited access when the
user has not been authenticated. Applications that implement dynamic OSSO
protection typically display a “Login” link to provide user authentication and gain
greater access to the application’s resources.

Identity Management Infrastructure
The Identity Management Infrastructure is the collection of product and services
which provide Oracle Single Sign-on functionality. This includes the Oracle Internet
Directory, an Oracle HTTP server, and the Oracle Single Sign-On services. The
Oracle Application Server deployed with these components is typically referred as
the “Infrastructure” instance.

MOD_OSSO
mod_osso is an Apache Web Server module an Oracle HTTP Server uses to function
as a partner application within an Oracle Single Sign-On environment. The Oracle
HTTP Server is based on the Apache HTTP Server.

Oracle Internet Directory
Oracle Internet Directory (OID) is an LDAP-compliant directory service. It contains
user ids, passwords, group membership, privileges, and other attributes for users
who are authenticated using Oracle Single Sign-On.

Partner Application
A partner application is an application that delegates authentication to the Oracle
Identity Management Infrastructure. One such partner application is the Oracle
HTTP Server (OHS) supplied with the Oracle Application Server. OHS uses the
MOD_OSSO module to configure this functionality.
All partner applications must be registered with the Oracle Single Sign-On server.
An output product of this registration is a configuration file the partner application
uses to verify a user has been previously authenticated.

Realm
A Realm is a collection users and groups (roles) managed by a single password
policy. This policy controls what may be used for authentication (for example,
passwords, X.509 certificates, and biometric devices). A Realm also contains an
authorization policy used for controlling access to applications or resources used by
one or more applications.
A single OID can contain multiple Realms. This feature can consolidate security for
retailers with multiple banners or to consolidate security for multiple development
and test environments.

Overview

Back-end Configuration and Operations Guide - Volume 3 59

Statically Protected URLs
A URL is considered to be “Statically Protected” when an Oracle HTTP server is
configured to limit access to this URL to only OSSO authenticated users. Any
attempt to access a “Statically Protected URL” results in the display of a login page or
an error page to the user.
Servlets, static HTML pages, and JSP pages may be statically protected.

What Single Sign-On is not
Single Sign-On is NOT a user ID/password mapping technology.
However, some applications can store and retrieve user IDs and passwords for non-SSO
applications within an OID LDAP server. An example of this is the Oracle Forms Web
Application framework, which maps OSSO user IDs to a database logins on a per-
application basis.

How Oracle Single Sign-On Works
Oracle Single Sign-On involves a couple of different components. These are:
 The Oracle Single Sign-On (OSSO) servlet, which is responsible for the back-end

authentication of the user.
 The Oracle Internet Directory LDAP server, which stores user IDs, passwords, and

group (role) membership.
 The Oracle HTTP Server associated with the web application, which verifies and

controls browser redirection to the OSSO servlet.
 If the web application implements dynamic protection, then the web application

itself is involved with the OSSO system.

Statically Protected URLs
When an unauthenticated user accesses a statically protected URL, the following occurs:
1. The Oracle HTTP server recognizes the user has not been authenticated and redirects

the browser to the Oracle Single Sign-On servlet.
2. The OSSO servlet determines the user must authenticate, and displays the OSSO

login page.
3. The user must sign in via a valid user ID and password. If the OSSO servlet has been

configured to support multiple Realms, a valid realm must also be entered. The user
ID, password, and realm information is validated against the Oracle Internet
Directory LDAP server.

4. The OSSO servlet creates and sends the user’s browser an OSSO session cookie. This
cookie is never persisted to disk and is specific only to the current browser session.
This cookie contains the user’s authenticated identity. It does NOT contain the user’s
password.

5. The OSSO servlet redirects the user back to the Oracle HTTP Server, along with
OSSO specific information.

6. The Oracle HTTP Server decodes the OSSO information, stores it with the user’s
session, and allows the user access to the original URL.

Overview

60 Oracle Retail Merchandising System

Dynamically Protected URLs
When an unauthenticated user accesses a dynamically protected URL, the following
occurs:
1. The Oracle HTTP server recognizes the user has not been authenticated, but allows

the user to access the URL.
2. The application determines the user must be authenticated and sends the Oracle

HTTP server a specific status to begin the authentication process.
3. The Oracle HTTP Server redirects the user’s browser session to the OSSO Servlet.
4. The OSSO servlet determines the user must authenticate, and displays the OSSO

login page.
5. The user must sign in via a valid user ID and password. If the OSSO servlet has been

configured to support multiple Realms, a valid realm must also be entered. The user
ID, password, and realm information is validated against the Oracle Internet
Directory LDAP server.

6. The OSSO servlet creates and sends the user’s browser an OSSO session cookie. This
cookie is never persisted to disk and is specific only to the current browser session.
This cookie contains the user’s authenticated identity. It does NOT contain the user’s
password.

7. The OSSO servlet redirects the user back to the Oracle HTTP Server, along with
OSSO specific information.

8. The Oracle HTTP Server decodes the OSSO information, stores it with the user’s
session, and allows the user access to the original URL.

Single Sign-on Topology

`

Client Browser

Oracle Internet
Directory (OID)
LDAP Server
and database

Apache HTTP
Server

Oracle Application Server (OAS)
Infrastructure/OIM

SSO

DAS

AJP 1.3
OC4J

LDAP

LDAP

(Security Instance)

Apache HTTP
Server

OC4J

app1 app2

Oracle Application Server (OAS)
Mid-Tier

AJP 1.3

HTTP
Redirect

LDAP

HTTP

HTTP

Overview

Back-end Configuration and Operations Guide - Volume 3 61

Installation Overview
Installing Oracle Single Sign-On consists of installing the following components:
1. Installing the Oracle Internet Directory (OID) LDAP server and the Infrastructure

Oracle Application Server (OAS). These are typically performed using a single
session of the Oracle Universal Installer and are performed at the same time. OID
requires an Oracle relational database and if one is not available, the installer will
also install this as well.
The Infrastructure OAS includes the Delegated Administration Services (DAS)
application as well as the OSSO servlet. The DAS application can be used for user
and realm management within OID.

2. Installing additional OAS 10.1.2 midtier instances for the Oracle Retail applications,
such as RMS, that are based on Oracle Forms technologies. These instances must be
registered with the Infrastructure OAS installed in step 1).

3. Installing additional application servers to deploy other Oracle Retail applications
and performing application specific initialization and deployment activities.

Infrastructure Installation and Configuration
The Infrastructure installation for OSSO is dependent on the environment and
requirements for its use. Deploying an Infrastructure OAS to be used in a test
environment does not have the same availability requirements as for a production
environment. Similarly, the Oracle Internet Directory (OID) LDAP server can be
deployed in a variety of different configurations. See the Oracle Application Server
Installation Guide and the Oracle Internet Directory Installation Guide for more details.

OID User Data
Oracle Internet Directory is an LDAP v3 compliant directory server. It provides
standards-based user definitions out of the box.
The current version of Oracle Single Sign-On only supports OID as its user storage
facility. Customers with existing corporate LDAP implementations may need to
synchronize user information between their existing LDAP directory servers and OID.
OID supports standard LDIF file formats and provides a JNDI compliant set of Java
classes as well. Moreover, OID provides additional synchronization and replication
facilities to integrate with other corporate LDAP implementations.
Each user ID stored in OID has a specific record containing user specific information. For
role-based access, groups of users can be defined and managed within OID.
Applications can thus grant access based on group (role) membership saving
administration time and providing a more secure implementation.

OID with Multiple Realms
OID and OSSO can be configured to support multiple user Realms. Each realm is
independent from each other and contains its own set of user IDs. As such, creating a
new realm is an alternative to installing multiple OID and Infrastructure instances.
Hence, a single Infrastructure OAS can be used to support many development and test
environments by defining one realm for each environment.
Realms may also be used to support multiple groups of external users, such as those
from partner companies. For more information on Realms, see the Oracle Internet
Directory Administrators Guide.

http://www.opengroup.org/certification/directory-home.html

Setting up RMS for Single Sign-on

62 Oracle Retail Merchandising System

User Management
User Management consists of displaying, creating, updating or removing user
information. There are two basic methods of performing user management: LDIF scripts
and the Delegate Administration Services (DAS) application.

OID DAS
The DAS application is a web based application designed for both administrators and
users. A user may update their password, change their telephone number of record, or
modify other user information. Users may search for other users based on partial strings
of the user’s name or ID. An administrator may create new users, unlock passwords, or
delete users.
The DAS application is fully customizable. Administrators may define what user
attributes are required, optional or even prompted for when a new user is created.
Furthermore, the DAS application is secure. Administrators may also what user
attributes are displayed to other users. Administration is based on permission grants, so
different users may have different capabilities for user management based on their roles
within their organization.

LDIF Scripts
Script based user management can be used to synchronize data between multiple LDAP
servers. The standard format for these scripts is the LDAP Data Interchange Format
(LDIF). OID supports LDIF script for importing and exporting user information. LDIF
scripts may also be used for bulk user load operations.

User Data Synchronization
The user store for Oracle Single Sign-On resides within the Oracle Internet Directory
(OID) LDAP server. Oracle Retail applications may require additional information
attached to a user name for application-specific purposes and may be stored in an
application-specific database. Currently, there are no Oracle Retail tools for
synchronizing changes in OID stored information with application-specific user stores.
Implementers should plan appropriate time and resources for this process. Oracle Retail
strongly suggests that you configure any Oracle Retail application using an LDAP for its
user store to point to the same OID server used with Oracle Single Sign-On.

Setting up RMS for Single Sign-on
To set up Forms for Single Sign-on, the Forms framework must know and/or be
configured to use SSO. To do this, the Forms framework configuration file formsweb.cfg
must be configured to enable SSO and the mid-tier HTTP Server must be registered with
the Oracle Single Sign-On server. In addition, the Forms framework uses Resource
Access Descriptor (RAD), to map OSSO user IDs to Database connect strings.

Setting up RMS for Single Sign-on

Back-end Configuration and Operations Guide - Volume 3 63

Configuring formsweb.cfg
For each Forms application instance there are two attributes in the Forms framework
configuration file formsweb.cfg that control SSO behavior:

Name Value Description

ssoMode true/false Enables/disables SSO

ssoDynamicResourceCreate true/false Enables/disables the dynamic RAD entry
creation

Creating a RAD Entry
There are three ways by which a RAD entry (mapping an OSSO user ID to a Database
connect string) may be created:
 Administrator Created

An administrator uses the Delegated Administration Services (DAS) web application
that comes with the infrastructure server and that can be launched using the URL
http://<host>:port/oiddas.

 User Created
The user can dynamically create a RAD entry when the Forms framework prompts
the user for information. This however requires that the ssoDynamicResourceCreate
attribute be set to true. If a RAD already exists, the user may also create additional
RADs via the DAS application.

 LDIF Script
More information about how to use an LDIF script to create a RAD entry may be
found by accessing Metalink document 244526.1.

Back-end Configuration and Operations Guide - Volume 3 65

10
Integrating RMS with Oracle Retail

Workspace
The Oracle Retail Workspace installer prompts you to enter the URL for your supported
Oracle Retail applications. However, if a client installs a new application after Oracle
Retail Workspace is installed, the retail-workspace-page-config.xml file needs to be
edited to reflect the new application.
The file as supplied comes with all appropriate products configured, but the
configurations of non-installed products have been "turned off". Therefore, when
"turning on" a product, locate the appropriate entry, set "rendered" to "true", and enter
the correct URL and parameters for the new application.
The entry consists of the main URL string plus one parameter named "config". The value
of the config parameter is inserted by the installer. Somewhere in the installer property
files there is a value for the properties "deploy.retail.product.rms.url" and
"deploy.retail.product.rms.config".
For example, suppose RMS was installed on mycomputer.mycompany.com, port 7777,
using a standard install and rms configured with the application name of
"rms121sedevhpsso". If you were to access RMS directly from your browser, you would
type in:
http://mycomputer.mycompany.com:7777/forms/frmservlet?config=rms121sedevhpsso

The entry in the retail-workspace-page-config.xml after installation would resemble the
following:

<url>http://mycomputer.mycompany.com:7777/forms/frmservlet</url>
 <parameters>
 <parameter name="config">

 <value>rms121sedevhpsso</value>
 </parameter>
</parameters>

http://mycomputer.mycompany.com:7777/forms/frmservlet?config=rms121sedevhpsso
http://mycomputer.mycompany.com:7777/forms/frmservlet?config=rms121sedevhpsso

Back-end Configuration and Operations Guide - Volume 3 67

11
Setting up Oracle Business Intelligence

Publisher
RMS uses Oracle Business Intelligence (BI) Publisher for publishing reports.
Prior to accessing reports in BI Publisher, you must create the BI Publisher JDBC
connection for your database and verify that BI Publisher URLs are set correctly on your
Oracle Application Server.

Note: Oracle Retail recommends that retailers access the
reports with the Guest user with no password. This is so
RMS can access the reports without authentication. Guest
with no password is a default user in BIP.

Setting up your JDBC Connection
Use the following procedure to create your JDBC connection for either a RAC database or
a thin connection to a database.
1. Access your BIP repository.

/home/BIP/

2. Log into BI Publisher as the administrator.
3. Under Data Sources, select JDBC Connections.
4. Create the BIP JDBC Connection.

 If you are using JDBC for a RAC database, verify that the Data Source Name is
set to RMS13.

Setting up your JDBC Connection

68 Oracle Retail Merchandising System

Example of a valid JDBC for a RAC database

 If you are using a thin connection to a database, the Connection String should
look similar to the following:

 jdbc:oracle:thin:@<DB_Server>:<DB_listener_port>:<$ORACLE_SID>

 For example:
 jdbc:oracle:thin:@mspdev38.us.oracle.com:1525:cs0110g

Verifying BI Publisher URLs

Back-end Configuration and Operations Guide - Volume 3 69

Example of a thin connection to a database

5. Click Apply and close BI Publisher.

Verifying BI Publisher URLs
The BI Publisher URLs are set during the installation of RMS. If the URLs are incorrect,
edit the RMS.env file using a text editor to correct the errors.
Use the following procedure to verify that your BI Publisher URLs are correct on your
Oracle Application Server.
1. From your Oracle Application Server, access your RMS.env file. Your RMS.env file

can be found in the following location:
$ORACLE_HOME/forms/server/<DIR>/RMS*.env

2. Verify that the following lines in the RMS.env file correspond to your JDBC
connection values:
ORACLE_RMS_REPORTS_HOST=http://<server>:<port>/
ORACLE_RMS_REPORTS_SERVER=<context root of BIP app>
ORACLE_RMS_RWSERVER=<user>/<application>/<version>/

For example:
ORACLE_RMS_REPORTS_HOST=http://mspdev9091vip.us.oracle.com:7777/
ORACLE_RMS_REPORTS_SERVER=xmlpserver
ORACLE_RMS_RWSERVER=/Guest/RMS/12.1int/

3. Verify that the "RMS13" datasource is set correctly in the xdo files.
In all reports, there is a <report>.xdo. Those xdo files have a similar line that should
be set to "RMS13" out of the box.
<report version="1.1" xmlns="http://xmlns.oracle.com/oxp/xmlp"
defaultDataSourceRef="RMS13">

http://xmlns.oracle.com/oxp/xmlp

	Preface
	Audience
	Related Documents
	Customer Support
	Review Patch Documentation
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	Pro*C Restart and Recovery
	Table Descriptions and Definitions
	restart_control
	 restart_program_status
	 restart_program_history
	 restart_bookmark
	 v_restart_x

	Data Model Discussion
	Why restart_program_status and restart_bookmark are Separate Tables

	Physical Set-Up
	Table and File-Based Restart/Recovery
	API Functional Descriptions
	restart_init
	restart_file_init
	restart_commit
	restart_file_commit
	restart_close
	parse_array_args
	restart_file_write
	restart_cat
	Restart Headers and Libraries
	Updated Restart Headers and Libraries
	New Restart/Recovery Functions

	Query-Based Commit Thresholds

	Pro*C Multi-Threading
	Threading Description
	Threading Function for Query-Based
	Restart View for Query-Based
	Thread Scheme Maintenance
	File-Based
	Query-Based

	Batch Maintenance
	Scheduling and Initialization of Restart Batch
	Pre- and Post-Processing

	Pro*C Array Processing
	Pro*C Input and Output Formats
	General Interface Discussion
	Standard File Layouts

	Detail Only Files
	Master and Detail Files

	 Electronic Data Interchange (EDI)

	RETL Program Overview for RMS/ReSA Extractions for RDW
	Overview
	Architectural Design
	RMS Extraction Architecture
	ReSA Extraction Architecture

	Configuration
	RETL
	RETL User and Permissions
	Environment Variables
	dwi_config.env Settings

	Program Features
	Program Status Control Files
	Restart and Recovery
	Bookmark File
	Message Logging
	Daily Log File
	Format
	Program Error File
	RMSE Reject Files
	Schema Files
	Resource Files
	Command Line Parameters
	Multi-Threading For RMSE ReSA Modules

	Typical Run and Debugging Situations
	Running the Time 454 Extract Module

	RETL Program Overview for the RMS-RPAS Interface
	Oracle Retail ETL Architecture
	RETL Program Overview
	Configuration

	Program Return Code
	Program Status Control Files
	File Naming Conventions
	Restart and Recovery

	Message Logging
	Daily Log File
	Format
	Program Error File

	RMSE Reject Files
	Schema Files Overview
	Command Line Parameters
	rmse_rpas_config.env
	RMSE I/O File Names

	Typical Run and Debugging Situations

	Internationalization
	Translation
	RMS Client Language Settings
	Key RMS Tables Related to Internationalization
	FORM_ELEMENTS
	FORM_ELEMENTS_LANGS
	MENU_ELEMENTS
	MENU_ELEMENTS_LANGS
	FORM_MENU_LINK
	CODE_DETAIL_TRANS

	Custom Post Processing
	Configuring RMS for Single Sign-on
	Overview
	What is Single Sign-On?
	What Do I Need for Oracle Single Sign-On?
	Can Oracle Single Sign-On Work with Other SSO Implementations?
	Oracle Single Sign-on Terms and Definitions
	What Single Sign-On is not
	How Oracle Single Sign-On Works
	Installation Overview
	User Management

	Setting up RMS for Single Sign-on
	Configuring formsweb.cfg
	Creating a RAD Entry

	Integrating RMS with Oracle Retail Workspace
	Setting up Oracle Business Intelligence Publisher
	Setting up your JDBC Connection
	Verifying BI Publisher URLs

