Oracle® Retail Merchandising System
Operations Guide, Volume 3 - Back End Configuration and
Operations

Release 13.2.9

E56042-01

March 2016

ORACLE

Oracle® Retail Merchandising System Operations Guide, Volume 3 - Back End Configuration and
Operations, Release 13.2.9

E56042-01

Copyright © 2016, Oracle. All rights reserved.
Primary Author: Maria Andrew

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or
display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone
licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and /or documentation, delivered to U.S.
Government end users are "commercial computer software"” pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the programs, including any operating system,
integrated software, any programs installed on the hardware, and /or documentation, shall be
subject to license terms and license restrictions applicable to the programs. No other rights are
granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications,
including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information on content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible
for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Value-Added Reseller (VAR) Language
Oracle Retail VAR Applications

The following restrictions and provisions only apply to the programs referred to in this section and
licensed to you. You acknowledge that the programs may contain third party software (VAR
applications) licensed to Oracle. Depending upon your product and its version number, the VAR
applications may include:

(i) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail
Data Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(ii) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of
Kirkland, Washington, to Oracle and imbedded in Oracle Retail Mobile Store Inventory
Management.

(iii) the software component known as Access Via™ licensed by Access Via of Seattle, Washington,
and imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(iv) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of
San Jose, California, and imbedded in Oracle Retail Promotion Planning & Optimization
application.

You acknowledge and confirm that Oracle grants you use of only the object code of the VAR
Applications. Oracle will not deliver source code to the VAR Applications to you. Notwithstanding
any other term or condition of the agreement and this ordering document, you shall not cause or
permit alteration of any VAR Applications. For purposes of this section, "alteration" refers to all
alterations, translations, upgrades, enhancements, customizations or modifications of all or any
portion of the VAR Applications including all reconfigurations, reassembly or reverse assembly, re-
engineering or reverse engineering and recompilations or reverse compilations of the VAR
Applications or any derivatives of the VAR Applications. You acknowledge that it shall be a breach
of the agreement to utilize the relationship, and/or confidential information of the VAR
Applications for purposes of competitive discovery.

The VAR Applications contain trade secrets of Oracle and Oracle's licensors and Customer shall
not attempt, cause, or permit the alteration, decompilation, reverse engineering, disassembly or
other reduction of the VAR Applications to a human perceivable form. Oracle reserves the right to
replace, with functional equivalent software, any of the VAR Applications in future releases of the
applicable program.

Contents

Send Us Your COMMENTS..........ocouiiiiiiiiiiiiiiie i e ix
Prefacec.ooiiiiii s Xi
AUAIEIICE ...t xi
Documentation AcCesSIDIIEYc.eeueuiiiiiiiirrcccc e xi
Related DOCUMENESc.ouiuiiiiiriicicccccct et xi
CUSTOMET SUPPOTt...oiiiiiiiiiiiiitt e xii
Review Patch Documentationccccuiciiiiiniiiiniiiiiccncecee e xii
Improved Process for Oracle Retail Documentation Correctionsccccocueueveiennnee. xii
Oracle Retail Documentation on the Oracle Technology Network..............c............... xiii
CONVENEIONS ...ttt xiii

T INErOdUCHON ... 1
Content of This VOIUMEccooiiiiiiiiiiiiicicc e 1

2 Pro*C Restart and RecoOVeryccccccoiiiiiiiiiiiicii i 3
Table Descriptions and Definitions ... 4

SIS v 0w A e0) 411 4 o) ANUUR TR 4
restart_program_status ..o 5
restart_program_hiStOry ... 6

TESEATE DOOKINIATK ..ottt ettt e et e e s et e eeenaeeseeaneesseaeeessneeesenaneas 7

A <1 2= 1 A TR TR 8

Restart and Recovery Data Model DeSign...........ccciiiviiiiiiiccciiinrreeceeecceeaes 8
PRYSICAL SEE-UP....iiiiiiiiiiieccccc et 8
Table and File-Based Restart/ReCOVETY........ccccciuiuiiiinriniiiccccccierereeeee s 9
API Functional Descriptions..........ccoccuciiiiiiinnnicicciciciice e 11
RESTART _INIT ..ot 11

ST w0 w il 1 (I 1 4§ A TSROSO 12

FSIc] =Y o A 00 410 0 ¥ L AUUU ORI 12

ST w0 il 1 (S 60)0 41 4 L USROS 12
TESEATE_CLOSE ..ttt ettt e ettt e e e et e e e e e e s sateeessaaeeessnaeeesanaeeessnneeeesnnes 13
PATSE_ATTAY_ATES ..eueiereuirietisiiietesesietestst ettt ettt ettt bbbt b bbb bbb 13
TOSEATE _FI10 WITEC ettt ettt et e e e e s et e e e s eaaeeseeaneeeseaeeeesnneesanane 13

i 1= U A= L SRR 13

Restart Headers and Libraries...........ccccovvrrieiiiiiiiiiineecccceccc e 14
Updated Restart Headers and Libraries..........ccccocoveeeciiiinnnnnncccccccceene 15

New Restart/Recovery FUNCHONSoovririiieiciiiiiiiiccceceecccceeeeeeenes 16
Query-Based Commit Thresholds ... 18

3 Pro*C Multi-Threadingccccooiiiiiiiiiiiiiiii 19
Threading DesCription.........cccviiiiiiiiiiiiirrcceeec e 19
Threading Function for Query-Based ... 20
Restart View for Query-Based............coooiriiiiiiii 20

Thread Scheme MaiNteNANCEO.coouviieeeeeeiiieeie ettt eee e eeeeeteeeeaeeeereeesseeesseeesseeenns 22

FAle-Basedcoouiiiiiiiiiiiici s 22
QUETY-BaSEd ... 23
Batch Maintenance............covviiiiiiiii e 23
Scheduling and Initialization of Restart Batch...........c.cocoooo 24
Pre- and Post-Processing............ccoccueuiiiiicieieeecciete e 24
4 Pro*C Array Processingccccccciiiiiiiiiiiiiiciiic i 25
5 Pro*C Input and Output Formats..............cccoooiiiiiiiiiii 27
General Interface DIiSCUSSIONcvviviiiiiimiiiiiiii e 27
Standard File LaYOULScccoveuiuiiiiiiiiiirrreceecccccc et 27
Detail-Only Files ..o 27
Master and Detail Files..........cccccoviiiiiiiiniiiiiiiiiiiien 28
Electronic Data Interchange (EDI)cccccooiiiniininiiiiiiiiiiiicccccns 30
6 RETL Program Overview for the RMS-RPAS Interface.............cccooeiviiiiiiiiinins 31
Oracle Retail ETL ArchiteCturecccoeiiiiiiiiiiiiiiiiiiiiccccas 31
RETL Program OVeIVIEWcccoeiiiiiiiiiiiiiiiiiie ittt 32
ConfigUIAtioNvveiiic s 32
Program Return Codeoooiiiiiiiiiii s 35
Program Status Control Files............ooii 35
File Naming CONVENtIONSc.ccccuiuiiininiririririeieecicccce e 35
Restart and RECOVETYccovuiuiiiiiiiiiiiiiirrree et 35
Message LOZEINGccovvriviiiiiiiiiiicc s 36
Daily LOg FIle ..ot 36
FOIMAt oo 36
Program Error File ... 36
RMSE Reject Files........cuouiiiiiiiiiiiiiiiiii e 37
Schema Files OVEIVIEWccoiiiiiiiiiiiiiiiiiii e 37
Command Line Parameters...........cccocoiiiiiiiiiiiiiiiiias 37
IMSE_IPaS_CONFIZ.EINV ...coviiiiiiiiiiiiiiiiiiic e 37
RMSE I/O File NAMES.......ccviiiiiiiiiiiciiiicisce s 39
Typical Run and Debugging Situations.............ccoooiiiiiiiiiiiiiiec 39
RPAS/AIP COnfigUurationccoeueueueuciiiiiiiirnreeeciccecc et 40
RETL Program Overview for the RMS-Time-Phased Inventory Planning Tool
INEEIfACE. ..o 40
ConfigUIatioNoveviieecee s 41
Program Return Codecooiiiiiiiiiic s 41
Program Status Control Files ... 42
Message LOZZINGc.ccoviiiiiiiiiiiiicce s 43
RMSE and Transformation Reject Files..........ccoccciiiiiinniniiicccccinnreenes 44
Schema Files OVEIVIEWcccoviimiiiiiiiiiiiccc s 44
Command Line Parameters.........cccoooviviiiiiiniiiiniiieceeens 44

Typical Run and Debugging SitUations............ccccceiiininnninenicceccccirreeeenes 45

7 InternationaliZationocuuniiiiiii e et e et e e e e e e e s 47

TranSlationcccoviiiiiiii 47
RMS User Interface Language Display Settingscccouoiiioiiiiiiiii 48
Multiple Languages in one RMS Forms Sessioncccceeiiiiccicicieieiccccicinen 48
Key RMS Tables Related to Internationalization..............ccooeoeiieieiiiniiiiicccceea 48
FORM_ELEMENTSoiiiiiiiiiiiiiii s 48
FORM_ELEMENTS_LANGScocooiiiiiiiiiiiiicnrice s 49
MENU_ELEMENTS ..o s 49
MENU_ELEMENTS_LANGSooviiiiiiiiiiiicec s 49
FORM_MENU_LINKcccooeiiiiiiiiiiiiiiee s 49
CODE_DETAIL_TRANScocviiiiiiiiieee s 49

8 Custom Post Processing..............cccoiiiiiiiiiiiiiiii 51
9 Integrating RMS with Oracle Retail Workspace............c..occooiiiiiniininiis 53
10 Integrating RMS with Oracle E-Business Suite Financials................c..cocciiis 55
Participating APPLCAtioNSccoueiiiiiiiiccc 55
Assumptions and Dependenciescocceeieiiiiiciiieiie 55
Data SEtUPc.oviiiiiiiiiiic s 56
RMS Data Setup and Configuration...........coceeueueueuiuiiinininnnieeeceeeccceeeeeeeenenes 56
ReIM Data Setup and Configuration..........cocoeueueueueiiiioininnniececceeccceeeeeenes 62
ReIM Transactional Maintenance ... 65
Calculation of TRANS_AMOUNT ..ottt et eeeeeeeeeereeeseeeeeesereeesasans 66
Generation of Outgoing Data..........cccccciviviriiririniiiiiiiieeeceeecee e 66
Validation of Accounts When Posting Financial Entries..........cccccooiiiiinii, 66
Maintenance of Valid ACCOUNES..........ccoiiviiiiiiiiiiiiiiiian 67

11 PeopleSoft Enterprise Financials Integration................ccccocoiiiiiiiiiii, 69
Participating APPLCAtioNSccoriiiiiiiiee 69
Assumptions and Dependencies ... 69
Data CONSLIAINES.cvoviiiiiiiiciccc s 70
Data SEtUP ...covoiiiiiect 70
RMS Data Setup and Configuration...........coceueieieiiiiiiiiccccce 70
ReIM Data Setup and Configuration...........cccceueieieiiiiiiiiiceieccce e 77
ReIM Transactional Maintenance ... 81
Calculation of TRANS_AMOUNT ..ottt et eeeeeeeeeereeeseeeeeesereeesasans 81
Generation of Outgoing Data..........cccccciviviriiririniiiiiiiieeeceeecee e 82
Validation of Accounts When Posting Financial Entries.........c.cccocovecciiiinnnne. 82
Maintenance of Valid ACCOUNES.........ccccvvviiiiiiiiiiiiiiiic s 83
Building and Posting Reference IDs...........cccooueueiiiiiiiininniniecccceccceeeeeeeeenes 83
Drilling Back to RMS, ReSA and ReIM - OVerviewcccooeiieininiiiiiccccecea 84
Drilling Back to RMS and ReSA - Detail..........ccccoooiiiiiiie 84
Drilling Back From ReIM - Detailcccooiiiiiiiice 84
Drilling FOrWardcoeioiiiiicic s 86
Drilling Forward From RMS/ReSA to PeopleSoft Enterprise Financials............... 86

vii

viii

Drilling Forward From ReIM to PeopleSoft Enterprise Financials............c.c..........
ATA DVM Mapping EXamples..........ccccovrrnriiiiiiiiiinnnecceeeeecc e

12 Using Oracle Wallet..............ccccoiiiiiiiiiiiiiii

Send Us Your Comments

Oracle Retail Merchandising System Operations Guide, Volume 3 - Back End
Configuration and Operations, Release 13.2.9.

Oracle welcomes customers' comments and suggestions on the quality and usefulness of
this document.

Your feedback is important, and helps us to best meet your needs as a user of our
products. For example:

= Are the implementation steps correct and complete?

= Did you understand the context of the procedures?

= Did you find any errors in the information?

= Does the structure of the information help you with your tasks?

= Do you need different information or graphics? If so, where, and in what format?
= Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell us
your name, the name of the company who has licensed our products, the title and part
number of the documentation and the chapter, section, and page number (if available).

Note: Before sending us your comments, you might like to
check that you have the latest version of the document and if
any concerns are already addressed. To do this, access the
new Applications Release Online Documentation CD
available on My Oracle Support and www.oracle.com. It
contains the most current Documentation Library plus all
documents revised or released recently.

Send your comments to us using the electronic mail address: retail-doc_us@oracle.com
Please give your name, address, electronic mail address, and telephone number
(optional).

If you need assistance with Oracle software, then please contact your support
representative or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your
Oracle local office and inquire about our Oracle University offerings. A list of Oracle
offices is available on our Web site at www.oracle.com.

http://www.oracle.com/
mailto:retail-doc_us@oracle.com
http://www.oracle.com/

Audience

Preface

This operations guide serves as an Oracle Retail Merchandising System (RMS) solution
reference to explain ‘backend’ processes and configuration.

Anyone who has an interest in better understanding the inner workings of the Retail
Merchandising System can find valuable information in this guide. There are three
audiences in general for whom this guide is written:
= System analysts and system operation personnel:
— Who are looking for information about Retail Merchandising System processes
internally or in relation to the systems across the enterprise
— Who operate the Retail Merchandising System on a regular basis

* Integrators and implementation staff who have the overall responsibility for
implementing the Retail Merchandising System in their enterprise

= Business analysts who are looking for information about processes and interfaces to
validate the support for business scenarios within the Retail Merchandising System
and other systems across the enterprise.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through
My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents

For more information, see the following documents:

= Oracle Retail Merchandising System Release Notes

= Oracle Retail Merchandising System Installation Guide
= Oracle Retail Merchandising System Data Model

= Oracle Retail Merchandising Batch Schedule

= Oracle Retail Fiscal Management documentation

Xi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Customer Support

To contact Oracle Customer Support, access My Oracle Support at the following URL:
https:/ /support.oracle.com

When contacting Customer Support, please provide the following:

= Product version and program/module name

= Functional and technical description of the problem (include business impact)

= Detailed step-by-step instructions to re-create

= Exact error message received

= Screen shots of each step you take

Review Patch Documentation

When you install the application for the first time, you install either a base release (for
example, 13.2) or a later patch release (for example, 13.2.9). If you are installing the base
release and additional patch and bundled hot fix releases, read the documentation for all
releases that have occurred since the base release before you begin installation.
Documentation for patch and bundled hot fix releases can contain critical information
related to the base release, as well as information about code changes since the base
release.

Improved Process for Oracle Retail Documentation Corrections

Xii

To more quickly address critical corrections to Oracle Retail documentation content,
Oracle Retail documentation may be republished whenever a critical correction is
needed. For critical corrections, the republication of an Oracle Retail document may at
times not be attached to a numbered software release; instead, the Oracle Retail
document will simply be replaced on the Oracle Technology Network Web site, or, in the
case of Data Models, to the applicable My Oracle Support Documentation container
where they reside.

This process will prevent delays in making critical corrections available to customers. For
the customer, it means that before you begin installation, you must verify that you have
the most recent version of the Oracle Retail documentation set. Oracle Retail
documentation is available on the Oracle Technology Network at the following URL:
http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

An updated version of the applicable Oracle Retail document is indicated by Oracle part
number, as well as print date (month and year). An updated version uses the same part
number, with a higher-numbered suffix. For example, part number E123456-02 is an
updated version of a document with part number E123456-01.

If a more recent version of a document is available, that version supersedes all previous
versions.

https://support.oracle.com/
http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

Oracle Retail Documentation on the Oracle Technology Network

Oracle Retail product documentation is available on the following web site:
http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html
(Data Model documents are not available through Oracle Technology Network. You can
obtain them through My Oracle Support.)

Conventions

Navigate: This is a navigate statement. It tells you how to get to the start of the procedure
and ends with a screen shot of the starting point and the statement “the Window Name

window opens.”

This is a code sample
It is used to display examples of code

Xiii

1

Introduction

Welcome to the Oracle Retail Merchandising Operations Guide. The guide is designed to
inform you about the ‘backend” of RMS: data inputs, processes, and outputs. As a
member of the Oracle Retail family, RMS provides many benefits of enterprise
application integration (EAI).

Content of This Volume

This volume describes the important features that are necessary to run the Pro*C
programs and the RETL programs associated with RMS. Additional RMS configuration
and operations information is also included in this volume. Topics include:

Pro*C Restart and Recovery

Pro*C Multi-Threading

Pro*C Array Processing

Pro*C Input and Output Formats

RETL Program Overview for the RMS-RPAS Interface
Internationalization

Custom Post Processing

Integrating RMS with Oracle Retail Workspace
Integrating RMS with Oracle E-Business Suite Financials
PeopleSoft Enterprise Financials Integration

Using Oracle Wallet

Note: For setting up Business Intelligence Publisher, see
Chapter 7 RMS Reports Installation—Patch in the Oracle
RMS Installation Guide for release 13.2.8.

Operations Guide, Volume 3 - Back End Configuration and Operations 1

2

Pro*C Restart and Recovery

RMS has implemented a restart recovery process in most of its batch architecture. The
general purpose of restart/recovery is to:

= Recover a halted process from the point of failure
= Prevent system halts due to large numbers of transactions
= Allow multiple instances of a given process to be active at the same time

Further, the RMS restart/recovery tracks batch execution statistics and does not require
DBA authority to execute.

The restart capabilities revolve around a program’s logical unit of work (LUW). A batch
program processes transactions, and commit points are enabled based on the LUW.
LUWs consist of a relatively unique transaction key (such as sku/store) and a maximum
commit counter. Commit events take place after the number of processed transaction
keys meet or exceed the maximum commit counter. For example, every 10,000 sku/store
combinations, a commit occurs. At the time of commit, key data information that is
necessary for restart is stored in the restart tables. In the event of a handled or un-
handled exception, transactions are rolled back to the last commit point, and upon restart
the key information are retrieved from the tables so that processing can continue from
the last commit point.

Operations Guide, Volume 3 - Back End Configuration and Operations 3

Table Descriptions and Definitions

Table Descriptions and Definitions

The RMS restart/recovery process is driven by a set of four tables. These four tables are
shown in the Entity Relationship diagram. The table descriptions are mention in the
following sections:

= restart_control

= restart_program_status
= restart_program_history
= restart_bookmark

restart control
(PK) program_name
program_desc
driver_name
num_threads
update_allowed
process_flag
commit_max_ctr

restart program history

restart_name
thread_val

start_time

restart program status

(PK) restart_name

(PK) thread_ val
start_time
program_name
program_status
restart_flag
restart_time
finish_time
current_pid
current_operator_id
err_message

current_oracle_sid *

restart bookmark
restart_name

thread_val
bookmark_string
application_image
out_file_string *
non_fatal_err_flag *
num_commits *
avg_time_btwn_commits *

program_name current_shadow_pid *

num_threads
commit_max_ctr

restart_time
finish_tim
shaaow_ple *
success_flag *

non_fatal_err_flag *
num_commits *

avg_time_btwn_commits *

RMS restart recovery entity relationship diagram

Note: The fields with asterisks (*) are only used by new
batch programs of release 9.0 or later.

restart_control

The restart_control table is the master table in the restart/recovery table set. One record
exists on this table for each batch program that is run with restart/recovery logic in
place. The restart/recovery process uses this table to determine:

= Whether the restart/recovery is table-based or file-based
= The total number of threads used for each batch program
* The maximum records processed before a commit event takes place

= The driver for the threading (multi-processing) logic

4 Oracle Retail Merchandising System

Table Descriptions and Definitions

restart_control table details

Table name Default value Value Description

(PK) varchar2 25 Batch program name.

program_name

program_desc varchar2 50 A brief description of the program function.
driver_name varchar2 25 Driver on query, for example, department

(non-updatable).

num_threads num 10 Number of threads used for current process

update_allowed varchar2 2 Indicates whether user can update thread
numbers or if done programmatically.

process_flag varchar2 1 Indicates whether process is table-based (T) or
file-based (F).

commit_max_ctr num 6 Numeric maximum value for counter before

commit occurs.

restart_program_status

The restart_program_status table is the table that holds record keeping information about
current program processes. The number of rows for a program on the status table will be
equal to its num_threads value on the restart_control table. The status table is modified
during restart/recovery initialization and close logic. For table-based processing, the
restart/recovery initialization logic will assign the next available thread to a program
based on the program status and restart flag. For file-based processing, the thread value
is passed in from the input file name. Once a thread has been assigned the
program_status is updated to prevent the assignment of that thread to another process.
Information will be logged on the current status of a given thread, as well as record
keeping information such as operator and process timing information.

restart_program_status table details

Table name Default Value Description
value

(PK)restart_name varchar2 50 Program name.

(PK)thread_val num 10 Thread counter.

start_time date dd-mon-yy hh:mi:ss.

program_name varchar2 25 Program name.

program_status varchar2 25 Started, aborted, aborted in init, aborted in
process, aborted in final, completed, ready
for start.

restart_flag varchar2 1 Automatically set to ‘N’ after abnormal

end, must be manually set to “Y” for
program to restart.

restart_time date dd-mon-yy hh:mi:ss.
finish_time date dd-mon-yy hh:mi:ss.
current_pid num 15 Starting program ID.

Operations Guide, Volume 3 - Back End Configuration and Operations 5

Table Descriptions and Definitions

Table name Default Value Description

value

varchar2 20
varchar2 255

current_operator_id Operator that started the program.

Record that caused program abort and
associated error message.

err_message

current_oracle_sid num 15 Oracle SID for the session associated with
the current process.
current_shadow_pid num 15 O/S process ID for the shadow process

associated with the current process. It is
used to locate the session trace file when a
process is not finished successfully.

restart_program_history

The restart_program_history table will contain one record for every successfully
completed program thread with restart/recovery logic. Upon the successful completion
of a program thread, its record on the restart_program_status table will be inserted into
the history table. Table purgings will be at user discretion.

restart_program_history table details

Table name Default value Value Description
restart_name varchar2 50 Program name.
thread_val Num 10 Thread counter.
start_time Date dd-mon-yy Date.
hh:mi:ss
program_name varchar2 25 Program name
num_threads Num 10 Number of threads
commit_max_ctr num 6 Numeric maximum
value for counter
before commit occurs.
restart_time date dd-mon-yy
hh:mi:ss
finish_time date dd-mon-yy
hh:mi:ss
shadow_pid num 15 O/S process ID for the
shadow process
associated with the
process. It is used to loc
the session trace file.
success_flag varchar2 1 Indicates whether the
process finished
successfully (reserved
for future use)
non_fatal_err_flag varchar2 1 Indicates whether

6 Oracle Retail Merchandising System

non-fatal errors have
occurred for the
process.

Table Descriptions and Definitions

num_commits num 12 Total number of
commits for the
process. The possible
last commit when
restart/recovery is
closed is not counted.

avg_time_btwn_commits num 12 Accumulated average
time between commits
for the process. The
possible last commit
when restart/recovery
is closed is not
counted.

restart_bookmark

When a restart/recovery program thread is active, its state is started or aborted, and a
record for it exists on the restart_bookmark table. Restart/recovery initialization logic
inserts the record into the table for a program thread. The restart/recovery commit
process updates the record with the following restart information:

* A concatenated string of key values for table processing
= A file pointer value for file processing
= Application context information such as counters and accumulators

The restart/recovery closing process deletes the program thread record if the program
finishes successfully. In the event of a restart, the program thread information on this
table will allow the process to begin from the last commit point.

restart_bookmark table details

Table Name Default Value Value Description

(PK) restart_name varchar2 50 Program name.

(PK) thread_val num 10 Thread counter.

bookmark_string varchar2 255 Character string of key of last
committed record.

application_image varchar2 1000 application parameters from the last
save point.

out_file_string varchar2 255 Concatenated file pointers (UNIX

sometimes refers to these as stream
positions) of all the output files from
the last commit point of the current
process. It is used to return to the
right restart point for all the output
files during restart process.

non_fatal_err_flag varchar2 1 Indicates whether non-fatal errors
have occurred for the current
process.

num_commits num 12 Number of commits for the current

process. The possible last commit
when restart/recovery is closed is
not counted.

Operations Guide, Volume 3 - Back End Configuration and Operations 7

Restart and Recovery Data Model Design

v_restart x

avg_time_btwn_comm num 12 Average time between commits for

its the current process. The possible last
commit when restart/recovery is
closed is not counted.

Restart views are used for query-based programs that require multi-threading. Separate
views are created for each threading driver, for example, department or store. A join are
made to a view based on threading driver to force the separation of discrete data into
particular threads. See the threading discussion for more details.

v_restart_x Table Details

Table Name Default Description
Value
driver_name varchar2 Examples are dept, store, region, and others.
num_threads number Total number of threads in set (defined on restart control).
driver_value number Numeric value of the driver_name.
thread_val number Thread value defined for driver_value and num_threads
combination.

Restart and Recovery Data Model Design

The restart_program_status and restart_bookmark are separate tables. This is because the
initialization process needs to fetch all of the rows associated with restart_name/schema,
but will only update one row. The commit process continually locks a row with a specific
restart_name and thread_val. The data involved with these two processes is separated
into two tables to reduce the number of hangs that could occur due to locked rows. Even
if you allow ‘dirty reads’ on locked rows, a process will still hang if it attempts to do an
update on a locked row. The commit process is only interested in a unique row, so if we
move the commit process data to a separate table with row level (not page level) locking,
there will not be contention issues during the commit. With the separate tables, the
initialization process will now see fewer problems with contention because rows will
only be locked twice, at the beginning and end of the process.

Physical Set-Up

The restart/recovery process needs to be as robust as possible in the event of database
related failure. The costs outweigh the benefits of placing the restart/recovery tables in a
separate database. The tables should, however, be setup in a separate, mirrored table
space with a separate rollback segment.

8 Oracle Retail Merchandising System

Table and File-Based Restart/Recovery

Table and File-Based Restart/Recovery

The restart/recovery process works by storing all the data necessary to resume
processing from the last commit point. Therefore, the necessary information will be
updated on the restart_bookmark table before the processed data is committed. The
query-based and file-based module stores different information on the restart tables, and
therefore calls different functions within the restart/recovery API to perform their tasks.

When a program’s process is query-based, (module is driven by a driving query that
processes the retrieved rows) the information that is stored on the restart_bookmark table
is related to the data retrieved in the driving query. If the program fails while processing,
the information that is stored on the restart-tables can be used in the conditional where-
clause of the driving query to only retrieve data that has yet to be processed since the last
commit event.

File-based processing, however, simply needs to store the file location at the time of the
last commit point. This file’s byte location is stored on the restart_bookmark table and
will be retrieved at the time of a restart. This location information is used to search for the
information in there-opened file, to the point the data was last committed.

Because there is different information being saved to and retrieved from the
restart_bookmark table for each of the different types of processing, different functions
needs to be called to perform the restart/recovery logic. The query-based processing calls
the restart_init or retek_init and restart_commit or retek_commit functions while the file-
based processing calls the restart_file_init and restart_file_commit functions.

In addition to the differences in API function calls, the batch processing flow of the
restart/recovery differs between the files. Table-based restart/recovery needs to use a
priming fetch logical flow, while the file-based processing usually reads lines in a batch.
Table-based processing requires its structure to ensure that the LUW key has changed
before a commit event can be allowed to occur, while the file-based processing does not
need to evaluate the LUW, which can typically be thought of as the type of transaction
being processed by the input file.

Operations Guide, Volume 3 - Back End Configuration and Operations 9

Table and File-Based Restart/Recovery

The following diagram depicts table-based Restart/Recovery program flow:

Initialization Logic
(call restart_init)
I

Process Function
[
Priming fetch
[
Process
[

Fetch
[
Commit
[

Close Logic

Table-Based Restart/Recovery Program Flow

The following diagram depicts file-based Restart/Recovery program flow

Initialization Logic
(call restart_init)

|
File Open and Seek

Outer Loop
feed multiple records into buffer

Inner Loop
process individual records

|
Process
[

End Inner Loop
[
Commit
|
End Outer Loop
|
Close Logic

File-based Restart/Recovery Program Flow

10 Oracle Retail Merchandising System

API Functional Descriptions

Initialization logic:

= Variable declarations

= File initialization

= Call restart_init() or restart_file_init() function - determines start or restart logic
= First fetch on driving query

Start logic: initialize counters/accumulators to start values

Restart logic:

= Parse application_image field on bookmark table into counters/accumulators
= Initialize counters/accumulators to values of parsed fields

Process/commit loop:

= Process updates and manipulations

= Fetch new record

= Create varchar from counters/accumulators to pass into application_image field on
restart_bookmark table

= Call restart_commit() or restart_file_commit()
Close logic:

= Reset pointers

= Close files/cursors

= (Call restart_close()

API Functional Descriptions

RESTART_INIT

An initialization functions for table-based batch processing. The batch process gathers
the following information from the restart control tables.

= Total number of threads for a program and thread value assigned to current process.
= Number of records to loop through in driving cursor before commit (LUW).

= Start string - bookmark of last commit to be used for restart or a null string if current
process is an initial start and initializes the restart record-keeping
(restart_program_status).

= Program status is changed to ‘started’ for the first available thread.

= Operational information is updated: operator, process, start_time, etc. and
bookmarking (restart_bookmark) tables.

= On an initial start, a record is inserted.

= Onrestart, the start string and application context information from the last commit
is retrieved.

Operations Guide, Volume 3 - Back End Configuration and Operations 11

API Functional Descriptions

restart_file init

An initialization functions for file-based batch processing. It is called from program
modules.

1.

restart_commit

The process gathers information from the restart control tables:

= number of records to read from file for array processing and for commit cycle

= file start point- bookmark of last commit to be used for restart or O for initial start
The process initializes the restart record-keeping (restart_program_status):

= program status is changed to ‘started” for the current thread

= operational information is updated: operator, process, start_time, etc.

The process initializes the restart bookmarking (restart_bookmark) tables:

= on an initial start, a record is inserted

* onrestart, the file starting point information and application context information
from the last commit is retrieved

A function that commits the processed transaction for a given number of driving query
fetches. It is called from program modules.

The process updates the restart_bookmark start string and application image information
if a commit event has taken place:

the current number of driving query fetches is greater than or equal to the maximum
set in the restart_program_status table (and fetched in the restart_init function)

the bookmark string of the last processed record is greater than or equal to the
maximum set in the restart_program_status table (and fetched in the restart_init
function)

the bookmark string increments the counter

the bookmark string sets the current string to be the most recently fetched key string

restart_file_commit

A function that commits processed transactions after reading a number of lines from a
flat file. It is called from program modules.

The process updates the restart_bookmark table:

start_string is set to the file pointer location in the current read of the flat file

application image is updated with context information

12 Oracle Retail Merchandising System

API Functional Descriptions

restart_close

A function that updates the restart tables after program completion.

The process determines whether the program was successful. If the program finished
successfully:

= the restart_program_status table is updated with finish information and the status is
reset

= the corresponding record in the restart_bookmark table is deleted

= the restart_program_history table has a copy of the restart_program_status table
record inserted into it

= the restart_program_status is re-initialized
If the program ends with errors
= the transactions are rolled back

= the program_status column on the restart_program_status table is set to ‘aborted in *
where * is one of the three main functions in batch: init, process or final

= the changes are committed

parse_array_args

This function parses a string into components and places results into multidimensional
array. It is only called within API functions and will never be called in program modules.

The process is passed a string to parse, and a pointer to an array of characters.
The delimiter is the first character of the string that is passed.

restart_file write

This function will append output in temporary files to final output files when a commit
point is reached. It is called from program modules.

restart_cat

This function contains the logic that appends one file to another. It is only called within
the restart/recovery API functions and never called directly in program modules.

Operations Guide, Volume 3 - Back End Configuration and Operations 13

API Functional Descriptions

Restart Headers and Libraries

The restart.h and the std_err.h header files are included in retek.h to utilize the
restart/recovery functionality.

restart.h

This library header file contains constant, macro substitutions, and external global
variable definitions as well as restart/recovery function prototypes.

The global variables that are defined include:

the thread number assigned to the current process
the value of the current process’s thread maximum counter

— for table-based processing, it is equal to the number of iterations of the
driving query before a commit can take place

— for file-based processing, it is equal to the number of lines that is read from a
flat file and processed using a structured array before a commit can take
place

the current count of driving query iterations used for table-based processing or the
current array index used in file-based processing

the name assigned to the program/logical unit of work by the programmer. It is the
same as the restart_name column on the restart_program_status,
restart_program_history, and restart_bookmark tables

std_rest.h

This library header file contains standard restart variable declarations that are used in
program modules.

The variable definitions that are included are:

the concatenated string value of the fetched driving query key that is currently being
processed

the concatenated string value of the fetched driving query key that is next to be
processed

the error message passed to the restart_close function and updated to
restart_program_status

concatenated string of application context information, for example, counters and
accumulators

the name of the threading driver, for example, department, store, warehouse, etc.
the total number of threads used by this program
the pointer to pass to initialization function to retail number of threads value

14 Oracle Retail Merchandising System

API Functional Descriptions

Updated Restart Headers and Libraries
Restart/recovery performs the following, among other capabilities:
= Organizes global variables associated with restart recovery
= Allows the batch developer full control of restart recovery variables parameter
passing during initialization
= Removes temporary write files to speed up the commit process
= Moves more information and processing from the batch code into the library code

= Adds more information into the restart recovery tables for tuning purposes

retek_2.h

This library header file is included by all C code within Retail and serves to centralize
system includes, macro defines, globals, function prototypes, and, especially, structs for
use in the new restart/recovery library.

The globals used by the old restart/recovery library are all discarded. Instead, each batch
program declares variables needed and calls retek_init() to get them populated from
restart/recovery tables. Therefore, only the following variables are declared:

= gi no_commit: flag for NO_COMMIT command line option (used for tuning
purposes)

= gi error_flag: fatal error flag
= gi non_fatal err_flag: non-fatal error flag

In addition, a rtk_file struct is defined to handle all file interfaces associated with
restart/recovery. Operation functions on the file struct are also defined.

#define NOT_PAD 1000 /* Flag not to pad thread_val */

#define PAD 1001 /* Flag to pad thread val at the end */

#define TEMPLATE 1002 /* Flag to pad thread val using filename template
*/

#define MAX FILENAME LEN 50
typedef struct

FILE* fp; /* File pointer */

char Ffilename[MAX FILENAME_LEN + 1]; /* Filename */

int pad flag; /* Flag whether to pad thread val to filename */
3} rtk file;

int set Filename(rtk _file* file_struct, char* file_name, int pad flag);

FILE* get FILE(rtk_file* file_struct);

int rtk print(rtk_file* file_struct, char* format, ...);

int rtk_seek(rtk _file* file_struct, long offset, int whence);

The parameters that retek_init() needs to populate are passed using a format known to
retek_init(). A struct is defined here for this purpose. An array of parameters of this
struct type is needed for each batch program. Other requirement needs to be initialized at
each batch program.

= The lengths of name, type and sub_type should not exceed the definitions here.

= Type can only be: "int", “uint”, "long", "string", or "rtk_file".
= For type "int", “uint” or "long", use "" as sub_type.

= For type "string", sub_type can only be "S" (start string) unless the string is the thread
value or number of threads, in which case use “” as sub_type or "I" (image string).
= For type "rtk_file", sub_type can only be "I" (input) or "O" (output).

#define NULL_PARA NAVE 51
#define NULL_PARA TYPE 21

Operations Guide, Volume 3 - Back End Configuration and Operations 15

API Functional Descriptions

#define NULL_PARA SUB TYPE 2
typedef struct

{
char name[NULL_PARA NAME];

char type[NULL_PARA TYPE];
char sub_type[NULL_PARA SUB_TYPE];
} init_parameter;

New Restart/Recovery Functions

Starting from release 9.0, all new batch programs are coded using the new
restart/recovery functions. Batch programs using the old restart/recovery API functions
are still in use. Therefore, Oracle Retail is currently maintaining two sets of
restart/recovery libraries.

int retek_init(int num_args, init_parameter *parameter, ...)

retek_init initializes restart/recovery (for both table and file-based):

1. Passin num_args as the number of elements in the init_parameter array, then the
init_parameter array, then variables a batch program needs to initialize in the order
and types defined in the init_parameter array. Note that all int, uint and long
variables need to be passed by reference.

Get all global and module level values from databases.

Initialize records for RESTART_PROGRAM_STATUS and RESTART_BOOKMARK.
Parse out user-specified initialization variables (variable arg list).

Return NO_THREAD_AVAILABLE if no qualified record in RESTART_CONTROL
or RESTART_PROGRAM_STATUS.

6. Commit work.

a r~ 0N

16 Oracle Retail Merchandising System

API Functional Descriptions

int retek_commit(int num_args, ...)
retek_commit checks and commits if needed (for both table and file-based):

1. Passin num_args, then variables for start_string first, and those for image string (if
needed) second. The num_args is the total number of these two groups. All are string
variables and are passed in the same order as in retek_init();

2. Concatenate start_string either from passed in variables (table-based) or from ftell of
input file pointers (file-based);

3. Check if commit point is reached (counter check and, if table-based, start string
comparison);

4. If reached, concatenated image_string from passed in variables (if needed) and call
internal_commit() to get out_file_string and update RESTART_BOOKMARK;

5. If table-based, increment pl_current_count and update ps_cur_string.

int commit_point_reached(int num_args, ...)

commit_point_reached checks if the commit point is reached (for both table- and file-
based). The difference between this function and the check in retek_commit() is that here
the pl_current_count and ps_cur_string are not updated. This checking function is
designed to be used with retek_force_commit(), and the logic to ensure integrity of LUW
exists in user batch program. It can also be used together with retek_commit() for extra
processing at the time of commit. The processes that can be used for the time of commit
are:

1. Passin num_args, then all string variables for start_string in the same order as in
retek_init(). The num_args is the number of variables for start_string. If no
start_string (as in file-based), pass in NULL.

2. For table-based, if pl_curren_count reaches pl_max_counter and if newly
concatenated bookmark string is different from ps_cur_string, return 1; otherwise
return 0.

3. For file-based, if pl_curren_count reaches pl_max_counter return 1; otherwise return
0.

int retek_force_commit(int num_args, ...)
retek_force_commit always commits (for both table and file-based):

1. Passin num_args, then variables for start_string first, and those for image string (if
needed) second. The num_args is the total number of these two groups. All are string
variables and are passed in the same order as in retek_init().

2. Concatenate start_string either from passed in variables (table-based) or from ftell of
input file pointers (file-based).

3. Concatenated image_string from passed in variables (if needed) and call
internal_commit() to get out_file_string and update RESTART_BOOKMARK.

4. If table-based, increment pl_current_count and update ps_cur_string.

Operations Guide, Volume 3 - Back End Configuration and Operations 17

Query-Based Commit Thresholds

int retek_close(void)
retek_close closes restart/recovery (for both table and file-based):

1. If gi_error_flag or NO_COMMIT command line option is TRUE, rollback all database
changes.

Update RESTART_PROGRAM_STATUS according to gi_error_flag.

If no gi_error_flag, insert record into RESTART_PROGRAM_HISTORY with
information fetched from RESTART CONTROL,
RESTART PROGRAM_BOOKMARK and RESTART PROGRAM_STATUS tables.

If no gi_error_flag, delete RESTART_BOOKMARK record.
Commit work.

Close all opened file streams.

Int retek_refresh_thread(void)
Refreshes a program’s thread so that it can be run again.

1. Updates the RESTART_PROGRAM_STATUS record for the current program’s
PROGRAM_STATUS to be ‘ready for start’.

Deletes any RESTART_BOOKMARK records for the current program.

Commits work.

void increment_current_count(void)

increment_current_count increases pl_current_count by 1.

Note: This is called from get_record() of intrface.pc for file-
based 1/0.

int parse_name_for_thread_val(char* name)

parse_name_for_thread_val parses thread value from the extension of the specified file
name.

int is_new_start(void)
is_new_start checks if current run is a new start; if yes, return 1; otherwise 0.

Query-Based Commit Thresholds

The restart capabilities revolve around a program’s logical unit of work (LUW). A batch
program processes transactions and enables commit points based on the LUW. An LUW
is comprised of a transaction key (such as item-store) and a maximum commit counter.
Commit events occur after a given number of transaction keys are processed. At the time
of the commit, key data information that is necessary for restart is stored in the restart
table. In the event of a handled or un-handled exception, transactions will be rolled back
to the last commit point. Upon restart the restart key information will be retrieved from
the tables so that processing can resume with the unprocessed data.

18 Oracle Retail Merchandising System

3

Pro*C Multi-Threading

Processing multiple instances of a given program can be accomplished through
“threading”. This requires driving cursors to be separated into discrete segments of data
to be processed by different threads. This will be accomplished through stored
procedures that will separate threading mechanisms (for example, departments or stores)
into particular threads given value (for example, department 1001) and the total number
of threads for a given process.

File-based processing will not truly “thread” its processing. The same data file will never
be acted upon by multiple processes. Multi-threading will be accomplished by dividing
the data into separate files each of which will be acted upon by a separate process. The
thread value is related to the input file. This is necessary to ensure that the appropriate
information can be tied back to the relevant file in the event of a restart.

RMS has a store length of ten digits. Therefore, thread values, which can be based upon
the store number, should allow ten digits as well. Due to the thread values being
declared as ‘C’ variables of type int (long), the system is restricting thread values to nine
digits.

This does not mean that you cannot use ten digit store numbers. It means that if you do
use ten digit store numbers you cannot use them as thread values.

Threading Description

The use of multiple threads or processes in Oracle Retail batch processing will increase
efficiency and decrease processing time. The design of the threading process has allowed
maximum flexibility to the end user in defining the number of processes over which a
program should be divided.

Originally, the threading function was going to be used directly in the driving queries.
This was found, however, to be unacceptably slow. Instead of using the function call
directly in the driving queries, the designs call for joining driving query tables to a view
(for example, v_restart_store) that includes the function.

Operations Guide, Volume 3 - Back End Configuration and Operations 19

Threading Function for Query-Based

Threading Function for Query-Based

A stored procedure has been created to determine thread values. Restart_thread_return
returns a thread value derived from a numeric driver value, such as department number,
and the total number of threads in a given process. Retailers should be able to determine
the best algorithm for their design, and if a different means of segmenting data is
required, then either the restart_thread_return function can be altered, or a different
function can be used in any of the views in which the function is contained.

Currently the restart_thread_return function is a very simple modulus routine:

CREATE OR REPLACE FUNCTION RESTART_THREAD RETURN(in_unit _value NUMBER,
in_total_threads NUMBER)
RETURN NUMBER IS
ret_val NUVBER;
BEGIN
ret val := MOD(ABS(in_unit value),in_total_threads) + 1;
RETURN ret_val;
END;

Restart View for Query-Based

Each restart view will have four elements:

= the name of the threading mechanism, driver_name

= the total number of threads in a grouping, num_threads
= the value of the driving mechanism, driver_value

= the thread value for that given combination of driver_name, num_threads, and
driver value, thread_val

The view will be based on the restart_control table and an information table such as
DEPS or STORES. A row will exist in the view for every driver value and every total
number of threads value. Therefore, if a retailer were to always use the same number of
threads for a given driver (dept, store, etc.), then the view would be relatively small. As
an example, if all of a retailer’s programs threaded by department have a total of 5
threads, then the view will contain only one value for each department. For example, if
there are 10 total departments, 10 rows will exist in v_restart_dept. However, if the
retailer wants to have one of the programs to have ten threads, then there will bet 2 rows
for every department: one for five total threads and one for ten total threads (for
example, if 10 total departments, 20 rows will exist in v_restart_dept). Obviously,
retailers should be advised to to keep the number of total thread values for a thread
driver to a minimum to reduce the scope of the table join of the driving cursor with the
view.

Below is an example of how the same driver value can result in differing thread values.
This example uses the restart_thread_return function as it currently is written to derive
thread values.

20 Oracle Retail Merchandising System

Restart View for Query-Based

Driver_name num_threads driver_val thread_val
DEPT 1 101 1
DEPT 2 101 2
DEPT 3 101 3
DEPT 4 101 2
DEPT 5 101 2
DEPT 6 101 6
DEPT 7 101 4

Below is an example of what a distribution of stores might look like given 10 stores and 5
total threads:

Driver_name num_threads driver_val thread_val

STORE
STORE
STORE
STORE
STORE
STORE
STORE
STORE
STORE
STORE

(NN, N, BN, NG, NS, BN, BN, BN, BN,
© ©® N O Ul ol W N =
— Ul R WO R, Ul R W N

—_
o

Operations Guide, Volume 3 - Back End Configuration and Operations 21

Thread Scheme Maintenance

View syntax:

The following is an example of the syntax needed to create the view for the multi-
threading join, created with script (see threading discussion for details on
restart_thread_return function):
create or replace view v_restart _store as
select rc.driver_name driver_name,
rc.num_threads num threads,
s.store driver_value,
restart_thread_return(s.store, rc.num_threads) thread_val
from restart_control rc, store s
where rc.driver_name = "STORE"
There is a different threading scheme used within Oracle Retail Sales Audit (ReSA).
Because ReSA needs to run 24 hours a day and seven days a week, there is no batch
window. This means that there may be batch programs running at the same time that
there are online users. ReSA solved this concurrency problem by creating a locking
mechanism for data that is organized by store days. These locks provide a natural
threading scheme. Programs that cycle through all of the store day data attempt to lock
the store day first. If the lock fails, the program simply goes on to the next store day. This
has the affect of automatically balancing the workload between all of the programs
executing.

Thread Scheme Maintenance

File-Based

All program names will be stored on the restart_control table along with a functional
description, the query driver (dept, store, class, etc.) and the user-defined number of
threads associated with them. Users should be able to scroll through all programs to
view the name, description, and query driver, and if the update_allowed flag is set to
true, to modify the number of threads (update is set to true).

File based processing does not truly “multi-thread” and therefore the number of threads
defined on restart_control will always be one. However, a restart_program_status record
will need to be created for each input file that is to be processed for the program module.
Further, the thread value that is assigned should be part of the input file name. The
restart_parse_name function that is included in the program module will parse the
thread value from the program name and use that to determine the availability and
restart requirements on the restart_program_status table.

Refer to the beginning of this multi-threading section for a discussion of limits on using
large (greater than nine digits) thread values.

22 Oracle Retail Merchandising System

Batch Maintenance

Query-Based

When the number of threads is modified in the restart_control table, the form should first
validate that no records for that program are currently being processed in the
restart_program_status_table (that is, all records = ‘Completed’). The program should
insert or delete rows depending on whether the new thread number is greater than or
less than the old thread number. In the event that the new number is less than the
previous number, all records for that program_name with a thread number greater than
the new thread number will be deleted. If the new number is greater than the old
number, new rows will be inserted. A new record will be inserted for each
restart_name/thread_val combination.

For example if the batch program SALDLY has its number of processes changed from 2
to 3, then an additional row (3) will be added to the restart_program_status table.
Likewise, if the number of threads was reduced to 1 in this example, rows 2 and 3 would
be deleted.

Original restart_program_status table:

row # restart name thread val program_name etc...
1 SALDLY 1 SALDLY

2 SALDLY 2 SALDLY
restart_program_status table after insert:

row # restart name thread val program_hame etc...
1 SALDLY 1 SALDLY

2 SALDLY 2 SALDLY

3 SALDLY 3 SALDLY
restart_program_status table after delete:

row # restart name thread val program_name etc...
1 SALDLY 1 SALDLY

Users should also be able to modify the commit_max_ctr column in
restart_program_status table. This will control the number of iterations in driving query
or the number of lines read from a flat file that determine the logical unit of work (LUW).

Batch Maintenance

Users should be able to view the status of all records in restart_program_status table.
This is where the user will come to view error messages from aborted programs, and
statistics and histories of batch runs. The only fields that will be modifiable will be
program_status and restart_flag. The user should be able to reset the restart_flag to Y’
from ‘N’ on records with a status of aborted, started records to aborted in the event of an
abend (abnormal termination), and all records in the event of a restore from tape/re-run
of all batch.

Operations Guide, Volume 3 - Back End Configuration and Operations 23

Scheduling and Initialization of Restart Batch

Scheduling and Initialization of Restart Batch

Before any batch with restart/recovery logic is run, an initialization program should be
run to update the status in the restart_program_status table. This program should update
the program_status to ‘ready for start’ wherever a record’s program_status is
‘completed.” This will leave unchanged all programs that ended unsuccessfully in the last
batch run.

Pre- and Post-Processing

Due to the nature of the threading algorithm, individual programs might need a pre or a
post program run to initialize variables or files before any of the threads have run or to
update final data once all the threads are run. The decision was made to create pre-
programs and post-programs in these cases rather than let the restart/recovery logic
decide whether the currently processed thread is the first thread to start or the last thread
to end for a given program.

24 Oracle Retail Merchandising System

4

Pro*C Array Processing

Oracle Retail batch architecture uses array processing to improve performance wherever
possible. Instead of processing SQL statements using scalar data, data is grouped into
arrays and used as bind variables in SQL statements. This improves performance by
reducing the server/client and network traffic.

Array processing is used for select, insert, delete, and update statements. Oracle Retail
typically does not statically define the array sizes, but uses the restart maximum commit
variable as a sizing multiple. Users should keep this in mind when defining the system's
maximum commit counters.

An important factor to keep in mind when using array processing is that Oracle does not
allow a single array operation to be performed for more than 32000 records in one step.
The Oracle Retail restart/recovery libraries have been updated to define macros for this
value: MAX_ORACLE_ARRAY_SIZE.

All batch programs that use array processing need to limit the size of their array
operations to MAX_ORACLE_ARRAY_SIZE.

If the commit max counter is used for array processing size, check it after the call to
restart_init() and, if necessary, reset it to the maximum value if greater. If retek_init() is
used to initialize, check the returned commit max counter and reset it to the maximum
size if it is greater. In case of retek_init(), reset the library’s internal commit max counter
by calling extern int limit_commit_max_ctr(unsigned int new_max_ctr).

If some other variable is used for sizing the array processing, the actual array-processing
step will have to be encapsulated in a calling loop that performs the array operation in
sub segments of the total array size where each sub-segment is at most
MAX_ORACLE_ARRAY_SIZE large. Currently all Oracle Retail batch programs are
implemented this way.

Operations Guide, Volume 3 - Back End Configuration and Operations 25

5
Pro*C Input and Output Formats

Oracle Retail batch processing will utilize input from both tables and flat files. Further,
the outcome of processing can both modify data structures and write output data.
Interfacing Oracle Retail with external systems is the main use of file based I/O.

General Interface Discussion

To simplify the interface requirements, Oracle Retail requires that all in-bound and out-
bound file-based transactions adhere to standard file layouts. There are two types of file
layouts, detail-only and master-detail, which are described below.

An interfacing API exists within Oracle Retail to simplify the coding and the
maintenance of input files. The API provides functionality to read input from files,
ensure file layout integrity, and write and maintain files for rejected transactions.

Standard File Layouts

The RMS interface library supports two standard file layouts; one for master/detail
processing, and one for processing detail records only. True sub-details are not
supported within the RMS base package interface library functions.

A 5-character identification code or record type identifies all records within an I/0O file,
regardless of file type. Valid record type values include the following:

= FHEAD—File Header

= FDETL—File Detail

= FTAIL—File Tail

= THEAD—Transaction Header
= TDETL—Transaction Detail

= TTAIL—Transaction Tail

Each line of the file must begin with the record type code followed by a 10-character
record ID.

Detail-Only Files

File layouts have a standard file header record, a detail record for each transaction to be
processed, and a file trailer record. Valid record types are FHEAD, FDETL, and FTAIL.
Example:

FHEADOOOOOO0001STKU1996010100000019960929

FDETLO000000002SKU100000040000011011

FDETL0O000000003SKU100000050003002001

FDETLO000000004SKU100000050003002001
FTAI1L0O0000000050000000003

Operations Guide, Volume 3 - Back End Configuration and Operations 27

Detail-Only Files

Master and Detail Files

File layouts will have a standard file header record, a set of records for each transaction
to be processed, and a file trailer record. The transaction set will consist of a transaction
set header record, a transaction set detail for detail within the transaction, and a

transaction trailer record. Valid record types are FHEAD, THEAD, TDETL, TTAIL, and

FTAIL.

Example:

FHEADOOOOOOOOO1RTV 19960908172000

THEADOOOOO0000200000000000001199609091202000000000003R

TDETLO00000000300000000000001000001SKU10000012

TTAILOO00000004000001
THEADOOOOOO000500000000000002199609091202001215720131R
TDETL0O00000000600000000000002000001UPC400100002667

TDETLO000000007000000000000020000021UPC400100002643 O

TTAILO000000008000002
FTAI1L00000000090000000007
Record Name Field Name Field Type Default Value Description
File Header File Type Record Char(5) FHEAD Identifies file
Descriptor record type
File Line Number(10) Specified by Line number of
Identifier external system the current file
File Type Char(4) n/a Identifies
Definition transaction type
File Create Date = Date Create date Date file was
written by
external system
Transaction File Type Record Char(5) THEAD Identifies file
Header Descriptor record type
File Line Number(10) Specified by Line number of
Identifier external system the current file
Transaction Set Char(14) Specified by Used to force
Control Number external system unique transaction
check
Transaction Date Char(14) Specified by Date the
external system transaction was
created in external
system
Transaction File Type Record Char(5) TDETL Identifies file
Detail Descriptor record type
File Line Number(10) Specified by Line number of
Identifier external system the current file
Transaction Set Char(14) Specified by Used to force

Control Number

28 Oracle Retail Merchandising System

external system

unique transaction
check

Detail-Only Files

Record Name Field Name Field Type Default Value Description
Detail Sequence Char(6) Specified by Sequential
Number external system number assigned
to detail records
within a
transaction
Transaction File Type Record Char(5) TTAIL Identifies file
Trailer Descriptor record type
File Line Number(10) Specified by Line number of
Identifier external system the current file
Transaction Number(6) Sum of detail lines ~ Sum of the detail
Detail Line Count lines within a
transaction
File Trailer File Type Record Char(5) FTAIL Identifies file
Descriptor record type
File Line Number(10) Specified by Line number of
Identifier external system the current file
Total Transaction Number(10) Sum of all All lines in file less

Line Count

transaction lines

the file header and
trailer records

Operations Guide, Volume 3 - Back End Configuration and Operations 29

Electronic Data Interchange (EDI)

Electronic Data Interchange (EDI)

Starting with release 7.0, EDI files used or created by RMS are in a generic format: RMS
no longer supports particular EDI standards. By processing EDI output and input in a
generic format, RMS is no longer limited to a single standard, which allows Oracle Retail
customers to better utilize any and all standards they choose to use. Translating EDI
input and output files into any format from any format by third-party software is an
industry “best practice”.

Formerly, EDI transactions in RMS conformed to ASC X12/VICS (version 3040) and
ANA/TRADACOMS standards. EDI transactions are now expected to be in a format that
adheres to the RMS file interfacing standards. Both in-bound and out-bound files are
written in a fixed field layout with standard file header and trailer records. Transaction
information is included in master/detail or detail-only records. The layouts are
consistent with interface files used elsewhere in the RMS.

RMS EDI batch processes write out-bound transaction files into the generic layout
format, which are then translated by the third-party software into the standard required
by each trading partner. The post-translated versions are transmitted to the trading
partner. In-bound transactions should be formatted by the trading partner in a
predetermined standard, transmitted, and then translated by the Oracle Retail retailer’s
translation software into the generic file layout. The generic file is used as the input file
for RMS EDI batch processing.

It is impractical for Oracle Retail to continue to maintain code that supports any
particular EDI standard. There are multiple viable standards that are utilized by vendors
and retailers. Further, those standards have multiple versions. Most retailers are already
using software to map and translate EDI transactions into the required standard or
version. There are excellent third-party software packages, such as Sterling Software’s
Gentran™ translator, that effectively translate in-bound and out-bound transactions into
the necessary formats. The use of third-party translation software is not only the common
business practice, but also the best business practice of today’s retailer.

30 Oracle Retail Merchandising System

6

RETL Program Overview for the RMS-RPAS
Interface

Oracle Retail ETL Architecture

RMS works in conjunction with the Oracle Retail Extract Transform and Load (RETL)
framework. This architecture utilizes a high performance data processing tool that allows
database batch processes to take advantage of parallel processing capabilities.

The RETL framework runs and parses through the valid operators composed in XML
scripts.

More information about the RETL tool is available in the latest RETL Programmer’s
Guide.

The diagram below illustrates the extraction processing architecture. Instead of managing
the change captures as they occur in the source system during the day, the process
involves extracting the current data from the source system. The extracted data is output
to flat files. These flat files are then available for consumption by products such as RPAS.

The target system has its own way of completing the transformations and loading the
necessary data into its system, where it can be used for further processing in the
environment. See RPAS documentation for information related to transformations and
loadings.

The architecture relies upon two distinct stages, shown in the diagram below. Stage 1 is
the extraction from the RMS database using well-defined flows specific to the RMS
database. The resulting output is comprised of data files written in a well-defined schema
file format. This stage includes no destination specific code.

Stage 2 introduces a flow specific to the destination. In this case, flows for RPAS are
designed to transform the data so that RPAS can import the data properly.

Operations Guide, Volume 3 - Back End Configuration and Operations 31

RETL Program Overview

— > =
\—-/

Stage 1) RMS extraction
RMS DB RMS extraction |4 flows and output
process schemas

A

RMS extraction files
(in output schema format)

Stage 2
Transformation || Transformation
process flows
I [
Load files

Destination DB

The two stages of RETL processing

RETL Program Overview

This section summarizes the RETL program features utilized in the RMS extractions and
loads. Installation information about the RETL tool is available in the latest RETL

Programmer’s Guide.

Configuration

Version of RETL

Before trying to configure and run RMS RETL, install RETL version 12.0 or later, which is
required to run RMS RETL. See the latest RETL Programmer’s Guide for thorough

installation information.

RETL User and Permissions

The permissions are set up as per the RETL Programmer’s Guide. RMS RETL reads and
writes data files and creates, deletes, updates and inserts into tables. If these permissions

are not set up properly, extractions fail.

32 Oracle Retail Merchandising System

RETL Program Overview

Environment Variables

See the RETL Programmer’s Guide for RETL environment variables that must be set up
for your version of RETL. You will need to set RDF_HOME to your base directory for
RMS RETL. This is the top level directory that you selected during the installation
process. In .profile, you should add a line such as the following:

export RDF_HOME=<base directory for RMS RETL>

rmse_rpas_config.env Settings for RPAS

There are several constants that must be set in rmse_rpas_config.env depending upon a
retailer’s preferences and the local environment. These are summarized in the following

table.

Constant Name

Default Value

Alternate Value

Description

DATE_TYPE

DBNAME

RMS_OWNER

BA_OWNER

CONN_TYPE

DBHOST

DBPORT

LOC_ATTRIBUTES_
ACTIVE

PROD_
ATTRIBUTES_ACTIVE

DIFFS_ACTIVE

vdate

rtkdev01

RPASINT

thin

mspdevl7

1524

False

False

True

current_date

Depends on
installation

Depends on

installation

Depends on
installation

oci

Depends on
installation

Depends on
installation
True

True

False

Determines whether the
date used in naming the
error, log, and status
files is the current date
or the VDATE value
found in the PERIOD
table.

The database schema
name.

The username of the
RMS database schema
owner.

The username of the
RMS batch user (not
currently used by RMS-
RPAS).

The way in which RMS
connects to the
database.

The computer
hardware node name.

The port on which the
database listener
resides.

Determines whether
rmse_rpas_attributes.ks
h is run or not.

Determines whether
rmse_rpas_attributes.ks
h is run or not.

Determines whether
rmse_rpas_merchhier.k
sh generates data files
that contain diff
allocation information.

Operations Guide, Volume 3 - Back End Configuration and Operations 33

RETL Program Overview

Constant Name

Default Value

Alternate Value

Description

ISSUES_ACTIVE

LOAD_TYPE

DB_ENV

NO_OF_CPUS

LANGUAGE
REFX_OPTIONS

True

CONVENTIONAL

ORA

en

-c $RDF_HOME/
rfx/etc/rfx.conf
-s SCHEMAFILE

False

DIRECT

DB2, TERA

Depends on
installation

Various

-c $RDF_
HOME/
rfx/etc/rfx

.conf

If set to “True’,
rmse_rpas_stock_on_ha
nd also extracts stock at
the warehouse level. If
set to ‘False’,
rmse_rpas_stock_on_ha
nd extracts stock at the
store level only.

Data loading method to
be used by SQL*Loader

(Direct may be faster
than conventional.)

Database type
(Additional changes to
the software may be
needed if a database
other than Oracle is
selected.)

Used in parallel
database query hints to
improve performance.

En = English

Processing speed may
be increased for some
extractions if the

-s SCHEMAFILE

option is omitted

You must also set up the environment variable PASSWORD in the rmse_rpas_config.env,
.kshrc or some other location that can be referenced. In the example below, adding the
line to the rmse_rpas_config.env causes the password ‘mypasswd’ to be used to log into

the database:

export PASSWORD=mypasswd

Be sure to review the environmental parameters in the rmse_rpas_config.env file before

executing batch modules.

Steps to Configure RETL

1. Log in to the UNIX server with a UNIX account that will run the RETL scripts.
2. Change directories to <base_directory>/rfx/etc.

3. Modify the constants from the table above in the rmse_rpas_config.env script as

needed.

34 Oracle Retail Merchandising System

Program Return Code

Program Return Code

RETL programs use a return code to indicate successful completion. If the program
successfully runs, a zero (0) is returned. If the program fails, a non-zero is returned.

Program Status Control Files

To prevent a program from running while the same program is already running against
the same set of data, the code utilizes a program status control file. At the beginning of
each module, rmse_rpas_config.env is run. This script checks for the existence of the
program status control file. If the file exists, then a message stating, ‘S{PROGRAM_NAME}
has already started’, is logged and the module exits. If the file does not exist, a
program status control file is created and the module executes.

If the module fails at any point, the program status control file is not removed, and the
user is responsible for removing the control file before re-running the module.

File Naming Conventions

The name and directory of the program status control file is set in the configuration script
(rmse_rpas_config.env). The directory defaults to SRDF_HOME/error. The naming
convention for the program status control file itself defaults to the following dot
separated file name:

= The program name
= ‘gtatus’
= The business virtual date for which the module was run

For example, a program status control file for the rmse_rpas_daily_sales.ksh program
would be named as follows for a batch run on the business virtual date of January 5,
2001:

$RDF_HOME/error/rmse_rpas_daily_sales.status.20010105

Restart and Recovery

Because RETL processes all records as a set, as opposed to one record at a time, the
method for restart and recovery must be different from the method that is used for
Pro*C. The restart and recovery process serves the following two purposes:

1. It prevents the loss of data due to program or database failure.

2. Itincreases performance when restarting after a program or database failure by
limiting the amount of reprocessing that needs to occur.

The RMS extract (RMSE) modules extract from a source transaction database or text file
and write to a text file. The RMS load module imports data from flat files, performs
transformations if necessary, and then loads the data into the applicable RMS table.

Most modules use a single RETL flow and do not require the use of restart and recovery.
If the extraction process fails for any reason, the problem can be fixed, and the entire
process can be run from the beginning without the loss of data. No RMS to RPAS
extraction programs have any restart/recovery capability. The single RMS load program,
rmsl_rpas_forecast.ksh, takes a text file as its input, and the following two choices are
available that enable the program to complete the load in the event of an error:

= Re-run the program with the entire input file.

= Re-run the program with only the input records that were not processed successfully
the first time.

Operations Guide, Volume 3 - Back End Configuration and Operations 35

Message Logging

Message Logging

Message logs are written daily in a format described in this section.

Daily Log File
Every RETL program writes a message to the daily log file when it starts and when it
finishes. In some cases, progress messages are also written. The name and directory of
the daily log file is set in the configuration script (rmse_rpas_config.env). The directory
defaults to SRDF_HOME/log. All log files are encoded UTE-8.

The naming convention of the daily log file defaults to the following “dot” separated file
name:

= The business virtual date for which the modules are run

= ‘log’

For example, the location and the name of the log file for the business virtual date of
January 5, 2001 would be the following;:

$RDF_HOME/10g/20010105.. log

Format

As the following examples illustrate, every message written to a log file has the name of
the program, a timestamp, and either an informational or error message. For example:
rmse_rpas_item retail 17:09:07: Program started ...

rmse_rpas_item retail 17:09:12: Program completed successfully

Some error messages are also written to the log file, such as ‘No output File
specified'.

Program Error File

In addition to the daily log file, each program also writes its own detailed flow and error
messages. Rather than clutter the daily log file with these messages, each program writes
out its errors to a separate error file unique to each execution.

If a program finishes unsuccessfully, a message is usually written in the error file that
indicates where the problem occurred in the process.

The name and directory of the program error file is set in the applicable configuration file
(rmse_rpas_config.env). The directory defaults to SRDF_HOME/error. All errors and all
routine processing messages for a given program on a given day go into this error file (for
example, it will contain both the stderr and stdout produced during execution of the
program).

The naming convention for the program’s error file defaults to the following “dot”
separated file name:

= The program name

= The business virtual date for which the module was run

For example, all errors and detailed log information for the rms_item_master.ksh
program would be placed in the following file for the batch run on the business virtual
date of January 5, 2001:

$VMHOME/error/rms_item master.20010105

36 Oracle Retail Merchandising System

RMSE Reject Files

RMSE Reject Files

RMSE extract modules may produce a reject file if they encounter data related problems,
such as the inability to find data on required lookup tables. The module tries to process
all data and then indicates that records were rejected so that all data problems can be
identified in one pass and corrected; then, the module can be re-run to successful
completion. If a module does reject records, the reject file is not removed, and the user is
responsible for removing the reject file before re-running the module. The records in the
reject file consist of the rejected records.

The name and directory of the reject file are defined in the applicable configuration script
(rmse_rpas_config.env). The directory defaults to SRDF_HOME/data.

Note: A directory specific to reject files can be created. The
rmse_rpas_config.env script would need to be changed to
define the reject directory constant such that it would point
to that directory.

The naming convention for the reject file defaults to the following “dot” separated file
name:

= The program name

= The first filename, if one is specified on the command line

= rej

= The business virtual date for which the module was run

Schema Files Overview

RETL uses schema files to specify the format of incoming or outgoing datasets. The
schema file defines each column’s data type and format, which is then used within RETL
to format/handle the data. For more information about schema files, see the latest RETL
Programmer’s Guide. Schema file names are hard-coded within each module because
they do not change on a day-to-day basis. All schema files end with “.schema” and are
placed in the “$RDF_HOME/rfx/schema” directory.

Command Line Parameters

The only programs or scripts that allow command line parameters (or arguments) are the
rmse_rpas_config.env script and the pre_rmse_rpas.ksh and rmse_rpas.ksh programs.
All of the command line parameters for these modules are optional and are described
below (the square brackets indicate that the parameter is optional):

rmse_rpas_config.env

Usage: $SRDF_HOME /rfx/etc/rmse_rpas_config.env [-t $*] [r $*] [-s $*] [-v $* |
$*]

Description of Command Line Options

Note: See the end of this description for an explanation of
the need for the ‘$*’ that appears after each command line
option.

= —t: This option causes rmse_rpas_config.env to skip the initializing of the
environment variables that obtain their values from the “.txt’ files, except for VDATE

Operations Guide, Volume 3 - Back End Configuration and Operations 37

Command Line Parameters

which is initialized with the date found in the vdate.txt file. This option is utilized by
pre_rmse_rpas.ksh, rmse_rpas.ksh, rdft.ksh and outage ksh when they call
rmse_rpas_config.env.

—r: This option prevents the redirection of all output (stdout and stderr) to the error
file. This can be useful during debugging and maintenance. This option can also be
utilized by rmse_rpas.ksh, rdft.ksh and outage.ksh when they call
rmse_rpas_config.env.

The ‘~t’ and “-r’ options must be followed by ‘$*” on the line which invokes this
script. This step is necessary in order to preserve the command line arguments or
options that may have been present on the command line for the RETL script that
invokes this script. However, the ‘$*" should only appear once if both options are
used.

-s: This option causes rmse_rpas_config.env to skip the STATUS_FILE test. This is
also useful during maintenance and debugging.

-v: If DATE_TYPE (in rmse_rpas_config.env) is set to ‘vdate’, this option prevents
the normal exit with an error message when the vdate.txt file is empty or non-
existent; instead, it will use the current date to derive FILE_DATE. However, if
DATE_TYPE is set to ‘vdate’, and vdate.txt actually does exist and is non-empty, the
date in vdate.txt continues to be used even if this option is set. If DATE_TYPE is set
to ‘current_date’, this option has no effect.

—c: This option overrides the DATE_TYPE switch setting and causes the current date
to be used to derive FILE_DATE regardless of what DATE_TYPE is set to. This
option is utilized by pre_rmse_rpas.ksh when it calls rmse_rpas_config.env, if it is
run with the —c option on its command line. The ‘-’ option is normally only used
when rmse_rpas_config.env is called from pre_rmse_rpas.ksh.

If only one command line option is used, it must be followed by ‘$*’. But if more
than one option is specified, then ‘$* must be entered on the command line only
once after all options have been entered. The ‘$* is necessary in order to preserve the
command line arguments or options (if there are any) that are present on the
command line that is used to execute the RETL script which invokes this script.

If more than one option is specified, options must appear on the command line in the
same order as shown on the “Usage” line, above.

pre_rmse_rpas.ksh

Usage: pre_rmse_rpas.ksh [-C]

The ‘~c’ option is used to specify what option is to be placed on the
rmse_rpas_config.env command line when it is called by this program. It is usually
used the first time that pre_rmse_rpas.ksh is run at a new installation or if the state of
the vdate.txt file is unknown. This option is passed directly to rmse_rpas_config.env
when it is called by pre_rmse_rpas.ksh. No other use is made of this parameter by
pre_rmse_rpas.ksh.

This option causes rmse_rpas_config.env to use the current date to initialize
FILE_DATE instead of possibly setting it to VDATE, which is obtained from the
vdate.txt file. (FILE_DATE is the date that is used to name the error, log, and status
files.)

The current date is used regardless of how DATE_TYPE is set in
rmse_rpas_config.env. By using the ‘-C’ option, there is no need to manually set up
the vdate.txt file before running this script.

The normal mode for pre_rmse_rpas.ksh (without the —C option) is that when it calls

rmse_rpas_config.env, FILE_DATE is set to VDATE or the current date, depending
on how DATE_TYPE is set in rmse_rpas_config.env. If DATE_TYPE is set to ‘vdate’,

38 Oracle Retail Merchandising System

Typical Run and Debugging Situations

and if the vdate.txt file does not exist or is empty, rmse_rpas_config.env (and this
program) exits with an error message.

= The use of this option does not affect what date is used by any of the other RETL
scripts that run after this script is done. After pre_rmse_rpas.ksh has run, when the
other RETL scripts are run, they call rmse_rpas_config.env with no options on the
command line, and their files are named using VDATE or the current date,
depending on how DATE_TYPE is set in rmse_rpas_config.env.

rmse_rpas.ksh:

= Usage: rmse_rpas.ksh [-C]

* The presence of the ‘~C" option causes FILE_DATE in rmse_rpas_config.env to be set
to the current date instead of possibly using VDATE (which gets its value from the
vdate.txt file), but only when it is called by rmse_rpas.ksh and pre_rmse_rpas.ksh
(pre_rmse_rpas.ksh is invoked by rmse_rpas.ksh). It has no effect when other extract
programs call rmse_rpas_config.env, at the time that they are invoked by
rmse_rpas.ksh. This option is passed directly to rmse_rpas_config.env and
pre_rmse_rpas.ksh when they are called by rmse_rpas.ksh. No other use is made of
this parameter by rmse_rpas.ksh.

RMSE I/O File Names

Most of the output path/filenames have the format,
$DATA_DIR/(RMSE_RPAS_program name).dat. Similarly, the schema format for the
records in these files are specified in the file - $SSCHEMA_DIR/(RMSE_RPAS_program
name).schema.

Typical Run and Debugging Situations

The following examples illustrate typical run and debugging situations for programs.
The log, error, etc. file names referenced below assume that the module is run on the
business virtual date of March 9, 2001. See the previously described naming conventions
for the location of each file.

For example:

To run rmse_rpas_stores.ksh:

1. Change directories to $RDF_HOME /rfx/src.

2. Ata UNIX prompt ($) enter:
$rmse_rpas_stores._ksh

If the module runs successfully, the following results:

1. Log file: Today’s log file, 20010309.log, contains the messages “Program started ...”
and “Program completed successfully” for rmse_rpas_stores.

2. Data: The rmse_rpas_stores.dat file exists in the data directory and contains the
extracted records.

3. Schema: The rmse_rpas_stores.schema file exists in the schema directory and
contains the definition of the data file in #2 above.

4. Error file: The program’s error file, rmse_rpas_stores.20010309, contains the standard
RETL flow (ending with “All threads complete” and “Flow ran successfully”) and no
error messages.

5. Program status control: The program status control file,
rmse_rpas_stores.status.20010309, will not exist.

6. Reject file: The reject file, rmse_rpas_stores.rej.20010309, will not exist.

Operations Guide, Volume 3 - Back End Configuration and Operations 39

RPAS/AIP Configuration

If the module does not run successfully, the following results:

1. Log file: Today’s log file, 20010309.log, does not contain the “Program completed
successfully” message for rmse_rpas_stores.

2. Data: The rmse_rpas_stores.dat file may exist in the data directory but may not
contain all the extracted records.

3. Schema: The rmse_rpas_stores.schema file exists in the schema directory and
contains the definition of the data file in #2 above.

4. Error file: The program’s error file, rmse_rpas_stores.20010309, may contain one or
more error messages.

5. Program status control: The program status control file,
rmse_rpas_stores.status.20010309, exists.

6. Reject file: The reject file, rmse_rpas_stores.status.20010309, does not exist because
this module does not reject records.

To re-run the module, perform the following actions:
1. Determine and fix the problem causing the error.
2. Remove the program’s status control file.

3. Change directories to SRDF_HOME/rfx/src. At a UNIX prompt, enter:
$rmse_rpas_stores._ksh

RPAS/AIP Configuration

RETL Program Overview for the RMS-Time-Phased Inventory Planning Tool Interface

This section summarizes the RETL program features utilized in the RMS Extractions
(RMSE) for the RMS-time-phased inventory planning tool integration. Starting with RMS
version 11, the RMS extract for a time-phased inventory planning tool is separate from
the RMS extracts for RPAS. In prior RMS version, time-phased inventory planning tool
and RPAS had common RETL extracts.

More installation information about the RETL tool is available in the latest RETL
Programmer’s Guide.

Note: In this section, some examples refer to RETL programs
that are not related to RMS or are related to other versions of
RMS than this document addresses. Such examples are
included for illustration purposes only.

Installation

Select a directory where you would like to install RMS ETL. This directory (also called
MMHOME) is the location from which the RMS ETL files are extracted.

The following code tree is utilized for the RETL framework during the extractions,
transformations, and loads and is referred to in this documentation.

<base directory (MMHOME)>

/data

/error

/log

/rfx
/bookmark
/etc
/lib
/schema
/src

40 Oracle Retail Merchandising System

RPAS/AIP Configuration

Configuration

RETL

Before trying to configure and run RMS ETL, install RETL version 11.3 or later, which is
required to run RMS ETL. See the latest RETL Programmer’s Guide for thorough
installation information.

RETL user and permissions

RMS ETL is installed and run as the RETL user. Additionally, the permissions are set up
as per the RETL Programmer’s Guide. RMS ETL reads data, creates, deletes and updates
tables. If these permissions are not set up properly, extractions fail.

Environment Variables

See the RETL Programmer’s Guide for RETL environment variables that must be set up
for your version of RETL. You will need to set MMHOME to your base directory for RMS
RETL. This is the top level directory that you selected during the installation process (see
the section, ‘Installation’, above). In your .kshrc, you should add a line such as the
following:

export MVHOME=<base directory for RMS ETL>

rmse_aip_config.env Settings for IP
There are variables you must change depending upon your local settings:

For example:

export DBNAME=iInt9i
export RMS_OWNER=steffej rms1011
export BA OWNER=rmsint1011

You must set up the environment variable PASSWORD in the rmse_aip_config.env or
some other location that can be referenced. In the example below, adding the line to the
rmse_aip_config.env causes the password ‘mypasswd’ to be used to log into the
database:

export PASSWORD=mypasswd

Make sure to review the environmental parameters in the rmse_aip_config.env file file
before executing batch modules.

Steps to Configure RETL

1. Log in to the UNIX server with a UNIX account that will run the RETL scripts.

2. Change directories to <base_directory>/rfx/etc.

3. Modify the rmse_aip_config.env script.

For example:
a. Change the DBNAME variable to the name of the RMS database.
b. Change the RMS_OWNER variable to the username of the RMS schema owner.
c. Change the BA_OWNER variable to the username of the RMSE batch user.

Program Return Code

RETL programs use one return code to indicate successful completion. If the program
successfully runs, a zero (0) is returned. If the program fails, a non-zero is returned.

Operations Guide, Volume 3 - Back End Configuration and Operations 41

RPAS/AIP Configuration

Program Status Control Files

To prevent a program from running while the same program is already running against
the same set of data, the code utilizes a program status control file. At the beginning of
each module, rmse_aip_config.env is run. These files check for the existence of the
program status control file. If the file exists, then a message stating,
‘${PROGRAM_NAME]} has already started’, is logged and the module exits. If the file
does not exist, a program status control file is created and the module executes.

If the module fails at any point, the program status control file is not removed, and the
user is responsible for removing the control file before re-running the module.

File Naming Conventions

The naming convention of the program status control file allows a program whose input
is a text file to be run multiple times at the same time against different files.

The name and directory of the program status control file is set in the applicable
configuration file (rmse_aip_config.env). The directory defaults to SMMHOME/ error.
The naming convention for the program status control file itself defaults to the following
dot separated file name:

= The program name
= ‘gtatus’
= The business virtual date for which the module was run

For example, a program status control file for one program would be named as follows
for the batch run of January 5, 2001:
$VMMHOMEZerror/rmse_aip_banded item.status.20010105

Restart and Recovery

Because RETL processes all records as a set, as opposed to one record at a time, the
method for restart and recovery must be different from the method that is used for
Pro*C. The restart and recovery process serves the following two purposes:

1. It prevents the loss of data due to program or database failure.

2. Itincreases performance when restarting after a program or database failure by
limiting the amount of reprocessing that needs to occur.

The RMS Extract (RMSE) modules extract from a source transaction database or text file
and write to a text file. The RMS Load (RMSL) modules import data from flat files,
perform transformations if necessary and then load the data into the applicable RMS
tables.

Most modules use a single RETL flow and do not require the use of restart and recovery.
If the extraction process fails for any reason, the problem can be fixed, and the entire
process can be run from the beginning without the loss of data. For a module that takes a
text file as its input, the following two choices are available that enable the module to be
re-run from the beginning:

1. Re-run the module with the entire input file.

2. Re-run the module with only the records that were not processed successfully the
first time and concatenate the resulting file with the output file from the first time.

To limit the amount of data that needs to be re-processed, more complicated modules
that require the use of multiple RETL flows utilize a bookmark method for restart and
recovery. This method allows the module to be restarted at the point of last success and
run to completion. The bookmark restart/recovery method incorporates the use of a
bookmark flag to indicate which step of the process should be run next. For each step in
the process, the bookmark flag is written to and read from a bookmark file.

42 Oracle Retail Merchandising System

RPAS/AIP Configuration

Note: If the fix for the problem causing the failure requires
changing data in the source table or file, then the bookmark
file must be removed and the process must be re-run from
the beginning in order to extract the changed data.

Message Logging

Message logs are written daily in a format described in this section.

Daily Log File

Every RETL program writes a message to the daily log file when it starts and when it
finishes. The name and directory of the daily log file is set in the configuration file
(rmse_aip_config.env). The directory defaults to SMMHOME /log. All log files are
encoded UTEF-8.

The naming convention of the daily log file defaults to the following “dot” separated file
name:

= The business virtual date for which the modules are run

= ‘log’

For example, the location and the name of the log file for the business virtual date of
January 5, 2001 would be the following;:

$MVHOME/ 10g/20010105 . 1og

Format

As the following examples illustrate, every message written to a log file has the name of
the program, a timestamp, and either an informational or error message:

aipt_item 17:07:43: Program started ...

aipt_item 17:07:50: Program completed successfully

rmse_aip_item master 17:08:53: Program started ...

rmse_aip_item master 17:08:59: Program completed successfully

rmse_item retail 17:09:07: Program started ...

rmse_item _retail 17:09:12: Program completed successfully

If a program finishes unsuccessfully, an error file is usually written that indicates where
the problem occurred in the process. There are some error messages written to the log
file, such as ‘No output file specified’, that require no further explanation written to the
error file.

Program Error File

In addition to the daily log file, each program also writes its own detail flow and error
messages. Rather than clutter the daily log file with these messages, each program writes
out its errors to a separate error file unique to each execution.

The name and directory of the program error file is set in the applicable configuration file
(rmse_aip_config.env). The directory defaults to S(MMHOME /error. All errors and all
routine processing messages for a given program on a given day go into this error file (for
example, it will contain both the stderr and stdout from the call to RETL). All error files
are encoded UTEF-8.

The naming convention for the program'’s error file defaults to the following “dot”
separated file name:

* The program name
= The business virtual date for which the module was run

For example, all errors and detail log information for the rms_aip_item_master
program would be placed in the following file for the batch run of January 5, 2001:

Operations Guide, Volume 3 - Back End Configuration and Operations 43

RPAS/AIP Configuration

$VMMHOMEZerror/rms_aip_item master.20010105

RMSE and Transformation Reject Files

RMSE extract and transformation modules may produce a reject file if they encounter
data related problems, such as the inability to find data on required lookup tables. The
module tries to process all data and then indicates that records were rejected so that all
data problems can be identified in one pass and corrected; then, the module can be re-run
to successful completion. If a module does reject records, the reject file is not removed,
and the user is responsible for removing the reject file before re-running the module.

The records in the reject file contain an error message and key information from the
rejected record. The following example illustrates a record that is rejected due to
problems within the currency conversion library:

Currency Conversion Failed]|101721472]20010309

The following example illustrates a record that is rejected due to problems looking up
information on a source table:
Unable to find item master record for Item]101721472

The name and directory of the reject file is set in the applicable configuration file
(rmse_config.env or config.env). The directory defaults to SMMHOME/data.

Note: A directory specific to reject files can be created. The
rmse_config.env and /or config.env file would need to be
changed to point to that directory.

The naming convention for the reject file defaults to the following “dot” separated file
name:

* The program name

= The first filename, if one is specified on the command line

= rej

= The business virtual date for which the module was run

For example, all rejected records for the slsildmex program would be placed in the
following file for the batch run of January 5, 2001:

$VMHOME/data/slsi ldmex.slsildmdm. txt.rej .20010105

Schema Files Overview

RETL uses schema files to specify the format of incoming or outgoing datasets. The
schema file defines each column’s data type and format, which is then used within RETL
to format/handle the data. For more information about schema files, see the latest RETL
Programmer’s Guide. Schema file names are hard-coded within each module since they
do not change on a day-to-day basis. All schema files end with “.schema” and are placed
in the “rfx/schema” directory.

Command Line Parameters

In order for each RETL module to run, the input/output data file paths and names may
need to be passed in at the UNIX command line.

RMSE and Transformation

Most RMSE and transformation modules do not require the passing in of any
parameters. The output path/filename defaults to $DATA_DIR/(RMSE and transfer
program name).dat. Similarly, the schema format for the records in these files are
specified in the file - $SCHEMA_DIR/(RMSE program name).schema

44 Oracle Retail Merchandising System

RPAS/AIP Configuration

Scripts that need Parameter to Run
The scripts below are run on a full snapshot basis. The parameter is F (for full snapshot).
= rmse_aip_store_cur_inventory.ksh

= rmse_aip_wh_cur_inventory.ksh

Typical Run and Debugging Situations

The following examples illustrate typical run and debugging situations for types of
programs. The log, error, and so on file names referenced below assume that the module
is run on the business virtual date of March 9, 2001. See the previously described naming
conventions for the location of each file.

For example:

To run rmse_aip_store.ksh:

1. Change directories to SMMHOME/rfx/src.

2. Ata UNIX prompt enter:

%rmse_aip_store.ksh

If the module runs successfully, the following results:

= Log file: Today’s log file, 20010309.log, contains the messages “Program started ...”
and “Program completed successfully” for rmse_aip_store.

= Data: The rmse_aip_store.dat file exists in the data directory and contains the
extracted records.

* Schema: The rmse_aip_store.schema file exists in the schema directory and contains
the definition of the data file in #2 above.

* Error file: The program’s error file, rmse_aip_store.20010309, contains the standard
RETL flow (ending with “All threads complete” and “Flow ran successfully”) and no
additional error messages.

= Program status control: The program status control file,
rmse_aip_store.status.20010309, does not exist.

= Reject file: The reject file, rmse_aip_store.rej.20010309, does not exist because this
module does not reject records.

= If the module does not run successfully, the following results:

* Log file: Today’s log file, 20010309.1og, does not contain the “Program completed
successfully” message for rmse_stores.

* Data: The rmse_aip_store.dat file may exist in the data directory but may not contain
all the extracted records.

* Schema: The rmse_aip_store.schema file exists in the schema directory and contains
the definition of the data file in #2 above.

= Error file: The program’s error file, rmse_aip_store.20010309, may contain an error
message.

* Program status control: The program status control file,
rmse_aip_store.status.20010309, exists.

= Reject file: The reject file, rmse_aip_store.status.20010309, does not exist because this
module does not reject records.

Operations Guide, Volume 3 - Back End Configuration and Operations 45

RPAS/AIP Configuration

To re-run the module, perform the following actions:
1. Determine and fix the problem causing the error.
2. Remove the program’s status control file.

3. Change directories to SMMHOME /rfx/src. At a UNIX prompt, enter:
%rmse_aip_store._ksh

46 Oracle Retail Merchandising System

7

Internationalization

Internationalization is the process of creating software that can be translated more easily.
Changes to the code are not specific to any particular market. RMS is internationalized to
support multiple languages.

This section describes configuration settings and features of the software that ensure that
the base application can handle multiple languages.

Translation

Translation is the process of interpreting and adapting text from one language into
another. Although the code itself is not translated, components of the application that are
translated may include the following:

= Graphical user interface (GUI)

= Error messages

= Reports

The following components are not translated:

= Documentation (online help, release notes, installation guide, user guide, operations
guide)

* Batch programs and messages

= Log files

= Configuration tools

= Demonstration data

= Training materials

The user interface for RMS is translated into:

= Chinese (simplified)

= Chinese (traditional)

* Croatian

= Dutch

= French

= German

= Greek

* Hungarian

= Italian

= Japanese

= Korean

= Polish

= Portuguese (Brazilian)

= Russian

= Spanish
= Swedish
= Turkish

Operations Guide, Volume 3 - Back End Configuration and Operations 47

RMS User Interface Language Display Settings

RMS User Interface Language Display Settings

You can select a preferred language through the RMS UI or the database on the
USER_ATTRIB table. The selected language is connected to your ID in RMS and the
translated strings are displayed in the selected language. RMS has a fail /safe mechanism
built into the code. If the preferred language is not found, then RMS rolls back to English
language display of the UI label.

Note: A retailer has the two options regarding
internationalization when installing the application. See the
RMS Installation Guide for the procedures related to each.

= English and multiple secondary languages

* Install English first and then update with a translated
language (fully translated non-English installation). No
secondary languages are installed when your primary
language is one other than English.

Multiple Languages in one RMS Forms Session

RMS allows for multiple application servers to point to a single instance of forms and
database. This is specific to users who want to have a multi-lingual install of RMS and
have two URLs, each with a separate NLS_LANG session setting. This helps to facilitate
secondary user language sessions as some Ul elements are displayed in the language of
the NLS_LANG session of the application server.
To set up multiple URLs:
1. Copy URL information in formsweb.cfg.

a. Change the URL (the part in square brackets) to something new.

b. Change the .env file reference to a new file (to be created in step 2).

Copy the current .env file to the new name created in step 1.

Modify the new .env file by setting NLS_LANG to the new value.

Key RMS Tables Related to Internationalization
Several tables handle displayable text that can also be translated.

If the retailer creates a new form, a new menu, or a new object on a form, then the retailer
needs to populate these tables with the corresponding information. If the retailer
customizes the information in any of the tables FORM_ELEMENTS,
FORM_ELEMENTS_LANGS, MENU_ELEMENTS, or MENU_ELEMENTS_LANGS, the
base_ind field in customized records must contain ‘N’. Any record with BASE_IND=N
will be preserved in a temp table during future patches.

FORM_ELEMENTS

This table is used for screen display and holds the master list of items for all forms whose
labels/prompts are translated. This information will always be in English. The
BASE_IND=Y means that the item is part of the base Oracle Retail code set. BASE_IND
=N indicates that the item was added as part of retailer customization. Anything with the
BASE_IND =N will be preserved at upgrade time on the FORM_ELEMENTS_TEMP, but
the retailer is responsible for moving the data back to FORM_ELEMENTS.

48 Oracle Retail Merchandising System

Key RMS Tables Related to Internationalization

FORM_ELEMENTS_LANGS

This table is used for screen display. This table holds translated values for
labels/prompts on forms. This information will be in a language that is defined on the
lang column of the user_attrib table. All users see data from this table, as the retailer may
customize the text of a given field. The access key for a button is defined by filling in the
LANG_ACCESS_KEY/LANG_LABEL_PROMPT field. At run time, that character will be
marked in the string, and function as the access key. Any time the retailer changes the
LANG_ACCESS_KEY/LANG_LABEL_PROMPT or
LANG_ACCESS_KEY/LANG_LABEL_PROMPT, the BASE_IND should be updated to
N because it is not part of the base language translations provided by Oracle Retail.
Anything with the BASE_IND=N will be preserved at upgrade time on the
FORM_ELEMENTS_LANGS_TEMP, but the retailer is responsible for moving the data
back to FORM_ELEMENTS_LANGS.

MENU_ELEMENTS

This table is used for screen display. This table holds the master list for all menus whose
items are translated. This information will always be in English. The access key for a
menu option is defined by using the ampersand (&) before the character that is the access
key in the default description. The BASE_IND=Y means that the item is part of the base
Oracle Retail code set. BASE_IND=N indicates that the item was added as part of retailer
customization. Anything with the BASE_IND=N will be preserved at upgrade time on
the MENU_ELEMENTS_TEMP, but the retailer is responsible for moving the data back
to MENU_ELEMENTS.

MENU_ELEMENTS_LANGS

This table is used for screen display. This table holds the values for all menus whose
items are translated. This information will be in a language that is defined on the lang
table. Even English language users see data from this table, as the retailer may customize
the text of a given menu option. Any time the retailer changes the LANG_LABEL, the
BASE_IND should be updated to N because it is not part of the base language
translations provided by Oracle Retail. Anything with the BASE_IND=N will be
preserved at upgrade time on the MENU_ELEMENTS_LANGS_TEMP, but the retailer is
responsible form moving the data back to MENU_ELEMENTS_LANGS.

FORM_MENU_LINK

This table is used for screen display. This table holds the intersection of form and menu
files, mapping each form to the menu that it displays.

CODE_DETAIL_TRANS

This table holds non-primary language descriptions of code types defined on the
CODE_DETAIL table. The retailer has a multi-language option.

Operations Guide, Volume 3 - Back End Configuration and Operations 49

3

Custom Post Processing

RMS has an optional method of handling unwanded cartons for customer post
processing. This only applies to stock order receiving. An unwanded carton occurs when
a carton was not scanned when the stock order was shipped, but is scanned at the time of
the receipt. These cartons do not contain any shipment records in RMS.

Since the carton contains items that did not go through the appropriate transfer out
procedure, the inventory for those items will not be accurate. As a result, the message
which contains the unwanded (unscanned) carton is rejected by RMS to the RIB error
hospital at the time of receiving. RMS will then publish to the warehouse management
system through the RIB of the unwanded cartons in the ReptAdjustDesc message. The
warehouse management system will then send RMS a shipment message containing the
appropriate BOL and the carton ID. RMS will process the message and create or update
the shipment records. The next time RMS tries to process the rejected receipt message
with the unwanded carton, RMS will be able to process it.

The client’s warehouse management system must be able to support the processing of the
ReptAdjustDesc message above in order for this functionality of unwanded carton to
work successfully.

Operations Guide, Volume 3 - Back End Configuration and Operations 51

9

Integrating RMS with Oracle Retall
Workspace

For information about Oracle Single Sign-On and Oracle Retail Merchandising System,
see Oracle Retail Merchandising System Installation Guide.

For information on integrating Oracle Retail Merchandising System with Oracle Retail
Workspace, see Oracle Retail Workspace Implementation Guide.

Oracle Retail Workspace is a supported configuration of Oracle WebCenter Spaces
11.1.1.5 for Oracle Retail. For Oracle Retail 13.2.x enterprise, Oracle Retail Workspace
replaces previous versions of Oracle Retail Workspace. There is no more packaged Oracle
Retail Workspace code, only configuration instructions for Oracle WebCenter Spaces
11.1.1.5.

The Oracle Retail Workspace configuration utilizes the external application functionality
and the application navigator task flow of the Oracle WebCenter Framework to configure
RMS in Oracle WebCenter Spaces.

Operations Guide, Volume 3 - Back End Configuration and Operations 53

10

Integrating RMS with Oracle E-Business

Suite Financials

This chapter describes the integration between Oracle Retail systems and Oracle E-
Business Suite Financials (including Oracle General Ledger and Oracle Payables), as
developed and supported by Oracle Retail Financial Integration (ORFI).

When the option to integrate is chosen, the selected information is shared between the
systems. Integration and validation services are in place to ensure the shared data
matches.

Note: This chapter addresses the points within Oracle Retail
systems that are essential to integration. For more
information about the entire integration process, including
mapping to Oracle E-Business Suite data and settings, see
the ORFI documents, Oracle Retail Financial Integration for
Oracle Retail Merchandising Suite and Oracle E-Business Suite
Financials - Implementation Guide. For more information about
Web services, see the following chapters in the Oracle Retail
Merchandising System Operations Guide, Volume 2: "Service
Provider Implementations API Designs" and "Web Services."

Participating Applications
The following Oracle Retail applications are included in the integration covered by this
chapter:

Oracle Retail Merchandising System (RMS)
Oracle Retail Sales Audit (ReSA)

Oracle Retail Invoice Matching (RelM)
Oracle Retail Integration Bus (RIB)

Assumptions and Dependencies

The option to integrate must be selected during initial set up of the RMS system.
ReIM accesses RMS to determine if integration is active. RMS must be setup first
before integration with ReIM.

The URLs for the RFI Web services that are necessary for this integration are
maintained in the RMS_RETAIL_SERVICE_REPORT_URL table and in the ReIM
integration.properties file.

Real time account validation is done only when the financial integration with Oracle
E-Business Suite is ON.

Partners must be set up as suppliers in Oracle E-Business Suite and set up in RMS
using the RMS Supplier ID. The RMS Supplier ID is generated when the Oracle E-
Business Suite supplier is interfaced with Oracle Retail. The Partner functionality
within RMS and ReIM proceeds normally. The RMS supplier generated as part of
this process is not used.

Payment terms and freight terms are manually maintained.

Operations Guide, Volume 3 - Back End Configuration and Operations 55

Data Setup

Data Setup

Integration of Oracle Retail applications and Oracle E-Business Suite Financials relies on
synchronization of essential data, such as currency exchange rates and suppliers.
Through careful discussions, the users of both systems determine the common codes and
descriptions that will best serve their business needs.

Once an agreement is reached, this information is set up and maintained. Depending on
the volume, some shared information is set up in Oracle Retail applications or in Oracle
E-Business Suite and electronically transferred to other systems. Otherwise, shared
information is set up manually within each system, and the users of both systems must
ensure that the code and the description match.

RMS Data Setup and Configuration

This section describes setup considerations for RMS data.

RMS System Options
To set RMS SYSTEMS_OPTION table:
1. Set the FINANCIAL_IND=Y, SYSTEM_OPTION indicates that the Oracle Retail
system is integrated with a financial system:
Set FINANCIAL_AP=A.

A value of A indicates that the financial system to which RMS is interfaced is
Oracle E-Business Suite through Oracle Retail Financial Integration (ORFI).

= GL_ROLL_UP can be either be value D, S, or C.
= MULTIPLE_SET_OF_BOOKS_IND =Y

= SUPPLIER_SITE_IND =Y

= ORG_UNIT_IND=Y

Organization Units

Use the Organizational Unit window (RMS Start Menu > Control > Setup > Org Unit
>Edit) to define organizational units in RMS that match those being setup in Oracle E-
Business Suite. When an organizational unit is entered in RMS, the valid organizational
units are those associated with the Set Of Books (SOB) used for the general ledger
interface.

Currency Exchange Rates

Currency exchange rate is used to translate the monetary value of one currency in terms
of another. Depending on business needs, a Currency Exchange Rate Type of Operational
or Consolidation is selected for use in all transactions.

This value is set up manually in RMS and mapped to Oracle E-Business Suite through the
Currency Exchange Type mapping window. Currency Exchange Rate data is owned by
Oracle General Ledger and updates are sent to Oracle Retail applications.

Determine the Exchange Type being sent by Oracle General Ledger (for example,
Consolidation or Operational) that you want RMS to use. Update the
FIF_CURRENCY_XREF for mapping the external exchange type being sent by Oracle
General Ledger with RMS Exchange Type.

For example, for Consolidation and Operational exchange types, the
FIF_CURRENCY_XREF table holds the following entries:

56 Oracle Retail Merchandising System

Data Setup

FIF_EXCHANGE_TYPE RMS_EXCHANGE_TYPE

C C
o o

Supplier Address Types

Within RMS, supplier information (such as Order From and Remit To addresses) is used
for generating the purchase orders. Oracle Payables uses supplier information for
payment generation. It is important that this information is synchronized.

© Partner Org Unit (supporg) HE=8
4 DaaEe

Partner Type Supplier Site
Partrier 2900 Local Supplier #1

Primary
Crg Unit 10 Description Pay Site

 ___iiiogu-na

Org Und ID 1111111111 |45 Org Uni id - Ma

Suppliers are created in Oracle Payables and exported to RMS. When FINANCIAL_AP is
set to A, suppliers cannot be created using the RMS forms. However, after the supplier
exists in RMS, all data values for the supplier (except supplier name and status) continue
to be updated using the RMS forms. The association of supplier sites to organization
units is accessed only in view mode through RMS forms. One supplier site per supplier
organization unit combination can be marked as primary payment site.

Where SYSTEM_OPTIONS.FINANCIAL_AP is A, disable auto generate
supplier/partner numbers and associated check boxes.

Note: Supplier information is created, updated and
inactivated only in Oracle Payables. This information is
transferred from Oracle Payables to the participating Oracle
Retail applications, where additional retail-specific attributes
is maintained.

Country Codes

When country codes are defined and seeded in RMS, ensure that country codes are
mapped to Oracle E-Business Suite country codes through RFI DVM mapping. The

Operations Guide, Volume 3 - Back End Configuration and Operations 57

Data Setup

following is an example of RFI DVM Mapping (Table RFI_XREF_DVM, available in RFI
schema in Retail.

EXT_SYSTEM_ID COMMON_ID RETL_ID
USA 700 US
CAN 701 CA

Financial Calendar

The financial calendar within Oracle Retail systems is manually set up and maintained
separately from the Oracle General Ledger financial calendar.

Freight Terms

A freight term is an agreement between the retailer and a supplier regarding
transportation charges for goods delivered by the supplier. Freight terms are used by
RMS as purchase orders are generated.

Within the RMS system, freight terms are set up and maintained manually. They also are
maintained in Oracle Payables.

Payment Terms and Currency Exchange Rates

Currency exchange rates are created and updated in Oracle General Ledger and exported
to RMS. Changes to Retail currency exchange rates are not propagated to Oracle General
Ledger. Payment terms, however, are manually set up and maintained in each system.

Oracle E-Business Suite Financials Units and Site IDs

The data concepts of Org Units and Site IDs in RMS mirror the data maintained in Oracle
E-Business Suite. RMS forms are used to manage and view Oracle Org Units and Site IDs.
The RMS windows for Store and Warehouse maintenance allows for the association of
each store and warehouse with an Org Unit. The following is an example of the
Organizational Unit form:

58 Oracle Retail Merchandising System

Data Setup

O Organizational Unit (orgunif) |=JO) %]
e PNaZY
Org Uind ID Description Set of Books ID Set of Books Description
el
£
=]
£
#
£
42
S|
E
45
= &l
Add | Delete | Concel |

Store and Warehouse Maintenance

The organizational unit is found in the Store Maintenance and Warehouse forms, which
allow the Oracle E-Business Suite operating unit to be associated with the Store or
Warehouse. When RMS is set up for single-channel operation, the organizational unit is
set at the physical warehouse level. When RMS is set up for multi-channel operation, the
organizational unit is set up at the virtual warehouse level. Financial sales audit and
inventory information can then be identified through interface routines and posted to the
appropriate general ledger accounts. An organizational unit must be designated for each
Store and Warehouse location in the RMS.

The following are examples of the Store Maintenance and Warehouse Maintenance
forms:

Operations Guide, Volume 3 - Back End Configuration and Operations 59

Data Setup

nce Window (shore)

Store Type: [Compisny

Store | m E Diackzonvite Secondary Nome |
Manager Tom Spongler | {10 chaes) [ncksoni
Fhone Mumber [604.277.3363 (3 chars) [AC
Face Mumber l'd!»!ueagr SDDJ SaFt
Emall Address |) Saling Ases | 5000 84y
VAT Region | 1000 48l Vet Region 1000] Linear Distance | Fest
District | 113 4l Florida Store Ciass [Class Stores B v
Trarester-Zone | 1000 4l [ranster Zone 1 Stars Open Date [15-MAY-2001 i)
Store Formal | 10 4l [Core Business] St CrderDays | 50
i b | Stare Close Date | i
channel [+ | |Brick & Mortar Stop Order Days |
Detout Warehouss 10001 ol [Store Supaly Accuared Date | &
Cumency | usD f USDotar Fiemodel Date | ﬂ]
Lenguage | 1‘_'_5.# Uriique Tran Mo By | Store -
DUNS Murmber | DUNS Location Mumbser |
Sister Stare | e ¥ Irtegrated POS
Transter Entty | 1000 { Reguar Stores S
. POS Inchudes VAT?
OrgUnit © | 1491119114 48 [Org Linit id - N& ok
Ok O + Repest Ardregs Delete | | Zoning Locs Wik Through | Cancel |

(=] Lii
@ IMAER
Primalwershouse | 123 bent
WA Pricifiy Location Tranvinas Bty
“Virtusl Vi sfounse Type Charnel Channsl Descrplion Pricing Locstion Descripton Transser Enifty Dr-_uv.m ‘mrr.r Oy ekt D
m_m- i [to5foreon-Baiw dncierd ___ r00ftagie Save QY ity
Wirtusl Warehouse 1234567 feat Pracey Liszation 1025 il Troom - Boulder Junciion
iy Mars test Travwter Ertily 1000 (il R Starms Free
W Type | 5 RG lCSCe Firisher ootz
Charee 3+ flf Brick & Moetw DrgLind O 101110180 Crgletie - NA
2] [went

RMS General Ledger Setup

For RMS and ReSA, manual setup is required for validating the chart of accounts. Valid
chart of accounts are created and stored in general ledger cross reference tables. Once the
validation is completed, transaction data can be assigned to specific account codes.

Ongoing maintenance of the chart of accounts information (such as adding, changing, or
deleting chart of accounts) requires re-validation. In this regard, Oracle General Ledger is
the system of record, as it is used to verify the chart of accounts used by Oracle Retail

60 Oracle Retail Merchandising System

Data Setup

applications. When these applications send a chart of accounts for validation, Oracle
General Ledgers issues a message with:

e Valid or invalid status
e Response date
e Chart of accounts

The RMS table, FIF_GL_SETUP, stores the Oracle E-Business Suite Set of Books IDs to
post financial information. This table must be setup manually after Set of Books IDs are
determined. Where a system indicator Multiple Set of Books ID is set to N,
FIF_GL_SETUP must hold a single Set of Books (SOB) record.

The Set of Books IDs is associated with the chart of accounts when setting up general
ledger cross-reference.

RMS General Ledger Cross Reference

Navigate: RMS Start Menu > Finance> GL Cross Reference. The General Ledger Search
window opens. Map Chart of Accounts to department, Class, Subclass, Set Of Books,
location, and transaction codes using the GL cross reference form in RMS.

O L Cepss Refererce
& TaREE
Corpawtrannt 4227 Jll Appale (retel bass Trani Codz 0 M Purchases
= [QUITT- eeess Tran Bad K i
Subclayy A A A0 Subcisses Line Type MEW i1 Rem
et oof By RARRRARERRIREL] A Dervey et o besa CostFeial |Retsl
Losation 1l Appis s
bt Arcoart Crect Rogourt
St 1 Sovgment 11 Sagprert 1 Sagreni 11
Sagmart 2 Sagrant 12 Sagrart Sagment 12
Eogmart ¥ Cagmert 13 Sogeerd 3 Sagmant 13
ngrert 4 Sagrert 14 Sagrrard 4 Sagmant 14
et 3 Sagmert 15 Sagrmért 4 Sogment 15
Sagmecd & Gagment 16 Sagrreny § Segment 18
Sagecd 7 Sagment 17 Segment T Sepment 17
Segmert S Sageent 18 Segrment & Segment 18
Segmeri ¥ Sogeent 15 Segrert § Segprennt 15
Sagrert 10 Sagmant 20 Sagmart 10 Segment 23
Fafragh Fired Accont Harlmshy Fied Acoient
W b gt [a0

ReSA General Ledger Cross Reference

Navigate: ReSA main menu > Action > Sales Audit > Control > Setup > GL Account
Maintenance. The General Ledger Search Form window opens. Where
SYSTEM_OPTIONS.FINANCIAL_AP is A, the form requires the entry of valid segment
combinations.

Operations Guide, Volume 3 - Back End Configuration and Operations 61

Data Setup

O 0L Arcound Maintenante (saglcros)

@ 2aaET
Totnd LeTcasH I OFT Testing Set of Books |z
Faf. Mo 2 |1 L]
Ref, Mo, 3 |1
Raf. Mo, 1 |1
Dbt OO Credt OO0
Segarce | Secqueres 11 Sequence 1 |
Sequmnce Secpers 12 Sequence 2
Separce 3 Seuence 13 Eequence 3
Sng s 4 Cacpsnicn 14 Saquencs 4
Seqmnce S Secquence 15 Sequence 5 |
Caqeerce & Caquence 16 Sexuence 6
Sagqusnce 7 Sequence 17 Sequenca 7 |
Sequerce & Sequence 18 Sequence B
Emgasncs 3 Cacquencs 19 Eaquencs §
Sequence 10 Secquents 20 Sequence 10
Retoegh Find Account
"l

zezrzzrrey fl Dema set of botks

1 Wl %4 Locations

Sequence 12
Sequence 13
Saquance 14
Sagancs 15
Sequerce 16

Sesmccs 18
Saquerce 19

Sequence X

Refiest | [Find Accourt

RelM Data Setup and Configuration

This section describes setup considerations for ReIM data.

System Options

As part of the RMS system options setup script, set the following options as indicated:
= FINANCIAL_IND =Y
= FINANCIAL_AP =A

As part of the ReIM system options setup script, DEFAULT_PAY_NOW_TERMS must be
updated with the default term ID.

62 Oracle Retail Merchandising System

Data Setup

Daument Hatary Days] Ciebe Opens Aescene Doy b Fueoed Virke O & af Doya E]

Foad Dated Documend Dy 18 Coat Apaciusion Cue Deyn

Dbt Uamn Send Dayy [ey Resoinn Due Dury L

M Toierases % 104,500 Diagrn Berece Droe Dane L

Dntal Pay Norow Teres 1 L]

Paiats VAT Frooessing WAT Rededinesy e Disys B

taic Tolrance (% Percest (Amgusy | 180800 % WAT Vaisiaten Tyze

Dt Magtier VAT from Detade VAT Decement Crewion Livel

Dbt bhematr Preton ol DU Debst Wocw Prote- Oty DG

Crnadit oty Reguas] Preta.Cost NG Croat Mot Reques! PrafOty ChO

Crea ema Frefs-Cost U et Bheem Pr -Gty 1

et Wherw PrefnaiaT T Creat oty Reques! Prefc VAT Cww

Algw slp deme by VPN

Mote: Toactvate any ysiem opfon changes made, you must fired log ot of Inméce Baiching,
[ox] comcel]

Chart of Accounts Setup

The chart of accounts is set up manually in Oracle Retail applications and in Oracle
General Ledger. All account combinations are set up in each Set Of Books. The following
is an example of the GL Cross Reference screen:

B Oracle Retail Involce Matching - A

Fle EM Vew Fawntel Tech Hep 3

il Cross-relorence

Sed OF Bogks =}

Crons-rederence Trpe Q _I
Sogprend 1 Segrand Sogment) Segrer 4 Sogmeret
Cmpaty LEeen Acciend DS s

111 23333331 200010 4111 5111

Lox | _doepew | Cancel|

Note: The Chart of accounts is updated in Oracle Retail
applications only after the account is validated through
Oracle General Ledger.

Operations Guide, Volume 3 - Back End Configuration and Operations 63

Data Setup

Segment Mapping

The retailer determines how many segments are populated. Up to 20 account segments
can be specified. The following is an example of how segments are mapped between the
ReIM transaction table and Oracle General Ledger:

RelM Segments

Oracle General Ledger Chart of

Accounts
Segment 1 PRODUCT
Segment 2 ACCOUNT
Segment 3 ALTACCT
Segment 4 OPERATING_UNIT
Segment 5 FUND_CODE
Segment 6 DEPTID
Segment 7 PROGRAM_CODE
Segment 8 CLASS_FLD
Segment 9 BUDGET_REF
Segment 10 BUSINESS_UNIT_PC
Segment 11 PROJECT_ID
Segment 12 ACTIVITY_ID
Segment 13 RESOURCE_TYPE
Segment 14 RESOURCE_CATEGORY
Segment 15 RESOURCE_SUB_CAT
Segment 16 CHARTFIELD1
Segment 17 CHARTFIELD2
Segment 18 CHARTFIELD3
Segment 19 AFFILIATE
Segment 20 AFFILIATE_INTRA1

If any one of the values in the 20 segments does not match the Oracle General Ledger, the
account combination is considered as invalid. The following error message is issued to
the user: "Account combination is invalid in the financial system."

Segments 1 and 2 may be set up as dynamic at the Location level, or Segments 4 and 5
can be dynamic at the Department and Class level respectively. Segments defined as
dynamic are allowed to be null for certain types of Basic Transaction or Reason Code
cross-reference types. When a segment is null, the segment is assigned dynamically when
transactions are posted. (Non-dynamic segments cannot be blank.) Validation applies to
the segment combination, not to individual segments.

Note: For Tran code TAP, each segment must have a value
regardless of whether the segment is dynamic.

64 Oracle Retail Merchandising System

RelM Transactional Maintenance

Running the Initial Load from Oracle E-Business Suite Financials

The initial load for ReIM is run by Oracle E-Business Suite and includes the following
information:

= Suppliers
= Currency Rates

Note: The view, mv_currency_conversion_rates should be
refreshed once the initial loads of currencies from Oracle
General Ledger are loaded to ReIM.

integration.properties File Setup

To accommodate integration, the integration.properties file within ReIM must be

updated with the appropriate URLs for the account validation and drill forward Web

services, as listed below:

#webservice WSDL URL for drill forward

webservice.financial .drill.forward.wsdl=@webservice.drill .forward.wsdl@
webservice.financial .drill . forward.url . targetnamespace=

webservice.financial .drill _forward. targetsystem=

#webservice WSDL URL for account validation

webservice. financial .account.val idation=@webservice.account.val idation@

webservice.financial .account._val idation.namespace=http://ww.oracle.con/retail/fin
/integration/services/GlAccountVal idationService/vl

webservice. financial .account.validation. local .code=GlAccountVal idationService
#webservice username and password for account validation

webservice.financial .account.val idation.username=@webservice.account.val idation.us
ername@

webservice.financial .account.val idation.password=@webservice.account.validation.pa
ssword

e

Reports are created by Business Intelligence Publisher for the following;:

The URL for each report must be updated in the table, retail_service_report_url. The
following table provides sample URLs.

RelM Transactional Maintenance

Integration to Oracle General Ledger includes a number of transactions, as described
below.

Operations Guide, Volume 3 - Back End Configuration and Operations 65

RelM Transactional Maintenance

Calculation of TRANS_AMOUNT

The TRANS_AMOUNT field in the im_financial_stage table stores the value of the
journal entry to be posted to Oracle General Ledger. (The currency for the calculated
amount is the currency assigned to the transaction.) The TRANS_AMOUNT value is
calculated as follows:

Row Description DEBIT_CREDIT_IND TRANS_AMOUNT Value

Normal Debit Transaction Amount

Normal Credit (-1) * Transaction Amount

VAT Debit Transaction Amount * VAT Rate
VAT Credit (-1) * Transaction Amount * VAT Rate

Note: Transaction Amount is taken from the database
column, IM_FINANCIALS STAGE.AMOUNT.

Generation of Outgoing Data

A staging table accommodates the outgoing transfer of data. The reference key assigned
to each document or receipt is used to find data on this table

From To Transactions
ReIM Oracle Payables Invoices
Debit Memos
Credit Memos
Credit Notes
ReIM Oracle General Ledger ~ General Ledger accounting entries resulting from the

Invoice Matching process, including:
Pre-paid invoices
Receipt Write-offs

RMS Oracle General Ledger ~ Accounting entry data (potentially very high
volume)

ReSA Oracle General Ledger ~ Accounting entry data (potentially very high
volume)

Validation of Accounts When Posting Financial Entries

Valid chart of accounts are stored in the ReIM table, IM_VALID_ACCOUNTS, which
includes the Set of Books ID (sob_id) and 20 segments. An ORFI Web service validates
accounts against the Oracle General Ledger. Valid accounts are posted to
IM_VALID_ACCOUNTS; invalid accounts are posted to IM_POSTING_DOC_ERROR.
The following steps describe the validation process:

1. The RelM system invokes the validation Web service to validate the chart of
accounts. (A URL for the ORFI Web service is configured in the
integration.properties file.)

2. The posting batch job checks the accounts to be posted against the
IM_VALID_ACCOUNTS table.

3. If the chart of accounts is in the table, the transaction is posted to staging tables.

66 Oracle Retail Merchandising System

RelM Transactional Maintenance

4. If the chart of account does not exist in the table, a collection of accounts is built.
These collected accounts are validated against the Oracle General Ledger, and a
status is returned.

= If the status of the collected accounts is valid, the accounts are inserted in the
IM_VALID_ACCOUNTS table, and the transactions are posted to the staging
tables.

= If the status of the accounts is NOT valid, the entire collection is flagged as
errors, and transactions are posted to IM_POSTING_DOC_ERROR.

Note: ReIM completes the first level of account validation
and posts the transaction to staging tables. It is assumed the
second level of account validation is done at the end of the
extraction process (where transactions are moved from ReIM
staging tables to Oracle General Ledger). If account
validation fails at this point, Oracle General Ledger must
change the account information before transactions are
loaded to Oracle General Ledger, and the chart of accounts
must be re-validated in RelM.

Maintenance of Valid Accounts

As account information is changed in the Oracle General Ledger, Retail must re-validate
the locally stored chart of accounts. Oracle General Ledger will not propagate chart of
account changes to Retail. The AccountPurge Batch can clear all valid accounts in the
IM_VALID_ACCOUNTS table or only those that are considered updates in Oracle E-
Business Suite.

Usage
AccountPurge userid/password PURGE [ALL | <Accounts>]

Where:
1. The argument is a combination of user ID and password.
2. The argument is the word PURGE.

3. The argument is either ALL or specific accounts to be deleted from the local
table.

Operations Guide, Volume 3 - Back End Configuration and Operations 67

11

PeopleSoft Enterprise Financials Integration

This chapter describes the integration between Oracle Retail systems and PeopleSoft
Enterprise Financials, as developed and supported by Oracle Application Integration
Architecture (AIA).

When the option to integrate is chosen, selected information is shared among the
systems. Integration and validation services are in place to ensure the shared data
matches.

The primary benefit of this integration is that clients can "drill forward" or "drill back"
between the systems to research the outcome--or origin--of financial transactions.
Drilling functionality is facilitated by an AIA layer, which maps, retrieves and routes
information called by each system.

Note: This chapter addresses the points within Oracle Retail
systems that are essential to integration. For more
information about the entire integration process, including
mapping to PeopleSoft Enterprise Financials data and
settings, see the AIA document, Oracle Retail Merchandising
Integration Pack for PeopleSoft Enterprise Financials 2.5 -
Implementation Guide. For more information about Web
services, see the following chapters in the Oracle Retail
Merchandising System Operations Guide, Volume 2: "Service
Provider Implementations API Designs" and "Web Services."

Participating Applications

The following applications are included in the integration covered by this chapter:

Oracle Retail Merchandising System (RMS)
Oracle Retail Sales Audit (ReSA)

Oracle Retail Invoice Matching (RelM)
Oracle Retail Integration Bus

Assumptions and Dependencies

The option to integrate should be selected during initial setup of the RMS system.

ReIM accesses RMS to determine if integration is active. Initial setup of RMS must
occur prior to the integration of ReIM.

When a PeopleSoft user performs a drill back, data is presented through an Oracle
Business Intelligence Publishing report.

When drilling forward to PeopleSoft Enterprise Financials, users have view-only
access.

The URLs for the RFI Web services that are anecessary for this integration must be
maintained in the RMS_RETAIL_SERVICE_REPORT_URL table and in the ReIM
integration.properties file.

Real time account validation is done only when the financial integration with
PeopleSoft Enterprise Financials is ON.

Operations Guide, Volume 3 - Back End Configuration and Operations 69

Data Constraints

= Partners must be set up as suppliers in PeopleSoft. Then the partner must be
manually set up in RMS using the RMS Supplier ID that was generated when the
PeopleSoft supplier was interfaced to Oracle Retail. Partner functionality within RMS
and ReIM can then proceed normally. The RMS supplier generated as part of this
process is not used.

Data Constraints

= The Location ID field is restricted to eight characters, to accommodate PeopleSoft
Operating Unit, which has a maximum of eight characters.

= The Ext_Doc_ID field is restricted to 30 characters, because the corresponding
PeopleSoft field has only 30 characters. Characters beyond 30 are truncated.

= RMS allows for four decimals, and PeopleSoft allows only three. Truncation may
occur when data is passed to PeopleSoft Enterprise Financials.

= ReIM values in the IM_CURRENCY_LOCALE are restricted to three decimals,
because the corresponding PeopleSoft Enterprise Financials field can accept no more
than three decimal positions.

Data Setup

Integration of Oracle Retail and PeopleSoft Enterprise Financials relies on
synchronization of essential data, such as rates and terms. Through careful discussions,
users of both systems determine the common codes and descriptions that will best serve
their business needs.

Once agreement is reached, this information is set up and maintained. Depending on
volume, some shared information is set up in either Oracle Retail or PeopleSoft
Enterprise Financials-and electronically transferred to the other system. Otherwise,
shared information is set up manually within each system, and users of both systems
must ensure that codes and descriptions match.

RMS Data Setup and Configuration

RMS System Options
As part of the RMS system options setup, set the following options as indicated:
= FINANCIAL_IND =Y

This system_option indicates that the Oracle Retail system is integrated with a
financial system:

= FINANCIAL_AP=A
A value of A indicates that the financial system to which RMS is interfaced is Oracle
Peoplesoft Enterprise Financials through Oracle Application Integration Architecture
(AIA).

= GL_ROLL_UPcanbeD/S/C

= MULTIPLE_SET_OF_BOOKS_IND =Y

= SUPPLIER_SITE_IND =Y

= ORG_UNIT_IND=Y

70 Oracle Retail Merchandising System

Data Setup

Organization Units

Use the Organizational Unit window (RMS Start Menu > Control > Setup > Org Unit
>Edit) to define organizational units in RMS that match those being set up in Peoplesoft
Enterprise Financials. When an organizational unit is entered in RMS, the valid
organizational units are those that are associated with the set of books (SOB) that is being
used for the general ledger interface.

Currency Exchange Rates

Currency exchange rate is used to translate the monetary value of one currency in terms
of another. Depending on business needs, a Currency Exchange Rate Type of Operational
or Consolidation is selected for use in all transactions.

This value is set up manually in RMS and mapped to PeopleSoft Enterprise Financials
through the Currency Exchange Type mapping Window. Currency Exchange Rate data is
owned by PeopleSoft Enterprise Financials, and updates are sent to Oracle Retail
applications.

Determine the Exchange Type being sent by Oracle PeopleSoft Financials (for example,
Consolidation or Operational) that you want RMS to use. Then update the
FIF_CURRENCY_XREF for mapping the external exchange type being sent by Oracle
Peoplesoft Financials with RMS Exchange Type.

For example, for Consolidation and Operational exchange types, the
FIF_CURRENCY_XREF table holds the following entries:

FIF_ EXCHANGE_T RMS_EXCHANGE_

YPE TYPE
C C
@) (@)

Supplier Address Types

Within RMS, supplier information (such as Order From and Remit To addresses) is used
in generating purchase orders. PeopleSoft uses supplier information for payment
generation. It is important, then, that this information is synchronized.

Operations Guide, Volume 3 - Back End Configuration and Operations 71

Data Setup

© Partner Org Unit {supporg) HEEB
& DrafiEx

Fartrer Type [Suppler Site
Partrier 2800 Local Supplier #1

Primary
Crg Uinit I0 Description Pay Site

- I S]

Org Unit I 1111111111 |4E] [Org Unit Id - Ma,

Suppliers are created in Peoplesoft Enterprise Financials and exported to RMS. When
FINANCIAL_AP is set to A, suppliers cannot be created using the RMS forms. However,
if the supplier exists in RMS, all data values for the supplier (except supplier name and
status) are updated using the RMS forms. The association of supplier sites to
organization units is accessed only in view mode through RMS forms. One supplier site a
per supplier and organization unit combination can be marked as primary payment site.

Where SYSTEM_OPTIONS.FINANCIAL_AP is A, disable auto generate
supplier/partner numbers and associated check boxes.

Note: Supplier information is created, updated and
inactivated only in the PeopleSoft Enterprise Financials
accounting system. This information is transferred from
PeopleSoft Enterprise Financials to Oracle Retail, where
additional retail-specific attributes is maintained.

Country Codes

When country codes are defined and added in RMS, ensure that country codes are
mapped to PeopleSoft country codes through AIA DVM mapping. The following is an
example of AIA DVM Mapping for COUNTRY_CODE:

COUNTRY_CODE

PSFT_01 COMMON RETL_01
USA 700 Us
CAN 701 CA

72 Oracle Retail Merchandising System

Data Setup

Note: For more mapping examples, see AIA DVM Mapping
Examples later in this chapter.

Financial Calendar

The financial calendar within Oracle Retail systems is manually set up and maintained
separately from the PeopleSoft financial calendar.

Freight Terms

A freight term is an agreement between the retailer and a supplier regarding
transportation charges for goods delivered by the supplier. Freight terms are used by
RMS as purchase orders are generated.

Within the RMS system, freight terms are set up and maintained manually. They are
maintained in PeopleSoft Enterprise Financials.

Payment Terms and Currency Exchange Rates

This data is created and updated in Oracle Peoplesoft Financials and exported to RMS. It
is not created or updated in RMS.

PeopleSoft Enterprise Financials Org Units and Site IDs

The data concepts of Org Units and Site IDs in RMS mirror the data maintained in Oracle
PeopleSoft Enterprise Financials. RMS forms are used to manage and view Oracle Org
Units and Site IDs. The RMS windows for Store and Warehouse maintenance allow for
the association of each store and warehouse with an Org Unit. The following is an
example of the Organizational Unit form:

Operations Guide, Volume 3 - Back End Configuration and Operations 73

Data Setup

O Organizational Unit (orgunif) |=JO) %]
e PNaZY
Org Uind ID Description Set of Books ID Set of Books Description
= Pheoioosia |
i
8
£
£
E
@
FS|
E.
&
£
LE
£
= £
Add | Deiete | Cancel |

Store and Warehouse Maintenance
The organizational unit is found on the Store Maintenance and Warehouse forms, which
allow the PeopleSoft Enterprise Financials operating unit to be associated with the store
or warehouse.
= When RMS is set up for single-channel operation, the organizational unit is set at
the physical warehouse level.
= When RMS is set up for multi-channel operation, the organizational unit is set up
at the virtual warehouse level.
Financial sales audit and inventory information is identified through interface routines
and posted to the appropriate general ledger accounts. An organizational unit must be
designated for each store and warehouse location in RMS. The following are examples of
the Store Maintenance and Warehouse Maintenance forms:

Note: When working with PeopleSoft Enterprise Financials,
be sure to create locations names (such as stores, WH, and
virtual WH) with eight or fewer characters. Locations in
Oracle Retail applications are mapped to Operating Unit in
PeopleSoft Enterprise Financials, where operating unit
cannot exceed eight characters.

74 Oracle Retail Merchandising System

Data Setup

store | B Dnckscnvite Secondary Nome |
Manager Tom Spenglsr (10 chors) [wcksorwd
Fhone Mumber [604.277.3363 (3 chars) [ac
Fact Nombar Totslsrea | 6000 sqpt
Emad Address |) Selingasea [5000 gqpy
VAT Region | 1000 48l Vet Region 1000] LinearDistance | | et
District [T Store Class [Class Stores 8~/
Trarester-Zone | Stars Open Date [15-MAY-2001 i)
Store Format | 10 4l Core Business] Start Order Days [60
i b | Stare Close Date | i
channel | 1 flBrick&Mortar Stap Order Days [

DefmstWarehouse | 10001 ‘il [Store Supply Accured Date | &
Curm:'.l' LBD,E.LEDM ngﬂ"‘3"‘5”3““"!rm @
W#l 1‘_'_5.# Urique Tran Mo By | Stors -

DUNS Mumber | DUNS Location Mumbser |
Sister Store | -1] ¥ Iintegrated POS
Transter tty [7000 il Feguier Sires 7 Stocknoking
T i 1 POS Includsz VATT
OrgUnit © | 1491119114 48 [Org Linit id - N& ok
Ok O + Repest Ardregs Delete | | Zoning Locs Vi Thrcusgh | Cancel |

Phirncalsshouse | 1123 tent
A Pricafey Localion Trfvited Erélty
“Virtusl Vi sfounse Type Charnel Channsl Descrplion Pricing Locstion I'.n-u;.f.m Transser Enifty Dr-_unm ‘mn-.r Oy ekt D
- N I T T T T — BRI
Wirtusl Warehouse 1234567 feat Pracey Liszation 1025 il Troom - Boulder Junciion
Sacirciiry Nama best Traster Ertty 1000 il Feguier Sarms Agehy
view Type [C5_fo (IS Firisher Geete
Chares + ol Brck 3 Mostwr Crglnd D 1 i g et - NA
—het) [genent]

RMS General Ledger Setup

Within RMS and ReSA, manual setup is required for the initial load of chart of accounts
information, including valid segment combinations of Chart of Accounts
segment/ChartField values for each business unit. Valid segment combinations are
created and stored in general ledger cross reference tables. Once setup is complete,
transaction data is assigned to specific account codes.

Operations Guide, Volume 3 - Back End Configuration and Operations 75

Data Setup

Ongoing maintenance of Chart of Accounts information (such as adding, changing or
deleting segment/ChartField values) also is completed manually. Any segment
combination that is valid in Oracle Retail applications also must be valid in PeopleSoft
Enterprise Financials. In this regard, PeopleSoft Enterprise Financials is the system of
record, in that it verifies segment combinations created or updated within Oracle Retail.
PeopleSoft Enterprise Financials issues a message when an Oracle Retail segment
combination is invalid, and the retail user must correct the appropriate cross reference
table.

The RMS table FIF_GL_SETUP holds the PeopleSoft Enterprise Financials Set of Books
IDs to post financials. This table requires manual setup after the Set of Books IDs are
determined. Where system indicator Multiple Set of Books ID is set to N, FIF_GL_SETUP
must hold a single Set of Books (SOB)record.

The Set of Books IDs is associated with the chart of accounts when setting up general
ledger cross reference.

RMS General Ledger Cross Reference

Navigate and select RMS main menu > Finance> GL Cross Reference. The General
Ledger Search window opens. Map Chart of Accounts to department, class, subclass, set
of books, location, and transaction codes using the GL cross reference form in RMS.

& 0L Censs Reference (pimaan mE0
& TaleEy
[4222] Appared (refed barsed) Tran Code 0 i Purchases
o 1 A A Cmeen Trars Riat e i
Subians Al e suecases Line Typs TEM 4 Bem
St of Boaks EEL R ER IR EEARTE] A Doy 56t 0 Books CostPetal |Reind
Locsiion 1 gl Appie vl

] it] 4
Sepmerd 1 Segment 11 Segment 1 Segmant 11
Segmert T Segrent 12 Segrert 1 Segment 12
Logmard ¥ Sogmert 13 Zogrerd 3 Togmant 13

gt 4 grart 14 Sagrmard 4 Segment 14

sgrard 4 Sogmarnt 11 gt £ Segment 15
Sagrecd & Sagment 1§ Sagmeri | Segment 16
cegmest 7 Sagrent 17 Sagmert 7 Sepmeni 1T
Segment & Sageent 18 Segevent & Segment 18
Tegmerl ¥ Sagaent 18 Sagrart § Cagani 19
Segment 10 Sagment 20 Segrert 10 Sepment 20

Foatragh Firsd Accosnt Rartrash it Acconnt
" i) Dot an

ReSA General Ledger Cross Reference

Navigate and select, ReSA main menu > Action > Sales Audit > Control > Setup > GL
Account Maintenance. The General Ledger Search Form window opens. Where
SYSTEM_OPTIONS.FINANCIAL_AP is A, the form requires the entry of valid segment
combinations.

76 Oracle Retail Merchandising System

Data Setup

© 0L Atcount Maintenants {sagitros)

@ Tanen
Totnd LeTcasH I OFT Testing Set of Books | zaveziiaxizry) Dema et of books

Rest Mo 2 [Store 1 ol " Locations

Ref, Mo 3 11

Rat. Mo 1 11

Db COD Crodt COI0
Sequerce 1 Seuence 11 Saquencs 1 Saguance 11
Sagusrce 1 Secence 17 Sequence 2 Saquerce 12
Saqence 3 Seuencs 13 Sequence 3 Sequerce 13
Sagaares 4 Sacpsnics 14 Saquence 4 Saquance 14
Sequence 5 Sequence 15 SEQUENCE 5 Sagascs 15
Eaqeence B Caquence 16 Sequence & Sequerce 15
Saqaerce T Shouens 17 Sequenca T Saquerce 17
Sequence & Sequence 18 Setpuencs B Sagaercs 19
Cagasncs 3 Cacquencs 19 Eaquencs § Saquencs 19
Sequencs 10 Sequenis 20 Sequence 10 Saauercs X
Retoagh Find Accourt Refresh Fird Acoourt
OH DH +Bepeat Dejele ancel

Configuring Drill Back and Forward Web Services
Retail web services table, RETAIL_SERVICE_REPORT_URL, must be updated with
appropriate URLs to integrate with PeopleSoft Enterprise Financials.

= The records in the table for Services (indicated by RS_TYPE=S) for Account
Validation (RAV) and Drill Forward (RDF), must be updated with the URL
information from AIA where the services are hosted.

Note: If Web services are secure, then the SYS_ ACCOUNT
column must be populated with authentication information
in the form of username/password.

= The records in the table for Reports (indicated by RS_TYPE=R) for both RMS and
ReIM reports, must be updated with the URL information from the BIP Server where
the reports are hosted.

RelM Data Setup and Configuration

System Options

As part of the RMS system options setup script, set the following options as indicated:
= FINANCIAL_IND =Y

= FINANCIAL_AP=A

As part of the ReIM system options setup script, DEFAULT_PAY_NOW_TERMS should
be updated with the default term ID.

Operations Guide, Volume 3 - Back End Configuration and Operations 77

Data Setup

J Uracle Krtall Involce Matching - Microsolt intermet. Explorers

Fle Edt Vew Pt Tosl Hep

Om - QO W EAG Powe oo @ - 55K 3

Sebie .] it e B, s o soke, e TTTE b, FyReninions. oo

AR T AL e o S rncdeel T e orsde aonr VT phohllS Dieta Boure s Svodi St
L R T e e e A e L]
System Oplions
Dacumisl Halary Dars . Ciebe Opets Azt Dyl B Risbpdl Wivie 01T 0 af Daya =
Foat Datec Document Durs 13 Coat Rpachfion Do Days 2
[Depbel Mhaery Sl Dy E Gy Resohaon Due Cayy F
s Teieriies %] Diyys Before Dos Dute 3
Datasl Pay o Term 1 o
Paiats VAT Frooessing WAT Rededinesy e Disys B
Laks Telrance (=) Percest) Amcud 15,500 % AT Valsaten Tyze
Dal Pt VAT from Deisiy WiT Deosmenl Crestna Level
Dbl Moy Pre-in-C il D Dbt es Prote-Oty =]
Creatl lickn Rosgoag! Precta . Cogl = Crect Foka Reguesl Prefe-Oty (RO
Cresill Wagesa Prefu-Ciost (=1 Creagit Beema Pre Pty [l
Dbl Mgy P WAT Dlry' Crot hot Regues! Prefa VAT O
Allow palep dema by VPN
Bodes Toacievabe any By stem opfon changes mads, you mus T g cof of Inioste Klaiching,
(o] o)

IM_CURRENCY_LOCALE

Because PeopleSoft Enterprise Financials uses only three decimals, the transactions
generated by the Oracle Retail ReIM application must not include more than three
decimals.

Update im_currency_locale set currency_cost_dec=3.

Prerequisite: The currency_rates table in RMS should be loaded initially by PeopleSoft
Enterprise Financials.

Chart of Accounts Setup

The chart of accounts is set up manually in Oracle Retail applications and in PeopleSoft
Enterprise Financials. All account combinations are set up in each Set of Books. The
following is an example of the GL Cross Reference window:

B Oracle Retail Involce Matching - Microsolt internet Dgplover

Fie Edt Vew Favortes Toclh Help
% A Y y . —
O - Q- (@ da| P rreee @ - GEH B

acwess |] it mandevat, i orade, com: TTTR Mg asR et ence Query. do bt Ga

Ay

S OF Bopds | 0
Cressretarence Type Q,
Segred | Sty Segmer 1 Sl 4 Sopmen
Coepary Lcation Aocoend Depariment Ciass
111 23333331 200010 4111 B

fee| Ervaerann]. e

bl e

Note: Chart of Accounts is updated in Oracle Retail
applications only after the account is validated through
PeopleSoft Enterprise Financials.

78 Oracle Retail Merchandising System

Data Setup

Segment Mapping

The retailer determines how many segments are populated. You can specify up to 20
account segments. The following is an example of how segments are mapped between
the RelM transaction table and PeopleSoft Enterprise Financials:

RelM Segments PeopleSoft Enterprise
Financials Fields

Segment 1 PRODUCT

Segment 2 ACCOUNT

Segment 3 ALTACCT

Segment 4 OPERATING_UNIT

Segment 5 FUND_CODE

Segment 6 DEPTID

Segment 7 PROGRAM_CODE

Segment 8 CLASS_FLD

Segment 9 BUDGET_REF

Segment 10 BUSINESS_UNIT_PC

Segment 11 PROJECT_ID

Segment 12 ACTIVITY_ID

Segment 13 RESOURCE_TYPE

Segment 14 RESOURCE_CATEGOR
Y

Segment 15 RESOURCE_SUB_CAT

Segment 16 CHARTFIELD1

Segment 17 CHARTFIELD2

Segment 18 CHARTFIELD3

Segment 19 AFFILIATE

Segment 20 AFFILIATE_INTRA1

If any one of the values in the 20 segments does not match the corresponding PeopleSoft
field value, the account combination is considered invalid. The following error message
is issued to the user: "Account combination is invalid in the financial system."

Segments 1 and 2 may be set up as dynamic at the Location level, or Segments 4 and 5
can be dynamic at the Department and Class level respectively. Segments defined as
dynamic are allowed to be null for certain types of Basic Transaction or Reason Code
cross-reference types. When a segment is null, the segment is assigned dynamically when
transactions are posted. (Non-dynamic segments cannot be blank.) Validation applies to
the segment combination, not to individual segments.

Note: For Tran code TAP, all segments must have a value
regardless of whether the segment is dynamic.

Running the Initial Load from PeopleSoft Enterprise Financials

The initial load for ReIM is run by PeopleSoft Enterprise Financials and includes the
following information:

Operations Guide, Volume 3 - Back End Configuration and Operations 79

Data Setup

= Suppliers
= Payment Terms

= Currency Rates

Note: The view, mv_currency_conversion_rates should be
refreshed once the initial loads of currencies from PeopleSoft
Enterprise Financials are loaded to ReIM.

integration.properties File Setup

To accommodate integration, you must update the integration.properties file within
ReIM with the appropriate URLs for account validation and drill forward Web services.
The following is an example of the integration.properties file:

#webservice provider URL for drill forward
webservice.financial .drill.forward=@webservice.drill.forward@

#webservice provider URL for account validation
webservice. financial .account.val idation=@webservice.account.val idation@

#webservice username and password for account validation

webservice.financial .account.val idation.username=@webservice.account.val idation.us
ername@

webservice.financial .account.validation.password=@webservice.account.validation.pa
ssword

@
Reporting

Reports are created by Business Intelligence Publisher for the following;:
= Merchandise Invoice

= Non-Merchandise Invoice

= Credit Note

= (Credit Memo

= Debit Memo

= Receipt Write-Off

You must update the URL for retail_service_report_url. The following table provides
sample URLs:

Document Type Report Name Sample Report URL
MRCHI Merchandise invoice http://mspdvl26.us.oracle
document Report .com:7777/xmlpserver_nons
so/

Guest/REIM13/Finance/invr
eport/invreport._xdo

NMRCHI Non-Merchandise invoice http://mspdv126.us.oracle
document Report .com:7777/xmlpserver_nons
so/

Guest/REIM13/Finance/invr
eport/invreport._xdo

80 Oracle Retail Merchandising System

RelM Transactional Maintenance

Document Type Report Name Sample Report URL
CRDNT Credit Note document http://mspdvl26.us.oracle
Report .com:7777/xmlpserver_nons
so/

Guest/REIM13/Finance/invr
eport/crnreport.xdo

CRDMEC Credit Memo cost http://mspdv126._us.oracle
document Report .com:7777/xmlpserver_nons
so/

Guest/REIM13/Finance/invr
eport/memoreport.xdo

CRDMEQ Credit Memo quantity http://mspdvl26.us.oracle
document Report -.com:7777/xmlpserver_nons
so/

Guest/REIM13/Finance/invr
eport/memoreport.xdo

DEBMEC Debit Memo cost document http://mspdv126.us.oracle
Report .com:7777/xmlpserver_nons
so/

Guest/REIM13/Finance/invr
eport/imemoreport.xdo

DEBMEQ Debit Memo quantity http://mspdv126._us.oracle
document Report .com:7777/xmlpserver_nons
so/

Guest/REIM13/Finance/invr
eport/memoreport.xdo

DEBMEV Debit Memo Tax document http://mspdv126.us.oracle
Report -.com:7777/xmlpserver_nons
so/

Guest/REIM13/Finance/invr
eport/memoreport.xdo

RWO Receipt Write Off document http://mspdv126.us.oracle
Report .com:7777/xmlpserver_nons
so/

Guest/REIM13/Finance/invr
eport/rworeport.xdo

RelM Transactional Maintenance

Integration to PeopleSoft Enterprise Financials includes a number of transactions, as
described in the further sections.

Calculation of TRANS_AMOUNT

The TRANS_AMOUNT field in the im_financial_stage table stores the value of the
journal entry is posted to PeopleSoft Enterprise Financials. (The currency for the
calculated amount is the currency assigned to the transaction.) The TRANS_AMOUNT
value is calculated as follows:

Operations Guide, Volume 3 - Back End Configuration and Operations 81

RelM Transactional Maintenance

Row Description DEBIT_CREDIT_IN TRANS_AMOUNT Value

D
Normal Debit Transaction Amount
Normal Credit (-1) * Transaction Amount
VAT Debit Transaction Amount * TaxRate
VAT Credit (-1) * Transaction Amount * Tax

Rate

Note: Transaction Amount is taken from the database
column, IM_FINANCIALS STAGE.AMOUNT.

Generation of Outgoing Data

A staging table accommodates the outgoing transfer of data. The reference key assigned
to each document or receipt is used to find data on this table.

Outgoing Data

From

To

Transactions

ReIM

ReIM

RMS

ReSA

PeopleSoft Accounts
Payable

PeopleSoft General Ledger

PeopleSoft General Ledger

PeopleSoft General Ledger

Invoices
Debit Memos
Credit Memos
Credit Notes

General Ledger accounting
entries resulting from the
Invoice Matching process,
including:

Pre-paid invoices

Receipt Write-offs

Accounting entry data
(potentially very high
volume)

Accounting entry data
(potentially very high
volume)

Validation of Accounts When Posting Financial Entries
Valid accounts are stored in the ReIM table, IM_VALID_ ACCOUNTS, which includes
the Set of Books ID (sob_id) and 20 segments. An AIA Web service validates accounts
against the PeopleSoft Enterprise Financials system. Valid accounts are posted to
IM_VALID_ACCOUNTS; invalid accounts are posted to IM_POSTING_DOC_ERROR.
The following steps describe the validation process:

1. The RelM system invokes the account validation Web service to validate the account.

A URL for the AIA Web service is configured in the integration.properties file.

2. The posting batch job checks the accounts to be posted against the
IM_VALID_ACCOUNTS table.

82 Oracle Retail Merchandising System

RelM Transactional Maintenance

3. If the account entries are in the table, the transaction is posted to the G/L or AP
tables.

4. If the account does not exist in the table, a collection of accounts is built. These
collected accounts are validated against the PeopleSoft Enterprise Financials system,
and a status is returned.

= If the status of the collected accounts is valid, the accounts are inserted in the
IM_VALID_ACCOUNTS table, and the transactions are posted to the staging
tables.

= If the status of the accounts is not valid, the entire collection is flagged as errors,
and transactions are postedto IM_POSTING_DOC_ERROR.

Note: ReIM completes the first level of account validation
and posts the transaction to staging tables. It is assumed the
second level of account validation is done at the end of the
extraction process (where transactions are moved from RelM
staging tables to PeopleSoft). If account validation fails at
this point, Oracle Data Integrator (ODI) or PeopleSoft must
change the account information before transactions are
loaded to PeopleSoft, and the account change must be
communicated to ReIM .

Maintenance of Valid Accounts

As account information is changed in the PeopleSoft system, the same changes are
communicated to, and manually completed in, the ReIM system. After ReIM is updated
accordingly, the AccountPurge Batch is run to clear the valid accounts maintained locally
in ReIM.

The AccountPurge Batch can clear all valid accounts in the IM_VALID_ACCOUNTS
table or only those that are considered updates in PeopleSoft.

Usage:

AccountPurge userid/password PURGE [ALL | <Accounts>]

Where
= The first argument is a combination of user ID and password.
= The second argument is the word PURGE.

= The third argument is either ALL or specific accounts to be deleted from the local
table.

Building and Posting Reference IDs

Drill back and drill forward functionality uses Reference ID to locate documents and
receipts. A Reference ID is a combination of document type and document (or receipt)
ID, as illustrated in the table below:

Type Doc ID Receipt ID Reference ID
Merchandise Invoice 101 Null MRCHI#101
Non-Merchandise 102 Null NMRCHI#102
Invoice

Receipt Null 103 RECEIPT#103

Operations Guide, Volume 3 - Back End Configuration and Operations 83

Drilling Back to RMS, ReSA and RelM - Overview

For documents, the Resolution Posting Batch program builds the Reference ID using the
standard, Document Type + DeLimiter + Doc_id. For receipts, the program builds the
Reference ID using the standard, Document Type + DeLimiter + Receipt_id.

To enable drill down functionality, Reference IDs are loaded to staging tables.
FinancialsAPStageDao and FinancialsGLStageDao are populated, as are
IM_RWO_SHIPMENT_HIST and IM_RWO_SHIPSKU_HIST.

Drilling Back to RMS, ReSA and RelM - Overview

Drilling back allows users to view the source of posted PeopleSoft transactions that
originated in Oracle Retail systems (from a voucher to an invoice, for example).

When drilling back from PeopleSoft Enterprise Financials, users are not directed to an
actual screen within RMS, ReIM or ReSA. Rather, a retail Web service generates and
launches a URL to a BI Publisher report. The report contains the information that
typically appears on the appropriate retail screen.

Depending on the information requested by the user, the AIA layer maps a common ID
(for example, Transaction ID or Document ID) to the appropriate retail application. As
part of the extraction process, the Reference_ID in the staging tables is considered the
retail key, which is sent to AIA. The AIA layer invokes the retail exposed Web service for
the BI Publisher report URL using a common function like the following:
GET_REPORT_URLQ) -

O_error_message IN OUT RTK_ERRORS.RTK_TEXTWTYPE
O_rpt_url IN OUT RETAIL_SERVICE_REPORT_URL.URL%TYPE
I_ref_key IN KEY_MAP_GL . REFERENCE_TRACE_ID%TYPE

Information from the reference key determines what kind of report URL to issue. For
example, if the retail key has a prefix of RMS, the RMS_REPORT_URL function is called.
Similarly, if the retail key has a prefix of ReIM, the ReIM_REPORT_URL function is
called to retreive the appropriate ReIM URL. If the key does not have a prefix (or does
not match any key in the retail systems), an error message is launched.

Drilling Back to RMS and ReSA - Detail

The following function determines which RMS report to return to the user:
RMS_REPORT URLQ) -

O_error_message IN OUT RTK_ERRORS.RTK_TEXTWTYPE
O_rpt_url IN OUT RETAIL_SERVICE_REPORT_URL.URL%TYPE
I_ref_key IN KEY_MAP_GL . REFERENCE_TRACE_ ID%TYPE

The appropriate report URL is found and issued as follows:

1. The ref trace_type is found on KEY_MAP_GL by matching I_ref key with the
KEY_MAP_GL.REFERENCE_TRACE_ID column.

2. When ref type is determined, the re_trace_type is used to find the appropriate report
URL on the RETAIL_SERVICE_REPORT_URL table.

3. The value of I_ref key is appended to the end of the URL retrieved from the table.
The URL is sent back to the calling function.

If I_ref key does not exist on KEY_MAP_GL, an error message is sent back to the
calling function.

Drilling Back From RelM - Detail

The following drill back options are available for viewing information within the ReIM
system:

84 Oracle Retail Merchandising System

Drilling Back to RMS, ReSA and RelM - Overview

= Using Document ID, users can drill back to ReIM to view information related to a
voucher or payment. The report includes information from im_doc_head and
im_invoice_detail, the same data shown on the Document Maintenance Header
screen within ReIM.

= Using the Receipt ID, users can drill back to view information from the Receipt
Write-off History screen. Receipt write-offs occur either when an open receipt is
closed in ReIM or if a receipt is purged in RMS before it is fully matched. Details
come from the IM_RWO_SHIPMENT_HIST and IM_RWO_SHIPSKU_HIST tables.

The function below determines which of the two ReIM reports to return to the user:
RMS_REPORT URLQ) -

O_error_message IN OUT RTK_ERRORS.RTK_TEXTWTYPE
O_rpt_url IN OUT RETAIL_SERVICE_REPORT_URL.URL%TYPE
I_ref_key IN KEY_MAP_GL . REFERENCE_TRACE_ID%TYPE

The I_ref key contains the reference ID, which ultimately determines the type of report
required. The appropriate BI Publisher report URL is found on the
RETAIL_SERVICE_REPORT_URL table.

In general, if the reference ID has a prefix of RECEIPT, the report type (RS_CODE) is
RCPT. Otherwise, the report type is DOC. For example:

Reference ID Report Type (RS_CODE)
MRCHI#101 DOC

NMRCHI#102 DOC

RECEIPT#103 RCPT

The following is an example of a BI Publisher URL that is generated upon drilling back to
PeopleSoft Enterprise Financials for information on an invoice in ReIM, using Document
ID as the search parameter:

http://mspdev6970vip:7777/BIPublisher/Guest/RelM/13.0.3/doc/tsT_det._xdo
?doc_id=101

Where

= http://mspdev6970vip:7777 /BIPublisher = the BI Publisher application server
address and port

* Guest/ReIM/13.0.3 = the directory/folder location
= doc/tsf_det.xdo ? = report name (Document Report)
* doc_id=101 = the parameter name and value (Document ID 101)

The following is an example of an Oracle Business Intelligence Publisher URL that is
generated upon drilling back to PeopleSoft Enterprise Financials for information on an
invoice in RelM, using Receipt ID as the search parameter:

http://mspdev6970vip:7777/BIPubl isher/Guest/RelM/13.0.3/doc/tsT _det.xdo
?receipt_id=101

Where

= http://mspdev6970vip:7777 /BIPublisher = the BI Publisher application server
address and port

* Guest/ReIM/13.0.3 = the directory/folder location
= doc/tsf_det.xdo ? = report name (Receipt Report)
= receipt_id=101 = the parameter name and value (Receipt ID 101)

Operations Guide, Volume 3 - Back End Configuration and Operations 85

Drilling Forward

Drilling Forward

Drilling forward allows users to see detailed information about retail transactions that
have been posted to PeopleSoft Enterprise Financials. When drilling forward, users are
directed to selected "view-only" screens.

Drilling Forward From RMS/ReSA to PeopleSoft Enterprise Financials
The following forms may be used to drill forward from RMS/ReSA:
= RMS StartMenu->Finance->Transaction Data View (trandata.fmb)

= RMS StartMenu->Ordering->Fixed Deals->Fixed Deal Transaction Data View
(fdltrandata.fmb)

= RMS StartMenu->Action->Sales Audit->Sales Audit Transaction Data View
(satrandata.fmb)

Drilling Forward From RelM to PeopleSoft Enterprise Financials

For drilling forward, the AIA Web service uses the Invoice ID and Accounting Entry
parameters. The RelM system uses these parameters together as the Reference ID.

= From the Document Maintenance screen, users can drill forward to PeopleSoft
Enterprise Financials accounts payable to view voucher and payment status. The
information is displayed on a read-only Payment Doc Status Inquiry screen. Drill
forward access to the accounts payable system is available only for pre-paid invoices
(but not for manually pre-paid invoices).

To drill down to the payables screens, the user invokes the Web service as follows:
Invoice ID parameter = Reference 1D
Accounting Entry parameter = null

= From the Receipt Write-off History screen in ReIM, users can drill forward to the
PeopleSoft G/L system to view the status of related journal entries. Drill forward
access to the G/L system is available only for pre-paid and manually pre-paid
invoices.

Note: For more information on drilling forward, see the
OracleRetail Merchandising Integration Pack for PeopleSoft
Enterprise Financials: Financial Operations Control 2.5 -
Implementation Guide.

AIA DVM Mapping Examples
The following tables illustrate possible AIA DVM Mapping values:

Note: Cross references for the following examples are: Set of
Books to General Ledger Business Unit, and Org Unit to
Accounts Payable Business Unit.

BUSINESS_UNIT

PSFT_01 COMMON RETL_01
US001 100 111111111111111
CANO1 101 2222222222222

86 Oracle Retail Merchandising System

Drilling Forward

BUSINESS_UNIT_AP

PSFT_01 COMMON RETL_01

US001 200 333333333333333
US002 201 444444444444444
CANO1 202 555555555555555
LANGUAGE_CODE

PSFT_01 COMMON RETL_01

ENG 500 1

STATE

PSFT_01 COMMON RETL_01

CA 900 CA

NY 901 NY

MD 902 MD

MI 903 MI

NF 904 NF

CURRENCYEXCHANGE_CONVERSIONTYPECODE

PSFT_01 COMMON

CRRNT 600

RETL_01
C

CURRENCY_CODE

PSFT_01 COMMON
USD 400
CAD 401
AUD 402
ESP 403
EUR 404
FRF 405
GBP 406
INR 407
JPY 408

RETL_01

USD
CAD
AUD
ESP
EUR
FRF
GBP
INR
JPY

Operations Guide, Volume 3 - Back End Configuration and Operations 87

Drilling Forward

SUPPLIERPARTY_STATUSCODE

PSFT_O1 COMMON RETL_O1
E 800 I

A 801 A

I 802 I

X 803 I

SUPPLIERPARTY_ADDRESSTYPE

PSFT_O1 COMMON RETL_O1
REMT 1000 06
ORDR 1001 04

CHARTOFACCOUNTS_ACCOUNTSTATUS

COMMON PSFT_01 RETL_01
true true valid
false false invalid

88 Oracle Retail Merchandising System

12

Using Oracle Walllet

RMS Batch programs can be run using wallet alias as the first parameter to the batch
command line arguments. This is enabled to prevent the security concerns around
exposing database user ID and password while running the batch programs.

The wallet creation steps are described in the RMS Installation Guide. The wallet and
wallet alias creation are a required in order to use batch programs in secured mode.

If we assume wallet alias is “dvols29_rms0lbatch”;
Usage:
./dtesys $UP

(where UP will be set during installation to the wallet alias, that is.
$UP=/@dvols29_rmsOlbatch)

or
_/dtesys /@dvols29 rmsOlbatch (wallet alias)

Operations Guide, Volume 3 - Back End Configuration and Operations 89

mailto:$UP=/@dvols29_rms01batch

	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Access to Oracle Support

	Related Documents
	Customer Support
	Review Patch Documentation
	Improved Process for Oracle Retail Documentation Corrections
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	Introduction
	Content of This Volume

	Pro*C Restart and Recovery
	Table Descriptions and Definitions
	restart_control
	restart_program_status
	restart_program_history
	restart_bookmark
	v_restart_x

	Restart and Recovery Data Model Design
	Physical Set-Up
	Table and File-Based Restart/Recovery
	API Functional Descriptions
	restart_init
	restart_file_init
	restart_commit
	restart_file_commit
	restart_close
	parse_array_args
	restart_file_write
	restart_cat
	Restart Headers and Libraries
	restart.h
	std_rest.h

	Updated Restart Headers and Libraries
	retek_2.h

	New Restart/Recovery Functions
	int retek_init(int num_args, init_parameter *parameter, ...)
	int retek_commit(int num_args, ...)
	int commit_point_reached(int num_args, ...)
	int retek_force_commit(int num_args, ...)
	int retek_close(void)
	Int retek_refresh_thread(void)
	void increment_current_count(void)
	int parse_name_for_thread_val(char* name)
	int is_new_start(void)

	Query-Based Commit Thresholds

	Pro*C Multi-Threading
	Threading Description
	Threading Function for Query-Based
	Restart View for Query-Based
	Thread Scheme Maintenance
	File-Based
	Query-Based

	Batch Maintenance
	Scheduling and Initialization of Restart Batch
	Pre- and Post-Processing

	Pro*C Array Processing
	Pro*C Input and Output Formats
	General Interface Discussion
	Standard File Layouts

	Detail-Only Files
	Master and Detail Files

	Electronic Data Interchange (EDI)

	RETL Program Overview for the RMS-RPAS Interface
	Oracle Retail ETL Architecture
	RETL Program Overview
	Configuration
	Version of RETL
	RETL User and Permissions
	Environment Variables
	rmse_rpas_config.env Settings for RPAS
	Steps to Configure RETL

	Program Return Code
	Program Status Control Files
	File Naming Conventions
	Restart and Recovery

	Message Logging
	Daily Log File
	Format
	Program Error File

	RMSE Reject Files
	Schema Files Overview
	Command Line Parameters
	rmse_rpas_config.env
	Description of Command Line Options

	RMSE I/O File Names

	Typical Run and Debugging Situations
	RPAS/AIP Configuration
	RETL Program Overview for the RMS-Time-Phased Inventory Planning Tool Interface
	Installation

	Configuration
	RETL
	RETL user and permissions
	Environment Variables
	rmse_aip_config.env Settings for IP
	Steps to Configure RETL

	Program Return Code
	Program Status Control Files
	File Naming Conventions
	Restart and Recovery

	Message Logging
	Daily Log File
	Format

	RMSE and Transformation Reject Files
	Schema Files Overview
	Command Line Parameters
	RMSE and Transformation
	Scripts that need Parameter to Run

	Typical Run and Debugging Situations

	Internationalization
	Translation
	RMS User Interface Language Display Settings
	Multiple Languages in one RMS Forms Session

	Key RMS Tables Related to Internationalization
	FORM_ELEMENTS
	FORM_ELEMENTS_LANGS
	MENU_ELEMENTS
	MENU_ELEMENTS_LANGS
	FORM_MENU_LINK
	CODE_DETAIL_TRANS

	Custom Post Processing
	Integrating RMS with Oracle Retail Workspace
	Integrating RMS with Oracle E-Business Suite Financials
	Participating Applications
	Assumptions and Dependencies
	Data Setup
	RMS Data Setup and Configuration
	RMS System Options
	Organization Units
	Currency Exchange Rates
	Supplier Address Types
	Country Codes
	Financial Calendar
	Freight Terms
	Payment Terms and Currency Exchange Rates
	Oracle E-Business Suite Financials Units and Site IDs
	Store and Warehouse Maintenance
	RMS General Ledger Setup
	RMS General Ledger Cross Reference
	ReSA General Ledger Cross Reference

	ReIM Data Setup and Configuration
	System Options
	Chart of Accounts Setup
	Segment Mapping
	Running the Initial Load from Oracle E-Business Suite Financials
	integration.properties File Setup

	ReIM Transactional Maintenance
	Calculation of TRANS_AMOUNT
	Generation of Outgoing Data
	Validation of Accounts When Posting Financial Entries
	Maintenance of Valid Accounts

	PeopleSoft Enterprise Financials Integration
	Participating Applications
	Assumptions and Dependencies
	Data Constraints
	Data Setup
	RMS Data Setup and Configuration
	RMS System Options
	Organization Units
	Currency Exchange Rates
	Supplier Address Types
	Country Codes
	Financial Calendar
	Freight Terms
	Payment Terms and Currency Exchange Rates
	PeopleSoft Enterprise Financials Org Units and Site IDs
	Store and Warehouse Maintenance
	RMS General Ledger Setup
	RMS General Ledger Cross Reference
	ReSA General Ledger Cross Reference
	Configuring Drill Back and Forward Web Services

	ReIM Data Setup and Configuration
	System Options
	IM_CURRENCY_LOCALE
	Chart of Accounts Setup
	Segment Mapping
	Running the Initial Load from PeopleSoft Enterprise Financials
	integration.properties File Setup
	Reporting

	ReIM Transactional Maintenance
	Calculation of TRANS_AMOUNT
	Generation of Outgoing Data
	Outgoing Data

	Validation of Accounts When Posting Financial Entries
	Maintenance of Valid Accounts
	Building and Posting Reference IDs

	Drilling Back to RMS, ReSA and ReIM - Overview
	Drilling Back to RMS and ReSA - Detail
	Drilling Back From ReIM - Detail

	Drilling Forward
	Drilling Forward From RMS/ReSA to PeopleSoft Enterprise Financials
	Drilling Forward From ReIM to PeopleSoft Enterprise Financials
	AIA DVM Mapping Examples

	Using Oracle Wallet

