

Oracle® Retail Merchandising System

Operations Guide - Volume 2 - Message Publication and
Subscription Design
Release 13.0.2.1

January 2009

Oracle® Retail Merchandising System Operations Guide - Volume 2 - Message Publication and
Subscription Design, Release 13.0.2.1

Copyright © 2009, Oracle. All rights reserved.

Primary Author: Nathan Young

The Programs (which include both the software and documentation) contain proprietary
information; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the
extent required to obtain interoperability with other independently created software or as specified
by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. This document is not
warranted to be error-free. Except as may be expressly permitted in your license agreement for
these Programs, no part of these Programs may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the
Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and
technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the Programs, including documentation and technical data, shall be subject to the
licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software—
Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate
fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the
Programs are used for such purposes, and we disclaim liability for any damages caused by such
use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation
and/or its affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from
third parties. Oracle is not responsible for the availability of, or any content provided on, third-
party Web sites. You bear all risks associated with the use of such content. If you choose to
purchase any products or services from a third party, the relationship is directly between you and
the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or
(b) fulfilling any of the terms of the agreement with the third party, including delivery of products
or services and warranty obligations related to purchased products or services. Oracle is not
responsible for any loss or damage of any sort that you may incur from dealing with any third
party.

Value-Added Reseller (VAR) Language

Oracle Retail VAR Applications
The following restrictions and provisions only apply to the programs referred to in this section and
licensed to you. You acknowledge that the programs may contain third party software (VAR
applications) licensed to Oracle. Depending upon your product and its version number, the VAR
applications may include:

(i) the software component known as ACUMATE developed and licensed by Lucent Technologies
Inc. of Murray Hill, New Jersey, to Oracle and imbedded in the Oracle Retail Predictive
Application Server – Enterprise Engine, Oracle Retail Category Management, Oracle Retail Item
Planning, Oracle Retail Merchandise Financial Planning, Oracle Retail Advanced Inventory
Planning, Oracle Retail Demand Forecasting, Oracle Retail Regular Price Optimization, Oracle
Retail Size Profile Optimization, Oracle Retail Replenishment Optimization applications.

 (ii) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail
Data Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(iii) the SeeBeyond component developed and licensed by Sun MicroSystems, Inc. (Sun) of Santa
Clara, California, to Oracle and imbedded in the Oracle Retail Integration Bus application.

(iv) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of
Kirkland, Washington, to Oracle and imbedded in Oracle Retail Mobile Store Inventory
Management.

(v) the software component known as Crystal Enterprise Professional and/or Crystal Reports
Professional licensed by SAP and imbedded in Oracle Retail Store Inventory Management.

(vi) the software component known as Access Via™ licensed by Access Via of Seattle, Washington,
and imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(vii) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of
San Jose, California, and imbedded in Oracle Retail Promotion Planning & Optimization
application.

(viii) the software component known as Style Report™ developed and licensed by InetSoft
Technology Corp. of Piscataway, New Jersey, to Oracle and imbedded in the Oracle Retail Value
Chain Collaboration application.

(ix) the software component known as DataBeacon™ developed and licensed by Cognos
Incorporated of Ottawa, Ontario, Canada, to Oracle and imbedded in the Oracle Retail Value Chain
Collaboration application.

You acknowledge and confirm that Oracle grants you use of only the object code of the VAR
Applications. Oracle will not deliver source code to the VAR Applications to you.
Notwithstanding any other term or condition of the agreement and this ordering document, you
shall not cause or permit alteration of any VAR Applications. For purposes of this section,
“alteration” refers to all alterations, translations, upgrades, enhancements, customizations or
modifications of all or any portion of the VAR Applications including all reconfigurations,
reassembly or reverse assembly, re-engineering or reverse engineering and recompilations or
reverse compilations of the VAR Applications or any derivatives of the VAR Applications. You
acknowledge that it shall be a breach of the agreement to utilize the relationship, and/or
confidential information of the VAR Applications for purposes of competitive discovery.

The VAR Applications contain trade secrets of Oracle and Oracle’s licensors and Customer shall
not attempt, cause, or permit the alteration, decompilation, reverse engineering, disassembly or
other reduction of the VAR Applications to a human perceivable form. Oracle reserves the right to
replace, with functional equivalent software, any of the VAR Applications in future releases of the
applicable program.

v

Contents
Preface .. xxi

Audience .. xxi
Related Documents... xxi
Customer Support... xxi
Review Patch Documentation .. xxii
Oracle Retail Documentation on the Oracle Technology Network............................. xxii
Conventions.. xxii

1 Publication Designs .. 1
Allocations Publication API...1

Functional Area..1
Design Overview ...1
Functionality Checklist ...1
Form Impact ...2
Business Object Records..2
Package Impact ..2
Package Name: RMSMFM_ALLOC..4
Functional Level Description – ADDTOQ ...4
Functional Level Description – GETNXT ...5
Function Level Description – PUB_RETRY..5
Function Level Description – PROCESS_QUEUE_RECORD (local)5
Function Level Description – MAKE_CREATE (local)...6
Function Level Description – BUILD_HEADER_OBJECT (local).............................7
Function Level Description – BUILD_DETAIL_OBJECTS (local)7
Function Level Description – BUILD_SINGLE_DETAIL (local)8
Function Level Description – BUILD_DETAIL_CHANGE_OBJECTS (local)8
Function Level Description – BUILD_DETAIL_DELETE_OBJECTS (local)............8
Function Level Description – LOCK_THE_BLOCK (local)..8
Function Level Description – HANDLE_ERRORS (local) ...8
Function Level Description – DELETE_QUEUE_REC (local)8
Function Level Description – GET_ROUTING_TO_LOCS (local)............................8
Function Level Description – GET_NOT_BEFORE_DAYS (local)............................9
Function Level Description – GET_RETAIL (local) ..9
Function Level Description – CHECK_STATUS (local) ...9
Trigger Impact..9
Message XSD ..9
Table Impact ...10
Design Assumptions ...10

ASNOUT Publication API ...11
Business Overview ..11
Functionality Checklist ...12

vi

Form Impact ...12
Business Object Records..12
Package Impact ..12
Package Specification – Global Variables ...12
Function Level Description – ADDTOQ...13
Function Level Description – GETNXT ..13
Function Level Description – PUB_RETRY..14
Function Level Description – PROCESS_QUEUE_RECORD (local)14
Function Level Description – BUILD_HEADER_OBJECT (local)...........................14
Function Level Description – BUILD_DETAIL_OBJECTS (local)15
Function Level Description – LOCK_THE_BLOCK (local)......................................15
Function Level Description – HANDLE_ERRORS (local)15
Function Level Description – DELETE_QUEUE_REC (local)15
Trigger Impact..16
Message XSD ..16
Table Impact ...16
Design Assumptions ...16

Banner Publication API..16
Business Overview ..16
Functionality Checklist ...17
Form Impact ...17
Business Object Records..17
Package Impact ..18
Trigger Impact..20
Message XSD ..21
Table Impact ...21
Design Assumptions ...21

Differentiator Groups Publication API ..22
Business Overview ..22
Functionality Checklist ...22
Form Impact ...22
Business Object Records..22
Package Impact ..23
Trigger Impact..25
Message XSD ..26
Table Impact ...26
Design Assumptions ...27

Differentiator ID Publication API ...28
Business Overview ..28
Diff Publication Concepts ...28
Diff Message Processes ...28
Functionality Checklist ...28
Package Impact ..29

vii

Package Specification – Global Variables ...29
Trigger Impact..30
Message XSD ..31
Table Impact ...31
Design Assumptions ...31

Item ...32
Business Overview ..32
Deposit items..32
Catch-Weight Items ...32
Item Transformation..34
Item and Item Component Descriptions ..34
New Item Message Processes...35
Basic Item Message..35
New Item Message Publication ...35
Subordinate Data and XML Tags ..36
Modify and Delete Messages ...36
Modify Messages ...36
Delete messages ...36
Design Overview ...37
Functionality Checklist: ..37
Form Impact ...38
Business Object Records..38
Package Impact ..38
Trigger Impact..45
Message XSD ..48
Table Impact ...49
Design Assumptions ...50

Item Location Publication API ..51
Business Overview ..51
Functionality Checklist ...51
Form Impact ...51
Business Object Records..51
Package Impact ..51
Trigger Impact..54
Message XSD ..55
Table Impact ...55
Design Assumptions ...55

Merchandise Hierarchy Publishing API ..56
Business Overview ..56
Functionality Checklist ...56
Form Impact ...56
Business Object Records..56
Package Impact ..56

viii

Trigger Impact..60
Message XSD ..62
Table Impact ...63
Assumptions...63

Order Publication API..64
Business Overview ..64
Functionality Checklist ...65
Form Impact ...65
Business Object Records..66
Package Impact ..66
Trigger Impact..74
Message XSD ..75
Table Impact ...75
Design Assumptions ...75

Partner Publication API ...76
Business Overview ..76
Functionality Checklist ...77
Form Impact ...77
Business Object Records..77
Package Impact ..77
Trigger Impact..84
Message XSD ..85
Table Impact ...85
Design Assumptions ...85
Performance Considerations ..85

Receiver Unit Adjustment Publication API...86
Business Overview ..86
Functionality Checklist ...86
Form Impact ...86
Business Object Records..86
Package Impact ..87
Package name: RMSMFM_RCVUNITADJ...87
Function Level Description – ADDTOQ...87
Function Level Description – GETNXT ..87
Function Level Description – PUB_RETRY..88
Function Level Description – PROCESS_QUEUE_RECORD (local)88
Function Level Description – MAKE_CREATE (local)...88
Function Level Description – BUILD_HEADER_OBJECT (local)...........................88
Function Level Description – BUILD_DETAIL_OBJECTS (local)88
Function Level Description – BUILD_SINGLE_DETAIL (local)88
Function Level Description – LOCK_THE_BLOCK (local)......................................89
Function Level Description – HANDLE_ERRORS (local)89
Function Level Description – DELETE_QUEUE_REC (local)89

ix

Trigger Impact..89
Message XSD ..89
Table Impact ...89
Design Assumptions ...90

RTV Request Publication API ...91
Business Overview ..91
Functionality Checklist ...91
Form Impact ...91
Business Object Records..91
Package Impact ..91
Package Specification – Global Variables ...91
Function Level Description – ADDTOQ...92
Function Level Description – GETNXT ..93
Function Level Description – PUB_RETRY..93
Function Level Description – PROCESS_QUEUE_RECORD (local)94
Function Level Description – MAKE_CREATE (local)...94
Function Level Description – BUILD_HEADER_OBJECT (local)...........................95
Function Level Description – BUILD_DETAIL_CHANGE_OBJECTS (local)95
Function Level Description – BUILD_DETAIL_OBJECTS (local)95
Function Level Description – BUILD_DETAIL_DELETE_OBJECTS (local)..........96
Function Level Description – BUILD_SINGLE_DETAIL (local)96
Function Level Description – LOCK_THE_BLOCK (local)......................................96
Function Level Description – DELETE_QUEUE_REC (local)96
Function Level Description – HANDLE_ERRORS (local)96
Trigger Impact..97
Message XSD ..98
Table Impact ...98
Design Assumptions ...98

Seed Data Publication API...99
Business Overview ..99
Functionality Checklist ...99
Form Impact ...99
Business Object Records..99
Package Impact ..99
Trigger Impact..103
Message XSD ..105
Table Impact ...105
Design Assumptions ...105

Seed Object Publication API ..106
Business Overview ..106
Functionality Checklist ...106
Form Impact ...106
Business Object Records..106

x

Package Impact ..107
Trigger Impact..108
Message XSD ..109
Table Impact ...109

Store Publication API ...110
Wholesale and Franchise ..110
Business Overview ..110
Functionality Checklist ...110
Form Impact ...110
Business Object Records..110
Package Impact ..111
Package name: RMSMFM_STORE ..112
Function Level Description – GETNXT ..113
Function Level Description – PUB_RETRY..114
Function Level Description – PROCESS_QUEUE_RECORD (local)114
Function Level Description – MAKE_CREATE (local)...115
Function Level Description – BUILD_HEADER_OBJECT (local).........................115
Function Level Description – BUILD_DETAIL_OBJECTS (local)115
Function Level Description – BUILD_SINGLE_DETAIL (local)116
Function Level Description – BUILD_DETAIL_CHANGE_OBJECTS (local)116
Function Level Description – BUILD_DETAIL_DELETE_OBJECTS (local)........116
Function Level Description – LOCK_THE_BLOCK (local)....................................117
Function Level Description – HANDLE_ERRORS (local)117
Message XSD ..118
Table Impact ...118
Design Assumptions ...119

Transfers Publication API ..120
Wholesale and Franchise ..120
Business Overview ..120
Functionality Checklist ...120
Form Impact ...120
Business Object Records..120
Package Impact ..121
Function Level Description – ADDTOQ...123
Function Level Description – GETNXT ..124
Function Level Description – PUB_RETRY..124
Function Level Description – PROCESS_QUEUE_RECORD (local)125
Function Level Description – MAKE_CREATE (local)...125
Function Level Description – BUILD_HEADER_OBJECT (local).........................125
Function Level Description – BUILD_DETAIL_OBJECTS (local)125
Function Level Description – BUILD_SINGLE_DETAIL (local)126
Function Level Description – GET_RETAIL (local) ..126
Function Level Description – GET_GLOBALS (local) ..126

xi

Function Level Description – GET_TSF_ENTITIES (local)126
Function Level Description – BUILD_DETAIL_CHANGE_OBJECTS (local)126
Function Level Description – BUILD_DETAIL_DELETE_OBJECTS (local)........126
Function Level Description – LOCK_THE_BLOCK (local)....................................126
Function Level Description – LOCK_THE_BLOCK (local)....................................126
Function Level Description – DELETE_QUEUE_REC (local)126
Function Level Description – HANDLE_ERRORS (local)126
Trigger Impact..126
Message XSD ..127
Table Impact ...128
Design Assumptions ...128

UDA Publication API ...129
Business Overview ..129
Functionality Checklist ...129
Form Impact ...129
Business Object Records..129
Package Impact ..129
Package Specification – Global Variables ...131
Function Level Description – ADDTOQ...131
Function Level Description – GETNXT ..131
Trigger Impact..131
Message XSD ..132
Table Impact ...132
Design Assumptions ...133

Vendor Publication API ...134
Multiple Sets of Books...134
Business Overview ..134
Functionality Checklist: ..134
Form Impact ...134
Business Object Records..134
Package Impact ..135
Package Specification – Global Variables ...136
Trigger Impact..138
Message XSD ..139
Table Impact ...139
Design Assumptions ...140

Warehouse Publication API...141
Business Overview ..141
Functionality Checklist ...142
Business Object Records..142
Package Impact ..142
Trigger Impact..148
Message XSD ..149

xii

Table Impact ...149
Design Assumptions ...149

Work Orders in Publication API...150
Business Overview ..150
Functionality Checklist ...150
Form Impact ...150
Business Object Records..150
Package Impact ..151
Trigger Impact..154
Message XSD ..154
Table Impact ...155
Design Assumptions ...155

Work Orders out Publication API ..156
Business Overview ..156
Functionality Checklist: ..156
Form Impact ...156
Business Object Records..156
Package Impact ..157
Trigger Impact..161
Message XSD ..162
Table Impact ...162
Design Assumptions ...162

2 Subscription Designs.. 163
Allocation Subscription API ..163

Functional Area..163
Design Overview ...163
Consume Module...163
Business Validation Module...164
Bulk or single DML module ...165
Message XSD ..166
Design Assumptions ...167
Tables...167

Appointments Subscription API...168
Functional Area..168
Design Overview ...168
Subscription Packages...169
Message XSD ..170
Design Assumptions ...171
Tables...171

ASNIN SUBSCRIPTION API ..172
Functional Area..172
Business Overview ..172

xiii

Package Impact ..172
Public API Procedure ..173
Message XSD ..175
Design Assumptions ...175
Tables...176

ASNOUT Subscription API ...177
Wholesale and Franchise ..177
Functional Area..177
Design Overview ...177
BOL Message Structure...177
Subscription Packages...178
Message XSD ..183
Design Assumptions ...183
Tables...184

Clearance Subscription API...186
Functional Area..186
Design Overview ...186
Consume Module...187
Business Validation Module...188
Bulk or single DML module ...188
Message XSD ..189
Design Assumptions ...189
Tables...190

CO Return Sale Subscription API ...191
Functional Area..191
Business Overview ..191
Package Impact ..191
DML Module ..192
Message XSD ..192
Design Assumptions ...192
Tables...192

CO Sales Subscription API...193
Functional Area..193
Business Overview ..193
Package Impact ..193
Message XSD ..194
Design Assumptions ...194
Tables...194

COGS Subscription API ...195
Functional Area..195
Business Overview ..195
COGS messages and TRAN_DATA..195
Package Impact ..195

xiv

DML Module ..196
Message XSD ..196
Design Assumptions ...196
Tables...196

Cost Change Subscription API..197
Functional Area..197
Design Overview ...197
Consume Module...197
Business Validation Module...198
Bulk or Single DML Module ..199
Message XSD ..199
Design Assumptions ...199
Tables...200

Currency Exchange Rates Subscription API ...201
Functional Area..201
Business Overview ..201
Data Flow..201
Message Structure:...201
Package Impact ..201
Message XSD ..203
Design Assumptions ...204
Tables...204

Diff Group Subscription API...205
Functional Area..205
Design Overview ...205
System of Record ...205
Differentiators ..205
Consume Module...206
Business Validation Module...207
Bulk or Single DML Module ..208
Message XSD ..209
Design Assumptions ...209
Tables...209

Diff ID Subscription API ..210
Functional Area..210
Design Overview ...210
Consume Module...210
Business Validation Module...211
Bulk or single DML module ...212
Message XSD ..212
Design Assumptions ...212
Tables...212

Direct Ship Receipt Subscription API...213

xv

Functional Area..213
Business Overview ..213
Package Impact ..213
Business Validation Module...213
DML Module ..214
Message XSD ..214
Design Assumptions ...214
Tables...214

DSD Deals Subscription API ...215
Functional Area..215
Business Overview ..215
Package Impact ..216
Message XSD ..217
Design Assumptions ...217
Tables...217

DSD Receipt Subscription API ..218
Functional Area..218
Business Overview ..218
Package Impact ..218
Message XSD ..219
Design Assumptions ...219
Tables...219

Freight Terms Subscription API..220
Functional Area..220
Business Overview ..220
Package Impact ..220
Message XSD ..222
Design Assumptions ...222
Tables...222

GL Chart of Accounts Subscription API..223
Multiple Sets of Books...223
Functional Area..223
Business Overview ..223
System Option for Financial Application ...223
Data Flow..223
Package Impact ..223
Message XSD ..226
Design Assumptions ...226
Tables...226

Inventory Adjustment Subscription API ...227
Functional Area..227
Business Overview ..227
Subscription Package...228

xvi

Business Validation and DML Module...228
Message XSD ..229
Design Assumptions ...229
Tables...230

Inventory Request Subscription API..231
Functional Area..231
Business Overview ..231
Package Impact ..232
Message XSD ..234
Design Assumptions ...234
Tables...236

Item Subscription API ..237
Multiple Sets of Books...237
Functional Area..237
Design Overview ...237
Consume Module...238
Business Validation Module...239
Bulk or Single DML Module ..242
Message XSD ..243
Design Assumptions ...244
Tables...244

Item Location Subscription API ..245
Functional Area..245
Design Overview ...245
Consume Module...245
Business Validation Module...246
Bulk or single DML module ...247
Message XSD ..247
Tables...247

Item Reclassification Subscription API ..249
Functional Area..249
Design Overview ...249
Consume Module...249
Business Validation Module...250
Bulk or Single DML Module ..251
Message XSD ..252
Design Assumptions ...252
Tables...252

Location Trait Subscription API..253
Functional Area..253
Design Overview ...253
Consume Module...253
Business Validation Module...254

xvii

Bulk or Single DML Module ..254
Message XSD ..255
Design Assumptions ...255
Tables...255

Merchandise Hierarchy Subscription API...256
Functional Area..256
Design Overview ...256
System of Record ...256
Consume Module...257
Business Validation Module...258
Bulk or Single DML Module ..260
Message XSD ..261
Performance / Volume Considerations..261
Design Assumptions ...262
Tables...262

Merchandise Hierarchy Reclassification Subscription API...263
Functional Area..263
Design Overview ...263
Consume Module...263
Business Validation Module...264
Bulk or single DML module ...265
Message XSD ..265
Design Assumptions ...265
Tables...265

Organizational Hierarchy Subscription API ...267
Functional Area..267
Design Overview ...267
Consume Module...268
Business Validation Module...269
Bulk or Single DML Module ..271
Message XSD ..273
Design Assumptions ...273
Tables...273

Payment Terms Subscription API...274
Functional Area..274
Business Overview ..274
Package Impact ..274
Message XSD ..277
Design Assumptions ...277
Tables...277

PO Subscription API...278
Functional Area..278
Design Overview ...278

xviii

Consume Module...278
Business Validation Module...279
Bulk or Single DML Module ..281
Message XSD ..282
Design Assumptions ...282
Tables...282

Price Change Subscription API ...284
Multiple Sets of Books...284
Functional Area..284
Design Overview ...284
Consume Module...285
Business Validation Module...286
Bulk or Single DML Module ..287
Message XSD ..287
Design Assumptions ...287
Tables...288

Receiving Subscription API ...289
Functional Area..289
Design Overview ...289
Carton-Level Receiving...289
Subscription Packages...291
Message XSD ..301
Design Assumptions ...301
Tables...302

RTV Subscription API ..304
Functional Area..304
Business Overview ..304
Subscription Package...304
Message XSD ..306
Design Assumptions ...306
Tables...307

Stock Order Status Subscription API ...308
Functional Area..308
Business Overview ..308
Stock Order Status Explanations ...308
Pack Considerations ..311
Package Impact ..311
Public API Procedures ..311
Message XSD ..313
Design Assumptions ...313
Tables...314

Stock Count SCH Subscription API..315
Functional Area..315

xix

Business Overview ..315
Consume Module...315
Business Validation and DML Module...316
Message XSD ..316
Design Assumptions ...317
Tables...317

Store Subscription API ...318
Wholesale and Franchise ..318
Functional Area..318
Design Overview ...318
Consume Module...319
Business Validation Module...320
Bulk or Single DML Module ..321
Message XSD ..322
Performance/Volume Considerations..322
Design Assumptions ...322
Tables...322

Transfer Subscription API..323
Functional Area..323
Design Overview ...323
Consume Module...323
Business Validation Module...324
Bulk or Single DML Module ..325
Message XSD ..326
Design Assumptions ...326
Tables...326

Vendor Subscription API ...327
Multiple Sets of Books...327
Functional Area..327
Business Overview ..327
Package Impact ..327
Message XSD ..330
Design Assumptions ...330
Tables...330

Work Order Status Subscription API ...331
Functional Area..331
Design Overview ...331
Consume Module...332
Message XSD ..332
Tables...333

3 RSL for RMS... 335
RMS and the Oracle Retail Service Layer (RSL) ...335

xx

Functional Description of the Packages Used by RSL ..335
4 Service Provider Implementations API Designs... 337

Supplier Service Provider Impl...337
Program Name ...337
Functional Area..337
Design Overview ...337
Function Level Description ..337
Locking Strategy ..342
Performance..342
Security..342

Payment Terms Service Provider Impl ..343
Functional Area..343
Design Overview ...343
Function Level Description ..343
Locking Strategy ..344
Performance..344
Security..345

5 Web Services.. 347
Overview..347
Functional Description ...347
Sample WSDL..347

xxi

Preface
Oracle Retail Operations Guides are designed so that you can view and understand the
application’s ‘behind-the-scenes’ processing. This volume of the Oracle Retail
Merchandising System (RMS) Operations Guide includes the following information:
 Publication designs which describe, on a technical level, how RMS publishes

messages to the Oracle Retail Integration Bus (RIB).
 Subscription designs which describe, on a technical level, how RMS subscribes to

messages from the RIB.

Audience
This operations guide is designed for System Analysts and Database Administrators who
are looking for technical descriptions of data processes by functional area.

Related Documents
For more information, see the following documents:
Oracle Retail Integration Bus 13.0.2.1 Installation Guide
Oracle Retail Integration Bus 13.0.2.1 Integration Guide
Oracle Retail Integration Bus 13.0.2.1 Release Notes
Oracle Retail Invoice Matching 13.0.2 Data Model
Oracle Retail Invoice Matching 13.0.2 Defect Reports
Oracle Retail Invoice Matching 13.0.2.1 Installation Guide
Oracle Retail Invoice Matching 13.0.2.1 Online Help
Oracle Retail Invoice Matching 13.0.2.1 Operations Guide
Oracle Retail Invoice Matching 13.0.2.1 Release Notes
Oracle Retail Invoice Matching 13.0.2.1 User Guide
Oracle Retail Merchandising 13.0.2 Batch Schedule
Oracle Retail Merchandising 13.0.2.1 Implementation Guide
Oracle Retail Merchandising System 13.0.2 Data Model
Oracle Retail Merchandising System 13.0.2 Defect Reports
Oracle Retail Merchandising System 13.0.2.1 Installation Guide
Oracle Retail Merchandising System 13.0.2.1 Online Help
Oracle Retail Merchandising System 13.0.2.1 Operations Guide (Volumes 1 - 3)
Oracle Retail Merchandising System 13.0.2.1 Release Notes
Oracle Retail Merchandising System 13.0.2.1 Reports User Guide
Oracle Retail Merchandising System 13.0.2.1 User Guide
Oracle Retail Sales Audit 13.0.2.1 User Guide

xxii

Customer Support
To contact Oracle Customer Support, access My Oracle Support at the following URL:
https://metalink.oracle.com
When contacting Customer Support, please provide the following:
 Product version and program/module name
 Functional and technical description of the problem (include business impact)
 Detailed step-by-step instructions to re-create
 Exact error message received
 Screen shots of each step you take

Review Patch Documentation
If you are installing the application for the first time, you install either a base release (for
example, 13.0) or a later patch release (for example, 13.0.2). If you are installing a
software version other than the base release, be sure to read the documentation for each
patch release (since the base release) before you begin installation. Patch documentation
can contain critical information related to the base release and code changes that have
been made since the base release.

Oracle Retail Documentation on the Oracle Technology Network
In addition to being packaged with each product release (on the base or patch level), all
Oracle Retail documentation is available on the following Web site (with the exception of
the Data Model which is only available with the release packaged code):
http://www.oracle.com/technology/documentation/oracle_retail.html
Documentation should be available on this Web site within a month after a product
release. Note that documentation is always available with the packaged code on the
release date.

Conventions
Navigate: This is a navigate statement. It tells you how to get to the start of the procedure
and ends with a screen shot of the starting point and the statement “the Window Name
window opens.”

Note: This is a note. It is used to call out information that is
important, but not necessarily part of the procedure.

This is a code sample
 It is used to display examples of code

A hyperlink appears like this.

https://metalink.oracle.com/
http://www.oracle.com/technology/documentation/oracle_retail.html

Operations Guide - Volume 2 - Message Publication and Subscription Design 1

1
Publication Designs

Allocations Publication API

Functional Area
Allocations

Design Overview
RMS is responsible for communicating allocation information with external systems such
as a warehouse management system (RWMS, for example). Allocations include context
information at the header level. The context_type defines the business reason for the
allocation, thus allowing users to distinguish one form of allocation from another. For
example, when the context of an allocation is promotion (that is, when the allocation is
being created to support an RPM promotion), the ID of the promotion being supported is
attached to the allocation.
Allocation data can enter RMS through the following three ways:
 Through the Oracle Retail Allocation product

These allocations are written to the ALLOC_HEADER and ALLOC_DETAIL tables
in ‘R’eserved or ‘A’pproved status. Once a detail and a header message have been
queued and approved, a message is published to the RIB. Detail modification
messages for allocations are not sent to the RIB.

 Through the semi-automatic ordering option
Via this replenishment method, allocations and orders are inserted into the
ALLOC_HEADER and ALLOC_DETAIL tables in worksheet status to be manually
approved. In order for allocation messages to be published to the RIB, the allocation
must at least be in ‘A’pproved status. Worksheet messages remain on the queue and
combined until they are approved. Once approval occurs, one create message is
published to the RIB.

 Through automatic replenishment allocations
These allocations are initially set in worksheet status and are approved by the
RPLAPPRV.PC batch program (Replenishment Approve). Only messages for
approved allocations are published to the RIB.

Modified and deleted allocation information is also sent to the RIB. Allocation header
modification messages will be sent if the status of the allocation is changed to ‘C’losed.
Allocation detail modification messages will be sent for those allocations that were
created via replenishment. Delete messages are ignored at the detail level. A header
delete message signifies that the complete allocation can be deleted.

Functionality Checklist

Description RMS RIB

RMS must publish Allocations information

Create new Publisher X X

Publication Designs

2 Oracle Retail Merchandising System

Form Impact
None

Business Object Records
Create the following record types in the RMSSUB_ALLOC package body:
TYPE rowid_TBL is table of ROWID
INDEX BY BINARY_INTEGER;

TYPE alloc_details_pub_TBL is table of ALLOC_DETAILS_PUBLISHED.ALLOC_NO%TYPE
 INDEX BY BINARY_INTEGER;

TYPE alloc_details_pub_to_loc_TBL is table of
ALLOC_DETAILS_PUBLISHED.TO_LOC_VIR%TYPE
 INDEX BY BINARY_INTEGER;

Package Impact

Create Header
1. Prerequisites: Allocation can be created in one of three manners: via the stand-alone

allocations product, semi-automatic ordering, or automatic ordering replenishment.
2. Activity Detail: Once an allocation exists in RMS it can be modified or details can be

attached.
3. Messages: When an allocation is created an “Allocation Create” message request is

queued. The Allocation Created message is a flat message containing a full snapshot
of the allocation at the time the message is published (asynchronously from the
modification). The message will not be sent until detail records have been queued
and the allocation has been approved.

Modify Header
1. Prerequisites: An allocation must exist before it can be modified.
2. Activity Detail: The user is allowed to change the status of the allocation to

‘A’pproved or ‘C’losed. This change is of interest to other systems and so this activity
results in the publication a message. Messages are only written for changes created
by replenishment.

3. Messages: When an allocation is modified, an “Allocation Header Modified
message” request is queued. The Allocation Header Modified message is a flat
message containing a full snapshot of the allocation header at the time the message is
published (asynchronously from the modification).

Create Detail
1. Prerequisites: An allocation header must exist before and allocation detail can be

created and it can be loaded into RMS. Once in RMS, the allocation can only be
modified by having its allocated quantity changed.

2. Activity Detail: When an “Allocation Detail Create” message is queued it could be
the first time systems external to Oracle Allocation and RMS might have any interest
at all in the existence of the allocation, so this is the first part of the life cycle of an
allocation that is published if a “Create Header” message is also on the queue for the
same allocation.

Allocations Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 3

3. Messages: When an allocation detail is created, an “Allocation Detail Created
message” request is queued. The Allocation Create message is a flat message
containing a full snapshot of the allocation at the time the message is published
(asynchronously from the modification). If an Allocation Create message is also in
the queue for the same allocation, the two messages are combined and sent as one
message.

Modify Detail
1. Prerequisites: An allocation detail must exist to be modified.
2. Activity Detail: The user is allowed to change allocation quantities provided they are

not reduced below those already recorded as received. This change is of interest to
other systems and so this activity results in the publication of a message. Messages
are only written for changes created by replenishment.

3. Messages: When an allocation is modified an “Allocation Detail Modified message”
request is queued. The Allocation Detail Modified message is a flat message
containing a full snapshot of the allocation detail at the time the message is published
(asynchronously from the modification).

Approve
1. Prerequisites: An allocation must exist in RMS before it can be approved for

replenishment allocations. Those direct from the allocations product can be entered
into RMS in approved status.

2. Activity Detail: Once an allocation as been approved, it will be the first time systems
external to Allocations and RMS might have any interest at all in the existence of the
allocation, so this is the first part of the life cycle of an allocation that is published if a
“Create Header” message is also on the queue for the same allocation.

3. Messages: When the allocation is approved an “Allocation Header Modification”
message is queued. This message will be combined with any Allocation Create and
Allocation Detail Create message to form the message that is sent to the RIB.

Close
1. Prerequisites: An allocation must be approved before it can be closed.
2. Activity Detail: Closing an allocation changes the status, which prevents further

receiving or modification of the allocation. When an allocation is closed a message is
published to update other systems regarding the status change.

3. Messages: Closing an allocation queues a “Allocation Header Modified message”
request. This is a flat message containing a full snapshot of the allocation at the time
that the message is published (asynchronously from the activity).

Delete
1. Prerequisites: An allocation can only be deleted when it is still in approved status or

when it has been closed. Note that if the allocation is in closed status, it still cannot be
deleted if either a create or modify message, which need to take full snapshots, are
pending for the allocation.

2. Activity Detail: Deleting an allocation removes it from the system. External systems
are notified by a published message.

3. Message: When an allocation is deleted an Allocation Header Deleted message,
which is a flat notification message, is queued.

Publication Designs

4 Oracle Retail Merchandising System

Package Name: RMSMFM_ALLOC

Body File Name: rmsmfm_allocb.pls

Package Specification – Global Variables
FAMILY CONSTANT VARCHAR2(30) := 'alloc';

HDR_ADD CONSTANT VARCHAR2(30) := 'AllocCre';
HDR_UPD CONSTANT VARCHAR2(30) := 'AllocHdrMod';
HDR_DEL CONSTANT VARCHAR2(30) := 'AllocDel';
DTL_ADD CONSTANT VARCHAR2(30) := 'AllocDtlCre';
DTL_UPD CONSTANT VARCHAR2(30) := 'AllocDtlMod';
DTL_DEL CONSTANT VARCHAR2(30) := 'AllocDtlDel';

Functional Level Description – ADDTOQ
FUNCTION ADDTOQ (O_error_msg OUT VARCHAR2,
 I_message_type IN ALLOC_MFQUEUE.MESSAGE_TYPE%TYPE,
 I_alloc_no IN ALLOC_HEADER.ALLOC_NO%TYPE,
 I_alloc_header_status IN ALLOC_HEADER.STATUS%TYPE,
 I_to_loc IN ITEM_LOC.LOC%TYPE)

This function is called by both the alloc_header trigger and the alloc_detail trigger,
ec_table_alh_aiudr and ec_table_ald_aiudr respectively.
 For header level insert messages (HDR_ADD), insert a record in the

ALLOC_PUB_INFO table. The published flag should be set to ‘N’. The correct thread
for the Business transaction should be calculated and written. Call
API_LIBRARY.RIB_SETTINGS to get the number of threads used for the publisher.
Using the number of threads, and the Business object id, calculate the thread value.

 For all records except header level inserts (HDR_ADD), the thread_no and
initial_approval_ind should be queried from the ALLOC_PUB_INFO table.

 If the Business transaction has not been approved (initial_approval_ind = ‘N’) and
the triggering message is one of DTL_ADD, DTL_UPD, DTL_DEL, HDR_DEL, no
processing should take place and the function should exit.

 For detail level message deletes (DTL_DEL), we only need one (the most recent)
record per detail in the ALLOC_MFQUEUE. Delete any previous records that exist
on the ALLOC_MFQUEUE for the record that has been passed. If the publish_ind is
‘N’, do not add the DTL_DEL message to the queue.

 For detail level message updates (DTL_UPD), we only need one DTL_UPD (the most
recent) record per detail in the ALLOC_MFQUEUE. Delete any previous DTL_UPD
records that exist on the ALLOC_MFQUEUE for the record that has been passed.

 For header level delete messages (HDR_DEL), delete every record in the queue for
that allocation.

 For header level update message (HDR_UPD), update the
ALLOC_PUB_INFO.INITIAL_APPROVAL_IND to ‘Y’ if the allocation is in
approved status.

 For all records except header level inserts (HDR_ADD), insert a record into the
ALLOC_MFQUEUE.

It returns a status code of API_CODES.SUCCESS if successful,
API_CODES.UNHANDLED_ERROR if not.

Allocations Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 5

Functional Level Description – GETNXT
PROCEDURE GETNXT(O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_RIB_obj_id OUT RIB_RIBOBJID_TBL,
 O_routing_info OUT RIB_ROUTINGINFO_TBL,
 I_num_threads IN NUMBER DEFAULT 1,
 I_thread_val IN NUMBER DEFAULT 1)

The RIB calls GETNXT to get messages. It performs a cursor loop on the unpublished
records on the ALLOC_MFQUEUE table (PUB_STATUS = ‘U’). It should only need to
execute one loop iteration in most cases. For each record retrieved, GETNXT gets the
following:
1. A lock of the queue table for the current Business object. The lock is obtained by

calling the function LOCK_THE_BLOCK. If there are any records on the queue for
the current Business object that are already locked, the current message is skipped.

2. The published indicator from the ALLOC_PUB_INFO table.
3. A check for records on the queue with a status of ‘H’ospital. If there are any such

records for the current Business object, GETNXT raises an exception to send the
current message to the Hospital.

The loop will need to execute more than one iteration for the following cases:
1. When a header delete message exists on the queue for a Business object that has not

been initially published. In this case, simply remove the header delete message from
the queue and loop again.

2. A detail delete message exists on the queue for a detail record that has not been
initially published. In this case, simply remove the detail delete message from the
queue and loop again.

3. The queue is locked for the current Business object
The information from the ALLOC_MFQUEUE and ALLOC_PUB_INFO table is passed to
PROCESS_QUEUE_RECORD. PROCESS_QUEUE_RECORD will build the Oracle Object
message to pass back to the RIB. If PROCESS_QUEUE_RECORD does not run
successfully, GETNXT raises an exception.
If any exception is raised in GETNXT, including the exception raised by an unsuccessful
call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS is called.

Function Level Description – PUB_RETRY

PROCEDURE PUB_RETRY
Same as GETNXT except:
It only loops for a specific row in the ALLOC_MFQUEUE table. The record on
ALLOC_MFQUEUE must match the passed in sequence number (contained in the
ROUTING_INFO).

Function Level Description – PROCESS_QUEUE_RECORD (local)
This function controls the building of Oracle Objects given the Business transaction’s key
values and a message type. It contains all of the shared processing between GETNXT and
PUB_RETRY.

Publication Designs

6 Oracle Retail Merchandising System

Check to see if the Business object is being published for the first time. If the
published_ind on the pub_info table is ‘N’, the Business object is being published for the
first time. If so, call MAKE_CREATE.
Otherwise,
If the record from ALLOC_MFQUEUE table is a header update (HDR_UPD)
 Call BUILD_HEADER_OBJECT to build the Oracle Object to publish to the RIB.
 Update ALLOC_PUB_INFO with updated new header information
 Build the ROUTING_INFO.
 Delete the record from the ALLOC_MFQUEUE table.

If the record from ALLOC_MFQUEUE table is a detail add or update (DTL_ADD,
DTL_UPD)
 Call BUILD_DETAIL_CHANGE_OBJECTS to build the Oracle Object to publish to

the RIB. This will also take care of any ALLOC_MFQUEUE deletes and
ROUTING_INFO logic.

If the record from ALLOC_MFQUEUE table is a detail delete (DTL_DEL)
 Call BUILD_DETAIL_DELETE_OBJECTS to build the Oracle Object to publish to the

RIB. This will also take care of any ALLOC_MFQUEUE and
ALLOC_DETAILS_PUBLISHED deletes and the ROUTING_INFO logic.

Function Level Description – MAKE_CREATE (local)
This function is used to create the Oracle Object for the initial publication of a Business
transaction.
 Call BUILD_HEADER_OBJECT to get a header level Oracle Object plus any extra

functional holders.
 Build some or all of the ROUTING_INFO Oracle Object.
 Call BUILD_DETAIL_OBJECTS to get a table of detail level Oracle objects and a table

of ALLOC_MFQUEUE rowids to delete.
 Use the header level Oracle Object and functional holders to update the

ALLOC_PUB_INFO.
 Delete records from the ALLOC_MFQUEUE for all rowids returned by

BUILD_DETAIL_OBJECTS. Deletes are done by rowids instead of Business
transaction keys to ensure that noting is deleted off the queue that has not been
published.

 If the entire Business transaction was added to the Oracle Object, also delete the
ALLOC_MFQUEUE record that was picked up by GETNXT. If the entire Business
transaction was not published, we need to leave something on the
ALLOC_MFQUEUE to ensure that the rest of it is picked up by the next call to
GETNXT.

 The header and detail level Oracle Objects are combined and returned.

Allocations Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 7

Function Level Description – BUILD_HEADER_OBJECT (local)
Accepts header key values, performs necessary lookups, builds and returns a header
level Oracle Object.
Optionally can return needed Functional Holders for the ALLOC_PUB_INFO table.
The C_ALLOC_HEAD cursor is modified to select the context fields (context and value)
off the alloc_header table.
The context fields will be passed along in the parameter list of the rib object constructor
“RIB_AllocDesc_REC()”.

Function Level Description – BUILD_DETAIL_OBJECTS (local)
The function is responsible for building detail level Oracle Objects. It builds as many
detail Oracle Object as it can given the passed in message type and Business object keys.
If the function is being called from MAKE_CREATE:
Select any unpublished detail records from the Business transaction (use an indicator on
the functional detail table itself or ALLOC_DETAILS_PUBLISHED). Create Oracle
Objects for details that are selected by calling BUILD_SINGLE_DETAIL.
 Ensure that the indicator in the functional detail table is updated as published as the

detail info are placed into the Oracle Objects
 Ensure that ALLOC_MFQUEUE is deleted as needed. If there is more than one

ALLOC_MFQUEUE record for a detail level record, make sure they all get deleted.
We only care about current state, not every change.

 Ensure that ROUTING_INFO is constructed if routing information is stored at the
detail level in the Business transaction.

 Ensure that no more than MAX_DETAILS_TO_PUBLISH records are put into Oracle
Objects.

 Ensure that the detail records being added to the object have not already been
published. This can happen if GETNXT was previously called for the current
Business object, and the MAX_DETAILS_TO_PUBLISH limit had been reached. We
ensure these details do not get added again by looking at the indicator in the
functional detail table.

If the function is not being called from MAKE_CREATE:
Select any details on the ALLOC_MFQUEUE that are for the same Business transaction
and for the same message type. Create Oracle Objects for details that are selected by
calling BUILD_SINGLE_DETAIL.
 If the message type is a detail create (DTL_ADD), ensure that records get inserted

into ALLOC_DETAILS_PUBLISHED or the indicator in the functional detail table is
updated as published because the detail info are placed into the Oracle Objects.

 Ensure that ALLOC_MFQUEUE is deleted from as needed.
 Ensure that ROUTING_INFO is constructed if routing information is stored at the

detail level in the Business transaction.
 Ensure that no more than MAX_DETAILS_TO_PUBLISH records are put into Oracle

Objects.
The deletes are done by ROWID to make sure that records from the queue table that has
not been published are not deleted.

Publication Designs

8 Oracle Retail Merchandising System

Function Level Description – BUILD_SINGLE_DETAIL (local)
Accept inputs and build a detail level Oracle Object. Perform any lookups needed to
complete the Oracle Object.

Function Level Description – BUILD_DETAIL_CHANGE_OBJECTS (local)
Either pass in a header level Oracle Object or call BUILD_HEADER_OBJECT to build
one.
Call BUILD_SINGLE_DETAIL to get the detail level Oracle Objects.
Perform any BULK DML statements given the output from BUILD_ DETAIL_OBJECTS.
Build any ROUTING_INFO as needed.

Function Level Description – BUILD_DETAIL_DELETE_OBJECTS (local)
Either pass in a header level ref Oracle Object or build a header level ref Oracle Object.
Perform a cursor for loop on ALLOC_MFQUEUE and build as many detail ref Oracle
Objects as possible without exceeding the MAX_DETAILS_TO_PUBLISH.
Perform any BULK DML statements for deletion from ALLOC_MFQUEUE and update
to ALLOC_DETAILS_PUBLISHED.
Build any ROUTING_INFO as needed.

Function Level Description – LOCK_THE_BLOCK (local)
This function locks all queue records for the current Business object. This is to ensure that
GETNXT does not wait on any business processes that currently have the queue table
locked and have not committed. This can occur because ADDTOQ, which is called from
the triggers, deletes from the queue table for DTL_UPD, DTL_DEL, and HDR_DEL
messages.

Function Level Description – HANDLE_ERRORS (local)
HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is
raised.
If the error is a non-fatal error, GETNXT passes the sequence number of the driving
ALLOC_MFQUEUE record back to the RIB in the ROUTING_INFO. It sends back a
status of ‘H’ospital to the RIB as well. It then updates the status of the queue record to
‘H’ospital, so that it will not get picked up again by the driving cursor in GETNXT.
If the error is a fatal error, a status of ‘E’rror is returned to the RIB.
The error is considered non-fatal if no DML has occurred yet. Whenever DML has
occurred, then the global variable LP_error_status is flipped from ‘H’ospital to ‘E’rror.

Function Level Description – DELETE_QUEUE_REC (local)
This function deletes a specific record on ALLOC_MFQUEUE table depending on the
seq_no.

Function Level Description – GET_ROUTING_TO_LOCS (local)
This function will get all the values of to_loc_vir from alloc_details_published table
depending on a given alloc number.
Perform a cursor for loop that will populate the oracle object RIB_ROUTINGINFO_TBL.

Allocations Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 9

Function Level Description – GET_NOT_BEFORE_DAYS (local)
This function will get data from code_detail table and checks if the variable
(LP_nbf_days) has a value or not. If there is no value, it will populate the variable then
assign this value to the variable O_days.

Function Level Description – GET_RETAIL (local)
This function will accept inputs and pass it to PRICING_ATTRIB_SQL.GET_RETAIL
function to get the retail value of the item.

Function Level Description – CHECK_STATUS (local)
CHECK_STATUS raises an exception if the status code is set to 'E'rror. This should be
called immediately after calling a procedure that sets the status code. Any procedure that
calls CHECK_STATUS must have its own exception handling section.

Trigger Impact
Create a trigger on the ALLOC_HEADER table to capture Inserts, Updates, and Deletes.

Trigger name: EC_TABLE_ALD_AIUDR

Trigger file name: ec_table_ald_aiudr.trg

Table: ALLOC_DETAIL
Inserts
 Send the ALLOC detail level info to the ADDTOQ procedure in the MFM with the

message type RMSMFM_ALLOC.DTL_ADD and the original message.
Updates
 Send the ALLOC detail level info to the ADDTOQ procedure in the MFM with the

message type RMSMFM_ALLOC.DTL_UPD and the original message.
Deletes
 Send the ALLOC detail level info to the ADDTOQ procedure in the MFM with the

message type RMSMFM_ALLOC.DTL_DEL and the original message.

Message XSD
Here are the filenames that correspond with each message type. Please consult the
mapping documents for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

AllocCre Allocation Create Message AllocDesc.xsd

AllocHdrMod Allocation Header Modify Message AllocHdrDesc.xsd

AllocDel Allocation Delete Message AllocRef.xsd

AllocDtlCre Allocation Detail Create Message AllocDtlDesc.xsd

AllocDtlMod Allocation Detail Modify Message AllocDtlDesc.xsd

AllocDtlDel Allocation Detail Delete Message AllocDtlRef.xsd

Publication Designs

10 Oracle Retail Merchandising System

Table Impact

TABLE SELECT INSERT UPDATE DELETE

ALLOC_PUB_INFO Yes Yes Yes No

ALLOC_MFQUEUE Yes Yes No Yes

ALLOC_DETAILS_PUBLISHED Yes Yes Yes Yes

ALLOC_HEADER Yes No No No

ALLOC_DETAIL Yes No No No

ITEM_MASTER Yes No No No

ITEM_TICKET Yes No No No

ITEM_LOC Yes No No No

WH Yes No No No

ORDHEAD Yes No No No

CODE_DETAIL Yes No No No

V_PACKSKU_QTY Yes No No No

Design Assumptions
 One of the primary assumptions in the current approach is that ease of code will

outweigh performance considerations. It is hoped that the ‘trickle’ nature of the flow
of data will decrease the need to dwell on performance issues and instead allow
developers to code in the easiest and most straight forward manner.

 The adaptor is only set up to call stored procedures, not stored functions. Any public
program then needs to be a procedure.

ASNOUT Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 11

ASNOUT Publication API

Business Overview
ASNOUT means the outbound message of Adavance Shipment Notification. The ASN
out message is used to ship the merchandise against transfers or allocations. This
message is published by RMS to store or warehouse.
Two new functionalities are added for Shipment in RMS 13 and they are:
1. RMS 13 Standard Edition on-line shipping/receiving.
2. RMS 13 Wholesale/Franchise Order Shipment and Return.

RMS 13 Standard Edition on-line Shipping/Receiving.
Two system options (ship_rcv_store and ship_rcv_wh) are introduced in RMS13 to
support RMS on-line shipment/receiving functionality. Those two parameters control
whether shipping/receiving will be conducted within RMS or outside of RMS (e.g. SIM
or WMS):
 Ship_rcv_store = ‘Y’ means SIM is NOT installed and shipping/receiving for stores

will be done in RMS.
 Ship_rcv_wh = ‘Y’ means WMS is NOT installed and shipping/receiving for

warehouses will be done in RMS.
Shipments created in RMS should be published to the RIB to allow the integration
subsystem application SIM or WMS to have visibility to the corporately created
shipment. In RMS13, a shipment publishing API is created to publish shipments as
ASNOut messages.
The possible scenarios for on-line shipping/receiving:

SIM Installed
(Yes/No)

WMS Installed
(Yes/No)

System Options
Settings

RMS Publishes
Shipments
(Yes/No)

Apps to subscribe to
the msg (SIM/WMS)

Yes Yes Ship_rcv_store = N

Ship_rcv_wh = N

No No

No No Ship_rcv_store = Y

Ship_rcv_wh = Y

No No

Yes No Ship_rcv_store = N

Ship_rcv_wh = Y

Yes – for warehouse-
to-store shipments

SIM

No Yes Ship_rcv_store = Y

Ship_rcv_wh = N

Yes – for store-to-
warehouse
shipments

WMS

RMS 13 Wholesale/Franchise Order Shipment and Return.
Wholesale/Franchise stores are a special kind of stores that are not ‘owned’ by the
company. From RMS, wholesale/franchise stores can order goods from company
warehouses; they can also return goods back to company warehouses. These orders and
returns are created as transfers in RMS.
SIM doesn’t actually manage any transactions for Wholesale/Franchise store. The
Shipping and Receiving of Wholesale/Franchise orders and returns are handled within
RMS from the Store perspective even if SIM is installed.

Publication Designs

12 Oracle Retail Merchandising System

If WMS or a separate warehouse system is installed, it needs to be able to receive a
Return from a Wholesale/Franchise Store when the returned goods arrive at the
warehouse. To do that, WMS needs to have an ASN Shipment number to receive against.
Since Shipments of Returns from Wholesale/Franchise stores to company warehouses
are created within RMS, RMS needs to publish those shipments for WMS to subscribe to.
Similar to on-line Shipping/Receiving, RMS13 is modified to publish shipments of
Wholesale/Franchise Returns to warehouses as ASNOut messages.

Functionality Checklist

Description RMS RIB

RIB to create an ASNOut publishing adaptor from RMS

RMS Shipments of regular transfers should be published to SIM
or WMS depending on if SIM or WMS is installed

 X

RMS shipments of Wholesale/Franchise Returns should go to
WMS only, not SIM.

 X

ASNOut messages created in RMS should NOT go back to RMS
again

 X

RMS to Publish the Shipments X

Form Impact
None

Business Object Records
None

Package Impact

Business Object ID
No change.

Package Name: RMSMFM_SHIPMENT

Spec File Name: rmsmfm_shipments.pls

Body File Name: rmsmfm_shipmentb.pls

Package Specification – Global Variables
No change.

ASNOUT Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 13

Function Level Description – ADDTOQ
Function ADDTOQ (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message_type IN SHIPMENT_PUB_INFO.MESSAGE_TYPE%TYPE,
 I_shipment IN SHIPMENT.SHIPMENT%TYPE,
 I_to_loc IN SHIPMENT.TO_LOC%TYPE,
 I_to_loc_type IN SHIPMENT.TO_LOC_TYPE%TYPE)

 Shipments created in RMS cannot be modified. Upon saving a shipment, the entire
shipment is published from RMS as one ASNOut message. As a result, RMS only
needs to support the ASNOut create message type (‘asnoutcre’) for shipment
publishing.

 Validate all the input parameters to this function against NULL. If any one has NULL
value then return from the function with the appropriate error message.

 Insert a record in the SHIPMENT_PUB_INFO table. The published flag should be set
to ‘U’. The correct thread for the business transaction should be calculated and
written. Call API_LIBRARY. GET_RIB_SETTINGS to get the number of threads used
for the publisher. Using the number of threads, and the business object id i.e.
shipment number, calculate the thread value.

Function Level Description – GETNXT
Procedure GETNXT (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_message_type IN OUT VARCHAR2,
 O_message IN OUT RIB_OBJECT,
 O_bus_obj_id IN OUT RIB_BUSOBJID_TBL,
 O_routing_info IN OUT RIB_ROUTINGINFO_TBL,
 I_num_threads IN NUMBER DEFAULT 1,
 I_thread_val IN NUMBER DEFAULT 1)

Make sure to initialize LP_error_status to API_CODES.HOSPITAL at the beginning of
GETNXT.
The RIB calls GETNXT to get messages. It performs a cursor loop on the unpublished
records on the SHIPMENT_PUB_INFO table (PUB_STATUS = ‘U’). It should only need
to execute one loop iteration in most cases. For each record retrieved, GETNXT gets the
following:
1. A lock of the queue table for the current business objects i.e. shipment number. The

lock is obtained by calling the function LOCK_THE_BLOCK. If there are any records
on the queue for the current business object that are already locked, the current
message is skipped.

2. A check for records on the queue with a status of ‘H’ospital. If there are any such
records for the current business object, GETNXT raises an exception to send the
current message to the Hospital.

3. The information from the SHIPMENT_PUB_INFO table is passed to
PROCESS_QUEUE_RECORD. PROCESS_QUEUE_RECORD will build the Oracle
Object message to pass back to the RIB. If PROCESS_QUEUE_RECORD does not run
successfully, GETNXT raises an exception.

4. If any exception is raised in GETNXT, including the exception raised by an
unsuccessful call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS is called.

5. Unconditionally exit from the loop after the successful processing of
PROCESS_QUEUE_RECORD function, assuming the shipment is published
successfully.

Publication Designs

14 Oracle Retail Merchandising System

If the O_message from PROCESS_QUEUE_RECORD is NULL then, send NO_MSG in
the status_code otherwise send the NEW_MSG in the status_code with the shipment
number as business object Id. Also, send the message type as “asnoutcre”.

Function Level Description – PUB_RETRY
Procedure PUB_RETRY (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_message_type IN OUT VARCHAR2,
 O_message IN OUT RIB_OBJECT,
 O_bus_obj_id IN OUT RIB_BUSOBJID_TBL,
 O_routing_info IN OUT RIB_ROUTINGINFO_TBL,
 I_ref_object IN RIB_OBJECT)

Same as GETNXT except:
The record on SHIPMENT_PUB_INFO must match the passed in sequence number
(contained in the ROUTING_INFO).

Function Level Description – PROCESS_QUEUE_RECORD (local)
Procedure
PROCESS_QUEUE_RECORD (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_message IN OUT NOCOPY RIB_OBJECT,
 O_routing_info IN OUT NOCOPY RIB_ROUTINGINFO_TBL,
 O_bus_obj_id IN OUT NOCOPY RIB_BUSOBJID_TBL,
 I_shipment IN SHIPMENT.SHIPMENT%TYPE,
 I_seq_no IN SHIPMENT_PUB_INFO.SEQ_NO%TYPE)

This function controls the building of Oracle Objects given the business transaction’s key
values and a message type. It contains all of the shared processing between GETNXT and
PUB_RETRY.
 The correct thread for the business transaction should be calculated and written. Call

API_LIBRARY. GET_RIB_SETTINGS to get the number of threads used for the
publisher. Using the number of threads, and the business object id i.e. shipment
number, calculate the thread value.

 Build the header and detail object by calling BUILD_HEADER_OBJECT.
 Delete the current record from the queue (i.e. shipment_pub_info table) by calling

DELETE_QUEUE_REC function.

Function Level Description – BUILD_HEADER_OBJECT (local)
Function
BUILD_HEADER_OBJECT (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_rib_asnoutdesc_rec IN OUT "RIB_ASNOutDesc_REC",
 O_routing_info IN OUT NOCOPY RIB_ROUTINGINFO_TBL,
 I_shipment IN SHIPMENT_PUB_INFO.SHIPMENT%TYPE)

 Take all necessary data from SHIPMENT table for the current shipment and put it
into a “RIB_ASNOutDesc_REC” object.

 Three routing information has to be sent to RIB through RIB_ROUTINGINFO_REC.
This rounting info is for, FROM location, TO location and source application (RMS)
from which RIB receives the information.

 If the destination location is Store then, set the asn_type as ‘C’ (Customer Store) and
get the information about the store by calling STORE_ATTRIB_SQL.GET_INFO. Else,
set the asn_type to ‘T’ (wh transfer) and get the information about WH by calling
WH_ATTRIB_SQL.GET_WH_INFO function.

 Call the BUILD_DETAIL_OBJECTS to get the details of the current shipment record.

ASNOUT Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 15

 The container_qty is a required field on the RIB object. So, RMS sends 1 instead of
NULL in SHIPMENT.NO_BOXES if it is NULL.

Function Level Description – BUILD_DETAIL_OBJECTS (local)
Function
BUILD_DETAIL_OBJECTS (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_rib_asnoutdistro_tbl IN OUT "RIB_ASNOutDistro_TBL",
 I_shipment_rec IN SHIPMENT%ROWTYPE)

The function is responsible for building detail level Oracle Objects. It builds as many
detail Oracle Object as it can given the passed in message type and business object keys.
 Fetch the detail records of the shipment from shipsku for the given shipment

number.
 If the distro_type is ‘T’ then, get the transfer details by calling

TSF_ATTRIB_SQL.GET_TSFHEAD_INFO function. Else, get the corresponding
allocation details from alloc_detail table for the current distro_no and to_location.

 If the frieght_code is ‘E’xpedite then, set the expedite flag to ‘Y’ otherwise ‘N’.
 Assign the above details into “RIB_ASNOutItem_REC”, “RIB_ASNOutCtn_REC”

and “RIB_ASNOutDistro_REC” records.
 The container_qty and container_id are the mandatory fields. RMS has to send “1”

for container_qty and “0” for container_id instead of NULL.

Function Level Description – LOCK_THE_BLOCK (local)
This function locks all queue records for the current business object. This is to ensure that
GETNXT does not wait on any business processes that currently have the queue table
locked and have not committed.

Function Level Description – HANDLE_ERRORS (local)
HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is
raised.
If the error is a non-fatal error, GETNXT passes the sequence number of the driving
SHIPMENT_PUB_INFO record back to the RIB in the ROUTING_INFO. It sends back a
status of ‘H’ospital to the RIB as well. It then updates the status of the queue record to
‘H’ospital, so that it will not get picked up again by the driving cursor in GETNXT.
If the error is a fatal error, a status of ‘E’rror is returned to the RIB.
The error is considered non-fatal if no DML has occurred yet. Whenever DML has
occurred, then the global variable LP_error_status is flipped from ‘H’ospital to ‘E’rror.

Function Level Description – DELETE_QUEUE_REC (local)
DELETE_QUEUE_REC is called from PROCESS_QUEUE_RECORD once a queue record
is formed from SHIPMENT_PUB_INFO table. This is just to not pick-up the same record
again.

Publication Designs

16 Oracle Retail Merchandising System

Trigger Impact

Trigger Name: EC_TABLE_SPT_AIR

Trigger File Name: ec_table_spt_air.trg

Tablep: SHIPMENT_PUB_TEMP
Create a trigger on the SHIPMENT_PUB_TEMP table to capture the Inserts.
 Send the appropriate column values to the ADDTOQ procedure in the MFM with the

message type “asnoutcre”.

Message XSD
Here is the filename that correspond with the message type. Please consult the RIB
documentation for this message type in order to get a detailed picture of the composition
of the message.

Message Types Message Type Description XML Schema Definition
(XSD)

asnoutcre ASN Out Create Message ASNOutDesc.xsd

Table Impact

TABLE SELECT INSERT UPDATE DELETE

SHIPMENT Yes No No No

SHIPSKU Yes No No No

SHIPMENT_PUB_INFO Yes Yes Yes Yes

TSFHEAD Yes No No No

ALLOC_DETAIL Yes No No No

Design Assumptions
 Push off all DML statements as late as possible. Once DML statements have taken

place, any error becomes a fatal error rather than a hospital error.

Banner Publication API

Business Overview
RMS publishes messages about banners and channels to the Oracle Retail Integration Bus
(RIB). A banner provides a means of grouping channels thereby allowing the customer to
link all brick and mortar stores, catalogs, and web stores. The BANNER table holds a
banner identifier and name. The CHANNELS table shows all channels and any
associated banner identifiers. In order to take advantage of banners and channels, the
retailer must run RMS in a multi-channel environment.

Banner Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 17

Note: To determine if your implementation of RMS is set up
to run a multi-channel environment, look at the
SYSTEM_OPTIONS table’s multichannel_ind column for the
value of ‘Y’ (Yes). If the multichannel_ind column’s value is
‘N’ (No), multi-channel is not enabled.

For more information about multi-channels, see the chapter “Organization Hierarchy
Batch” in volume 1 of this RMS Operations Guide.
The following diagram shows the structure of banners and channels within corporations.

Channel

Banner

Corporation Smith Corporation

Smith for Men Smith for
Women

Mail-order
catalog

Brick &
Mortar
Store

Webstore Mail-order
catalog

Brick &
Mortar
Store

Webstore

Banners and channels within a corporation

Banner/channel publication consists of a single flat message containing information from
the tables BANNER and CHANNELS. One message will be synchronously created and
placed in the message queue each time a record is created, modified, or deleted. When a
record is created or modified, the flat message will contain several attributes of the
banner/channel. When a record is deleted, the message will simply contain the unique
identifier of the banner/channel. Messages are retrieved from the message queue in the
order they were created.

Functionality Checklist

Description RMS RIB

RMS must publish Banner/Channel information

Create new Publisher X X

Form Impact
None

Business Object Records
None

Publication Designs

18 Oracle Retail Merchandising System

Package Impact

Create
1. Prerequisites: For channel creation, the associated banner must have been created.
2. Activity Detail: Once a banner/channel has been created, it is ready to be published.

An initial publication message is made.
3. Messages: A “Banner Create” / “Channel Create” message is queued. This message

is a flat message that contains a full snapshot of the attributes on the BANNER or
CHANNEL table.

Modify
1. Prerequisites: banner/channel has been created.
2. Activity Detail: The user is allowed to change attributes of the banner/channel.

These changes are of interest to other systems and so this activity results in the
publication of a message.

3. Messages: Any modifications will cause a “banner modify” / channel modify”
message to be queued. This message contains the same attributes as the “banner
create” / “channel create” message.

Delete
1. Prerequisites: banner/channel has been created.
2. Activity Detail: Deleting a banner/channel removes it from the system. External

systems are notified by a published message.
3. Messages: When a banner/channel is deleted, a “Banner Delete” / “Channel Delete”

message, which is a flat notification message, is queued. The message contains the
banner/channel identifier.

Package name: RMSMFM_banner

Spec file name: rmsmfm_banners.pls

Body file name: rmsmfm_bannerb.pls

Package Specification – Global Variables
None

Function Level Description – ADDTOQ
Procedure: ADDTOQ
 (O_status OUT VARCHAR2,
 O_text OUT VARCHAR2,

 I_message_type IN BANNER_MFQUEUE.MESSAGE_TYPE%TYPE,
 I_banner_id IN CHANNELS.BANNER_id%TYPE,
 I_channel_id IN CHANNELS.CHANNEL_ID%TYPE,
 I_message IN CLOB)

This procedure is called by EC_TABLE_BAN_AIUDR and EC_TABLE_CHN_AIUDR,
and takes the message type, banner ID, channel ID (NULL if called from
EC_TABLE_BAN_AIUDR) and the message itself. It inserts a row into the message
family queue BANNER_MFQUEUE along with the passed in values and the next
sequence number from the message family sequence, setting the status to unpublished. It
returns a status code of API_CODES.SUCCESS if successful,
API_CODES.UNHANDLED_ERROR if not.

Banner Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 19

Function Level Description – GETNXT
Procedure: GETNXT
 (O_STATUS_CODE OUT VARCHAR2,
 O_ERROR_MSG OUT VARCHAR2,
 O_MESSAGE_TYPE OUT VARCHAR2,
 O_MESSAGE OUT CLOB,
 O_banner_id OUT NUMBER,
 O_channel_id OUT NUMBER)

This publicly exposed procedure is typically called by a RIB publication adaptor. Its
parameters are well defined and arranged in a specific order. The message type is the RIB
defined short message name. The message is the XML message. The family key consists
of the banner ID, which will be populated for all message types, and the channel ID,
which can be NULL.
The error text parameter contains application-generated information, such as the
application’s sequence number of the message that failed, and the Oracle or other error
that occurred when the retrieval failed.

Function Level Description – GETNXT(local)
This procedure fetches the row from the message queue table that has the lowest
sequence number. The message is retrieved, then the row is removed from the queue.

Publication Designs

20 Oracle Retail Merchandising System

Trigger Impact
Create a trigger on the banner and channels tables to capture inserts, updates, and
deletes.

Trigger name: EC_TABLE_BAN_AIUDR.TRG

Trigger file name: ec_table_ban_aiudr.trg

Table: BANNER
This trigger will capture inserts/updates/deletes to the BANNER table and write data
into the BANNER_MFQUEUE message queue. It will call
BANNER_XML.BUILD_MESSAGE to create the XML message, and then call
RMSMFM_BANNER.ADDTOQ to insert this message into the message queue.
Inserts
 Send banner info to the ADDTOQ procedure in the MFM with the message type

RMSMFM_FAMILY.BannerDesc and the original message.
Updates
 Send banner info to the ADDTOQ procedure in the MFM with the message type

RMSMFM_FAMILY.BannerDesc and the original message
Deletes
 Send banner info to the ADDTOQ procedure in the MFM with the message type

RMSMFM_FAMILY.BannerRef and the original message.

Trigger name: EC_TABLE_CHN_AIUDR.TRG

Trigger file name: ec_table_chn_aiudr.trg

Table: CHANNELS
This trigger will capture inserts/updates/deletes to the CHANNELS table and write data
into the BANNER_MFQUEUE message queue. It will call
CHANNEL_XML.BUILD_MESSAGE to create the XML message, then call
RMSMFM_BANNER.ADDTOQ to insert this message into the message queue.
Inserts
 Send channel info to the ADDTOQ procedure in the MFM with the message type

RMSMFM_FAMILY.ChannelDesc and the original message
Updates
 Send channel info to the ADDTOQ procedure in the MFM with the message type

RMSMFM_FAMILY.ChannelDesc and the original message.
Deletes
 Send channel info to the ADDTOQ procedure in the MFM with the message type

RMSMFM_FAMILY.ChannelRef and the original message.

Banner Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 21

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

BannerCre Banner Create Message BannerDesc.xsd

BannerMod Banner Modify Message BannerDesc.xsd

BannerDel Banner Delete Message BannerRef.xsd

ChannelsCre Channels Create Message ChannelDesc.xsd

ChannelsMod Channels Modify Message ChannelDesc.xsd

ChannelsDel Channels Delete Message ChannelRef.xsd

Table Impact

TABLE SELECT INSERT UPDATE DELETE

BANNER_MFQUEUE Yes Yes No Yes

Design Assumptions
 One of the primary assumptions in the current approach is that ease of code will

outweigh performance considerations. It is hoped that the ‘trickle’ nature of the flow
of data will decrease the need to dwell on performance issues and instead allow
developers to code in the easiest and most straight forward manner.

 The adaptor is only setup to call stored procedures, not stored functions. Any public
program then needs to be a procedure.

Publication Designs

22 Oracle Retail Merchandising System

Differentiator Groups Publication API

Business Overview
Differential group publication consists of a single flat message containing differential
group attributes from the tables DIFF_GROUP_HEAD and DIFF_GROUP_DETAIL. One
message will be synchronously created and placed in the message queue each time a
differential group (DIFF_GROUP_HEAD) is created, modified, or deleted or when a
differentiator (DIFF_GROUP_DETAIL) is created, modified, or deleted from a
differential group. When a differential group (DIFF_GROUP_HEAD) is created or
modified, the flat message will contain numerous attributes of the group. When a
differential group is deleted, the message will simply contain the unique identifier of the
group, diff_group_id. When a differentiator (diff_group_detail) is created or modified,
the flat message will contain numerous attributes of the differentiator. When a
differentiator is deleted, the message will simply contain the unique identifier of the
differential group and the differentiator, diff_group_id and diff_id. Messages are
retrieved from the message queue in the order they were created.

Functionality Checklist

Description RMS RIB

RMS must publish Differentiator Groups information

Create new Publisher X X

Form Impact
None

Business Object Records
None

Differentiator Groups Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 23

Package Impact

Create Diff_Group
4. Prerequisites: Diff_Group does not already exist.
5. Activity Detail: Any change to the DIFF_GROUP_HEAD table inserts a

DiffGrpHdrCre message_type record on the DIFFGRP_MFQUEUE table.
6. Messages: The DiffGrpHdrDesc message is created. It is a flat, synchronous message

containing a full snapshot of the diff_group at the time the message is published.

Modify Diff_Group
1. Prerequisites: Diff_Group exists.
2. Activity Detail: Any change to the DIFF_GROUP_HEAD table inserts a

DiffGrpHdrMod message_type record on the DIFFGRP_MFQUEUE table.
3. Messages: The DiffGrpHdrDesc message is created. It is a flat, synchronous

message containing a full snapshot of the diff_group at the time the message is
published.

Create Diff_Group_Detail
1. Prerequisites: A Diff_Group already exists, and the diff_id exists on diff_ids, but the

diff_id does not exist within the diff_group.
2. Activity Detail: Any Differentiators added to a diff_group inserts a record to the

DIFF_GROUP_HEAD table. A DiffGrpDtlCre message type record is also inserted on
the DIFFGRP_MFQUEUE table. A foreign key to the DIFF_GROUP_HEAD table
checks the existence of the diff_group the value is created to supplement.

3. Messages: DiffGrpDtlDesc message type is created. It is a hierarchical, synchronous
message containing a snapshot of the Diff_Group_Detail table at the time the
message is published.

Modify Diff_Group_Detail
1. Prerequisites: Diff_Group and the Diff_id within the diff_group (diff_group_detail

record) exist.
2. Activity Detail: Any change to the Differentiators within a diff_group modifies a

record to the DIFF_GROUP_HEAD table. A DiffGrpDtlMod message type record is
also inserted on the DIFFGRP_MFQUEUE table. A foreign key to the
Diff_Group_Head table checks the existence of the diff_group the value is created to
supplement

3. Messages DiffGrpDtlDesc message is created. It is a flat, synchronous message
containing a snapshot of the DIFF_GROUP_DETAIL table at the time the message is
published.

Publication Designs

24 Oracle Retail Merchandising System

Delete Diff_Group_Detail
1. Prerequisites: Diff_Group and the Diff_id within the diff_group (diff_group_detail

record) exists.
2. Activity Detail: Deleting a Differentiator from a Diff_Group removes it from the

DIFF_GROUP_DETAIL table and inserts a DiffGrpDtlDel row to the
DIFFGRP_MFQUEUE table.

3. Message: A DiffGrpDtlRef message is created. It is a flat, synchronous message
containing the primary key with which the external systems can remove it from their
systems.

Delete Diff_Group
1. Prerequisites: Diff_Group exists and a diff_id within the diff_group

(diff_group_detail record) may or may not exist.
2. Activity Detail: Deleting a Diff_Group removes it from the DIFF_GROUP_HEAD

table and inserts a DiffGrpDel row to the DIFFGRP_MFQUEUE table. Because the
differentiator_group_maintenance.fmb form in RMS automatically removes any
child records on the DIFF_GROUP_DETAIL table when the diff_group is removed,
there will be a row inserted to the DIFFGRP_MFQUEUE table for each
diff_group_detail record associated with the deleted diff_group as well. These will
receive the lower sequence numbers so that these will be acted upon first in the
message queue. They will look like the DELETE DIFF_GROUP_DETAIL message
detailed in the section above.

3. Message: A DiffGrpRef message is created for the diff_group only. It is a flat,
synchronous message containing the primary key with which the external systems
can remove it from their systems.

Package name: RMSMFM_DIFFGRP

Spec file name: rmsmfm_diffgrps.pls

Body file name: rmsmfm_diffgrpb.pls
Function Level Description – ADDTOQ
Function: ADDTOQ
 (O_status OUT VARCHAR2,
 O_text OUT VARCHAR2,
 I_message_type IN DIFFGRP_MFQUEUE.MESSAGE_TYPE%TYPE
 I_diff_group_id IN DIFFGRP_MFQUEUE.DIFF_GROUP_ID%TYPE,
 I_diff_id IN DIFFGRP_MFQUEUE.DIFF_ID%TYPE,
 I_message IN CLOB);

This procedure is called by an event capture trigger, and takes the message type, family
key values and, for synchronously captured messages, the message itself. It inserts a row
into the message family queue along with the passed in values and the next sequence
number from the message family sequence, setting the status to unpublished, or skip in
the case of consolidation messages. It returns error codes and strings according to the
standards of the application in which it is being implemented.

Differentiator Groups Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 25

Function Level Description – GETNXT
Procedure: GETNXT
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type OUT VARCHAR2,
 Message OUT CLOB,
 O_diff_group_id OUT DIFFGRP_MFQUEUE.DIFF_GROUP_ID%TYPE,
 O_diff_id OUT DIFFGRP_MFQUEUE.DIFF_ID%TYPE);

This publicly exposed procedure is typically called by a RIB publication adaptor. Its
parameters are well defined and arranged in a specific order. The message type is the RIB
defined short message name, the message is the xml message, and the family key(s) are
the key for the message as pertains to the family, not all of which will necessarily be
populated for all message types. Status code is one of five values, as shown in the
following table.
The error text parameter contains application-generated information, such as the
application’s sequence number of the message that failed, and the Oracle or other error
that occurred when the retrieval failed. The facility ID is only included in messages
coming from RWMS.

Trigger Impact
Create a trigger on the DIFF_GROUP_HEAD and DIFF_GROUP_DETAIL table to
capture inserts, updates, and deletes.

Trigger name: EC_TABLE_DGH_AIUDR.TRG

Trigger file name: ec_table_dgh_aiudr.trg

Table: Diff_Group_Head
Inserts
 Send the I_diff_group_id to the ADDTOQ procedure in the MFM with the message

type RMSMFM_FAMILY.
Updates
 Send the I_diff_group_id to the ADDTOQ procedure in the MFM with the message

type RMSMFM_FAMILY.
 Any change to the Diff_Group_Head table inserts a DiffGrpHdrCre message_type

record on the DIFFGRP_MFQUEUE table
Deletes
 Send the I_diff_group_id to the ADDTOQ procedure in the MFM with the message

type RMSMFM_FAMILY.

Publication Designs

26 Oracle Retail Merchandising System

Trigger name: EC_TABLE_DGD_AIUDR.TRG

Trigger file name: ec_table_dgd_aiudr.trg

Table: Diff_Group_Detail
Inserts
 Send the I_diff_group_id, I_diff_id to the ADDTOQ procedure in the MFM with the

message type RMSMFM_FAMILY.
Updates
 Send the I_diff_group_id, I_diff_id to the ADDTOQ procedure in the MFM with the

message type RMSMFM_FAMILY.
 Any Differentiators added to a diff_group inserts a record to the

DIFF_GROUP_HEAD table. A DiffGrpDtlCre message type record is also inserted on
the DIFFGRP_MFQUEUE table. A foreign key to the DIFF_GROUP_HEAD table
checks the existence of the diff_group the value is created to supplement.

Deletes
 Send the I_diff_group_id, I_diff_id to the ADDTOQ procedure in the MFM with the

message type RMSMFM_FAMILY.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

DiffGrpHdrCre Differentiator Header Create Message DiffGrpHdrDesc.xsd

DiffGrpHdrMod Differentiator Header Modify Message DiffGrpHdrDesc.xsd

DiffGrpHdrDel Differentiator Header Delete Message DiffGrpHdrRef.xsd

DiffGrpDtlCre Differentiator Detail Create Message DiffGrpDtlDesc.xsd

DiffGrpDtlMod Differentiator Detail Modify Message DiffGrpDtlDesc.xsd

DiffGrpDtlDel Differentiator Detail Delete Message DiffGrpDtlRef.xsd

Table Impact

TABLE SELECT INSERT UPDATE DELETE

DIFFGRP_MFQUEUE YES YES NO YES

Differentiator Groups Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 27

Design Assumptions
 It is not possible for a detail trigger to accurately know the status of a header table.
 In order for the detail triggers to accurately know when to add a message to the

queue, RMS should not allow approval of a business object while detail
modifications are being made.

 It is not possible for a header trigger or a detail trigger to know the status of anything
modified by GETNXT. If a header trigger or detail trigger is trying to delete queue
records that GETNXT currently has locked, it will have to wait until GETNXT is
finished and removes the lock. It is assumed that this time will be fairly short (at
most 2-3 seconds.) It is also assumed that this will occur rarely because it involves
updating/deleting detail records on a business object that has already been
approved. This also has to occur at the same time GETNXT is processing the current
business object.

 Delay all DML statements to as late a time as possible. Once DML statements have
taken place, any error becomes a fatal error rather than a hospital error.

Publication Designs

28 Oracle Retail Merchandising System

Differentiator ID Publication API

Business Overview
RMS publishes messages for diff identifiers (diff IDs), and diff groups.
When differentiators are created in RMS and need to be sent to other systems, they are
sent out via differentiator ID publication. When the external system receives information
about an item that includes the new diff ID, that system understands what the diff ID
refers to.
For a general discussion of differentiators, see the section ‘Diff Group’ in the chapter
“Subscription Design” in this volume of the RMS Operations Guide.

Diff Publication Concepts
Whenever RMS publishes item messages to the RIB, it can include all four diffs and their
types. For more information about RMS item message publication, see the section ‘Item’
in the chapter “Publication Design” in this volume of the RMS Operations Guide.

Diff Message Processes
Diff message publication processes begin whenever a trigger ‘fires’ on one of the diff
tables. When that occurs, the trigger extracts the affected row on the table and publishes
the data to the corresponding message family queue staging table. A total of nine
messages can be published; however, they group into these three categories:
 Group Header
 Group Details
 Diff IDs

Differentiator ID publication consists of a single flat message containing differentiator
attributes from the table DIFF_IDS. One message will be synchronously created and
placed in the message queue each time a differentiator (diff_ids) is created, modified, or
deleted. When a differentiator (diff_ids) is created or modified, the flat message will
contain numerous attributes of the differentiator. When a differentiator is deleted, the
message will simply contain the unique identifier of the differentiator, diff_id. Messages
are retrieved from the message queue in the order they were created.

Functionality Checklist

Description RMS RIB

RMS must publish Differentiator ID information

Create new Publisher X X

Differentiator ID Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 29

Package Impact
Create Diff_Id
1. Prerequisites: Diff_Id does not already exist.
2. Activity Detail: Any change to the Diff_Ids table inserts a DiffCre message_type

record on the DIFFID_MFQUEUE table.
3. Messages: The DiffDesc message is created. It is a flat, synchronous message

containing a full snapshot of the diff_id at the time the message is published.
Modify Diff_Id
1. Prerequisites: Diff_Id exists.
2. Activity Detail: Any change to the DIFF_IDS table inserts a DiffMod message_type

record on the DIFFID_MFQUEUE table.
3. Messages: The DiffDesc message is created. It is a flat, synchronous message

containing a full snapshot of the diff_id at the time the message is published.
Delete Diff_Id
1. Prerequisites: Diff_Id exists.
2. Activity Detail: Deleting a Diff_Id removes it from the diff_ids table and inserts a

DiffDel row to the DIFFID_MFQUEUE table.
3. Message: A DiffRef message is created. It is a flat, synchronous message containing

the primary key with which the external systems can remove it from their systems.

Package name: RMSMFM_DIFFID

Spec file name: rmsmfm_diffids.pls

Body file name: rmsmfm_diffidb.pls

Package Specification – Global Variables
None

Function Level Description – ADDTOQ
Function: ADDTOQ(O_status OUT VARCHAR2,
O_text OUT VARCHAR2,
I_message_type IN DIFFID_MFQUEUE.MESSAGE_TYPE%TYPE,
I_diff_id IN DIFFID_MFQUEUE.DIFF_ID%TYPE,
I_message IN CLOB)

This procedure called by EC_TABLE_DID_AIUDR , takes the message type, diff_id, and
the message itself. It inserts a row into the message family queue DIFFID_MFQUEUE
along with the passed in values and the next sequence number from the message family
sequence, setting the status to unpublished. It returns a status code of
API_CODES.SUCCESS if successful, API_CODES.UNHANDLED_ERROR if not.

Publication Designs

30 Oracle Retail Merchandising System

Function Level Description – GETNXT
Procedure: GETNXT(O_status_code OUT VARCHAR2,
O_error_msg OUT VARCHAR2,
O_message_type OUT VARCHAR2,
O_message OUT CLOB,
O_diff_id OUT DIFFGRP_MFQUEUE.DIFF_ID%TYPE)

This publicly exposed procedure is typically called by a RIB publication adaptor. Its
parameters are well defined and arranged in a specific order. The message type is the RIB
defined short message name, the message is the xml message, and the family key(s) are
the key for the message as pertains to the family, not all of which will necessarily be
populated for all message types.
The error text parameter contains application-generated information, such as the
application’s sequence number of the message that failed, and the Oracle or other error
that occurred when the retrieval failed.

Function Level Description – GETNXT(local)
This procedure fetches the row from the message queue table that has the lowest
sequence number. The message is retrieved, then the row is removed from the queue.

Trigger Impact
Create a trigger on the DIFF_IDS and DIFFID_MFQUEUE tables to capture Inserts,
Updates, and Deletes.

Trigger name: EC_TABLE_DID_AIUDR.TRG

Trigger file name: ec_table_did_aiudr.trg

Table: DIFF_IDs
DIFFID_XML. BUILD_MESSAGE (O_status, O_text, O_message, I_record, I_action_type)
– This function is called by the trigger EC_TABLE_DID_AIUDR on insert, update and
delete of the DIFF_IDS table. This function gathers all the data necessary to build the
message that needs to be sent to the Oracle Retail Integration Bus. It determines the
proper message to build based on the action_type that is sent in the trigger. It builds
DiffRef xml messages for delete statements, or DiffDesc xml messages for updates or
inserts.
Inserts
 Sets action_type to ‘A’dd and message_type to ‘DiffCre’.

Updates
 Sets action_type to ‘M’odify and message_type to ‘DiffMod’..

Deletes
 Sets action_type to ‘D’elete and message_type to ‘DiffDel’.

Differentiator ID Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 31

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

DiffCre Diffid Create Message DiffDesc.xsd

DiffMod Diffid Modify Message DiffDesc.xsd

DiffDel Diffid Delete Message DiffRef.xsd

Table Impact

TABLE SELECT INSERT UPDATE DELETE

DIFFID_MFQUEUE Yes Yes No Yes

Design Assumptions
 One of the primary assumptions in the current approach is that ease of code will

outweigh performance considerations. It is hoped that the ‘trickle’ nature of the flow
of data will decrease the need to dwell on performance issues and instead allow
developers to code in the easiest and most straight forward manner.

 The adaptor is only setup to call stored procedures, not stored functions. Any public
program then needs to be a procedure.

Publication Designs

32 Oracle Retail Merchandising System

Item

Business Overview
RMS publishes messages about items to the Oracle Retail Integration Bus (RIB). In
situations where a retailer creates a new item in RMS, the message that ultimately is
published to the RIB contains a hierarchical structure of the item itself along with all
components that are associated with that item. Items and item components make up
what is called the Items message family.
After the item creation message has been published to the RIB for use by external
applications, any modifications to the basic item or its components cause the publication
of individual messages specific to that component. Deletion of an item and component
records has similar effects on the message modification process, with the exception that
the delete message holds only the key(s) for the record.

Deposit items
A deposit item is a product that has a portion which is returnable to the supplier and
sold to the customer, with a deposit taken for the returnable portion. Because the
contents portion of the item and the container portion of the item have to be managed in
separate financial accounts (as the container item would be posted to a liabilities account)
with different attributes, the retailer must set up two separate items. All returns of used
deposit items (the returned item) are managed as a separate product, to track these
products separately and as a generic item not linked to the actual deposit item (for
example, bottles being washed and having no label).
The retailer can never put a container item on a transfer. Instead, the container item is
added to returns to vendors (RTVs) automatically when the retailer adds the associated
content item.
Deposit item attributes in RMS enable contents, container and crate items to be
distinguished from one another. Additionally, it is possible to link a contents item to a
container item for the purposes of inventory management.
In addition to contents and container items, many deposit items are delivered in plastic
crates, which are also given to the customer on a deposit basis. These crates are sold to a
customer as an additional separate product. Individual crates are not linked with
contents or container items. Crates are specified in the system with a deposit item
attribute.
From a receiving perspective, only the content item can be received. The receipt of a PO
shows the container item but the receipt of a transfer does not. Similar to RTV
functionality, online purchase order functionality automatically adds the container. The
system automatically replicates all transactions for the container item in the stock ledger.
In sum, for POs and RTVs, the container item is included; for transfers, no replication
occurs.

Catch-Weight Items
Retailers can order and manage products for the following types of catch-weight item:
 Type 1 – Purchase in fixed weight simple packs: sell by variable weight (for example,

bananas)
 Type 2 – Purchase in variable weight simple packs: sell by variable weight (for

example, ham on the bone sold on a delicatessen counter)

Item

Operations Guide - Volume 2 - Message Publication and Subscription Design 33

 Type 3 – Purchase in fixed weight simple packs containing a fixed number of eaches:
sell by variable weight eaches (for example, pre-packaged cheese)

 Type 4– Purchase in variable weight simple packs containing a fixed number of
eaches: sell by variable weight eaches (for example, pre-packaged sirloin steak)

Note: Oracle Retail suggests that catch-weight item cases be
managed through the standard simple pack functionality.

In order for catch-weight items to be managed in RMS, the following item attributes are
available:
 Cost UOM – All items in RMS will be able to have the cost of the item managed in a

separate unit of measure (UOM) from the standard UOM. Where this is in a different
UOM class from the standard UOM, case dimensions must be set up.

 Catch-weight item pack details – Tolerance values and average case weights are
stored for catch-weight item cases to allow the retailer to report on the sizes of cases
received from suppliers.

 Maximum catch-weight tolerance threshold
 Minimum catch-weight tolerance threshold

Retailers can set up the following properties for a catch-weight item:
 Order type
 Sale type

Retailers can also specify the following, at the item-supplier-country level:
 Cost unit of measure (CUOM)

Receiving and inventory movement impact on catch-weight items
Inventory transaction messages include purchase order receiving, stock order receiving,
returns to vendor, direct store delivery receiving, inventory adjustments and bill of
lading. These messages include attributes that represent, for catch-weight items, the
actual weight of goods involved in a transaction. These attributes are weight and weight
UOM.
When RMS subscribes to inventory transaction messages containing such weight data,
the transaction weight will be used for two purposes:
 To update weighted average cost (WAC) using the weight rather than the number of

units

and

 To update the average weight value of simple packs

Note: The WAC calculation does not apply to return to
vendors (RTVs).

Publication Designs

34 Oracle Retail Merchandising System

Item Transformation
Item transformation allows retailers to manage items where the actual transformation of
a product cannot be adequately recorded due to in-store processes.
With product transformation, new ‘transform’ items are set up as either sellable only or
orderable only.
 Sellable only items – A sellable only item has no inventory in the system, so

inventory records cannot be viewed from the item maintenance screens. Sellable only
items do not hold any supplier links and therefore have no cost prices associated
with them.

 Orderable only items – Orderable only items hold inventory, but are not sellable at
the POS system. Therefore, no information is sent to the POS system for these items,
and no unit retail prices by zone are held for these items.

To hold the relationship between the orderable items and the sellable items, RMS stores
the transformation details. These details are used to process sales and inventory
transactions for the items.
The following diagram shows how item transformation works:

Orderable item
(for example,
meat carcass)

Sellable item
(for example,

steak)

Sellable item
(for example,
ground beef)

Sellable item
(for example,

joint)

Break to Sell
Transformation

Item transformation

Item and Item Component Descriptions
The item message family is a logical grouping for all item data published to the RIB. The
components of item messages and their base tables in RMS are:
 Item from the ITEM_MASTER table
 Item-supplier from ITEM_SUPPLIER
 Item-supplier-country from ITEM_SUPP_COUNTRY
 Item-supplier-country-dimension from ITEM_SUPP_COUNTRY_DIM (DIM is the

each, inner, pallet, and case dimension for the item, as specified)
 Item-image from ITEM_IMAGE
 Item-UDA identifier-UDA value from UDA_ITEM_LOV (UDA is a user-defined

attribute and LOV is list of values)
 Item-UDA identifier from UDA_ITEM_DATE (for the item and UDA date)
 Item-UDA identifier from UDA_ITEM_FF (for UDA, free-format data beyond the

values for LOV and date)
 Item-pack components (Bill of Material [BOM]) from PACKITEM_BREAKOUT

Item

Operations Guide - Volume 2 - Message Publication and Subscription Design 35

 Item UPC reference from ITEM_MASTER.ITEM_NUMBER_TYPE (values held as
code type ‘UPCT’ on code_head and code_detail tables)

 Item ticket from ITEM_TICKET

New Item Message Processes
The creation of a new item in RMS begins with an item in a worksheet status on the
ITEM_MASTER table. At the time an item is created, other relationships are being
defined as well, including the item, supplier, and country relationships, user-defined
attributes (UDAs), and others. These item relationship processes in effect become
components of a new item message published to the RIB. This section describes the item
creation message process and includes the basic item message itself along with the other
component relationship messages that become part of the larger item message.

Basic Item Message
As described in the preceding section, item messages can originate in a number of RMS
tables. Each of these tables holds a trigger, which fires each time an insert, update, or
delete occurs on the table. The new item record itself is displayed on the ITEM_MASTER
table. The trigger on this table creates a new message (in this case, a message of the type
ItemHdrCre), then calls the message family manager RMSMFM_ITEMS and its
ADDTOQ public procedure. ADDTOQ populates the message to the ITEM_MFQUEUE
staging table by inserting the following:
 Appropriate value into the message_type column
 Message itself to the message column. Messages are of the data type CLOB (character

large object)

New Item Message Publication
The publication of a new item and its components to the RIB is done using a hierarchical
message. Here is how the process works:
1. A new item is held on ITEM_MASTER in a status of W (Worksheet) until it is

approved.
2. On the ITEM_MFQUEUE staging table, a Worksheet status item is displayed in the

message_type column as a value of ItemCre.
3. As the item continues to be built on ITEM_MASTER, an ItemHdrMod value is

inserted into the queue’s message_type column.
4. After the item is approved (ITEM_MASTER’s status column value of A [Approved],

the trigger causes the insertion of a value of Y (Yes) in the approve_ind column on
the queue table.

5. A message with a top-level XML tag of ItemDesc is created that serves as a message
wrapper.

At the same time, a sub-message with an XML tag of ItemHdrDesc is also created. This
subordinate tag holds a subset of data about the item, most of which is derived from the
ITEM_MASTER table.

Publication Designs

36 Oracle Retail Merchandising System

Subordinate Data and XML Tags
While a new item is being created, item components are also being created. Described
earlier in this overview, these component item messages pertain to the item-supplier,
item-supplier-country, UDAs, and so on. For example, a new item-supplier record
created on ITEM_SUPPLIER causes the trigger on this table to add an ItemSupCre value
to the message_type column of the ITEM_MFQUEUE staging table. When the item is
approved, a message with an XML tag of ItemSupDesc is added underneath the
ItemDesc tag.
Similar processes occur with the other item components. Each component has its own
Desc XML tag, for example: ItemSupCtyDesc, ISCDimDesc.

Modify and Delete Messages
Updates and deletions of item data can be included in a larger ItemDesc (item creation)
message. If not part of a larger hierarchical message, they are published individually as a
flat, non-hierarchical message. Update and delete messages are much smaller than the
large hierarchy in a newly created item message (ItemDesc).

Modify Messages
If an existing item record changes on the ITEM_MASTER table, for example, the trigger
fires to create an ItemHdrMod message and message type on the queue table. In
addition, an ItemHdrDesc message is created. If no ItemCre value already exists in the
queue, the ItemHdrDesc message is published to the RIB.
Similarly, item components like item-supplier that are modified, result in an
ItemSupMod message type inserted on the queue. If an ItemCre and an ItemSupCre
already exist, the ItemSupMod is published as part of the larger ItemDesc message.
Otherwise, the ItemSupMod is published as an ItemSupDesc message.

Delete messages
Delete messages are published in the same way that modify messages are. For example,
if an item-supplier-country relationship is deleted from RMS’ ITEM_SUP_COUNTRY
table, the dependent record on ITEM_SUPP_COUNTRY_DIM is also deleted.
1. An ItemSupCtyDel message type is displayed on the item queue table.
2. If the queue already holds an ItemCre or ItemSupCtyCre message, any

ItemSupCtyCre and ItemSupCtyMod messages are deleted.
Otherwise, ItemSupCtyDel is published by itself as an ItemSupCtyRef message to the
RIB.

Item

Operations Guide - Volume 2 - Message Publication and Subscription Design 37

Design Overview
The item message family manager is a package of procedures that adds item family
messages to the item queue and publishes these messages for the integration bus to
route. Triggers on all the item family tables call a procedure from this package to add a
“create”, “modify” or “delete” message to the queue. The integration bus calls a
procedure in this package to retrieve the next publishable item message from the queue.
All the components that comprise the creation of an item, the item/supplier for example,
remain in the queue until the item approval modification message has been published.
Any modifications or deletions that occur between item creation in “W” (worksheet)
status and “A”(Approved) status are applied to the “create” messages or deleted from
the queue as required. For example, if an item UDA is added before item approval and
then later deleted before item approval, the item UDA “create” message would be
deleted from the queue before publishing the item. If an item/supplier record is updated
for a new item before the item is approved, the “create” message for that item/supplier is
updated with the new data before the item is published. When the “modify” message
that contains the “A” (Approved) status is the next record on the queue, the procedure
formats a hierarchical message that contains the item header information and all the child
detail records to pass to the integration bus.
Additions, modifications and deletions to item family records for existing approved
items are published in the order that they are placed on the queue.
Unless otherwise noted, item publishing includes most of the columns from the
item_master table and all of the item family child tables included in the publishing
message. Sometimes only certain columns are published, and sometimes additional data
is published with the column data from the table row. The item publishing message is
built from the following tables:
Family Header
item_master - transaction level items only
descriptions for the code values
names for department, class and subclass
diff types
base retail price
Item Family Child Tables
item_supplier
item_supp_country
item_supp_country_dim
 descriptions for the code values
item_master - reference items
 item, item_number_type, item_parent, primary_ref_ind, format_id, prefix
packitem_breakout
 pack_no, item, packitem_qty
item_image
item_ticket
uda_item_ff
uda_item_lov
uda_item_date

Functionality Checklist:

Description RMS RIB

RMS must publish Item information

Modify publisher Item X X

Publication Designs

38 Oracle Retail Merchandising System

Form Impact
None.

Business Object Records
Create the following business objects to assist the publishing process:
1. Create a type for a table of rowids.
 TYPE ROWID_TBL is TABLE OF ROWID;

2. Create a record of ROWID_TBL types for keeping track of rowids to update and
delete. There should be a ROWID_TBL for ITEM_MFQUEUE deletion,
ITEM_MFQUEUE updating, ITEM_PUB_INFO deletion, and ITEMLOC_MFQUEUE
deletion.

 TYPE ITEM_ROWID_REC is RECORD
 (queue_rowid_tbl ROWID_TBL,
 pub_info_rowid_tbl ROWID_TBL,
 queue_upd_rowid_tbl ROWID_TBL,
 itemloc_rowid_tbl ROWID_TBL
);

3. Create a record to assist in publishing the ItemBOM node. This record type was
originally in ITEMBOM_XML, but since ITEMBOM_XML is being removed, it is
being moved to RMSMFM_ITEMS.

 TYPE bom_rectype IS RECORD
 (pack_no VARCHAR2(25),
 seq_no NUMBER(4),
 item VARCHAR2(25),
 item_parent VARCHAR2(25),
 pack_tmpl_id NUMBER(8),
 comp_pack_no VARCHAR2(25),
 item_qty NUMBER(12,4),
 item_parent_pt_qty NUMBER(12,4),
 comp_pack_qty NUMBER(12,4),
 pack_item_qty NUMBER(12,4));

 TYPE bom_tabtype is TABLE of bom_rectype
 INDEX BY BINARY_INTEGER;

Package Impact

Business Object ID
The business object id for item publisher is item, which uniquely identifies an item for
publishing.
The RIB uses the business object id to determine message dependencies when sending
messages to a subscribing application. If a Create message has already failed in the
subscribing application, and a Modify/Delete message is about to be sent from the RIB to
the subscribing application, the RIB will not send the modify/delete message if it has the
same business object id as the failed Create message. Instead, the Modify/Delete
message will go directly to the hospital.
Item type X, item A, message type ‘ItemCre’ fails in subscriber
Item type X, item B, message type ‘ItemCre’ processes successfully in subscriber
Item type X, item A, message type ‘ItemMod’ goes directly from RIB to hospital.
Item type X, item B, message type ‘ItemMod’ goes from RIB to subscriber.
Item type X, item A, message type ‘ItemDel’ goes directly from RIB to hospital.

Item

Operations Guide - Volume 2 - Message Publication and Subscription Design 39

Package name: RMSMFM_ITEMS

Spec file name: rmsmfm_itemss.pls

Body file name: rmsmfm_itemsb.pls

Package Specification – Global Variables
FAMILY CONSTANT RIB_SETTINGS.FAMILY%TYPE ‘ITEM’;
ITEM_ADD CONSTANT VARCHAR2(30) ‘itemcre’;
ITEM_UPD CONSTANT VARCHAR2(30) ‘itemhdrmod’;
ITEM_DEL CONSTANT VARCHAR2(30) ‘itemdel’;
ISUP_ADD CONSTANT VARCHAR2(30) ‘itemsupcre’;
ISUP_UPD CONSTANT VARCHAR2(30) ‘itemsupmod’;
ISUP_DEL CONSTANT VARCHAR2(30) ‘itemsupdel’;
ISC_ADD CONSTANT VARCHAR2(30) ‘itemsupctycre’;
ISC_UPD CONSTANT VARCHAR2(30) ‘itemsupctymod’;
ISC_DEL CONSTANT VARCHAR2(30) ‘itemsupctydel’;
ISCD_ADD CONSTANT VARCHAR2(30) ‘iscdimcre’;
ISCD_UPD CONSTANT VARCHAR2(30) ‘iscdimmod’;
ISCD_DEL CONSTANT VARCHAR2(30) ‘iscdimdel’;
UPC_ADD CONSTANT VARCHAR2(30) ‘itemupccre’;
UPC_UPD CONSTANT VARCHAR2(30) ‘itemupcmod’;
UPC_DEL CONSTANT VARCHAR2(30) ‘itemupcdel’;
BOM_ADD CONSTANT VARCHAR2(30) ‘itembomcre’;
BOM_UPD CONSTANT VARCHAR2(30) ‘itembommod’;
BOM_DEL CONSTANT VARCHAR2(30) ‘itembomdel’;
UDAF_ADD CONSTANT VARCHAR2(30) ‘itemudaffcre’;
UDAF_UPD CONSTANT VARCHAR2(30) ‘itemudaffmod’;
UDAF_DEL CONSTANT VARCHAR2(30) ‘itemudaffdel’;
UDAD_ADD CONSTANT VARCHAR2(30) ‘itemudadatecre’;
UDAD_UPD CONSTANT VARCHAR2(30) ‘itemudadatemod’;
UDAD_DEL CONSTANT VARCHAR2(30) ‘itemudadatedel’;
UDAL_ADD CONSTANT VARCHAR2(30) ‘itemudalovcre’;
UDAL_UPD CONSTANT VARCHAR2(30) ‘itemudalovmod’;
UDAL_DEL CONSTANT VARCHAR2(30) ‘itemudalovdel’;
IMG_ADD CONSTANT VARCHAR2(30) ‘itemimagecre’;
IMG_UPD CONSTANT VARCHAR2(30) ‘itemimagemod’;
IMG_DEL CONSTANT VARCHAR2(30) ‘itemimagedel’;
TCKT_ADD CONSTANT VARCHAR2(30) 'itemtcktcre';
TCKT_DEL CONSTANT VARCHAR2(30) 'itemtcktdel';

bom_table bom_tabtype;
empty_bom bom_tabtype;

Function Level Description – ADDTOQ
Function: ADDTOQ
 (O_error_message OUT VARCHAR2,
 I_queue_rec IN ITEM_MFQUEUE%ROWTYPE,
 I_sellable_ind IN ITEM_PUB_INFO.SELLABLE_IND%TYPE,
 I_tran_level_ind IN ITEM_PUB_INFO.TRAN_LEVEL_IND%TYPE)

This public function puts an item message on ITEM_MFQUEUE for publishing to the
RIB. It is called from the item trigger and the detail triggers (ITEM_SUPPLIER,
ITEM_SUPP_COUNTRY, ITEM_SUPP_COUNTRY_DIM, PACKITEM, UDA_ITEM,
UDA_VALUES, ITEM_IMAGE). The I_queue_rec contains item and, optionally, other
detail keys.

Publication Designs

40 Oracle Retail Merchandising System

For header level insert messages (HDR_ADD), insert a record in the ITEM_PUB_INFO
table. The published flag should be set to ‘N’. For all message types except header level
inserts (HDR_ADD), insert a record into the ITEM_MFQUEUE.

Function Level Description – GETNXT
Procedure: GETNXT
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id OUT RIB_BUSOBJID_TBL,
 O_routing_info OUT RIB_ROUTINGINFO_TBL,
 I_num_threads IN NUMBER DEFAULT 1,
 I_thread_val IN NUMBER DEFAULT 1)

Modify the existing function as follows:
 Change the signature of this package per this specification.
 Replace the code that is in the current function with the functionality in this design.

This public procedure is called from the RIB to get the next messages. It performs a
cursor loop on the unpublished records on the ITEM_MFQUEUE table (PUB_STATUS =
‘U’). It should only need to execute one loop iteration in most cases. For each record
retrieved, GETNXT gets the following:
1. A lock of the queue table for the current business object (item). The lock is obtained

by calling the function LOCK_THE_BLOCK. If there are any records on the queue for
the current business object that are already locked, the current message is skipped
and picked up again in the next loop iteration.

2. A check for records on the queue with a status of ‘H’ospital. If there are any such
records for the current business object, GETNXT raises an exception to send the
current message to the Hospital.

3. Get the published indicator from the ITEM_PUB_INFO table.
4. Call PROCESS_QUEUE_RECORD with the current business object.
The loop will need to execute more than one iteration for the following cases:
1. When a header delete message exists on the queue for a business object that has not

been initially published. In this case, simply remove the header delete message from
the queue and loop again.

2. The queue is locked for the current business object. This can occur because
ADDTOQ, which is called from the triggers, deletes from the queue table for
DTL_UPD, DTL_DEL, and HDR_DEL messages.

The information from the ITEM_MFQUEUE and ITEM_PUB_INFO table is passed to
PROCESS_QUEUE_RECORD. PROCESS_QUEUE_RECORD will build the Oracle Object
message to pass back to the RIB. If PROCESS_QUEUE_RECORD does not run
successfully, GETNXT raises an exception.
If any exception is raised in GETNXT, including the exception raised by an unsuccessful
call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS is called.
If PROCESS_QUEUE_RECORD fails, the record that keeps track of which mfqueue
records to delete/update should be reset. Therefore, a snapshot of the struct is taken
before the call to PROCESS_QUEUE_RECORD. If the function fails, the record is reset
back to the snapshot.

Item

Operations Guide - Volume 2 - Message Publication and Subscription Design 41

Function Level Description – PUB_RETRY
Procedure: PUB_RETRY
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_message_type IN OUT VARCHAR2,
 O_bus_obj_id IN OUT NOCOPY RIB_BUSOBJID_TBL,
 O_routing_info IN OUT NOCOPY RIB_ROUTINGINFO_TBL)

This public procedure performs the same tasks as GETNXT except that it only loops for a
specific row in the ITEM_MFQUEUE table. The record on ITEM_MFQUEUE must match
the passed in sequence number (contained in the ROUTING_INFO).

Function Level Description – PROCESS_QUEUE_RECORD (local)
This private function controls the building of Oracle Objects (DESC or REF) given the
business transaction’s key values and a message type. It contains all of the shared
processing between GETNXT and PUB_RETRY.
Get relevant publishing info for the item in ITEM_PUB_INFO, including the published
indicator and approved upon create indicator.
If I_hdr_published is either ‘N’ (not published)
 If I_hdr_published is ‘N’, check to see if the current message should cause the item to

be published. This will be true if the status has changed to ‘A’pproved or if an
ITEM_SUPP_COUNTRY record has been added to an item that was approved upon
create. If the item is ready to be published for the first time, the message type is a
header create (HDR_ADD). If it is not ready to be published, add the record’s
ROWID to the structure that keeps track of ROWIDs to delete.

 Call MAKE_CREATE to build the DESC Oracle Object to publish to the RIB. This will
also take care of any ITEM_MFQUEUE deletes, updating
ITEM_PUB_INFO.PUBLISHED to ‘Y’ or ‘I’, and bulk updating the detail tables
publish_ind column to ‘Y’ for those detail rows that have been published.

If the message type is an update or create message type at any level (for example,
ITEM_ADD, ISUP_ADD, ISUP_UPD, and so on)
 Call RMSMFM_ITEMS_BUILD.BUILD_MESSAGE to build the DESC Oracle Object

to publish to the RIB.
 RMSMFM_ITEMS_BUILD.BUILD_MESSAGE will return an indicator specifying if

the record exists. The record in question is the record on the functional table
corresponding to the current MFQUEUE record being processed. For example, for
ITEM_ADD or ITEM_UPD message, the record exists indicator specifies whether or
not the ITEM_MASTER record for the item still exists. For an ISUP_ADD or
ISUP_UPD message, the record exists indicator specifies whether or not the
ITEM_SUPPLIER record for the item/supplier combination still exists. If the record
does not exist, the current message cannot be published.
 If the record does not exist and the message type is an update, delete the current

MFQUEUE record (that is, add the ROWID to the list of ROWIDs to be
eventually deleted.)

 If the record does not exist and the message type is a create, update the current
MFQUEUE record’s pub_status to ‘N’ so that the record will be skipped but
remain on the queue (that is, add the ROWID to the list of ROWIDs to be
eventually updated.)

If the message type is a delete message type at any level (for example, ITEM_DEL,
ISUP_DEL, and so on).

Publication Designs

42 Oracle Retail Merchandising System

 Call RMSMFM_ITEMS_BUILD.BUILD_DELETE_MESSAGE to build the REF Oracle
Object to publish to the RIB.

 For the current delete message, there could be a corresponding create message earlier
on the queue if the create message could not be published (see update/create
message type section above.) If there is a corresponding create message earlier on the
queue, delete both create and delete messages (that is, add the ROWIDs to the list of
ROWIDs to be eventually deleted), and do not publish anything.

Finally, perform DML cleanup if a message is going to be published.
 Call UPDATE_QUEUE_TABLE to perform DML using the global record that keeps

track of QUEUE records to update/delete.
 If the message type is ITEM_ADD, update the item’s ITEM_PUB_INFO to published

= ‘Y’.
 If the message type is ITEM_DEL, delete the item’s ITEM_PUB_INFO record.

Function Level Description – MAKE_CREATE (local)
This private function is used to create the Oracle Object for the initial publication of a
business transaction. I_business_object contains the item header key values (item).
I_rowid is the rowid of the item_mfqueue row fetched from GETNXT.
 Call BUILD_HEADER_OBJECT to get a header level Oracle Object.
 Call BUILD_DETAIL_OBJECTS to get a table of detail level Oracle objects and a table

of ITEM_MFQUEUE rowids to delete with and a table of detail table rowids to
update publish_ind with.

 Update ITEM_PUB_INFO.published to ‘Y’ or ‘I’ depending on if all details are
published.

 Delete records from the ITEM_MFQUEUE for all rowids returned by
BUILD_DETAIL_OBJECTS. Deletes are done by rowids instead of business
transaction keys to ensure that nothing is deleted off the queue that has not been
published.

 If the entire business transaction was added to the Oracle Object, also delete the
ITEM_MFQUEUE record that was picked up by GETNXT. If the entire business
transaction was not published, the system must leave something on the
ITEM_MFQUEUE to ensure that the rest of it is picked up by the next call to
GETNXT.

 Update the detail tables publish_ind column to ‘Y’ by each detail table of rowids
returned from BUILD_DETAIL_OBJECTS.

 The header and detail level Oracle Objects are combined and returned.

Function Level Description – HANDLE_ERRORS (local)
This private procedure is called from GETNXT and PUB_RETRY when an exception is
raised. I_seq_no is the sequence number of the driving ITEM_MFQUEUE record.
I_function_keys contains detail level key values (item and optional detail keys).
If the error is a non-fatal error, HANDLE_ERRORS passes the sequence number of the
driving ITEM_MFQUEUE record back to the RIB in the ROUTING_INFO. It sends back a
status of ‘H’ospital to the RIB as well. It then updates the status of the queue record to
‘H’ospital, so that it will not get picked up again by the driving cursor in GETNXT.
If the error is a fatal error, a status of ‘E’rror is returned to the RIB. The error is
considered non-fatal if no DML has occurred yet. Whenever DML has occurred, then the
global variable LP_error_status is flipped from ‘H’ospital to ‘E’rror.

Item

Operations Guide - Volume 2 - Message Publication and Subscription Design 43

Package name: RMSMFM_ITEMS_BUILD

Spec file name: rmsmfm_items.pls

Body file name: rmsmfm_itemb.pls

Function Level Description – BUILD_MESSAGE
Function: BUILD_MESSAGE
 (O_error_msg OUT VARCHAR2,
 O_message IN OUT NOCOPY “RIB_ItemDesc_REC”,
 O_rowids_rec IN OUT NOCOPY ROWIDS_REC,
 O_record_exists IN OUT BOOLEAN,
 I_message_type IN ITEM_MFQUEUE.MESSAGE_TYPE%TYPE,
 I_tran_level_ind IN ITEM_PUB_INFO.TRAN_LEVEL_IND%TYPE,
 I_queue_rec IN ITEM_MFQUEUE%ROWTYPE)

The private function is responsible for building detail level DESC Oracle Objects. It
builds as many detail Oracle Object as it can given the passed in message type and
business object keys (item).
Call the following:
 BUILD_HEADER_DETAIL
 BUILD_SUPPLIER_DETAIL
 BUILD_COUNTRY_DETAIL
 BUILD_DIM_DETAIL
 BUILD_UDA_LOV_DETAIL
 BUILD_UDA_FF_DETAIL
 BUILD_UDA_DATE_DETAIL
 BUILD_IMAGE_DETAIL
 BUIILD_UPC_DETAIL
 BUILD_BOM_DETAIL
 BUILD_TICKET_DETAIL

Function Level Description – BUILD_DELETE_MESSAGE
Function: BUILD_DETAIL_CHANGE_OBJECTS
 (O_error_msg OUT VARCHAR2,
 O_message IN OUT NOCOPY “RIB_ItemDesc_REC”,
 I_message_type IN ITEM_MFQUEUE.MESSAGE_TYPE%TYPE,
 I_business_obj IN ITEM_KEY_REC)

This function builds a REF Oracle Object to publish to the RIB for all delete message
types (for example, ITEM_DEL, ISUP_DEL, ISC_DEL, and so on).
The function also checks to see if there is a corresponding Create message for the current
delete message. If so, O_create_rowid is set. This is used to determine if the Delete
message should be published (see PROCESS_QUEUE_RECORD description above). If
both Create and Delete messages are on the queue, neither are published.
Detail create and detail update messages (DTL_ADD, DTL_UPD). I_business_obj
contains the header level key values (item).

Publication Designs

44 Oracle Retail Merchandising System

Function Level Description – BUILD_HEADER_OBJECT (local)
This private function accepts item header key values (item), builds and returns a header
level DESC Oracle Object. Call GET_ITEM_INFO to retrieve data supplementary to
ITEM_MASTER. If the item is not found on ITEM_MASTER, O_record_exists is set to
FALSE.

Function Level Description – BUILD DETAIL functions (all local)
The following functions have the same format:
 BUILD_SUPPLIER_DETAIL
 BUILD_COUNTRY_DETAIL
 BUILD_DIM_DETAIL
 BUILD_UDA_LOV_DETAIL
 BUILD_UDA_FF_DETAIL
 BUILD_UDA_DATE_DETAIL
 BUILD_IMAGE_DETAIL
 BUIILD_UPC_DETAIL
 BUILD_BOM_DETAIL
 BUILD_TICKET_DETAIL

They have the same specifications, except as noted below.
The functions for building detail nodes for the ITEMDESC message work in the same
way. The functions build as many detail Oracle Objects as they can given the passed in
message type and business object keys.
The difference between the different detail functions lies in the data being accessed.
BUILD_SUPPLIER_DETAIL retrieves information from ITEM_SUPPLIER,
BUILD_COUNTRY_DETAIL retrieves information from ITEM_SUPP_COUNTRY, etc.
BUILD_SUPPLlER_DETAIL and BUILD_COUNTRY_DETAIL are the only functions that
have the input parameter I_orderable_item. This is used to validate orderable items. If an
item is orderable, and the initial ITEM_ADD message is being created, at least one
supplier node and one supplier/country node are required. This is the only business
validation done by the item publisher.
If the original create message is being published (I_message_type would be ITEM_ADD)
 Select all detail records for the business transaction. Return a table of

ITEM_MFQUEUE rowids for each message that is placed into the Oracle Object.
 Since the message being published is ITEM_ADD, there may not be a record on the

MFQUEUE table for each detail record that needs to be retrieved. Therefore, no inner
join to the MFQUEUE table is done. However, if there are any MFQUEUE records for
details, they should be deleted. Therefore, a UNION to a second query is done to
select all relevant MFQUEUE records for deletion.

If the message being published is a detail add or detail update (for example, ISUP_ADD,
ISUP_UPD, ISC_ADD, ISC_UPD)
 Select all detail records for the business transaction. Return a table of

ITEM_MFQUEUE rowids for each message that is placed into the Oracle Object.
 Since the message being published is a detail create or update, the only details that

should be added to the message are those details that have a record on the
MFQUEUE table. Therefore, an inner join between the MFQUEUE table and the
business detail table is performed. Any MFQUEUE records retrieved will have their
ROWIDs added to the list of ROWIDs that will eventually be deleted.

Item

Operations Guide - Volume 2 - Message Publication and Subscription Design 45

 If no records are retrieved for the detail record query, O_records_exist is set to
FALSE.

A concern here is making sure that the system does not delete information from the
queue table that has not been published. For this reason, the system does deletes by
ROWID. The system also tries to get everything in the same cursor to ensure that the
message published matches the deletes that are performed from the ITEM_MFQUEUE
table regardless of trigger execution during GETNXT calls.

Function Level Description – GET_ITEM_INFO (local)
This private function gets ITEM_MASTER as input and retrieves supplementary data.
For example, each item has a department, class, and subclass. GET_ITEM_INFO will
retrieve the descriptions for these three fields. This function is called from
BUILD_HEADER_OBJECT.

Function Level Description – BUILD_DIMENSION_DESCRIPTIONS (local)
This private function is similar to GET_ITEM_INFO in that it retrieves supplementary
data. This function, however, is called when item/supplier/country/dimension message
nodes are being populated. This function is called from BUILD_DIM_DETAIL.

Trigger Impact

Trigger name: EC_TABLE_IEM_AIUDR.TRG (mod)

Trigger file name: ec_table_iem_aiudr.trg (mod)

Table: ITEM_MASTER
Modify the trigger on the ITEM table to capture Inserts, Updates, and Deletes. Remove
all of the code except the code that checks the item_level and tran_level. This is needed to
determine which message type to send to the queue, item or UPC (reference item).
Inserts
 Send the header level item info to the ADDTOQ procedure in the MFM with the

message type RMSMFM_ITEM.ITEM_ADD or RMSMFM_ITEM.UPC_ADD.
Updates
 Send the header level item info to the ADDTOQ procedure in the MFM with the

message type RMSMFM_ITEM.ITEM_UPD or RMSMFM_ITEM.UPC_UPD.
Deletes
 Send the header level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.ITEM_DEL or RMSMFM_ITEM.UPC_DEL.
In all these cases, build the function keys for ADDTOQ with item.

Trigger name: EC_TABLE_ISP_AIUDR.TRG (mod)

Trigger file name: ec_table_isp_aiudr.trg (mod)

Table: ITEM_SUPPLIER
Populate the ITEM_MFQUEUE table according to the message type. Make sure that only
transaction level items are added to the ITEM_MFQUEUE table.
Inserts
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_ADD

Publication Designs

46 Oracle Retail Merchandising System

Updates
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_UPD.
Deletes
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_DEL.
In all these cases, build the function keys for ADDTOQ with item and supplier.

Trigger name: EC_TABLE_ISC_AIUDR.TRG (mod)

Trigger file name: ec_table_isc_aiudr.trg (mod)

Table: ITEM_SUPP_COUNTRY
Populate the ITEM_MFQUEUE table according to the message type. Make sure that only
transaction level items are added to the ITEM_MFQUEUE table.
Inserts
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_ADD.
Updates
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_UPD.
Deletes
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_DEL.
In all these cases, build the function keys for ADDTOQ with item, supplier and
origin_country_id.

Trigger name: EC_TABLE_ISD_AIUDR.TRG (mod)

Trigger file name: ec_table_isd_aiudr.trg (mod)

Table: ITEM_SUPP_COUNTRY_DIM
Populate the ITEM_MFQUEUE table according to the message type. Make sure that only
transaction level items are added to the ITEM_MFQUEUE table.
Inserts
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_ADD
Updates
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_UPD.
Deletes
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_DEL.
In all these cases, build the function keys for ADDTOQ with item, supplier,
origin_country_id.

Item

Operations Guide - Volume 2 - Message Publication and Subscription Design 47

Trigger name: EC_TABLE_PKS_AIUDR.TRG (mod)

Trigger file name: ec_table_pks_aiudr.trg (mod)

Table: PACKITEM_BREAKOUT
This trigger captures inserts, updates and deletes on the table. It populates a PL/SQL
table of records, RMSMFM_ITEMS.BOM_TABLE, that will be used in the statement
trigger to build an XML message and place it on the item queue.

Trigger name: EC_TABLE_PKS_IUDS.TRG (mod)

Trigger file name: ec_table_pks_aiudr.trg (mod)

Table: PACKITEM_BREAKOUT
This trigger will group all of the data currently stored in the PL/SQL table of records
populated by the EC_TABLE_PKS_AIUDR trigger, and call RMSMFM_ADDTOQ for
every pack component in the table of records.

Trigger name: EC_TABLE_UIT_AIUDR.TRG (mod)

Trigger file name: ec_table_uit_aiudr.trg (mod)

Table: UDA_ITEM_DATE
Populate the ITEM_MFQUEUE table according to the message type. Make sure that only
transaction level items are added to the ITEM_MFQUEUE table.
Inserts
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_ADD.
Updates
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_UPD.
Deletes
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_DEL.
In all these cases, build the function keys for ADDTOQ with item, uda_id.

Trigger name: EC_TABLE_UIF_AIUDR.TRG (mod)

Trigger file name: ec_table_uif_aiudr.trg (mod)

Table: UDA_ITEM_FF
Populate the ITEM_MFQUEUE table according to the message type. Make sure that only
transaction level items are added to the ITEM_MFQUEUE table.
Inserts
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_ADD.
Updates
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_UPD.

Publication Designs

48 Oracle Retail Merchandising System

Deletes
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_DEL.
In all these cases, build the function keys for ADDTOQ with item, uda_id.

Trigger name: EC_TABLE_UIL_AIUDR.TRG (mod)

Trigger file name: ec_table_uil_aiudr.trg (mod)

Table: UDA_ITEM_LOV
Populate the ITEM_MFQUEUE table according to the message type. Make sure that only
transaction level items are added to the ITEM_MFQUEUE table.
Inserts
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_ADD
Updates
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_UPD.
Deletes
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_DEL.
In all these cases, build the function keys for ADDTOQ with item, uda_id and uda_value.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition (XSD)

itemcre Item Create Message ItemDesc.xsd

itemmod Item Modify Message ItemDesc.xsd

itemdel Item Delete Message ItemRef.xsd

itemsupcre Item Supplier Create Message ItemSupDesc.xsd

itemsupmod Item Supplier Modify Message ItemSupDesc.xsd

itemsupdel Item Supplier Delete Message ItemSupRef.xsd

itemsupctycre Item Supplier Country Create Message ItemSupCtyDesc.xsd

itemsupctymod Item Supplier Country Modify Message ItemSupCtyDesc.xsd

itemsupctydel Item Supplier Country Delete Message ItemSupCtyRef.xsd

iscdimcre Item Supplier Country Dimension
Create Message

ISCDimDesc.xsd

iscdimmod Item Supplier Country Dimension
Modify Message

ISCDimDesc.xsd

iscdimdel Item Supplier Country Dimension
Delete Message

ISCDimRef.xsd

itemupccre Item UPC Create Message ItemUPCDesc.xsd

Item

Operations Guide - Volume 2 - Message Publication and Subscription Design 49

Message Types Message Type Description XML Schema Definition (XSD)

itemupcmod Item UPC Modify Message ItemUPCDesc.xsd

itemupcdel Item UPC Delete Message ItemUPCRef.xsd

itembomcre Item BOM Create Message ItemBOMDesc.xsd

itembommod Item BOM Modify Message ItemBOMDesc.xsd

itembomdel Item BOM Delete Message ItemBOMRef.xsd

itemudaffcre Item UDA Free Form TextCreate
Message

ItemUDAFFDesc.xsd

itemudaffmod Item UDA Free Form Text Modify
Message

ItemUDAFFDesc.xsd

itemudaffdel Item UDA Free Form Text Delete
Message

ItemUDAFFRef.xsd

itemudalovcre Item UDA LOV Create Message ItemUDALOVDesc.xsd

itemudalovmod Item UDA LOV Modify Message ItemUDALOVDesc.xsd

itemudalovdel Item UDA LOV Delete Message ItemUDALOVRef.xsd

itemudadatecre Item UDA Date Create Message ItemUDADateDesc.xsd

itemudadatemod Item UDA Date Modify Message ItemUDADateDesc.xsd

itemudadatedel Item UDA Date Delete Message ItemUDADateRef.xsd

itemimagecre Item Image Create Message ItemImageDesc.xsd

itemimagemod Item Image Modify Message ItemImageDesc.xsd

itemimagedel Item Image Delete Message ItemImageRef.xsd

Table Impact

TABLE SELECT INSERT UPDATE DELETE

ITEM_MFQUEUE Yes Yes Yes Yes

ITEM_PUB_INFO Yes Yes Yes Yes

ITEMLOC_MFQUEUE Yes No No Yes

ITEM_MASTER Yes No No No

ITEM_SUPPLIER Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

ITEM_SUPP_COUNTRY_DIM Yes No No No

UDA_ITEM_LOV Yes No No No

UDA_ITEM_DATE Yes No No No

UDA_ITEM_FF Yes No No No

ITEM_IMAGE Yes No No No

PACKITEM_BREAKOUT Yes No No No

V_PACKSKU_QTY Yes No No No

ITEM_TICKET Yes No No No

Publication Designs

50 Oracle Retail Merchandising System

TABLE SELECT INSERT UPDATE DELETE

CODE_DETAIL Yes No No No

DEPS Yes No No No

CLASS Yes No No No

SUBCLASS Yes No No No

V_DIFF_ID_GROUP_TYPE Yes No No No

ITEM_ZONE_PRICE Yes No No No

PACKITEM Yes No No No

Design Assumptions
 It is not possible for a detail trigger to accurately know the status of a header table.
 In order for the detail triggers to accurately know when to add a message to the

queue, RMS should not allow approval of a business object while detail
modifications are being made.

 It is not possible for a header trigger or a detail trigger to know the status of anything
modified by GETNXT. If a header trigger or detail trigger is trying to delete queue
records that GETNXT currently has locked, it will have to wait until GETNXT is
finished and removes the lock. It is assumed that this time will be fairly short (at
most 2-3 seconds.) It is also assumed that this will occur rarely, as it involves
updating/deleting detail records on a business object that has already been
approved. This also has to occur at the same time GETNXT is processing the current
business object.

 Push off all DML statements as late as possible. Once DML statements have taken
place, any error becomes a fatal error rather than a hospital error.

Item Location Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 51

Item Location Publication API

Business Overview
RMS defines and publishes item-location relationships. The published message includes
the retail fields as a starting set of retails for each item-location. Also published is a store
price indicator for the item-location relationship. This indicator specifies whether or not
that store (location) can mark down the price of the item. Subsequent price changes need
to be taken from the RPM application.
RMS also provides the initial retail for external subsystems. While all subsequent price
changes will be taken from RPM, external subsystems need RMS to send a starting set of
retails for each item-location. To meet this requirement, retail fields are part of the item-
location message. These fields will be published upon creation; subsequent updates to
these retail fields, however, will not trigger an update message.
The item-location publisher also publishes warehouses as well as stores.

Functionality Checklist

Description RMS RIB

RMS must publish item loc information

Create new Publisher X X

Form Impact
None

Business Object Records
None

Package Impact
 Item Loc publishing – store price initialized the publishing of store_price on

Item_LOC.
 Item Loc publishing – store price ind to verify the initial publishing of pricing info

(unit retail, selling unit retail and uom) on ITEM_LOC.
 Item Loc publishing – pricing, make an update of the pricing info on ITEM_LOC –

should NOT be published.

Package name: RMSMFM_ITEMLOC

Spec file name: rmsmfm_itemlocs.pls

Body file name: rmsmfm_itemlocb.pls

Package Specification – Global Variables
FAMILY CONSTANT VARCHAR2(64) ‘ItemLoc’;
ITEMLOC_ADD CONSTANT VARCHAR2(20) 'ItemLocCre';
ITEMLOC_UPD CONSTANT VARCHAR2(20) 'ItemLocMod';
ITEMLOC_DEL CONSTANT VARCHAR2(20) 'ItemLocDel';
REPL_UPD CONSTANT VARCHAR2(20) 'ItemLocReplMod';

Publication Designs

52 Oracle Retail Merchandising System

Function Level Description – ADDTOQ
Function: ADDTOQ
 (O_error_message OUT VARCHAR2,
 I_message_type IN ITEMLOC_MFQUEUE.MESSAGE_TYPE%TYPE,
 I_itemloc_record IN ITEM_LOC%ROWTYPE,
 I_prim_repl_supplier IN REPL_ITEM_LOC.PRIMARY_REPL_SUPPLIER%TYPE,
 I_repl_method IN REPL_ITEM_LOC.REPL_METHOD%TYPE,
 _reject_store_ord_ind IN REPL_ITEM_LOC.REJECT_STORE_ORD_IND%TYPE,
 I_next_delivery_date IN REPL_ITEM_LOC.NEXT_DELIVERY_DATE%TYPE);

This will call the API_LIBRARY.GET_RIB_SETTINGS if the LP_num_threads is NULL
and insert the family record into ITEMLOC_MFQUEUE table. The call for HASH_ITEM
will insert the I_itemloc_record.item information into ITEMLOC_MFQUEUE table.

Function Level Description – GETNXT
Procedure: GETNXT (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id OUT RIB_BUSOBJID_TBL,
 O_routing_info OUT RIB_ROUTINGINFO_TBL,
 I_num_threads IN NUMBER DEFAULT 1,
 I_thread_val IN NUMBER DEFAULT 1);

Make sure to initialize LP_error_status to API_CODES.HOSPITAL at the beginning of
GETNXT.
The RIB calls GETNXT to get messages. The driving cursor will query for unpublished
records on the ITEMLOC_MFQUEUE table (PUB_STATUS = ‘U’).
Because ITEMLOC records should not be published before ITEM records, include a
clause in the driving cursor that checks for ITEM CREATE messages on the
ITEM_MFQUEUE table. The ITEMLOC_MFQUEUE record should not be selected from
the driving cursor if the ITEM CREATE message still exists on ITEM_MFQUEUE. Also,
ITEMLOC_MFQUEUE cleanup should be included in ITEM_MFQUEUE cleanup. When
the item publisher RMSMFM_ITEMS encounters a DELETE message for an item that has
never been published, it deletes all records for the item from the ITEM_MFQUEUE table.
This is done in the program unit CLEAN_QUEUE. CLEAN_QUEUE should now also
delete from ITEMLOC_MFQUEUE when a DELETE message for a non-published item is
encountered.
After retrieving a record from the queue table, GETNXT should check for records on the
queue with a status of ‘H’ospital. If there are any such records for the current business
object, GETNXT should raise an exception to send the current message to the hospital.
The information from the ITEMLOC_MFQUEUE table is passed to
PROCESS_QUEUE_RECORD. PROCESS_QUEUE_RECORD will build the Oracle Object
message to pass back to the RIB. If PROCESS_QUEUE_RECORD does not run
successfully, GETNXT should raise an exception.
If any exception is raised in GETNXT, including the exception raised by an unsuccessful
call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS should be called.

Item Location Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 53

Function Level Description – PUB_RETRY
Procedure: PUB_RETRY
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_message_type IN OUT VARCHAR2,
 O_bus_obj_id IN OUT RIB_BUSOBJID_TBL,
 O_routing_info IN OUT RIB_ROUTINGINFO_TBL,
 I_REF_OBJECT IN RIB_OBJECT);

Same as GETNXT except:
The record on ITEMLOC_MFQUEUE must match the passed in sequence number
(contained in the ROUTING_INFO).

Function Level Description – PROCESS_QUEUE_RECORD (local)
This function controls the building of Oracle Objects given the business transaction’s key
values and a message type. It contains all of the shared processing between GETNXT and
PUB_RETRY.
If the record from ITEMLOC_MFQUEUE table is an add or update (ITEMLOC_ADD,
ITEMLOC_UPD)
 Call BUILD_DETAIL_OBJECTS to build the Oracle Object to publish to the RIB. This

will also take care of any ITEMLOC_MFQUEUE deletes and ROUTING_INFO logic.
If the record from ITEMLOC_MFQUEUE table is a delete (ITEMLOC_DEL)
 Call BUILD_DETAIL_DELETE_OBJECTS to build the Oracle Object to publish to the

RIB. This will also take care of any ITEMLOC_MFQUEUE deletes and the
ROUTING_INFO logic.

Function Level Description – BUILD_DETAIL_OBJECTS (local)
The function is responsible for the Oracle Object used for a DESC message (inserts and
updates.) It adds as many mfqueue records to the message as it can given the passed-in
message type and business object keys.
 Select all records on the ITEMLOC_MFQUEUE that are for the same item. Fetch the

records in order of seq_no on the MFQUEUE table. Fetch the records into a table
using BULK COLLECT, with MAX_DETAILS_TO_PUBLISH as the LIMIT clause.

 Loop through records in the BULK COLLECT table. If the record’s message_type
differs from the message type passed into the function, exit from the loop. Otherwise,
add the data from the record to the Oracle Object being used for publication.

 Ensure that ITEMLOC_MFQUEUE is deleted from as needed.
 Ensure that ROUTING_INFO is constructed if routing information is stored at the

detail level in the business transaction.
Make sure to set LP_error_status to API_CODES.UNHANDLED_ERROR before any
DML statements.
A concern here is making sure that the system does not delete records from the queue
table that have not been published. For this reason, the system performs deletes by
ROWID. The system also tries to get everything in the same cursor. This should ensure
that the message published matches the deletes performed from the
ITEMLOC_MFQUEUE table regardless of trigger execution during GETNXT calls.

Function Level Description – BUILD_DETAIL_DELETE_OBJECTS (local)
This function works the same way as BUILD_DETAIL_OBJECTS, except for the fact that
a REF object is being created instead of a DESC object.

Publication Designs

54 Oracle Retail Merchandising System

Function Level Description – HANDLE_ERRORS (local)
HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is
raised.
If the error is a non-fatal error, GETNXT passes the sequence number of the driving
ITEMLOC_MFQUEUE record back to the RIB in the ROUTING_INFO. It sends back a
status of ‘H’ospital to the RIB as well. It then updates the status of the queue record to
‘H’ospital, so that it will not get picked up again by the driving cursor in GETNXT.
If the error is a fatal error, a status of ‘E’rror is returned to the RIB.
The error is considered non-fatal if no DML has occurred yet. Whenever DML has
occurred, then the global variable LP_error_status is flipped from ‘H’ospital to ‘E’rror.

Trigger Impact
Create a trigger on the ITEM_LOC to capture inserts, updates, and deletes.
Only transaction-level items should be processed. If the item is not transaction-level, exit
the trigger before calling ADDTOQ

Trigger name: EC_TABLE_ITL_AIUDR.TRG (mod)

Trigger file name: ec_table_itl_aiudr.trg (mod)

Table: ITEMLOC
Inserts
 Send the L_record (I_item, I_loc, and the I_loc_type) to the ADDTOQ procedure in

the MFM with the message type RMSMFM_ITEMLOC.ITEMLOC_ADD.
Updates
 Send the L_prim_repl_supplier, L_repl_method, L_reject_store_ord_ind,

L_next_delivery_date to the ADDTOQ procedure in the MFM with the message type
RMSMFM_ITEMLOC.ITEMLOC_UPD.

 The only updates that need to be captured are updates to the columns
receive_as_type, source_wh, store_price_ind, primary_supp, status, source_method,
local_item_desc, primary_cntry, local_short_desc, and taxable_ind.

Deletes
 Send the L_record (I_item, I_loc, and the I_loc_type) to the ADDTOQ procedure in

the MFM with the message type RMSMFM_ITEMLOC.ITEMLOC_DEL.
The trigger should fire not only for stores (loc_type = ‘S’) but also for warehouses
(loc_type = ‘W’).

Trigger name: EC_TABLE_RIL_AIUDR.TRG (mod)

Trigger file name: ec_table_ril_aiudr.trg (mod)

Table: REPL_ITEM_LOC
Create a trigger on the ITEM_LOC to capture inserts, updates, and deletes.
Updates
 Send the L_prim_repl_supplier, L_repl_method, L_reject_store_ord_ind,

L_next_delivery_date and the L_record (I_item, I_loc, and the I_loc_type) to the
ADDTOQ procedure in the MFM with the message type
RMSMFM_ITEMLOC.REPL_UPD.

Item Location Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 55

 The only updates that need to be captured are updates to the columns
primary_repl_supplier, repl_method, reject_store_ord_ind, and next_delivery_date.

Deletes
 Send the L_record (I_item, I_loc, and the I_loc_type) to the ADDTOQ procedure in

the MFM with the message type RMSMFM_ITEMLOC.REPL_UPD

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

ItemLocCre Item Loc Create Message ItemLocDesc.xsd

ItemLocMod Item Loc Modify Message ItemLocDesc.xsd

ItemLocDel Item Loc Delete Message ItemLocRef.xsd

ItemLocReplMod Item Loc Replenishment Modify Message ItemLocDesc.xsd

Table Impact

TABLE SELECT INSERT UPDATE DELETE

ITEM_MFQUEUE Yes No No No

ITEMLOC_MFQUEUE Yes Yes Yes Yes

ITEM_MASTER Yes No No No

Design Assumptions
 It is not possible for a detail trigger to accurately know the status of a header table.
 In order for the detail triggers to accurately know when to add a message to the

queue, RMS should not allow approval of a business object while detail
modifications are being made.

 It is not possible for a header trigger or a detail trigger to know the status of anything
modified by GETNXT. If a header trigger or detail trigger is trying to delete queue
records that GETNXT currently has locked, it will have to wait until GETNXT is
finished and removes the lock. It is assumed that this time will be fairly short (at
most 2-3 seconds.) It is also assumed that this will occur rarely because it involves
updating/deleting detail records on a business object that has already been
approved. This also has to occur at the same time GETNXT is processing the current
business object.

 Push off all DML statements as late as possible. Once DML statements have taken
place, any error becomes a fatal error rather than a hospital error.

Publication Designs

56 Oracle Retail Merchandising System

Merchandise Hierarchy Publishing API

Business Overview
RPM must know the merchandise hierarchy values that RMS contains. To ensure that
RPM has the most current merchandise hierarchy values that RMS has, a publishing API
sends the merchandise hierarchy information to the RIB so that RPM may subscribe to it.

Functionality Checklist

Description RMS RIB

RMS must publish Merchandise Hierarchy information

Create new Publisher X X

Form Impact
None

Business Object Records
N/A

Package Impact

Business Object ID
The RIB uses the business object ID to determine message dependencies when sending
messages to a subscribing application. If a create message has already failed in the
subscribing application, and a modify/delete message is about to be sent from the RIB to
the subscribing application, the RIB will not send the modify/delete message if it has the
same business object ID as the failed create message. Instead, the modify/delete message
will go directly to the hospital.
If the message relates to districts, the business object ID will be the district. If the message
relates to groups, the business object ID will be the group number. If the message relates
to a department, the department number is the business object ID. If the message relates
to a class, the business object ID will be the department number and the class number.
Finally, if the message relates to a subclass, the business object ID will be the department,
class and subclass.

Merchandise Hierarchy Publishing API

Operations Guide - Volume 2 - Message Publication and Subscription Design 57

Package name: RMSMFM_MERCHHIER

Spec file name: rmsmfm_merchhiers.pls

Body file name: rmsmfm_merchhierb.pls
Package Specification – Global Variables
FAMILY CONSTANT RIB_SETTINGS.FAMILY%TYPE := 'merchhier';

DIV_ADD CONSTANT VARCHAR2(64) := 'divisioncre';
DIV_UPD CONSTANT VARCHAR2(64) := 'divisionmod';
DIV_DEL CONSTANT VARCHAR2(64) := 'divisiondel';

GRP_ADD CONSTANT VARCHAR2(64) := 'groupcre';
GRP_UPD CONSTANT VARCHAR2(64) := 'groupmod';
GRP_DEL CONSTANT VARCHAR2(64) := 'groupdel';

DEP_ADD CONSTANT VARCHAR2(64) := 'deptcre';
DEP_UPD CONSTANT VARCHAR2(64) := 'deptmod';
DEP_DEL CONSTANT VARCHAR2(64) := 'deptdel';

CLS_ADD CONSTANT VARCHAR2(64) := 'classcre';
CLS_UPD CONSTANT VARCHAR2(64) := 'classmod';
CLS_DEL CONSTANT VARCHAR2(64) := 'classdel';

SUB_ADD CONSTANT VARCHAR2(64) := 'subclasscre';
SUB_UPD CONSTANT VARCHAR2(64) := 'subclassmod';
SUB_DEL CONSTANT VARCHAR2(64) := 'subclassdel';

Publication Designs

58 Oracle Retail Merchandising System

Package Body – Global Variables
 LP_seq_no MERCHHIER_MFQUEUE.SEQ_NO%TYPE := NULL;
 LP_error_status VARCHAR2(1) := NULL;

 cursor C_QUEUE(P_thread_val in number) is
 select q.rowid,
 q.seq_no,
 q.division,
 q.group_no,
 q.dept,
 q.class,
 q.subclass,
 q.div_name,
 q.buyer,
 q.merch,
 q.total_market_amount,
 q.group_name,
 q.dept_name,
 q.profit_calc_type,
 q.purchase_type,
 q.bud_int,
 q.bud_mkup,
 q.markup_calc_type,
 q.otb_calc_type,
 q.dept_vat_incl_ind,
 q.class_name,
 q.class_vat_ind,
 q.subclass_name,
 q.message_type,
 q.pub_status
 from merchhier_mfqueue q
 where q.seq_no = nvl(LP_seq_no,(select min(q2.seq_no)
 from
merchhier_mfqueue q2
 where q2.thread_no
= nvl(P_thread_val, q2.thread_no)
 and
q2.pub_status = 'U'))
 for update NOWAIT;

Function Level Description – ADDTOQ
Function: ADDTOQ
 (O_error_msg OUT VARCHAR2,
 I_message_type IN MERCHHIER_MFQUEUE.MESSAGE_TYPE%TYPE,
 I_division IN DIVISION.DIVISION%TYPE,
 I_division_rec IN DIVISION%ROWTYPE,
 I_group_no IN GROUPS.GROUP_NO%TYPE,
 I_groups_rec IN GROUPS%ROWTYPE,
 I_dept IN DEPS.DEPT%TYPE,
 I_deps_rec IN DEPS%ROWTYPE,
 I_class IN CLASS.CLASS%TYPE,
 I_class_rec IN CLASS%ROWTYPE,
 I_subclass IN SUBCLASS.SUBCLASS%TYPE,
 I_subclass_rec IN SUBCLASS%ROWTYPE)

If multi-threading is being used, call API_LIBRARY.RIB_SETTINGS to get the number of
threads used for the publisher. Using the number of threads, and the business object ID,
calculate the thread value.
Insert a record into the MERCHHIER_MFQUEUE.

Merchandise Hierarchy Publishing API

Operations Guide - Volume 2 - Message Publication and Subscription Design 59

Function Level Description – GETNXT
Procedure: GETNXT
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id OUT RIB_BUSOBJID_TBL,
 O_routing_info OUT RIB_ROUTINGINFO_TBL,
 I_num_threads IN NUMBER DEFAULT 1,
 I_thread_val IN NUMBER DEFAULT 1)

The RIB calls GETNXT to get messages. The procedure will use the C_QUEUE cursor
defined in the specification of the package body to find the next message on the
MERCHHIER_MFQUEUE to be published to the RIB.
After retrieving a record from the queue table, GETNXT checks for records on the queue
with a status of ‘H’ospital. If there are any such records for the current business object,
GETNXT should raise an exception to send the current message to the hospital.
The information from the MERCHHIER_MFQUEUE table is passed to
PROCESS_QUEUE_RECORD. PROCESS_QUEUE_RECORD will build the Oracle Object
message to pass back to the RIB. If PROCESS_QUEUE_RECORD does not run
successfully, GETNXT should raise an exception.
After PROCESS_QUEUE_RECORD returns an oracle object to pass to the RIB, this
procedure will delete the record on MERCHHIER_MFQUEUE that was just processed.
If any exception is raised in GETNXT, including the exception raised by an unsuccessful
call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS should be called.
Function Level Description – PUB_RETRY
Procedure: PUB_RETRY
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type IN OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id IN OUT RIB_BUSOBJID_TBL,
 O_routing_info IN OUT RIB_ROUTINGINFO_TBL,
 I_REF_OBJECT IN RIB_OBJECT);

Publication Designs

60 Oracle Retail Merchandising System

Same as GETNXT except:
The record on MERCHHIER_MFQUEUE must match the passed in sequence number
(contained in the ROUTING_INFO).
Function Level Description – PROCESS_QUEUE_RECORD (local)
This function controls the building of Oracle Objects given the business transaction’s key
values and a message type. It contains all of the shared processing between GETNXT and
PUB_RETRY.
If the record from MERCHHIER_MFQUEUE table is an add or update (DIV_ADD,
DIV_UPD, GRP_ADD, and so on)
 Build the appropriate ref Oracle Object to publish to the RIB.

If the record from MERCHHIER _MFQUEUE table is a delete (DIV_DEL, GRP_DEL, and
so on)
 Build the appropriate ref Oracle Object to publish to the RIB.

In addition to building the Oracle Objects, this function will populate the business object
ID. If the message is for a division, group or department, the business object ID will be
the division, group, or department respectively. If the message is for a class, the business
object will be the class and department combination. If the message is for a subclass, the
business object ID will be the subclass, class and department combination.
Function Level Description – HANDLE_ERRORS (local)
HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is
raised.
If the error is a non-fatal error, GETNXT passes the sequence number of the driving
MERCHHIER_MFQUEUE record back to the RIB in the ROUTING_INFO. It sends back
a status of ‘H’ospital to the RIB as well. It then updates the status of the queue record to
‘H’ospital so that it will not get picked up again by the driving cursor in GETNXT.
If the error is a fatal error, a status of ‘E’rror is returned to the RIB.
The error is considered non-fatal if no DML has occurred yet. Whenever DML has
occurred, then the global variable LP_error_status is flipped from ‘H’ospital to ‘E’rror.

Trigger Impact

Trigger name: EC_TABLE_DIV_AIUDR.TRG

Trigger file name: ec_table_div_aiudr.trg

Table: DIVISION
Create a trigger on the DIVISION table to capture inserts, updates, and deletes.
Inserts
 Send the appropriate column values to the ADDTOQ procedure in the MFM with the

message type RMSMFM_FAMILY.DIV_ADD.
Updates
 Send the appropriate column values to the ADDTOQ procedure in the MFM with the

message type RMSMFM_FAMILY.DIV_UPD.
Deletes
 Send the appropriate column values to the ADDTOQ procedure in the MFM with the

message type RMSMFM_FAMILY.DIV_DEL.

Merchandise Hierarchy Publishing API

Operations Guide - Volume 2 - Message Publication and Subscription Design 61

Trigger name: EC_TABLE_GRO_AIUDR.TRG

Trigger file name: ec_table_gro_aiudr.trg

Table: GROUPS
Create a trigger on the GROUPS table to capture inserts, updates, and deletes.
Inserts
 Send the appropriate column values to the ADDTOQ procedure in the MFM with the

message type RMSMFM_FAMILY.GRP_ADD.
Updates
 Send the appropriate column values to the ADDTOQ procedure in the MFM with the

message type RMSMFM_FAMILY.GRP_UPD.
Deletes
 Send the appropriate column values to the ADDTOQ procedure in the MFM with the

message type RMSMFM_FAMILY.GRP_DEL.

Trigger name: EC_TABLE_DEP_AIUDR.TRG

Trigger file name: ec_table_dep_aiudr.trg

Table: DEPS
Create a trigger on the DEPS table to capture inserts, updates, and deletes.
Inserts
 Send the appropriate column values to the ADDTOQ procedure in the MFM with the

message type RMSMFM_FAMILY.DEP_ADD.
Updates
 Send the appropriate column values to the ADDTOQ procedure in the MFM with the

message type RMSMFM_FAMILY.DEP_UPD.
Deletes
 Send the appropriate column values to the ADDTOQ procedure in the MFM with the

message type RMSMFM_FAMILY.DEP_DEL.

Trigger name: EC_TABLE_CLA_AIUDR.TRG

Trigger file name: ec_table_cla_aiudr.trg

Table: CLASS
Create a trigger on the CLASS table to capture Inserts, Updates, and Deletes.
Inserts
 Send the appropriate column values to the ADDTOQ procedure in the MFM with the

message type RMSMFM_FAMILY.CLS_ADD.
Updates
 Send the appropriate column values to the ADDTOQ procedure in the MFM with the

message type RMSMFM_FAMILY.CLS_UPD.
Deletes
 Send the appropriate column values to the ADDTOQ procedure in the MFM with the

message type RMSMFM_FAMILY.CLS_DEL.

Publication Designs

62 Oracle Retail Merchandising System

Trigger name: EC_TABLE_SCL_AIUDR.TRG

Trigger file name: ec_table_scl_aiudr.trg

Table: SUBCLASS
Create a trigger on the SUBCLASS table to capture inserts, updates, and deletes.
Inserts
 Send the appropriate column values to the ADDTOQ procedure in the MFM with the

message type RMSMFM_FAMILY.SUB_ADD.
Updates
 Send the appropriate column values to the ADDTOQ procedure in the MFM with the

message type RMSMFM_FAMILY.SUB_UPD.
Deletes
 Send the appropriate column values to the ADDTOQ procedure in the MFM with the

message type RMSMFM_FAMILY.SUB_DEL.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

divisoncre Division Create Message MrchHrDivDesc.xsd

divisonmod Division Modify Message MrchHrDivDesc.xsd

divisiondel Division Delete Message MrchHrDivRef.xsd

groupcre Group Detail Create Message MrchHrGrpDesc.xsd

groupmod Group Detail Modify Message MrchHrGrpDesc.xsd

groupdel Group Detail Delete Message MrchHrGrpRef.xsd

deptcre Department Detail Create Message MrchHrDeptDesc.xsd

deptmod Department Detail Modify Message MrchHrDeptDesc.xsd

deptdel Department Detail Delete Message MrchHrDeptRef.xsd

classcre Class Detail Create Message MrchHrClsDesc.xsd

classmod Class Detail Modify Message MrchHrClsDesc.xsd

classdel Class Detail Delete Message MrchHrClsRef.xsd

subclasscre Subclass Detail Create Message MrchHrSclsDesc.xsd

subclassmod Subclass Detail Modify Message MrchHrSclstDesc.xsd

subclassdel Subclass Detail Delete Message MrchHrSclsRef.xsd

Merchandise Hierarchy Publishing API

Operations Guide - Volume 2 - Message Publication and Subscription Design 63

Table Impact

TABLE SELECT INSERT UPDATE DELETE

MERCHHIER_MFQUEUE Yes Yes Yes Yes

DIVISION Yes No No No

DEPT Yes No No No

CLASS Yes No No No

SUBCLASS Yes No No No

Assumptions
Delay all DML statements as late as possible. Once DML statements have taken place,
any error becomes a fatal error rather than a hospital error.

Publication Designs

64 Oracle Retail Merchandising System

Order Publication API

Business Overview
Purchase order (PO) functionality in RMS consists of order messages published to the
Oracle Retail Integration Bus (RIB), and batch modules that internally process purchase
order data and upload EDI transmitted orders. This overview describes how both order
messages and batch programs process this data.

How Purchase Orders are Created
Purchase orders are created:
 Online, through the ordering dialog
 Automatically, through replenishment processes
 Against a supplier contract type ‘B’
 By a supplier, in a vendor managed inventory environment
 Through direct store delivery (defined as delivery of merchandise or a service that

does not result from the prior creation of a PO). For more information, see the
chapter “Purchase Order Batch” in volume 1 of this RMS Operations Guide.

 Through the Buyer Worksheet dialog
 Through truck splitting

For more information about the replenishment order building process, see the chapter
“Replenishment Batch” in volume 1 of this RMS Operations Guide.

Purchase Order Messages
After purchase orders are published to the RIB, the following associated activities can
occur:
 Work orders associated with items on the PO are published to the RIB through the

work order message process
 An allocation (also known as pre-distribution) of items on the PO are published to

the RIB through the stock order message process
 A PO can be closed only after all appointments against the purchase order are closed.

A closed appointment indicates that all merchandise has been received. RMS
subscribes to appointment messages from the RIB. For more information, see the
section ‘Appointments’ in the chapter “Subscription Design” in this volume of the
RMS Operations Guide.

 ‘Version’ refers to any change to a purchase order by a retailer’s buyer; whereas
‘Revision’ refers to any change to a purchase order initiated by a supplier.

Order Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 65

Order Message Processes
RMS publishes two sets of PO messages to the RIB for two kinds of subscribing
applications. The first set of messages represents only virtual locations in RMS. Virtual
locations exist whenever the retailer runs RMS in a multi-channel environment.
Applications that understand virtual locations subscribe to these messages.
RMS publishes a second set of PO messages for applications that can subscribe only to
conventional, physical location data, such as a warehouse management system. One or
both subscribing methods (virtual locations and physical locations) can be used in a
multi-channel environment. In a single-channel environment, both sets of messages are
identical.
Ordering publication will be primarily based off of the ORDHEAD, ORDSKU, and
ORDLOC tables.
ORDHEAD is the parent table containing high level ordering information such as what
supplier is being ordered from, when the order should take place, and so on. ORDSKU is
a child of ORDHEAD and contains the item(s) that are ordered, the size of the pack being
ordered, and so on.
ORDLOC is a child of ORDSKU and contains the location(s) each item on the order is
going to and how much of each item is ordered. Based on this table hierarchy, two levels
of messages will exist for order publishing. A header message which is primarily driven
off of the ORDHEAD table, and a detail message which is primarily driven off both the
ORDSKU and ORDLOC tables.
Each message level will contain three types of messages; create, modify, and delete. The
‘POCre’ or ‘POHdrMod’ message will be created when an insertion or modification to
the ORDHEAD table is made respectively. The ‘PODel’ message will be created when an
order is deleted from the ORDHEAD table. ‘PODtlCre’ or ‘PODtlMod’ message will be
created when a record is inserted or modified on the ORDLOC table respectively.
‘PODtlDel’ will be created when an ORDLOC record is deleted.

Functionality Checklist

Description RMS RIB

RMS must publish order information

Create new Publisher X X

Form Impact
None

Publication Designs

66 Oracle Retail Merchandising System

Business Object Records
Create the following record types in the rmsmfm_order package specification:
TYPE ordhead_msg_rectype IS RECORD
 (ordhead_rec ORDHEAD%ROWTYPE,
 doc_type VARCHAR2(1),
 order_type_desc CODE_DETAIL.CODE_DESC%TYPE,
 dept_name DEPS.DEPT_NAME%TYPE,
 buyer_name BUYER.BUYER_NAME%TYPE,
 promotion_desc VARCHAR2(160),
 terms_code TERMS.TERMS_CODE%TYPE,
 payment_method_desc CODE_DETAIL.CODE_DESC%TYPE,
 backhaul_type_desc CODE_DETAIL.CODE_DESC%TYPE,
 ship_method_desc CODE_DETAIL.CODE_DESC%TYPE,
 purchase_type_desc CODE_DETAIL.CODE_DESC%TYPE,
 ship_pay_method_desc CODE_DETAIL.CODE_DESC%TYPE,
 fob_trans_res_code_desc CODE_DETAIL.CODE_DESC%TYPE,
 fob_title_pass_code_desc CODE_DETAIL.CODE_DESC%TYPE,
 factory_desc PARTNER.PARTNER_DESC%TYPE,
 agent_desc PARTNER.PARTNER_DESC%TYPE,
 discharge_port_desc OUTLOC.OUTLOC_DESC%TYPE,
 lading_port_desc OUTLOC.OUTLOC_DESC%TYPE,
 po_type_desc PO_TYPE.PO_TYPE_DESC%TYPE);

Package Impact

Create a Worksheet Order
1. Prerequisites: Orders can be created through various methods. Orders can be created

manually by a user, through a replenishment process (order can be created in either
worksheet or approved status), uploaded from a vendor, or through a contract.

2. Activity Detail: At this point, the order is not seen externally from RMS.
3. Messages: When the order is created, a header message ‘POCre’ is written to the

ordering queue table. Upon detail additions, each will have a ‘PODtlCre’ message
written to the ordering queue. Ordering messages are added, updated, and removed
from the queue as the order is modified prior to approval.

Modify Pre-Approved
1. Prerequisites: Order is still in worksheet status and has not been approved and set

back to worksheet.
2. Activity Detail: At this point, items can be modified, added or removed from the

order. The order can be split, scaled, and rounded in addition to having deals,
brackets applied.

3. Messages: Each change will cause a ‘POHdrMod’ or ‘PODtlMod’ message. These
messages will replace previous create messages if there was a modification, delete a
previous message if there was a delete, or add a new message to the queue for
inserts.

Order Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 67

Approve
1. Prerequisites: Line items must exist for the order to be approved. Relevant dates (not

before, not after, pickup) must exist, plus certain other business validation rules
based on system options.

2. Activity Detail: At this point, the order is initially approved which means external
systems will now have constant visibility to all ordering transactions. The user can no
longer delete line items: Instead, they are cancelled. Canceling decrements the order
quantity by amount already received.

3. Messages: The approval message sets an indicator signifying the approval create
message should be built. This is a hierarchical snapshot synchronous message built
in the family manager by attaching all of the ‘PODtlDesc’ messages with the
‘POHdrDesc’ message to create a ‘POCre’ message.

Modify in ‘A’ status
1. Prerequisites: Order must be currently approved.
2. Activity Detail: Numerous fields at the header level (none at the detail level) can be

changed while the order is approved. This change will create a message.
3. Messages: A ‘POHdrMod’ message will be created for order at the end of the session

the order was modified. This message will be published immediately as the order
will already have been published. If the order has not been published, then this
message will follow the create message sent out.

Redistribute
1. Prerequisites: Order must be in approved or worksheet status. Order must not be a

contract order. No shipments/appointments may exist against the order. Items with
allocations cannot be redistributed.

2. Activity Detail: User chooses which items to redistribute. Each chosen details are
removed from the order. This will create delete messages for each one. A new
location is then chosen to redistribute the items to. Each item/location record will
create a message. Note that if user chooses to redistribute records, then cancels out of
redistribution, delete and create messages for the chosen records will be inserted into
the queue even though no changes were actually made online.

3. Messages: A ‘PODtlDel’ message is created for each item/location removed from the
order. If the order has not yet been approved, then these messages will remove
previous create messages. For already approved orders, then a message will be
published. For each redistributed item, a ‘PODtlCre’ message will be created.

Unapprove
1. Prerequisites: Order must currently be in approved status. Shipments/Appoinments

may exist against the order.
2. Activity Detail: This will change the status of the order back to worksheet. This will

create a message. Existing details will be modifiable. New records may be added to
the order. Items may not be deleted from the order. However, the order quantity of
the items can be canceled down to the received or appointment expected quantity.

3. Messages: A ‘POHdrMod’ message will be created for order at the end of the session
the order was modified. This message will be published immediately as the order
will already have been published. If the order has not been published, then this
message will follow the create message sent out.

Publication Designs

68 Oracle Retail Merchandising System

Modify
1. Prerequisites: Order must be in worksheet status and have already been approved.
2. Activity Detail: If modifications occur at the header level, a header message will be

created. A detail message will be created for each modified or added detail record.
Detail records cannot be deleted; only their quantities can be canceled.

3. Message: A ‘POHdrMod’ message will be created for order at the end of the session
if the header was modified. A ‘PODtlCre’ or ‘PODtlMod’ message will be created for
each detail record added or modified respectively.

Close
1. Prerequisites: Order must currently be in approved status or in worksheet status and

have been previously approved. No outstanding shipments/appointments may exist
against any line items of the order.

2. Activity Detail: The status will change to closed. This will create a message. Any
outstanding unreceived quantities will be canceled out. No details will be modifiable
while the order is in this status.

3. Message: A ‘POHdrMod’ message will be created for order at the end of the session
the order was modified. A ‘PODtlCre’ message will be created for each line item that
had outstanding un-received quantity. These messages will be published
immediately as the order will already have been published. If the order has not been
published, then this message will follow the create message sent out.

Reinstate
1. Prerequisites: Order must be in closed status. Orders that have been fully received

(closed through receiving dialogue) cannot be reinstated.
2. Activity Detail: The status will change to worksheet. This will create a header level

message. All canceled quantities will be added back to order quantities. Details will
be modifiable.

3. Message: A ‘POHdrMod’ message will be created for order at the end of the session
the order was modified. A ‘PODtlMod’ message will be created for each line item
that had outstanding canceled quantity. These messages will be published
immediately as the order will already have been published. If the order has not been
published, then this message will follow the create message sent out.

Order Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 69

Delete
1. Prerequisites: If the user deletes the order manually, then the order needs to be in

worksheet status and never been approved. Else, for approved orders, the following
explanation details the business validation for deleting orders. If the import indicator
on the SYSTEM OPTIONS table (import_ind) is 'N' and if invoice matching is not
installed, then all details associated with an order are deleted when the order has
been closed for more months than specified in UNIT_OPTIONS
(order_history_months). If invoice matching is installed, then all details associated
with an order are deleted when the order has been closed for more months than
specified in UNIT_OPTIONS (order_history_months). Orders are deleted only if
shipments from the order have been completely matched to invoices or closed, and
all those invoices have been posted. If the import indicator on the SYSTEM OPTIONS
table (import_ind) is 'Y' and if invoice matching is not installed, then all details
associated with the order are deleted when the order has been closed for more
months than specified in UNIT_OPTIONS (order_history_months) , as long as all
ALC records associated with an order are in 'Processed' status, specified in
ALC_HEAD (status). If invoice matching is installed, then all details associated with
an order are deleted when the order has been closed for more months than specified
in UNIT_OPTIONS (order_history_months), as long as all ALC records associated
with an order are in 'Processed' status, specified in ALC_HEAD (status), and as long
as all shipments from the order have been completely matched to invoices or closed,
and all those invoices have been posted.

2. Activity Detail: Deleting orders will create a message for each detail attached to the
order plus the header record.

3. Messages: If the order has not been approved, then the ‘PODel’ and ‘PODtlDel’
messages created will remove all the previous messages on the ordering queue table.
If the order has been approved, then a ‘PODtlDel’ message will be created for each
detail record and a ‘PODel’ message for the header.

Package name: RMSMFM_ORDER

Spec file name: rmsmfm_orders.pls

Body file name: rmsmfm_orderb.pls

Package Specification – Global Variables
FAMILY CONSTANT RIB_SETTINGS.FAMILY%TYPE ‘order’;
HDR_ADD CONSTANT VARCHAR2(64) ‘POcre’;
HDR_UPD CONSTANT VARCHAR2(64) ‘POHdrMod’;
HDR_DEL CONSTANT VARCHAR2(64) ‘PODel’;
DTL_ADD CONSTANT VARCHAR2(64) ‘PODtlCre’;
DTL_UPD CONSTANT VARCHAR2(64) ‘PODtlMod’;
DTL_DEL CONSTANT VARCHAR2(64) ‘PODtldel’;

Publication Designs

70 Oracle Retail Merchandising System

Function Level Description – ADDTOQ
Function: ADDTOQ
 (O_error_message OUT VARCHAR2,
 I_message_type IN ORDER_MFQUEUE.MESSAGE_TYPE%TYPE,
 I_order_no IN ORDHEAD.ORDER_NO%TYPE,
 I_order_type IN ORDHEAD.ORDER_TYPE%TYPE,
 I_order_header_status IN ORDHEAD.STATUS%TYPE,
 I_supplier IN ORDHEAD.SUPPLIER%TYPE,
 I_item IN ORDLOC.ITEM%TYPE,
 I_location IN ORDLOC.LOCATION%TYPE,
 I_loc_type IN ORDLOC.LOC_TYPE%TYPE,
 I_physical_location IN ORDLOC.LOCATION%TYPE)

This procedure is called by either the ORDHEAD or ORDLOC row trigger, and takes the
message type, table primary key values (order_no for ORDHEAD table and order_no,
item, location (virtual) and physical location for ORDLOC table) and the message itself.
It inserts a row into the message family queue along with the passed in values and the
next sequence number from the message family sequence. The pub status will always be
‘U’ except for PO create messages, then it will be ‘N’. The approve indicator will always
be ‘N’ except when the order is approved for the first time, then it will be ‘Y’. It returns
error codes and strings according to the standards of the application in which it is being
implemented.

Function Level Description – GETNXT
Procedure: GETNXT
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id OUT RIB_BUSOBJID_TBL,
 O_routing_info OUT RIB_ROUTINGINFO_TBL,
 I_num_threads IN NUMBER DEFAULT 1,
 I_thread_val IN NUMBER DEFAULT 1)

This publicly exposed procedure is typically called by a RIB publication adaptor. Its
parameters are well defined and arranged in a specific order. The message type is the RIB
defined short message name, the message is the xml message, and the family key(s)
(order_no for ORDHEAD table and order_no, item, location (virtual) and physical
location for ORDLOC table) are the key for the message as pertains to the family, not all
of which will necessarily be populated for all message types.
This program loops through each message on the ORDER_MFQUEUE table, and calls
PROCESS_QUEUE_RECORD. When no messages are found, the program exits returning
the ‘N’o message found API code.
The error text parameter contains application-generated information, such as the
application’s sequence number of the message that failed, and the Oracle or other error
that occurred when the retrieval failed.

Order Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 71

Function Level Description – PUB_RETRY
Procedure: PUB_RETRY
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type IN OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id IN OUT RIB_BUSOBJID_TBL,
 O_routing_info IN OUT RIB_ROUTINGINFO_TBL,
 I_REF_OBJECT IN RIB_OBJECT);

Same as GETNXT except:
It only loops for a specific row in the ORDER_MFQUEUE table. The record on
ORDER_MFQUEUE must match the passed in sequence number (contained in the
ROUTING_INFO).

Function Level Description – PROCESS_QUEUE_RECORD (local)
This function controls the building of Oracle Objects given the business transaction’s key
values and a message type. It contains all of the shared processing between GETNXT and
PUB_RETRY.
Check to see if the business object is being published for the first time. If the
published_ind on the pub_info table is ‘N’, then it is not yet published.

If the record from ORDER_MFQUEUE table is a header delete (HDR_DEL) and
published_ind is ‘N’
 Delete the record from the pub info table.
 Call DELETE_QUEUE_REC.

If the record from ORDER_MFQUEUE table is a header delete (HDR_DEL)
 Build and pass the RIB_PORef_REC object.
 Call GET_ROUTING_TO_LOCS
 Delete the record from the pub info table.
 Delete the record from the order_details_published table
 Call DELETE_QUEUE_REC.

If the published_ind is ‘N’ or ‘I’
 If the publish_ind is ‘N’ call MAKE_CREATE with the message_type

‘HDR_ADD’.
 Otherwise, call MAKE_CREATE with the message_type ‘DTL_ADD’.

If the record from ORDER_MFQUEUE table is a header update (HDR_UPD)
 Call BUILD_HEADER_OBJECT
 Update order_pub_info by setting the published indicator to ‘Y’
 Call GET_ROUTING_TO_LOCS
 Call DELETE_QUEUE_REC

If the record from ORDER_MFQUEUE table is a detail insert (DTL_ADD) or detail
update (DTL_UPD)
 Call BUILD_DETAIL_CHANGE_OBJECTS

If the record from ORDER_MFQUEUE table is a detail delete (DTL_DEL)
 Call BUILD_DETAIL_DELETE
 Call ROUTING_INFO_ADD

Publication Designs

72 Oracle Retail Merchandising System

Function Level Description – MAKE_CREATE (local)
This function is used to create the Oracle Object for the initial publication of a business
transaction.
 Call BUILD_HEADER_OBJECT to get a header level Oracle Object plus any extra

functional holders.
 Call BUILD_DETAIL_OBJECTS to get a table of detail level Oracle objects and a table

of ORDER_MFQUEUE rowids to delete.
 Use the header level Oracle Object and functional holders to update the

ORDER_PUB_INFO.
 Delete records from the ORDER_MFQUEUE for all rowids returned by

BUILD_DETAIL_OBJECTS. Deletes are done by rowids instead of business
transaction keys to ensure that nothing is deleted off the queue that has not been
published.

 If the entire business transaction was added to the Oracle Object, also delete the
ORDER_MFQUEUE record that was picked up by GETNXT. If the entire business
transaction was not published we need to leave something on the
ORDER_MFQUEUE to ensure that the rest of it is picked up by the next call to
GETNXT.

 The header and detail level Oracle Objects are combined and returned.

Function Level Description – BUILD_HEADER_OBJECT (local)
Accepts header key values, performs necessary lookups, builds and returns a header
level Oracle Object.
Call GET_MSG_HEADER.

Function Level Description – BUILD_DETAIL_OBJECTS (local)
The function is responsible for building detail level Oracle Objects. It builds as many
detail Oracle Object as it can given the passed in message type and business object keys.
If the function is being called from MAKE_CREATE:
 Select any unpublished detail records from the business transaction (use an indicator

on the functional detail table itself or ORDER_DETAILS_PUBLISHED). Create Oracle
Objects for details that are selected by calling BUILD_SINGLE_DETAIL.

If the function is not being called from MAKE_CREATE:
 Select any details on the ORDER_DETAILS_PUBLISHED that are for the same

business transaction and for the same message type. Create Oracle Objects for details
that are selected by calling BUILD_SINGLE_DETAIL.

Create other necessary Oracle objects and insert into and update the
ORDER_DETAILS_PUBLISHED table for details that were published.

Function Level Description – BUILD_SINGLE_DETAIL (local)
Accept inputs and build a detail level Oracle Object. Perform any lookups needed to
complete the Oracle Object.

Function Level Description – BUILD_DETAIL_CHANGE_OBJECTS (local)
Either pass in a header level Oracle Object or call BUILD_HEADER_OBJECT to build
one.
Call BUILD_SINGLE_DETAIL to get the delete level Oracle Objects.
Perform any BULK DML statements given the output from BUILD_ DETAIL_OBJECTS

Order Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 73

Build any ROUTING_INFO as needed.

Function Level Description – BUILD_DETAIL_DELETE (local)
Either pass in a header level ref Oracle Object or build a header level ref Oracle Object.
Perform a cursor for loop on ORDER_MFQUEUE and build as many detail ref Oracle
Objects as possible without exceeding the MAX_DETAILS_TO_PUBLISH.
Perform any BULK DML statements for deletion from ORDER_MFQUEUE and
ORDER_DETAILS_PUBLISHED.
Call BUILD_DETAIL_DELETE_WH for Warehouses.

Function Level Description – DELETE_QUEUE_REC (local)
Delete the passed in data from the queue table.

Function Level Description – BUILD_DETAIL_DELETE_WH (local)
Builds Oracle objects based on the records found in the queue table that are from the
ORDLOC table.

Function Level Description – ROUTING_INFO_ADD (local)
Build any ROUTING_INFO.

Function Level Description – GET_ROUTING_TO_LOCS (local)
Build the ROUTING_INFO by adding locations.

Function Level Description – GET_MSG_HEADER (local)
Perform any lookups to complete the header information.

Function Level Description – LOCK_THE_BLOCK (local)
This function locks all queue records for the current business object. This is to ensure that
GETNXT does not wait on any business processes that currently have the queue table
locked and have not committed. This can occur because ADDTOQ, which is called from
the triggers, deletes from the queue table for DTL_UPD, DTL_DEL, and HDR_DEL
messages.

Function Level Description – HANDLE_ERRORS (local)
PROCEDURE HANDLE_ERRORS
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 O_message IN OUT nocopy RIB_OBJECT,
 O_bus_obj_id IN OUT nocopy RIB_BUSOBJID_TBL,
 O_routing_info IN OUT nocopy RIB_ROUTINGINFO_TBL,
 I_seq_no IN order_mfqueue.seq_no%TYPE,
 I_order_no IN order_mfqueue.order_no%TYPE,
 I_item IN order_mfqueue.item%TYPE,
 I_physical_location IN order_mfqueue.physical_location%TYPE,
 I_loc_type IN order_mfqueue.loc_type%TYPE)

HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is
raised.
If the error is a non-fatal error, GETNXT passes the sequence number of the driving
ORDER_MFQUEUE record back to the RIB in the ROUTING_INFO. It sends back a
status of ‘H’ospital to the RIB as well. It then updates the status of the queue record to
‘H’ospital, so that it will not get picked up again by the driving cursor in GETNXT.
If the error is a fatal error, a status of ‘E’rror is returned to the RIB.

Publication Designs

74 Oracle Retail Merchandising System

The error is considered non-fatal if no DML has occurred yet. Whenever DML has
occurred, then the global variable LP_error_status is flipped from ‘H’ospital to ‘E’rror.

Trigger Impact
Create a trigger on the ORDHEAD and ORDLOC to capture inserts, updates, and
deletes.

Trigger name: EC_TABLE_OHE_AIUDR.TRG

Trigger file name: ec_table_ohe_aiudr.trg

Table: ORDHEAD
This trigger fires when an ORDHEAD record has been inserted, updated or deleted on
any of the columns published. Each action is detailed below. In general, this trigger calls
RMSMFM_ORDER.ADDTOQ to place the message and order onto the
ORDER_MFQUEUE table.
Inserts
 Send the header level info to the ADDTOQ procedure in the MFM with the message

type HDR_ADD.
Updates
 Send the header level info to the ADDTOQ procedure in the MFM with the message

type HDR_UPD.
Deletes
 Send the header level info to the ADDTOQ procedure in the MFM with the message

type HDR_DEL.

Trigger name: EC_TABLE_OLO_AIUDR.TRG

Trigger file name: ec_table_olo_aiudr.trg

Table: ORDLOC
This triggers fires when an ORDLOC record has been inserted, updated or deleted on the
qty_ordered or estimated_instock_date columns. Each action is detailed below. In
general, this trigger calls RMSMFM_ORDER.ADDTOQ to place the message and order,
item, location onto the ORDER_MFQUEUE table.
Inserts
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type DTL_ADD.
Updates
 Send the header level info to the ADDTOQ procedure in the MFM with the message

type DTL_UPD.
Deletes
 Send the header level info to the ADDTOQ procedure in the MFM with the message

type DTL_DEL.

Order Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 75

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

POCre Purchase Order Create Message PODesc.xsd

POHdrMod Purchase Order Modify Message PODesc.xsd

PODel Purchase Order Delete Message PORef.xsd

PODtlCre Purchase Order Detail Create Message PODesc.xsd

PODtlMod Purchase Order Detail Modify Message PODesc.xsd

PODtlDel Purchase Order Detail Delete Message PORef.xsd

Table Impact

TABLE SELECT INSERT UPDATE DELETE

ORDHEAD Yes No No No

ORDLOC Yes No No No

ORDSKU Yes No No No

ORDER_MFQUEUE Yes Yes Yes Yes

ORDER_PUB_INFO Yes Yes Yes Yes

ORDER_DETAILS_PUBLISHED Yes Yes Yes Yes

Design Assumptions
 One of the primary assumptions in the current approach is that ease of code will

outweigh performance considerations. It is hoped that the ‘trickle’ nature of the flow
of data will decrease the need to dwell on performance issues and instead allow
developers to code in the easiest and most straight forward manner.

 The adaptor is only setup to call stored procedures, not stored functions. Any public
program then needs to be a procedure.

Publication Designs

76 Oracle Retail Merchandising System

Partner Publication API

Business Overview
RMS publishes data about partners in messages to the Retail Integration Bus (RIB). Other
applications that need to keep their partners synchronized with RMS subscribe to these
messages.
Using the ‘External Finisher’ functionality, a retailer can send all/any goods to an
external location for being repaired or worked upon. The goods can be at a warehouse or
a store and sent to an external location for being worked upon and then transferred back
to either location. For example, if a retailer wants to have a partner add embroidery to a
shirt, then the shirt will be transferred from the original warehouse, to the partner, and
then sent on from the partner to the receiving store. The RIB helps to coordinate this
partnership activity.

External Finishers
External finishers are created as partners in RMS, and given the Partner Type ‘E’,
indicating that the partner is an External finisher. Once a new external finisher is set up
in RMS, a trigger on the partner table adds the external finisher to a new queue table.
Information on that table is published via the RIB. A conversion of this RIB message
converts the external finisher to a ‘Location’ so that it can be consumed by the location
APIs of external systems such as RWMS.
RWMS and other integration subsystems subscribe to the external finisher through their
location subscription APIs. A RIB TAFR parses the partner messages of partner type ‘E’
and returns location attributes for RWMS and other integration subsystems to subscribe
to. RMS ensures that there will never be duplicates among the partner ID, store ID and
warehouse ID.
The RWMS transfer subscription process does not check for location types. As a result,
transfers involving an external finisher are treated like any other location types.
To facilitate the routing of external finisher and primary address of the primary address
type, header level routing info will contain the name of ‘partner_type’ with value ‘E’.
Detail level routing info will contain the name of ‘primary_addr_type_ind’ with value of
‘Y’ or ‘N’ and the name of ‘primary_addr_ind’ with value of ‘Y’ or ‘N’. This will allow the
RIB to route the external finishers and their addresses to the correct applications.
RMS will publish to the RIB the create, mod and delete messages of partners along with
their multiple addresses via a partner publishing message.
The insert/update/delete on the partner table and the addr table with module ‘PTNR’
(for partner) will be published. The output message will be in hierarchical structure, with
partner information at the header level and the address information at the detail level.
Because this is a low volume publisher, multi-threading capability is not supported. In
addition, the system assumes that it only needs to publish the current state of the partner,
not every change.
If multiple addresses are associated with a partner, this publisher is designed with the
assumption that RWMS and other integration subsystems only subscribe to the primary
address of the primary address type.

Partner Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 77

Functionality Checklist

Description RMS RIB

RMS must publish Partner information

Create new publisher Partner X X

Form Impact
None

Business Object Records
Create the following business objects to assist the publishing process:
Create a PARTNER_KEY_REC (in rmsmfm_partners.pls) that contains the functional
keys to partner_mfqueue publishing:
TYPE partner_key_rec IS RECORD
 (PARTNER_TYPE PARTNER.PARTNER_TYPE%TYPE,
 PARTNER_ID PARTNER.PARTNER_ID%TYPE,
 ADDR_KEY ADDR.ADDR_KEY%TYPE); -- optional

Package Impact

Business Object ID
The business object ID for partner publisher is partner type and partner ID, which
uniquely identifies a partner for publishing. The RIB uses the business object ID to
determine message dependencies when sending messages to a subscribing application.
If a Create message has already failed in the subscribing application, and a
Modify/Delete message is about to be sent from the RIB to the subscribing application,
the RIB will not send the Modify/Delete message if it has the same business object ID as
the failed Create message. Instead, the Modify/Delete message will go directly to the
hospital.
For example:

Partner type X, partner A, message type ‘PartnerCre’ fails in subscriber
Partner type X, partner B, message type ‘PartnerCre’ processes successfully in subscriber
Partner type X, partner A, message type ‘PartnerMod’ goes directly from RIB to hospital.
Partner type X, partner B, message type ‘PartnerMod’ goes from RIB to subscriber.
Partner type X, partner A, message type ‘PartnerDel’ goes directly from RIB to hospital.

For Header Insert, Update, and Delete:
HDR_ADD
 Create a partner with 1 or more addresses. HDR_ADD message will be added to the

queue.
HDR_UPD
 Update an existing partner header record that has already been published.

HDR_UPD message will be added to the queue.
 Update an existing partner header record that has not been published yet.

HDR_UPD message should not be added to the queue. When the partner header is
published, it will fetch the latest information on PARTNER.

HDR_DEL
 Delete an existing partner header record that has already been published. HDR_DEL

message must be added to the queue.

Publication Designs

78 Oracle Retail Merchandising System

 Delete an existing partner header record that has not been published yet. HDR_DEL
message should not be added to the queue. In addition, all other message related to
the partner must be deleted from the queue. The partner must also be deleted from
PARTNER_PUB_INFO.

For Detail Insert, Update, and Delete:
DTL_ADD
 Add a new address to an existing partner. DTL_ADD message must be added to the

queue.
DTL _UPD
 Update an existing address of a partner that has already been published. Any

existing DTL_UPD message for the partner/address in the queue must be deleted.
The current DTL_UPD message for the partner/address must be added to the queue.

 Update an existing address of a partner that has NOT been published yet. Any
existing DTL_UPD message for the partner/address in the queue must be deleted.
The current DTL_UPD message for the partner/address does not need to be added
to the queue. This is because when the new address is published, it will fetch the
latest information on ADDR table.

DTL _DEL
 Delete an existing address of a partner that has already been published. The address

has also been published. Any existing message for the partner/address in the queue
must be deleted. The current DTL_DEL for the partner/address must be added to the
queue.

 Delete an existing address of a partner that has already been published. The address
has not been published yet. Any existing message for the partner/address in the
queue must be deleted. The current DTL_DEL for the partner/address does not need
to be added to the queue.

Package name: RMSMFM_PARTNER

Spec file name: rmsmfm_partners.pls

Body file name: rmsmfm_partnerb.pls

Package Specification – Global Variables
FAMILY CONSTANT RIB_SETTINGS.FAMILY%TYPE ‘PARTNER’;
HDR_ADD CONSTANT VARCHAR2(15) ‘partnercre’;
HDR_UPD CONSTANT VARCHAR2(15) ‘partnermod’;
HDR_DEL CONSTANT VARCHAR2(15) ‘partnerdel’;
DTL_ADD CONSTANT VARCHAR2(15) ‘partnerdtlcre’;
DTL_UPD CONSTANT VARCHAR2(15) ‘partnerdtlmod’;
DTL_DEL CONSTANT VARCHAR2(15) ‘partnerdtldel’;

Function Level Description – ADDTOQ
Function: ADDTOQ
 (O_error_mesage OUT VARCHAR2,
 I_message_type IN VARCHAR2,
 I_functional_keys IN PARTNER_KEY_REC)

This public function puts a partner message on PARTNER_MFQUEUE for publishing to
the RIB. It is called from both partner trigger and address trigger. The I_functional_keys
will contain partner_type, partner_id and optionally, addr_key.

Partner Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 79

There are some tasks relating to streamlining the queue clean up process that need to
occur in ADDTOQ. The goal is to have at most one record on the queue for a given
partner up until its initial publication.
 For header level insert messages (HDR_ADD), insert a record in the

PARTNER_PUB_INFO table. The published flag should be set to ‘N’. Because this is
a low volume business transaction, the partner publisher will not provide multi-
threading capability. Therefore, thread value does not need to be calculated.

 For HDR_UPD, DTL_ADD, DTL_UPD, DTL_DEL, messages do not need to be
added to the queue until the business object (partner type and partner ID) has been
initially published (PARTNER_PUB_INFO.published = ‘N’). This is because when
the partner does get published for the first time (HDR_ADD), the current state of the
header and details will be queried and published to the RIB.

 For header level delete messages (HDR_DEL), if the business object (partner type
and partner ID) has not been initially published (PARTNER_PUB_INFO.published =
‘N’), delete the record in PARTNER_PUB_INFO. Otherwise, delete every record in
the queue for the business object, and add the delete record to the queue.

 If the business object has been initially published (PARTNER_PUB_INFO.published
= ‘Y’), for detail level messages deletes (DTL_DEL), the system only needs one (the
most recent) record per detail in the PARTNER_MFQUEUE. Delete any previous
records that exist on the PARTNER_MFQUEUE for the record that has been passed.

 If the business object has been initially published (PARTNER_PUB_INFO.published
= ‘Y’), for detail level messages updates (DTL_UPD), the system only needs one
DTL_UPD (the most recent) record per detail in the PARTNER_MFQUEUE. Delete
any previous DTL_UPD records that exist on the PARTNER_MFQUEUE for the
record that has been passed. The system does not want to delete any detail inserts
that exist on the queue for the detail. The system needs to ensure subscribers are not
passed a detail modification message for a detail that they do not yet have.

 For all message types except header level inserts (HDR_ADD), insert a record into
the PARTNER_MFQUEUE. One exception is that if the publish_ind on the detail
record table (addr) is ‘N’, do not add the DTL_DEL message to the queue. The logic
here is that if the detail line has never been published before, subscribers will not
need to delete the detail line that they do not yet have.

Function Level Description – GETNXT
Procedure: GETNXT
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id OUT RIB_BUSOBJID_TBL,
 O_routing_info OUT RIB_ROUTINGINFO_TBL,
 I_num_threads IN NUMBER DEFAULT 1,
 I_thread_val IN NUMBER DEFAULT 1)

This public procedure is called from the RIB to get the next messages. It performs a
cursor loop on the unpublished records on the PARTNER_MFQUEUE table
(PUB_STATUS = ‘U’). It should only need to execute one loop iteration in most cases.
For each record retrieved, GETNXT gets the following:
1. A lock of the queue table for the current business object (partner_type and

partner_id). The lock is obtained by calling the function LOCK_THE_BLOCK. If there
are any records on the queue for the current business object that are already locked,
the current message is skipped and picked up again in the next loop iteration.

Publication Designs

80 Oracle Retail Merchandising System

2. A check for records on the queue with a status of ‘H’ospital. If there are any such
records for the current business object, GETNXT raises an exception to send the
current message to the Hospital.

3. Get the published indicator from the PARTNER_PUB_INFO table.
4. Call PROCESS_QUEUE_RECORD with the current business object.
The loop will need to execute more than one iteration for the following cases:
1. When a header delete message exists on the queue for a business object that has not

been initially published. In this case, simply remove the header delete message from
the queue and loop again.

Note: The situation above should not happen very often.
ADDTOQ will delete all messages for the business object
upon header delete if the business object has not been
initially published.)

2. The queue is locked for the current business object. This can occur because
ADDTOQ, which is called from the triggers, deletes from the queue table for
DTL_UPD, DTL_DEL, and HDR_DEL messages.

The information from the PARTNER_MFQUEUE and PARTNER_PUB_INFO table is
passed to PROCESS_QUEUE_RECORD. PROCESS_QUEUE_RECORD will build the
Oracle Object message to pass back to the RIB. If PROCESS_QUEUE_RECORD does not
run successfully, GETNXT raises an exception.
If any exception is raised in GETNXT, including the exception raised by an unsuccessful
call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS is called.

Function Level Description – PUB_RETRY
This public procedure performs the same tasks as GETNXT except that it only loops for a
specific row in the PARTNER_MFQUEUE table. The record on PARTNER_MFQUEUE
must match the passed in sequence number (contained in the ROUTING_INFO).

Function Level Description – PROCESS_QUEUE_RECORD (local)
This private function controls the building of Oracle Objects (DESC or REF) given the
business transaction’s key values and a message type. It contains all of the shared
processing between GETNXT and PUB_RETRY. Note that the message_type of
HDR_ADD can potentially be changed to a DTL_ADD in PROCESS_QUEUE_RECORD.
If the message type is a header delete (HDR_DEL)
 I_hdr_published should never be ‘N’ (not published), because in that case the

HDR_DEL message would never be added to the queue based on ADDTOQ
processing.

 Call BUILD_HEADER_OBJECT to build the REF Oracle Object to publish to the RIB.
 Delete both PARTNER_MFQUEUE by calling internal function

DELETE_QUEUE_REC and PARTNER_PUB_INFO for the business object.
Otherwise, if check I_hdr_published is either ‘N’ (not published) or ‘I’ (in progress)
 If I_hdr_published is ‘N’, the message type will be a header create (HDR_ADD). If

I_hdr_published is ‘I’, change the message type from a header create (HDR_ADD) to
a detail add (DTL_ADD), because this is the situation where some of the details are
published but not all due to MAX_DETAILS_TO_PUBLISH. So a header create
message for the current business object should have already been published.

Partner Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 81

 Call MAKE_CREATE to build the DESC Oracle Object to publish to the RIB. This will
also take care of any PARTNER_MFQUEUE deletes, updating
PARTNER_PUB_INFO.PUBLISHED to ‘Y’ or ‘I’, and bulk updating
addr.publish_ind to ‘Y’ for those detail rows that have been published.

Otherwise,
If the record from PARTNER_QUEUE table is a header update (HDR_UPD)
 Call BUILD_HEADER_OBJECT to build the DESC Oracle Object to publish to

the RIB.
 Delete the record from the PARTNER_MFQUEUE table.

If the record from PARTNER_QUEUE table is a detail add or update (DTL_ADD,
DTL_UPD)
 Call BUILD_DETAIL_CHANGE_OBJECTS to build the DESC Oracle Object to

publish to the RIB. This will also take care of any PARTNER_MFQUEUE deletes
and updates of publish_ind on ADDR.

If the record from PARTNER_QUEUE table is a detail delete (DTL_DEL)
 Call BUILD_DETAIL_DELETE_OBJECTS to build the REF Oracle Object to

publish to the RIB. This will also take care of any PARTNER_MFQUEUE deletes.

Function Level Description – MAKE_CREATE (local)
This private function is used to create the Oracle Object for the initial publication of a
business transaction. I_business_object contains the partner header key values (partner
type and partner_id). I_rowid is the rowid of the partner_mfqueue row fetched from
GETNXT.
 Call BUILD_HEADER_OBJECT to get a header level Oracle Object.
 Call BUILD_DETAIL_OBJECTS to get a table of detail level Oracle objects and a table

of PARTNER_MFQUEUE rowids to delete with and a table of ADDR rowids to
update publish_ind with.

 Update PARTNER_PUB_INFO.published to ‘Y’ or ‘I’ depending on if all details are
published.

 Delete records from the PARTNER_MFQUEUE for all rowids returned by
BUILD_DETAIL_OBJECTS. Deletes are done by rowids instead of business
transaction keys to ensure that noting is deleted off the queue that has not been
published.

 If the entire business transaction was added to the Oracle Object, also delete the
PARTNER_MFQUEUE record that was picked up by GETNXT. If the entire business
transaction was not published, the system needs to leave some data on the
PARTNER_MFQUEUE to ensure that the rest of it is picked up by the next call to
GETNXT.

 Update ADDR.publish_ind to ‘Y’ by addr rowids returned from
BUILD_DETAIL_OBJECTS.

 The header and detail level Oracle Objects are combined and returned.

Function Level Description – BUILD_HEADER_OBJECT (local)
Function: BUILD_HEADER_OBJECT
 (O_error_msg OUT VARCHAR2,
 O_rib_partnerdesc_rec IN OUT NOCOPY “RIB_PartnerDesc_REC”,
 I_business_obj IN PARTNER_KEY_REC)

This private function accepts partner header key values (partner type and partner ID),
builds and returns a header level DESC Oracle Object.

Publication Designs

82 Oracle Retail Merchandising System

Function Level Description – BUILD_HEADER_OBJECT (local)
This overloaded private function accepts partner header key values (partner type and
partner ID), builds and returns a header level REF Oracle Object.

Function Level Description – BUILD_DETAIL_OBJECTS (local)
The private function is responsible for building detail level DESC Oracle Objects. It
builds as many detail Oracle Object as it can given the passed in message type and
business object keys (partner type and partner ID).
Call API_LIBRARY.GET_RIB_SETTINGS to get the MAX_DETAILS_TO_PUBLISH for
the partner family.
If the function is being called from MAKE_CREATE (I_message_type would be NULL):

Select any unpublished ADDR detail records for the business transaction (based on
publish_ind on ADDR). Create Oracle Objects for details that are selected by calling
BUILD_SINGLE_DETAIL.
 Ensure that no more than MAX_DETAILS_TO_PUBLISH records are put into

Oracle Objects.
 Return a table of partner_mfqueue rowids for each message that is placed into

the Oracle Object.
 Return a table of addr rowids for each detail that is placed into the Oracle Object.

If the function is not being called from MAKE_CREATE (I_message type will not be
NULL):

Select any details on the PARTNER_MFQUEUE that are for the same business object
and for the same message type. Create Oracle Objects for details that are selected by
calling BUILD_SINGLE_DETAIL.
 Ensure that no more than MAX_DETAILS_TO_PUBLISH records are put into

Oracle Objects.
 If the message type is a detail create (DTL_ADD), as the detail info is placed into

the Oracle Object, ensure that the corresponding addr rowid is added to addr
rowids table for return. These rowids will be used to update ADDR.publish_ind
to ‘Y’.

 Return a table of partner_mfqueue rowids for each message that is placed into
the Oracle Object.

A concern here is making sure that the system not delete information from the queue
table that has not been published. For this reason, the system performs deletes by
ROWID. The system also tries to get all the data in the same cursor to ensure that the
message published matches the deletes performed from the PARTNER_MFQUEUE table
regardless of trigger execution during GETNXT calls.

Function Level Description – BUILD_SINGLE_DETAIL (local)
This private function takes in an address record and builds a detail level Oracle Object.
Also find out if the address is the primary address of the primary address type and set
the DESC Oracle Object accordingly.

Partner Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 83

Function Level Description – BUILD_DETAIL_CHANGE_OBJECTS (local)
This private function builds a DESC Oracle Object to publish to the RIB for detail create
and detail update messages (DTL_ADD, DTL_UPD). I_business_obj contains the header
level key values (partner type and partner ID).
 Call BUILD_HEADER_OBJECT to build the header level DESC Oracle Object.
 Call BUILD_DETAIL_OBJECTS to build the detail level DESC Oracle Objects.
 Bulk update addr.publish_ind to ‘Y’ for the addr rowids returned from

BUILD_DETAIL_OBJECTS.
 Bulk delete from partner_mfqueue for the partner_mfqueue rowids returned from

BUILD_DETAIL_OBJECTS.

Function Level Description – BUILD_DETAIL_DELETE_OBJECTS (local)
This private function builds a REF Oracle Object to publish to the RIB for detail delete
messages (DTL_DEL). I_business_obj contains the header level key values (partner type
and partner ID).
 Call API_LIBRARY.GET_RIB_SETTINGS to get the MAX_DETAILS_TO_PUBLISH

for the partner family.
 Call BUILD_HEADER_OBJECT to build the REF Oracle Object to publish to the RIB.
 Perform a cursor for loop on PARTNER_MFQUEUE and build as many detail REF

Oracle Objects as possible without exceeding the MAX_DETAILS_TO_PUBLISH.
 For each detail, also find out if the address is a primary address of the primary

address type, and set the REF Oracle Objects accordingly.
 Bulk delete from PARTNER_MFQUEUE for the PARTNER_MFQUEUE rowids

queried.

Function Level Description – LOCK_THE_BLOCK (local)
This private function locks all queue records for the current business object (partner type
and partner ID). This is to ensure that GETNXT and PUB_RETRY do not wait on any
business processes that currently have the queue table locked and have not committed.
This can occur because ADDTOQ, which is called from the triggers, deletes from the
queue table for DTL_UPD, DTL_DEL, and HDR_DEL messages.

Function Level Description – HANDLE_ERRORS (local)
This private procedure is called from GETNXT and PUB_RETRY when an exception is
raised. I_seq_no is the sequence number of the driving PARTNER_MFQUEUE record.
I_function_keys contains detail level key values (partner_type, partner_id, addr_key).
If the error is a non-fatal error, HANDLE_ERRORS passes the sequence number of the
driving PARTNER_MFQUEUE record back to the RIB in the ROUTING_INFO. It sends
back a status of ‘H’ospital to the RIB as well. It then updates the status of the queue
record to ‘H’ospital, so that it will not get picked up again by the driving cursor in
GETNXT.
If the error is a fatal error, a status of ‘E’rror is returned to the RIB. The error is
considered non-fatal if no DML has occurred yet. Whenever DML has occurred, then the
global variable LP_error_status is flipped from ‘H’ospital to ‘E’rror.

Function Level Description – DELETE_QUEUE_REC (local)
This private function will delete the records from PARTNER_MFQUEUE table for the
sequence no passed in as input parameter.

Publication Designs

84 Oracle Retail Merchandising System

Trigger Impact

Trigger name: EC_TABLE_PRT_AIUDR.TRG (new)

Trigger file name: ec_table_prt_aiudr.trg (new)

Table: PARTNER
This is the trigger on the PARTNER table that will capture Inserts, Updates, and Deletes.
Inserts
 Send the header level partner info to the ADDTOQ procedure in the MFM with the

message type RMSMFM_PARTNER.HDR_ADD.
Updates
 Send the header level partner info to the ADDTOQ procedure in the MFM with the

message type RMSMFM_PARTNER.HDR_UPD.
Deletes
 Send the header level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_PARTNER.HDR_DEL.
In all these cases, build the function keys for ADDTOQ with partner type and partner ID.

Trigger name: EC_TABLE_ADR_AIUDR.TRG (mod)

Trigger file name: ec_table_adr_aiudr.trg (mod)

Table: ADDR
This is the trigger on the ADDR table that will capture Inserts, Updates, and Deletes of
module type ‘PTNR’. (Note: It also handles module types supplier, store and warehouse.)
Inserts
 Send the detail level addr info to the ADDTOQ procedure in the MFM with the

message type RMSMFM_PARTNER.DTL_ADD.
Updates
 Send the detail level addr info to the ADDTOQ procedure in the MFM with the

message type RMSMFM_PARTNER.DTL_UPD.
Deletes
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_PARTNER.DTL_DEL.
In all these cases, build the function keys for ADDTOQ with KEY_VALUE_1 and
KEY_VALUE_2 and ADDR_KEY, which represent partner_type, partner_id and
addr_key respectively.

Partner Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 85

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

PartnerCre Partner Create Message PartnerDesc.xsd

PartnerMod Partner Modify Message PartnerDesc.xsd

PartnerDel Partner Delete Message PartnerRef.xsd

PartnerDtlCre Partner Detail Create Message PartnerDtlDesc.xsd

PartnerDtlMod Partner Detail Modify Message PartnerDtlDesc.xsd

PartnerDtlDel Partner Detail Delete Message PartnerDtlRef.xsd

Table Impact

TABLE SELECT INSERT UPDATE DELETE

PARTNER_PUB_INFO Yes Yes Yes Yes

PARTNER_MFQUEUE Yes Yes Yes Yes

PARTNER Yes No No No

ADDR Yes No Yes No

ADD_TYPE_MODULE Yes No No No

RIB_SETTINGS Yes No No No

Design Assumptions
 It is not possible for a detail trigger to accurately know the status of a header table. In

order for the detail triggers to accurately know when to add a message to the queue,
RMS should not allow approval of a business object while detail modifications are
being made.

 It is not possible for a header trigger or a detail trigger to know the status of anything
modified by GETNXT. If a header trigger or detail trigger is trying to delete queue
records that GETNXT currently has locked, it will have to wait until GETNXT is
finished and removes the lock. It is assumed that this time will be fairly short (at
most 2-3 seconds). It is also assumed that this will occur rarely because it involves
updating/deleting detail records on a business object that has already been
approved. This also has to occur at the same time GETNXT is processing the current
business object.

 Push off all DML statements as late as possible. Once DML statements have taken
place, any error becomes a fatal error rather than a hospital error.

Performance Considerations
When passing arrays between functions, make sure to use the NOCOPY clause for the
array parameter.
This is a low volume API.

Publication Designs

86 Oracle Retail Merchandising System

Receiver Unit Adjustment Publication API

Business Overview
When mistakes are made during the receiving process at the store or warehouse, receiver
unit adjustments (RUAs) are made to correct the mistake. RMS publishes messages about
receiver unit adjustments to the Oracle Retail Integration Bus (RIB).
When RUAs are initiated through Oracle Retail Invoice Matching (ReIM) or created
through RMS forms, a message is published to integration subsystems and onto a
Warehouse Management System such as RWMS. Because these systems only have access
to the original receipt, the message communicates the original receipt number and not
the child receipt number.
When receipt adjustments are made in RMS either through ReIM or the RMS Receiver
Unit Adjustment form, it is necessary to communicate the new inventory positions to
integration subsystems such as RWMS that track inventory positions. A message is
published to the RIB to accomplish this task.

Functionality Checklist

Description RMS RIB

RMS must publish RcvUnitAdj information

Create new Publisher X X

Form Impact
None

Business Object Records
Create the following record types in the RMSMFM_RCVUNITADJ package specification:

TYPE rcvunitadj_key_rec IS RECORD(ORDER_NO SHIPMENT.ORDER_NO%TYPE,
 ASN SHIPMENT.ASN%TYPE,
 LOCATION SHIPMENT.TO_LOC%TYPE,
 LOC_TYPE SHIPMENT.TO_LOC_TYPE%TYPE,
 ITEM SHIPSKU.ITEM%TYPE,
 CARTON SHIPSKU.CARTON%TYPE,
 ADJ_QTY RUA_MFQUEUE.ADJ_QTY%TYPE);

Receiver Unit Adjustment Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 87

Package Impact

Business object id
The location ID will be used as the business object ID. For each location, all receiver unit
adjustments (that have not already been published) are rolled up to the item level (each
location may have one or more items for which a RUA has been applied) and will be
published.

Package name: RMSMFM_RCVUNITADJ

Spec file name: rmsmfm_rcvunitadjs.pls

Body file name: rmsmfm_rcvunitadjb.pls

Package Specification – Global Variables
FAMILY CONSTANT RIB_SETTINGS.FAMILY%TYPE ‘rcvunitadj’;
RCVUNITADJ_ADD CONSTANT VARCHAR2(15) ‘rcvunitadjcre’;

Function Level Description – ADDTOQ
Function: ADDTOQ(O_error_msg IN OUT VARCHAR2,
 I_message_type IN VARCHAR2,
 I_business_obj IN RCVUNITADJ_KEY_REC)

If multi-threading is being used, call API_LIBRARY.RIB_SETTINGS to get the number of
threads used for the publisher. Using the number of threads, and the business object ID,
calculate the thread value.
Insert a record into the RCVUNITADJ_MFQUEUE.

Function Level Description – GETNXT
Procedure: GETNXT GETNXT(O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id OUT RIB_BUSOBJID_TBL,
 O_routing_info OUT RIB_ROUTINGINFO_TBL,
 I_num_threads IN NUMBER DEFAULT 1,
 I_thread_val IN NUMBER DEFAULT 1)

The RIB calls GETNXT to get messages. The driving cursor will query for unpublished
records on the RCVUNITADJ_MFQUEUE table (PUB_STATUS = ‘U’).
GETNXT should check for records on the queue with a status of ‘H’ospital for the current
business object, GETNXT should raise an exception to send the current message to the
Hospital.
The information from the RCVUNITADJ_MFQUEUE table is passed to
PROCESS_QUEUE_RECORD. PROCESS_QUEUE_RECORD will build the Oracle Object
message to pass back to the RIB. If PROCESS_QUEUE_RECORD does not run
successfully, GETNXT should raise an exception.
If any exception is raised in GETNXT, including the exception raised by an unsuccessful
call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS should be called.

Publication Designs

88 Oracle Retail Merchandising System

Function Level Description – PUB_RETRY
Procedure: PUB_RETRY(O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type IN OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id IN OUT RIB_BUSOBJID_TBL,
 O_routing_info IN OUT RIB_ROUTINGINFO_TBL,
 I_ref_object IN RIB_OBJECT)

Same as GETNXT except:
The record on RCVUNITADJ_MFQUEUE must match the passed in sequence number
(contained in the ROUTING_INFO).

Function Level Description – PROCESS_QUEUE_RECORD (local)
This function controls the building of Oracle Objects given the business transaction’s key
values and a message type. It contains all of the shared processing between GETNXT and
PUB_RETRY.
The function will first call MAKE_CREATE to build the appropriate oracle object. It then
calls the DELETE_QUEUE_REC to delete the RUA_MFQUEUE for the passed-in rowid.

Function Level Description – MAKE_CREATE (local)
This function is used to create the Oracle Object for the initial publication of a business
transaction.
 Call BUILD_HEADER_OBJECT to get a header level Oracle Object plus any extra

functional holders.
 Call BUILD_DETAIL_OBJECTS to get a table of detail level Oracle objects and add

the detail level Oracle Objects to the header object.

Function Level Description – BUILD_HEADER_OBJECT (local)
Accepts header key values, performs necessary lookups, builds and returns a header
level Oracle Object.
This function also builds the routing information object using the location.

Function Level Description – BUILD_DETAIL_OBJECTS (local)
The function is responsible for the Oracle Object used for a DESC message (inserts and
updates.) It adds as many mfqueue records to the message as it can given the passed in
message type and business object keys.
 Call BUILD_SINGLE_DETAIL passing in the I_business_obj record.
 Ensure that ROUTING_INFO is constructed if routing information is stored at the

detail level in the business transaction.

Function Level Description – BUILD_SINGLE_DETAIL (local)
Accept inputs and build a detail level Oracle Object. If the adjustment quantity is
negative, the from disposition should be ‘ATS’ and the to disposition should be NULL. If
the adjustment quantity is positive, the to disposition should be NULL and the from
disposition should be ‘ATS’.

Receiver Unit Adjustment Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 89

Function Level Description – LOCK_THE_BLOCK (local)
This function locks all queue records for the current business object. This is to ensure that
GETNXT does not wait on any business processes that currently have the queue table
locked and have not committed. This can occur because ADDTOQ, which is called from
the triggers, deletes from the queue table for DTL_UPD, DTL_DEL, and HDR_DEL
messages.

Function Level Description – HANDLE_ERRORS (local)
HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is
raised.
If the error is a non-fatal error, GETNXT passes the sequence number of the driving
RCVUNITADJ_MFQUEUE record back to the RIB in the ROUTING_INFO. It sends back
a status of ‘H’ospital to the RIB as well. It then updates the status of the queue record to
‘H’ospital, so that it will not get picked up again by the driving cursor in GETNXT.
If the error is a fatal error, a status of ‘E’rror is returned to the RIB.
The error is considered non-fatal if no DML has occurred yet. Whenever DML has
occurred, then the global variable LP_error_status is flipped from ‘H’ospital to ‘E’rror.

Function Level Description – DELETE_QUEUE_REC (local)
This private function will delete the records from rcvunitadj_mfqueue table for the rowid
passed in as input parameter.

Trigger Impact

Trigger name: EC_TABLE_RUA_AIR.TRG

Trigger file name: ec_table_rua_air.trg

Table: RAU_RIB_INTERFACE
Create a trigger on the RAU_RIB_INTERFACE table to capture Inserts.
Inserts
 Send the appropriate column values to the ADDTOQ procedure in the MFM with the

message type RMSMFM_RCVUNITADJ.RCVUNITADJ_ADD.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

RcvUnitAdjCre Receiver Unit Adjustment Create Message RcvUnitAdjDesc.xsd

Table Impact

TABLE SELECT INSERT UPDATE DELETE

RUA_MFQUEUE Yes Yes Yes Yes

Publication Designs

90 Oracle Retail Merchandising System

Design Assumptions
 It is not possible for a detail trigger to accurately know the status of a header table.
 In order for the detail triggers to accurately know when to add a message to the

queue, RMS should not allow approval of a business object while detail
modifications are being made.

 It is not possible for a header trigger or a detail trigger to know the status of anything
modified by GETNXT. If a header trigger or detail trigger is trying to delete queue
records that GETNXT currently has locked, it will have to wait until GETNXT is
finished and removes the lock. It is assumed that this time will be fairly short (at
most 2-3 seconds.) It is also assumed that this will occur rarely because it involves
updating/deleting detail records on a business object that has already been
approved. This also has to occur at the same time GETNXT is processing the current
business object.

 Push off all DML statements as late as possible. Once DML statements have taken
place, any error becomes a fatal error rather than a hospital error.

RTV Request Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 91

RTV Request Publication API

Business Overview
A return to vendor (RTV) order is used to send merchandise back to the supplier. The
RTV message is published by RMS to the store. For an RTV, the initial transfer of stock to
the store is a distinctly different step from the RTV itself. Once the transferred stock
arrives at the store, the user then creates the RTV. RTVs are created by the following:
1. Adding one supplier
2. Selecting the sending locations
3. Adding the items, either individually or through the use of item lists
In order to return items to a vendor from multiple stores as part of one operation, the
items must go through a single warehouse. The transfer of items from several different
stores to one warehouse is referred to as a mass return transfer (MRT). The items are
subsequently returned to the vendor from the warehouse.
Return to vendor requests created in RMS should be published to the RIB to allow the
integration subsystem application to have visibility to the corporately created RTV.
Consequently, when the integration subsystem application ships the RTV, it must
communicate the original RTV order number back to RMS so that RMS can correctly
update the original RTV record.

Functionality Checklist

Description RMS RIB

RMS must publish RTV information

Publish RTV information from RMS to the RIB. X X

Form Impact
None

Business Object Records
None

Package Impact

Business Object ID
No change.

Package name: RMSMFM_RTVREQ

Spec file name: rmsmfm_rtvreqs.pls

Body file name: rmsmfm_rtvreqb.pls

Package Specification – Global Variables
No change.

Publication Designs

92 Oracle Retail Merchandising System

Function Level Description – ADDTOQ
Function: ADDTOQ
 (O_error_msg IN OUT VARCHAR2,
 I_message_type IN VARCHAR2,
 I_rtv_order_no IN RTV_HEAD.RTV_ORDER_NO%TYPE,
 I_status IN RTV_HEAD.STATUS_IND%TYPE,
 I_rtv_seq_no IN RTV_DETAIL.SEQ_NO%TYPE,
 I_item IN RTV_DETAIL.ITEM%TYPE,
 I_publish_ind IN RTV_DETAIL.PUBLISH_IND%TYPE)

There are some tasks relating to streamlining the queue clean up process that need to
occur in ADDTOQ. The goal is to have at most one record on the queue for business
transactions up until their initial publication.
 For header level insert messages (HDR_ADD), insert a record in the

RTVREQ_PUB_INFO table. The published flag should be set to ‘N’. The correct
thread for the business transaction should be calculated and written. Call
API_LIBRARY.RIB_SETTINGS to get the number of threads used for the publisher.
Using the number of threads, and the business object id, calculate the thread value.

 For all records except header level inserts (HDR_ADD), the thread_no,
initial_approval_ind, and shipped_ind should be queried from the
RTVREQ_PUB_INFO table.

 If the business transaction has not been approved (initial_approval_ind = ‘N’) or it
has already been shipped (shipped_ind = ‘Y’) and the triggering message is one of
DTL_ADD, DTL_UPD, DTL_DEL, HDR_DEL, no processing should take place and
the function should exit.

 For detail level messages deletes (DTL_DEL), the system only needs one (the most
recent) record per detail in the RTVREQ_MFQUEUE. Delete any previous records
that exist on the RTVREQ_MFQUEUE for the record that has been passed. If the
publish_ind is ‘N’, do not add the DTL_DEL message to the queue.

 For detail level message deletes (DTL_UPD), the system only needs one DTL_UPD
(the most recent) record per detail in the RTVREQ_MFQUEUE. Delete any previous
DTL_UPD records that exist on the RTVREQ_MFQUEUE for the record that has been
passed. The system does not want to delete any detail inserts that exist on the queue
for the detail. The system needs to ensure subscribers are not passed a detail
modification message for a detail that they do not yet have.

 For header level delete messages (HDR_DEL), delete every record in the queue for
the business transaction.

 For header level update message (HDR_UPD), update the
RTVREQ_PUB_INFO.INITIAL_APPROVAL_IND to ‘Y’ if the business transaction is
in approved status (status of ‘10’).

 For header level update message (HDR_UPD), update the
RTVREQ_PUB_INFO.SHIPPED_IND to ‘Y’ if the business transaction is in shipped
status (status of ‘15’).

 For all records except header level inserts (HDR_ADD), insert a record into the
RTVREQ_MFQUEUE.

RTV Request Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 93

Function Level Description – GETNXT
Procedure: GETNXT
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id OUT RIB_BUSOBJID_TBL,
 O_routing_info OUT RIB_ROUTINGINFO_TBL,
 I_num_threads IN NUMBER DEFAULT 1,
 I_thread_val IN NUMBER DEFAULT 1)

Make sure to initialize LP_error_status to API_CODES.HOSPITAL at the beginning of
GETNXT.
The RIB calls GETNXT to get messages. It performs a cursor loop on the unpublished
records on the RTVREQ_MFQUEUE table (PUB_STATUS = ‘U’). It should only need to
execute one loop iteration in most cases. For each record retrieved, GETNXT gets the
following:
1. A lock of the queue table for the current business object. The lock is obtained by

calling the function LOCK_THE_BLOCK. If there are any records on the queue for
the current business object that are already locked, the current message is skipped.

2. The published indicator from the RTVREQ_PUB_INFO table.
3. A check for records on the queue with a status of ‘H’ospital. If there are any such

records for the current business object, GETNXT raises an exception to send the
current message to the Hospital.

The loop will need to execute more than one iteration for the following cases:
1. When a header delete message exists on the queue for a business object that has not

been initially published. In this case, simply remove the header delete message from
the queue and loop again.

2. The queue is locked for the current business object.
The information from the RTVREQ_MFQUEUE and RTVREQ_PUB_INFO table is passed
to PROCESS_QUEUE_RECORD. PROCESS_QUEUE_RECORD will build the Oracle
Object message to pass back to the RIB. If PROCESS_QUEUE_RECORD does not run
successfully, GETNXT raises an exception.
If any exception is raised in GETNXT, including the exception raised by an unsuccessful
call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS is called.

Function Level Description – PUB_RETRY

Procedure: PUB_RETRY
Same as GETNXT except:
The record on RTVREQ_MFQUEUE must match the passed in sequence number
(contained in the ROUTING_INFO).

Publication Designs

94 Oracle Retail Merchandising System

Function Level Description – PROCESS_QUEUE_RECORD (local)
This function controls the building of Oracle Objects given the business transaction’s key
values and a message type. It contains all of the shared processing between GETNXT and
PUB_RETRY.
Check to see if the business object is being published for the first time. If the
published_ind on the PUB_INFO table is ‘N’ or ‘I’, the business object is being published
for the first time. If so, call MAKE_CREATE.
Otherwise,
If the record from RTVREQ_MFQUEUE table is a header update (HDR_UPD)
 Call BUILD_HEADER_OBJECT to build the Oracle Object to publish to the RIB. This

will also populate the ROUTING_INFO.
 Update RTVREQ_PUB_INFO with updated new header information
 Delete the record from the RTVREQ_MFQUEUE table.

If the record from RTVREQ_MFQUEUE table is a detail add or update (DTL_ADD,
DTL_UPD)
 Call BUILD_HEADER_OBJECT to build the header portion of the Oracle Object to

publish to the RIB. This will also populate the ROUTING_INFO.
 Call BUILD_DETAIL_CHANGE_OBJECTS to build the detail portion of the Oracle

Object. This will also take care of any RTVREQ_MFQUEUE deletes.
If the record from RTVREQ_MFQUEUE table is a detail delete (DTL_DEL)
 Call BUILD_HEADER_OBJECT to build the header portion of the Oracle Object to

publish to the RIB. This will also populate the ROUTING_INFO.
 Call BUILD_DETAIL_DELETE_OBJECTS to build the detail portion of the Oracle

Object. This will also take care of any RTVREQ_MFQUEUE deletes.

Function Level Description – MAKE_CREATE (local)
This function is used to create the Oracle Object for the initial publication of a business
transaction.
 Call BUILD_HEADER_OBJECT to build the Oracle Object to publish to the RIB. This

will also populate the ROUTING_INFO.
 Call BUILD_DETAIL_OBJECTS to get a table of detail level Oracle objects and a table

of RTVREQ_MFQUEUE rowids to delete.
 Delete records from the RTVREQ_MFQUEUE for all rowids returned by

BUILD_DETAIL_OBJECTS. Deletes are done by rowids instead of business
transaction keys to ensure that noting is deleted off the queue that has not been
published.

 If the entire business transaction was added to the Oracle Object, also delete the
RTVREQ_MFQUEUE record that was picked up by GETNXT. If the entire business
transaction was not published we need to leave something on the
RTVREQ_MFQUEUE to ensure that the rest of it is picked up by the next call to
GETNXT.

 The header and detail level Oracle Objects are combined and returned.

RTV Request Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 95

Function Level Description – BUILD_HEADER_OBJECT (local)
Take all necessary data from RTV_HEAD table and put it into a
“RIB_RTVReqDesc_REC” and “RIB_RTVReqRef_REC” object.
Put the location into the ROUTING_INFO.

Function Level Description – BUILD_DETAIL_CHANGE_OBJECTS (local)
Call BUILD_DETAIL_OBJECTS.
BUILD_DETAIL_OBJECTS creates a table of RTVREQ_MFQUEUE ROWIDs to delete.
Delete these records.
BUILD_DETAIL_OBJECTS creates a table of RTV_DETAIL ROWIDs to update. Update
the PUBLISH_IND to Y for these records.
Make sure to set LP_error_status to API_CODES.UNHANDLED_ERROR before any
DML statements.

Function Level Description – BUILD_DETAIL_OBJECTS (local)
The function is responsible for building detail level Oracle Objects. It builds as many
detail Oracle Object as it can given the passed in message type and business object keys.
If the function is being called from MAKE_CREATE:
Select any unpublished detail records from the business transaction
(RTV_DETAIL.PUBLISH_IND will be ‘N’). Create Oracle Objects for details that are
selected by calling BUILD_SINGLE_DETAIL.
 Ensure that the PUBLISH_IND gets set to Y for each RTV_DETAIL record placed

into the Oracle Objects. A table of ROWIDs to update will be created in
BUILD_DETAIL_OBJECTS. The actual update statement will occur in
BUILD_DETAIL_CHANGE_OBJECTS using this table of ROWIDS.

 Ensure that RTVREQ_MFQUEUE is deleted from as needed. If there is more than
one RTVREQ_MFQUEUE record for a detail level record, make sure they all get
deleted. The system only cares about current state, not every change. A table of
ROWIDs to delete will be created in BUILD_DETAIL_OBJECTS. The actual delete
statement will occur in BUILD_DETAIL_CHANGE_OBJECTS using this table of
ROWIDS.

 Ensure that no more than MAX_DETAILS_TO_PUBLISH records are put into Oracle
Objects.

 Ensure that the detail records being added to the object have not already been
published. This can happen if GETNXT was previously called for the current
business object, and the MAX_DETAILS_TO_PUBLISH limit had been reached. The
system ensures these details do not get added again by looking at each detail’s
PUBLISH_IND.

Publication Designs

96 Oracle Retail Merchandising System

If the function is not being called from MAKE_CREATE:
 Select any records on the RTVREQ_MFQUEUE that are for the same business object

ID. Fetch the records in order of seq_no on the MFQUEUE table.
 Ensure that RTVREQ_MFQUEUE is deleted from as needed. A table of ROWIDs to

delete will be created in BUILD_DETAIL_OBJECTS. The actual delete statement will
occur in BUILD_DETAIL_CHANGE_OBJECTS using this table of ROWIDS.

 If the message type is a detail create (DTL_ADD), ensure that the PUBLISH_IND gets
set to Y for each RTV_DETAIL record placed into the Oracle Objects. A table of
ROWIDs to update will be created in BUILD_DETAIL_OBJECTS. The actual update
statement will occur in BUILD_DETAIL_CHANGE_OBJECTS using this table of
ROWIDS.

A concern here is making sure that the system does not delete information from the
queue table that has not been published. For this reason, the system performs deletes by
ROWID. The system also attempts to get everything in the same cursor to ensure that the
message we published matches the deletes we perform from the RTVREQ_MFQUEUE
table regardless of trigger execution during GETNXT calls.

Function Level Description – BUILD_DETAIL_DELETE_OBJECTS (local)
This function works the same way as BUILD_DETAIL_OBJECTS, except for the fact that
a REF object is being created instead of a DESC object.

Function Level Description – BUILD_SINGLE_DETAIL (local)
Puts the inputted information in a RIB_RTVREQDTL_TBL object.

Function Level Description – LOCK_THE_BLOCK (local)
This function locks all queue records for the current business object. This is to ensure that
GETNXT does not wait on any business processes that currently have the queue table
locked and have not committed. This can occur because ADDTOQ, which is called from
the triggers, deletes from the queue table for DTL_UPD, DTL_DEL, and HDR_DEL
messages.

Function Level Description – DELETE_QUEUE_REC (local)
Deletes a record from the RTVREQ_MFQUEUE table, using the passed in sequence
number.

Function Level Description – HANDLE_ERRORS (local)
HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is
raised.
If the error is a non-fatal error, GETNXT passes the sequence number of the driving
ITEMLOC_MFQUEUE record back to the RIB in the ROUTING_INFO. It sends back a
status of ‘H’ospital to the RIB as well. It then updates the status of the queue record to
‘H’ospital, so that it will not get picked up again by the driving cursor in GETNXT.
If the error is a fatal error, a status of ‘E’rror is returned to the RIB.
The error is considered non-fatal if no DML has occurred yet. Whenever DML has
occurred, then the global variable LP_error_status is flipped from ‘H’ospital to ‘E’rror.

RTV Request Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 97

Trigger Impact

Trigger name: EC_TABLE_RHD_AIUDR.TRG

Trigger file name: ec_table_rhd_aiudr.trg

Table: RTV_HEAD
Create a trigger on the RTV_HEAD table to capture Inserts, Updates, and Deletes.
Inserts
 Send the appropriate column values to the ADDTOQ procedure in the MFM with the

message type RMSMFM_RTVREQ.HDR_ADD.
Updates
 Send the appropriate column values to the ADDTOQ procedure in the MFM with the

message type RMSMFM_RTVREQ.HDR_UPD.
Deletes
 Send the appropriate column values to the ADDTOQ procedure in the MFM with the

message type RMSMFM_RTVREQ.HDR_DEL.

Trigger name: EC_TABLE_RDT_AIUDR.TRG

Trigger file name: ec_table_rdt_aiudr.trg

Table: RTV_DETAIL
Create a trigger on the RTV_DETAIL table to capture Inserts, Updates, and Deletes.
Inserts
 Send the appropriate column values to the ADDTOQ procedure in the MFM with the

message type RMSMFM_RTVREQ.DTL_ADD.
Updates
 Send the appropriate column values to the ADDTOQ procedure in the MFM with the

message type RMSMFM_RTVREQ.DTL_UPD.
Deletes
 Send the appropriate column values to the ADDTOQ procedure in the MFM with the

message type RMSMFM_RTVREQ.DTL_DEL.

Publication Designs

98 Oracle Retail Merchandising System

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

RtvReqCre RTV Request Create Message RTVReqDesc.xsd

RtvReqMod RTV Request Modify Message RTVReqDesc.xsd

RtvReqDel RTV Request Delete Message RTVReqRef.xsd

RtvReqDtlCre RTV Request Detail Create Message RTVReqDesc.xsd

RtvReqDtlMod RTV Request Detail Modify Message RTVReqDesc.xsd

RtvReqDtlDel RTV Request Detail Delete Message RTVReqRef.xsd

Table Impact

TABLE SELECT INSERT UPDATE DELETE

RTVREQ_MFQUEUE Yes Yes Yes Yes

RTVREQ_PUB_INFO Yes Yes Yes Yes

RTV_HEAD Yes No No No

RTV_DETAIL Yes No No No

Design Assumptions
 It is not possible for a detail trigger to accurately know the status of a header table.
 In order for the detail triggers to accurately know when to add a message to the

queue, RMS should not allow approval of a business object while detail
modifications are being made.

 It is not possible for a header trigger or a detail trigger to know the status of anything
modified by GETNXT. If a header trigger or detail trigger is trying to delete queue
records that GETNXT currently has locked, it will have to wait until GETNXT is
finished and remove the lock. It is assumed that this time will be fairly short (at most
2-3 seconds.) It is also assumed that this will occur rarely because it involves
updating/deleting detail records on a business object that has already been
approved. This also has to occur at the same time GETNXT is processing the current
business object.

 Push off all DML statements as late as possible. Once DML statements have taken
place, any error becomes a fatal error rather than a hospital error.

Seed Data Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 99

Seed Data Publication API

Business Overview
Seed data publication to the RIB allows RMS to send code information and differentiator
type information to external systems through an integration subsystem.
Some examples of seed data include item types, carriers, shipping methods, and return
reasons. Such seed data is usually fairly constant and unchanging.
Seed data is used the first time that a system loads data.
Seed data publication uses CLOB messages.
Code information as well as differentiator types will be published to the RIB so that
external systems will have all of the latest information regarding codes and diff types.
Previously, all of the codes and diff types were populated at installation time and when
codes or diff types were added or modified. External systems would not get these
changes.
Seed data publication consists of a message containing code and diff type information
from the tables CODE_HEAD, CODE_DETAIL and DIFF_TYPE. One message will be
synchronously created and placed in the message queue each time a CODE_HEAD,
CODE_DETAIL or DIFF_TYPE record is created, modified, or deleted. When a
CODE_HEAD, CODE_DETAIL or DIFF_TYPE record is created or modified, the message
will contain a full snapshot of the modified record. When a CODE_HEAD,
CODE_DETAIL or DIFF_TYPE record is deleted, the message will contain a partial
snapshot of the deleted record. Messages are retrieved from the message queue in the
order they were created.

Functionality Checklist

Description RMS RIB

RMS must publish code and diff type information

Create new Publisher X X

Form Impact
None

Business Object Records
N/A

Package Impact

Package name: RMSMFM_SEEDDATA

Spec file name: rmsmfm_seeddatas.pls

Body file name: rmsmfm_seeddatab.pls

Publication Designs

100 Oracle Retail Merchandising System

Package Specification – Global Variables
/*--- message type parameters ---*/
HDR_CRE_TYPE VARCHAR2(30) := 'CodeHdrCre';
HDR_MOD_TYPE VARCHAR2(30) := 'CodeHdrMod';
HDR_DEL_TYPE VARCHAR2(30) := 'CodeHdrDel';
DTL_CRE_TYPE VARCHAR2(30) := 'CodeDtlCre';
DTL_MOD_TYPE VARCHAR2(30) := 'CodeDtlMod';
DTL_DEL_TYPE VARCHAR2(30) := 'CodeDtlDel';
DIFF_TYPE_CRE_TYPE VARCHAR2(30) := 'DiffTypeCre';
DIFF_TYPE_MOD_TYPE VARCHAR2(30) := 'DiffTypeMod';
DIFF_TYPE_DEL_TYPE VARCHAR2(30) := 'DiffTypeDel';

/*--- doc type parameters ---*/
HDR_DESC_MSG CONSTANT VARCHAR2(30) := 'CodeHdrDesc';
HDR_REF_MSG CONSTANT VARCHAR2(30) := 'CodeHdrRef';
DTL_DESC_MSG CONSTANT VARCHAR2(30) := 'CodeDtlDesc';
DTL_REF_MSG CONSTANT VARCHAR2(30) := 'CodeDtlRef';
DIFF_TYPE_DESC_MSG CONSTANT VARCHAR2(30) := 'DiffTypeDesc';
DIFF_TYPE_REF_MSG CONSTANT VARCHAR2(30) := 'DiffTypeRef';

Function Level Description – ADDTOQ
PROCEDURE: ADDTOQ
 (O_status OUT VARCHAR2,
 O_text OUT VARCHAR2,
 I_message_type IN CODES_MFQUEUE.MESSAGE_TYPE%TYPE,
 I_code_type IN CODES_MFQUEUE.CODE_TYPE%TYPE,
 I_message IN OUT rib_sxw.SXWHandle)

This procedure is called by EC_TABLE_CODEHD_AIUDR,
EC_TABLE_CODEDTL_AIUDR and EC_TABLE_DIFF_TYPE_AIUDR. The procedure
accepts a message variable that consists of the code or diff information in XML tags, a
code type variable (this will be hard coded ‘OOOO’ for diff types) and one of the
message types defined in the package specification. It inserts a row into the message
family queue CODES_MFQUEUE along with the passed in values and the next sequence
number from the message family sequence, and sets the status to unpublished. The
procedure will then call API_LIBRARY.WRITE_DOCUMENT_STR which will return a
status code of API_CODES.SUCCESS if successful, API_CODES.UNHANDLED_ERROR
if not.

Function Level Description – GETNXT
PROCEDURE GETNXT
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type OUT CODES_MFQUEUE.MESSAGE_TYPE%TYPE,
 O_message OUT nocopy CLOB,
 O_code_type OUT CODES_MFQUEUE.CODE_TYPE%TYPE)

This publicly exposed procedure is typically called by a RIB publication adaptor. Its
parameters are well defined and arranged in a specific order. The message type is the RIB
defined short message name.
The error text parameter contains application-generated information, such as the
application’s sequence number of the message that failed, and the Oracle or other error
that occurred when the retrieval failed.
This procedure will call the internal function DO_GETNXT which will actually retrieve
the clob from the CODES_MFQUEUE table so that it may be published to the RIB.

Seed Data Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 101

Function Level Description – DO_GETNXT (local)
This internal procedure will select the record from the CODES_MFQUEUE table having
the lowest sequence number and a pub_status of ‘U’. It will return the clob, the message
type and code type to the out parameters to be passed back to GETNXT. The procedure
will then call the DELETE_QUEUE_REC function to delete the record that is being
published.

Function Level Description – DELETE_QUEUE_REC (local)
This procedure will delete the record from the CODES_MFQUEUE table that has the
sequence number corresponding to the I_seq_no parameter.

Package name: CODE_HEAD_XML

Spec file name: code_head_xmls.pls

Body file name: code_head_xmlb.pls

Package Specification – Global Variables
None

Function Level Description – BUILD_MESSAGE
If the I_action_type is ‘D’ (a record is being deleted), an internal variable holding the doc
type should be set to RMSMFM_SEEDDATA.HDR_REF_MSG. The function will then
call API_LIBRARY.CREATE_MESSAGE_STR to return a clob that has the appropriate
structure for the code head delete message. The function then calls the
DELETE_CODE_HEAD function to populate the clob that was created.
If the I_action_type is not ‘D’ (a record has been added or updated), an internal variable
holding the doc type should be set to RMSMFM_SEEDDATA.HDR_DESC_MSG. The
function will then call API_LIBRARY.CREATE_MESSAGE_STR to return a clob that has
the appropriate structure for the code head desc message. The function then calls the
ADD_UPDATE_CODE_HEAD function to populate the clob that was created.

Function Level Description – DELETE_CODE_HEAD
This function will accept a record that holds code_head values. The rib_sxw.addElement
function will be called to add the code type from the I_code_head_rec to the clob (or
root).

Function Level Description – ADD_UPDATE_CODE_HEAD
This function will accept a record that holds CODE_HEAD values. The
rib_sxw.addElement function will be called to add the code type and code type
description from the I_code_head_rec to the clob (or root).

Package name: CODE_DETAIL_XML

Spec file name: code_detail_xmls.pls

Body file name: code_detail_xmlb.pls

Package Specification – Global Variables
None

Publication Designs

102 Oracle Retail Merchandising System

Function Level Description – BUILD_MESSAGE
If the I_action_type is ‘D’ (a record is being deleted), an internal variable holding the doc
type should be set to RMSMFM_SEEDDATA.DTL_REF_MSG. The function will then call
API_LIBRARY.CREATE_MESSAGE_STR to return a clob that has the appropriate
structure for the code detail delete message. The function then calls the
DELETE_CODE_DETAIL function to populate the clob that was created.
If the I_action_type is not ‘D’ (a record has been added or updated), an internal variable
holding the doc type should be set to RMSMFM_SEEDDATA.DTL_DESC_MSG. The
function will then call API_LIBRARY.CREATE_MESSAGE_STR to return a clob that has
the appropriate structure for the code detail desc message. The function then calls the
ADD_UPDATE_CODE_DETAIL function to populate the clob that was created.

Function Level Description – DELETE_CODE_DETAIL
FUNCTION DELETE_CODE_DETAIL
 (O_status OUT VARCHAR2,
 O_text OUT VARCHAR2,
 I_code_detail_rec IN CODE_DETAIL%ROWTYPE,
 Root IN OUT rib_sxw.SXWHandle)

This function will accept a record that holds code_detail values. The
rib_sxw.addElement function will be called to add the code type and code from the
I_code_detail_rec to the clob (or root).

Function Level Description – ADD_UPDATE_CODE_DETAIL
This function will accept a record that holds code_detail values. The rib_sxw.addElement
function will be called to add the code type, code, code description, required indicator
and code sequence from the I_code_detail_rec to the clob (or root).

Package name: DIFF_TYPE_XML

Spec file name: diff_type_xmls.pls

Body file name: diff_type_xmlb.pls

Package Specification – Global Variables
None

Function Level Description – BUILD_MESSAGE
If the I_action_type is ‘D’ (a record is being deleted), an internal variable holding the doc
type should be set to RMSMFM_SEEDDATA.DIFF_TYPE_REF_MSG. The function will
then call API_LIBRARY.CREATE_MESSAGE_STR to return a clob that has the
appropriate structure for the diff type delete message. The function then calls the
DELETE_DIFF_TYPE function to populate the clob that was created.
If the I_action_type is not ‘D’ (a record has been added or updated), an internal variable
holding the doc type should be set to RMSMFM_SEEDDATA.DIFF_TYPE_DESC_MSG.
The function will then call API_LIBRARY.CREATE_MESSAGE_STR to return a clob that
has the appropriate structure for the diff type desc message. The function then calls the
ADD_UPDATE_DIFF_TYPE function to populate the clob that was created.

Seed Data Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 103

Function Level Description – DELETE_DIFF_TYPE
FUNCTION DELETE_DIFF_TYPE
 (O_status OUT VARCHAR2,
 O_text OUT VARCHAR2,
 I_diff_type_rec IN DIFF_TYPE%ROWTYPE,
 Root IN OUT rib_sxw.SXWHandle)

This function will accept a record that holds diff_type values. The rib_sxw.addElement
function will be called to add the diff type from the I_diff_type_rec to the clob (or root).

Function Level Description – ADD_UPDATE_CODE_DETAIL
FUNCTION ADD_UPDATE_DIFF_TYPE
 (O_status OUT VARCHAR2,
 O_text OUT VARCHAR2,
 I_diff_type_rec IN DIFF_TYPE%ROWTYPE,
 Root IN OUT rib_sxw.SXWHandle)

This function will accept a record that holds diff_type values. The rib_sxw.addElement
function will be called to add the diff type and diff type description from the
I_diff_type_rec to the clob (or root).

Trigger Impact

Trigger name: EC_TABLE_CODEHD_AIUDR.TRG

Trigger file name: ec_table_codehd_aiudr.trg

Table: CODE_HEAD
This trigger will capture inserts/updates/deletes to the CODE_HEAD table and write
data into the CODES_MFQUEUE message queue.
Inserts
 Set the message type RMSMFM_SEEDDATA.HDR_CRE_TYPE. Set the action type to

‘A’. Populate the code head record with the code type and code type description.
Updates
 Set the message type RMSMFM_SEEDDATA.HDR_MOD_TYPE. Set the action type

to ‘M’. Make sure that either the code type or code type description has changed. If
they have not, then simply return and do not add anything to the
CODES_MFQUEUE. If either is different, then populate the code head record with
the code type and code type description.

Deletes
 Set the message type RMSMFM_SEEDDATA.HDR_DEL_TYPE. Set the action type to

‘D’. Populate the code head record with the code type.
Call CODE_HEAD_XML.BUILD_MESSAGE to build the clob that will be placed on the
CODES_MFQUEUE. Finally, call the RMSMFM_SEEDDATA.ADDTOQ function with
the message type, code type and clob.

Trigger name: EC_TABLE_CODEDTL_AIUDR.TRG

Trigger file name: ec_table_codedtl_aiudr.trg

Publication Designs

104 Oracle Retail Merchandising System

Table: CODE_DETAIL
This trigger will capture inserts/updates/deletes to the CODE_DETAIL table and write
data into the CODES_MFQUEUE message queue.
Inserts
 Set the message type RMSMFM_SEEDDATA.DTL_CRE_TYPE. Set the action type to

‘A’. Populate the code detail record with the code type, code, code description,
required indicator and code sequence.

Updates
 Set the message type RMSMFM_SEEDDATA.DTL_MOD_TYPE. Set the action type

to ‘M’. Make sure that the code type, code, code description, required indicator or
code sequence have changed. If they have not, then simply return and do not add
anything to the CODES_MFQUEUE. If either is different, then populate the code
detail record with the code type, code, code description, required indicator and code
sequence.

Deletes
 Set the message type RMSMFM_SEEDDATA.DTL_DEL_TYPE. Set the action type to

‘D’. Populate the code detail record with the code type and code.
Call CODE_DETAIL_XML.BUILD_MESSAGE to build the clob that will be placed on the
CODES_MFQUEUE. Finally, call the RMSMFM_SEEDDATA.ADDTOQ function with
the message type, code type and clob.

Trigger name: EC_TABLE_DIFF_TYPE_AIUDR.TRG

Trigger file name: ec_table_diff_type_aiudr.trg

Table: DIFF_TYPE
This trigger will capture inserts/updates/deletes to the DIFF_TYPE table and write data
into the CODES_MFQUEUE message queue.
Inserts
 Set the message type RMSMFM_SEEDDATA.DIFF_TYPE_CRE_TYPE. Set the action

type to ‘A’. Populate the diff type record with the diff type and diff type description.
Updates
 Set the message type RMSMFM_SEEDDATA.DIFF_TYPE_MOD_TYPE. Set the

action type to ‘M’. Make sure that the diff type and diff type description have
changed. If they have not, then simply return and do not add anything to the
CODES_MFQUEUE. If either is different, then populate the diff type record with the
diff type and diff type description.

Deletes
 Set the message type RMSMFM_SEEDDATA.DIFF_TYPE_DEL_TYPE. Set the action

type to ‘D’. Populate the diff type record with the diff type.
Call DIFF_TYPE_XML.BUILD_MESSAGE to build the clob that will be placed on the
CODES_MFQUEUE. Finally, call the RMSMFM_SEEDDATA.ADDTOQ function with
the message type, code type and clob. The code type for diff types should always be
‘OOOO’.

Seed Data Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 105

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

CodeHdrCre Code Head Create Message CodeHdrDesc.xsd

CodeHdrMod Code Head Modify Message CodeHdrDesc.xsd

CodeHdrDel Code Head Delete Message CodeHdrRef.xsd

CodeDtlCre Code Detail Create Message CodeDtlDesc.xsd

CodeDtlMod Code Detail Modify Message CodeDtlDesc.xsd

CodeDtlDel Code Detail Delete Message CodeDtlRef.xsd

DiffTypeCre Diff Type Create Message DiffTypeDesc.xsd

DiffTypeMod Diff Type Modify Message DiffTypeDesc.xsd

DiffTypeDel Diff Type Delete Message DiffTypeRef.xsd

Table Impact

TABLE SELECT INSERT UPDATE DELETE

CODES_MFQUEUE Yes Yes No Yes

Design Assumptions
 One of the primary assumptions in the current approach is that ease of code will

outweigh performance considerations. It is hoped that the ‘trickle’ nature of the flow
of data will decrease the need to dwell on performance issues and instead allow
developers to code in the easiest and most straightforward manner.

 The adaptor is only setup to call stored procedures, not stored functions. Any public
program called by the adaptor then needs to be a procedure.

Publication Designs

106 Oracle Retail Merchandising System

Seed Object Publication API

Business Overview
Seed object publication to the RIB allows RMS to send country information as well as
currency rates so that external systems will have all of the latest information regarding
countries and currency rates.
Seed object publication consists of a message containing country and currency rate
information from the tables COUNTRY and CURRENCY_RATES. One message will be
synchronously created and placed in the message queue each time a COUNTRY and
CURRENCY_RATES record is created, modified or deleted in RMS. When a COUNTRY
or CURRENCY_RATES record is created or modified, the message will contain a full
snapshot of the modified record. When a COUNTRY record is deleted, the message will
contain a partial snapshot of the deleted record. Messages are retrieved from the message
queue in the order they were created.

Functionality Checklist

Description RMS RIB

RMS must publish code and diff type information

Create new Publisher X X

Form Impact
None

Business Object Records
N/A

Seed Object Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 107

Package Impact

Package name: RMSMFM_SEEDOBJ

Spec file name: rmsmfm_seedobjs.pls

Body file name: rmsmfm_seedobjb.pls
Package Specification – Global Variables
/*--- message type parameters ---*/
COUNTRY_ADD VARCHAR2(30) := 'countrycre';
COUNTRY_UPD VARCHAR2(30) := 'countrymod';
COUNTRY_DEL VARCHAR2(30) := 'countrydel';
CURR_ADD VARCHAR2(30) := 'curratecre';
CURR_UPD VARCHAR2(30) := 'curratemod';

Function Level Description – ADDTOQ
PROCEDURE: ADDTOQ
 (O_error_message IN OUT VARCHAR2,
 I_message_type IN SEEDOBJ_MFQUEUE.MESSAGE_TYPE%TYPE,
 I_country_id IN SEEDOBJ_MFQUEUE.COUNTRY_ID%TYPE,
 I_currency_code IN SEEDOBJ_MFQUEUE.CURRENCY_CODE%TYPE,
 I_country_desc IN SEEDOBJ_MFQUEUE.COUNTRY_DESC%TYPE,
 I_effective_date IN SEEDOBJ_MFQUEUE.EFFECTIVE_DATE%TYPE,
 I_exchange_type IN SEEDOBJ_MFQUEUE.EXCHANGE_TYPE%TYPE,
 I_exchange_rate IN SEEDOBJ_MFQUEUE.EXCHANGE_RATE%TYPE)
RETURN BOOLEAN;

This function is called by either the COUNTRY or CURRENCY_RATES row trigger, and
takes the message type and the table values (country_id for COUNTRY table and
currency_code for CURRENCY_RATES table). It inserts a row into the message family
queue along with the passed in values and the next sequence number from the message
family sequence. The pub status will always be ‘U’ except for create messages, then it will
be ‘N’. It returns error codes and strings according to the standards of the application in
which it is being implemented.
Function Level Description – GETNXT
PROCEDURE GETNXT
 (O_status_code IN OUT VARCHAR2,
 O_error_msg IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_message_type IN OUT VARCHAR2,
 O_message IN OUT RIB_OBJECT,
 O_bus_obj_id IN OUT RIB_BUSOBJID_TBL,
 O_routing_info IN OUT RIB_ROUTINGINFO_TBL,
 I_num_threads IN NUMBER DEFAULT 1,
 I_thread_val IN NUMBER DEFAULT 1)

The RIB calls GETNXT to get messages. It performs a cursor loop on the unpublished
records on the SEEDOBJ_MFQUEUE table (PUB_STATUS = ‘U’). It should only need to
execute one loop iteration in most cases. For each record retrieved, GETNXT checks for
records on the queue with a status of ‘H’ospital. If there are any such records for the
current business object, GETNXT raises an exception to send the current message to the
Hospital.

Publication Designs

108 Oracle Retail Merchandising System

The information from the SEEDOBJ_MFQUEUE and table is passed to
PROCESS_QUEUE_RECORD. PROCESS_QUEUE_RECORD will build the Oracle Object
message to pass back to the RIB. If PROCESS_QUEUE_RECORD does not run
successfully, GETNXT raises an exception.
If any exception is raised in GETNXT, including the exception raised by an unsuccessful
call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS is called.
Function Level Description – PUB_RETRY
Procedure: PUB_RETRY
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type IN OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id IN OUT RIB_BUSOBJID_TBL,
 O_routing_info IN OUT RIB_ROUTINGINFO_TBL,
 I_REF_OBJECT IN RIB_OBJECT);

Same as GETNXT except:
It only loops for a specific row in the SEEDOBJ_MFQUEUE table. The record on
SEEDOBJ_MFQUEUE must match the passed in sequence number (contained in the
ROUTING_INFO).

Trigger Impact

Trigger name: EC_TABLE_CNT_AIUDR.TRG

Trigger file name: ec_table_cnt_aiudr.trg

Table: COUNTRY
This trigger will capture inserts/updates/deletes to the COUNTRY table and write data
into the SEEDOBJ_MFQUEUE message queue.
Inserts
 Set the message type RMSMFM_SEEDOBJ.COUNTRY_ADD. Call ADDTOQ with

all the country input parameters.
Updates
 Set the message type RMSMFM_SEEDOBJ.COUNTRY_UPD. Make sure that the

country description has changed. If the description has changed during update, then
call ADDTOQ with all the country input parameters.

Deletes
 Set the message type RMSMFM_SEEDOBJ. COUNTRY_DEL. Set the action type to

‘D’. Call ADDTOQ with all the country_id input parameter.

Trigger name: EC_TABLE_CRT_AIUR.TRG

Trigger file name: ec_table_crt_aiur.trg

Seed Object Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 109

Table: CURRENCY_RATES
This trigger will capture inserts/updates to the CURRENCY_RATES table and write data
into the SEEDOBJ_MFQUEUE message queue.
Inserts
 Set the message type RMSMFM_SEEDOBJ.COUNTRY_ADD. Call ADDTOQ with all

the currency_rates input parameters.
Updates
 Set the message type RMSMFM_SEEDOBJ.COUNTRY_UPD. Make sure that some

column in the CURRENCY_RATES table has changed. If a column in the row has
changed during update, then call ADDTOQ with all the currency_rates input
parameters.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

countrycre Code Head Create Message CountryDesc.xsd

countrymod Code Head Modify Message CountryDesc.xsd

countrydel Code Head Delete Message CountryRef.xsd

curratecre Code Detail Create Message CurrRateDesc.xsd

curratemod Code Detail Modify Message CurrRateDesc.xsd

Table Impact

TABLE SELECT INSERT UPDATE DELETE

SEEDOBJ _MFQUEUE Yes Yes No Yes

Publication Designs

110 Oracle Retail Merchandising System

Store Publication API

Wholesale and Franchise
RIB integration points support wholesale and franchise functionality for the enterprise.
See the Wholesale/Franchise Batch chapter in the RMS Operations Guide volume 1 for
additional information on wholesale and franchise.

Business Overview
RMS publishes data about stores in messages to the Oracle Retail Integration Bus (RIB).
Other applications that need to keep their locations synchronized with RMS subscribe to
these messages.
RMS publishes messages to the RIB for create, modify, and delete store events. These
messages are triggered by insert/update/delete on the RMS STORE table and/or the
ADDR table with module ‘ST’ (for store). The message is in a hierarchical structure, with
store information at the header level and address information at the detail level. Because
this is a low volume process, multi-threading capability is not supported. In addition, the
system only publishes the current state of the store, not every change.
If multiple addresses are associated with a store, this message is designed with the
assumption that RWMS and other integration subsystems only subscribe to the primary
address of the primary address type.
RMS supports three types of stores; wholesale (‘W’), franchise (‘F’), and company (‘C’).
Both wholesale and franchise stores are published to the RIB.
For an additional explanation of virtual locations and the multi-channel operation of
RMS, see the chapter “Organization Hierarchy Batch” in volume 1 of this RMS
Operations Guide. For an explanation of finishers, see the section ‘Partner’ in the chapter
“Publication Design” in this volume of the RMS Operations Guide.

Functionality Checklist

Description RMS RIB

RMS must publish store information

Create new Publisher X X

Form Impact
None

Business Object Records
Create the following business objects to assist the publishing process:
 Create a STORE_KEY_REC (in rmsmfm_stores.pls) that contains the functional keys

to store_mfqueue publishing:
TYPE store_key_rec IS RECORD
 (STORE STORE.STORE_TYPE%TYPE,
 ADDR_KEY ADDR.ADDR_KEY%TYPE,
 STORE_TYPE VARCHAR2 (1));

Store Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 111

Package Impact

For Header Insert, Update, and Delete:
HDR_ADD
 Create a store with 1 or more addresses. HDR_ADD message must be added to the

queue.
 Create a store with number of addresses >

RIB_SETTINGS.MAX_DETAILS_TO_PUBLISH for store family. Test partial
publishing of details in GETNXT.

HDR_UPD
 Update an existing store header record that has already been published. HDR_UPD

message must be added to the queue.
 Update an existing store header record that has NOT been published yet. HDR_UPD

message must be added to the queue.
HDR_DEL
 Delete an existing store header record that has already been published. HDR_DEL

message must be added to the queue.
 Delete an existing store header record that has NOT been published yet. HDR_DEL

message should NOT be added to the queue. In addition, all other message related to
the store must be deleted from the queue. The store must also be deleted from
STORE_PUB_INFO.

For Detail Insert, Update, and Delete:
DTL_ADD
 Add a new address to an existing store. DTL_ADD message must be added to the

queue.
DTL _UPD
 Update an existing address of a store that has already been published. Any existing

DTL_UPD message for the store/address in the queue must be deleted. The current
DTL_UPD message for the store/address must be added to the queue.

 Update an existing address of a store that has NOT been published yet. Any existing
DTL_UPD message for the store/address in the queue must be deleted. The current
DTL_UPD message for the store/address does NOT need to be added to the queue.

DTL _DEL
 Delete an existing address of a store that has already been published. The address

has also been published. Any existing message for the store/address in the queue
must be deleted. The current DTL_DEL for the store/address must be added to the
queue.

 Delete an existing address of a store that has already been published. The address
has NOT been published yet. Any existing message for the store/address in the
queue must be deleted. The current DTL_DEL for the store/address does NOT need
to be added to the queue.

Publication Designs

112 Oracle Retail Merchandising System

Package name: RMSMFM_STORE

Spec file name: rmsmfm_stores.pls

Body file name: rmsmfm_storeb.pls

Package Specification – Global Variables
FAMILY CONSTANT RIB_SETTINGS.FAMILY%TYPE ‘STORE’;
HDR_ADD CONSTANT VARCHAR2 (15) ‘storecre’;
HDR_UPD CONSTANT VARCHAR2 (15) ‘storemod’;
HDR_DEL CONSTANT VARCHAR2 (15) ‘storedel’;
DTL_ADD CONSTANT VARCHAR2 (15) ‘storedtlcre’;
DTL_UPD CONSTANT VARCHAR2 (15) ‘storedtlmode’;
DTL_DEL CONSTANT VARCHAR2 (15) ‘storedtldel’;

Function Level Description – ADDTOQ
Function: ADDTOQ
 (O_error_msg OUT VARCHAR2,
 I_message_type IN VARCHAR2,
 I_store_key_rec IN STORE_KEY_REC,
 I_addr_publish_ind IN ADDR.PUBLISH_IND%TYPE)

This public function puts a store message on STORE_MFQUEUE for publishing to the
RIB. It is called from both store trigger and address trigger. The I_functional_keys will
contain store and, optionally, addr_key.
There are some tasks relating to streamlining the queue clean up process that need to
occur in ADDTOQ. The goal is to have at most one record on the queue for a given store
up until its initial publication.
 For header level insert messages (HDR_ADD), insert a record in the

STORE_PUB_INFO table. The published flag should be set to ‘N’. The
STORE_TYPE column should have a value of ‘P’hysical or ‘V’irtual. Because this is a
low volume business transaction, the store publisher will not provide multi-
threading capability. Therefore, thread value does NOT need to be calculated.

 For HDR_UPD, DTL_ADD, DTL_UPD, DTL_DEL messages, do NOT need to be
added to the queue until the business object (that is, store) has been initially
published (STORE_PUB_INFO.published = ‘N’). This is because when the store does
get published for the first time (HDR_ADD), the current state of the header and
details is queried and published to the RIB.

 For header level delete messages (HDR_DEL), if the business object (that is, store)
has NOT been initially published (STORE_PUB_INFO.published = ‘N’), delete the
record in STORE_PUB_INFO. Otherwise, delete every record in the queue for the
business object, and add the delete record to the queue.

 If the business object has been initially published (STORE_PUB_INFO.published =
‘Y’), for detail level messages deletes (DTL_DEL), the system only needs one (the
most recent) record per detail in the STORE_MFQUEUE. Delete any previous records
that exist on the STORE_MFQUEUE for the record that has been passed.

 If the business object has been initially published (STORE_PUB_INFO.published =
‘Y’), for detail level messages updates (DTL_UPD), the system only needs one
DTL_UPD (the most recent) record per detail in the STORE_MFQUEUE. Delete any
previous DTL_UPD records that exist on the STORE_MFQUEUE for the record that
has been passed. The system does not want to delete any detail inserts that exist on
the queue for the detail. The system needs to ensure subscribers are not passed a
detail modification message for a detail that they do not yet have.

Store Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 113

 For all message types except header level inserts (HDR_ADD), insert a record into
the STORE_MFQUEUE. One exception is that if the publish_ind on the detail record
table (addr) is ‘N’, do not add the DTL_DEL message to the queue. The logic here is
that if the detail line has never been published before, subscribers will not need to
delete the detail line that they do not yet have.

Function Level Description – GETNXT
Procedure: GETNXT
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id OUT RIB_BUSOBJID_TBL,
 O_routing_info OUT RIB_ROUTINGINFO_TBL,
 I_num_threads IN NUMBER DEFAULT 1,
 I_thread_val IN NUMBER DEFAULT 1)

This public procedure is called from the RIB to get the next messages. It performs a
cursor loop on the unpublished records on the STORE_MFQUEUE table (PUB_STATUS
= ‘U’). It should only need to execute one loop iteration in most cases. For each record
retrieved, GETNXT gets the following:
1. A lock of the queue table for the current business object (that is, store). The lock is

obtained by calling the function LOCK_THE_BLOCK. If there are any records on the
queue for the current business object that are already locked, the current message is
skipped and picked up again in the next loop iteration.

2. A check for records on the queue with a status of ‘H’ospital. If there are any such
records for the current business object, GETNXT raises an exception to send the
current message to the Hospital.

3. Get the published indicator from the STORE_PUB_INFO table.
4. Call PROCESS_QUEUE_RECORD with the current business object.
The loop will need to execute more than one iteration for the following cases:
1. When a header delete message exists on the queue for a business object that has not

been initially published. In this case, remove the header delete message from the
queue and loop again. ADDTOQ will delete all messages for the business object
upon header delete if the business object has not been initially published.

2. The queue is locked for the current business object. This can occur because
ADDTOQ, which is called from the triggers, deletes from the queue table for
DTL_UPD, DTL_DEL, and HDR_DEL messages.

The information from the STORE_MFQUEUE and STORE_PUB_INFO table is passed to
PROCESS_QUEUE_RECORD. PROCESS_QUEUE_RECORD will build the Oracle Object
message to pass back to the RIB. If PROCESS_QUEUE_RECORD does not run
successfully, GETNXT raises an exception.
If any exception is raised in GETNXT, including the exception raised by an unsuccessful
call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS is called.

Publication Designs

114 Oracle Retail Merchandising System

Function Level Description – PUB_RETRY
Procedure: PUB_RETRY
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_message_type IN OUT VARCHAR2,
 O_bus_obj_id IN OUT RIB_BUSOBJID_TBL,
 O_routing_info IN OUT RIB_ROUTINGINFO_TBL)

This public procedure performs the same tasks as GETNXT except that it only loops for a
specific row in the STORE_MFQUEUE table. The record on STORE_MFQUEUE must
match the passed in sequence number (contained in the ROUTING_INFO).

Function Level Description – PROCESS_QUEUE_RECORD (local)
This private function controls the building of Oracle Objects (DESC or REF) given the
business transaction’s key values and a message type. It contains all of the shared
processing between GETNXT and PUB_RETRY. (Note: message_type of HDR_ADD can
potentially be changed to a DTL_ADD in PROCESS_QUEUE_RECORD.)
If the message type is a header delete (HDR_DEL)
 I_hdr_published should never be ‘N’ (not published), because in that case the

HDR_DEL message would never be added to the queue based on ADDTOQ
processing.

 Call BUILD_HEADER_OBJECT to build the REF Oracle Object to publish to the RIB.
 Delete both STORE_MFQUEUE and STORE_PUB_INFO for the business object.

Otherwise, if check I_hdr_published is either ‘N’ (not published) or ‘I’ (in progress)
 If I_hdr_published is ‘N’, the message type is a header create (HDR_ADD). If

I_hdr_published is ‘I’, change the message type from a header create (HDR_ADD) to
a detail add (DTL_ADD), because this is the situation where some of the details are
published but not all due to MAX_DETAILS_TO_PUBLISH. Thus, a header create
message for the current business object should have already been published.

 Call MAKE_CREATE to build the DESC Oracle Object to publish to the RIB. This will
also take care of any STORE_MFQUEUE deletes, updating
STORE_PUB_INFO.PUBLISHED to ‘Y’ or ‘I’, and bulk updating addr.publish_ind to
‘Y’ for those detail rows that have been published.

Otherwise,
If the record from STORE_QUEUE table is a header update (HDR_UPD)
 Call BUILD_HEADER_OBJECT to build the DESC Oracle Object to publish to

the RIB.
 Update STORE_PUB_INFO to published = ‘Y’.
 Delete the record from the STORE_MFQUEUE table.

If the record from STORE_QUEUE table is a detail add or update (DTL_ADD,
DTL_UPD)
 Call BUILD_DETAIL_CHANGE_OBJECTS to build the DESC Oracle Object to

publish to the RIB. This will also take care of any STORE_MFQUEUE deletes
and updates of publish_ind on ADDR.

If the record from STORE_QUEUE table is a detail delete (DTL_DEL)
 Call BUILD_DETAIL_DELETE_OBJECTS to build the REF Oracle Object to

publish to the RIB. This will also take care of any STORE_MFQUEUE deletes.

Store Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 115

Function Level Description – MAKE_CREATE (local)
This private function is used to create the Oracle Object for the initial publication of a
business transaction. I_business_object contains the store header key values (store).
I_rowid is the rowid of the store_mfqueue row fetched from GETNXT.
 Call BUILD_HEADER_OBJECT to get a header level Oracle Object.
 Call BUILD_DETAIL_OBJECTS to get a table of detail level Oracle objects and a table

of STORE_MFQUEUE rowids to delete with and a table of ADDR rowids to update
publish_ind with.

 Update STORE_PUB_INFO.published to ‘Y’ or ‘I’ depending on if all details are
published.

 Delete records from the STORE_MFQUEUE for all rowids returned by
BUILD_DETAIL_OBJECTS. Deletes are done by rowids instead of business
transaction keys to ensure that nothing is deleted off the queue that has not been
published.

 If the entire business transaction was added to the Oracle Object, also delete the
STORE_MFQUEUE record that was picked up by GETNXT. If the entire business
transaction was NOT published, the system needs to leave something on the
STORE_MFQUEUE to ensure that the rest of it is picked up by the next call to
GETNXT.

 Update ADDR.publish_ind to ‘Y’ by ADDR rowids returned from
BUILD_DETAIL_OBJECTS.

 The header and detail level Oracle Objects are combined and returned.

Function Level Description – BUILD_HEADER_OBJECT (local)
This private function accepts store header key value (store), builds and returns a header
level DESC Oracle Object.
This overloaded private function accepts store header key value (store), builds and
returns a header level REF Oracle Object.

Function Level Description – BUILD_DETAIL_OBJECTS (local)
The private function is responsible for building detail level DESC Oracle Objects. It
builds as many detail Oracle Object as it can given the passed in message type and
business object keys (store).
Call API_LIBRARY.GET_RIB_SETTINGS to get the MAX_DETAILS_TO_PUBLISH for
the store family.
If the function is being called from MAKE_CREATE (I_message_type would be NULL):

Select any unpublished ADDR detail records for the business transaction (based on
publish_ind on ADDR). Create Oracle Objects for details that are selected by calling
BUILD_SINGLE_DETAIL.
 Ensure that no more than MAX_DETAILS_TO_PUBLISH records are put into

Oracle Objects.
 Return a table of store_mfqueue rowids for each message that is placed into the

Oracle Object.
 Return a table of addr rowids for each detail that is placed into the Oracle Object.

If the function is not being called from MAKE_CREATE (I_message type will NOT be
NULL):

Publication Designs

116 Oracle Retail Merchandising System

Select any details on the STORE_MFQUEUE that are for the same business object and
for the same message type. Create Oracle Objects for details that are selected by
calling BUILD_SINGLE_DETAIL.
 Ensure that no more than MAX_DETAILS_TO_PUBLISH records are put into

Oracle Objects.
 If the message type is a detail create (DTL_ADD), as the detail info is placed into

the Oracle Object, ensure that the corresponding addr rowid is added to addr
rowids table for return. These rowids are used to update ADDR.publish_ind to
‘Y’.

 Return a table of store_mfqueue rowids for each message that is placed into the
Oracle Object.

A concern here is making sure that the system does not delete information from the
queue table that has not been published. For this reason, the system does our deletes by
ROWID. The system also tries to get everything in the same cursor. This should ensure
that the message we published matches the deletes we perform from the
STORE_MFQUEUE table regardless of trigger execution during GETNXT calls.

Function Level Description – BUILD_SINGLE_DETAIL (local)
This private function takes in an address record and builds a detail level Oracle Object.
Also find out if the address is the primary address of the primary address type and set
the DESC Oracle Object accordingly.

Function Level Description – BUILD_DETAIL_CHANGE_OBJECTS (local)
This private function builds a DESC Oracle Object to publish to the RIB for detail create
and detail update messages (DTL_ADD, DTL_UPD). I_business_obj contains the header
level key values (store).
 Call BUILD_HEADER_OBJECT to build the header level DESC Oracle Object.
 Call BUILD_DETAIL_OBJECTS to build the detail level DESC Oracle Objects.
 Bulk update addr.publish_ind to ‘Y’ for the addr rowids returned from

BUILD_DETAIL_OBJECTS.
 Bulk delete from store_mfqueue for the store_mfqueue rowids returned from

BUILD_DETAIL_OBJECTS.

Function Level Description – BUILD_DETAIL_DELETE_OBJECTS (local)
This private function builds a REF Oracle Object to publish to the RIB for detail delete
messages (DTL_DEL). I_business_obj contains the header level key values (store).
 Call API_LIBRARY.GET_RIB_SETTINGS to get the MAX_DETAILS_TO_PUBLISH

for the store family.
 Call BUILD_HEADER_OBJECT to build the REF Oracle Object to publish to the RIB.
 Perform a cursor for loop on STORE_MFQUEUE and build as many detail REF

Oracle Objects as possible without exceeding the MAX_DETAILS_TO_PUBLISH.
 For each detail, also find out if the address is a primary address of the primary

address type, and set the REF Oracle Objects accordingly.
 Bulk delete from store_mfqueue for the store_mfqueue rowids queried.

Store Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 117

Function Level Description – LOCK_THE_BLOCK (local)
This private function locks all queue records for the current business object (store). This is
to ensure that GETNXT and PUB_RETRY do not wait on any business processes that
currently have the queue table locked and have not committed. This can occur because
ADDTOQ, which is called from the triggers, deletes from the queue table for DTL_UPD,
DTL_DEL, and HDR_DEL messages.

Function Level Description – HANDLE_ERRORS (local)
This private procedure is called from GETNXT and PUB_RETRY when an exception is
raised. I_seq_no is the sequence number of the driving STORE_MFQUEUE record.
I_function_keys contains detail level key values (store, addr_key).
If the error is a non-fatal error, HANDLE_ERRORS passes the sequence number of the
driving STORE_MFQUEUE record back to the RIB in the ROUTING_INFO. It sends back
a status of ‘H’ospital to the RIB as well. It then updates the status of the queue record to
‘H’ospital, so that it will not get picked up again by the driving cursor in GETNXT.
If the error is a fatal error, a status of ‘E’rror is returned to the RIB. The error is
considered non-fatal if no DML has occurred yet. Whenever DML has occurred, then the
global variable LP_error_status is flipped from ‘H’ospital to ‘E’rror.

Trigger Impact

Trigger name: EC_TABLE_STR_AIUDR.TRG (new)

Trigger file name: ec_table_str_aiudr.trg (new)

Table: STORE
This is the trigger on the STORE table that will capture Inserts, Updates, and Deletes.
Inserts
 Send the I_store_key_rec, I_addr_publish_ind to the ADDTOQ procedure in the

MFM with the message type RMSMFM_STORE.HDR_ADD.
Updates
 Send the I_store_key_rec, I_addr_publish_ind to the ADDTOQ procedure in the

MFM with the message type RMSMFM_STORE.HDR_UPD.
Deletes
 Send the I_store_key_rec, I_addr_publish_ind to the ADDTOQ procedure in the

MFM with the message type RMSMFM_STORE.HDR_DEL.
In all these cases, build the function keys for ADDTOQ with store.

Trigger name: EC_TABLE_ADR_AIUDR.TRG (mod)

Trigger file name: ec_table_adr_aiudr.trg (mod)

Publication Designs

118 Oracle Retail Merchandising System

Table: ADDR
This is the trigger on the ADDR table that will capture Inserts, Updates, and Deletes of
module type ‘ST’. (Note: It also handles module types supplier, partner and warehouse.)
Inserts
 Send the I_store_key_rec.store, I_store_key_rec.addr_key, I_addr_publish_ind to the

ADDTOQ procedure in the MFM with the message type
RMSMFM_STORE.DTL_ADD.

Updates
 Send the I_store_key_rec.store, I_store_key_rec.addr_key, I_addr_publish_ind to the

ADDTOQ procedure in the MFM with the message type
RMSMFM_STORE.DTL_UPD.

Deletes
 Send the I_store_key_rec.store, I_store_key_rec.addr_key, I_addr_publish_ind to the

ADDTOQ procedure in the MFM with the message type
RMSMFM_STORE.DTL_DEL.

In all these cases, build the function keys for ADDTOQ with KEY_VALUE_1 and
KEY_VALUE_2, which represent store and addr_key respectively.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

StoreCre Store Create Message StoreDesc.xsd

StoreMod Store Modify Message StoreDesc.xsd

StoreDel Store Delete Message StoreRef.xsd

Table Impact

TABLE SELECT INSERT UPDATE DELETE

STORE_PUB_INFO Yes Yes Yes Yes

ADDR Yes No Yes No

STORE_MFQUEUE Yes Yes Yes Yes

ADD_TYPE_MODULE Yes No No No

STORE Yes No No No

Store Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 119

Design Assumptions
It is not possible for a detail trigger to accurately know the status of a header table. In
order for the detail triggers to accurately know when to add a message to the queue,
RMS should not allow approval of a business object while detail modifications are being
made.
It is not possible for a header trigger or a detail trigger to know the status of anything
modified by GETNXT. If a header trigger or detail trigger is trying to delete queue
records that GETNXT currently has locked, it will have to wait until GETNXT is finished
and removes the lock. It is assumed that this time will be fairly short (at most 2-3
seconds.) It is also assumed that this will occur rarely, as it involves updating/deleting
detail records on a business object that has already been approved. This also has to occur
at the same time GETNXT is processing the current business object.
Push off all DML statements as late as possible. Once DML statements have taken place,
any error becomes a fatal error rather than a hospital error.

Publication Designs

120 Oracle Retail Merchandising System

Transfers Publication API

Wholesale and Franchise
RIB integration points support wholesale and franchise functionality for the enterprise.
See the Wholesale/Franchise Batch chapter in the RMS Operations Guide volume 1 for
additional information on wholesale and franchise.

Business Overview
A transfer is a movement of stock on hand from one stockholding location within the
company to another. For more general information on transfers, see the chapter
“Transfers and RTV Batch” in volume 1 of this RMS Operations Guide.
The transfer publication processing publishes transfers in ‘Approved’ status.
Transfers consist of header level information in which source and destination locations
are specified, and detail information regarding what items and how much of each item is
to be transferred. Both of the transfer tables, TSFHEAD and TSFDETAIL, include triggers
that track inserts, deletes, and modifications. These triggers insert or update into
TSF_MFQUEUE or TRANSFERS_PUB_INFO tables. The transfer family manager is
responsible for pulling transfer information from this queue and sending it to the
external system(s) at the appropriate time and in the correct order.
The transfer messages that are published by the family manager vary. A complete
message including header information, detail information, and component ticketing
information (if applicable) is created when a transfer is approved. When the transfer is
unapproved, the RIB processes it as a TransferDel message when publishing it to external
systems. When the transfer is re-approved, the transfer is processed as a new transfer for
publishing.
Context information is included at the header level. The context_type defines the
business reason for the transfer, thus allowing users to distinguish one form of transfer
from another. The context_value further identifies a specific context_type. For example,
when the context of a transfer is promotion (that is, when the transfer is being created to
support an RPM promotion), the ID of the promotion being supported is attached to the
transfer as well, at the header level.

Functionality Checklist

Description RMS RIB

RMS must publish Transfers information

 Create new Publisher X X

Form Impact
None

Business Object Records
Create the following table types in the RMSMFM_TRANSFERs package:
TYPE rowid_TBL is table of ROWID INDEX BY BINARY_INTEGER;

Transfers Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 121

Package Impact
Create Header
1. Prerequisites: None.
2. Activity Detail: The first step to creating a transfer is creating the header level

information.
3. Messages: When a transfer is created, a record is inserted into

TRANSERS_PUB_INFO table and is not published onto the queue until the transfer
has been approved.

Approve
1. Prerequisites: A transfer must exist and have at least one detail before it can be

approved.
2. Activity Detail: Approving a transfer changes the status of the transfer. This change

in status signifies the first time systems external to RMS will have an interest in the
existence of the transfer, so this is the first part of the life cycle of a transfer that is
published.

3. Messages: When a transfer is approved, a “TransferHdrMod” message is inserted
into the queue with the appr_ind on the queue set to ‘Y’ signifying that the transfer
was approved. The family manager uses this indicator to create a hierarchical
message containing a full snapshot of the transfer at the time the message is
published.

Modify Header
1. Prerequisites: The transfer header can only be modified when the status is not

approved. Once the transfer is approved, the only fields that are modifiable are the
status field and the comments field.

2. Activity Detail: The user is allowed to modify the header but only certain fields at
certain times. If a transfer is in input status the ‘to and from’ locations may be
modified until details have been added. Once details have been added, the locations
are disabled. The freight code is modifiable until the transfer has been approved.
Comments can be modified at any time.

3. Messages: When the status of the header is either changed to ‘C’losed or ‘A’pproved,
a message (TransferHdrMod) is inserted into the queue. (Look above at Approve
activity and below at Close activity for further details).

Create Details
1. Prerequisites: A transfer header record must exist before transfer details can be

created.
2. Activity Detail: The user is allowed to add items to a transfer but only until it has

been approved. Once a transfer has been approved, details can longer be added.
3. Messages: No messages are created on the queue until the transfer is approved.

Publication Designs

122 Oracle Retail Merchandising System

Modify Details
1. Prerequisites: Only modifications to transfer quantities are sent to the queue, and

only when the transfer quantity is decreased manually, and not because of an
increase in cancelled quantity will it be sent to the queue.

2. Activity Detail: The user is allowed to change transfer quantities provided they are
not reduced below those already shipped. The transfer quantity can also be
decreased by an increase in the cancelled quantity, which is always initiated by the
external system. This change, then, would be of no interest to the external system
because it was driven by it.

3. Messages: No messages are created on the queue until the transfer is approved.
Delete Details
1. Prerequisites: Only a detail that has not been shipped may be deleted, and it cannot

be deleted if it is currently being worked on by an external system. A user is not
allowed to delete details from a closed transfer.

2. Activity Detail: A user is allowed to delete details from a transfer but only if the item
has not been shipped.

3. Messages: No messages are created on the queue until the transfer is approved.
Close
1. Prerequisites: A transfer must be in shipped status before it can be closed, and it

cannot be in the process of being worked on by an external system.
2. Activity Detail: Closing a transfer changes the status, which prevents any further

modifications to the transfer. When a transfer is closed, a message is published to
update the external system(s) that the transfer has been closed and no further work
(in RMS) is performed on it.

3. Messages: Closing a transfer queues a “TransferHdrMod” request. This is a flat
message containing a snapshot of the transfer header information at the time the
message is published.

Delete
1. Prerequisites: A transfer can only be deleted when it is still in approved status or

when it has been closed.
2. Activity Detail: Deleting a transfer removes it from the system. External systems are

notified by a published Delete message that contains the number of the transfer to be
deleted.

3. Message: When a transfer is deleted, a “TransferDel”, which is a flat notification
message, is queued.

Package name: RMSMFM_TRANSFERS

Spec file name: rmsmfm_transferss.pls

Body file name: rmsmfm_transfersb.pls

Transfers Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 123

Package Specification – Global Variables
FAMILY VARCHAR2(64) := 'transfers';

HDR_ADD VARCHAR2(64) := 'TransferCre';
HDR_UPD VARCHAR2(64) := 'TransferHdrMod';
HDR_DEL VARCHAR2(64) := 'TransferDel';
HDR_UNAPRV VARCHAR2(64) := 'TransferUnapp';
DTL_ADD VARCHAR2(64) := 'TransferDtlCre';
DTL_UPD VARCHAR2(64) := 'TransferDtlMod';
DTL_DEL VARCHAR2(64) := 'TransferDtlDel';

Function Level Description – ADDTOQ
FUNCTION ADDTOQ
 (O_error_mesage OUT VARCHAR2,
 I_message_type IN VARCHAR2,
 I_tsf_no IN tsfhead.tsf_no%TYPE,
 I_tsf_type IN tsfhead.tsf_type%TYPE,
 I_tsf_head_status IN tsfdetail.status%TYPE,
 I_item IN tsfdetail.item%TYPE,
 I_publish_ind IN tsfdetail.publish_ind%TYPE)

This function is called by both the tsfhead trigger and the tsfdetail trigger, the
EC_TABLE_THD_AIUDR and EC_TABLE_TDT_AIUDR respectively.
 Book transfers, non-sellable transfers and externally generated transfers (except for

delete messages) are never published to external systems.
 For header level insert messages (HDR_ADD), insert a record in the

TRANSFERS_PUB_INFO table. The published flag should be set to ‘N’. The correct
thread for the Business transaction should be calculated and written. Call
API_LIBRARY.RIB_SETTINGS to get the number of threads used for the publisher.
Using the number of threads, and the Business object id, calculate the thread value.

 For all records except header level inserts (HDR_ADD), the thread_no and
initial_approval_ind should be queried from the TRANSFERS_PUB_INFO table.

 If the Business transaction has not been approved (initial_approval_ind = ‘N’) and
the triggering message is one of DTL_ADD, DTL_UPD, DTL_DEL, HDR_DEL, no
processing should take place and the function should exit.

 For detail level message deletes (DTL_DEL), only need one (the most recent) record
per detail in the TSF_MFQUEUE is required. Delete any previous records that exist
on the TSF_MFQUEUE for the record that has been passed. If the publish_ind is ‘N’,
do not add the DTL_DEL message to the queue.

 For detail level message updates (DTL_UPD), only need one DTL_UPD (the most
recent) record per detail in the TSF_MFQUEUE is required. Delete any previous
DTL_UPD records that exist on the TSF_MFQUEUE for the record that has been
passed. The system does not want to delete any detail inserts that exist on the queue
for the detail. It needs to ensure subscribers have not passed a detail modification
message for a detail that they do not yet have.

 For header level delete messages (HDR_DEL), delete every record in the queue for
the Business transaction.

 For header level update message (HDR_UPD), update the
TRANSFERS_PUB_INFO.INITIAL_APPROVAL_IND to ‘Y’ if the Business
transaction is in approved status.

 For all records except header level inserts (HDR_ADD), insert a record into the
TSF_MFQUEUE.

Publication Designs

124 Oracle Retail Merchandising System

It returns a status code of API_CODES.SUCCESS if successful,
API_CODES.UNHANDLED_ERROR if not.

Function Level Description – GETNXT
PROCEDURE GETNXT
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id OUT RIB_BUSOBJID_TBL,
 O_routing_info OUT RIB_ROUTINGINFO_TBL,
 I_num_threads IN NUMBER DEFAULT 1,
 I_thread_val IN NUMBER DEFAULT 1)

The RIB calls GETNXT to get messages. It performs a cursor loop on the unpublished
records on the TSF_MFQUEUE table (PUB_STATUS = ‘U’). It should only need to
execute one loop iteration in most cases. For each record retrieved, GETNXT gets the
following:
1. A lock of the queue table for the current Business object. The lock is obtained by

calling the function LOCK_THE_BLOCK. If there are any records on the queue for
the current Business object that are already locked, the current message is skipped.

2. The published indicator from the TRANSFERS_PUB_INFO table.
3. A check for records on the queue with a status of ‘H’ospital. If there are any such

records for the current Business object, GETNXT raises an exception to send the
current message to the Hospital.

The loop executes more than one iteration for the following cases
1. When a header delete message exists on the queue for a business object that has not

been initially published. In this case, simply remove the header delete message from
the queue and loop again.

2. A detail delete message exists on the queue for a detail record that has not been
initially published. In this case, simply remove the detail delete message from the
queue and loop again.

3. The queue is locked for the current Business object
The information from the TSF_MFQUEUE and TRANSFERS_PUB_INFO table is passed
to PROCESS_QUEUE_RECORD. PROCESS_QUEUE_RECORD builds the Oracle Object
message to pass back to the RIB. If PROCESS_QUEUE_RECORD does not run
successfully, GETNXT raises an exception.
If any exception is raised in GETNXT, including the exception raised by an unsuccessful
call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS is called.

Function Level Description – PUB_RETRY
Same as GETNXT except:
It only loops for a specific row in the TSF_MFQUEUE table. The record on
TSF_MFQUEUE must match the passed in sequence number (contained in the
ROUTING_INFO).

Transfers Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 125

Function Level Description – PROCESS_QUEUE_RECORD (local)
This function controls the building of Oracle Objects given the business transaction’s key
values and a message type. It contains all of the shared processing between GETNXT and
PUB_RETRY.
If the message type is HDR_DEL or HDR_UNAPRV and it has not been published:
 Call DELETE_QUEUE_REC to delete the record from TSF_MFQUEUE.

If the message type is HDR_DEL and the record has been published:
 Generate a “flat” file to be sent to the RIB. Delete from TRANSFER_PUB_INFO and

call DELETE_QUEUE_REC to delete from the queue.
If the message type is HDR_UNAPRV”
 Process it just like a hdr_del except the published indicator on

TRANSFERS_PUB_INFO is set to ‘N’.
If the message type is HDR_ADD or DTL_ADD:
 Call MAKE_CREATE to publish the entire transfer.

If the record from TSF_MFQUEUE table is HDR_UPD:
 Call BUILD_HEADER_OBJECT to build the Oracle Object to publish to the RIB and

delete from the queue.
If the record from TSF_MFQUEUE table is DTL_ADD or DTL_UPD:
 Call BUILD_HEADER_OBJECT and BUILD DETAIL_CHANGE_OBJECTS to build

the Oracle Object to publish to the RIB.
If the record from TSF_MFQUEUE table is a detail delete (DTL_DEL):
 Call BUILD HEADER_OBJECT and BUILD_DETAIL_DELETE_OBJECTS to build the

Oracle Object to publish to the RIB.

Function Level Description – MAKE_CREATE (local)
This function is used to create the Oracle Object for the initial publication of a business
transaction. It combines the current message and all previous messages with the same
key in the queue table to create the complete hierarchical message. It first creates a new
message with the hierarchical document type. It then gets the header create message and
adds it to the new message. The remainder of this procedure gets each of the details
grouped by their document type and adds them to the new message. When it is finished
creating the new message, it deletes all the records from the queue with a sequence
number less than or equal to the current records sequence number. This new message is
passed back to the bus. The MAKE_CREATE function will not be called unless the
appr_ind on the queue is ‘Y’es (meaning the transfer has been approved, and it is ready
to be published for the first time to the external system(s)).

Function Level Description – BUILD_HEADER_OBJECT (local)
Accepts header key values, performs necessary lookups, builds and returns a header
level Oracle Object.

Function Level Description – BUILD_DETAIL_OBJECTS (local)
This function is responsible for fetching the detail info and ticket type to be sent to
RWMS. The logic that gets the detail info as well as the ticket type was separated to
remove the primary key constraint.

Publication Designs

126 Oracle Retail Merchandising System

Function Level Description – BUILD_SINGLE_DETAIL (local)
Accept inputs and build a detail level Oracle Object. Perform any lookups needed to
complete the Oracle Object.

Function Level Description – GET_RETAIL (local)
Gets the price and selling unit of measure (UOM) of the item.

Function Level Description – GET_GLOBALS (local)
Get all the system options and variables needed for processing.

Function Level Description – GET_TSF_ENTITIES (local)
Get the to and from location entities for the transfer.

Function Level Description – BUILD_DETAIL_CHANGE_OBJECTS (local)
Call BUILD_DETAIL_OBJECT to publish the record. Update TSFDETAIL.publish_ind to
‘Y’ and delete the record from TSF_MFQUEUE.

Function Level Description – BUILD_DETAIL_DELETE_OBJECTS (local)
Either pass in a header level ref Oracle Object or build a header level ref Oracle Object.
Perform a cursor for loop on TSF_MFQUEUE and build as many detail ref Oracle Objects
as possible without exceeding the MAX_DETAILS_TO_PUBLISH.
Delete from TSF_MFQUEUE when done.

Function Level Description – LOCK_THE_BLOCK (local)
This function locks all queue records for the current business object. This is to ensure that
GETNXT does not wait on any business processes that currently have the queue table
locked and have not committed. This can occur because ADDTOQ, which is called from
the triggers, deletes from the queue table for DTL_UPD, DTL_DEL, and HDR_DEL
messages.

Function Level Description – LOCK_THE_BLOCK (local)
Lock the transfer details before updating the publish_ind on TSFDETAIL.

Function Level Description – DELETE_QUEUE_REC (local)
This procedure deletes a specific record from TSF_MFQUEUE. It deletes based on the
sequence number passed in.

Function Level Description – HANDLE_ERRORS (local)
HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is
raised. The function was updated to conform with the changes made to the ADDTOQ
function.

Trigger Impact
Create a trigger on the TSFHEAD and TSFDETAIL to capture Inserts, Updates, and
Deletes.

Transfers Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 127

Trigger name: EC_TABLE_THD_AIUDR.TRG

Trigger file name: ec_table_thd_aiudr.trg

Table: TSFHEAD
Inserts
 Send the tsf_no and tsf_type level info to the ADDTOQ procedure in the MFM with

the message type RMSMFM_Transfers.HDR_ADD.
Updates
 Send the tsf_no and tsf_type level info to the ADDTOQ procedure in the MFM with

the message type RMSMFM_Transfers.HDR_UPD.
Deletes
 Send the tsf_no and tsf_type level info to the ADDTOQ procedure in the MFM with

the message type RMSMFM_Transfers.HDR_DEL.

Trigger name: EC_TABLE_TDT_AIUDR.TRG

Trigger file name: ec_table_tdt_aiudr.trg

Table: TSFDETAIL
Inserts
 Send the tsf_no and item level info to the ADDTOQ procedure in the MFM with the

message type RMSMFM_Transfers.DTL_ADD
Updates
 Send the tsf_no and item level info to the ADDTOQ procedure in the MFM with the

message type RMSMFM_Transfers.DTL_UPD.
Deletes
 Send the tsf_no and item level info to the ADDTOQ procedure in the MFM with the

message type RMSMFM_Transfers.DTL_DEL.

Message XSD
Here are the filenames that correspond with each message type. See Oracle Retail
Integration Bus documentation for each message type in order to get a detailed picture of
the composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

TransferCre Transfer Create Message TsfDesc.xsd

TransferHdrMod Transfer Modify Message TsfDesc.xsd

TransferDel Transfer Delete Message TsfRef.xsd

TransferDtlCre Transfer Detail Create Message TsfDtl.xsd

TransferDtlMod Transfer Detail Modify Message TsfDtl.xsd

TransferDtlDel Transfer Detail Delete Message TsfDtlRef.xsd

Publication Designs

128 Oracle Retail Merchandising System

Table Impact

TABLE SELECT INSERT UPDATE DELETE

TRANSFERS_PUB_INFO Yes Yes Yes Yes

TSF_MFQUEUE Yes Yes Yes Yes

TSF_DETAIL Yes No Yes No

TSF_HEAD Yes No No No

WH Yes No No No

ORDCUST Yes No No No

CUSTOMER Yes No No No

ITEM_LOC Yes No No No

ITEM_MASTER Yes No No No

ITEM_TICKET Yes No No No

V_PACKSKU_QTY Yes No No No

CODE_DETAIL Yes No No No

SYSTEM_OPTIIONS Yes No No No

RIB_SETTINGS Yes No No No

Design Assumptions
 After a transfer has been approved, Oracle Retail assumes the freight code of the

transfer (on the TSFHEAD table) cannot be updated.
 One of the primary assumptions in the current approach is that ease of code will

outweigh performance considerations. It is hoped that the ‘trickle’ nature of the flow
of data will decrease the need to dwell on performance issues and instead allow
developers to code in the easiest and most straight forward manner.

 The adaptor is only set up to call stored procedures, not stored functions. Any public
program then needs to be a procedure.

UDA Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 129

UDA Publication API

Business Overview
RMS publishes messages about user-defined attributes (UDAs) to the Oracle Retail
Integration Bus (RIB). UDAs provide a method for defining attributes and associating the
attributes with specific items, items on an item list, or items in a specific department,
class, or subclass. UDAs are useful for information and reporting purposes. Unlike traits
or indicators, UDAs are not interfaced with external systems. UDAs do not have any
programming logic associated with them. UDA messages are specific to basic UDA
identifiers and values defined in RMS. The UDAs can be displayed in one or more of
three formats: Dates, Freeform Text, or a List of Values (LOV).
The created messages in the XML builder adds the messages to the UDA_MFQUEUE
table which must be published in the same order as they occur in the RMS database.
For related UDA information, see the section ‘Item’ in the chapter “Publication Design”
in this volume of this RMS Operations Guide.

Functionality Checklist

Description RMS RIB

RMS must publish UDA information

Create new Publisher X X

Form Impact
None

Business Object Records
None

Package Impact
Create UDA
1. Prerequisites: UDA does not already exist.
2. Activity Detail: Any change to the UDA table inserts a UDAHdrCre message_type

record on the UDA_MFQUEUE table.
3. Messages: The UDADesc message is created. It is a flat, synchronous message

containing a full snapshot of the UDA at the time the message is published.

Publication Designs

130 Oracle Retail Merchandising System

Modify UDA
1. Prerequisites: UDA exists.
2. Activity Detail: Any change to the UDA table inserts a UDAHdrMod message_type

record on the UDA_MFQUEUE table.
3. Messages: The UDADesc message is created. It is a flat, synchronous message

containing a full snapshot of the UDA at the time the message is published.
Create UDA_Values
1. Prerequisites: A UDA already exists but the uda_value does not exist.
2. Activity Detail: Any change to the UDA_VALUES table inserts a record to the

UDA_VALUES table. A UDAValCre message type record is also inserted on the
UDA_MFQUEUE table. A foreign key to the UDA table checks the existence of the
UDA the value is created to supplement.

3. Messages: A UDAValDesc message type is created. It is a hierarchical, synchronous
message containing a snapshot of the UDA_VALUES table at the time the message is
published.

Modify UDA_Values
1. Prerequisites: UDA and UDA_value exist.
2. Activity Detail: Any change to the UDA_VALUES table updates a record to the

UDA_VALUES table. A UDAValMod message type record is also inserted on the
UDA_MFQUEUE table. A foreign key from the UDA_VALUES table to the UDA
table checks the existence of the UDA the value is supplements.

3. Messages UDAValDesc message is created. It is a flat, synchronous message
containing a snapshot of the UDA_VALUES table at the time the message is
published.

Delete UDA_Values
1. Prerequisites: UDA_value exists.
2. Activity Detail: Deleting a UDA_value removes it from the UDA_VALUES table and

inserts a UDAValDel row to the UDA_MFQUEUE table.
3. Message: A UDAValRef message is created. It is a flat, synchronous message

containing the primary key with which the external systems can remove it from their
systems.

Delete UDA
1. Prerequisites: UDA exists and a UDA_VALUE may or may not exist.
2. Activity Detail: Deleting a UDA removes it from the UDA table and inserts a

UDAHdrDel row to the UDA_MFQUEUE table. Because the uda.fmb form in RMS
automatically removes any child records on the UDA_VALUES table when the
parent uda is removed, there will be a row inserted to the UDA_MFQUEUE table for
each uda_value record associated with the deleted UDA as well. These will receive
the lower sequence numbers so that these will be acted upon first in the message
queue. They will look like the DELETE UDA_VALUES message detailed in the
section above.

3. Message: A UDARef message is created for the parent UDA only. It is a flat,
synchronous message containing the primary key with which the external systems
can remove it from their systems.

UDA Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 131

Package name: RMSMFM_UDA

Spec file name: rmsmfm_udas.pls

Body file name: rmsmfm_udab.pls

Package Specification – Global Variables
None

Function Level Description – ADDTOQ
Function: ADDTOQ
 (O_status OUT VARCHAR2,
 O_text OUT VARCHAR2,
 I_message_type IN UDA_MFQUEUE.MESSAGE_TYPE%TYPE,
 I_uda_id IN UDA.UDA_ID%TYPE,
 I_uda_value IN UDA_VALUES.UDA_VALUE%TYPE,
 I_display_taype IN UDA_MFQUEUE.DISPLAY_TYPE%TYPE,
 I_message IN CLOB
)

This procedure is called by the triggers and takes the message type, uda_id and
uda_value if there is one and the message itself. It inserts a row into the
UDA_MFQUEUE along with the passed in values and the next sequence number from
the UDA_MFSEQUENCE, setting the status to ‘U’npublished. It returns error codes and
strings.

Function Level Description – GETNXT
Procedure: GETNXT
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type OUT UDA_MFQUEUE.MESSAGE_TYPE%TYPE,
 O_message OUT CLOB,
 O_uda_id OUT UDA.UDA_ID%TYPE,
 O_uda_value OUT UDA_VALUES.UDA_VALUE%TYPE,
 O_display_type OUT UDA_MFQUEUE.DISPLAY_TYPE%TYPE
)

This publicly exposed procedure is typically called by a RIB publication adaptor. This
procedure’s parameters are well defined and arranged in a specific order. The message
type is the RIB defined short message name; the message is the XML message; and the
uda_id and uda_value are the keys for the message as pertains to the UDA family, not all
of which will necessarily be populated for all message types. The status code is one of
five values.

Trigger Impact
Create a trigger on the UDA and UDA_VALUES table to capture Inserts, Updates, and
Deletes.

Trigger name: EC_TABLE_UDA_AIUDR.TRG

Trigger file name: ec_table_uda_aiudr.trg

Publication Designs

132 Oracle Retail Merchandising System

Table: UDA
Inserts
 Sets action_type to ‘A’dd and message_type to ‘UDAHdrCre’.

Updates
 Sets action_type to ‘M’odify and message_type to ‘UDAHdrMod’.

Deletes
 Sets action_type to ‘D’elete and message_type to ‘UDAHdrDel’.

Trigger name: EC_TABLE_UDV_AIUDR.TRG

Trigger file name: ec_table_udv_aiudr.trg

Table: UDA_VALUES
Inserts
 Sets action_type to ‘A’dd and message_type to ‘UDAValCre’.

Updates
 Sets action_type to ‘M’odify and message_type to ‘UDAValMod’.

Deletes
 Sets action_type to ‘D’elete and message_type to ‘UDAValdel’.

Message XSD
Here are the filenames that correspond with each message type. Please consult the
mapping documents for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

UDAHdrCre UDA Create Message UDADesc.xsd

UDAHdrMod UDA Modify Message UDADesc.xsd

UDAHdrDel UDA Delete Message UDARef.xsd

UDAValCre UDA_Values Create Message UDAValDesc.xsd

UDAValMod UDA_Values Modify Message UDAValDesc.xsd

UDAValDel UDA_Values Delete Message UDAValRef.xsd

Table Impact

TABLE SELECT INSERT UPDATE DELETE

UDA_MFQUEUE Yes Yes No No

UDA Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 133

Design Assumptions
 One of the primary assumptions in the current approach is that ease of code will

outweigh performance considerations. It is hoped that the ‘trickle’ nature of the flow
of data will decrease the need to dwell on performance issues and instead allow
developers to code in the easiest and most straightforward manner.

 The adaptor is only set up to call stored procedures, not stored functions. Any public
program then needs to be a procedure.

Publication Designs

134 Oracle Retail Merchandising System

Vendor Publication API

Multiple Sets of Books
RIB supports the multiple sets of books functionality. Customers may need multiple sets
of books because they use multiple currencies, or because a company contains separate
legal entities. See the Stock Ledger Batch chapter of the RMS Operations Guide volume 1
for additional information on multiple sets of books.

Business Overview
RMS publishes vendor (also known as supplier) and vendor address (also known as
supplier address) data messages to the RIB for the use of RWMS and other integration
subsystems. Those applications are then able to keep their vendor data in sync with RMS.
Supplier data is a base foundation data element that every Oracle Retail system uses.
RMS publishes exhaustive supplier data. The subscribing application filters out the data
it needs.
As suppliers and addresses are added in RMS, the event capture trigger creates an xml
message in the xml builder and adds the message to the SUPPLIER_MFQUEUE table.
The supplier create message will consist of two parts - the header (sups table) and the
detail (addr table) data. The number of addresses needed is determined by system
options, invoice matching indicator and returns allowed indicator, with an order address
type always being required. Once all the criteria are met for a valid create message, the
messages will be combined and sent to the RIB. Messages for supplier and address
modifications and deletions will be sent as they are created. An address modification can
be sent without the supplier information.
The tables involved are sups and addr. Address records are children of suppliers. All
address types of Returns (3), Order (4), and Invoice (5) are published.
When multiple set of books is enabled in RMS, org units are required elements when
creating a supplier. This information is stored in the partner_org_unit table. Addition
and deletes from this table are sent either as standalone message or part of the supplier
create message. If supplier sites are enabled in RMS, org unit are only published for
supplier sites. When Supplier Sites functionality is enabled, only supplier site data is
published. The Supplier level data are not published.

Functionality Checklist:

Description RMS RIB

RMS must publish vendor information

Create new Publisher X X

Form Impact
None

Business Object Records
None

Vendor Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 135

Package Impact

Description of Activities
<Create Supplier>
1. Prerequisites: Supplier does not already exist.
2. Activity Detail: Create Supplier inserts the supplier into the database.
3. Messages: VendorCre message is created but remains in queue until supplier is valid.
<ModifySupplier>
1. Prerequisites: Supplier exists and is valid
2. Activity Detail: Update the supplier record in the database.
3. Messages: VendorHdrMod message is created.
<AddAddress>
1. Prerequisites: Supplier exists and is valid
2. Activity Detail: Insert the address into the database.
3. Messages: VendorAddrCre message is created.
<ModifyAddress>
1. Prerequisites: Supplier exists and is valid. Address exists.
2. Activity Detail: Update the address in the database.
3. Messages: VendorAddrMod message is created.
<DeleteAddess>
1. Prerequisites: Supplier exists and is valid. Address exists.
2. Activity Detail: Delete the address from the database.
3. Messages: VendorAddrDel message is created.
<DeleteSupplier>
1. Prerequisites: Supplier exists and is valid.
2. Activity Detail: Delete any existing addresses for the supplier and the supplier from

the database.
3. Messages: VendorDel message is created.
<AddOrgUnit>
Prerequisites: OrgUnit does not exist for the supplier and is valid.
Activity Detail: Insert the Org Unit into the database.
Messages: VendorOUCre message is created
<DeleteOrgUnit>
Prerequisites: OrgUnit exists and is valid.
Activity Detail: Delete any existing Org_unit for the supplier from the database.
Messages: VendorOUDel message is created

Package name: RMSMFM_VENDOR

Spec file name: rmsmfm_vendors.pls

Body file name: rmsmfm_vendorb.pls

Publication Designs

136 Oracle Retail Merchandising System

Package Specification – Global Variables
None

Function Level Description – ADDTOQ
Function ADDTOQ
 (I_message_type IN VARCHAR2,
 I_supplier IN sups.supplier%TYPE,
 I_addr_seq_no IN addr.seq_no%TYPE,
 I_addr_type IN addr.addr_type%TYPE,
 I_ret_allow_ind IN VARCHAR2,
 I_invc_match_ind IN VARCHAR2,
 I_org_unit IN VARCHAR2,
 I_message IN CLOB,
 O_status OUT VARCHAR2,
 O_text OUT VARCHAR2)

This procedure is called by the triggers, and takes the message type, supplier,
addr_seq_no, addr_type, ret_allow_ind, and invc_match_ind values, and org_unit and,
the message itself. It inserts a row into the supplier message family queue along with the
passed in values and the next sequence number from the supplier message family
sequence, setting the status to unpublished. It returns error codes and strings.

Function Level Description – GETNXT
Procedure GETNXT
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type OUT VARCHAR2,
 O_message OUT CLOB,
 O_supplier OUT sups.supplier%TYPE
 O_addr_seq_no OUT addr.seq_no%TYPE
 O_addr_type OUT addr.addr_type%TYPE

This publicly exposed procedure is called by a RIB publication adaptor. Its parameters
are well defined and arranged in a specific order. The message type is the RIB defined
short message name, the message is the xml message, and the family key(s) are the key
for the message as pertains to the family, not all of which will necessarily be populated
for all message types. The keys for supplier are supplier, addr_seq_no, and addr_type.
Status code is one of 3 values, as shown in the following table.
The error text parameter contains application-generated information, such as the
application’s sequence number of the message that failed, and the Oracle or other error
that occurred when the retrieval failed.

NO_MSG ‘N’ No more messages to process

UNHANDLED_ERROR ‘E’ Unclassified (fatal) Error

SUCCESS ‘S’ Success

Vendor Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 137

Function Level Description – CREATE_PREVIOUS (local)
This procedure determines if a supplier create already exists on the queue table for the
same supplier and with a sequence number less than the current records sequence
number.

Function Level Description – CLEAN_QUEUE (local)
This procedure cleans up the queue by eliminating modification messages. It is only
called if CREATE_PREVIOUS returns true. For each address modification message type,
it finds the previous address create message type. It then calls REPLACE_QUE_ADR to
copy the modify message into the create message and calls DELETE_QUEUE_REC to
delete the modify record. For each delete message type, it finds the previous
corresponding create message type. It then calls DELETE_QUEUE_REC to delete the
create message record. For each supplier modification message type, it finds the previous
supplier create message type. It then calls REPLACE_QUE_SUP to copy the modify
message into the create message and calls DELETE_QUEUE_REC to delete the modify
record.

Function Level Description – CAN_CREATE (local)
This procedure determines if a complete hierarchical supplier message can be created
from the current address and prior address messages in the queue for the same supplier.
It checks to see if there is a type 3, 4, and 5 address already in the queue. If the
ret_allow_ind is ‘Y’ and there is a type 3 address then a ret_flag is set to true. If the
invc_match_ind is ‘Y’ and there is a type 5 address then a invc_flag is set to true. If all the
flags are true, then it returns true because the complete hierarchical message can be
created.

Function Level Description – MAKE_CREATE (local)
This procedure combines the current message and all previous messages with the same
supplier in the queue table to create the complete hierarchical message. It first creates a
new message with the VendorDesc document type. It then gets the supplier create
message and adds it to the new message. The remainder of this procedure gets each of
the addresses adds them to the new message. When it is finished creating the new
message, it deletes all the records from the queue with a sequence number less than or
equal to the current records sequence number. This new message is passed back to the
bus.

Function Level Description – DELETE_QUEUE_REC (local)
This procedure deletes a specific record from the queue. It deletes based on the sequence
number passed in.

Function Level Description – REPLACE_QUEUE_SUP (local)
This procedure replaces the message in the create supplier record with the message from
the modify supplier record.

Function Level Description – REPLACE_QUEUE_ADR (local)
This procedure replaces the message in the create address record with the message from
the modify address record.

Publication Designs

138 Oracle Retail Merchandising System

Function Level Description – CHECK_STATUS (local)
This procedure raises an exception if the status code is set to Error. This should be called
immediately after calling a procedure that sets the status code. Any procedure that calls
CHECK_STATUS must have its own exception handling section.

Function Level Description – MAKE_CREATE_POU (local)
This procedure is called when message type is ‘VendorOUCre’ or ‘VendorOUDel’. It first
creates a new message with the VendorDesc document type. It then gets the Vendor
OrgUnit create message and adds it to the new message. This new message is passed
back to the bus.

Trigger Impact
Create a trigger on the SUPS and ADDR tables to capture Inserts, Updates, and Deletes.
Triggers should only insert records onto the staging table.

Trigger name: EC_TABLE_SUP_AIUDR.TRG

Trigger file name: ec_table_sup_aiudr.trg

Table: SUPS
Description:
This trigger fires on insert, update, and delete. It captures the data in new. It then sets the
event type and message type and calls the supplier_xml.build_supplier procedure. It
calls supplier_xml.get_keys to get key the returns allowed indicator and the invoice
match indicator. The message is then inserted into the mfqueue table by calling
rmsmfm_supplier.addtoq.
Inserts
 Set event type to ‘A’ and message type to VendorHdrCre.

Updates
 Set event type to ‘D’ and message type to VendorHdrMod.

Deletes
 Set event type to ‘D’ and message type to VendorDel.

Trigger name: EC_TABLE_ADR_AIUDR.TRG

Trigger file name: ec_table_adr_aiudr.trg

Table: ADDR
Description:
This trigger fires on insert, update, and delete. It captures the data in new. It then sets the
event type and message type and calls the supplier_xml.build_address procedure. It calls
supplier_xml.get_keys to get key the returns allowed indicator and the invoice match
indicator. The message is then inserted into the mfqueue table by calling
rmsmfm_supplier.addtoq.
On Insert:
Set event type to ‘A’ and message type to VendorAddrCre.
On Update:
Set event type to ‘D’ and message type to VendorAddrMod.

Vendor Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 139

On Delete:
Set event type to ‘D’ and message type to VendorAddrDel.

Trigger name: EC_TABLE_POU_AIUDR.TRG

Trigger file name: ec_table_pou_aiudr.trg

Table: PARTNER_ORG_UNIT
Description:
This trigger fires on insert and/or delete. It captures the data in new. It then sets the
event type and message type and calls the supplier_xml.build_org_unit procedure. It
calls supplier_xml.get_keys to get a key, the returns allowed indicator and the invoice
match indicator. The message is then inserted into the mfqueue table by calling
rmsmfm_supplier.addtoq.
On Insert:
Set event type to ‘A’ and message type to VendorOUCre.
On Delete:
Set event type to ‘D’ and message type to VendorOUDel.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

VendorCre Vendor Create VendorDesc.xsd

VendorHdrMod Vendor Header Modify VendorHdrDesc. xsd

VendorDel VendorDelete VendorRef.xsd

VendorAddrCre Vendor Address Create VendorAddrDesc.xsd

VendorAddrMod Vendor Address Modify VendorAddrDesc.xsd

VendorAddrDel Vendor Address Delete VendorAddrRef.xsd

VendorOUCre Vendor OrgUnit Create VendorOUDesc.xsd

VendorOUDel Vendor OrgUnit Delete VendorOURef.xsd

Table Impact

TABLE SELECT INSERT UPDATE DELETE

SUPS Yes No No No

ADDR Yes No No No

SUPPLIER_MFQUEUE Yes Yes Yes Yes

DUAL Yes No No No

PARTNER_ORG_UNIT Yes No No No

Publication Designs

140 Oracle Retail Merchandising System

Design Assumptions
 One of the primary assumptions in the current approach is that ease of code will

outweigh performance considerations. It is hoped that the ‘trickle’ nature of the flow
of data will decrease the need to dwell on performance issues and instead allow
developers to code in the easiest and most straight forward manner.

 The adaptor is only setup to call stored procedures, not stored functions. Any public
program then needs to be a procedure.

Warehouse Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 141

Warehouse Publication API

Business Overview
RMS publishes data about warehouses in messages to the Oracle Retail Integration Bus
(RIB). Other applications that need to keep their locations synchronized with RMS
subscribe to these messages.
RMS publishes event messages about all of its warehouses. For retailers that run RMS in
a multi-channel environment, this is important because RMS warehouses are divided
into those that hold inventory, called stockholding, and those that do not hold inventory,
called non-stockholding. Stockholding locations can include virtual warehouses and
brick and mortar stores. Actual physical warehouses are non-stockholding for RMS’
purposes.
Those applications on the RIB that understand virtual locations can subscribe to all
warehouse messages that RMS publishes. Those applications that do not have virtual
location logic, that is they only understand a location as physical and stockholding,
depend upon the RIB to transform RMS warehouse messages. Logic contained in the RIB
ensures that these applications will not receive virtual warehouse data.

Note: To determine if your implementation of RMS is set up
to run multi-channel, look at the SYSTEM_OPTIONS table’s
multichannel_ind column for the value of ‘Y’ (Yes). If the ‘N’
(No) value is displayed, multichannel is not enabled.

These RIB messages are triggered by the insert, update, and delete of warehouses and
warehouse addresses on the RMS WH table, and the ADDR table with the module ‘WH’.
The output message is in hierarchical structure, with warehouse information at the
header level and the address information at the detail level. Because this is a low volume
publisher, multi-threading capability is not supported. In addition, Oracle Retail only
publishes the current state of the warehouse, not every change.
If multiple addresses are associated with a warehouse, this message is designed with the
assumption that RWMS and other integration subsystems only subscribe to the primary
address of the primary address type.
To facilitate the routing of data, the header level routing info (this is routing info outside
the confines of the message) contains the name of ‘loc_type’ with value ‘W’. Detail level
routing info contains the name of ‘primary_addr_type_ind’ with value of ‘Y’ or ‘N’ and
the name of ‘primary_addr_ind’ with value of ‘Y’ or ‘N’. This allows the RIB to route the
external finishers and their address to the correct applications.
For additional explanations of virtual locations and the multi-channel operation of RMS,
see the chapter “Organization Hierarchy Batch” in volume 1 of this RMS Operations
Guide. For an explanation of finishers, see the section ‘Partner’ in the chapter
“Publication Design” in this volume of the RMS Operations Guide.

Publication Designs

142 Oracle Retail Merchandising System

Functionality Checklist

Description RMS RIB

RMS must publish WH information

Create new Publisher X X

Business Object Records
Create the following record types in the RMSFM_WH package specification:
TYPE WH_KEY_REC IS RECORD
 (wh NUMBER,
 addr_key NUMBER,
 wh_type VARCHAR2(1),
 pricing_loc NUMBER,
 pricing_loc_curr VARCHAR2(3)
);

Package Impact

Business Object ID
The business object id for warehouse publisher is wh, which uniquely identifies a
warehouse for publishing.

Package name: RMSMFM_WH

Spec file name: rmsmfm_whs.pls

Body file name: rmsmfm_whb.pls

Package Specification – Global Variables
FAMILY CONSTANT RIB_SETTINGS.FAMILY%TYPE := 'WH';
HDR_ADD CONSTANT VARCHAR2(15) := 'whcre';
HDR_UPD CONSTANT VARCHAR2(15) := 'whmod';
HDR_DEL CONSTANT VARCHAR2(15) := 'whdel';
DTL_ADD CONSTANT VARCHAR2(15) := 'whdtlcre';
DTL_UPD CONSTANT VARCHAR2(15) := 'whdtlmod';
DTL_DEL CONSTANT VARCHAR2(15) := 'whdtldel';
WHA_ADD CONSTANT VARCHAR2(15) := 'whaddcre';
WHA_UPD CONSTANT VARCHAR2(15) := 'whaddmod';

Function Level Description – ADDTOQ
Function: ADDTOQ
 (O_error_mesage OUT VARCHAR2,
 I_message_type IN VARCHAR2,
 I_wh_key_rec IN WH_KEY_REC,
 I_addr_publish_ind IN ADDR.PUBLISH_IND%TYPE)

This public function puts a warehouse message on WH_MFQUEUE for publishing to the
RIB. It is called from both wh trigger and address trigger. The I_functional_keys contains
wh and, optionally, addr_key.
There are some tasks relating to streamlining the queue clean up process that need to
occur in ADDTOQ. The goal is to have at most one record on the queue for a given
warehouse up until its initial publication.

Warehouse Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 143

 For header level insert messages (HDR_ADD), insert a record in the WH_PUB_INFO
table. The published flag should be set to ‘N’. The WH_TYPE column should have a
value of ‘P’hysical or ‘V’irtual. Since this is a low volume business transaction, the
warehouse publisher will not provide multi-threading capability. Therefore, thread
value does NOT need to be calculated.

 For HDR_UPD, DTL_ADD, DTL_UPD, DTL_DEL messages, do NOT need to be
added to the queue until the business object (that is, wh) has been initially published
(WH_PUB_INFO.published = ‘N’). This is because when the warehouse does get
published for the first time (HDR_ADD), the current state of the header and details is
queried and published to the RIB.

 For header level delete messages (HDR_DEL), if the business object (that is, wh) has
NOT been initially published (WH_PUB_INFO.published = ‘N’), delete the record in
WH_PUB_INFO. Otherwise, delete every record in the queue for the business object,
and add the delete record to the queue.

 If the business object has been initially published (WH_PUB_INFO.published = ‘Y’),
for detail level messages deletes (DTL_DEL), Oracle Retail only needs one (the most
recent) record per detail in the WH_MFQUEUE. Delete any previous records that
exist on the WH_MFQUEUE for the record that has been passed.

 If the business object has been initially published (WH_PUB_INFO.published = ‘Y’),
for detail level messages updates (DTL_UPD), Oracle Retail only needs one
DTL_UPD (the most recent) record per detail in the WH_MFQUEUE. Delete any
previous DTL_UPD records that exist on the WH_MFQUEUE for the record that has
been passed. Oracle Retail does not want to delete any detail inserts that exist on the
queue for the detail, we need to ensure subscribers are not passed a detail
modification message for a detail that they do not yet have.

 For all message types except header level inserts (HDR_ADD), insert a record into
the WH_MFQUEUE. One exception is that if the publish_ind on the detail record
table (ADDR) is ‘N’, do not add the DTL_DEL message to the queue. That is because
if the detail line has never been published before, subscribers will not need to delete
the detail line that they do not yet have.

Function Level Description – GETNXT
Procedure: GETNXT
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id OUT RIB_BUSOBJID_TBL,
 O_routing_info OUT RIB_ROUTINGINFO_TBL,
 I_num_threads IN NUMBER DEFAULT 1,
 I_thread_val IN NUMBER DEFAULT 1);

This public procedure is called from the RIB to get the next messages. It performs a
cursor loop on the unpublished records on the WH_MFQUEUE table (PUB_STATUS =
‘U’). It should only need to execute one loop iteration in most cases. For each record
retrieved, GETNXT gets the following:
1. A lock of the queue table for the current business object (that is, wh). The lock is

obtained by calling the function LOCK_THE_BLOCK. If there are any records on the
queue for the current business object that are already locked, the current message is
skipped and picked up again in the next loop iteration.

2. A check for records on the queue with a status of ‘H’ospital. If there are any such
records for the current business object, GETNXT raises an exception to send the
current message to the Hospital.

Publication Designs

144 Oracle Retail Merchandising System

3. Get the published indicator from the WH_PUB_INFO table.
4. Call PROCESS_QUEUE_RECORD with the current business object.
The loop will need to execute more than one iteration for the following cases
1. When a header delete message exists on the queue for a business object that has not

been initially published. In this case, simply remove the header delete message from
the queue and loop again.

2. The queue is locked for the current business object. This can occur because
ADDTOQ, which is called from the triggers, deletes from the queue table for
DTL_UPD, DTL_DEL, and HDR_DEL messages.

The information from the WH_MFQUEUE and WH_PUB_INFO table is passed to
PROCESS_QUEUE_RECORD. PROCESS_QUEUE_RECORD will build the Oracle Object
message to pass back to the RIB. If PROCESS_QUEUE_RECORD does not run
successfully, GETNXT raises an exception.
If any exception is raised in GETNXT, including the exception raised by an unsuccessful
call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS is called.

Function Level Description – PUB_RETRY
This public procedure performs the same tasks as GETNXT except that it only loops for a
specific row in the WH_MFQUEUE table. The record on WH_MFQUEUE must match the
passed in sequence number (contained in the ROUTING_INFO).

Function Level Description – PROCESS_QUEUE_RECORD (local)
This private function controls the building of Oracle Objects (DESC or REF) given the
business transaction’s key values and a message type. It contains all of the shared
processing between GETNXT and PUB_RETRY. (Note: message_type of HDR_ADD can
potentially be changed to a DTL_ADD in PROCESS_QUEUE_RECORD.)
If the message type is a header delete (HDR_DEL)
 I_hdr_published should never be ‘N’ (not published), because in that case the

HDR_DEL message would never be added to the queue based on ADDTOQ
processing.

 Call BUILD_HEADER_OBJECT to build the REF Oracle Object to publish to the RIB.
 Delete both WH_MFQUEUE and WH_PUB_INFO for the business object.

Otherwise, if check I_hdr_published is either ‘N’ (not published) or ‘I’ (in progress):
 If I_hdr_published is ‘N’, the message type is a header create (HDR_ADD). If

I_hdr_published is ‘I’, change the message type from a header create (HDR_ADD) to
a detail add (DTL_ADD), because this is the situation where some of the details are
published but not all due to MAX_DETAILS_TO_PUBLISH. Thus, a header create
message for the current business object should have already been published.

 Call MAKE_CREATE to build the DESC Oracle Object to publish to the RIB. This will
also take care of any WH_MFQUEUE deletes, updating
WH_PUB_INFO.PUBLISHED to ‘Y’ or ‘I’, and bulk updating addr.publish_ind to ‘Y’
for those detail rows that have been published.

Otherwise,
If the record from WH_QUEUE table is a header update (HDR_UPD)
 Call BUILD_HEADER_OBJECT to build the DESC Oracle Object to publish to

the RIB.
 Update WH_PUB_INFO to published = ‘Y’.
 Delete the record from the WH_MFQUEUE table.

Warehouse Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 145

If the record from WH_QUEUE table is a detail add or update (DTL_ADD,
DTL_UPD)
 Call BUILD_DETAIL_CHANGE_OBJECTS to build the DESC Oracle Object to

publish to the RIB. This will also take care of any WH_MFQUEUE deletes and
updates of publish_ind on ADDR.

If the record from WH_QUEUE table is a detail delete (DTL_DEL)
 Call BUILD_DETAIL_DELETE_OBJECTS to build the REF Oracle Object to

publish to the RIB. This will also take care of any WH_MFQUEUE deletes.

Function Level Description – DELETE_QUEUE_REC (local)
This private function deletes a record in WH_MFQUEUE table given the row id.

Function Level Description – MAKE_CREATE (local)
Procedure: MAKE_CREATE
 (O_error_msg OUT VARCHAR2,
 O_message IN OUT nocopy RIB_OBJECT,
 O_routing_info IN OUT nocopy RIB_ROUTINGINFO_TBL,
 I_wh_key_rec IN WH_KEY_REC,
 I_rowid IN ROWID)

This private function is used to create the Oracle Object for the initial publication of a
business transaction. I_business_object contains the warehouse header key values (wh).
I_rowid is the rowid of the wh_mfqueue row fetched from GETNXT.
 Call BUILD_HEADER_OBJECT to get a header level Oracle Object.
 Call BUILD_DETAIL_OBJECTS to get a table of detail level Oracle objects and a table

of WH_MFQUEUE rowids to delete with and a table of ADDR rowids to update
publish_ind with.

 Update WH_PUB_INFO.published to ‘Y’ or ‘I’ depending on if all details are
published.

 Delete records from the WH_MFQUEUE for all rowids returned by
BUILD_DETAIL_OBJECTS. Deletes are done by rowids instead of business
transaction keys to ensure that noting is deleted off the queue that has not been
published.

 If the entire business transaction was added to the Oracle Object, also delete the
WH_MFQUEUE record that was picked up by GETNXT. If the entire business
transaction was NOT published, Oracle Retail needs to leave something on the
WH_MFQUEUE to ensure that the rest of it is picked up by the next call to GETNXT.

 Update ADDR.publish_ind to ‘Y’ by addr rowids returned from
BUILD_DETAIL_OBJECTS.

 The header and detail level Oracle Objects are combined and returned.

Function Level Description – BUILD_HEADER_OBJECT (local)
Procedure: BUILD_HEADER_OBJECT
 (O_error_msg OUT VARCHAR2,
 O_routing_info IN OUT nocopy RIB_ROUTINGINFO_TBL,
 O_rib_whdesc_rec OUT RIB_WH_DESC,
 I_wh_key_rec IN WH_KEY_REC)

This private function accepts warehouse header key values (wh), builds and returns a
header level DESC Oracle Object.

Publication Designs

146 Oracle Retail Merchandising System

Function Level Description – BUILD_HEADER_OBJECT (local)
This overloaded private function accepts warehouse header key value (wh), builds and
returns a header level REF Oracle Object.

Function Level Description – BUILD_DETAIL_OBJECTS (local)
The private function is responsible for building detail level DESC Oracle Objects. It
builds as many detail Oracle Object as it can given the passed in message type and
business object keys (wh).
Call API_LIBRARY.GET_RIB_SETTINGS to get the MAX_DETAILS_TO_PUBLISH for
the warehouse family.
If the function is being called from MAKE_CREATE (I_message_type would be NULL):

Select any unpublished ADDR detail records for the business transaction (based on
publish_ind on ADDR). Create Oracle Objects for details that are selected by calling
BUILD_SINGLE_DETAIL.
 Ensure that no more than MAX_DETAILS_TO_PUBLISH records are put into

Oracle Objects.
 Return a table of wh_mfqueue rowids for each message that is placed into the

Oracle Object.
 Return a table of addr rowids for each detail that is placed into the Oracle Object.

If the function is not being called from MAKE_CREATE (I_message type will NOT be
NULL):

Select any details on the WH_MFQUEUE that are for the same business object and
for the same message type. Create Oracle Objects for details that are selected by
calling BUILD_SINGLE_DETAIL.
 Ensure that no more than MAX_DETAILS_TO_PUBLISH records are put into

Oracle Objects.
 If the message type is a detail create (DTL_ADD), as the detail info is placed into

the Oracle Object, ensure that the corresponding addr rowid is added to addr
rowids table for return. These rowids are used to update ADDR.publish_ind to
‘Y’.

 Return a table of wh_mfqueue rowids for each message that is placed into the
Oracle Object.

A concern here is making sure that deletions from the queue table do not occur for
information that has not been published. For this reason, deletes are done by ROWID.
Everything should be in the same cursor, this should ensure that the message we
published matches the deletes we perform from the WH_MFQUEUE table regardless of
trigger execution during GETNXT calls.

Function Level Description – BUILD_SINGLE_DETAIL (local)
This private function takes in an address record and builds a detail level Oracle Object.
Also find out if the address is the primary address of the primary address type and set
the DESC Oracle Object accordingly.

Warehouse Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 147

Function Level Description – BUILD_DETAIL_CHANGE_OBJECTS (local)
This private function builds a DESC Oracle Object to publish to the RIB for detail create
and detail update messages (DTL_ADD, DTL_UPD). I_business_obj contains the header
level key values (wh).
 Call BUILD_HEADER_OBJECT to build the header level DESC Oracle Object.
 Call BUILD_DETAIL_OBJECTS to build the detail level DESC Oracle Objects.
 Bulk update addr.publish_ind to ‘Y’ for the addr rowids returned from

BUILD_DETAIL_OBJECTS.
Bulk delete from wh_mfqueue for the wh_mfqueue rowids returned from
BUILD_DETAIL_OBJECTS.

Function Level Description – BUILD_DETAIL_DELETE_OBJECTS (local)
This private function builds a REF Oracle Object to publish to the RIB for detail delete
messages (DTL_DEL). I_business_obj contains the header level key values (wh).
 Call API_LIBRARY.GET_RIB_SETTINGS to get the MAX_DETAILS_TO_PUBLISH

for the warehouse family.
 Call BUILD_HEADER_OBJECT to build the REF Oracle Object to publish to the RIB.
 Perform a cursor for loop on WH_MFQUEUE and build as many detail REF Oracle

Objects as possible without exceeding the MAX_DETAILS_TO_PUBLISH.
 For each detail, also find out if the address is a primary address of the primary

address type, and set the REF Oracle Objects accordingly.
 Bulk delete from wh_mfqueue for the wh_mfqueue rowids queried.

Function Level Description – LOCK_THE_BLOCK (local)
This private function locks all queue records for the current business object (wh). This is
to ensure that GETNXT and PUB_RETRY do not wait on any business processes that
currently have the queue table locked and have not committed. This can occur because
ADDTOQ, which is called from the triggers, deletes from the queue table for DTL_UPD,
DTL_DEL, and HDR_DEL messages.

Function Level Description – HANDLE_ERRORS (local)
This private procedure is called from GETNXT and PUB_RETRY when an exception is
raised. I_seq_no is the sequence number of the driving WH_MFQUEUE record.
I_function_keys contains detail level key values (wh, addr_key).
If the error is a non-fatal error, HANDLE_ERRORS passes the sequence number of the
driving WH_MFQUEUE record back to the RIB in the ROUTING_INFO. It sends back a
status of ‘H’ospital to the RIB as well. It then updates the status of the queue record to
‘H’ospital, so that it will not get picked up again by the driving cursor in GETNXT.
If the error is a fatal error, a status of ‘E’rror is returned to the RIB. The error is
considered non-fatal if no DML has occurred yet. Whenever DML has occurred, then the
global variable LP_error_status is flipped from ‘H’ospital to ‘E’rror.

Publication Designs

148 Oracle Retail Merchandising System

Trigger Impact
Create a trigger on the WH and ADDR table to capture Inserts, Updates, and Deletes.

Trigger name: EC_TABLE_WH_AIUDR.TRG (new)

Trigger file name: ec_table_wh_aiudr.trg (new)

Table: WH
Create a trigger on the WH table to capture Inserts, Updates, and Deletes.
Inserts
 Send the header level warehouse info to the ADDTOQ procedure in the MFM with

the message type RMSMFM_WH.HDR_ADD.
Updates
 Send the header level warehouse info to the ADDTOQ procedure in the MFM with

the message type RMSMFM_WH.HDR_UPD.
Deletes
 Send the header level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_WH.HDR_DEL.
In all these cases, build the function keys for ADDTOQ with warehouse.

Trigger name: EC_TABLE_ADR_AIUDR.TRG (mod)

Trigger file name: ec_table_adr_aiudr.trg (mod)

Table: ADDR
Modify trigger on the ADDR table to capture Inserts, Updates, and Deletes of module
type ‘WH’ (currently it only handles supplier).
Inserts
 Send the detail level addr info to the ADDTOQ procedure in the MFM with the

message type RMSMFM_WH.DTL_ADD.
Updates
 Send the detail level addr info to the ADDTOQ procedure in the MFM with the

message type RMSMFM_WH.DTL_UPD.
Deletes
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_WH.DTL_DEL.
In all these cases, build the function keys for ADDTOQ with KEY_VALUE_1 and
KEY_VALUE_2, which represent wh and addr_key respectively.

Warehouse Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 149

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

WHCre WH Create Message WHDesc.xsd

WHMod WH Modify Message WHDesc.xsd

WHDel WH Delete Message WHRef.xsd

WHDtlCre WH Detail Create Message WHDesc.xsd

WHDtlMod WH Detail Modify Message WHDesc.xsd

WHDtlDel WH Detail Delete Message WHRef.xsd

WHAddCre WH Address Create WHAddrDesc.xsd

WHAddMod WH Address Modify WHAddrDesc.xsd

Table Impact

TABLE SELECT INSERT UPDATE DELETE

WH_MFQUEUE Yes Yes Yes Yes

WH_PUB_INFO Yes Yes Yes Yes

WH Yes No No No

ADDR Yes No Yes No

ADD_TYPE_MODULE Yes No No No

Design Assumptions
It is not possible for a detail trigger to accurately know the status of a header table. In
order for the detail triggers to accurately know when to add a message to the queue,
RMS should not allow approval of a business object while detail modifications are being
made.
It is not possible for a header trigger or a detail trigger to know the status of anything
modified by GETNXT. If a header trigger or detail trigger is trying to delete queue
records that GETNXT currently has locked, it will have to wait until GETNXT is finished
and removes the lock. It is assumed that this time is fairly short (at most 2-3 seconds.) It is
also assumed that this will occur rarely, as it involves updating/deleting detail records
on a business object that has already been approved. This also has to occur at the same
time GETNXT is processing the current business object.
Push off all DML statements as late as possible. Once DML statements have taken place,
any error becomes a fatal error rather than a hospital error.

Publication Designs

150 Oracle Retail Merchandising System

Work Orders in Publication API
Purchase orders

Business Overview
A work order provides direction to a warehouse management system (such as RWMS)
about work that needs to be completed on items contained in a recent purchase order.
RMS publishes work orders soon after it publishes the purchase order itself. This is
referred to as a ‘work order in’ message. This message is not to be confused with a ‘work
order out’ message, which pertains to transfers. For information on the Work Orders Out
publication, see the section ‘Work Orders Out’ in the chapter “Publication Design” in this
volume of the RMS Operations Guide.
Work order publication consists of a message containing attributes from the
WO_DETAIL table plus the order number from the WO_HEAD table. One message is
created each time a WO_DETAIL record is created, modified, or deleted. The primary
key for the WO_DETAIL consists of the work order ID, warehouse, item, location, and
sequence number. Thus, one work order can have multiple Work Order Create messages.
When a WO_DETAIL record is created or modified, the message contains a full snapshot
of the WO_DETAIL record. When a WO_DETAIL record is deleted, the message contains
a partial snapshot of the WO_DETAIL record. Messages are retrieved from the message
queue in the order they were created.
Work orders attached to purchase orders will have their messages published after the
order has been published. Work orders attached to previously published approved
orders will have their messages published immediately.
Work orders are defined at the physical location level. The message family manager will
send the warehouse at which the work order will be done. This is used by the RIB
publication adaptor for routing messages to the appropriate warehouse.

Functionality Checklist

Description RMS RIB

RMS must publish work orders information

Create new Publisher X X

Form Impact
None

Business Object Records
Create the following table types in the RMSMFM_WOIN package:
TYPE rowid_TBL is table of ROWID INDEX BY BINARY_INTEGER;

Work Orders in Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 151

Package Impact

Create
1. Prerequisites: An order has been distributed by item and location.
2. Activity Detail: A work order is ready to be published as soon as the order it is

attached to has been published. An initial publication message is made.
3. Messages: A “Work Order Create” message is queued. This message contains a

snapshot of the attributes on the WO_DETAIL table.

Modify
1. Prerequisites: Work order has been created.
2. Activity Detail: The user is allowed to change attributes of the work order detail

record. These changes are of interest to other systems and so this activity results in
the publication of a message. Work orders attached to purchase orders will have
their messages published after the order has been published. Work orders attached to
previously published approved orders will have their messages published
immediately.

3. Messages: Any modifications to a work order detail record will cause a “Work Order
Modify” message to be queued. This message contains the same attributes as the
“Work Order Create” message.

Delete
1. Prerequisites: Work order has been created.
2. Activity Detail: Deleting a work order detail record removes it from the system.

External systems are notified by a published message.
3. Messages: When a work order detail record is deleted a “Work Order Delete”

message is queued. The message contains a partial snapshot of the WO_DETAIL
table.

Package name: RMSMFM_WOIN

Spec file name: rmsmfm_woins.pls

Body file name: rmsmfm_woinb.pls

Package Specification – Global Variables
FAMILY VARCHAR2(64) ‘woin’;
WO_ADD CONSTANT VARCHAR2(20) ‘InBdWOCre’;
WO_UPD CONSTANT VARCHAR2(20) ‘InBdWOMod’;
WO_DEL CONSTANT VARCHAR2(20) ‘InBdWODel’;

Publication Designs

152 Oracle Retail Merchandising System

Function Level Description – ADDTOQ
Function: ADDTOQ
 (O_error_msg OUT VARCHAR2,
 I_queue_rec IN WOIN_MFQUEUE%ROWTYPE,
 I_publish_ind IN WO_DETAIL.PUBLISH_IND%TYPE)

This procedure is called by EC_TABLE_WDL_AIUDR, and takes a record type variable
that consists of columns from the WO_DETAIL table and message type. It inserts a row
into the message family queue WOIN_MFQUEUE along with the passed in values and
the next sequence number from the message family sequence, and sets the status to
unpublished. It returns a status code of API_CODES.SUCCESS if successful,
API_CODES.UNHANDLED_ERROR if not.

Function Level Description – GETNXT
Procedure: GETNXT
 (O_status_code OUT VARCHAR2,
 O_error_msg OU VARCHAR2,
 O_message_type OU VARCHAR2,
 O_message OU RIB_OBJECT,
 O_bus_obj_id OU RIB_BUSOBJID_TBL,
 O_routing_info OU RIB_ROUTINGINFO_TBL,
 I_num_threads IN NUMBER DEFAULT 1,
 I_thread_val IN NUMBER DEFAULT 1)

This publicly exposed procedure is typically called by a RIB publication adaptor. Its
parameters are well defined and arranged in a specific order. The message type is the RIB
defined short message name. Status code is one of five values. These codes are defined in
the RIB_CODES package.
The error text parameter contains application-generated information, such as the
application’s sequence number of the message that failed, and the Oracle or other error
that occurred when the retrieval failed.

Function Level Description – PUB_RETRY
Procedure: PUB_RETRY
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type IN OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id IN OUT RIB_BUSOBJID_TBL,
 O_routing_info IN OUT RIB_ROUTINGINFO_TBL,
 I_REF_OBJECT IN RIB_OBJECT);

Same as GETNXT except:
It only loops for a specific row in the WOIN_MFQUEUE table. The record on
WOIN_MFQUEUE must match the passed in sequence number (contained in the
ROUTING_INFO).

Work Orders in Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 153

Function Level Description – PROCESS_QUEUE_RECORD (local)
This function controls the building of Oracle Objects given the business transaction’s key
values and a message type. It contains all of the shared processing between GETNXT and
PUB_RETRY.
If the record from WOIN_QUEUE table is an insert or update (WO_ADD, WO_UPD):
 Build the header object that contains work order id and order number
 Call BUILD_DETAIL_OBJECTS to build the Oracle Object to publish to the RIB.

If the record from WOIN_QUEUE table is a delete (WO_DEL):
 Build the header object that contains work order id and order number.
 Call BUILD_DETAIL_DELETE_OBJECTS to build the Oracle Object to publish to the

RIB.

Function Level Description – BUILD_DETAIL_OBJECTS (local)
The function is responsible for building detail level Oracle Objects. It builds as many
detail Oracle Object as it can given the passed in message type and business object key
(work order ID).
Select any details on the WOIN_MFQUEUE that are for the same work order id and for
the same message type.
 WOIN_MFQUEUE records that contain information being published will be deleted.
 Each location represented in the published message will be added to the

ROUTING_INFO object.
 No more than the MAX_DETAILS_TO_PUBLISH number of records are put into

Oracle Objects.
To avoid deleting information from the queue table that has not been published, deletes
are accomplished using ROWIDs. All information should be fetched using the same
cursor, this should ensure that the published message matches the deletes from the
WOIN_MFQUEUE table regardless of trigger execution during GETNXT calls.

Function Level Description – BUILD_DETAIL_DELETE_OBJECTS (local)
Perform a cursor for loop on WOIN_MFQUEUE and build as many detail ref Oracle
Objects as possible without exceeding the MAX_DETAILS_TO_PUBLISH.
Perform any BULK DML statements for deletion from WOIN_MFQUEUE.
Each location represented in the published message will be added to the
ROUTING_INFO object.

Function Level Description – LOCK_THE_BLOCK (local)
This function locks all queue records for the current business object. This is to ensure
that GETNXT does not wait on any business processes that currently have the queue
table locked and have not committed. This can occur because ADDTOQ, which is called
from the triggers, deletes from the queue table for WO_DEL messages.

Function Level Description – ROUTING_INFO_ADD (local)
This function is called from within the BUILD_DETAIL_OBJECTS and
BUILD_DETAIL_DELETE_OBJECTS. It will add the location from the message to the
routing_info whenever a new location is added to the object being published.

Publication Designs

154 Oracle Retail Merchandising System

Function Level Description – HANDLE_ERRORS (local)
HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is
raised.
If the error is a non-fatal error, GETNXT passes the sequence number of the driving
WOIN_MFQUEUE record back to the RIB in the ROUTING_INFO. It sends back a status
of ‘H’ospital to the RIB as well. It then updates the status of the queue record to
‘H’ospital, so that it will not get picked up again by the driving cursor in GETNXT.
If the error is a fatal error, a status of ‘E’rror is returned to the RIB.
The error is considered non-fatal if no DML has occurred yet. Whenever DML has
occurred, then the global variable LP_error_status is flipped from ‘H’ospital to ‘E’rror.

Trigger Impact
Create a trigger on the WO_DETAIL to capture Inserts, Updates, and Deletes.

Trigger name: EC_TABLE_WDL_AIUDR.TRG

Trigger file name: ec_table_wdl_aiudr.trg

Table: WO_DETAIL
This trigger will capture inserts/updates/deletes to the WO_DETAIL table and write
data into the WOIN_MFQUEUE message queue.
Inserts
 Send the header level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_WOIN.WO_ADD.
Updates
 Send the header level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ WOIN.WO_UPD.
Deletes
 Send the header level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ WOIN.WO_DEL.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

InBdWOCre Work Order Create Message WODesc.xsd

InBdWOMod Work Order Modify Message WODesc.xsd

InBdWODel Work Order Delete Message WORef.xsd

Work Orders in Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 155

Table Impact

TABLE SELECT INSERT UPDATE DELETE

WOIN_MFQUEUE Yes Yes Yes Yes

WO_DETAIL Yes No Yes No

Design Assumptions
 One of the primary assumptions in the current approach is that ease of code will

outweigh performance considerations. It is hoped that the ‘trickle’ nature of the flow
of data will decrease the need to dwell on performance issues and instead allow
developers to code in the easiest and most straightforward manner.

 The adaptor is only setup to call stored procedures, not stored functions. Any public
program then needs to be a procedure.

Publication Designs

156 Oracle Retail Merchandising System

Work Orders out Publication API
Transfers

Business Overview
This publication API facilitates the transmission of outbound work orders (OWO) from
RMS to external systems. Only transfers that pass through a finisher before reaching the
final location may be associated with work orders. The work orders are published upon
approval of their corresponding transfers. The work order provides instructions for one
or more of the following tasks to be completed at the finisher location:
 Perform some activity on an item, such as monogramming.
 Transform an item from one thing into another, such as dyeing a white t-shirt black.
 Combine bulk items into a pack or break down a pack into its component items.

Outbound work orders have their own message family because they cannot be bundled
with transfer messages. This is because multi-legged transfers can be routed to either
internal finishers (held as virtual warehouses) or external finishers (held as partners).
Transfers to and from an internal finisher involve at least one book transfer. Because
external systems may be unaware of virtual warehouses, book transfers are not
communicated to external systems.
Outbound work order data is only published upon approval of the associated transfer.
As such, all work order activity, transformation and packing data are contained in the
same message. Because RMS does not allow users to modify work order activity,
transformation or packing information for an approved transfer, detail-level messages of
any type (create, delete, update) are never published. Outbound work order delete
messages are published when the second leg of a multi-legged transfer is unapproved.
This can be accomplished through the un-approval of an entire multi-legged transfer or
the un-approval of the second leg only. A two-leg transfer that has had the first leg
shipped can be set back to ‘In Progress’ status in order to make changes to the work
order activities and the final location. When action has occurred, only the second leg is
really set back to in progress. The first leg remains in shipped status.

Functionality Checklist:

Description RMS RIB

RMS must publish Work Orders OUT information

Create new Publisher X X

Form Impact
None

Business Object Records
None

Work Orders out Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 157

Package Impact

Approve
1. Prerequisites: A multi-legged transfer must be approved and have work order

details for each transfer detail.
2. Activity Detail: Approving a transfer changes the status of the transfer. This change

in status signifies the first time systems external to RMS will have an interest in the
existence of the transfer and work order.

3. Messages: When a transfer with finishing is approved, an “outbdwocre” message is
inserted into the queue. The family manager creates a hierarchical message
containing a full snapshot of the transfer work order details at the time the message
is published.

Delete
1. Prerequisites: The associated transfer has finishing and is being deleted.
2. Activity Detail: Deleting a transfer removes it, and the associated work order from

the system. External systems are notified by a published Delete message that
contains the number of the transfer work order to be deleted.

3. Message: When a transfer with finishing is deleted, an “outbdwodel”, which is a flat
notification message, is queued.

Unapprove
1. Prerequisites: A transfer with finishing is unapproved
2. Activity Detail: Unapproving a transfer changes the status to worksheet, which

allows modification to the work order, transformation, packing, and item details.
External systems are notified by a published Delete message that contains the
number of the transfer work order to be deleted.

3. Messages: Unapproving a transfer queues an “outbdwounaprv” request. This results
in an “outbdwodel” message being published, which is a flat notification message.

Package name: RMSMFM_WOOUT

Spec file name: rmsmfm_woouts.pls

Body file name: rmsmfm_wooutb.pls

Package Specification – Global Variables
None

Publication Designs

158 Oracle Retail Merchandising System

Function Level Description – ADDTOQ
Function: ADDTOQ
 (O_error_mesage OUT VARCHAR2,
 I_message_type IN VARCHAR2,
 I_tsf_wo_id IN tsf_wo_head.tsf_wo_id%TYPE)

There are some tasks relating to streamlining the queue clean up process that need to
occur in ADDTOQ. The goal is to have at most one record on the queue for business
transactions up until their initial publication.
 For header level insert messages (HDR_ADD), insert a record in the

WOOUT_PUB_INFO table. The work order number passed to the function should
be inserted into the TSF_WO_ID column, and the published column should contain
‘N’.

 If the business transaction has not been approved (woout_pub_info.publish_ind =
‘N’) and the triggering message is one of HDR_DEL and HDR_ANAPPRV, the
record is not added to queue.

Function Level Description – GETNXT
Procedure: GETNXT
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id OUT RIB_BUSOBJID_TBL,
 O_routing_info OUT RIB_ROUTINGINFO_TBL,
 I_num_threads IN NUMBER DEFAULT 1,
 I_thread_val IN NUMBER DEFAULT 1)

This function fetches a record from the WOOUT_MFQUEUE table. Fetch the record that
has the lowest sequence number among queue records that have a pub_status of ‘U’ and
a thread_no that matches the I_thread_val.
Call the LOCK_THE_BLOCK function. If it determines that WOOUT_MFQUEUE is
locked for a particular work order, set the sequence limit local variable to the current
sequence number. This will prevent the GETNXT function from attempting to lock and
process the same work order message over and over again in the loop.
Query the WOOUT_MFQUEUE table to determine if any records for the work order
have been sent to the error hospital. If so, produce the ‘SEND_TO_HOSP’ error message
and halt processing.

Note: The only scenario in which a hospitalized record with
the same tsf_wo_id as the message currently being
processed would be found is if the initial HDR_ADD
message had been hospitalized and a subsequent HDR_DEL
or HDR_UNAPRV was being processed.

Call the PROCESS_QUEUE_RECORD function. If the break loop indicator returned from
process_queue_record is TRUE, set the O_message_type output parameter to the
message type fetched from the queue and return TRUE.
If the message type is null, set the status code output parameter to
API_CODES.NO_MSG. Otherwise, set it to API_CODES.NEW_MSG and set the
O_bus_obj_id parameter to RIB_BUSOBJID_TBL(L_tsf_wo_id).

Work Orders out Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 159

Function Level Description – PUB_RETRY
Procedure: PUB_RETRY
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type IN OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id IN OUT RIB_BUSOBJID_TBL,
 O_routing_info IN OUT RIB_ROUTINGINFO_TBL,
 I_REF_OBJECT IN RIB_OBJECT);

This procedure is called from the RIB for woout_mfqueue.seq_no’s that have been placed
in the RIB’s error hospital. It functions similarly to GETNEXT, except that it only fetches
the record from WOOUT_MFQUEUE that contains the sequence number passed by the
RIB.
If the message’s tsf_wo_id is null, raise an API_CODES.NO_MSG error. Call
LOCK_THE_BLOCK. If the queue record is locked by another process, set the status
code to API_CODES.HOSPITAL. If the queue record is not locked by another process,
call PROCESS_QUEUE_RECORD. If the message returned from process_queue_record
is null, raise the API_CODES.NO_MSG error. Otherwise, if the message object is
populated, populate the business object table with the current work order number.

Function Level Description – PROCESS_QUEUE_RECORD (local)
This function controls the building of Oracle Objects given the business transaction’s key
values and a message type. It contains all of the shared processing between GETNXT and
PUB_RETRY.
Check to see if the business object is being published for the first time. If the
published_ind on the pub_info table is ‘N’, the business object is being published for the
first time.
This function will set the O_break_loop parameter to FALSE in the following scenarios;
1. Processing a HDR_UNAPRV message for a work order that has a

woout_pub_info.published of ‘N’.
2. Processing a HDR_DEL message for a work order that has a

woout_pub_info.published of ‘N’.
The loop is not broken in these scenarios because they do not necessitate the publication
of a message. Therefore, processing should continue so a message can be outputted.
If the message type is HDR_DEL and the work order has been published the function
creates a work order ref object, and routing info object.

Note: WO out routing info requires a ‘to_loc’ string and
value.

If the message type is a HDR_UNAPRV and the work order has been published create a
work order ref object and a routing info object. For all records associated with the work
order on the tsf_wo_detail, tsf_xform_detail and tsf_packing tables, set the publish_ind
to ‘N’.

Note: A published value of ‘I’n progress indicates that the
work order was being published but it had more detail
records than allowed for a single message. The maximum
detail per message value can be found on the rib_settings
table for each message family.

Publication Designs

160 Oracle Retail Merchandising System

If the published indicator is ‘N’, set the message type to HDR_ADD and call the
MAKE_CREATE function.
If the published indicator is ‘I’, set the message type to DTL_ADD and call the
MAKE_CREATE function.

Function Level Description – MAKE_CREATE (local)
This function will first call the BUILD_HEADER_OBJECT function.
 It will then call the BUILD_DETAIL_OBJECTS function and update the

woout_pub_info column.
 It will also update the published_ind columns on TSF_WO_DETAIL,

TSF_XFORM_DETAIL and TSF_PACKING.

Function Level Description – BUILD_HEADER_OBJECT (local)
This function fetches the transfer number and transfer parent number associated with the
passed in work order number. Then, call the constructor for the rib_wooutdesc_rec,
passing in the work order number, transfer number, and transfer parent number. Finally,
it builds the routing info object.

Function Level Description – BUILD_DETAIL_OBJECTS (local)
The function is responsible for building detail level Oracle Objects. It builds as many
detail Oracle Object as it can given the passed in message type and business object keys.
If the function is being called from MAKE_CREATE:
 Select any unpublished detail records from the business transaction (tsf_wo_detail,

tsf_xfrom_detail, tsf_packing).
 Ensure that WOOUT_MFQUEUE is deleted from as needed. If there is more

than one WOOUT_MFQUEUE record for a detail level record, make sure they all
get deleted. Current state should be considered, not every change.

 Ensure that ROUTING_INFO is constructed if routing information is stored at
the detail level in the business transaction.

 Ensure that no more than MAX_DETAILS_TO_PUBLISH records are put into
Oracle Objects.

 Ensure that the detail records being added to the object have not already been
published. This can happen if GETNXT was previously called for the current
business object, and the MAX_DETAILS_TO_PUBLISH limit had been reached.

Function Level Description – DELETE_QUEUE_REC (local)
This function deletes a record from the outbound work order queue table based on a
passed-in sequence number.

Function Level Description – BUILD_WODTL_OBJECT (local)
This function fetches the activity_id, unit_cost and comments for all records from
tsf_wo_detail containing the passed in item and work order id. For each record found:
Populate the wooutactivity record with the activity_id, unit_cost and comments. Then,
add the wooutactivity record to the wooutactivity table.
After all details are processed, the WOOUTACTIVITY table will be added to the
wooutdtl record that was passed into the function.

Work Orders out Publication API

Operations Guide - Volume 2 - Message Publication and Subscription Design 161

Function Level Description – BUILD_PACKING_OBJECT (local)
Procedure: BUILD_PACKING_OBJECT
 (O_error_msg IN OUT VARCHAR2,
 O_packing_message IN OUT nocopy RIB_WOOUTPACKING_TBL,
 IO_rib_wooutpacking_rec IN OUT nocopy RIB_WOOUTPACKING_REC,
 I_tsf_packing_id IN tsf_packing.tsf_packing_id%TYPE))

This functionfirst constructs the “RIB_WOOutpackFrom_REC” object by fetching
tsf_packing_detail.item where the tsf_packing_id matches that which was passed into the
function and the record_type is ‘F’ (from). Once complete, add the WOOUTPACKFROM
table to the wooutpacking_rec passed to the function.
Next, the “RIB_WOOutpackTo_REC” object will be constructed. Fetch the
tsf_packing_detail.item where the tsf_packing_id matches that which was passed into the
function and the record_type is ‘R’ (result). Once complete, add the WOOUTPACKTO
table to the wooutpacking_rec passed to the function.

Function Level Description – LOCK_THE_BLOCK (local)
The function locks all records on the queue table for the business object. It has an
O_queue_locked output that specifies whether some process other than the current
process has the queue locked.

Function Level Description – HANDLE_ERRORS (local)
This procedure will handle error status values of ‘H’ospital. If the LP_error_status value
is ‘H’ospital, it will populate the business object table with the current work order
number, then create a routing info object and populate it with the sequence number of
the queue record. Finally a WOOutRef object is created and added to the O_message
object.
The woout_mfqueue is updated by setting the pub_status equal to
API_CODES.HOSPITAL.

Trigger Impact
Create a trigger on the WO_DETAIL and TSF_HEAD to capture Inserts, Updates, and
Deletes.

Trigger file name: ec_table_thd_aiudr.trg

Table: TSFHEAD
Inserts
 Send the tsf_wo_id level info to the RMSMFM_WOOUT.ADDTOQ procedure in the

MFM with the message type RMSMFM_WOOUT.HDR_ADD.

Updates
 Send the tsf_wo_id level info to the RMSMFM_WOOUT.ADDTOQ procedure in the

MFM with the message type RMSMFM_WOOUT.HDR_UNAPRV.
 When a transfer is placed in ‘A’pproved status the message type for this action will

be outbdwocre. When a transfer’s status is updated to ‘D’eleted, the family manager
inserts a record into the queue with a message_type = outbdwodel. When the new
status is set to ‘I’nput from Approved, the family manager inserts a record into the
queue with message type = outbdwounaprv.

Publication Designs

162 Oracle Retail Merchandising System

Deletes
 Send the level info to the RMSMFM_WOOUT.ADDTOQ procedure in the MFM with

the message type RMSMFM_WOOUT.HDR_DEL.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

OutBdWoCre Work Order Create Message WODesc.xsd

OutBdWoDel Work Order Delete Message WORef.xsd

Table Impact

TABLE SELECT INSERT UPDATE DELETE

WOOUT_MFQUEUE Yes Yes Yes Yes

WOPUT_PUB_INFO Yes Yes Yes Yes

TSFHEAD Yes No No No

TSF_WO_HEAD Yes No No No

TSF_WO_DETAIL Yes No Yes No

TSF_XFORM Yes No No No

TSF_XFORM_DETAIL Yes No Yes No

TSF_PACKING Yes No Yes No

TSFDETAIL Yes No No No

TSF_PACKING_DETAIL Yes No No No

Design Assumptions
 The order upon which transfer and work order messages arrive at locations

participating in a multi-legged transfer does not need to be programmatically
controlled.

 Work order information is never published solely at a detail level. That is, insertions,
deletions and updates to work order records may not happen once the work order
has been approved. In order to modify work order information, the user will need to
unapprove the associated transfer. This will cause a work order header delete
message to be published.

 When a work order is unapproved or deleted, header level reference information
only can be published. Reference information at the detail level is not required to be
published, because work order publication is never done at the individual detail
level.

Operations Guide - Volume 2 - Message Publication and Subscription Design 163

2
Subscription Designs

Allocation Subscription API

Functional Area
Allocation

Design Overview
The allocation subscription API allows an external application to create, update, and
delete allocations within RMS. The main reason for doing so is to successfully interface
and track all dependent bills of lading (BOL) and receipt messages into RMS, as well as
to calculate stock on hand correctly.
The allocations can be used for both stock allocations (allocating merchandise in the
warehouse) and purchase order (PO), or cross-dock, allocations. The PO/cross-dock
allocations can be maintained either in the database, or through the RMS application
interface.
Allocation details can be created, edited, or deleted within the allocation message. Detail
line items must exist on an allocation header create message for an allocation to be
created. Allocation detail creates and updates will send a snapshot of the allocation
record.
New item location relationships will be created for allocation detail line items entering
RMS that do not previously exist within RMS.
New locations can be added to existing allocations, or current locations can be modified
on existing allocations. If modifying an existing location, the passed in quantity is an
adjustment to the current quantity as opposed to an overwrite.
Details can be individually removed from an allocation if the detail is not in-transit or
received. An entire allocation can be deleted if none of details are in-transit or received.
The Context field is not part of the subscription messages for allocations. This field is
included in the transfer/allocation publication APIs (used to define the business reason
for the allocation).

Consume Module

Filename: rmssub_xallocs/b.pls
RMSSUB_XALLOC.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure needs to initially ensure that the passed in message type is a valid type
for Allocation messages. If the message type is invalid, a status of “E” should be returned
to the external system along with an appropriate error message informing the external
system that the status is invalid.

Subscription Designs

164 Oracle Retail Merchandising System

If the message type is valid, the generic RIB_OBJECT needs to be downcast to the actual
object using the Oracle’s treat function. If the downcast fails, a status of “E” should be
returned to the external system along with an appropriate error message informing the
external system that the object passed in is invalid.
If the downcast is successful, then consume needs to verify that the message passes all of
RMS’s business validation. It calls the
RMSSUB_XALLOC_VALIDATE.CHECK_MESSAGE function to determine whether the
message is valid. If the message passed RMS business validation, the function returns
true, otherwise it returns false. If the message has failed RMS business validation, a status
of “E” should be returned to the external system along with the error message returned
from the CHECK_MESSAGE function.
Once the message has passed RMS business validation, it can be persisted to the RMS
database. It calls the RMSSUB_XALLOC_SQL.PERSIST_MESSAGE() function. If the
database persistence fails, the function returns false. A status of “E” should be returned
to the external system along with the error message returned from the
PERSIST_MESSAGE() function.
Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success status, “S”, should be returned to the external system
indicating that the message has been successfully received and persisted to the RMS
database.
RMSSUB_XALLOC.HANDLE_ERROR() is the standard error handling function that
wraps the API_LIBRARY.HANDLE_ERROR function.

Business Validation Module
It should be noted that some of the business validation is referential or involves
uniqueness. This validation is handled automatically by the referential integrity
constraints and the unique indexes implemented on the database.

Filename: rmssub_xallocvals/b.pls
RMSSUB_XALLOC_VALIDATE.CHECK_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 O_alloc_rec OUT ALLOC_REC,
 I_message IN RIB_XAllocDesc,
 I_message_type IN VARCHAR2)

This function performs all business validation associated with message and builds the
allocation record for persistence.
ALLOCATION CREATE
Check required fields
If item is a pack, verify receive as type is Pack for from location (warehouse).
Verify details exist
Default fields (status at header, qty pre-scaled, non scale ind)
Build allocation records.
Perform following steps if allocation is not cross-docked from an order

 Retrieve and build all to-locations that the item does not currently exist at.
 Build price history records.

ALLOCATION MODIFY
Check required fields
Populate record.

Allocation Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 165

ALLOCATION DELETE
Check required fields
Verify the allocation is not in-transit or received.
An allocation in-transit or received may have a value (other than zero) for any of the
following fields: distro quantity, selected quantity, canceled quantity, received quantity,
or PO received quantity.
ALLOCATION DETAIL CREATE
Check required fields
Verify details exist
Build allocation records.
Perform following steps if allocation is NOT cross-docked from an order

 Retrieve and build all to-locations that the item does not currently exist at.
 Build price history records.

ALLOCATION DETAIL MODIFY
Check required fields
If existing allocation records are being modified,

 Verify the allocation is not in-transit or received*
 Verify modification to quantity does not fall to zero or below.

ALLOCATION DETAIL DELETE
Check required fields
Verify the allocation is not in-transit or received*.
Check if deleting detail(s) removes all records from allocation. If so, process message as
allocation delete.

Bulk or single DML module

Filename: rmssub_xallocsqls/b.pls
RMSSUB_XALLOC_SQL.PERSIST
 (O_error_message IN OUT VARCHAR2,
 I_dml_rec IN ALLOC_RECTYPE ,
 I_message IN RIB_XAllocDesc)

ALLOCATION CREATE
 Insert a record into the allocation header table.
 Insert a record into the allocation detail table.
 Insert a record into the allocation charge table.
 Update transfer reserved for from-location.
 Update transfer expected for to-location.
 If item is a pack, update pack component reserved qty for the from location.
 If necessary, insert a record into the item supplier country location table.
 If necessary, insert a record into the item location and stock on hand tables.
 If necessary, insert a record into the price history table.

ALLOCATION MODIFY
 Update header record (alloc desc and release date).

Subscription Designs

166 Oracle Retail Merchandising System

ALLOCATION DETAIL CREATE
 Insert a record into the allocation detail table.
 Insert a record into the allocation charge table.
 Update transfer reserved for from-location.
 Update transfer expected for to-location.
 If item is a pack, update pack component reserved qty for the from location.
 If necessary, insert a record into the item supplier country location table.
 If necessary, insert a record into the item location and stock on hand tables.
 If necessary, insert a record into the price history table.

ALLOCATION DETAIL MODIFY
 Update the allocation detail table by adjusting the existing allocated quantity

using the passed in quantity. This can either increase or decrease the existing
quantity.

 Update transfer reserved for from-location.
 Update transfer expected for to-location.
 If item is a pack, update pack component reserved qty for the from location.

ALLOCATION DETAIL DELETE
 Delete the record from the allocation detail table.
 Delete the record from the allocation charge table.
 Update transfer reserved for from-location.
 Update transfer expected for to-location.
 If item is a pack, update pack component reserved qty for the from location.

ALLOCATION DELETE
 Delete the record from the allocation header table.
 Delete all associated record from the allocation detail table.
 Delete all associated record from the allocation charge table.
 Update transfer reserved for from-location.
 Update transfer expected for to-location.
 If item is a pack, update pack component reserved qty for the from location.

Message XSD
Here are the filenames that correspond with each message type. Please consult the
mapping documents for each message type in order to get a detailed picture of the
composition of each message.

Message Type Message Type Description XML Schema Definition
(XSD)

XAllocCre External Allocation Create XAllocDesc.xsd

XAllocDel External Allocation Delete XAllocRef.xsd

XAllocDtlCre External Allocation Detail Create XAllocDesc.xsd

XAllocDtlDel External Allocation Detail Delete XAllocRef.xsd

XAllocDtlMod External Allocation Detail Modification XAllocDesc.xsd

XAllocMod External Allocation Modification XAllocDesc.xsd

Allocation Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 167

Design Assumptions
This API only applies to store level zone pricing.
Locations are only created if an item-zone-price record already exists for the location
(store as to-locations are assumed to always be stores in this API).
This API does not currently handle inner packs when needing to create pack component
location information.
Required fields are shown in mapping document.
Passed in item is at transaction level.
From location is a stockholding location.
Triggers impacting any allocation or item/location tables should be turned off unless
deemed necessary.
This interface does not provide functionality to manage or track the movement of
inventory. Because the allocation quantities are not generated based upon RMS inventory
positions, RMS provides no stock on hand or inventory validation.
RMS recommends the scheme below for allocations sequence numbers (related to
ordering and transfers) in order to accommodate interfacing applications that do not
distinguish between stock movement.

Orders: 1 - 99,999,999
Allocations: 1,000,000,000 - 2,999,999,999
Transfers: 3,000,000,000 - 5,999,999,999

Clients must ensure that they keep in sync with or provide their own sequence number
scheme.

Tables

TABLE SELECT INSERT UPDATE DELETE

ALLOC_HEADER Yes Yes Yes Yes

ALLOC_DETAIL Yes Yes Yes Yes

ALLOC_CHRG Yes Yes No Yes

ITEM_SUPP_COUNTRY Yes No No No

ITEM_SUPP_COUNTRY_LOC Yes Yes No No

ITEM_LOC_SOH Yes Yes Yes No

STORE Yes No No No

WH Yes No No No

ITEM_LOC Yes Yes No No

SYSTEM_OPTIONS Yes No No No

ORDHEAD Yes No No No

PRICE_HIST No Yes No No

ITEM_MASTER Yes No No No

Subscription Designs

168 Oracle Retail Merchandising System

Appointments Subscription API

Functional Area
Appointments subscription

Design Overview
An appointment is information about the arrival of merchandise at a location. RMS
subscribes to appointment messages from the RIB that are published by an external
application such as a warehouse management system (for example, RWMS). RMS
processes these messages and attempts to receive against and close out the appointment.
In addition, RMS attempts to close the document that is related to the appointment. A
document can be a purchase order, a transfer, or an allocation.

Appointment status
Appointment messages cause the creation, updating, and closure of an appointment in
RMS. Typically the processing of a message results in updating the status of an
appointment in the APPT_HEAD table’s status column. Valid values for the status
column include:
 SC–Scheduled
 MS–Modified Scheduled
 AR–Arrived
 CL–Closed

A description of appointment processing follows.

Appointment processing
The general appointment message processes occur in this order:
1. An appointment is created for a location with a store or warehouse type from a

scheduled appointment message. It indicates that merchandise is about to arrive at
the location. Such a message results in a ‘SC’ status. At the same time, the
APPT_DETAIL table is populated to reflect the purchase order, transfer, or allocation
that the appointment corresponds to, along with the quantity of the item scheduled
to be sent.

2. Messages that modify the earlier created appointment update the status to ‘MS’.
3. Once the merchandise has arrived at the location, the appointment is updated to an

‘AR’ (arrived) status.
4. Another modification message that contains a receipt identifier prompts RMS to

insert received quantities into the APPT_DETAIL table.
5. After all items are received, RMS attempts to close the appointment by updating it to

a ‘CL’ status.
6. RMS will close the corresponding purchase order, transfer, or allocation ‘document’

if all appointments are closed.

Appointments Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 169

Appointments records indicate the quantities of particular items sent to various locations
within the system. The basic functional entity is the appointment record. It consists of a
header and one or more detail records. The header is at the location level; the detail
record is at the item-location level (with ASN as well, if applicable). Documents are
stored at the detail level; a unique appointments ID is stored at the header level. In
addition, a receipt number is stored at the detail level and is inserted during the receiving
process within RMS.

Subscription Packages

Filename: rmssub_receivings/b.pls
RMSSUB_RECEIVING.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2,
 O_rib_otbdesc_rec OUT “RIB_OTBDesc_REC”,
 O_rib_error_tbl OUT RIB_ERROR_TBL)

This procedure will make calls to receiving or appointment functions based on the value
of I_message_type. If I_message type is RECEIPT_ADD or RECEIPT_UPD, then a call is
made to RMSSUB_RECEIPT.CONSUME, casting the message as a
RIB_RECEIPTDESC_REC. If I_message_type is APPOINT_HDR_ADD,
APPOINT_HDR_UPD, APPOINT_HDR_DEL, APPOINT_DTL_ADD,
APPOINT_DTL_UPD, or APPOINT_DTL_DEL, then a call is made to
RMSSUB_APPOINT.CONSUME. This is the procedure called by the RIB.
RMSSUB_RECEIVING.HANDLE_ERRORS
 (O_status_code IN OUT VARCHAR2,
 IO_error_message IN OUT VARCHAR2,
 I_cause IN VARCHAR2,
 I_program IN VARCHAR2)

Standard error handling function that wraps the API_LIBRARY.HANDLE_ERROR
function.

Filename: rmssub_appoints/b.pls
RMSSUB_APPOINT.CONSUME.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This function validates that the message type is valid for appointment subscription. If
not, it returns a status of ‘E’ along with an error message to the calling function. If it is
valid, it casts the message as RIB_APPOINTDESC_REC or RIB_APPOINTREF_REC
depending on the message type, and calls local procedures HDR_ADD_CONSUME,
HDR_UPD_CONSUME, HDR_DEL_CONSUME, DTL_ADD_CONSUME,
DTL_UPD_CONSUME and DTL_DEL_CONSUME to perform the actual subscription
logic.
APPOINTMENT CREATE
 Location must be a valid store or warehouse.
 Document must be valid based on document type (‘P’ for purchase order, ‘T’ for

transfer, ‘A’ for allocations).
 Item must be a valid item.
 Insert header to APPT_HEAD if a record does not exist.
 Insert details to APPT_DETAIL if records do not already exist.

Subscription Designs

170 Oracle Retail Merchandising System

APPOINTMENT MODIFY
 Location must be a valid store or warehouse.
 Item must be a valid item.
 Update or insert into APPT_HEAD. Call APPT_DOC_CLOSE_SQL.CLOSE_DOC to

close the document if the new appointment status is ‘AC’.
APPOINTMENT DELETE
 Location must be a valid store or warehouse.
 Delete both header and detail records in APPT_HEAD and APPT_DETAIL.

APPOINTMENT DETAIL CREATE
 Location must be a valid store or warehouse.
 Document must be valid based on document type (‘P’ for purchase order, ‘T’ for

transfer, ‘A’ for allocations).
 Item must be a valid item.
 Insert details to APPT_DETAIL if records do not already exist.

APPOINTMENT DETAIL MODIFY
 Location must be a valid store or warehouse.
 Update or insert into APPT_DETAIL.

APPOINTMENT DETAIL DELETE
 Location must be a valid store or warehouse.
 Delete from APPT_DETAIL.

Message XSD
Here are the filenames that correspond with each message type. Please see RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

Appointcre Appointment Create Message AppointDesc.xsd

Appointhdrmod Appointment Header Modify Message AppointDesc.xsd

Appointdel Appointment Delete Message AppointRef.xsd

Appointdtlcre Appointment Detail Create Message AppointDesc.xsd

Appointdtlmod Appointment Detail Modify Message AppointDesc.xsd

Appointdtldel Appointment Detail Delete Message AppointRef.xsd

Appointments Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 171

Design Assumptions
 One of the primary assumptions in the current API approach is that ease of code will

outweigh performance considerations. It is hoped that the ‘trickle’ nature of the flow
of data will decrease the need to dwell on performance issues and instead allow
developers to code in the easiest and most straightforward manner.

 The adaptor is only set up to call stored procedures, not stored functions. Any public
program, then, needs to be a procedure.

 Detail records may contain the same PO/item combination, differentiated only by
the ASN number; however, the ASN field will be NULL for detail records which are
not associated with an ASN.

Tables

TABLE SELECT INSERT UPDATE DELETE

APPT_HEAD Yes Yes Yes Yes

APPT_DETAIL Yes Yes Yes Yes

ORDHEAD Yes No Yes No

TSFHEAD Yes No Yes No

ALLOC_HEADER Yes No Yes No

STORE Yes No No No

WH Yes No No No

ITEM_MASTER Yes No No No

ORDLOC Yes No No No

DEAL_CALC_QUEUE Yes No No Yes

OBLIGATION Yes No No No

OBLIGATION_COMP Yes No No No

ALC_HEAD Yes No No Yes

ALC_COMP_LOC Yes No No Yes

V_PACKSKU_QTY Yes No No No

TSFDETAIL Yes No No No

SHIPMENT Yes No No No

SHIPSKU Yes No No No

ITEM_LOC Yes No No No

ITEM_LOC_SOH Yes No Yes No

ALLOC_DETAIL Yes No No No

Subscription Designs

172 Oracle Retail Merchandising System

ASNIN SUBSCRIPTION API

Functional Area
Advance shipping notice (ASN) from a supplier

Business Overview
A transfer or allocation shipment is often a group of stock orders together on one truck.
These multiple transfers or allocations will be grouped together using an ASN number.
This number will be stored on the header record for the shipment. All shipments will be
associated with an order or an ASN number now rather than an order or transfer as it
worked previously.
A supplier or consolidator will send an advanced shipping notice (ASN) to software such
as RWMS that publishes the information to the Oracle Retail Information Bus (RIB). RMS
subscribes to the ASN information and places the information onto RMS tables
depending upon the validity of the records enclosed within the ASN message.
The ASN message will consist of a header record, a series of order records, carton records
and item records. For each message, header, order and item record(s) will be required.
The carton portion of the record is optional. If a carton record is present, however, then
that carton record must contain items in it.
The header record will contain information about the shipment as a whole. The order
records will identify which orders are associated with the merchandise being shipped. If
the shipment is packed in cartons, carton records will identify which items are in which
cartons. The item records will contain the items on the shipments, along with the
quantity shipped. The items on the shipment should be on the ORDLOC table for the
order and location specified in the header and order records.

Package Impact

Filename: rmssub_asnins/b.pls
The master Oracle Object used is called RIB_OBJECT. Messages passed into subscription
packages are of the type RIB_OBJECT. All objects created in the subscription packages
subclass the RIB_OBJECT type. Also, for RIB Object APIs, there is only one PL/SQL
package per message family.

ASNIN SUBSCRIPTION API

Operations Guide - Volume 2 - Message Publication and Subscription Design 173

Public API Procedure
RMSSUB_ASNIN.CONSUME
 (O_STATUS_CODE IN OUT VARCHAR2,
 O_ERROR_MESSAGE IN OUT VARCHAR2,
 I_MESSAGE IN RIB_OBJECT,
 I_MESSAGE_TYPE IN VARCHAR2);

The following is a description of the RMSSUB_ASNIN.COMSUME procedure:
1. The public procedure checks the message type if it is create (ASNINCRE), modify

(ASNINMOD), or delete (ASNINDEL).
2. If the message type is equivalent to ASNINDEL then,

 It will get the message in the record “RIB_ASNINRef_REC”.
 If message exists in the record then it will call the private function

PROCESS_DELETE. It will delete the ASN record from the appropriate
shipment and invoice database tables depending upon the success of the
validation.

 If no messages exist in the record then it will raise a program error that no
message was deleted.

3. If the message type is equivalent to ASNINCRE or ASNINMOD then,
 It will get the message in the record “RIB_ASNINDesc_REC”.
 It will parse the message or records by passing on to the private function

PARSE_ASN.
 After parsing the records, it will check if the message type is null or not equal to

ASNINCRE/ASNINMOD and if the message contains a PO record. A program
error will raise if there is no or wrong message type given and if there is no PO
record.

 If the records are valid after parsing, the detail records are retrieved in a list
which will loop through to several private functions and process the records.

Inside the loop:
a. Records are passed on to the private function PARSE_ORDER.
b. Delete container and item records from the previous order.
c. Check if CARTON_IND is equal or not equal to `C`.
d. If CARTON_IND equal to `C` then the records will be passed on to

PARSE_CARTON and PARSE_ITEM private functions. The records will then
be processed by passing on to PROCESS_ASN private function. The records are
placed in the appropriate shipment and ordering database tables depending
upon the success of the validation.

e. If CARTON_IND is NOT equal to `C` then a separate call to parse item
(PARSE_ITEM private function) is required in order to retrieve those items that
are not part of a container, and the records will be processed by passing on to
PROCESS_ASN private function. The records are place in the appropriate
shipment and ordering database tables depending upon the success of the
validation.

f. If there are no more records to process, the loop terminates.

Subscription Designs

174 Oracle Retail Merchandising System

Error Handling
If an error occurs in this procedure or any of the internal functions, this procedure places
a call to HANDLE_ERRORS in order to parse a complete error message and pass back a
status to the RIB.
HANDLE_ERRORS
 (O_status IN OUT VARCHAR2,
 IO_error_message IN OUT VARCHAR2,
 I_cause IN VARCHAR2,
 I_program IN VARCHAR2)

This function is used to put error handling in one place in order to make future error
handling enhancements easier to implement. All error handling in the internal
RMSSUB_ASNIN package and all errors that occur during subscription in the
ASN_SQL package (and whatever packages it calls) will flow through this function.
The function should consist of a call to API_LIBRARY.HANDLE_ERRORS.
API_LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the error and
potentially an unparsed error message if one has been created through a call to
SQL_LIB.CREATE_MESSAGE. The function uses these input variables to parse a
complete error message and pass back a status, depending upon the message and error
type, back up through the consume function and up to the RIB.

Private Internal Functions and Procedures

PARSE_ASN
This function will used to extract the header level information from the
RIB_ASNInDesc_REC and place that information onto an internal ASN header record.
TYPE asn_record IS RECORD(asn SHIPMENT.ASN%TYPE,
 destination
 SHIPMENT.TO_LOC%TYPE,
 ship_date
 SHIPMENT.SHIP_DATE%TYPE,
 est_arr_date
 SHIPMENT.EST_ARR_DATE%TYPE,
 carrier SHIPMENT.COURIER%TYPE,
 ship_pay_method ORDHEAD.SHIP_PAY_METHOD%TYPE,
 inbound_bol SHIPMENT.EXT_REF_NO_IN%TYPE,
 supplier ORDHEAD.SUPPLIER%TYPE,
 carton_ind VARCHAR2(1));

PARSE_ORDER
This function will used to extract the order level information from the
RIB_ASNInPO_REC/ASN number from shipment table and place that information onto
an internal order record.

PARSE_CARTON
This function will used to extract the carton level information (an indicator in the ASN
header record will indicate whether this information exists) from the
RIB_ASNInCtn_REC / ASN and ORDER number from shipment table and place that
information onto an internal arrayed carton record.

ASNIN SUBSCRIPTION API

Operations Guide - Volume 2 - Message Publication and Subscription Design 175

PARSE_ITEM
This function will used to extract the item level information from the
RIB_ASNInItem_REC/ASN and ORDER number in the shipment table/CARTON
number from carton table and place that information onto an internal arrayed item
record.

Validation

PROCESS_ASN
After the values are parsed for a particular order in an ASN record,
RMSSUB_ASNIN.CONSUME will call this function, which will in turn call various
functions inside ASN_SQL in order to validate the values and place them on the
appropriate shipment and ordering database tables depending upon the success of the
validation.
Only one ASN and order record will be passed in at a time, whereas multiple cartons and
items will be passed in as arrays into this function. If one order, carton or item value is
rejected, then current functionality dictates that the entire ASN message will be rejected.

PROCESS_DELETE
In the event of a delete message, this function will be called rather than PROCESS_ASN.
This function will take the asn_no from the parsing function and pass it into ASN_SQL in
order to delete the ASN record from the appropriate shipment and invoice tables.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

asnincre ASN Inbound Create Message ASNInDesc.xsd

asnindel ASN Inbound Delete Message ASNInRef.xsd

asninmod ASN Inbound Modify Message ASNInDesc.xsd

Design Assumptions
 One of the primary assumptions in the current API approach is that ease of code will

outweigh performance considerations. It is hoped that the ‘trickle’ nature of the flow
of data will decrease the need to dwell on performance issues and instead allow
developers to code in the easiest and most straightforward manner.

 The adaptor is only set up to call stored procedures, not stored functions. Any public
program then needs to be a procedure.

Subscription Designs

176 Oracle Retail Merchandising System

Tables

TABLE SELECT INSERT UPDATE DELETE

SHIPMENT Yes Yes Yes Yes

SHIPSKU Yes Yes No Yes

CARTON No Yes No Yes

INVC_XREF No No No Yes

STORE Yes No No No

WH Yes No No No

ORDHEAD Yes No No No

ASNOUT Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 177

ASNOUT Subscription API

Wholesale and Franchise
RIB integration points support wholesale and franchise functionality for the enterprise.
See the Wholesale/Franchise Batch chapter in the RMS Operations Guide volume 1 for
additional information on wholesale and franchise.

Functional Area
ASNOUT

Design Overview
An internal advance shipment notification (ASN) message holds data that is used by
RMS to create or modify a shipment record. Also known as a bill of lading (BOL),
internal ASNs are published by an application that is external to RMS, such as a
warehouse management system (RWMS, for example). In contrast to a BOL is the
external ASN, which is generated by a supplier and shows merchandise movement from
the supplier to a retailer location, like a warehouse or store. This overview describes the
BOL type of advance shipment notification.
Internal ASNs are notifications to RMS that inventory is moving from one location to
another. RMS subscribes to BOL messages from the Oracle Retail Integration Bus (RIB).
The external application publishes these ASN messages for:
 Allocations that RMS previously initiated through a stock order message.
 Transfers that RMS previously initiated through a stock order message.
 Transfers that the external application generates itself (an RMS transfer type of ‘EG’

within RMS).
Individual stock orders are held on the transfer and allocation heading tables in RMS. A
message may contain data about multiple transfers or allocations, and as a result, the
shipment record in RMS would reflect these multiple movements of merchandise. A bill
of lading number on the shipment record is a means of tracking one or more transfers
and allocations back through the respective stock order and purchase order records.

BOL Message Structure
Because RMS uses a BOL message only to create a new shipment record, there is one
subscribed BOL message. The message consists of a header, a series of transfers or
allocations (called ‘Distro’ records), carton records, and item records. Thus the structure
of a BOL hierarchical message would be:
 Message header–This is data about the entire shipment including all distro records,

cartons, and items.
 Distro record–The individual transfer or allocation (generated earlier by RMS as a

stock order number).
 Carton–Carton numbers and location. Cartons are required on all BOL messages.
 Items– Details about all items in the carton.

Note: For a more detailed view of external ASN procedures
and functions, see the ASN subscription design in this guide.

Subscription Designs

178 Oracle Retail Merchandising System

When external locations (stores or warehouses) ship products, they send a BOL message
(otherwise known as an outbound ASN message) to let RMS know that they are shipping
the stock and to let the receiving locations know that the stock is on the way. The external
locations can create BOL messages for three scenarios: a transfer was requested (RMS
knows about it), an allocation was requested (RMS knows about it), and on their own
volition (externally generated - EG). A single BOL message can contain records generated
for any or all of these transactions.
The system allow multiple transfers or allocations per shipment. This mirrors what
actually happens. A stock order shipment is often a group of transfers or allocations on
one truck. These multiple transfers or allocations are grouped together using a single
BOL number (ASN number when coming from a supplier). This number will be stored
on the header record for the shipment. All shipments will be associated with an order or
a BOL number.
The BOL message is a hierarchical message that will consist of a header record, a series of
distro records (transfers or allocations in RMS) inside the header record, carton records
inside the distros and item records inside the cartons. The header record will contain
information about the shipment as a whole. The distro records will identify which
transfers or allocations are associated with the merchandise being shipped. If the
shipment is packed in cartons, carton records will identify which items are in which
cartons. The item records will contain the items on the shipments, along with the
quantity shipped.
In terms of the data flow, an external location (store or warehouse) will publish a BOL
message to the RIB. RMS will subscribe to the BOL message from the RIB, and create or
modify shipments, transfers and allocations in RMS depending on the validity of the
records enclosed within the message. Because the ownership of the goods moves to the
receiving location at the time of shipment, stock buckets are updated and financial
transaction records are written when RMS processes the BOL message.

Subscription Packages

Filename: rmssub_asnouts/b.pls
RMSSUB_ASNOUT.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure will need to initially ensure that the passed in message type is a valid
type for ASNOUT messages.
If the message type is invalid, a status of “E” should be returned to the external system
along with an appropriate error message informing the external system that the status is
invalid.
If the message type is valid, the generic RIB_OBJECT needs to be downcast to the actual
object using the Oracle’s treat function. If the downcast fails, a status of “E” is returned to
the external system along with an appropriate error message informing the external
system that the object passed in is invalid.

ASNOUT Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 179

If the downcast is successful, then consume will parse the message, verify that the
message passes all of RMS’s business validation and persist the information to the RMS
database. It does the following:
 Calls PARSE_BOL to parse the shipment level information on the message. Insert or

update shipment based on the bill of lading number (bol_nbr).
 One shipment can contain multiple distros (transfers and allocations in RMS). Within

each distro, call PARSE_DISTRO and PARSE_ITEM to parse and build a collection of
items that are transferred or allocated.

 For break-to-sell items, if the sellable item is on the message, call CHECK_ITEMS and
GET_ORDERABLE_ITEMS to convert the sellable item(s) to the corresponding
orderable item(s). The orderable items will be inserted or updated on
transfer/allocation and shipment tables.

 For catch weight items, validate and aggregate weight for the same item.
 Call PROCESS_DISTRO to perform business logic associated with shipping a transfer

or an allocation, including insert or update transfer/allocation header and detail,
insert or update SHIPSKU, move inventory to in transit buckets on ITEM_LOC_SOH,
write stock ledger.

 Bulk inserts and updates are performed to improve performance.
If an error occurs in the process, a status of “E” is returned to the external system along
with the failure message. Otherwise, a success status, “S”, is returned to the external
system indicating that the message has been successfully received and persisted to the
RMS database.
PARSE_BOL
This function parses the “RIB_ASNOutDesc_Rec” and builds an API bol_record for
processing. It also calls RMSSUB_ASNOUT.PROCESS_BOL to check the existence of
SHIPMENT based on the bol number.
PROCESS_BOL
This function calls BOL_SQL.PUT_BOL to check the existence of SHIPMENT based on
the bol number.
PARSE_DISTRO
This function parses the “RIB_ASNOutDesc_Rec” and builds an API distro_record for
processing.
PARSE_ITEM

This function builds a collection of API item_table that contains item level information
for the transfer or allocation. For a simple pack catch weight item, it also aggregates the
weight for the same item.
PROCESS_DISTRO
Depending on the distro type (transfer or allocation), this function calls
BOL_SQL.PUT_TSF, BOL_SQL.PUT_TSF_ITEM and BOL_SQL.PROCESS_TSF or
BOL_SQL.PUT_ALLOC, BOL_SQL.PUT_ALLOC_ITEM and
BOL_SQL.PROCESS_ALLOC to perform the bulk of the business logic for shipping a
transfer or an allocation.
CHECK_ITEMS

This function separates the item details on the message into two groups: one contains
sellable items and one contains non-sellable items. The sellable items will be converted
into orderable items for shipment.

Subscription Designs

180 Oracle Retail Merchandising System

GET_ORDERABLE_ITEMS
This function builds a collection of orderable items based on the sellable items.
Depending on the distro type, it calls
ITEM_XFORM_SQL.TSF_ORDERABLE_ITEM_INFO (for transfers) or
ITEM_XFORM_SQL.ALLOC_ORDERABLE_ITEM_INFO (for allocations) to distribute
the sellable quantities among the orderable items.
HANDLE_ERRORS
This function calls API_LIBRARY.HANDLE_ERRORS to perform error handling.

Filename: bolsqls/b.pls
BOL_SQL.PUT_BOL

This function checks the existence of a shipment based on the BOL number, and creates a
shipment if it does not exist.
BOL_SQL.PUT_TSF
This function checks the existence of a transfer in RMS based on the transfer number and
does the following:
 If the transfer exists, it updates the transfer to shipped status.
 For a ‘CO’ type of transfer, a customer order must be associated with it.
 If the transfer does not exist, it creates a transfer of type ‘EG’ (externally generated).

Since the sending location is already aware of the transfer, the new transfer should
not be published to the RIB again.

BOL_SQL.PUT_TSF_ITEM
This function checks the existence of an item on a transfer based on the transfer number
and the item number. It does the following:
 If the input item is a referential item, fetch and use its transactional level item.
 If the item exists on the transfer, update the quantity buckets on TSFDETAIL.
 If the item does not exist on the transfer, create TSFDETAIL. However, new items

cannot be added to a closed transfer.
 If sending a pack from a warehouse, reject the message if the sending location does

not stock packs, unless the sending location is a finisher.
 For an ‘EG’ type of transfer, physical location is on the transfer. Distribute the

transferred quantity to its virtual locations by creating an inventory flow structure
and save it on SHIPITEM_INV_FLOW.

ASNOUT Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 181

BOL_SQL.PROCESS_TSF
This function calls BOL_SQL.SEND_TSF to perform the bulk of the transfer shipment
business logic. It does the following:
 If the sending location of the transfer is a finisher, this is the second leg of a multi-

legged transfer. Call TSF_WO_COMP_SQL.WO_ITEM_COMP to perform any
necessary item transformations, including adjusting inventory and average cost of
the old and new items, and writing TRAN_DATA for the adjusted inventory.

 Update inventory (stock_on_hand and tsf_reserved_qty) for the item transferred at
the sending location.

 Update inventory (in_transit_qty and tsf_expected_qty) and average cost for the item
transferred at the receiving location.

 When the item shipped is a pack item, if the pack item is stocked as a pack at the
sending/receiving location, inventory is updated for both the pack item
(stock_on_hand, tsf_reserved_qty, in_transit_qty, tsf_expected_qty) and the pack
component items (pack_comp_soh, pack_comp_resv, pack_comp_intran,
pack_comp_exp). On the other hand, if the pack item is not stocked as a pack at the
sending/receiving location, inventory is updated for the pack component items only
(stock_on_hand, tsf_reserved_qty, in_transit_qty, tsf_expected_qty).

 When the item shipped is a simple pack catch weight item, average weight on
ITEM_LOC_SOH is updated if the pack is stocked as a pack at the sending/receiving
location.

 When the item shipped is a simple pack catch weight item and the pack component’s
standard UOM is a mass UOM (for example, OZ), component’s inventory is updated
by the actual weight shipped.

 Call STKLEDGR_SQL.WRITE_FINANCIALS to write TRAN_DATA records for the
sending and receiving locations:
 37/38 – for inter-company transfer in/out, in which case the sending and

receiving locations belong to different transfer entities. The transfer is valued at
the transfer price on TSFDETAIL. Transfer price is defined in the sending
location’s currency.

 17/18 – for inter-company markup/markdown. It records the total retail
difference between the transfer price and the sending location’s unit retail. It is
written against the sending location.

 30/32 – for intra-company transfer in/out, in which case the sending and
receiving locations belong to the same transfer entity. The transfer is valued at
the transfer cost on TSFDETAIL if defined. If not, it is valued at the sending
location’s WAC. WAC is dependent on the accounting method used, which
could be retail accounting or standard cost accounting or average cost
accounting. Both WAC and transfer cost are in the sending location’s currency.

 11/13 – for intra-company markup/markdown. It records the total retail
difference between the sending and receiving locations. It is written against
either the sending or the receiving location, depending on the settings on the
system options (tsf_md_store_to_store_snd_rcv, tsf_md_wh_to_store_snd_rcv,
tsf_md_store_to_wh_snd_rcv, tsf_md_wh_to_wh_snd_rcv).

 71/72 – for intra-company cost variance. It records the total cost variance as a
result of the difference between the sending location’s WAC and the transfer
cost. It is written against the sending location.

 65 – for transfer restocking fees if a restocking percentage is defined on the
transfer detail. It can be for an inter-company or an intra-company transfer. It is
written against the sending locations.

Subscription Designs

182 Oracle Retail Merchandising System

 28 – for up charges.
 When a deposit content item is shipped, a TRAN_DATA record is also written

for the container item for tran codes 30/32 and 37/38. The total cost should be
based on the cost of the container.

Note: When a simple pack catch weight item is shipped, the
total cost is evaluated at the weight shipped. As a result,
TRAN_DATA.total_cost reflects the weight shipped for tran
codes 37/38, 30/32, 71/72 and 65. However, all the retail
calculation is not weight-based. As a result,
TRAN_DATA.total_retail and tran codes 17/18, 11/13 do
not reflect the actual weight.

 Creates shipsku for the item. For a simple pack catch weight item, weight_expected
and weight_expected_uom are written along with the qty_expected.

 shipsku.unit_retail is the sending location’s unit retail. When a break to sell orderable
item is shipped, its unit retail is derived from its sellable items. Similarly, in a multi-
legged transfer scenario, the sending location can be a finisher. Because a finisher
does not have unit retail, the unit retail at the receiving location is used.

 For a customer order transfer that is shipped directly to the customer, call
STOCK_ORDER_RCV_SQL.TSF_LINE_ITEM to receive the shipment.

BOL_SQL.PUT_ALLOC
This function checks the existence of an allocation based on the allocation number, item
number and warehouse. If the input item is a referential item, its transactional level item
is used. Reject the message if the allocation does not exist.
BOL_SQL.PUT_ALLOC_ITEM

This function checks the existence of allocation detail based on the allocation number and
the receiving location. Because goods can only be allocated to stores, reject the message if
the receiving location is a warehouse. It does the following:
 If the store exists on allocation detail, update the quantity buckets on

ALLOC_DETAIL.
 If the store does not exist on allocation detail, create ALLOC_DETAIL.

BOL_SQL.PROCESS_ALLOC
This function calls BOL_SQL.SEND_ALLOC to perform the bulk of the allocation
shipment business logic. It does the following:
 Update inventory (stock_on_hand and tsf_reserved_qty) for the item allocated at the

sending location.
 Update inventory (in_transit_qty and tsf_expected_qty) and average cost for the item

allocated at the receiving location.
 When the item shipped is a pack item, if the pack item is stocked as a pack at the

sending/receiving location, inventory is updated for both the pack item
(stock_on_hand, tsf_reserved_qty, in_transit_qty, tsf_expected_qty) and the pack
component items (pack_comp_soh, pack_comp_resv, pack_comp_intran,
pack_comp_exp). On the other hand, if the pack item is not stocked as a pack at the
sending/receiving location, inventory is updated for the pack component items only
(stock_on_hand, tsf_reserved_qty, in_transit_qty, tsf_expected_qty).

 When the item shipped is a simple pack catch weight item, average weight on
ITEM_LOC_SOH is updated if the pack is stocked as a pack at the sending/receiving
location.

ASNOUT Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 183

 When the item shipped is a simple pack catch weight item and the pack component’s
standard UOM is a mass UOM (for example, OZ), component’s inventory is updated
by the actual weight shipped.

 Call STKLEDGR_SQL.WRITE_FINANCIALS to write TRAN_DATA records for the
sending and receiving locations:
 37/38 – for inter-company allocation in/out, in which case the sending and

receiving locations belong to different transfer entities. Allocations are valued at
the sending location’s WAC.

 30/32 – for intra-company allocation in/out, in which case the sending and
receiving locations belong to the same transfer entity. Allocations are valued at
the sending location’s WAC.

 11/13 – for intra-company markup/markdown. It records the total retail
difference between the sending and receiving locations. It is written against
either the sending or the receiving location, depending on the settings on the
system options (tsf_md_store_to_store_snd_rcv, tsf_md_wh_to_store_snd_rcv,
tsf_md_store_to_wh_snd_rcv, tsf_md_wh_to_wh_snd_rcv).

 28 – for up charges.
 When a deposit content item is shipped, a TRAN_DATA record is also written

for the container item for tran codes 30/32 and 37/38. The total cost should be
based on the cost of the container.

Note: Similar to shipping a transfer, the retail values are not
weight-based for a simple pack catch weight item.

 Creates shipsku for the item. For a simple pack catch weight item, weight_expected
and weight_expected_uom are written along with the qty_expected.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

asnoutcre ASN Outbound Create Message ASNOutDesc.xsd

Design Assumptions
 The ASNOut subscription process supports the break to sell functionality. Transfers,

allocations and shipments in RMS will only contain break to sell orderable items.
Inventory adjustment and stock ledger will be performed on the orderable only, not
the sellable.

 The ASNOut subscription process supports the catch weight functionality. It is
assumed that a break to sell sellable item cannot be a simple pack catch weight item.

 Catch weight functionality is not completely rounded out in this release. For
instance, it is not applied to the following areas:

– Any of the retail calculations (including total_retail on TRAN_DATA and
retail markup/markdown);

– The total amount on SUP_DATA;

– Open to buy buckets;

Subscription Designs

184 Oracle Retail Merchandising System

– When a catch weight component item’s standard UOM is a MASS UOM,
TRAN_DATA.units is based on V_PACKSKU_QTY.qty instead of the actual
weight.

 An externally generated transfer will contain physical locations. When system
options INTERCOMPANY_TSF_IND = ‘Y’, the stock order receiving process
currently does not support the receiving of an externally generated transfer that
involves a warehouse to warehouse transfer. This is because a physical location does
not have transfer entities.

Tables

TABLE SELECT INSERT UPDATE DELETE

TSFHEAD Yes Yes Yes No

TSFDETAIL Yes Yes Yes No

TRANSFERS_PUB_INFO No Yes No No

ALLOC_HEADER Yes Yes Yes No

ALLOC_DETAIL Yes Yes Yes No

SHIPMENT Yes Yes Yes No

SHIPSKU Yes Yes Yes No

TRAN_DATA No Yes No No

ITEM_LOC_HIST No Yes No No

ITEM_LOC_SOH Yes Yes Yes No

ITEM_LOC Yes Yes No No

ITEM_ZONE_PRICE Yes Yes No No

PRICE_HIST No Yes No No

SHIPITEM_INV_FLOW No Yes No No

STORE Yes No No No

WH Yes No No No

ITEM_MASTER Yes No No No

V_PACKSKU_QTY Yes No No No

ITEM_XFORM_HEAD Yes No No No

ITEM_XFORM_DETAIL Yes No No No

TSF_XFORM Yes No No No

TSF_XFORM_DETAIL Yes No Yes No

TSF_ITEM_COST Yes No Yes No

TSF_ITEM_WO_COST Yes No No No

WO_ACTIVITY Yes No No No

INV_ADJ_REASON Yes No No No

INV_ADJ Yes No No No

INV_STATUS_QTY Yes Yes Yes Yes

DEPS Yes No No No

ASNOUT Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 185

TABLE SELECT INSERT UPDATE DELETE

CURRENCIES Yes No No No

CURRENCY_RATES Yes No No No

PERIOD Yes No No No

SYSTEM_OPTIONS Yes No No No

WEEK_DATA Yes No No No

MONTH_DATA Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

ITEM_SUPP_COUNTRY_DIM Yes No No No

UOM_CLASS Yes No No No

Subscription Designs

186 Oracle Retail Merchandising System

Clearance Subscription API

Functional Area
Clearance

Design Overview
When RMS is not the system of record for managing clearance price changes, it can take
advantage of a clearance subscription API. The clearance subscription keeps RMS in sync
with the external system that is responsible for maintaining clearance prices. Clearance
prices are updated for item/locations that already exist in RMS. The subscription does
not create or delete item/location records in RMS tables.
Clearance price changes can be performed at the following levels of the organization
hierarchy: chain, area, region, district, and store. Clearance prices are updated for all
stores within the location group unless marked as exceptions. Because warehouses are
not part of the organization hierarchy, they are only impacted by clearance price changes
applied at the warehouse level.
The subscription does not create clearance price change events; it updates the price of an
item in real time.
The following rules are used to determine which stores are eligible for the clearance:
1. All stores in the location group based on the organization hierarchy (chain, area,

region district);
2. Of the stores within the location group, those that have the same local currency as

specified on the clearance message;
3. Of the stores with the same local currency, those in the same country as specified on

the clearance message;
4. Of the remaining stores, those not found in the exception list.
The approach taken for the clearance subscription API is similar to that of the price
change subscription API. The notable differences are as follows:
 On the ITEM_LOC table, the clear_ind field is updated to Y (Yes), which indicates the

item is currently on clearance.
 Clearances cannot be applied to pack items.

RMS exposes an API that will allow external systems to update unit price within RMS.
This RMS API subscribes to external clearance modify messages for the purpose of
integrating external clearances maintained in an external system into RMS. It updates
unit prices in RMS and writes price history.
At least one detail is required for a message to be valid.
Item, item parent, item parent/differentiator, organizational hierarchy, country, and
currency can be used to maintain clearances. If clearances are created using the
organizational hierarchy (area, region, and so on), then the country and currency filter
the list of stores the clearance will affect. Exception stores can be used to further limit
stores impacted by clearance.
If any locations (zones) do not exist on item-loc, those locations will not be processed and
not fail the message. When processing using either (or both) an item parent/organization
hierarchy, records not found will not be processed. However, if creating clearances by
transactional level item/single location, then records not found on item-loc will error out.

Clearance Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 187

Clearances can only update the single unit retail. Clearances will not update item-zone-
price records. No packs can be put on clearances.
Any time the system is discussing warehouse locations, those locations must be
stockholding warehouses (virtual warehouse in multi-channel environment, physical in
non-multi-channel environment).
This API only supports location (store) level zone pricing, that is, a zone is equivalent to a
location. In addition, this API only supports warehouse retail (RMS
system_options.sor_pricing_ind = ‘N’).

Consume Module

Filename: rmssub_xclearances/b.pls
RMSSUB_XCLEARANCE.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure needs to initially ensure that the passed in message type is a valid type
for clearance messages. There is only one valid message type for clearance messages,
xclearancemod. If the message type is invalid, a status of “E” should be returned to the
external system along with an appropriate error message informing the external system
that the status is invalid.
If the message type is valid, the generic RIB_OBJECT needs to be downcast to the actual
object using the Oracle’s treat function. If the downcast fails, a status of “E” should be
returned to the external system along with an appropriate error message informing the
external system that the object passed in is invalid.
If the downcast is successful, then consume needs to verify that the message passes all of
RMS’s business validation. It calls the
RMSSUB_XCLEARANCE_VALIDATE.CHECK_MESSAGE function to determine
whether the message is valid. If the message passed RMS business validation, then the
function will return true; otherwise, it will return false. If the message has failed RMS
business validation, a status of “E” should be returned to the external system along with
the error message returned from the CHECK_MESSAGE function.
Once the message has passed RMS business validation, it can be persisted to the RMS
database. It calls the RMSSUB_XCLEARANCE_SQL.PERSIST () function. If the database
persistence fails, the function returns false. A status of “E” should be returned to the
external system along with the error message returned from the PERSIST() function.
Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success status, “S”, should be returned to the external system
indicating that the message has been successfully received and persisted to the RMS
database.

Subscription Designs

188 Oracle Retail Merchandising System

Business Validation Module

Filename: rmssub_xclearancevals/b.pls
It should be noted that some of the business validation is referential or involves
uniqueness. This validation is handled automatically by the referential integrity
constraints and the unique indexes implemented on the database.
RMSSUB_XCLEARANCE_VALIDATE.CHECK_MESSAGE
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_clearance_rec OUT RMSSUB_XPRICECHG.PRICE_CHANGE_REC,
 I_message IN RIB_XClearanceDesc)

This function performs all business validation associated with message and builds the
clearance record for persistence.
CLEARANCE MODIFY
 Check required fields.
 Validate passed-in fields (currency, country, UOM, hierarchy level).
 Verify item is above transaction level and approved.
 If diff IDs are passed in, verify they are valid for passed in item.
 Verify item passed in is not a pack.
 Validate the UOM passed in is of the same UOM class as the standard UOM.
 Convert the new retail passed in from the UOM on the message to item’s standard

UOM.
 POPULATING RECORD

 Retrieve item’s transaction level children if the passed in item is a parent.
 Retrieve all locations based on passed in hierarchy type and value, currency and

country.
 Exclude locations passed in as exception stores.
 Build clearance records.

 Populate record with message data.

Bulk or single DML module

Filename: rmssub_xclearancesqls/b.pls
Insert, update and delete SQL statements are located in package PRICING_SQL. The
private functions call these packages.

This API calls STKLEDGR_PRICING_SQL package to write stock ledger
for clearance, which is optimized for performance.
RMSSUB_XCLEARANCE_SQL.PERSIST
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_clearance_rec OUT RMSSUB_XPRICECHG.PRICE_CHANGE_REC)

Clearance Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 189

CLEARANCE MODIFY
 Update the unit retail on the ITEM_LOC table for all item/locations if the single unit

retail is changed and the item is not a pack. No update for multi-unit retail. Set
clearance indicator to ‘Y’es.

 Insert into price history all records that have item_loc relations, including sellable
packs.

 Insert TRAN_DATA for transactional level items that have ITEM_LOC records and if
the old standard unit retail and the new standard unit retail are NOT the same. Do
not insert tran_data if item/location’s stock_on_hand+in transit quantity is 0.

 For each TRAN_DATA record inserted, a SUP_DATA record will also be inserted.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Type Message Type Description XML Schema Definition (XSD)

Xclearancemod External Clearance Modify XclearanceDesc.xsd

Design Assumptions
 Required fields are shown in the RIB documentation.
 Each clearance message should be committed separately. A few global temporary

tables are utilized in this API to help performance. Records on these global
temporary tables will be deleted on commit. This API does not delete from these
tables.

 This API only supports location (store) level zone pricing (zone ID is equivalent to a
location).

 This API only supports warehouse retail (RMS system_options.sor_pricing_ind =
‘N’). As a result, warehouse retail is held on the ITEM_LOC table in warehouse
currency.

 If more than one clearance occurs for a day on an item/location, then price history is
updated, as opposed to a new record’s being inserted for the second clearance.

 In the current implementation of this API, POS_MODS are not written for clearance.
 The approach taken for the clearance API is very similar to the price change API

approach. The notable differences are as follows:

– ITEM_ZONE_PRICE records is not updated

– Clearance indicator in ITEM_LOC is updated to ‘Y’

– Clearance cannot be applied to a pack item

– Clearance only deals with single unit retail, whereas price change can be for
single unit retail, or multi unit retail or both. That drives the "TRAN_TYPE" on
PRICE_HIST table.

– When writing a tran_data record, tran_code is always “Clearance Markdown”
for clearance, whereas it could be markdown or markup or markdown cancel for
price change.

Subscription Designs

190 Oracle Retail Merchandising System

 Triggers impacting item/location tables should be turned off unless deemed
necessary.

 This API cannot be used in when using the RPM system for price management.

Tables

TABLE SELECT INSERT UPDATE DELETE

ITEM_LOC Yes No Yes No

ITEM_LOC_SOH Yes No No No

STORE Yes No No No

WH Yes No No No

ITEM_MASTER Yes No No No

DIFF_GROUP_HEAD Yes No No No

DIFF_GROUP_DETAIL Yes No No No

CHAIN Yes No No No

AREA Yes No No No

REGION Yes No No No

DISTRICT Yes No No No

CURRENCIES Yes No No No

COUNTRY Yes No No No

PRICE_HIST No Yes No No

SUP_DATA No Yes No No

SUP Yes No No No

TRAN_DATA No Yes No No

CLASS Yes No No No

VAT_ITEM Yes No No No

PERIOD Yes No No No

SYSTEM_OPTIONS Yes No No No

API_ITEM_TEMP Yes Yes No No

API_LOC_TEMP Yes Yes No No

API_ITEM_LOC_TEMP Yes Yes No No

API_PRICE_HIST_TEMP Yes Yes No No

API_VAT_TEMP Yes Yes No No

CO Return Sale Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 191

CO Return Sale Subscription API

Functional Area
Customer Order Return Sale Subscription.

Business Overview
RMS subscribes to customer order return sale messages that originate from an integration
subsystem and are published to the RIB. Message processing records the inventory and
financial transactions associated with customer order return sales.
The customer order return sale message contains information about the following:
 Item returned
 The number of units returned
 The stockholding warehouse location to which the item was returned
 The virtual store that will be charged with the return

When the message is processed in RMS, the item inventory at the warehouse is
incremented by the number of units returned. This processing reflects the receipt of
merchandise into the warehouse when the customer returns items. The item inventory at
the virtual store is decremented by the number of units returned. This processing ensues
because subsequent steps in the return process will record a return against this virtual
store, thereby incrementing this reduced inventory.
This movement of inventory from the virtual store to the stockholding warehouse also
results in the recording of a transfer financial transaction to the stock ledger.

Package Impact

Filename: rmssub_ custretsales/b.pls
PROCEDURE CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure calls various functions within the corresponding VALIDATE and SQL
packages.
Before calling any functions, this procedure narrows I_message down to the specific
object being used, depending on the message_type. For example, a ‘Cre’ or ‘Mod’
message type usually means a ‘Desc’ object is being used. A ‘Del’ message usually means
a ‘Ref’ object is being used. Object narrowing is performed using the TREAT function. If
the narrowing fails, this function should return a error message to the RIB stating that the
object is not valid for this message family.
CONSUME first calls the family’s VALIDATE package to validate the contents of the
message. The family’s SQL package is then called to perform DML.

Subscription Designs

192 Oracle Retail Merchandising System

Business Validation Mode

Filename: rmssub_custretsalevals/b.pls
FUNCTION CHECK_MESSAGE
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_custsale_rec IN OUT RMSSUB_CUSTSALE.CUSTSALE_REC_TYPE,
 I_message IN “RIB_CustSaleDesc_REC”,
 I_message_type IN VARCHAR2)

This function first calls the CHECK_FIELDS function to make sure all required fields are
not NULL. The function then calls other functions as needed to validate all of the
information that has been passed to it from the RIB.

DML Module

Filename: rmssub_custretsalesqls/b.pls
FUNCTION PERSIST(O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message_type IN VARCHAR2,

 I_custretsale_rec IN RMSSUB_CUSTRETSALE.CUSTRETSALE_REC_TYPE)

This function performs the inventory and financial transactions associated with the
customer order return sale. The inventory is moved, using a book transfer, from the store
location to the warehouse location provided in the message. In addition, a transfer
financial transaction is written to the stock ledger.

Message XSD
Here are the filenames that correspond with each message type. Please consult Oracle
Retail Integration Bus documentation for each message type in order to get a detailed
picture of the composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

CustretsaleCre Customer Order Return Create Message CustretsaleDesc.xsd

Design Assumptions
The subscriber makes some assumptions about the publisher’s ability to maintain data
integrity. The subscriber does not check for duplicate create messages. It will not check
for missing messages, because it has no way of knowing what would be missing. It also
assumes that messages are sent in the correct sequence.

Tables

TABLE SELECT INSERT UPDATE DELETE

ITEM_MASTER YES NO NO NO

ITEM_LOC YES NO YES NO

ITEM_LOC_SOH YES NO YES NO

ITEM_LOC_HIST YES YES YES NO

STORE YES NO NO NO

V_PACKSKU_QTY YES NO NO NO

CO Sales Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 193

CO Sales Subscription API

Functional Area
Customer Order Sales Subscription.

Business Overview
RMS subscribes to customer order sale messages that originate from an integration
subsystem and are published to the RIB. Message processing records the inventory and
financial transactions associated with the customer order sales.
The customer order sale message contains information about the item sold, the number
of units sold, the stockholding warehouse location from which the item was shipped to
the customer, the virtual store which will be credited with the sale, and the date of the
sale.
When the message is processed in RMS, the item inventory at the warehouse is
decremented by the number of units sold. This processing reflects the shipment of
merchandise out of the warehouse to the customer. The item inventory at the virtual
store is incremented by the number of units sold. This processing ensues because
subsequent steps in the sale process will record a sale against this virtual store, thereby
decrementing this added inventory.
This movement of inventory from the stockholding warehouse to the virtual store also
results in the recording of a transfer financial transaction to the stock ledger.

Package Impact

Filename: rmssub_custsales/b.pls
RMSSUB_CUSTSALE.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2);

CONSUME simply calls different functions within the corresponding VALIDATE and
SQL packages.
Before calling any functions, CONSUME narrows I_message down to the specific object
being used, depending on the message_type. For example, a ‘Cre’ or ‘Mod’ message type
usually means a ‘Desc’ object is being used. A ‘Del’ message usually means a ‘Ref’ object
is being used. Object narrowing is done using the TREAT function. If the narrowing fails,
the CONSUME function should return an error message to the RIB stating that the object
is not valid for this message family.

Business Validation Module

Filename: rmssub_custsalevals/b.pls
RMSSUB_CUSTSALE_VALIDATE.CHECK_FIELDS
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message IN “RIB_CustSaleDesc_REC”,
 I_message_type IN VARCHAR2);

This function first calls the CHECK_FIELDS function to make sure all required fields are
not NULL. Then, the function will call other functions as needed to validate all of the
information that has been passed to it from the RIB.

Subscription Designs

194 Oracle Retail Merchandising System

DML Module

Filename: rmssub_custsalesqls/b.pls
MSSUB_CUSTSALE_SQL. PERSIST
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message_type IN VARCHAR2,
 I_custsale_rec IN RMSSUB_CUSTSALE.CUSTSALE_REC_TYPE);

This function will perform the inventory and financial transactions associated with the
customer order sale. The inventory is moved from the warehouse location to the store
location provided in the message. The average cost at the store is updated, and any
ongoing stock count snapshots are updated. In addition, a transfer financial transaction is
written to the stock ledger.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

custsalecre Customer Sale Create Message CustSaleDesc.xsd

Design Assumptions
The subscriber makes some assumptions with the publisher’s ability to maintain data
integrity. The subscriber will not check for duplicate create messages. It will not check for
missing messages, because it has no way of knowing what would be missing. It also
assumes that messages are sent in the correct sequence.

Tables

TABLE SELECT INSERT UPDATE DELETE

ITEM_MASTER YES NO NO NO

ITEM_LOC YES NO YES NO

ITEM_LOC_SOH YES NO YES NO

ITEM_LOC_HIST YES YES YES NO

STORE YES NO NO NO

V_PACKSKU_QTY YES NO NO NO

COGS Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 195

COGS Subscription API

Functional Area
COGS Subscription

Business Overview
The cost of goods sold (COGS) interface lets a retailer make replacements, which are
similar to exchanges. However, replacements involve a different accounting process than
exchanges. In a replacement, a retailer replaces a previously purchased item with an
equivalent unit. To make this replacement, first the retailer places the request and ships
the undesirable unit out; then the replacement unit is shipped to the retailer. In RMS, the
cost of goods sold interface allows the retailer to make this replacement despite the fact
that the exchange is not made simultaneously.
The interface writes the value of the transaction to the transaction data tables. An
external system (such as Oracle Retail Data Warehouse) can then extract that data.

COGS messages and TRAN_DATA
The subscription process for COGS adjustments involves an interface which contains the
item, location, quantity, date, order header media, order line media, and a reason code.
These records are inserted into the TRAN_DATA table to affect the stock ledger. Message
processing includes a call to STKLEDGER_SQL.TRAN_DATA_INSERT to insert the new
transaction to the TRAN_DATA table.
RMS subscribes to integration subsystem COGS messages. This process records the
inventory and financial transactions associated with a cost of goods sold message.

Package Impact

Filename: rmssub_cogsb/s.pls
PROCEDURE CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

CONSUME simply calls different functions within the corresponding VALIDATE and
SQL packages.
Before calling any functions, CONSUME narrows I_message down to the specific object
being used, depending on the message_type. For example, a ‘Cre’ or ‘Mod’ message type
usually means a ‘Desc’ object is being used. A ‘Del’ message usually means a ‘Ref’ object
is being used. Object narrowing is done using the TREAT function. If the narrowing fails,
then the CONSUME function should return an error message to the RIB stating that the
object is not valid for this message family.
CONSUME first calls the family’s VALIDATE package to validate the contents of the
message. The family’s SQL package is then called to perform DML.

Subscription Designs

196 Oracle Retail Merchandising System

Business Validation Mode

Filename: rmssub_cogsvalb/s.pls
This function first calls the CHECK_FIELDS function to make sure all required fields are
not NULL. Then, the function will call other functions as needed to validate all of the
information that has been passed to it from the RIB.

DML Module

Filename: rmssub_cogssqlb/s.pls
PERSIST
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message_type IN VARCHAR2,
 I_cogs_rec IN RMSSUB_COGS.COGS_REC_TYPE)
This function will perform the inventory and financial transactions associated with the
COGS transaction. The inventory is adjusted at the store location based on the reason
code (replacement in/out) provided in the message. In addition a net sale and permanent
markdown financial transaction is written to the stock ledger.

Message XSD
Here are the filenames that correspond with each message type. Please consult the
mapping documents for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

CogsCre COGS Create Message CogsDesc.xsd

Design Assumptions
The subscriber makes some assumptions about the publisher’s ability to maintain data
integrity. The subscriber does not check for duplicate Create messages. It will not check
for missing messages because it has no way of knowing what would be missing. It also
assumes that messages are sent in the correct sequence.

Tables

TABLE SELECT INSERT UPDATE DELETE

ITEM_LOC Yes No No No

ITEM_LOC_SOH No No Yes No

TRAN_DATA No Yes No No

Cost Change Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 197

Cost Change Subscription API

Functional Area
Cost Change

Design Overview
Cost changes can be performed at the following levels of the organization hierarchy:
chain, area, region, district, and store. Unit costs are updated for all stores within the
location group. Because warehouses are not part of the organization hierarchy, they are
only impacted by cost changes applied at the warehouse level.
The subscription does not create cost change events; it updates the cost of an item in real
time.
The cost change subscription updates unit costs for item/locations that already exist in
RMS. It does not create or delete item/locations on RMS tables.
RMS exposes an API that will allow external systems to update unit cost within RMS.
This RMS API subscribes to external cost change modify messages for the purpose of
integrating external cost changes maintained in an external system into RMS. It updates
unit costs in RMS and writes cost history.

Consume Module

Filename: rmssub_xcostchgs/b.pls
RMSSUB_XCOSTCHG.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure needs to initially ensure that the passed-in message type is a valid type
for cost change messages. There is only one valid message type for Cost change
messages, XCostchgMod. If the message type is invalid, a status of “E” should be
returned to the external system along with an appropriate error message informing the
external system that the status is invalid.
If the message type is valid, the generic RIB_OBJECT needs to be downcast to the actual
object using the Oracle’s treat function. If the downcast fails, a status of “E” should be
returned to the external system along with an appropriate error message informing the
external system that the object passed in is invalid.
If the downcast is successful, then consume needs to verify that the message passes all of
RMS’s business validation. It calls the
RMSSUB_XCOSTCHG_VALIDATE.CHECK_MESSAGE function to determine whether
the message is valid. If the message passed RMS business validation, then the function
will return true; otherwise, it will return false. If the message has failed RMS business
validation, a status of “E” should be returned to the external system along with the error
message returned from the CHECK_MESSAGE function.

Subscription Designs

198 Oracle Retail Merchandising System

Once the message has passed RMS business validation, it can be persisted to the RMS
database. It calls the RMSSUB_XCOSTCHG_SQL.PERSIST_MESSAGE() function. If the
database persistence fails, the function returns false. A status of “E” should be returned
to the external system along with the error message returned from the
PERSIST_MESSAGE() function.
Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success status, “S”, should be returned to the external system
indicating that the message has been successfully received and persisted to the RMS
database.
RMSSUB_XCOSTCHG.HANDLE_ERROR() – This is the standard error handling
function that wraps the API_LIBRARY.HANDLE_ERROR function.

Business Validation Module
It should be noted that some of the business validation is referential or involves
uniqueness. This validation is handled automatically by the referential integrity
constraints and the unique indexes implemented on the database.
Filename: rmssub_xcostchgvals/b.pls
RMSSUB_XCOSTCHG_VALIDATE.CHECK_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 O_cost_change_rec OUT COST_CHANGE_REC,
 I_message IN RIB_XCostChgDesc,
 I_message_type IN VARCHAR2)

This function performs all business validation associated with message and builds the
cost change record for persistence.
COST CHANGE MODIFY
 Check required fields.
 Verify supplier’s currency.
 Verify item status.
 If diff IDs are passed in, verify they are valid for passed in item.
 Verify item passed in is not a buyer pack.
 POPULATING RECORD

 Retrieve item’s transaction level children if the passed-in item is a parent.
 Retrieve all locations based on passed in hierarchy type and value.
 Determine if a location to be updated is the primary location; if so, retrieve the

item-supplier-country record to be updated.
 Retrieve all item/location combinations where passed-in supplier/country is the

primary supplier/country at an item location.
 Retrieve all orderable buyer packs that the passed-in item, or its children if above

transaction level.
 If the recalculate order indicator is ‘Y’, retrieve all item/locations on approved

(and worksheet) orders.
 Populate record with message data.

Cost Change Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 199

Bulk or Single DML Module

Filename: rmssub_xcchgsqls/b.pls
RMSSUB_XCOSTCHG_SQL.PERSIST
 (O_error_message IN OUT VARCHAR2,
 I_dml_rec IN COST_CHANGE_RECTYPE ,
 I_message IN RIB_XCostChgDesc)

COST CHANGE
 Update the unit cost on item supplier country location table for all item/locations.
 If one of the locations was a primary location, update the item supplier country table.

Insert into price history all records for all item/locations related to the
supplier/country as the primary supplier/country.

 If average cost method is not used (system option ECL_IND = N), update the unit
cost on item location stock on hand table for all item/locations related to the
supplier/country as the primary supplier/country (packs do not have cost
updated).

 If the recalculate order indicator is ‘Y’, update all relevant order/item/locations unit
cost.

 If pack processing is necessary, repeat above steps except updating item location
stock on hand.

Message XSD
Here are the filenames that correspond with the message type. Please consult the RIB
documentation to get a detailed picture of the composition of the message.

Message Type Message Type Description XML Schema
Definition (XSD)

Xcostchgmod External Cost Change Modify XCostChgDesc.xsd

Design Assumptions
 Required fields are shown in the RIB documentation.
 Updating the order cost does not take into account any aspects of building the order

cost (estimated landed cost, deals, bracket cost, and so on) and will not work for a
base solution.

 This API does not take into account estimated landed cost.
 This API assumes ‘A’verage cost accounting. Hence no logic exists for ‘S’tandard

(last received) cost accounting.

Subscription Designs

200 Oracle Retail Merchandising System

Tables

TABLE SELECT INSERT UPDATE DELETE

ITEM_SUPP_COUNTRY Yes No Yes No

ITEM_SUPP_COUNTRY_LOC Yes No Yes No

ITEM_LOC_SOH Yes No Yes No

STORE Yes No No No

WH Yes No No No

ITEM_MASTER Yes No No No

DIFF_GROUP_HEAD Yes No No No

DIFF_GROUP_DETAIL Yes No No No

CHAIN Yes No No No

AREA Yes No No No

REGION Yes No No No

DISTRICT Yes No No No

ITEM_LOC Yes No No No

ORDLOC Yes No Yes No

ORDHEAD Yes No No No

PRICE_HIST No Yes No No

SYSTEM_OPTIONS Yes No No No

Currency Exchange Rates Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 201

Currency Exchange Rates Subscription API

Functional Area
Currency Exchange Rates

Business Overview
Currency exchange rates constitute financial information that is published to the Oracle
Retail Integration Bus (RIB). A currency exchange rate is the price of one country's
currency expressed in another country's currency.
RMS subscribes to currency exchange rates messages that are held on the RIB. The
currency exchange rate message is a flat message that consists of a currency exchange
rate record. The record contains information about the currency exchange rate as a
whole. RMS places the information onto RMS tables depending upon the validity of the
records enclosed within the message.

Note: When the RMS and the financial system are initially
set up, identical currency information (3-letter codes,
exchange rate values) is entered into both. If a new currency
needs to be used, it must be entered into both the financial
system and RMS before a rate change is possible. No
functionality currently exists to bridge this data.

Data Flow
An external system will publish a currency exchange rate, thereby placing the currency
exchange rate information onto the RIB. RMS will subscribe to the currency exchange
rate information as published from the RIB and place the information onto RMS tables
depending upon the validity of the records enclosed within the message.

Message Structure:
The currency exchange rate message is a flat message that will consist of a currency
exchange rate record.
The record will contain information about the currency exchange rate as a whole.

Package Impact

Filename: rmssub_curratecres/b.pls
Subscribing to a currency exchange rate message entails the use of one public consume
procedure. This procedure corresponds to the type of activity that can be done to
currency exchange rate record (in this case create/update).

Public API Procedures:
RMSSUB_CURRATECRE.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN CLOB)

Subscription Designs

202 Oracle Retail Merchandising System

This procedure accepts a XML file in the form of an Oracle CLOB data type from the RIB
(I_message). This message will contain a currency exchange rate message consisting of
the aforementioned record. The procedure will then place a call to the main
RMSSUB_CUR_RATES.CONSUME function in order to validate the XML file format
and, if successful, parse the values within the file through a series of calls to RIB_XML.
The values extracted from the file will then be passed on to private internal functions,
which will validate the values and place them on the currency exchange rate table
depending upon the success of the validation.

Private Internal Functions and Procedures (rmssub_curratecre.pls)
Error Handling:
If an error occurs in this procedure, a call will be placed to HANDLE_ERRORS in order
to parse a complete error message and pass back a status to the RIB.
HANDLE_ERRORS
 (O_status IN OUT VARCHAR2,
 IO_error_message IN OUT VARCHAR2,
 I_cause IN VARCHAR2,
 I_program IN VARCHAR2))

This function is used to put error handling in one place in order to make future error
handling enhancements easier to implement. All error handling in the internal
RMSSUB_CUR_RATES package and all errors that occur during subscription in the
RMSSUB_CURRATECRE package (and whatever packages it calls) will flow through this
function.
The function consists of a call to API_LIBRARY.HANDLE_ERRORS.
API_LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the error and
potentially an unparsed error message if one has been created through a call to
SQL_LIB.CREATE_MESSAGE. The function uses these input variables to parse a
complete error message and pass back a status, depending upon the message and error
type, back up through the consume function and up to the RIB.

Private Internal Functions and Procedures (other):
All of the following functions exist within RMSSUB_CUR_RATES.
Main Consume Function:
RMSSUB_CUR_RATES.CONSUME
 (O_error_message OUT VARCHAR2,
 I_message IN CLOB)

This procedure accepts a XML file in the form of an Oracle CLOB data type from the RIB
(I_message) from the aforementioned public curratecre procedure whenever a message is
made available by the RIB. This message will consist of the aforementioned record.
The procedure will then validate the XML file format and, if successful, parse the values
within the file through a series of calls to RIB_XML. The values extracted from the file
will then be passed on to private internal functions, which will validate the values and
place them on the appropriate currency exchange rate database table depending upon
the success of the validation.
XML Parsing:
PARSE_HEADER
This function will be used to extract the currency exchange rate level information from
the currency exchange rate xml file and place that information onto an internal currency
exchange rate record.
Validation:

Currency Exchange Rates Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 203

PROCESS_HEADER
After the values are parsed for a particular currency exchange rate record,
RMSSUB_CUR_RATES.CONSUME will call this function, which will in turn call various
functions inside RMSSUB_CUR_RATES in order to validate the values and place them
on the appropriate currency exchange rate table depending upon the success of the
validation. CONVERT TYPE is called to validate the passed in currency rate if it exists in
the FIF_CURRENCY_XREF table. PROCESS_RATES is called to actually insert or update
the currency exchange rate table.
CONVERT_TYPE
This function would take in the current record’s exchange rate type and return the RMS
exchange type from the table FIF_CURRENCY_XREF. If no data was found, it should
return an error message.
PROCESS_RATES
This function would call VALIDATE_RATES to ensure that the values passed from the
message are valid. If all the values are valid, it would check if the currency code exists in
the currency exchange rate table. If the currency code does not exist yet, call the function
INTEREST RATES. If not, call UPDATE RATES.
VALIDATE_RATES
This function would pass each value from the record to the function CHECK_NULLS.
CHECK_SYSTEM is used for conversion date.
CHECK_NULLS
This function would simply check if the values passed are NULL. If the passed value is
NULL, then return an invalid parameter error message.
CHECK_SYSTEM
This function would fetch the vdate and the currency code from the period and system
options table respectively. If the vdate is greater than the conversion date, return an error
message. If the passed in currency rate is not the same as the currency rate fetched from
the system options table, return an error message.
DML Module:
INSERT_RATES
This function would insert into the currency exchange rate table after all of the
validations of the values are done.
UPDATE_RATES
This function would lock the CURRENCY_RATES table first. After that the table is
locked. It would update the record in the currency exchange rate table.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

CurrateCre Currency Rate Create Message CurrRateDesc.xsd

CurrateCre Currency Rate Modify Message CurrRateDesc.xsd

Subscription Designs

204 Oracle Retail Merchandising System

Design Assumptions
 One of the primary assumptions in the current API approach is that ease of code will

outweigh performance considerations. It is hoped that the ‘trickle’ nature of the flow
of data will decrease the need to dwell on performance issues and instead allow
developers to code in the easiest and most straight forward manner.

 The adaptor is only setup to call stored procedures, not stored functions. Any public
program then needs to be a procedure.

Tables

TABLE SELECT INSERT UPDATE DELETE

CURRENCY_RATES Yes Yes Yes No

SYSTEM_OPTIONS Yes No No No

PERIOD Yes No No No

FIF_CURRENCY_XREF Yes No No No

Diff Group Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 205

Diff Group Subscription API

Functional Area
Diff Group

Design Overview
Differentiator subscriptions come into RMS from an external system. With a
differentiator group subscription, you create the differentiator group in the external
system, and then send that information to RMS. Once the subscription has been received,
RMS users can now use the differentiator group that comes from the external system. The
group is always sent first; its IDs are sent second.

System of Record
The sor_item_ind system option indicates whether RMS is the system of record for
differentiator (diff) groups. If RMS is the system of record, then RMS databases hold that
information. If RMS is not the system of record, then that information is imported into
RMS from outside systems. By setting the value of sor_item_ind to N (No), retailers no
longer have the ability to create or edit diff groups online in RMS. Retailers can, however,
continue to view diff groups.
When RMS is not the system of record for diff groups, the new diff group subscription
API provides the data necessary to keep RMS in sync with an external system.

Differentiators
Differentiators augment RMS’ item level structure by allowing you to define more
discrete characteristics of an item. You attach differentiators to items to distinguish one
item from another. Differentiators (diffs) give you the means to further track
merchandise sales transactions. Common types of diffs are size, color, flavor, scent, or
pattern.
Diffs consist of:
 Diff types – Generic categories of diff IDs such as Size, Color, or Flavor.
 Diff IDs – Specific attributes such as black, white, red; small, medium; strawberry,

blueberry.
 Diff groups – Logical groupings of related diff IDs such as: Women’s Pant Sizes, Shirt

Colors, or Yogurt Flavors.
This API allows external systems to create, edit, and delete diff groups within RMS. The
transaction will be performed immediately upon message receipt so success or failure
can be communicated to the calling application.
Diff ID details can be created, edited, or deleted within the diff group message. Diff ID
details must be created within a diff group on a diff group create message, they can also
be passed in with their own specific message type. Diff ID detail create and modify
messages will send a snapshot of the diff group record. Diff ID detail delete messages
will be processed separately from the diff group delete because they have their own
message types.

Subscription Designs

206 Oracle Retail Merchandising System

Consume Module

Filename: rmssub_xdiffgrps/b.pls
RMSSUB_XDIFFGRP.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure will need to initially ensure that the passed in message type is a valid
type for diff IDs messages. If the message type is invalid, a status of “E” should be
returned to the external system along with an appropriate error message informing the
external system that the status is invalid.
If the message type is valid, the generic RIB_OBJECT need to be downcast to the actual
object using the Oracle’s treat function. If the downcast fails, a status of “E” should be
returned to the external system along with an appropriate error message informing the
external system that the object passed in is invalid.
If the downcast is successful, then consume needs to verify that the message passes all of
RMS’s business validation. It calls the
RMSSUB_XDIFFGRP_VALIDATE.CHECK_MESSAGE function to determine whether
the message is valid. If the message passed RMS business validation, then the function
will return true; otherwise, it will return false. If the message has failed RMS business
validation, a status of “E” should be returned to the external system along with the error
message returned from the CHECK_MESSAGE function.
Once the message has passed RMS business validation, it can be persisted to the RMS
database. It calls the RMSSUB_XDIFFGRP_SQL.PERSIST_MESSAGE() function. If the
database persistence fails, the function will return false. A status of “E” should be
returned to the external system along with the error message returned from the
PERSIST_MESSAGE() function.
Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success, “S”, status should be returned to the external system
indicating that the message has been successfully received and persisted to the RMS
database.
RMSSUB_XDIFFGRP.HANDLE_ERROR() – This is the standard error handling function
that wraps the API_LIBRARY.HANDLE_ERROR function.

Diff Group Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 207

Business Validation Module
It should be noted that some of the business validation is referential or involves
uniqueness. This validation is handled automatically by the referential integrity
constraints and the unique indexes implemented on the database.

Filename: rmssub_xdiffgrpvals/b.pls
RMSSUB_XDIFFGRP_VALIDATE.CHECK_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 O_diffgroup_rec OUT DIFF_GROUP_REC,
 I_message IN RIB_XdiffgrpDesc,
 I_message_type IN VARCHAR2)

This function performs all business validation associated with the messages and builds
the diff group record for persistence.
DIFF GROUP CREATE
 Check required fields.
 Verify diff group ID not used in diff ID table.
 Verify diff ID detail node is populated.
 Verify diff ID details are on diff ID table (not diff group table).
 Populate record with message data.

DIFF GROUP MODIFY
 Check required fields.
 Verify the diff group exists.
 Populate record with message data.

DIFF GROUP DELETE
 Check required fields.
 Verify the Diff group exists.
 Verify diff group is not attached to any items or pack templates.
 Populate record with message data.

DIFF ID CREATE
 Check required fields.
 Verify diff ID detail node is populated.
 Verify diff ID details are on diff ID table (not diff group table).
 Populate record with message data.

DIFF ID MODIFY
 Check required fields.
 Verify diff group exists.
 Verify diff ID detail node is populated.
 Verify diff ID details are on diff ID table (not diff group table).
 Verify diff ID details on diff group detail table.
 Populate record with message data.

Subscription Designs

208 Oracle Retail Merchandising System

DIFF ID DELETE
 Check required fields.
 Verify diff group exists.
 Verify the diff ID exists on diff group table.
 Verify no items or pack templates are using that diff group detail diff ID.
 Populate record with message data.

Bulk or Single DML Module
All insert, update and delete SQL statements are located in the family package. This
package is DIFF_GROUP_SQL. The private functions will call this package.

Filename: rmssub_xdiffgrpsqls/b.pls
RMSSUB_XDIFFGRP_SQL.PERSIST_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 I_diff_group_rec IN DIFF_GROUP_REC,
 I_message_type IN VARCHAR2,)

This function determines what type of database transaction it will call based on the
message type.
DIFF GROUP CREATE
 Create messages get added to the Diff group head table.
 Diff group details get added to the diff group detail table.

DIFF GROUP MODIFY
 Modify messages directly update the Diff group head table with changes.

DIFF GROUP DELETE
 - Delete messages directly remove Diff group head records.

DIFF GROUP DETAIL CREATE
 Create messages get added to the Diff group detail table.

DIFF GROUP DETAIL MODIFY
 Modify messages directly update the Diff group detail table with changes.

DIFF GROUP DETAIL DELETE
 - Delete messages directly remove Diff group detail records.

Diff Group Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 209

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Type Message Type Description XML Schema Definition (XSD)

Xdiffgrpdtlcre Create a diff group detail XDiffGrpDesc.xsd

Xdiffgrpdtldel Delete a diff group detail XDiffGrpRef.xsd

xdiffgrpdtlmod Modify a diff group detail XDiffGrpDesc.xsd

xdiffgrpcre Create a diff group header XDiffGrpDesc.xsd

xdiffgrpdel Delete an entire diff group XDiffGrpRef.xsd

xdiffgrpmod Modify a diff group header XDiffGrpDesc.xsd

Design Assumptions
Required fields are shown in the RIB documentation.
Diff IDs and Diff groups must be validated for uniqueness, as they cannot overlap.

Tables

TABLE SELECT INSERT UPDATE DELETE

DIFF_IDS Yes No No No

DIFF_GROUP_HEAD Yes Yes Yes Yes

DIFF_GROUP_DETAIL Yes Yes Yes Yes

ITEM_MASTER Yes No No No

PACK_TMPL_HEAD Yes No No No

DIFF_RANGE_HEAD Yes No No No

Subscription Designs

210 Oracle Retail Merchandising System

Diff ID Subscription API

Functional Area
Diff ID

Design Overview
When RMS is not the system of record for diff IDs, the diff ID subscription API provides
the data necessary to keep RMS in sync with an external system.
The sor_item_ind system option indicates whether RMS is the system of record for
differentiators (diffs). If RMS is the system of record, then RMS databases hold that
information. If RMS is not the system of record, then that information is imported into
RMS from outside systems. By setting the value of sor_item_ind to N (No), retailers no
longer have the ability to create or edit diff IDs online in RMS. Retailers can, however,
continue to view diff IDs.
This API allows external systems to create, edit, and delete Diff Ids within RMS. These
transactions are performed immediately upon message receipt so success or failure can
be communicated to the calling application.
For a general discussion of differentiators, see the section ‘Diff Group’ in the chapter
“Subscription Design” in this volume of the RMS Operations Guide.

Consume Module

Filename: rmssub_xdiffids/b.pls
RMSSUB_XDIFFID.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure will need to initially ensure that the passed in message type is a valid
type for diff IDs messages. If the message type is invalid, a status of “E” should be
returned to the external system along with an appropriate error message informing the
external system that the status is invalid.
If the message type is valid, the generic RIB_OBJECT need to be downcast to the actual
object using the Oracle’s treat function. If the downcast fails, a status of “E” should be
returned to the external system along with an appropriate error message informing the
external system that the object passed in is invalid.
If the downcast is successful, then consume needs to verify that the message passes all of
RMS’s business validation. It calls the
RMSSUB_XDIFFID_VALIDATE.CHECK_MESSAGE function to determine whether the
message is valid. If the message passed RMS business validation, then the function will
return true; otherwise it will return false. If the message has failed RMS business
validation, a status of “E” should be returned to the external system along with the error
message returned from the CHECK_MESSAGE function.
Once the message has passed RMS business validation, it can be persisted to the RMS
database. It calls the RMSSUB_XDIFFID_SQL.PERSIST_MESSAGE() function. If the
database persistence fails, the function will return false. A status of “E” should be
returned to the external system along with the error message returned from the
PERSIST_MESSAGE() function.

Diff ID Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 211

Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success, “S”, status should be returned to the external system
indicating that the message has been successfully received and persisted to the RMS
database.
RMSSUB_XDIFFID.HANDLE_ERROR() – This is the standard error handling function
that wraps the API_LIBRARY.HANDLE_ERROR function.

Business Validation Module
It should be noted that some of the business validation is referential or involves
uniqueness. This validation is handled automatically by the referential integrity
constraints and the unique indexes implemented on the database.

Filename: rmssub_xdiffidvals/b.pls
RMSSUB_XDIFFID_VALIDATE.CHECK_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 O_diffid_rec OUT DIFF_ID_REC,
 I_message IN RIB_XDiffIDDesc,
 I_message_type IN VARCHAR2)

This function performs all business validation associated with messages and builds the
diff ID record for persistence.
DIFF ID CREATE
 Check required fields.
 Verify diff id not used in diff group head table.
 Populate record with message data.

DIFF ID MODIFY
 Check required fields.
 Verify the Diff Id exists.
 Populate record with message data.

DIFF ID DELETE
 Check required fields.
 Verify the Diff Id exists.
 Populate record with message data.

Subscription Designs

212 Oracle Retail Merchandising System

Bulk or single DML module
All insert, update and delete SQL statements are located in the family package. This
package is DIFF_ID_SQL. The private functions will call this package.

Filename: rmssub_xdiffidsqls/b.pls
RMSSUB_XDIFFID_SQL.PERSIST_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 I_diffid_rec IN DIFF_ID_REC,
 I_message_type IN VARCHAR2,)

This function determines what type of database transaction it will call based on the
message type.
DIFF ID CREATE
 Create messages get added to the Diff ID table.

DIFF ID MODIFY
 Modify messages directly update the Diff ID table with changes.

DIFF ID DELETE
 Delete messages directly remove Diff ID records.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message
Type

Message Type Description XML Schema Definition (XSD)

xdiffidcre External Differentiator Create XDiffIDDesc.xsd

xdiffiddel External Differentiator Delete XDiffIDRef.xsd

xdiffidmod External Differentiator Modify XDiffIDDesc.xsd

Design Assumptions
Required fields are shown in mapping document.

Tables

TABLE SELECT INSERT UPDATE DELETE

DIFF_IDS Yes Yes Yes Yes

DIFF_GROUP_HEAD Yes No No No

Direct Ship Receipt Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 213

Direct Ship Receipt Subscription API

Functional Area
Direct Ship Receipt Subscription

Business Overview
In the direct ship receipt process, a retailer does not own inventory, but still records a
sale on their books.
An external integration subsystem takes the order and sends it to a supplier.
When an integration subsystem is notified that a direct ship order is sent from the
supplier, it publishes a new direct ship (DS) receipt message to the RIB for RMS’
subscription purposes. RMS can then account for the data in the stock ledger.
Processing in conjunction with the subscription ensures that the weighted average cost
for the item is recalculated.
RMS subscribes to integration subsystem direct ship receipt (DSR) messages. This
records the inventory and financial transactions associated with the direct shipment of
merchandise.

Package Impact

Filename: rmssub_dsrcpts/b.pls
RMSSUB_DSRCPT.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

CONSUME simply calls different functions within the corresponding VALIDATE and
SQL packages.
Before calling any functions, CONSUME narrows I_message down to the specific object
being used, depending on the message_type. For example, a ‘Cre’ or ‘Mod’ message type
usually means a ‘Desc’ object is being used. A ‘Del’ message usually means a ‘Ref’ object
is being used. Object narrowing is done using the TREAT function. If the narrowing fails,
then the CONSUME function should return an error message to the RIB stating that the
object is not valid for this message family.
CONSUME first calls the family’s VALIDATE package to validate the contents of the
message. The family’s SQL package is then called to perform DML.

Business Validation Module

Filename: rmssub_dsrcpt_vals/b.pls
CHECK_MESSAGE
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_dsrcpt_rec OUT NOCOPY RMSSUB_DSRCPT.DSRCPT_REC_TYPE,
 I_message IN “RIB_XOrderDesc_REC”,
 I_message_type IN VARCHAR2)

This function first calls the CHECK_FIELDS function to make sure all required fields are
not NULL. Then, the function will call other functions as needed to validate all of the
information that has been passed to it from the RIB.

Subscription Designs

214 Oracle Retail Merchandising System

DML Module

Filename: rmssub_dsrcpt_sqls/b.pls
RMSSUB_DSRCPT_SQL.PERSIST
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_dsrcpt_rec IN RMSSUB_DSRCPT.DSRCPT_REC_TYPE,
 I_message_type IN VARCHAR2)

This function will perform the inventory and financial transactions associated with the
direct ship receipt. This includes updating the stock on hand and average cost for the
item at the virtual store against which the direct shipment is being received, and, booking
the associated purchase to the stock ledger for the item / virtual store.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

Dsrcptcre Dsrcpt Create Message DsrcptDesc.xsd

Design Assumptions
The subscriber makes some assumptions with the publisher’s ability to maintain data
integrity. The subscriber will not check for duplicate create messages. It will not check for
missing messages because it has no way of knowing what would be missing. It also
assumes that messages are sent in the correct sequence.

Tables

TABLE SELECT INSERT UPDATE DELETE

ITEM_MASTER Yes No No No

PACKITEM Yes No No No

ITEM_LOC_SOH Yes No Yes No

TRAN_DATA No Yes No No

DSD Deals Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 215

DSD Deals Subscription API

Functional Area
DSD deals subscription

Business Overview
Direct store delivery (DSD) is the delivery of merchandise and/or services to a store
without the benefit of a pre-approved purchase order. DSD occurs when the supplier
drops off merchandise directly in the retailer's store.This process is common in
convenience and grocery stores, where suppliers routinely come to restock merchandise.
In these cases, the invoice may or may not be given to the store (as opposed to sent to
corporate), and the invoice may or may not be paid for out of the register.
RMS subscribes to DSD messages from the RIB. These messages notify RMS of a direct
store delivery transaction at a location so that it may record the purchase order and
account for it in the store’s inventory.
The receipt message that enters RMS includes information such as unit quantity, location,
and so on. Based on the data, RMS performs the following functionality, as necessary.
 Creates a purchase order.
 Applies any deals
 Creates a shipment
 Receives a shipment.
 Creates an invoice

Note: If ReIM is not running, invoices are not created.

The DSD consume package publishes a DSDDeals message much like receiving publishes
an OTB message. This message is placed on a queue and is also processed by the
DSDDeals consume package. The RIB has the capacity to process both the publishing
result of the code in this package and the subscription to what the API publishes.

Subscription Designs

216 Oracle Retail Merchandising System

Package Impact

Filename: rmssub_dsddealss/b.pls
RMSSUB_DSDDEALS.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_rib_dsddealsdesc_rec IN “RIB_DSDDealsDesc_REC”,
 I_message_type IN VARCHAR2)

This procedure will need to initially ensure that the passed in message type is a valid
type for DSD deals. The valid message type for DSD deals messages are listed in a section
below.
If the message type is invalid, a status of “E” should be returned to the external system
along with an appropriate error message informing the external system that the status is
invalid.
Consume must call SYSTEM_OPTIONS_SQL.GET_SYSTEM_OPTIONS to get the
required values for further processing.
For each header level data in the DSD deals table, call the function
COMPLETE_TRANSACTION to persist data to the RMS database.
Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success status, “S”, is returned to the external system indicating that
the message has been successfully received and persisted to the RMS database.
If an error occurs in this procedure, a call will be placed to HANDLE_ERRORS in order
to parse a complete error message and pass back a status to the RIB.

RMSSUB_DSDDEALS.COMPLETE_TRANSACTION
This function checks for a shipment record on the shipment table for the DSD being
processed. If no shipment record exists, it applies any applicable deals to the DSD order
being processed and inserts shipment records into the shipment and shipsku tables for
the newly created purchase order. After creating the new shipment, it receives the
shipment and approves the order. If the DSD message contains invoice information, it
creates the invoice.
RMSSUB_DSDDEALS.HANDLE_ERRORS
 (O_status IN OUT VARCHAR2,
 IO_error_message IN OUT VARCHAR2,
 I_cause IN VARCHAR2,
 I_program IN VARCHAR2)

This function is used to put error handling in one place in order to make future error
handling enhancements easier to implement. All error handling in the internal RMSSUB_
DSDDEALS package during subscription will flow through this function.
The function consists of a call to API_LIBRARY.HANDLE_ERRORS.
API_LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the error and
potentially an unparsed error message if one has been created through a call to
SQL_LIB.CREATE_MESSAGE. The function uses these input variables to parse a
complete error message and pass back a status, depending upon the message and error
type, back up through the consume function and up to the RIB.

DSD Deals Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 217

Message XSD
Here are the filenames that correspond with each message type. Please see RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

dsddealscre DSD Deals Create Message DSDDealsDesc.xsd

Design Assumptions
None

Tables

TABLE SELECT INSERT UPDATE DELETE

SHIPMENT Yes Yes No No

SHIPSKU No Yes No No

ORDAUTO_TEMP Yes No No Yes

ORDSKU Yes No No No

ORDLOC Yes No No No

Subscription Designs

218 Oracle Retail Merchandising System

DSD Receipt Subscription API

Functional Area
DSD Receipt subscription

Business Overview
Direct store delivery (DSD) is the delivery of merchandise and/or services to a store
without the benefit of a pre-approved purchase order. When the delivery occurs, the
integration subsystem informs RMS of the receipt so a purchase order is created and it is
counted in the store’s inventory.

Package Impact

Filename: rmssub_dsds/b.pls
RMSSUB_DSD.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_rib_dsddesc_rec IN “RIB_DSDReceiptDesc_REC”,
 I_message_type IN VARCHAR2,
 O_rib_dsddeals_rec OUT “RIB_DSDDealsDesc_REC”)

The passed in message type should be a valid type for DSD receipts. The valid message
type for DSD Receipts messages are listed in a section below.
If the message type is invalid, a status of “E” should be returned to the external system
along with an appropriate error message informing the external system that the status is
invalid.
If the message type is DSD_CRE, it performs validation on the values in the message. If
the data is valid, it processes the “non-merch” data and detail level data before persisting
the data to RMS databases.
If the message type is DSD_MOD, call the GET_ORDER_NO function to find the order
number for the DSD.
If the message type is a create message, the O_rib_dsddeals_rec record is populated and
passed back to the RIB so that it may be sent to the RMSSUB_DSDDEALS consume
function. If the message type is not a create, then the O_rib_dsddeals_rec should be set to
null.
Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success status, “S”, is returned to the external system indicating that
the message has been successfully received and persisted to the RMS database.
If an error occurs in this procedure, a call will be placed to HANDLE_ERRORS in order
to parse a complete error message and pass back a status to the RIB.

DSD Receipt Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 219

RMSSUB_DSD.GET_ORDER_NO
This function is called whenever the message type is DSD_MOD. This function retrieves
the current order number by searching the shipment tables using the external receipt
number, store number and supplier.
RMSSUB_DSD.HANDLE_ERRORS
 (O_status IN OUT VARCHAR2,
 IO_error_message IN OUT VARCHAR2,
 I_cause IN VARCHAR2,
 I_program IN VARCHAR2)

This function is used to put error handling in one place in order to make future error
handling enhancements easier to implement. All error handling in the internal RMSSUB_
DSD package during subscription will flow through this function.
The function consists of a call to API_LIBRARY.HANDLE_ERRORS.
API_LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the error and
potentially an unparsed error message if one has been created through a call to
SQL_LIB.CREATE_MESSAGE. The function uses these input variables to parse a
complete error message and pass back a status, depending upon the message and error
type, back up through the consume function and up to the RIB.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

dsdreceiptcre DSD Receipt Create Message DSDReceiptDesc.xsd

dsdreceiptmod DSD Receipt Modify Message DSDReceiptDesc.xsd

Design Assumptions
None

Tables

TABLE SELECT INSERT UPDATE DELETE

SHIPMENT Yes No No No

ORDHEAD Yes No No No

Subscription Designs

220 Oracle Retail Merchandising System

Freight Terms Subscription API

Functional Area
Freight Terms

Business Overview
Freight terms are financial arrangement information that is published to the Oracle Retail
Integration Bus (RIB) from a financial system. Freight terms are the terms for shipping
(for example, the freight terms could be a certain percentage of the total cost; a flat fee per
order, etc.). RMS subscribes to freight terms messages held on the RIB. After confirming
the validity of the records enclosed within the message, the RMS database is updated
with the information.
Required fields in the message include a unique freight terms ID and a description.

Message Structure
The freight term message is a flat message that will consist of a freight term record.

Package Impact

Filename: rmssub_frttermcres/b.pls
 rmssub_fterms/b.pls
Subscribing to a freight term message entails the use of one public consume procedure.
This procedure corresponds to the type of activity that can be done to a freight term
record (in this case create/update).

Public API Procedures
RMSSUB_FRTTERMCRE.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN CLOB);

This procedure accepts a XML file in the form of an Oracle CLOB data type from the RIB
(I_message). This message will contain a freight term message consisting of the
aforementioned record. The procedure will then place a call to the main
RMSSUB_FTERM.CONSUME function in order to validate the XML file format and, if
successful, parse the values within the file through a series of calls to RIB_XML. The
values extracted from the file will then be passed on to private internal functions, which
will validate the values and place them on the freight term table depending upon the
success of the validation.

Freight Terms Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 221

Private Internal Functions and Procedures (rmssub_frttermcre.pls):

Error Handling
If an error occurs in this procedure, a call will be placed to HANDLE_ERRORS in order
to parse a complete error message and pass back a status to the RIB.
HANDLE_ERRORS
 (O_status IN OUT VARCHAR2,
 IO_error_message IN OUT VARCHAR2,
 I_cause IN VARCHAR2,
 I_program IN VARCHAR2);

This function is used to put error handling in one place in order to make future error
handling enhancements easier to implement. All error handling in the internal
RMSSUB_FTERM package and all errors that occur during subscription in the
RMSSUB_FRTTERMCRE package (and whatever packages it calls) will flow through this
function.
The function consists of a call to API_LIBRARY.HANDLE_ERRORS.
API_LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the error and
potentially an unparsed error message if one has been created through a call to
SQL_LIB.CREATE_MESSAGE. The function uses these input variables to parse a
complete error message and pass back a status, depending upon the message and error
type, back up through the consume function and up to the RIB.

Private Internal Functions and Procedures (rmssub_fterm.pls):
All of the following functions exist within RMSSUB_FTERM.

Main Consume Function
RMSSUB_FTERM.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message_clob IN CLOB)

This procedure accepts a XML file in the form of an Oracle CLOB data type from the RIB
(I_message) from the aforementioned public rmssub_frttermcre procedure whenever a
message is made available by the RIB. This message will consist of the aforementioned
record.
The procedure will then validate the XML file format and, if successful, parse the values
within the file through a series of calls to RIB_XML. The values extracted from the file
will then be passed on to private internal functions, which will validate the values and
place them on the appropriate freight term database table depending upon the success of
the validation.

XML Parsing

PARSE_FTERM
This function will used to extract the freight term level information from the Freight
Term XML file and place that information onto an internal freight term record.

Subscription Designs

222 Oracle Retail Merchandising System

Validation

PROCESS_FTERM
After the values are parsed for a particular freight term record,
RMSSUB_FTERM.CONSUME will call this function, which will in turn call various
functions inside RMSSUB_FTERM in order to validate the values and place them on the
appropriate FREIGHT_TERMS table depending upon the success of the validation.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

FrtTermCre Freight Term Create Message FrtTermDesc.xsd

Design Assumptions
 One of the primary assumptions in the current API approach is that ease of code will

outweigh performance considerations. It is hoped that the ‘trickle’ nature of the flow
of data will decrease the need to dwell on performance issues and instead allow
developers to code in the easiest and most straight forward manner.

 The adaptor is only setup to call stored procedures, not stored functions. Any public
program then needs to be a procedure.

Tables

TABLE SELECT INSERT UPDATE DELETE

FREIGHT_TERMS Yes Yes Yes No

GL Chart of Accounts Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 223

GL Chart of Accounts Subscription API

Multiple Sets of Books
RIB supports the multiple sets of books functionality. Customers may need multiple sets
of books because they use multiple currencies, or because a company contains separate
legal entities. See the Stock Ledger Batch chapter of the RMS Operations Guide volume 1
for additional information on multiple sets of books.

Functional Area
GL Chart of Accounts.

Business Overview
Before RMS can publish stock ledger data to an external financial application, it must
receive that application’s general ledger chart of accounts (GLCOA) structure. RMS
accomplishes this through a subscription process.
A chart of account is essentially the financial application’s debit and credit account
segments (for example, company, cost center, account, and so on) that apply to the RMS
product hierarchy. In some financial applications, this is known as code combination IDs
(CCID). Upon receipt of GLCOA message data, RMS populates the data to the
FIF_GL_ACCT table. The GL cross reference form is then used to associate the
appropriate department, class, subclass, and location financial data to a chart that allows
the population of that data to the GL_FIF_CROSS_REF table.

System Option for Financial Application
RMS’ SYSTEM_OPTIONS table holds the column FINANCIAL_AP, where the interface
financial application is indicated. Settings in this column are either ‘O’ or null. ‘O’
indicates Oracle E-Business Suite. A null indicates that no financial application is
interfaced with RMS.

Data Flow
An external system publishes GL Chart of Accounts, thereby placing the GL chart of
accounts information onto the RIB (Oracle Retail Information Bus). RMS subscribes to the
GL chart of accounts information as published from the RIB and places the information
onto RMS tables depending upon the validity of the records enclosed within the
message.

Message Structure
The GL chart of accounts message is a flat message that will consist of a GL chart of
accounts record.
The record contains information about the GL chart of accounts as a whole.

Package Impact
Subscribing to a GL chart of accounts message entails the use of one public consume
procedure. This procedure corresponds to the type of activity that can be done to
currency exchange rate record (in this case create/update).

Subscription Designs

224 Oracle Retail Merchandising System

Public API Procedures:

Filename: rmssub_glcoacreb.pls
RMSSUB_ GLCOACRE.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN CLOB)

This procedure accepts a XML file in the form of an Oracle CLOB data type from the RIB
(I_message). This message will contain a GL chart of accounts message consisting of the
aforementioned record. The procedure will then place a call to the main
RMSSUB_GLCACCT.CONSUME function in order to validate the XML file format and,
if successful, parse the values within the file through a series of calls to RIB_XML. The
values extracted from the file will then be passed on to private internal functions, which
will validate the values and place them on the GL chart of accounts table depending
upon the success of the validation.

Private Internal Functions and Procedures (rmssub_glcoacreb.pls):

Error Handling:
If an error occurs in this procedure, a call will be placed to HANDLE_ERRORS in order
to parse a complete error message and pass back a status to the RIB.
HANDLE_ERRORS
 (O_status IN OUT VARCHAR2,
 IO_error_message IN OUT VARCHAR2,
 I_cause IN VARCHAR2,
 I_program IN VARCHAR2)

This function is used to put error handling in one place in order to make future error
handling enhancements easier to implement. All error handling in the internal
RMSSUB_GLCACCT package and all errors that occur during subscription in the
RMSSUB_GLCOACRE package (and whatever packages it calls) will flow through this
function.
The function consists of a call to API_LIBRARY.HANDLE_ERRORS.
API_LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the error and
potentially an unparsed error message if one has been created through a call to
SQL_LIB.CREATE_MESSAGE. The function uses these input variables to parse a
complete error message and pass back a status, depending upon the message and error
type, back up through the consume function and up to the RIB.

Private Internal Functions and Procedures (other):

Filename: rmssub_glcacctb.pls

Main Consume Function:
RMSSUB_GLCACCT.CONSUME
 (O_ERROR_MESSAGE OUT VARCHAR2,
 I_MESSAGE IN CLOB)

This procedure accepts a XML file in the form of an Oracle CLOB data type from the RIB
(I_message) from the public rmssub_glcoacre.consume procedure whenever a message is
made available by the RIB. This message will consist of the aforementioned record.

GL Chart of Accounts Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 225

The procedure will then validate the XML file format and, if successful, parse the values
within the file through a series of calls to RIB_XML. The values extracted from the file
will then be passed on to private internal functions, which will validate the values and
place them on the appropriate GL chart of accounts database table depending upon the
success of the validation.

XML Parsing:
PARSE_HEADER
 (O_ERROR_MESSAGE OUT VARCHAR2,
 O_GLACCT_RECORD OUT GLACCT_RECTYPE,
 I_GLACCT_ROOT IN OUT xmldom.DOMElement)

This function extracts the GL chart of accounts level information from the GL Chart of
Accounts XML file and place that information onto an internal GL Chart of Accounts
record.
Record is based upon the record type glacct_rectype.

Validation:
PROCESS_HEADER
After the values are parsed for a particular GL chart of accounts record,
RMSSUB_GLCACCT.CONSUME will call this function, which will in turn call various
functions inside RMSSUB_GLCACCT in order to validate the values and place them on
the appropriate GL chart of accounts table depending upon the success of the validation.
PROCESS_GLACCT is called to actually insert or update the GL chart of accounts table.
PROCESS_GLACCT
Function PROCESS_GLACCT will take the input GL record and place the information
into a local GL record which will be used in the package to manipulate the data. It will
then call a series of support functions to perform all business logic on the record.
INSERT_GLACCT
Function INSERT_GLACCT will insert any valid account on the GL table. It is called
from PROCESS_GLACCT.
UPDATE_GLACCT
Function UPDATE_GLACCT will insert any valid account on the GL table. It is called
from PROCESS_GLACCT.
VALIDATE_GLACCT
Function VALIDATE_GLACCT is a wrapper function which is used to call
CHECK_NULLS, CHECK_ATTRS for any GL record input into the package.
CHECK_NULLS
Function CHECK_NULLS will check an input value if it is null. If so, an error message
will be created based on the passed in record type.
CHECK_ATTRS
Function CHK_ATTRS that is called within the validation function of this package to
ensure that RMS will not accept incomplete data from a financial interface when sent via
the RIB. This function will check to ensure that each description that is input also has an
attribute that it describes.

Subscription Designs

226 Oracle Retail Merchandising System

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

Glcoacre Glco Create Message GLCOADesc.xsd

Design Assumptions
Required fields are shown in the RIB documentation.
Many ordering functionalities that are available on-line are not supported via this API.
Triggers related to these functionalities should be turned off.

Tables

TABLE SELECT INSERT UPDATE DELETE

FIF_GL_ACCT Yes Yes Yes No

Inventory Adjustment Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 227

Inventory Adjustment Subscription API

Functional Area
Inventory Adjustment

Business Overview
RMS receives requests for inventory adjustments from an integration subsystem through
the inventory adjustment subscription. The requests contain information about the item,
the physical warehouse, the quantity, the specific disposition change, and the reason for
the adjustment. RMS uses data in these requests to:

• Adjust overall quantities of stock on hand for an item at a location

• Adjust the availability of item-location quantities. Currently RMS interprets all
stock dispositions contained in a message as available or unavailable.

After initial processing from the integration subsystem RMS performs the following
tasks:

• Validates the item-location combinations and adjustment reasons

• Updates stock on hand data for the item at the location

• Inserts stock adjustment transaction codes on the RMS stock ledger

• Adjusts quantities by inventory status for item/location combination

• Create an audit trail for the inventory adjustment by item, location, inventory
status and reason

Inventory Quantity and Status Evaluation
RMS evaluates inventory adjustments to decide if overall item-location quantities have
changed, or if the statuses of quantities have changed.
The FROM_DISPOSITION and TO_DISPOSITION tags in the message are evaluated to
determine if there is a change in overall quantities of an item at a location. For the given
item and quantity reported in the message, if either tag contains a null value, RMS
evaluates that fact as a change in overall quantity in inventory.
In addition, if the message shows a change to the status of existing inventory, RMS
evaluates this to determine if that change makes a quantity of an item unavailable.

Stock Adjustment Transaction Codes
Whenever the status or quantity of stock changes, RMS writes transaction codes to adjust
inventory values in the stock ledger. The two types of inventory adjustment transaction
codes are:

• Adjustments to total stock on hand, where positive and negative adjustments are
made to total stock on hand. In this case, a ‘Stock Adjustment’ transaction
(TRAN_CODE = ‘22’) is inserted on the Stock Ledger (TRAN_DATA table) for
both retail and cost methods of accounting

• Adjustments to unavailable (non-sellable) inventory. In this case, an
‘Unavailable Inventory Transfer’ transaction (TRAN_CODE = ‘25’) is inserted on
the Stock Ledger (TRAN_DATA table).

Subscription Designs

228 Oracle Retail Merchandising System

Subscription Package

Filename: rmssub_invadjusts/b.pls
RMSSUB_INVADJUST.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure will need to initially ensure that the passed in message type is a valid
type for inventory adjustment messages. The valid message type for an inventory
adjustment message is listed in a section below.
If the message type is invalid, a status of “E” should be returned to the external system
along with an appropriate error message informing the external system that the status is
invalid.
If the message type is valid, the generic RIB_OBJECT needs to be downcast to the actual
object using the Oracle’s treat function. There will be an object type that corresponds
with each message type. If the downcast fails, a status of “E” is returned to the external
system along with an appropriate error message informing the external system that the
object passed in is invalid.
If the downcast is successful, then consume needs to verify that the message passes all of
RMS’s business validation. It calls the INVADJ_SQL function to perform validation and
to insert or update records in the database whether the message is valid. If the message
passed RMS business validation and is successfully persisted in the database then a
successful status is returned to the CONSUME. If the message fails RMS business
validation or encounters any other errors, a status of “E” is returned to the external
system along with the error message.
RMSSUB_INVADJUST.PROCESS_INVADJ
 (O_error_message IN OUT VARCHAR2,
 I_message IN “RIB_InvAdjustDesc_REC”)

This function calls CHECK_ITEMS, an internal function that checks for any sellable only
“break to sell” items and separates these items into an object table for further processing.
A table of the corresponding orderable items and quantities for the sellable items is built
to submit to the inventory adjustment process. INVADJ_SQL.PROCESS_INVADJ is
called for the table of regular items and the table of “break to sell” items to perform all
business validation and desired functionality associated with an inventory adjustment
message.

Business Validation and DML Module

Filename: invadjs/b.pls
INVADJ_SQL.PROCESS_INVADJ
This function performs business validation and desired functionality for an inventory
adjustment message. It includes the following:
 Check required fields: item, location, adj_qty, user_id, adj_date.
 Check valid values: The location type must be either ‘S’ or ‘W’. The doc_type must

be NULL, ‘P’, or ‘T’.
 Verify that the to_disposition or from_disposition or both fields are populated. Both

cannot be NULL.
 Verify that an orderable but non-sellable and non-inventory item cannot be an

inventory adjustment item.

Inventory Adjustment Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 229

 If the item is a simple pack catch weight item, verify that weight and weight UOM
are either both defined or both NULL, and weight UOM is in the MASS UOM class.

 Verify that the item is a tran-level or above tran-level item.
 Verify that the item/loc relation exists and create it if it does not exist.
 If adjusting a pack at a warehouse, the pack must be received as pack at the

warehouse.
 Verify that from disposition is a valid inventory status code (on

INV_STATUS_CODES).
 If multi-channel is on and the location is a warehouse, then physical location is on the

message. The adjusted quantity is distributed among the virtual locations of the
physical location.

 For available stock on hand the items are added to the update records for updating
the ITEM_LOC_SOH table and a tran code 22or 25 data is prepared for writing the
TRAN_DATA records. For external finisher location type and for transformable
orderable items, the unit_retail is calculated with the appropriate package call for
these two exception cases. The following additional processing for packs:
 Packs that are received as packs have the pack quantity calculated. If the pack is

a catch weight simple pack, the average weight is calculated to obtain the
quantity.

 For other packs, the updated quantity is set for each pack component. If the pack
is a catch weight simple pack, the computed quantity is based on the input
weight or the average weight.

 The total cost is calculated before writing records to TRAN_DATA. For catch
weight items the cost calculation is based on weight.

 If the I_cogs_ind input parameter is ‘Y’, the tran_code is changed to 23.
 For unavailable stock on hand, the unavailable quantities are computed before the

items or the pack components are added to the update records for updating the
ITEM_LOC_SOH table and a tran code 22 or 25 data is prepared for writing the
TRAN_DATA records. For external finisher location type and for transformable
orderable items, the unit_retail is calculated with the appropriate package call for
these two exception cases.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

invadjustcre Inventory Adjustment Create Message InvAdjustDesc.xsd

Design Assumptions
 One of the primary assumptions in the current API approach is that ease of code will

outweigh performance considerations. It is hoped that the ‘trickle’ nature of the flow
of data will decrease the need to dwell on performance issues and instead allow
developers to code in the easiest and most straightforward manner.

 The adaptor is only setup to call stored procedures, not stored functions. Any public
program then needs to be a procedure.

Subscription Designs

230 Oracle Retail Merchandising System

Tables

TABLE SELECT INSERT UPDATE DELETE

ITEM_LOC_SOH Yes Yes Yes No

TRAN_DATA(VIEW) No Yes No No

INV_ADJ No Yes No No

INV_STATUS_QTY No Yes Yes Yes

INV_ADJ_REASON Yes No No No

V_PACKSKU_QTY Yes No No No

ITEM_LOC Yes No No No

ITEM_MASTER Yes No No No

INV_STATUS_CODES Yes No No No

TSFHEAD Yes No No No

SHIPSKU Yes No No No

Inventory Request Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 231

Inventory Request Subscription API

Functional Area
Inventory Request Subscription

Business Overview
RMS receives requests for inventory from an integration subsystem through the
inventory request subscription.
Store ordering allows for all items to be ordered by the store and fulfilled by an RMS
process. RMS fulfills a store’s request regardless of replenishment review cycles, delivery
dates, and any other factors that may restrict a request from being fulfilled. However,
delivery cannot always be guaranteed on or before the store’s requested due date, due to
supplier or warehouse lead times and other supply chain factors that may restrict on-
time delivery.
Store ordering is used to request inventory for any items that are on the ‘Store Order’
type of replenishment. The store order replenishment process requires the store to
request a quantity and builds the recommended order quantity (ROQ) based on the
store’s requests. Requests for store order items that will not be reviewed prior to the date
requested by the store are fulfilled through a one-off process (run as needed) that creates
warehouse transfers and/or purchase orders to fulfill the requested quantities.
Orders and transfers will be used to create and approve store orders to the supplier or
the warehouse when the user notices there is a shortage or demand for particular items.
The user will select either a warehouse or a supplier to create the order and add the items
and the quantities. The order will then use an API to call RMS packages and validate all
data is correct before creating and or approving an order from any integration
subsystem. If the store order is for a warehouse, RMS will create a transfer from the
warehouse to the store. Note the following system abilities and assumptions:
 Ability to create orders to the supplier or the warehouse.
 Ability to save the creation of the order without approving it.

 Ability to amend orders/transfers for items in integration subsystems that were
created either manually or through replenishment in RMS.

 Requests with a request type of item request (IR) will generate transfers or orders if
the item is not set up with replenishment, or the need date is before the next
replenishment review date.

 Requests with a request type of store order (SO) must have a store order
replenishment set up for the items. Transfers or orders will be generated if the need
date is before the next replenishment review date.

Subscription Designs

232 Oracle Retail Merchandising System

Package Impact

Filename: rmssub_invreqs/b.pls
RMSSUB_INVREQ.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2,
 O_rib_error_tbl OUT RIB_ERROR_TBL)

This procedure should initially downcast the generic RIB_OBJECT to the actual object
using the Oracle’s treat function.
If the downcast is successful, it should empty out the cache of inserts and updates to the
store_orders table and to the PL/SQL ITEM_TBL table. This is done by calling
INV_REQUEST_SQL.INIT function. Global variables to be used are going to be
initialized by the function RMSSUB_INVREQ_ERROR.INIT. This should be called before
processing any item/store order request.
Input from the header level info should be validated. If any of the required header level
info is NULL, the entire request should be rejected; however, there is no need to write to
the error table.
Once the header level info has passed validation,
RMSSUB_INVREQ_ERROR.BEGIN_INVREQ should be called to hold the header level
values into global variables which may be used to build an error record when necessary.
Process each item by calling INV_REQUEST_SQL.PROCESS.
The cache for the STORE_ORDERS table and the PL/SQL ITEM_TBL table should be
populated by calling INV_REQUEST_SQL.FLUSH function. At the end of the inventory
request process, RMSSUB_INVREQ_ERROR.FINISH function should be called to pass a
copy of the global error table (if any error exists) which is sent to the RIB for further
processing.

Filename: rmssub_invreq_errors/b.pls
Most of the functions included are called by the RMSSUB_INVREQ.CONSUME
procedure to process inventory requests.
RMSSUB_INVREQ_ERROR.INIT
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message_type IN VARCHAR2)

This function would simply initialize all of the global variables which include the
RIB_OBJECTS that are used to process the inventory request.
RMSSUB_INVREQ_ERROR.BEGIN_INVREQ
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_request_id IN NUMBER,
 I_store IN STORE_ORDERS.STORE%TYPE,
 I_request_type IN VARCHAR2)

This function would populate the global variables using the header level values to create
an error record whenever necessary.
RMSSUB_INVREQ_ERROR.ADD_ERROR
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_error_desc IN VARCHAR2,
 I_error_object IN RIB_OBJECT)

This function would be called whenever an error is encountered during the processing of
the inventory request. It adds the error type/description and error object on the global
error table.

Inventory Request Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 233

RMSSUB_INVREQ_ERROR.FINISH
This function is called after processing the inventory request. It passes out a copy of the
global error table (if any error is present) to the RIB for further processing.

RMSSUB_INVREQ_ERROR.GET_MESSAGE_KEY
This function would get the key from a SQL_LIB error message. If the error message is
just text without any parameters, the entire message will be passed back out as the key.

Filename: invrequests/b.pls
INV_REQUEST_SQL.PROCESS
 (O_error_message IN OUT VARCHAR2,
 I_store IN STORE_ORDERS.STORE%TYPE,
 I_request_type IN VARCHAR2,
 I_item IN STORE_ORDERS.ITEM%TYPE,
 I_need_qty IN STORE_ORDERS.NEED_QTY%TYPE,
 I_uop IN UOM_CLASS.UOM%TYPE,
 I_need_date IN STORE_ORDERS.NEED_DATE%TYPE)

This function does all the validation and processing of the inventory request. It creates a
record for STORE_ORDERS or LP_ITEM_TBL (PL/SQL table for adhoc requests).

INV_REQUEST_SQL.VERIFY_REPL_INFO (local)
This function retrieves the replenishment information. If the request type is ‘IR’ and the
item is not set up on replenishment, set adhoc to ‘Y’. Item requests with request type of
‘SO’ or NULL must have store order replenishment set up in RMS for that item. The need
date must be after the next replenishment delivery date if the store order has been
rejected by replenishment. If the need date is before the next replenishment review date
for both request types, set adhoc to ‘Y’.

INV_REQUEST_SQL.FUNCTION CONVERT_NEED_QTY (local)
This function converts the need quantity to ‘E’aches for Packs.

INV_REQUEST_SQL.PREPARE_AD_HOC (local)
This function is called if the Adhoc indicator is set to ‘Y’. It will write the request to the
PL/SQL table that will be passed to the function call
CREATE_ORD_TSF_SQL.CREATE_ORD_TSF to create an order or transfer.

INV_REQUEST_SQL.VERIFY_ON_STORE (local)
This function checks to see if the item request already exists on STORE_ORDER. If it
exists, call PREPARE_UPDATE to update the need quantity to include the new need
quantity. If it does not, call PREPARE_INSERT to insert into STORE_ORDER table.

INV_REQUEST_SQL. PREPARE_INSERT (local)
This function checks the PL/SQL table that contains the BULK INSERT records. If a
record exists on the PL/SQL table, update the qty.

INV_REQUEST_SQL. PREPARE_UPDATE (local)
This function adds a record to the PL/SQL table that contains the BULK UPDATE
records.

INV_REQUEST_SQL. FLUSH (local)
This function does the actual insert or update to STORE_ORDERS.

Subscription Designs

234 Oracle Retail Merchandising System

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

InvReqCre Inventory Request Create Message InvReqDesc.xsd

Design Assumptions
RMS will explode a pack to its component items when the request is for a complex buyer
pack requiring ordering as ‘Eaches’, from a supplier.
 RMS action: Explode pack to component level when the pack is a complex buyer

pack ordered as ‘Eaches’.
RMS will explode a complex pack to its component items when the order is to a
warehouse for a complex pack being received at the ordered-from warehouse as ‘Eaches’.
 RMS action: Explode pack to component level when the requested-from warehouse

is receiving a pack as ‘Eaches’ and return the components to SIM.
RMS will round quantities using the store order multiple when an order is created for a
warehouse.
 RMS action: Determine the store order multiple, and round the quantities

accordingly. Return the rounded values to the integration subsystem.
RMS will explode a pack item to its component items when the request is for a pack that
is received at the requested from warehouse as ‘Eaches’.
 RMS action: Determine receive as type for from Wh, and explode pack to component

level.
Upcharges will always be applied to a transfer when they can be defaulted.
 RMS action: Always default upcharges for warehouse orders.

Soft warnings within RMS (for example, item is on clearance, OTB exceeded, and so on)
that result in a ‘Yes/No’ option to the user when approving an order will always be
assumed ‘Yes’, so as not to restrict an order from being built or approved within RMS.
 RMS action: Perform checks and return error string to the integration subsystem but

not allow the errors to restrict processing (for example, creating order, editing,
approving, and so on).

RMS should accept updates for both worksheet and submitted orders/transfers.
 RMS action: Transfers reserve inventory upon submittal of the transfer. When a

‘submitted’ transfer is edited, the reserved inventory must be updated accordingly.
When a ‘submitted’ PO is edited, it should be set back to ‘Worksheet’ status
automatically.

Another application might be able to override an item’s cost when creating an order for a
supplier.
 RMS action: Create the item/location record with a ‘Manual’ cost and do not apply

deals to this item.
 Other application’s action: Allow user to edit the unit cost and communicate the

edited cost to RMS.

Inventory Request Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 235

RMS will map a physical warehouse location to the appropriate virtual warehouse for
another application’s created orders to a warehouse.
 RMS action: When building a transfer, checking inventory, and so on, RMS should

map the physical warehouse communicated by another application to the virtual
warehouse within the passed physical location that contains the same channel ID as
the store. The store will not have access to any inventory other than what is in this
channel.

 Other application’s action: Orders for a warehouse will be created and
communicated using physical warehouses.

RMS will validate that all items belong to the same department when department level
ordering (supplier) or department level transfers (Wh) are being used.
 RMS action: For an order to a supplier, if the department level orders indicator is ‘Y’,

validate that all items belong to the same department. For an order to a warehouse, if
the department level transfers indicator is ‘Y’, validate that all items belong to the
same department.

RMS will validate that an item is not a consignment item if the order is for a warehouse.
 RMS action: Validate that each item on the order is not a consignment item. If a

consignment item is found, return an error.
Another application will validate that at least one item exists on an order before it can be
approved.
 RMS action: None
 Other application’s action: Require the user to enter at least one item on an order

before it can be approved.
RMS will validate that a store is open when the store is being transferred to.
 RMS action: Before a PO or transfer is approved; verify that the store on the order is

open. If the order is to a supplier, verify that the store will be open on the not before
date.

 RMS action: Users in RMS will have ability to manually split/scale orders, but no
batch process will drive this.

Another application that generates its orders to default import ind to ‘N’o
 RMS action: None. Landed cost will not apply to these orders; users will not be able

to edit this indicator once the order is created.

Subscription Designs

236 Oracle Retail Merchandising System

Tables

TABLE SELECT INSERT UPDATE DELETE

STORE_ORDERS Yes Yes Yes No

REPL_ITEM_LOC Yes No No No

ITEM_LOC Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

ITEM_MASTER Yes No No No

SUPS Yes No No No

ITEM_LOC_SOH Yes No No No

TSFHEAD No Yes Yes No

TSFDETAIL Yes Yes Yes No

ORDHEAD No No Yes No

Item Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 237

Item Subscription API

Multiple Sets of Books
RIB supports the multiple sets of books functionality. Customers may need multiple sets
of books because they use multiple currencies, or because a company contains separate
legal entities. See the Stock Ledger Batch chapter of the RMS Operations Guide volume 1
for additional information on multiple sets of books.

Functional Area
Item

Design Overview
The system option ‘sor_item_ind’ indicates whether RMS is the system of record for item
maintenance. If RMS is not the system of record, then this API is used to import the data
from an external system, and the data can be viewed in the RMS windows, but not
created or modified.
Item/location relationships are not handled by this API; they are handled in a separate
Item Location Subscription API.
When this API accepts messages with create message types, it inserts the data into the
ITEM_MASTER, PACKITEM (in the case of a pack), ITEM_SUPPLIER,
ITEM_SUPP_COUNTRY. Additionally, records can be inserted into the
ITEM_SUPPLIER_COUNTRY_LOC table. The VAT_ITEM table is populated with data
defaulted from the item’s department. Optionally, the records can be inserted into the
VAT_ITEM table to override these defaults. The messages with modify message types
consist of snapshots of records for updating the ITEM_MASTER, ITEM_SUPPLIER,
ITEM_SUPP_COUNTRY, ITEM_SUPPLIER_COUNTRY_LOC and VAT_ITEM tables.
Item messages include the required detail nodes for the supplier and supplier/country. If
the item is not a non-sellable pack, the item/zone/price node is also required. Optional
nodes can be included in the message for supplier/country/locations, pack components,
and item/vat relationships.
Items must be created and maintained following a logical hierarchy as outlined by the
referential integrity of the item database tables: Item parents before child items; item
components before items that are packs; items before item-suppliers; item/suppliers
before item/supplier/countries; items before item/locations (a separate API), and so on.
Failing to do so results in message failure.
The create and modify messages are hierarchical with required detail nodes of suppliers
and supplier/countries and optional nodes for price zones, supplier/country/locations
and vat codes. If the item is a pack item, the pack component node is required. In the
header modify message, the detail nodes are not populated, but the full header node is
sent. The detail level create or modify messages contains the item header record and one
to many detail records in the node or nodes. For example, the message type of
XItemSupMod could have one or more supplier details to update in the ITEM_SUPPLIER
table. The modify messages contain a snapshot of the record for update rather than only
the fields to be changed.
The auto-creation of item children using differentiator records attached to an item parent,
as currently occurs using RMS online processes, is not supported in this API.
The delete messages contain only the primary key field for the item, supplier,
supplier/country, supplier/country/location or vat/item record that is to be deleted.

Subscription Designs

238 Oracle Retail Merchandising System

When a delete message is processed, the item is not immediately deleted; rather, it is
added to the daily purge table. Deleting the item is a batch process.

Consume Module

Filename: rmssub_items/b.pls
RMSSUB_XITEM.CONSUME (O_status_code IN OUT VARCHAR2,
O_error_message IN OUT VARCHAR2,
I_message IN RIB_OBJECT,
I_message_type IN VARCHAR2)

This procedure will need to initially ensure that the passed in message type is a valid
type for organizational hierarchy messages. The valid message types for organizational
hierarchy messages are listed in a section below.
If the message type is invalid, a status of “E” should be returned to the external system
along with an appropriate error message informing the external system that the status is
invalid.
If the message type is valid, the generic RIB_OBJECT needs to be downcast to the actual
object using the Oracle’s treat function. There will be an object type that corresponds
with each message type. If the downcast fails, a status of “E” is returned to the external
system along with an appropriate error message informing the external system that the
object passed in is invalid.
If the downcast is successful, then consume needs to verify that the message passes all of
RMS’s business validation. It calls the RMSSUB_
XITEM_VALIDATE.CHECK_MESSAGE function to determine whether the message is
valid. If the message passed RMS business validation, then the function returns true,
otherwise it returns false. If the message fails RMS business validation, a status of “E” is
returned to the external system along with the error message returned from the
CHECK_MESSAGE function.
Once the message has passed RMS business validation, it is persisted to the RMS
database. It calls the RMSSUB_XITEM_SQL.PERSIST_MESSAGE() function. If the
database persistence fails, the function returns false. A status of “E” is returned to the
external system along with the error message returned from the PERSIST_MESSAGE()
function.
Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success status, “S”, is returned to the external system indicating that
the message has been successfully received and persisted to the RMS database.
RMSSUB_ITEM.HANDLE_ERROR () – This is the standard error handling function that
wraps the API_LIBRARY.HANDLE_ERROR function.

Item Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 239

Business Validation Module

Filename: rmssub_xitemvals/b.pls
It should be noted that some of the business validation is referential or involves
uniqueness. This validation is handled automatically by the referential integrity
constraints and the unique indexes implemented on the database.
RMSSUB_XITEM_VALIDATE.CHECK_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 O_item_rec OUT NOCOPY
 RMSSUB_ITEM.ITEM_API_REC,
 I_message IN RIB_XItemDesc,
 I_message_type IN VARCHAR2)

This overloaded function performs all business validation associated with create/modify
messages and builds the item API record with default values and locations from the
organizational hierarchy for persistence in the item related tables. Any invalid records
passed at any time results in message failure.
Defaulted fields that are not included in the message structure of the object must be
populated in a package business record, ITEM_API_REC. This record is used as input to
the database DML functions in the persist package.
ITEM_MASTER VALIDATION
CREATE
 Check required fields and nodes
 Diff Ids exist, no duplicates, no nulls in order, part of parent diff group if item is a

child item
 Cost group zone is null for landed cost option, sellable only packs, buyer packs
 Check valid values for item_level, tran_level, pack_type, store_ord_mult and all

indicators fields
 Check organization hierarchy level for item_supp_country_loc and item pricing
 Process all validations for item_supplier, item_supp_country, item pricing, and if

nodes exist, packitem, item_supp_country_loc, vat_item.
MODIFY

 Check required fields
 Check existence

DELETE
 Check for primary key
 Check existence of foreign keys

ITEM_SUPPLIER VALIDATION
CREATE
 Check required fields
 Check primary supplier, only 1 and 1 required

MODIFY
 Check required fields
 Check primary supplier, only 1 and 1 required

Subscription Designs

240 Oracle Retail Merchandising System

DELETE
 Check for primary key
 Check primary supplier, only 1 and 1 required
 Check that the item/supplier is not part of the following:

 On an order.
 On an open return to vendor record.
 On an open contract.
 The specified item is not a component item to a pack item that is sourced from

the specified supplier.
 The specified supplier is not a primary supplier for any location to which the

specified item has an existing relationship.
 The specified supplier is not a primary replenishment supplier for the specified

item.
ITEM_SUPP_COUNTRY VALIDATION

CREATE
 Check required fields
 Check primary country, only 1 and 1 required
 Unit cost 0 for buyer packs

MODIFY
 Check required fields
 Check primary country, only 1 and 1 required

DELETE
 Check for primary key
 Check primary country, only 1 and 1 required

 Check that the item/supplier/country is not part of any of the following:
 On an order.
 The specified item is not a component item to a pack item that is sourced from

the specified supplier/country.
 The specified supplier/country is not be a primary supplier/primary country for

any location to which the specified item has an existing relationship.
 The specified supplier/country is not a primary replenishment supplier/country

combination for the specified item.
 The specified country is not a primary country for the specified item and any

supplier.
ITEM_SUPP_COUNTRY_LOC VALIDATION
CREATE

 Check required fields
 Check primary location, only 1 and 1 required
 Unit cost 0 for buyer packs

MODIFY
 Check required fields
 Check primary location, only 1 and 1 required

Item Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 241

DELETE
 Check for primary key
 Check primary location, only 1 and 1 required

PACKITEM VALIDATION
CREATE
 Check required fields
 Check component items exist

VAT_ITEM VALIDATION
CREATE
 Check required fields
 Check valid values for VAT_TYPE

DELETE
 Check for primary key
 Check dept/class VAT_REGION association

POPULATE ITEM_API_RECORD

ITEM_MASTER
CREATE
 Populate ITEM_MASTER defaults
 Populate ITEM_SUPPLIER defaults
 Populate ITEM_SUPP_COUNTRY defaults
 Populate ITEM_SUPP_COUNTRY_LOC defaults
 Populate ITEM_SUPP_COUNTRY_LOC table of location records
 Populate IZP_TBL table of location records

ITEM_SUPPLIER

CREATE
 Populate ITEM_SUPPLIER defaults

MODIFY
 Populate ITEM_SUPPLIER mod table with existing value for primary_supp_ind

ITEM_SUPP_COUNTRY
CREATE
 Populate ITEM_SUPP_COUNTRY defaults

MODIFY
 Populate ITEM_SUPP_COUNTRY mod table with existing value for

primary_country_ind
ITEM_SUPP_COUNTRY_LOC
CREATE
 Populate ITEM_SUPP_COUNTRY_LOC defaults
 Populate ITEM_SUPP_COUNTRY_LOC table of location records (For organization

hierarchy level above the store/warehouse)
MODIFY

 Populate ITEM_SUPP_COUNTRY_LOC table of location records (For organization
hierarchy level above the store/warehouse)

Subscription Designs

242 Oracle Retail Merchandising System

DELETE
 Populate ITEM_SUPP_COUNTRY_LOC table of location records (For organization

hierarchy level above the store/warehouse)

Bulk or Single DML Module
All insert, update and delete SQL statements are located in the family packages. The
private functions call these packages.

Filename: rmssub_item_sql
RMSSUB_ITEM_SQL.PERSIST_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 I_item_rec IN RMSSUB_ITEM.ITEM_API_REC,
 I_message IN RIB_XItemDesc,
 I_message_type IN VARCHAR2)

This overloaded function checks the message type to route the object to the appropriate
internal functions that perform DML insert and update processes.
ITEM CREATE

 Inserts a record in the ITEM_MASTER table
 Calls all the “create” functions to insert records into the following tables:

 ITEM_SUPPLIER
 ITEM_SUPP_COUNTRY
 ITEM_SUPP_COUNTRY_LOC (optional)
 PACKITEM (optional)
 PACKITEM_BREAKOUT (optional)
 VAT_ITEM (optional)

 Calls function to create initial item pricing information and provide for the insert into
the PRICE_HIST table.

ITEM MODIFY

 Updates a record in the ITEM_MASTER table
ITEM DELETE

 Inserts a record in the DAILY_PURGE table
 Updates the status field for the record in the ITEM_MASTER table

ITEM_SUPPLIER CREATE
 Inserts records in the ITEM_SUPPLIER table

ITEM_SUPPLIER MODIFY
 Updates records in the ITEM_SUPPLIER table

ITEM_SUPPLIER DELETE
 Deletes records from the ITEM_SUPPLIER table for item and if the delete children

indicator in the message is Yes, deletes the records for the child items first
ITEM_SUPP_COUNTRY CREATE
 Inserts records in the ITEM_SUPP_COUNTRY table

ITEM_SUPP_COUNTRY MODIFY
 Updates records in the ITEM_SUPP_COUNTRY table

ITEM_SUPP_COUNTRY DELETE
 Deletes records from the ITEM_SUPP_COUNTRY table for item and if the delete

children indicator in the message is Yes, deletes the records for the child items first

Item Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 243

ITEM_SUPP_COUNTRY_LOC CREATE
 Bulk inserts records in the ITEM_SUPP_COUNTRY_LOC table for all locations

indicated by the organization hierarchy values
ITEM_SUPP_COUNTRY_LOC MODIFY
 Bulk updates records in the ITEM_SUPP_COUNTRY_LOC table for all locations

indicated by the organization hierarchy values
ITEM_SUPP_COUNTRY_LOC DELETE

 Bulk deletes records from the ITEM_SUPP_COUNTRY_LOC table for all locations
indicated by the organization hierarchy values

PACKITEM CREATE
 Inserts records in the PACKITEM table
 Inserts records in the PACKITEM_BREAKOUT table
 Updates ITEM_SUPP_COUNTRY_LOC and/or ITEM_SUPP_COUNTRY with

calculated unit_cost.
VAT_ITEM CREATE
 Inserts records in the VAT_ITEM table and replaces any default records that were

created from department/VAT.
VAT_ITEM DELETE
 Deletes records from the VAT_ITEM table

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

XItemCre Item Create Message XItemDesc.xsd

XItemMod Item Modify Message XItemDesc.xsd

XItemDel Item Delete Message XItemRef.xsd

XItemSupCre Item/Supplier Create Message XItemDesc.xsd

XItemSupMod Item/Supplier Modify Message XItemDesc.xsd

XItemSupDel Item/Supplier Delete Message XItemRef.xsd

XItemSupCtyCre Item/Supplier/Country Create Message XItemDesc.xsd

XItemSupCtyMod Item/Supplier/Country Modify Message XItemDesc.xsd

XItemSupCtyDel Item/Supplier/Country Delete Message XItemRef.xsd

XISCLocCre Item/Supplier/Country/Location Create
Message

XItemDesc.xsd

XISCLocMod Item/Supplier/Country/Location Modify
Message

XItemDesc.xsd

XISCLocDel Item/Supplier/Country/Location Delete
Message

XItemRef.xsd

XItemVatCre Item/Vat Create Message XItemDesc.xsd

XItemVatDel Item/Vat Delete Message XItemRef.xsd

Subscription Designs

244 Oracle Retail Merchandising System

Design Assumptions
Required fields are shown in RIB documentation.

Tables
RPM is called to set the initial pricing for the item. This populates tables in the RPM
system.

TABLE SELECT INSERT UPDATE DELETE

ITEM_MASTER Yes Yes Yes No

ITEM_SUPPLIER Yes Yes Yes Yes

ITEM_SUPP_COUNTRY Yes Yes Yes Yes

ITEM_SUPP_COUNTRY_LOC Yes Yes Yes Yes

PRICE_HIST No Yes No No

PACKITEM No Yes No No

PACKITEM_BREAKOUT No Yes No No

VAT_ITEM Yes Yes Yes Yes

DAILY_PURGE No Yes No No

SYSTEM_OPTIONS Yes No No No

CHAIN Yes No No No

AREA Yes No No No

REGION Yes No No No

DISTRICT Yes No No No

STORE Yes No No No

WAREHOUSE Yes No No No

SUPS Yes No No No

Item Location Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 245

Item Location Subscription API

Functional Area
Items – Locations

Design Overview
The system option ‘sor_item_ind’ indicates whether RMS is the system of record for item
maintenance. If RMS is the system of record, then item and item-location data is
maintained in RMS. If RMS is not the system of record, then this API is used to import
item-location data into RMS. This data can then be viewed in RMS, but not maintained.
Item locations can be maintained at the following levels of the organization hierarchy:
chain, area, region, district, and store. Records are maintained for all stores within the
location group. Because warehouses are not part of the organization hierarchy, they are
only impacted by records maintained at the warehouse level. If building item-locations
by organizational hierarchy, only locations in the hierarchy that exist on item-zone-price
and do not already exist on item-location will be built.
Item locations can only be created for a single item. However, levels of the organization
hierarchy are available for maintenance in order to facilitate location-level processing
into RMS. The detail node is required for both create and modify messages.
Item supplier country locations will be created for the passed-in primary
supplier/country if they do not already exist. If primary supplier/country locations are
not passed in, then they will default from the item’s primary supplier/country and a
location will be created, if it does not already exist.
Item locations are required to be interfaced into RMS in active status. There is no delete
function in this API. Instead, item locations can be put into inactive, discontinued, or
deleted status. However, they will be deleted if the associated item is purged. If building
item-locations by store or warehouse, then each passed-in location must exist on the
item-zone-price and not already exist as an item-location.

Consume Module

Filename: rmssub_XITEMLOCs/b.pls
RMSSUB_XITEMLOC.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure needs to initially ensure that the passed in message type is a valid type
for item location messages. If the message type is invalid, a status of “E” should be
returned to the external system along with an appropriate error message informing the
external system that the status is invalid.
If the message type is valid, the generic RIB_OBJECT needs to be downcast to the actual
object using the Oracle’s treat function. If the downcast fails, a status of “E” should be
returned to the external system along with an appropriate error message informing the
external system that the object passed in is invalid.

Subscription Designs

246 Oracle Retail Merchandising System

If the downcast is successful, then consume needs to verify that the message passes all of
RMS’s business validation. It calls the
RMSSUB_XITEMLOC_VALIDATE.CHECK_MESSAGE function to determine whether
the message is valid. If the message passed RMS business validation, then the function
will return true; otherwise, it will return false. If the message has failed RMS business
validation, a status of “E” should be returned to the external system along with the error
message returned from the CHECK_MESSAGE function.
Once the message has passed RMS business validation, it can be persisted to the RMS
database. It calls the RMSSUB_XITEMLOC_SQL.PERSIST_MESSAGE() function. If the
database persistence fails, the function returns false. A status of “E” should be returned
to the external system along with the error message returned from the
PERSIST_MESSAGE() function.
Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success status, “S”, should be returned to the external system
indicating that the message has been successfully received and persisted to the RMS
database.
RMSSUB_XITEMLOC.HANDLE_ERROR() – This is the standard error handling function
that wraps the API_LIBRARY.HANDLE_ERROR function.

Business Validation Module
It should be noted that some of the business validation is referential or involves
uniqueness. This validation is handled automatically by the referential integrity
constraints and the unique indexes implemented on the database.
Filename: rmssub_xitemlocvals/b.pls
RMSSUB_XITEMLOC_VALIDATE.CHECK_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 O_ITEMLOC_rec OUT ITEMLOC_REC,
 I_message IN RIB_XItemLocDesc,
 I_message_type IN VARCHAR2)

This function performs all business validation associated with message and builds the
item locations record for persistence.
ITEMLOC CREATE
 Check required fields
 Verify primary supplier/country exists on Item-supplier-country
 If creating locations by store or warehouse, verify each value has an item-zone-price

record.
 If creating locations by store or warehouse, verify passed in locations do not

currently exist.
 If item is a buyer pack, verify receive as type is valid based on item’s order as type.
 Default required fields not provided (store order multiple, taxable indicator, local

item description, primary supplier/country, receive as type).
 Build item-location records.
 Build price history records.

ITEMLOC MODIFY
 Check required fields
 Populate item-location record.

Item Location Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 247

Bulk or single DML module

Filename: rmssub_xitemlocsqls/b.pls
RMSSUB_XITEMLOC_SQL.PERSIST
 (O_error_message IN OUT VARCHAR2,
 I_dml_rec IN ITEMLOC_RECTYPE ,
 I_message IN RIB_XITEMLOCDesc)

ITEMLOC CREATE
 Insert a record into the item-location table.
 Insert a record into the item-location-stock on hand table
 If necessary, insert a record into the item supplier country location table.
 Insert a record into the price history table.

ITEMLOC MODIFY
 Update item-location table.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Type Message Type Description XML Schema
Definition (XSD)

xitemloccre External item locations create XItemlocDesc.xsd

xitemlocMod External item locations odification XItemlocDesc.xsd

Tables

TABLE SELECT INSERT UPDATE DELETE

ITEM_SUPP_COUNTRY Yes No No No

ITEM_SUPP_COUNTRY_LOC Yes Yes No No

ITEM_LOC_SOH Yes Yes Yes No

STORE Yes No No No

WH Yes No No No

ITEM_LOC Yes Yes Yes No

SYSTEM_OPTIONS Yes No No No

PRICE_HIST No Yes No No

ITEM_MASTER Yes No No No

POS_MODS No Yes No No

PACKITEM_BREAKOUT Yes No No No

CHAIN Yes No No No

AREA Yes No No No

REGION Yes No No No

Subscription Designs

248 Oracle Retail Merchandising System

TABLE SELECT INSERT UPDATE DELETE

DISTRICT Yes No No No

PACKITEM Yes No No No

RPM_ITEM_ZONE_PRICE Yes No No No

PRICE_ZONE_GROUP_STORE Yes No No No

CURRENCIES Yes No No No

ELC_TABLES Yes No No No

VAT_ITEM Yes No No No

PARTNER Yes No No No

Item Reclassification Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 249

Item Reclassification Subscription API

Functional Area
Items – Reclassification

Design Overview
RMS subscribes to item reclassification messages that are published by an external
system. This subscription is necessary in order to keep RMS in sync with the external
system. The retailer can view the pending reclassifications online in RMS.
This API allows external systems to create and delete item reclassification events within
RMS.
At least one detail must be passed for a valid reclassification message. Reclassification
items can be created or deleted within the reclassification message. Reclass item creates
will send a snapshot of the reclass event. However, reclass item deletes do not require
any header information as items are unique for reclassification and items may be deleted
across reclass events.
Only level one items can be interfaced via this API. If the item is a pack, only non-simple
packs can be interfaced. Simple pack items will be reclassified when their component is
reclassified.
During the reclassification batch process, it will determine if any pack items exist in RMS
that contain the items or any of that item’s children being reclassified. If such a pack
exists and contains no other items, the batch process adds the pack to the reclassification
event being created in RMS.
It is valid for a reclassification event to be created for a department/class/subclass not
yet existing but planning to exist. This is valid as long as they department/class/subclass
is scheduled to be created on or prior to the reclassification taking effect.
Deleting reclassifications can either occur by:
 Items on a reclass event or across events.
 A single reclassification event.
 All reclassification events on a particular event date (deletion through the use of the

reclass_date may result in the deletion of numerous reclass events).
 All reclassification events.

Deleting a reclassification header will require either a reclass no, reclass date, or purge all
ind.

Consume Module

Filename: rmssub_XITEMRCLSs/b.pls
RMSSUB_XITEMRCLS.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure needs to initially ensure that the passed in message type is a valid type
for item reclassification messages. If the message type is invalid, a status of “E” should be
returned to the external system along with an appropriate error message informing the
external system that the status is invalid.

Subscription Designs

250 Oracle Retail Merchandising System

If the message type is valid, the generic RIB_OBJECT needs to be downcast to the actual
object using the Oracle’s treat function. If the downcast fails, a status of “E” should be
returned to the external system along with an appropriate error message informing the
external system that the object passed in is invalid.
If the downcast is successful, then consume needs to verify that the message passes all of
RMS’s business validation. It calls the
RMSSUB_XITEMRCLS_VALIDATE.CHECK_MESSAGE function to determine whether
the message is valid. If the message passed RMS business validation, then the function
will return true; otherwise, it will return false. If the message has failed RMS business
validation, a status of “E” should be returned to the external system along with the error
message returned from the CHECK_MESSAGE function.
Once the message has passed RMS business validation, it can be persisted to the RMS
database. It calls the RMSSUB_XITEMRCLS_SQL.PERSIST_MESSAGE() function. If the
database persistence fails, the function returns false. A status of “E” should be returned
to the external system along with the error message returned from the
PERSIST_MESSAGE() function.
Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success status, “S”, should be returned to the external system
indicating that the message has been successfully received and persisted to the RMS
database.
RMSSUB_XITEMRCLS.HANDLE_ERROR() – This is the standard error handling
function that wraps the API_LIBRARY.HANDLE_ERROR function.

Business Validation Module
It should be noted that some of the business validation is referential or involves
uniqueness. This validation is handled automatically by the referential integrity
constraints and the unique indexes implemented on the database.

Filename: rmssub_xitemrclsvals/b.pls
RMSSUB_XITEMRCLS_VALIDATE.CHECK_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 O_ITEMRCLS_rec OUT ITEMRCLS_REC,
 I_message IN RIB_XITEMRCLSDesc,
 I_message_type IN VARCHAR2)

This function performs all business validation associated with message and builds the
item reclassification record for persistence.
ITEMRCLS CREATE
 Check required fields
 Verify items not on existing reclassification
 Validate the reclassification date (must be today or greater).
 Verify hierarchy of item being reclassified to (either an existing hierarchy or a

pending hierarchy that will be created prior to the item reclassification)
 Verify non-consignment related reclassification and no unit and dollar stocks

performed on items
 Build reclassification records

ITEMRCLS DELETE
 Check required fields
 For reclassification header deletes, verify deleting by either reclassification number,

reclassification (event) date, or purging all reclassifications

Item Reclassification Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 251

 Populate record
ITEMRCLS DETAIL CREATE
 Check required fields
 Verify items not on existing reclassification
 Validate the reclassification date (must be today or greater).
 Verify hierarchy of item being reclassified to (either an existing hierarchy or a

pending hierarchy that will be created prior to the item reclassification)
 Verify non-consignment related reclassification and no unit and dollar stocks

performed on items
 Build reclassification records

ITEMRCLS DETAIL DELETE
 Check required fields
 Populate record.

Bulk or Single DML Module

Filename: rmssub_XITEMRCLSsqls/b.pls
RMSSUB_XITEMRCLS_SQL.PERSIST
 (O_error_message IN OUT VARCHAR2,
 I_dml_rec IN ITEMRCLS_RECTYPE ,
 I_message IN RIB_XITEMRCLSDesc)

ITEMRCLS CREATE
 Insert a record into the reclass header table
 Insert a record into the reclass item table

ITEMRCLS DETAIL DELETE
 Delete from the reclass item table.

ITEMRCLS DELETE
 If purging all records, delete all from reclass item table.
 If purging all records, delete all from reclass header table.
 If not purging, delete from reclass item for reclass number or all reclass for an event

date.
 If not purging, delete from reclass header for reclass number or all reclass for an

event date.
ITEMRCLS DELETE
 Delete from reclass item for all items on record
 If no items exist for an event, delete the reclass event.

Subscription Designs

252 Oracle Retail Merchandising System

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Type Message Type Description XML Schema Definition (XSD)

xitemrclscre External item reclassification create XItemRclsDesc.xsd

xitemrclsdtlcre External item reclassification detail create XItemRclsDesc.xsd

Xitemrclsdel External item reclassification delete XitemRclsRef.xsd

Xitemrclsdtldel External item reclassification detail delete XItemRclsRef.xsd

Design Assumptions
Orderable buyer packs as ‘E’aches will not be allowed to be reclassified if department
level ordering is Y in RMS.

Tables

TABLE SELECT INSERT UPDATE DELETE

RECLASS_HEAD Yes Yes No Yes

RECLASS_ITEM Yes Yes No Yes

ITEM_MASTER Yes No No No

PACKITEM Yes No No No

PACKITEM_BREAKOUT Yes No No No

V_MERCH_HIER Yes No No No

Location Trait Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 253

Location Trait Subscription API

Functional Area
Location Trait

Design Overview
The RMS system option ‘sor_org_hier_ind’ indicates whether RMS is the system of
record for organization hierarchy maintenance, including location traits. If RMS is the
system of record, then RMS databases hold that information and it is entered and
maintained using the RMS windows. If RMS is not the system of record, then that
information is imported into RMS from an external system, and the information can be
viewed but not maintained on the RMS windows.
When RMS is not the system of record for location traits, the Location Trait Subscription
API processes incoming data from an external system to create, edit and delete location
traits in RMS. This data is processed immediately upon message receipt so success or
failure can be communicated to the external application. For a general discussion of the
RMS general hierarchy, see the chapter “Organization Hierarchy Batch” in volume 1 of
this RMS Operations Guide.

Consume Module

Filename: rmssub_xloctrts/b.pls
RMSSUB_XLOCTRT.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure will need to initially ensure that the passed in message type is a valid
type for loc traits messages. If the message type is invalid, a status of “E” should be
returned to the external system along with an appropriate error message informing the
external system that the status is invalid.
If the message type is valid, the generic RIB_OBJECT need to be downcast to the actual
object using the Oracle’s treat function. If the downcast fails, a status of “E” should be
returned to the external system along with an appropriate error message informing the
external system that the object passed in is invalid.
If the downcast is successful, then consume needs to verify that the message passes all of
RMS’s business validation. It calls the
RMSSUB_XLOCTRT_VALIDATE.CHECK_MESSAGE function to determine whether the
message is valid. If the message passed RMS business validation, then the function will
return true, otherwise it will return false. If the message has failed RMS business
validation, a status of “E” should be returned to the external system along with the error
message returned from the CHECK_MESSAGE function.
Once the message has passed RMS business validation, it can be persisted to the RMS
database. It calls the RMSSUB_XLOCTRT_SQL.PERSIST_MESSAGE() function. If the
database persistence fails, the function will return false. A status of “E” should be
returned to the external system along with the error message returned from the
PERSIST_MESSAGE() function.

Subscription Designs

254 Oracle Retail Merchandising System

Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success, “S”, status should be returned to the external system
indicating that the message has been successfully received and persisted to the RMS
database.
RMSSUB_XLOCTRT.HANDLE_ERROR() – This is the standard error handling function
that wraps the API_LIBRARY.HANDLE_ERROR function.

Business Validation Module
It should be noted that some of the business validation is referential or involves
uniqueness. This validation is handled automatically by the referential integrity
constraints and the unique indexes implemented on the database.

Filename: rmssub_xloctrtvals/b.pls
RMSSUB_XLOCTRT_VALIDATE.CHECK_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 O_loctrait_rec OUT LOC_TRAITS_REC,
 I_message IN RIB_XLocTraitDesc,
 I_message_type IN VARCHAR2)

This function performs all business validation associated with messages and builds the
location trait record for persistence.
LOCATION TRAIT CREATE
 Check required fields
 Populate record with message data

LOCATION TRAIT MODIFY
 Check required fields
 Verify the location trait exists
 Populate record with message data.

LOCATION TRAIT DELETE
 Check required fields
 Verify the location trait exists
 Populate record with message data.

Bulk or Single DML Module
All insert, update and delete SQL statements are located in the family package. This
package is LOC_TRAITS_SQL. The private functions will call this package.

Filename: rmssub_xloctrtsqls/b.pls
RMSSUB_XLOCTRT_SQL.PERSIST_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 I_loc_trait_rec IN LOC_TRAIT_REC,
 I_message_type IN VARCHAR2,)

This function determines what type of database transaction it will call based on the
message type.
LOCATION TRAIT CREATE
 Create messages get added to the location trait table.

LOCATION TRAIT MODIFY
 Modify messages directly update the location trait table with changes.

Location Trait Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 255

LOCATION TRAIT DELETE
 Delete messages directly remove location trait records.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message
Type

Message Type Description XML Schema Definition
(XSD)

xloctrtcre External Location Trait Create XLocTrtDesc.xsd

xloctrtdel External Location Trait Delete XLocTrtRef.xsd

xloctrtmod External Location Trait Modification XLocTrtDesc.xsd

Design Assumptions
Required fields are shown in RIB documentation.

Tables

TABLE SELECT INSERT UPDATE DELETE

LOC_TRAITS Yes Yes Yes Yes

Subscription Designs

256 Oracle Retail Merchandising System

Merchandise Hierarchy Subscription API

Functional Area
Merchandise Hierarchy
 Company
 Division
 Group
 Department
 Class
 Subclass

Design Overview
The merchandise hierarchy allows the retailer to create the relationships that are
necessary to support the product management structure of a company. This hierarchy
reflects a classification of merchandise into multi-level descriptive categorizations to
facilitate the planning, tracking, reporting, and management of merchandise within the
company.
The levels of the structure are truly hierarchical, meaning that at any given level, the
applicable item can belong to one and only one categorization.

System of Record
The sor_merch_hier_ind system option indicates whether RMS is the system of record for
merchandise hierarchy maintenance. If RMS is the system of record, then RMS databases
hold that information. If RMS is not the system of record, then that information is
imported into RMS from outside systems. When the value of the indicator is N (No),
retailers can no longer create or delete values from the hierarchy online in RMS. They can
only view the values.
When RMS is not the system of record, it may subscribe to the merchandise hierarchy
subscription API. The subscription keeps RMS in sync with the external system that is
responsible for maintaining the merchandise hierarchy.
RMS will expose an API that will allow external systems to create and edit a company:
create, edit, and delete a division, group, department, class, and subclass.
A company cannot be deleted, and only one company can exist in RMS. Creates and edits
of all levels of the merchandise hierarchy occur immediately upon receipt of the message.
Division and group deletes also occur immediately upon receipt of the message.
Departments, classes, and subclasses will not actually be deleted from the system upon
receipt of the message. Instead, they will be added to the DAILY_PURGE table.
However, validation will occur to ensure the records can be deleted. When the daily
purge batch process runs, the records will be removed from the system. Because these
levels are not deleted when the message is received, the API will not be able to
communicate whether the removal of the record from RMS has been successful, only that
the message was successfully received.
Department VAT records can be created and edited within the department message
(VAT records are not deleted). VAT creates can be passed in with a department create
message, or they can be passed in with their own specific message type. The VAT create
and modify messages will send a snapshot of the department record. Note that VAT
region and VAT codes records must exist prior to creating department VAT records.

Merchandise Hierarchy Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 257

Also, when passing in a new VAT region to an existing department with attached items,
the VAT will default to all items.
No other levels of the hierarchy have detail nodes associated with them.
The merchandise hierarchy must be created from the highest level down. Conversely, the
hierarchy must be deleted from the lowest level up. Each lower level references a parent
level (except for group/company). This means a department is associated with a group; a
class is associated with a department; and a subclass is associated with department/class
combination (because classes are not unique across departments while departments are
unique independent of groups).

Consume Module

Rmssub_xmrchhrs/b.pls
RMSSUB_XMRCHHR.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure will call the appropriate merchandise hierarchy family package based on
the message type passed in.
Any company message type will call RMSSUB_XMRCHHRCOMP.CONSUME.
Any division message type will call RMSSUB_XMRCHHRDIV.CONSUME.
Any group message type will call RMSSUB_XMRCHHRGRP.CONSUME.
Any department message type will call RMSSUB_XMRCHHRDEPT.CONSUME.
Any class message type will call RMSSUB_XMRCHHRSCLS.CONSUME.
Any subclass message type will call RMSSUB_XMRCHHRCLS.CONSUME.
Each family consume does the following steps.
They initially ensure that the passed in message type is a valid type for family messages.
If the message type is invalid, a status of ‘E’ should be returned to the external system
along with an appropriate error message informing the external system that the status is
invalid.
If the message type is valid, the generic RIB_OBJECT will need to be downcast to the
actual object using the Oracle’s treat function. If the downcast fails, a status of ‘E’ should
be returned to the external system along with an appropriate error message informing
the external system that the object passed in is invalid.
If the downcast is successful, then consume will need to verify that the message passes all
of RMS’s business validation. If the message has failed RMS business validation, a status
of ‘E’ should be returned to the external system along with the error message returned
from the CHECK_MESSAGE function.
Once the message has passed RMS business validation, it can be persisted to the RMS
database. If the database persistence fails, the function will return false. A status of ‘E’
should be returned to the external system along with the error message returned from
the PERSIST_MESSAGE() function.
Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success status, ‘S’, should be returned to the external system
indicating that the message has been successfully received and persisted to the RMS
database.
RMSSUB_XMRCHHR.HANDLE_ERROR() – This is the standard error handling function
that wraps the API_LIBRARY.HANDLE_ERROR function.

Subscription Designs

258 Oracle Retail Merchandising System

Business Validation Module
It should be noted that some of the business validation is referential or involves
uniqueness. This validation is handled automatically by the referential integrity
constraints and the unique indexes implemented on the database.

Filename: rmssub_xmrchhr[family_name]vals/b.pls
RMSSUB_XMRCHHR[family_name]_VALIDATE.CHECK_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 O_[family_name]_rec OUT NOCOPY MERCH_SQL.[FAMILY_NAME]_TYPE,
 I_message IN RIB_XMrchHr[family_name]Desc,
 I_message_type IN VARCHAR2)

This function performs all business validation associated with messages and builds the
merchandise hierarchy record for persistence.
COMPANY CREATE
 Check required fields
 Verify a company record does not already exist.
 Populate record with message data

COMPANY MODIFY
 Check required fields
 Verify the company exists
 Populate record with message data.

DIVISION CREATE
 Check required fields
 Verify total market amount
 Populate record with message data.

DIVISION MODIFY
 Check required fields
 Verify division record exists
 Verify total market amount
 Populate record with message data.

DIVISION DELETE
 Check required fields
 Verify division record exists
 Populate record with message data.

GROUP CREATE
 Check required fields
 Populate record with message data.

GROUP MODIFY
 Check Required fields
 Verify division record exists
 Populate record with message data.

GROUP DELETE
 Check required fields
 Verify division record exists
 Populate record with message data.

Merchandise Hierarchy Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 259

DEPARTMENT CREATE
 Check required fields. A department cannot be set up as both direct cost and

consignment. Either the budget markup percent or the budget intake percent must be
passed in. If RPM is installed, the average tolerance percent and maximum average
counter must be greater than zero.

 Verify total market amount
 Check required child nodes
 Populate record with message data.
 Populate default fields.

DEPARTMENT MODIFY
 Check required fields
 Verify total market amount
 Verify department record exists
 Populate record with message data
 Populate default fields

DEPARTMENT DELETE
 Check required fields
 Verify division record exists
 Verify a department can be deleted. Note that this check performs the same

validation that occurs before a department is actually deleted in the batch process.
 Populate record with message data

CLASS CREATE
 Check required fields
 Populate record with message data
 Populate default fields

CLASS MODIFY
 Check Required fields
 Verify class record exists
 Populate record with message data

CLASS DELETE
 Check required fields
 Verify class record exists
 Verify a class can be deleted. Note that this check performs the same validation that

occurs before a class is actually deleted in the batch process.
 Populate record with message data.

SUBCLASS CREATE
 Check required fields
 Populate record with message data
 Populate default fields

SUBCLASS MODIFY
 Check Required fields
 Verify subclass record exists
 Populate record with message data

SUBCLASS DELETE

Subscription Designs

260 Oracle Retail Merchandising System

 Check required fields
 Verify subclass record exists
 Verify a subclass can be deleted. Note that this check performs the same validation

that occurs before a subclass is actually deleted in the batch process.
 Populate record with message data

Bulk or Single DML Module
All insert, update and delete SQL statements are located in the family package. This
package is MERCH_SQL. The private functions will call this package.

Filename: rmssub_xmrchhr[family_name]sqls/b.pls
RMSSUB_XMRCHHR[family_name]__SQL.PERSIST_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 I_[family_name]_rec IN MERCH_SQL.[FAMILY_NAME]_TYPE,
 I_message_type IN VARCHAR2,)

This function determines what type of database transaction it will call based on the
message type.
COMPANY CREATE
 Create messages get added to the company table.

COMPANY MODIFY
 Modify messages directly update the company table with changes.

DIVISION CREATE
 Create messages get added to the division table.

DIVISION MODIFY
 Modify messages directly update the division table with changes.

DIVISION DELETE
 Delete messages directly remove division records.

GROUP CREATE
 Create messages get added to the group table.

GROUP MODIFY
 Modify messages directly update the group table with changes.

GROUP DELETE
 Delete messages directly remove group records.

DEPARTMENT CREATE
 Create messages get added to the department table. VAT details may also be added

for a create message.
DEPARTMENT MODIFY
 Modify messages directly update the department table with changes.

VAT CREATE
 Add VAT records to department VAT table

VAT MODIFY
 Update VAT records on department VAT table

DEPARTMENT DELETE
 Department gets added to purging table to be processed in batch cycle

CLASS CREATE

Merchandise Hierarchy Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 261

 Create messages get added to the class table
CLASS MODIFY
 Modify messages directly update the class table with changes.

CLASS DELETE
 Class gets added to purging table to be processed in batch cycle

SUBCLASS CREATE
 Create messages get added to the subclass table.

SUBCLASS MODIFY
 Modify messages directly update the subclass table with changes.

SUBCLASS DELETE
 Subclass gets added to purging table to be processed in batch cycle

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Type Message Type Description XML Schema
Definition (XSD)

xmrchhrclscre External Create Class XMrchHrClsDesc.xsd

xmrchhrcompcre External Create Company XMrchHrCompDesc.xsd

xmrchhrdeptcre External Create Department XMrchHrDeptDesc.xsd

xmrchhrdivcre External Create Division XMrchHrDivDesc.xsd

xmrchhrgrpcre External Create Group XMrchHrGrpDesc.xsd

xmrchhrsclscre External Create Subclass XMrchHrSclsDesc.xsd

xmrchhrclsdel External Delete Class XMrchHrClsRef.xsd

xmrchhrdeptdel External Delete Department XMrchHrDeptRef.xsd

xmrchhrdivdel External Delete Division XMrchHrDivRef.xsd

xmrchhrgrpdel External Delete Group XMrchHrGrpRef.xsd

xmrchhrsclsdel External Delete Subclass XMrchHrSclsRef.xsd

xmrchhrvatcre External Merch Hierarchy VAT create XMrchHrDeptDesc.xsd

xmrchhrvatmod External Merch Hierarchy VAT modify XMrchHrDeptDesc.xsd

xmrchhrclsmod External Modify Class XMrchHrClsDesc.xsd

xmrchhrcompmod External Modify Company XMrchHrCompDesc.xsd

xmrchhrdeptmod External Modify Department XMrchHrDeptDesc.xsd

xmrchhrdivmod External Modify Division XMrchHrDivDesc.xsd

xmrchhrgrpmod External Modify Group XMrchHrGrpDesc.xsd

xmrchhrsclsmod External Modify Subclass XMrchHrSclsDesc.xsd

Performance / Volume Considerations
The API should be capable of processing 120 messages per hour.

Subscription Designs

262 Oracle Retail Merchandising System

Design Assumptions
Required fields are shown in RIB documentation.

Tables
Note that this section does not include the tables checked in
VALIDATE_RECORDS_SQL.DEL_DEPS/CLASS/SUBCLASS.

TABLE SELECT INSERT UPDATE DELETE

COMPHEAD Yes Yes Yes No

DIVISION Yes Yes Yes Yes

DAILY_PURGE No Yes No No

GROUPS Yes Yes Yes Yes

DEPS Yes Yes Yes No

VAT_DEPS Yes Yes Yes No

CLASS Yes Yes Yes No

SUBCLASS Yes Yes Yes No

Merchandise Hierarchy Reclassification Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 263

Merchandise Hierarchy Reclassification Subscription API

Functional Area
Merchandise Hierarchy Reclassification

Design Overview
RMS can subscribe to merchandise hierarchy reclassification messages that are published
by an external system. This subscription is necessary in order to keep RMS in sync with
the external system.
Retailers can view pending reclassifications online. Users with the appropriate security
level can edit pending reclassifications and their effective dates. For information about
batch processing in this functional area, see the chapter “Reclassification Batch” in
volume 1 of this RMS Operations Guide.
This API will subscribe to future effective dated merchandise hierarchy additions and
changes through the merchandise hierarchy reclassification create, update and delete
messages.
In addition to the existing RMS merchandise hierarchy tables which hold the current
merchandise hierarchy information in RMS, a pending merchandise hierarchy table will
hold the future merchandise hierarchy creation or modification (but not deletion). These
pending merchandise hierarchy reclassification events can be created, modified or
deleted via this API. A separate batch process will read the information off the pending
merchandise hierarchy table and create or modify the merchandise hierarchy information
in RMS once the change effective date arrives. This batch process is not covered in this
design document.
For a given merchandise hierarchy, all pending merchandise reclassification events have
to be for the same effective date. A modify message can potentially change a pending
reclassification’s effective date.
This API would not accept messages to delete an existing merchandise hierarchy. Any
deletion should be done through the merchandise hierarchy subscription API instead.
Furthermore, this API would not allow moving a class or subclass between departments.
By allowing it we would essentially be reclassifying items, and there is a separate item
reclassification process for it.

Consume Module

Rmssub_xmrchhrclss/b.pls
RMSSUB_XMRCHHRRCLS.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure will need to initially ensure that the passed in message type is a valid
type for merchandise hierarchy reclassification messages. If the message type is invalid, a
status of ‘E’ should be returned to the external system along with an appropriate error
message informing the external system that the status is invalid.
If the message type is valid, the generic RIB_OBJECT will need to be downcast to the
actual object using the Oracle’s treat function. If the downcast fails, a status of ‘E’ should
be returned to the external system along with an appropriate error message informing
the external system that the object passed in is invalid.

Subscription Designs

264 Oracle Retail Merchandising System

If the downcast is successful, then consume will need to verify that the message passes all
of RMS’s business validation. If the message has failed RMS business validation, a status
of ‘E’ should be returned to the external system along with the error message returned
from the CHECK_MESSAGE function.
Once the message has passed RMS business validation, it can be persisted to the RMS
database. If the database persistence fails, the function will return false. A status of ‘E’
should be returned to the external system along with the error message returned from
the PERSIST_MESSAGE() function.
Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success status, ‘S’, should be returned to the external system
indicating that the message has been successfully received and persisted to the RMS
database.
RMSSUB_ XMRCHHRRCLS.HANDLE_ERROR() – This is the standard error handling
function that wraps the API_LIBRARY.HANDLE_ERROR function.

Business Validation Module
It should be noted that some of the business validation is referential or involves
uniqueness. This validation is handled automatically by the referential integrity
constraints and the unique indexes implemented on the database.

Filename: rmssub_xmrchhrrclsvals/b.pls
RMSSUB_XMRCHHRRCLS_VALIDATE.CHECK_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 O_pend_merch_hier_rec OUT PEND_MERCH_HIER%ROWTYPE,
 I_message IN “RIB_XMrchHrRclsDesc_REC”,
 I_message_type IN VARCHAR2)

This function performs all business validation associated with the messages and builds
the merchandise hierarchy record for persistence.
CREATE
 Check required fields. Required fields vary based on hierarchy level.

Adding New Hierarchy

– Verify passed in hierarchy does not already exist.

– Verify parent hierarchy already exists on merchandise hierarchy or pending
merchandise hierarchy tables.

Modifying Existing Hierarchy

– Verify passed in hierarchy does already exist.

– Verify that class and subclass hierarchies have passed in parent hierarchy in
an existing hierarchy (i.e. classes and subclasses are not allowed to be
reclassified into another department).

 Populate record with message data
MODIFY
 Check required fields.
 Verify the hierarchy is already pending.
 Populate record with message data.

DELETE
 Check required fields.
 Verify a pending hierarchy event exists.

Merchandise Hierarchy Reclassification Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 265

 Verify no pending hierarchy events exist for levels below the passed in hierarchy
level.

 Populate record with message data.

Bulk or single DML module
All insert, update and delete SQL statements are located in the family package. This
package is MERCH_RECLASS_SQL. The private functions will call this package.

Filename: rmssub_ xmrchhrrclssqls /b.pls
RMSSUB_XMRCHHRRCLS_SQL.PERSIST_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 I_pend_merch_hier_rec IN PEND_MERCH_HIER%ROWTYPE,
 I_message_type IN VARCHAR2)

This function determines what type of database transaction it will call based on the
message type.
CREATE
 Create messages get added to the pending merchandise hierarchy table.

MODIFY
 Modify messages directly update the pending merchandise hierarchy table with

changes.
DELETE
 Delete messages get removed from the pending merchandise hierarchy table.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Type Message Type Description XML Schema
Definition (XSD)

xmrchhrrclscre Create Merchandise Hierarchy Reclassification XMrchHrRclsDesc.xsd

xmrchhrrclsdel Delete Merchandise Hierarchy Reclassification XMrchHrRclsRef.xsd

xmrchhrrclsmod Modify Merchandise Hierarchy Reclassification XMrchHrRclsDesc.xsd

Design Assumptions
Required fields are shown in RIB documentation.
The values for passing in the hierarchy and action type are outlined in the RIB
documentation.

Tables

TABLE SELECT INSERT UPDATE DELETE

COMPHEAD Yes No No No

DIVISION Yes No No No

GROUPS Yes No No No

DEPS Yes No No No

Subscription Designs

266 Oracle Retail Merchandising System

TABLE SELECT INSERT UPDATE DELETE

CLASS Yes No No No

SUBCLASS Yes No No No

PEND_MERCH_HIER Yes Yes Yes Yes

Organizational Hierarchy Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 267

Organizational Hierarchy Subscription API

Functional Area
Organizational Hierarchy
 Chain
 Area
 Region
 District

Design Overview
The system of record hierarchy indicator (sor_org_hier_ind) system option indicates
whether RMS is the system of record for organization hierarchy maintenance. If RMS is
the system of record, then RMS databases hold that information. If RMS is not the system
of record, then that information is imported into RMS from outside systems. When the
value of the indicator is ‘N’ (No), users can no longer create or modify values from the
hierarchy online in RMS. They can only view the values.
When RMS is not the system of record, it can take advantage of the organization
hierarchy subscription API. The subscription keeps RMS in sync with the external system
that is responsible for maintaining the organization hierarchy. Although stores are part of
the organization hierarchy, they differ sufficiently to require their own subscription API.
The organization hierarchy subscription also assigns existing location traits to or deletes
them from elements of the organization hierarchy.
RMS will expose an API that will allow external systems to create, edit, and delete chain,
area, region, and districts. All creates, updates, and deletes will occur immediately upon
receipt of the message.
Location trait records are created and deleted within the area, region, and district
messages. Location trait creates can be passed in with the area, region, or district create
message, or they can be passed in with their own specific create message type attached to
the aforementioned messages. The location trait create messages will send a snapshot of
the hierarchy record they are attached to. Location trait delete messages will be processed
separate from the hierarchy delete messages.
Note that location trait records must exist prior to attaching them to any hierarchy.
Chains do not have location traits associated with them.
The organizational hierarchy must be created from the highest level down. Conversely,
the hierarchy must be deleted from the lowest level up. Each lower level references a
parent level. This means an area is associated with a chain, a region is associated with an
area, and a district is associated with a region. Location traits must be removed from a
hierarchy before it can be removed.
For a general discussion of the organization hierarchy in RMS, see the chapter
“Organization Hierarchy Batch” in volume 1 of this RMS Operations Guide. For more
information about location traits, see the sections ‘Location Trait’ and ‘Store’ in the
chapter “Subscription Design” in this volume of the RMS Operations Guide.

Subscription Designs

268 Oracle Retail Merchandising System

Consume Module

rmssub_xorghiers/b.pls
RMSSUB_XORGHIER.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure will need to initially ensure that the passed in message type is a valid
type for organizational hierarchy messages. The valid message types for organizational
hierarchy messages are listed in a section below.
If the message type is invalid, a status of “E” should be returned to the external system
along with an appropriate error message informing the external system that the status is
invalid.
If the message type is valid, the generic RIB_OBJECT needs to be downcast to the actual
object using the Oracle’s treat function. There will be an object type that corresponds
with each message type. If the downcast fails, a status of “E” is returned to the external
system along with an appropriate error message informing the external system that the
object passed in is invalid.
If the downcast is successful, then consume needs to verify that the message passes all of
RMS’s business validation. It calls the
RMSSUB_XORGHIER_VALIDATE.CHECK_MESSAGE function to determine whether
the message is valid. If the message passed RMS business validation, then the function
returns true; otherwise, it returns false. If the message fails RMS business validation, a
status of “E” is returned to the external system along with the error message returned
from the CHECK_MESSAGE function.
Once the message has passed RMS business validation, it is persisted to the RMS
database. It calls the RMSSUB_XORGHIER_SQL.PERSIST_MESSAGE() function. If the
database persistence fails, the function returns false. A status of “E” is returned to the
external system along with the error message returned from the PERSIST_MESSAGE()
function.
Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success status, “S”, is returned to the external system indicating that
the message has been successfully received and persisted to the RMS database.
RMSSUB_ XORGHIER.HANDLE_ERROR() – This is the standard error handling
function that wraps the API_LIBRARY.HANDLE_ERROR function.

Organizational Hierarchy Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 269

Business Validation Module
It should be noted that some of the business validation is referential or involves
uniqueness. This validation is handled automatically by the referential integrity
constraints and the unique indexes implemented on the database.

Filename rmssub_xohvals/b.pls
RMSSUB_XORGHIER_VALIDATE.CHECK_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 O_org_hier_rec OUT NOCOPY ORGANIZATION_SQL.ORG_HIER_REC,
 I_message IN RIB_XOrgHrDesc,
 I_message_type IN VARCHAR2)

This function performs all business validation associated with messages and builds the
organizational hierarchy record for persistence.
CHAIN CREATE
 Check required fields
 Check hierarchy level.
 Populate record with message data

CHAIN MODIFY
 Check required fields
 Verify the chain exists
 Populate record with message data.

CHAIN DELETE
 Check required fields
 Verify the chain exists
 Check if chain is currently used on the regionality tables
 Populate record with message data.

AREA CREATE
 Check required fields
 Check hierarchy level.
 Populate location traits.
 Populate record with message data.

AREA MODIFY
 Check required fields
 Check hierarchy level.
 Verify area record exists
 Populate record with message data.

AREA DELETE
 Check required fields
 Verify the area exists
 Check if area is currently used on the regionality tables
 Populate record with message data.

Subscription Designs

270 Oracle Retail Merchandising System

REGION CREATE
 Check required fields
 Check hierarchy level.
 Populate location traits.
 Populate record with message data.

REGION MODIFY
 Check required fields
 Check hierarchy level.
 Verify region record exists
 Get the existing area for region.
 Populate record with message data.

REGION DELETE
 Check required fields
 Verify the region exists
 Check if region is currently used on the regionality tables
 Populate record with message data.

DISTRICT CREATE
 Check required fields
 Check hierarchy level.
 Populate location traits.
 Populate record with message data.

DISTRICT MODIFY
 Check required fields
 Check hierarchy level.
 Verify district record exists
 Get the existing region for district.
 Populate record with message data.

DISTRICT DELETE
 Check required fields
 Verify the district exists
 Check if district is currently used on the regionality tables
 Populate record with message data.

LOCATION TRAIT CREATE
 Check Required fields
 Check hierarchy level.
 Populate location traits
 Populate record with message data.

Organizational Hierarchy Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 271

LOCATION TRAIT DELETE
 Check Required fields
 Check hierarchy level (area, region, district) exists
 Populate location traits
 Populate record with message data.

Note that location trait delete calls regionality_exists function.

Bulk or Single DML Module
All insert, update and delete SQL statements are located in the family package. This
package is ORGANIZATIONAL_SQL. The private functions will call this package.

Filename: rmssub_xorghr_sqls/b.pls
RMSSUB_XORGHR_SQL.PERSIST_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 I_hier_level IN VARCHAR2,
 I_org_hier_rec IN ORGANIZATIONAL_SQL.ORG-HIER_REC,
 I_message_type IN VARCHAR2,)

This function determines what type of database transaction it will call based on the
message type.
CHAIN CREATE
 Create messages get added to the chain table.

CHAIN MODIFY
 Modify messages directly update the CHAIN and the STORE_HIERARCHY tables

with changes.
CHAIN DELETE
 Delete messages directly remove chain records.

AREA CREATE
 Create messages get added to the area table.
 If location traits are also passed, location traits are added to the location area trait

table.
AREA MODIFY
 Modify messages directly update the area and the STORE_HIERARCHY tables with

changes.
AREA DELETE
 Delete messages directly remove area records.

REGION CREATE
 Create messages get added to the region table.
 Location traits from the area are added to the location region trait table.
 If location traits are also passed, location traits are added to the location region trait

table.

Subscription Designs

272 Oracle Retail Merchandising System

REGION MODIFY
 Modify messages directly update the REGION and the STORE_HIERARCHY tables

with changes.
 If the area was changed, then the old area’s location traits are removed from the

location region trait table.
 If the area was changed, then the new area’s location traits are added to the location

region trait table.
REGION DELETE
 Delete messages directly remove region records.

DISTRICT CREATE
 Create messages get added to the DISTRICT table.
 Location traits from the region are added to the location district trait table.
 If location traits are also passed, location traits are added to the location district trait

table.
DISTRICT MODIFY
 Modify messages directly update the DISTRICT and the STORE_HIERARCHY tables

with changes.
 If the region was changed, then the old region’s location traits are removed from the

location district trait table.
 If the region was changed, then the new region’s location traits are added to the

location district trait table.
DISTRICT DELETE
 Delete messages directly remove district records.

LOCATION TRAIT CREATE
 Add location trait records to the appropriate location trait table (area, region,

district).
 Default the location trait records to each level below the passed in hierarchy (if

region location traits are passed in, default those traits to all districts below that
region and all stores below those districts).

LOCATION TRAIT DELETE
 Delete location trait records from the appropriate location trait table (area, region,

district).
 Delete the location trait records from each level below the passed in hierarchy (if

region location traits are passed in, delete those traits from all districts below that
region and all stores below those districts).

Organizational Hierarchy Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 273

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Type Message Type Description XML Schema Definition
(XSD)

XOrgHrCre External Create Organizational Hiearchy XOrgHrDesc.xsd

XOrgHrLocTrtCre External Create Organizational Hierarchy
Location Trait

XOrgHrDesc.xsd

XOrgHrDel External Delete Organizational Hiearchy XOrgHrRef.xsd

XOrgHrLocTrtDel External Delete Organizational Hiearchy
Location Trait

XOrgHrRef.xsd

XOrgHrMod External Modify Organizational Hiearchy XOrgHrDesc.xsd

Design Assumptions
The REGIONALITY_HEAD table contains one record for each group/organizational
hierarchy value that is defined for regionality. Regionality tables are used to define
specific locations, suppliers, and/or departments that groups of users have responsibility
for. These tables are not referenced within RMS, but can be used to customize reporting
as well as on-line access if desired.

Tables

TABLE SELECT INSERT UPDATE DELETE

CHAIN Yes Yes Yes Yes

AREA Yes Yes Yes Yes

REGION Yes Yes Yes Yes

DISTRICT Yes Yes Yes Yes

LOC_AREA_TRAITS Yes Yes No Yes

LOC_REGION_TRAITS Yes Yes No Yes

LOC_DISTRICT_TRAITS Yes Yes No Yes

LOC_TRAITS_MATRIX Yes Yes No Yes

REGIONALITY_HEAD Yes No No No

REGIONALITY_DEPT Yes No No No

REGIONALITY_SUP_DEPT Yes No No No

REGIONALITY_SUP Yes No No No

REGIONALITY_TEMP Yes No No No

Subscription Designs

274 Oracle Retail Merchandising System

Payment Terms Subscription API

Functional Area
Payment Terms

Business Overview
Payment terms are supplier-related financial arrangement information that is published
to the Oracle Retail Integration Bus (RIB), along with the supplier and the supplier
address, from the financial system. Payment terms are the terms established for paying a
supplier (for example, 2.5% for 30 days, 3.5% for 15 days, 1.5% monthly, and so on). RMS
subscribes to a payment terms message that is held on the RIB. After confirming the
validity of the records enclosed within the message, RMS updates its tables with the
information.
Data Flow:

An external system will publish a payment term, thereby placing the payment term
information onto the RIB. RMS will subscribe to the payment term information as
published from the RIB and place the information onto RMS tables depending upon the
validity of the records enclosed within the message.
Message Structure:

The payment term message will consist of a payment term record header and detail.
The record will contain information about the payment term as a whole.

Package Impact

Filename: rmssub_ptrms/b.pls
Subscribing to a payment term message entails the use of one public consume procedure.
This procedure corresponds to the type of activity that can be done to a payment term
record (in this case create/update).
All of the following procedures exist within RMSSUB_PAYTERM.
CONSUME
 (O_status_code OUT VARCHAR2,
 O_error_message OUT VARCHAR2,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)
This procedure initially checks that the passed in message type is a valid type for Terms
messages. The valid message types for Terms messages are: paytermCre, paytermMod,
paytermdtlCre and paytermdtlMod. If the message type is invalid, a status of “E” should
be returned to the external system along with an appropriate error message informing
the external system that the status is invalid.
If the message type is valid, the generic RIB_OBJECT will need to be downcast to the
actual object using the Oracle’s treat function. There will be an object type that
corresponds with each message type. If the downcast fails, a status of “E” should be
returned to the external system along with an appropriate error message informing the
external system that the object passed in is invalid.

Payment Terms Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 275

If the downcast is successful, then consume needs to verify that the message passes all of
RMS’s business validation. It does not actually perform any validation itself; instead, it
calls the RMSSUB_PAYTERM_VALIDATE.CHECK_MESSAGE function to determine
whether the message is valid. This function is overloaded so simply passing the object in
should be sufficient. If the message passed RMS business validation, then the function
will return true, otherwise it will return false. If the message has failed RMS business
validation, a status of “E” should be returned to the external system along with the error
message returned from the CHECK_MESSAGE function.
Once the message has passed RMS business validation, it can be persisted to the RMS
database. The consume function does not have to have any knowledge of how to persist
the message to the database, it calls the RMSSUB_PAYTERM_SQL.PERSIST() function.
This function is overloaded so simply passing the object should be sufficient. If the
database persistence fails, the function will return false. A status of “E” should be
returned to the external system along with the error message returned from the
PERSIST() function.
Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success status, “S”, should be returned to the external system
indicating that the message has been successfully received and persisted to the RMS
database.

Internal Procedure:
HANDLE_ERROR
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_cause IN VARCHAR2,
 I_program IN VARCHAR2)

This is the standard error handling function that wraps the
API_LIBRARY.HANDLE_ERROR function.
The function consists of a call to API_LIBRARY.HANDLE_ERRORS.
API_LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the error and
potentially an unparsed error message if one has been created through a call to
SQL_LIB.CREATE_MESSAGE. The function uses these input variables to parse a
complete error message and pass back a status, depending upon the message and error
type, back up through the consume function and up to the RIB.
Business Validation Mode
Filename: rmssub_ptrmvals/b.pls
This function performs all business validation associated with Terms create and modify
messages. It is important that the signature uses IN for the message and not IN OUT.
When IN is used, the parameter is passed by reference. Passing by reference keeps the
server from duplicating the memory allocation.
All of the following functions exist within RMSSUB_PAYTERM_VALIDATE.
CHECK_MESSAGE
 (O_error_message OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_dml_rec OUT TERMS_SQL.PAYTERM_REC,
 I_message IN “RIB_PayTermDesc_REC”,
 I_message_type IN VARCHAR2)
This function performs all business validation associated with create/modify messages
and builds the order API record with default values for persistence in the payment terms
related tables. Any invalid records passed at any time results in message failure.
This function calls CHECK_REQUIRED_FIELDS to make sure that all required fields are
not NULL. CHECK_ENABLED is called to check for the validity of records with
start_date_active and end_date_active with enabled flag. CHECK_TERMS_HEAD and

Subscription Designs

276 Oracle Retail Merchandising System

CHECK_TERMS_DETAIL are called to check for header and detail records before
inserting and updating TERMS_DEATIL table. Finally, the payment terms record used
for DML is populated within the POPULATE_RECORD function and passed back to
RMSSUB_PAYTERM.CONSUME.

Internal Functions:
CHECK_REQUIRED_FIELDS

This function ensures that all required fields in the message are NOT NULL.
POPULATE_RECORDS

This function populates the payment terms output record with the values sent in the
message.
CHECK_ENABLED
This function in a loop checks for start_date_active and end_date_active with the
enabled_flag setting from RIB_MESSAGE. Declare cursor to retrieve vdate from table
period and another cursor to retrieve start_date_active and end_date_active for the terms
and terms_seq inputted from TERMS_DETAIL table. In a loop assign terms_seq to a local
variable. Open cursor to retrieve start_date_active and end_date_Active from
TERMS_DETAIL table. If terms_detail.start_date_active is after period.vdate and if
enabled_flag from the rib message is ‘Y’, then raise program error. If end_date_active is <
vdate and enabled_flag from the rib message is ‘Y’ then raise program error. If vdate > =
start_date_active and <= end_date_active and enabled_flag is ‘N’ then raise a pogram
error.
CHECK_TERMS_HEAD
This function will be responsible for checking TERMS_HEAD record before populating
TERMS_DETAIL table for new terms record. Calling TERM_SQL.HEADER_EXISTS
function will perform this check.
CHECK_TERMS_DETAIL

This function checks existence of terms_detail records before updating detail record.
Calling TERM_SQL.DETAIL_EXISTS function will perform this check.

DML Module

Filename: rmssub_ptrm_sqls/b.pls
The following function exists within RMSSUB_PAYTERM_SQL.
PERSIST
 (O_error_message OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message IN TERMS_SQL.PAYTERM_REC,
 I_message_type IN VARCHAR2)
Perform INSERT/UPDATE statements by calling the appropriate functions according to
the message type and passing the data in a record to these functions.
For the message type indicating a header insert, populate the header record defined in
the term_sql package and call the term_sql.insert_header function with this header
record. For the message type indicating a header or a detail insert, call the
term_sql.insert_detail function and pass to it the detail node from the message.
For the message type indicating a header update, populate the header record defined in
the term_sql package and call the term_sql.update_header function with this header
record. For the message type indicating a detail update, call the term_sql.update_detail
function and pass to it the detail node from the message.

Payment Terms Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 277

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

PayTermCre Payment Terms Create Message PayTermDesc.xsd

PayTermMod Payment Terms Modify Message PayTermDesc.xsd

PayTermDtlCre Payment Terms Detail Create Message PayTermDesc.xsd

PayTermDtlMod Payment Terms Detail Modify Message PayTermDesc.xsd

Design Assumptions
 One of the primary assumptions in the current API approach is that ease of code will

outweigh performance considerations. It is hoped that the ‘trickle’ nature of the flow
of data will decrease the need to dwell on performance issues and instead allow
developers to code in the easiest and most straight forward manner.

 The adaptor is only setup to call stored procedures, not stored functions. Any public
program then needs to be a procedure.

Tables

TABLE SELECT INSERT UPDATE DELETE

TERMS_DETAIL Yes Yes Yes No

TERMS_HEAD Yes Yes Yes No

Subscription Designs

278 Oracle Retail Merchandising System

PO Subscription API

Functional Area
PO subscription

Design Overview
The sor_purchase_order_ind system option indicates whether RMS is the system of
record for purchase orders. If RMS is the system of record, then RMS databases hold that
information. If RMS is not the system of record, then that information is imported into
RMS from external systems.
By setting the value of sor_purchase_order_ind to N (No), retailers cannot perform the
following:
 Create, modify, or delete a purchase order.
 Maintain the items and locations on a purchase order online in RMS. Retailers can

only view purchase orders.
When RMS is not the system of record, it may subscribe to the new purchase order
subscription API. The subscription keeps RMS in sync with the external system that is
responsible for maintaining purchase orders.
The following functions are not supported for externally generated, non-EDI purchase
orders: open to buy (OTB), deals, bracket costing, order splitting, order scaling, contracts,
letters of credit, harmonized tariff schedule (HTS), order revision, order expenses, order
rounding, and required documents. It is assumed that externally generated non-EDI
purchase orders are being interfaced expressly for the facilitation of inventory movement
in RMS.
This API allows external systems to create, edit, and delete purchase orders within RMS.
These transactions are performed immediately upon message receipt so success or failure
can be communicated to the calling application.
Purchase order messages will be sent across the Oracle Retail Integration Bus (RIB). POs
can be created, modified or deleted at the header or the detail level, each with its own
message type.

Consume Module

Filename: rmssub_xorders/b.pls
RMSSUB_XORDER.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure will need to initially ensure that the passed in message type is a valid
type for purchase order messages. The valid message types for purchase order messages
are listed in a section below.
If the message type is invalid, a status of “E” should be returned to the external system
along with an appropriate error message informing the external system that the status is
invalid.

PO Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 279

If the message type is valid, the generic RIB_OBJECT needs to be downcast to the actual
object using the Oracle’s treat function. There will be an object type that corresponds
with each message type. If the downcast fails, a status of “E” is returned to the external
system along with an appropriate error message informing the external system that the
object passed in is invalid.
If the downcast is successful, then consume needs to verify that the message passes all of
RMS’s business validation. It calls the
RMSSUB_XORDER_VALIDATE.CHECK_MESSAGE function to determine whether the
message is valid. If the message passed RMS business validation, then the function
returns true, otherwise it returns false. If the message fails RMS business validation, a
status of “E” is returned to the external system along with the error message returned
from the CHECK_MESSAGE function.
Once the message has passed RMS business validation, it is persisted to the RMS
database. It calls the RMSSUB_XORDER_SQL.PERSIST() function. If the database
persistence fails, the function returns false. A status of “E” is returned to the external
system along with the error message returned from the PERSIST() function.
Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success status, “S”, is returned to the external system indicating that
the message has been successfully received and persisted to the RMS database.

Business Validation Module

Filename: rmssub_xordervals/b.pls
It should be noted that some of the business validation is referential or involves
uniqueness. This validation is handled automatically by the referential integrity
constraints and the unique indexes implemented on the database.
RMSSUB_XORDER_VALIDATE.CHECK_MESSAGE
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_order_rec OUT NOCOPY ORDER_SQL.ORDER_REC,
 I_message IN “RIB_XOrderDesc_REC”,
 I_message_type IN VARCHAR2)

This overloaded function performs all business validation associated with create/modify
messages and builds the order API record with default values for persistence in the order
related tables. Any invalid records passed at any time results in message failure.
Like other APIs, the purchase order API expects a snapshot of the record on both a
header modify and a detail modify message, instead of only the fields that are changed.
For a detail create or a detail modify message, only the order number will be validated at
the header level; all other header fields are ignored.
Defaulted fields that are not included in the message structure of the object must be
populated in a package business record, ORDER_SQL.ORDER_REC. This record is used
as input to the database DML functions in the persist package.
ORDER CREATE
 Check required fields on both header and detail nodes.
 Verify order number does NOT already exist.
 Verify attributes in the message header are correct.
 Verify attributes in the message detail are correct.
 Verify that item/supplier and item/supp/country exist for a non-pack item.
 Verify that item/supplier and item/supp/country exist for all components of a pack

item.
 Create item/supplier and item/supp/country if they don’t exist for a pack item.

Subscription Designs

280 Oracle Retail Merchandising System

 Create item/supp/country/loc if it does not exist for an item/location.
 Create item/loc relation if not already exist, including creating item_loc_soh,

item_supp_country_loc, and price_hist records. If a pack item is involved, these
records will be created for all component items.

 Populate record ORDER_REC with message data for both header and detail.
ORDER MODIFY
 Check required fields on the header node.
 Verify order number already exists.
 Verify attributes in the message header are correct.
 Verify attributes that cannot be modified are not changed.
 Update ORDLOC appropriately if closing or reinstating an order.
 Populate record ORDER_REC.ORDHEAD_ROW with message data.

ORDER DETAIL CREATE
 Check required fields on the detail node.
 Verify order number already exists.
 Verify order/item/loc does not already exist.
 Verify that item/supplier and item/supp/country exist for a non-pack item.
 Verify that item/supplier and item/supp/country exist for all components of a pack

item.
 Create item/supplier and item/supp/country if they do not exist for a pack item.
 Create item/supp/country/loc if it does not exist for an item/location.
 Create item/loc relation if not already exists, including creating ITEM_LOC_SOH,

ITEM_SUPP_COUNTRY_LOC, and PRICE_HIST records. If a pack item is involved,
these records will be created for all component items.

 Populate record ORDER_REC.ORDLOCS and optionally, ORDER_REC.ORDSKUS
with message data.

ORDER DETAIL MODIFY
 Check required fields on the detail node.
 Verify order/item/loc already exists.
 Verify attributes that cannot be modified are not changed.
 If order quantity is reduced, verify the new order quantity is not below what has

already been received plus what is being shipped or expected.
 If the order line is cancelled or reinstated via the indicators, calculate the new

quantity buckets.
 Populate record ORDER_REC.ORDLOCS and optionally, ORDER_REC.ORDSKUS

with message data.
RMSSUB_XORDER_VALIDATE.CHECK_MESSAGE
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_order_rec OUT NOCOPY ORDER_SQL.ORDER_REC,
 I_message IN “RIB_XOrderRef_REC”,
 I_message_type IN VARCHAR2)

This overloaded function performs all business validation associated with delete
messages and builds the order API record with default values for persistence in the order
related tables. Any invalid records passed at any time results in message failure.
ORDER DELETE
 Check required fields.

PO Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 281

 Verify order number already exists.
 Verify that order is not already shipped or received.
 Delete any allocations tied to the order
 Populate record ORDER_REC.ORDHEAD_ROW with the order number for delete.

ORDER DETAIL DELETE
 Check required fields.
 Verify order/item/loc already exists.
 Verify that order line is not already shipped or received.
 Delete any allocations tied to the order line.
 Populate record ORDER_REC.ORDLOCS with the order/item/location for delete.

Bulk or Single DML Module

Filename: rmssub_xorders/b.pls
All insert, update and delete SQL statements are located in package ORDER_SQL. The
private functions call these packages.
RMSSUB_XORDER_SQL.PERSIST
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_order_rec IN ORDER_SQL.ORDER_REC,
 I_message_type IN VARCHAR2)

This function checks the message type to route the object to the appropriate internal
functions that perform DML insert, update and delete processes.
ORDER CREATE
 Inserts records in the ORDHEAD, ORDSKU, ORDLOC tables

ORDER MODIFY
 Updates a record in the ORDHEAD table.

ORDER DELETE
 Delete an order from ORDHEAD, ORDSKU, ORDLOC tables.

ORDER DETAIL CREATE
 Inserts records in the ORDLOC and optionally, ORDSKU tables

ORDER DETAIL MODIFY
 Updates records in the ORDLOC and/or ORDSKU table.
 Also verify it doesn’t end up with an Approved order with 0 total order quantity.

ORDER DETAIL DELETE
 Delete records from ORDLOC and optionally, ORDSKU tables.
 Also verify it doesn’t end up with an Approved order with no detail or with 0 total

order quantity.

Subscription Designs

282 Oracle Retail Merchandising System

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

XorderCre Order Create Message XOrderDesc.xsd

XorderMod Order Modify Message XOrderDesc.xsd

XorderDel Order Delete Message XOrderRef.xsd

XorderDtlCre Order Detail Create Message XOrderDesc.xsd

XorderDtlMod Order Detail Modify Message XOrderDesc.xsd

XorderDtlDel Order Detail Delete Message XOrderRef.xsd

Design Assumptions
Many ordering functionalities that are available on-line are not supported via this API.
Triggers related to these functionalities should be turned off. Oracle Retail 11 deposit
item functionality is not available in this API; that is to say a deposit contents item on the
order does not automatically create the corresponding container item for the deposit
item.

Tables

TABLE SELECT INSERT UPDATE DELETE

ORDHEAD Yes Yes Yes Yes

ORDSKU Yes Yes Yes Yes

ORDLOC Yes Yes Yes Yes

ITEM_SUPPLIER Yes Yes No No

ITEM_SUPP_COUNTRY Yes Yes No No

ITEM_SUPP_COUNTRY_LOC Yes Yes No No

ITEM_LOC Yes Yes No No

ITEM_LOC_SOH Yes Yes No No

PRICE_HIST No Yes No No

ITEM_ZONE_PRICE Yes No No No

ITEM_MASTER Yes No No No

PACKITEM_BREAKOUT Yes No No No

SHIPMENT Yes No No No

SHIPSKU Yes No No No

APPT_DETAIL Yes No No No

ALLOC_HEADER Yes No No Yes

ALLOC_DETAIL Yes No No Yes

PO Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 283

TABLE SELECT INSERT UPDATE DELETE

STORE Yes No No No

WAREHOUSE Yes No No No

SUPS Yes No No No

DEPS Yes No No No

CURRENCIES Yes No No No

CURRENCY_RATES Yes No No No

TERMS Yes No No No

SYSTEM_OPTIONS Yes No No No

UNIT_OPTIONS Yes No No No

ADDR Yes No No No

Subscription Designs

284 Oracle Retail Merchandising System

Price Change Subscription API

Multiple Sets of Books
RIB supports the multiple sets of books functionality. Customers may need multiple sets
of books because they use multiple currencies, or because a company contains separate
legal entities. See the Stock Ledger Batch chapter of the RMS Operations Guide volume 1
for additional information on multiple sets of books.

Functional Area
Price Change

Design Overview
RMS may subscribe to the price change subscription API. The price change subscription
keeps RMS in sync with the external system that is responsible for maintaining price
changes. The price change subscription updates prices for item/locations and
item/zones that already exist in RMS. It does not create or delete item/locations or
item/zones in RMS tables.
Price changes can be performed at the following levels of the organization hierarchy:
chain, area, region, district, and store. Prices are updated for all stores within the location
group unless marked as exceptions. Because warehouses are not part of the organization
hierarchy, they are only impacted by price changes applied at the warehouse level.
The subscription does not create price change events; it updates the price or resets the
clearance price of an item in real time.
The following rules are used to determine which stores are eligible for a price change:
 All stores in the location group based on the organization hierarchy (chain, area,

region, district);
 Of the stores within the location group, those that have the same local currency as

specified on the price change message;
 Of the stores with the same local currency, those in the same country as specified on

the price change message;
 Of the remaining stores, those not found in the exception list.

RMS exposes an API that will allow external systems to update unit price within RMS.
This RMS API subscribes to external price change modify messages for the purpose of
integrating external price changes maintained in an external system into RMS. It updates
unit prices in RMS and writes to price history table.
At least one detail is required for a message to be valid.
Item, item parent, item parent/differentiator, organizational hierarchy, country, and
currency can be used to maintain price changes. If price changes are created using the
organizational hierarchy (area, region, and so on), then the country and currency filter
the list of stores the price change will affect. Exception stores can be used to further limit
stores impacted by price change.
If any locations (zones) do not exist on item-locations, those locations will not be
processed and the message will not fail. When processing using either (or both) an item
parent/organization hierarchy, records not found are not processed. However, if creating
price changes by transactional level item/single location, then records not found on item-
location will error out.

Price Change Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 285

Price changes can update the single or multi unit retail, or both. Price changes will
update location(s) if item is on clearance at the location(s). Non-sellable packs cannot be
put on price changes.
When processing warehouse locations, those locations must be stockholding warehouses
(virtual warehouse in multi-channel environment, physical in non-multi-channel
environment).
This API only supports location (store) level zone pricing. A zone is equivalent to a
location. In addition, this API only supports warehouse retail (RMS
system_options.sor_pricing_ind = ‘N’).

Consume Module

Filename: rmssub_xpricechgs/b.pls
RMSSUB_XPRICECHG.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure needs to initially ensure that the passed in message type is a valid type
for Price change messages. There is only one valid message type for Price change
messages, xpricechgmod. If the message type is invalid, a status of “E” should be
returned to the external system along with an appropriate error message informing the
external system that the status is invalid.
If the message type is valid, the generic RIB_OBJECT needs to be downcast to the actual
object using the Oracle’s treat function. If the downcast fails, a status of “E” should be
returned to the external system along with an appropriate error message informing the
external system that the object passed in is invalid.
If the downcast is successful, then consume needs to verify that the message passes all of
RMS’s business validation. It calls the
RMSSUB_XPRICECHG_VALIDATE.CHECK_MESSAGE function to determine whether
the message is valid. If the message passed RMS business validation, then the function
will return true, otherwise it will return false. If the message has failed RMS business
validation, a status of “E” should be returned to the external system along with the error
message returned from the CHECK_MESSAGE function.
Once the message has passed RMS business validation, it can be persisted to the RMS
database. It calls the RMSSUB_XPRICECHG_SQL.PERSIST() function. If the database
persistence fails, the function returns false. A status of “E” should be returned to the
external system along with the error message returned from the PERSIST() function.
Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success status, “S”, should be returned to the external system
indicating that the message has been successfully received and persisted to the RMS
database.

Subscription Designs

286 Oracle Retail Merchandising System

Business Validation Module

Filename: rmssub_xpricechgvals/b.pls
It should be noted that some of the business validation is referential or involves
uniqueness. This validation is handled automatically by the referential integrity
constraints and the unique indexes implemented on the database.
RMSSUB_XPRICECHG_VALIDATE.CHECK_MESSAGE
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_price_change_rec OUT RMSSUB_XPRICECHG.PRICE_CHANGE_REC,
 I_message IN RIB_XPriceChgDesc)

This function performs all business validation associated with message and builds the
price change record for persistence.
PRICE CHANGE MODIFY
 Check required fields
 Validate passed in fields (currency, country, UOM, hierarchy level)
 Verify item is above transaction level and approved
 If diff ids are passed in, verify they are valid for passed in item
 Verify item passed in is not a non-sellable pack
 Validate single and/or multi UOMs passed in are of the same UOM class as the

standard UOM
 Convert the new retail passed in from the UOM on the message to item’s standard

UOM
 Determine price change type (single, multi or both)
 POPULATING RECORD

– Retrieve item’s transaction level children if the passed in item is a parent.

– Retrieve all locations based on passed in organizational hierarchy type and
value, currency and country, including those on clearance.

– Exclude locations passed in as exception stores.

– Build price change records
 Populate record with message data.

Price Change Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 287

Bulk or Single DML Module

Filename: rmssub_xpricechgsqls/b.pls
Insert, update and delete SQL statements are located in package PRICING_SQL. The
private functions call these packages.
For non-pack items, this API calls STKLEDGR_PRICING_SQL package to write stock
ledger for price change, which is optimized for performance. For a pack item, this API
calls STKLEDGR_SQL package to write stock ledger.
RMSSUB_XPRICECHG_SQL.PERSIST
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_price_change_rec OUT RMSSUB_XPRICECHG.PRICE_CHANGE_REC)

PRICE CHANGE
 Update the unit retail on ITEM_LOC table for all item/locations if the single unit

retail is changed and the item is not a pack. No update for multi-unit retail. Item
locations that are currently on clearance will also be updated, with clearance
indicator reset to ‘N’o.

 Update the unit retail(s) on ITEM_ZONE_PRICE table for all item/locations.
 Insert into price history all records that have item_loc relation, including sellable

packs.
 TRAN_DATA is only inserted for transactional level items that have ITEM_LOC

records. In addition, TRAN_DATA is only inserted if the old standard unit retail and
the new standard unit retail are NOT the same. Do not insert tran_data if
item/location’s stock_on_hand+in transit quantity is 0.

 For each TRAN_DATA record inserted, a SUP_DATA record will also be inserted

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Type Message Type Description XML Schema Definition (XSD)

Xpricechgmod External Price Change Modify XPriceChgDesc.xsd

Design Assumptions
 Required fields are shown in the RIB documentation.
 Each price change message should be committed separately. A few global temporary

tables are utilized in this API to help performance. Records on these global
temporary tables will be deleted on commit. This API does not delete from these
tables.

 This API only supports location (store) level zone pricing. Zone ID is equivalent to a
location.

 This API only supports warehouse retail (RMS system_options.sor_pricing_ind =
‘N’). As a result, warehouse retail is held on the ITEM_ZONE_PRICE and
ITEM_LOC table in warehouse currency.

 If more than one price change of the same type (single or multi unit retail or both)
occurs on an item/loc for a day, then price history is updated, as opposed to a new
record being inserted for the second price change.

Subscription Designs

288 Oracle Retail Merchandising System

 In the current implementation of this API, POS_MODS are not written for price
change.

Triggers impacting item/location tables should be turned off unless deemed necessary.

Tables

TABLE SELECT INSERT UPDATE DELETE

ITEM_ZONE_PRICE Yes No Yes No

ITEM_LOC Yes No Yes No

ITEM_LOC_SOH Yes No No No

STORE Yes No No No

WH Yes No No No

ITEM_MASTER Yes No No No

DIFF_GROUP_HEAD Yes No No No

DIFF_GROUP_DETAIL Yes No No No

CHAIN Yes No No No

AREA Yes No No No

REGION Yes No No No

DISTRICT Yes No No No

CURRENCIES Yes No No No

COUNTRY Yes No No No

ITEM_SUPP_COUNTRY_LOC Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

PRICE_HIST Yes Yes No No

SUP_DATA No Yes No No

SUPS Yes No No No

TRAN_DATA No Yes No No

CLASS Yes No No No

VAT_ITEM Yes No No No

PERIOD Yes No No No

SYSTEM_OPTIONS Yes No No No

API_ITEM_TEMP Yes Yes No No

API_LOC_TEMP Yes Yes No No

API_ITEM_LOC_TEMP Yes Yes No No

API_PRICE_HIST_TEMP Yes Yes No No

API_PRICE_CHANGE_TEMP Yes Yes No No

API_ORIG_RETAIL_TEMP Yes Yes No No

API_VAT_TEMP Yes Yes No No

Receiving Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 289

Receiving Subscription API

Functional Area
Receipt subscription:
 Purchase Order Receiving
 Stock Order Receiving (including Transfers and Allocations)

Design Overview
RMS receives against purchase orders, transfers, and allocations. Transfers and
allocations are collectively referred to as stock orders. The receipt subscription API
processes carton-level receipts and a number of carton-level exceptions for stock orders
receipts.
Purchase orders continue to be received only at the item level. If errors are encountered
during purchase order receiving, the entire message is rejected and processing of the
message stops.
Stock orders may be received at the bill of lading (BOL), carton, or item level. The
following exceptions are automatically processed by the new stock order receiving
package:
 Receiving against the wrong BOL
 Receiving at a location which is a walk-through store for the intended location
 Wrong store receiving
 Unwanded cartons (those that have not been scanned)

Once RMS determines the appropriate receiving process for a carton, the shipment detail
records are identified and existing line item level receiving is executed. The items are
received into stock and transactions are updated.
Stock order may be received at the BOL (receiving the entire shipment without checking
the details), carton (receiving the entire carton on SHIPSKU without checking the
details), or item level. When an error is encountered during stock order receiving, an
error record is created for the BOL, carton, or item in error. Processing continues for the
remainder of the stock order receipt message. When the entire message has been
processed, all of the error records are then handled. Error records are grouped together
based on the type of error and a complete receipt message is created for each group. All
errors will be collected in an error table, which will then be passed back to the RIB for
further processing or hospitalization.

Carton-Level Receiving
The process for handling carton level receipts is as follows:
1. RMS determines whether a message type contains a receipt or an appointment.
2. If a receipt, RMS determines whether the document type is purchase order (P),

transfer (T), or allocation (A).
3. If a stock order (transfer or allocation), RMS determines whether the receipt is an

item level receipt (SK) or a carton level receipt (BL).

Subscription Designs

290 Oracle Retail Merchandising System

4. If a carton level receipt, two scenarios are possible. The message may contain (a) a
bill of lading number but no carton numbers or (b) a bill of lading and one or more
carton numbers.
 Bill of lading/no cartons: RMS receives all cartons associated with the BOL along

with their contents (line items).
 Bill of lading/with cartons: RMS receives only the specified cartons and their

contents (line items).
5. The status of the cartons determines how the cartons/items are processed. The status

may be Actual (A), Overage (O), or Dummy BOL (D).
Actual (A)
The cartons are received at the correct location against the correct bill of lading.
Overage (O)
The carton does not belong to the current BOL. RMS attempts to match the contents
with the correct BOL.
 If the carton belongs to a BOL at the given location, RMS receives the carton

against the correct BOL at the given location.
 If the carton belongs to a BOL at a related walk-through store, RMS receives the

carton against the intended BOL at the intended location.
 If the carton belongs to a BOL at an unrelated location, RMS uses the wrong store

receiving process.
Dummy BOL (D)
Cartons were received under a dummy bill of lading (BOL) number. RMS attempts to
match the contents with a valid BOL.
 If the carton belongs to a valid BOL at the given location, RMS receives the

carton against the intended BOL at the given location.
 If the carton belongs to a valid BOL at a related walk-through store, RMS

receives the carton against the intended BOL at the intended location.
 If the carton belongs to a valid BOL at an unrelated location, RMS uses the wrong

store receiving process.
The wrong_st_receipt_ind system option controls whether wrong store receiving is
available in RMS. The wrong_st_receipt_ind must be set to Y (Yes) to turn on this
functionality. Wrong store receiving is done at the line item level. Inventory, average
costs, and transactions for both the intended location and actual location are adjusted
to accurately reflect the actual location of the items.

Doc Types
Receipts are processed based upon the document type indicator in the message. The
indicator serves as a flag for RMSSUB_RECEIVE.CONSUME to use when calling the
appropriate function that validates the data and writes the data to the base tables. The
following are the document types and respective package and function names:
 A – for allocation. STOCK_ORDER_RCV_SQL.ALLOC_LINE_ITEM
 P – for purchase order. PO_RCV_SQL.PO_LINE_ITEM
 T – for transfer. STOCK_ORDER_RCV_SQL.TSF_LINE_ITEM

Receiving Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 291

Blind Receipt Processing
A blind receipt is generated by an external application whenever a movement of goods is
initiated by that application. RMS has no prior knowledge of blind receipts. RMS handles
blind receipts when it runs STOCK_ORDER_RCV_SQL (transfers and allocations) or
PO_RCV_SQL (purchase orders). If no appointment record exists on APPT_DETAIL, the
respective function writes a record to the DOC_CLOSE_QUEUE table.
When a transfer, PO or allocation is received at a location, the external location (store or
warehouse) will publish a receipt message to the RIB indicating that the stock has
arrived. RMS will subscribe to the receipt message and update the appropriate tables,
including shipment, transfer/allocation/purchase order, inventory and stock ledger.
For a stock order receiving (including transfers and allocations), the ownership of the
goods moves to the receiving location at the time of shipment. As a result, financial
transaction records are written for the goods shipped when RMS processes a BOL
message. At the receiving time, financial transaction records will only need to be written
for the overage receiving. In addition, the stock order receiving process also handles the
situations where stock is received with no receipt, or if the stock is received at wrong
stores, or if the item received is on a dummy carton.
The receipt message is a hierarchical message that can contain a series of receipts. Each
receipt corresponds to a transfer or an allocation or a PO, and can contain carton or item
details. Purchase orders are only received at the item level. Any errors encountered
during purchase order receiving will cause the entire message to be rejected and
processing of the message will stop.

Subscription Packages

Filename: rmssub_receivings/b.pls
RMSSUB_RECEIVING.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2,
 O_rib_otbdesc_rec OUT “RIB_OTBDesc_REC”,
 O_rib_error_tbl OUT RIB_ERROR_TBL)

This procedure will make calls to receiving or appointment functions based on the value
of I_message_type. If I_message type is RECEIPT_ADD or RECEIPT_UPD, then a call is
made to RMSSUB_RECEIPT.CONSUME, casting the message as a
“RIB_ReceiptDesc_REC.” If I_message_type is APPOINT_HDR_ADD,
APPOINT_HDR_UPD, APPOINT_HDR_DEL, APPOINT_DTL_ADD,
APPOINT_DTL_UPD, or APPOINT_DTL_DEL, then a call is made to
RMSSUB_APPOINT.CONSUME. This is the procedure called by the RIB.
RMSSUB_RECEIVING.HANDLE_ERRORS
 (O_status_code IN OUT VARCHAR2,
 IO_error_message IN OUT VARCHAR2,
 I_cause IN VARCHAR2,
 I_program IN VARCHAR2)

Standard error handling function that wraps the API_LIBRARY.HANDLE_ERROR
function.

Subscription Designs

292 Oracle Retail Merchandising System

Filename: rmssub_receipts/b.pls
RMSSUB_RECEIPT.CONSUME
 O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_rib_receiptdesc_rec IN “RIB_ReceiptDesc_REC”,
 I_message_type IN VARCHAR2,
 O_rib_otbdesc_rec OUT “RIB_OTBDesc_REC”,
 O_rib_error_tbl OUT RIB_ERROR_TBL)

This function performs PO receiving and stock order receiving for each receipt in the
message. Document type ‘P’ is for purchase order receiving, ‘A’ for allocation receiving,
and ‘T’, ‘V’, ‘D’ for transfer receiving. All other document types are invalid.
Calls are made to ORDER_RCV_SQL.INIT_PO_ASN_LOC_GROUP,
STOCK_ORDER_RCV_SQL.INIT_TSF_ALLOC_GROUP, and
RMSSUB_RECEIPT_ERROR.INIT. These functions will initialize global variables and
clean out cached info.
Loop through each receipt in the message. If the document type is 'P' (purchase order)
then loop through the details of the receipt and call ORDER_RCV_SQL.PO_LINE_ITEM
to receive the items on the PO. If the document type is 'T' (transfer) or 'A' (allocation)
then call RMSSUB_STKORD_RECEIPT.CONSUME to handle stock order receiving. If the
document type is not 'P', 'T', ‘D’, ‘V’ or 'A' then stop processing the message and return
an error message.
After processing all receipts, call ORDER_RCV_SQL.FINISH_PO_ASN_LOC_GROUP,
STOCK_ORDER_RCV_SQL.FINISH_TSF_ALLOC_GROUP, and
RMSSUB_RECEIPT_ERROR.FINISH. These functions wrap up the processing for
receiving and error logic.
If any records exist on the rib_otb_tbl returned by
ORDER_RCV_SQL.FINISH_PO_ASN_LOC_GROUP, then create a rib_otbdesc_rec object
and add the rib_otb_tbl to the object.

Filename: rmssub_stkord_receipts/b.pls
RMSSUB_STKORD_RECEIPT.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_appt IN APPT_HEAD.APPT%TYPE,
 I_rib_receipt_rec IN “RIB_Receipt_REC”)

This function will process stock order receiving for all records within the rib_receipt_rec
passed in. First, this function calls RMSSUB_RECEIPT_ERROR.BEGIN_RECEIPT. This
function will hold onto the header level information (appt_nbr and rib_receipt_rec),
which may be used to create error objects.
Next, call RMSSUB_RECEIPT_VALIDATE.CHECK_RECEIPT, which will do validation
at the receipt level. If the validation fails then reject the receipt by calling
RMSSUB_RECEIPT_ERROR.ADD_ERROR.
The package will do carton-level receiving when receipt_type = 'BL', and item-level
receiving when receipt_type = 'SK'.
There are two scenarios for carton-level receiving:
1. The rib_receipt_rec contains a bol_no and no cartons (no detail nodes). In this case

call new function RMSSUB_STKORD_RECEIPT_VALIDATE.CHECK_BOL, which
will do business level validation for the BOL. If the validation succeeds then call
RMSSUB_STKORD_RECEIPT_SQL.PERSIST_BOL. If the validation fails then reject
the BOL receipt by calling RMSSUB_RECEIPT_ERROR.ADD_ERROR.

Receiving Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 293

2. The rib_receipt_rec contains a bol_no and 1 or more cartons (detail nodes). In this
case, loop through each carton in the receipt and call new function
RMSSUB_STKORD_RECEIPT_VALIDATE.CHECK_CARTON. This function will do
business level validation for a carton. If the validation succeeds then call
RMSSUB_STKORD_RECEIPT_SQL.PERSIST_CARTON. If the validation fails
because the carton is a duplicate (check the returned validation_code), then just skip
over the call to PERSIST_CARTON and continue. Duplicates should be ignored with
no error. If the validation fails for any other reason then reject the carton by calling
RMSSUB_RECEIPT_ERROR.ADD_ERROR.

Item (SKU) Level Receiving:
If the receipt is item-level ('SK') then loop through the detail records and call new
function RMSSUB_STKORD_RECEIPT_VALIDATE.CHECK_ITEM, which will do
business level validation for the item details. If the validation succeeds then call
RMSSUB_STKORD_RECEIPT_SQL.PERSIST_LINE_ITEM to execute existing line item
receiving package calls. If the validation fails then reject the item by calling
RMSSUB_RECEIPT_ERROR.ADD_ERROR.
When all details for the receipt have been processed, or if the entire receipt itself is
rejected, then call RMSSUB_RECEIPT_ERROR.END_RECEIPT. This function will group
all similar errors and create the appropriate error objects.
If a break to sell sellable item is on the message, it calls CHECK_ITEM and
GET_ORDERABLE_ITEMS to convert the sellable to its orderable items. For a break to
sell item, the orderable items are on the transfers, allocations, shipment, inventory and
stock ledger.

Filename: rmssub_stkord_rct_vals/b.pls
RMSSUB_STKORD_RECEIPT_VALIDATE.CHECK_RECEIPT
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_valid OUT BOOLEAN,
 O_validation_code OUT VARCHAR2,
 I_rib_receipt_rec IN “RIB_Receipt_REC”)

This function will perform business validation for a receipt. If any of the validations fail
then populate O_validation_error with the specified error code and set O_valid = FALSE.
Otherwise, leave O_validation_error as NULL and set O_valid = TRUE.
RMSSUB_STKORD_RECEIPT_VALIDATE.CHECK_BOL

 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_valid IN OUT BOOLEAN,
 O_validation_code IN OUT VARCHAR2,
 O_shipment IN OUT SHIPMENT.SHIPMENT%TYPE,
 O_item_table IN OUT STOCK_ORDER_RCV_SQL.ITEM_TAB,
 O_qty_expected_table IN OUT STOCK_ORDER_RCV_SQL.QTY_TAB,
 O_inv_status_table IN OUT STOCK_ORDER_RCV_SQL.INV_STATUS_TAB,
 O_carton_table IN OUT STOCK_ORDER_RCV_SQL.CARTON_TAB,
 O_distro_no_table IN OUT STOCK_ORDER_RCV_SQL.DISTRO_NO_TAB,
 O_tampered_ind_table IN OUT STOCK_ORDER_RCV_SQL.TAMPERED_IND_TAB,
 I_bol_no IN SHIPMENT.BOL_NO%TYPE,
 I_to_loc IN SHIPMENT.TO_LOC%TYPE)

This function will perform business validation for receipts using BOL-level receiving.
During validation this function selects data from the SHIPMENT and SHIPSKU tables
and passes this information out through the parameters. This is done so that these tables
do not have to be hit again during the receiving (persist) process. If any of the validations
fail then populate O_validation_error with the specified error code and set O_valid =
FALSE. Otherwise, leave O_validation_error as NULL and set O_valid = TRUE.

Subscription Designs

294 Oracle Retail Merchandising System

RMSSUB_STKORD_RECEIPT_VALIDATE.CHECK_CARTON
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_valid IN OUT BOOLEAN,
 O_validation_code IN OUT VARCHAR2,
 O_ctn_shipment IN OUT SHIPMENT.SHIPMENT%TYPE,
 O_ctn_to_loc IN OUT SHIPMENT.TO_LOC%TYPE,
 O_ctn_bol_no IN OUT SHIPMENT.BOL_NO%TYPE,
 O_item_table IN OUT STOCK_ORDER_RCV_SQL.ITEM_TAB,
 O_qty_expected_table IN OUT STOCK_ORDER_RCV_SQL.QTY_TAB,
 O_inv_status_table IN OUT STOCK_ORDER_RCV_SQL.INV_STATUS_TAB,
 O_carton_table IN OUT STOCK_ORDER_RCV_SQL.CARTON_TAB,
 O_distro_no_table IN OUT STOCK_ORDER_RCV_SQL.DISTRO_NO_TAB,
 O_tampered_ind_table IN OUT STOCK_ORDER_RCV_SQL.TAMPERED_IND_TAB,
 O_wrong_store_ind IN OUT VARCHAR2,
 O_wrong_store IN OUT SHIPMENT.TO_LOC%TYPE,
 I_bol_no IN SHIPMENT.BOL_NO%TYPE,
 I_to_loc IN SHIPMENT.TO_LOC%TYPE,
 I_from_loc IN SHIPMENT.FROM_LOC%TYPE,
 I_from_loc_type IN SHIPMENT.FROM_LOC_TYPE%TYPE,
 I_rib_receiptcartondtl_rec IN “RIB_ReceiptCartonDTL_REC”)

This function will perform business validation for receipts using carton-level receiving.
Based on the carton status, a carton can be received to the intended store only, or as a
dummy carton or to the walk-through store of the intended store.
During validation this function selects data from SHIPMENT and SHIPSKU tables and
passes this information out through the parameters. This is done so that these tables do
not have to be hit again during the receiving (persist) process. If any of the validations
fail then populate O_validation_error with the specified error code and set O_valid =
FALSE. Otherwise, leave O_validation_error as NULL and set O_valid = TRUE.
RMSSUB_STKORD_RECEIPT_VALIDATE.CHECK_ITEM
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_valid OUT BOOLEAN,
 O_validation_code OUT VARCHAR2,
 I_distro_no IN SHIPSKU.DISTRO_NO%TYPE,
 I_dummy_carton_ind IN VARCHAR2)

This function will perform business validation for item details. If any of the validations
fail then populate O_validation_error with the specified error code and set O_valid =
FALSE. Otherwise, leave O_validation_error as NULL and set O_valid = TRUE.
RMSSUB_STKORD_RECEIPT_SQL.PERSIST_BOL

 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_appt IN APPT_HEAD.APPT%TYPE,
 I_doc_type IN APPT_DETAIL.DOC_TYPE%TYPE,
 I_shipment IN SHIPMENT.SHIPMENT%TYPE,
 I_to_loc IN SHIPMENT.TO_LOC%TYPE,
 I_bol_no IN SHIPMENT.BOL_NO%TYPE,
 I_item_table IN STOCK_ORDER_RCV_SQL.ITEM_TAB,
 I_qty_expected_table IN STOCK_ORDER_RCV_SQL.QTY_TAB,
 I_inv_status_table IN STOCK_ORDER_RCV_SQL.INV_STATUS_TAB,
 I_carton_table IN STOCK_ORDER_RCV_SQL.CARTON_TAB,
 I_distro_no_table IN STOCK_ORDER_RCV_SQL.DISTRO_NO_TAB,
 I_tampered_ind_table IN STOCK_ORDER_RCV_SQL.TAMPERED_IND_TAB)

This function calls STOCK_ORDER_RCV_SQL.TSF_BOL_CARTON (for transfers) and
STOCK_ORDER_RCV_SQL.ALLOC_BOL_CARTON (for allocations) to perform BOL
level receiving.

Receiving Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 295

RMSSUB_STKORD_RECEIPT_SQL.PERSIST_CARTON
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_appt IN APPT_HEAD.APPT%TYPE,
 I_doc_type IN APPT_DETAIL.DOC_TYPE%TYPE,
 I_shipment IN SHIPMENT.SHIPMENT%TYPE,
 I_to_loc IN SHIPMENT.TO_LOC%TYPE,
 I_bol_no IN SHIPMENT.BOL_NO%TYPE,
 I_receipt_no IN APPT_DETAIL.RECEIPT_NO%TYPE,
 I_disposition IN INV_STATUS_CODES.INV_STATUS_CODE%TYPE,
 I_receipt_date IN SHIPMENT.RECEIVE_DATE%TYPE,
 I_item_table IN STOCK_ORDER_RCV_SQL.ITEM_TAB,
 I_qty_expected_table IN STOCK_ORDER_RCV_SQL.QTY_TAB,
 I_weight IN ITEM_LOC_SOH.AVERAGE_WEIGHT%TYPE,
 I_weight_uom IN UOM_CLASS.UOM%TYPE,
 I_inv_status_table IN STOCK_ORDER_RCV_SQL.INV_STATUS_TAB,
 I_carton_table IN STOCK_ORDER_RCV_SQL.CARTON_TAB,
 I_distro_no_table IN STOCK_ORDER_RCV_SQL.DISTRO_NO_TAB,
 I_tampered_ind_table IN STOCK_ORDER_RCV_SQL.TAMPERED_IND_TAB,
 I_wrong_store_ind IN VARCHAR2,
 I_wrong_store IN SHIPMENT.TO_LOC%TYPE)

This function calls STOCK_ORDER_RCV_SQL.TSF_BOL_CARTON (for transfers) and
STOCK_ORDER_RCV_SQL.ALLOC_BOL_CARTON (for allocations) to perform carton
level receiving.
RMSSUB_STKORD_RECEIPT_SQL.PERSIST_LINE_ITEM
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_location IN SHIPMENT.TO_LOC%TYPE,
 I_bol_no IN SHIPMENT.BOL_NO%TYPE,
 I_distro_no IN SHIPSKU.DISTRO_NO%TYPE,
 I_distro_type IN VARCHAR2,
 I_appt IN APPT_HEAD.APPT%TYPE,
 I_rib_receiptdtl_rec IN “RIB_ReceiptDTL_REC”)

This function calls STOCK_ORDER_RCV_SQL.TSF_LINE_ITEM (for transfers) and
STOCK_ORDER_RCV_SQL.ALLOC_LINE_ITEM (for allocations) to perform item level
receiving.

Filename: rmssub_receipt_errors/b.pls
For each item or carton found to be in error during the receiving process, an error record
will be created. When all details for a receipt have been processed, the error records for
that receipt will be grouped by the error type. Error objects will be collected in an error
table, which will be passed back to the RIB for additional processing. This type of error
handling will allow all valid records to be processed even when an invalid record is
encountered.
RMSSUB_RECEIPT_ERROR.INIT
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE)

This new function will initialize variables for error processing. It will be called in the 'init'
section of the RMSSUB_RECEIPT.CONSUME() function.
RMSSUB_RECEIPT_ERROR.BEGIN_RECEIPT
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_appt_nbr IN APPT_HEAD.APPT%TYPE,
 I_rib_receipt_rec IN “RIB_Receipt_REC”)

This new function will be called once for each receipt within
RMSSUB_STKORD_RECEIPT.CONSUME(). It will copy the header information into the
package level variables. This information will be used when an error record is created.

Subscription Designs

296 Oracle Retail Merchandising System

RMSSUB_RECEIPT_ERROR.ADD_ERROR
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_error_type IN VARCHAR2,
 I_error_code IN VARCHAR2,
 I_error_desc IN VARCHAR2,
 I_error_level IN VARCHAR2,
 I_error_object IN RIB_OBJECT)

Used whenever an item or carton error occurs within the stock order receiving process.
All calls to this function should occur within RMSSUB_STKORD_RECEIPT.CONSUME.
Parameter explanation:
 O_error_message: any error message created if this function fails (EXCEPTION).
 I_error_type: either 'BL' for business logic process error, or 'SY' for system error.

Currently, 'BL' type errors will be limited to BOL/carton level business validation
errors.

 I_error_code: a specific code to identify why/how the error occurred.
 I_error_desc: text description of the error.
 I_error_level: lets the package know how to cast the I_detail_rec. Valid values are

'RECEIPT', 'BOL', 'CARTON', 'ITEM'.
 I_detail_rec: record which is in error. May be a rib_receipt_rec (RECEIPT or BOL

level), rib_receiptdtl_rec (ITEM level), or rib_receiptcartondtl_rec (CARTON level).
This value will be cast based on I_error_level.

This function will create a new error record based on the error level passed in (casting the
I_error_object appropriately). If the error level is RECEIPT or BOL, then a rib_receipt_rec
is created. If the error level is CARTON, a rib_receiptcartondtl_rec is created. If error
level is ITEM, a rib_receiptdtl_rec is created. After creating this error record, add it to the
table of error records.
RMSSUB_RECEIPT_ERROR.END_RECEIPT
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE)

This function will be called from RMSSUB_STKORD_RECEIPT.CONSUME when all
details of a receipt have been processed. It will take all of the error records for this receipt
and group them according to the type of error. It will then create an error object for each
error type, adding detail nodes for each error record. When this is finished, it will add all
of the error records to the error table.
RMSSUB_RECEIPT_ERROR.FINISH
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_rib_error_tbl OUT RIB_ERROR_TBL)

If any errors exist on the package level error table then copy the error table into the
output parameter (O_rib_error_tbl), which in turn gets passed out to the RIB for further
processing. This function will be called in the 'finish' section of the
RMSSUB_STKORD_RECEIPT.CONSUME function.

Receiving Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 297

Filename: stkordrcvs/b.pls
STOCK_ORDER_RCV_SQL.TSF_BOL_CARTON
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_appt IN APPT_HEAD.APPT%TYPE,
 I_shipment IN SHIPMENT.SHIPMENT%TYPE,
 I_to_loc IN SHIPMENT.TO_LOC%TYPE,
 I_bol_no IN SHIPMENT.BOL_NO%TYPE,
 I_receipt_no IN APPT_DETAIL.RECEIPT_NO%TYPE,
 I_disposition IN INV_STATUS_CODES.INV_STATUS_CODE%TYPE,
 I_tran_date IN PERIOD.VDATE%TYPE,
 I_item_table IN ITEM_TAB,
 I_qty_expected_table IN QTY_TAB,
 I_weight IN ITEM_LOC_SOH.AVERAGE_WEIGHT%TYPE,
 I_weight_uom IN UOM_CLASS.UOM%TYPE,
 I_inv_status_table IN INV_STATUS_TAB,
 I_carton_table IN CARTON_TAB,
 I_distro_no_table IN DISTRO_NO_TAB,
 I_tampered_ind_table IN TAMPERED_IND_TAB,
 I_wrong_store_ind IN VARCHAR2,
 I_wrong_store IN SHIPMENT.TO_LOC%TYPE)

This function performs the BOL or carton level receiving for a transfer. It does the
following:
 Update shipment to received status along with the received date.
 For each item on the SHIPSKU, build an API record for transferring the item. An

orderable but non-sellable and non-inventory item cannot be transferred. The
message will contain physical locations, but a transfer created in RMS (non-‘EG’
type) will contain virtual locations only. Convert the physical locations to virtual
locations if necessary.

 Because an externally generated transfer (type ‘EG’) holds physical locations on
TSFHEAD, and physical warehouses do not have transfer entities, this API does not
support the receiving of an externally generated warehouse to warehouse transfer
when system option INTERCOMPANY_TSF_IND is ‘Y’. However, it does allow
store to warehouse ‘EG’ transfer, because it is assumed that store is sending
merchandise to the virtual warehouse within the same channel, hence the same
transfer entity.

 When receiving a transfer to a finisher location, all stock will be received into the
available bucket regardless of the inventory disposition on the message.

 When system option WRONG_ST_RECEIPT is ‘Y’, stock can be received at a store
not originally intended. Inventory and stock ledger will be adjusted for both the
intended and the actual receiving store.

 Update received quantity on TSFDETAIL. If it is a wrong store receiving, update the
reconciled quantity on TSFDETAIL.

 Update received quantity and received weight on SHIPSKU. If SHIPSKU is not
found, create a new receipt for that.

 For an ‘EG’ type of transfer, distribute the received quantity among the virtual
locations of the physical location based on SHIPMENT_INV_FLOW, and update the
received quantity on SHIPMENT_INV_FLOW.

 For an ‘MRT’ type of transfer, update received quantity on MRT_ITEM_LOC.
 Update APPT_DETAIL if appointment exists for the transfer detail; otherwise, insert

into DOC_CLOSE_QUEUE.

Subscription Designs

298 Oracle Retail Merchandising System

 Call DETAIL_PROCESSING to perform the bulk of the transfer receiving logic,
including moving inventory from the in transit to the stock on bucket for the
receiving location. For overage receiving, adjust stock on hand for both the sending
and receiving locations, adjust av_cost for the receiving location and write stock
ledger.

STOCK_ORDER_RCV_SQL.TSF_LINE_ITEM
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_loc IN ITEM_LOC.LOC%TYPE,
 I_item IN ITEM_MASTER.ITEM%TYPE,
 I_qty IN TRAN_DATA.UNITS%TYPE,
 I_weight IN ITEM_LOC_SOH.AVERAGE_WEIGHT%TYPE,
 I_weight_uom IN UOM_CLASS.UOM%TYPE,
 I_transaction_type IN VARCHAR2,
 I_tran_date IN PERIOD.VDATE%TYPE,
 I_receipt_number IN APPT_DETAIL.RECEIPT_NO%TYPE,
 I_bol_no IN SHIPMENT.BOL_NO%TYPE,
 I_appt IN APPT_HEAD.APPT%TYPE,
 I_carton IN SHIPSKU.CARTON%TYPE,
 I_distro_type IN VARCHAR2,
 I_distro_number IN TSFHEAD.TSF_NO%TYPE,
 I_disp IN INV_STATUS_CODES.INV_STATUS_CODE%TYPE,
 I_tampered_ind IN SHIPSKU.TAMPERED_IND%TYPE,
 I_dummy_carton_ind IN SYSTEM_OPTIONS.DUMMY_CARTON_IND%TYPE)

Similar to TSF_BOL_CARTON, this function performs transfer receiving for one line
item. In addition, if system_options DUMMY_CARTON_IND = ‘Y’ and the item is
indicated as a dummy carton on the message, it will write staging records to the
DUMMY_CARTON_STAGE table. The actual matching and receiving of dummy carton
transfers will be performed during the batch cycle via dummyctn.pc.

STOCK_ORDER_RCV_SQL.ALLOC_BOL_CARTON
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_appt IN APPT_HEAD.APPT%TYPE,
 I_shipment IN SHIPMENT.SHIPMENT%TYPE,
 I_to_loc IN SHIPMENT.TO_LOC%TYPE,
 I_bol_no IN SHIPMENT.BOL_NO%TYPE,
 I_receipt_no IN APPT_DETAIL.RECEIPT_NO%TYPE,
 I_disposition IN INV_STATUS_CODES.INV_STATUS_CODE%TYPE,
 I_tran_date IN PERIOD.VDATE%TYPE,
 I_item_table IN ITEM_TAB,
 I_qty_expected_table IN QTY_TAB,
 I_weight IN ITEM_LOC_SOH.AVERAGE_WEIGHT%TYPE,
 I_weight_uom IN UOM_CLASS.UOM%TYPE,
 I_inv_status_table IN INV_STATUS_TAB,
 I_carton_table IN CARTON_TAB,
 I_distro_no_table IN DISTRO_NO_TAB,
 I_tampered_ind_table IN TAMPERED_IND_TAB,
 I_wrong_store_ind IN VARCHAR2,
 I_wrong_store IN SHIPMENT.TO_LOC%TYPE)

Receiving Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 299

This function performs the BOL or carton level receiving for an allocation. It does the
following:
 Update shipment to received status along with the received date.
 For each item on the SHIPSKU, build an API record for allocating the item. An

orderable but non-sellable and non-inventory item cannot be allocated.
 Validate that item is on the allocation.
 When system option WRONG_ST_RECEIPT is ‘Y’, stock can be received at a store

not originally intended. Inventory and stock ledger will be adjusted for both the
intended and the actual receiving store.

 Validate that ALLOC_DETAIL exists. Update received quantity on ALLOC_DETAIL.
If it is a wrong store receiving, update the reconciled quantity on ALLOC_DETAIL.

 Update received quantity and received weight on SHIPSKU. If SHIPSKU is not
found, create a new receipt for that.

 Update APPT_DETAIL if appointment exists for the allocation detail; otherwise,
insert into DOC_CLOSE_QUEUE.

 Call DETAIL_PROCESSING to perform the bulk of the allocation receiving logic,
including moving inventory from the in transit to the stock on bucket for the
receiving location. For overage receiving, adjust stock on hand for both the sending
and receiving locations, adjust av_cost for the receiving location and write stock
ledger.

STOCK_ORDER_RCV_SQL.ALLOC_LINE_ITEM
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_loc IN ITEM_LOC.LOC%TYPE,
 I_item IN ITEM_MASTER.ITEM%TYPE,
 I_qty IN TRAN_DATA.UNITS%TYPE,
 I_weight IN ITEM_LOC_SOH.AVERAGE_WEIGHT%TYPE,
 I_weight_uom IN UOM_CLASS.UOM%TYPE,
 I_transaction_type IN VARCHAR2,
 I_tran_date IN PERIOD.VDATE%TYPE,
 I_receipt_number IN APPT_DETAIL.RECEIPT_NO%TYPE,
 I_bol_no IN SHIPMENT.BOL_NO%TYPE,
 I_appt IN APPT_HEAD.APPT%TYPE,
 I_carton IN SHIPSKU.CARTON%TYPE,
 I_distro_type IN VARCHAR2,
 I_distro_number IN ALLOC_HEADER.ALLOC_NO%TYPE,
 I_disp IN INV_STATUS_CODES.INV_STATUS_CODE%TYPE,
 I_tampered_ind IN SHIPSKU.TAMPERED_IND%TYPE,
 I_dummy_carton_ind IN SYSTEM_OPTIONS.DUMMY_CARTON_IND%TYPE)

Similar to ALLOC_BOL_CARTON, this function performs allocation receiving for one
line item. In addition, if system_options DUMMY_CARTON_IND = ‘Y’ and the item is
indicated as a dummy carton on the message, it will write staging records to the
DUMMY_CARTON_STAGE table. The actual matching and receiving of dummy carton
allocations will be performed during the batch cycle via dummyctn.pc.
STOCK_ORDER_RCV_SQL.INIT_TSF_ALLOC_GROUP
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE)

For performance reasons, bulk processing is used for stock order receiving. This function
initializes global variables for bulk processing and populates system options.
STOCK_ORDER_RCV_SQL.FINISH_TSF_ALLOC_GROUP
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE)

For performance reasons, bulk processing is used for stock order receiving. This function
bulk updates APPT_DETAIL, bulk updates DOC_CLOSE_QUEUE and TRAN_DATA.

Subscription Designs

300 Oracle Retail Merchandising System

Filename: ordrcvs/b.pls
ORDER_RCV_SQL.PO_LINE_ITEM
 (O_error_message IN OUT rtk_errors.rtk_text%TYPE,
 I_loc IN item_loc.loc%TYPE,
 I_order_no IN ordhead.order_no%TYPE,
 I_item IN item_master.item%TYPE,
 I_qty IN tran_data.units%TYPE,
 I_tran_type IN VARCHAR2,
 I_tran_date IN DATE,
 I_receipt_number IN appt_detail.receipt_no%TYPE,
 I_asn IN shipment.asn%TYPE,
 I_appt IN appt_head.appt%TYPE,
 I_carton IN shipsku.carton%TYPE,
 I_distro_type IN VARCHAR2,
 I_distro_number IN alloc_header.alloc_no%TYPE,
 I_destination IN alloc_detail.to_loc%TYPE,
 I_disp IN inv_status_codes.inv_status_code%TYPE,
 I_unit_cost IN ordloc.unit_cost%TYPE,
 I_shipped_qty IN shipsku.qty_expected%TYPE,
 I_weight IN item_loc_soh.average_weight%TYPE,
 I_weight_uom IN UOM_CLASS.UOM%TYPE,
 I_online_ind IN VARCHAR2)

This function is called once for each PO line item received. It validates input and calls
RCV_LINE_ITEM for each item/location.
 In a multi-channel environment, if the PO received is a cross-dock PO to a

warehouse, an allocation must exist for the PO/allocation/item/warehouse
combination. The message will contain a physical warehouse, whereas
ALLOC_HEADER will contain a virtual warehouse.

 In a multi-channel environment, if the item is received to a physical warehouse, then
this function will call the distribution logic to determine each item/virtual
warehouse/quantity, and call RCV_LINE_ITEM for each of these combinations.

 If a simple pack catch weight item is received, it also updates SHIPSKU weight
received and weight received UOM.

ORDER_RCV_SQL.RCV_LINE_ITEM
 (O_error_message IN OUT rtk_errors.rtk_text%TYPE,
 I_phy_loc IN item_loc.loc%TYPE,
 I_loc IN item_loc.loc%TYPE,
 I_loc_type IN item_loc.loc_type%TYPE,
 I_order_no IN ordhead.order_no%TYPE,
 I_item IN item_master.item%TYPE,
 I_qty IN tran_data.units%TYPE,
 I_tran_type IN VARCHAR2,
 I_tran_date IN DATE,
 I_receipt_number IN appt_detail.receipt_no%TYPE,
 I_asn IN shipment.asn%TYPE,
 I_appt IN appt_head.appt%TYPE,
 I_carton IN shipsku.carton%TYPE,
 I_distro_type IN VARCHAR2,
 I_distro_number IN tsfhead.tsf_no%TYPE,
 I_destination IN alloc_detail.to_loc%TYPE,
 I_disp IN inv_status_codes.inv_status_code%TYPE,
 I_unit_cost IN ordloc.unit_cost%TYPE,
 I_shipped_qty IN shipsku.qty_expected%TYPE,
 I_weight IN item_loc_soh.average_weight%TYPE,
 I_weight_uom IN UOM_CLASS.UOM%TYPE,
 I_online_ind IN VARCHAR2)

This function is called for each item/location combination. It validates input and
performs PO receiving logic for each item.

Receiving Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 301

 Receiving (tran_type = ‘R’) must be against a valid approved order; adjustment
(tran_type = ‘A’) must be against a valid approved or closed order.

 Item on the message may be a referential item. Get its transaction level item.
 An orderable, but non-sellable and non-inventory item cannot be received.
 For a deposit content item, its container item is also received and added to the order

if not already on the order.
 Insert or update ORDLOC for quantity received.
 Update APPT_DETAIL if appointment exists; otherwise, insert into

DOC_CLOSE_QUEUE.
 Insert or update SHIPMENT to received status.
 Insert or update SHIPSKU for received quantity. If SHIPSKU.QTY_RECEIVED is

updated, also update INVC_MATCH_WKSHT.MATCH_TO_QTY.
 If no deals exist for this order/item/loc, then call INVC_SQL.UPDATE_INVOICE to

perform invoice matching logic.
 Update average cost and stock on hand for the stock received. If a pack is on the

order, the updates are performed for the component items.
 Write TRAN_DATA records (tran code 20) for the stock received. If a pack is on the

order, TRAN_DATA records are written for the component items.
 Write SUP_DATA.
 Request tickets to be printed if location is a store.
 If this is an adjustment to a closed order, set status back to 'A'pproved.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

receiptcre Receipt Create Message ReceiptDesc.xsd

receiptmod Receipt Modify (Adjustment) Message ReceiptDesc.xsd

Design Assumptions
1. The stock order subscription process supports the break-to-sell functionality.

Transfers, allocations and shipments in RMS will only contain break to sell orderable
items. Inventory adjustment and stock ledger will be performed on the orderable
only, not the sellable.

2. The stock order and order subscription process supports the catch weight
functionality. It is assumed that a break-to-sell sellable item cannot be a simple pack
catch weight item.

Subscription Designs

302 Oracle Retail Merchandising System

3. Catch weight functionality is not completely rounded out in this release. For
instance, it is not applied to the following areas:
a. Any of the retail calculations (including total_retail on TRAN_DATA and retail

markup/markdown);
b. The total amount on SUP_DATA;
c. Open to buy buckets;
d. When a catch weight component item’s standard UOM is a MASS UOM,

TRAN_DATA.units is based on V_PACKSKU_QTY.qty instead of the actual
weight.

4. An externally generated transfer will contain physical locations. When system
options INTERCOMPANY_TSF_IND = ‘Y’, the stock order receiving process
currently does not support the receiving of an externally generated transfer that
involves a warehouse to warehouse transfer. This is because a physical location does
not have transfer entities.

5. PO receiving does not handle break to sell items.

Tables

TABLE SELECT INSERT UPDATE DELETE

TSFHEAD Yes No Yes No

TSFDETAIL Yes Yes Yes No

ALLOC_HEADER Yes No Yes No

ALLOC_DETAIL Yes No Yes No

ORDHEAD Yes No Yes No

ORDSKU Yes Yes Yes No

ORDLOC Yes Yes Yes No

SHIPMENT Yes Yes Yes No

SHIPSKU Yes Yes Yes No

TRAN_DATA No Yes No No

SUP_DATA No Yes No No

ITEM_LOC_SOH Yes Yes Yes No

ITEM_LOC Yes Yes No No

ITEM_ZONE_PRICE Yes Yes No No

PRICE_HIST No Yes No No

SHIPITEM_INV_FLOW Yes Yes Yes No

MRT_ITEM_LOC Yes No Yes No

APPT_DETAIL Yes No Yes No

DOC_CLOSE_QUEUE No Yes No No

DUMMY_CARTON_STAGE No Yes No No

ALC_HEAD Yes Yes Yes No

CONTRACT_HEADER Yes No Yes No

CONTRACT_DETAIL Yes No Yes No

Receiving Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 303

TABLE SELECT INSERT UPDATE DELETE

INVC_MATCH_WKSHT Yes No Yes No

INVC_HEAD Yes Yes Yes No

INVC_DETAIL Yes Yes Yes No

INVC_TOLERANCE Yes Yes Yes Yes

INVC_XREF Yes Yes No No

INVC_MATCH_VAT Yes Yes Yes No

TERMS Yes No No No

SUPS Yes No No No

VAT_REGION Yes No No No

DEPS Yes No No No

WEEK_DATA Yes No No No

MONTH_DATA Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

ITEM_SUPP_COUNTRY_LOC Yes Yes No No

ITEM_SUPP_COUNTRY_DIM Yes No No No

UOM_CLASS Yes No No No

NWP Yes Yes Yes No

STORE Yes No No No

WH Yes No No No

ITEM_MASTER Yes No No No

V_PACKSKU_QTY Yes No No No

ITEM_XFORM_HEAD Yes No No No

ITEM_XFORM_DETAIL Yes No No No

CURRENCIES Yes No No No

CURRENCY_RATES Yes No No No

PERIOD Yes No No No

SYSTEM_OPTIONS Yes No No No

Subscription Designs

304 Oracle Retail Merchandising System

RTV Subscription API

Functional Area
RTV subscription

Business Overview
RMS subscribes to return-to-vendor (RTV) messages from the RIB. When an RTV is
shipped out from a warehouse or store, the RTV information is sent from the external
system (such as RWMS) to the RIB. RMS subscribes to the RTV information as published
from the RIB and places the information onto RMS tables, depending on the validity of
the records enclosed within the message.
The RTV message can be processed as a flat message when the header description
contains information for one RTV item. The message can also be processed as a
hierarchical message when the detail node is populated with one or more RTV items.
RMS primarily uses these messages to update inventory quantities and stock ledger
values.

Subscription Package

Filename: rmssub_rtvs/b.pls
RMSSUB_RTV.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure will need to initially ensure that the passed in message type is a valid
type for RTV messages. The valid message types for RTV messages are listed in the
Message XSD section below.
If the message type is invalid, a status of “E” would be returned to the external system
along with an appropriate error message informing the external system that the message
type is invalid.
If the message type is valid, the generic RIB_OBJECT will be downcast to the actual
object using the Oracle’s treat function. If the downcast fails, a status of “E” is returned to
the external system along with an appropriate error message informing the external
system that the object passed in is invalid.
If the downcast is successful, then consume will call PARSE_RTV to parse the RTV
message and PROCESS_RTV to perform business validation and desired functionality.
Any time the message fails business validation, a status of “E” is returned to the external
system along with an appropriate error message.
Once the message has been successfully processed, a success status, “S”, is returned to
the external system indicating that the message has been successfully received and
persisted to the RMS database.
PARSE_RTV
This function parses the RIB_OBJECT and builds an API rtv_record for processing.
PROCESS_RTV
This function calls RTV_SQL.APPLY_PROCESS to perform all business validation and
desired functionality associated with a RTV message.

RTV Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 305

For break to sell items, if a sellable only item is on the message, call CHECK_ITEMS and
GET_ORDERABLE_ITEMS to convert the sellable item(s) to the corresponding orderable
item(s). The orderable items will be inserted or updated on the tables affected by an RTV.
The RTV_SQL.APPLY_PROCESS is called for each of the orderable items and each of the
regular items.
CHECK_ITEMS

This function separates the item details on the message into two groups: one contains
sellable only items and one contains regular items.
GET_ORDERABLE_ITEMS
This function builds a collection of orderable items based on the sellable items. It calls
ITEM_XFORM_SQL.RTV_ORDERABLE_ITEM_INFO to distribute the sellable quantities
among the orderable items.

Filename: rtvs/b.pls
RTV_SQL.APPLY_PROCESS
This function performs business validation and desired functionality for a RTV message.
It includes the following:
 Verify that an orderable but non-sellable and non-inventory item cannot be an RTV

item.
 Verify that an RTV item must be a tran-level or above tran-level item.
 If the RTV item is a simple pack catch weight item, verify that weight and weight

unit of measure (UOM) are either both defined or both NULL, and weight UOM is in
the MASS UOM class.

 Verify that the item supplier relation exists.
 Verify that the location is a valid store or warehouse.
 Verify that the item/loc relation exists.
 If returning a pack to a warehouse, the pack must be received as pack at the

warehouse.
 Verify that from disposition is a valid inventory status code (on

INV_STATUS_CODES).
 Verify that the reason code is a valid RTV reason code (code type ‘RTVR’ on

CODE_DETAIL).
 For an externally generated RTV, if multi-channel is on and the location is a

warehouse, then physical location is on the message. RTV quantity will be
distributed among the virtual locations of the physical location.

 Check the existence of RTV in RTV_HEAD based on: a) rtv_order_no; b) ext_ref_no
and location. An RTV will be updated if it already exists and inserted if not. The RTV
will be marked as shipped.

 Check the existence of RTV item in RTV_DETAIL based on: rtv_order_no, item,
reason and inventory status. An RTV_DETAIL will be updated if it already exists
and inserted if not.

 If the RTV item is a content item of a deposit item, RTV_DETAIL will be inserted or
updated for the associated container item.

 Determine RTV unit cost as the following:

– Use the unit cost on the RTV message if defined. It is in location currency.
Otherwise,

– Use RTV_DETAIL.unit_cost if exists. It is in supplier currency. Otherwise,

Subscription Designs

306 Oracle Retail Merchandising System

– Use the last receipt cost if exists. It is in location currency. Otherwise,

– Use item’s WAC at the location. It is in location currency.
The unit cost is used to evaluate the cost of the RTV goods. The cost values on
RTV tables are written in supplier currency, but all TRAN_DATA records are
written in location currency.

 If the RTV item is a simple pack catch weight item, the total RTV cost is based on
weight.

 Update the following stock buckets on ITEM_LOC_SOH: RTV_QTY,
STOCK_ON_HAND, PACK_COMP_SOH. For a simple pack catch weight item at
the warehouse, also update average weight.

 Write the following TRAN_DATA records:

– 24 – for RTV. It writes units, total_cost and total_retail.

– 71/72 – for cost variance between item’s WAC at the location and RTV unit cost.
It writes units and total_cost.

– 65 – for restocking fees. For a non-MRT type of RTV, the restocking fee is written
for the RTV location. For an MRT type of RTV, the restocking fee is distributed
among the MRT locations. It writes units and total_cost.

– 22 – for stock adjustment, if stock counting has already happened at the store for
the item.

If the RTV item is a pack, TRAN_DATA is written for component items. If the RTV
location is a physical warehouse, TRAN_DATA is written for virtual locations.
TRAN_DATA total cost and total retail are always written in location currency.

 If system options ext_invc_match_ind is on, create or update INVC_HEAD and
INVC_DETAIL for the RTV.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

rtvcre RTV Create Message RTVDesc.xsd

Design Assumptions
1. Catch weight functionality is not completely rounded out in this release. For

instance, it is not applied to the following areas:
 Any of the retail calculations (including total_retail on TRAN_DATA and retail

markup/markdown);
 The total amount on SUP_DATA;
 Open to buy buckets;
 When a catch weight component item’s standard UOM is a MASS UOM,

TRAN_DATA.units is based on V_PACKSKU_QTY.qty instead of the actual
weight.

2. MRT RTV can only be created in RMS. Therefore it will only contain virtual
locations. Physical location distribution logic does not apply to MRT RTVs.

RTV Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 307

Tables

TABLE SELECT INSERT UPDATE DELETE

RTV_HEAD Yes Yes Yes No

RTV_DETAIL Yes Yes Yes No

ITEM_LOC_SOH Yes No Yes No

TRAN_DATA No Yes No No

INV_STATUS_CODES Yes No No No

CODE_DETAIL Yes No No No

ITEM_MASTER Yes No No No

ITEM_SUPPLIER Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

ITEM_LOC Yes No No No

STORE Yes No No No

WH Yes No No No

SHIPMENT Yes No No No

SHIPSKU Yes No No No

DEPS Yes No No No

SUPS Yes No No No

ADDR Yes No No No

UOM_CLASS Yes No No No

V_PACKSKU_QTY Yes No No No

MRT_ITEM_LOC Yes No No No

ITEM_XFORM_HEAD Yes No No No

ITEM_XFORM_DETAIL Yes No No No

INVC_HEAD Yes Yes Yes Yes

INVC_DETAIL Yes Yes No Yes

INVC_NON_MERCH No Yes No Yes

INVC_MERCH_VAT Yes Yes Yes Yes

INVC_DETAIL_VAT Yes No No Yes

INVC_MATCH_QUEUE Yes No No Yes

INVC_DISCOUNT Yes No No Yes

INVC_TOLERANCE Yes No No Yes

ORDLOC_INVC_COST Yes No Yes No

NON_MERCH_CODE_HEAD Yes No No No

SYSTEM_OPTIONS Yes No No No

Subscription Designs

308 Oracle Retail Merchandising System

Stock Order Status Subscription API

Functional Area
Stock Order Status.

Business Overview
RMS subscribes to stock order status messages from the RIB. Stock order status messages
are published by an external application, such as a warehouse management system.
(RWMS, for example). RMS uses the data contained in the messages to:
 Update the following tables when the status of the ‘distro’ changes at the warehouse:

 ALLOC_DETAIL
 ITEM_LOC_SOH
 TSF_DETAIL

 Determine when the warehouse is processing a transfer or allocation. In-process
transfers or allocations cannot be edited and are determined by the initial and final
quantities to be filled by the external system.

Stock Order Status Explanations
The following tables describe the stock order statuses for both transfers and allocation
document types and what occurs in RMS after receiving the respective status.

Stock order status received in messageon a transfer
(where ‘distro_document_type’ = ‘T’)

What RMS does

DS
(Details Selected)

When RWMS publishes a message on a transfer with a status of
DS (Details Selected), RMS will increase the selected quantity
on TSFDETAIL for the transfer/item combination.

Increase tsfdetail.selected_qty

DU
(Details Un-selected)

When RWMS publishes a message on a transfer with a status of
DU (Details Un-Selected), RMS decreases the selected quantity
on TSFDETAIL for the transfer/item combination.

Decrease tsfdetail.selected_qty

Stock Order Status Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 309

Stock order status received in message

on a TRANSFER
(where ‘distro_document_type’ = ‘T’)

What RMS does

NI
(WMS Line Cancellation)

When RWMS publishes a message on a transfer with a status
of NI (No Inventory – WMS Line Cancellation), RMS will
decrease the selected quantity by the quantity on the
message. RMS will also increase the cancelled quantity,
decrease the transfer quantity, decrease the reserved
quantity* for the from location, and decrease the expected
quantity* for the to location by the lesser of 1.) the quantity
on the message; 2.) the transfer quantity – shipped quantity.

 *If the transfer status is not Closed.

Decrease tsfdetail.select_qty, and
tsfdetail.tsf_qty increase
tsfdetail.cancelled_qty, decrease
item_loc_soh.tsf_reserved_qty for
the from location and
item_loc_soh.tsf_expected_qty for
the from location

PP
(Distributed)

When RWMS publishes a message on a transfer with a status
of PP (Pending Pick - Distributed), RMS will decrease the
selected quantity and increase the distro quantity.

Decrease tsfdetail.selected_qty,
increase tsfdetail.distro_qty

PU
(Un-Distribute)

When RWMS publishes a message on a transfer with a status
of PU (Un-Distribute), RMS will decrease the distributed qty.

Decrease tsfdetail.distro_qty

RS
(Return To Stock)

When RWMS published a message on a transfer with a
status of RS (Return To Stock), RMS will decrease the
distributed qty.

Decrease tsfdetail.distro_qty

EX
(Expired)

When RWMS publishes a message on a transfer with a status
of EX (Expired), RMS will increase the cancelled quantity,
decrease the transfer quantity, decrease the reserved
quantity* for the from location, and decrease the expected
quantity* for the to location by the lesser of 1.) the quantity
on the message; 2.) the transfer quantity – shipped quantity.

*If the transfer status is not Closed.

Increase tsfdetail.cancelled_qty,
decrease tsfdetail.tsf_qty,
item_loc_soh.tsf_reserved_qty for
the from location and
item_loc_soh.tsf_expected_qty for
the to location

SR
(Store Reassign)

When RWMS publishes a message on a transfer with a status
of SR (Store Reassign) the quantity can be either positive or
negative. In either case it will be added to the distro_qty
(adding a negative will have the same affect as subtracting
it). If it is positive RMS will also decrease the selected_qty.

Add to tsfdetail.distro_qty,
decrease tsfdetail.selected_qty
(when the input qty < 0)

Subscription Designs

310 Oracle Retail Merchandising System

Stock order status received in message

on an ALLOCATION
(where ‘distro_document_type’ = ‘A’)

What RMS does

DS
(Details Selected)

When RWMS publishes a message on an
allocation with a status of DS (Details Selected),
RMS will increase the selected quantity on
alloc_detail for the allocation/item/location
combination.

Increase alloc_detail.selected_qty

DU
(Details Un-Selected)

When RWMS publishes a message on an
allocation with a status of DU (Details Un-
Selected), RMS will decrease the selected
quantity on alloc_detail for the allocation/item
combination.

Decrease alloc_detail.selected_qty

NI
(WMS Line Cancellation)

When RWMS publishes a message on an
allocation with a status of NI (No Inventory –
WMS Line Cancellation), RMS will decrease the
selected quantity by the quantity on the
message. RMS will also increase the cancelled
quantity, decrease the allocated quantity,
decrease the reserved quantity* for the from
location, and decrease the expected quantity* for
the to location by the lesser of 1.) the quantity on
the message; 2.) the transfer quantity – shipped
quantity.

 *If the allocation status is not Closed and the
allocation is a stand alone allocation.

Decrease alloc_detail.qty_ selected and
alloc_detail.qty_allocated, increase
alloc_detail.cancelled_qty, decrease
item_loc_soh.tsf_reserved_qty for the from
location and item_loc_soh.tsf_expected_qty
for the to location

PP
(Distributed)

When RWMS publishes a message on an
allocation with a status of PP (Pending Pick -
Distributed), RMS will decrement the selected
quantity and increment the distro quantity.

Decrease alloc_detail.qty_selecteded, increase
alloc_detail.qty_distro

PU
(Un-Distribute)

When RWMS publishes a message on an
allocation with a status of PU (Un-Distribute),
RMS will decrease the distributed qty.

Decrease alloc_detail.qty_distro

RS
(Return to Stock)

When RWMS published a message on an
allocation with a status of RS (Return to Stock),
RMS will decrease the distributed qty.

Decrease alloc_detail.qty_distro

Stock Order Status Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 311

Stock order status received in message

on an ALLOCATION
(where ‘distro_document_type’ = ‘A’)

What RMS does

EX
(Expired)

When RWMS publishes a message on an
allocation with a status of EX (Expired), RMS
will increase the cancelled quantity, decrease the
allocated quantity, decrease the reserved
quantity* for the from location, and decrease the
expected quantity* for the to location by the
lesser of 1.) the quantity on the message; 2.) the
transfer quantity – shipped quantity.

*If the allocation status is not Closed and the
allocation is a stand alone allocation.

Decrease alloc_detail.qty_allocated, increase
alloc_detail.qty_cancelled, decrease
item_loc_soh.tsf_reserved_qty for the from
location and item_loc_soh.tsf_expected_qty
for the to location

SR
(Store Reassign)

When RWMS publishes a message on an
allocation with a status of SR (Store Reassign)
the quantity can be either positive or negative. In
either case, it will be added to the qty_distro
(adding a negative will have the same affect as
subtracting it). If it is positive, RMS will also
decrease the qty_selected.

Add to alloc_detail.qty_distro, decrease
alloc_detail.qty_selected (when the input qty <
0)

Pack Considerations
Whenever the from location is a warehouse, check if the item is a pack or an each. If the
item is not a pack item, no special considerations are necessary. For each warehouse-pack
item, check the receive_as_type on ITEM_LOC to determine if it is received into the
warehouse as a pack or a comp item. If it is received as an each, update ITEM_LOC_SOH
for the comp item. If it is received as a pack, update ITEM_LOC_SOH for the pack item
and the comp item.
A stock order is an outbound merchandise request from a warehouse or store. In RMS, a
stock order takes the form of either a transfer or allocation.
Stock order status upload receives a message from the RIB, published from RWMS,
communicating the status of a specific stock order. This communication provides for the
synchronization of data between RWMS and RMS. The information from RWMS has
only one level, in other words no detail records. This information is used to update the
TSFDETAIL, ALLOC_DETAIL and ITEM_LOC_SOH tables.

Package Impact

Filename: rmssub_sostatuss/b.pls

Public API Procedures
RMSSUB_SOSTATUS.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN “RIB_SOStatusDesc_REC”,
 I_message_type IN VARCHAR2);

Subscription Designs

312 Oracle Retail Merchandising System

This procedure accepts Stock Order Status information in the form of an Oracle Object
data type from the RIB (I_message) and a message type of ‘sostatuscre’. The procedure
will first call the RESET function to initialize internal variables. The procedure will then
extract the values from the oracle object. These will then be passed on to private internal
functions which will validate the values and place them on the database depending upon
the success of the validation.
VALIDAT
 (O_error_message IN OUT VARCHAR2,
 O_exist IN OUT BOOLEAN,
 I_distro_number IN VARCHAR2);

Validation:
Validate the distro is valid. A distro refers to either a transfer or an allocation.

Internal Functions and Procedures (rmssub_frttermcre.pls):
Function HANDLE_ERRORS():
HANDLE_ERRORS
 (O_status IN OUT VARCHAR2,
 IO_error_message IN OUT VARCHAR2,
 I_cause IN VARCHAR2,
 I_program IN VARCHAR2);

Error Handling:
If an error occurs in this procedure or any of the internal functions, this procedure places
a call to HANDLE_ERRORS in order to parse a complete error message and pass back a
status to the RIB.
This function is used to put error handling in one place in order to make future error
handling enhancements easier to implement. The function should consist of a call to
API_LIBRARY.HANDLE_ERRORS. API_LIBRARY.HANDLE_ERRORS accepts a
program name, the cause of the error and potentially an unparsed error message if one
has been created through a call to SQL_LIB.CREATE_MESSAGE. The function uses these
input variables to parse a complete error message and pass back a status, depending
upon the message and error type, back up through the consume function and up to the
RIB.

PARSE_SOS
This function first calls VALIDATE to check that the transfer or allocation from the oracle
object exists in RMS. If the transfer or allocation exists, the function breaks down the
message into its component parts and sends these parts into PROCESS_SOS.

PROCESS_SOS
Based on the status sent from RWMS, quantity fields on either TSFDETAIL or
ALLOC_DETAIL and ITEM_LOC_SOH are updated.
A new ‘status’ was created that is used exclusively by stores to cancel requested
quantities that have not yet been shipped. The status is ‘SC’, for Store Cancellation.

UPDATE_TSF
Updates the record on TSF_DETAIL if the message is for a transfer.

UPDATE_ALLOC
Updates the record on ALLOC_DETAIL if the message is for an allocation.

Stock Order Status Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 313

UPD_FROM_ITEM_LOC
Updates item_loc_soh.tsf_reserved_qty for the from location. If the comp_level_upd
indacator is ‘Y’ then it will also update the item_loc_soh.pack_comp_resv field for the
item passed in.

UPD_TO_ITEM_LOC
Updates item_loc_soh.tsf_expected_qty for the to location. If the comp_level_upd
indacator is ‘Y’ then it will also update the item_loc_soh.pack_comp_exp field for the
item passed in.

GET_RECEIVE_AS_TYPE
This function gets the receive as type value from ITEM_LOC for the passed-in item and
location combination.

POPULATE_DOC_CLOSE_QUEUE
This function is called to populate an array which holds stock order information that will
be placed on the DOC_CLOSE_QUEUE table.

RESET
This function deletes any values that are currently held in the package’s global variables.

DO_BULK
This function is used to do bulk inserts or updates of the ALLOC_DETAIL, TSFDETAIL,
TSFHEAD and DOC_CLOSE_QUEUE tables. The tables are updated/inserted using the
arrays that were built in the rest of the package.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition (XSD)

sostatuscre Stock Order Status Create Message SOStatusDesc.xsd

Design Assumptions
 One of the primary assumptions in the current API approach is that ease of code will

outweigh performance considerations. It is hoped that the ‘trickle’ nature of the flow
of data will decrease the need to dwell on performance issues and instead allow
developers to code in the easiest and most straight forward manner.

 The adaptor is only setup to call stored procedures, not stored functions. Any public
program then needs to be a procedure.

Subscription Designs

314 Oracle Retail Merchandising System

Tables

TABLE SELECT INSERT UPDATE DELETE

ITEM_LOC_SOH Yes Yes Yes No

ITEM_LOC Yes No No No

ALLOC_DETAIL Yes Yes No

ALLOC_HEADER Yes No No No

TSFDETAIL Yes Yes No

TSFHEAD Yes No Yes No

DOC_CLOSE_QUEUE No Yes No No

V_PACKSKU_QTY Yes No No No

Stock Count SCH Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 315

Stock Count SCH Subscription API

Functional Area
Inventory – Stock Counts

Business Overview
Stock count schedule messages are published to the RIB by an integration subsystem to
communicate unit and value stock count schedules to RMS. RMS uses stock count
schedule data to help synchronize the inventories of another application and RMS. The
other application performs a physical inventory count and uploads the results, and RMS
compares the discrepancies.
This API allows external systems to create, update, and delete stock counts within RMS.
Only Unit and Dollar stock counts (stocktake_type = ‘B’) are subscribed by RMS at this
time. Department, class and subclass can be null; if not provided a full count is
presumed.
If the other application requires at year-end to consolidate annual and booking numbers,
the annual count can be initiated by the other application and uploaded into RMS. RMS
accepts the unit variances and processes these automatically. The dollar values will need
user input from the central office.

Consume Module

Filename: rmssub_stakeschedules/b.pls
PROCEDURE CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2);

Package to subscribe to stock count schedule message, parse the details, and pass them
into a new stock schedule package.
 If the message type is StkCountSchDel, validate before deleting the cycle count.
 For other message types, business validations are performed before creating or

updating the cycle count.
 Once the message has been successfully processed, there is nothing more for the

consume procedure to do. A success status, “S”, should be returned to the external
system indicating that the message has been successfully received and persisted to
the RMS database.

Subscription Designs

316 Oracle Retail Merchandising System

Business Validation and DML Module

Filename: stake_schedules/b.pls
Package to validate stock schedule data and insert/update to the stock count tables.
VALIDATE_VALUES
 Cannot delete a cycle count if it has been processed.
 Cannot update a cycle count that has started or has been set to be deleted.
 Cannot process anything if stock count is currently locked

VALIDATE_HIERARCHY
 Unit and Dollar stock counts at a warehouse must be at the department level only.
 Validate department, class and subclass.

VALIDATE_LOCATION
 Only stockholding (virtual) warehouses can be on a stock count.

PROCESS_PROD
 Validate and create a STAKE_PRODUCT record. No validation is done if the record

is passed in for initial processing.
PROCESS_LOC
 Validate and create a STAKE_LOCATION record. No validation is done if the record

is passed in for initial processing.
PROCESS_DEL
CREATE_SH_REC
 Create a record for STAKE_HEAD.

CREATE_SP_REC
 Create a STAKE_PRODUCT record.

DELETE_RECS
 Delete from STAKE_PRODUCT and STAKE_LOCATION tables.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

StkCountSchCre Stock Count SCH Create Message StkCountSchDesc.xsd

StkCountSchMod Stock Count SCH Modify Message StkCountSchDesc.xsd

StkCountSchDel Stock Count SCH Delete Message StkCountSchRef.xsd

Stock Count SCH Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 317

Design Assumptions
 The store is locked down during the day of the stock count. This means no receipts or

sales during the 24 hour period of that day.
 After the stock counts have been uploaded into RMS no correction will be possible.

Validation of the accurate value of the stock count is the responsibility of the on site-
auditing manager during the stock count process. Corrections will have to be made
through a unit count or inventory adjustment.

 Due to large volume the stock count results are interfaced in the form of a flat file.
 RMS assumes that the interfaced item information is complete for that merchandise

hierarchy that is counted. The RMS system attempts to auto process this information.
The other application has ownership of the inventory, and it is self evident that when
RMS receives the information it is complete.

Tables

TABLE SELECT INSERT UPDATE DELETE

DEPS Yes No No No

STORE Yes No No No

WH Yes No No No

STAKE_HEAD Yes Yes Yes No

STAKE_PRODUCT No Yes No Yes

STAKE_LOCATION No Yes No Yes

SYSTEM_OPTIONS Yes No No No

Subscription Designs

318 Oracle Retail Merchandising System

Store Subscription API

Wholesale and Franchise
RIB integration points support wholesale and franchise functionality for the enterprise.
See the Wholesale/Franchise Batch chapter in the RMS Operations Guide volume 1 for
additional information on wholesale and franchise.

Functional Area
Store

Design Overview
The RMS system option ‘sor_org_hier_ind’ indicates whether RMS is the system of
record for organizational hierarchy information.
When RMS is not the system of record, the Store Subscription API provides the ability to
keep store data in RMS in sync with an external system by using data from that system to
create, edit, and delete stores within RMS. The store data handled by the API includes
basic store data plus relationship data between stores and their location traits and walk-
through stores. This data can be viewed but not updated in RMS.
Basic Store Data
When creating a new store in RMS, the API uses RMS store creation batch logic. When a
store creation message is received, it is validated and placed onto a staging table. The
store creation batch program in RMS reads from this table and actually creates the store
in RMS. This is done to reuse existing validation logic within the store creation program.
One consequence of this approach is that the API is not be able to communicate whether
the store was successfully created in RMS, only that the message was received.
When updating an existing store in RMS, the API performs the update immediately upon
message receipt, so success or failure can be communicated to the calling application.
The API will also handle store delete messages. Like the store creation message
subscription process, stores will not actually be deleted from the system upon receipt of
the message. However, validation will occur to ensure the store can be deleted. The store
will be added to the DAILY_PURGE table. When the daily purge batch process runs, the
store will be removed from the system. Because the store is not deleted when the
message is received, the API is not able to communicate whether the removal of the store
from RMS has been successful, only that the message was successfully received.
Location Trait and Walk-Through Store Data

By default, stores inherit the location traits of the district to which they belong. However,
specific location traits can also be assigned at the store level. Using the incoming external
data, the API will create or delete relationships between stores and existing location
traits, or between stores and walk-through stores. (Note: This API does not create or
delete location traits; that is handled by the Location Traits subscription.)
Location trait and walkthrough store data cannot be sent in on a store create message.
The store create program must first process the store before it can have details attached to
it.
Location trait and walkthrough store data must be processed separately as they each
have their own distinct message types. These detail create messages will contain a
snapshot of the store record. Note that location traits must already exist prior to being
added to the store.

Store Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 319

Deletion of location trait and walkthrough store relationships will also be handled within
this API. The detail delete messages must be processed separately as they each have
their own distinct message types.

Consume Module

Rmssub_xstores/b.pls
RMSSUB_XSTORE.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure will need to initially ensure that the passed in message type is a valid
type for store messages. If the message type is invalid, a status of ‘E’ should be returned
to the external system along with an appropriate error message informing the external
system that the status is invalid.
If the message type is valid, the generic RIB_OBJECT will need to be downcast to the
actual object using the Oracle’s treat function. If the downcast fails, a status of ‘E’ should
be returned to the external system along with an appropriate error message informing
the external system that the object passed in is invalid.
If the downcast is successful, then consume will need to verify that the message passes all
of RMS’s business validation. It does not actually perform any validation itself, instead, it
will call the RMSSUB_XSTORE_VALIDATE.CHECK_MESSAGE function to determine
whether the message is valid. If the message has failed RMS business validation, a status
of ‘E’ should be returned to the external system along with the error message returned
from the CHECK_MESSAGE function.
Once the message has passed RMS business validation, it can be persisted to the RMS
database. The consume function will call the
RMSSUB_XSTORE_SQL.PERSIST_MESSAGE() function. If the database persistence fails,
the function will return false. A status of ‘E’ should be returned to the external system
along with the error message returned from the PERSIST_MESSAGE() function.
Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success status, ‘S’, should be returned to the external system
indicating that the message has been successfully received and persisted to the RMS
database.
RMSSUB_XSTORE.HANDLE_ERROR() – This is the standard error handling function
that wraps the API_LIBRARY.HANDLE_ERROR function.

Subscription Designs

320 Oracle Retail Merchandising System

Business Validation Module
It should be noted that some of the business validation is referential or involves
uniqueness. This validation is handled automatically by the referential integrity
constraints and the unique indexes implemented on the database.

Filename: rmssub_xstorevals/b.pls
RMSSUB_XSTORE_VALIDATE.CHECK_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 O_store_rec OUT NOCOPY STORE_SQL.STORE_ROW_TYPE,
 I_message IN RIB_XStoreDesc,
 I_message_type IN VARCHAR2)

This function performs all business validation associated with messages and builds the
store record for persistence.
STORE CREATE
 Check required fields
 Check table constraints
 Gets the primary address type for a ‘ST’ore Module
 Verify no details were passed in with message, none allowed for store create

message.
 Check if a like store was passed in. If it is, then the price store and cost location must

match the like store. If a like store was not passed in, the copy replenishment,
activity, and delivery indicators must be No or null.

 Check that the store number passed in is not currently being used for a store or
warehouse. Because the API adds to a staging table, validation must occur on the
base tables that no record exists. Note that stores and warehouses in RMS cannot
have the same unique identifier.

 Verify the start order days are greater than or equal to zero.
 Populate record with message data
 Populate the address detail table
 Default required record fields, not required on message.

STORE MODIFY
 Check required fields
 Check table constraints
 Verify the store exists on the base table
 Verify the start order days are greater than or equal to zero.
 Gets the address primary key for the store
 Populate record with message data.
 Populate the address detail table
 Check if the store’s district was changed.
 Default required record fields, not required on message.

LOCATION TRAIT CREATE
 Verify store exists on the base table
 Verify location trait(s) were passed in on message
 Populate record with message data.

Store Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 321

WALKTHROUGH STORE CREATE
 Verify store exists on the base table
 Verify walkthrough store(s) were passed in on message
 Populate record with message data.

LOCATION TRAIT DELETE
 Verify store exists on the base table
 Verify walkthrough store(s) were passed in on message
 Populate record with message data.

WALKTHROUGH STORE DELETE
 Verify store exists on the base table
 Verify walkthrough store(s) were passed in on message
 Populate record with message data.

STORE DELETE
 Verify store exists on the base table
 Verify a store can be deleted. Note that this check performs the same validation that

occurs before a store is actually deleted in the batch process.
 Populate record with message data.

Bulk or Single DML Module
All insert, update and delete SQL statements are located in the family package. This
package is STORE_SQL. The private functions in RMSSUB_STORE_SQL will call this
package.

Filename: rmssub_xstoresqls/b.pls
RMSSUB_XSTORE_SQL.PERSIST_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 I_store_rec IN STORE_SQL. STORE_ROW_TYPE,
 I_message_type IN VARCHAR2,)

This function determines what type of database transaction it will call based on the
message type.
STORE CREATE
 Create messages get added to the staging table to be processed in a batch cycle. The

address on the message is inserted as the primary address for the primary address
type in the ADDR table. No other detail (child) processing occurs for creates.

STORE MODIFY
 Modify messages directly update the store table with changes. The address on the

message is updated in the ADDR table. If the stores district has changed, the location
traits from the old district will be removed, and the location traits for the new district
will be added.

LOCATION TRAIT CREATE
 Adds location trait(s) to the store

WALKTHROUGH CREATE
 Adds walkthrough store(s) to the store.

LOCATION TRAIT DELETE
 Removes location trait(s) to the store

WALKTHROUGH DELETE

Subscription Designs

322 Oracle Retail Merchandising System

 Removes walkthrough store(s) to the store.
STORE DELETE
 Store gets added to a purging table to be processed in a batch cycle.

Message XSD
Here are the filenames that correspond with each message type. Please consult the
mapping documents for each message type in order to get a detailed picture of the
composition of each message.

Message Type Message Type Description XML Schema Definition
(XSD)

XStoreCre External Store Create XStoreDesc.xsd

XStoreDel External Store Delete XStoreRef.xsd

XStoreLocTrtCre External Store Location Trait Create XStoreDesc.xsd

XStoreLocTrtDel External Store Location Trait Delete XStoreRef.xsd

XStoreMod External Store Modification XStoreDesc.xsd

XStoreWTCre External Walk Through Store Create XStoreDesc.xsd

XStoreWTDel External Walk Through Store Delete XStoreRef.xsd

Performance/Volume Considerations
Store creation and maintenance should have very low volume. Therefore, extensive
tuning should not be required.

Design Assumptions
Required fields are shown in the Oracle Retail Integration Bus (RIB) documentation. RMS
11 feature for multiple addresses for stores is not supported in this API. The address in
the message becomes the primary address for the primary address type of the store.

Tables

TABLE SELECT INSERT UPDATE DELETE

STORE_ADD No Yes No No

STORE Yes No Yes No

ADDR Yes Yes Yes No

DAILY_PURGE No Yes No No

LOC_TRAITS_MATRIX Yes Yes No Yes

SYSTEM_OPTIONS Yes No No No

TSF_ENTITY Yes No No No

WH Yes No No No

WALK_THROUGH_STORE No Yes No Yes

LOC_DISTRICT_TRAITS Yes No No No

Transfer Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 323

Transfer Subscription API

Functional Area
Transfer subscription

Design Overview
RMS subscribes to transfers from external subsystems that provide only basic
information about these transactions, namely item, supplier, location and quantity.
It will be expected that RMS users will be responsible for updating and monitoring the
financial and execution data such as transfer costs.
RMS monitors all of the shipments and receipts and will close the transfer once the
received quantity equals the quantity requested or an outside system cancels the
outstanding quantity. RMS will maintain the perpetual inventory for each location as it
currently does.
The transfer RIB API will have defaulting logic which the API uses to populated
defaulted fields. This is designed so that multiple sources can use the transfer API
without having to conform to the same default values. Retailers can set-up their own set
of default values or logic without having to modify the API code. For fields that are
exposed on the message, if a value is provided, it will be used. Default values will only
be used if a value is not provided on the message.

Consume Module
Filename: rmssub_xtsfs/b.pls
RMSSUB_XTSF.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure will need to initially ensure that the passed in message type is a valid
type for transfer messages.
If the message type is invalid, a status of “E” should be returned to the external system
along with an appropriate error message informing the external system that the status is
invalid.
If the message type is valid, the generic RIB_OBJECT needs to be downcast to the actual
object using the Oracle’s treat function. There will be an object type that corresponds
with each message type. If the downcast fails, a status of “E” is returned to the external
system along with an appropriate error message informing the external system that the
object passed in is invalid.
If the downcast is successful, then consume needs to verify that the message passes all of
RMS’s business validation. It calls the RMSSUB_XTSF_VALIDATE.CHECK_MESSAGE
function to determine whether the message is valid. If the message passed RMS business
validation, then the function returns true, otherwise it returns false. If the message fails
RMS business validation, a status of “E” is returned to the external system along with the
error message returned from the CHECK_MESSAGE function.
Once the message has passed RMS business validation, it is persisted to the RMS
database. It calls the RMSSUB_XTSF_SQL.PERSIST() function. If the database persistence
fails, the function returns false. A status of “E” is returned to the external system along
with the error message returned from the PERSIST() function.

Subscription Designs

324 Oracle Retail Merchandising System

Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success status, “S”, is returned to the external system indicating that
the message has been successfully received and persisted to the RMS database.

Business Validation Module

Filename: rmssub_xtsfvals/b.pls
It should be noted that some of the business validation is referential or involves
uniqueness. This validation is handled automatically by the referential integrity
constraints and the unique indexes implemented on the database.

RMSSUB_XTSF_VALIDATE.CHECK_MESSAGE
This overloaded function performs all business validation associated with create/modify
messages and builds the transfer API record with default values for persistence in the
transfer related tables. Any invalid records passed at any time results in message failure.
Like other APIs, the transfer API expects a snapshot of the record on both a header
modify and a detail modify message, instead of only the fields that are changed. For a
detail create or a detail modify message, only the TSF number will be validated at the
header level; all other header fields are ignored.
TRANSFER CREATE
 Check required fields.
 Validate fields.
 Default fields (status at header,freight type and tsf type)
 Build transfer records.

TRANSFER MODIFY
 Check required fields on the header nodes.
 Verify TSF number already exists.
 Validate fields.
 Populate record.

TRANSFER DETAIL CREATE
 Check required fields on the detail node.
 Verify TSF number already exists.
 Verify tsf/item/loc does not already exist.
 Create item/loc relation if not already exists, including creating ITEM_LOC_SOH,

ITEM_SUPP_COUNTRY_LOC, and PRICE_HIST records. If a pack item is involved,
these records will be created for all component items.

 Populate record.
TRANSFER DETAIL MODIFY
 Check required fields on the detail node.
 Verify transfer/item/loc already exists.
 If TSF quantity is reduced, verify the new quantity is not below what has already

been received plus what is being shipped or expected.
 Populate record.

Transfer Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 325

RMSSUB_XTSF_VALIDATE.CHECK_MESSAGE
This overloaded function performs all business validation associated with delete
messages and builds the transfer API record with default values for persistence in the
transfer related tables. Any invalid records passed at any time results in message failure.
TRANSFER DELETE
 Check required fields.
 Verify TSF number already exists.
 Verify that TSF is not already shipped or received.
 Populate record for delete.

TRANSFER DETAIL DELETE
 Check required fields.
 Verify TSF/item/loc already exists.
 Verify that TSF line is not already shipped or received.
 Populate record with the TSF no/item/location for delete.

Bulk or Single DML Module

Filename: rmssub_xtsfs/b.pls
RMSSUB_XTSF_SQL.PERSIST
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_tsf_rec IN RMSSUB_XTSF.TSF_REC,
 I_message_type IN VARCHAR2)

This function checks the message type to route the object to the appropriate internal
functions that perform DML insert, update and delete processes.
TRANSFER CREATE
 Inserts records in the TSFHEAD, TSFDETAIL, TSFDETAIL_CHRG tables.
 Updates records in the ITEM_LOC_SOH table.

TRANSFER MODIFY
 Updates a record in the TSFHEAD table.

TRANSFER DELETE
 Delete a transfer from TSFHEAD, TSFDETAIL, TSFDETAIL_CHRG tables.

TRANSFER DETAIL CREATE
 Inserts records in the TSFDETAIL, TSFDETAIL_CHRG tables.
 Updates records in the ITEM_LOC_SOH table.

TRANSFER DETAIL MODIFY
 Updates records in the TSFDETAIL, ITEM_LOC_SOH tables.

TRANSFER DETAIL DELETE
 Delete records from TSFDETAIL, TSFDETAIL_CHRG tables.

Subscription Designs

326 Oracle Retail Merchandising System

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

xtsfcre Transfer Create Message XTsfDesc.xsd

xtsfmod Transfer Modify Message XTsfDesc.xsd

xtsfdel Transfer Delete Message XTsfRef.xsd

xtsfdtlcre Transfer Detail Create Message XTsfDesc.xsd

xtsfdtlmod Transfer Detail Modify Message XTsfDesc.xsd

xtsfdtlcel Transfer Detail Delete Message XTsfRef.xsd

Design Assumptions
Required fields are shown in RIB documentation.

Tables

TABLE SELECT INSERT UPDATE DELETE

TSFHEAD Yes Yes Yes Yes

TSFDETAIL Yes Yes Yes Yes

TSFDETAIL_CHRG Yes Yes Yes Yes

ITEM_LOC Yes Yes No No

ITEM_LOC_SOH Yes Yes No No

PRICE_HIST No Yes No No

ITEM_MASTER Yes No No No

PACKITEM_BREAKOUT Yes No No No

STORE Yes No No No

WH Yes No No No

SYSTEM_OPTIONS Yes No No No

Vendor Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 327

Vendor Subscription API

Multiple Sets of Books
RIB supports the multiple sets of books functionality. Customers may need multiple sets
of books because they use multiple currencies, or because a company contains separate
legal entities. See the Stock Ledger Batch chapter of the RMS Operations Guide volume 1
for additional information on multiple sets of books.

Functional Area
Supplier

Business Overview
RMS subscribes to supplier information that is published from an external financial
application. ‘Vendor’ can refer to either a partner or a supplier, but only supplier
information is subscribed to by RMS. Supplier information also includes supplier
addresses and the operating unit.
Processing includes a check for the appropriate financial application in RMS on the
SYSTEM_OPTIONS table’s FINANCIAL_AP column. The financial application (such as
Oracle E-Business Suite) sends the information to RMS via the RIB.

Data Flow
Oracle E-Business Suite publishes a supplier type vendor, placing the supplier
information onto the Oracle Retail Information Bus (RIB). RMS subscribes to the supplier
information as published from the RIB and places the information onto RMS tables
depending upon the validity of the records enclosed within the message.

Message Structure:
The supplier message is a hierarchical message that consists of a supplier header record
and a series of address records under the header record.
The header record contains information about the supplier as a whole. The address
records identify the addresses associated with the supplier and the operating unit records
specify the operating units associated with the supplier.

Package Impact
Subscribing to a supplier message entails the use of one public consume procedure. This
procedure corresponds to the type of activity that can be done to a supplier record (in
this case create/update).

Filename: rmssub_vendorcres/b.pls

Public API Procedures
RMSSUB_VENDORCRE.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN CLOB);

Subscription Designs

328 Oracle Retail Merchandising System

This procedure accepts a XML file in the form of an Oracle CLOB data type from the RIB
(I_message). This message contains a supplier message consisting of the aforementioned
header and detail records. The procedure then places a call to the main
RMSSUB_SUPPLIER.CONSUME function in order to validate the XML file format and, if
successful, parses the values within the file through a series of calls to RIB_XML. The
values extracted from the file are then passed on to private internal functions, which
validate the values and place them on the supplier and address tables depending upon
the success of the validation.

Private Internal Functions and Procedures (rmssub_vendorcre.pls):
Error Handling:
If an error occurs in this procedure, a call is placed to HANDLE_ERRORS in order to
parse a complete error message and pass back a status to the RIB.
HANDLE_ERRORS
 (O_status IN OUT VARCHAR2,
 IO_error_message IN OUT VARCHAR2,
 I_cause IN VARCHAR2,
 I_program IN VARCHAR2);

This function is used to put error handling in one place in order to make future error
handling enhancements easier to implement. All error handling in the internal
RMSSUB_SUPPLIER package and all errors that occur during subscription in the
RMSSUB_VENDORCRE package (and whatever packages it calls) flow through this
function.
The function consists of a call to API_LIBRARY.HANDLE_ERRORS.
API_LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the error and
potentially an unparsed error message if one has been created through a call to
SQL_LIB.CREATE_MESSAGE. The function uses these input variables to parse a
complete error message and pass back a status, depending upon the message and error
type, back up through the consume function and up to the RIB.

Private Internal Functions and Procedures (other):
All of the following functions exist within RMSSUB_SUPPLIER.
Main Consume Function:
RMSSUB_SUPPLIER.CONSUME
 (O_status OUT VARCHAR2,
 O_error_message OUT VARCHAR2,
 I_document IN CLOB);

This procedure accepts a XML file in the form of an Oracle CLOB data type from the RIB
(I_message) from the aforementioned public vendor procedure whenever a message is
made available by the RIB. This message consists of the aforementioned header and
detail records.
The procedure first gets the FINANCIAL_AP value from the system options table. The
record is processed only when financial_ap is ‘O’ (Oracle E-Business Suite). It then
validates the XML file format and, if successful, calls internal functions to parse the
values within the file through a series of calls to RIB_XML. The values extracted from the
file are then passed on to private internal functions, which validate the values and place
them on the appropriate supplier and address database tables depending upon the
success of the validation. The procedure then calls the PROCESS_ADDRESS function to
check that the proper addresses have been associated with the supplier and store the
address details in ADDR table. After processing the address records, the procedure calls
PROCESS_ORGUNIT function to process the org units (Operating Units).

Vendor Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 329

PARSE_SUPPLIER
This function is used to extract the header level information from the supplier XML file
and place that information onto an internal supplier header record.
The record is based upon the supplier table.
PARSE_ADDRESS

This function extracts the address level information from the supplier XML file and
places that information onto an internal address record.
The record is based upon the address table:
PROCESS_SUPPLIER
After the values are parsed for a particular supplier record,
RMSSUB_SUPPLIER.CONSUME calls this function, which in turn calls various functions
inside RMSSUB_SUPPLIER in order to validate the values and place them on the
appropriate supplier table depending upon the success of the validation. Either
INSERT_SUPPLIER or UPDATE_SUPPLIER is called to actually insert or update the
supplier table.
PROCESS_ADDRESS
After the values are parsed for a particular address record,
RMSSUB_SUPPLIER.CONSUME calls this function. If the FINANCIAL_AP system
option is set to ‘O’, this function calls various functions inside RMSSUB_SUPPLIER in
order to validate the values and place them on the appropriate address table depending
upon the success of the validation. Either INSERT_ADDRESS or UPDATE_ADDRESS is
called to actually insert or update the address table.
INSERT_SUPPLIER

This function first checks the UNIT_OPTIONS table to determine what the value of
dept_level_orders is. If the dept_level_orders value is ‘Y’, the inv_mgmt_lvl is defaulted
to ‘D’. If the dept_level_orders value is anything other than ‘Y’, the inv_mgmt_lvl is set to
‘S.’
The function then takes the information from the passed-in supplier record and inserts it
into the SUPS table.
FUNCTION UPDATE_SUPPLIER
This function updates the SUPS table using the values contained in the I_supplier_record.
FUNCTION UPDATE_ADDRESS
This function updates the supplier information to the address table.
CHECK_CODES
The RMSSUB_SUPPLIER package, specifically the functions check_codes() and
check_fkeys(), sends back descriptive error messages when codes are not valid or if a
foreign key constraint is violated.
INSERT_ADDRESS
Insert supplier information to address table. If the address in the passed-in address
record is the primary address for a particular supplier/address type, this function
updates the current primary address so that it is no longer the primary.
VALIDATE_SUPPLIER_RECORD

Validate that all the necessary records are populated.
VALIDATE_ADDRESS_RECORD

Validate that all the necessary records are populated.

Subscription Designs

330 Oracle Retail Merchandising System

CHECK_NULLS
This function checks that the passed-in record variable is not null. If it is, it will return an
error message.
VALIDATE_ORG_UNIT_RECORD
This function checks that the passed-in record variable is not null. If it is, it will return an
error message. When not null, it checks for a valid org unit in ORG_UNIT table.
PROCESS_ORGUNIT

After validating the org unit, this function either inserts or updates the record in
PARTNER_ORG_UNIT table. If the vendor/orgunit in the passed-in OrgUnit record is
the primary pay site for a particular vendor/orgunit type, this function updates the
current primary paysite so that it is no longer the primary.

Message XSD
Here are the filenames that correspond with each message type. Please consult Oracle
Retail Integration Bus information for each message type in order to get a detailed
picture of the composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

VendorCre Vendor Create Message VendorDesc.xsd

Design Assumptions
 One of the primary assumptions in the current API approach is that ease of code will

outweigh performance considerations. It is hoped that the ‘trickle’ nature of the flow
of data will decrease the need to dwell on performance issues and instead allow
developers to code in the easiest and most straight forward manner.

 The adaptor is only setup to call stored procedures, not stored functions. Any public
program then needs to be a procedure.

Tables

TABLE SELECT INSERT UPDATE DELETE

SUPS Yes Yes Yes No

ADDR Yes Yes Yes No

SYSTEM_OPTIONS Yes No No No

UNIT_OPTIONS Yes No No No

CODE_DETAIL Yes No No No

PARTNER_ORG_UNIT Yes Yes Yes No

ORG_UNIT Yes No No No

Work Order Status Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 331

Work Order Status Subscription API

Functional Area
Work Order Status Subscription

Design Overview
RMS subscribes to a work order status message sent from internal finishers. Work order
status messages contain the items for which the activities have been completed along
with the quantity that was completed. All items on transfers that pass through an
internal finisher must have at least one work order activity performed upon them. When
work order status messages are received for a particular item/quantity, it is assumed that
all work order activities associated with the item/quantity have been completed. If work
order activities involve item transformation or repacking, the work order status messages
are always created in terms of the resultant item.
The work order status message is only necessary when the internal finisher and the final
receiving location are in the same physical warehouse. If the internal finisher belongs to
the receiving location, a book transfer is made between the internal finisher (which is
held as a virtual warehouse) and the final receiving location (also a virtual warehouse). If
the internal finisher belongs to the sending location’s transfer entity, intercompany out
and intercompany in transactions are recorded. Quantities on hand, reserved quantities,
and weighted average costs are adjusted to accurately reflect the status of the stock.
Assume that 20 item 100 (White XL T-shirt) are sent to an internal finisher at the
receiving physical warehouse where they will be dyed black, thereby transforming them
into item 101 (Black XL T-shirt). If all finishing activities were successfully completed in
this example, RMS could expect to receive a Work Order Status message containing item
101 with a quantity of 20.
It is possible to receive multiple Work Order Status messages for a particular
item/transfer. Work order completion of partial quantities addresses the following
scenarios:
1. Work order activities could not be performed for the entire quantity of a particular

item at one time.
2. A given quantity of the particular item was damaged while work order activities

were performed.
In terms of the previous example, RMS could receive a message containing item
101(Black XL T-shirt) with a quantity of 10. A message stating that work order activities
were completed for the remaining 10 items could then be received at a later time.
The only scenario in which a Work Order Status message is necessary is when work
order activities are taking place at an internal finisher that resides in the same physical
warehouse as the transfer’s final receiving location. This scenario can only take place in a
multi-channel environment. In this scenario, the final ‘leg’ of the transfer will ‘move’
merchandise between two virtual warehouses in the same physical warehouse. As this
movement cannot be done until all work order activities are completed for a specific
item/quantity, the finisher must inform RMS of this completion.

Subscription Designs

332 Oracle Retail Merchandising System

Other finishing scenarios exist in which the finisher is not a virtual warehouse that shares
a physical warehouse with the transfer’s final receiving location. In these instances, Work
Order Status messages are not necessary. This is because these scenarios dictate that
merchandise must be physically shipped from the finisher to the transfer’s final receiving
location. RMS assumes that a finisher will not ship merchandise until all finishing
activities have been completed for said merchandise. RMS will disregard Work Order
Status messages sent in these scenarios.

Consume Module

Filename: rmssub_wostatuss/b.pls
PROCEDURE CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure is passed an Oracle Object, which it will validate to ensure all required
data is present. It will ensure that the finisher and the transfer’s final receiving location
are in the same physical warehouse. If not, processing is deemed successful and halted. If
the message contains an item, RMS work order complete processing will be called for
that item. Otherwise, said processing will be called for all items on the transfer. If the
entire transfer is processed, the child transfer (that is, the ‘second leg’) will be set to
‘S’hipped status. Note that work orders are always associated with the second leg of
multi-leg transfers. Whether processing is performed at the item or transfer level, transfer
closing queue logic will be called to determine if the entire multi-leg transfer can be
closed.
PROCEDURE HANDLE_ERRORS
 (O_status_code IN OUT VARCHAR2,
 IO_error_message IN OUT VARCHAR2,
 I_cause IN VARCHAR2,
 I_program IN VARCHAR2)

This is the standard error handling procedure that wraps the
API_LIBRARY.HANDLE_ERROR function.

Message XSD
This subscription API consumes a message as specified in WOStatusDesc.xsd. See Oracle
Retail Integration Bus documentation for details regarding the composition of a Work
Order Status message.

Work Order Status Subscription API

Operations Guide - Volume 2 - Message Publication and Subscription Design 333

Tables

TABLE SELECT INSERT UPDATE DELETE

TSFHEAD Yes No Yes No

TSF_DETAIL Yes No Yes No

TSF_ITEM_COST Yes No Yes No

DOC_CLOSE_QUEUE No Yes No No

ITEM_LOC_SOH Yes Yes Yes No

TRAN_DATA(VIEW) No Yes No No

INV_ADJ No Yes No No

INV_STATUS_QTY No Yes Yes Yes

INV_ADJ_REASON Yes No No No

V_PACKSKU_QTY Yes No No No

ITEM_LOC Yes No No No

ITEM_MASTER Yes No No No

INV_STATUS_CODES Yes No No No

SHIPSKU Yes No No No

Operations Guide - Volume 2 - Message Publication and Subscription Design 335

3
RSL for RMS

RMS and the Oracle Retail Service Layer (RSL)
RSL is a framework that allows Oracle Retail applications to expose APIs to other Oracle
Retail applications. As shown in the diagram below, in RSL terms, there is a ‘client
application layer’ and a ‘service provider layer’. RMS includes the ‘service provider
layer’ that owns the business logic.
The RMS implementation of RSL exposes a synchronous method to communicate with
other applications (RIB-facilitated processing is asynchronous). All RSL services are
contained within an interface offered by a Stateless Session Bean (SSB). To a client
application, each service appears to be merely a method call.
For information about RSL-related configuration within the RMS application, see RSL
documentation.

Client
application

layer

Service
accessor

layer

Service
integration

layer

Service
provider

layer

Client application and service provider processing through RSL

Functional Description of the Packages Used by RSL
The table below offers a functional description of the packages used by RSL.

Package Description

RMSSVC_XLOCPOTSF Through RSL, this call to RMS allows Oracle Retail
Allocation to create/update a purchase order in RMS
from a ‘what if” allocation.

Operations Guide - Volume 2 - Message Publication and Subscription Design 337

4
Service Provider Implementations API

Designs
Note: The following service provider implementation API
designs are intended only to give a high level overview of
the APIs available.

The implementation of these services, along with the
associated Web Service Definition Language (WSDL), may
be used to get a full understanding of the data requirements,
validation rules, persistence rules, and return values
associated with the service.

Supplier Service Provider Impl

Program Name
RMSAIASUB_SUPPWEBSS/B.PLS

Functional Area
SUPPLIER FEED

Design Overview
RMS, utilizing the RMS CONSUME function, uses the Supplier Service Provider Impl
web service to subscribe to supplier information that is published from an external
financial application. Supplier information includes supplier addresses and the
operating unit.
Processing includes a check for the appropriate financial application in RMS on the
SYSTEM_OPTIONS table’s FINANCIAL_AP column. The financial application (such as
Oracle E-Business Suite or PeopleSoft Financials) sends the information to RMS via the
web service. All data exchanges are through Enterprise Business Objects (EBOs), but
RMS receives or sends data as per the XSDs defined (for example, SupplierDesc.xsd or
SupplierRef.xsd).

Function Level Description

PROCEDURE createSupplierDesc (New – Public) – Returns Boolean

Variable Name Input/Output Designation Data Type

I_serviceOperationContext IN "RIB_ServiceOpContext_REC"

I_businessObject IN "RIB_SupplierDesc_REC"

O_serviceOperationStatus OUT "RIB_ServiceOpStatus_REC"

O_businessObject OUT "RIB_SupplierRef_REC"

1. Populate the first record of "RIB_SupplierCollectionDesc_REC".

Service Provider Implementations API Designs

338 Oracle Retail Merchandising System

2. Pass the variable to the function RMSAIASUB_SUPPLIER.CONSUME.
3. Pass message type as “SuppAdd”.
4. The new OUT parameter O_ supplier Ref of consume function will assigned to

O_message.
5. If there is any error then the O_error_message from consume will be assigned to the

RIB_OBJECT O_ serviceOperationStatus as per the signature of the new
RIB_OBJECT. See the error logic below.

PROCEDURE updateSupplierDesc (New – Public) – Returns Boolean

Variable Name Input/Output Designation Data Type

I_serviceOperationContext IN "RIB_ServiceOpContext_REC"

I_businessObject IN "RIB_SupplierDesc_REC"

O_serviceOperationStatus OUT "RIB_ServiceOpStatus_REC"

O_businessObject OUT "RIB_SupplierDescREC"

1. Populate the first record of "RIB_SupplierCollectionDesc_REC".
2. Pass the variable to the function RMSAIASUB_SUPPLIER.CONSUME.
3. Pass message type as “SuppMod”.
4. The new OUT parameter O_ supplier Ref of consume function will assigned to

O_message.
5. If there is any error then the O_error_message from consume will be assigned to the

RIB_OBJECT O_ serviceOperationStatus as per the signature of the new
RIB_OBJECT. See the error logic below.

Error Logic for Create and Update Web Services:
Error Logic:
O_serviceOperationStatus is an Oracle Object with record structure as
“RIB_ServiceOpStatus_REC”. This structure contains elements types “success status” and
“failure_status”. Both are objects again.
Failure status
(
Error_type,
Message,
Detailed Message,
Property_TBL (an object with two fields name and value).
)

In case of error in the consume() function, and on receiving O_error_message and
O_status_code from it, populate the O_serviceOperationStatus as follows

1) Error_type = use any of the below:

-- Valid errorType :
oracle.retail.integration.services.exception.IllegalArgumentWSFaultException
-- Description: $fault.documentation
--
-- Valid errorType :
oracle.retail.integration.services.exception.EntityAlreadyExistsWSFaultException
-- Description: $fault.documentation
--
-- Valid errorType :
oracle.retail.integration.services.exception.IllegalStateWSFaultException

Supplier Service Provider Impl

Operations Guide - Volume 2 - Message Publication and Subscription Design 339

-- Description: $fault.documentation

2) Message = “message failure description short”

3) Detailed Message = O_error_message from consume().
4) Property_TBL = NULL or populate different name/value pairs using
O_error_message.
Example: If O_error_message is
“Payhead:ID;100:Duplicate::PaytermDetail:Sequence:2:invalid:: etc….”
 Then property table will contain
a)
“Payhead:ID;100”
“Duplicate”

b)
“PaytermDetail:Sequence:2”
“invalid”

Note: The use of property_table is optional. If more
information is to be given then it can be used.

Note: During Payterm pkg development, a library was
created to populate error/suceess messages, you may use
that.

Success Logic:
O_serviceOperationStatus is an Oracle Object with record structure as
“RIB_ServiceOpStatus_REC”. This structure contains elements types “success status” and
“failure_status”. Both are objects again.

Success status
(
Message,
)

Note: Populate the “Message” with success message like ‘the
operation is successful’.

Note: During Payterm pkg development, a library was
created to populate error/suceess messages, you may use
that.

PROCEDURE createSupSiteUsingSupplierDesc((New – Public) – Returns

Variable Name Input/Output Designation Data Type

I_serviceOperationContext IN "RIB_ServiceOpContext_REC"

I_businessObject IN "RIB_SupplierDesc_REC"

O_serviceOperationStatus OUT "RIB_ServiceOpStatus_REC"

O_businessObject OUT "RIB_SupplierRef_REC"

Service Provider Implementations API Designs

340 Oracle Retail Merchandising System

Not supported from RMS. Return without further processing it with error message “This
webservice is not supported now”.

PROCEDURE updateSupSiteUsingSupplierDesc (New – Public) – Returns Boolean

Variable Name Input/Output Designation Data Type

I_serviceOperationContext IN "RIB_ServiceOpContext_REC"

I_businessObject IN "RIB_SupplierDesc_REC"

O_serviceOperationStatus OUT "RIB_ServiceOpStatus_REC"

O_businessObject OUT "RIB_SupplierDesc_REC"

Not supported from RMS. Return without further processing it with error message “This
webservice is not supported now”.

PROCEDURE createSupSiteAddrUsingSupplierDesc (New – Public) – Returns Boolean

Variable Name Input/Output Designation Data Type

I_serviceOperationContext IN "RIB_ServiceOpContext_REC"

I_businessObject IN "RIB_SupplierDesc_REC"

O_serviceOperationStatus OUT "RIB_ServiceOpStatus_REC"

O_businessObject OUT "RIB_SupplierRef_REC"

Not supported from RMS. Return without further processing it with error message “This
webservice is not supported now”.

PROCEDURE updateSupSiteAddrUsingSupplierDesc (New – Public) – Returns Boolean.

Variable Name Input/Output Designation Data Type

I_serviceOperationContext IN "RIB_ServiceOpContext_REC"

I_businessObject IN "RIB_SupplierDesc_REC"

O_serviceOperationStatus OUT "RIB_ServiceOpStatus_REC"

O_businessObject OUT "RIB_SupplierDesc_REC"

Not supported from RMS. Return without further processing it with error message “This
webservice is not supported now”.

PROCEDURE updateSupSiteOrgUnitUsingSupplierDesc (New – Public) – Returns
Boolean

Variable Name Input/Output Designation Data Type

I_serviceOperationContext IN "RIB_ServiceOpContext_REC"

I_businessObject IN "RIB_SupplierDesc_REC"

O_serviceOperationStatus OUT "RIB_ServiceOpStatus_REC"

O_businessObject OUT "RIB_SupplierDesc_REC"

Not supported from RMS. Return without further processing it with error message “This
webservice is not supported now”.

Supplier Service Provider Impl

Operations Guide - Volume 2 - Message Publication and Subscription Design 341

PROCEDURE findSupplierDesc (New – Public) – Returns Boolean

Variable Name Input/Output Designation Data Type

I_serviceOperationContext IN "RIB_ServiceOpContext_REC"

I_businessObject IN "RIB_SupplierRef_REC"

O_serviceOperationStatus OUT "RIB_ServiceOpStatus_REC"

O_businessObject OUT "RIB_SupplierDesc_REC"

Not supported from RMS. Return without further processing it with error message “This
webservice is not supported now”.

PROCEDURE deleteSupplierDesc (New – Public) – Returns Boolean

Variable Name Input/Output Designation Data Type

I_serviceOperationContext IN "RIB_ServiceOpContext_REC"

I_businessObject IN "RIB_SupplierRef_REC"

O_serviceOperationStatus OUT "RIB_ServiceOpStatus_REC"

O_businessObject OUT "RIB_SupplierRef_REC"

Not supported from RMS. Return without further processing it with error message “This
webservice is not supported now”.

PROCEDURE createSupplierCollectionDesc (New – Public) – Returns Boolean

Variable Name Input/Output Designation Data Type

I_serviceOperationContext IN "RIB_ServiceOpContext_REC"

I_businessObject IN "RIB_SupplierCollectionDesc_REC"

O_serviceOperationStatus OUT "RIB_ServiceOpStatus_REC"

O_businessObject OUT "RIB_SupplierCollectionRef_REC"

1. Pass I_message to the function RMSSUB_AIA_SUPPLIER.CONSUME.
2. Pass message type as “SuppAdd”.
3. The new OUT parameter O_ supplier Ref of consume function will assigned to

O_message.
4. If there is any error then the O_error_message from consume will be assigned to the

RIB_OBJECT O_ serviceOperationStatus as per the signature of the new
RIB_OBJECT. See the error logic above.

PROCEDURE updateSupplierCollectionDesc (New – Public) – Returns Boolean

Variable Name Input/Output Designation Data Type

I_serviceOperationContext IN "RIB_ServiceOpContext_REC"

I_businessObject IN "RIB_SupplierCollectionDesc_REC"

O_serviceOperationStatus OUT "RIB_ServiceOpStatus_REC"

O_businessObject OUT "RIB_SupplierCollectionDesc_REC"

1. Pass I_message to the function RMSSUB_AIA_SUPPLIER.CONSUME.

Service Provider Implementations API Designs

342 Oracle Retail Merchandising System

2. Pass message type as “SuppMod”.
3. If there is any error then the O_error_message from consume will be assigned to the

RIB_OBJECT O_ serviceOperationStatus as per the signature of the new
RIB_OBJECT. See the error logic above.

PROCEDURE findSupplierCollectionDesc (New – Public) – Returns Boolean

Variable Name Input/Output Designation Data Type

I_serviceOperationContext IN "RIB_ServiceOpContext_REC"

I_businessObject IN "RIB_SupplierCollectionRef_REC"

O_serviceOperationStatus OUT "RIB_ServiceOpStatus_REC"

O_businessObject OUT "RIB_SupplierCollectionDesc_REC"

Not supported from RMS. Return without further processing it with error message “This
webservice is not supported now”.

PROCEDURE deleteSupplierCollectionDesc (New – Public) – Returns Boolean

Variable Name Input/Output Designation Data Type

I_serviceOperationContext IN "RIB_ServiceOpContext_REC"

I_businessObject IN "RIB_SupplierCollectionRef_REC"

O_serviceOperationStatus OUT "RIB_ServiceOpStatus_REC"

O_businessObject OUT "RIB_SupplierCollectionRef_REC"

Not supported from RMS. Return without further processing it with error message “This
webservice is not supported now”.

Locking Strategy
N/A

Performance
N/A

Security
N/A

Payment Terms Service Provider Impl

Operations Guide - Volume 2 - Message Publication and Subscription Design 343

Payment Terms Service Provider Impl

Functional Area
Payment terms.

Design Overview
Payment terms are the terms established for paying a supplier (for example, 2.5% for 30
days, 3.5% for 15 days, 1.5% monthly, and so on). RMS subscribes to a payment terms
web service. After confirming the validity of the records enclosed within the web service
message, RMS updates its tables with the information.
The payment terms web service (PayTermServiceProviderImpl) allows RMS to integrate
with a financial system such as PeopleSoft.

Function Level Description

PROCEDURE createHeaderPayTermDesc(New)

Variable Name Input/Output Designation Data Type

I_serviceContext IN “RIB_ServiceOpContext_REC”

I_message IN “RIB_PayTermDesc_REC”

O_ serviceOperationStatus OUT “RIB_ServiceOpStatus_REC”

O_message OUT “RIB_PayTermRef_REC”

PROCEDURE createPayTermDesc (New)

Variable Name Input/Output Designation Data Type

I_serviceContext IN “RIB_ServiceOpContext_REC”

I_message IN “RIB_PayTermDesc_REC”

O_ serviceOperationStatus OUT “RIB_ServiceOpStatus_REC”

O_message OUT “RIB_PayTermRef_REC”

PROCEDURE createDetailPayTermDesc (New)

Variable Name Input/Output Designation Data Type

I_serviceContext IN “RIB_ServiceOpContext_REC”

I_message IN “RIB_PayTermDesc_REC”

O_ serviceOperationStatus OUT “RIB_ServiceOpStatus_REC”

O_message OUT “RIB_PayTermRef_REC”

PROCEDURE updatePayTermDesc (New)

Variable Name Input/Output Designation Data Type

I_serviceContext IN “RIB_ServiceOpContext_REC”

Service Provider Implementations API Designs

344 Oracle Retail Merchandising System

I_message IN “RIB_PayTermDesc_REC”

O_ serviceOperationStatus OUT “RIB_ServiceOpStatus_REC”

O_message OUT “RIB_PayTermRef_REC”

PROCEDURE updateHeaderPayTermDesc (New)

Variable Name Input/Output Designation Data Type

I_serviceContext IN “RIB_ServiceOpContext_REC”

I_message IN “RIB_PayTermDesc_REC”

O_ serviceOperationStatus OUT “RIB_ServiceOpStatus_REC”

O_message OUT “RIB_PayTermRef_REC”

PROCEDURE updateDetailPayTermDesc (New)

Variable Name Input/Output Designation Data Type

I_serviceContext IN “RIB_ServiceOpContext_REC”

I_message IN “RIB_PayTermDesc_REC”

O_ serviceOperationStatus OUT “RIB_ServiceOpStatus_REC”

O_message OUT “RIB_PayTermRef_REC”

PROCEDURE findPayTermDesc (New)

Variable Name Input/Output Designation Data Type

I_serviceContext IN “RIB_ServiceOpContext_REC”

I_message IN “RIB_PayTermDesc_REC”

O_ serviceOperationStatus OUT “RIB_ServiceOpStatus_REC”

O_message OUT “RIB_PayTermRef_REC”

PROCEDURE deletePayTermDesc (New)

Variable Name Input/Output Designation Data Type

I_serviceContext IN “RIB_ServiceOpContext_REC”

I_message IN “RIB_PayTermDesc_REC”

O_ serviceOperationStatus OUT “RIB_ServiceOpStatus_REC”

O_message OUT “RIB_PayTermRef_REC”

Locking Strategy
N/A

Performance
N/A

Payment Terms Service Provider Impl

Operations Guide - Volume 2 - Message Publication and Subscription Design 345

Security
N/A

Operations Guide - Volume 2 - Message Publication and Subscription Design 347

5
Web Services

Overview
Web Services are a standardized way of integrating Web-based applications using the
XML, Simple Object Access Protocol (SOAP), Web Services Description Language
(WSDL), and Universal Description, Discovery and Integration (UDDI) open standards
over an Internet protocol.
Types of Services:
 Composite services

A composite service optimizes a category role and computes promotion/markdown
information.

 Entity/enterprise services
An entity/enterprise service provides create, read, update, and delete capabilities.
These services allows for the most reuse of the web service.

 Task/application-level services
A task/application-level service provides less opportunity for reuse of the web
service. These services are specific to an operation such as creating a PO in RMS

 Utility/technical services
A utility/technical service provides logging and error handling

Web services can be private or public. A private web service is internal to an application
and has limited re-use. A public web service is annotated and exposed externally
through a repository

Functional Description
Oracle Retail utilizes web services without functional limitations. This provides full-
fledged functionality with no limitations on the system of record. The diagram below
shows the flow of information from the user interface to the web service
callers/providers and back.

PL/SQL App

Fully
Functional

PL/SQL API
User Interface

Standard WS
Provider

Web Service
Callers/Providers

WS Payload,
Operation

Return Payload

Sample WSDL
Web Services Description Language (WSDL) is an XML-based language used to describe
Web Services. The WSDL defines services as collections of network endpoints, or ports.

Web Services

348 Oracle Retail Merchandising System

The definitions of ports and messages are separated from their use or instance, which
allows the reuse of these definitions.

Note: The following is a sample WSDL. It is meant to be an
example and is not meant to be used by a client.

<definitions name="PayTermServicePortFactory"
targetNamespace="http://www.oracle.com/retail/integration/services">
−
<types>
−
<schema targetNamespace="http://www.oracle.com/retail/integration/services"
elementFormDefault="qualified">
<import namespace="http://www.oracle.com/webservices/internal/literal"/>
−
<complexType name="PayTermDesc">
−
<sequence>
<element name="terms_Code" type="string" nillable="true"/>
<element name="terms_Xref_Key" type="string" nillable="true"/>
<element name="terms" type="string" nillable="true"/>
<element name="discdays" type="int" nillable="true"/>
<element name="rank" type="long" nillable="true"/>
<element name="terms_Desc" type="string" nillable="true"/>
<element name="start_Date_Active" type="tns:RIBDate" nillable="true"/>
<element name="percent" type="decimal" nillable="true"/>
<element name="end_Date_Active" type="tns:RIBDate" nillable="true"/>
<element name="enabled_Flag" type="string" nillable="true"/>
<element name="payTermDtl" type="tns:PayTermDtl" nillable="true" minOccurs="0"
maxOccurs="unbounded"/>
<element name="due_Days" type="int" nillable="true"/>
</sequence>
</complexType>
−
<complexType name="RIBDate">
−
<sequence>
<element name="month" type="int"/>
<element name="hour" type="int" nillable="true"/>
<element name="day" type="int"/>
<element name="year" type="int"/>
<element name="minute" type="int" nillable="true"/>
<element name="second" type="int" nillable="true"/>
</sequence>
</complexType>
−
<complexType name="PayTermDtl">
−
<sequence>
<element name="disc_Mm_Fwd" type="int"/>
<element name="fixed_Date" type="tns:RIBDate" nillable="true"/>
<element name="cutoff_Day" type="int"/>
<element name="percent" type="decimal" nillable="true"/>
<element name="start_Date_Active" type="tns:RIBDate" nillable="true"/>
<element name="disc_Dom" type="int"/>
<element name="due_Dom" type="int"/>
<element name="terms_Seq" type="long"/>
<element name="due_Max_Amount" type="decimal" nillable="true"/>
<element name="due_Days" type="int"/>
<element name="discdays" type="int"/>
<element name="end_Date_Active" type="tns:RIBDate" nillable="true"/>
<element name="due_Mm_Fwd" type="int"/>

Sample WSDL

Operations Guide - Volume 2 - Message Publication and Subscription Design 349

<element name="enabled_Flag" type="string" nillable="true"/>
</sequence>
</complexType>
−
<complexType name="IllegalStateWSFaultException">
−
<complexContent>
−
<extension base="tns:WebServiceFaultException">
<sequence/>
</extension>
</complexContent>
</complexType>
−
<complexType name="WebServiceFaultException">
−
<sequence>
<element name="errorCode" type="string" nillable="true"/>
<element name="errorDescription" type="string" nillable="true"/>
<element name="errorDetailValues" type="ns1:map" nillable="true"/>
</sequence>
</complexType>
−
<complexType name="EntityAlreadyExistsWSFaultException">
−
<complexContent>
−
<extension base="tns:WebServiceFaultException">
<sequence/>
</extension>
</complexContent>
</complexType>
−
<complexType name="EntityNotFoundWSFaultException">
−
<complexContent>
−
<extension base="tns:WebServiceFaultException">
<sequence/>
</extension>
</complexContent>
</complexType>
−
<complexType name="IllegalArgumentWSFaultException">
−
<complexContent>
−
<extension base="tns:WebServiceFaultException">
<sequence/>
</extension>
</complexContent>
</complexType>
−
<complexType name="PayTermRef">
−
<sequence>
<element name="terms_Xref_Key" type="string" nillable="true"/>
<element name="termsSeq" type="tns:TermsSeq" nillable="true" minOccurs="0"
maxOccurs="unbounded"/>
<element name="terms" type="string" nillable="true"/>
</sequence>
</complexType>
−

Web Services

350 Oracle Retail Merchandising System

<complexType name="TermsSeq">
−
<sequence>
<element name="detail_Seq_No" type="long"/>
</sequence>
</complexType>
<element name="createDetailPayTermDesc" type="tns:createDetailPayTermDesc"/>
−
<complexType name="createDetailPayTermDesc">
−
<sequence>
<element name="PayTermDesc" type="tns:PayTermDesc" nillable="true"/>
</sequence>
</complexType>
<element name="createDetailPayTermDescResponse"
type="tns:createDetailPayTermDescResponse"/>
−
<complexType name="createDetailPayTermDescResponse">
−
<sequence>
<element name="PayTermRef" type="tns:PayTermRef" nillable="true"/>
</sequence>
</complexType>
<element name="IllegalStateWSFaultExceptionElement"
type="tns:IllegalStateWSFaultException"/>
<element name="IllegalArgumentWSFaultExceptionElement"
type="tns:IllegalArgumentWSFaultException"/>
<element name="EntityAlreadyExistsWSFaultExceptionElement"
type="tns:EntityAlreadyExistsWSFaultException"/>
<element name="createHeaderPayTermDesc" type="tns:createHeaderPayTermDesc"/>
−
<complexType name="createHeaderPayTermDesc">
−
<sequence>
<element name="PayTermDesc" type="tns:PayTermDesc" nillable="true"/>
</sequence>
</complexType>
<element name="createHeaderPayTermDescResponse"
type="tns:createHeaderPayTermDescResponse"/>
−
<complexType name="createHeaderPayTermDescResponse">
−
<sequence>
<element name="PayTermRef" type="tns:PayTermRef" nillable="true"/>
</sequence>
</complexType>
<element name="createPayTermDesc" type="tns:createPayTermDesc"/>
−
<complexType name="createPayTermDesc">
−
<sequence>
<element name="PayTermDesc" type="tns:PayTermDesc" nillable="true"/>
</sequence>
</complexType>
<element name="createPayTermDescResponse" type="tns:createPayTermDescResponse"/>
−
<complexType name="createPayTermDescResponse">
−
<sequence>
<element name="PayTermRef" type="tns:PayTermRef" nillable="true"/>
</sequence>
</complexType>
<element name="deletePayTermDesc" type="tns:deletePayTermDesc"/>

Sample WSDL

Operations Guide - Volume 2 - Message Publication and Subscription Design 351

−
<complexType name="deletePayTermDesc">
−
<sequence>
<element name="PayTermRef" type="tns:PayTermRef" nillable="true"/>
</sequence>
</complexType>
<element name="deletePayTermDescResponse" type="tns:deletePayTermDescResponse"/>
−
<complexType name="deletePayTermDescResponse">
−
<sequence>
<element name="PayTermRef" type="tns:PayTermRef" nillable="true"/>
</sequence>
</complexType>
<element name="EntityNotFoundWSFaultExceptionElement"
type="tns:EntityNotFoundWSFaultException"/>
<element name="findPayTermDesc" type="tns:findPayTermDesc"/>
−
<complexType name="findPayTermDesc">
−
<sequence>
<element name="PayTermRef" type="tns:PayTermRef" nillable="true"/>
</sequence>
</complexType>
<element name="findPayTermDescResponse" type="tns:findPayTermDescResponse"/>
−
<complexType name="findPayTermDescResponse">
−
<sequence>
<element name="PayTermDesc" type="tns:PayTermDesc" nillable="true"/>
</sequence>
</complexType>
<element name="updateDetailPayTermDesc" type="tns:updateDetailPayTermDesc"/>
−
<complexType name="updateDetailPayTermDesc">
−
<sequence>
<element name="PayTermDesc" type="tns:PayTermDesc" nillable="true"/>
</sequence>
</complexType>
<element name="updateDetailPayTermDescResponse"
type="tns:updateDetailPayTermDescResponse"/>
−
<complexType name="updateDetailPayTermDescResponse">
−
<sequence>
<element name="PayTermDesc" type="tns:PayTermDesc" nillable="true"/>
</sequence>
</complexType>
<element name="updateHeaderPayTermDesc" type="tns:updateHeaderPayTermDesc"/>
−
<complexType name="updateHeaderPayTermDesc">
−
<sequence>
<element name="PayTermDesc" type="tns:PayTermDesc" nillable="true"/>
</sequence>
</complexType>
<element name="updateHeaderPayTermDescResponse"
type="tns:updateHeaderPayTermDescResponse"/>
−
<complexType name="updateHeaderPayTermDescResponse">
−

Web Services

352 Oracle Retail Merchandising System

<sequence>
<element name="PayTermDesc" type="tns:PayTermDesc" nillable="true"/>
</sequence>
</complexType>
<element name="updatePayTermDesc" type="tns:updatePayTermDesc"/>
−
<complexType name="updatePayTermDesc">
−
<sequence>
<element name="PayTermDesc" type="tns:PayTermDesc" nillable="true"/>
</sequence>
</complexType>
<element name="updatePayTermDescResponse" type="tns:updatePayTermDescResponse"/>
−
<complexType name="updatePayTermDescResponse">
−
<sequence>
<element name="PayTermDesc" type="tns:PayTermDesc" nillable="true"/>
</sequence>
</complexType>
</schema>
−
<schema targetNamespace="http://www.oracle.com/webservices/internal/literal"
elementFormDefault="qualified">
<import namespace="http://www.oracle.com/retail/integration/services"/>
−
<complexType name="map">
−
<sequence>
<element name="mapEntry" type="tns:mapEntry" minOccurs="0" maxOccurs="unbounded"/>
</sequence>
</complexType>
−
<complexType name="mapEntry">
−
<sequence>
<element name="key" type="anyType"/>
<element name="value" type="anyType"/>
</sequence>
</complexType>
</schema>
</types>
−
<message name="PayTermServicePortType_createDetailPayTermDesc">
<part name="parameters" element="tns:createDetailPayTermDesc"/>
</message>
−
<message name="PayTermServicePortType_createDetailPayTermDescResponse">
<part name="parameters" element="tns:createDetailPayTermDescResponse"/>
</message>
−
<message name="IllegalArgumentWSFaultException">
<part name="IllegalArgumentWSFaultExceptionElement"
element="tns:IllegalArgumentWSFaultExceptionElement"/>
</message>
−
<message name="EntityAlreadyExistsWSFaultException">
<part name="EntityAlreadyExistsWSFaultExceptionElement"
element="tns:EntityAlreadyExistsWSFaultExceptionElement"/>
</message>
−
<message name="IllegalStateWSFaultException">

Sample WSDL

Operations Guide - Volume 2 - Message Publication and Subscription Design 353

<part name="IllegalStateWSFaultExceptionElement"
element="tns:IllegalStateWSFaultExceptionElement"/>
</message>
−
<message name="PayTermServicePortType_createHeaderPayTermDesc">
<part name="parameters" element="tns:createHeaderPayTermDesc"/>
</message>
−
<message name="PayTermServicePortType_createHeaderPayTermDescResponse">
<part name="parameters" element="tns:createHeaderPayTermDescResponse"/>
</message>
−
<message name="PayTermServicePortType_createPayTermDesc">
<part name="parameters" element="tns:createPayTermDesc"/>
</message>
−
<message name="PayTermServicePortType_createPayTermDescResponse">
<part name="parameters" element="tns:createPayTermDescResponse"/>
</message>
−
<message name="PayTermServicePortType_deletePayTermDesc">
<part name="parameters" element="tns:deletePayTermDesc"/>
</message>
−
<message name="PayTermServicePortType_deletePayTermDescResponse">
<part name="parameters" element="tns:deletePayTermDescResponse"/>
</message>
−
<message name="EntityNotFoundWSFaultException">
<part name="EntityNotFoundWSFaultExceptionElement"
element="tns:EntityNotFoundWSFaultExceptionElement"/>
</message>
−
<message name="PayTermServicePortType_findPayTermDesc">
<part name="parameters" element="tns:findPayTermDesc"/>
</message>
−
<message name="PayTermServicePortType_findPayTermDescResponse">
<part name="parameters" element="tns:findPayTermDescResponse"/>
</message>
−
<message name="PayTermServicePortType_updateDetailPayTermDesc">
<part name="parameters" element="tns:updateDetailPayTermDesc"/>
</message>
−
<message name="PayTermServicePortType_updateDetailPayTermDescResponse">
<part name="parameters" element="tns:updateDetailPayTermDescResponse"/>
</message>
−
<message name="PayTermServicePortType_updateHeaderPayTermDesc">
<part name="parameters" element="tns:updateHeaderPayTermDesc"/>
</message>
−
<message name="PayTermServicePortType_updateHeaderPayTermDescResponse">
<part name="parameters" element="tns:updateHeaderPayTermDescResponse"/>
</message>
−
<message name="PayTermServicePortType_updatePayTermDesc">
<part name="parameters" element="tns:updatePayTermDesc"/>
</message>
−
<message name="PayTermServicePortType_updatePayTermDescResponse">
<part name="parameters" element="tns:updatePayTermDescResponse"/>

Web Services

354 Oracle Retail Merchandising System

</message>
−
<portType name="PayTermService">
−
<operation name="createDetailPayTermDesc">
<input message="tns:PayTermServicePortType_createDetailPayTermDesc"/>
<output message="tns:PayTermServicePortType_createDetailPayTermDescResponse"/>
<fault name="IllegalArgumentWSFaultException"
message="tns:IllegalArgumentWSFaultException"/>
<fault name="EntityAlreadyExistsWSFaultException"
message="tns:EntityAlreadyExistsWSFaultException"/>
<fault name="IllegalStateWSFaultException"
message="tns:IllegalStateWSFaultException"/>
</operation>
−
<operation name="createHeaderPayTermDesc">
<input message="tns:PayTermServicePortType_createHeaderPayTermDesc"/>
<output message="tns:PayTermServicePortType_createHeaderPayTermDescResponse"/>
<fault name="IllegalArgumentWSFaultException"
message="tns:IllegalArgumentWSFaultException"/>
<fault name="EntityAlreadyExistsWSFaultException"
message="tns:EntityAlreadyExistsWSFaultException"/>
<fault name="IllegalStateWSFaultException"
message="tns:IllegalStateWSFaultException"/>
</operation>
−
<operation name="createPayTermDesc">
<input message="tns:PayTermServicePortType_createPayTermDesc"/>
<output message="tns:PayTermServicePortType_createPayTermDescResponse"/>
<fault name="IllegalArgumentWSFaultException"
message="tns:IllegalArgumentWSFaultException"/>
<fault name="EntityAlreadyExistsWSFaultException"
message="tns:EntityAlreadyExistsWSFaultException"/>
<fault name="IllegalStateWSFaultException"
message="tns:IllegalStateWSFaultException"/>
</operation>
−
<operation name="deletePayTermDesc">
<input message="tns:PayTermServicePortType_deletePayTermDesc"/>
<output message="tns:PayTermServicePortType_deletePayTermDescResponse"/>
<fault name="IllegalArgumentWSFaultException"
message="tns:IllegalArgumentWSFaultException"/>
<fault name="IllegalStateWSFaultException"
message="tns:IllegalStateWSFaultException"/>
<fault name="EntityNotFoundWSFaultException"
message="tns:EntityNotFoundWSFaultException"/>
</operation>
−
<operation name="findPayTermDesc">
<input message="tns:PayTermServicePortType_findPayTermDesc"/>
<output message="tns:PayTermServicePortType_findPayTermDescResponse"/>
<fault name="IllegalArgumentWSFaultException"
message="tns:IllegalArgumentWSFaultException"/>
<fault name="IllegalStateWSFaultException"
message="tns:IllegalStateWSFaultException"/>
<fault name="EntityNotFoundWSFaultException"
message="tns:EntityNotFoundWSFaultException"/>
</operation>
−
<operation name="updateDetailPayTermDesc">
<input message="tns:PayTermServicePortType_updateDetailPayTermDesc"/>
<output message="tns:PayTermServicePortType_updateDetailPayTermDescResponse"/>

Sample WSDL

Operations Guide - Volume 2 - Message Publication and Subscription Design 355

<fault name="IllegalArgumentWSFaultException"
message="tns:IllegalArgumentWSFaultException"/>
<fault name="IllegalStateWSFaultException"
message="tns:IllegalStateWSFaultException"/>
<fault name="EntityNotFoundWSFaultException"
message="tns:EntityNotFoundWSFaultException"/>
</operation>
−
<operation name="updateHeaderPayTermDesc">
<input message="tns:PayTermServicePortType_updateHeaderPayTermDesc"/>
<output message="tns:PayTermServicePortType_updateHeaderPayTermDescResponse"/>
<fault name="IllegalArgumentWSFaultException"
message="tns:IllegalArgumentWSFaultException"/>
<fault name="IllegalStateWSFaultException"
message="tns:IllegalStateWSFaultException"/>
<fault name="EntityNotFoundWSFaultException"
message="tns:EntityNotFoundWSFaultException"/>
</operation>
−
<operation name="updatePayTermDesc">
<input message="tns:PayTermServicePortType_updatePayTermDesc"/>
<output message="tns:PayTermServicePortType_updatePayTermDescResponse"/>
<fault name="IllegalArgumentWSFaultException"
message="tns:IllegalArgumentWSFaultException"/>
<fault name="IllegalStateWSFaultException"
message="tns:IllegalStateWSFaultException"/>
<fault name="EntityNotFoundWSFaultException"
message="tns:EntityNotFoundWSFaultException"/>
</operation>
</portType>
−
<binding name="PayTermServiceSoapHttp" type="tns:PayTermService">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
−
<operation name="createDetailPayTermDesc">
<soap:operation soapAction=""/>
−
<input>
<soap:body use="literal"/>
</input>
−
<output>
<soap:body use="literal"/>
</output>
−
<fault name="IllegalArgumentWSFaultException">
<soap:fault name="IllegalArgumentWSFaultException" use="literal"
encodingStyle=""/>
</fault>
−
<fault name="EntityAlreadyExistsWSFaultException">
<soap:fault name="EntityAlreadyExistsWSFaultException" use="literal"
encodingStyle=""/>
</fault>
−
<fault name="IllegalStateWSFaultException">
<soap:fault name="IllegalStateWSFaultException" use="literal" encodingStyle=""/>
</fault>
</operation>
−
<operation name="createHeaderPayTermDesc">
<soap:operation soapAction=""/>
−

Web Services

356 Oracle Retail Merchandising System

<input>
<soap:body use="literal"/>
</input>
−
<output>
<soap:body use="literal"/>
</output>
−
<fault name="IllegalArgumentWSFaultException">
<soap:fault name="IllegalArgumentWSFaultException" use="literal"
encodingStyle=""/>
</fault>
−
<fault name="EntityAlreadyExistsWSFaultException">
<soap:fault name="EntityAlreadyExistsWSFaultException" use="literal"
encodingStyle=""/>
</fault>
−
<fault name="IllegalStateWSFaultException">
<soap:fault name="IllegalStateWSFaultException" use="literal" encodingStyle=""/>
</fault>
</operation>
−
<operation name="createPayTermDesc">
<soap:operation soapAction=""/>
−
<input>
<soap:body use="literal"/>
</input>
−
<output>
<soap:body use="literal"/>
</output>
−
<fault name="IllegalArgumentWSFaultException">
<soap:fault name="IllegalArgumentWSFaultException" use="literal"
encodingStyle=""/>
</fault>
−
<fault name="EntityAlreadyExistsWSFaultException">
<soap:fault name="EntityAlreadyExistsWSFaultException" use="literal"
encodingStyle=""/>
</fault>
−
<fault name="IllegalStateWSFaultException">
<soap:fault name="IllegalStateWSFaultException" use="literal" encodingStyle=""/>
</fault>
</operation>
−
<operation name="deletePayTermDesc">
<soap:operation soapAction=""/>
−
<input>
<soap:body use="literal"/>
</input>
−
<output>
<soap:body use="literal"/>
</output>
−
<fault name="IllegalArgumentWSFaultException">
<soap:fault name="IllegalArgumentWSFaultException" use="literal"
encodingStyle=""/>

Sample WSDL

Operations Guide - Volume 2 - Message Publication and Subscription Design 357

</fault>
−
<fault name="IllegalStateWSFaultException">
<soap:fault name="IllegalStateWSFaultException" use="literal" encodingStyle=""/>
</fault>
−
<fault name="EntityNotFoundWSFaultException">
<soap:fault name="EntityNotFoundWSFaultException" use="literal" encodingStyle=""/>
</fault>
</operation>
−
<operation name="findPayTermDesc">
<soap:operation soapAction=""/>
−
<input>
<soap:body use="literal"/>
</input>
−
<output>
<soap:body use="literal"/>
</output>
−
<fault name="IllegalArgumentWSFaultException">
<soap:fault name="IllegalArgumentWSFaultException" use="literal"
encodingStyle=""/>
</fault>
−
<fault name="IllegalStateWSFaultException">
<soap:fault name="IllegalStateWSFaultException" use="literal" encodingStyle=""/>
</fault>
−
<fault name="EntityNotFoundWSFaultException">
<soap:fault name="EntityNotFoundWSFaultException" use="literal" encodingStyle=""/>
</fault>
</operation>
−
<operation name="updateDetailPayTermDesc">
<soap:operation soapAction=""/>
−
<input>
<soap:body use="literal"/>
</input>
−
<output>
<soap:body use="literal"/>
</output>
−
<fault name="IllegalArgumentWSFaultException">
<soap:fault name="IllegalArgumentWSFaultException" use="literal"
encodingStyle=""/>
</fault>
−
<fault name="IllegalStateWSFaultException">
<soap:fault name="IllegalStateWSFaultException" use="literal" encodingStyle=""/>
</fault>
−
<fault name="EntityNotFoundWSFaultException">
<soap:fault name="EntityNotFoundWSFaultException" use="literal" encodingStyle=""/>
</fault>
</operation>
−
<operation name="updateHeaderPayTermDesc">
<soap:operation soapAction=""/>

Web Services

358 Oracle Retail Merchandising System

−
<input>
<soap:body use="literal"/>
</input>
−
<output>
<soap:body use="literal"/>
</output>
−
<fault name="IllegalArgumentWSFaultException">
<soap:fault name="IllegalArgumentWSFaultException" use="literal"
encodingStyle=""/>
</fault>
−
<fault name="IllegalStateWSFaultException">
<soap:fault name="IllegalStateWSFaultException" use="literal" encodingStyle=""/>
</fault>
−
<fault name="EntityNotFoundWSFaultException">
<soap:fault name="EntityNotFoundWSFaultException" use="literal" encodingStyle=""/>
</fault>
</operation>
−
<operation name="updatePayTermDesc">
<soap:operation soapAction=""/>
−
<input>
<soap:body use="literal"/>
</input>
−
<output>
<soap:body use="literal"/>
</output>
−
<fault name="IllegalArgumentWSFaultException">
<soap:fault name="IllegalArgumentWSFaultException" use="literal"
encodingStyle=""/>
</fault>
−
<fault name="IllegalStateWSFaultException">
<soap:fault name="IllegalStateWSFaultException" use="literal" encodingStyle=""/>
</fault>
−
<fault name="EntityNotFoundWSFaultException">
<soap:fault name="EntityNotFoundWSFaultException" use="literal" encodingStyle=""/>
</fault>
</operation>
</binding>
−
<service name="PayTermServicePortFactory">
−
<port name="PayTermService" binding="tns:PayTermServiceSoapHttp">
<soap:address location="http://mspdev68:7781/rms-service-ejb/PayTermService"/>
</port>
</service>
</definitions>

	Preface
	Audience
	Related Documents
	Customer Support
	Review Patch Documentation
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	Publication Designs
	Allocations Publication API
	Functional Area
	Design Overview
	Functionality Checklist
	Form Impact
	Business Object Records
	Package Impact
	Package Name: RMSMFM_ALLOC
	Functional Level Description – ADDTOQ
	Functional Level Description – GETNXT
	Function Level Description – PUB_RETRY
	Function Level Description – PROCESS_QUEUE_RECORD (local)
	Function Level Description – MAKE_CREATE (local)
	Function Level Description – BUILD_HEADER_OBJECT (local)
	Function Level Description – BUILD_DETAIL_OBJECTS (local)
	Function Level Description – BUILD_SINGLE_DETAIL (local)
	Function Level Description – BUILD_DETAIL_CHANGE_OBJECTS (local)
	Function Level Description – BUILD_DETAIL_DELETE_OBJECTS (local)
	Function Level Description – LOCK_THE_BLOCK (local)
	Function Level Description – HANDLE_ERRORS (local)
	Function Level Description – DELETE_QUEUE_REC (local)
	Function Level Description – GET_ROUTING_TO_LOCS (local)
	Function Level Description – GET_NOT_BEFORE_DAYS (local)
	Function Level Description – GET_RETAIL (local)
	Function Level Description – CHECK_STATUS (local)
	Trigger Impact
	Message XSD
	Table Impact
	Design Assumptions

	ASNOUT Publication API
	Business Overview
	Functionality Checklist
	Form Impact
	Business Object Records
	Package Impact
	Package Specification – Global Variables
	 Function Level Description – ADDTOQ
	Function Level Description – GETNXT
	Function Level Description – PUB_RETRY
	Function Level Description – PROCESS_QUEUE_RECORD (local)
	Function Level Description – BUILD_HEADER_OBJECT (local)
	Function Level Description – BUILD_DETAIL_OBJECTS (local)
	Function Level Description – LOCK_THE_BLOCK (local)
	Function Level Description – HANDLE_ERRORS (local)
	Function Level Description – DELETE_QUEUE_REC (local)
	Trigger Impact
	Message XSD
	Table Impact
	Design Assumptions

	Banner Publication API
	Business Overview
	Functionality Checklist
	Form Impact
	Business Object Records
	Package Impact
	Trigger Impact
	Message XSD
	Table Impact
	Design Assumptions

	Differentiator Groups Publication API
	Business Overview
	Functionality Checklist
	Form Impact
	Business Object Records
	Package Impact
	Trigger Impact
	Message XSD
	Table Impact
	 Design Assumptions

	Differentiator ID Publication API
	Business Overview
	Diff Publication Concepts
	Diff Message Processes
	Functionality Checklist
	Package Impact
	Package Specification – Global Variables
	Trigger Impact
	Message XSD
	Table Impact
	Design Assumptions

	Item
	Business Overview
	Deposit items
	Catch-Weight Items
	Item Transformation
	Item and Item Component Descriptions
	New Item Message Processes
	Basic Item Message
	New Item Message Publication
	Subordinate Data and XML Tags
	Modify and Delete Messages
	Modify Messages
	Delete messages
	Design Overview
	Functionality Checklist:
	Form Impact
	Business Object Records
	Package Impact
	Trigger Impact
	Message XSD
	Table Impact
	Design Assumptions

	Item Location Publication API
	Business Overview
	Functionality Checklist
	Form Impact
	Business Object Records
	Package Impact
	Trigger Impact
	Message XSD
	Table Impact
	Design Assumptions

	Merchandise Hierarchy Publishing API
	Business Overview
	Functionality Checklist
	Form Impact
	Business Object Records
	Package Impact
	Trigger Impact
	Message XSD
	Table Impact
	Assumptions

	Order Publication API
	Business Overview
	Functionality Checklist
	Form Impact
	Business Object Records
	Package Impact
	Trigger Impact
	Message XSD
	Table Impact
	Design Assumptions

	Partner Publication API
	Business Overview
	Functionality Checklist
	Form Impact
	Business Object Records
	Package Impact
	Trigger Impact
	Message XSD
	Table Impact
	Design Assumptions
	Performance Considerations

	Receiver Unit Adjustment Publication API
	Business Overview
	Functionality Checklist
	Form Impact
	Business Object Records
	Package Impact
	Package name: RMSMFM_RCVUNITADJ
	Function Level Description – ADDTOQ
	Function Level Description – GETNXT
	Function Level Description – PUB_RETRY
	Function Level Description – PROCESS_QUEUE_RECORD (local)
	Function Level Description – MAKE_CREATE (local)
	Function Level Description – BUILD_HEADER_OBJECT (local)
	Function Level Description – BUILD_DETAIL_OBJECTS (local)
	Function Level Description – BUILD_SINGLE_DETAIL (local)
	Function Level Description – LOCK_THE_BLOCK (local)
	Function Level Description – HANDLE_ERRORS (local)
	Function Level Description – DELETE_QUEUE_REC (local)
	Trigger Impact
	Message XSD
	Table Impact
	Design Assumptions

	RTV Request Publication API
	Business Overview
	Functionality Checklist
	Form Impact
	Business Object Records
	Package Impact
	Package Specification – Global Variables
	Function Level Description – ADDTOQ
	Function Level Description – GETNXT
	Function Level Description – PUB_RETRY
	Function Level Description – PROCESS_QUEUE_RECORD (local)
	Function Level Description – MAKE_CREATE (local)
	Function Level Description – BUILD_HEADER_OBJECT (local)
	Function Level Description – BUILD_DETAIL_CHANGE_OBJECTS (local)
	Function Level Description – BUILD_DETAIL_OBJECTS (local)
	Function Level Description – BUILD_DETAIL_DELETE_OBJECTS (local)
	Function Level Description – BUILD_SINGLE_DETAIL (local)
	Function Level Description – LOCK_THE_BLOCK (local)
	Function Level Description – DELETE_QUEUE_REC (local)
	Function Level Description – HANDLE_ERRORS (local)
	Trigger Impact
	Message XSD
	Table Impact
	Design Assumptions

	Seed Data Publication API
	Business Overview
	Functionality Checklist
	Form Impact
	Business Object Records
	Package Impact
	Trigger Impact
	Message XSD
	Table Impact
	Design Assumptions

	Seed Object Publication API
	Business Overview
	Functionality Checklist
	Form Impact
	Business Object Records
	Package Impact
	Trigger Impact
	Message XSD
	Table Impact

	Store Publication API
	Wholesale and Franchise
	Business Overview
	Functionality Checklist
	Form Impact
	Business Object Records
	Package Impact
	Package name: RMSMFM_STORE
	Function Level Description – GETNXT
	Function Level Description – PUB_RETRY
	Function Level Description – PROCESS_QUEUE_RECORD (local)
	Function Level Description – MAKE_CREATE (local)
	Function Level Description – BUILD_HEADER_OBJECT (local)
	Function Level Description – BUILD_DETAIL_OBJECTS (local)
	Function Level Description – BUILD_SINGLE_DETAIL (local)
	Function Level Description – BUILD_DETAIL_CHANGE_OBJECTS (local)
	Function Level Description – BUILD_DETAIL_DELETE_OBJECTS (local)
	Function Level Description – LOCK_THE_BLOCK (local)
	Function Level Description – HANDLE_ERRORS (local)
	Message XSD
	Table Impact
	Design Assumptions

	Transfers Publication API
	Wholesale and Franchise
	Business Overview
	Functionality Checklist
	Form Impact
	Business Object Records
	Package Impact
	Function Level Description – ADDTOQ
	Function Level Description – GETNXT
	Function Level Description – PUB_RETRY
	Function Level Description – PROCESS_QUEUE_RECORD (local)
	Function Level Description – MAKE_CREATE (local)
	Function Level Description – BUILD_HEADER_OBJECT (local)
	Function Level Description – BUILD_DETAIL_OBJECTS (local)
	Function Level Description – BUILD_SINGLE_DETAIL (local)
	Function Level Description – GET_RETAIL (local)
	Function Level Description – GET_GLOBALS (local)
	Function Level Description – GET_TSF_ENTITIES (local)
	Function Level Description – BUILD_DETAIL_CHANGE_OBJECTS (local)
	Function Level Description – BUILD_DETAIL_DELETE_OBJECTS (local)
	Function Level Description – LOCK_THE_BLOCK (local)
	Function Level Description – LOCK_THE_BLOCK (local)
	Function Level Description – DELETE_QUEUE_REC (local)
	Function Level Description – HANDLE_ERRORS (local)
	Trigger Impact
	Message XSD
	Table Impact
	Design Assumptions

	UDA Publication API
	Business Overview
	Functionality Checklist
	Form Impact
	Business Object Records
	Package Impact
	Package Specification – Global Variables
	Function Level Description – ADDTOQ
	Function Level Description – GETNXT
	Trigger Impact
	Message XSD
	Table Impact
	Design Assumptions

	Vendor Publication API
	Multiple Sets of Books
	Business Overview
	Functionality Checklist:
	Form Impact
	Business Object Records
	Package Impact
	Package Specification – Global Variables
	Trigger Impact
	Message XSD
	Table Impact
	Design Assumptions

	Warehouse Publication API
	Business Overview
	Functionality Checklist
	Business Object Records
	Package Impact
	Trigger Impact
	Message XSD
	Table Impact
	Design Assumptions

	Work Orders in Publication API
	Business Overview
	Functionality Checklist
	Form Impact
	Business Object Records
	Package Impact
	Trigger Impact
	Message XSD
	Table Impact
	Design Assumptions

	Work Orders out Publication API
	Business Overview
	Functionality Checklist:
	Form Impact
	Business Object Records
	Package Impact
	Trigger Impact
	Message XSD
	Table Impact
	Design Assumptions

	Subscription Designs
	Allocation Subscription API
	Functional Area
	Design Overview
	Consume Module
	Business Validation Module
	Bulk or single DML module
	Message XSD
	Design Assumptions
	Tables

	Appointments Subscription API
	Functional Area
	Design Overview
	Subscription Packages
	Message XSD
	Design Assumptions
	Tables

	ASNIN SUBSCRIPTION API
	Functional Area
	Business Overview
	Package Impact
	Public API Procedure
	Message XSD
	Design Assumptions
	Tables

	ASNOUT Subscription API
	Wholesale and Franchise
	Functional Area
	Design Overview
	BOL Message Structure
	Subscription Packages
	Message XSD
	Design Assumptions
	Tables

	Clearance Subscription API
	Functional Area
	Design Overview
	Consume Module
	Business Validation Module
	Bulk or single DML module
	Message XSD
	Design Assumptions
	Tables

	CO Return Sale Subscription API
	Functional Area
	Business Overview
	Package Impact
	DML Module
	Message XSD
	Design Assumptions
	Tables

	CO Sales Subscription API
	Functional Area
	Business Overview
	Package Impact
	Message XSD
	Design Assumptions
	Tables

	COGS Subscription API
	Functional Area
	Business Overview
	COGS messages and TRAN_DATA
	Package Impact
	DML Module
	Message XSD
	Design Assumptions
	Tables

	Cost Change Subscription API
	Functional Area
	Design Overview
	Consume Module
	Business Validation Module
	Bulk or Single DML Module
	Message XSD
	Design Assumptions
	Tables

	Currency Exchange Rates Subscription API
	Functional Area
	Business Overview
	Data Flow
	Message Structure:
	Package Impact
	Message XSD
	Design Assumptions
	Tables

	Diff Group Subscription API
	Functional Area
	Design Overview
	System of Record
	Differentiators
	Consume Module
	Business Validation Module
	Bulk or Single DML Module
	Message XSD
	Design Assumptions
	Tables

	Diff ID Subscription API
	Functional Area
	Design Overview
	Consume Module
	Business Validation Module
	Bulk or single DML module
	Message XSD
	Design Assumptions
	Tables

	Direct Ship Receipt Subscription API
	Functional Area
	Business Overview
	Package Impact
	Business Validation Module
	DML Module
	Message XSD
	Design Assumptions
	Tables

	DSD Deals Subscription API
	Functional Area
	Business Overview
	Package Impact
	Message XSD
	Design Assumptions
	Tables

	DSD Receipt Subscription API
	Functional Area
	Business Overview
	Package Impact
	Message XSD
	Design Assumptions
	Tables

	Freight Terms Subscription API
	Functional Area
	Business Overview
	Package Impact
	Message XSD
	Design Assumptions
	Tables

	GL Chart of Accounts Subscription API
	Multiple Sets of Books
	Functional Area
	Business Overview
	System Option for Financial Application
	Data Flow
	Package Impact
	Message XSD
	Design Assumptions
	Tables

	Inventory Adjustment Subscription API
	Functional Area
	Business Overview
	Subscription Package
	Business Validation and DML Module
	Message XSD
	Design Assumptions
	Tables

	Inventory Request Subscription API
	Functional Area
	Business Overview
	Package Impact
	Message XSD
	Design Assumptions
	Tables

	Item Subscription API
	Multiple Sets of Books
	Functional Area
	Design Overview
	Consume Module
	Business Validation Module
	Bulk or Single DML Module
	Message XSD
	Design Assumptions
	Tables

	Item Location Subscription API
	Functional Area
	Design Overview
	Consume Module
	Business Validation Module
	Bulk or single DML module
	Message XSD
	Tables

	Item Reclassification Subscription API
	Functional Area
	Design Overview
	Consume Module
	Business Validation Module
	Bulk or Single DML Module
	Message XSD
	Design Assumptions
	Tables

	Location Trait Subscription API
	Functional Area
	Design Overview
	Consume Module
	Business Validation Module
	Bulk or Single DML Module
	Message XSD
	Design Assumptions
	Tables

	Merchandise Hierarchy Subscription API
	Functional Area
	Design Overview
	System of Record
	Consume Module
	Business Validation Module
	Bulk or Single DML Module
	Message XSD
	Performance / Volume Considerations
	Design Assumptions
	Tables

	Merchandise Hierarchy Reclassification Subscription API
	Functional Area
	Design Overview
	Consume Module
	Business Validation Module
	Bulk or single DML module
	Message XSD
	Design Assumptions
	Tables

	Organizational Hierarchy Subscription API
	Functional Area
	Design Overview
	Consume Module
	Business Validation Module
	Bulk or Single DML Module
	Message XSD
	Design Assumptions
	Tables

	Payment Terms Subscription API
	Functional Area
	Business Overview
	Package Impact
	Message XSD
	Design Assumptions
	Tables

	PO Subscription API
	Functional Area
	Design Overview
	Consume Module
	Business Validation Module
	Bulk or Single DML Module
	Message XSD
	Design Assumptions
	Tables

	Price Change Subscription API
	Multiple Sets of Books
	Functional Area
	Design Overview
	Consume Module
	Business Validation Module
	Bulk or Single DML Module
	Message XSD
	Design Assumptions
	Tables

	Receiving Subscription API
	Functional Area
	Design Overview
	Carton-Level Receiving
	Subscription Packages
	Message XSD
	Design Assumptions
	Tables

	RTV Subscription API
	Functional Area
	Business Overview
	Subscription Package
	Message XSD
	Design Assumptions
	Tables

	Stock Order Status Subscription API
	Functional Area
	Business Overview
	Stock Order Status Explanations
	Pack Considerations
	Package Impact
	Public API Procedures
	Message XSD
	Design Assumptions
	Tables

	Stock Count SCH Subscription API
	Functional Area
	Business Overview
	Consume Module
	Business Validation and DML Module
	Message XSD
	Design Assumptions
	Tables

	Store Subscription API
	Wholesale and Franchise
	Functional Area
	Design Overview
	Consume Module
	Business Validation Module
	Bulk or Single DML Module
	Message XSD
	Performance/Volume Considerations
	Design Assumptions
	Tables

	Transfer Subscription API
	Functional Area
	Design Overview
	Consume Module
	Business Validation Module
	Bulk or Single DML Module
	Message XSD
	Design Assumptions
	Tables

	Vendor Subscription API
	Multiple Sets of Books
	Functional Area
	Business Overview
	Package Impact
	Message XSD
	Design Assumptions
	Tables

	Work Order Status Subscription API
	Functional Area
	Design Overview
	Consume Module
	Message XSD
	Tables

	RSL for RMS
	RMS and the Oracle Retail Service Layer (RSL)
	Functional Description of the Packages Used by RSL

	Service Provider Implementations API Designs
	Supplier Service Provider Impl
	Program Name
	Functional Area
	Design Overview
	Function Level Description
	Locking Strategy
	Performance
	Security

	Payment Terms Service Provider Impl
	Functional Area
	Design Overview
	Function Level Description
	Locking Strategy
	Performance
	Security

	Web Services
	Overview
	Functional Description
	Sample WSDL

