

Oracle® Retail Merchandising System
Operations Guide, Volume 2 - Message Publication and
Subscription Design
Release 14.0
E41167-01

December 2013

ii

Oracle® Retail Merchandising System Operations Guide, Volume 2 - Message Publication and
Subscription Design, Release 14.0

E41167-01

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Primary Author: Siobhan Mcmahon

Contributing Author: Pankaj Bisen, Kathleen Bendijo, Zhenzhen Stein, Manish Kumar, Veronica
Viloria, Chandra Pattanaik, Jeffrey Touhey, Roshan Bhat, and Lawrence Layug

Contributor: Nirmala Suryaprakasha

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or
display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S.
Government end users are "commercial computer software" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the programs, including any operating system,
integrated software, any programs installed on the hardware, and/or documentation, shall be
subject to license terms and license restrictions applicable to the programs. No other rights are
granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications,
including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information on content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible
for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

iii

Value-Added Reseller (VAR) Language

Oracle Retail VAR Applications

The following restrictions and provisions only apply to the programs referred to in this section and
licensed to you. You acknowledge that the programs may contain third party software (VAR
applications) licensed to Oracle. Depending upon your product and its version number, the VAR
applications may include:

(i) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail
Data Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(ii) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of
Kirkland, Washington, to Oracle and imbedded in Oracle Retail Mobile Store Inventory
Management.

(iii) the software component known as Access Via™ licensed by Access Via of Seattle, Washington,
and imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(iv) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of
San Jose, California, and imbedded in Oracle Retail Promotion Planning & Optimization
application.

You acknowledge and confirm that Oracle grants you use of only the object code of the VAR
Applications. Oracle will not deliver source code to the VAR Applications to you. Notwithstanding
any other term or condition of the agreement and this ordering document, you shall not cause or
permit alteration of any VAR Applications. For purposes of this section, "alteration" refers to all
alterations, translations, upgrades, enhancements, customizations or modifications of all or any
portion of the VAR Applications including all reconfigurations, reassembly or reverse assembly, re-
engineering or reverse engineering and recompilations or reverse compilations of the VAR
Applications or any derivatives of the VAR Applications. You acknowledge that it shall be a breach
of the agreement to utilize the relationship, and/or confidential information of the VAR
Applications for purposes of competitive discovery.

The VAR Applications contain trade secrets of Oracle and Oracle's licensors and Customer shall
not attempt, cause, or permit the alteration, decompilation, reverse engineering, disassembly or
other reduction of the VAR Applications to a human perceivable form. Oracle reserves the right to
replace, with functional equivalent software, any of the VAR Applications in future releases of the
applicable program.

iv

Contents
Send Us Your Comments ... xvii

Preface ... xix
Audience .. xix
Documentation Accessibility ... xix
Related Documents ... xix
Customer Support ... xix
Review Patch Documentation ...xx
Improved Process for Oracle Retail Documentation Correctionsxx
Oracle Retail Documentation on the Oracle Technology Network.............................. xxi
Conventions ... xxi

1 Introduction .. 1
Message Publication and Subscription Designs .. 1
Oracle Retail Service Layer for RMS ... 2
Service Provider Implementations API Designs ... 2

2 Publication Designs .. 3
Allocations Publication API ... 3

Functional Area .. 3
Business Overview .. 3
Package Impact .. 4
Trigger Impact .. 10
Message XSD .. 11
Design Assumptions ... 11
Table Impact ... 11

ASNOUT Publication API ... 13
Functional Area .. 13
Business Overview .. 13
Package Impact .. 14
Trigger Impact .. 17
Message XSD .. 17
Design Assumptions ... 17
Table Impact ... 18

Banner Publication API .. 19
Functional Area .. 19
Business Overview .. 19
Package Impact .. 19
Trigger Impact .. 21
Message XSD .. 22
Table Impact ... 22

v

Design Assumptions ... 22
Customer Order Fulfillment Confirmation Publication API .. 23

Functional Area .. 23
Business Overview .. 23
Package Impact .. 23
Trigger Impact .. 25
Message XSD .. 26
Design Assumptions ... 26
Table Impact ... 26

Delivery Slot Publication API .. 27
Business Overview .. 27
Package Impact .. 28
Trigger Impact .. 30
Message XSD .. 30
Table Impact ... 30
Design Assumptions ... 30

Differentiator Groups Publication API .. 31
Business Overview .. 31
Package Impact .. 31
Trigger Impact .. 33
Message XSD .. 34
Table Impact ... 34
Design Assumptions ... 34

Differentiator ID Publication API ... 35
Functional Area .. 35
Business Overview .. 35
Package Impact .. 35
Trigger Impact .. 36
Message XSD .. 37
Table Impact ... 37
Design Assumptions ... 37

Item Publication API .. 38
Functional Area .. 38
Business Overview .. 38
Package Impact .. 44
Trigger Impact .. 51
Message XSD .. 55
Table Impact ... 56
Design Assumptions ... 57

Item Location Publication API .. 58
Functional Area .. 58
Business Overview .. 58
Package Impact .. 58

vi

Trigger Impact .. 60
Message XSD .. 61
Table Impact ... 62
Design Assumptions ... 62

Merchandise Hierarchy Publication API ... 63
Functional Area .. 63
Business Overview .. 63
Package Impact .. 63
Message XSD .. 65
Design Assumptions ... 65
Table Impact ... 65

Order Publication API .. 66
Functional Area .. 66
Business Overview .. 66
Package Impact .. 67
Message XSD .. 73
Design Assumptions ... 74
Table Impact ... 74

Partner Publication API ... 75
Functional Area .. 75
Business Overview .. 75
Package Impact .. 75
Message XSD .. 77
Design Assumptions ... 78
Table Impact ... 78

Receiver Unit Adjustment Publication API ... 79
Functional Area .. 79
Business Overview .. 79
Package Impact .. 79
Trigger Impact .. 81
Message XSD .. 81
Design Assumptions ... 82
Table Impact ... 82

RTV Request Publication API.. 83
Functional Area .. 83
Business Overview .. 83
Package Impact .. 83
Trigger Impact .. 88
Message XSD .. 89
Design Assumptions ... 89
Table Impact ... 89

Seed Data Publication API ... 90
Functional Area .. 90

vii

Business Overview .. 90
Package Impact .. 90
Message XSD .. 93
Design Assumptions ... 93
Table Impact ... 93

Seed Object Publication API .. 94
Functional Area .. 94
Business Overview .. 94
Package Impact .. 94
Message XSD .. 95
Table Impact ... 95

Store Publication API ... 96
Functional Area .. 96
Business Overview .. 96
Package Impact .. 96
Message XSD .. 98
Table Impact ... 98
Design Assumptions ... 98

Transfers Publication API .. 99
Functional Area .. 99
Business Overview .. 99
Package Impact .. 99
Trigger Impact .. 105
Message XSD .. 106
Design Assumptions ... 106
Table Impact ... 107

UDA Publication API ... 108
Functional Area .. 108
Business Overview .. 108
Package Impact .. 108
Message XSD .. 109
Design Assumptions ... 109
Table Impact ... 109

Vendor Publication API ... 110
Functional Area .. 110
Business Overview .. 110
Package Impact .. 110
Message XSD .. 112
Design Assumptions ... 112
Table Impact ... 113

Warehouse Publication API ... 114
Functional Area .. 114
Business Overview .. 114

viii

Package Impact .. 114
Message XSD .. 116
Design Assumptions ... 116
Table Impact ... 116

Work Orders In Publication API ... 117
Functional Area .. 117
Business Overview .. 117
Package Impact .. 117
Trigger Impact .. 120
Message XSD .. 120
Table Impact ... 121
Design Assumptions ... 121

Work Orders Out Publication API.. 122
Functional Area .. 122
Business Overview .. 122
Package Impact .. 122
Trigger Impact .. 126
Message XSD .. 127
Design Assumptions ... 127
Table Impact ... 128

3 Subscription Designs ... 129
Allocation Subscription API .. 129

Functional Area .. 129
Business Overview .. 129
Package Impact .. 129
Message XSD .. 132
Design Assumptions ... 133
Table Impact ... 133

Appointments Subscription API ... 135
Functional Area .. 135
Business Overview .. 135
Package Impact .. 136
Message XSD .. 137
Design Assumptions ... 138
Table Impact ... 138

ASNIN Subscription API ... 139
Functional Area .. 139
Business Overview .. 139
Package Impact .. 139
Message XSD .. 141
Design Assumptions ... 141
Table Impact ... 142

ix

ASNOUT Subscription API ... 143
Functional Area .. 143
Business Overview .. 143
Package Impact .. 144
Message XSD .. 151
Design Assumptions ... 151
Table Impact ... 151

COGS Subscription API ... 154
Functional Area .. 154
Business Overview .. 154
Package Impact .. 154
Message XSD .. 155
Design Assumptions ... 155
Table Impact ... 155

Cost Change Subscription API .. 156
Functional Area .. 156
Design Overview ... 156
Package Impact .. 158
Message XSD .. 158
Design Assumptions ... 158
Table Impact ... 159

Currency Exchange Rates Subscription API ... 160
Functional Area .. 160
Business Overview .. 160
Package Impact .. 160
Message XSD .. 162
Design Assumptions ... 162
Table Impact ... 163

Diff Group Subscription API ... 164
Functional Area .. 164
Design Overview ... 164
Package Impact .. 164
Message XSD .. 167
Design Assumptions ... 167
Table Impact ... 167

Diff ID Subscription API .. 168
Functional Area .. 168
Design Overview ... 168
Package Impact .. 168
Message XSD .. 169
Design Assumptions ... 170
Table Impact ... 170

Direct Ship Receipt Subscription API ... 171

x

Functional Area .. 171
Business Overview .. 171
Package Impact .. 171
Message XSD .. 172
Design Assumptions ... 172
Table Impact ... 172

DSD Deals Subscription API ... 173
Functional Area .. 173
Business Overview .. 173
Package Impact .. 173
Message XSD .. 174
Design Assumptions ... 174
Table Impact ... 174

DSD Receipt Subscription API .. 175
Functional Area .. 175
Business Overview .. 175
Package Impact .. 175
Message XSD .. 176
Design Assumptions ... 176
Table Impact ... 176

Freight Terms Subscription API .. 177
Functional Area .. 177
Business Overview .. 177
Package Impact .. 177
Message XSD .. 178
Design Assumptions ... 179
Table Impact ... 179

GL Chart of Accounts Subscription API .. 180
Functional Area .. 180
Business Overview .. 180
Package Impact .. 180
Message XSD .. 182
Design Assumptions ... 182
Table Impact ... 182

Inventory Adjustment Subscription ... 183
Functional Area .. 183
Business Overview .. 183
Package Impact .. 184
Message XSD .. 186
Design Assumptions ... 186
Table Impact ... 186

Inventory Request Subscription API .. 187
Functional Area .. 187

xi

Business Overview .. 187
Package Impact .. 187
Message XSD .. 189
Design Assumptions ... 189
Table Impact ... 190

Item Subscription API .. 191
Functional Area .. 191
Design Overview ... 191
Package Impact .. 198
Message XSD .. 201
Design Assumptions ... 202
Table Impact ... 202

Item Location Subscription API .. 204
Functional Area .. 204
Design Overview ... 204
Package Impact .. 204
Message XSD .. 206
Table Impact ... 206

Item Reclassification Subscription API .. 208
Functional Area .. 208
Design Overview ... 208
Package Impact .. 208
Message XSD .. 210
Design Assumptions ... 211
Table Impact ... 211

Location Trait Subscription API .. 212
Functional Area .. 212
Design Overview ... 212
Package Impact .. 213
Message XSD .. 213
Design Assumptions ... 214
Table Impact ... 214

Merchandise Hierarchy Subscription API ... 215
Functional Area .. 215
Business Overview .. 215
Package Impact .. 215
Message XSD .. 216
Design Assumptions ... 217
Table Impact ... 217

Merchandise Hierarchy Reclassification Subscription API ... 218
Functional Area .. 218
Business Overview .. 218
Package Impact .. 219

xii

Message XSD .. 220
Design Assumptions ... 220
Table Impact ... 220

Organizational Hierarchy Subscription API ... 221
Functional Area .. 221
Business Overview .. 221
Package Impact .. 221
Message XSD .. 222
Design Assumptions ... 222
Table Impact ... 223

Payment Terms Subscription API ... 224
Functional Area .. 224
Business Overview .. 224
Package Impact .. 224
Message XSD .. 227
Design Assumptions ... 227
Table Impact ... 227

PO Subscription API ... 228
Functional Area .. 228
Business Overview .. 228
Package Impact .. 228
Message XSD .. 232
Design Assumptions ... 233
Table Impact ... 233

Receiving Subscription API ... 234
Functional Area .. 234
Business Overview .. 234
Package Impact .. 236
Message XSD .. 246
Design Assumptions ... 246
Table Impact ... 246

RTV Subscription API .. 249
Functional Area .. 249
Business Overview .. 249
Package Impact .. 249
Message XSD .. 252
Design Assumptions ... 252
Table Impact ... 252

Stock Order Status Subscription API ... 254
Functional Area .. 254
Business Overview .. 254
Package Impact .. 258
Message XSD .. 259

xiii

Design Assumptions ... 260
Table Impact ... 260

Stock Count Schedule Subscription API .. 261
Functional Area .. 261
Business Overview .. 261
Package Impact .. 261
Message XSD .. 262
Table Impact ... 262

Store Subscription API ... 263
Functional Area .. 263
Business Overview .. 263
Package Impact .. 264
Message XSD .. 265
Design Assumptions ... 265
Table Impact ... 266

Transfer Subscription API.. 267
Functional Area .. 267
Business Overview .. 267
Package Impact .. 267
Message XSD .. 269
Table Impact ... 270

Vendor Subscription API ... 271
Functional Area .. 271
Business Overview .. 271
Package Impact .. 271
Message XSD .. 274
Design Assumptions ... 274
Table Impact ... 274

Work Order Status Subscription API ... 275
Functional Area .. 275
Business Overview .. 275
Package Impact .. 276
Message XSD .. 276
Table Impact ... 276

4 Oracle Retail Service Layer for RMS ... 279
Functional Description of the Packages Used by RSL .. 280

5 Web Service Provider Implementation .. 281
Supplier Service ... 281

Functional Area .. 281
Business Overview .. 281
Package Impact .. 281
Design Assumptions ... 283

xiv

Table Impact ... 284
Pay Term Service ... 285

Functional Area .. 285
Business Overview .. 285
Package Impact .. 285
Message XSD .. 288
Design Assumptions ... 288
Table Impact ... 288

Customer Order Fulfillment Service .. 289
Functional Area .. 289
Business Overview .. 289
Package Impact .. 292
Message XSD .. 294
Design Assumptions ... 295
Table Impact ... 296

Customer Order Item Substitution Service ... 297
Functional Area .. 297
Business Overview .. 297
Package Impact .. 297
Message XSD .. 298
Design Assumptions ... 298
Table Impact ... 299

Inventory Detail Lookup Service .. 300
Functional Area .. 300
Business Overview .. 300
Package Impact .. 300
Message XSD .. 301
Design Assumptions ... 301
Table Impact ... 302

Inventory Back Order Service ... 303
Functional Area .. 303
Business Overview .. 303
Package Impact .. 303
Message XSD .. 304
Design Assumptions ... 304
Table Impact ... 305

Pricing Cost Lookup Service ... 306
Functional Area .. 306
Business Overview .. 306
Package Impact .. 306
Message XSD .. 307
Design Assumptions ... 307
Table Impact ... 308

xv

Customer Credit Check Web Service ... 309
Functional Area .. 309
Business Overview .. 309
Package Impact .. 309
Design Assumptions ... 310
Table Impact ... 310

6 Web Service Consumer Implementation ... 311
GL Account Validation Service ... 311

Functional Area .. 311
Business Overview .. 311
Package Impact .. 312
Message XSD .. 313
Design Assumptions ... 313
Table Impact ... 313

xvii

Send Us Your Comments
Oracle Retail Merchandising System Operations Guide, Volume 2 - Message Publication
and Subscription Design, Release 14.0

Oracle welcomes customers' comments and suggestions on the quality and usefulness of
this document.

Your feedback is important, and helps us to best meet your needs as a user of our
products. For example:

 Are the implementation steps correct and complete?

 Did you understand the context of the procedures?

 Did you find any errors in the information?

 Does the structure of the information help you with your tasks?

 Do you need different information or graphics? If so, where, and in what format?
 Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell us
your name, the name of the company who has licensed our products, the title and part
number of the documentation and the chapter, section, and page number (if available).

Note: Before sending us your comments, you might like to
check that you have the latest version of the document and if
any concerns are already addressed. To do this, access the
new Applications Release Online Documentation CD
available on My Oracle Support and www.oracle.com. It
contains the most current Documentation Library plus all
documents revised or released recently.

Send your comments to us using the electronic mail address: retail-doc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number
(optional).

If you need assistance with Oracle software, then please contact your support
representative or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your
Oracle local office and inquire about our Oracle University offerings. A list of Oracle
offices is available on our Web site at www.oracle.com.

http://www.oracle.com/
mailto:retail-doc_us@oracle.com
http://www.oracle.com/

xix

Preface
The Oracle Retail Merchandising System Operations Guide, Volume 2 - Message Publication
and Subscription Design provides critical information about the processing and operating
details of Oracle Retail Merchandising System (RMS), including the following:

 System configuration settings

 Technical architecture
 Functional integration dataflow across the enterprise

 Batch processing

Audience
This guide is for:

 Systems administration and operations personnel
 Systems analysts

 Integrators and implementers

 Business analysts who need information about Merchandising System processes and
interfaces

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For more information, see the following documents:

• Oracle® Retail Merchandising System Installation Guide

• Oracle® Retail Merchandising System User Guide and Online Help

• Oracle® Retail Merchandising System Reports User Guide

• Oracle® Retail Trade Management User Guide and Online Help

• Oracle® Retail Sales Audit User Guide and Online Help

• Oracle® Retail Merchandising Security Guide

• Oracle® Retail Merchandising System Data Model

• Oracle® Retail Merchandising System Data Access Schema Data Model

• Oracle® Retail Merchandising Implementation Guide

• Oracle® Retail Merchandising System Custom Flex Attribute Solution Implementation
Guide

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

xx

• Oracle® POS Suite/Merchandising Operations Management Implementation Guide

• Oracle® Retail Merchandising Batch Schedule

• Oracle® Retail Merchandising Data Conversion Operations Guide

• Oracle® Retail Enterprise Integration Guide

• Oracle® Retail Merchandising System Release Notes

Customer Support
To contact Oracle Customer Support, access My Oracle Support at the following URL:
https://support.oracle.com

When contacting Customer Support, please provide the following:

 Product version and program/module name

 Functional and technical description of the problem (include business impact)

 Detailed step-by-step instructions to re-create

 Exact error message received
 Screen shots of each step you take

Review Patch Documentation
When you install the application for the first time, you install either a base release (for
example, 14.0) or a later patch release (for example, 14.0.1). If you are installing the base
release or additional patch releases, read the documentation for all releases that have
occurred since the base release before you begin installation. Documentation for patch
releases can contain critical information related to the base release, as well as information
about code changes since the base release.

Improved Process for Oracle Retail Documentation Corrections
To more quickly address critical corrections to Oracle Retail documentation content,
Oracle Retail documentation may be republished whenever a critical correction is
needed. For critical corrections, the republication of an Oracle Retail document may at
times not be attached to a numbered software release; instead, the Oracle Retail
document will simply be replaced on the Oracle Technology Network Web site, or, in the
case of Data Models, to the applicable My Oracle Support Documentation container
where they reside.
This process will prevent delays in making critical corrections available to customers. For
the customer, it means that before you begin installation, you must verify that you have
the most recent version of the Oracle Retail documentation set. Oracle Retail
documentation is available on the Oracle Technology Network at the following URL:
http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

An updated version of the applicable Oracle Retail document is indicated by Oracle part
number, as well as print date (month and year). An updated version uses the same part
number, with a higher-numbered suffix. For example, part number E123456-02 is an
updated version of a document with part number E123456-01.

If a more recent version of a document is available, that version supersedes all previous
versions.

https://support.oracle.com/
http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

xxi

Oracle Retail Documentation on the Oracle Technology Network
Documentation is packaged with each Oracle Retail product release. Oracle Retail
product documentation is also available on the following Web site:
http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

(Data Model documents are not available through Oracle Technology Network. These
documents are packaged with released code, or you can obtain them through My Oracle
Support.)

Documentation should be available on this Web site within a month after a product
release.

Conventions
Navigate: This is a navigate statement. It tells you how to get to the start of the procedure
and ends with a screen shot of the starting point and the statement “the Window Name
window opens.”
This is a code sample
 It is used to display examples of code

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

Operations Guide, Volume 2 - Message Publication and Subscription Design 1

1
Introduction

RMS Operations Guide, Volume 2 - Message Publication and Subscription Design
contains detailed technical information about how RMS interacts with the Oracle Retail
Integration Bus (RIB). The major components of this volume of Retail Merchandising
System Operations Guide, Volume 2 - Message Publication and Subscription Design are
described below. A chapter in this volume also addresses how RMS utilizes the Oracle
Retail Service Layer (RSL).

Message Publication and Subscription Designs
Oracle Retail Integration Bus (RIB) RMS functional overview are incorporated into the
publication and subscription designs. Therefore, the retailer can extract the business
rationale behind each publication or subscription as well as the technical details that
describe, on a technical level, how RMS publishes messages to the RIB or how RMS
subscribes to the message from the RIB.

External Subscription RIB Application Programming Interface
Subscription Application Programming Interface (API) that is designated as External is
designed to be interfaces for external systems that maintain the applicable data. In other
words, RMS is not the System Of Record for maintaining the data. Instead, RMS
subscribes to consume the data when it is published so that the corresponding data in
RMS can be kept in sync with the external system that maintains the data.

Multi-threading for Performance Purpose
Multithreading capability for a message family is limited by the multithread support in
the publishing performed by applications. For example, the Inventory Adjustment
(InvAdjust) message family is published by the Oracle Retail Warehouse Management
System (RWMS) and subscribed by RMS. Because RWMS supports only single-channel
publishing, RMS needs to be set up for single-channel processing for the InvAdjust
message family.

The majority of publishing and all of the subscribing APIs support multi-channel
processing. The APIs that do and do not support multi-channel publication processing
are listed in the following.

Subscription APIs
All RMS subscription APIs support multi-channel processing.

Publishing APIs
The following RMS publishing APIs support multi-channel processing:

 RMSMFM_ALLOCB (Allocations Publication API)

 RMSMFM_ITEMLOCB (Item Location Publication API)

 RMSMFM_ITEMSB (Item Publication API)

 RMSMFM_MERCHHIERB (Merchandise Hierarchy Publishing API)

 RMSMFM_ORDERB (Order Publication API)
 RMSMFM_RCVUNITADJB (Receiver Unit Adjustment Publication API)

 RMSMFM_RTVREQB (RTV Request Publication API)

 RMSMFM_SHIPMENTB (ASNOUT Publication API)

 RMSMFM_TRANSFERSB (Transfers Publication API)

Introduction

2 Oracle Retail Merchandising System

 RMSMFM_WOINB (Work Orders in Publication API)

 RMSMFM_WOOUTB (Work Orders out Publication API)

The following RMS publishing APIs do not support multi-channel processing:

 RMSMFM_BANNERB (Banner Publication API)
 RMSMFM_DIFFGRPB (Differentiator Groups Publication API)

 RMSMFM_DIFFIDB (Differentiator ID Publication API)

 RMSMFM_DLVYSLTB (Delivery Slot Publication API)

 RMSMFM_PARTNERB (Partner Publication API)

 RMSMFM_SEEDDATAB (Seed Data Publication API)

 RMSMFM_SEEDOBJB (Seed Object Publication API)
 RMSMFM_STOREB (Store Publication API)

 RMSMFM_SUPPLIERB

 RMSMFM_UDAB (UDA Publication API)

 RMSMFM_WHB (Warehouse Publication API)

Oracle Retail Service Layer for RMS
This Retail Service Layer (RSL) for RMS chapter discusses how RSL facilitates integration
between RMS and other Oracle Retail applications through APIs.

RSL handles the interface between a client application and a server application. The client
application typically runs on a different host than the service. However, RSL allows for
the service to be called internally in the same program or Java Virtual Machine as the
client without the need for code modification.

All services are defined using the same basic paradigm, the input and output to the
service, if any, is a single set of values. Errors are communicated through Java Exceptions
that are thrown by the services. The normal behavior when a service throws an exception
is for all database work performed in the service call being rolled back. RSL works within
the J2EE framework. All services are contained within an interface offered by a Stateless
Session Bean. To a client application, each service appears to be merely a method call.

Some Oracle Retail applications, such as RMS, are implemented in the PL/SQL language,
which runs inside of the Oracle Database. RSL uses a generalized conversion process that
converts the input java object to a native Oracle Object and any output Oracle Objects to
the returned java object from the service. There is a one-to-one correspondence of all
fields contained in the Java parameters as in the Oracle Objects used.

Service Provider Implementations API Designs
The Service Provider Implementations API Designs chapter provides a high level
overview of the APIs. The implementation of these services, along with the associated
Web Service Definition Language (WSDL), may be used to get a full understanding of the
data requirements, validation rules, persistence rules, and return values associated with
the service.

Operations Guide, Volume 2 - Message Publication and Subscription Design 3

2
Publication Designs

This chapter provides an overview of the Publication APIs used in the RMS environment
and various functional attributes used in the APIs.

Allocations Publication API

Functional Area
Allocations

Business Overview
RMS is responsible for communicating allocation information with external systems such
as Oracle Retail Store Inventory Management (SIM) or Oracle Retail Warehouse
Management System (RWMS).

Allocation data enters RMS through the following ways:

 Through the Oracle Retail Allocation product.
These allocations are written to the ALLOC_HEADER and ALLOC_DETAIL tables
in ‘R’- Reserved or ‘A’- Approved status. Once a detail and a header message have
been queued and approved, a message is published to the RIB.

 Through the semi-automatic ordering option.
Using this replenishment method, allocations and orders are inserted into the
ALLOC_HEADER and ALLOC_DETAIL tables in worksheet status to be manually
approved. In order for allocation messages to be published to the RIB, the allocation
must at least be in approved status. Worksheet messages remain on the queue and
combined until they are approved. When it is approved, the created message is
published to the RIB.

 Through automatic replenishment allocations.
These allocations are initially set in worksheet status and are approved by the
RPLAPPRV.PC batch program (Replenishment Approve). Only messages for
approved allocations are published to the RIB.

 Through the Allocation subscription RIB API.

 Either a 3rd party Merchandise System or AIP can create allocations in RMS. Once
approved, these allocations are published to the RIB.

Allocations can be created from a warehouse to any type of stockholding location in
RMS, including both company and franchise stores. Allocations include a store type and
stockholding indicator at the detail level when allocating to stores, to allow SIM and
RWMS to filter out the data irrelevant to their respective systems. When allocating to a
franchise store, the linked franchise orders are not published; only the allocation itself is
published.

An allocation and its details are not published until it is approved. Modified and deleted
allocation information is also sent to the RIB. Allocation header modification messages
will be sent if the status of the allocation is changed to ‘C’ - closed or if the allocation
release date is changed. Allocation detail modification messages will be sent if the
allocated quantity is changed. A header delete message signifies that the complete
allocation can be deleted.

Publication Designs

4 Oracle Retail Merchandising System

Package Impact

Business Object ID:

Allocation number

Create Header
1. Prerequisites: Allocation can be created in one of the following manners: via the

stand-alone allocations product, semi-automatic ordering, automatic ordering
replenishment, or Allocation subscription API.

2. Activity Detail: Once an allocation exists in RMS it can be modified and details can be
attached.

3. Messages: When an allocation is created an Allocation Create message request is
queued. The Allocation Create message is a flat message containing a full snapshot of
the allocation at the time the message is published. The message will not be sent until
detail records have been queued and the allocation has been approved.

Modify Header
1. Prerequisites: An allocation must exist before it can be modified.
2. Activity Detail: The user is allowed to change the status of the allocation to ‘A’-

Approved or ‘C’- Closed. This change is of interest to other systems and so this
activity results in the publication a message.

3. Messages: When an allocation is modified, an Allocation Header Modified message
request is queued. The Allocation Header Modified message is a flat message
containing a full snapshot of the allocation header at the time the message is
published.

Create Detail
1. Prerequisites: An allocation header must exist before an allocation detail can be

created or interfaced into RMS. Once in RMS, the allocation can only be modified by
changing its allocated quantity.

2. Activity Detail: an Allocation Detail Create message is only queued if a Create
Header message is also on the queue for the same allocation.

3. Messages: When an allocation detail is created, an Allocation Detail Created message
request is queued. The Allocation Detail Create message is a flat message containing
a full snapshot of the allocation detail at the time the message is published. If an
Allocation Create message is also in the queue for the same allocation, the two
messages are combined and sent as one message.

Modify Detail
1. Prerequisites: An allocation detail must exist to be modified.

2. Activity Detail: The user is allowed to change allocation quantities provided they are
not reduced below those already recorded as received. This change is of interest to
other systems and so this activity results in the publication of a message.

3. Messages: When an allocation is modified an Allocation Detail Modified message
request is queued. The Allocation Detail Modified message is a flat message
containing a full snapshot of the allocation detail at the time the message is
published.

Allocations Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 5

Approve
1. Prerequisites: An allocation must exist in RMS before it can be approved. Those

allocations created from other sources can be entered into RMS in approved status.

2. Activity Detail: Once an allocation as been approved, it it will be published from
RMS.

3. Messages: When the allocation is approved an Allocation Header Modified message
is queued. This message will be combined with any Allocation Create and Allocation
Detail Create message to form the message that is sent to the RIB.

Close
1. Prerequisites: An allocation must be approved before it can be closed.

2. Activity Detail: Closing an allocation changes the status, which prevents further
receiving or modification of the allocation. When an allocation is closed, a message is
published to update other systems regarding the status change.

3. Messages: Closing an allocation queues an Allocation Header Modified message
request. This is a flat message containing a full snapshot of the allocation at the time
that the message is published.

Delete
1. Prerequisites: An allocation can only be deleted when it is still in approved status or

when it has been closed. Note that if the allocation is in closed status, it still cannot be
deleted if either create or a modify message are pending for the allocation, as they
need to take full snapshots.

2. Activity Detail: Deleting an allocation removes it from the system. External systems
are notified by a published message.

3. Message: When an allocation is deleted, an Allocation Header Deleted message,
which is a flat notification message, is queued.

Package Name: RMSMFM_ALLOC

Body File Name: rmsmfm_allocb.pls

Functional Level Description – ADDTOQ
FUNCTION ADDTOQ (O_error_msg OUT VARCHAR2,
 I_message_type IN ALLOC_MFQUEUE.MESSAGE_TYPE%TYPE,
 I_alloc_no IN ALLOC_HEADER.ALLOC_NO%TYPE,
 I_alloc_header_status IN ALLOC_HEADER.STATUS%TYPE,
 I_to_loc IN ITEM_LOC.LOC%TYPE)

This function is called by the ALLOC_HEADER trigger and the ALLOC_DETAIL trigger,
ec_table_alh_aiudr and ec_table_ald_aiudr, respectively.

 For header level insert messages (HDR_ADD), insert a record in the
ALLOC_PUB_INFO table. The published flag will be set to ‘N’. The correct thread for
the business transaction will be calculated and written. Call
API_LIBRARY.RIB_SETTINGS to get the number of threads used for the publisher.
The number of threads and the business object ID are used to calculate the thread
value.

 For all records except header level inserts (HDR_ADD), the thread_no and
initial_approval_ind will be queried from the ALLOC_PUB_INFO table.

Publication Designs

6 Oracle Retail Merchandising System

 If the business transaction has not been approved (initial_approval_ind = ‘N’) and
the triggering message is one of DTL_ADD, DTL_UPD, DTL_DEL, HDR_DEL, no
processing will take place and the function will exit.

 For detail level message deletes (DTL_DEL), we only need one (the most recent)
record per detail in the ALLOC_MFQUEUE. Delete any previous records that exist
on the ALLOC_MFQUEUE for the record that has been passed. If the publish_ind is
‘N’, do not add the DTL_DEL message to the queue.

 For detail level message updates (DTL_UPD), we only need one DTL_UPD (the most
recent) record per detail in the ALLOC_MFQUEUE. Delete any previous DTL_UPD
records that exist on the ALLOC_MFQUEUE for the record that has been passed.

 For header level delete messages (HDR_DEL), delete every record in the queue for
that allocation.

 For header level update message (HDR_UPD), update the
ALLOC_PUB_INFO.INITIAL_APPROVAL_IND to ‘Y’ if the allocation is in
approved status.

 For all records except header level inserts (HDR_ADD), insert a record into the
ALLOC_MFQUEUE.

It returns a status code of API_CODES.SUCCESS if successful,
API_CODES.UNHANDLED_ERROR if not.

Functional Level Description – GETNXT
PROCEDURE GETNXT(O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id OUT RIB_BUSOBJID_TBL,
 O_routing_info OUT RIB_ROUTINGINFO_TBL,
 I_num_threads IN NUMBER DEFAULT 1,
 I_thread_val IN NUMBER DEFAULT 1)

The RIB calls GETNXT to get messages. It performs a cursor loop on the unpublished
records on the ALLOC_MFQUEUE table (PUB_STATUS = ‘U’). It will only need to
execute one loop iteration in most cases. For each record retrieved, GETNXT does the
following:

 A lock of the queue table for the current business object. The lock is obtained by
calling the function LOCK_THE_BLOCK. If there are any records on the queue for
the current business object that are already locked, the current message is skipped.

 If the lock is successful, a check for records on the queue with a status of ‘H’-
Hospital. If there are any such records for the current business object, GETNXT raises
an exception to send the current message to the Hospital.

 The information from the ALLOC_MFQUEUE and ALLOC_PUB_INFO table is
passed to PROCESS_QUEUE_RECORD. PROCESS_QUEUE_RECORD will build the
Oracle Object message to pass back to the RIB. If PROCESS_QUEUE_RECORD does
not run successfully, GETNXT raises an exception.

 If any exception is raised in GETNXT, including the exception raised by an
unsuccessful call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS is called.

Allocations Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 7

Function Level Description – PUB_RETRY

PROCEDURE PUB_RETRY
This procedure republishes the entity that failed to be published before. It is the same as
GETNXT except that the record on ALLOC_MFQUEUE to be published must match the
passed in sequence number contained in the ROUTING_INFO.

Function Level Description – PROCESS_QUEUE_RECORD (local)
This function controls the building of Oracle Objects given the business transaction’s key
values and a message type. It contains all of the shared processing between GETNXT and
PUB_RETRY.

 Call API_LIBRARY.RIB_SETTINGS to get the number of threads used for the
publisher. The number of threads and the business object ID are used to calculate the
thread value

 For a header delete message (HDR_DEL) that has not been initially published,
simply remove the header delete message from the queue and loop again.

 For a header delete message (HDR_DEL) that has been initially published i.e. for
AllocRef,

 Build the Oracle Object to publish to RIB
 Build the ROUTING_INFO

 Delete the record from ALLOC_PUB_INFO

 Delete the record from ALLOC_DETAILS_PUBLISHED

 Remove the header delete message from the queue (ALLOC_MFQUEUE)

 If the business object is being published for the first time i.e. published_ind on the
pub_info table is ‘N’, the business object is being published for the first time. If so,
call MAKE_CREATE.

 Otherwise, For a header update message (HDR_UPD)

 Call BUILD_HEADER_OBJECT to build the Oracle Object to publish to the RIB

 Update ALLOC_PUB_INFO with updated new header information

 Build the ROUTING_INFO

 Delete the header update message from the queue (ALLOC_MFQUEUE)
 For a detail add (DTL_ADD) or detail update message (DTL_UPD)

 Call BUILD_DETAIL_CHANGE_OBJECTS to build the Oracle Object to publish to
the RIB. This will also take care of any ALLOC_MFQUEUE deletes and
ROUTING_INFO logic.

 For a detail delete message (DTL_DEL)

 Call BUILD_DETAIL_DELETE_OBJECTS to build the Oracle Object to publish to the
RIB. This will also take care of any ALLOC_MFQUEUE and
ALLOC_DETAILS_PUBLISHED deletes and the ROUTING_INFO logic.

Function Level Description – MAKE_CREATE (local)
This function is used to create the Oracle Object for the initial publication of a Business
transaction.

 Call BUILD_HEADER_OBJECT to get a header level Oracle Object plus any extra
functional holders.

 Build some or all of the ROUTING_INFO Oracle Object.

Publication Designs

8 Oracle Retail Merchandising System

 Call BUILD_DETAIL_OBJECTS to get a table of detail level Oracle objects and a table
of ALLOC_MFQUEUE rowids to delete.

 Use the header level Oracle Object and functional holders to update the
ALLOC_PUB_INFO.

 Delete records from the ALLOC_MFQUEUE for all rowids returned by
BUILD_DETAIL_OBJECTS. Deletes are done by rowids instead of business
transaction keys to ensure that nothing is deleted off the queue that has not been
published.

 If the entire business transaction was added to the Oracle Object, also delete the
ALLOC_MFQUEUE record that was picked up by GETNXT. If the entire business
transaction was not published, we need to leave something on the
ALLOC_MFQUEUE to ensure that the rest of it is picked up by the next call to
GETNXT.

 The header and detail level Oracle Objects are combined and returned.

Function Level Description – BUILD_HEADER_OBJECT (local)
Accepts header key values, performs necessary lookups, builds and returns a header
level Oracle Object.

Optionally can return needed Functional Holders for the ALLOC_PUB_INFO table.

The C_ALLOC_HEAD cursor selects the context fields (context and value) from the
ALLOC_HEADER table.

The context fields will be passed along in the parameter list of the rib object constructor
“RIB_AllocDesc_REC()”.

Function Level Description – BUILD_DETAIL_OBJECTS (local)
The function is responsible for building detail level Oracle Objects. It builds as many
detail Oracle Object as it can given the passed in message type and business object keys.

If the function is being called from MAKE_CREATE:

Select any unpublished detail records from the business transaction (use an indicator on
the functional detail table itself or ALLOC_DETAILS_PUBLISHED). Create Oracle
Objects for details that are selected by calling BUILD_SINGLE_DETAIL.

 Ensure that the indicator in the functional detail table is updated as published as the
detail info are placed into the Oracle Objects

 Ensure that ALLOC_MFQUEUE is deleted as needed. If there is more than one
ALLOC_MFQUEUE record for a detail level record, make sure they all get deleted.
We only care about current state, not every change.

 Ensure that ROUTING_INFO is constructed if routing information is stored at the
detail level in the Business transaction.

 Ensure that no more than MAX_DETAILS_TO_PUBLISH records are put into Oracle
Objects.

 Ensure that the detail records being added to the object have not already been
published. This can happen if GETNXT was previously called for the current
business object, and the MAX_DETAILS_TO_PUBLISH limit had been reached. We
ensure these details do not get added again by looking at the indicator in the
functional detail table.

If the function is not being called from MAKE_CREATE:

Select any details on the ALLOC_MFQUEUE that are for the same business transaction
and for the same message type. Create Oracle Objects for details that are selected by
calling BUILD_SINGLE_DETAIL.

Allocations Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 9

 If the message type is a detail create (DTL_ADD), ensure that records get inserted
into ALLOC_DETAILS_PUBLISHED or the indicator in the functional detail table is
updated as published because the detail info are placed into the Oracle Objects.

 Ensure that ALLOC_MFQUEUE is deleted from as needed.
 Ensure that ROUTING_INFO is constructed if routing information is stored at the

detail level in the Business transaction.

 Ensure that no more than MAX_DETAILS_TO_PUBLISH records are put into Oracle
Objects.

The deletes are done by ROWID to make sure that records from the queue table that has
not been published are not deleted.

Function Level Description – BUILD_SINGLE_DETAIL (local)
Accept inputs and build a detail level Oracle Object. Perform any lookups needed to
complete the Oracle Object.

Function Level Description – BUILD_DETAIL_CHANGE_OBJECTS (local)
Either pass in a header level Oracle Object or call BUILD_HEADER_OBJECT to build
one.
Call BUILD_DETAIL_OBJECTS to get the detail level Oracle Objects.

Perform any BULK DML statements given the output from BUILD_ DETAIL_OBJECTS
and update to ALLOC_DETAILS_PUBLISHED.

Build any ROUTING_INFO as needed.

Function Level Description – BUILD_DETAIL_DELETE_OBJECTS (local)
Either pass in a header level delete Oracle Object or build a header level delete Oracle
Object.

Perform a cursor for loop on ALLOC_MFQUEUE and build as many detail delete Oracle
Objects as possible without exceeding the MAX_DETAILS_TO_PUBLISH.
Perform any BULK DML statements for deletion from ALLOC_MFQUEUE and update
to ALLOC_DETAILS_PUBLISHED.

Build any ROUTING_INFO as needed.

Function Level Description – LOCK_THE_BLOCK (local)
This function locks all queue records for the current business object. This is to ensure that
GETNXT does not wait on any business processes that currently have the queue table
locked and have not committed. This can occur because ADDTOQ, which is called from
the triggers, deletes from the queue table for DTL_UPD, DTL_DEL, and HDR_DEL
messages.

Function Level Description – HANDLE_ERRORS (local)
HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is
raised.

If the error is a non-fatal error, GETNXT passes the sequence number of the driving
ALLOC_MFQUEUE record back to the RIB in the ROUTING_INFO. It sends back a
status of ‘H’ - Hospital to the RIB as well. It then updates the status of the queue record
to ‘H’, so that it will not get picked up again by the driving cursor in GETNXT.

If the error is a fatal error, a status of ‘E’ - Error is returned to the RIB.

The error is considered non-fatal if no DML has occurred yet. Whenever DML has
occurred, then the global variable LP_error_status is flipped from ‘H’ to ‘E’.

Publication Designs

10 Oracle Retail Merchandising System

Function Level Description – DELETE_QUEUE_REC (local)
This function deletes a specific record on ALLOC_MFQUEUE table depending on the
seq_no.

Function Level Description – GET_ROUTING_TO_LOCS (local)
This function will get all the values of to_loc_vir from alloc_details_published table
depending on a given allocation number.

Perform a cursor for loop that will populate the Oracle Object RIB_ROUTINGINFO_TBL.

Function Level Description – GET_NOT_BEFORE_DAYS (local)
This function checks if the variable (LP_nbf_days) has a value or not. If not, it will
populate the variable based on code_detail and then assign this value to the variable
O_days.

Function Level Description – GET_RETAIL (local)
This function will accept inputs and pass it to PRICING_ATTRIB_SQL.GET_RETAIL
function to get the retail value of the item.

Function Level Description – CHECK_STATUS (local)
CHECK_STATUS raises an exception if the status code is set to 'E' - Error. This will be
called immediately after calling a procedure that sets the status code. Any procedure that
calls CHECK_STATUS must have its own exception handling section.

Trigger Impact

Trigger name: EC_TABLE_ALH_AIUDR

Trigger file name: ec_table_alh_aiudr.trg

Table: ALLOC_HEADER

Inserts

 Send the allocation header level information to the ADDTOQ procedure in
RMSMFM_ALLOC with the message type RMSMFM_ALLOC.HDR_ADD and the
original message.

Updates
 Send the allocation header level information to the ADDTOQ procedure in the

RMSMFM_ALLOC with the message type RMSMFM_ALLOC.HDR_UPD and the
original message.

Deletes
 Send the allocation header level info to the ADDTOQ procedure in the

RMSMFM_ALLOC with the message type RMSMFM_ALLOC.HDR_DEL and the
original message.

Allocations Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 11

Trigger name: EC_TABLE_ALD_AIUDR

Trigger file name: ec_table_ald_aiudr.trg

Table: ALLOC_DETAIL

Inserts
 Send the allocation detail level information to the ADDTOQ procedure in

RMSMFM_ALLOC with the message type RMSMFM_ALLOC.DTL_ADD and the
original message.

Updates

 Send the allocation detail level information to the ADDTOQ procedure in the
RMSMFM_ALLOC with the message type RMSMFM_ALLOC.DTL_UPD and the
original message.

Deletes
 Send the allocation detail level info to the ADDTOQ procedure in the

RMSMFM_ALLOC with the message type RMSMFM_ALLOC.DTL_DEL and the
original message.

Message XSD
Here are the filenames that correspond with each message type. Please consult the
mapping documents for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

AllocCre Allocation Create Message AllocDesc.xsd

AllocHdrMod Allocation Header Modify Message AllocDesc.xsd

AllocDel Allocation Delete Message AllocRef.xsd

AllocDtlCre Allocation Detail Create Message AllocDesc.xsd

AllocDtlMod Allocation Detail Modify Message AllocDesc.xsd

AllocDtlDel Allocation Detail Delete Message AllocRef.xsd

Design Assumptions
 None

Table Impact

TABLE SELECT INSERT UPDATE DELETE

ALLOC_PUB_INFO Yes Yes Yes No

ALLOC_MFQUEUE Yes Yes No Yes

ALLOC_DETAILS_PUBLISHED Yes Yes Yes Yes

ALLOC_HEADER Yes No No No

ALLOC_DETAIL Yes No No No

Publication Designs

12 Oracle Retail Merchandising System

TABLE SELECT INSERT UPDATE DELETE

ITEM_MASTER Yes No No No

ITEM_TICKET Yes No No No

ITEM_LOC Yes No No No

WH Yes No No No

ORDHEAD Yes No No No

CODE_DETAIL Yes No No No

V_PACKSKU_QTY Yes No No No

ASNOUT Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 13

ASNOUT Publication API

Functional Area
ASNOut

Business Overview
ASNOUT means the outbound message of Advanced Shipment Notification. The ASN
out message is used to ship the merchandise against transfers or allocations. This
message is published by RMS to stores or warehouses.

RMS supports the following shipping functionality:

 On-line Shipping/Receiving.
 Franchise Order Shipment and Return.

On-line Shipping/Receiving

Two system options (ship_rcv_store and ship_rcv_wh) are used to control whether RMS
on-line shipment/receiving functionality is enabled.

 Ship_rcv_store = ‘Y’ means a store inventory management application, such as
Oracle Retail SIM, is NOT installed and shipping/receiving for stores will be done in
RMS.

 Ship_rcv_wh = ‘Y’ means a warehouse management system, such as RWMS, is NOT
installed and shipping/receiving for warehouses will be done in RMS.

If either (but not both) of these indicators is set to ‘Y’, shipments created in RMS should
be published to the RIB to allow the integration subsystem application to have visibility
to the corporately created shipment.

The possible scenarios for on-line shipping/receiving:

SIM
Installed
(Yes/No)

RWMS
Installed
(Yes/No)

System Options
Settings

RMS Publishes
Shipments
(Yes/No)

Apps to
subscribe to
the message
(SIM/RWMS)

Yes Yes Ship_rcv_store = N
Ship_rcv_wh = N

No No

No No Ship_rcv_store = Y
Ship_rcv_wh = Y

No No

Yes No Ship_rcv_store = N
Ship_rcv_wh = Y

Yes – for
warehouse-to-
store shipments

SIM

No Yes Ship_rcv_store = Y
Ship_rcv_wh = N

Yes – for store-to-
warehouse
shipments

RWMS

RMS on-line shipping can involve a customer order transfer (tsf_type = ‘CO’). For a
customer order transfer, customer order number and fulfillment order number are pulled
from the ORDCUST table and included in the published information.

Franchise Order Shipment and Return
Franchise stores are a special kind of stores that are not ‘owned’ by the company;
therefore any shipment to a franchise store is considered a sale. From RMS, franchise
stores can order goods from company stores or warehouses; they can also return goods
back to company stores or warehouses. These orders and returns are created as transfers
in RMS.

Publication Designs

14 Oracle Retail Merchandising System

RMS supports two kinds of franchise stores – stockholding franchise stores (which RMS
manages inventory and financials like regular stores) and non-stockholding franchise
stores (which RMS does NOT manage inventory and financials).

SIM manages transactions for stockholding franchise stores, but not for non-stockholding
franchise stores. The Shipping and Receiving of non-stockholding franchise orders and
returns are handled within RMS from the Store perspective even if SIM is installed.

For warehouses, if a franchise return from a non-stockholding franchise store is to be
processed, RWMS will require an ASN against which to receive. Since RMS
automatically creates the shipment for non-stockholding stores upon the approval of a
franchise return, RMS needs to publish those shipments for RWMS. Similar to on-line
Shipping/Receiving, RMS publishes shipments of non-stockholding Franchise Returns to
warehouses as ASNOut messages.

Package Impact

Business Object ID

Shipment number

Package name: RMSMFM_SHIPMENT

Function Level Description – ADDTOQ
ADDTOQ (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message_type IN SHIPMENT_PUB_INFO.MESSAGE_TYPE%TYPE,
 I_shipment IN SHIPMENT.SHIPMENT%TYPE,
 I_to_loc IN SHIPMENT.TO_LOC%TYPE,
 I_to_loc_type IN SHIPMENT.TO_LOC_TYPE%TYPE)

 Shipments created in RMS cannot be modified. Upon saving a shipment, the entire
shipment is published from RMS as one ASNOut message. As a result, RMS only
needs to support the ASNOut create message type (‘asnoutcre’) for shipment
publishing.

 Validate all the input parameters to this function against NULL. If any has a NULL
value then return from the function with the appropriate error message.

 Insert a record in the SHIPMENT_PUB_INFO table. The published flag will be set to
‘U’. The correct thread for the business transaction will be calculated and written.
Call API_LIBRARY. GET_RIB_SETTINGS to get the number of threads used for the
publisher. Using the number of threads, and the business object id (For example,
shipment number), calculate the thread value.

ASNOUT Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 15

Function Level Description – GETNXT
GETNXT (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_message_type IN OUT VARCHAR2,
 O_message IN OUT RIB_OBJECT,
 O_bus_obj_id IN OUT RIB_BUSOBJID_TBL,
 O_routing_info IN OUT RIB_ROUTINGINFO_TBL,
 I_num_threads IN NUMBER DEFAULT 1,
 I_thread_val IN NUMBER DEFAULT 1)

Initialize LP_error_status to API_CODES.HOSPITAL at the beginning of GETNXT.

The RIB calls GETNXT to get messages. It performs a cursor loop on the unpublished
records on the SHIPMENT_PUB_INFO table (PUB_STATUS = ‘U’). It will only execute
one loop iteration in most cases. For each record retrieved, GETNXT gets the following:

1. A lock of the queue table for the current business objects (i.e. shipment number). The
lock is obtained by calling the function LOCK_THE_BLOCK. If there are any records
on the queue for the current business object that are already locked, the current
message is skipped.

2. A check for records on the queue with a status of ‘H’ -Hospital. If there are any such
records for the current business object, GETNXT raises an exception to send the
current message to the Hospital.

3. The information from the SHIPMENT_PUB_INFO table is passed to
PROCESS_QUEUE_RECORD. PROCESS_QUEUE_RECORD will build the Oracle
Object message to pass back to the RIB. If PROCESS_QUEUE_RECORD does not run
successfully, GETNXT raises an exception.

4. If any exception is raised in GETNXT, including the exception raised by an
unsuccessful call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS is called.

5. Unconditionally exit from the loop after the successful processing of
PROCESS_QUEUE_RECORD function, assuming the shipment is published
successfully.

If the O_message from PROCESS_QUEUE_RECORD is NULL then, send NO_MSG in
the status_code otherwise send the NEW_MSG in the status_code with the shipment
number as business object Id. Also, send the message type as “asnoutcre”.

Function Level Description – PUB_RETRY
PUB_RETRY (O_status_code IN OUT VARCHAR2,

 O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_message_type IN OUT VARCHAR2,
 O_message IN OUT RIB_OBJECT,
 O_bus_obj_id IN OUT RIB_BUSOBJID_TBL,
 O_routing_info IN OUT RIB_ROUTINGINFO_TBL,
 I_ref_object IN RIB_OBJECT)

This procedure republishes the entity that failed to be published before. It is the same as
GETNXT except that the record on SHIPMENT_PUB_INFO to be published must match
the passed in sequence number contained in the ROUTING_INFO.

Function Level Description – PROCESS_QUEUE_RECORD (local)
PROCESS_QUEUE_RECORD (

O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
O_message IN OUT NOCOPY RIB_OBJECT,
O_routing_info IN OUT NOCOPY RIB_ROUTINGINFO_TBL,
O_bus_obj_id IN OUT NOCOPY RIB_BUSOBJID_TBL,
I_shipment IN SHIPMENT.SHIPMENT%TYPE,

 I_seq_no IN SHIPMENT_PUB_INFO.SEQ_NO%TYPE)

Publication Designs

16 Oracle Retail Merchandising System

This function controls the building of Oracle Objects given the business transaction’s key
values and a message type. It contains all of the shared processing between GETNXT and
PUB_RETRY.

 The correct thread for the business transaction will be calculated and written. Call
API_LIBRARY. GET_RIB_SETTINGS to get the number of threads used for the
publisher. Using the number of threads, and the business object id (i.e. shipment
number), calculate the thread value.

 Build the header and detail object by calling BUILD_HEADER_OBJECT.

 Delete the current record from the queue (i.e. shipment_pub_info table) by calling
UPDATE_QUEUE_REC function.

Function Level Description – BUILD_HEADER_OBJECT (local)
BUILD_HEADER_OBJECT

(O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_rib_asnoutdesc_rec IN OUT "RIB_ASNOutDesc_REC",
 O_routing_info IN OUT NOCOPY RIB_ROUTINGINFO_TBL,
 I_shipment IN SHIPMENT_PUB_INFO.SHIPMENT%TYPE)

 Take all necessary data from the SHIPMENT table for the current shipment and put it
into a “RIB_ASNOutDesc_REC” object. In addition, publish a schedule_number of
NULL and auto_receive_ind of ‘N’ to the “RIB_ASNOutDesc_REC” object.

 The routing information has to be sent to RIB through RIB_ROUTINGINFO_REC.
This routing info is for FROM location, TO location and source application (RMS)
from which RIB receives the information. The routing location type for the TO
location will be set to ‘V’ for the non stockholding company stores (i.e. virtual stores).
Else, it will be set to ‘S’. This is to ensure that shipment to a virtual store is not routed
to SIM.

 If the destination location is Store then, set the asn_type as ‘C’ (Customer Store) and
get the information about the store by calling STORE_ATTRIB_SQL.GET_INFO. Else,
set the asn_type to ‘T’ (wh transfer) and get the information about WH by calling
WH_ATTRIB_SQL.GET_WH_INFO function.

 Call the BUILD_DETAIL_OBJECTS to get the details of the current shipment record.

 The container_qty is a required field on the RIB object. So, RMS sends 1 instead of
NULL in SHIPMENT.NO_BOXES if it is NULL.

Function Level Description – BUILD_DETAIL_OBJECTS (local)
BUILD_DETAIL_OBJECTS

(O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_rib_asnoutdistro_tbl IN OUT "RIB_ASNOutDistro_TBL",

 I_shipment_rec IN SHIPMENT%ROWTYPE)

The function is responsible for building detail level Oracle Objects. It builds as many
detail Oracle Object as it can given the passed in message type and business object keys.

 Fetch the detail records of the shipment from SHIPSKU for the given shipment
number.

 If the distro_type is ‘T’ then, get the transfer details by calling the
TSF_ATTRIB_SQL.GET_TSFHEAD_INFO function. Else, get the corresponding
allocation details from the alloc_detail table for the current distro_no and to_location.

 If the freight_code is ‘E’xpedite then, set the expedite flag to ‘Y’ otherwise ‘N’.

 When the transfer type is Customer Order “CO”, the corresponding customer order
number and fulfillment order number from the ORDCUST table will be published in
the distro record.

ASNOUT Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 17

 Assign the above details into “RIB_ASNOutItem_REC”, “RIB_ASNOutCtn_REC”
and “RIB_ASNOutDistro_REC” records.

 Because the container_qty and container_id are the mandatory fields, RMS will send
“1” for container_qty and “0” for container_id instead of NULL.

Function Level Description – LOCK_THE_BLOCK (local)
This function locks all queue records for the current business object. This is to ensure that
GETNXT does not wait on any business processes that currently have the queue table
locked and have not committed.

Function Level Description – HANDLE_ERRORS (local)
HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is
raised.

If the error is a non-fatal error, GETNXT passes the sequence number of the driving
SHIPMENT_PUB_INFO record back to the RIB in the ROUTING_INFO. It sends back a
status of ‘H’ - Hospital to the RIB as well. It then updates the status of the queue record
to ‘H’, so that it will not get picked up again by the driving cursor in GETNXT.

If the error is a fatal error, a status of ‘E’ - Error is returned to the RIB.
The error is considered non-fatal if no DML has occurred yet. Whenever DML has
occurred, then the global variable LP_error_status is flipped from ‘H’ to ‘E’.

Function Level Description – UPDATE_QUEUE_REC (local)

UPDATE_QUEUE_REC is called from PROCESS_QUEUE_RECORD once a queue record
is formed from SHIPMENT_PUB_INFO table. This will update the pub_status to ‘P’ so as
not to pick-up the same record again.

Trigger Impact

Trigger name: EC_TABLE_SPT_AIR

Trigger file name: ec_table_spt_air.trg

Table: SHIPMENT_PUB_TEMP
A trigger on the SHIPMENT_PUB_TEMP table will capture the inserts.

 Send the appropriate column values to the ADDTOQ procedure in the MFM with the
message type “asnoutcre”.

Message XSD
Here is the filename that corresponds with the message type. Please consult the RIB
documentation for this message type in order to get a detailed picture of the composition
of the message.

Message Types Message Type Description XML Schema Definition
(XSD)

asnoutcre ASN Out Create Message ASNOutDesc.xsd

Design Assumptions
 Push off all DML statements as late as possible. Once DML statements have taken

place, any error becomes a fatal error rather than a hospital error.

Publication Designs

18 Oracle Retail Merchandising System

 ASNOut messages published from RMS should NOT go back to RMS again.

 ASNOut messages published from RMS are intended for execution systems like SIM
and RWMS. They are never routed to Order Management System (OMS). OMS is
responsible for managing the order through its lifecycle from capture at the Online
Order Capture (OOC) through fulfillment.

Table Impact

TABLE SELECT INSERT UPDATE DELETE

SHIPMENT Yes No No No

SHIPSKU Yes No No No

SHIPMENT_PUB_INFO Yes Yes Yes No

ORDCUST Yes No No No

TSFHEAD Yes No No No

ALLOC_DETAIL Yes No No No

Banner Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 19

Banner Publication API

Functional Area
Foundation

Business Overview
RMS publishes messages about banners and channels to the Oracle Retail Integration Bus
(RIB). A banner provides a means of grouping channels thereby allowing the customer to
link all brick and mortar stores, catalogs, and web stores. The BANNER table holds a
banner identifier and name. The CHANNELS table shows all channels and any
associated banner identifiers.
The diagram Banners and Channels within a Corporation shows a sample of the
structure of banners and channels within a corporation.

Channel

Banner

Corporation Smith Corporation

Smith for Men Smith for
Women

Mail-order
catalog

Brick &
Mortar
Store

Webstore Mail-order
catalog

Brick &
Mortar
Store

Webstore

Banners and Channels within a Corporation

Banner/channel publication consists of a single flat message containing information from
the tables BANNER and CHANNELS. One message is synchronously created and placed
in the message queue each time a record is created, modified, or deleted. When a record
is created or modified, the flat message contains several attributes of the banner/channel.
When a record is deleted, the message contains the unique identifier of the
banner/channel. Messages are retrieved from the message queue in the order they were
created.

Package Impact

Create
1. Prerequisites: For channel creation, the associated banner must have been created.

2. Activity Detail: Once a banner/channel has been created, it is ready to be published.
An initial publication message is made.

Publication Designs

20 Oracle Retail Merchandising System

3. Messages: A “Banner Create” / “Channel Create” message is queued. This message
is a flat message that contains a full snapshot of the attributes on the BANNER or
CHANNEL table.

Modify
1. Prerequisites: banner/channel has been created.

2. Activity Detail: The user is allowed to change attributes of the banner/channel.
These changes are of interest to other systems and so this activity results in the
publication of a message.

3. Messages: Any modifications will cause a “banner modify” / channel modify”
message to be queued. This message contains the same attributes as the “banner
create” / “channel create” message.

Delete
1. Prerequisites: banner/channel has been created.

2. Activity Detail: Deleting a banner/channel removes it from the system. External
systems are notified by a published message.

3. Messages: When a banner/channel is deleted, a “Banner Delete” / “Channel Delete”
message, which is a flat notification message, is queued. The message contains the
banner/channel identifier.

Package name: RMSMFM_banner

Spec file name: rmsmfm_banners.pls

Body file name: rmsmfm_bannerb.pls

Package Specification – Global Variables
None

Function Level Description – ADDTOQ
Procedure: ADDTOQ
 (O_status OUT VARCHAR2,
 O_text OUT VARCHAR2,

 I_message_type IN BANNER_MFQUEUE.MESSAGE_TYPE%TYPE,
 I_banner_id IN CHANNELS.BANNER_id%TYPE,
 I_channel_id IN CHANNELS.CHANNEL_ID%TYPE,
 I_message IN CLOB)

This procedure is called by the triggers EC_TABLE_BAN_AIUDR and
EC_TABLE_CHN_AIUDR, and takes the message type, banner ID, channel ID (NULL if
called from EC_TABLE_BAN_AIUDR) and the message itself. It inserts a row into the
message family queue BANNER_MFQUEUE along with the passed in values and the
next sequence number from the message family sequence, setting the status to
unpublished. It returns a status code of API_CODES.SUCCESS if successful,
API_CODES.UNHANDLED_ERROR if not.

Banner Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 21

Function Level Description – GETNXT
Procedure: GETNXT
 (O_STATUS_CODE OUT VARCHAR2,
 O_ERROR_MSG OUT VARCHAR2,
 O_MESSAGE_TYPE OUT VARCHAR2,
 O_MESSAGE OUT CLOB,
 O_banner_id OUT NUMBER,
 O_channel_id OUT NUMBER)

This publicly exposed procedure is typically called by a RIB publication adaptor. Its
parameters are well defined and arranged in a specific order. The message type is the RIB
defined short message name. The message is the XML message. The family key consists
of the banner ID, which will be populated for all message types, and the channel ID,
which can be NULL.

The error text parameter contains application-generated information, such as the
application’s sequence number of the message that failed, and the Oracle or other error
that occurred when the retrieval failed.

Function Level Description – GETNXT(local)
This procedure fetches the row from the message queue table that has the lowest
sequence number. The message is retrieved, and then the row is removed from the
queue.

Trigger Impact
Trigger exists on the banner and channels tables to capture inserts, updates, and deletes.

Trigger name: EC_TABLE_BAN_AIUDR.TRG

Trigger file name: ec_table_ban_aiudr.trg

Table: BANNER
This trigger captures inserts/updates/deletes to the BANNER table and writes data into
the BANNER_MFQUEUE message queue. It calls BANNER_XML.BUILD_MESSAGE to
create the XML message, and then calls RMSMFM_BANNER.ADDTOQ to insert this
message into the message queue.

Inserts

 Sends banner info to the ADDTOQ procedure in the MFM with the message type
RMSMFM_FAMILY.BannerDesc and the original message.

Updates
 Sends banner info to the ADDTOQ procedure in the MFM with the message type

RMSMFM_FAMILY.BannerDesc and the original message

Deletes
 Sends banner info to the ADDTOQ procedure in the MFM with the message type

RMSMFM_FAMILY.BannerRef and the original message.

Publication Designs

22 Oracle Retail Merchandising System

Trigger name: EC_TABLE_CHN_AIUDR.TRG

Trigger file name: ec_table_chn_aiudr.trg

Table: CHANNELS
This trigger captures inserts/updates/deletes to the CHANNELS table and writes data
into the BANNER_MFQUEUE message queue. It calls
CHANNEL_XML.BUILD_MESSAGE to create the XML message, and then calls
RMSMFM_BANNER.ADDTOQ to insert this message into the message queue.

Inserts
 Sends channel info to the ADDTOQ procedure in the MFM with the message type

RMSMFM_FAMILY.ChannelDesc and the original message.

Updates
 Sends channel info to the ADDTOQ procedure in the MFM with the message type

RMSMFM_FAMILY.ChannelDesc and the original message.

Deletes
 Sends channel info to the ADDTOQ procedure in the MFM with the message type

RMSMFM_FAMILY.ChannelRef and the original message.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

BannerCre Banner Create Message BannerDesc.xsd

BannerMod Banner Modify Message BannerDesc.xsd

BannerDel Banner Delete Message BannerRef.xsd

ChannelsCre Channels Create Message ChannelDesc.xsd

ChannelsMod Channels Modify Message ChannelDesc.xsd

ChannelsDel Channels Delete Message ChannelRef.xsd

Table Impact

TABLE SELECT INSERT UPDATE DELETE

BANNER_MFQUEUE Yes Yes No Yes

Design Assumptions
 One of the primary assumptions in the current approach is that ease of code will

outweigh performance considerations. It is hoped that the ‘trickle’ nature of the flow
of data will decrease the need to dwell on performance issues and instead allow
developers to code in the easiest and most straight forward manner.

Customer Order Fulfillment Confirmation Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 23

Customer Order Fulfillment Confirmation Publication API
Functional Area

Customer Order

Business Overview
When RMS is integrated with an external OMS, one of the supported deployment
methods is interfacing customer order fulfillment requests into RMS through the RIB
JMS. When RMS processes customer order requests, it will also publish a confirmation
message containing the following information:

 Customer order number
 Fulfillment order number

 Confirm Type – ‘C’ (order fully created), ‘P’ (order partially created), or ‘X’ (order not
created)

 Confirm number – PO or Transfer in RMS

 Item

 Reference Item
 Confirm quantity

 Confirm quantity UOM

Package Impact

Business Object ID
A customer order associated with an ordcust_no on ORDCUST is the business object to
be published through this API.

Package name: RMSMFM_ORDCUST

Spec file name: rmsmfm_ordcusts.pls

Body file name: rmsmfm_ordcustb.pls

Package Specification – Global Variables
FAMILY RIB_SETTINGS.FAMILY%TYPE := 'fulfilordcfm';

LP_cre_type RIB_TYPE_SETTINGS.TYPE%TYPE := 'fulfilordcfmcre';

Function Level Description – ADDTOQ
ADDTOQ(O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message_type IN ORDCUST_PUB_INFO.MESSAGE_TYPE%TYPE,
 I_ordcust_no IN ORDCUST.ORDCUST_NO%TYPE)

 A trigger on the ORDCUST_PUB_TEMP table will call this function to add the
customer order number to the ORDCUST_PUB_INFO table for publishing to the RIB.
Only the create message type (‘fulfilordcfmcre’) is supported.

 Validate all the input parameters to this function against NULL. If any has NULL
value then return from the function with the appropriate error message.

 Insert a record in the ORDCUST_PUB_INFO table. The published flag will be set to
‘U’. The correct thread for the business transaction will be calculated and written.
Call API_LIBRARY. GET_RIB_SETTINGS to get the number of threads used for the

Publication Designs

24 Oracle Retail Merchandising System

publisher. Using the number of threads, and the business object id i.e. customer
order number, calculate the thread value.

Function Level Description – GETNXT
GETNXT(O_status_code IN OUT VARCHAR2,

 O_error_message IN OUT VARCHAR2,

 O_message_type IN OUT VARCHAR2,

 O_message IN OUT RIB_OBJECT,

 O_bus_obj_id IN OUT RIB_BUSOBJID_TBL,

 O_routing_info IN OUT RIB_ROUTINGINFO_TBL,

 I_num_threads IN NUMBER DEFAULT 1,

 I_thread_val IN NUMBER DEFAULT 1)

Initialize LP_error_status to API_CODES.HOSPITAL at the beginning of GETNXT.

The RIB calls GETNXT to get messages. It performs a cursor loop on the unpublished
records on the ORDCUST_PUB_INFO table (pub_status = ‘U’). It should only need to
execute one loop iteration in most cases. For each record retrieved, GETNXT gets the
following:

1. A lock of the queue table (ORDCUST_PUB_INFO) for the current business object.
The lock is obtained by calling the function LOCK_THE_BLOCK. If the record for the
current business object is locked, the current message is skipped.

2. The information from the ORDCUST_PUB_INFO table is passed to
PROCESS_QUEUE_RECORD. PROCESS_QUEUE_RECORD will build the RIB
Object message to pass back to the RIB. If PROCESS_QUEUE_RECORD does not run
successfully, GETNXT raises an exception.

3. If any exception is raised in GETNXT, including the exception raised by an
unsuccessful call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS is called.

4. Unconditionally exit from the loop after the successful processing of
PROCESS_QUEUE_RECORD function, assuming the confirmation message is
published successfully.

The loop will need to execute more than once if the record is locked on the queue table
for the current business object.

Function Level Description – PUB_RETRY
PUB_RETRY(O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 O_message_type IN OUT VARCHAR2,
 O_message IN OUT RIB_OBJECT,
 O_bus_obj_id IN OUT RIB_BUSOBJID_TBL,
 O_routing_info IN OUT RIB_ROUTINGINFO_TBL,
 I_ref_object IN RIB_OBJECT)

This procedure republishes the entity that failed to be published before. It is the same as
GETNXT except that the record on ORDCUST_PUB_INFO to be published must match
the passed in sequence number contained in the ROUTING_INFO.

Function Level Description – PROCESS_QUEUE_RECORD (local)
PROCESS_QUEUE_RECORD(

O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_message IN OUT NOCOPY RIB_OBJECT,
 O_routing_info IN OUT NOCOPY RIB_ROUTINGINFO_TBL,
 I_ordcust_no IN ORDCUST_PUB_INFO.ORDCUST_NO%TYPE,
 I_seq_no IN ORDCUST_PUB_INFO.SEQ_NO%TYPE)

Customer Order Fulfillment Confirmation Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 25

This function controls the building of Oracle Objects given the business transaction’s key
values and a message type. It contains all of the shared processing between GETNXT and
PUB_RETRY.

 The correct thread for the business transaction will be calculated and written. Call
API_LIBRARY. GET_RIB_SETTINGS to get the number of threads used for the
publisher. Using the number of threads, and the business object id i.e. customer
order number, calculate the thread value.

 Build the header and detail object by calling BUILD_MSG_OBJECT.

 Update the pub_status to ‘P’ for the current record in the ORDCUST_PUB_INFO
table.

 Delete the current record in the ORDCUST_PUB_TEMP table.

 Set LP_error_status to API_CODES.UNHANDLED_ERROR before any DML
statements.

No routing information will be included since all published messages will go to OMS
and no other applications.

Function Level Description – BUILD_MSG_OBJECT (local)
Take all necessary data from the ORDCUST, ORDCUST_DETAIL, ORDHEAD,
ORDLOC, TSFHEAD, and TSFDETAIL tables and put into a
“RIB_FulfilOrdCfmDesc_REC” object.

Function Level Description – LOCK_THE_BLOCK (local)
This function locks the record for the current business object. This is to ensure that
GETNXT does not wait on any business processes that currently have the queue table
locked and have not committed.

Function Level Description – HANDLE_ERRORS (local)
HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is
raised.

If the error is a non-fatal error, GETNXT passes the sequence number of the driving
ORDCUST_PUB_INFO record back to the RIB in the ROUTING_INFO. It sends back a
status of ‘H’ - Hospital to the RIB as well. It then updates the status of the queue record
to ‘H’, so that it will not get picked up again by the driving cursor in GETNXT.

If the error is a fatal error, a status of ‘E’ - Error is returned to the RIB.
The error is considered non-fatal if no DML has occurred yet. Whenever DML has
occurred, then the global variable LP_error_status is flipped from ‘H’ to ‘E’.

Trigger Impact

Trigger name: EC_TABLE_ORP_AIR

Trigger file name: ec_table_orp_air.trg

Table: ORDCUST_PUB_TEMP
The trigger ORDCUST_PUB_TEMP table will capture inserts and send the appropriate
column values to the ADDTOQ procedure in the MFM with message type
RMSMFM_ORDCUST.LP_cre_type.

Publication Designs

26 Oracle Retail Merchandising System

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

fulfilordcfmcre Customer Order Fulfillment Confirmation
Create Message

FulfilOrdCfmDesc.xsd

Design Assumptions
 RMS will only publish confirmation ‘create’ messages associated to a PO or transfer.

 Push off all DML statements as late as possible. Once DML statements have taken
place, any error becomes a fatal error rather than a hospital error.

 OMS is the only subscriber of this message family. Since all published customer
order fulfillment confirmation messages will be routed to OMS, no routing info is
needed.

Table Impact

TABLE SELECT INSERT UPDATE DELETE

ORDCUST_PUB_INFO Yes Yes Yes No

ORDCUST_PUB_TEMP Yes No No Yes

ORDCUST Yes No No No

ORDCUST_DETAIL Yes No No No

ORDHEAD Yes No No No

ORDLOC Yes No No No

TSFHEAD Yes No No No

TSFDETAIL Yes No No No

Delivery Slot Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 27

Delivery Slot Publication API
RMS provides retailers the option of creating store orders for items with multiple
delivery instructions per day for the same item. RMS provides this multiple deliveries
per day support by generating multiple purchase orders and/or transfers based on need
day and delivery slot.

Since the replenishment batch can be run during the day time, it is necessary to lock the
important transaction tables. The following tables are locked for the intraday
replenishment:

 TSF_DETAIL
 ITEM_LOC_SOH

 ORD_IMV_MGMT

 CONTRACT_DETAIL

 CONTRACT_HEAD

 DEAL_HEAD

 ALLOC_CHRG
 ALLOC_HEADER

 ALLOC_DETAIL

 ORDLOC

 ORDLOC_REV

 ORDLOC_WKSHT

 ORDLOC_EXP
 ORDCUST

 ORDHEAD_REV

 ORDSKU

 REQ_DOC

 TIMELINE

 ORDLC
 DEAL_ITEMLOC_DIV_GRP

 DEAL_ITEMLOC_DCS

 DEAL_ITEMLOC_ITEM

 DEAL_ITEMLOC_PARENT_DIFF

 DEAL_THRESHOLD

 DEAL_DETAIL
 DEAL_QUEUE

 DEAL_CALC_QUEUE

 REV_ORDERS

Business Overview
Delivery slot ID publication consists of a single flat message containing the delivery slot
details from the table DELIVERY_SLOT. One message will be synchronously created and
placed in the message queue each time a delivery_slot_id is created, updated or deleted
from delivery_slot. When a delivery_slot_id is created or deleted, the flat message will
contain 3 attributes i.e delivery_slot_id, deliver_slot_desc and delivery_slot_sequence.
Messages are retrieved from the message queue in the order they were created.

Publication Designs

28 Oracle Retail Merchandising System

Package Impact

Create Delivery_Slot
1. Prerequisites: Delivery_slot does not already exist.

2. Activity Detail: Any insert to the DELIVERY_SLOT table inserts a ‘dlvysltcre’
message_type record on the DELIVERY_SLOT_MFQUEUE table.

Update Delivery_Slot
1. Prerequisites: Delivery_slot does already exist.

2. Activity Detail: Any update to the DELIVERY_SLOT table inserts a ‘dlvysltmod’
message_type record on the DELIVERY_SLOT_MFQUEUE table.

Delete Delivery_slot
1. Prerequisites: Delivery_slot already exist.

2. Activity Detail: Deleting a delivery_slot_id removes the record from the delivery_slot
table and inserts a ‘dlvysltdel’ row to the DELIVERY_SLOT_MFQUEUE table.

Package name: RMSMFM_DLVYSLT

Spec file name: rmsmfm_dlvyslts.pls

Body file name: rmsmfm_dlvysltb.pls

Package Specification – Global Variables
FAMILY CONSTANT RIB_SETTINGS.FAMILY%TYPE: = 'dlvyslt';

 SLT_ADD CONSTANT VARCHAR2 (15): = 'dlvysltcre';

 SLT_UPD CONSTANT VARCHAR2 (15) := 'dlvysltmod';

 SLT_DEL CONSTANT VARCHAR2 (15): = 'dlvysltdel';

Function Level Description – ADDTOQ
Function:

 ADDTOQ
 (O_status OUT VARCHAR2,
 O_text OUT VARCHAR2,
 I_message_type IN DELIVERY_SLOT_MFQUEUE.MESSAGE_TYPE%TYPE,
 I_delivery_slot_id IN DELIVERY_SLOT_MFQUEUE.DELIVERY_SLOT_ID%TYPE,
 I_delivery_slot_desc IN DELIVERY_SLOT_MFQUEUE.DELIVERY_SLOT_DESC%TYPE,
 I_delivery_sequence IN DELIVERY_SLOT_MFQUEUE.DELIVERY_SLOT_SEQUENCE%TYPE);

An event capture trigger calls this procedure with the message type for synchronously
captured messages. It inserts a row into the message family queue along with the passed
in values, the next sequence number from the message family sequence, and a status of
unpublished. Due to the very small data volume of delivery slots, no multi-threading is
supported for this publishing. Therefore, the thread_no is always set to 1. It returns the
standard publishing API success or failure codes.

Function Level Description – GETNXT
Procedure: GETNXT
 (O_status_code IN OUT VARCHAR2,
 O_error_msg IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_message_type IN OUT DELIVERY_SLOT_MFQUEUE.MESSAGE_TYPE%TYPE,
 O_message IN OUT RIB_OBJECT,

Delivery Slot Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 29

 O_bus_obj_id IN OUT RIB_BUSOBJID_TBL,
 O_routing_info IN OUT RIB_ROUTINGINFO_TBL,
 I_num_threads IN NUMBER DEFAULT 1
 I_thread_val IN NUMBER DEFAULT 1);

This procedure is publically available and is typically called by a RIB publication
adaptor. Its parameters are well defined and arranged in a specific order. The message
type is the RIB defined short message name (‘dlvyslt’) and the message is a RIB object
(“RIB_DeliverySlotDesc_REC” for a create and update message,
"RIB_DeliverySlotRef_REC" for a delete message).

The error text parameter contains application-generated information, such as the
application’s sequence number of the message that failed, and the Oracle or other error
that occurred when the retrieval failed.

This program loops through each message on the DELIVERY_SLOT_MFQUEUE table,
and calls PROCESS_QUEUE_RECORD. When no messages are found, the program exits
returning the ‘N’o message found API code.

Function Level Description – PUB_RETRY
Procedure: PUB_RETRY
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type IN OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id IN OUT RIB_BUSOBJID_TBL,
 O_routing_info IN OUT RIB_ROUTINGINFO_TBL,
 I_REF_OBJECT IN RIB_OBJECT);

Same as GETNXT except:

It only loops for a specific row in the DELIVERY_SLOT_MFQUEUE table. The record on
DELIVERY_SLOT_MFQUEUE must match the sequence number passed in routing info
data structure.

Function Level Description – PROCESS_QUEUE_DLVY_SLT (local)
This function controls the building of Oracle Objects given the business transaction’s key
values and a message type. It contains all of the shared processing between GETNXT and
PUB_RETRY.

If the record from DELIVERY_SLOT_MFQUEUE is a create or update message then

 Build and pass the RIB_DeliverySlotDesc_REC object

 Delete the record from the delivery_slot_mfqueue table.

If the record from DELIVERY_SLOT_MFQUEUE table is a delete then

 Build and pass the RIB_DeliverySlotRef_REC object.

Delete the record from the delivery_slot_mfqueue table.

Publication Designs

30 Oracle Retail Merchandising System

Trigger Impact
Create a trigger on Delivery_Slot table to capture inserts and deletes.

Trigger name: EC_TABLE_DLVY_AIUDR.TRG

Trigger file name: ec_table_dlvy_aiudr.trg

Table: Delivery_Slot

Inserts
 Send the I_delivery_slot_id, I_delivery_slot_desc, I_delivery_sequence and a

message type of ‘dlvysltcre’ to the ADDTOQ procedure.

Updates
 Send the I_delivery_slot_id, I_delivery_slot_desc, I_delivery_sequence and a

message type of ‘dlvysltmod’ to the ADDTOQ procedure.

Deletes
 Send the I_delivery_slot_id, I_delivery_slot_desc, I_delivery_sequence and a

message type of ‘dlvysltdel’ to the ADDTOQ procedure-.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

Dlvysltcre Delivery slot Create Message DeliverySlotDesc.xsd

Dlvysltdel Delivery slot delete Message DeliverySlotRef.xsd

Table Impact

TABLE SELECT INSERT UPDATE DELETE

DELIVERY_SLOT_MFQUEUE YES YES Yes YES

Design Assumptions
 It is not possible for the trigger to know the status of anything modified by GETNXT.

If a trigger is trying to delete queue records that GETNXT currently has locked, it
will have to wait until GETNXT is finished and removes the lock. It is assumed that
this time will be fairly short (at most 2-3 seconds). This also has to occur at the same
time GETNXT is processing the current business object.

 Delay all DML statements to as late a time as possible. Once DML statements have
taken place, any error becomes a fatal error rather than a hospital error.

Differentiator Groups Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 31

Differentiator Groups Publication API

Business Overview
Differentiator (Diff) Group publication consists of a single flat message containing diff
group attributes from the tables DIFF_GROUP_HEAD and DIFF_GROUP_DETAIL. A
message is synchronously created and placed in the message queue each time a diff
group (DIFF_GROUP_HEAD) is created, modified, or deleted or when a diff
(DIFF_GROUP_DETAIL) is created, modified, or deleted from a diff group. When a diff
group (DIFF_GROUP_HEAD) is created or modified, the flat message contains
numerous attributes of the group. When a diff group is deleted, the message contains the
both unique identifier of the group, and the diff_group_id. When a diff
(diff_group_detail) is created or modified, the flat message contains numerous attributes
of the diff. When a diff is deleted, the message contains the unique identifier of the diff
group and the diff, diff_group_id and diff_id. A Message is retrieved from the message
queue in the order they were created.

Package Impact

Create Diff Group
1. Prerequisites: Diff Group does not already exist.

2. Activity Detail: Any change to the DIFF_GROUP_HEAD table inserts a
DiffGrpHdrCre message_type record on the DIFFGRP_MFQUEUE table.

3. Messages: The DiffGrpHdrDesc message is created. It is a flat, synchronous message
containing a full snapshot of the diff group at the time the message is published.

Modify Diff Group
1. Prerequisites: Diff Group exists.

2. Activity Detail: Any change to the DIFF_GROUP_HEAD table inserts a
DiffGrpHdrMod message_type record on the DIFFGRP_MFQUEUE table.

3. Messages: The DiffGrpHdrDesc message is created. It is a flat, synchronous
message containing a full snapshot of the diff group at the time the message is
published.

Create Diff Group Detail
1. Prerequisites: A Diff Group already exists, and the diff ID exists on diff_ids, but the

diff ID does not exist within the diff group.
2. Activity Detail: Any Differentiators added to a diff group inserts a record to the

DIFF_GROUP_HEAD table. A DiffGrpDtlCre message type record is also inserted on
the DIFFGRP_MFQUEUE table. A foreign key to the DIFF_GROUP_HEAD table
checks the existence of the diff group the value is created to supplement.

3. Messages: DiffGrpDtlDesc message type is created. It is a hierarchical, synchronous
message containing a snapshot of the DIFF_GROUP_DETAIL table at the time the
message is published.

Modify Diff Group Detail
1. Prerequisites: Diff Group and the Diff ID within the diff group

(DIFF_GROUP_DETAIL record) exist.

2. Activity Detail: Any change to the diffs within a diff group modifies a record to the
DIFF_GROUP_HEAD table. A DiffGrpDtlMod message type record is also inserted

Publication Designs

32 Oracle Retail Merchandising System

on the DIFFGRP_MFQUEUE table. A foreign key to the DIFF_GROUP_HEAD table
checks the existence of the diff group the value is created to supplement.

3. Messages DiffGrpDtlDesc message is created. It is a flat, synchronous message
containing a snapshot of the DIFF_GROUP_DETAIL table at the time the message is
published.

Delete Diff Group Detail
1. Prerequisites: Diff Group and the Diff ID within the diff group

(DIFF_GROUP_DETAIL record) exist.

2. Activity Detail: Deleting a diff from a Diff Group removes it from the
DIFF_GROUP_DETAIL table and inserts a DiffGrpDtlDel row to the
DIFFGRP_MFQUEUE table.

3. Message: A DiffGrpDtlRef message is created. It is a flat, synchronous message
containing the primary key with which the external systems can remove it from their
systems.

Delete Diff Group
1. Prerequisites: Diff Group exists and a diff ID within the diff group

(DIFF_GROUP_DETAIL record) may or may not exist.

2. Activity Detail: Deleting a Diff Group removes it from the DIFF_GROUP_HEAD
table and inserts a DiffGrpDel row to the DIFFGRP_MFQUEUE table. Because the
Diff Group Maintenance form in RMS automatically removes any child records on
the DIFF_GROUP_DETAIL table when the diff group is removed, there will be a row
inserted to the DIFFGRP_MFQUEUE table for each DIFF_GROUP_DETAIL record
associated with the deleted diff group as well. These will receive the lower sequence
numbers so that these will be acted upon first in the message queue. They will look
like the DELETE DIFF_GROUP_DETAIL message detailed in the section above.

3. Message: A DiffGrpRef message is created for the diff group only. It is a flat,
synchronous message containing the primary key with which the external systems
can remove it from their systems.

Package name: RMSMFM_DIFFGRP

Spec file name: rmsmfm_diffgrps.pls

Body file name: rmsmfm_diffgrpb.pls
Function Level Description – ADDTOQ
Function: ADDTOQ
 (O_status OUT VARCHAR2,
 O_text OUT VARCHAR2,
 I_message_type IN DIFFGRP_MFQUEUE.MESSAGE_TYPE%TYPE
 I_diff_group_id IN DIFFGRP_MFQUEUE.DIFF_GROUP_ID%TYPE,
 I_diff_id IN DIFFGRP_MFQUEUE.DIFF_ID%TYPE,
 I_message IN CLOB);

This procedure is called by an event capture trigger, and takes the message type, family
key values and, for synchronously captured messages, the message itself. It inserts a row
into the message family queue along with the passed in values and the next sequence
number from the message family sequence, setting the status to unpublished, or skips in
the case of consolidation messages. It returns error codes and strings according to the
standards of the application in which it is being implemented.

Differentiator Groups Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 33

Function Level Description – GETNXT
Procedure: GETNXT
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type OUT VARCHAR2,
 Message OUT CLOB,
 O_diff_group_id OUT DIFFGRP_MFQUEUE.DIFF_GROUP_ID%TYPE,
 O_diff_id OUT DIFFGRP_MFQUEUE.DIFF_ID%TYPE);

This publicly exposed procedure is typically called by a RIB publication adaptor. Its
parameters are well defined and arranged in a specific order. The message type is the RIB
defined short message name, the message is the xml message, and the family key(s) are
the key for the message as pertains to the family, not all of which will necessarily be
populated for all message types. Status code is the API_CODES which denotes the
success or failure of processing the message.

The error text parameter contains application-generated information, such as the
application’s sequence number of the message that failed, and the Oracle or other error
that occurred when the retrieval failed. The facility ID is only included in messages
coming from RWMS.

Trigger Impact
A trigger exists on the DIFF_GROUP_HEAD and DIFF_GROUP_DETAIL table to
capture inserts, updates, and deletes.

Trigger name: EC_TABLE_DGH_AIUDR.TRG

Trigger file name: ec_table_dgh_aiudr.trg

Table: DIFF_GROUP_HEAD

Inserts
 Send the I_diff_group_id to the ADDTOQ procedure in the MFM with the message

type RMSMFM_FAMILY.

Updates
 Send the I_diff_group_id to the ADDTOQ procedure in the MFM with the message

type RMSMFM_FAMILY.
 Any change to the DIFF_GROUP_HEAD table inserts a DiffGrpHdrCre

message_type record on the DIFFGRP_MFQUEUE table.

Deletes
 Send the I_diff_group_id to the ADDTOQ procedure in the MFM with the message

type RMSMFM_FAMILY.

Trigger name: EC_TABLE_DGD_AIUDR.TRG

Trigger file name: ec_table_dgd_aiudr.trg

Table: DIFF_GROUP_DETAIL

Inserts
 Send the I_diff_group_id, I_diff_id to the ADDTOQ procedure in the MFM with the

message type RMSMFM_FAMILY.

Publication Designs

34 Oracle Retail Merchandising System

Updates
 Send the I_diff_group_id, I_diff_id to the ADDTOQ procedure in the MFM with the

message type RMSMFM_FAMILY.

 Any Differentiators added to a diff group inserts a record to the
DIFF_GROUP_HEAD table. A DiffGrpDtlCre message type record is also inserted on
the DIFFGRP_MFQUEUE table. A foreign key to the DIFF_GROUP_HEAD table
checks the existence of the diff group the value is created to supplement.

Deletes
 Send the I_diff_group_id, I_diff_id to the ADDTOQ procedure in the MFM with the

message type RMSMFM_FAMILY.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

DiffGrpHdrCre Differentiator Header Create Message DiffGrpHdrDesc.xsd

DiffGrpHdrMod Differentiator Header Modify Message DiffGrpHdrDesc.xsd

DiffGrpHdrDel Differentiator Header Delete Message DiffGrpHdrRef.xsd

DiffGrpDtlCre Differentiator Detail Create Message DiffGrpDtlDesc.xsd

DiffGrpDtlMod Differentiator Detail Modify Message DiffGrpDtlDesc.xsd

DiffGrpDtlDel Differentiator Detail Delete Message DiffGrpDtlRef.xsd

Table Impact

TABLE SELECT INSERT UPDATE DELETE

DIFFGRP_MFQUEUE YES YES NO YES

Design Assumptions
 It is not possible for a detail trigger to accurately know the status of a header table.

 It is not possible for a header trigger or a detail trigger to know the status of anything
modified by GETNXT. If a header trigger or detail trigger is trying to delete queue
records that GETNXT currently has locked, it will have to wait until GETNXT is
finished and removes the lock. It is assumed that this time will be fairly short (at
most 2-3 seconds.) It is also assumed that this will occur rarely because it involves
updating/deleting detail records on a business object that has already been
approved. This also has to occur at the same time GETNXT is processing the current
business object.

 Delay all DML statements to as late a time as possible. Once DML statements have
taken place, any error becomes a fatal error rather than a hospital error.

Differentiator ID Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 35

Differentiator ID Publication API

Functional Area
Foundation

Business Overview
RMS publishes messages for differentiator (diff) identifiers (diff IDs), and diff groups.

When diff are created in RMS and need to be sent to other systems, they are sent out via
diff ID publication. When the external system receives information about an item that
includes the new diff ID, that system understands what the diff ID refers to.

Diff message processes
Diff message publication processes begin whenever a trigger ‘fires’ on one of the diff
tables. When that occurs, the trigger extracts the affected row on the table and publishes
the data to the corresponding message family queue staging table. A total of nine
messages can be published; however, they group into these three categories:

 Group Header

 Group Details

 Diff IDs

Diff ID publication consists of a single flat message containing diffattributes from the
table DIFF_IDS. One message will be synchronously created and placed in the message
queue each time a diff (diff_ids) is created, modified, or deleted. When a diff (diff_ids) is
created or modified, the flat message will contain numerous attributes of the diff. When a
diff is deleted, the message will simply contain the unique identifier of the diff, the
diff_id. Messages are retrieved from the message queue in the order they were created.

Package Impact
Create Diff Id

1. Prerequisites: Diff ID does not already exist.
2. Activity Detail: Any change to the DIFF_IDS table inserts a DiffCre message_type

record on the DIFFID_MFQUEUE table.

3. Messages: The DiffDesc message is created. It is a flat, synchronous message
containing a full snapshot of the diff ID at the time the message is published.

Modify Diff Id

1. Prerequisites: Diff ID exists.
2. Activity Detail: Any change to the DIFF_IDS table inserts a DiffMod message_type

record on the DIFFID_MFQUEUE table.

3. Messages: The DiffDesc message is created. It is a flat, synchronous message
containing a full snapshot of the diff ID at the time the message is published.

Delete Diff Id

1. Prerequisites: Diff ID exists.
2. Activity Detail: Deleting a Diff ID removes it from the DIFF_IDS table and inserts a

DiffDel row to the DIFFID_MFQUEUE table.

3. Message: A DiffRef message is created. It is a flat, synchronous message containing
the primary key with which the external systems can remove it from their systems.

Publication Designs

36 Oracle Retail Merchandising System

Package name: RMSMFM_DIFFID

Spec file name: rmsmfm_diffids.pls

Body file name: rmsmfm_diffidb.pls

Package Specification – Global Variables
None

Function Level Description – ADDTOQ
Function: ADDTOQ(O_status OUT VARCHAR2,
 O_text OUT VARCHAR2,
 I_message_type IN DIFFID_MFQUEUE.MESSAGE_TYPE%TYPE,
 I_diff_id IN DIFFID_MFQUEUE.DIFF_ID%TYPE,
 I_message IN CLOB)

This procedure called by EC_TABLE_DID_AIUDR , takes the message type, diff ID, and
the message itself. It inserts a row into the message family queue DIFFID_MFQUEUE
along with the passed in values and the next sequence number from the message family
sequence, setting the status to unpublished. It returns a status code of
API_CODES.SUCCESS if successful, API_CODES.UNHANDLED_ERROR if not.

Function Level Description – GETNXT
Procedure: GETNXT(O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type OUT VARCHAR2,
 O_message OUT CLOB,
 O_diff_id OUT DIFFGRP_MFQUEUE.DIFF_ID%TYPE)

This publicly exposed procedure is typically called by a RIB publication adaptor. Its
parameters are well defined and arranged in a specific order. The message type is the RIB
defined short message name, the message is the xml message, and the family key(s) are
the key for the message as pertains to the family, not all of which will necessarily be
populated for all message types.

The error text parameter contains application-generated information, such as the
application’s sequence number of the message that failed, and the Oracle or other error
that occurred when the retrieval failed.

Function Level Description – GETNXT(local)
This procedure fetches the row from the message queue table that has the lowest
sequence number. The message is retrieved, and then the row is removed from the
queue.

Trigger Impact
A trigger exists on the DIFF_IDS and DIFFID_MFQUEUE tables to capture Inserts,
Updates, and Deletes.

Trigger name: EC_TABLE_DID_AIUDR.TRG

Trigger file name: ec_table_did_aiudr.trg

Table: DIFF_IDs
DIFFID_XML. BUILD_MESSAGE (O_status, O_text, O_message, I_record, I_action_type)
– This function is called by the trigger EC_TABLE_DID_AIUDR on insert, update and

Differentiator ID Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 37

delete of the DIFF_IDS table. This function gathers all the data necessary to build the
message that needs to be sent to the Oracle Retail Integration Bus. It determines the
proper message to build based on the action_type that is sent in the trigger. It builds
DiffRef xml messages for delete statements or DiffDesc xml messages for updates or
inserts.

Inserts
 Sets action_type to ‘A’dd and message_type to ‘DiffCre’.

Updates
 Sets action_type to ‘M’odify and message_type to ‘DiffMod’.

Deletes
 Sets action_type to ‘D’elete and message_type to ‘DiffDel’.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

DiffCre Diffid Create Message DiffDesc.xsd

DiffMod Diffid Modify Message DiffDesc.xsd

DiffDel Diffid Delete Message DiffRef.xsd

Table Impact

TABLE SELECT INSERT UPDATE DELETE

DIFFID_MFQUEUE Yes Yes No Yes

Design Assumptions
 One of the primary assumptions in the current approach is that ease of code will

outweigh performance considerations. It is hoped that the ‘trickle’ nature of the flow
of data will decrease the need to dwell on performance issues and instead allow
developers to code in the easiest and most straight forward manner.

 The adaptor is only setup to call stored procedures, not stored functions. Any public
program then needs to be a procedure.

Publication Designs

38 Oracle Retail Merchandising System

Item Publication API

Functional Area
Foundation

Business Overview
RMS publishes messages about items to the Oracle Retail Integration Bus (RIB). In
situations where a retailer creates a new item in RMS, the message that ultimately is
published to the RIB contains a hierarchical structure of the item itself along with all
components that are associated with that item. Items and item components make up
what is called the Items message family.
After the item creation message has been published to the RIB for use by external
applications, any modifications to the basic item or its components cause the publication
of individual messages specific to that component. Deletion of an item and component
records has similar effects on the message modification process, with the exception that
the delete message holds only the key(s) for the record.

Deposit items
A deposit item is a product that has a portion which is returnable to the supplier and
sold to the customer, with a deposit taken for the returnable portion. Because the
contents portion of the item and the container portion of the item have to be managed in
separate financial accounts (as the container item would be posted to a liabilities account)
with different attributes, the retailer must set up two separate items. All returns of used
deposit items (the returned item) are managed as a separate product, to track these
products separately and as a generic item not linked to the actual deposit item (for
example, bottles being washed and having no label).

The retailer can never put a container item on a transfer. Instead, the container item is
added to returns to vendors (RTVs) automatically when the retailer adds the associated
content item.

Deposit item attributes in RMS enable contents, container and crate items to be
distinguished from one another. Additionally, it is possible to link a contents item to a
container item for the purposes of inventory management.

In addition to contents and container items, many deposit items are delivered in plastic
crates, which are also given to the customer on a deposit basis. These crates are sold to a
customer as an additional separate product. Individual crates are not linked with
contents or container items. Crates are specified in the system with a deposit item
attribute.

From a receiving perspective, only the content item can be received. The receipt of a PO
shows the container item but the receipt of a transfer does not. Similar to RTV
functionality, online purchase order functionality automatically adds the container. The
system automatically replicates all transactions for the container item in the stock ledger.
In sum, for POs and RTVs, the container item is included; for transfers, no replication
occurs.

Catch-Weight Items
Retailers can order and manage products for the following types of catch-weight item:

 Type 1 – Purchase in fixed weight simple packs: sell by variable weight (for example,
bananas).

Item Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 39

 Type 2 – Purchase in variable weight simple packs: sell by variable weight (for
example, ham on the bone sold on a delicatessen counter).

 Type 3 – Purchase in fixed weight simple packs containing a fixed number of eaches:
sell by variable weight eaches (for example, pre-packaged cheese).

 Type 4– Purchase in variable weight simple packs containing a fixed number of
eaches: sell by variable weight eaches (for example, pre-packaged sirloin steak).

Note: Oracle Retail suggests that catch-weight item cases be
managed through the standard simple pack functionality.

In order for catch-weight items to be managed in RMS, the following item attributes are
available:

 Cost UOM – All items in RMS will be able to have the cost of the item managed in a
separate unit of measure (UOM) from the standard UOM. Where this is in a different
UOM class from the standard UOM, case dimensions must be set up.

 Catch-weight item pack details – Tolerance values and average case weights are
stored for catch-weight item cases to allow the retailer to report on the sizes of cases
received from suppliers.

 Maximum catch-weight tolerance threshold.
 Minimum catch-weight tolerance threshold.

Retailers can set up the following properties for a catch-weight item:

 Order type

 Sale type

Retailers can also specify the following, at the item-supplier-country level:

 Cost unit of measure (CUOM).

Receiving and inventory movement impact on catch-weight items
Inventory transaction messages include purchase order receiving, stock order receiving,
returns to vendor, direct store delivery receiving, inventory adjustments and bill of
lading. These messages include attributes that represent, for catch-weight items, the
actual weight of goods involved in a transaction. These attributes are weight and weight
UOM.

When RMS subscribes to inventory transaction messages containing such weight data,
the transaction weight will be used for two purposes:

 To update weighted average cost (WAC) using the weight rather than the number of
units

and
To update the average weight value of simple packs

Note: The WAC calculation does not apply to return to
vendors (RTVs).

Item Transformation
Item transformation allows retailers to manage items where the actual transformation of
a product cannot be adequately recorded due to in-store processes.

With product transformation, new ‘transform’ items are set up as either sellable only or
orderable only.

Publication Designs

40 Oracle Retail Merchandising System

 Sellable only items – A sellable only item has no inventory in the system, so
inventory records cannot be viewed from the item maintenance screens. Sellable only
items do not hold any supplier links and therefore have no cost prices associated
with them.

 Orderable only items – Orderable only items hold inventory, but are not sellable at
the POS system. Therefore, no information is sent to the POS system for these items,
and no unit retail prices by zone are held for these items.

To hold the relationship between the orderable items and the sellable items, RMS stores
the transformation details. These details are used to process sales and inventory
transactions for the items.
The following diagram shows how item transformation works:

Orderable item
(for example,
meat carcass)

Sellable item
(for example,

steak)

Sellable item
(for example,
ground beef)

Sellable item
(for example,

joint)

Break to Sell
Transformation

Item transformation

Item and Item Component Descriptions
The item message family is a logical grouping for all item data published to the RIB. The
components of item messages and their base tables in RMS are:

 Item from the ITEM_MASTER table

 Item-supplier from ITEM_SUPPLIER

 Item-supplier-country from ITEM_SUPP_COUNTRY

 Item-supplier-country-dimension from ITEM_SUPP_COUNTRY_DIM (DIM is the
each, inner, pallet, and case dimension for the item, as specified)

 Item-image from ITEM_IMAGE

 Item-UDA identifier-UDA value from UDA_ITEM_LOV (UDA is a user-defined
attribute and LOV is list of values)

 Item-UDA identifier from UDA_ITEM_DATE (for the item and UDA date)

 Item-UDA identifier from UDA_ITEM_FF (for UDA, free-format data beyond the
values for LOV and date)

 Item-pack components (Bill of Material [BOM]) from PACKITEM_BREAKOUT

 Item UPC reference from ITEM_MASTER.ITEM_NUMBER_TYPE (values held as
code type ‘UPCT’ on code_head and code_detail tables)

 Item ticket from ITEM_TICKET

 Item relationship details from RELATED_ITEM_HEAD
 Related Items details from RELATED_ITEM_DETAIL

Item Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 41

New Item Message Processes
The creation of a new item in RMS begins with an item in a worksheet status on the
ITEM_MASTER table. At the time an item is created, other relationships are being
defined as well, including the item, supplier, and country relationships, user-defined
attributes (UDAs), related items and others. These item relationship processes in effect
become components of a new item message published to the RIB. This section describes
the item creation message process and includes the basic item message itself along with
the other component relationship messages that become part of the larger item message.

Basic Item Message
As described in the preceding section, item messages can originate in a number of RMS
tables. Each of these tables holds a trigger, which fires each time an insert, update, or
delete occurs on the table. The new item record itself is displayed on the ITEM_MASTER
table. The trigger on this table creates a new message (in this case, a message of the type
ItemHdrCre), then calls the message family manager RMSMFM_ITEMS and its
ADDTOQ public procedure. ADDTOQ populates the message to the ITEM_MFQUEUE
staging table by inserting the following:

 Appropriate value into the message_type column.

 Message itself to the message column. Messages are of the data type CLOB (character
large object).

New Item Message Publication
The publication of a new item and its components to the RIB is done using a hierarchical
message. Here is how the process works:

1. A new item is held on ITEM_MASTER in a status of W (Worksheet) until it is
approved.

2. On the ITEM_MFQUEUE staging table, a Worksheet status item is displayed in the
message_type column as a value of ItemCre.

3. As the item continues to be built on ITEM_MASTER, an ItemHdrMod value is
inserted into the queue’s message_type column.

4. After the item is approved (ITEM_MASTER’s status column value of A [Approved],
the trigger causes the insertion of a value of Y (Yes) in the approve_ind column on
the queue table.

5. A message with a top-level XML tag of ItemDesc is created that serves as a message
wrapper.

At the same time, a sub-message with an XML tag of ItemHdrDesc is also created. This
subordinate tag holds a subset of data about the item, most of which is derived from the
ITEM_MASTER table.

Subordinate Data and XML Tags
While a new item is being created, item components are also being created. Described
earlier in this overview, these component item messages pertain to the item-supplier,
item-supplier-country, UDAs, and so on. For example, a new item-supplier record
created on ITEM_SUPPLIER causes the trigger on this table to add an ItemSupCre value
to the message_type column of the ITEM_MFQUEUE staging table. When the item is
approved, a message with an XML tag of ItemSupDesc is added underneath the
ItemDesc tag.

Similar processes occur with the other item components. Each component has its own
Desc XML tag, for example: ItemSupCtyDesc, ISCDimDesc.

Publication Designs

42 Oracle Retail Merchandising System

Modify and Delete Messages
Updates and deletions of item data can be included in a larger ItemDesc (item creation)
message. If not part of a larger hierarchical message, they are published individually as a
flat, non-hierarchical message. Update and delete messages are much smaller than the
large hierarchy in a newly created item message (ItemDesc).

Modify Messages
If an existing item record changes on the ITEM_MASTER table, for example, the trigger
fires to create an ItemHdrMod message and message type on the queue table. In
addition, an ItemHdrDesc message is created. If no ItemCre value already exists in the
queue, the ItemHdrDesc message is published to the RIB.

Similarly, item components like item-supplier that are modified, result in an
ItemSupMod message type inserted on the queue. If an ItemCre and an ItemSupCre
already exist, the ItemSupMod is published as part of the larger ItemDesc message.
Otherwise, the ItemSupMod is published as an ItemSupDesc message.

Delete messages
Delete messages are published in the same way that modify messages are. For example,
if an item-supplier-country relationship is deleted from RMS’ ITEM_SUP_COUNTRY
table, the dependent record on ITEM_SUPP_COUNTRY_DIM is also deleted.

1. An ItemSupCtyDel message type is displayed on the item queue table.

2. If the queue already holds an ItemCre or ItemSupCtyCre message, any
ItemSupCtyCre and ItemSupCtyMod messages are deleted.

Otherwise, ItemSupCtyDel is published by itself as an ItemSupCtyRef message to the
RIB.

Design Overview
The item message family manager is a package of procedures that adds item family
messages to the item queue and publishes these messages for the integration bus to
route. Triggers on all the item family tables call a procedure from this package to add a
“create”, “modify” or “delete” message to the queue. The integration bus calls a
procedure in this package to retrieve the next publishable item message from the queue.

All the components that comprise the creation of an item, the item/supplier for example,
remain in the queue until the item approval modification message has been published.
Any modifications or deletions that occur between item creation in “W”(worksheet)
status and “A”(Approved) status are applied to the “create” messages or deleted from
the queue as required. For example, if an item UDA is added before item approval and
then later deleted before item approval, the item UDA “create” message would be
deleted from the queue before publishing the item. If an item/supplier record is updated
for a new item before the item is approved, the “create” message for that item/supplier is
updated with the new data before the item is published. When the “modify” message
that contains the “A” (Approved) status is the next record on the queue, the procedure
formats a hierarchical message that contains the item header information and all the child
detail records to pass to the integration bus.

Additions, modifications and deletions to item family records for existing approved
items are published in the order that they are placed on the queue.

Unless otherwise noted, item publishing includes most of the columns from the
item_master table and all of the item family child tables included in the publishing
message. Sometimes only certain columns are published, and sometimes additional data

Item Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 43

is published with the column data from the table row. The item publishing message is
built from the following tables:
Family Header
item_master - transaction level items only
descriptions for the code values
names for department, class and subclass
diff types
base retail price
Item Family Child Tables
item_supplier
item_supp_country
item_supp_country_dim
 descriptions for the code values
item_master - reference items
 item, item_number_type, item_parent, primary_ref_ind, format_id, prefix
packitem_breakout
 pack_no, item, packitem_qty
item_image
item_ticket
uda_item_ff
uda_item_lov
uda_item_date
related_item_head
related_item_detail

Business Object Records
Create the following business objects to assist the publishing process:

1. Create a type for a table of rowids.
 TYPE ROWID_TBL is TABLE OF ROWID;

2. Create a record of ROWID_TBL types for keeping track of rowids to update and
delete. There should be a ROWID_TBL for ITEM_MFQUEUE deletion,
ITEM_MFQUEUE updating, ITEM_PUB_INFO deletion, and ITEMLOC_MFQUEUE
deletion.

 TYPE ITEM_ROWID_REC is RECORD
 (queue_rowid_tbl ROWID_TBL,
 pub_info_rowid_tbl ROWID_TBL,
 queue_upd_rowid_tbl ROWID_TBL,
 itemloc_rowid_tbl ROWID_TBL
);

3. Create a record to assist in publishing the ItemBOM node. This record type was
originally in ITEMBOM_XML, but since ITEMBOM_XML is being removed, it is
being moved to RMSMFM_ITEMS.

 TYPE bom_rectype IS RECORD
 (pack_no VARCHAR2(25),
 seq_no NUMBER(4),
 item VARCHAR2(25),
 item_parent VARCHAR2(25),
 pack_tmpl_id NUMBER(8),
 comp_pack_no VARCHAR2(25),
 item_qty NUMBER(12,4),
 item_parent_pt_qty NUMBER(12,4),
 comp_pack_qty NUMBER(12,4),
 pack_item_qty NUMBER(12,4));

 TYPE bom_tabtype is TABLE of bom_rectype
 INDEX BY BINARY_INTEGER;

Publication Designs

44 Oracle Retail Merchandising System

Package Impact

Business Object ID
The business object id for item publisher is item, which uniquely identifies an item for
publishing.

The RIB uses the business object id to determine message dependencies when sending
messages to a subscribing application. If a Create message has already failed in the
subscribing application, and a Modify/Delete message is about to be sent from the RIB to
the subscribing application, the RIB will not send the modify/delete message if it has the
same business object id as the failed Create message. Instead, the Modify/Delete
message will go directly to the hospital.

Item type X, item A, message type ‘ItemCre’ fails in subscriber.

Item type X, item B, message type ‘ItemCre’ processes successfully in subscriber.

Item type X, item A, message type ‘ItemMod’ goes directly from RIB to hospital.
Item type X, item B, message type ‘ItemMod’ goes from RIB to subscriber.

Item type X, item A, message type ‘ItemDel’ goes directly from RIB to hospital.

Package name: RMSMFM_ITEMS

Spec file name: rmsmfm_itemss.pls

Body file name: rmsmfm_itemsb.pls

Package Specification – Global Variables
FAMILY CONSTANT RIB_SETTINGS.FAMILY%TYPE ‘ITEM’;
ITEM_ADD CONSTANT VARCHAR2(30) ‘itemcre’;
ITEM_UPD CONSTANT VARCHAR2(30) ‘itemhdrmod’;
ITEM_DEL CONSTANT VARCHAR2(30) ‘itemdel’;
ISUP_ADD CONSTANT VARCHAR2(30) ‘itemsupcre’;
ISUP_UPD CONSTANT VARCHAR2(30) ‘itemsupmod’;
ISUP_DEL CONSTANT VARCHAR2(30) ‘itemsupdel’;
ISC_ADD CONSTANT VARCHAR2(30) ‘itemsupctycre’;
ISC_UPD CONSTANT VARCHAR2(30) ‘itemsupctymod’;
ISC_DEL CONSTANT VARCHAR2(30) ‘itemsupctydel’;
ISCD_ADD CONSTANT VARCHAR2(30) ‘iscdimcre’;
ISCD_UPD CONSTANT VARCHAR2(30) ‘iscdimmod’;
ISCD_DEL CONSTANT VARCHAR2(30) ‘iscdimdel’;
UPC_ADD CONSTANT VARCHAR2(30) ‘itemupccre’;
UPC_UPD CONSTANT VARCHAR2(30) ‘itemupcmod’;
UPC_DEL CONSTANT VARCHAR2(30) ‘itemupcdel’;
BOM_ADD CONSTANT VARCHAR2(30) ‘itembomcre’;
BOM_UPD CONSTANT VARCHAR2(30) ‘itembommod’;
BOM_DEL CONSTANT VARCHAR2(30) ‘itembomdel’;
UDAF_ADD CONSTANT VARCHAR2(30) ‘itemudaffcre’;
UDAF_UPD CONSTANT VARCHAR2(30) ‘itemudaffmod’;
UDAF_DEL CONSTANT VARCHAR2(30) ‘itemudaffdel’;
UDAD_ADD CONSTANT VARCHAR2(30) ‘itemudadatecre’;
UDAD_UPD CONSTANT VARCHAR2(30) ‘itemudadatemod’;
UDAD_DEL CONSTANT VARCHAR2(30) ‘itemudadatedel’;
UDAL_ADD CONSTANT VARCHAR2(30) ‘itemudalovcre’;
UDAL_UPD CONSTANT VARCHAR2(30) ‘itemudalovmod’;
UDAL_DEL CONSTANT VARCHAR2(30) ‘itemudalovdel’;
IMG_ADD CONSTANT VARCHAR2(30) ‘itemimagecre’;
IMG_UPD CONSTANT VARCHAR2(30) ‘itemimagemod’;
IMG_DEL CONSTANT VARCHAR2(30) ‘itemimagedel’;
TCKT_ADD CONSTANT VARCHAR2(30) 'itemtcktcre';

Item Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 45

TCKT_DEL CONSTANT VARCHAR2(30) 'itemtcktdel';
RIH_ADD CONSTANT VARCHAR2(30) 'relitemheadcre';
RIH_UPD CONSTANT VARCHAR2(30) 'relitemheadmod';
RIH_DEL CONSTANT VARCHAR2(30) 'relitemheaddel';
RID_ADD CONSTANT VARCHAR2(30) 'relitemdetcre';
RID_UPD CONSTANT VARCHAR2(30) 'relitemdetmod';
RID_DEL CONSTANT VARCHAR2(30) 'relitemdetdel';

bom_table bom_tabtype;
empty_bom bom_tabtype;

Function Level Description – ADDTOQ
Function: ADDTOQ
 (O_error_message OUT VARCHAR2,
 I_queue_rec IN ITEM_MFQUEUE%ROWTYPE,
 I_sellable_ind IN ITEM_PUB_INFO.SELLABLE_IND%TYPE,
 I_tran_level_ind IN ITEM_PUB_INFO.TRAN_LEVEL_IND%TYPE)

This public function puts an item message on ITEM_MFQUEUE for publishing to the
RIB. It is called from the item trigger and the detail triggers (ITEM_SUPPLIER,
ITEM_SUPP_COUNTRY, ITEM_SUPP_COUNTRY_DIM, PACKITEM, UDA_ITEM,
UDA_VALUES, ITEM_IMAGE, RELATED_ITEM_HEAD, RELATED_ITEM_DETAIL).
The I_queue_rec contains item and, optionally, other detail keys.

For header level insert messages (HDR_ADD), insert a record in the ITEM_PUB_INFO
table. The published flag should be set to ‘N’. For all message types except header level
inserts (HDR_ADD), insert a record into the ITEM_MFQUEUE.

Function Level Description – GETNXT
Procedure: GETNXT
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id OUT RIB_BUSOBJID_TBL,
 O_routing_info OUT RIB_ROUTINGINFO_TBL,
 I_num_threads IN NUMBER DEFAULT 1,
 I_thread_val IN NUMBER DEFAULT 1)

Modify the existing function as follows:

 Change the signature of this package per this specification.

 Replace the code that is in the current function with the functionality in this design.

This public procedure is called from the RIB to get the next messages. It performs a
cursor loop on the unpublished records on the ITEM_MFQUEUE table (PUB_STATUS =
‘U’). It should only need to execute single loop iteration in most cases. For each record
retrieved, GETNXT gets the following:

1. A lock of the queue table for the current business object (item). The lock is obtained
by calling the function LOCK_THE_BLOCK. If there are any records on the queue for
the current business object that are already locked, the current message is skipped
and picked up again in the next loop iteration.

2. A check for records on the queue with a status of ‘H’ospital. If there are any such
records for the current business object, GETNXT raises an exception to send the
current message to the Hospital.

3. Get the published indicator from the ITEM_PUB_INFO table.

4. Call PROCESS_QUEUE_RECORD with the current business object.

The loop will need to execute more than one iteration for the following cases:

Publication Designs

46 Oracle Retail Merchandising System

1. When a header delete message exists on the queue for a business object that has not
been initially published. In this case, simply remove the header delete message from
the queue and loop again.

2. The queue is locked for the current business object. This can occur because
ADDTOQ, which is called from the triggers, deletes from the queue table for
DTL_UPD, DTL_DEL, and HDR_DEL messages.

The information from the ITEM_MFQUEUE and ITEM_PUB_INFO table is passed to
PROCESS_QUEUE_RECORD. PROCESS_QUEUE_RECORD will build the Oracle Object
message to pass back to the RIB. If PROCESS_QUEUE_RECORD does not run
successfully, GETNXT raises an exception.
If any exception is raised in GETNXT, including the exception raised by an unsuccessful
call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS is called.

If PROCESS_QUEUE_RECORD fails, the record that keeps track of which mfqueue
records to delete/update should be reset. Therefore, a snapshot of the struct is taken
before the call to PROCESS_QUEUE_RECORD. If the function fails, the record is reset
back to the snapshot.

Function Level Description – PUB_RETRY
Procedure: PUB_RETRY
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_message_type IN OUT VARCHAR2,
 O_bus_obj_id IN OUT NOCOPY RIB_BUSOBJID_TBL,
 O_routing_info IN OUT NOCOPY RIB_ROUTINGINFO_TBL)

This public procedure performs the same tasks as GETNXT except that it only loops for a
specific row in the ITEM_MFQUEUE table. The record on ITEM_MFQUEUE must match
the passed in sequence number (contained in the ROUTING_INFO).

Function Level Description – PROCESS_QUEUE_RECORD (local)
This private function controls the building of Oracle Objects (DESC or REF) given the
business transaction’s key values and a message type. It contains all of the shared
processing between GETNXT and PUB_RETRY.

Get relevant publishing info for the item in ITEM_PUB_INFO, including the published
indicator and approved upon create indicator.
If I_hdr_published is either ‘N’ (not published)

 If I_hdr_published is ‘N’, check to see if the current message should cause the item to
be published. This will be true if the status has changed to ‘A’pproved or if an
ITEM_SUPP_COUNTRY record has been added to an item that was approved upon
create. If the item is ready to be published for the first time, the message type is a
header create (HDR_ADD). If it is not ready to be published, add the record’s
ROWID to the structure that keeps track of ROWIDs to delete.

 Call MAKE_CREATE to build the DESC Oracle Object to publish to the RIB. This will
also take care of any ITEM_MFQUEUE deletes, updating
ITEM_PUB_INFO.PUBLISHED to ‘Y’ or ‘I’, and bulk updating the detail tables
publish_ind column to ‘Y’ for those detail rows that have been published.

If the message type is an update or create message type at any level (for example,
ITEM_ADD, ISUP_ADD, ISUP_UPD, and others):
 Call RMSMFM_ITEMS_BUILD.BUILD_MESSAGE to build the DESC Oracle Object

to publish to the RIB.

Item Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 47

 RMSMFM_ITEMS_BUILD.BUILD_MESSAGE will return an indicator specifying if
the record exists. The record in question is the record on the functional table
corresponding to the current MFQUEUE record being processed. For example, for
ITEM_ADD or ITEM_UPD message, the record exists indicator specifies whether or
not the ITEM_MASTER record for the item still exists. For an ISUP_ADD or
ISUP_UPD message, the record exists indicator specifies whether or not the
ITEM_SUPPLIER record for the item/supplier combination still exists. If the record
does not exist, the current message cannot be published.

 If the record does not exist and the message type is an update, delete the current
MFQUEUE record (that is, add the ROWID to the list of ROWIDs to be
eventually deleted.)

 If the record does not exist and the message type is a create, update the current
MFQUEUE record’s pub_status to ‘N’ so that the record will be skipped but
remain on the queue (that is, add the ROWID to the list of ROWIDs to be
eventually updated.)

If the message type is a delete message type at any level (for example, ITEM_DEL,
ISUP_DEL, and others):

 Call RMSMFM_ITEMS_BUILD.BUILD_DELETE_MESSAGE to build the REF Oracle
Object to publish to the RIB.

 For the current delete message, there could be a corresponding create message earlier
on the queue if the create message could not be published (see update/create
message type section above.) If there is a corresponding create message earlier on the
queue, delete both create and delete messages (that is, add the ROWIDs to the list of
ROWIDs to be eventually deleted), and do not publish anything.

Finally, perform DML cleanup if a message is going to be published.

 Call UPDATE_QUEUE_TABLE to perform DML using the global record that keeps
track of QUEUE records to update/delete.

 If the message type is ITEM_ADD, update the item’s ITEM_PUB_INFO to published
= ‘Y’.

 If the message type is ITEM_DEL, delete the item’s ITEM_PUB_INFO record.

Function Level Description – MAKE_CREATE (local)
This private function is used to create the Oracle Object for the initial publication of a
business transaction. I_business_object contains the item header key values (item).
I_rowid is the rowid of the item_mfqueue row fetched from GETNXT.

 Call BUILD_HEADER_OBJECT to get a header level Oracle Object.

 Call BUILD_DETAIL_OBJECTS to get a table of detail level Oracle objects and a table
of ITEM_MFQUEUE rowids to delete with and a table of detail table rowids to
update publish_ind with.

 Update ITEM_PUB_INFO.published to ‘Y’ or ‘I’ depending on if all details are
published.

 Delete records from the ITEM_MFQUEUE for all rowids returned by
BUILD_DETAIL_OBJECTS. Deletes are done by rowids instead of business
transaction keys to ensure that nothing is deleted off the queue that has not been
published.

 If the entire business transaction was added to the Oracle Object, also delete the
ITEM_MFQUEUE record that was picked up by GETNXT. If the entire business
transaction was not published, the system must leave something on the

Publication Designs

48 Oracle Retail Merchandising System

ITEM_MFQUEUE to ensure that the rest of it is picked up by the next call to
GETNXT.

 Update the detail tables publish_ind column to ‘Y’ by each detail table of rowids
returned from BUILD_DETAIL_OBJECTS.

 The header and detail level Oracle Objects are combined and returned.

Function Level Description – HANDLE_ERRORS (local)
This private procedure is called from GETNXT and PUB_RETRY when an exception is
raised. I_seq_no is the sequence number of the driving ITEM_MFQUEUE record.
I_function_keys contains detail level key values (item and optional detail keys).

If the error is a non-fatal error, HANDLE_ERRORS passes the sequence number of the
driving ITEM_MFQUEUE record back to the RIB in the ROUTING_INFO. It sends back a
status of ‘H’ospital to the RIB as well. It then updates the status of the queue record to
‘H’ospital, so that it will not get picked up again by the driving cursor in GETNXT.
If the error is a fatal, a status of ‘E’rror is returned to the RIB. The error is considered non-
fatal if no DML has occurred yet. Whenever DML has occurred, then the global variable
LP_error_status is flipped from ‘H’ospital to ‘E’rror.

Package name: RMSMFM_ITEMS_BUILD

Spec file name: rmsmfm_items.pls

Body file name: rmsmfm_itemb.pls

Function Level Description – BUILD_MESSAGE
Function: BUILD_MESSAGE
 (O_error_msg OUT VARCHAR2,
 O_message IN OUT NOCOPY “RIB_ItemDesc_REC”,
 O_rowids_rec IN OUT NOCOPY ROWIDS_REC,
 O_record_exists IN OUT BOOLEAN,
 I_message_type IN ITEM_MFQUEUE.MESSAGE_TYPE%TYPE,
 I_tran_level_ind IN ITEM_PUB_INFO.TRAN_LEVEL_IND%TYPE,
 I_queue_rec IN ITEM_MFQUEUE%ROWTYPE)

The private function is responsible for building detail level DESC Oracle Objects. It
builds as many detail Oracle Object as it can given the passed in message type and
business object keys (item).

Call the following:
 BUILD_HEADER_DETAIL

 BUILD_SUPPLIER_DETAIL

 BUILD_COUNTRY_DETAIL

 BUILD_DIM_DETAIL

 BUILD_UDA_LOV_DETAIL

 BUILD_UDA_FF_DETAIL
 BUILD_UDA_DATE_DETAIL

 BUILD_IMAGE_DETAIL

 BUIILD_UPC_DETAIL

 BUILD_BOM_DETAIL

 BUILD_TICKET_DETAIL

 BUILD_RELATED_ITEMS_HEAD

Item Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 49

 BUILD_RELATED_ITEMS_DETAIL (The object built in this function will be a child
of the object built in the BUILD_ RELATED_ITEMS_HEAD function based on the
relationship_id)

Function Level Description – BUILD_DELETE_MESSAGE
Function: BUILD_DETAIL_CHANGE_OBJECTS
 (O_error_msg OUT VARCHAR2,
 O_message IN OUT NOCOPY “RIB_ItemDesc_REC”,
 I_message_type IN ITEM_MFQUEUE.MESSAGE_TYPE%TYPE,
 I_business_obj IN ITEM_KEY_REC)

This function builds a REF Oracle Object to publish to the RIB for all delete message
types (for example, ITEM_DEL, ISUP_DEL, ISC_DEL, and others).

The function also checks to see if there is a corresponding Create message for the current
delete message. If so, O_create_rowid is set. This is used to determine if the Delete
message should be published (see PROCESS_QUEUE_RECORD description above). If
both Create and Delete messages are on the queue, neither are published.

Detail create and detail update messages (DTL_ADD, DTL_UPD). I_business_obj
contains the header level key values (item).

Function Level Description – BUILD_HEADER_OBJECT (local)
This private function accepts item header key values (item), builds and returns a header
level DESC Oracle Object. Call GET_ITEM_INFO to retrieve data supplementary to
ITEM_MASTER. If the item is not found on ITEM_MASTER, O_record_exists is set to
FALSE.

Function Level Description – BUILD DETAIL functions (all local)
The following functions have the same format:

 BUILD_SUPPLIER_DETAIL

 BUILD_COUNTRY_DETAIL

 BUILD_DIM_DETAIL

 BUILD_UDA_LOV_DETAIL
 BUILD_UDA_FF_DETAIL

 BUILD_UDA_DATE_DETAIL

 BUILD_IMAGE_DETAIL

 BUIILD_UPC_DETAIL

 BUILD_BOM_DETAIL

 BUILD_TICKET_DETAIL
 BUILD_RELATED_ITEMS_HEAD

 BUILD_RELATED_ITEMS_DETAIL

They have the same specifications, except as noted below.

The functions for building detail nodes for the ITEMDESC message work in the same
way. The functions build as many detail Oracle Objects as they can, given the passed in
message type and business object keys.
The difference between the different detail functions lies in the data being accessed.
BUILD_SUPPLIER_DETAIL retrieves information from ITEM_SUPPLIER,
BUILD_COUNTRY_DETAIL retrieves information from ITEM_SUPP_COUNTRY, etc.

BUILD_SUPPLlER_DETAIL and BUILD_COUNTRY_DETAIL are the only functions that
have the input parameter I_orderable_item. This is used to validate orderable items. If an

Publication Designs

50 Oracle Retail Merchandising System

item is orderable, and the initial ITEM_ADD message is being created, at least one
supplier node and one supplier/country node are required. This is the only business
validation done by the item publisher.

The BUILD_ RELATED_ITEMS_HEAD function retrieves data (item relationship details)
from the RELATED_ITEM_HEAD table and builds detail nodes for the ITEMDESC
message. Each of these detail nodes has child nodes if the item relationship contains
related items records in the RELATED_ITEM_DETAIL table. These child nodes are built
by the BUILD_ RELATED_ITEMS_DETAIL function which is called within the BUILD_
RELATED_ITEM_HEAD function. These child nodes are optional for the detail nodes.

If the original create message is being published (I_message_type would be ITEM_ADD)
 Select all detail records for the business transaction. Return a table of

ITEM_MFQUEUE rowids for each message that is placed into the Oracle Object.

 Since the message being published is ITEM_ADD, there may not be a record on the
MFQUEUE table for each detail record that needs to be retrieved. Therefore, no inner
join to the MFQUEUE table is done. However, if there are any MFQUEUE records for
details, they should be deleted. Therefore, a UNION to a second query is done to
select all relevant MFQUEUE records for deletion.

If the message being published is a detail add or detail update (for example, ISUP_ADD,
ISUP_UPD, ISC_ADD, ISC_UPD)

 Select all detail records for the business transaction. Return a table of
ITEM_MFQUEUE rowids for each message that is placed into the Oracle Object.

 Since the message being published is a detail create or update, the only details that
should be added to the message are those details that have a record on the
MFQUEUE table. Therefore, an inner join between the MFQUEUE table and the
business detail table is performed. Any MFQUEUE records retrieved will have their
ROWIDs added to the list of ROWIDs that will eventually be deleted.

 If no records are retrieved for the detail record query, O_records_exist is set to
FALSE.

A concern here is making sure that the system does not delete information from the
queue table that has not been published. For this reason, the system does deletes by
ROWID. The system also tries to get everything in the same cursor to ensure that the
message published matches the deletes that are performed from the ITEM_MFQUEUE
table regardless of trigger execution during GETNXT calls.

Function Level Description – GET_ITEM_INFO (local)
This private function gets ITEM_MASTER as input and retrieves supplementary data.
For example, each item has a department, class, and subclass. GET_ITEM_INFO will
retrieve the descriptions for these three fields. This function is called from
BUILD_HEADER_OBJECT.

Function Level Description – BUILD_DIMENSION_DESCRIPTIONS (local)
This private function is similar to GET_ITEM_INFO in that it retrieves supplementary
data. This function, however, is called when item/supplier/country/dimension message
nodes are being populated. This function is called from BUILD_DIM_DETAIL.

Item Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 51

Trigger Impact

Trigger name: EC_TABLE_IEM_AIUDR.TRG (mod)

Trigger file name: ec_table_iem_aiudr.trg (mod)

Table: ITEM_MASTER
Modify the trigger on the ITEM table to capture Inserts, Updates, and Deletes. Remove
all of the code except the code that checks the item_level and tran_level. This is needed to
determine which message type to send to the queue, item or UPC (reference item).

Inserts
 Send the header level item info to the ADDTOQ procedure in the MFM with the

message type RMSMFM_ITEM.ITEM_ADD or RMSMFM_ITEM.UPC_ADD.

Updates

 Send the header level item info to the ADDTOQ procedure in the MFM with the
message type RMSMFM_ITEM.ITEM_UPD or RMSMFM_ITEM.UPC_UPD.

Deletes
 Send the header level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.ITEM_DEL or RMSMFM_ITEM.UPC_DEL.

In all these cases, build the function keys for ADDTOQ with item.

Trigger name: EC_TABLE_ISP_AIUDR.TRG (mod)

Trigger file name: ec_table_isp_aiudr.trg (mod)

Table: ITEM_SUPPLIER
Populate the ITEM_MFQUEUE table according to the message type. Make sure that only
transaction level items are added to the ITEM_MFQUEUE table.

Inserts

 Send the detail level info to the ADDTOQ procedure in the MFM with the message
type RMSMFM_ITEM.DTL_ADD.

Updates
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_UPD.

Deletes
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_DEL.

In all these cases, build the function keys for ADDTOQ with item and supplier.

Publication Designs

52 Oracle Retail Merchandising System

Trigger name: EC_TABLE_ISC_AIUDR.TRG (mod)

Trigger file name: ec_table_isc_aiudr.trg (mod)

Table: ITEM_SUPP_COUNTRY
Populate the ITEM_MFQUEUE table according to the message type. Make sure that only
transaction level items are added to the ITEM_MFQUEUE table.

Inserts

 Send the detail level info to the ADDTOQ procedure in the MFM with the message
type RMSMFM_ITEM.DTL_ADD.

Updates
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_UPD.

Deletes
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_DEL.

In all these cases, build the function keys for ADDTOQ with item, supplier and
origin_country_id.

Trigger name: EC_TABLE_ISD_AIUDR.TRG (mod)

Trigger file name: ec_table_isd_aiudr.trg (mod)

Table: ITEM_SUPP_COUNTRY_DIM
Populate the ITEM_MFQUEUE table according to the message type. Make sure that only
transaction level items are added to the ITEM_MFQUEUE table.

Inserts

 Send the detail level info to the ADDTOQ procedure in the MFM with the message
type RMSMFM_ITEM.DTL_ADD.

Updates
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_UPD.

Deletes
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_DEL.

In all these cases, build the function keys for ADDTOQ with item, supplier,
origin_country_id.

Trigger name: EC_TABLE_PKS_AIUDR.TRG (mod)

Trigger file name: ec_table_pks_aiudr.trg (mod)

Table: PACKITEM_BREAKOUT
This trigger captures inserts, updates and deletes on the table. It populates a PL/SQL
table of records, RMSMFM_ITEMS.BOM_TABLE, which will be used in the statement
trigger to build an XML message and place it on the item queue.

Item Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 53

Trigger name: EC_TABLE_PKS_IUDS.TRG (mod)

Trigger file name: ec_table_pks_aiudr.trg (mod)

Table: PACKITEM_BREAKOUT
This trigger will group all of the data currently stored in the PL/SQL table of records
populated by the EC_TABLE_PKS_AIUDR trigger, and call RMSMFM_ADDTOQ for
every pack component in the table of records.

Trigger name: EC_TABLE_UIT_AIUDR.TRG (mod)

Trigger file name: ec_table_uit_aiudr.trg (mod)

Table: UDA_ITEM_DATE
Populate the ITEM_MFQUEUE table according to the message type. Make sure that only
transaction level items are added to the ITEM_MFQUEUE table.

Inserts
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_ADD.

Updates
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_UPD.

Deletes
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_DEL.

In all these cases, build the function keys for ADDTOQ with item, uda_id.

Trigger name: EC_TABLE_UIF_AIUDR.TRG (mod)

Trigger file name: ec_table_uif_aiudr.trg (mod)

Table: UDA_ITEM_FF
Populate the ITEM_MFQUEUE table according to the message type. Make sure that only
transaction level items are added to the ITEM_MFQUEUE table.

Inserts
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_ADD.

Updates
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_UPD.

Deletes
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_DEL.

In all these cases, build the function keys for ADDTOQ with item, uda_id.

Publication Designs

54 Oracle Retail Merchandising System

Trigger name: EC_TABLE_UIL_AIUDR.TRG (mod)

Trigger file name: ec_table_uil_aiudr.trg (mod)

Table: UDA_ITEM_LOV
Populate the ITEM_MFQUEUE table according to the message type. Make sure that only
transaction level items are added to the ITEM_MFQUEUE table.

Inserts

 Send the detail level info to the ADDTOQ procedure in the MFM with the message
type RMSMFM_ITEM.DTL_ADD.

Updates
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_UPD.

Deletes
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_DEL.

In all these cases, build the function keys for ADDTOQ with item, uda_id and uda_value.

Trigger name: EC_TABLE_RIH_AIUDR.TRG (mod)

Trigger file name: ec_table_rih_aiudr.trg (mod)

Table: RELATED_ITEM_HEAD
Populate the ITEM_MFQUEUE table according to the message type. Make sure that only
transaction level items are added to the ITEM_MFQUEUE table.

Inserts
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_ADD.

Updates

 Send the detail level info to the ADDTOQ procedure in the MFM with the message
type RMSMFM_ITEM.DTL_UPD.

Deletes
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_DEL.

In all these cases, build the function keys for ADDTOQ with item and relationship_id.

Trigger name: EC_TABLE_RID_AIUDR.TRG (mod)

Trigger file name: ec_table_rid_aiudr.trg (mod)

Table: RELATED_ITEM_DETAIL
Populate the ITEM_MFQUEUE table according to the message type. Make sure that only
transaction level items are added to the ITEM_MFQUEUE table.

Item Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 55

Inserts
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_ADD.

Updates
 Send the detail level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ITEM.DTL_UPD.

Deletes

 Send the detail level info to the ADDTOQ procedure in the MFM with the message
type RMSMFM_ITEM.DTL_DEL.

In all these cases, build the function keys for ADDTOQ with item, relationship_id and
related_item.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition (XSD)

itemcre Item Create Message ItemDesc.xsd

itemmod Item Modify Message ItemDesc.xsd

itemdel Item Delete Message ItemRef.xsd

itemsupcre Item Supplier Create Message ItemSupDesc.xsd

itemsupmod Item Supplier Modify Message ItemSupDesc.xsd

itemsupdel Item Supplier Delete Message ItemSupRef.xsd

itemsupctycre Item Supplier Country Create Message ItemSupCtyDesc.xsd

itemsupctymod Item Supplier Country Modify Message ItemSupCtyDesc.xsd

itemsupctydel Item Supplier Country Delete Message ItemSupCtyRef.xsd

iscdimcre Item Supplier Country Dimension
Create Message

ISCDimDesc.xsd

iscdimmod Item Supplier Country Dimension
Modify Message

ISCDimDesc.xsd

iscdimdel Item Supplier Country Dimension
Delete Message

ISCDimRef.xsd

itemupccre Item UPC Create Message ItemUPCDesc.xsd

itemupcmod Item UPC Modify Message ItemUPCDesc.xsd

itemupcdel Item UPC Delete Message ItemUPCRef.xsd

itembomcre Item BOM Create Message ItemBOMDesc.xsd

itembommod Item BOM Modify Message ItemBOMDesc.xsd

itembomdel Item BOM Delete Message ItemBOMRef.xsd

itemudaffcre Item UDA Free Form TextCreate
Message

ItemUDAFFDesc.xsd

Publication Designs

56 Oracle Retail Merchandising System

Message Types Message Type Description XML Schema Definition (XSD)

itemudaffmod Item UDA Free Form Text Modify
Message

ItemUDAFFDesc.xsd

itemudaffdel Item UDA Free Form Text Delete
Message

ItemUDAFFRef.xsd

itemudalovcre Item UDA LOV Create Message ItemUDALOVDesc.xsd

itemudalovmod Item UDA LOV Modify Message ItemUDALOVDesc.xsd

itemudalovdel Item UDA LOV Delete Message ItemUDALOVRef.xsd

itemudadatecre Item UDA Date Create Message ItemUDADateDesc.xsd

itemudadatemod Item UDA Date Modify Message ItemUDADateDesc.xsd

itemudadatedel Item UDA Date Delete Message ItemUDADateRef.xsd

itemimagecre Item Image Create Message ItemImageDesc.xsd

itemimagemod Item Image Modify Message ItemImageDesc.xsd

itemimagedel Item Image Delete Message ItemImageRef.xsd

relitemheadcre Item Relationship Create Message RelatedItemDesc.xsd

relitemheadmod Item Relationship Modify Message RelatedItemDesc.xsd

relitemheaddel Item Relationship Delete Message RelatedItemRef.xsd

relitemdetcre Related Item Create Message RelatedItemDesc.xsd

relitemdetmod Related Item Modify Message RelatedItemDesc.xsd

relitemdetdel Related Item Delete Message RelatedItemRef.xsd

Table Impact

TABLE SELECT INSERT UPDATE DELETE

ITEM_MFQUEUE Yes Yes Yes Yes

ITEM_PUB_INFO Yes Yes Yes Yes

ITEMLOC_MFQUEUE Yes No No Yes

ITEM_MASTER Yes No No No

ITEM_SUPPLIER Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

ITEM_SUPP_COUNTRY_DIM Yes No No No

UDA_ITEM_LOV Yes No No No

UDA_ITEM_DATE Yes No No No

UDA_ITEM_FF Yes No No No

ITEM_IMAGE Yes No No No

PACKITEM_BREAKOUT Yes No No No

V_PACKSKU_QTY Yes No No No

ITEM_TICKET Yes No No No

CODE_DETAIL Yes No No No

Item Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 57

TABLE SELECT INSERT UPDATE DELETE

DEPS Yes No No No

CLASS Yes No No No

SUBCLASS Yes No No No

V_DIFF_ID_GROUP_TYPE Yes No No No

ITEM_ZONE_PRICE Yes No No No

PACKITEM Yes No No No

RELATED_ITEM_HEAD Yes No No No

RELATED_ITEM_DETAIL Yes No No No

Design Assumptions
 It is not possible for a detail trigger to accurately know the status of a header table.

 In order for the detail triggers to accurately know when to add a message to the
queue, RMS should not allow approval of a business object while detail
modifications are being made.

 It is not possible for a header trigger or a detail trigger to know the status of anything
modified by GETNXT. If a header trigger or detail trigger is trying to delete queue
records that GETNXT currently has locked, it will have to wait until GETNXT is
finished and removes the lock. It is assumed that this time will be fairly short (at
most 2-3 seconds.) It is also assumed that this will occur rarely, as it involves
updating/deleting detail records on a business object that has already been
approved. This also has to occur at the same time GETNXT is processing the current
business object.

 Push off all DML statements as late as possible. Once DML statements have taken
place, any error becomes a fatal error rather than a hospital error.

Publication Designs

58 Oracle Retail Merchandising System

Item Location Publication API

Functional Area
Foundation

Business Overview
RMS defines and publishes item-location relationships. The details about item-location
relationship creation, updation and de-activation are important for other systems for
smooth functioning of several business processes. For example, when an new item-
location relationship is created, the Point-Of-Sale system needs to be made aware of this
information so that it can smoothly process subsequent sales and return activities at the
Point-of-sale etc. The purpose of this API is to publish such information to be subscribed
and consumed by other systems.

Package Impact
As and when item-location relationships are created or modified as part of various
business processes, such events are captured as using triggers on the item location set of
tables. The trigger then invokes methods from this API to successfully publish the
captured information.

Package name: RMSMFM_ITEMLOC

Spec file name: rmsmfm_itemlocs.pls

Body file name: rmsmfm_itemlocb.pls

Package Specification – Global Variables
FAMILY CONSTANT VARCHAR2(64) ‘ItemLoc’;
ITEMLOC_ADD CONSTANT VARCHAR2(20) 'ItemLocCre';
ITEMLOC_UPD CONSTANT VARCHAR2(20) 'ItemLocMod';
ITEMLOC_DEL CONSTANT VARCHAR2(20) 'ItemLocDel';
REPL_UPD CONSTANT VARCHAR2(20) 'ItemLocReplMod';

Function Level Description – ADDTOQ
Function: ADDTOQ
 (O_error_message OUT VARCHAR2,
 I_message_type IN ITEMLOC_MFQUEUE.MESSAGE_TYPE%TYPE,
 I_itemloc_record IN ITEM_LOC%ROWTYPE,
 I_prim_repl_supplier IN REPL_ITEM_LOC.PRIMARY_REPL_SUPPLIER%TYPE,
 I_repl_method IN REPL_ITEM_LOC.REPL_METHOD%TYPE,
 I_reject_store_ord_ind IN REPL_ITEM_LOC.REJECT_STORE_ORD_IND%TYPE,
 I_next_delivery_date IN REPL_ITEM_LOC.NEXT_DELIVERY_DATE%TYPE,
 I_mult_runs_per_day_ind IN REPL_ITEM_LOC.MULT_RUNS_PER_DAY_IND%TYPE)

This will call the API_LIBRARY.GET_RIB_SETTINGS if the LP_num_threads is NULL
and insert the family record into ITEMLOC_MFQUEUE table. The call for HASH_ITEM
will insert the I_itemloc_record.item information into ITEMLOC_MFQUEUE table.

Function Level Description – GETNXT
Procedure: GETNXT (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id OUT RIB_BUSOBJID_TBL,

Item Location Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 59

 O_routing_info OUT RIB_ROUTINGINFO_TBL,
 I_num_threads IN NUMBER DEFAULT 1,
 I_thread_val IN NUMBER DEFAULT 1);

Make sure to initialize LP_error_status to API_CODES.HOSPITAL at the beginning of
GETNXT.

The RIB calls GETNXT to get messages. The driving cursor will query for unpublished
records on the ITEMLOC_MFQUEUE table (PUB_STATUS = ‘U’).

Because ITEMLOC records should not be published before ITEM records a clause is
included in the driving cursor that checks for ITEM CREATE messages on the
ITEM_MFQUEUE table. The ITEMLOC_MFQUEUE record will not be selected from the
driving cursor if the ITEM CREATE message still exists on ITEM_MFQUEUE. Also,
ITEMLOC_MFQUEUE cleanup is included in ITEM_MFQUEUE cleanup. When the item
publisher RMSMFM_ITEMS encounters a DELETE message for an item that has never
been published, it deletes all records for the item from the ITEM_MFQUEUE table. This
is done in the program unit CLEAN_QUEUE. CLEAN_QUEUE also deletes from
ITEMLOC_MFQUEUE when a DELETE message for a non-published item is
encountered.

After retrieving a record from the queue table, GETNXT checks for records on the queue
with a status of ‘H’ospital. If there are any such records for the current business object,
GETNXT raises an exception to send the current message to the hospital.

The information from the ITEMLOC_MFQUEUE table is passed to
PROCESS_QUEUE_RECORD. PROCESS_QUEUE_RECORD builds the Oracle Object
message to pass back to the RIB. If PROCESS_QUEUE_RECORD does not run
successfully, GETNXT will raise an exception.
If any exception is raised in GETNXT, including the exception raised by an unsuccessful
call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS is called.

Function Level Description – PUB_RETRY
Procedure: PUB_RETRY
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_message_type IN OUT VARCHAR2,
 O_bus_obj_id IN OUT RIB_BUSOBJID_TBL,
 O_routing_info IN OUT RIB_ROUTINGINFO_TBL,
 I_REF_OBJECT IN RIB_OBJECT);

Same as GETNXT except:

The record on ITEMLOC_MFQUEUE must match the passed in sequence number
(contained in the ROUTING_INFO).

Function Level Description – PROCESS_QUEUE_RECORD (local)
This function controls the building of Oracle Objects given the business transaction’s key
values and a message type. It contains all of the shared processing between GETNXT and
PUB_RETRY.

If the record from ITEMLOC_MFQUEUE table is an add or update (ITEMLOC_ADD,
ITEMLOC_UPD) the function will call BUILD_DETAIL_OBJECTS to build the Oracle
Object to publish to the RIB. This will also take care of any ITEMLOC_MFQUEUE deletes
and ROUTING_INFO logic.

If the record from ITEMLOC_MFQUEUE table is a delete (ITEMLOC_DEL) the function
will call BUILD_DETAIL_DELETE_OBJECTS to build the Oracle Object to publish to the
RIB. This will also take care of any ITEMLOC_MFQUEUE deletes and the
ROUTING_INFO logic.

Publication Designs

60 Oracle Retail Merchandising System

Function Level Description – BUILD_DETAIL_OBJECTS (local)
The function is responsible for the Oracle Object used for a DESC message (inserts and
updates.) It adds as many mfqueue records to the message as it can given the passed-in
message type and business object keys.

 Selects all records on the ITEMLOC_MFQUEUE that are for the same item. The
records are fetched in order of seq_no on the MFQUEUE table. The records are
fetchee into a table using BULK COLLECT, with MAX_DETAILS_TO_PUBLISH as
the LIMIT clause.

 The records in the BULK COLLECT table are looped through. If the record’s
message_type differs from the message type passed into the function, it will exit from
the loop. Otherwise, it will add the data from the record to the Oracle Object being
used for publication. If the input message type is not REPL_UPD then the Purchase
Type for the item’s department is retrieved and it is added to the oracle object.

 Ensures that ITEMLOC_MFQUEUE is deleted from as needed.

 Ensures that ROUTING_INFO is constructed if routing information is stored at the
detail level in the business transaction.

Make sure to set LP_error_status to API_CODES.UNHANDLED_ERROR before any
DML statements.

A concern here is making sure that the system does not delete records from the queue
table that have not been published. For this reason, the system performs deletes by
ROWID. The system will also get everything in the same cursor. This should ensure that
the message published matches the deletes performed from the ITEMLOC_MFQUEUE
table regardless of trigger execution during GETNXT calls.

Function Level Description – BUILD_DETAIL_DELETE_OBJECTS (local)
This function works the same way as BUILD_DETAIL_OBJECTS, except for the fact that
a REF object is being created instead of a DESC object.

Function Level Description – HANDLE_ERRORS (local)
HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is
raised.
If the error is a non-fatal error, GETNXT passes the sequence number of the driving
ITEMLOC_MFQUEUE record back to the RIB in the ROUTING_INFO. It sends back a
status of ‘H’ospital to the RIB as well. It then updates the status of the queue record to
‘H’ospital, so that it will not get picked up again by the driving cursor in GETNXT.

If the error is a fatal, a status of ‘E’rror is returned to the RIB.

The error is considered non-fatal if no DML has occurred yet. Whenever DML has
occurred, then the global variable LP_error_status is flipped from ‘H’ospital to ‘E’rror.

Trigger Impact
A trigger exists on the ITEM_LOC to capture inserts, updates, and deletes.

Only transaction-level items should be processed. If the item is not transaction-level, the
trigger will exit before calling ADDTOQ.

Item Location Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 61

Trigger name: EC_TABLE_ITL_AIUDR.TRG (mod)

Trigger file name: ec_table_itl_aiudr.trg (mod)

Table: ITEMLOC

Inserts
 Sends the L_record (I_item, I_loc, and the I_loc_type) to the ADDTOQ procedure in

the MFM with the message type RMSMFM_ITEMLOC.ITEMLOC_ADD.

Updates
 Sends the L_prim_repl_supplier, L_repl_method, L_reject_store_ord_ind,

L_next_delivery_date to the ADDTOQ procedure in the MFM with the message type
RMSMFM_ITEMLOC.ITEMLOC_UPD.

 The only updates that need to be captured are updates to the columns
receive_as_type, source_wh, store_price_ind, primary_supp, status, source_method,
local_item_desc, primary_cntry, local_short_desc, and taxable_ind.

Deletes
 Sends the L_record (I_item, I_loc, and the I_loc_type) to the ADDTOQ procedure in

the MFM with the message type RMSMFM_ITEMLOC.ITEMLOC_DEL.

The trigger will fire not only for stores (loc_type = ‘S’) but also for warehouses (loc_type
= ‘W’).

Trigger name: EC_TABLE_RIL_AIUDR.TRG (mod)

Trigger file name: ec_table_ril_aiudr.trg (mod)

Table: REPL_ITEM_LOC
Create a trigger on the table REPL_ITEM_LOC to capture inserts, updates, and deletes.

Updates

 Sends the L_prim_repl_supplier, L_repl_method, L_reject_store_ord_ind,
L_next_delivery_date and the L_record (I_item, I_loc, and the I_loc_type) to the
ADDTOQ procedure in the MFM with the message type
RMSMFM_ITEMLOC.REPL_UPD.

 The only updates that need to be captured are updates to the columns
primary_repl_supplier, repl_method, reject_store_ord_ind, and next_delivery_date.

Deletes

 Sends the L_record (I_item, I_loc, and the I_loc_type) to the ADDTOQ procedure in
the MFM with the message type RMSMFM_ITEMLOC.REPL_UPD.

Message XSD
Below are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

ItemLocCre Item Loc Create Message ItemLocDesc.xsd

Publication Designs

62 Oracle Retail Merchandising System

ItemLocMod Item Loc Modify Message ItemLocDesc.xsd

ItemLocDel Item Loc Delete Message ItemLocRef.xsd

ItemLocReplMod Item Loc Replenishment Modify Message ItemLocDesc.xsd

Table Impact

TABLE SELECT INSERT UPDATE DELETE

ITEM_MFQUEUE Yes No No No

ITEMLOC_MFQUEUE Yes Yes Yes Yes

ITEM_MASTER Yes No No No

DEPS Yes No No No

Design Assumptions
 It is not possible for a detail trigger to accurately know the status of a header table.

 In order for the detail triggers to accurately know when to add a message to the
queue, RMS should not allow approval of a business object while detail
modifications are being made.

 It is not possible for a header trigger or a detail trigger to know the status of anything
modified by GETNXT. If a header trigger or detail trigger is trying to delete queue
records that GETNXT currently has locked, it will have to wait until GETNXT is
finished and removes the lock. It is assumed that this time will be fairly short (at
most 2-3 seconds.) It is also assumed that this will occur rarely because it involves
updating/deleting detail records on a business object that has already been
approved. This also has to occur at the same time GETNXT is processing the current
business object.

 Push off all DML statements as late as possible. Once DML statements have taken
place, any error becomes a fatal error rather than a hospital error.

Merchandise Hierarchy Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 63

Merchandise Hierarchy Publication API

Functional Area
Foundation Data

Business Overview
This API publishes information regarding all the levels of the merchandise hierarchy to
the RIB such that all the downstream applications may subscribe to it and have
merchandise hierarchy information in sync with RMS.

Package Impact

Business Object ID
The RIB uses the business object ID to determine message dependencies when sending
messages to a subscribing application. If a create message has already failed in the
subscribing application, and a modify/delete message is about to be sent from the RIB to
the subscribing application, the RIB will not send the modify/delete message if it has the
same business object ID as the failed create message. Instead, the modify/delete message
will go directly to the hospital.
If the message relates to divisons, the business object ID will be the division. If the
message relates to groups, the business object ID will be the group number. If the
message relates to a department, the department number is the business object ID. If the
message relates to a class, the business object ID will be the department number and the
class number. Finally, if the message relates to a subclass, the business object ID will be
the department, class and subclass.

 File name: rmsmfm_merchhiers/b.pls
Function Level Description – ADDTOQ
Function: ADDTOQ
 (O_error_msg OUT VARCHAR2,
 I_message_type IN MERCHHIER_MFQUEUE.MESSAGE_TYPE%TYPE,
 I_division IN DIVISION.DIVISION%TYPE,
 I_division_rec IN DIVISION%ROWTYPE,
 I_group_no IN GROUPS.GROUP_NO%TYPE,
 I_groups_rec IN GROUPS%ROWTYPE,
 I_dept IN DEPS.DEPT%TYPE,
 I_deps_rec IN DEPS%ROWTYPE,
 I_class IN CLASS.CLASS%TYPE,
 I_class_rec IN CLASS%ROWTYPE,
 I_subclass IN SUBCLASS.SUBCLASS%TYPE,
 I_subclass_rec IN SUBCLASS%ROWTYPE)

If multi-threading is being used, call API_LIBRARY.RIB_SETTINGS to get the number of
threads used for the publisher. Using the number of threads, and the business object ID,
calculate the thread value.

Insert a record into the MERCHHIER_MFQUEUE.

Function Level Description – GETNXT
Procedure: GETNXT
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type OUT VARCHAR2,
 O_message OUT RIB_OBJECT,

Publication Designs

64 Oracle Retail Merchandising System

 O_bus_obj_id OUT RIB_BUSOBJID_TBL,
 O_routing_info OUT RIB_ROUTINGINFO_TBL,
 I_num_threads IN NUMBER DEFAULT 1,
 I_thread_val IN NUMBER DEFAULT 1)

The RIB calls GETNXT to get messages. The procedure will use the C_QUEUE cursor
defined in the specification of the package body to find the next message on the
MERCHHIER_MFQUEUE to be published to the RIB.
After retrieving a record from the queue table, GETNXT checks for records on the queue
with a status of ‘H’ - Hospital. If there are any such records for the current business
object, GETNXT should raise an exception to send the current message to the hospital.

The information from the MERCHHIER_MFQUEUE table is passed to
PROCESS_QUEUE_RECORD. PROCESS_QUEUE_RECORD will build the Oracle Object
message to pass back to the RIB. If PROCESS_QUEUE_RECORD does not run
successfully, GETNXT should raise an exception.

After PROCESS_QUEUE_RECORD returns an Oracle object to pass to the RIB, this
procedure will delete the record on MERCHHIER_MFQUEUE that was just processed.

If any exception is raised in GETNXT, including the exception raised by an unsuccessful
call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS should be called.

Function Level Description – PUB_RETRY
Procedure: PUB_RETRY
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type IN OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id IN OUT RIB_BUSOBJID_TBL,
 O_routing_info IN OUT RIB_ROUTINGINFO_TBL,
 I_REF_OBJECT IN RIB_OBJECT);

Same as GETNXT except the record on MERCHHIER_MFQUEUE must match the passed
in sequence number (contained in the ROUTING_INFO).

Function Level Description – PROCESS_QUEUE_RECORD (local)

This function controls the building of Oracle Objects given the business transaction’s key
values and a message type. It contains all of the shared processing between GETNXT and
PUB_RETRY. In addition to building the Oracle Objects, this function will populate the
business object ID. If the message is for a division, group or department, the business
object ID will be the division, group, or department respectively. If the message is for a
class, the business object will be the class and department combination. If the message is
for a subclass, the business object ID will be the subclass, class and department
combination.

Function Level Description – HANDLE_ERRORS (local)

HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is
raised. If the error is a non-fatal error, GETNXT passes the sequence number of the
driving MERCHHIER_MFQUEUE record back to the RIB in the ROUTING_INFO. It
sends back a status of ‘H’ -Hospital to the RIB as well. It then updates the status of the
queue record to ‘H’ so that it will not get picked up again by the driving cursor in
GETNXT. If the error is a fatal error, a status of ‘E’ – Error is returned to the RIB.

The error is considered non-fatal if no DML has occurred yet. Whenever DML has
occurred, then the global variable LP_error_status is flipped from ‘H’ to ‘E’.

Merchandise Hierarchy Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 65

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

divisoncre Division Create Message MrchHrDivDesc.xsd

divisonmod Division Modify Message MrchHrDivDesc.xsd

divisiondel Division Delete Message MrchHrDivRef.xsd

groupcre Group Detail Create Message MrchHrGrpDesc.xsd

groupmod Group Detail Modify Message MrchHrGrpDesc.xsd

groupdel Group Detail Delete Message MrchHrGrpRef.xsd

deptcre Department Detail Create Message MrchHrDeptDesc.xsd

deptmod Department Detail Modify Message MrchHrDeptDesc.xsd

deptdel Department Detail Delete Message MrchHrDeptRef.xsd

classcre Class Detail Create Message MrchHrClsDesc.xsd

classmod Class Detail Modify Message MrchHrClsDesc.xsd

classdel Class Detail Delete Message MrchHrClsRef.xsd

subclasscre Subclass Detail Create Message MrchHrSclsDesc.xsd

subclassmod Subclass Detail Modify Message MrchHrSclstDesc.xsd

subclassdel Subclass Detail Delete Message MrchHrSclsRef.xsd

Design Assumptions
Delay all DML statements as late as possible. Once DML statements have taken place,
any error becomes a fatal error rather than a hospital error.

Table Impact

TABLE SELECT INSERT UPDATE DELETE

MERCHHIER_MFQUEUE Yes Yes Yes Yes

DIVISION Yes No No No

DEPT Yes No No No

CLASS Yes No No No

SUBCLASS Yes No No No

Publication Designs

66 Oracle Retail Merchandising System

Order Publication API

Functional Area
Purchase Orders

Business Overview
Purchase order (PO) functionality in RMS consists of order messages published to the
Oracle Retail Integration Bus (RIB), and batch modules that internally process purchase
order data and uploads EDI transmitted order. This overview describes how both order
messages and batch programs process this data.

Creating of Purchase Orders
A purchase order is created using the following:

 Through online using the ordering dialog.

 Replenishment processes.
 When the supplier contract type is ‘B’.

 By a supplier, in a vendor managed inventory environment.

 Direct store delivery (defined as delivery of merchandise or a service that does not
result from the prior creation of a PO). For more information, see Operations Guide,
Volume 1 - Batch Overviews and Designs, Chapter Purchase Order.

 Buyer Worksheet dialog.

 Truck splitting.

 Customer Order webservice/RIB.

 Franchise Order.

Purchase Order Messages
After purchase orders are published to the RIB, the following associated activity occurs:

 Work orders associated with items on the PO are published to the RIB through the
work order message process.

 An allocation (also known as pre-distribution) of items on the PO is published to the
RIB through the stock order message process.

 A PO can be closed only after all appointments against the purchase order are closed.
A closed appointment indicates that all merchandise has been received. RMS
subscribes to appointment messages from the RIB.

 ‘Version’ refers to any change to a purchase order by a retailer’s buyer; whereas
‘Revision’ refers to any change to a purchase order initiated by a supplier.

Order Message Processes
RMS publishes two sets of PO messages to RIB for two kinds of subscribing applications.
The first set of messages contains only virtual locations in RMS. Applications that
understand virtual locations subscribe to these messages.

RMS publishes a second set of PO messages for applications that can subscribe only to
conventional, physical location data, such as a Warehouse Management System.

Ordering publication is primarily based off of the ORDHEAD, ORDSKU, and ORDLOC
tables.

ORDHEAD is the parent table containing high level ordering information such as what
supplier is being ordered from, when the order must take place, and so on. ORDSKU is a

Order Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 67

child of ORDHEAD and contains the item(s) that are ordered, the size of the pack being
ordered.

ORDLOC is a child of ORDSKU that contains the location(s) each item on the order is
going to and how much of each item is ordered. Based on this table hierarchy, two levels
of messages exist for order publishing. A header message is primarily driven off of the
ORDHEAD table and the detail message that is primarily driven off both the ORDSKU
and ORDLOC tables.

If the purchase order is a customer order (order_type = ‘CO’ with a stockholding store),
the Customer Order Number and Fulfillment Order Number retrieved from the
ORDCUST table will be included in the header message and published.
Each message level contains three types of messages; Create, Modify, and Delete. The
‘POCre’ or ‘POHdrMod’ message is created when an insertion or modification to the
ORDHEAD table is made respectively. The ‘PODel’ message is created when an order is
deleted from the ORDHEAD table. ‘PODtlCre’ or ‘PODtlMod’ message is created when a
record is inserted or modified on the ORDLOC table respectively. ‘PODtlDel’ is created
when an ORDLOC record is deleted.

Package Impact

Create a Worksheet Order
1. Prerequisites: Orders are created through various methods. Orders created manually

by a user, through a replenishment process (order can be created in either worksheet
or approved status), uploaded from a vendor, through a contract, through customer
order creation or through a franchise order creation.

2. Activity Detail: At this point, the order is not seen externally from RMS.

3. Messages: When the order is created, a header message ‘POCre’ is written to the
ordering queue table. Upon detail additions, each will have a ‘PODtlCre’ message
written to the ordering queue. Ordering messages are added, updated, and removed
from the queue as the order is modified prior to approval.

Modify Pre-Approved
1. Prerequisites: Order is still in worksheet status and has not been approved and is set

back to worksheet.

2. Activity Detail: At this point, items are modified, added or removed from the order.
The order is split, scaled, and rounded in addition to having deals, brackets applied.

3. Messages: Each change causes a ‘POHdrMod’ or ‘PODtlMod’ message. These
messages replaces previous create messages if there was a modification, delete a
previous message if there was a delete, or add a new message to the queue for
inserts.

Approve
1. Prerequisites: Line items must exist for the order to be approved. Relevant dates (not

before, not after, pickup) must exist, plus certain other business validation rules
based on system options.

2. Activity Detail: At this point, the order is initially approved which means external
systems will now have constant visibility to all ordering transactions. The user can no
longer delete line items: Instead, they are cancelled. Canceling decrements the order
quantity by amount already received.

3. Messages: The approval message sets an indicator signifying the approval creates
message must be built. This is a hierarchical snapshot synchronous message built in

Publication Designs

68 Oracle Retail Merchandising System

the family manager by attaching all of the ‘PODtlDesc’ messages with the
‘POHdrDesc’ message creates a ‘POCre’ message.

Modify in ‘A’ status
1. Prerequisites: Order must be currently approved.

2. Activity Detail: Numerous fields at the header level (none at the detail level) can be
changed while the order is approved. This change creates a message.

3. Messages: A ‘POHdrMod’ message is created for order at the end of the session the
order was modified. This message is published immediately as the order is already
been published. If the order has not been published, then this message follows the
create message sent out.

Redistribute
1. Prerequisites: Order must be in approved or worksheet status. Order must not be a

contract order. No shipments/appointments may exist against the order. Items with
allocations cannot be redistributed.

2. Activity Detail: User chooses which items to redistribute. Each chosen details are
removed from the order. This creates delete messages for each one. A new location is
then chosen to redistribute the items to. Each item/location record creates a message.
Note that if user chooses to redistribute records, then cancels out of redistribution,
delete and create messages for the chosen records is inserted into the queue even
though no changes were actually made online.

3. Messages: A ‘PODtlDel’ message is created for each item/location removed from the
order. If the order has not yet been approved, then these messages removes previous
create messages. For already approved orders, then a message is published. For each
redistributed item, a ‘PODtlCre’ message is created.

Unapprove
1. Prerequisites: Order must currently be in approved status. Shipments/Appoinments

may exist against the order.

2. Activity Detail: This changes the status of the order back to worksheet. This creates a
message. Existing details is modifiable. New records may be added to the order.
Items may not be deleted from the order. However, the order quantity of the items
can be canceled down to the received or appointment expected quantity.

3. Messages: A ‘POHdrMod’ message is created for order at the end of the session the
order was modified. This message is published immediately as the order is already
have been published. If the order has not been published, then this message follows
the create message sent out.

Modify
1. Prerequisites: Order must be in worksheet status and have already been approved.

2. Activity Detail: If modification occurs at the header level, a header message is
created. A detail message is created for each modified or added detail record. Detail
records cannot be deleted; only their quantities can be canceled.

3. Message: A ‘POHdrMod’ message is created for order at the end of the session if the
header was modified. A ‘PODtlCre’ or ‘PODtlMod’ message is created for each detail
record added or modified respectively.

Order Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 69

Close
1. Prerequisites: Order must currently be in an approved status or in worksheet status

and which is already approved. No outstanding shipments/appointments may exist
against any line items of the order.

2. Activity Detail: The status changes to closed. This creates a message. Any
outstanding unreceived quantity is canceled out. No detail is modifiable while the
order is in this status.

3. Message: A ‘POHdrMod’ message is created for order at the end of the session the
order was modified. A ‘PODtlMod’ message is created for each line item that had
outstanding un-received quantity. These messages are published immediately as the
order is already published. If the order has not been published, then this message
follows the create message sent out.

Reinstate
1. Prerequisites: Order must be in closed status. Orders that have been fully received

(closed through receiving dialogue) cannot be reinstated.

2. Activity Detail: The status changes to worksheet. This creates a header level message.
All canceled quantities is added back to order quantities. Details are modifiable.

3. Message: A ‘POHdrMod’ message is created for order at the end of the session the
order was modified. A ‘PODtlMod’ message is created for each line item that had
outstanding canceled quantity. These messages are published immediately as the
order is already published. If the order are not published, then this message follows
the create message sent out.

Delete
1. Prerequisites: If the user deletes the order manually, then the order needs to be in

worksheet status and never been approved. Else, for approved orders, the following
explanation details the business validation for deleting orders. If the import indicator
on the SYSTEM OPTIONS table (import_ind) is 'N' and if invoice matching is not
installed, then all details associated with an order are deleted when the order has
been closed for more months than specified in UNIT_OPTIONS
(order_history_months). If invoice matching is installed, then all details associated
with an order are deleted when the order has been closed for more months than
specified in UNIT_OPTIONS (order_history_months). Orders are deleted only if
shipments from the order have been completely matched to invoices or closed, and
all those invoices have been posted. If the import indicator on the SYSTEM OPTIONS
table (import_ind) is 'Y' and if invoice matching is not installed, then all details
associated with the order are deleted when the order has been closed for more
months than specified in UNIT_OPTIONS (order_history_months) , as long as all
ALC records associated with an order are in 'Processed' status, specified in
ALC_HEAD (status). If invoice matching is installed, then all details associated with
an order are deleted when the order has been closed for more months than specified
in UNIT_OPTIONS (order_history_months), as long as all ALC records associated
with an order are in 'Processed' status, specified in ALC_HEAD (status), and as long
as all shipments from the order have been completely matched to invoices or closed,
and all those invoices have been posted.

2. Activity Detail: Deleting orders will create a message for each detail attached to the
order plus the header record.

3. Messages: If the order has not been approved, then the ‘PODel’ and ‘PODtlDel’
messages created will remove all the previous messages on the ordering queue table.

Publication Designs

70 Oracle Retail Merchandising System

If the order has been approved, then a ‘PODtlDel’ message will be created for each
detail record and a ‘PODel’ message for the header.

Filename: rmsmfm_orderb.pls

Function Level Description – ADDTOQ
Function: ADDTOQ
 (O_error_message OUT VARCHAR2,
 I_message_type IN ORDER_MFQUEUE.MESSAGE_TYPE%TYPE,
 I_order_no IN ORDHEAD.ORDER_NO%TYPE,
 I_order_type IN ORDHEAD.ORDER_TYPE%TYPE,
 I_order_header_status IN ORDHEAD.STATUS%TYPE,
 I_supplier IN ORDHEAD.SUPPLIER%TYPE,
 I_item IN ORDLOC.ITEM%TYPE,
 I_location IN ORDLOC.LOCATION%TYPE,
 I_loc_type IN ORDLOC.LOC_TYPE%TYPE,
 I_physical_location IN ORDLOC.LOCATION%TYPE)

This procedure is called by either the ORDHEAD or ORDLOC row trigger, and takes the
message type, table primary key values (order_no for ORDHEAD table and order_no,
item, location (virtual) and physical location for ORDLOC table) and the message itself.
It inserts a row into the message family queue along with the passed in values and the
next sequence number from the message family sequence. The pub status will always be
‘U’ except for PO create messages, then it will be ‘N’. The approve indicator will always
be ‘N’ except when the order is approved for the first time, then it will be ‘Y’. It returns
error codes and strings according to the standards of the application in which it is being
implemented.

Function Level Description – GETNXT
Procedure: GETNXT
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id OUT RIB_BUSOBJID_TBL,
 O_routing_info OUT RIB_ROUTINGINFO_TBL,
 I_num_threads IN NUMBER DEFAULT 1,
 I_thread_val IN NUMBER DEFAULT 1)

This publicly exposed procedure is typically called by a RIB publication adaptor. Its
parameters are well defined and arranged in a specific order. The message type is the RIB
defined short message name, the message is the xml message, and the family key(s)
(order_no for ORDHEAD table and order_no, item, location (virtual) and physical
location for ORDLOC table) are the key for the message as pertains to the family, not all
of which will necessarily be populated for all message types.

This program loops through each message on the ORDER_MFQUEUE table, and calls
PROCESS_QUEUE_RECORD. When no messages are found, the program exits returning
the ‘N’o message found API code.

The error text parameter contains application-generated information, such as the
application’s sequence number of the message that failed, and the Oracle or other error
that occurred when the retrieval failed.

Function Level Description – PUB_RETRY
Procedure: PUB_RETRY
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type IN OUT VARCHAR2,

Order Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 71

 O_message OUT RIB_OBJECT,
 O_bus_obj_id IN OUT RIB_BUSOBJID_TBL,
 O_routing_info IN OUT RIB_ROUTINGINFO_TBL,
 I_REF_OBJECT IN RIB_OBJECT);

Same as GETNXT except:

It only loops for a specific row in the ORDER_MFQUEUE table. The record on
ORDER_MFQUEUE must match the passed in sequence number (contained in the
ROUTING_INFO).

Function Level Description – PROCESS_QUEUE_RECORD (local)
This function controls the building of Oracle Objects given the business transaction’s key
values and a message type. It contains all of the shared processing between GETNXT and
PUB_RETRY.

Check to see if the business object is being published for the first time. If the
published_ind on the pub_info table is ‘N’, then it is not yet published.

If the record from ORDER_MFQUEUE table is a header delete (HDR_DEL) and
published_ind is ‘N’.
 Delete the record from the pub info table.

 Call DELETE_QUEUE_REC.

If the record from ORDER_MFQUEUE table is a header delete (HDR_DEL).

 Build and pass the RIB_PORef_REC object.

 Call GET_ROUTING_TO_LOCS.

 Delete the record from the pub info table.
 Delete the record from the order_details_published table.

 Call DELETE_QUEUE_REC.

If the published_ind is ‘N’ or ‘I’.

 If the publish_ind is ‘N’ call MAKE_CREATE with the message_type ‘HDR_ADD’.

 Otherwise, call MAKE_CREATE with the message_type ‘DTL_ADD’.

If the record from ORDER_MFQUEUE table is a header update (HDR_UPD).
 Call BUILD_HEADER_OBJECT.

 Update order_pub_info by setting the published indicator to ‘Y’.

 Call GET_ROUTING_TO_LOCS.

 Call DELETE_QUEUE_REC.

If the record from ORDER_MFQUEUE table is a detail insert (DTL_ADD) or detail
update (DTL_UPD).
 Call BUILD_DETAIL_CHANGE_OBJECTS.

 If the record from ORDER_MFQUEUE table is a detail delete (DTL_DEL).

 Call BUILD_DETAIL_DELETE .

 Call ROUTING_INFO_ADD.

Function Level Description – MAKE_CREATE (local)
This function is used to create the Oracle Object for the initial publication of a business
transaction.

 Call BUILD_HEADER_OBJECT to get a header level Oracle Object plus any extra
functional holders.

 Call BUILD_DETAIL_OBJECTS to get a table of detail level Oracle objects and a table
of ORDER_MFQUEUE rowids to delete.

Publication Designs

72 Oracle Retail Merchandising System

 Use the header level Oracle Object and functional holders to update the
ORDER_PUB_INFO.

 Delete records from the ORDER_MFQUEUE for all rowids returned by
BUILD_DETAIL_OBJECTS. Deletes are done by rowids instead of business
transaction keys to ensure that nothing is deleted off the queue that has not been
published.

 If the entire business transaction was added to the Oracle Object, also delete the
ORDER_MFQUEUE record that was picked up by GETNXT. If the entire business
transaction was not published we need to leave something on the
ORDER_MFQUEUE to ensure that the rest of it is picked up by the next call to
GETNXT.

 The header and detail level Oracle Objects are combined and returned.

Function Level Description – BUILD_HEADER_OBJECT (local)
Accepts header key values, performs necessary lookups, builds and returns a header
level Oracle Object.

Call GET_MSG_HEADER.

Function Level Description – BUILD_DETAIL_OBJECTS (local)
The function is responsible for building detail level Oracle Objects. It builds as many
detail Oracle Object as it can given the passed in message type and business object keys.

If the function is being called from MAKE_CREATE:

 Select any unpublished detail records from the business transaction (use an indicator
on the functional detail table itself or ORDER_DETAILS_PUBLISHED). Create Oracle
Objects for details that are selected by calling BUILD_SINGLE_DETAIL.

If the function is not being called from MAKE_CREATE:

 Select any details on the ORDER_DETAILS_PUBLISHED that are for the same
business transaction and for the same message type. Create Oracle Objects for details
that are selected by calling BUILD_SINGLE_DETAIL.

Create other necessary Oracle objects and insert into and update the
ORDER_DETAILS_PUBLISHED table for details that were published.

Function Level Description – BUILD_SINGLE_DETAIL (local)
Accept inputs and build a detail level Oracle Object. Perform any lookups needed to
complete the Oracle Object.

Function Level Description – BUILD_DETAIL_CHANGE_OBJECTS (local)
Either pass in a header level Oracle Object or call BUILD_HEADER_OBJECT to build
one.
Call BUILD_SINGLE_DETAIL to get the delete level Oracle Objects.

Perform any BULK DML statements given the output from BUILD_ DETAIL_OBJECTS

Build any ROUTING_INFO as needed.

Function Level Description – BUILD_DETAIL_DELETE (local)
Either pass in a header level ref Oracle Object or build a header level ref Oracle Object.

Perform a cursor for loop on ORDER_MFQUEUE and build as many detail ref Oracle
Objects as possible without exceeding the MAX_DETAILS_TO_PUBLISH.

Perform any BULK DML statements for deletion from ORDER_MFQUEUE and
ORDER_DETAILS_PUBLISHED.

Order Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 73

Call BUILD_DETAIL_DELETE_WH for Warehouses.

Function Level Description – DELETE_QUEUE_REC (local)
Delete the passed in data from the queue table.

Function Level Description – BUILD_DETAIL_DELETE_WH (local)
Builds Oracle objects based on the records found in the queue table that are from the
ORDLOC table.

Function Level Description – ROUTING_INFO_ADD (local)
Build any ROUTING_INFO.

Function Level Description – GET_ROUTING_TO_LOCS (local)
Build the ROUTING_INFO by adding locations.

Function Level Description – GET_MSG_HEADER (local)
Perform any lookups to complete the header information.

Function Level Description – LOCK_THE_BLOCK (local)
This function locks all queue records for the current business object. This is to ensure that
GETNXT does not wait on any business processes that currently have the queue table
locked and have not committed. This can occur because ADDTOQ, which is called from
the triggers, deletes from the queue table for DTL_UPD, DTL_DEL, and HDR_DEL
messages.

Function Level Description – HANDLE_ERRORS (local)
PROCEDURE HANDLE_ERRORS
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 O_message IN OUT nocopy RIB_OBJECT,
 O_bus_obj_id IN OUT nocopy RIB_BUSOBJID_TBL,
 O_routing_info IN OUT nocopy RIB_ROUTINGINFO_TBL,
 I_seq_no IN order_mfqueue.seq_no%TYPE,
 I_order_no IN order_mfqueue.order_no%TYPE,
 I_item IN order_mfqueue.item%TYPE,
 I_physical_location IN order_mfqueue.physical_location%TYPE,
 I_loc_type IN order_mfqueue.loc_type%TYPE)

HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is
raised.

If the error is a non-fatal error, GETNXT passes the sequence number of the driving
ORDER_MFQUEUE record back to the RIB in the ROUTING_INFO. It sends back a
status of ‘H’ospital to the RIB as well. It then updates the status of the queue record to
‘H’ospital, so that it will not get picked up again by the driving cursor in GETNXT.

If the error is a fatal error, a status of ‘E’rror is returned to the RIB.

The error is considered non-fatal if no DML has occurred yet. Whenever DML has
occurred, then the global variable LP_error_status is flipped from ‘H’ospital to ‘E’rror.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Publication Designs

74 Oracle Retail Merchandising System

Message Types Message Type Description XML Schema Definition
(XSD)

POCre Purchase Order Create Message PODesc.xsd

POHdrMod Purchase Order Modify Message PODesc.xsd

PODel Purchase Order Delete Message PORef.xsd

PODtlCre Purchase Order Detail Create Message PODesc.xsd

PODtlMod Purchase Order Detail Modify Message PODesc.xsd

PODtlDel Purchase Order Detail Delete Message PORef.xsd

Design Assumptions
 One of the primary assumptions in the current approach is that ease of code will

outweigh performance considerations. It is hoped that the ‘trickle’ nature of the flow
of data will decrease the need to dwell on performance issues and instead allow
developers to code in the easiest and most straight forward manner.

 The adaptor is only setup to call stored procedures, not stored functions. Any public
program then needs to be a procedure.

Table Impact

TABLE SELECT INSERT UPDATE DELETE

ORDHEAD Yes No No No

ORDLOC Yes No No No

ORDSKU Yes No No No

ORDER_MFQUEUE Yes Yes Yes Yes

ORDER_PUB_INFO Yes Yes Yes Yes

ORDER_DETAILS_PUBLISHED Yes Yes Yes Yes

Partner Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 75

Partner Publication API

Functional Area
Foundation Data

Business Overview
RMS publishes data about partners in messages to Retail Integration Bus (RIB). Other
application that needs to keep their partner synchronized with RMS subscribe to these
messages.

External Finishers
External finishers are created as partners in RMS, and given the Partner Type ‘E’,
indicating that the partner is an External finisher. Once a new external finisher is set up
in RMS, a trigger on the partner table adds the external finisher to a new queue table.
Information on that table is published via the RIB. A conversion of this RIB message
converts the external finisher to a ‘Location’ so that it can be consumed by the location
APIs of external systems such as RWMS.

RWMS and other integration subsystems subscribe to the external finisher through their
location subscription APIs. A RIB TAFR parses the partner messages of partner type ‘E’
and returns location attributes for RWMS and other integration subsystems to subscribe
to. RMS ensures that there will never be duplicates among the partner ID, store ID and
warehouse ID.

The RWMS transfer subscription process does not check for location types. As a result,
transfers involving an external finisher are treated like any other location types.

To facilitate the routing of external finisher and primary address of the primary address
type, header level routing info will contain the name of ‘partner_type’ with value ‘E’.
Detail level routing info will contain the name of ‘primary_addr_type_ind’ with value of
‘Y’ or ‘N’ and the name of ‘primary_addr_ind’ with value of ‘Y’ or ‘N’. This will allow the
RIB to route the external finishers and their addresses to the correct applications.

RMS will publish to the RIB create, mod and delete messages of partners along with their
multiple addresses via a partner publishing message.

The insert/update/delete on the partner table and the addr table with module ‘PTNR’
(for partner) will be published. The output message will be in hierarchical structure, with
partner information at the header level and the address information at the detail level.
Because this is a low volume publisher, multi-threading capability is not supported. In
addition, the system assumes that it only needs to publish the current state of the partner,
not every change.

If multiple addresses are associated with a partner, this publisher is designed with the
assumption that RWMS and other integration subsystems only subscribe to the primary
address of the primary address type.

Package Impact

Filename: rmsmfm_partnerb.pls

Function Level Description – ADDTOQ
Function: ADDTOQ
 (O_error_mesage OUT VARCHAR2,
 I_message_type IN VARCHAR2,
 I_functional_keys IN PARTNER_KEY_REC)

Publication Designs

76 Oracle Retail Merchandising System

This public function puts a partner message on PARTNER_MFQUEUE for publishing to
the RIB. It is called from both partner trigger and address trigger. The I_functional_keys
will contain partner_type, partner_id and optionally, addr_key.

The information from the PARTNER_MFQUEUE and PARTNER_PUB_INFO table is
passed to PROCESS_QUEUE_RECORD. PROCESS_QUEUE_RECORD will build the
Oracle Object message to pass back to the RIB. If PROCESS_QUEUE_RECORD does not
run successfully, GETNXT raises an exception.

If any exception is raised in GETNXT, including the exception raised by an unsuccessful
call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS is called.

Function Level Description – PUB_RETRY
This public procedure performs the same tasks as GETNXT except that it only loops for a
specific row in the PARTNER_MFQUEUE table. The record on PARTNER_MFQUEUE
must match the passed in sequence number (contained in the ROUTING_INFO).

Function Level Description – PROCESS_QUEUE_RECORD (local)
This private function controls the building of Oracle Objects (DESC or REF) given the
business transaction’s key values and a message type. It contains all of the shared
processing between GETNXT and PUB_RETRY.

Function Level Description – MAKE_CREATE (local)
This private function is used to create the Oracle Object for the initial publication of a
business transaction. I_business_object contains the partner header key values (partner
type and partner_id). I_rowid is the rowid of the partner_mfqueue row fetched from
GETNXT.

Function Level Description – BUILD_HEADER_OBJECT (local)
Function: BUILD_HEADER_OBJECT
 (O_error_msg OUT VARCHAR2,
 O_rib_partnerdesc_rec IN OUT NOCOPY “RIB_PartnerDesc_REC”,
 I_business_obj IN PARTNER_KEY_REC)

This private function accepts partner header key values (partner type and partner ID),
builds and returns a header level DESC Oracle Object.

Function Level Description – BUILD_HEADER_OBJECT (local)
This overloaded private function accepts partner header key values (partner type and
partner ID), builds and returns a header level REF Oracle Object.

Function Level Description – BUILD_DETAIL_OBJECTS (local)
This private function is responsible for building detail level DESC Oracle Objects. It
builds as many detail Oracle Objects as it can given the passed in message type and
business object keys (partner type and partner ID).

Function Level Description – BUILD_SINGLE_DETAIL (local)
This private function takes in an address record and builds a detail level Oracle Object.
Also it determines if the address is the primary address of the primary address type and
set the DESC Oracle Object accordingly.

Partner Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 77

Function Level Description – BUILD_DETAIL_CHANGE_OBJECTS (local)
This private function builds a DESC Oracle Object to publish to the RIB for detail create
and detail update messages (DTL_ADD, DTL_UPD). I_business_obj contains the header
level key values (partner type and partner ID).

Function Level Description – BUILD_DETAIL_DELETE_OBJECTS (local)
This private function builds a REF Oracle Object to publish to the RIB for detail delete
messages (DTL_DEL). I_business_obj contains the header level key values (partner type
and partner ID).

Function Level Description – LOCK_THE_BLOCK (local)
This private function locks all queue records for the current business object (partner type
and partner ID). This is to ensure that GETNXT and PUB_RETRY do not wait on any
business processes that currently have the queue table locked and have not committed.
This can occur because ADDTOQ, which is called from the triggers, deletes from the
queue table for DTL_UPD, DTL_DEL, and HDR_DEL messages.

Function Level Description – HANDLE_ERRORS (local)
This private procedure is called from GETNXT and PUB_RETRY when an exception is
raised. I_seq_no is the sequence number of the driving PARTNER_MFQUEUE record.
I_function_keys contains detail level key values (partner_type, partner_id, addr_key).

If the error is a non-fatal error, HANDLE_ERRORS passes the sequence number of the
driving PARTNER_MFQUEUE record back to the RIB in the ROUTING_INFO. It sends
back a status of ‘H’ - Hospital to the RIB as well. It then updates the status of the queue
record to ‘H’, so that it will not get picked up again by the driving cursor in GETNXT.

If the error is a fatal error, a status of ‘E’ - Error is returned to the RIB. The error is
considered non-fatal if no DML has occurred yet. Whenever DML has occurred, then the
global variable LP_error_status is flipped from ‘H’ to ‘E’.

Function Level Description – DELETE_QUEUE_REC (local)
This private function will delete the records from PARTNER_MFQUEUE table for the
sequence no passed in as input parameter.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

PartnerCre Partner Create Message PartnerDesc.xsd

PartnerMod Partner Modify Message PartnerDesc.xsd

PartnerDel Partner Delete Message PartnerRef.xsd

PartnerDtlCre Partner Detail Create Message PartnerDtlDesc.xsd

PartnerDtlMod Partner Detail Modify Message PartnerDtlDesc.xsd

PartnerDtlDel Partner Detail Delete Message PartnerDtlRef.xsd

Publication Designs

78 Oracle Retail Merchandising System

Design Assumptions
 Push off all DML statements as late as possible. Once DML statements have taken

place, any error becomes a fatal error rather than a hospital error.

Table Impact

TABLE SELECT INSERT UPDATE DELETE

PARTNER_PUB_INFO Yes Yes Yes Yes

PARTNER_MFQUEUE Yes Yes Yes Yes

PARTNER Yes No No No

ADDR Yes No Yes No

ADD_TYPE_MODULE Yes No No No

RIB_SETTINGS Yes No No No

Receiver Unit Adjustment Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 79

Receiver Unit Adjustment Publication API

Functional Area
Receiver Unit Adjustment

Business Overview
When mistakes are made during the receiving process at the store or warehouse, receiver
unit adjustments (RUAs) are made to correct the mistake. RMS publishes messages about
receiver unit adjustments to the Oracle Retail Integration Bus (RIB).

When RUAs are initiated through Oracle Retail Invoice Matching (ReIM) or created
through RMS forms, a message is published to a store management system (such as SIM)
and a warehouse management system. (Note: Oracle Retail’s warehouse management
system RWMS does NOT subscribe to Receiver Unit Adjustment messages.) Because
these systems only have access to the original receipt, the message communicates the
original receipt number and not the child receipt number.

Package Impact

Business object id
None.

Package name
RMSMFM_RCVUNITADJ

Spec file name: rmsmfm_rcvunitadjs.pls

Body file name: rmsmfm_rcvunitadjb.pls

Package Specification – Global Variables
FAMILY CONSTANT RIB_SETTINGS.FAMILY%TYPE ‘rcvunitadj’;
RCVUNITADJ_ADD CONSTANT VARCHAR2(15) ‘rcvunitadjcre’;

Function Level Description – ADDTOQ
ADDTOQ (O_error_msg IN OUT VARCHAR2,
 I_message_type IN VARCHAR2,
 I_business_obj IN RCVUNITADJ_KEY_REC)

If multi-threading is being used, call API_LIBRARY.RIB_SETTINGS to get the number of
threads used for the publisher. Using the number of threads and the location ID,
calculate the thread value.

Insert a record into the RCVUNITADJ_MFQUEUE.

Function Level Description – GETNXT
GETNXT (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id OUT RIB_BUSOBJID_TBL,
 O_routing_info OUT RIB_ROUTINGINFO_TBL,
 I_num_threads IN NUMBER DEFAULT 1,
 I_thread_val IN NUMBER DEFAULT 1)

Publication Designs

80 Oracle Retail Merchandising System

The RIB calls GETNXT to get messages. The driving cursor will query for unpublished
records on the RCVUNITADJ_MFQUEUE table (PUB_STATUS = ‘U’).

GETNXT should check for records on the queue with a status of ‘H’ospital for the current
business object, GETNXT should raise an exception to send the current message to the
Hospital.

The information from the RCVUNITADJ_MFQUEUE table is passed to
PROCESS_QUEUE_RECORD. PROCESS_QUEUE_RECORD will build the Oracle Object
message to pass back to the RIB. If PROCESS_QUEUE_RECORD does not run
successfully, GETNXT should raise an exception.

If any exception is raised in GETNXT, including the exception raised by an unsuccessful
call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS should be called.

Function Level Description – PUB_RETRY
PUB_RETRY (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type IN OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id IN OUT RIB_BUSOBJID_TBL,
 O_routing_info IN OUT RIB_ROUTINGINFO_TBL,
 I_ref_object IN RIB_OBJECT)

This procedure republishes the entity that failed to be published before. It is the same as
GETNXT except that the record on RCVUNITADJ_MFQUEUE to be published must
match the passed in sequence number contained in the ROUTING_INFO.

Function Level Description – PROCESS_QUEUE_RECORD (local)
This function controls the building of Oracle Objects given the business transaction’s key
values and a message type. It contains all of the shared processing between GETNXT and
PUB_RETRY.

The function first calls MAKE_CREATE to build the appropriate oracle object. It then
calls the DELETE_QUEUE_REC to delete the RUA_MFQUEUE for the passed-in rowid.

Function Level Description – MAKE_CREATE (local)
This function is used to create the Oracle Object for the initial publication of a business
transaction.
 Call BUILD_HEADER_OBJECT to get a header level Oracle Object plus any extra

functional holders.

 Call BUILD_DETAIL_OBJECTS to get a table of detail level Oracle objects and add
the detail level Oracle Objects to the header object.

Function Level Description – BUILD_HEADER_OBJECT (local)
Accepts header key values, performs necessary lookups, builds and returns a header
level Oracle Object.

This function also builds the routing information object using the location.

Function Level Description – BUILD_DETAIL_OBJECTS (local)
The function is responsible for the Oracle Object used for a DESC message (inserts and
updates.) It adds as many mfqueue records to the message as it can given the passed in
message type and business object keys.
 Call BUILD_SINGLE_DETAIL passing in the I_business_obj record.

 Ensure that ROUTING_INFO is constructed if routing information is stored at the
detail level in the business transaction.

Receiver Unit Adjustment Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 81

Function Level Description – BUILD_SINGLE_DETAIL (local)
Accept inputs and builds a detail level Oracle Object. If the adjustment quantity is
negative, the from disposition should be ‘ATS’ and the to disposition should be NULL. If
the adjustment quantity is positive, the to disposition should be NULL and the from
disposition should be ‘ATS’.

Function Level Description – LOCK_THE_BLOCK (local)
This function locks all queue records for the current business object. This is to ensure that
GETNXT does not wait on any business processes that currently have the queue table
locked and have not committed. This can occur because ADDTOQ, which is called from
the triggers, deletes from the queue table for DTL_UPD, DTL_DEL, and HDR_DEL
messages.

Function Level Description – HANDLE_ERRORS (local)
HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is
raised.

If the error is a non-fatal error, GETNXT passes the sequence number of the driving
RCVUNITADJ_MFQUEUE record back to the RIB in the ROUTING_INFO. It sends back
a status of ‘H’ospital to the RIB as well. It then updates the status of the queue record to
‘H’ospital, so that it will not get picked up again by the driving cursor in GETNXT.

If the error is a fatal error, a status of ‘E’rror is returned to the RIB.

The error is considered non-fatal if no DML has occurred yet. Whenever DML has
occurred, then the global variable LP_error_status is flipped from ‘H’ospital to ‘E’rror.

Function Level Description – DELETE_QUEUE_REC (local)
This private function will delete the records from rcvunitadj_mfqueue table for the rowid
passed in as input parameter.

Trigger Impact

Trigger name: EC_TABLE_RUA_AIR.TRG

Trigger file name: ec_table_rua_air.trg

Table: RAU_RIB_INTERFACE

Inserts
 Send the appropriate column values to the ADDTOQ procedure in the MFM with the

message type RMSMFM_RCVUNITADJ.RCVUNITADJ_ADD.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

RcvUnitAdjCre Receiver Unit Adjustment Create Message RcvUnitAdjDesc.xsd

Publication Designs

82 Oracle Retail Merchandising System

Design Assumptions
 Each receiver unit adjustment contains the delta quantity to be adjusted. As such

they can be processed in any order by the subscribing application. There is no
dependency between different RUA messages.

Table Impact

TABLE SELECT INSERT UPDATE DELETE

RUA_MFQUEUE Yes Yes Yes Yes

RTV Request Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 83

RTV Request Publication API

Functional Area
Return to Vendor

Business Overview
A return to vendor (RTV) order is used to send merchandise back to the supplier. The
RTV message is published by RMS to the store or warehouse. For an RTV, the initial
transfer of stock to the store is a distinctly different step from the RTV itself. Once the
transferred stock arrives at the store, the user then creates the RTV. RTVs are created by
the following:
1. Adding one supplier.

2. Selecting the sending locations.

3. Adding the items, either individually or through the use of item lists.

In order to return items to a vendor from multiple stores as part of one operation, the
items must go through a single warehouse. The transfer of items from several different
stores to one warehouse is referred to as a mass return transfer (MRT). The items are
subsequently returned to the vendor from the warehouse.

Return to vendor requests created in RMS should be published to the RIB to provide the
integration subsystem application with visibility to the corporately created RTV.
Consequently, when the integration subsystem application ships the RTV, it must
communicate the original RTV order number back to RMS so that RMS can correctly
update the original RTV record.

Package Impact

Business Object ID
RTV order number.

Package name: RMSMFM_RTVREQ

Spec file name: rmsmfm_rtvreqs.pls

Body file name: rmsmfm_rtvreqb.pls

Function Level Description – ADDTOQ
ADDTOQ (O_error_msg IN OUT VARCHAR2,
 I_message_type IN VARCHAR2,
 I_rtv_order_no IN RTV_HEAD.RTV_ORDER_NO%TYPE,
 I_status IN RTV_HEAD.STATUS_IND%TYPE,
 I_rtv_seq_no IN RTV_DETAIL.SEQ_NO%TYPE,
 I_item IN RTV_DETAIL.ITEM%TYPE,
 I_publish_ind IN RTV_DETAIL.PUBLISH_IND%TYPE)

There are some tasks relating to streamlining the queue clean up process that need to
occur in ADDTOQ. The goal is to have at most one record on the queue for business
transactions up until their initial publication.

 For header level insert messages (HDR_ADD), inserts a record in the
RTVREQ_PUB_INFO table. The published flag is set to ‘N’. The correct thread for the
business transaction is calculated and written. Calls API_LIBRARY.RIB_SETTINGS

Publication Designs

84 Oracle Retail Merchandising System

to get the number of threads used for the publisher. Using the number of threads,
and the business object id, calculates the thread value.

 For all records except header level inserts (HDR_ADD), the thread_no,
initial_approval_ind, and shipped_ind are queried from the RTVREQ_PUB_INFO
table.

 If the business transaction has not been approved (initial_approval_ind = ‘N’) or it
has already been shipped (shipped_ind = ‘Y’) and the triggering message is one of
DTL_ADD, DTL_UPD, DTL_DEL, HDR_DEL, no processing will take place and the
function exits.

 For detail level messages deletes (DTL_DEL), the system only needs one (the most
recent) record per detail in the RTVREQ_MFQUEUE. Any previous records that exist
on the RTVREQ_MFQUEUE for the record that has been passed are deleted. If the
publish_ind is ‘N’, the DTL_DEL message is not added to the queue.

 For detail level message deletes (DTL_UPD), the system only needs one DTL_UPD
(the most recent) record per detail in the RTVREQ_MFQUEUE. Any previous
DTL_UPD records that exist on the RTVREQ_MFQUEUE for the record that has been
passed are deleted. The system does not want to delete any detail inserts that exist on
the queue for the detail. The system ensures subscribers are not passed a detail
modification message for a detail that they do not yet have.

 For header level delete messages (HDR_DEL), deletes every record in the queue for
the business transaction.

 For header level update message (HDR_UPD), updates the
RTVREQ_PUB_INFO.INITIAL_APPROVAL_IND to ‘Y’ if the business transaction is
in approved status (status of ‘10’).

 For header level update message (HDR_UPD), updates the
RTVREQ_PUB_INFO.SHIPPED_IND to ‘Y’ if the business transaction is in shipped
status (status of ‘15’).

 For all records except header level inserts (HDR_ADD), inserts a record into the
RTVREQ_MFQUEUE.

Function Level Description – GETNXT
GETNXT (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id OUT RIB_BUSOBJID_TBL,
 O_routing_info OUT RIB_ROUTINGINFO_TBL,
 I_num_threads IN NUMBER DEFAULT 1,
 I_thread_val IN NUMBER DEFAULT 1)

LP_error_status is initialized to API_CODES.HOSPITAL at the beginning of GETNXT.

The RIB calls GETNXT to get messages. It performs a cursor loop on the unpublished
records on the RTVREQ_MFQUEUE table (PUB_STATUS = ‘U’). It only needs to execute
one loop iteration in most cases. For each record retrieved, GETNXT gets the following:

1. A lock of the queue table for the current business object. The lock is obtained by
calling the function LOCK_THE_BLOCK. If there are any records on the queue for
the current business object that are already locked, the current message is skipped.

2. The published indicator from the RTVREQ_PUB_INFO table.

3. A check for records on the queue with a status of ‘H’ospital. If there are any such
records for the current business object, GETNXT raises an exception to send the
current message to the Hospital.

RTV Request Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 85

The loop executes more than one iteration in the following cases:

1. When a header delete message exists on the queue for a business object that has not
been initially published. In this case, it removes the header delete message from the
queue and loops again.

2. The queue is locked for the current business object.

The information from the RTVREQ_MFQUEUE and RTVREQ_PUB_INFO table is passed
to PROCESS_QUEUE_RECORD. PROCESS_QUEUE_RECORD builds the Oracle Object
message to pass back to the RIB. If PROCESS_QUEUE_RECORD does not run
successfully, GETNXT raises an exception.

If any exception is raised in GETNXT, including the exception raised by an unsuccessful
call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS is called.

Function Level Description – PUB_RETRY
PUB_RETRY(O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type IN OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id IN OUT RIB_BUSOBJID_TBL,
 O_routing_info IN OUT RIB_ROUTINGINFO_TBL,
 I_REF_OBJECT IN RIB_OBJECT)

This procedure republishes the entity that failed to be published before. It is the same as
GETNXT except that the record on RTVREQ_MFQUEUE to be published must match the
passed in sequence number contained in the ROUTING_INFO.

Function Level Description – PROCESS_QUEUE_RECORD (local)
This function controls the building of Oracle Objects given the business transaction’s key
values and a message type. It contains all of the shared processing between GETNXT and
PUB_RETRY.

It checks to see if the business object is being published for the first time. If the
published_ind on the PUB_INFO table is ‘N’ or ‘I’, the business object is being published
for the first time. If so, calls MAKE_CREATE.

Otherwise,

If the record from RTVREQ_MFQUEUE table is a header update (HDR_UPD).

 Calls BUILD_HEADER_OBJECT to build the Oracle Object to publish to the RIB.
This will also populate the ROUTING_INFO.

 Updates RTVREQ_PUB_INFO with updated new header information

 Deletes the record from the RTVREQ_MFQUEUE table.

If the record from RTVREQ_MFQUEUE table is a detail add or update (DTL_ADD,
DTL_UPD).

 Calls BUILD_HEADER_OBJECT to build the header portion of the Oracle Object to
publish to the RIB. This also populates the ROUTING_INFO.

 Calls BUILD_DETAIL_CHANGE_OBJECTS to build the detail portion of the Oracle
Object. This also takes care of any RTVREQ_MFQUEUE deletes.

If the record from RTVREQ_MFQUEUE table is a detail delete (DTL_DEL).

 Calls BUILD_HEADER_OBJECT to build the header portion of the Oracle Object to
publish to the RIB. This also populates the ROUTING_INFO.

 Calls BUILD_DETAIL_DELETE_OBJECTS to build the detail portion of the Oracle
Object. This also takes care of any RTVREQ_MFQUEUE deletes.

Publication Designs

86 Oracle Retail Merchandising System

Function Level Description – MAKE_CREATE (local)
This function is used to create the Oracle Object for the initial publication of a business
transaction.

 Calls BUILD_HEADER_OBJECT to build the Oracle Object to publish to the RIB.
This also populates the ROUTING_INFO.

 Calls BUILD_DETAIL_OBJECTS to get a table of detail level Oracle objects and a
table of RTVREQ_MFQUEUE rowids to delete.

 Deletes records from the RTVREQ_MFQUEUE for all rowids returned by
BUILD_DETAIL_OBJECTS. Deletes are done by rowids instead of business
transaction keys to ensure that noting is deleted off the queue that has not been
published.

 If the entire business transaction was added to the Oracle Object, also deletes the
RTVREQ_MFQUEUE record that was picked up by GETNXT. If the entire business
transaction was not published we need to leave something on the
RTVREQ_MFQUEUE to ensure that the rest of it is picked up by the next call to
GETNXT.

 The header and detail level Oracle Objects are combined and returned.

Function Level Description – BUILD_HEADER_OBJECT (local)
Take all necessary data from RTV_HEAD table and put it into a
“RIB_RTVReqDesc_REC” and “RIB_RTVReqRef_REC” object.
Puts the location into the ROUTING_INFO.

Function Level Description – BUILD_DETAIL_CHANGE_OBJECTS (local)
Calls BUILD_DETAIL_OBJECTS.
BUILD_DETAIL_OBJECTS creates a table of RTVREQ_MFQUEUE ROWIDs to delete.
Deletes these records.

BUILD_DETAIL_OBJECTS creates a table of RTV_DETAIL ROWIDs to update. Updates
the PUBLISH_IND to Y for these records.

Make sure to set LP_error_status to API_CODES.UNHANDLED_ERROR before any
DML statements.

Function Level Description – BUILD_DETAIL_OBJECTS (local)
The function is responsible for building the detail level Oracle Objects. It builds as many
detail Oracle Object as it can given the passed in message type and business object keys.

If the function is being called from MAKE_CREATE:

• Selects any unpublished detail records from the business transaction
(RTV_DETAIL.PUBLISH_IND will be ‘N’). Creates Oracle Objects for details that are
selected by calling BUILD_SINGLE_DETAIL.

 Ensures that the PUBLISH_IND gets set to Y for each RTV_DETAIL record placed
into the Oracle Objects. A table of ROWIDs to update is created in
BUILD_DETAIL_OBJECTS. The actual update statement occurs in
BUILD_DETAIL_CHANGE_OBJECTS using this table of ROWIDS.

 Ensures that RTVREQ_MFQUEUE is deleted from as needed. If there is more than
one RTVREQ_MFQUEUE record for a detail level record, makes sure they all get
deleted. The system only cares about current state, not every change. A table of
ROWIDs to delete is created in BUILD_DETAIL_OBJECTS. The actual delete
statement occurs in BUILD_DETAIL_CHANGE_OBJECTS using this table of
ROWIDS.

RTV Request Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 87

 Ensures that no more than MAX_DETAILS_TO_PUBLISH records are put into
Oracle Objects.

 Ensures that the detail records being added to the object have not already been
published. This can happen if GETNXT was previously called for the current
business object, and the MAX_DETAILS_TO_PUBLISH limit had been reached. The
system ensures these details do not get added again by looking at each detail’s
PUBLISH_IND.

If the function is not being called from MAKE_CREATE:

 Selects any records on the RTVREQ_MFQUEUE that are for the same business object
ID. Fetches the records in order of seq_no on the MFQUEUE table.

 Ensures that RTVREQ_MFQUEUE is deleted from as needed. A table of ROWIDs to
delete will be created in BUILD_DETAIL_OBJECTS. The actual delete statement
occurs in BUILD_DETAIL_CHANGE_OBJECTS using this table of ROWIDS.

 If the message type is a detail create (DTL_ADD), ensures that the PUBLISH_IND
gets set to Y for each RTV_DETAIL record placed into the Oracle Objects. A table of
ROWIDs to update will be created in BUILD_DETAIL_OBJECTS. The actual update
statement occur in BUILD_DETAIL_CHANGE_OBJECTS using this table of
ROWIDS.

A concern here is making sure that the system does not delete information from the
queue table that has not been published. For this reason, the system performs deletes by
ROWID. The system also attempts to get everything in the same cursor to ensure that the
message we published matches the deletes we perform from the RTVREQ_MFQUEUE
table regardless of trigger execution during GETNXT calls.

Function Level Description – BUILD_DETAIL_DELETE_OBJECTS (local)
This function works the same way as BUILD_DETAIL_OBJECTS, except for the fact that
a REF object is being created instead of a DESC object.

Function Level Description – BUILD_SINGLE_DETAIL (local)
Puts the inputted information in a RIB_RTVREQDTL_TBL object.

Function Level Description – LOCK_THE_BLOCK (local)
This function locks all queue records for the current business object. This is to ensure that
GETNXT does not wait on any business processes that currently have the queue table
locked and have not committed. This can occur because ADDTOQ, which is called from
the triggers, deletes from the queue table for DTL_UPD, DTL_DEL, and HDR_DEL
messages.

Function Level Description – DELETE_QUEUE_REC (local)
Deletes a record from the RTVREQ_MFQUEUE table, using the passed in sequence
number.

Function Level Description – HANDLE_ERRORS (local)
HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is
raised.

If the error is a non-fatal error, GETNXT passes the sequence number of the driving
ITEMLOC_MFQUEUE record back to the RIB in the ROUTING_INFO. It sends back a
status of ‘H’ospital to the RIB as well. It then updates the status of the queue record to
‘H’ospital, so that it will not get picked up again by the driving cursor in GETNXT.
If the error is a fatal error, a status of ‘E’rror is returned to the RIB.

Publication Designs

88 Oracle Retail Merchandising System

The error is considered non-fatal if no DML has occurred yet. Whenever DML has
occurred, then the global variable LP_error_status is flipped from ‘H’ospital to ‘E’rror.

Trigger Impact

Trigger name: EC_TABLE_RHD_AIUDR.TRG

Trigger file name: ec_table_rhd_aiudr.trg

Table: RTV_HEAD
A trigger on the RTV_HEAD table captures Inserts, Updates, and Deletes.

Inserts
 Sends the appropriate column values to the ADDTOQ procedure in the MFM with

the message type RMSMFM_RTVREQ.HDR_ADD.

Updates

 Sends the appropriate column values to the ADDTOQ procedure in the MFM with
the message type RMSMFM_RTVREQ.HDR_UPD.

Deletes
 Sends the appropriate column values to the ADDTOQ procedure in the MFM with

the message type RMSMFM_RTVREQ.HDR_DEL.

Trigger name: EC_TABLE_RDT_AIUDR.TRG

Trigger file name: ec_table_rdt_aiudr.trg

Table: RTV_DETAIL
A trigger on the RTV_DETAIL table captures Inserts, Updates, and Deletes.

Inserts
 Sends the appropriate column values to the ADDTOQ procedure in the MFM with

the message type RMSMFM_RTVREQ.DTL_ADD.

Updates
 Sends the appropriate column values to the ADDTOQ procedure in the MFM with

the message type RMSMFM_RTVREQ.DTL_UPD.

Deletes
 Sends the appropriate column values to the ADDTOQ procedure in the MFM with

the message type RMSMFM_RTVREQ.DTL_DEL.

RTV Request Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 89

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

RtvReqCre RTV Request Create Message RTVReqDesc.xsd

RtvReqMod RTV Request Modify Message RTVReqDesc.xsd

RtvReqDel RTV Request Delete Message RTVReqRef.xsd

RtvReqDtlCre RTV Request Detail Create Message RTVReqDesc.xsd

RtvReqDtlMod RTV Request Detail Modify Message RTVReqDesc.xsd

RtvReqDtlDel RTV Request Detail Delete Message RTVReqRef.xsd

Design Assumptions
 It is not possible for a detail trigger to accurately know the status of a header table.

 In order for the detail triggers to accurately know when to add a message to the
queue, RMS should not allow approval of a business object while detail
modifications are being made.

 It is not possible for a header trigger or a detail trigger to know the status of anything
modified by GETNXT. If a header trigger or detail trigger is trying to delete queue
records that GETNXT currently has locked, it will have to wait until GETNXT is
finished and remove the lock. It is assumed that this time will be fairly short (at most
2-3 seconds.) It is also assumed that this will occur rarely because it involves
updating/deleting detail records on a business object that has already been
approved. This also has to occur at the same time GETNXT is processing the current
business object.

 Push off all DML statements as late as possible. Once DML statements have taken
place, any error becomes a fatal error rather than a hospital error.

Table Impact

TABLE SELECT INSERT UPDATE DELETE

RTVREQ_MFQUEUE Yes Yes Yes Yes

RTVREQ_PUB_INFO Yes Yes Yes Yes

RTV_HEAD Yes No No No

RTV_DETAIL Yes No No No

Publication Designs

90 Oracle Retail Merchandising System

Seed Data Publication API

Functional Area
Foundation Data

Business Overview
Seed data publication to the RIB allows RMS to send some basic foundation data
information to external systems to seed their database. The data contained in this API is
usually fairly static and does not frequently change after initial implementation.

Some examples of seed data include diff types, item types, carriers, shipping methods,
supplier types, location types, order types and return reasons.

Package Impact

File name: rmsmfm_seeddatas/b.pls

Function Level Description – ADDTOQ
PROCEDURE: ADDTOQ
 (O_status OUT VARCHAR2,
 O_text OUT VARCHAR2,
I_message_type IN CODES_MFQUEUE.MESSAGE_TYPE%TYPE,
 I_code_type IN CODES_MFQUEUE.CODE_TYPE%TYPE,
 I_message IN OUT rib_sxw.SXWHandle)

This procedure is called by the table triggers EC_TABLE_CODEHD_AIUDR,
EC_TABLE_CODEDTL_AIUDR and EC_TABLE_DIFF_TYPE_AIUDR. The procedure
accepts a message variable that consists of the code or diff information in XML tags, a
code type variable (this will be hard coded ‘OOOO’ for diff types) and one of the
message types defined in the package specification. It inserts a row into the message
family queue CODES_MFQUEUE along with the passed in values and the next sequence
number from the message family sequence, and sets the status to unpublished. The
procedure will then call API_LIBRARY.WRITE_DOCUMENT_STR which will return a
status code of API_CODES.SUCCESS if successful, API_CODES.UNHANDLED_ERROR
if not.

Function Level Description – GETNXT
PROCEDURE GETNXT
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type OUT CODES_MFQUEUE.MESSAGE_TYPE%TYPE,
 O_message OUT nocopy CLOB,
 O_code_type OUT CODES_MFQUEUE.CODE_TYPE%TYPE)

This publicly exposed procedure is called by the RIB publication adaptor. The message
type is the RIB defined short message name.

The error text parameter contains application-generated information, such as the
application’s sequence number of the message that failed, and the Oracle or other error
that occurred when the retrieval failed.
This procedure will call the internal function DO_GETNXT which will actually retrieve
the clob from the CODES_MFQUEUE table so that it may be published to the RIB.

Seed Data Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 91

Function Level Description – DO_GETNXT (local)
This internal procedure will select the record from the CODES_MFQUEUE table having
the lowest sequence number and a pub_status of ‘U’. It will return the clob, the message
type and code type to the out parameters to be passed back to GETNXT. The procedure
will then call the DELETE_QUEUE_REC function to delete the record that is being
published.

Function Level Description – DELETE_QUEUE_REC (local)
This procedure will delete the record from the CODES_MFQUEUE table that has the
sequence number corresponding to the I_seq_no parameter.

File name: code_head_xmls/b.pls

Function Level Description – BUILD_MESSAGE
If the I_action_type is ‘D’ (a record is being deleted), an internal variable holding the doc
type will be set to RMSMFM_SEEDDATA.HDR_REF_MSG. The function will then call
API_LIBRARY.CREATE_MESSAGE_STR to return a clob that has the appropriate
structure for the code head delete message. The function then calls the
DELETE_CODE_HEAD function to populate the clob that was created.

If the I_action_type is not ‘D’ (a record has been added or updated), an internal variable
holding the doc type will be set to RMSMFM_SEEDDATA.HDR_DESC_MSG. The
function will then call API_LIBRARY.CREATE_MESSAGE_STR to return a clob that has
the appropriate structure for the code head desc message. The function then calls the
ADD_UPDATE_CODE_HEAD function to populate the clob that was created.

Function Level Description – DELETE_CODE_HEAD
This function will accept a record that holds code_head values. The rib_sxw.addElement
function will be called to add the code type from the I_code_head_rec to the clob (or
root).

Function Level Description – ADD_UPDATE_CODE_HEAD
This function will accept a record that holds CODE_HEAD values. The
rib_sxw.addElement function will be called to add the code type and code type
description from the I_code_head_rec to the clob (or root).

File name: code_detail_xmls/b.pls

Function Level Description – BUILD_MESSAGE
If the I_action_type is ‘D’ (a record is being deleted), an internal variable holding the doc
type should be set to RMSMFM_SEEDDATA.DTL_REF_MSG. The function will then call
API_LIBRARY.CREATE_MESSAGE_STR to return a clob that has the appropriate
structure for the code detail delete message. The function then calls the
DELETE_CODE_DETAIL function to populate the clob that was created.

If the I_action_type is not ‘D’ (a record has been added or updated), an internal variable
holding the doc type should be set to RMSMFM_SEEDDATA.DTL_DESC_MSG. The
function will then call API_LIBRARY.CREATE_MESSAGE_STR to return a clob that has
the appropriate structure for the code detail desc message. The function then calls the
ADD_UPDATE_CODE_DETAIL function to populate the clob that was created.

Publication Designs

92 Oracle Retail Merchandising System

Function Level Description – DELETE_CODE_DETAIL
FUNCTION DELETE_CODE_DETAIL
 (O_status OUT VARCHAR2,
 O_text OUT VARCHAR2,
 I_code_detail_rec IN CODE_DETAIL%ROWTYPE,
 Root IN OUT rib_sxw.SXWHandle)

This function will accept a record that holds code_detail values. The
rib_sxw.addElement function will be called to add the code type and code from the
I_code_detail_rec to the clob (or root).

Function Level Description – ADD_UPDATE_CODE_DETAIL
This function will accept a record that holds code_detail values. The rib_sxw.addElement
function will be called to add the code type, code, code description, required indicator
and code sequence from the I_code_detail_rec to the clob (or root).

File name: diff_type_xmls/b.pls

Function Level Description – BUILD_MESSAGE
If the I_action_type is ‘D’ (a record is being deleted), an internal variable holding the doc
type will be set to RMSMFM_SEEDDATA.DIFF_TYPE_REF_MSG. The function will then
call API_LIBRARY.CREATE_MESSAGE_STR to return a clob that has the appropriate
structure for the diff type delete message. The function then calls the
DELETE_DIFF_TYPE function to populate the clob that was created.

If the I_action_type is not ‘D’ (a record has been added or updated), an internal variable
holding the doc type will be set to RMSMFM_SEEDDATA.DIFF_TYPE_DESC_MSG. The
function will then call API_LIBRARY.CREATE_MESSAGE_STR to return a clob that has
the appropriate structure for the diff type desc message. The function then calls the
ADD_UPDATE_DIFF_TYPE function to populate the clob that was created.

Function Level Description – DELETE_DIFF_TYPE
FUNCTION DELETE_DIFF_TYPE
 (O_status OUT VARCHAR2,
 O_text OUT VARCHAR2,
 I_diff_type_rec IN DIFF_TYPE%ROWTYPE,
 Root IN OUT rib_sxw.SXWHandle)

This function will accept a record that holds diff_type values. The rib_sxw.addElement
function will be called to add the diff type from the I_diff_type_rec to the clob (or root).

Function Level Description – ADD_UPDATE_CODE_DETAIL
FUNCTION ADD_UPDATE_DIFF_TYPE
 (O_status OUT VARCHAR2,
 O_text OUT VARCHAR2,
 I_diff_type_rec IN DIFF_TYPE%ROWTYPE,
 Root IN OUT rib_sxw.SXWHandle)

This function will accept a record that holds diff_type values. The rib_sxw.addElement
function will be called to add the diff type and diff type description from the
I_diff_type_rec to the clob (or root).

Seed Data Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 93

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

CodeHdrCre Code Head Create Message CodeHdrDesc.xsd

CodeHdrMod Code Head Modify Message CodeHdrDesc.xsd

CodeHdrDel Code Head Delete Message CodeHdrRef.xsd

CodeDtlCre Code Detail Create Message CodeDtlDesc.xsd

CodeDtlMod Code Detail Modify Message CodeDtlDesc.xsd

CodeDtlDel Code Detail Delete Message CodeDtlRef.xsd

DiffTypeCre Diff Type Create Message DiffTypeDesc.xsd

DiffTypeMod Diff Type Modify Message DiffTypeDesc.xsd

DiffTypeDel Diff Type Delete Message DiffTypeRef.xsd

Design Assumptions

Table Impact

TABLE SELECT INSERT UPDATE DELETE

CODES_MFQUEUE Yes Yes No Yes

CODE_HEAD Yes Yes No Yes

CODE_DETAIL Yes Yes No Yes

Publication Designs

94 Oracle Retail Merchandising System

Seed Object Publication API

Functional Area
Foundation Data

Business Overview
Seed object publication to the RIB allows RMS to send country information as well as
currency rates so that external systems will have all of the latest information regarding
countries and currency rates.

Seed object publication consists of a message containing country and currency rate
information from the tables COUNTRY and CURRENCY_RATES. One message will be
synchronously created and placed in the message queue each time a COUNTRY and
CURRENCY_RATES record is created, modified or deleted in RMS. When a COUNTRY
or CURRENCY_RATES record is created or modified, the message will contain a full
snapshot of the modified record. When a COUNTRY record is deleted, the message will
contain a partial snapshot of the deleted record. Messages are retrieved from the message
queue in the order they were created.

Package Impact

File name: rmsmfm_seedobjs/b.pls
Function Level Description – ADDTOQ
PROCEDURE: ADDTOQ
 (O_error_message IN OUT VARCHAR2,
 I_message_type IN SEEDOBJ_MFQUEUE.MESSAGE_TYPE%TYPE,
 I_country_id IN SEEDOBJ_MFQUEUE.COUNTRY_ID%TYPE,
 I_currency_code IN SEEDOBJ_MFQUEUE.CURRENCY_CODE%TYPE,
 I_country_desc IN SEEDOBJ_MFQUEUE.COUNTRY_DESC%TYPE,
 I_effective_date IN SEEDOBJ_MFQUEUE.EFFECTIVE_DATE%TYPE,
 I_exchange_type IN SEEDOBJ_MFQUEUE.EXCHANGE_TYPE%TYPE,
 I_exchange_rate IN SEEDOBJ_MFQUEUE.EXCHANGE_RATE%TYPE)
RETURN BOOLEAN;

This function is called by either the COUNTRY or CURRENCY_RATES row trigger, and
takes the message type and the table values (country_id for COUNTRY table and
currency_code for CURRENCY_RATES table). It inserts a row into the message family
queue along with the passed in values and the next sequence number from the message
family sequence. The pub status will always be ‘U’ except for create messages, then it will
be ‘N’. It returns error codes and strings according to the standards of the application in
which it is being implemented.

Function Level Description – GETNXT
PROCEDURE GETNXT
 (O_status_code IN OUT VARCHAR2,
 O_error_msg IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_message_type IN OUT VARCHAR2,
 O_message IN OUT RIB_OBJECT,
 O_bus_obj_id IN OUT RIB_BUSOBJID_TBL,
 O_routing_info IN OUT RIB_ROUTINGINFO_TBL,
 I_num_threads IN NUMBER DEFAULT 1,
 I_thread_val IN NUMBER DEFAULT 1)

The RIB calls GETNXT to get messages. It performs a cursor loop on the unpublished
records on the SEEDOBJ_MFQUEUE table (PUB_STATUS = ‘U’). It will only execute one
loop iteration in most cases. For each record retrieved, GETNXT checks for records on the

Seed Object Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 95

queue with a status of ‘H’ - Hospital. If there are any such records for the current
business object, GETNXT raises an exception to send the current message to the Hospital.

The information from the SEEDOBJ_MFQUEUE and table is passed to
PROCESS_QUEUE_RECORD. PROCESS_QUEUE_RECORD will build the Oracle Object
message to pass back to the RIB. If PROCESS_QUEUE_RECORD does not run
successfully, GETNXT raises an exception.

If any exception is raised in GETNXT, including the exception raised by an unsuccessful
call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS is called.

Function Level Description – PUB_RETRY
Procedure: PUB_RETRY
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type IN OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id IN OUT RIB_BUSOBJID_TBL,
 O_routing_info IN OUT RIB_ROUTINGINFO_TBL,
 I_REF_OBJECT IN RIB_OBJECT);

Same as GETNXT except it only loops for a specific row in the SEEDOBJ_MFQUEUE
table. The record on SEEDOBJ_MFQUEUE must match the passed in sequence number
(contained in the ROUTING_INFO).

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

countrycre Code Head Create Message CountryDesc.xsd

countrymod Code Head Modify Message CountryDesc.xsd

countrydel Code Head Delete Message CountryRef.xsd

curratecre Code Detail Create Message CurrRateDesc.xsd

curratemod Code Detail Modify Message CurrRateDesc.xsd

Table Impact

TABLE SELECT INSERT UPDATE DELETE

SEEDOBJ _MFQUEUE Yes Yes No Yes

COUNTRY Yes Yes Yes Yes

CURRENCY_RATES Yes Yes Yes No

Publication Designs

96 Oracle Retail Merchandising System

Store Publication API

Functional Area
Foundation Data

Business Overview
RMS publishes data about stores in messages to the Oracle Retail Integration Bus (RIB)
for other applications that needs to keep their locations synchronized with RMS. RMS
publishes messages to the RIB to create, modify, and delete store events for all store
types. These messages are triggered by insert/update/delete on the RMS STORE table
and/or the ADDR table with module ‘ST’ (for store). The system only publishes the
current state of the store, not every change.

Only the primary address and primary address type are published through this message,
as it is assumed that integration subsystems only require one address.

Package Impact

File name: rmsmfm_stores/b.pls

Function Level Description – ADDTOQ
Function: ADDTOQ
 (O_error_msg OUT VARCHAR2,
 I_message_type IN VARCHAR2,
 I_store_key_rec IN STORE_KEY_REC,
 I_addr_publish_ind IN ADDR.PUBLISH_IND%TYPE)

This public function puts a store message on STORE_MFQUEUE for publishing to the
RIB. It is called from both store trigger and address trigger. The I_functional_keys will
contain store and, optionally, addr_key.

Function Level Description – GETNXT
Procedure: GETNXT
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id OUT RIB_BUSOBJID_TBL,
 O_routing_info OUT RIB_ROUTINGINFO_TBL,
 I_num_threads IN NUMBER DEFAULT 1,
 I_thread_val IN NUMBER DEFAULT 1)

This public procedure is called from the RIB to get the next messages. It performs a
cursor loop on the unpublished records on the STORE_MFQUEUE table (PUB_STATUS
= ‘U’).
If any exception is raised in GETNXT, including the exception raised by an unsuccessful
call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS is called.

Function Level Description – PUB_RETRY
Procedure: PUB_RETRY
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_message_type IN OUT VARCHAR2,
 O_bus_obj_id IN OUT RIB_BUSOBJID_TBL,
 O_routing_info IN OUT RIB_ROUTINGINFO_TBL)

Store Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 97

This public procedure performs the same tasks as GETNXT except that it only loops for a
specific row in the STORE_MFQUEUE table. The record on STORE_MFQUEUE must
match the passed in sequence number (contained in the ROUTING_INFO).

Function Level Description – PROCESS_QUEUE_RECORD (local)
This private function controls the building of Oracle Objects (DESC or REF) given the
business transaction’s key values and a message type. It contains all of the shared
processing between GETNXT and PUB_RETRY.

Function Level Description – MAKE_CREATE (local)
This private function is used to create the Oracle Object for the initial publication of a
business transaction. I_business_object contains the store header key values (store).
I_rowid is the rowid of the store_mfqueue row fetched from GETNXT.

Function Level Description – BUILD_HEADER_OBJECT (local)
This private function accepts store header key value (store), builds and returns a header
level DESC Oracle Object.

This overloaded private function accepts store header key value (store), builds and
returns a header level REF Oracle Object.

Function Level Description – BUILD_DETAIL_OBJECTS (local)
The private function is responsible for building detail level DESC Oracle Objects. It
builds as many detail Oracle Object as it can given the passed in message type and
business object keys (store).

Function Level Description – BUILD_SINGLE_DETAIL (local)
This private function takes in an address record and builds a detail level Oracle Object.
Also find out if the address is the primary address of the primary address type and set
the DESC Oracle Object accordingly.

Function Level Description – BUILD_DETAIL_CHANGE_OBJECTS (local)
This private function builds a DESC Oracle Object to publish to the RIB for detail create
and detail update messages (DTL_ADD, DTL_UPD). I_business_obj contains the header
level key values (store).

Function Level Description – BUILD_DETAIL_DELETE_OBJECTS (local)
This private function builds a REF Oracle Object to publish to the RIB for detail delete
messages (DTL_DEL). I_business_obj contains the header level key values (store).

Function Level Description – LOCK_THE_BLOCK (local)
This private function locks all queue records for the current business object (store). This is
to ensure that GETNXT and PUB_RETRY do not wait on any business processes that
currently have the queue table locked and have not committed. This can occur because
ADDTOQ, which is called from the triggers, deletes from the queue table for DTL_UPD,
DTL_DEL, and HDR_DEL messages.

Function Level Description – HANDLE_ERRORS (local)
This private procedure is called from GETNXT and PUB_RETRY when an exception is
raised. I_seq_no is the sequence number of the driving STORE_MFQUEUE record.
I_function_keys contains detail level key values (store, addr_key).

Publication Designs

98 Oracle Retail Merchandising System

If the error is a non-fatal error, HANDLE_ERRORS passes the sequence number of the
driving STORE_MFQUEUE record back to the RIB in the ROUTING_INFO. It sends back
a status of ‘H’ - Hospital to the RIB as well. It then updates the status of the queue record
to ‘H’, so that it will not get picked up again by the driving cursor in GETNXT.
If the error is a fatal error, a status of ‘E’ - Error is returned to the RIB. The error is
considered non-fatal if no DML has occurred yet. Whenever DML has occurred, then the
global variable LP_error_status is flipped from ‘H’ to ‘E’.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

StoreCre Store Create Message StoreDesc.xsd

StoreMod Store Modify Message StoreDesc.xsd

StoreDel Store Delete Message StoreRef.xsd

Table Impact

TABLE SELECT INSERT UPDATE DELETE

STORE_PUB_INFO Yes Yes Yes Yes

ADDR Yes No Yes No

STORE_MFQUEUE Yes Yes Yes Yes

ADD_TYPE_MODULE Yes No No No

STORE Yes No No No

Design Assumptions
Push off all DML statements as late as possible. Once DML statements have taken place,
any error becomes a fatal error rather than a hospital error.

Transfers Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 99

Transfers Publication API

Functional Area
Transfer

Business Overview
A transfer is a movement of stock on hand from one stockholding location within the
company to another.

The transfer publication processing publishes transfers in ‘Approved’ status.

Transfers consist of header level information in which source and destination locations
are specified, and detail information regarding what items and the quantity of each item
is to be transferred. Both of the main transfer tables, TSFHEAD and TSFDETAIL, include
triggers that track inserts, deletes, and modifications. These triggers insert or update into
TSF_MFQUEUE or TRANSFERS_PUB_INFO tables. The transfer family manager is
responsible for pulling transfer information from this queue and sending it to the
external system(s) at the appropriate time and in the correct sequence.

The transfer messages that are published by the family manager vary. A complete
message including header information, detail information, and component ticketing
information (if applicable) is created when a transfer is approved. When the transfer is
unapproved, the RIB processes it as a TransferDel message when publishing it to external
systems. When the transfer is re-approved, the transfer is processed as a new transfer for
publishing.

For a customer order transfer (tsf_type = ‘CO’), customer related information is pulled
from ORDCUST table. Additional trigger is put on ORDCUST to capture delivery and
billing change for the customer order transfer through the transfer message family.

Package Impact

Business Object ID:

Transfer number

Create Header
1. Prerequisites: None.

2. Activity Detail: The first step to creating a transfer is creating the header level
information.

3. Messages: When a transfer is created, a record is inserted into
TRANSERS_PUB_INFO table and is not published onto the queue until the transfer
has been approved.

Approve
1. Prerequisites: A transfer must exist and have at least one detail before it can be

approved.

2. Activity Detail: Approving a transfer changes the status of the transfer. This change
in status signifies the first time systems external to RMS will have an interest in the
existence of the transfer, so this is the first part of the life cycle of a transfer that is
published.

3. Messages: When a transfer is approved, a “TransferHdrMod” message is inserted
into the queue with the appr_ind on the queue set to ‘Y’ signifying that the transfer

Publication Designs

100 Oracle Retail Merchandising System

was approved. The family manager uses this indicator to create a hierarchical
message containing a full snapshot of the transfer at the time the message is
published.

Modify Header
1. Prerequisites: The transfer header can only be modified when the status is not

approved. Once the transfer is approved, the only fields that are modifiable are the
status field and the comments field.

2. Activity Detail: The user is allowed to modify the header but only certain fields at
certain times. If a transfer is in input status the ‘to and from’ locations may be
modified until details have been added. Once details have been added, the locations
are disabled. The freight code is modifiable until the transfer has been approved.
Comments can be modified at any time.

3. Messages: When the status of the header is either changed to ‘C’losed or ‘A’pproved,
a message (TransferHdrMod) is inserted into the queue. (Look above at Approve
activity and below at Close activity for further details).

Create Details
1. Prerequisites: A transfer header record must exist before transfer details can be

created.

2. Activity Detail: The user is allowed to add items to a transfer but only until it has
been approved. Once a transfer has been approved, details can longer be added
unless the transfer is set back to Input status.

3. Messages: No messages are created on the queue until the transfer is approved.

Modify Details
1. Prerequisites: Only modifications to transfer quantities are sent to the queue, and

only when the transfer quantity is decreased manually, and not because of an
increase in cancelled quantity will it be sent to the queue.

2. Activity Detail: The user is allowed to change transfer quantities provided they are
not reduced below those already shipped. The transfer quantity can also be
decreased by an increase in the cancelled quantity, which is always initiated by the
external system. This change, then, would be of no interest to the external system
because it was driven by it.

3. Messages: No messages are created on the queue until the transfer is approved.

Delete Details
1. Prerequisites: Only a detail that has not been shipped may be deleted, and it cannot

be deleted if it is currently being worked on by an external system. A user is not
allowed to delete details from a closed transfer.

2. Activity Detail: A user is allowed to delete details from a transfer but only if the item
has not been shipped.

3. Messages: No messages are created on the queue until the transfer is approved.

Close
1. Prerequisites: A transfer must be in shipped status before it can be closed, and it

cannot be in the process of being worked on by an external system.

2. Activity Detail: Closing a transfer changes the status, which prevents any further
modifications to the transfer. When a transfer is closed, a message is published to

Transfers Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 101

update the external system(s) that the transfer has been closed and no further work
(in RMS) is performed on it.

3. Messages: Closing a transfer queues a “TransferHdrMod” request. This is a flat
message containing a snapshot of the transfer header information at the time the
message is published.

Delete
1. Prerequisites: A transfer can only be deleted when it is still in approved status or

when it has been closed.

2. Activity Detail: Deleting a transfer removes it from the system. External systems are
notified by a published Delete message that contains the number of the transfer to be
deleted.

3. Message: When a transfer is deleted, a “TransferDel”, which is a flat notification
message, is queued.

Package name: RMSMFM_TRANSFERS

Spec file name: rmsmfm_transferss.pls

Body file name: rmsmfm_transfersb.pls

Package Specification – Global Variables
FAMILY VARCHAR2(64) := 'transfers';

HDR_ADD VARCHAR2(64) := 'TransferCre';
HDR_UPD VARCHAR2(64) := 'TransferHdrMod';
HDR_DEL VARCHAR2(64) := 'TransferDel';
HDR_UNAPRV VARCHAR2(64) := 'TransferUnapp';
DTL_ADD VARCHAR2(64) := 'TransferDtlCre';
DTL_UPD VARCHAR2(64) := 'TransferDtlMod';
DTL_DEL VARCHAR2(64) := 'TransferDtlDel';

Function Level Description – ADDTOQ
ADDTOQ (O_error_mesage OUT VARCHAR2,
 I_message_type IN VARCHAR2,
 I_tsf_no IN tsfhead.tsf_no%TYPE,
 I_tsf_type IN tsfhead.tsf_type%TYPE,
 I_tsf_head_status IN tsfdetail.status%TYPE,
 I_item IN tsfdetail.item%TYPE,
 I_publish_ind IN tsfdetail.publish_ind%TYPE)

This function is called by both the tsfhead trigger and the tsfdetail trigger, the
EC_TABLE_THD_AIUDR and EC_TABLE_TDT_AIUDR respectively.

 Book transfers, non-sellable transfers and externally generated transfers (except for
delete messages) are never published to external systems.

 For header level insert messages (HDR_ADD), inserts a record in the
TRANSFERS_PUB_INFO table. The published flag is set to ‘N’. The correct thread for
the Business transaction is calculated and written. The
functionAPI_LIBRARY.RIB_SETTINGS is called to get the number of threads used
for the publisher. Using the number of threads, and the Business object id, the thread
value is calculated.

 For all records except header level inserts (HDR_ADD), the thread_no and
initial_approval_ind are queried from the TRANSFERS_PUB_INFO table.

Publication Designs

102 Oracle Retail Merchandising System

 If the Business transaction has not been approved (initial_approval_ind = ‘N’) and
the triggering message is one of DTL_ADD, DTL_UPD, DTL_DEL, HDR_DEL, no
processing will take place and the function exits.

 For detail level message deletes (DTL_DEL), only the most recent record per detail in
the TSF_MFQUEUE is required. Any previous records that exist on the
TSF_MFQUEUE for the record that has been passed are deleted. If the publish_ind is
‘N’, the DTL_DEL message is not added to the queue.

 For detail level message updates (DTL_UPD), only the most recent DTL_UPD record
per detail in the TSF_MFQUEUE is required. Any previous DTL_UPD records that
exist on the TSF_MFQUEUE for the record that has been passed are deleted. The
system does not want to delete any detail inserts that exist on the queue for the
detail. It ensures subscribers have not passed a detail modification message for a
detail that they do not yet have.

 For header level delete messages (HDR_DEL), deletes every record in the queue for
the Business transaction.

 For header level update message (HDR_UPD), updates the
TRANSFERS_PUB_INFO.INITIAL_APPROVAL_IND to ‘Y’ if the Business
transaction is in approved status.

 For all records except header level inserts (HDR_ADD), inserts a record into the
TSF_MFQUEUE.

It returns a status code of API_CODES.SUCCESS if successful,
API_CODES.UNHANDLED_ERROR if not.

Function Level Description – GETNXT
GETNXT (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id OUT RIB_BUSOBJID_TBL,
 O_routing_info OUT RIB_ROUTINGINFO_TBL,
 I_num_threads IN NUMBER DEFAULT 1,
 I_thread_val IN NUMBER DEFAULT 1)

The RIB calls GETNXT to get messages. It performs a cursor loop on the unpublished
records on the TSF_MFQUEUE table (PUB_STATUS = ‘U’). It only needs to execute one
loop iteration in most cases. For each record retrieved, GETNXT gets the following:

1. A lock of the queue table for the current Business object. The lock is obtained by
calling the function LOCK_THE_BLOCK. If there are any records on the queue for
the current Business object that are already locked, the current message is skipped.

2. The published indicator from the TRANSFERS_PUB_INFO table.

3. A check for records on the queue with a status of ‘H’ospital. If there are any such
records for the current Business object, GETNXT raises an exception to send the
current message to the Hospital.

The loop executes more than one iteration for the following cases

1. When a header delete message exists on the queue for a business object that has not
been initially published. In this case, it removes the header delete message from the
queue and loop again.

2. A detail delete message exists on the queue for a detail record that has not been
initially published. In this case, it removes the detail delete message from the queue
and loop again.

3. The queue is locked for the current Business object

Transfers Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 103

The information from the TSF_MFQUEUE and TRANSFERS_PUB_INFO table is passed
to PROCESS_QUEUE_RECORD. PROCESS_QUEUE_RECORD builds the Oracle Object
message to pass back to the RIB. If PROCESS_QUEUE_RECORD does not run
successfully, GETNXT raises an exception.
If any exception is raised in GETNXT, including the exception raised by an unsuccessful
call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS is called.

Function Level Description – PUB_RETRY
PUB_RETRY(O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type IN OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id IN OUT RIB_BUSOBJID_TBL,
 O_routing_info IN OUT RIB_ROUTINGINFO_TBL,
 I_REF_OBJECT IN RIB_OBJECT)

This procedure republishes the entity that failed to be published before. It is the same as
GETNXT except that the record on TSF_MFQUEUE to be published must match the
passed in sequence number contained in the ROUTING_INFO.

Function Level Description – PROCESS_QUEUE_RECORD (local)
This function controls the building of Oracle Objects given the business transaction’s key
values and a message type. It contains all of the shared processing between GETNXT and
PUB_RETRY.
If the message type is HDR_DEL or HDR_UNAPRV and it has not been published:

 Calls DELETE_QUEUE_REC to delete the record from TSF_MFQUEUE.

If the message type is HDR_DEL and the record has been published:

 Generates a “flat” file to be sent to the RIB. Delete from TRANSFER_PUB_INFO and
calls DELETE_QUEUE_REC to delete from the queue.

If the message type is HDR_UNAPRV”
 Processes it just like a hdr_del except the published indicator on

TRANSFERS_PUB_INFO is set to ‘N’.

If the message type is HDR_ADD or DTL_ADD:

 Calls MAKE_CREATE to publish the entire transfer.

If the record from TSF_MFQUEUE table is HDR_UPD:

 Calls BUILD_HEADER_OBJECT to build the Oracle Object to publish to the RIB and
deletes from the queue.

If the record from TSF_MFQUEUE table is DTL_ADD or DTL_UPD:

 Calls BUILD_HEADER_OBJECT and BUILD DETAIL_CHANGE_OBJECTS to build
the Oracle Object to publish to the RIB.

If the record from TSF_MFQUEUE table is a detail delete (DTL_DEL):

 Calls BUILD HEADER_OBJECT and BUILD_DETAIL_DELETE_OBJECTS to build
the Oracle Object to publish to the RIB.

This function puts the following in the routing info (RIB_ROUTING_INFO_TBL):

 ‘from_phys_loc’ – transfer from location. In case of warehouse, it’s the physical
warehouse.

 ‘from_phys_loc_type’ - transfer from location type – ‘S’ for store, ‘W’ for warehouse,
‘E’ for external finisher.

 ‘to_phys_loc’ – transfer to location. In case of warehouse, it’s the physical warehouse.

Publication Designs

104 Oracle Retail Merchandising System

 ‘to_phys_loc_type’ – transfer to location type. In case of store, ‘S’ for physical store
(i.e. stockholding company store), ‘V’ for virtual store (i.e. non-stockholding
company store).

Function Level Description – MAKE_CREATE (local)
This function is used to create the Oracle Object for the initial publication of a business
transaction. It combines the current message and all previous messages with the same
key in the queue table to create the complete hierarchical message. It first creates a new
message with the hierarchical document type. It then gets the header create message and
adds it to the new message. The remainder of this procedure gets each of the details
grouped by their document type and adds them to the new message. When it is finished
creating the new message, it deletes all the records from the queue with a sequence
number less than or equal to the current records sequence number. This new message is
passed back to the RIB. The MAKE_CREATE function will not be called unless the
appr_ind on the queue is ‘Y’es (meaning the transfer has been approved, and it is ready
to be published for the first time to the external system(s)).

Function Level Description – BUILD_HEADER_OBJECT (local)
Accepts header key values, performs necessary lookups, builds and returns a header
level Oracle Object.

Function Level Description – BUILD_DETAIL_OBJECTS (local)
This function is responsible for fetching the detail info and ticket type to be sent to
RWMS. The logic that gets the detail info as well as the ticket type was separated to
remove the primary key constraint.

Function Level Description – BUILD_SINGLE_DETAIL (local)
Accept inputs and build a detail level Oracle Object. Perform any lookups needed to
complete the Oracle Object.

Function Level Description – GET_RETAIL (local)
Gets the price and selling unit of measure (UOM) of the item.

Function Level Description – GET_GLOBALS (local)
Get all the system options and variables needed for processing.

Function Level Description – BUILD_DETAIL_CHANGE_OBJECTS (local)
Calls BUILD_DETAIL_OBJECT to publish the record. Updates TSFDETAIL.publish_ind
to ‘Y’ and deletes the record from TSF_MFQUEUE.

Function Level Description – BUILD_DETAIL_DELETE_OBJECTS (local)
Either pass in a header level ref Oracle Object or build a header level ref Oracle Object.

Performs a cursor for loop on TSF_MFQUEUE and builds as many detail ref Oracle
Objects as possible without exceeding the MAX_DETAILS_TO_PUBLISH.
Deletes from TSF_MFQUEUE when done.

Function Level Description – LOCK_THE_BLOCK (local)
This function locks all queue records for the current business object. This is to ensure that
GETNXT does not wait on any business processes that currently have the queue table
locked and have not committed. This can occur because ADDTOQ, which is called from

Transfers Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 105

the triggers, deletes from the queue table for DTL_UPD, DTL_DEL, and HDR_DEL
messages.

Function Level Description – LOCK_DETAILS (local)
Locks the transfer details before updating the publish_ind on TSFDETAIL.

Function Level Description – DELETE_QUEUE_REC (local)
This procedure deletes a specific record from TSF_MFQUEUE. It deletes based on the
sequence number passed in.

Function Level Description – HANDLE_ERRORS (local)
HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is
raised. The function was updated to conform with the changes made to the ADDTOQ
function.

Trigger Impact
A trigger on the TSFHEAD and TSFDETAIL exists to capture Inserts, Updates, and
Deletes.

Trigger name: EC_TABLE_THD_AIUDR.TRG

Trigger file name: ec_table_thd_aiudr.trg

Table: TSFHEAD

Inserts

 Sends the tsf_no and tsf_type level info to the ADDTOQ procedure in the MFM with
the message type RMSMFM_Transfers.HDR_ADD.

Updates
 Sends the tsf_no and tsf_type level info to the ADDTOQ procedure in the MFM with

the message type RMSMFM_Transfers.HDR_UPD.

Deletes
 Sends the tsf_no and tsf_type level info to the ADDTOQ procedure in the MFM with

the message type RMSMFM_Transfers.HDR_DEL.

Trigger name: EC_TABLE_TDT_AIUDR.TRG

Trigger file name: ec_table_tdt_aiudr.trg

Table: TSFDETAIL

Inserts
 Sends the tsf_no and item level info to the ADDTOQ procedure in the MFM with the

message type RMSMFM_Transfers.DTL_ADD

Updates
 Sends the tsf_no and item level info to the ADDTOQ procedure in the MFM with the

message type RMSMFM_Transfers.DTL_UPD.

Publication Designs

106 Oracle Retail Merchandising System

Deletes
 Sends the tsf_no and item level info to the ADDTOQ procedure in the MFM with the

message type RMSMFM_Transfers.DTL_DEL.

Trigger name: EC_TABLE_ORC_AUR.TRG

Trigger file name: ec_table_orc_aur.trg

Table: ORDCUST

Updates
 For ORDCUST associated with a published ‘CO’ transfer, send the tsf_no and

tsf_type level info to the ADDTOQ procedure in the MFM with the message type
RMSMFM_Transfers.HDR_UPD.

Message XSD
Here are the filenames that correspond with each message type. See Oracle Retail
Integration Bus documentation for each message type in order to get a detailed picture of
the composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

TransferCre Transfer Create Message TsfDesc.xsd

TransferHdrMod Transfer Modify Message TsfDesc.xsd

TransferDel Transfer Delete Message TsfRef.xsd

TransferDtlCre Transfer Detail Create Message TsfDesc.xsd

TransferDtlMod Transfer Detail Modify Message TsfDesc.xsd

TransferDtlDel Transfer Detail Delete Message TsfRef.xsd

Design Assumptions
 After a transfer has been approved, Oracle Retail assumes the freight code of the

transfer (on the TSFHEAD table) cannot be updated.

 One of the primary assumptions in the current approach is that ease of code will
outweigh performance considerations. It is hoped that the ‘trickle’ nature of the flow
of data will decrease the need to dwell on performance issues and instead allow
developers to code in the easiest and most straight forward manner.

 The adaptor is only set up to call stored procedures, not stored functions. Any public
program then needs to be a procedure.

Transfers Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 107

Table Impact

TABLE SELECT INSERT UPDATE DELETE

TRANSFERS_PUB_INFO Yes Yes Yes Yes

TSF_MFQUEUE Yes Yes Yes Yes

TSF_DETAIL Yes No Yes No

TSF_HEAD Yes No No No

WH Yes No No No

ORDCUST Yes No No No

ORDCUST_DETAIL Yes No No No

ITEM_LOC Yes No No No

ITEM_MASTER Yes No No No

ITEM_TICKET Yes No No No

V_PACKSKU_QTY Yes No No No

CODE_DETAIL Yes No No No

SYSTEM_OPTIIONS Yes No No No

RIB_SETTINGS Yes No No No

Publication Designs

108 Oracle Retail Merchandising System

UDA Publication API

Functional Area
Foundation Data

Business Overview
RMS publishes messages about user-defined attributes (UDAs) to the Oracle Retail
Integration Bus (RIB). UDA provides a method for defining attributes and associating the
attributes with specific items, items on an item list, or items in a specific department,
class, or subclass. UDAs are useful for information and reporting purposes. Unlike traits
or indicators, UDAs are not interfaced with external systems. UDAs do not have any
programming logic associated with them. UDA messages are specific to basic UDA
identifiers and values defined in RMS. The UDAs can be displayed in one or more of
three formats: Dates, Freeform Text, or a List of Values (LOV).

The created messages in the XML builder adds the messages to the UDA_MFQUEUE
table which must be published in the same order as they occur in the RMS database.

Package Impact

File name: rmsmfm_udas/b.pls

Function Level Description – ADDTOQ
Function: ADDTOQ
 (O_status OUT VARCHAR2,
 O_text OUT VARCHAR2,
 I_message_type IN UDA_MFQUEUE.MESSAGE_TYPE%TYPE,
 I_uda_id IN UDA.UDA_ID%TYPE,
 I_uda_value IN UDA_VALUES.UDA_VALUE%TYPE,
 I_display_taype IN UDA_MFQUEUE.DISPLAY_TYPE%TYPE,
 I_message IN CLOB
)

This procedure is called by the triggers EC_TABLE_UDA_AIUDR and
EC_TABLE_UDV_AIUDR and takes the message type, uda_id and uda_value if there is
one and the message itself. It inserts a row into the UDA_MFQUEUE along with the
passed in values and the next sequence number from the UDA_MFSEQUENCE, setting
the status to ‘U’npublished. It returns error codes and strings.

Function Level Description – GETNXT
Procedure: GETNXT
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type OUT UDA_MFQUEUE.MESSAGE_TYPE%TYPE,
 O_message OUT CLOB,
 O_uda_id OUT UDA.UDA_ID%TYPE,
 O_uda_value OUT UDA_VALUES.UDA_VALUE%TYPE,
 O_display_type OUT UDA_MFQUEUE.DISPLAY_TYPE%TYPE
)

This publicly exposed procedure is typically called by a RIB publication adaptor. This
procedure’s parameters are well defined and arranged in a specific order. The message
type is the RIB defined short message name; the message is the XML message; and the
uda_id and uda_value are the keys for the message as pertains to the UDA family, not all
of which will necessarily be populated for all message types. The status code is one of
five values.

UDA Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 109

Message XSD
Here are the filenames that correspond with each message type. Please consult the
mapping documents for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

UDAHdrCre UDA Create Message UDADesc.xsd

UDAHdrMod UDA Modify Message UDADesc.xsd

UDAHdrDel UDA Delete Message UDARef.xsd

UDAValCre UDA_Values Create Message UDAValDesc.xsd

UDAValMod UDA_Values Modify Message UDAValDesc.xsd

UDAValDel UDA_Values Delete Message UDAValRef.xsd

Design Assumptions

Table Impact

TABLE SELECT INSERT UPDATE DELETE

UDA_MFQUEUE Yes Yes No No

UDA Yes Yes Yes Yes

UDA_VALUES Yes Yes Yes Yes

Publication Designs

110 Oracle Retail Merchandising System

Vendor Publication API

Functional Area
Foundation Data

Business Overview
RMS publishes supplier and supplier address information to the RIB for RWMS and
other integration subsystems. Supplier information is published when new suppliers are
created, updates are made to existing suppliers or existing suppliers are deleted.
Similarly, addresses are published when they are added, modified or deleted. The
address types that are published as part of this message are Returns (3), Order (4), and
Invoice (5).

As suppliers and addresses are added in RMS, an event capture trigger creates a message
that is added to the SUPPLIER_MFQUEUE table.

Package Impact

File name: rmsmfm_vendors/b.pls

Function Level Description – ADDTOQ
Function: ADDTOQ
 (I_message_type IN VARCHAR2,
 I_supplier IN sups.supplier%TYPE,
 I_addr_seq_no IN addr.seq_no%TYPE,
 I_addr_type IN addr.addr_type%TYPE,
 I_ret_allow_ind IN VARCHAR2,
 I_invc_match_ind IN VARCHAR2,
 I_org_unit IN VARCHAR2,
 I_message IN CLOB,
 O_status OUT VARCHAR2,
 O_text OUT VARCHAR2)

This procedure is called by the triggers, and takes the message type, supplier,
addr_seq_no, addr_type, ret_allow_ind, and invc_match_ind values, and org_unit and,
the message itself. It inserts a row into the supplier message family queue along with the
passed in values and the next sequence number from the supplier message family
sequence, setting the status to unpublished. It returns error codes and strings.

Function Level Description – GETNXT
Procedure: GETNXT
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type OUT VARCHAR2,
 O_message OUT CLOB,
 O_supplier OUT sups.supplier%TYPE
 O_addr_seq_no OUT addr.seq_no%TYPE
 O_addr_type OUT addr.addr_type%TYPE

This publicly exposed procedure is called by a RIB publication adaptor. The message
type is the RIB defined short message name, the message is the xml message, and the
family key(s) are the key for the message as pertains to the family, not all of which will
necessarily be populated for all message types. The keys for supplier are supplier,
addr_seq_no, and addr_type.

Vendor Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 111

Function Level Description – CREATE_PREVIOUS (local)
This procedure determines if a supplier create already exists on the queue table for the
same supplier and with a sequence number less than the current records sequence
number.

Function Level Description – CLEAN_QUEUE (local)
This procedure cleans up the queue by eliminating modification messages. It is only
called if CREATE_PREVIOUS returns true. For each address modification message type,
it finds the previous address create message type. It then calls REPLACE_QUE_ADR to
copy the modify message into the create message and calls DELETE_QUEUE_REC to
delete the modify record. For each delete message type, it finds the previous
corresponding create message type. It then calls DELETE_QUEUE_REC to delete the
create message record. For each supplier modification message type, it finds the previous
supplier create message type. It then calls REPLACE_QUE_SUP to copy the modify
message into the create message and calls DELETE_QUEUE_REC to delete the modify
record.

Function Level Description – CAN_CREATE (local)
This procedure determines if a complete hierarchical supplier message can be created
from the current address and prior address messages in the queue for the same supplier.
It checks to see if there is a type 3, 4, or 5 address already in the queue. If the
ret_allow_ind is ‘Y’ and there is a type 3 address, then a ret_flag is set to true. If the
invc_match_ind is ‘Y’ and there is a type 5 address, then a invc_flag is set to true. If all
the flags are true, then it returns true because the complete hierarchical message can be
created.

Function Level Description – MAKE_CREATE (local)
This procedure combines the current message and all previous messages with the same
supplier in the queue table to create the complete hierarchical message. It first creates a
new message with the VendorDesc document type. It then gets the supplier create
message and adds it to the new message. The remainder of this procedure gets each of
the addresses adds them to the new message. When it is finished creating the new
message, it deletes all the records from the queue with a sequence number less than or
equal to the current records sequence number. This new message is passed back to the
bus.

Function Level Description – DELETE_QUEUE_REC (local)
This procedure deletes a specific record from the queue. It deletes based on the sequence
number passed in.

Function Level Description – REPLACE_QUEUE_SUP (local)
This procedure replaces the message in the create supplier record with the message from
the modify supplier record.

Function Level Description – REPLACE_QUEUE_ADR (local)
This procedure replaces the message in the create address record with the message from
the modify address record.

Publication Designs

112 Oracle Retail Merchandising System

Function Level Description – CHECK_STATUS (local)
This procedure raises an exception if the status code is set to Error. This will be called
immediately after calling a procedure that sets the status code. Any procedure that calls
CHECK_STATUS must have its own exception handling section.

Function Level Description – MAKE_CREATE_POU (local)
This procedure is called when message type is ‘VendorOUCre’ or ‘VendorOUDel’. It first
creates a new message with the VendorDesc document type. It then gets the Vendor
OrgUnit create message and adds it to the new message. This new message is passed
back to the bus.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

VendorCre Vendor Create VendorDesc.xsd

VendorHdrMod Vendor Header Modify VendorHdrDesc. xsd

VendorDel VendorDelete VendorRef.xsd

VendorAddrCre Vendor Address Create VendorAddrDesc.xsd

VendorAddrMod Vendor Address Modify VendorAddrDesc.xsd

VendorAddrDel Vendor Address Delete VendorAddrRef.xsd

VendorOUCre Vendor OrgUnit Create VendorOUDesc.xsd

VendorOUDel Vendor OrgUnit Delete VendorOURef.xsd

Design Assumptions
 The adaptor is only setup to call stored procedures, not stored functions. Any public

program then needs to be a procedure.
 Once all criteria are met for a valid create message, the messages will be combined

and sent to the RIB.

 Messages for supplier and address modifications and deletions will be sent as they
are created. An address modification can be sent without the supplier information.

 When multiple set of books is enabled in RMS, org units are required elements when
creating a supplier. Addition and deletes from this table are sent either as standalone
message or part of the supplier create message.

 When Supplier Sites functionality is enabled, only supplier site data is published. The
Supplier level data are not published.

Vendor Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 113

Table Impact

TABLE SELECT INSERT UPDATE DELETE

SUPS Yes No No No

ADDR Yes No No No

SUPPLIER_MFQUEUE Yes Yes Yes Yes

DUAL Yes No No No

PARTNER_ORG_UNIT Yes No No No

Publication Designs

114 Oracle Retail Merchandising System

Warehouse Publication API

Functional Area
Foundation Data

Business Overview
RMS publishes data about warehouses in messages to the Oracle Retail Integration Bus
(RIB). Other applications that need to keep their locations synchronized with RMS
subscribe to these messages. RMS publishes information about all the warehouses,
including both physical and virtual. Those applications on the RIB that understands
virtual locations can subscribe to all warehouse messages that RMS publishes. Those
applications that do not have virtual location logic, such as SIM and RWMS, it depends
on RIB to transform RMS warehouse messages for physical warehouses only.

These RIB messages are triggered on inserting, updating, and deleting of warehouse and
warehouse address in the RMS WH table, and the ADDR table with the module ‘WH’.
Only the primary address of the primary address type is included in this message. Oracle
Retail publishes only the current state of the warehouse, not every change.

Package Impact

File name: rmsmfm_whs/b.pls

Function Level Description – ADDTOQ
Function: ADDTOQ
 (O_error_mesage OUT VARCHAR2,
 I_message_type IN VARCHAR2,
 I_wh_key_rec IN WH_KEY_REC,
 I_addr_publish_ind IN ADDR.PUBLISH_IND%TYPE)

This public function puts a warehouse message on WH_MFQUEUE for publishing to the
RIB. It is called from both wh trigger and address trigger. The I_functional_keys contains
wh and, optionally, addr_key.

Function Level Description – GETNXT
Procedure: GETNXT
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id OUT RIB_BUSOBJID_TBL,
 O_routing_info OUT RIB_ROUTINGINFO_TBL,
 I_num_threads IN NUMBER DEFAULT 1,
 I_thread_val IN NUMBER DEFAULT 1);

This public procedure is called from the RIB to get the next messages. It performs a
cursor loop on the unpublished records on the WH_MFQUEUE table (PUB_STATUS =
‘U’). If any exception is raised in GETNXT, including the exception raised by an
unsuccessful call to PROCESS_QUEUE_RECORD, HANDLE_ERRORS is called.

Function Level Description – PUB_RETRY
This public procedure performs the same tasks as GETNXT except that it only loops for a
specific row in the WH_MFQUEUE table. The record on WH_MFQUEUE must match the
passed in sequence number (contained in the ROUTING_INFO).

Warehouse Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 115

Function Level Description – PROCESS_QUEUE_RECORD (local)
This private function controls the building of Oracle Objects (DESC or REF) given the
business transaction’s key values and a message type. It contains all of the shared
processing between GETNXT and PUB_RETRY. (Note: message_type of HDR_ADD can
potentially be changed to a DTL_ADD in PROCESS_QUEUE_RECORD.)

Function Level Description – DELETE_QUEUE_REC (local)
This private function deletes a record in WH_MFQUEUE table given the row id.

Function Level Description – MAKE_CREATE (local)
Procedure: MAKE_CREATE
 (O_error_msg OUT VARCHAR2,
 O_message IN OUT nocopy RIB_OBJECT,
 O_routing_info IN OUT nocopy RIB_ROUTINGINFO_TBL,
 I_wh_key_rec IN WH_KEY_REC,
 I_rowid IN ROWID)

This private function is used to create the Oracle Object for the initial publication of a
business transaction. I_business_object contains the warehouse header key values (wh).
I_rowid is the rowid of the wh_mfqueue row fetched from GETNXT.

Function Level Description – BUILD_HEADER_OBJECT (local)
Procedure: BUILD_HEADER_OBJECT
 (O_error_msg OUT VARCHAR2,
 O_routing_info IN OUT nocopy RIB_ROUTINGINFO_TBL,
 O_rib_whdesc_rec OUT RIB_WH_DESC,
 I_wh_key_rec IN WH_KEY_REC)

This private function accepts warehouse header key values (wh), builds and returns a
header level DESC Oracle Object.

Function Level Description – BUILD_HEADER_OBJECT (local)
This overloaded private function accepts warehouse header key value (wh), builds and
returns a header level REF Oracle Object.

Function Level Description – BUILD_DETAIL_OBJECTS (local)
The private function is responsible for building detail level DESC Oracle Objects. It
builds as many detail Oracle Object as it can given the passed in message type and
business object keys (wh).

Function Level Description – BUILD_SINGLE_DETAIL (local)
This private function takes in an address record and builds a detail level Oracle Object.
Also find out if the address is the primary address of the primary address type and set
the DESC Oracle Object accordingly.

Function Level Description – BUILD_DETAIL_CHANGE_OBJECTS (local)
This private function builds a DESC Oracle Object to publish to the RIB for detail create
and detail update messages (DTL_ADD, DTL_UPD). I_business_obj contains the header
level key values (wh).

Function Level Description – BUILD_DETAIL_DELETE_OBJECTS (local)
This private function builds a REF Oracle Object to publish to the RIB for detail delete
messages (DTL_DEL). I_business_obj contains the header level key values (wh).

Publication Designs

116 Oracle Retail Merchandising System

Function Level Description – LOCK_THE_BLOCK (local)
This private function locks all queue records for the current business object (wh). This is
to ensure that GETNXT and PUB_RETRY do not wait on any business processes that
currently have the queue table locked and have not committed. This can occur because
ADDTOQ, which is called from the triggers, deletes from the queue table for DTL_UPD,
DTL_DEL, and HDR_DEL messages.

Function Level Description – HANDLE_ERRORS (local)
This private procedure is called from GETNXT and PUB_RETRY when an exception is
raised. I_seq_no is the sequence number of the driving WH_MFQUEUE record.
I_function_keys contains detail level key values (wh, addr_key).

 Message XSD

Here are the filenames that correspond with each message type. Please consult RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

WHCre WH Create Message WHDesc.xsd

WHMod WH Modify Message WHDesc.xsd

WHDel WH Delete Message WHRef.xsd

WHDtlCre WH Detail Create Message WHDesc.xsd

WHDtlMod WH Detail Modify Message WHDesc.xsd

WHDtlDel WH Detail Delete Message WHRef.xsd

WHAddCre WH Address Create WHAddrDesc.xsd

WHAddMod WH Address Modify WHAddrDesc.xsd

Design Assumptions
Push off all DML statements as late as possible. Once DML statements have taken place,
any error becomes a fatal error rather than a hospital error.

Table Impact

TABLE SELECT INSERT UPDATE DELETE

WH_MFQUEUE Yes Yes Yes Yes

WH_PUB_INFO Yes Yes Yes Yes

WH Yes No No No

ADDR Yes No Yes No

ADD_TYPE_MODULE Yes No No No

Work Orders In Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 117

Work Orders In Publication API

Functional Area
Purchase orders

Business Overview
A work order provides direction to a warehouse management system (such as RWMS)
about work that needs to be completed on items contained in a recent purchase order.
RMS publishes work orders soon after it publishes the purchase order itself. This is
referred to as a ‘work order in’ message. This message is not to be confused with a ‘work
order out’ message, which pertains to transfers.
Work order publication consists of a message containing attributes from the
WO_DETAIL table plus the order number from the WO_HEAD table. One message is
created each time a WO_DETAIL record is created, modified, or deleted. The primary
key for the WO_DETAIL consists of the work order ID, warehouse, item, location, and
sequence number. Thus, one work order can have multiple Work Order Create messages.
When a WO_DETAIL record is created or modified, the message contains a full snapshot
of the WO_DETAIL record. When a WO_DETAIL record is deleted, the message contains
a partial snapshot of the WO_DETAIL record. Messages are retrieved from the message
queue in the order they were created.

Work orders attached to purchase orders will have their messages published after the
order has been published. Work orders attached to previously published, approved
orders will have their messages published immediately.
Work orders are defined at the physical location level. The message family manager will
send the warehouse at which the work order will be done. This is used by the RIB
publication adaptor for routing messages to the appropriate warehouse.

Package Impact

Business Object ID:

Work Order Id

Create
1. Prerequisites: An order has been distributed by item and location.

2. Activity Detail: A work order is ready to be published as soon as the order it is
attached has been published. An initial publication message is made.

3. Messages: A “Work Order Create” message is queued. This message contains a
snapshot of the attributes on the WO_DETAIL table.

Modify
1. Prerequisites: Work order has been created.

2. Activity Detail: The user is allowed to change attributes of the work order detail
record. These changes are of interest to other systems and so this activity results in
the publication of a message. Work orders attached to purchase orders will have
their messages published after the order has been published. Work orders attached to
previously published, approved orders will have their messages published
immediately.

Publication Designs

118 Oracle Retail Merchandising System

3. Messages: Any modifications to a work order detail record will cause a “Work Order
Modify” message to be queued. This message contains the same attributes as the
“Work Order Create” message.

Delete
1. Prerequisites: Work order has been created.

2. Activity Detail: Deleting a work order detail record removes it from the system.
External systems are notified by a published message.

3. Messages: When a work order detail record is deleted a “Work Order Delete”
message is queued. The message contains a partial snapshot of the WO_DETAIL
table.

Package name: RMSMFM_WOIN

Spec file name: rmsmfm_woins.pls

Body file name: rmsmfm_woinb.pls

Package Specification – Global Variables
FAMILY VARCHAR2(64) ‘woin’;
WO_ADD CONSTANT VARCHAR2(20) ‘InBdWOCre’;
WO_UPD CONSTANT VARCHAR2(20) ‘InBdWOMod’;
WO_DEL CONSTANT VARCHAR2(20) ‘InBdWODel’;

Function Level Description – ADDTOQ
Function: ADDTOQ
 (O_error_msg OUT VARCHAR2,
 I_queue_rec IN WOIN_MFQUEUE%ROWTYPE,
 I_publish_ind IN WO_DETAIL.PUBLISH_IND%TYPE)

This procedure is called by EC_TABLE_WDL_AIUDR, and takes a record type variable
that consists of columns from the WO_DETAIL table and message type. It inserts a row
into the message family queue WOIN_MFQUEUE along with the passed in values and
the next sequence number from the message family sequence, and sets the status to
unpublished. It returns a status code of API_CODES.SUCCESS if successful,
API_CODES.UNHANDLED_ERROR if not.

Function Level Description – GETNXT
Procedure: GETNXT
 (O_status_code OUT VARCHAR2,
 O_error_msg OU VARCHAR2,
 O_message_type OU VARCHAR2,
 O_message OU RIB_OBJECT,
 O_bus_obj_id OU RIB_BUSOBJID_TBL,
 O_routing_info OU RIB_ROUTINGINFO_TBL,
 I_num_threads IN NUMBER DEFAULT 1,
 I_thread_val IN NUMBER DEFAULT 1)

This publicly exposed procedure is typically called by a RIB publication adaptor. Its
parameters are well defined and arranged in a specific order. The message type is the RIB
defined short message name. Status code is one of five values. These codes are defined in
the RIB_CODES package.

The error text parameter contains application-generated information, such as the
application’s sequence number of the message that failed, and the Oracle or other error
that occurred when the retrieval failed.

Work Orders In Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 119

Function Level Description – PUB_RETRY
Procedure: PUB_RETRY
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type IN OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id IN OUT RIB_BUSOBJID_TBL,
 O_routing_info IN OUT RIB_ROUTINGINFO_TBL,
 I_REF_OBJECT IN RIB_OBJECT);

Same as GETNXT except:

It only loops for a specific row in the WOIN_MFQUEUE table. The record on
WOIN_MFQUEUE must match the passed in sequence number (contained in the
ROUTING_INFO).

Function Level Description – PROCESS_QUEUE_RECORD (local)
This function controls the building of Oracle Objects given the business transaction’s key
values and a message type. It contains all of the shared processing between GETNXT and
PUB_RETRY.

If the record from WOIN_QUEUE table is an insert or update (WO_ADD, WO_UPD):

 Builds the header object that contains work order id and order number

 Calls BUILD_DETAIL_OBJECTS to build the Oracle Object to publish to the RIB.
If the record from WOIN_QUEUE table is a delete (WO_DEL):

 Builds the header object that contains work order id and order number.

 Calls BUILD_DETAIL_DELETE_OBJECTS to build the Oracle Object to publish to
the RIB.

Function Level Description – BUILD_DETAIL_OBJECTS (local)
The function is responsible for building detail level Oracle Objects. It builds as many
detail Oracle Object as it can given the passed in message type and business object key
(work order ID).

Selects any details on the WOIN_MFQUEUE that are for the same work order id and for
the same message type.

 WOIN_MFQUEUE records that contain information being published are deleted.

 Each location represented in the published message is added to the ROUTING_INFO
object.

 No more than the MAX_DETAILS_TO_PUBLISH numbers of records are put into
Oracle Objects.

To avoid deleting information from the queue table that has not been published, deletes
are accomplished using ROWIDs. All information is fetched using the same cursor; this
ensures that the published message matches the deletes from the WOIN_MFQUEUE
table regardless of trigger execution during GETNXT calls.

Function Level Description – BUILD_DETAIL_DELETE_OBJECTS (local)
Perform a cursor for loop on WOIN_MFQUEUE and build as many detail ref Oracle
Objects as possible without exceeding the MAX_DETAILS_TO_PUBLISH.

Perform any BULK DML statements for deletion from WOIN_MFQUEUE.

Each location represented in the published message will be added to the
ROUTING_INFO object.

Publication Designs

120 Oracle Retail Merchandising System

Function Level Description – LOCK_THE_BLOCK (local)
This function locks all queue records for the current business object. This is to ensure
that GETNXT does not wait on any business processes that currently have the queue
table locked and have not committed. This can occur because ADDTOQ, which is called
from the triggers, deletes from the queue table for WO_DEL messages.

Function Level Description – ROUTING_INFO_ADD (local)
This function is called from within the BUILD_DETAIL_OBJECTS and
BUILD_DETAIL_DELETE_OBJECTS. It will add the location from the message to the
routing_info whenever a new location is added to the object being published.

Function Level Description – HANDLE_ERRORS (local)
HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is
raised.

If the error is a non-fatal error, GETNXT passes the sequence number of the driving
WOIN_MFQUEUE record back to the RIB in the ROUTING_INFO. It sends back a status
of ‘H’ospital to the RIB as well. It then updates the status of the queue record to
‘H’ospital, so that it will not get picked up again by the driving cursor in GETNXT.

If the error is a fatal error, a status of ‘E’rror is returned to the RIB.
The error is considered non-fatal if no DML has occurred yet. Whenever DML has
occurred, then the global variable LP_error_status is flipped from ‘H’ospital to ‘E’rror.

Trigger Impact
Create a trigger on the WO_DETAIL to capture Inserts, Updates, and Deletes.

Trigger name: EC_TABLE_WDL_AIUDR.TRG

Trigger file name: ec_table_wdl_aiudr.trg

Table: WO_DETAIL
This trigger will capture inserts/updates/deletes to the WO_DETAIL table and write
data into the WOIN_MFQUEUE message queue.

Inserts
 Sends the header level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_WOIN.WO_ADD.

Updates

 Sends the header level info to the ADDTOQ procedure in the MFM with the message
type RMSMFM_ WOIN.WO_UPD.

Deletes
 Sends the header level info to the ADDTOQ procedure in the MFM with the message

type RMSMFM_ WOIN.WO_DEL.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Work Orders In Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 121

Message Types Message Type Description XML Schema Definition
(XSD)

InBdWOCre Work Order Create Message WODesc.xsd

InBdWOMod Work Order Modify Message WODesc.xsd

InBdWODel Work Order Delete Message WORef.xsd

Table Impact

TABLE SELECT INSERT UPDATE DELETE

WOIN_MFQUEUE Yes Yes No Yes

WO_DETAIL Yes No No No

WOIN_MFQUEUE Yes Yes Yes Yes

WO_DETAIL Yes No Yes No

Design Assumptions
 One of the primary assumptions in the current approach is that ease of code will

outweigh performance considerations. It is hoped that the ‘trickle’ nature of the flow
of data will decrease the need to dwell on performance issues and instead allow
developers to code in the easiest and most straightforward manner.

 The adaptor is only setup to call stored procedures, not stored functions. Any public
program then needs to be a procedure.

Publication Designs

122 Oracle Retail Merchandising System

Work Orders Out Publication API

Functional Area
Transfers

Business Overview
This publication API facilitates the transmission of outbound work orders (OWO) from
RMS to external systems. Only transfers that pass through a finisher before reaching the
final location may be associated with work orders. The work orders are published upon
approval of their corresponding transfers. The work order provides instructions for one
or more of the following tasks to be completed at the finisher location:
 Perform some activity on an item, such as monogramming.

 Transform an item from one thing into another, such as dyeing a white t-shirt black.

 Combine bulk items into a pack or break down a pack into its component items.

Outbound work orders have their own message family because they cannot be bundled
with transfer messages. This is because multi-legged transfers can be routed to either
internal finishers (held as virtual warehouses) or external finishers (held as partners).
Transfers to and from an internal finisher involve at least one book transfer. Because
external systems may be unaware of virtual warehouses, book transfers are not
communicated to external systems.

Outbound work order data is only published upon approval of the associated transfer.
As such, all work order activity, transformation and packing data are contained in the
same message. Because RMS does not allow users to modify work order activity,
transformation or packing information for an approved transfer, detail-level messages of
any type (create, delete, update) are never published. Outbound work order delete
messages are published when the second leg of a multi-legged transfer is unapproved.
This can be accomplished through the un-approval of an entire multi-legged transfer or
the un-approval of the second leg only. A two-leg transfer that has had the first leg
shipped can be set back to ‘In Progress’ status in order to make changes to the work
order activities and the final location. When action has occurred, only the second leg is
really set back to in progress. The first leg remains in shipped status.

Package Impact

Business Object ID:
Transfer Work Order ID

Approve
1. Prerequisites: A multi-legged transfer must be approved and have work order

details for each transfer detail.

2. Activity Detail: Approving a transfer changes the status of the transfer. This change
in status signifies the first time systems external to RMS will have an interest in the
existence of the transfer and work order.

3. Messages: When a transfer with finishing is approved, an “outbdwocre” message is
inserted into the queue. The family manager creates a hierarchical message
containing a full snapshot of the transfer work order details at the time the message
is published.

Work Orders Out Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 123

Delete
1. Prerequisites: The associated transfer has finishing and is being deleted.

2. Activity Detail: Deleting a transfer removes it, and the associated work order from
the system. External systems are notified by a published Delete message that
contains the number of the transfer work order to be deleted.

3. Message: When a transfer with finishing is deleted, an “outbdwodel”, which is a flat
notification message, is queued.

Unapproved
1. Prerequisites: A transfer with finishing is unapproved

2. Activity Detail: Not approving a transfer changes the status to input, which allows
modification to the work order, transformation, packing, and item details. External
systems are notified by a published Delete message that contains the number of the
transfer work order to be deleted.

3. Messages: Not approving a transfer queues an “outbdwounaprv” request. This
results in an “outbdwodel” message being published, which is a flat notification
message.

Package name: RMSMFM_WOOUT

Spec file name: rmsmfm_woouts.pls

Body file name: rmsmfm_wooutb.pls

Package Specification – Global Variables
None

Function Level Description – ADDTOQ
Function: ADDTOQ
 (O_error_mesage OUT VARCHAR2,
 I_message_type IN VARCHAR2,
 I_tsf_wo_id IN tsf_wo_head.tsf_wo_id%TYPE)

There are some tasks relating to streamlining the queue clean up process that need to
occur in ADDTOQ. The goal is to have at most one record on the queue for business
transactions up until their initial publication.

 For header level insert messages (HDR_ADD), inserts a record in the
WOOUT_PUB_INFO table. The work order number passed to the function should
be inserted into the TSF_WO_ID column, and the published column should contain
‘N’.

 If the business transaction has not been approved (woout_pub_info.publish_ind =
‘N’) and the triggering message is one of HDR_DEL and HDR_ANAPPRV, the
record is not added to queue.

Function Level Description – GETNXT
Procedure: GETNXT
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id OUT RIB_BUSOBJID_TBL,
 O_routing_info OUT RIB_ROUTINGINFO_TBL,
 I_num_threads IN NUMBER DEFAULT 1,

Publication Designs

124 Oracle Retail Merchandising System

 I_thread_val IN NUMBER DEFAULT 1)

This function fetches a record from the WOOUT_MFQUEUE table. The function fetches
the record that has the lowest sequence number among queue records that have a
pub_status of ‘U’ and a thread_no that matches the I_thread_val.
The LOCK_THE_BLOCK function is called. If it determines that WOOUT_MFQUEUE is
locked for a particular work order, set the sequence limit local variable to the current
sequence number. This will prevent the GETNXT function from attempting to lock and
process the same work order message over and over again in the loop.

The WOOUT_MFQUEUE table is queried to determine if any records for the work order
have been sent to the error hospital. If so, produce the ‘SEND_TO_HOSP’ error message
and halt processing.

Note: The only scenario in which a hospitalized record with
the same tsf_wo_id as the message currently is processed
would be found is if the initial HDR_ADD message had
been hospitalized and a subsequent HDR_DEL or
HDR_UNAPRV was being processed.

The PROCESS_QUEUE_RECORD function is called. If the break loop indicator returned
from process_queue_record is TRUE, set the O_message_type output parameter to the
message type fetched from the queue and return TRUE.

If the message type is null, the status code output parameter is set to
API_CODES.NO_MSG. Otherwise, it is set to API_CODES.NEW_MSG and the
O_bus_obj_id parameter is set to RIB_BUSOBJID_TBL(L_tsf_wo_id).

Function Level Description – PUB_RETRY
Procedure: PUB_RETRY
 (O_status_code OUT VARCHAR2,
 O_error_msg OUT VARCHAR2,
 O_message_type IN OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id IN OUT RIB_BUSOBJID_TBL,
 O_routing_info IN OUT RIB_ROUTINGINFO_TBL,
 I_REF_OBJECT IN RIB_OBJECT);

This procedure is called from the RIB for woout_mfqueue.seq_no’s that have been placed
in the RIB’s error hospital. It functions similarly to GETNEXT, except that it only fetches
the record from WOOUT_MFQUEUE that contains the sequence number passed by the
RIB.

If the message’s tsf_wo_id is null, an API_CODES.NO_MSG error is raised. Then
LOCK_THE_BLOCK is called. If the queue record is locked by another process, the
status code is set to API_CODES.HOSPITAL. If the queue record is not locked by
another process, PROCESS_QUEUE_RECORD is called. If the message returned from
process_queue_record is null, the API_CODES.NO_MSG error is raised. Otherwise, if
the message object is populated, it populates the business object table with the current
work order number.

Function Level Description – PROCESS_QUEUE_RECORD (local)
This function controls the building of Oracle Objects given the business transaction’s key
values and a message type. It contains all of the shared processing between GETNXT and
PUB_RETRY.

Check to see if the business object is being published for the first time. If the
published_ind on the pub_info table is ‘N’, the business object is being published for the
first time.

Work Orders Out Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 125

This function will set the O_break_loop parameter to FALSE in the following scenarios;

1. Processing a HDR_UNAPRV message for a work order that has a
woout_pub_info.published of ‘N’.

2. Processing a HDR_DEL message for a work order that has a
woout_pub_info.published of ‘N’.

The loop is not broken in these scenarios because they do not necessitate the publication
of a message. Therefore, processing should continue so a message can be outputted.

If the message type is HDR_DEL and the work order has been published the function
creates a work order ref object, and routing info object.

Note: WO out routing info requires a ‘to_loc’ string and
value.

If the message type is a HDR_UNAPRV and the work order has been published create a
work order ref object and a routing info object. For all records associated with the work
order on the tsf_wo_detail, tsf_xform_detail and tsf_packing tables, the publish_ind is set
to ‘N’.

Note: A published value of ‘I’n progress indicates that the
work order was being published but it had more detail
records than allowed for a single message. The maximum
detail per message value can be found on the rib_settings
table for each message family.

If the published indicator is ‘N’, the message type is set to HDR_ADD and the
MAKE_CREATE function is called.

If the published indicator is ‘I’, the message type is set to DTL_ADD and the
MAKE_CREATE function is called.

Function Level Description – MAKE_CREATE (local)
This function first calls the BUILD_HEADER_OBJECT function.

 It then calls the BUILD_DETAIL_OBJECTS function and updates the
woout_pub_info column.

 It also updates the published_ind columns on TSF_WO_DETAIL,
TSF_XFORM_DETAIL and TSF_PACKING.

Function Level Description – BUILD_HEADER_OBJECT (local)
This function fetches the transfer number and transfer parent number associated with the
passed in work order number. It then calls the constructor for the rib_wooutdesc_rec,
passing in the work order number, transfer number, and transfer parent number. Finally,
it builds the routing info object.

Function Level Description – BUILD_DETAIL_OBJECTS (local)
The function is responsible for building detail level Oracle Objects. It builds as many
detail Oracle Object as it can given the passed in message type and business object keys.

If the function is being called from MAKE_CREATE:
 Selects any unpublished detail records from the business transaction (tsf_wo_detail,

tsf_xfrom_detail, tsf_packing).

 Ensures that WOOUT_MFQUEUE is deleted from as needed. If there is more
than one WOOUT_MFQUEUE record for a detail level record, it makes sure they
all get deleted. Current state should be considered, not every change.

Publication Designs

126 Oracle Retail Merchandising System

 Ensures that ROUTING_INFO is constructed if routing information is stored at
the detail level in the business transaction.

 Ensures that no more than MAX_DETAILS_TO_PUBLISH records are put into
Oracle Objects.

 Ensures that the detail records being added to the object have not already been
published. This can happen if GETNXT was previously called for the current
business object, and the MAX_DETAILS_TO_PUBLISH limit had been reached.

Function Level Description – DELETE_QUEUE_REC (local)
This function deletes a record from the outbound work order queue table based on a
passed-in sequence number.

Function Level Description – BUILD_WODTL_OBJECT (local)
This function fetches the activity_id, unit_cost and comments for all records from
tsf_wo_detail containing the passed in item and work order id. For each record found:

Populates the wooutactivity record with the activity_id, unit_cost and comments. Then,
adds the wooutactivity record to the wooutactivity table.

After all details are processed, the WOOUTACTIVITY table is added to the wooutdtl
record that was passed into the function.

Function Level Description – BUILD_PACKING_OBJECT (local)
Procedure: BUILD_PACKING_OBJECT
 (O_error_msg IN OUT VARCHAR2,
 O_packing_message IN OUT nocopy RIB_WOOUTPACKING_TBL,
 IO_rib_wooutpacking_rec IN OUT nocopy RIB_WOOUTPACKING_REC,
 I_tsf_packing_id IN tsf_packing.tsf_packing_id%TYPE))

This function first constructs the “RIB_WOOutpackFrom_REC” object by fetching
tsf_packing_detail.item where the tsf_packing_id matches that which was passed into the
function and the record_type is ‘F’ (from). Once complete, adds the
WOOUTPACKFROM table to the wooutpacking_rec passed to the function.

Next, the “RIB_WOOutpackTo_REC” object is constructed. Fetches the
tsf_packing_detail.item where the tsf_packing_id matches that which was passed into the
function and the record_type is ‘R’ (result). Once complete, adds the WOOUTPACKTO
table to the wooutpacking_rec passed to the function.

Function Level Description – LOCK_THE_BLOCK (local)
The function locks all records on the queue table for the business object. It has an
O_queue_locked output that specifies whether some process other than the current
process has the queue locked.

Function Level Description – HANDLE_ERRORS (local)
This procedure handles error status values of ‘H’ospital. If the LP_error_status value is
‘H’ospital, it populates the business object table with the current work order number,
then creates a routing info object and populates it with the sequence number of the queue
record. Finally a WOOutRef object is created and added to the O_message object.

The woout_mfqueue is updated by setting the pub_status equal to
API_CODES.HOSPITAL.

Trigger Impact
A trigger on the WO_DETAIL and TSF_HEAD exists to capture Inserts, Updates, and
Deletes.

Work Orders Out Publication API

Operations Guide, Volume 2 - Message Publication and Subscription Design 127

Trigger file name: ec_table_thd_aiudr.trg

Table: TSFHEAD

Inserts

 Sends the tsf_wo_id level info to the RMSMFM_WOOUT.ADDTOQ procedure in the
MFM with the message type RMSMFM_WOOUT.HDR_ADD.

Updates
 Sends the tsf_wo_id level info to the RMSMFM_WOOUT.ADDTOQ procedure in the

MFM with the message type RMSMFM_WOOUT.HDR_UNAPRV.

 When a transfer is placed in ‘A’pproved status the message type for this action will
be outbdwocre. When a transfer’s status is updated to ‘D’eleted, the family manager
inserts a record into the queue with a message_type = outbdwodel. When the status
is set to ‘I’nput from Approved, the family manager inserts a record into the queue
with message type = outbdwounaprv.

Deletes
 Sends the level info to the RMSMFM_WOOUT.ADDTOQ procedure in the MFM

with the message type RMSMFM_WOOUT.HDR_DEL.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

OutBdWoCre Work Order Create Message WODesc.xsd

OutBdWoDel Work Order Delete Message WORef.xsd

Design Assumptions
 The order upon which transfer and work order messages arrive at locations

participating in a multi-legged transfer does not need to be programmatically
controlled.

 Work order information is never published solely at a detail level. That is, insertions,
deletions and updates to work order records may not happen once the work order
has been approved. In order to modify work order information, the user will need to
unapprove the associated transfer. This will cause a work order header delete
message to be published.

 When a work order is unapproved or deleted, header level reference information
only can be published. Reference information at the detail level is not required to be
published, because work order publication is never done at the individual detail
level.

Publication Designs

128 Oracle Retail Merchandising System

Table Impact

TABLE SELECT INSERT UPDATE DELETE

WOOUT_MFQUEUE Yes Yes Yes Yes

WOPUT_PUB_INFO Yes Yes Yes Yes

TSFHEAD Yes No No No

TSF_WO_HEAD Yes No No No

TSF_WO_DETAIL Yes No Yes No

TSF_XFORM Yes No No No

TSF_XFORM_DETAIL Yes No Yes No

TSF_PACKING Yes No Yes No

TSFDETAIL Yes No No No

TSF_PACKING_DETAIL Yes No No No

Operations Guide, Volume 2 - Message Publication and Subscription Design 129

3
Subscription Designs

This chapter provides an overview of the Subscription APIs used in the RMS
environment and various functional attributes used in the APIs.

Allocation Subscription API
Functional Area

Allocation

Business Overview
The allocation subscription API allows an external application to create, update, and
delete allocations within RMS. The main reason for doing so is to successfully interface
and track all dependent bills of lading (BOL) and receipt messages into RMS, as well as
to calculate stock on hand correctly.
The allocation subscription API can be used by a 3rd party merchandise system to create,
update and delete allocations based on warehouse inventory or cross-dock. The Oracle
Retail Allocation product does NOT use this API to interface allocations to RMS. From an
Oracle Retail perspective, this API is used by AIP to support the creation of cross dock
POs, based on POs sent to RMS using the Order Subscription API.
Allocations only involve stockholding locations. This includes the ability to process
allocations to both company and franchise stores, as well as any stockholding warehouse
location, excepting internal finishers. If an allocation for a franchise store is received,
RMS will also create a corresponding franchise order. This API supports either
warehouse-to-warehouse or warehouse-to-store allocations, but no mix-match in a single
allocation.
Allocation details can be created, edited, or deleted within the allocation message. Detail
line items must exist on an allocation header create message for an allocation to be
created. New item location relationships will be created for allocation detail line items
entering RMS that do not previously exist within RMS.
New locations can be added to existing allocations, or current locations can be modified
on existing allocations. If modifying an existing location, RMS assumes the passed in
quantity is an adjustment to the current quantity as opposed to an over write. For
example, if the current qty_allocated on ALLOC_DETAIL is 10, and a detail modification
message for the same item contains a qty_allocated of 8, ALLOC_DETAIL will be
updated with qty_allocated of 10+8 =18.
Details can be individually removed from an allocation if the detail is not in-transit or
received. An entire allocation can be deleted if none of details are in-transit or received.

Package Impact

Filename: rmssub_xallocs/b.pls
RMSSUB_XALLOC.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

Subscription Designs

130 Oracle Retail Merchandising System

This procedure needs to initially ensure that the passed in message type is a valid type
for Allocation messages. If the message type is invalid, a status of “E” will be returned to
the external system along with an appropriate error message informing the external
system that the status is invalid.
If the message type is valid, the generic RIB_OBJECT needs to be downcast to the actual
object using Oracle’s treat function. If the downcast fails, a status of “E” will be returned
to the external system along with an appropriate error message informing the external
system that the object passed in is invalid.

If the downcast is successful, then consume needs to verify that the message passes all of
RMS’s business validation. It calls the
RMSSUB_XALLOC_VALIDATE.CHECK_MESSAGE function to determine whether the
message is valid. If the message passed RMS business validation, the function returns
true, otherwise it returns false. If the message has failed RMS business validation, a status
of “E” will be returned to the external system along with the error message returned
from the CHECK_MESSAGE function.

Once the message has passed RMS business validation, it will be persisted to the RMS
database. It calls the RMSSUB_XALLOC_SQL.PERSIST_MESSAGE() function. If the
database persistence fails, the function returns false. A status of “E” will be returned to
the external system along with the error message returned from the
PERSIST_MESSAGE() function.

Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success status, “S”, will be returned to the external system indicating
that the message has been successfully received and persisted to the RMS database.

RMSSUB_XALLOC.HANDLE_ERROR() is the standard error handling function that
wraps the API_LIBRARY.HANDLE_ERROR function.

Filename: rmssub_xallocvals/b.pls
RMSSUB_XALLOC_VALIDATE.CHECK_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 O_alloc_rec OUT ALLOC_REC,
 I_message IN RIB_XAllocDesc,
 I_message_type IN VARCHAR2)

This function performs all business validation associated with message and builds the
allocation record for persistence.

Note: Some of the business validation is referential or involves uniqueness. This
validation is handled automatically by the referential integrity constraints and the unique
index implemented on the database and is not described below.

ALLOCATION CREATE

• Check required fields

• If item is a pack, verify receive as type is Pack for from location (warehouse).

• Verify details exist

• Default fields (status at header, qty pre-scaled, non scale ind)

• Build allocation records

• Perform following steps if allocation is not cross-docked from an order

 Retrieve and build all to-locations that the item does not currently exist at.
 Build price history records.

ALLOCATION MODIFY

• Check required fields
• Populate record.

Allocation Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 131

ALLOCATION DELETE

• Check required fields

• Verify the allocation is not in-transit or received. An allocation in-transit or received
will have a value (other than zero) for any of the following fields: distro quantity,
selected quantity, canceled quantity, received quantity, or PO received quantity.

ALLOCATION DETAIL CREATE

• Check required fields

• Verify details exist

• Build allocation records.

• Perform following steps if allocation is NOT cross-docked from an order

 Retrieve and build all to-locations that the item does not currently exist at.

 Build price history records.

ALLOCATION DETAIL MODIFY

• Check required fields

• If existing allocation records are being modified,

 Verify the allocation is not in-transit or received

 Verify modification to quantity does not fall to zero or below.

ALLOCATION DETAIL DELETE

• Check required fields

• Verify the allocation is not in-transit or received

• Check if deleting detail(s) removes all records from allocation. If so, process message
as allocation delete.

Filename: rmssub_xallocsqls/b.pls
RMSSUB_XALLOC_SQL.PERSIST
 (O_error_message IN OUT VARCHAR2,
 I_dml_rec IN ALLOC_RECTYPE ,
 I_message IN RIB_XAllocDesc)

ALLOCATION CREATE
 Insert a record into the allocation header table.

 Insert a record into the allocation detail table.

 Insert a record into the allocation charge table.

 Insert records into the franchise order tables, if allocating to franchise stores.

 For an approved non-cross dock allocation, update transfer reserved for from-
location. If a pack item is allocated from a warehouse with pack receive_as_type
of ‘P’ – pack, also update pack component reserved qty for the from-location.

 For an approved non-cross dock allocation, update transfer expected for to-
location. If a pack item is allocated to a warehouse with pack receive_as_type of
‘P’ – pack, also update pack component expected qty for the to-location.

 If item is not ranged to the to-location, call NEW_ITEM_LOC to create item-
location on the fly with ranged_ind of ‘Y’. This will insert a record into
ITEM_LOC, ITEM_LOC_SOH, ITEM_SUPP_COUNTRY_LOC, PRICE_HIST
tables and put a new item-loc event on the future cost event queue. For Brazil
localized, item country relationship must exist for the item-location being
created.

Subscription Designs

132 Oracle Retail Merchandising System

ALLOCATION MODIFY

 Update header record (alloc desc and release date).

ALLOCATION DETAIL CREATE

 Same as Allocation Create, except that there is no need to insert into
ALLOC_HEADER table.

ALLOCATION DETAIL MODIFY

 Update the allocation detail table by adjusting the existing allocated quantity
using the passed in quantity. This can either increase or decrease the existing
quantity.

 Update franchise order quantity if allocating to franchise stores.
 For an approved non-cross dock allocation, update transfer reserved for from-

location. If a pack item is allocated from a warehouse with pack receive_as_type
of ‘P’ – pack, also update pack component reserved qty for the from-location.

 For an approved non-cross dock allocation, update transfer expected for to-
location. If a pack item is allocated to a warehouse with pack receive_as_type of
‘P’ – pack, also update pack component expected qty for the to-location.

ALLOCATION DETAIL DELETE

 Delete the record from the allocation detail table.

 Delete the record from the allocation charge table.

 Delete records from the franchise order tables if the details deleted involve
franchise stores.

 If deleting details from an approved non-cross dock allocation, update transfer
reserved for from-location. If a pack item is allocated from a warehouse with
pack receive_as_type of ‘P’ – pack, also update pack component reserved qty for
the from-location.

 If deleting details from an approved non-cross dock allocation, update transfer
expected for to-location. If a pack item is allocated to a warehouse with pack
receive_as_type of ‘P’ – pack, also update pack component expected qty for the
to-location.

ALLOCATION DELETE

 Update the allocation header to Cancelled (‘C’) status.

 Update the linked franchise order to Cancelled (‘C’) status.

 Delete all associated record from the allocation charge table.

 If deleting an approved non-cross dock allocation, update transfer reserved for
from-location. If a pack item is allocated from a warehouse with pack
receive_as_type of ‘P’ – pack, also update pack component reserved qty for the
from-location.

 If deleting an approved non-cross dock allocation, update transfer expected for
to-location. If a pack item is allocated to a warehouse with pack receive_as_type
of ‘P’ – pack, also update pack component expected qty for the to-location.

Message XSD
Here are the filenames that correspond with each message type. Please consult the
mapping documents for each message type in order to get a detailed picture of the
composition of each message.

Allocation Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 133

Message Type Message Type Description XML Schema Definition
(XSD)

XAllocCre External Allocation Create XAllocDesc.xsd

XAllocDel External Allocation Delete XAllocRef.xsd

XAllocDtlCre External Allocation Detail Create XAllocDesc.xsd

XAllocDtlDel External Allocation Detail Delete XAllocRef.xsd

XAllocDtlMod External Allocation Detail Modification XAllocDesc.xsd

XAllocMod External Allocation Modification XAllocDesc.xsd

Design Assumptions
• This API only applies to store level zone pricing.

• This API does not currently handle inner packs when needing to create pack
component location information.

• Passed in item is at transaction level.

• From location is a non-finisher stockholding warehouse (i.e. a virtual warehouse).

• Allocation to multiple warehouses in the same physical warehouse is not supported.
Allocation between virtual warehouses in the same physical warehouse is also not
supported.

• Because the allocation quantities are not generated based upon RMS inventory
positions, RMS provides no stock on hand or inventory validation.

Table Impact

TABLE SELECT INSERT UPDATE DELETE

ALLOC_HEADER Yes Yes Yes No

ALLOC_DETAIL Yes Yes Yes Yes

ALLOC_CHRG Yes Yes No Yes

ITEM_SUPP_COUNTRY Yes No No No

ITEM_SUPP_COUNTRY_LOC Yes Yes No No

ITEM_LOC_SOH Yes Yes Yes No

STORE Yes No No No

WH Yes No No No

ITEM_LOC Yes Yes No No

SYSTEM_OPTIONS Yes No No No

ORDHEAD Yes No No No

PRICE_HIST No Yes No No

ITEM_MASTER Yes No No No

WF_ORDER_HEAD Yes Yes Yes No

WF_ORDER_DETAIL Yes Yes Yes No

WF_ORDER_EXP Yes Yes Yes No

Subscription Designs

134 Oracle Retail Merchandising System

TABLE SELECT INSERT UPDATE DELETE

WF_CUSTOMER Yes No No No

WF_CUSTOMER_GROUP Yes No No No

WF_COST_RELATIONSHIP Yes No No No

WF_COST_BUILDUP_TMPL_HEAD Yes No No No

WF_COST_BUILDUP_TMPL_DETAIL Yes No No No

FUTURE_COST Yes No No No

Appointments Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 135

Appointments Subscription API

Functional Area
Appointments

Business Overview
An appointment is information about the arrival of merchandise at a location. From the
RIB, RMS subscribes to appointment messages that are published by an external
application, such as a warehouse management system (for example, RWMS). RMS
processes these messages and attempts to receive against and close out the appointment.
In addition, RMS attempts to close the document that is related to the appointment. A
document can be a purchase order, a transfer, or an allocation.

Appointment status
Appointment messages cause the creation, update, and closure of an appointment in
RMS. Typically the processing of a message results in updating the status of an
appointment in the APPT_HEAD table’s status column. Valid values for the status
column include:

 SC–Scheduled

 MS–Modified Scheduled

 AR–Arrived
 AC–Closed

A description of appointment processing follows.

Appointment processing
The general appointment message processes occur in this order:
1. An appointment is created for a location with a store or warehouse type from a

scheduled appointment message. It indicates that merchandise is about to arrive at
the location. Such a message results in a ‘SC’ status. At the same time, the
APPT_DETAIL table is populated to reflect the purchase order, transfer, or allocation
that the appointment corresponds to, along with the quantity of the item scheduled
to be sent.

2. Messages that modify the earlier created appointment update the status to ‘MS’.

3. Once the merchandise has arrived at the location, the appointment is updated to an
‘AR’ (arrived) status.

4. Another modification message that contains a receipt identifier prompts RMS to
insert received quantities into the APPT_DETAIL table.

5. After all items are received, RMS attempts to close the appointment by updating it to
an ‘AC’ status.

6. RMS will close the corresponding purchase order, transfer, or allocation ‘document’
if all appointments are closed.

Appointment records indicate the quantities of particular items sent to various locations
within the system. The basic functional entity is the appointment record. It consists of a
header and one or more detail records. The header is at the location level; the detail
record is at the item-location level (with ASN as well, if applicable). Documents are
stored at the detail level; a unique appointment ID is stored at the header level. In
addition, a receipt number is stored at the detail level and is inserted during the receiving
process within RMS.

Subscription Designs

136 Oracle Retail Merchandising System

Package Impact

Filename: rmssub_receivings/b.pls
RMSSUB_RECEIVING.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2,
 O_rib_otbdesc_rec OUT “RIB_OTBDesc_REC”,
 O_rib_error_tbl OUT RIB_ERROR_TBL)

This is the procedure called by the RIB. This procedure will make calls to receiving or
appointment functions based on the value of I_message_type. If I_message type is
RECEIPT_ADD, RECEIPT_UPD, or RECEIPT_ORDADD, then a call is made to
RMSSUB_RECEIPT.CONSUME, casting the message as a RIB_RECEIPTDESC_REC. If
I_message_type is APPOINT_HDR_ADD, APPOINT_HDR_UPD, APPOINT_HDR_DEL,
APPOINT_DTL_ADD, APPOINT_DTL_UPD, or APPOINT_DTL_DEL, then a call is
made to RMSSUB_APPOINT.CONSUME.

Note: the receiving process RMSSUB_RECEIPT.CONSUME is described in a separate
Receiving Subscription API document.

RMSSUB_RECEIVING.HANDLE_ERRORS
 (O_status_code IN OUT VARCHAR2,
 IO_error_message IN OUT VARCHAR2,
 I_cause IN VARCHAR2,
 I_program IN VARCHAR2)

Standard error handling function that wraps the API_LIBRARY.HANDLE_ERROR
function.

Filename: rmssub_appoints/b.pls
RMSSUB_APPOINT.CONSUME.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This function validates that the message type is valid for appointment subscription. If
not, it returns a status of ‘E’ - Error along with an error message to the calling function.

If it is valid, it casts the message as “RIB_APPOINTDESC_REC” for create and
modification message types (APPOINT_HDR_ADD, APPOINT_HDR_UPD,
APPOINT_DTL_ADD, APPOINT_DTL_UPD), or “RIB_APPOINTREF_REC” for delete
message types (APPOINT_HDR_DEL, APPOINT_DTL_DEL). It then calls local
procedures HDR_ADD_CONSUME, HDR_UPD_CONSUME, HDR_DEL_CONSUME,
DTL_ADD_CONSUME, DTL_UPD_CONSUME and DTL_DEL_CONSUME to perform
the actual subscription logic.

Appointment Create
 Location must be a valid store or warehouse.

 Document must be valid based on document type (‘P’ for purchase order, ‘T’, ‘D’, ‘V’
for transfer, ‘A’ for allocations).

 Item must be a valid item.

 Insert header to APPT_HEAD if a record does not exist; otherwise, the header insert
is skipped.

Appointments Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 137

 Insert details to APPT_DETAIL if records do not already exist. Details that already
exist are skipped.

Appointment Modify
 Location must be a valid store or warehouse.

 Item must be a valid item.

 Update or insert into APPT_HEAD. Call APPT_DOC_CLOSE_SQL.CLOSE_DOC to
close the document if the new appointment status is ‘AC’.

Appointment Delete
 Location must be a valid store or warehouse.

 Delete both header and detail records in APPT_HEAD and APPT_DETAIL.

Appointment Detail Create
 Location must be a valid store or warehouse.

 Document must be valid based on document type (‘P’ for purchase order, ‘T’, ‘D’, ‘V’
for transfer, ‘A’ for allocations).

 Item must be a valid item.

 Insert details to APPT_DETAIL if records do not already exist. Details that already
exist are skipped.

Appointment Detail Modify
 Location must be a valid store or warehouse.

 Update or insert into APPT_DETAIL.

Appointment Detail Delete
 Location must be a valid store or warehouse.

 Delete from APPT_DETAIL.

Message XSD
Here are the filenames that correspond with each message type. Please see RIB
documentation for each message type in order to get a detailed picture of the composition
of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

Appointcre Appointment Create Message AppointDesc.xsd

Appointhdrmod Appointment Header Modify Message AppointDesc.xsd

Appointdel Appointment Delete Message AppointRef.xsd

Appointdtlcre Appointment Detail Create Message AppointDesc.xsd

Appointdtlmod Appointment Detail Modify Message AppointDesc.xsd

Appointdtldel Appointment Detail Delete Message AppointRef.xsd

Subscription Designs

138 Oracle Retail Merchandising System

Design Assumptions
 The adaptor is only set up to call stored procedures, not stored functions. Any public

program needs to be a procedure.

 Detail records may contain the same PO/item combination, differentiated only by
the ASN number; however, the ASN field will be NULL for detail records which are
not associated with an ASN.

Table Impact

TABLE SELECT INSERT UPDATE DELETE

APPT_HEAD Yes Yes Yes Yes

APPT_DETAIL Yes Yes Yes Yes

ORDHEAD Yes No Yes No

TSFHEAD Yes No Yes No

ALLOC_HEADER Yes No Yes No

STORE Yes No No No

WH Yes No No No

ITEM_MASTER Yes No No No

ORDLOC Yes No No No

DEAL_CALC_QUEUE Yes No No Yes

OBLIGATION Yes No No No

OBLIGATION_COMP Yes No No No

ALC_HEAD Yes No No Yes

ALC_COMP_LOC Yes No No Yes

V_PACKSKU_QTY Yes No No No

TSFDETAIL Yes No No No

SHIPMENT Yes No No No

SHIPSKU Yes No No No

ITEM_LOC Yes No No No

ITEM_LOC_SOH Yes No Yes No

ALLOC_DETAIL Yes No No No

ASNIN Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 139

ASNIN Subscription API
Functional Area

Advance shipping notice (ASN) from a supplier

Business Overview

A supplier or consolidator will send an advanced shipping notice (ASN) to RMS through
the Oracle Retail Information Bus (RIB). RMS subscribes to the ASN information and
places the information onto RMS tables depending upon the validity of the records
enclosed within the ASN message.
The ASN message will consist of a header record, a series of order records, carton
records, and item records. For each message, header, order and item record(s) will be
required. The carton portion of the record is optional. If a carton record is present,
however, then that carton record must contain items in it.

The header record will contain information about the shipment as a whole. The order
records will identify which orders are associated with the merchandise being shipped. If
the shipment is packed in cartons, carton records will identify which items are in which
cartons. The item records will contain the items on the shipments, along with the
quantity shipped. The items on the shipment should be on the ORDLOC table for the
order and location specified in the header and order records.

The location that is contained on the ASN will represent the expected receiving location
for the order. If the location is a non-stockholding store in RMS, then the shipment will
also be automatically received when the ASN is processed. Two types of non-
stockholding stores orders are supported in this integration – franchise stores and drop
ship customer orders.

Package Impact

Filename: rmssub_asnins/b.pls
RMSSUB_ASNIN.CONSUME
 (O_STATUS_CODE IN OUT VARCHAR2,
 O_ERROR_MESSAGE IN OUT VARCHAR2,
 I_MESSAGE IN RIB_OBJECT,
 I_MESSAGE_TYPE IN VARCHAR2);

The following is a description of the RMSSUB_ASNIN.COMSUME procedure:

1. The public procedure checks if the message type is create (ASNINCRE), modify
(ASNINMOD), or delete (ASNINDEL).

2. If the message type is ASNINDEL then,

 It will cast the message to type “RIB_ASNInRef_REC”.

 If a message exists in the record then it will call the private function
PROCESS_DELETE to delete the ASN record from the appropriate shipment and
invoice database tables depending upon the success of the validation.

 If no messages exist in the record then it will raise a program error that no
message was deleted.

3. If the message type is ASNINCRE or ASNINMOD then,

 It will cast the message to type “RIB_ASNInDesc_REC”.

 It will parse the message by calling the private function PARSE_ASN.

Subscription Designs

140 Oracle Retail Merchandising System

 After parsing the message, it will check if the message contains a PO record. A
program error will be raised if either the message type is invalid, or if there is no
PO record.

 If the records are valid after parsing, the detail records are retrieved and
processed in a loop.

Inside the loop:

a. Records are passed on to the private function PARSE_ORDER.

b. Delete container and item records from the previous order.

c. Check if CARTON_IND is equal to ‘C’.

d. If CARTON_IND equal to ‘C’, call private functions PARSE_CARTON and
PARSE_ITEM to parse cartons and items within a carton.

e. If CARTON_IND is NOT equal to ‘C’, call private function PARSE_ITEM to
parse items that are not part of a container.

f. Call private function PROCESS_ASN with parsed data on ASN, order, carton,
and item records. The records are place in the appropriate shipment and
ordering database tables depending upon the success of the validation.

Error Handling
If an error occurs in this procedure or any of the internal functions, this procedure places
a call to HANDLE_ERRORS in order to parse a complete error message and pass back a
status to the RIB.
HANDLE_ERRORS
 (O_status IN OUT VARCHAR2,
 IO_error_message IN OUT VARCHAR2,
 I_cause IN VARCHAR2,
 I_program IN VARCHAR2)

This function is used to put error handling in one place in order to make future error
handling enhancements easier to implement. All error handling in the internal
RMSSUB_ASNIN package and all errors that occur during subscription in the
ASN_SQL package (and whatever packages it calls) will flow through this function.
The function should consist of a call to API_LIBRARY.HANDLE_ERRORS.
API_LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the error and
potentially an unparsed error message if one has been created through a call to
SQL_LIB.CREATE_MESSAGE. The function uses these input variables to parse a
complete error message and pass back a status, depending upon the message and error
type, back up through the consume function and up to the RIB.

Private Internal Functions and Procedures

PARSE_ASN
This function will be used to extract the header level information from
“RIB_ASNInDesc_REC” and place that information onto an internal ASN header record.
TYPE asn_record IS RECORD(asn SHIPMENT.ASN%TYPE,
 destination SHIPMENT.TO_LOC%TYPE,
 ship_date SHIPMENT.SHIP_DATE%TYPE,
 est_arr_date SHIPMENT.EST_ARR_DATE%TYPE,
 carrier SHIPMENT.COURIER%TYPE,
 ship_pay_method ORDHEAD.SHIP_PAY_METHOD%TYPE,
 inbound_bol SHIPMENT.EXT_REF_NO_IN%TYPE,
 supplier ORDHEAD.SUPPLIER%TYPE,
 carton_ind VARCHAR2(1));

ASNIN Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 141

PARSE_ORDER
This function will be used to extract the order level information from
“RIB_ASNInPO_REC” and ASN number from shipment table, and place that
information onto an internal order record.

PARSE_CARTON
This function will be used to extract the carton level information from
“RIB_ASNInCtn_REC” and ASN and ORDER number from shipment table, and place
that information onto an internal carton record.

PARSE_ITEM
This function will be used to extract the item level information from
“RIB_ASNInItem_REC”, ASN and ORDER number in the shipment table, and CARTON
number from carton table, and place that information onto an internal item record.

Validation

PROCESS_ASN
After the values are parsed for a particular order in an ASN record,
RMSSUB_ASNIN.CONSUME will call this function, which will in turn call various
functions inside ASN_SQL in order to validate the values and process the ASN
depending upon the success of the validation.

Only one ASN and order record will be passed in at a time, whereas multiple cartons and
items will be passed in as arrays into this function. If one order, carton or item value is
rejected, then current functionality dictates that the entire ASN message will be rejected.

PROCESS_DELETE
In the event of a delete message, this function will be called rather than PROCESS_ASN.
This function will take the asn_no from the parsing function and pass it into ASN_SQL in
order to delete the ASN record from the appropriate shipment and invoice tables. A
received shipment cannot be deleted.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

asnincre ASN Inbound Create Message ASNInDesc.xsd

asnindel ASN Inbound Delete Message ASNInRef.xsd

asninmod ASN Inbound Modify Message ASNInDesc.xsd

Design Assumptions
None

Subscription Designs

142 Oracle Retail Merchandising System

Table Impact

TABLE SELECT INSERT UPDATE DELETE

SHIPMENT Yes Yes Yes Yes

SHIPSKU Yes Yes No Yes

CARTON No Yes No Yes

INVC_XREF No No No Yes

STORE Yes No No No

WH Yes No No No

ORDHEAD Yes No No No

ASNOUT Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 143

ASNOUT Subscription API
Functional Area

ASNOUT

Business Overview
An internal advance shipment notification (ASN) message holds data that is used by
RMS to create or modify a shipment record. Also known as a bill of lading (BOL),
internal ASNs are published by an application that is external to RMS, such as a store
system (SIM, for example) or a warehouse management system (RWMS, for example). In
contrast to a BOL is the external ASN, which is generated by a supplier and shows
merchandise movement from the supplier to a retailer location, like a warehouse or store.
This overview describes the BOL type of advance shipment notification. For external
ASN from suppliers, see ASNIN Subscription API.

Internal ASNs are a notification to RMS that inventory is moving from one location to
another. RMS subscribes to BOL messages from the Oracle Retail Integration Bus (RIB).

The external application publishes these ASN messages for:
 Pre-existing allocations

 Pre-existing transfers

 Externally generated transfers, created in the store or warehouse (created as transfer
type of ‘EG’ within RMS).

Individual stock orders are held on the transfer and allocation header tables in RMS. A
message may contain data about multiple transfers or allocations, and as a result, the
shipment record in RMS would reflect these multiple movements of merchandise. A bill
of lading number on the shipment record is a means of tracking one or more transfers
and allocations back through the respective stock order records.

This API also supports shipment notification for customer order transfers. There are two
special handlings of these shipment notifications:

 When store inventory is used to fulfill a customer request, SIM will send an ASNOut
message without a ship-to location. In that case, RMS will ignore these ASNOut
messages, as these are not associated with a transfer or allocation in RMS.

 When a warehouse directly ships to a customer, RWMS will send an ASNOut
message with a virtual store as the ship-to location. In that case, RMS will auto-
receive the shipment.

Additionally, this API supports shipment notifications for franchise order and return
transactions. Shipping of franchise orders to a stockholding franchise store, as well as
shipping of franchise returns from a stockholding franchise store, is managed in a similar
way as a regular store transaction, except that different transaction codes are used for
TRAN_DATA. Shipping of franchise orders to a non-stockholding franchise store from a
warehouse or a company store will be auto-received in RMS when the ASN is processed.
L10N Localization Decoupling Layer:
This is a layer of code which enables decoupling of localization logic that is only required
for certain country-specific configuration. This layer affects the RIB API flows including
ASNOut subscription. This allows RMS to be installed without requiring customers to
install or use this localization functionality, where not required.

Subscription Designs

144 Oracle Retail Merchandising System

BOL Message Structure
Because RMS uses a BOL message only to create a new shipment record, there is one
subscribed BOL message. The message consists of a header, a series of transfers or
allocations (called ‘Distro’ records), carton records, and item records. Thus the structure
of a BOL hierarchical message would be:
 Message header–This is data about the entire shipment including all distro records,

cartons, and items.

 Distro record–The individual transfer or allocation being shipped.

 Carton–Carton numbers and location, as well as carton records will identify which
items are in which cartons.

 Items– Details about all items in the carton, including shipped quantity.
When external locations (stores or warehouses) ship products, they send a BOL message
(otherwise known as an outbound ASN message) to let RMS know that they are shipping
the stock and to let the receiving locations know that the stock is on the way. The external
locations can create BOL messages for three scenarios: a transfer was requested (RMS
knows about it), an allocation was requested (RMS knows about it), and on their own
volition (externally generated - EG). A single BOL message can contain records generated
for any or all of these transactions.

RMS allows multiple transfers and allocations per shipment, which supports the
operational process whereby a stock order shipment is often a group of transfers or
allocations on one truck. These transfers or allocations are grouped together using a
single BOL number. This number will be stored on the header record for the shipment.
All shipments will be associated with a BOL number.

Package Impact

Filename: rmssub_asnouts/b.pls
RMSSUB_ASNOUT.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure will initially ensure that the passed in message type is a valid type for
ASNOUT messages.

If the message type is invalid, a status of ‘E’ should be returned to the external system
along with an appropriate error message informing the external system that the status is
invalid.

If the message type is valid, the generic RIB_OBJECT is downcast to the actual object
using the Oracle’s treat function. If the downcast fails, a status of “E” is returned to the
external system along with an appropriate error message informing the external system
that the object passed in is invalid.

If the downcast is successful, then consume will parse the message, verify that the
message passes all of RMS’s business validation and persist the information to the RMS
database. It does this by calling CONSUME_SHIPMENT.

RMSSUB_ASNOUT.CONSUME_SHIPMENT

 (O_status_code IN OUT VARCHAR2,

 O_error_message IN OUT VARCHAR2,

 I_message IN RIB_OBJECT,

ASNOUT Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 145

 I_message_type IN VARCHAR2,

 I_check_l10n_ind IN VARCHAR2)

 Perform localization check. If localized, invoke RFM’s logic through L10N_SQL
decoupling layer for procedure key ‘CONSUME_SHIPMENT’. If not localized, call
CONSUME_SHIPMENT for normal processing.



 RMSSUB_ASNOUT.CONSUME_SHIPMENT

 (O_error_message IN OUT VARCHAR2,

 IO_L10N_RIB_REC IN OUT L10N_OBJ)

 Public function to call RMSSUB_ASNOUT.CONSUME_SHIPMENT_CORE.


 RMSSUB_ASNOUT.CONSUME_SHIPMENT_CORE

 (O_error_message IN OUT VARCHAR2,

 I_message IN RIB_OBJECT,

 I_message_type IN VARCHAR2)

 This function contains the main processing logic:
 Calls PARSE_BOL to parse the shipment level information on the message. Insert or

update shipment based on the bill of lading number (bol_nbr).

 One shipment can contain multiple distros (transfers and allocations in RMS). Within
each distro, call PARSE_DISTRO and PARSE_ITEM to parse and build a collection of
items that are transferred or allocated.

 For break-to-sell items, if the sellable item is on the message, call CHECK_ITEMS and
GET_ORDERABLE_ITEMS to convert the sellable item(s) to the corresponding
orderable item(s). The orderable items will be inserted or updated on
transfer/allocation and shipment tables.

 For catch weight items, validate and aggregate weight for the same item.

 Call PROCESS_DISTRO to perform business logic associated with shipping a transfer
or an allocation, including insert or update transfer/allocation header and detail,
insert or update SHIPSKU, move inventory to in transit buckets on ITEM_LOC_SOH,
write stock ledger.

 Bulk inserts and updates are performed to improve performance.

If an error occurs in the process, a status of ‘E’ is returned to the external system along
with the failure message. Otherwise, a success status, ‘S’, is returned to the external
system indicating that the message has been successfully received and persisted to the
RMS database.

PARSE_BOL
This function parses the “RIB_ASNOutDesc_Rec” and builds an API bol_record for
processing. It also calls RMSSUB_ASNOUT.PROCESS_BOL to check the existence of
SHIPMENT based on the bol number.

PROCESS_BOL
This function calls BOL_SQL.PUT_BOL to check the existence of SHIPMENT based on
the BOL number.

Subscription Designs

146 Oracle Retail Merchandising System

PARSE_DISTRO
This function parses the “RIB_ASNOutDesc_Rec” and builds an API distro_record for
processing.

PARSE_ITEM
This function builds a collection of API item_table that contains item level information
for the transfer or allocation. For a simple pack catch weight item, it also aggregates the
weight for the same item.

PROCESS_DISTRO
Depending on the distro type (transfer or allocation), this function calls
BOL_SQL.PUT_TSF, BOL_SQL.PUT_TSF_ITEM, and BOL_SQL.PROCESS_TSF, or
BOL_SQL.PUT_ALLOC, BOL_SQL.PUT_ALLOC_ITEM and
BOL_SQL.PROCESS_ALLOC to perform the bulk of the business logic for shipping a
transfer or an allocation.

CHECK_ITEMS
This function separates the item details on the message into two groups: one contains
sellable items and one contains non-sellable items. The sellable items will be converted
into orderable items for shipment.

GET_ORDERABLE_ITEMS
This function builds a collection of orderable items based on the sellable items.
Depending on the distro type, it calls
ITEM_XFORM_SQL.TSF_ORDERABLE_ITEM_INFO (for transfers) or
ITEM_XFORM_SQL.ALLOC_ORDERABLE_ITEM_INFO (for allocations) to distribute
the sellable quantities among the orderable items.

HANDLE_ERRORS
This function calls API_LIBRARY.HANDLE_ERRORS to perform error handling.

Filename: bolsqls/b.pls

BOL_SQL.PUT_BOL
This function checks the existence of a shipment based on the BOL number, and creates a
shipment if it does not exist.

BOL_SQL.PUT_TSF
This function checks the existence of a transfer in RMS based on the transfer number and
does the following:

 If the transfer exists, it updates the transfer to shipped status.

 If the transfer does not exist, it creates a transfer of type ‘EG’ (externally generated).
Since the sending location is already aware of the transfer, the new transfer will not
be published to the RIB again.

BOL_SQL.PUT_TSF_ITEM
This function checks the existence of an item on a transfer based on the transfer number
and the item number. It does the following:

 If the input item is a referential item, fetch and use its transactional level item.
 If the item exists on the transfer, update the quantity buckets on TSFDETAIL.

ASNOUT Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 147

 If the item does not exist on the transfer, create TSFDETAIL. However, new items
cannot be added to a closed transfer.

 If sending a pack from a warehouse, reject the message if the sending location does
not stock packs, unless the sending location is a finisher.

 For an ‘EG’ type of transfer to or from a warehouse, a physical warehouse is on the
transfer instead of a virtual warehouse. Distribute the transferred quantity to virtual
locations based on distribution rules by creating an inventory flow structure and
save it on SHIPITEM_INV_FLOW.

BOL_SQL.PROCESS_TSF
This function calls BOL_SQL.SEND_TSF to perform the bulk of the transfer shipment
business logic. The key updates performed by this function are:

 If the sending location of the transfer is a finisher, this is the second leg of a multi-
legged transfer. Call TSF_WO_COMP_SQL.WO_ITEM_COMP to perform any
necessary item transformations, including adjusting inventory and average cost of
the old and new items, and writing TRAN_DATA for the adjusted inventory.

 Update inventory (stock_on_hand and tsf_reserved_qty) for the item transferred at
the sending location.

 Update inventory (in_transit_qty and tsf_expected_qty) and average cost for the item
transferred at the receiving location. Note: average cost is never recalculated for a
franchise return at the receiving location, as it is considered a customer return and
the average cost of the receiving location is used.

 When the item shipped is a pack item, if the pack item is stocked as a pack at the
sending and/or receiving location, inventory is updated for both the pack item
(stock_on_hand, tsf_reserved_qty, in_transit_qty, tsf_expected_qty) and the pack
component items (pack_comp_soh, pack_comp_resv, pack_comp_intran,
pack_comp_exp). On the other hand, if the pack item is not stocked as a pack at the
sending and/or receiving location, inventory is updated for the component items
only (stock_on_hand, tsf_reserved_qty, in_transit_qty, tsf_expected_qty).

 When the item shipped is a simple pack catch weight item, average weight on
ITEM_LOC_SOH is updated.

 When the item shipped is a simple pack catch weight item and the pack component’s
standard UOM is a mass UOM (for example, LBS), the component’s inventory is
updated by the actual weight shipped.

 Call STKLEDGR_SQL.WRITE_FINANCIALS to write TRAN_DATA records for the
sending and receiving locations if the transaction does NOT include a franchise
location as the shipping OR receiving location, or if BOTH locations are franchise
stores: :
 30/32 – for intra-company transfer in/out, in which case the sending and

receiving locations belong to the same transfer entity. The transfer is valued at
the transfer cost on TSFDETAIL if defined. If not, it is valued at the sending
location’s WAC. WAC is dependent on the accounting method used, which
could be retail accounting or standard cost accounting or average cost
accounting. Both WAC and transfer cost are in the sending location’s currency.

 11/13 – for intra-company markup/markdown. It records the total retail
difference between the sending and receiving locations. It is written against
either the sending or the receiving location, depending on the settings on the
system options (tsf_md_store_to_store_snd_rcv, tsf_md_wh_to_store_snd_rcv,
tsf_md_store_to_wh_snd_rcv, tsf_md_wh_to_wh_snd_rcv).

Subscription Designs

148 Oracle Retail Merchandising System

 71/72 – for intra-company cost variance. It records the total cost variance as a
result of the difference between the sending location’s WAC and the transfer
cost. It is written against the sending location.

 37/38 – for inter-company transfer in/out, in which case the sending and
receiving locations belong to different transfer entities. The transfer is valued at
the transfer price on TSFDETAIL. Transfer price is defined in the sending
location’s currency.

 17/18 – for inter-company markup/markdown. It records the total retail
difference between the transfer price and the sending location’s unit retail. It is
written against the sending location.

 65 – for transfer restocking fees if a restocking percentage is defined on the
transfer detail. It can be for an inter-company or an intra-company transfer. It is
written against the sending locations.

 28 – for up charges.

 When a deposit content item is shipped, a TRAN_DATA record is also written
for the container item for trans code 30/32 and 37/38. The total cost should be
based on the cost of the container.

 When a simple pack catch weight item is shipped, the total cost is evaluated at
the weight shipped. As a result, TRAN_DATA.total_cost reflects the weight
shipped for tran codes 37/38, 30/32, 71/72 and 65. However, all the retail
calculation is not weight-based. As a result, TRAN_DATA.total_retail and tran
codes 17/18, 11/13 do not reflect the actual weight.

 Call STKLEDGR_SQL.WF_WRITE_FINANCIALS to write TRAN_DATA records for
the sending and receiving locations if the transaction is a franchise transaction:

 20/82 – for franchise order in/out, in which case the sending location is a company
location and the receiving location is a franchise store. The transfer is valued at the
pricing cost on WF_ORDER_DETAIL (fixed_cost if defined; customer_cost if
fixed_cost is not defined). Tran-data 20 is only written if the franchise location is
stockholding.

 24/83 – for franchise return in/out, in which case the sending location is a franchise
store and the receiving location is a company location. The transfer is valued at the
return unit cost on WF_RETURN_DETAIL. Tran-data 24 is only written if the
franchise location is stockholding.

 84/85 – for franchise markup/markdown. It records the total retail difference
between the pricing cost (for franchise orders) or return cost (for franchise returns)
and the company location’s VAT exclusive unit retail. It is written against the
company location.

 87 – for VAT-in cost, posted in the tran_data.total_cost column against the franchise
location:

 In case of a franchise order, it records the Total Cost in tran_code 20 * Cost VAT Rate
at the franchise location.

 In case of a franchise return, it records the Total Cost in tran_code 24 * Cost VAT Rate
at the franchise location, with a negative value for total_cost but positive value for
units.

 88 – for VAT-out retail, posted in the tran_data.total_retail column against the
company location:

 In case of a franchise order, it records the vat-exclusive Total Retail in tran_code 82 *
Retail VAT Rate at the company location.

ASNOUT Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 149

 In case of a franchise return, it records the vat-exclusive Total Retail in tran_code 83 *
Retail VAT Rate at the company location, with a negative value for total_retail but
positive value for units.

 22/23 – for stock adjustment in case of a franchise return with destroy on site. It is
only applicable to franchise returns and is written against the company location. If
the reason code associated with franchise return destroy on site has a cogs_ind of ‘Y’,
use tran_code 23; otherwise, use tran_code 22.

 86 – for franchise restocking fees if a restocking percentage is defined on the
franchise return detail. It is only applicable to franchise returns and is written against
the company location.

 65 – for franchise restocking fees if a restocking percentage is defined on the
franchise return detail. It is only applicable to franchise returns and is written against
stockholding franchise locations only.

 71/72 – for cost variance retail/cost accounting. It records the total cost variance as a
result of the difference between the franchise location’s WAC and the return unit
cost. It is written against the franchise location for franchise returns, if the franchise
store is stockholding.

 When a deposit content item is shipped on a franchise transaction, a TRAN_DATA
record is also written for the container item. The total cost should be based on the
pricing/return cost of the container as defined on wf_order_detail and
wf_return_detail.

 Creates shipsku for the item. For a simple pack catch weight item, weight_expected
and weight_expected_uom are written along with the qty_expected.

 For a non-franchise transaction, shipsku.unit_retail is the sending location’s unit
retail. When a break to sell orderable item is shipped, its unit retail is derived from its
sellable items. Similarly, in a multi-legged transfer scenario, the sending location can
be a finisher. Because a finisher does not have unit retail, the unit retail at the
receiving location is used.

 For a franchise order, shipsku.unit_cost contains the sending location’s WAC at the
time of shipment; shipsku.unit_retail contains the pricing cost. For a franchise return,
shipsku.unit_cost is based on the return unit cost; shipsku.unit_retail contains the
franchise location’s unit retail if it’s a stockholding location, or the return unit retail if
it is a non-stockholding location.

 For a customer order transfer that is shipped directly to the customer, call
STOCK_ORDER_RCV_SQL.TSF_LINE_ITEM to receive the shipment.

 For a franchise transaction, call WF_BOL_SQL.WRITE_WF_BILLING_SALES or
WF_BOL_SQL.WF_BILLING_RETURNS to write franchise billing tables.

BOL_SQL.PUT_ALLOC
This function checks the existence of an allocation based on the allocation number, item
number and warehouse. If the input item is a referential item, its transactional level item
is used. Reject the message if the allocation does not exist.

BOL_SQL.PUT_ALLOC_ITEM
This function checks the existence of allocation detail based on the allocation number and
the receiving location. It does the following:

 If the store exists on allocation detail, update the quantity buckets on
ALLOC_DETAIL.

 If the store does not exist on allocation detail, create ALLOC_DETAIL.

Subscription Designs

150 Oracle Retail Merchandising System

BOL_SQL.PROCESS_ALLOC
This function calls BOL_SQL.SEND_ALLOC to perform the bulk of the allocation
shipment business logic. It does the following:

 Update inventory (stock_on_hand and tsf_reserved_qty) for the item allocated at the
sending location.

 Update inventory (in_transit_qty and tsf_expected_qty) and average cost for the item
allocated at the receiving location.

 When the item shipped is a pack item, if the pack item is stocked as a pack at the
sending/receiving location, inventory is updated for both the pack item
(stock_on_hand, tsf_reserved_qty, in_transit_qty, tsf_expected_qty) and the pack
component items (pack_comp_soh, pack_comp_resv, pack_comp_intran,
pack_comp_exp). On the other hand, if the pack item is not stocked as a pack at the
sending/receiving location, inventory is updated for the pack component items only
(stock_on_hand, tsf_reserved_qty, in_transit_qty, tsf_expected_qty).

 When the item shipped is a simple pack catch weight item, average weight on
ITEM_LOC_SOH is updated if the pack is stocked as a pack at the sending/receiving
location.

 When the item shipped is a simple pack catch weight item and the pack component’s
standard UOM is a mass UOM (for example, OZ), component’s inventory is updated
by the actual weight shipped.

 Call STKLEDGR_SQL.WRITE_FINANCIALS to write TRAN_DATA records for the
sending and receiving locations if the transaction does not include NOT a franchise
transaction:
 37/38 – for inter-company allocation in/out, in which case the sending and

receiving locations belong to different transfer entities. Allocations are valued at
the sending location’s WAC.

 30/32 – for intra-company allocation in/out, in which case the sending and
receiving locations belong to the same transfer entity. Allocations are valued at
the sending location’s WAC.

 11/13 – for intra-company markup/markdown. It records the total retail
difference between the sending and receiving locations. It is written against
either the sending or the receiving location, depending on the settings on the
system options (tsf_md_store_to_store_snd_rcv, tsf_md_wh_to_store_snd_rcv,
tsf_md_store_to_wh_snd_rcv, tsf_md_wh_to_wh_snd_rcv).

 28 – for up charges.
 When a deposit content item is shipped, a TRAN_DATA record is also written

for the container item for tran codes 30/32 and 37/38. The total cost should be
based on the cost of the container.

Note: Similar to shipping a transfer, the retail values are not
weight-based for a simple pack catch weight item.

 Call STKLEDGR_SQL.WF_WRITE_FINANCIALS to write TRAN_DATA records for
the sending and receiving locations if the transaction is a franchise transaction:

Note: Check the PROCESS_TSF for tran-codes posted for a
franchise transaction. Since allocation is always from a
warehouse, it is only possible to have allocations linked to a
franchise order, not a franchise return.

ASNOUT Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 151

 Creates shipsku for the item. For a simple pack catch weight item, weight_expected
and weight_expected_uom are written along with the qty_expected.

 For an allocation linked to a franchise order, call
WF_BOL_SQL.WRITE_WF_BILLING_SALES to write franchise billing tables

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

asnoutcre ASN Outbound Create Message ASNOutDesc.xsd

Design Assumptions
 The ASNOut subscription process supports the break to sell functionality. Transfers,

allocations and shipments in RMS will only contain break to sell orderable items.
Inventory adjustment and stock ledger will be performed on the orderable only, not
the sellable.

 The ASNOut subscription process supports the catch weight functionality. It is
assumed that a break to sell sellable item cannot be a simple pack catch weight item.

 Catch weight functionality is not completely rounded out in this release. For
instance, it is not applied to the following areas:

– Any of the retail calculations (including total_retail on TRAN_DATA and
retail markup/markdown);

– Open to buy buckets;

– When a catch weight component item’s standard UOM is a MASS UOM,
TRAN_DATA.units is based on V_PACKSKU_QTY.qty instead of the actual
weight.

 An externally generated transfer will contain physical locations. When system
options INTERCOMPANY_TSF_IND = ‘Y’, the stock order receiving process
currently does not support the receiving of an externally generated transfer that
involves a warehouse to warehouse transfer. This is because a physical location does
not have transfer entities.

Table Impact

TABLE SELECT INSERT UPDATE DELETE

TSFHEAD Yes Yes Yes No

TSFDETAIL Yes Yes Yes No

TRANSFERS_PUB_INFO No Yes No No

ALLOC_HEADER Yes Yes Yes No

ALLOC_DETAIL Yes Yes Yes No

SHIPMENT Yes Yes Yes No

SHIPSKU Yes Yes Yes No

Subscription Designs

152 Oracle Retail Merchandising System

TABLE SELECT INSERT UPDATE DELETE

TRAN_DATA No Yes No No

ITEM_LOC_HIST No Yes No No

ITEM_LOC_SOH Yes Yes Yes No

ITEM_LOC Yes Yes No No

ITEM_ZONE_PRICE Yes Yes No No

PRICE_HIST No Yes No No

SHIPITEM_INV_FLOW No Yes No No

STORE Yes No No No

WH Yes No No No

ITEM_MASTER Yes No No No

V_PACKSKU_QTY Yes No No No

ITEM_XFORM_HEAD Yes No No No

ITEM_XFORM_DETAIL Yes No No No

TSF_XFORM Yes No No No

TSF_XFORM_DETAIL Yes No Yes No

TSF_ITEM_COST Yes No Yes No

TSF_ITEM_WO_COST Yes No No No

WO_ACTIVITY Yes No No No

INV_ADJ_REASON Yes No No No

INV_ADJ Yes No No No

INV_STATUS_QTY Yes Yes Yes Yes

DEPS Yes No No No

CURRENCIES Yes No No No

CURRENCY_RATES Yes No No No

PERIOD Yes No No No

SYSTEM_OPTIONS Yes No No No

WEEK_DATA Yes No No No

MONTH_DATA Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

ITEM_SUPP_COUNTRY_DIM Yes No No No

UOM_CLASS Yes No No No

WF_ORDER_HEAD Yes No No No

WF_ORDER_DETAIL Yes No Yes No

WF_RETURN_HEAD Yes No No No

WF_RETURN_DETAIL Yes No Yes No

WF_BILLING_SALES No Yes No No

ASNOUT Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 153

TABLE SELECT INSERT UPDATE DELETE

WF_BILLING_RETURNS No Yes No No

Subscription Designs

154 Oracle Retail Merchandising System

COGS Subscription API

Functional Area
COGS Subscription

Business Overview
The Cost Of Goods Sold (COGS) interface lets a retailer make replacements, which is
similar to exchanges. However, replacements involve a different accounting process than
exchanges. In a replacement, a retailer replaces a previously purchased item with an
equivalent unit. To make this replacement, retailer first places the request and ships the
undesirable unit out and later the replacement unit is shipped to the retailer. In RMS, the
cost of goods sold interface allows the retailer to make this replacement despite the fact
that the exchange is not made simultaneously.

The interface writes the value of the transaction to the transaction data tables. An
external system (such as Oracle Retail Data Warehouse) can then extract that data.

The subscription process for COGS adjustment involves an interface which contains item,
location, quantity, date, order header media, order line media, and a reason code. These
records are inserted into the TRAN_DATA table to affect the stock ledger. Message
processing includes a call to STKLEDGER_SQL.TRAN_DATA_INSERT to insert the new
transaction to the TRAN_DATA table.

RMS subscribes to integration subsystem COGS messages. This process records the
inventory and financial transactions associated with a cost of goods sold message.

Package Impact

Filename: rmssub_cogsb/s.pls
PROCEDURE CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

CONSUME simply calls different functions within the corresponding VALIDATE and
SQL packages.

Before calling any functions, CONSUME narrows I_message down to the specific object
being used, depending on the message_type. For example, a ‘Cre’ or ‘Mod’ message type
usually means a ‘Desc’ object is being used. A ‘Del’ message usually means a ‘Ref’ object
is being used. Object narrowing is done using the TREAT function. If the narrowing fails,
then the CONSUME function should return an error message to the RIB stating that the
object is not valid for this message family.

CONSUME first calls the family’s VALIDATE package to validate the contents of the
message. The family’s SQL package is then called to perform DML.

COGS Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 155

Business Validation Mode

Filename: rmssub_cogsvalb/s.pls
This function first calls the CHECK_FIELDS function to make sure all required fields are
not NULL. Then, the function calls other function as needed to validate all of the
information that has been passed to it from the RIB.

DML Module

Filename: rmssub_cogssqlb/s.pls
PERSIST
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message_type IN VARCHAR2,
 I_cogs_rec IN RMSSUB_COGS.COGS_REC_TYPE)
This function performs the inventory and financial transactions associated with the
COGS transaction. The inventory is adjusted at the store location based on the reason
code (replacement in/out) provided in the message. In addition a net sale and permanent
markdown financial transaction is written to the stock ledger.

Message XSD
Here are the filenames that correspond with each message type. Please consult the
mapping documents for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

CogsCre COGS Create Message CogsDesc.xsd

Design Assumptions
The subscriber makes some assumptions about the publisher’s ability to maintain data
integrity. The subscriber does not check for duplicate Create messages. It will not check
for missing messages because it has no way of knowing what would be missing. It also
assumes that messages are sent in the correct sequence.

Table Impact

TABLE SELECT INSERT UPDATE DELETE

ITEM_LOC Yes No No No

ITEM_LOC_SOH No No Yes No

TRAN_DATA No Yes No No

Subscription Designs

156 Oracle Retail Merchandising System

Cost Change Subscription API

Functional Area
Cost Change

Design Overview
A cost change is performed at the following levels of the organization hierarchy: chain,
area, region, district, and store. Unit cost is updated for all stores within the location
group. Because warehouses are not part of the organization hierarchy, they are only
impacted by cost changes applied at the warehouse level.

The subscription does not create cost change events; it updates the cost of an item in real
time. It is intended for use only when RMS is not the system of record for cost changes.

The cost change subscription updates unit costs for item/locations that already exist in
RMS. It does not create or delete item/locations in RMS tables.

RMS exposes an API that allows external systems to update unit cost within RMS.

This RMS API subscribes to external cost change modify messages for the purpose of
integrating external cost changes maintained in an external system into RMS. It updates
unit costs in RMS and writes cost history.

Consume Module

Filename: rmssub_xcostchgs/b.pls
RMSSUB_XCOSTCHG.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure initially ensures that the passed-in message type is a valid type for cost
change messages. There is only one valid message type for Cost change messages,
XCostchgMod. If the message type is invalid, a status of “E” is returned to the external
system along with an appropriate error message informing the external system that the
status is invalid.

If the message type is valid, the generic RIB_OBJECT is downcast to the actual object
using the Oracle treat function. If the downcast fails, a status of “E” is returned to the
external system along with an appropriate error message informing the external system
that the object passed in is invalid.

If the downcast is successful, then the consume verifies that the message passes all of
RMS’s business validation by calling the
RMSSUB_XCOSTCHG_VALIDATE.CHECK_MESSAGE function. If the message passed
RMS business validation, then the function returns true; otherwise, it returns false. If the
message has failed RMS business validation, a status of “E” is returned to the external
system along with the error message returned from the CHECK_MESSAGE function.

Cost Change Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 157

Once the message has passed RMS business validation, it is persisted to the RMS
database by calling the RMSSUB_XCOSTCHG_SQL.PERSIST_MESSAGE() function. If
the database persistence fails, the function returns false. A status of “E” is returned to the
external system along with the error message returned from the PERSIST_MESSAGE()
function.

Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success status, “S”, is returned to the external system indicating that
the message has been successfully received and persisted to the RMS database.

RMSSUB_XCOSTCHG.HANDLE_ERROR() – This is the standard error handling
function that wraps the API_LIBRARY.HANDLE_ERROR function.

Business Validation Module
It should be noted that some of the business validation is referential or involves
uniqueness. This validation is handled automatically by the referential integrity
constraints and the unique indexes implemented on the database.

Filename: rmssub_xcostchgvals/b.pls
RMSSUB_XCOSTCHG_VALIDATE.CHECK_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 O_cost_change_rec OUT COST_CHANGE_REC,
 I_message IN RIB_XCostChgDesc,
 I_message_type IN VARCHAR2)

This function performs all business validation associated with message and builds the
cost change record for persistence.

Cost Change Modify
 Checks required fields.

 Verifies supplier’s currency.

 Verifies item status.
 If diff IDs are passed in, verifies they are valid for passed in item.

 Verifies item passed in is not a buyer pack.

POPULATING RECORD
 Retrieves the item’s transaction level children if the passed-in item is a parent.

 Retrieves all locations based on passed in hierarchy type and value.

 Determines if a location to be updated is the primary location; if so, retrieves the
item-supplier-country record to be updated.

 Retrieves all item/location combinations where passed-in supplier/country is
the primary supplier/country at an item location.

 Retrieves all orderable buyers pack that the passed-in item, or its children if
above transaction level.

 If the recalculate order indicator is ‘Y’, retrieves all item/locations on approved
(and worksheet) orders.

 Populates record with message data.

Subscription Designs

158 Oracle Retail Merchandising System

Package Impact

Filename: rmssub_xcchgsqls/b.pls
RMSSUB_XCOSTCHG_SQL.PERSIST
 (O_error_message IN OUT VARCHAR2,
 I_dml_rec IN COST_CHANGE_RECTYPE ,
 I_message IN RIB_XCostChgDesc)

Cost Change
 Updates the unit cost on item supplier country location table for all item/locations.

 If one of the locations was a primary location, updates the item supplier country
table. Inserts into price history all records for all item/locations related to the
supplier/country as the primary supplier/country.

 If average cost method is not used (system option ECL_IND = N), updates the unit
cost on item location stock on hand table for all item/locations related to the
supplier/country as the primary supplier/country (packs do not have cost
updated).

 If the recalculate order indicator is ‘Y’, updates all relevant order/item/locations unit
cost.

 If pack processing is necessary, repeats the above steps except updating item location
stock on hand.

Message XSD
Here are the filenames that correspond with the message type. Please consult the RIB
documentation to get a detailed picture of the composition of the message.

Message Type Message Type Description XML Schema
Definition (XSD)

Xcostchgmod External Cost Change Modify XCostChgDesc.xsd

Design Assumptions
 Required fields are shown in the RIB documentation.

 Updating the order cost does not take into account any aspects of building the order
cost (estimated landed cost, deals, bracket cost, and so on) and will not work for a
base solution.

 This API does not take into account estimated landed cost.

 This API assumes ‘A’verage cost accounting. Hence no logic exists for ‘S’tandard
(last received) cost accounting.

Cost Change Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 159

Table Impact

TABLE SELECT INSERT UPDATE DELETE

ITEM_SUPP_COUNTRY Yes No Yes No

ITEM_SUPP_COUNTRY_LOC Yes No Yes No

ITEM_LOC_SOH Yes No Yes No

STORE Yes No No No

WH Yes No No No

ITEM_MASTER Yes No No No

DIFF_GROUP_HEAD Yes No No No

DIFF_GROUP_DETAIL Yes No No No

CHAIN Yes No No No

AREA Yes No No No

REGION Yes No No No

DISTRICT Yes No No No

ITEM_LOC Yes No No No

ORDLOC Yes No Yes No

ORDHEAD Yes No No No

PRICE_HIST No Yes No No

SYSTEM_OPTIONS Yes No No No

Subscription Designs

160 Oracle Retail Merchandising System

Currency Exchange Rates Subscription API

Functional Area
Currency Exchange Rates

Business Overview
Currency exchange rates constitute financial information that is published to the Oracle
Retail Integration Bus (RIB). A currency exchange rate is the price of one country's
currency expressed in another country's currency.

Note: When the RMS and the financial system are initially
set up, identical currency information (3-letter codes,
exchange rate values) is entered into both. If a new currency
needs to be used, it must be entered into both the financial
system and RMS before a rate change is possible. No
functionality currently exists to bridge this data.

Data Flow
An external system will publish a currency exchange rate, thereby placing the currency
exchange rate information onto the RIB. RMS will subscribe to the currency exchange
rate information as published from the RIB and place the information onto RMS tables
depending upon the validity of the records enclosed within the message.

Message Structure
The currency exchange rate message is a flat message that will consist of a currency
exchange rate record.

The record will contain information about the currency exchange rate as a whole.

Package Impact

Filename: rmssub_curratecres/b.pls
Subscribing to a currency exchange rate message entails the uses of one public consume
procedure. This procedure corresponds to the type of activity that can be done to
currency exchange rate record (in this case create/update).

Public API Procedures:
RMSSUB_CURRATECRE.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN CLOB)
This procedure accepts a XML file in the form of an Oracle CLOB data type from the RIB
(I_message). This message contains a currency exchange rate message consisting of the
aforementioned record. The procedure calls the main RMSSUB_CUR_RATES.CONSUME
function in order to validate the XML file format and, if successful, parses the values
within the file through a series of calls to RIB_XML. The values extracted from the file are
then passed on to private internal functions, which validate the values and place them on
the currency exchange rate table depending upon the success of the validation.

Private Internal Functions and Procedures (rmssub_curratecre.pls)
Error Handling:

Currency Exchange Rates Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 161

If an error occurs in this procedure, a call is placed to HANDLE_ERRORS in order to
parse a complete error message and pass back a status to the RIB.
HANDLE_ERRORS
 (O_status IN OUT VARCHAR2,
 IO_error_message IN OUT VARCHAR2,
 I_cause IN VARCHAR2,
 I_program IN VARCHAR2))

This function is used to put error handling in one place in order to make future error
handling enhancements easier to implement. All error handling in the internal
RMSSUB_CUR_RATES package and all errors that occur during subscription in the
RMSSUB_CURRATECRE package (and whatever packages it calls) flow through this
function.

The function consists of a call to API_LIBRARY.HANDLE_ERRORS.
API_LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the error and
potentially an unparsed error message if one has been created through a call to
SQL_LIB.CREATE_MESSAGE. The function uses these input variables to parse a
complete error message and pass back a status, depending upon the message and error
type, back up through the consume function and up to the RIB.

Private Internal Functions and Procedures (other):
All of the following functions exist within RMSSUB_CUR_RATES.

Main Consume Function:
RMSSUB_CUR_RATES.CONSUME
 (O_error_message OUT VARCHAR2,
 I_message IN CLOB)

This procedure accepts a XML file in the form of an Oracle CLOB data type from the RIB
(I_message) from the aforementioned public curratecre procedure whenever a message is
made available by the RIB. This message consists of the aforementioned record.

The procedure then validates the XML file format and, if successful, parses the values
within the file through a series of calls to RIB_XML. The values extracted from the file are
then passed on to private internal functions, which validate the values and place them on
the appropriate currency exchange rate database table depending upon the success of the
validation.

XML Parsing:

PARSE_HEADER

This function is used to extract the currency exchange rate level information from the
currency exchange rate xml file and place that information onto an internal currency
exchange rate record.
Validation:

PROCESS_HEADER

After the values are parsed for a particular currency exchange rate record,
RMSSUB_CUR_RATES.CONSUME calls this function, which in turn calls various
functions inside RMSSUB_CUR_RATES in order to validate the values and place them
on the appropriate currency exchange rate table depending upon the success of the
validation. CONVERT TYPE is called to validate the passed in currency rate if it exists in
the FIF_CURRENCY_XREF table. PROCESS_RATES is called to actually insert or update
the currency exchange rate table.

CONVERT_TYPE

Subscription Designs

162 Oracle Retail Merchandising System

This function takes in the current record’s exchange rate type and returns the RMS
exchange type from the table FIF_CURRENCY_XREF. If no data is found, it should
return an error message.

PROCESS_RATES
This function calls VALIDATE_RATES to ensure that the values passed from the
message are valid. If all the values are valid, it checks if the currency code exists in the
currency exchange rate table. If the currency code does not exist yet, the function
INTEREST RATES is called. If not, UPDATE RATES is called.

VALIDATE_RATES

This function passes each value from the record to the function CHECK_NULLS.
CHECK_SYSTEM is used for conversion date.

CHECK_NULLS

This function checks if the values passed are NULL. If the passed value is NULL, then an
invalid parameter error message is returned.

CHECK_SYSTEM

This function fetches the vdate and the currency code from the period and system
options table respectively. If the vdate is greater than the conversion date, an error
message is returned. If the passed in currency rate is not the same as the currency rate
fetched from the system options table, an error message is returned.

DML Module:

INSERT_RATES

This function inserts into the currency exchange rate table after all of the validations of
the values are done.

UPDATE_RATES

This function locks the CURRENCY_RATES table first. After that the table is locked it
updates the record in the currency exchange rate table.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

CurrateCre Currency Rate Create Message CurrRateDesc.xsd

CurrateCre Currency Rate Modify Message CurrRateDesc.xsd

Design Assumptions
 One of the primary assumptions in the current API approach is that ease of code will

outweigh performance considerations. It is hoped that the ‘trickle’ nature of the flow
of data will decrease the need to dwell on performance issues and instead allow
developers to code in the easiest and most straight forward manner.

 The adaptor is only setup to call stored procedures, not stored functions. Any public
program then needs to be a procedure.

Currency Exchange Rates Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 163

Table Impact

TABLE SELECT INSERT UPDATE DELETE

CURRENCY_RATES Yes Yes Yes No

SYSTEM_OPTIONS Yes No No No

PERIOD Yes No No No

FIF_CURRENCY_XREF Yes No No No

Subscription Designs

164 Oracle Retail Merchandising System

Diff Group Subscription API

Functional Area
Diff Group

Design Overview
Differentiator subscriptions come into RMS from an external system. With a
differentiator group subscription, you create the differentiator group in the external
system, and then send that information to RMS. Once the subscription has been received,
RMS users can now use the differentiator group that comes from the external system. The
group is always sent first; its IDs are sent second.

Differentiators
Differentiators augment RMS’ item level structure by allowing you to define more
discrete characteristics of an item. You attach differentiators to items to distinguish one
item from another. Differentiators (diffs) give you the means to further track
merchandise sales transactions. Common types of diffs are size, color, flavor, scent, or
pattern.

Diffs consist of:

 Diff types – Generic categories of diff IDs such as Size, Color, or Flavor.

 Diff IDs – Specific attributes such as black, white, red; small, medium; strawberry,
blueberry.

 Diff groups – Logical groupings of related diff IDs such as: Women’s Pant Sizes, Shirt
Colors, or Yogurt Flavors.

This API allows external systems to create, edit, and delete diff groups within RMS. The
transaction will be performed immediately upon message receipt so success or failure
can be communicated to the calling application.
Diff ID details can be created, edited, or deleted within the diff group message. Diff ID
details must be created within a diff group on a diff group create message, they can also
be passed in with their own specific message type. Diff ID detail create and modify
messages will send a snapshot of the diff group record. Diff ID detail delete messages
will be processed separately from the diff group delete because they have their own
message types.

Package Impact

Package Impact

Filename: rmssub_xdiffgrps/b.pls
RMSSUB_XDIFFGRP.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure will need to initially ensure that the passed in message type is a valid
type for diff IDs messages. If the message type is invalid, a status of “E” should be
returned to the external system along with an appropriate error message informing the
external system that the status is invalid.

Diff Group Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 165

If the message type is valid, the generic RIB_OBJECT need to be downcast to the actual
object using the Oracle’s treat function. If the downcast fails, a status of “E” should be
returned to the external system along with an appropriate error message informing the
external system that the object passed in is invalid.
If the downcast is successful, then consume needs to verify that the message passes all of
RMS’s business validation. It calls the
RMSSUB_XDIFFGRP_VALIDATE.CHECK_MESSAGE function to determine whether
the message is valid. If the message passed RMS business validation, then the function
will return true; otherwise, it will return false. If the message has failed RMS business
validation, a status of “E” should be returned to the external system along with the error
message returned from the CHECK_MESSAGE function.

Once the message has passed RMS business validation, it can be persisted to the RMS
database. It calls the RMSSUB_XDIFFGRP_SQL.PERSIST_MESSAGE() function. If the
database persistence fails, the function will return false. A status of “E” should be
returned to the external system along with the error message returned from the
PERSIST_MESSAGE() function.
Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success, “S”, status should be returned to the external system
indicating that the message has been successfully received and persisted to the RMS
database.

RMSSUB_XDIFFGRP.HANDLE_ERROR() – This is the standard error handling function
that wraps the API_LIBRARY.HANDLE_ERROR function.

Business Validation Module
It should be noted that some of the business validation is referential or involves
uniqueness. This validation is handled automatically by the referential integrity
constraints and the unique indexes implemented on the database.

Filename: rmssub_xdiffgrpvals/b.pls
RMSSUB_XDIFFGRP_VALIDATE.CHECK_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 O_diffgroup_rec OUT DIFF_GROUP_REC,
 I_message IN RIB_XdiffgrpDesc,
 I_message_type IN VARCHAR2)

This function performs all business validation associated with the messages and builds
the diff group record for persistence.

DIFF GROUP CREATE

 Check required fields.

 Verify diff group ID not used in diff ID table.

 Verify diff ID detail node is populated.
 Verify diff ID details are on diff ID table (not diff group table).

 Populate record with message data.

DIFF GROUP MODIFY

 Check required fields.

 Verify the diff group exists.

 Populate record with message data.
DIFF GROUP DELETE

 Check required fields.

 Verify the Diff group exists.

Subscription Designs

166 Oracle Retail Merchandising System

 Verify diff group is not attached to any items or pack templates.

 Populate record with message data.

DIFF ID CREATE

 Check required fields.
 Verify diff ID detail node is populated.

 Verify diff ID details are on diff ID table (not diff group table).

 Populate record with message data.

DIFF ID MODIFY

 Check required fields.

 Verify diff group exists.
 Verify diff ID detail node is populated.

 Verify diff ID details are on diff ID table (not diff group table).

 Verify diff ID details on diff group detail table.

 Populate record with message data.

DIFF ID DELETE

 Check required fields.
 Verify diff group exists.

 Verify the diff ID exists on diff group table.

 Verify no items or pack templates are using that diff group detail diff ID.

 Populate record with message data.

Bulk or Single DML Module
All insert, update and delete SQL statements are located in the family package. This
package is DIFF_GROUP_SQL. The private functions will call this package.

Filename: rmssub_xdiffgrpsqls/b.pls
RMSSUB_XDIFFGRP_SQL.PERSIST_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 I_diff_group_rec IN DIFF_GROUP_REC,
 I_message_type IN VARCHAR2,)

This function determines what type of database transaction it will call based on the
message type.

DIFF GROUP CREATE
 Create messages get added to the Diff group head table.

 Diff group details get added to the diff group detail table.

DIFF GROUP MODIFY

 Modify messages directly update the Diff group head table with changes.

DIFF GROUP DELETE

 - Delete messages directly remove Diff group head records.
DIFF GROUP DETAIL CREATE

 Create messages get added to the Diff group detail table.

DIFF GROUP DETAIL MODIFY

 Modify messages directly update the Diff group detail table with changes.

DIFF GROUP DETAIL DELETE

 - Delete messages directly remove Diff group detail records.

Diff Group Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 167

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Type Message Type Description XML Schema Definition (XSD)

Xdiffgrpdtlcre Create a diff group detail XDiffGrpDesc.xsd

Xdiffgrpdtldel Delete a diff group detail XDiffGrpRef.xsd

xdiffgrpdtlmod Modify a diff group detail XDiffGrpDesc.xsd

xdiffgrpcre Create a diff group header XDiffGrpDesc.xsd

xdiffgrpdel Delete an entire diff group XDiffGrpRef.xsd

xdiffgrpmod Modify a diff group header XDiffGrpDesc.xsd

Design Assumptions
Required fields are shown in the RIB documentation.

Diff IDs and Diff groups must be validated for uniqueness, as they cannot overlap.

Table Impact

TABLE SELECT INSERT UPDATE DELETE

DIFF_IDS Yes No No No

DIFF_GROUP_HEAD Yes Yes Yes Yes

DIFF_GROUP_DETAIL Yes Yes Yes Yes

ITEM_MASTER Yes No No No

PACK_TMPL_HEAD Yes No No No

DIFF_RANGE_HEAD Yes No No No

Subscription Designs

168 Oracle Retail Merchandising System

Diff ID Subscription API

Functional Area
Foundation

Design Overview
The diff ID subscription API provides a means to keep RMS in sync with an external
system.

This API allows an external system to create, edit, and delete Diff Ids within RMS. These
transactions are performed immediately upon message receipt so success or failure can
be communicated to the calling application.

Package Impact

Filename: rmssub_xdiffids/b.pls
RMSSUB_XDIFFID.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure initially ensures that the passed in message type is a valid type for diff
IDs messages. If the message type is invalid, a status of “E” is returned to the external
system along with an appropriate error message informing the external system that the
status is invalid.

If the message type is valid, the generic RIB_OBJECT is downcast to the actual object
using the Oracle treat function. If the downcast fails, a status of “E” is returned to the
external system along with an appropriate error message informing the external system
that the object passed in is invalid.

If the downcast is successful, then consume verifies that the message passes all of RMS’s
business validation calling the RMSSUB_XDIFFID_VALIDATE.CHECK_MESSAGE
function. If the message passes RMS business validation, then the function returns true;
otherwise it returns false. If the message has failed RMS business validation, a status of
“E” is returned to the external system along with the error message returned from the
CHECK_MESSAGE function.

Once the message has passed RMS business validation, it is persisted to the RMS
database by calling the RMSSUB_XDIFFID_SQL.PERSIST_MESSAGE() function. If the
database persistence fails, the function returns false. A status of “E” is returned to the
external system along with the error message returned from the PERSIST_MESSAGE()
function.

Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success, “S”, status is returned to the external system indicating that
the message has been successfully received and persisted to the RMS database.

RMSSUB_XDIFFID.HANDLE_ERROR() – This is the standard error handling function
that wraps the API_LIBRARY.HANDLE_ERROR function.

Business Validation Module
It should be noted that some of the business validation is referential or involves
uniqueness. This validation is handled automatically by the referential integrity
constraints and the unique indexes implemented on the database.

Diff ID Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 169

Filename: rmssub_xdiffidvals/b.pls
RMSSUB_XDIFFID_VALIDATE.CHECK_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 O_diffid_rec OUT DIFF_ID_REC,
 I_message IN RIB_XDiffIDDesc,
 I_message_type IN VARCHAR2)

This function performs all business validation associated with messages and builds the
diff ID record for persistence.

DIFF ID CREATE
 Checks required fields.

 Verifies diff id not used in diff group head table.

 Populates record with message data.

DIFF ID MODIFY

 Checks required fields.

 Verifies the Diff Id exists.
 Populates record with message data.

DIFF ID DELETE

 Checks required fields.

 Verifies the Diff Id exists.

 Deletes the record with diff ID contained in the message data.

Bulk or single DML module
All insert, update and delete SQL statements are located in the family package. This
package is DIFF_ID_SQL. The private functions will call this package.

Filename: rmssub_xdiffidsqls/b.pls
RMSSUB_XDIFFID_SQL.PERSIST_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 I_diffid_rec IN DIFF_ID_REC,
 I_message_type IN VARCHAR2,)

This function determines what type of database transaction it will call based on the
message type.
DIFF ID CREATE

 Create messages get added to the Diff ID table.

DIFF ID MODIFY

 Modify messages directly update the Diff ID table with changes.

DIFF ID DELETE

 Delete messages directly remove Diff ID records.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message
Type

Message Type Description XML Schema Definition (XSD)

xdiffidcre External Differentiator Create XDiffIDDesc.xsd

Subscription Designs

170 Oracle Retail Merchandising System

Message
Type

Message Type Description XML Schema Definition (XSD)

xdiffiddel External Differentiator Delete XDiffIDRef.xsd

xdiffidmod External Differentiator Modify XDiffIDDesc.xsd

Design Assumptions
Required fields are shown in mapping document.

Table Impact

TABLE SELECT INSERT UPDATE DELETE

DIFF_IDS Yes Yes Yes Yes

DIFF_GROUP_HEAD Yes No No No

Direct Ship Receipt Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 171

Direct Ship Receipt Subscription API

Functional Area
Direct Ship Receipt Subscription

Business Overview
In the direct ship receipt process, a retailer does not own inventory, but still records a
sale on their books.

An external integration subsystem takes the order and sends it to a supplier.

When an integration subsystem is notified that a direct ship order is sent from the
supplier, it publishes a new direct ship (DS) receipt message to the RIB for RMS’
subscription purposes. RMS can then account for the data in the stock ledger.

Processing in conjunction with the subscription ensures that the weighted average cost
for the item is recalculated.

RMS subscribes to integration subsystem direct ship receipt (DSR) messages. This
records the inventory and financial transactions associated with the direct shipment of
merchandise.

Package Impact

Filename: rmssub_dsrcpts/b.pls
RMSSUB_DSRCPT.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

CONSUME simply calls different functions within the corresponding VALIDATE and
SQL packages.

Before calling any functions, CONSUME narrows I_message down to the specific object
being used, depending on the message_type. For example, a ‘Cre’ or ‘Mod’ message type
usually means a ‘Desc’ object is being used. A ‘Del’ message usually means a ‘Ref’ object
is being used. Object narrowing is done using the TREAT function. If the narrowing fails,
then the CONSUME function should return an error message to the RIB stating that the
object is not valid for this message family.

CONSUME first calls the family’s VALIDATE package to validate the contents of the
message. The family’s SQL package is then called to perform DML.

Filename: rmssub_dsrcpt_vals/b.pls
CHECK_MESSAGE
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_dsrcpt_rec OUT NOCOPY RMSSUB_DSRCPT.DSRCPT_REC_TYPE,
 I_message IN “RIB_XOrderDesc_REC”,
 I_message_type IN VARCHAR2)

This function first calls the CHECK_FIELDS function to make sure all required fields are
not NULL. Then, the function will call other functions as needed to validate all of the
information that has been passed to it from the RIB.

Filename: rmssub_dsrcpt_sqls/b.pls
RMSSUB_DSRCPT_SQL.PERSIST
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,

Subscription Designs

172 Oracle Retail Merchandising System

 I_dsrcpt_rec IN RMSSUB_DSRCPT.DSRCPT_REC_TYPE,
 I_message_type IN VARCHAR2)

This function will perform the inventory and financial transactions associated with the
direct ship receipt. This includes updating the stock on hand and average cost for the
item at the virtual store against which the direct shipment is being received, and, booking
the associated purchase to the stock ledger for the item / virtual store.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

Dsrcptcre Dsrcpt Create Message DsrcptDesc.xsd

Design Assumptions
The subscriber makes some assumptions with the publisher’s ability to maintain data
integrity. The subscriber will not check for duplicate create messages. It will not check for
missing messages because it has no way of knowing what would be missing. It also
assumes that messages are sent in the correct sequence.

Table Impact

TABLE SELECT INSERT UPDATE DELETE

ITEM_MASTER Yes No No No

PACKITEM Yes No No No

ITEM_LOC_SOH Yes No Yes No

TRAN_DATA No Yes No No

DSD Deals Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 173

DSD Deals Subscription API

Functional Area
DSD deals subscription

Business Overview
Direct Store Delivery (DSD) is a delivery of merchandise and/or services to a store
without the benefit of a pre-approved purchase order, such as when the supplier drops
off merchandise directly in the retail er's store. This process is common in convenience
and grocery stores, where suppliers routinely come to restock merchandise. In these
cases, the invoice may or may not be given to the store (as opposed to sent to corporate),
and the invoice may or may not be paid for out of the register.

RMS subscribes to DSD messages from the RIB. These messages notify RMS of a direct
store delivery transaction at a location so that it may record the purchase order and
account for it in the store’s inventory.

The receipt message that enters RMS includes information such as unit quantity, location,
and others. Based on the data, RMS performs the following functionality, as necessary.
 Creates a purchase order.

 Applies any deals

 Creates a shipment

 Receives a shipment.

 Creates an invoice

Note: If ReIM is not running, invoices are not created.

Package Impact

Filename: rmssub_dsddealss/b.pls
RMSSUB_DSDDEALS.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_rib_dsddealsdesc_rec IN “RIB_DSDDealsDesc_REC”,
 I_message_type IN VARCHAR2)

This procedure initially ensure that the passed in message type is a valid type for DSD
deals. The valid message type for DSD deals messages are listed in a section below.

If the message type is invalid, a status of “E” will be returned to the external system
along with an appropriate error message informing the external system that the status is
invalid.

For each header level data in the DSD deals table, call the function
COMPLETE_TRANSACTION to persist data to the RMS database.
Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success status, “S”, is returned to the external system indicating that
the message has been successfully received and persisted to the RMS database.

If an error occurs in this procedure, a call will be placed to HANDLE_ERRORS in order
to parse a complete error message and pass back a status to the RIB.

Subscription Designs

174 Oracle Retail Merchandising System

RMSSUB_DSDDEALS.COMPLETE_TRANSACTION
This function checks for a shipment record on the shipment table for the DSD being
processed. If no shipment record exists, it applies any applicable deals to the DSD order
being processed and inserts shipment records into the shipment and shipsku tables for
the newly created purchase order. After creating the new shipment, it receives the
shipment and approves the order. If the DSD message contains invoice information, it
creates the invoice.

RMSSUB_DSDDEALS.HANDLE_ERRORS
The function consists of a call to API_LIBRARY.HANDLE_ERRORS.
API_LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the error and
potentially an unparsed error message if one has been created through a call to
SQL_LIB.CREATE_MESSAGE. The function uses these input variables to parse a
complete error message and pass back a status, depending upon the message and error
type, back up through the consume function and up to the RIB.

Message XSD
Here are the filenames that correspond with each message type. Please see RIB
documentation for each message type in order to get a detailed picture of the composition
of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

dsddealscre DSD Deals Create Message DSDDealsDesc.xsd

Design Assumptions
None

Table Impact

TABLE SELECT INSERT UPDATE DELETE

SHIPMENT Yes Yes No No

SHIPSKU No Yes No No

ORDAUTO_TEMP Yes No No Yes

ORDSKU Yes No No No

ORDLOC Yes No No No

DSD Receipt Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 175

DSD Receipt Subscription API

Functional Area
DSD Receipt

Business Overview
Direct store delivery (DSD) is the delivery of merchandise and/or services to a store
without the benefit of a pre-approved purchase order. When the delivery occurs, the
integration subsystem informs RMS of the receipt so a purchase order is created and it is
counted in the store’s inventory.

Package Impact

Filename: rmssub_dsds/b.pls

RMSSUB_DSD.CONSUME
RMSSUB_DSD.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_rib_dsddesc_rec IN “RIB_DSDReceiptDesc_REC”,
 I_message_type IN VARCHAR2,
 O_rib_dsddeals_rec OUT “RIB_DSDDealsDesc_REC”)

The passed in message type is validated to ensure it is a valid type for DSD receipts. The
valid message type for DSD Receipts messages are listed in a section below.

If the message type is invalid, a status of “E” will be returned to the external system
along with an appropriate error message informing the external system that the status is
invalid.

If the message type is DSD_CRE, it performs validation on the values in the message. If
the data is valid, it processes the non-merchandise data for delivery costs and detail level
data before persisting the data to RMS databases.

If the message type is DSD_MOD, call the GET_ORDER_NO function to find the order
number for the DSD.

If the message type is a create message, the O_rib_dsddeals_rec record is populated and
passed back to the RIB so that it may be sent to the RMSSUB_DSDDEALS consume
function. If the message type is not create, then the O_rib_dsddeals_rec should be set to
null.

Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success status, “S”, is returned to the external system indicating that
the message has been successfully received and persisted to the RMS database.

If an error occurs in this procedure, a call will be placed to HANDLE_ERRORS in order
to parse a complete error message and pass back a status to the RIB.

Subscription Designs

176 Oracle Retail Merchandising System

RMSSUB_DSD.GET_ORDER_NO
GET_ORDER_NO (O_error_message IN OUT VARCHAR2,
 O_order_no IN OUT ordhead.order_no%TYPE,
 I_ext_receipt_no IN shipment.ext_ref_no_in%TYPE,
 I_store IN store.store%TYPE,
 I_supplier IN sups.supplier%TYPE)

This function is called for message type DSD_MOD. This function retrieves the current
order number by searching the shipment tables using the external receipt number, store
number and supplier.

RMSSUB_DSD.HANDLE_ERRORS
RMSSUB_DSD.HANDLE_ERRORS
 (O_status IN OUT VARCHAR2,
 IO_error_message IN OUT VARCHAR2,
 I_cause IN VARCHAR2,
 I_program IN VARCHAR2)

The function consists of a call to API_LIBRARY.HANDLE_ERRORS.
API_LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the error and
potentially an unparsed error message if one has been created through a call to
SQL_LIB.CREATE_MESSAGE. The function uses these input variables to parse a
complete error message and pass back a status, depending upon the message and error
type, back up through the consume function and up to the RIB.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

dsdreceiptcre DSD Receipt Create Message DSDReceiptDesc.xsd

dsdreceiptmod DSD Receipt Modify Message DSDReceiptDesc.xsd

Design Assumptions
None

Table Impact

TABLE SELECT INSERT UPDATE DELETE

SHIPMENT Yes No No No

ORDHEAD Yes No No No

Freight Terms Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 177

Freight Terms Subscription API

Functional Area
Foundation

Business Overview
Freight terms are financial arrangement information that is published to the Oracle Retail
Integration Bus (RIB) from a financial system. Freight terms are the terms for shipping
(for example, the freight terms could be a certain percentage of the total cost; a flat fee per
order, etc.). RMS subscribes to freight terms messages held on the RIB. After confirming
the validity of the records enclosed within the message, the RMS database is updated
with the information.

Required fields in the message include a unique freight terms ID and a description.

Message Structure
The freight term message is a flat message that will consist of a freight term record.

Package Impact

Filename: rmssub_frttermcres/b.pls
 rmssub_fterms/b.pls
Subscribing to a freight term message entails the uses of one public consume procedure.
This procedure corresponds to the type of activity that can be done to a freight term
record (in this case create/update).

Public API Procedures
RMSSUB_FRTTERMCRE.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN CLOB);

This procedure accepts a XML file in the form of an Oracle CLOB data type from the RIB
(I_message). This message will contain a freight term message consisting of the
aforementioned record. The procedure will then place a call to the main
RMSSUB_FTERM.CONSUME function in order to validate the XML file format and, if
successful, parse the values within the file through a series of calls to RIB_XML. The
values extracted from the file will then be passed on to private internal functions, which
will validate the values and place them on the freight term table depending upon the
success of the validation.

Private Internal Functions and Procedures (rmssub_frttermcre.pls):

Error Handling
If an error occurs in this procedure, a call will be placed to HANDLE_ERRORS in order
to parse a complete error message and pass back a status to the RIB.
HANDLE_ERRORS
 (O_status IN OUT VARCHAR2,
 IO_error_message IN OUT VARCHAR2,
 I_cause IN VARCHAR2,
 I_program IN VARCHAR2);

Subscription Designs

178 Oracle Retail Merchandising System

All error handling in the internal RMSSUB_FTERM package and all errors that occur
during subscription in the RMSSUB_FRTTERMCRE package (and whatever packages it
calls) will flow through this function.

The function consists of a call to API_LIBRARY.HANDLE_ERRORS.
API_LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the error and
potentially an unparsed error message if one has been created through a call to
SQL_LIB.CREATE_MESSAGE. The function uses these input variables to parse a
complete error message and pass back a status, depending upon the message and error
type, back up through the consume function and up to the RIB.

Private Internal Functions and Procedures (rmssub_fterm.pls):
All of the following functions exist within RMSSUB_FTERM.

Main Consume Function
RMSSUB_FTERM.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message_clob IN CLOB)

This procedure accepts a XML file in the form of an Oracle CLOB data type from the RIB
(I_message) from the aforementioned public rmssub_frttermcre procedure whenever a
message is made available by the RIB. This message will consist of the aforementioned
record.

The procedure then validates the XML file format and, if successful, parses the values
within the file through a series of calls to RIB_XML. The values extracted from the file
will then be passed on to private internal functions, which will validate the values and
place them on the appropriate freight term database table depending upon the success of
the validation.

XML Parsing

PARSE_FTERM
This function will used to extract the freight term level information from the Freight
Term XML file and place that information onto an internal freight term record.

Validation

PROCESS_FTERM
After the values are parsed for a particular freight term record,
RMSSUB_FTERM.CONSUME will call this function, which will in turn call various
functions inside RMSSUB_FTERM in order to validate the values and place them on the
appropriate FREIGHT_TERMS table depending upon the success of the validation.

Message XSD
Below are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

FrtTermCre Freight Term Create Message FrtTermDesc.xsd

Freight Terms Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 179

Design Assumptions
 One of the primary assumptions in the current API approach is that ease of code will

outweigh performance considerations. It is hoped that the ‘trickle’ nature of the flow
of data will decrease the need to dwell on performance issues and instead allow
developers to code in the easiest and most straight forward manner.

 The adaptor is only setup to call stored procedures, not stored functions. Any public
program then needs to be a procedure.

Table Impact

TABLE SELECT INSERT UPDATE DELETE

FREIGHT_TERMS Yes Yes Yes No

Subscription Designs

180 Oracle Retail Merchandising System

GL Chart of Accounts Subscription API

Functional Area
GL Chart of Accounts

Business Overview
Before RMS publishes stock ledger data to an external financial application, it must
receive that application’s General Ledger Chart Of Accounts (GLCOA) structure. RMS
accomplishes this through a subscription process.

A chart of account is essentially the financial application’s debit and credit account
segments (for example, company, cost center, account, and others) that applies to RMS
product hierarchy. In some financial applications, this is known as Code Combination
IDs (CCID). On receiving the GLCOA message data, RMS populates the data to the
FIF_GL_ACCT table. The GL cross-reference form is used to associate the appropriate
department, class, subclass, and location data to a CCID that allows the population of
that data to the GL_FIF_CROSS_REF table.

An external system publishes GL Chart of Accounts, thereby placing the GL chart of
accounts information to RIB (Retek Information Bus). RMS subscribes the GL chart of
accounts information as published from the RIB and places the information in RMS tables
depending upon the validity of the records enclosed within the message.

Package Impact
Subscribing to a GL chart of accounts message entails the use of one public consume
procedure. This procedure corresponds to the type of activity that can be done to
currency exchange rate record (in this case create/update).

Public API Procedures:

Filename: rmssub_glcoacreb.pls
RMSSUB_ GLCOACRE.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN CLOB)

This procedure accepts a XML file in the form of an Oracle CLOB data type from the RIB
(I_message). This message contains a GL chart of accounts message consisting of the
aforementioned record. The procedure places a call to the main
RMSSUB_GLCACCT.CONSUME function in order to validate the XML file format and,
if successful, parse the values within the file through a series of calls to RIB_XML. The
values extracted from the file is passed to private internal functions, which validates the
values and place them on the GL chart of accounts table depending upon the success of
the validation.

Private Internal Functions and Procedures (rmssub_glcoacreb.pls):

Error Handling:
If an error occurs in this procedure, a call is placed to HANDLE_ERRORS in order to
parse a complete error message and pass back a status to the RIB.
HANDLE_ERRORS
 (O_status IN OUT VARCHAR2,
 IO_error_message IN OUT VARCHAR2,
 I_cause IN VARCHAR2,

GL Chart of Accounts Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 181

 I_program IN VARCHAR2)

All error handling in the internal RMSSUB_GLCACCT package and all errors that occur
during subscription in the RMSSUB_GLCOACRE package (and whatever packages it
calls) flows through this function.
The function consists of a call to API_LIBRARY.HANDLE_ERRORS.
API_LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the error and
potentially an unparsed error message if one has been created through a call to
SQL_LIB.CREATE_MESSAGE. The function uses these input variables to parse a
complete error message and pass back a status, depending upon the message and error
type, back up through the consume function and up to the RIB.

Private Internal Functions and Procedures (other):

Filename: rmssub_glcacctb.pls

Main Consume Function:
RMSSUB_GLCACCT.CONSUME
 (O_ERROR_MESSAGE OUT VARCHAR2,
 I_MESSAGE IN CLOB)

This procedure accepts a XML file in the form of an Oracle CLOB data type from the RIB
(I_message) from the public rmssub_glcoacre.consume procedure whenever a message is
available in RIB. This message consists of the aforementioned record.

The procedure validates the XML file format and if successful, parses the values within
the file through a series of calls to RIB_XML. The values extracted from the file is passed
to a private internal functions, which validates the value and places to a appropriate GL
chart of accounts database table depending upon the success of the validation.

XML Parsing:
PARSE_HEADER
 (O_ERROR_MESSAGE OUT VARCHAR2,
 O_GLACCT_RECORD OUT GLACCT_RECTYPE,
 I_GLACCT_ROOT IN OUT xmldom.DOMElement)

This function extracts the GL chart of accounts level information from the GL Chart of
Accounts XML file and places the information to an internal GL Chart of Accounts
record.

Record is based upon the record type glacct_rectype.

Validation:

PROCESS_HEADER
After the values are parsed for a particular GL chart of accounts record,
RMSSUB_GLCACCT.CONSUME calls this function, which in turn calls various functions
inside RMSSUB_GLCACCT. In order to validate the values and place them on the
appropriate GL chart of accounts table depending upon the success of the validation.
PROCESS_GLACCT is called to insert or update the GL chart of accounts table.

PROCESS_GLACCT
Function PROCESS_GLACCT takes the input GL record and places the information to a
local GL record which is used in the package to manipulate the data. It calls a series of
support functions to perform all business logic on the record.

INSERT_GLACCT

Subscription Designs

182 Oracle Retail Merchandising System

Function INSERT_GLACCT inserts any valid account on the GL table. It is called from
PROCESS_GLACCT.

UPDATE_GLACCT
Function UPDATE_GLACCT updates any valid account on the GL table. It is called from
PROCESS_GLACCT.

VALIDATE_GLACCT
Function VALIDATE_GLACCT is a wrapper function which is used to call
CHECK_NULLS, CHECK_ATTRS for any GL record input into the package.

CHECK_NULLS
Function CHECK_NULLS checks an input value if it is null. If so, an error message is
created based on the passed in record type.

CHECK_ATTRS
Function CHK_ATTRS is called within the validation function of this package to ensure
that RMS will not accept incomplete data from a financial interface when sent through
RIB. This function checks to ensure that each description that is input also has an
attribute that it describes.

Message XSD
The GL chart of accounts message is a flat message consists of a GL chart of accounts
record.

The record contains information about the GL chart of accounts as a whole.

Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type to get detailed information of the composition of
each message.

Message Types Message Type Description XML Schema Definition
(XSD)

Glcoacre Glco Create Message GLCOADesc.xsd

Design Assumptions
Required fields are shown in the RIB documentation.

Many ordering functionalities that are available on-line are not supported through this
API. Triggers related to these functionalities must be turned off.

Table Impact

TABLE SELECT INSERT UPDATE DELETE

FIF_GL_ACCT Yes Yes Yes No

Inventory Adjustment Subscription

Operations Guide, Volume 2 - Message Publication and Subscription Design 183

Inventory Adjustment Subscription

Functional Area
Inventory Adjustment

Business Overview
RMS receives requests for inventory adjustments from an integration subsystem through
the inventory adjustment subscription. The requests contain information about the item,
the stockholding location, the quantity, the specific disposition change, and the reason for
the adjustment. RMS uses data in these requests to:

• Adjust overall quantities of stock on hand for an item at a location

• Adjust the availability of item-location quantities. For unavailable inventory
adjustments, all quantity adjustment goes to the non-sellable bucket.

After initial processing from the integration subsystem RMS performs the following
tasks:

• Validates the item-location combinations and adjustment reasons

• Updates stock on hand data for the item at the location

• Inserts stock adjustment transaction codes on the RMS stock ledger

• Adjusts quantities by inventory status for item/location combination

• Create an audit trail for the inventory adjustment by item, location, inventory
status and reason

Inventory Quantity and Status Evaluation
RMS evaluates inventory adjustments to decide if overall item-location quantities have
changed, or if the statuses of quantities have changed.

The FROM_DISPOSITION and TO_DISPOSITION tags in the message are evaluated to
determine if there is a change in overall quantities of an item at a location. For the given
item and quantity reported in the message, if either tag contains a null value, RMS
evaluates that as a change in overall quantity in inventory.

In addition, if the message shows a change to the status of existing inventory, RMS
evaluates this to determine if that change makes a quantity of an item unavailable.

Stock Adjustment Transaction Codes
Whenever the status or quantity of stock changes, RMS writes transaction codes to adjust
inventory values in the stock ledger. The two types of inventory adjustment transaction
codes are:

• Adjustments to total stock on hand, where positive and negative adjustments are
made to total stock on hand. In this case, a ‘Stock Adjustment’ transaction
(TRAN_CODE = ‘22’ or ‘23’ if the cost of goods indicator associated with the
inventory adjustment reason code is ‘Y’) is inserted on the Stock Ledger
(TRAN_DATA table) for both the retail and cost value of the adjustment

• Adjustments to unavailable (non-sellable) inventory. In this case, an
‘Unavailable Inventory Transfer’ transaction (TRAN_CODE = ‘25’) is inserted on
the Stock Ledger (TRAN_DATA table).

Subscription Designs

184 Oracle Retail Merchandising System

L10N Localization Decoupling Layer:
This is a layer of code which enables decoupling of localization logic that is only required
for certain country-specific configuration. This layer affects the RIB API flows including
Inventory Adjustment subscription. This allows RMS to be installed without requiring
customers to install or use this localization functionality, where not required.

Package Impact

Filename: rmssub_invadjusts/b.pls
RMSSUB_INVADJUST.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure will initially ensure that the passed in message type is a valid type for
inventory adjustment messages. The valid message type for an inventory adjustment
message is listed in a section below.

If the message type is invalid, a status of “E” should be returned to the external system
along with an appropriate error message informing the external system that the status is
invalid.
If the message type is valid, the generic RIB_OBJECT needs to be downcast to the actual
object using Oracle’s treat function. There will be an object type that corresponds with
each message type. If the downcast fails, a status of “E” is returned to the external system
along with an appropriate error message informing the external system that the object
passed in is invalid.

RMSSUB_INVADJUST.CONSUME_INVADJ

 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,

 I_message IN RIB_OBJECT,

 I_message_type IN VARCHAR2,

 I_check_l10n_ind IN VARCHAR2)

 Perform localization check. If localized, invoke localization logic through L10N_SQL
decoupling layer for procedure key ‘CONSUME_INVADJ’. If not localized, call
CONSUME_INVADJ for normal processing.


RMSSUB_INVADJUST.CONSUME_INVADJ

 (O_error_message IN OUT VARCHAR2,

 IO_L10N_RIB_REC IN OUT L10N_OBJ)

 Public function to call RMSSUB_INVADJUST.CONSUME_INVADJUST_CORE.


RMSSUB_INVADJUST.CONSUME_INVADJ_CORE

 (O_error_message IN OUT VARCHAR2,

 I_message IN RIB_OBJECT,

 I_message_type IN VARCHAR2)

 This function contains the main processing logic.

Inventory Adjustment Subscription

Operations Guide, Volume 2 - Message Publication and Subscription Design 185

If the downcast is successful, then consume needs to verify that the message passes all of
RMS’s business validation. It calls the INVADJ_SQL function to perform validation and
to insert or update records in the database when the message is valid. If the message
passed RMS business validation and is successfully persisted in the database then a
successful status is returned to the CONSUME. If the message fails RMS business
validation or encounters any other errors, a status of “E” is returned to the external
system along with the error message.

RMSSUB_INVADJUST.PROCESS_INVADJ
 (O_error_message IN OUT VARCHAR2,
 I_message IN “RIB_InvAdjustDesc_REC”)

This function calls CHECK_ITEMS, an internal function that checks for any sellable only
“break to sell” items and separates these items into an object table for further processing.
A table of the corresponding orderable items and quantities for the sellable items is built
to submit to the inventory adjustment process. INVADJ_SQL.PROCESS_INVADJ is
called for the table of regular items and the table of “break to sell” items to perform all
business validation and desired functionality associated with an inventory adjustment
message.

Filename: invadjs/b.pls

INVADJ_SQL.BUILD_PROCESS_INVADJ
This function performs business validation and desired functionality for an inventory
adjustment message. It includes the following:

 Check required fields: item, location, adj_qty, user_id, adj_date.

 Verify that the to_disposition or from_disposition or both fields are populated. Both
cannot be NULL.

 Verify that an orderable but non-sellable and non-inventory item cannot be an
inventory adjustment item.

 If the item is a simple pack catch weight item, verify that weight and weight UOM
are either both defined or both NULL, and, if populated, that the weight UOM is in
the MASS UOM class.

 Verify that the item is a tran-level or a reference item. When a reference item is
passed in, its parent item’s inventory is adjusted.

 Verify that the item/loc relation exists and create it if it does not exist.

 If adjusting a pack at a warehouse, receive_as_type must be ‘P’ (pack) on ITEM_LOC.

 Verify that from disposition and to disposition are valid inventory status codes (on
INV_STATUS_CODES).

 If the location is a warehouse, then physical location is on the message. The adjusted
quantity is distributed among the virtual locations of the physical location.

 For available stock on hand, the items are added to the update records for updating
the ITEM_LOC_SOH table and a tran code 22 or 23 is prepared for writing the
TRAN_DATA records. For external finisher location type and for transformable
orderable items, the unit_retail is a calculated value, based on package calls for these
two exception cases.

 If cost of goods indicator of the inventory adjustment reason code is ‘Y’, use
tran_code 23 instead of 22.

 For unavailable stock on hand, the unavailable quantities are computed before the
items or the pack components are added to the update records for updating the
ITEM_LOC_SOH table and a tran code 25 data is prepared for writing the

Subscription Designs

186 Oracle Retail Merchandising System

TRAN_DATA records. For external finisher location type and for transformable
orderable items, the unit_retail is calculated with the appropriate package call for
these two exception cases.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

invadjustcre Inventory Adjustment Create Message InvAdjustDesc.xsd

Design Assumptions
None

Table Impact

TABLE SELECT INSERT UPDATE DELETE

ITEM_LOC_SOH Yes Yes Yes No

TRAN_DATA(VIEW) No Yes No No

INV_ADJ No Yes No No

INV_STATUS_QTY No Yes Yes Yes

INV_ADJ_REASON Yes No No No

V_PACKSKU_QTY Yes No No No

ITEM_LOC Yes No No No

ITEM_MASTER Yes No No No

INV_STATUS_CODES Yes No No No

TSFHEAD Yes No No No

SHIPSKU Yes No No No

Inventory Request Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 187

Inventory Request Subscription API

Functional Area
Inventory Request Subscription

Business Overview
RMS receives requests for inventory from an integration subsystem through the
inventory request subscription.

Store ordering allows for all items to be ordered by the store and fulfilled by an RMS
process. RMS fulfills a store’s request regardless of replenishment review cycles, delivery
dates, and any other factors that may restrict a request from being fulfilled. However,
delivery cannot always be guaranteed on or before the store requested due date, due to
supplier or warehouse lead times and other supply chain factors that may restrict on-
time delivery.

Store ordering can be used to request inventory for any items that are on the ‘Store
Order’ type of replenishment. The store order replenishment process requires the store to
request a quantity and builds the recommended order quantity (ROQ) based on the
store’s requests. Requests for store order items that will not be reviewed prior to the date
requested by the store are fulfilled through a one-off process (executed real-time through
the API) that creates warehouse transfers and/or purchase orders to fulfill the requested
quantities.

This API can also be used for items setup on other types of replenishment. In this case
the store requested quantities will be added ‘above and beyond’ the calculated
recommended order quantities. This API can also be used for items not setup on auto-
replenishment. In this case the one-off process described above will be used to create a
PO or transfer utilizing attributes defined for the item/location.

Package Impact

Filename: rmssub_invreqs/b.pls
RMSSUB_INVREQ.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2,
 O_rib_error_tbl OUT RIB_ERROR_TBL)

This procedure initially downcasts the generic RIB_OBJECT to the actual object using the
Oracle treat function.

If the downcast is successful, it will empty out the cache of inserts and updates to the
store_orders table and to the PL/SQL ITEM_TBL table. This is done by calling
INV_REQUEST_SQL.INIT function. Global variables to be used are initialized by the
function RMSSUB_INVREQ_ERROR.INIT. This is called before processing any
item/store order request.

Input from the header level info is then validated. If any of the required header level info
is NULL, the entire request is rejected; however, there is no need to write to the error
table.

Once the header level info has passed validation,
RMSSUB_INVREQ_ERROR.BEGIN_INVREQ is called to hold the header level values
into global variables which may be used to build an error record when necessary. Each
item is processed by calling INV_REQUEST_SQL.PROCESS.

Subscription Designs

188 Oracle Retail Merchandising System

The cache for the STORE_ORDERS table and the PL/SQL ITEM_TBL table is populated
by calling INV_REQUEST_SQL.FLUSH function. At the end of the inventory request
process, the RMSSUB_INVREQ_ERROR.FINISH function is called to pass a copy of the
global error table (if any error exists) which is sent to the RIB for further processing.

Filename: rmssub_invreq_errors/b.pls
Most of the functions included are called by the RMSSUB_INVREQ.CONSUME
procedure to process inventory requests.
RMSSUB_INVREQ_ERROR.INIT
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message_type IN VARCHAR2)

This function initializes all of the global variables which include the RIB_OBJECTS that
are used to process the inventory request.
RMSSUB_INVREQ_ERROR.BEGIN_INVREQ
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_request_id IN NUMBER,
 I_store IN STORE_ORDERS.STORE%TYPE,
 I_request_type IN VARCHAR2)

This function populates the global variables using the header level values to create an
error record whenever necessary.
RMSSUB_INVREQ_ERROR.ADD_ERROR
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_error_desc IN VARCHAR2,
 I_error_object IN RIB_OBJECT)

This function is called whenever an error is encountered during the processing of the
inventory request. It adds the error type/description and error object on the global error
table.

RMSSUB_INVREQ_ERROR.FINISH
This function is called after processing the inventory request. It passes out a copy of the
global error table (if any error is present) to the RIB for further processing.

RMSSUB_INVREQ_ERROR.GET_MESSAGE_KEY
This function gets the key from a SQL_LIB error message. If the error message is just text
without any parameters, the entire message is passed back out as the key.

Filename: invrequests/b.pls
INV_REQUEST_SQL.PROCESS
 (O_error_message IN OUT VARCHAR2,
 I_store IN STORE_ORDERS.STORE%TYPE,
 I_request_type IN VARCHAR2,
 I_item IN STORE_ORDERS.ITEM%TYPE,
 I_need_qty IN STORE_ORDERS.NEED_QTY%TYPE,
 I_uop IN UOM_CLASS.UOM%TYPE,
 I_need_date IN STORE_ORDERS.NEED_DATE%TYPE)

This function does all the validation and processing of the inventory request. It creates a
record for STORE_ORDERS or LP_ITEM_TBL (PL/SQL table for adhoc requests).

INV_REQUEST_SQL.VERIFY_REPL_INFO (local)
This function retrieves the replenishment information. If the request type is ‘IR’ and the
item is not set up on replenishment, set adhoc to ‘Y’. Item requests with request type of
‘SO’ or NULL must have store order replenishment set up in RMS for that item. The need
date must be after the next replenishment delivery date if the store order has been

Inventory Request Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 189

rejected by replenishment. If the need date is before the next replenishment review date
for both request types, set adhoc to ‘Y’.

INV_REQUEST_SQL.FUNCTION CONVERT_NEED_QTY (local)
This function converts the need quantity to ‘E’aches for Packs.

INV_REQUEST_SQL.PREPARE_AD_HOC (local)
This function is called if the Adhoc indicator is set to ‘Y’. It writes the request to the
PL/SQL table that will be passed to the function call
CREATE_ORD_TSF_SQL.CREATE_ORD_TSF to create an order or transfer.

INV_REQUEST_SQL.VERIFY_ON_STORE (local)
This function checks to see if the item request already exists on STORE_ORDER. If it
exists, call PREPARE_UPDATE to update the need quantity to include the new need
quantity. If it does not, call PREPARE_INSERT to insert into STORE_ORDER table.

INV_REQUEST_SQL. PREPARE_INSERT (local)
This function checks the PL/SQL table that contains the BULK INSERT records. If a
record exists on the PL/SQL table, update the qty.

INV_REQUEST_SQL. PREPARE_UPDATE (local)
This function adds a record to the PL/SQL table that contains the BULK UPDATE
records.

INV_REQUEST_SQL. FLUSH (local)
This function does the actual insert or update to STORE_ORDERS.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

InvReqCre Inventory Request Create Message InvReqDesc.xsd

Design Assumptions
• RMS will round quantities using the store order multiple when an order is

created for a warehouse.

• Up charges will always be applied to a transfer when they can be defaulted.

• RMS will validate that all items belong to the same department when
department level ordering (supplier) or department level transfers (warehouse)
are being used.

• RMS will validate that an item is not a consignment item if the order is for a
warehouse.

• RMS will validate that a store is open when the store is being transferred to.

Subscription Designs

190 Oracle Retail Merchandising System

• This API supports non-fatal error processing. If an error is encountered in one
inventory request detail, it will log and return the error to the RIB via
RIB_ERROR_TBL and continue processing the next detail.

Table Impact

TABLE SELECT INSERT UPDATE DELETE

STORE_ORDERS Yes Yes Yes No

REPL_ITEM_LOC Yes No No No

ITEM_LOC Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

ITEM_MASTER Yes No No No

SUPS Yes No No No

ITEM_LOC_SOH Yes No No No

TSFHEAD No Yes Yes No

TSFDETAIL Yes Yes Yes No

ORDHEAD No No Yes No

Item Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 191

Item Subscription API

Functional Area
Item

Design Overview
When this API accepts messages with create message types, it inserts the data into the
ITEM_MASTER, PACKITEM (in the case of a pack), ITEM_SUPPLIER,
ITEM_SUPP_COUNTRY, ITEM_SUPP_MANU_COUNTRY. Additionally, records can
be inserted into the ITEM_SUPPLIER_COUNTRY_LOC table. The VAT_ITEM table is
populated with data defaulted from the item’s department. Optionally, the records can
be inserted into the VAT_ITEM table to override these defaults. The messages with
modify message types consist of snapshots of records for updating the ITEM_MASTER,
ITEM_SUPPLIER, ITEM_SUPP_COUNTRY, ITEM_SUPP_MANU_COUNTRY,
ITEM_SUPPLIER_COUNTRY_LOC and VAT_ITEM tables.

Item messages include the required detail nodes for the supplier and supplier/country. If
the item is not a non-sellable pack, the item/zone/price node is also required. Optional
nodes can be included in the message for supplier/country/locations, pack components,
and item/vat relationships.

Items must be created and maintained following a logical hierarchy as outlined by the
referential integrity of the item database tables: Item parents before child items; item
components before items that are packs; items before item-suppliers; item/suppliers
before item/supplier/countries; items before item/locations (a separate API), and so on.
Failing to do so results in message failure.

The Create and Modify messages are hierarchical with required detail nodes of suppliers
and supplier/countries and optional nodes for price zones, supplier/country/locations
and vat codes. If the item is a pack item, the pack component node is required. In the
header modify message, the detail nodes are not populated, but the full header node is
sent. The detail level create or modify messages contains the item header record and one
too many detail records in the node or nodes. For example, the message type of
XItemSupMod could have one or more supplier details to update in the ITEM_SUPPLIER
table. The modify messages contain a snapshot of the record for update rather than only
the fields to be changed.

The auto-creation of item children using differentiator records attached to an item parent,
as currently occurs using RMS online processes, is not supported in this API.
The delete messages contain only the primary key field for the item, supplier,
supplier/country, supplier/country/location or vat/item record that is to be deleted.
When a delete message is processed, the item is not immediately deleted; rather, it is
added to the daily purge table. Deleting the item is a batch process.

Consume Module

Filename: rmssub_items/b.pls
RMSSUB_XITEM.CONSUME (O_status_code IN OUT VARCHAR2,
O_error_message IN OUT VARCHAR2,
I_message IN RIB_OBJECT,
I_message_type IN VARCHAR2)

This procedure will need to initially ensure that the passed in message type is a valid
type for organizational hierarchy messages. The valid message types for organizational
hierarchy messages are listed in a section below.

Subscription Designs

192 Oracle Retail Merchandising System

If the message type is invalid, a status of “E” should be returned to the external system
along with an appropriate error message informing the external system that the status is
invalid.

If the message type is valid, the generic RIB_OBJECT needs to be downcast to the actual
object using the Oracle’s treat function. There will be an object type that corresponds
with each message type. If the downcast fails, a status of “E” is returned to the external
system along with an appropriate error message informing the external system that the
object passed in is invalid.

If the downcast is successful, then consume needs to verify that the message passes all of
RMS’s business validation. It calls the RMSSUB_XITEM_VALIDATE.CHECK_MESSAGE
function to determine whether the message is valid. If the message passed RMS business
validation, then the function returns true, otherwise it returns false. If the message fails
RMS business validation, a status of “E” is returned to the external system along with the
error message returned from the CHECK_MESSAGE function.

Once the message has passed RMS business validation, it is persisted to the RMS
database. It calls the RMSSUB_XITEM_SQL.PERSIST_MESSAGE() function. If the
database persistence fails, the function returns false. A status of “E” is returned to the
external system along with the error message returned from the PERSIST_MESSAGE()
function.

Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success status, “S”, is returned to the external system indicating that
the message has been successfully received and persisted to the RMS database.
RMSSUB_ITEM.HANDLE_ERROR () – This is the standard error handling function that
wraps the API_LIBRARY.HANDLE_ERROR function.

Business Validation Module

Filename: rmssub_xitemvals/b.pls
It should be noted that some of the business validation is referential or involves
uniqueness. This validation is handled automatically by the referential integrity
constraints and the unique indexes implemented on the database.
RMSSUB_XITEM_VALIDATE.CHECK_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 O_item_rec OUT NOCOPY
 RMSSUB_ITEM.ITEM_API_REC,
 I_message IN RIB_XItemDesc,
 I_message_type IN VARCHAR2)

This overloaded function performs all business validation associated with create/modify
messages and builds the item API record with default values and locations from the
organizational hierarchy for persistence in the item related tables. Any invalid records
passed at any time results in message failure.
Defaulted fields that are not included in the message structure of the object must be
populated in a package business record, ITEM_API_REC. This record is used as input to
the database DML functions in the persist package.

ITEM_MASTER VALIDATION

CREATE

 Check required fields and nodes

 Diff Ids exist, no duplicates, no nulls in order, part of parent diff group if item is a
child item

 Cost group zone is null for landed cost option, sellable only packs, buyer packs

Item Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 193

 Check valid values for item_level, tran_level, pack_type, store_ord_mult and all
indicators fields

 Check organization hierarchy level for item_supp_country_loc and item pricing

 Process all validations for item_supplier, item_supp_country, item pricing, and if
nodes exist, packitem, item_supp_country_loc, vat_item.

 Check localization attributes if the item is not a pack.

MODIFY

 Check required fields

 Check existence

DELETE

 Check for primary key

 Check existence of foreign keys

ITEM_SUPPLIER VALIDATION

CREATE

 Check required fields

 Check primary supplier, only 1 and 1 required

MODIFY

 Check required fields

 Check primary supplier, only 1 and 1 required

DELETE

 Check for primary key

 Check primary supplier, only 1 and 1 required
 Check that the item/supplier is not part of the following:

 On an order.

 On an open return to vendor record.

 On an open contract.

 The specified item is not a component item to a pack item that is sourced from
the specified supplier.

 The specified supplier is not a primary supplier for any location to which the
specified item has an existing relationship.

 The specified supplier is not a primary replenishment supplier for the specified
item.

ITEM_SUPP_COUNTRY VALIDATION

CREATE

 Check required fields

 Check primary country, only 1 and 1 required

 Delivery country is defaulted to Base Country to ensure items can be created even if
Item costing details are not present

 Unit cost 0 for buyer packs

MODIFY

 Check required fields

 Check primary country, only 1 and 1 required

DELETE

 Check for primary key

Subscription Designs

194 Oracle Retail Merchandising System

 Check primary country, only 1 and 1 required

 Check that the item/supplier/country is not part of any of the following:

 On an order.

 The specified item is not a component item to a pack item that is sourced from
the specified supplier/country.

 The specified supplier/country is not being a primary supplier/primary country
for any location to which the specified item has an existing relationship.

 The specified supplier/country is not a primary replenishment supplier/country
combination for the specified item.

 The specified country is not a primary country for the specified item and any
supplier.

ITEM_SUPP_MANU_COUNTRY VALIDATION

CREATE

 Check required fields
 Check primary country, only 1 and 1 required

MODIFY

 Check required fields

 Check primary country, only 1 and 1 required

DELETE

 Check for primary key

 Check primary country, only 1 and 1 required

 Check that the item/supplier/country is not part of any of the following:

• The specified item is not a component item to a pack item that is
manufactured from the specified supplier/country.

• The specified item/country is present in ITEM_HTS and the item is not
supplied by any other supplier with the same country of manufacture.

ITEM_SUPP_COUNTRY_LOC VALIDATION

CREATE

 Check required fields

 Check primary location, only 1 and 1 required

 Unit cost 0 for buyer packs

MODIFY

 Check required fields

 Check primary location, only 1 and 1 required

DELETE

 Check for primary key

 Check primary location, only 1 and 1 required
ITEM_SUPP_CTRY_DIM VALIDATION

CREATE

 Check required fields

 Check validity of length, width, dim_object, dim_height, weight, tare_type,
tare_weight, net_weight, weight_uom, lwh_uom, liquid_volume_uom, stat_cube,
presentation_method

Item Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 195

MODIFY

 Check required fields

 Check validity of length, width, dim_object, dim_height, weight, tare_type,
tare_weight, net_weight, weight_uom, lwh_uom, liquid_volume_uom, stat_cube,
presentation_method

DELETE

 Check for primary key

PACKITEM VALIDATION

CREATE

 Check required fields

 Check component items exist

VAT_ITEM VALIDATION

CREATE

 Check required fields

 Check valid values for VAT_TYPE only if VAT is used and default tax type (system
options) is ‘SVAT’ or ‘SALES’.

DELETE

 Check for primary key

 Check dept/class VAT_REGION association

SEASON VALIDATION

CREATE

 Check required fields.

 Check if record already exists in item_seasons table for the item, season_id and phase
id combination. If it does record cannot be created.

DELETE

 Check for primary key.

 Check if record to be deleted exists in item_seasons table for the item, season_id and
phase id combination.

 Check if item on replenishment uses 'T' Seasonal Time Supply or 'D' Seasonal
Dynamic replenishment methods for the sku/store combination, in such a case the
season or phase cannot be deleted.



 UDA VALIDATION
CREATE

 Check required fields.
 Check for uda_id and display_type mismatch, if the display_type is valid check for

the following :

 For display_type = 'FF', check if the uda_text is not NULL

 For display_type = 'LV', check if the uda_value is not NULL

 For display_type = 'DT', check if the uda_date is not NULL

 If single_value_ind is ‘Y’ check for single uda

Subscription Designs

196 Oracle Retail Merchandising System

 Validate the uda description record

 Check if the record already exists before inserting

 MODIFY

 Check required fields.
 Check for uda_id and display_type mismatch, if the display_type is valid check for

the following :

 For display_type = 'FF', check if the uda_text is not NULL

 For display_type = 'LV', check if the uda_value is not NULL

 For display_type = 'DT', check if the uda_date is not NULL

 If single_value_ind is ‘Y’ check for single uda
 Validate the uda description record

 Check if the record to be modified exists

DELETE

 Check for primary key.

 Check the validity of the uda_id



 IMAGE VALIDATION

CREATE

 Check required fields.

 Check if record already exists in item_image table for the item and image_name
combination. If it does record cannot be created.

 MODIFY

 Check required fields.

 Check if record already exists in item_image table for the item and image_name
combination. If it does record cannot be created.

DELETE

 Check for primary key.

 Check if record to be deleted exists in item_image table for the item and image_name
combination.



POPULATE ITEM_API_RECORD

ITEM_MASTER

CREATE

 Populate ITEM_MASTER defaults
 Populate ITEM_SUPPLIER defaults

 Populate ITEM_SUPP_COUNTRY defaults

 Populate ITEM_SUPP_COUNTRY_LOC defaults

 Populate ITEM_SUPP_COUNTRY_LOC table of location records

 Populate IZP_TBL table of location records

 Populate ITEM_SUPP_COUNTRY_DIM defaults
 Populate ITEMSEASON_RECTYPE defaults

 Populate ITEMUDADATE_RECTYPE, ITEMUDAFF_RECTYPE and
ITEMUDALOV_RECTYPE defaults for display_type = 'DT', ‘FF’ and ‘LV’
respectively.

Item Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 197

 Populate ITEMIMAGE_RECTYPE defaults

ITEM_SUPPLIER

CREATE

 Populate ITEM_SUPPLIER defaults

MODIFY

 Populate ITEM_SUPPLIER mod table with existing value for primary_supp_ind

ITEM_SUPP_COUNTRY

CREATE

 Populate ITEM_SUPP_COUNTRY defaults

MODIFY

 Populate ITEM_SUPP_COUNTRY mod table with existing value for
primary_country_ind

ITEM_SUPP_COUNTRY_LOC

CREATE

 Populate ITEM_SUPP_COUNTRY_LOC defaults

 Populate ITEM_SUPP_COUNTRY_LOC table of location records (For organization
hierarchy level above the store/warehouse)

MODIFY

 Populate ITEM_SUPP_COUNTRY_LOC table of location records (For organization
hierarchy level above the store/warehouse)

DELETE

 Populate ITEM_SUPP_COUNTRY_LOC table of location records (For organization
hierarchy level above the store/warehouse)

 ITEM_SUPP_COUNTRY_DIM
CREATE

 Populate ITEM_SUPP_COUNTRY_DIM defaults
 Populate ISCD_DEF with values

MODIFY

 Populate ISCD_DEF with values

DELETE

 Populate with primary keys

 ITEM_SEASONS

CREATE

 Populate ITEMSEASON_RECTYPE with all the tables of records.

 DELETE

 Populate ITEMSEASON_RECTYPE with table of season_id records, phase_id records
and diff_id records.

ITEM_UDA

CREATE

 Populate ITEMUDADATE_RECTYPE with tables of records when display_type =
'DT'

 Populate ITEMUDAFF_RECTYPE with tables of records when display_type = 'FF'
 Populate ITEMUDALOV_RECTYPE with tables of records when display_type = ' LV'

MODIFY

Subscription Designs

198 Oracle Retail Merchandising System

 Populate ITEMUDADATE_RECTYPE with tables of records when display_type =
'DT'

 Populate ITEMUDAFF_RECTYPE with tables of records when display_type = 'FF'

 Populate ITEMUDALOV_RECTYPE with tables of records when display_type = ' LV'
DELETE

 Populate ITEMUDADATE_RECTYPE with table of uda_id records when
display_type = 'DT'

 Populate ITEMUDADATE_RECTYPE with table of uda_id records when
display_type = 'FF'

 Populate ITEMUDADATE_RECTYPE with table of uda_id records and uda_value
when display_type = 'LV'

 ITEM_IMAGE
CREATE

 Populate ITEMIMAGE_RECTYPE with tables of records
MODIFY

 Populate ITEMIMAGE_RECTYPE with tables of records
DELETE

 Populate ITEMIMAGE_RECTYPE with table of image_name records.


Package Impact
All insert, update and delete SQL statements are located in the family packages. The
private functions call these packages.

Filename: rmssub_item_sql
RMSSUB_ITEM_SQL.PERSIST_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 I_item_rec IN RMSSUB_ITEM.ITEM_API_REC,
 I_message IN RIB_XItemDesc,
 I_message_type IN VARCHAR2)

This overloaded function checks the message type to route the object to the appropriate
internal functions that perform DML insert and update processes.

ITEM CREATE

 Inserts a record in the ITEM_MASTER table

 Calls all the “create” functions to insert records into the following tables:
 ITEM_COUNTRY

 ITEM_SUPPLIER

 ITEM_SUPP_COUNTRY

 ITEM_SUPP_MANU_COUNTRY

 ITEM_SUPP_COUNTRY_LOC (optional)

 ITEM_COST_HEAD
 ITEM_COST_DETAIL

 PACKITEM (optional)

 PACKITEM_BREAKOUT (optional)

 VAT_ITEM (optional)

 ITEM_SEASONS (optional)

Item Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 199

 Calls function to create initial item pricing information and provide for the insert into
the PRICE_HIST table.

ITEM MODIFY

 Updates a record in the ITEM_MASTER table

ITEM DELETE

 Inserts a record in the DAILY_PURGE table

 Updates the status field for the record in the ITEM_MASTER table

ITEM COUNTRY CREATE

 Inserts records in the ITEM_COUNTRY table

 For Brazil, also insert records in ITEM_COUNTRY_L10N_EXT table through L10N
decoupling layer (L10N_FLEX_API_SQL.PERSIST_L10N_ATTRIB)

 ITEM_COUNTRY DELETE

 Delete records in the ITEM_COUNTRY table

 Delete records in the ITEM_COUNTRY_L10N_EXT table

ITEM_SUPPLIER CREATE

 Inserts records in the ITEM_SUPPLIER table

ITEM_SUPPLIER MODIFY

 Updates records in the ITEM_SUPPLIER table

ITEM_SUPPLIER DELETE

 Deletes records from the ITEM_SUPPLIER table for item and if the delete children
indicator in the message is Yes, deletes the records for the child items first

ITEM_SUPP_COUNTRY CREATE

 Inserts records in the ITEM_SUPP_COUNTRY table

ITEM_SUPP_COUNTRY MODIFY

 Updates records in the ITEM_SUPP_COUNTRY table

ITEM_SUPP_COUNTRY DELETE

 Deletes records from the ITEM_SUPP_COUNTRY table for item and if the delete
children indicator in the message is Yes, deletes the records for the child items first

ITEM_COST CREATE

 Inserts records in the ITEM_COST_HEAD and ITEM_COST_DETAIL tables.
 For Brazil, calls Mastersaf to perform tax calculation and write tax result to

ITEM_COST_DETAIL and ITEM_COST_HEAD tables.

ITEM_COST DELETE

 Delete records from the ITEM_COST_HEAD and ITEM_COST_DETAIL tables.

ITEM_SUPP_MANU_COUNTRY CREATE

 Inserts records in the ITEM_SUPP_MANU_COUNTRY table

ITEM_SUPP_MANU_COUNTRY MODIFY

 Updates records in the ITEM_SUPP_MANU_COUNTRY table

ITEM_SUPP_MANU_COUNTRY DELETE

 Deletes records from the ITEM_SUPP_MANU_COUNTRY table for item and if the
delete children indicator in the message is Yes, deletes the records for the child items
first

ITEM_SUPP_COUNTRY_LOC CREATE

Subscription Designs

200 Oracle Retail Merchandising System

 Bulk inserts records in the ITEM_SUPP_COUNTRY_LOC table for all locations
indicated by the organization hierarchy values

ITEM_SUPP_COUNTRY_LOC MODIFY

 Bulk updates records in the ITEM_SUPP_COUNTRY_LOC table for all locations
indicated by the organization hierarchy values

ITEM_SUPP_COUNTRY_LOC DELETE

 Bulk deletes records from the ITEM_SUPP_COUNTRY_LOC table for all locations
indicated by the organization hierarchy values

ITEM_SUPP_COUNTRY_DIM CREATE

 Inserts records into the ITEM_SUPP_COUNTRY_DIM table

 ITEM_SUPP_COUNTRY_DIM MODIFY

 Updates record in the ITEM_SUPP_COUNTRY_DIM table for the indicated item,
supplier, origin_country and dim_object combination.

ITEM_SUPP_COUNTRY_DIM DELETE

 Deletes record from the ITEM_SUPP_COUNTRY_DIM table for the item, supplier,
origin_country and dim_object combination.

PACKITEM CREATE

 Inserts records in the PACKITEM table

 Inserts records in the PACKITEM_BREAKOUT table

 Updates ITEM_SUPP_COUNTRY_LOC and/or ITEM_SUPP_COUNTRY with
calculated unit_cost.

VAT_ITEM CREATE

 Inserts records in the VAT_ITEM table and replaces any default records that were
created from department/VAT.

VAT_ITEM DELETE

 Deletes records from the VAT_ITEM table

 ITEM_SEASONS CREATE

 Inserts records into the ITEM_SEASONS table

 ITEM_SEASONS DELETE

 Deletes records from the ITEM_SEASONS table
 ITEM_UDA CREATE

 Inserts records into the UDA_ITEM_DATE, UDA_ITEM_LOV and UDA_ITEM_FF
tables

 ITEM_UDA MODIFY

 Updates records in the UDA_ITEM_DATE, UDA_ITEM_LOV and UDA_ITEM_FF
tables

 ITEM_UDA DELETE

 Deletes records from the UDA_ITEM_DATE, UDA_ITEM_LOV and UDA_ITEM_FF
tables

 ITEM_IMAGE CREATE

 Inserts records into the ITEM_IMAGE table

 ITEM_IMAGE MODIFY
 Updates records in the ITEM_IMAGE table

 ITEM_IMAGE DELETE

 Deletes records from the ITEM_IMAGE table

Item Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 201

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

XItemCre Item Create Message XItemDesc.xsd

XItemMod Item Modify Message XItemDesc.xsd

XItemDel Item Delete Message XItemRef.xsd

XItemSupCre Item/Supplier Create Message XItemDesc.xsd

XItemSupMod Item/Supplier Modify Message XItemDesc.xsd

XItemSupDel Item/Supplier Delete Message XItemRef.xsd

XItemSupCtyCre Item/Supplier/Country Create Message XItemDesc.xsd

XItemSupCtyMod Item/Supplier/Country Modify Message XItemDesc.xsd

XItemSupCtyDel Item/Supplier/Country Delete Message XItemRef.xsd

XISCMfrCre Item/Supplier/Country of Manufacture Create
Message

XItemDesc.xsd

XISCMfrMod Item/Supplier/ Country of Manufacture
Modify Message

XItemDesc.xsd

XISCMfrDel Item/Supplier/ Country of Manufacture Delete
Message

XItemRef.xsd

XISCLocCre Item/Supplier/Country/Location Create
Message

XItemDesc.xsd

XISCLocMod Item/Supplier/Country/Location Modify
Message

XItemDesc.xsd

XISCLocDel Item/Supplier/Country/Location Delete
Message

XItemRef.xsd

XISCDimCre Item/Supplier/Country/Dimension Create
Message

XItemDesc.xsd

XISCDimMod Item/Supplier/Country/Dimension Modify
Message

XItemDesc.xsd

XISCDimDel Item/Supplier/Country/Dimension Delete
Message

XItemRef.xsd

XItemVatCre Item/Vat Create Message XItemDesc.xsd

XItemVatDel Item/Vat Delete Message XItemRef.xsd

XItemCostCre Item/Cost Create Message XitemCostDesc.xsd

XitemCostDel Item/Cost Delete Message XitemCostRef.xsd

XitemCtryCre Item/Country Create Message XItemCtryDesc.xsd

XitemCtryRef Item/Country Delete Message XItemCtryRef.xsd

XitemSeasonCre Item/Season Create Message XItemDesc.xsd

XItemSeasonDel Item/Season Delete Message XItemRef.xsd

Subscription Designs

202 Oracle Retail Merchandising System

Message Types Message Type Description XML Schema Definition
(XSD)

XitemUdaCre Item/UDA Create Message XItemDesc.xsd

XitemUdaMod Item/UDA Modify Message XItemDesc.xsd

XitemUdaDel Item/UDA Delete Message XItemRef.xsd

XitemImageCre Item/Image Create Message XItemDesc.xsd

XitemImageMod Item/Image Modify Message XItemDesc.xsd

XitemImageDel Item/Image Delete Message XItemRef.xsd

Design Assumptions
Item/location relationships are not handled by this API; they are handled in a separate
Item Location Subscription API.

Table Impact
RPM is called to set the initial pricing for the item. This populates tables in the RPM
system.

TABLE SELECT INSERT UPDATE DELETE

ITEM_MASTER Yes Yes Yes No

ITEM_SUPPLIER Yes Yes Yes Yes

ITEM_SUPP_COUNTRY Yes Yes Yes Yes

ITEM_SUPP_MANU_COUNTRY Yes Yes Yes Yes

ITEM_SUPP_COUNTRY_LOC Yes Yes Yes Yes

ITEM_SUPP_COUNTRY_DIM Yes Yes Yes Yes

PRICE_HIST No Yes No No

PACKITEM No Yes No No

PACKITEM_BREAKOUT No Yes No No

VAT_ITEM Yes Yes Yes Yes

DAILY_PURGE No Yes No No

SYSTEM_OPTIONS Yes No No No

CHAIN Yes No No No

AREA Yes No No No

REGION Yes No No No

DISTRICT Yes No No No

STORE Yes No No No

WAREHOUSE Yes No No No

SUPS Yes No No No

ITEM_COUNTRY Yes Yes No Yes

Item Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 203

TABLE SELECT INSERT UPDATE DELETE

ITEM_COUNTRY_L10N_EXT Yes Yes No Yes

ITEM_COST_HEAD Yes Yes Yes Yes

ITEM_COST_DETAIL Yes Yes Yes Yes

ITEM_SEASONS Yes Yes No Yes

UDA_ITEM_DATE Yes Yes Yes Yes

UDA_ITEM_FF Yes Yes Yes Yes

UDA_ITEM_LOV Yes Yes Yes Yes

ITEM_IMAGE Yes Yes Yes Yes

Subscription Designs

204 Oracle Retail Merchandising System

Item Location Subscription API

Functional Area
Items – Locations

Design Overview
Item locations can be maintained at the following levels of the organization hierarchy:
chain, area, region, district, and store. Records are maintained for all stores within the
location group. Because warehouses are not part of the organization hierarchy, they are
only impacted by records maintained at the warehouse level. If building item-locations
by organizational hierarchy, only locations in the hierarchy that do not already exist on
item-location will be built.

Item locations can only be created for a single item. However, levels of the organization
hierarchy are available for maintenance in order to facilitate location-level processing
into RMS. The detail node is required for both create and modify messages.

Item supplier country locations will be created for the passed-in primary
supplier/country if they do not already exist. If primary supplier/country locations are
not passed in, then they will default from the item’s primary supplier/country and a
location will be created, if it does not already exist.

Item locations are required to be interfaced into RMS in active status. There is no delete
function in this API. Instead, item locations can be put into inactive, discontinued, or
deleted status. However, they will be deleted if the associated item is purged. If building
item-locations by store or warehouse, then each passed-in location must not already exist
as an item-location.

A major functionality added to RMS is the support of Brazil Localization. This
introduced a layer of code to enable decoupling of localization logic that is only required
for country-specific configuration. This layer affects the RIB API flows including
XItemLoc subscription.

L10N Localization Decoupling Layer:
RFM is introduced in the 13.2 release as a bolt-on product to RMS to handle Brazil-
specific fiscal management. Even though RFM and RMS exist in the same database
schema and RFM cannot be installed separately without RMS, we must ensure that RMS
is decoupled from RFM. This is so that non-Brazilian clients can install RMS without
RFM. To achieve that, an L10N decoupling layer is introduced.

In the context of XITEMLOC subscription API, when RMS consumes an XITEMLOC
message from an external system, the message must be routed to a 3rd party tax
application (e.g. Mastersaf) for tax calculation if the message involves ranging an item to
a new Brazilian location. In that case, RMS’s XItemLoc subscription API
(rmssub_xitemloc and related packages) will call Mastersaf through an L10N de-coupling
layer.

Package Impact

Consume Module

Filename: rmssub_xitemlocs/b.pls
RMSSUB_XITEMLOC.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,

Item Location Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 205

 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure needs to initially ensure that the passed in message type is a valid type
for item location messages. If the message type is invalid, a status of “E” should be
returned to the external system along with an appropriate error message informing the
external system that the status is invalid.

If the message type is valid, the generic RIB_OBJECT needs to be downcast to the actual
object using the Oracle’s treat function. If the downcast fails, a status of “E” should be
returned to the external system along with an appropriate error message informing the
external system that the object passed in is invalid.

If the downcast is successful, then consume needs to verify that the message passes all of
RMS’s business validation. It calls the
RMSSUB_XITEMLOC_VALIDATE.CHECK_MESSAGE function to determine whether
the message is valid. If the message passed RMS business validation, then the function
will return true; otherwise, it will return false. If the message has failed RMS business
validation, a status of “E” should be returned to the external system along with the error
message returned from the CHECK_MESSAGE function.
Once the message has passed RMS business validation, it can be persisted to the RMS
database. It calls the RMSSUB_XITEMLOC_SQL.PERSIST_MESSAGE() function. If the
database persistence fails, the function returns false. A status of “E” should be returned
to the external system along with the error message returned from the
PERSIST_MESSAGE() function.

Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success status, “S”, should be returned to the external system
indicating that the message has been successfully received and persisted to the RMS
database.

RMSSUB_XITEMLOC.HANDLE_ERROR() – This is the standard error handling function
that wraps the API_LIBRARY.HANDLE_ERROR function.

Also detail RIB object RIB_XItemLocDtl_REC is modified to support Store serialization.

Business Validation Module
It should be noted that some of the business validation is referential or involves
uniqueness. This validation is handled automatically by the referential integrity
constraints and the unique indexes implemented on the database.

Filename: rmssub_xitemlocvals/b.pls
RMSSUB_XITEMLOC_VALIDATE.CHECK_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 O_ITEMLOC_rec OUT ITEMLOC_REC,
 I_message IN RIB_XItemLocDesc,
 I_message_type IN VARCHAR2)

This function performs all business validation associated with message and builds the
item locations record for persistence.

ITEMLOC CREATE
 Check required fields

 Verify primary supplier/country exists on Item-supplier-country

 If creating locations by store or warehouse, verify passed in locations do not
currently exist.

 If item is a buyer pack, verify receive as type is valid based on item’s order as type.

 Default required fields not provided (store order multiple, taxable indicator, local
item description, primary supplier/country, receive as type).

Subscription Designs

206 Oracle Retail Merchandising System

 Build item-location records.

 Build price history records.

ITEMLOC MODIFY

 Check required fields
 Populate item-location record.

Package Impact

Filename: rmssub_xitemlocsqls/b.pls
RMSSUB_XITEMLOC_SQL.PERSIST
 (O_error_message IN OUT VARCHAR2,
 I_dml_rec IN ITEMLOC_RECTYPE ,
 I_message IN RIB_XITEMLOCDesc)

ITEMLOC CREATE
 Insert a record into the item-location table.

 Insert a record into the item-location-stock on hand table

 If necessary, insert a record into the item supplier country location table.

 Insert a record into the price history table.

ITEMLOC MODIFY

 Update item-location table.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Type Message Type Description XML Schema
Definition (XSD)

xitemloccre External item locations create XItemlocDesc.xsd

xitemlocMod External item locations odification XItemlocDesc.xsd

Table Impact

TABLE SELECT INSERT UPDATE DELETE

ITEM_SUPP_COUNTRY Yes No No No

ITEM_SUPP_COUNTRY_LOC Yes Yes No No

ITEM_LOC_SOH Yes Yes Yes No

STORE Yes No No No

WH Yes No No No

ITEM_LOC Yes Yes Yes No

SYSTEM_OPTIONS Yes No No No

PRICE_HIST No Yes No No

ITEM_MASTER Yes No No No

POS_MODS No Yes No No

Item Location Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 207

TABLE SELECT INSERT UPDATE DELETE

PACKITEM_BREAKOUT Yes No No No

CHAIN Yes No No No

AREA Yes No No No

REGION Yes No No No

DISTRICT Yes No No No

PACKITEM Yes No No No

RPM_ITEM_ZONE_PRICE Yes No No No

CURRENCIES Yes No No No

ELC_TABLES Yes No No No

VAT_ITEM Yes No No No

PARTNER Yes No No No

Subscription Designs

208 Oracle Retail Merchandising System

Item Reclassification Subscription API

Functional Area
Items – Reclassification

Design Overview
RMS subscribes to item reclassification messages that are published by an external
system. This subscription is necessary in order to keep RMS in sync with the external
system. The retailer can view the pending reclassifications online in RMS.

This API allows external systems to create and delete item reclassification events within
RMS.
At least one detail must be passed for a valid reclassification message. Reclassification
items can be created or deleted within the reclassification message. Reclass item creates
will send a snapshot of the reclass event. However, reclass item deletes do not require
any header information as items are unique for reclassification and items may be deleted
across reclass events.

Only level one items can be interfaced via this API. If the item is a pack, only non-simple
packs can be interfaced. Simple pack items will be reclassified when their component is
reclassified.

During the reclassification batch process, it will determine if any pack items exist in RMS
that contain the items or any of that item’s children being reclassified. If such a pack
exists and contains no other items, the batch process adds the pack to the reclassification
event being created in RMS.
It is valid for a reclassification event to be created for a department/class/subclass not
yet existing but planning to exist. This is valid as long as they department/class/subclass
is scheduled to be created on or prior to the reclassification taking effect.

Deleting reclassifications can either occur by:

 Items on a reclass event or across events.

 A single reclassification event.
 All reclassification events on a particular event date (deletion through the use of the

reclass_date may result in the deletion of numerous reclass events).

 All reclassification events.

Deleting a reclassification header will require either a reclass no, reclass date, or purge all
ind.

Package Impact

Consume Module

Filename: rmssub_xitemrclss/b.pls
RMSSUB_XITEMRCLS.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure needs to initially ensure that the passed in message type is a valid type
for item reclassification messages. If the message type is invalid, a status of “E” should be
returned to the external system along with an appropriate error message informing the
external system that the status is invalid.

Item Reclassification Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 209

If the message type is valid, the generic RIB_OBJECT needs to be downcast to the actual
object using the Oracle’s treat function. If the downcast fails, a status of “E” should be
returned to the external system along with an appropriate error message informing the
external system that the object passed in is invalid.
If the downcast is successful, then consume needs to verify that the message passes all of
RMS’s business validation. It calls the
RMSSUB_XITEMRCLS_VALIDATE.CHECK_MESSAGE function to determine whether
the message is valid. If the message passed RMS business validation, then the function
will return true; otherwise, it will return false. If the message has failed RMS business
validation, a status of “E” should be returned to the external system along with the error
message returned from the CHECK_MESSAGE function.

Once the message has passed RMS business validation, it can be persisted to the RMS
database. It calls the RMSSUB_XITEMRCLS_SQL.PERSIST_MESSAGE() function. If the
database persistence fails, the function returns false. A status of “E” should be returned
to the external system along with the error message returned from the
PERSIST_MESSAGE() function.
Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success status, “S”, should be returned to the external system
indicating that the message has been successfully received and persisted to the RMS
database.

RMSSUB_XITEMRCLS.HANDLE_ERROR() – This is the standard error handling
function that wraps the API_LIBRARY.HANDLE_ERROR function.

Business Validation Module
It should be noted that some of the business validation is referential or involves
uniqueness. This validation is handled automatically by the referential integrity
constraints and the unique indexes implemented on the database.

Filename: rmssub_xitemrclsvals/b.pls
RMSSUB_XITEMRCLS_VALIDATE.CHECK_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 O_ITEMRCLS_rec OUT ITEMRCLS_REC,
 I_message IN RIB_XITEMRCLSDesc,
 I_message_type IN VARCHAR2)

This function performs all business validation associated with message and builds the
item reclassification record for persistence.

ITEMRCLS CREATE

 Check required fields

 Verify items not on existing reclassification

 Validate the reclassification date (must be today or greater).
 Verify hierarchy of item being reclassified to (either an existing hierarchy or a

pending hierarchy that will be created prior to the item reclassification)

 Verify non-consignment related reclassification and no unit and dollar stocks
performed on items

 Build reclassification records

ITEMRCLS DELETE
 Check required fields

 For reclassification header deletes, verify deleting by either reclassification number,
reclassification (event) date, or purging all reclassifications

Subscription Designs

210 Oracle Retail Merchandising System

 Populate record

ITEMRCLS DETAIL CREATE

 Check required fields

 Verify items not on existing reclassification
 Validate the reclassification date (must be today or greater).

 Verify hierarchy of item being reclassified to (either an existing hierarchy or a
pending hierarchy that will be created prior to the item reclassification)

 Verify non-consignment related reclassification and no unit and dollar stocks
performed on items

 Build reclassification records
ITEMRCLS DETAIL DELETE

 Check required fields

 Populate record.

Package Impact

Filename: rmssub_xitemrclssqls/b.pls
RMSSUB_XITEMRCLS_SQL.PERSIST
 (O_error_message IN OUT VARCHAR2,
 I_dml_rec IN ITEMRCLS_RECTYPE ,
 I_message IN RIB_XITEMRCLSDesc)

ITEMRCLS CREATE

 Insert a record into the reclass header table

 Insert a record into the reclass item table

ITEMRCLS DETAIL DELETE

 Delete from the reclass item table.
ITEMRCLS DELETE

 If purging all records, delete all from reclass item table.

 If purging all records, delete all from reclass header table.

 If not purging, delete from reclass item for reclass number or all reclass for an event
date.

 If not purging, delete from reclass header for reclass number or all reclass for an
event date.

ITEMRCLS DELETE

 Delete from reclass item for all items on record.

 If no items exist for an event, delete the reclass event.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Type Message Type Description XML Schema Definition (XSD)

xitemrclscre External item reclassification create XItemRclsDesc.xsd

xitemrclsdtlcre External item reclassification detail create XItemRclsDesc.xsd

Item Reclassification Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 211

Message Type Message Type Description XML Schema Definition (XSD)

Xitemrclsdel External item reclassification delete XitemRclsRef.xsd

Xitemrclsdtldel External item reclassification detail delete XItemRclsRef.xsd

Design Assumptions
Orderable buyer packs as ‘E’aches will not be allowed to be reclassified if department
level ordering is Y in RMS.

Table Impact

TABLE SELECT INSERT UPDATE DELETE

RECLASS_HEAD Yes Yes No Yes

RECLASS_ITEM Yes Yes No Yes

ITEM_MASTER Yes No No No

PACKITEM Yes No No No

PACKITEM_BREAKOUT Yes No No No

V_MERCH_HIER Yes No No No

Subscription Designs

212 Oracle Retail Merchandising System

Location Trait Subscription API

Functional Area
Location Trait

Design Overview
The Location Trait Subscription API processes incoming data from an external system to
create, edit and delete location traits in RMS. This data is processed immediately upon
message receipt so success or failure can be communicated to the external application.

Consume Module

Filename: rmssub_xloctrts/b.pls
RMSSUB_XLOCTRT.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure will need to initially ensure that the passed in message type is a valid
type for loc traits messages. If the message type is invalid, a status of “E” should be
returned to the external system along with an appropriate error message informing the
external system that the status is invalid.

If the message type is valid, the generic RIB_OBJECT need to be downcast to the actual
object using the Oracle’s treat function. If the downcast fails, a status of “E” should be
returned to the external system along with an appropriate error message informing the
external system that the object passed in is invalid.

If the downcast is successful, then consume needs to verify that the message passes all of
RMS’s business validation. It calls the
RMSSUB_XLOCTRT_VALIDATE.CHECK_MESSAGE function to determine whether the
message is valid. If the message passed RMS business validation, then the function will
return true, otherwise it will return false. If the message has failed RMS business
validation, a status of “E” should be returned to the external system along with the error
message returned from the CHECK_MESSAGE function.

Once the message has passed RMS business validation, it can be persisted to the RMS
database. It calls the RMSSUB_XLOCTRT_SQL.PERSIST_MESSAGE() function. If the
database persistence fails, the function will return false. A status of “E” should be
returned to the external system along with the error message returned from the
PERSIST_MESSAGE() function.

Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success, “S”, status should be returned to the external system
indicating that the message has been successfully received and persisted to the RMS
database.

RMSSUB_XLOCTRT.HANDLE_ERROR() – This is the standard error handling function
that wraps the API_LIBRARY.HANDLE_ERROR function.

Business Validation Module
It should be noted that some of the business validation is referential or involves
uniqueness. This validation is handled automatically by the referential integrity
constraints and the unique indexes implemented on the database.

Location Trait Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 213

Filename: rmssub_xloctrtvals/b.pls
RMSSUB_XLOCTRT_VALIDATE.CHECK_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 O_loctrait_rec OUT LOC_TRAITS_REC,
 I_message IN RIB_XLocTraitDesc,
 I_message_type IN VARCHAR2)

This function performs all business validation associated with messages and builds the
location trait record for persistence.

LOCATION TRAIT CREATE
 Check required fields

 Populate record with message data

LOCATION TRAIT MODIFY

 Check required fields

 Verify the location trait exists

 Populate record with message data.
LOCATION TRAIT DELETE

 Check required fields

 Verify the location trait exists

 Populate record with message data.

Package Impact
All insert, update and delete SQL statements are located in the family package. This
package is LOC_TRAITS_SQL. The private functions will call this package.

Filename: rmssub_xloctrtsqls/b.pls
RMSSUB_XLOCTRT_SQL.PERSIST_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 I_loc_trait_rec IN LOC_TRAIT_REC,
 I_message_type IN VARCHAR2,)

This function determines what type of database transaction it will call based on the
message type.

LOCATION TRAIT CREATE

 Create messages get added to the location trait table.

LOCATION TRAIT MODIFY

 Modify messages directly update the location trait table with changes.
LOCATION TRAIT DELETE

 Delete messages directly remove location trait records.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message
Type

Message Type Description XML Schema Definition
(XSD)

xloctrtcre External Location Trait Create XLocTrtDesc.xsd

xloctrtdel External Location Trait Delete XLocTrtRef.xsd

Subscription Designs

214 Oracle Retail Merchandising System

xloctrtmod External Location Trait Modification XLocTrtDesc.xsd

Design Assumptions
Required fields are shown in RIB documentation.

Table Impact

TABLE SELECT INSERT UPDATE DELETE

LOC_TRAITS Yes Yes Yes Yes

Merchandise Hierarchy Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 215

Merchandise Hierarchy Subscription API

Functional Area
Foundation Data

Business Overview
The merchandise hierarchy allows the retailer to create the relationships that are
necessary to support the product management structure of a company. This hierarchy
reflects a classification of merchandise into multi-level descriptive categorizations to
facilitate the planning, tracking, reporting, and management of merchandise within the
company.
If RMS is not the system of record for merchandise hierarchy information for an
implementation, then this API may be used to create, update or delete elements of the
merchandise hierarchy, including division, group, department, class, and subclass, based
on an external system.

Division and group deletes also occur immediately upon receipt of the message.
However, departments, classes, and subclasses will not actually be deleted from the
system upon receipt of the message. Instead, they will be added to the DAILY_PURGE
table, where validation will occur to ensure the records can be deleted. For more on this
batch process, see the Retail Merchandising System Operations Guide, Volume 1 - Batch
Overviews and Designs.

Department VAT records can be created and edited within the department message
(VAT records are not deleted). VAT creates can be passed in with a department create
message, or they can be passed in with their own specific message type. VAT region and
VAT codes records must exist prior to creating department VAT records. Also, when
passing in a new VAT region to an existing department with attached items, the VAT
information will default to all items.

The merchandise hierarchy must be created from the highest level down. Conversely, the
hierarchy must be deleted from the lowest level up. Each lower level references a parent
level. This means a department is associated with a group; a class is associated with a
department; and a subclass is associated with department/class combination because
classes are not unique across departments.

Package Impact

Filename: rmssub_xmrchhrs/b.pls
RMSSUB_XMRCHHR.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure will call the appropriate merchandise hierarchy family package based on
the message type passed in.

• Any company message type will call RMSSUB_XMRCHHRCOMP.CONSUME

• Any division message type will call RMSSUB_XMRCHHRDIV.CONSUME

• Any group message type will call RMSSUB_XMRCHHRGRP.CONSUME

• Any department message type will call RMSSUB_XMRCHHRDEPT.CONSUME

• Any class message type will call RMSSUB_XMRCHHRSCLS.CONSUME

Subscription Designs

216 Oracle Retail Merchandising System

• Any subclass message type will call RMSSUB_XMRCHHRCLS.CONSUME

Filename: rmssub_xmrchhr[family_name]vals/b.pls
RMSSUB_XMRCHHR[family_name]_VALIDATE.CHECK_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 O_[family_name]_rec OUT NOCOPY MERCH_SQL.[FAMILY_NAME]_TYPE,
 I_message IN RIB_XMrchHr[family_name]Desc,
 I_message_type IN VARCHAR2)

This function performs all business validation associated with messages and builds the
merchandise hierarchy record for persistence. It should be noted that some of the
business validation is referential or involves uniqueness. This validation is handled
automatically by the referential integrity constraints and the unique indexes
implemented on the database.

Filename: rmssub_xmrchhr[family_name]sqls/b.pls
RMSSUB_XMRCHHR[family_name]__SQL.PERSIST_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 I_[family_name]_rec IN MERCH_SQL.[FAMILY_NAME]_TYPE,
 I_message_type IN VARCHAR2,)

All insert, update and delete SQL statements are located in the family package. This
package is MERCH_SQL. The private functions will call this package. This function
determines what type of database transaction it will call based on the message type.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Type Message Type Description XML Schema
Definition (XSD)

xmrchhrclscre External Create Class XMrchHrClsDesc.xsd

xmrchhrcompcre External Create Company XMrchHrCompDesc.xsd

xmrchhrdeptcre External Create Department XMrchHrDeptDesc.xsd

xmrchhrdivcre External Create Division XMrchHrDivDesc.xsd

xmrchhrgrpcre External Create Group XMrchHrGrpDesc.xsd

xmrchhrsclscre External Create Subclass XMrchHrSclsDesc.xsd

xmrchhrclsdel External Delete Class XMrchHrClsRef.xsd

xmrchhrdeptdel External Delete Department XMrchHrDeptRef.xsd

xmrchhrdivdel External Delete Division XMrchHrDivRef.xsd

xmrchhrgrpdel External Delete Group XMrchHrGrpRef.xsd

xmrchhrsclsdel External Delete Subclass XMrchHrSclsRef.xsd

xmrchhrvatcre External Merch Hierarchy VAT create XMrchHrDeptDesc.xsd

xmrchhrvatmod External Merch Hierarchy VAT modify XMrchHrDeptDesc.xsd

xmrchhrclsmod External Modify Class XMrchHrClsDesc.xsd

xmrchhrcompmod External Modify Company XMrchHrCompDesc.xsd

Merchandise Hierarchy Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 217

Message Type Message Type Description XML Schema
Definition (XSD)

xmrchhrdeptmod External Modify Department XMrchHrDeptDesc.xsd

xmrchhrdivmod External Modify Division XMrchHrDivDesc.xsd

xmrchhrgrpmod External Modify Group XMrchHrGrpDesc.xsd

xmrchhrsclsmod External Modify Subclass XMrchHrSclsDesc.xsd

Design Assumptions
 A department cannot be set up as both direct cost and consignment. Either the

budget markup percent or the budget intake percent must be passed in. If RPM is
installed, the average tolerance percent and maximum average counter must be
greater than zero.

Table Impact
Note that this section does not include the tables checked in the Daily Purge batch
process.

TABLE SELECT INSERT UPDATE DELETE

COMPHEAD Yes Yes Yes No

DIVISION Yes Yes Yes Yes

DAILY_PURGE No Yes No No

GROUPS Yes Yes Yes Yes

DEPS Yes Yes Yes No

VAT_DEPS Yes Yes Yes No

CLASS Yes Yes Yes No

SUBCLASS Yes Yes Yes No

Subscription Designs

218 Oracle Retail Merchandising System

Merchandise Hierarchy Reclassification Subscription API

Functional Area
Merchandise Hierarchy Reclassification

Business Overview
RMS can subscribe to merchandise hierarchy reclassification messages that are published
by an external system for retailers who manage their hierarchies in a system outside
RMS. This API allows for pending merchandise hierarchy reclassification events to be
created, modified or deleted. A separate batch process will read the information off the
pending merchandise hierarchy table and create or modify the merchandise hierarchy
information in RMS once the change effective date arrives. This API does not accept
messages to delete an existing merchandise hierarchy. Any deletion should be done
through the Merchandise Hierarchy Subscription API instead. Furthermore, this API will
not allow moving a class or subclass between departments. In RMS, a new class and/or
subclass needs to be created and the items moved as part of an item reclassification and
then the old class and/or subclass deleted.

Consume Module

Rmssub_xmrchhrclss/b.pls
RMSSUB_XMRCHHRRCLS.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure will initially ensure that the passed in message type is a valid type for
merchandise hierarchy reclassification messages. If the message type is invalid, a status
of ‘E’ – Error will be returned to the external system along with an appropriate error
message informing the external system that the status is invalid.

If the message type is valid, the generic RIB_OBJECT will be downcast to the actual
object using the Oracle’s Treat function. If the downcast fails, a status of ‘E’ will be
returned to the external system along with an appropriate error message informing the
external system that the object passed in is invalid.

If the downcast is successful, then consume will verify that the message passes all of
RMS’s business validation. If the message has failed RMS business validation, a status of
‘E’ will be returned to the external system along with the error message returned from
the CHECK_MESSAGE function.

Once the message has passed RMS business validation, it can be persisted to the RMS
database. If the database persistence fails, the function will return false. A status of ‘E’
will be returned to the external system along with the error message returned from the
PERSIST_MESSAGE() function.

Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success status, ‘S’, will be returned to the external system indicating
that the message has been successfully received and persisted to the RMS database.

RMSSUB_ XMRCHHRRCLS.HANDLE_ERROR() – This is the standard error handling
function that wraps the API_LIBRARY.HANDLE_ERROR function.

Merchandise Hierarchy Reclassification Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 219

Business Validation Module
It should be noted that some of the business validation is referential or involves
uniqueness. This validation is handled automatically by the referential integrity
constraints and the unique indexes implemented on the database.

Filename: rmssub_xmrchhrrclsvals/b.pls
RMSSUB_XMRCHHRRCLS_VALIDATE.CHECK_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 O_pend_merch_hier_rec OUT PEND_MERCH_HIER%ROWTYPE,
 I_message IN “RIB_XMrchHrRclsDesc_REC”,
 I_message_type IN VARCHAR2)

This function performs all business validation associated with the messages and builds
the merchandise hierarchy record for persistence.
CREATE

 Check required fields. Required fields vary based on hierarchy level.

Adding New Hierarchy

– Verify passed in hierarchy does not already exist.

– Verify parent hierarchy already exists on merchandise hierarchy or pending
merchandise hierarchy tables.

Modifying Existing Hierarchy

– Verify passed in hierarchy already exists.

– Verify that class and subclass hierarchies have passed in parent hierarchy in
an existing hierarchy (i.e. classes and subclasses are not allowed to be
reclassified into another department).

 Populate record with message data

MODIFY

 Check required fields.

 Verify the hierarchy is already pending.

 Populate record with message data.
DELETE

 Check required fields.

 Verify a pending hierarchy event exists.

 Verify no pending hierarchy events exist for levels below the passed in hierarchy
level.

 Populate record with message data.

Package Impact
All insert, update and delete SQL statements are located in the family package. This
package is MERCH_RECLASS_SQL. The private functions will call this package.

Filename: rmssub_ xmrchhrrclssqls /b.pls
RMSSUB_XMRCHHRRCLS_SQL.PERSIST_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 I_pend_merch_hier_rec IN PEND_MERCH_HIER%ROWTYPE,
 I_message_type IN VARCHAR2)

This function determines what type of database transaction it will call based on the
message type.

CREATE

Subscription Designs

220 Oracle Retail Merchandising System

 Create messages get added to the pending merchandise hierarchy table.

MODIFY

 Modify messages directly update the pending merchandise hierarchy table with
changes.

DELETE

 Delete messages get removed from the pending merchandise hierarchy table.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Type Message Type Description XML Schema
Definition (XSD)

xmrchhrrclscre Create Merchandise Hierarchy Reclassification XMrchHrRclsDesc.xsd

xmrchhrrclsdel Delete Merchandise Hierarchy Reclassification XMrchHrRclsRef.xsd

xmrchhrrclsmod Modify Merchandise Hierarchy Reclassification XMrchHrRclsDesc.xsd

Design Assumptions
N/A

Table Impact

TABLE SELECT INSERT UPDATE DELETE

DIVISION Yes No No No

GROUPS Yes No No No

DEPS Yes No No No

CLASS Yes No No No

SUBCLASS Yes No No No

PEND_MERCH_HIER Yes Yes Yes Yes

Organizational Hierarchy Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 221

Organizational Hierarchy Subscription API

Functional Area
Foundation Data

Business Overview
If RMS is not the system of records for organizational hierarchy information for an
implementation, then this API may be used to create, update or delete elements of the
hierarchy, including chain, area, region, and district, based on an external system. The
organization hierarchy subscription also assigns existing location traits to or deletes them
from elements of the organization hierarchy. Although stores are part of the
organization hierarchy, they differ sufficiently to require their own subscription API.

RMS exposes an API that allows external systems to create, edit, and delete chain, area,
region, and districts. All creates, updates, and deletes will occur immediately upon
receipt of the message.

Location trait records are created and deleted within the area, region, and district
messages. Location trait creates is passed in with the area, region, or district create
message, or they can be passed in with their own specific create message type attached to
the aforementioned messages. The location trait creates a message that sends a snapshot
of the hierarchy record they are attached to. A location trait delete message is processed
separately from the hierarchy delete messages.

The organizational hierarchy must be created from the highest level down. Conversely,
the hierarchy must be deleted from the lowest level up. Each lower level references a
parent level. This means an area is associated with a chain, a region is associated with an
area, and a district is associated with a region. Location traits are removed from a
hierarchy before it can be removed.

Package Impact

Filename: rmssub_xorghiers/b.pls
RMSSUB_XORGHIER.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure will initially ensure that the passed in message type is a valid type for
organizational hierarchy messages. The valid message types for organizational hierarchy
messages are listed in a section below.
If the message type is valid, the generic RIB_OBJECT will be downcast to the actual
object using the Oracle’s treat function. There will be an object type that corresponds
with each message type. If the downcast is successful, then consume will verify that the
message passes all of RMS’s business validation. It calls the
RMSSUB_XORGHIER_VALIDATE.CHECK_MESSAGE function to determine whether
the message is valid. Once the message has passed RMS business validation, it is
persisted to the RMS database. Once the message has been successfully persisted, a
success status, “S”, is returned to the external system indicating that the message has
been successfully received and persisted to the RMS database.

RMSSUB_ XORGHIER.HANDLE_ERROR() – This is the standard error handling
function that wraps the API_LIBRARY.HANDLE_ERROR function.

Subscription Designs

222 Oracle Retail Merchandising System

Filename rmssub_xohvals/b.pls
RMSSUB_XORGHIER_VALIDATE.CHECK_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 O_org_hier_rec OUT NOCOPY ORGANIZATION_SQL.ORG_HIER_REC,
 I_message IN RIB_XOrgHrDesc,
 I_message_type IN VARCHAR2)

This function performs all business validation associated with messages and builds the
organizational hierarchy record for persistence.

Filename: rmssub_xorghr_sqls/b.pls
RMSSUB_XORGHR_SQL.PERSIST_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 I_hier_level IN VARCHAR2,
 I_org_hier_rec IN ORGANIZATIONAL_SQL.ORG-HIER_REC,
 I_message_type IN VARCHAR2,)

This function determines what type of database transaction it will call based on the
message type. All insert, update and delete SQL statements are located in the family
package. This package is ORGANIZATIONAL_SQL. The private functions will call this
package.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Type Message Type Description XML Schema Definition
(XSD)

XOrgHrCre External Create Organizational Hierarchy XOrgHrDesc.xsd

XOrgHrLocTrtCre External Create Organizational Hierarchy
Location Trait

XOrgHrDesc.xsd

XOrgHrDel External Delete Organizational Hierarchy XOrgHrRef.xsd

XOrgHrLocTrtDel External Delete Organizational Hierarchy
Location Trait

XOrgHrRef.xsd

XOrgHrMod External Modify Organizational Hierarchy XOrgHrDesc.xsd

Design Assumptions
• The REGIONALITY_HEAD table contains one record for each group/organizational

hierarchy value that is defined for regionality. Regionality tables are used to define
specific locations, suppliers, and/or departments that groups of users have
responsibility for. These tables are not referenced within RMS, but can be used to
customize reporting as well as on-line access if desired.

• Location trait records must exist prior to attaching them to any hierarchy.

• Chains do not have location traits associated with them.

• Some of the business validation is referential or involves uniqueness. This validation
is handled automatically by the referential integrity constraints and the unique
indexes implemented on the database.

Organizational Hierarchy Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 223

Table Impact

TABLE SELECT INSERT UPDATE DELETE

CHAIN Yes Yes Yes Yes

AREA Yes Yes Yes Yes

REGION Yes Yes Yes Yes

DISTRICT Yes Yes Yes Yes

LOC_AREA_TRAITS Yes Yes No Yes

LOC_REGION_TRAITS Yes Yes No Yes

LOC_DISTRICT_TRAITS Yes Yes No Yes

LOC_TRAITS_MATRIX Yes Yes No Yes

REGIONALITY_HEAD Yes No No No

REGIONALITY_DEPT Yes No No No

REGIONALITY_SUP_DEPT Yes No No No

REGIONALITY_SUP Yes No No No

REGIONALITY_TEMP Yes No No No

Subscription Designs

224 Oracle Retail Merchandising System

Payment Terms Subscription API

Functional Area
Payment Terms

Business Overview
Payment terms are supplier-related financial arrangement information that is published
to the Oracle Retail Integration Bus (RIB), along with the supplier and the supplier
address, from the financial system. Payment terms are the terms established for paying a
supplier (for example, 2.5% for 30 days, 3.5% for 15 days, 1.5% monthly, and so on). RMS
subscribes to a payment terms message that is held on the RIB. After confirming the
validity of the records enclosed within the message, RMS updates its tables with the
information.

Data Flow:

An external system will publish a payment term, thereby placing the payment term
information onto the RIB. RMS will subscribe to the payment term information as
published from the RIB and place the information onto RMS tables depending upon the
validity of the records enclosed within the message.

Message Structure:

The payment term message will consist of a payment term record header and detail.

The record will contain information about the payment term as a whole.

Package Impact

Filename: rmssub_ptrms/b.pls
Subscribing to a payment term message entails the use of one public consume procedure.
This procedure corresponds to the type of activity that can be done to a payment term
record (in this case create/update).

All of the following procedures exist within RMSSUB_PAYTERM.
CONSUME
 (O_status_code OUT VARCHAR2,
 O_error_message OUT VARCHAR2,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)
This procedure initially checks that the passed in message type is a valid type for Terms
messages. The valid message types for Terms messages are: paytermCre, paytermMod,
paytermdtlCre and paytermdtlMod. If the message type is invalid, a status of “E” should
be returned to the external system along with an appropriate error message informing
the external system that the status is invalid.

If the message type is valid, the generic RIB_OBJECT will need to be downcast to the
actual object using the Oracle’s treat function. There will be an object type that
corresponds with each message type. If the downcast fails, a status of “E” should be
returned to the external system along with an appropriate error message informing the
external system that the object passed in is invalid.

Payment Terms Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 225

If the downcast is successful, then consume needs to verify that the message passes all of
RMS’s business validation. It does not actually perform any validation itself; instead, it
calls the RMSSUB_PAYTERM_VALIDATE.CHECK_MESSAGE function to determine
whether the message is valid. This function is overloaded so simply passing the object in
should be sufficient. If the message passed RMS business validation, then the function
will return true, otherwise it will return false. If the message has failed RMS business
validation, a status of “E” should be returned to the external system along with the error
message returned from the CHECK_MESSAGE function.

Once the message has passed RMS business validation, it can be persisted to the RMS
database. The consume function does not have to have any knowledge of how to persist
the message to the database, it calls the RMSSUB_PAYTERM_SQL.PERSIST() function.
This function is overloaded so simply passing the object should be sufficient. If the
database persistence fails, the function will return false. A status of “E” should be
returned to the external system along with the error message returned from the
PERSIST() function.

Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success status, “S”, should be returned to the external system
indicating that the message has been successfully received and persisted to the RMS
database.

Internal Procedure:
HANDLE_ERROR
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_cause IN VARCHAR2,
 I_program IN VARCHAR2)

This is the standard error handling function that wraps the
API_LIBRARY.HANDLE_ERROR function.

The function consists of a call to API_LIBRARY.HANDLE_ERRORS.
API_LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the error and
potentially an unparsed error message if one has been created through a call to
SQL_LIB.CREATE_MESSAGE. The function uses these input variables to parse a
complete error message and pass back a status, depending upon the message and error
type, back up through the consume function and up to the RIB.
Business Validation Mode
Filename: rmssub_ptrmvals/b.pls

This function performs all business validation associated with Terms create and modify
messages. It is important that the signature uses IN for the message and not IN OUT.
When IN is used, the parameter is passed by reference. Passing by reference keeps the
server from duplicating the memory allocation.
All of the following functions exist within RMSSUB_PAYTERM_VALIDATE.
CHECK_MESSAGE
 (O_error_message OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_dml_rec OUT TERMS_SQL.PAYTERM_REC,
 I_message IN “RIB_PayTermDesc_REC”,
 I_message_type IN VARCHAR2)
This function performs all business validation associated with create/modify messages
and builds the order API record with default values for persistence in the payment terms
related tables. Any invalid records passed at any time results in message failure.

This function calls CHECK_REQUIRED_FIELDS to make sure that all required fields are
not NULL. CHECK_ENABLED is called to check for the validity of records with
start_date_active and end_date_active with enabled flag. CHECK_TERMS_HEAD and

Subscription Designs

226 Oracle Retail Merchandising System

CHECK_TERMS_DETAIL are called to check for header and detail records before
inserting and updating TERMS_DEATIL table. Finally, the payment terms record used
for DML is populated within the POPULATE_RECORD function and passed back to
RMSSUB_PAYTERM.CONSUME.

Internal Functions:

CHECK_REQUIRED_FIELDS
This function ensures that all required fields in the message are NOT NULL.

POPULATE_RECORDS
This function populates the payment terms output record with the values sent in the
message.

CHECK_ENABLED
This function in a loop checks for start_date_active and end_date_active with the
enabled_flag setting from RIB_MESSAGE. Declare cursor to retrieve vdate from table
period and another cursor to retrieve start_date_active and end_date_active for the terms
and terms_seq inputted from TERMS_DETAIL table. In a loop assign terms_seq to a local
variable. Open cursor to retrieve start_date_active and end_date_Active from
TERMS_DETAIL table. If terms_detail.start_date_active is after period.vdate and if
enabled_flag from the rib message is ‘Y’, then raise program error. If end_date_active is <
vdate and enabled_flag from the rib message is ‘Y’ then raise program error. If vdate > =
start_date_active and <= end_date_active and enabled_flag is ‘N’ then raise a program
error.

CHECK_TERMS_HEAD
This function will be responsible for checking TERMS_HEAD record before populating
TERMS_DETAIL table for new terms record. Calling TERM_SQL.HEADER_EXISTS
function will perform this check.

CHECK_TERMS_DETAIL
This function checks existence of terms_detail records before updating detail record.
Calling TERM_SQL.DETAIL_EXISTS function will perform this check.

DML Module

Filename: rmssub_ptrm_sqls/b.pls
The following function exists within RMSSUB_PAYTERM_SQL.
PERSIST
 (O_error_message OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message IN TERMS_SQL.PAYTERM_REC,
 I_message_type IN VARCHAR2)
Perform INSERT/UPDATE statements by calling the appropriate functions according to
the message type and passing the data in a record to these functions.

For the message type indicating a header insert, populate the header record defined in
the term_sql package and call the term_sql.insert_header function with this header
record. For the message type indicating a header or a detail insert, call the
term_sql.insert_detail function and pass to it the detail node from the message.

For the message type indicating a header update, populate the header record defined in
the term_sql package and call the term_sql.update_header function with this header

Payment Terms Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 227

record. For the message type indicating a detail update, call the term_sql.update_detail
function and pass to it the detail node from the message.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

PayTermCre Payment Terms Create Message PayTermDesc.xsd

PayTermMod Payment Terms Modify Message PayTermDesc.xsd

PayTermDtlCre Payment Terms Detail Create Message PayTermDesc.xsd

PayTermDtlMod Payment Terms Detail Modify Message PayTermDesc.xsd

Design Assumptions
 One of the primary assumptions in the current API approach is that ease of code will

outweigh performance considerations. It is hoped that the ‘trickle’ nature of the flow
of data will decrease the need to dwell on performance issues and instead allow
developers to code in the easiest and most straight forward manner.

 The adaptor is only setup to call stored procedures, not stored functions. Any public
program then needs to be a procedure.

Table Impact

TABLE SELECT INSERT UPDATE DELETE

TERMS_DETAIL Yes Yes Yes No

TERMS_HEAD Yes Yes Yes No

Subscription Designs

228 Oracle Retail Merchandising System

PO Subscription API

Functional Area
Purchase Orders

Business Overview
This subscription API is used to keep RMS in synchronization with an external system
that is responsible for maintaining purchase orders.

It is assumed that externally generated non-EDI purchase orders are being interfaced
expressly for the facilitation of inventory movement in RMS.

This API also default expenses and HTS, applies rounding, defaults inventory
management parameters, applies bracket costs, updates OTB, and inserts a record into
the deals queue.

This API allows external systems to create, edit, and delete purchase orders within RMS.
These transactions are performed immediately on receiving the message receipt, so
success or failure can be communicated to the calling application.

Purchase order messages are sent across the Oracle Retail Integration Bus (RIB). POs can
be created, modified or deleted at the header or the detail level, each with its own
message type.

If the Purchase order is a Franchise PO (location is a Franchise store), a corresponding
Franchise order is created along with the PO.

Package Impact

Filename: rmssub_xorders/b.pls
RMSSUB_XORDER.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure initially ensures that the passed in message type is a valid type for
purchase order messages. The valid message types for purchase order messages are
listed in a section below.

If the message type is invalid, a status of “E” is returned to the external system along
with an appropriate error message informing the external system that the status is
invalid.

If the message type is valid, the generic RIB_OBJECT is downcast to the actual object
using the Oracle treat function. There is an object type that corresponds with each
message type. If the downcast fails, a status of “E” is returned to the external system
along with an appropriate error message informing the external system that the object
passed in is invalid.

If the downcast is successful, then consume will verify that the message passes all of
RMS’s business validation. It calls the
RMSSUB_XORDER_VALIDATE.CHECK_MESSAGE function to determine whether the
message is valid. If the message passed RMS business validation, then the function
returns true, otherwise it returns false. If the message fails RMS business validation, a
status of “E” is returned to the external system along with the error message returned
from the CHECK_MESSAGE function.

PO Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 229

Once the message has passed RMS business validation, it is persisted to the RMS
database. It calls the RMSSUB_XORDER_SQL.PERSIST() function. If the database
persistence fails, the function returns false. A status of “E” is returned to the external
system along with the error message returned from the PERSIST() function.
Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success status, “S”, is returned to the external system indicating that
the message has been successfully received and persisted to the RMS database.

Filename: rmssub_xordervals/b.pls
It should be noted that some of the business validation is referential or involves
uniqueness. This validation is handled automatically by the referential integrity
constraints and the unique indexes implemented on the database.
RMSSUB_XORDER_VALIDATE.CHECK_MESSAGE
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_order_rec OUT NOCOPY ORDER_SQL.ORDER_REC,
 IO_message IN “RIB_XOrderDesc_REC”,
 I_message_type IN VARCHAR2)

This overloaded function performs all business validation associated with create/modify
messages and builds the order API record with default values for persistence in the order
related tables. Any invalid records passed at any time result in message failure.

Like other APIs, the purchase order API expects a snapshot of the record on both a
header modify and a detail modify message, instead of only the fields that are changed.
For details create or a detail modify message, only the order number will be validated at
the header level; all other header fields are ignored.
Defaulted fields that are not included in the message structure of the object must be
populated in a package business record, ORDER_SQL.ORDER_REC. This record is used
as input to the database DML functions in the persist package.

ORDER Create
 Check required fields on both header and detail nodes.

 Verify order number does NOT already exist.

 Verify attributes in the message header are correct.

 Verify attributes in the message detail are correct.

 Verify that if the order is a Franchise PO, there should only be 1 franchise location for
the order being created.

 Verify that if the order is other than a Franchise PO, no franchise location should
exist in the message.

 Verify that if the order is a Franchise PO, the supplier must be a DSD Supplier.

 Verify that if the order is a Franchise PO, the items in the order should belong to a
franchise location with the same costing location.

 Verify that item is within order range of the supplier.

 Verify that item/supplier and item/supp/country exist for a non-pack item.

 Verify that item/supplier and item/supp/country exist for all components of a pack
item.

 Create item/supplier, item/supp/country and item/supp/country of manufacture if
they don’t exist for a pack item.

 Create item/supp/country/loc if it does not exist for an item/location.

Subscription Designs

230 Oracle Retail Merchandising System

 Create item/loc relation if not already exist, including creating item_loc_soh,
item_supp_country_loc, and price_hist records. If a pack item is involved, these
records will be created for all component items.

 Verify that the ordered quantity is within the Supplier’s minimum and maximum
limits if available.

 Populate record ORDER_REC with message data for both header and detail.

ORDER Modify
 Check required fields on the header node.

 Verify order number already exists.

 Verify attributes in the message header are correct.

 Verify attributes that cannot be modified are not changed.

 Verify that the ordered quantity is within the Supplier’s minimum and maximum
limits if available.

 If the order is a Franchise PO, the order cannot be reinstated.

 If the order is an Approved Franchise PO, it cannot be set back to worksheet.

 Update ORDLOC appropriately if closing or reinstating an order.

 Populate record ORDER_REC.ORDHEAD_ROW with message data.

ORDER DETAIL Create
 Check required fields on the detail node.

 Verify order number already exists.

 Verify order/item/loc does not already exist.

 Verify that if the order is a Franchise PO, there should only be 1 franchise location in
the message and it should be the same as the existing order location.

 Verify that if the order is other than a Franchise PO, no franchise location should
exist in the message.

 Verify that if the order is a Franchise PO, the items should have the same costing
location.

 Verify that item/supplier and item/supp/country exist for a non-pack item.
 Verify that item/supplier and item/supp/country exist for all components of a pack

item.

 Create item/supplier, item/supp/country and item/supp/country of Manufacture
if they do not exist for a pack item.

 Create item/supp/country/loc if it does not exist for an item/location.

 Create item/loc relation if not already exists, including creating ITEM_LOC_SOH,
ITEM_SUPP_COUNTRY_LOC, and PRICE_HIST records. If a pack item is involved,
these records will be created for all component items.

 Verify that the ordered quantity is within the Supplier’s minimum and maximum
limits if available.

 Populate record ORDER_REC.ORDLOCS and optionally, ORDER_REC.ORDSKUS
with message data.

ORDER DETAIL MODIFY
 Check required fields on the detail node.

 Verify order/item/loc already exists.

PO Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 231

 Verify attributes that cannot be modified are not changed.

 If order quantity is reduced, verify the new order quantity is not below what has
already been received plus what is being shipped or expected.

 If order quantity is modified, ensure that quantity pre-scaled is not updated if the
order has been previously approved. Otherwise, quantity pre-scaled should always
be equal to quantity ordered.

 If the order line is cancelled or reinstated via the indicators, calculate the new
quantity buckets.

 Verify that the ordered quantity is within the Supplier’s minimum and maximum
limits if available.

 Populate record ORDER_REC.ORDLOCS and optionally, ORDER_REC.ORDSKUS
with message data.

RMSSUB_XORDER_VALIDATE.CHECK_MESSAGE
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_order_rec OUT NOCOPY ORDER_SQL.ORDER_REC,
 I_message IN “RIB_XOrderRef_REC”,
 I_message_type IN VARCHAR2)

This overloaded function performs all business validation associated with delete
messages and builds the order API record with default values for persistence in the order
related tables. Any invalid records passed at any time results in message failure.

ORDER Delete
 Check required fields.

 Verify order number already exists.
 Verify that order is not already shipped or received.

 Verify that the order has not been appointed.

 Delete any allocations tied to the order

 Populate record ORDER_REC.ORDHEAD_ROW with the order number for delete.

ORDER Detail Delete
 Check required fields.

 Verify order/item/loc already exists.

 Verify that order line is not already shipped or received.

 Verify that order line has not been appointed.
 Delete any allocations tied to the order line.

 Populate record ORDER_REC.ORDLOCS with the order/item/location for delete.

Filename: rmssub_xorders/b.pls
All insert, update and delete SQL statements are located in package ORDER_SQL. The
private functions call these packages.
RMSSUB_XORDER_SQL.PERSIST
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_order_rec IN ORDER_SQL.ORDER_REC,
 I_message_type IN VARCHAR2)

This function checks the message type to route the object to the appropriate internal
functions that perform DML insert, update and delete processes.

ORDER Create
 Inserts records in the ORDHEAD, ORDSKU, ORDLOC tables.

Subscription Designs

232 Oracle Retail Merchandising System

 If the order is a Franchise PO, this inserts records in the WF_ORDER_HEAD and
WF_ORDER_DETAIL tables.

ORDER Modify
 Updates a record in the ORDHEAD table.

 If the order is a Franchise PO, this updates records in the WF_ORDER_HEAD table.

ORDER Delete
 Delete an order from ORDHEAD, ORDSKU, ORDLOC tables.

 If the order is a Franchise PO, this deletes the corresponding record from the
WF_ORDER_HEAD and WF_ORDER_DETAIL tables.

ORDER Detail Create
 Inserts records in the ORDLOC and optionally, ORDSKU tables

 If the order is a Franchise PO, this inserts records in the WF_ORDER_HEAD and
WF_ORDER_DETAIL tables.

ORDER Detail Modify
 Updates records in the ORDLOC and/or ORDSKU table.

 If the order is a Franchise PO, this updates records in the WF_ORDER_DETAIL table.

 Also verify it doesn’t end up with an Approved order with 0 total order quantity.

ORDER Detail Delete
 Delete records from ORDLOC and optionally, ORDSKU tables.

 If the order is a Franchise PO, this deletes the corresponding record from the
WF_ORDER_DETAIL table.

 Also verify it doesn’t end up with an Approved order with no detail or with 0 total
order quantity.

Call L10N Localization Decoupling Layer package (L10N_SQL) to determine if the order
requires tax calculation. Same package will route call to 3rd party tax application if
needed.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

XorderCre Order Create Message XOrderDesc.xsd

XorderMod Order Modify Message XOrderDesc.xsd

XorderDel Order Delete Message XOrderRef.xsd

XorderDtlCre Order Detail Create Message XOrderDesc.xsd

XorderDtlMod Order Detail Modify Message XOrderDesc.xsd

XorderDtlDel Order Detail Delete Message XOrderRef.xsd

PO Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 233

Design Assumptions
Many ordering functionalities that are available on-line are not supported via this API.
Deposit item functionality is not available in this API; that is to say a deposit contents
item on the order does not automatically create the corresponding container item for the
deposit item.

Table Impact

TABLE SELECT INSERT UPDATE DELETE

ORDHEAD Yes Yes Yes Yes

ORDSKU Yes Yes Yes Yes

ORDLOC Yes Yes Yes Yes

ITEM_SUPPLIER Yes Yes No No

ITEM_SUPP_COUNTRY Yes Yes No No

ITEM_SUPP_MANU_COUNTRY Yes Yes No No

ITEM_SUPP_COUNTRY_LOC Yes Yes No No

ITEM_LOC Yes Yes No No

ITEM_LOC_SOH Yes Yes No No

PRICE_HIST No Yes No No

ITEM_ZONE_PRICE Yes No No No

ITEM_MASTER Yes No No No

PACKITEM_BREAKOUT Yes No No No

SHIPMENT Yes No No No

SHIPSKU Yes No No No

APPT_DETAIL Yes No No No

ALLOC_HEADER Yes No No Yes

ALLOC_DETAIL Yes No No Yes

STORE Yes No No No

WAREHOUSE Yes No No No

SUPS Yes No No No

DEPS Yes No No No

CURRENCIES Yes No No No

CURRENCY_RATES Yes No No No

TERMS Yes No No No

SYSTEM_OPTIONS Yes No No No

UNIT_OPTIONS Yes No No No

ADDR

WF_ORDER_HEAD

WF_ORDER_DETAIL

Yes

Yes

Yes

No

Yes

Yes

No

Yes

Yes

No

Yes

Yes

Subscription Designs

234 Oracle Retail Merchandising System

Receiving Subscription API

Functional Area
Receipt subscription:
 Purchase Order Receiving.

 Stock Order Receiving (including Transfers and Allocations).

Business Overview
RMS receives against purchase orders, transfers, and allocations. Transfers and
allocations are collectively referred to as stock orders. The receipt subscription API
processes carton-level receipts and a number of carton-level exceptions for stock orders
receipts.

Purchase orders continue to be received only at the item level. If errors are encountered
during purchase order receiving, the entire message is rejected and processing of the
message stops.

Stock orders may be received at the bill of lading (BOL), carton, or item level. The
following exceptions are automatically processed by the new stock order receiving
package:

 Receiving against the wrong BOL.

 Receiving at a location which is a walk-through store for the intended location.

 Wrong store receiving.

 Unwanted cartons (those that have not been scanned).

Once RMS determines the appropriate receiving process for a carton, the shipment detail
records are identified and existing line item level receiving is executed. The items are
received into stock and transactions are updated.

Stock orders may be received at the BOL (receiving the entire shipment without checking
the details), carton (receiving the entire carton on SHIPSKU without checking the
details), or item level. When an error is encountered during stock order receiving, an
error record is created for the BOL, carton, or item in error. Processing continues for the
remainder of the stock order receipt message. When the entire message has been
processed, all of the error records are then handled. Error records are grouped together
based on the type of error and a complete receipt message is created for each group. All
errors will be collected in an error table, which will then be passed back to the RIB for
further processing or hospitalization.

Carton-Level Receiving
The process for handling carton level receipts is as follows:

1. RMS determines whether a message type contains a receipt or an appointment.

2. If a receipt, RMS determines whether the document type is purchase order (P),
transfer (T), or allocation (A).

3. If a stock order (transfer or allocation), RMS determines whether the receipt is an
item level receipt (SK) or a carton level receipt (BL).

Receiving Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 235

4. If a carton level receipt, two scenarios are possible. The message may contain (a) a
bill of lading number but no carton numbers or (b) a bill of lading and one or more
carton numbers.

 Bill of lading/no cartons: RMS receives all cartons associated with the BOL along
with their contents (line items).

 Bill of lading/with cartons: RMS receives only the specified cartons and their
contents (line items).

5. The status of the cartons determines how the cartons/items are processed. The status
may be Actual (A), Overage (O), or Dummy BOL (D).

Actual (A)

The cartons are received at the correct location against the correct bill of lading.

Overage (O)

The carton does not belong to the current BOL. RMS attempts to match the contents
with the correct BOL.
 If the carton belongs to a BOL at the given location, RMS receives the carton

against the correct BOL at the given location.

 If the carton belongs to a BOL at a related walk-through store, RMS receives the
carton against the intended BOL at the intended location.

 If the carton belongs to a BOL at an unrelated location, RMS uses the wrong store
receiving process.

Dummy BOL (D)

Cartons were received under a dummy bill of lading (BOL) number. RMS attempts to
match the contents with a valid BOL.

 If the carton belongs to a valid BOL at the given location, RMS receives the
carton against the intended BOL at the given location.

 If the carton belongs to a valid BOL at a related walk-through store, RMS
receives the carton against the intended BOL at the intended location.

 If the carton belongs to a valid BOL at an unrelated location, RMS uses the wrong
store receiving process.

The wrong_st_receipt_ind system option controls whether wrong store receiving is
available in RMS. The wrong_st_receipt_ind must be set to Y (Yes) to turn on this
functionality. Wrong store receiving is done at the line item level. Inventory, average
costs, and transactions for both the intended location and actual location are adjusted
to accurately reflect the actual location of the items.

Doc Types
Receipts are processed based upon the document type indicator in the message. The
indicator serves as a flag for RMSSUB_RECEIVE.CONSUME to use when calling the
appropriate function that validates the data and writes the data to the base tables. The
following are the document types and respective package and function names:

 A – for allocation. STOCK_ORDER_RCV_SQL.ALLOC_LINE_ITEM

 P – for purchase order. PO_RCV_SQL.PO_LINE_ITEM

 T – for transfer. STOCK_ORDER_RCV_SQL.TSF_LINE_ITEM

Blind Receipt Processing
A blind receipt is generated by an external application whenever a movement of goods is
initiated by that application. RMS has no prior knowledge of blind receipts. RMS handles
blind receipts when it runs STOCK_ORDER_RCV_SQL (transfers and allocations) or

Subscription Designs

236 Oracle Retail Merchandising System

PO_RCV_SQL (purchase orders). If no appointment record exists on APPT_DETAIL, the
respective function writes a record to the DOC_CLOSE_QUEUE table.

When a transfer, PO or allocation is received at a location, the external location (store or
warehouse) will publish a receipt message to the RIB indicating that the stock has
arrived. RMS will subscribe to the receipt message and update the appropriate tables,
including shipment, transfer/allocation/purchase order, inventory and stock ledger.

For stock order receiving the ownership of the goods moves to the receiving location at
the time of shipment. As a result, financial transaction records are written for the goods
shipped when RMS processes a BOL message. At the receiving time, financial transaction
records will only need to be written for the overage receiving. In addition, the stock order
receiving process also handles the situations where stock is received with no receipt, or if
the stock is received at wrong stores, or if the item received is on a dummy carton.

The receipt message is a hierarchical message that can contain a series of receipts. Each
receipt corresponds to a transfer or an allocation or a PO, and can contain carton or item
details. Purchase orders are only received at the item level. Any errors encountered
during purchase order receiving will cause the entire message to be rejected and
processing of the message will stop.

When receiving a customer order at stores, SIM will send a receipt message to both RMS
and OMS, using a new message type of ‘receiptordadd’. RMS will process
‘receiptordadd’ message in the same way as ‘receiptadd’.

RMS supports of Brazil Localization. This includes a layer of code to enable decoupling
of localization logic that is only required for country-specific configuration. This layer
affects the RIB API flows including Receiving subscription.

L10N Localization Decoupling Layer:
This is a layer of code which enables decoupling of localization logic that is only required
for certain country-specific configuration. This layer affects the RIB API flows including
Receiving subscription. This allows RMS to be installed without requiring customers to
install or use this localization functionality, where not required.

Package Impact

Filename: rmssub_receivings/b.pls
RMSSUB_RECEIVING.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2,
 O_rib_otbdesc_rec OUT “RIB_OTBDesc_REC”,
 O_rib_error_tbl OUT RIB_ERROR_TBL)

This procedure will make calls to receiving or appointment functions based on the value
of I_message_type. If I_message type is RECEIPT_ADD or RECEIPT_UPD or
RECEIPT_ORDADD, then a call is made to RMSSUB_RECEIPT.CONSUME, casting the
message as a “RIB_ReceiptDesc_REC.” If I_message_type is APPOINT_HDR_ADD,
APPOINT_HDR_UPD, APPOINT_HDR_DEL, APPOINT_DTL_ADD,
APPOINT_DTL_UPD, or APPOINT_DTL_DEL, then a call is made to
RMSSUB_APPOINT.CONSUME. This is the procedure called by the RIB.
RMSSUB_RECEIVING.HANDLE_ERRORS
 (O_status_code IN OUT VARCHAR2,
 IO_error_message IN OUT VARCHAR2,
 I_cause IN VARCHAR2,
 I_program IN VARCHAR2)

Receiving Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 237

Standard error handling function that wraps the API_LIBRARY.HANDLE_ERROR
function.

Filename: rmssub_receipts/b.pls
RMSSUB_RECEIPT.CONSUME
 O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_rib_receiptdesc_rec IN “RIB_ReceiptDesc_REC”,
 I_message_type IN VARCHAR2,
 O_rib_otbdesc_rec OUT “RIB_OTBDesc_REC”,
 O_rib_error_tbl OUT RIB_ERROR_TBL)

This function performs PO receiving and stock order receiving for each receipt in the
message. Document type ‘P’ is for purchase order receiving, ‘A’ for allocation receiving,
and ‘T’, ‘V’, ‘D’ for transfer receiving. All other document types are invalid.

The RIB object “RIB_ReceiptDesc_REC” is included in RIB_ReceiptOverage_REC” to
accommodate for Overages.

Calls are made to ORDER_RCV_SQL.INIT_PO_ASN_LOC_GROUP,
STOCK_ORDER_RCV_SQL.INIT_TSF_ALLOC_GROUP, and
RMSSUB_RECEIPT_ERROR.INIT. These functions initialize global variables and clean
out cached info.

 The process then loops through each receipt in the message and performs
localization check. If localized, invoke localization logic through L10N_SQL
decoupling layer for procedure key ‘CONSUME_RECEIPT’. If not localized, call
CONSUME_RECEIPT for normal processing:

 If the document type is 'P' (purchase order), it calls
ORDER_RCV_SQL.PO_LINE_ITEM to receive the items on the PO.

 If the document type is 'T', ‘D’, ‘V’ (transfer) or 'A' (allocation), it calls
RMSSUB_STKORD_RECEIPT.CONSUME to receive the items on the transfer or
allocation.

 If the document type is not 'P', 'T', ‘D’, ‘V’ or 'A' the message processing is stopped
and an error message returned.

After processing all receipts, call ORDER_RCV_SQL.FINISH_PO_ASN_LOC_GROUP,
STOCK_ORDER_RCV_SQL.FINISH_TSF_ALLOC_GROUP, and
RMSSUB_RECEIPT_ERROR.FINISH. These functions wrap up the processing for
receiving and error logic.

If any records exist on the rib_otb_tbl returned by
ORDER_RCV_SQL.FINISH_PO_ASN_LOC_GROUP, then create a rib_otbdesc_rec object
and add the rib_otb_tbl to the object.

Filename: rmssub_stkord_receipts/b.pls
RMSSUB_STKORD_RECEIPT.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_appt IN APPT_HEAD.APPT%TYPE,
 I_rib_receipt_rec IN “RIB_Receipt_REC”)

This function will process stock order receiving for all records within the rib_receipt_rec
passed in. First, this function calls RMSSUB_RECEIPT_ERROR.BEGIN_RECEIPT. This
function holds onto the header level information (appt_nbr and rib_receipt_rec), which
may be used to create error objects.

Next, RMSSUB_RECEIPT_VALIDATE.CHECK_RECEIPT is called, which does
validation at the receipt level. If the validation fails the receipt is rejected by calling
RMSSUB_RECEIPT_ERROR.ADD_ERROR.

Subscription Designs

238 Oracle Retail Merchandising System

The package does carton-level receiving when receipt_type = 'BL', and item-level
receiving when receipt_type = 'SK'.

There are two scenarios for carton-level receiving:

1. The rib_receipt_rec contains a bol_no and no cartons (no detail nodes). In this case
the function RMSSUB_STKORD_RECEIPT_VALIDATE.CHECK_BOL is called,
which does business level validation for the BOL. If the validation succeeds then
RMSSUB_STKORD_RECEIPT_SQL.PERSIST_BOL is called. If the validation fails the
BOL receipt is rejected by calling RMSSUB_RECEIPT_ERROR.ADD_ERROR.

2. The rib_receipt_rec contains a bol_no and 1 or more cartons (detail nodes). In this
case, the process loops through each carton in the receipt and calls the function
RMSSUB_STKORD_RECEIPT_VALIDATE.CHECK_CARTON. This function does
business level validation for a carton. If the validation succeeds
RMSSUB_STKORD_RECEIPT_SQL.PERSIST_CARTON is called. If the validation
fails because the carton is a duplicate (by checking the returned validation_code),
then the call to PERSIST_CARTON is skipped and processing continues. Duplicates
are ignored with no error. If the validation fails for any other reason then the carton
is rejected by calling RMSSUB_RECEIPT_ERROR.ADD_ERROR.

Item (SKU) Level Receiving:

If the receipt is item-level ('SK') the process loops through the detail records and calls the
function RMSSUB_STKORD_RECEIPT_VALIDATE.CHECK_ITEM, which does business
level validation for the item details. If the validation succeeds then
RMSSUB_STKORD_RECEIPT_SQL.PERSIST_LINE_ITEM is called to execute existing
line item receiving package calls. If the validation fails then the item is rejected by calling
RMSSUB_RECEIPT_ERROR.ADD_ERROR.
When all details for the receipt have been processed, or if the entire receipt itself is
rejected, then RMSSUB_RECEIPT_ERROR.END_RECEIPT is called. This function groups
all similar errors and creates the appropriate error objects.

If a break to sell sellable item is on the message, a call to CHECK_ITEM and
GET_ORDERABLE_ITEMS is made to convert the sellable to its orderable items. For a
break to sell item, the orderable items are on the transfers, allocations, shipment,
inventory and stock ledger.

Filename: rmssub_stkord_rct_vals/b.pls
RMSSUB_STKORD_RECEIPT_VALIDATE.CHECK_RECEIPT
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_valid OUT BOOLEAN,
 O_validation_code OUT VARCHAR2,
 I_rib_receipt_rec IN “RIB_Receipt_REC”)

This function performs business validation for a receipt. If any of the validations fail then
O_validation_error is populated with the specified error code and O_valid is set equal to
FALSE. Otherwise, O_validation_error is left as NULL and O_valid is set equal to TRUE.

RMSSUB_STKORD_RECEIPT_VALIDATE.CHECK_BOL

 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_valid IN OUT BOOLEAN,
 O_validation_code IN OUT VARCHAR2,
 O_shipment IN OUT SHIPMENT.SHIPMENT%TYPE,
 O_item_table IN OUT STOCK_ORDER_RCV_SQL.ITEM_TAB,
 O_qty_expected_table IN OUT STOCK_ORDER_RCV_SQL.QTY_TAB,
 O_inv_status_table IN OUT STOCK_ORDER_RCV_SQL.INV_STATUS_TAB,
 O_carton_table IN OUT STOCK_ORDER_RCV_SQL.CARTON_TAB,
 O_distro_no_table IN OUT STOCK_ORDER_RCV_SQL.DISTRO_NO_TAB,
 O_tampered_ind_table IN OUT STOCK_ORDER_RCV_SQL.TAMPERED_IND_TAB,

Receiving Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 239

 I_bol_no IN SHIPMENT.BOL_NO%TYPE,
 I_to_loc IN SHIPMENT.TO_LOC%TYPE)

This function performs business validation for receipts using BOL-level receiving.
During validation this function selects data from the SHIPMENT and SHIPSKU tables
and passes this information out through the parameters. This is done so that these tables
do not have to be hit again during the receiving (persist) process. If any of the validations
fail then O_validation_error is populated with the specified error code and O_valid is set
equal to FALSE. Otherwise, O_validation_error is left as NULL and O_valid is set equal
to TRUE.
RMSSUB_STKORD_RECEIPT_VALIDATE.CHECK_CARTON
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_valid IN OUT BOOLEAN,
 O_validation_code IN OUT VARCHAR2,
 O_ctn_shipment IN OUT SHIPMENT.SHIPMENT%TYPE,
 O_ctn_to_loc IN OUT SHIPMENT.TO_LOC%TYPE,
 O_ctn_bol_no IN OUT SHIPMENT.BOL_NO%TYPE,
 O_item_table IN OUT STOCK_ORDER_RCV_SQL.ITEM_TAB,
 O_qty_expected_table IN OUT STOCK_ORDER_RCV_SQL.QTY_TAB,
 O_inv_status_table IN OUT STOCK_ORDER_RCV_SQL.INV_STATUS_TAB,
 O_carton_table IN OUT STOCK_ORDER_RCV_SQL.CARTON_TAB,
 O_distro_no_table IN OUT STOCK_ORDER_RCV_SQL.DISTRO_NO_TAB,
 O_tampered_ind_table IN OUT STOCK_ORDER_RCV_SQL.TAMPERED_IND_TAB,
 O_wrong_store_ind IN OUT VARCHAR2,
 O_wrong_store IN OUT SHIPMENT.TO_LOC%TYPE,
 I_bol_no IN SHIPMENT.BOL_NO%TYPE,
 I_to_loc IN SHIPMENT.TO_LOC%TYPE,
 I_from_loc IN SHIPMENT.FROM_LOC%TYPE,
 I_from_loc_type IN SHIPMENT.FROM_LOC_TYPE%TYPE,
 I_rib_receiptcartondtl_rec IN “RIB_ReceiptCartonDTL_REC”)

This function performs business validation for receipts using carton-level receiving.
Based on the carton status, a carton can be received to the intended store only, or as a
dummy carton or to the walk-through store of the intended store.
During validation this function selects data from SHIPMENT and SHIPSKU tables and
passes this information out through the parameters. This is done so that these tables do
not have to be hit again during the receiving (persist) process. If any of the validations
fail then O_validation_error is populated with the specified error code and O_valid is set
equal to FALSE. Otherwise, O_validation_error is left as NULL and O_valid is set equal
to TRUE.
RMSSUB_STKORD_RECEIPT_VALIDATE.CHECK_ITEM
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_valid OUT BOOLEAN,
 O_validation_code OUT VARCHAR2,
 I_distro_no IN SHIPSKU.DISTRO_NO%TYPE,
 I_dummy_carton_ind IN VARCHAR2)

This function performs business validation for item details. If any of the validations fail
then O_validation_error is populated with the specified error code and O_valid is set
equal to FALSE. Otherwise, O_validation_error is left as NULL and O_valid is set equal
to TRUE.
RMSSUB_STKORD_RECEIPT_SQL.PERSIST_BOL
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_appt IN APPT_HEAD.APPT%TYPE,
 I_doc_type IN APPT_DETAIL.DOC_TYPE%TYPE,
 I_shipment IN SHIPMENT.SHIPMENT%TYPE,
 I_to_loc IN SHIPMENT.TO_LOC%TYPE,
 I_bol_no IN SHIPMENT.BOL_NO%TYPE,
 I_item_table IN STOCK_ORDER_RCV_SQL.ITEM_TAB,
 I_qty_expected_table IN STOCK_ORDER_RCV_SQL.QTY_TAB,

Subscription Designs

240 Oracle Retail Merchandising System

 I_inv_status_table IN STOCK_ORDER_RCV_SQL.INV_STATUS_TAB,
 I_carton_table IN STOCK_ORDER_RCV_SQL.CARTON_TAB,
 I_distro_no_table IN STOCK_ORDER_RCV_SQL.DISTRO_NO_TAB,
 I_tampered_ind_table IN STOCK_ORDER_RCV_SQL.TAMPERED_IND_TAB)

This function calls STOCK_ORDER_RCV_SQL.TSF_BOL_CARTON (for transfers) and
STOCK_ORDER_RCV_SQL.ALLOC_BOL_CARTON (for allocations) to perform BOL
level receiving.
RMSSUB_STKORD_RECEIPT_SQL.PERSIST_CARTON

(O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_appt IN APPT_HEAD.APPT%TYPE,
 I_doc_type IN APPT_DETAIL.DOC_TYPE%TYPE,
 I_shipment IN SHIPMENT.SHIPMENT%TYPE,
 I_to_loc IN SHIPMENT.TO_LOC%TYPE,
 I_bol_no IN SHIPMENT.BOL_NO%TYPE,
 I_receipt_no IN APPT_DETAIL.RECEIPT_NO%TYPE,
 I_disposition IN INV_STATUS_CODES.INV_STATUS_CODE%TYPE,
 I_receipt_date IN SHIPMENT.RECEIVE_DATE%TYPE,
 I_item_table IN STOCK_ORDER_RCV_SQL.ITEM_TAB,
 I_qty_expected_table IN STOCK_ORDER_RCV_SQL.QTY_TAB,
 I_weight IN ITEM_LOC_SOH.AVERAGE_WEIGHT%TYPE,
 I_weight_uom IN UOM_CLASS.UOM%TYPE,
 I_inv_status_table IN STOCK_ORDER_RCV_SQL.INV_STATUS_TAB,
 I_carton_table IN STOCK_ORDER_RCV_SQL.CARTON_TAB,
 I_distro_no_table IN STOCK_ORDER_RCV_SQL.DISTRO_NO_TAB,
 I_tampered_ind_table IN STOCK_ORDER_RCV_SQL.TAMPERED_IND_TAB,
 I_wrong_store_ind IN VARCHAR2,
 I_wrong_store IN SHIPMENT.TO_LOC%TYPE)

This function calls STOCK_ORDER_RCV_SQL.TSF_BOL_CARTON (for transfers) and
STOCK_ORDER_RCV_SQL.ALLOC_BOL_CARTON (for allocations) to perform carton
level receiving.
RMSSUB_STKORD_RECEIPT_SQL.PERSIST_LINE_ITEM
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_location IN SHIPMENT.TO_LOC%TYPE,
 I_bol_no IN SHIPMENT.BOL_NO%TYPE,
 I_distro_no IN SHIPSKU.DISTRO_NO%TYPE,
 I_distro_type IN VARCHAR2,
 I_appt IN APPT_HEAD.APPT%TYPE,
 I_rib_receiptdtl_rec IN “RIB_ReceiptDTL_REC”)

This function calls STOCK_ORDER_RCV_SQL.TSF_LINE_ITEM (for transfers) and
STOCK_ORDER_RCV_SQL.ALLOC_LINE_ITEM (for allocations) to perform item level
receiving.

Filename: rmssub_receipt_errors/b.pls
For each item or carton found to be in error during the receiving process, an error record
is created. When all details for a receipt have been processed, the error records for that
receipt are grouped by the error type. Error objects are collected in an error table, which
is passed back to the RIB for additional processing. This type of error handling allows all
valid records to be processed even when an invalid record is encountered.
RMSSUB_RECEIPT_ERROR.INIT
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE)

This function initializes variables for error processing. It is called in the 'init' section of
the RMSSUB_RECEIPT.CONSUME() function.
RMSSUB_RECEIPT_ERROR.BEGIN_RECEIPT
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_appt_nbr IN APPT_HEAD.APPT%TYPE,
 I_rib_receipt_rec IN “RIB_Receipt_REC”)

Receiving Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 241

This function is called once for each receipt within
RMSSUB_STKORD_RECEIPT.CONSUME(). It copies the header information into the
package level variables. This information is used when an error record is created.

RMSSUB_RECEIPT_ERROR.ADD_ERROR
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_error_type IN VARCHAR2,
 I_error_code IN VARCHAR2,
 I_error_desc IN VARCHAR2,
 I_error_level IN VARCHAR2,
 I_error_object IN RIB_OBJECT)

Used whenever an item or carton error occurs within the stock order receiving process.
All calls to this function occur within RMSSUB_STKORD_RECEIPT.CONSUME.

Parameter explanation:

 O_error_message: any error message created if this function fails (EXCEPTION).
 I_error_type: either 'BL' for business logic process error, or 'SY' for system error.

Currently, 'BL' type errors are limited to BOL/carton level business validation errors.

 I_error_code: a specific code to identify why/how the error occurred.

 I_error_desc: text description of the error.

 I_error_level: lets the package know how to cast the I_detail_rec. Valid values are
'RECEIPT', 'BOL', 'CARTON', 'ITEM'.

 I_detail_rec: record which is in error. May be a rib_receipt_rec (RECEIPT or BOL
level), rib_receiptdtl_rec (ITEM level), or rib_receiptcartondtl_rec (CARTON level).
This value will be cast based on I_error_level.

This function creates a new error record based on the error level passed in (casting the
I_error_object appropriately). If the error level is RECEIPT or BOL, then a rib_receipt_rec
is created. If the error level is CARTON, a rib_receiptcartondtl_rec is created. If error
level is ITEM, a rib_receiptdtl_rec is created. After creating this error record, it is added
to the table of error records.
RMSSUB_RECEIPT_ERROR.END_RECEIPT
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE)

This function is called from RMSSUB_STKORD_RECEIPT.CONSUME when all details of
a receipt have been processed. It takes all of the error records for this receipt and groups
them according to the type of error. It then creates an error object for each error type,
adding detail nodes for each error record. When this is finished, it adds all of the error
records to the error table.

RMSSUB_RECEIPT_ERROR.FINISH
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_rib_error_tbl OUT RIB_ERROR_TBL)

If any errors exist on the package level error table then the error table is copied into the
output parameter (O_rib_error_tbl), which in turn gets passed out to the RIB for further
processing. This function is called in the 'finish' section of the
RMSSUB_STKORD_RECEIPT.CONSUME function.

Filename: stkordrcvs/b.pls
STOCK_ORDER_RCV_SQL.TSF_BOL_CARTON
(O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_appt IN APPT_HEAD.APPT%TYPE,
 I_shipment IN SHIPMENT.SHIPMENT%TYPE,
 I_to_loc IN SHIPMENT.TO_LOC%TYPE,
 I_bol_no IN SHIPMENT.BOL_NO%TYPE,

Subscription Designs

242 Oracle Retail Merchandising System

 I_receipt_no IN APPT_DETAIL.RECEIPT_NO%TYPE,
 I_disposition IN INV_STATUS_CODES.INV_STATUS_CODE%TYPE,
 I_tran_date IN PERIOD.VDATE%TYPE,
 I_item_table IN ITEM_TAB,
 I_qty_expected_table IN QTY_TAB,
 I_weight IN ITEM_LOC_SOH.AVERAGE_WEIGHT%TYPE,
 I_weight_uom IN UOM_CLASS.UOM%TYPE,
 I_inv_status_table IN INV_STATUS_TAB,
 I_carton_table IN CARTON_TAB,
 I_distro_no_table IN DISTRO_NO_TAB,
 I_tampered_ind_table IN TAMPERED_IND_TAB,
 I_wrong_store_ind IN VARCHAR2,
 I_wrong_store IN SHIPMENT.TO_LOC%TYPE)

This function performs the BOL or carton level receiving for a transfer. It does the
following:

 Update shipment to received status along with the received date.

 For each item on the SHIPSKU, builds an API record for transferring the item. An
orderable but non-sellable and non-inventory item cannot be transferred. The
message contains physical locations, but a transfer created in RMS (non-‘EG’ type)
contains virtual locations only. The physical locations are converted to virtual
locations if necessary.

 Because an externally generated transfer (type ‘EG’) holds physical locations on
TSFHEAD, and physical warehouses do not have transfer entities, this API does not
support the receiving of an externally generated warehouse to warehouse transfer
when system option INTERCOMPANY_TSF_IND is ‘Y’. However, it does allow
store to warehouse ‘EG’ transfer, because it is assumed that store is sending
merchandise to the virtual warehouse within the same channel, hence the same
transfer entity.

 When receiving a transfer to a finisher location, all stock will be received into the
available bucket regardless of the inventory disposition on the message.

 When system option WRONG_ST_RECEIPT is ‘Y’, stock can be received at a store
not originally intended. Inventory and stock ledger is adjusted for both the intended
and the actual receiving store.

 The received quantity on TSFDETAIL is updated. If it is a wrong store receiving, the
reconciled quantity on TSFDETAIL is updated.

 The received quantity and received weight on SHIPSKU are updated. If SHIPSKU is
not found, a new receipt is created.

 For an ‘EG’ type of transfer, the received quantity is distributed among the virtual
locations of the physical location based on SHIPMENT_INV_FLOW, and the
received quantity on SHIPMENT_INV_FLOW is updated.

 For an ‘MRT’ type of transfer, the received quantity on MRT_ITEM_LOC is updated.

 The table APPT_DETAIL is updated if an appointment exists for the transfer detail;
otherwise, a record is inserted into DOC_CLOSE_QUEUE.

 A call to DETAIL_PROCESSING to perform the bulk of the transfer receiving logic,
including moving inventory from the in transit to the stock on bucket for the
receiving location is made. For overage receiving, the stock on hand is adjusted for
both the sending and receiving locations, the av_cost for the receiving location is
adjusted and records are written to the stock ledger.

STOCK_ORDER_RCV_SQL.TSF_LINE_ITEM
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_loc IN ITEM_LOC.LOC%TYPE,
 I_item IN ITEM_MASTER.ITEM%TYPE,
 I_qty IN TRAN_DATA.UNITS%TYPE,

Receiving Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 243

 I_weight IN ITEM_LOC_SOH.AVERAGE_WEIGHT%TYPE,
 I_weight_uom IN UOM_CLASS.UOM%TYPE,
 I_transaction_type IN VARCHAR2,
 I_tran_date IN PERIOD.VDATE%TYPE,
 I_receipt_number IN APPT_DETAIL.RECEIPT_NO%TYPE,
 I_bol_no IN SHIPMENT.BOL_NO%TYPE,
 I_appt IN APPT_HEAD.APPT%TYPE,
 I_carton IN SHIPSKU.CARTON%TYPE,
 I_distro_type IN VARCHAR2,
 I_distro_number IN TSFHEAD.TSF_NO%TYPE,
 I_disp IN INV_STATUS_CODES.INV_STATUS_CODE%TYPE,
 I_tampered_ind IN SHIPSKU.TAMPERED_IND%TYPE,
 I_dummy_carton_ind IN SYSTEM_OPTIONS.DUMMY_CARTON_IND%TYPE)

Similar to TSF_BOL_CARTON, this function performs transfer receiving for one line
item. In addition, if the item is indicated as a dummy carton on the message, it writes
staging records to the DUMMY_CARTON_STAGE table. The actual matching and
receiving of dummy carton transfers is performed during the batch cycle via
dummyctn.pc.

STOCK_ORDER_RCV_SQL.ALLOC_BOL_CARTON
(O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_appt IN APPT_HEAD.APPT%TYPE,
 I_shipment IN SHIPMENT.SHIPMENT%TYPE,
 I_to_loc IN SHIPMENT.TO_LOC%TYPE,
 I_bol_no IN SHIPMENT.BOL_NO%TYPE,
 I_receipt_no IN APPT_DETAIL.RECEIPT_NO%TYPE,
 I_disposition IN
 INV_STATUS_CODES.INV_STATUS_CODE%TYPE,
 I_tran_date IN PERIOD.VDATE%TYPE,
 I_item_table IN ITEM_TAB,
 I_qty_expected_table IN QTY_TAB,
 I_weight IN ITEM_LOC_SOH.AVERAGE_WEIGHT%TYPE,
 I_weight_uom IN UOM_CLASS.UOM%TYPE,
 I_inv_status_table IN INV_STATUS_TAB,
 I_carton_table IN CARTON_TAB,
 I_distro_no_table IN DISTRO_NO_TAB,
 I_tampered_ind_table IN TAMPERED_IND_TAB,
 I_wrong_store_ind IN VARCHAR2,
 I_wrong_store IN SHIPMENT.TO_LOC%TYPE)

This function performs the BOL or carton level receiving for an allocation. It does the
following:

 Updates the shipment to received status along with the received date.
 For each item on the SHIPSKU, builds an API record for allocating the item. An

orderable but non-sellable and non-inventory item cannot be allocated.

 Validates that item is on the allocation.

 When system option WRONG_ST_RECEIPT is ‘Y’, stock can be received at a store
not originally intended. Inventory and stock ledger are adjusted for both the
intended and the actual receiving store.

 Validates that ALLOC_DETAIL exists. Updates received quantity on
ALLOC_DETAIL. If it is a wrong store receiving, updates the reconciled quantity on
ALLOC_DETAIL.

 Updates received quantity and received weight on SHIPSKU. If SHIPSKU is not
found, creates a new receipt for that.

 Updates APPT_DETAIL if appointment exists for the allocation detail; otherwise,
inserts into DOC_CLOSE_QUEUE.

 Calls DETAIL_PROCESSING to perform the bulk of the allocation receiving logic,
including moving inventory from the in transit to the stock on bucket for the

Subscription Designs

244 Oracle Retail Merchandising System

receiving location. For overage receiving, adjusts stock on hand for both the sending
and receiving locations, adjusts av_cost for the receiving location and writes stock
ledger.
STOCK_ORDER_RCV_SQL.ALLOC_LINE_ITEM

(O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_loc IN ITEM_LOC.LOC%TYPE,
 I_item IN ITEM_MASTER.ITEM%TYPE,
 I_qty IN TRAN_DATA.UNITS%TYPE,
 I_weight IN ITEM_LOC_SOH.AVERAGE_WEIGHT%TYPE,
 I_weight_uom IN UOM_CLASS.UOM%TYPE,
 I_transaction_type IN VARCHAR2,
 I_tran_date IN PERIOD.VDATE%TYPE,
 I_receipt_number IN APPT_DETAIL.RECEIPT_NO%TYPE,
 I_bol_no IN SHIPMENT.BOL_NO%TYPE,
 I_appt IN APPT_HEAD.APPT%TYPE,
 I_carton IN SHIPSKU.CARTON%TYPE,
 I_distro_type IN VARCHAR2,
 I_distro_number IN ALLOC_HEADER.ALLOC_NO%TYPE,
 I_disp IN INV_STATUS_CODES.INV_STATUS_CODE%TYPE,
 I_tampered_ind IN SHIPSKU.TAMPERED_IND%TYPE,
 I_dummy_carton_ind IN SYSTEM_OPTIONS.DUMMY_CARTON_IND%TYPE)

Similar to ALLOC_BOL_CARTON, this function performs allocation receiving for one
line item. In addition, if the item is indicated as a dummy carton on the message, it writes
staging records to the DUMMY_CARTON_STAGE table. The actual matching and
receiving of dummy carton allocations is performed during the batch cycle via
dummyctn.pc.
STOCK_ORDER_RCV_SQL.INIT_TSF_ALLOC_GROUP
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE)

For performance reasons, bulk processing is used for stock order receiving. This function
initializes global variables for bulk processing and populates system options.
STOCK_ORDER_RCV_SQL.FINISH_TSF_ALLOC_GROUP
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE)

For performance reasons, bulk processing is used for stock order receiving. This function
bulk updates APPT_DETAIL, bulk updates DOC_CLOSE_QUEUE and TRAN_DATA.

Filename: ordrcvs/b.pls
ORDER_RCV_SQL.PO_LINE_ITEM
 (O_error_message IN OUT rtk_errors.rtk_text%TYPE,
 I_loc IN item_loc.loc%TYPE,
 I_order_no IN ordhead.order_no%TYPE,
 I_item IN item_master.item%TYPE,
 I_qty IN tran_data.units%TYPE,
 I_tran_type IN VARCHAR2,
 I_tran_date IN DATE,
 I_receipt_number IN appt_detail.receipt_no%TYPE,
 I_asn IN shipment.asn%TYPE,
 I_appt IN appt_head.appt%TYPE,
 I_carton IN shipsku.carton%TYPE,
 I_distro_type IN VARCHAR2,
 I_distro_number IN alloc_header.alloc_no%TYPE,
 I_destination IN alloc_detail.to_loc%TYPE,
 I_disp IN inv_status_codes.inv_status_code%TYPE,
 I_unit_cost IN ordloc.unit_cost%TYPE,
 I_shipped_qty IN shipsku.qty_expected%TYPE,
 I_weight IN item_loc_soh.average_weight%TYPE,
 I_weight_uom IN UOM_CLASS.UOM%TYPE,
 I_online_ind IN VARCHAR2)

Receiving Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 245

This function is called once for each PO line item received. It validates input and calls
RCV_LINE_ITEM for each item/location.

 If the PO received is a cross-dock PO to a warehouse, an allocation must exist for the
PO/allocation/item/warehouse combination. The message will contain a physical
warehouse, whereas ALLOC_HEADER will contain a virtual warehouse.

 If the item is received to a physical warehouse, then this function calls the
distribution logic to determine each item/virtual warehouse/quantity, and calls
RCV_LINE_ITEM for each of these combinations.

 If a simple pack catch weight item is received, it also updates SHIPSKU weight
received and weight received UOM.

ORDER_RCV_SQL.RCV_LINE_ITEM
(O_error_message IN OUT rtk_errors.rtk_text%TYPE,
 I_phy_loc IN item_loc.loc%TYPE,
 I_loc IN item_loc.loc%TYPE,
 I_loc_type IN item_loc.loc_type%TYPE,
 I_order_no IN ordhead.order_no%TYPE,
 I_item IN item_master.item%TYPE,
 I_qty IN tran_data.units%TYPE,
 I_tran_type IN VARCHAR2,
 I_tran_date IN DATE,
 I_receipt_number IN appt_detail.receipt_no%TYPE,
 I_asn IN shipment.asn%TYPE,
 I_appt IN appt_head.appt%TYPE,
 I_carton IN shipsku.carton%TYPE,
 I_distro_type IN VARCHAR2,
 I_distro_number IN tsfhead.tsf_no%TYPE,
 I_destination IN alloc_detail.to_loc%TYPE,
 I_disp IN inv_status_codes.inv_status_code%TYPE,
 I_unit_cost IN ordloc.unit_cost%TYPE,
 I_shipped_qty IN shipsku.qty_expected%TYPE,
 I_weight IN item_loc_soh.average_weight%TYPE,
 I_weight_uom IN UOM_CLASS.UOM%TYPE,
 I_online_ind IN VARCHAR2)

This function is called for each item/location combination. It validates input and
performs PO receiving logic for each item.

 Receiving (tran_type = ‘R’) must be against a valid approved order; adjustment
(tran_type = ‘A’) must be against a valid approved or closed order.

 Item on the message may be a referential item. Get its transaction level item.

 An orderable, but non-sellable and non-inventory item cannot be received.
 For a deposit content item, its container item is also received and added to the order

if not already on the order.

 Inserts or updates ORDLOC for quantity received.

 Updates APPT_DETAIL if appointment exists; otherwise, insert into
DOC_CLOSE_QUEUE.

 Inserts or updates SHIPMENT to received status.
 Inserts or updates SHIPSKU for received quantity. If SHIPSKU.QTY_RECEIVED is

updated, also updates INVC_MATCH_WKSHT.MATCH_TO_QTY.

 If no deals exist for this order/item/loc, then INVC_SQL.UPDATE_INVOICE is
called to perform invoice matching logic.

 Updates average cost and stock on hand for the stock received. If a pack is on the
order, the updates are performed for the component items.

 Writes TRAN_DATA records (tran code 20) for the stock received. If a pack is on the
order, TRAN_DATA records are written for the component items.

Subscription Designs

246 Oracle Retail Merchandising System

 Writes SUP_DATA.

 Request tickets to be printed if location is a store.

 If this is an adjustment to a closed order, sets the status back to 'A'pproved.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

receiptcre Receipt Create Message ReceiptDesc.xsd

receiptordcre Receipt Create Message ReceiptDesc.xsd

receiptmod Receipt Modify (Adjustment) Message ReceiptDesc.xsd

Design Assumptions
1. The stock order subscription process supports the break-to-sell functionality.

Transfers, allocations and shipments in RMS will only contain break to sell orderable
items. Inventory adjustment and stock ledger will be performed on the orderable
only, not the sellable.

2. The stock order and order subscription process supports the catch weight
functionality. It is assumed that a break-to-sell sellable item cannot be a simple pack
catch weight item.

3. An externally generated transfer will contain physical locations. When system
options INTERCOMPANY_TSF_IND = ‘Y’, the stock order receiving process
currently does not support the receiving of an externally generated transfer that
involves a warehouse to warehouse transfer. This is because a physical location does
not have transfer entities.

4. Wrong store receiving is not supported for franchise transactions.

Table Impact

TABLE SELECT INSERT UPDATE DELETE

TSFHEAD Yes No Yes No

TSFDETAIL Yes Yes Yes No

ALLOC_HEADER Yes No Yes No

ALLOC_DETAIL Yes No Yes No

ORDHEAD Yes No Yes No

ORDSKU Yes Yes Yes No

ORDLOC Yes Yes Yes No

SHIPMENT Yes Yes Yes No

SHIPSKU Yes Yes Yes No

TRAN_DATA No Yes No No

SUP_DATA No Yes No No

Receiving Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 247

TABLE SELECT INSERT UPDATE DELETE

ITEM_LOC_SOH Yes Yes Yes No

ITEM_LOC Yes Yes No No

ITEM_ZONE_PRICE Yes Yes No No

PRICE_HIST No Yes No No

SHIPITEM_INV_FLOW Yes Yes Yes No

MRT_ITEM_LOC Yes No Yes No

APPT_DETAIL Yes No Yes No

DOC_CLOSE_QUEUE No Yes No No

DUMMY_CARTON_STAGE No Yes No No

ALC_HEAD Yes Yes Yes No

CONTRACT_HEADER Yes No Yes No

CONTRACT_DETAIL Yes No Yes No

INVC_MATCH_WKSHT Yes No Yes No

INVC_HEAD Yes Yes Yes No

INVC_DETAIL Yes Yes Yes No

INVC_TOLERANCE Yes Yes Yes Yes

INVC_XREF Yes Yes No No

INVC_MATCH_VAT Yes Yes Yes No

TERMS Yes No No No

SUPS Yes No No No

VAT_REGION Yes No No No

DEPS Yes No No No

WEEK_DATA Yes No No No

MONTH_DATA Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

ITEM_SUPP_COUNTRY_LOC Yes Yes No No

ITEM_SUPP_COUNTRY_DIM Yes No No No

UOM_CLASS Yes No No No

NWP Yes Yes Yes No

STORE Yes No No No

WH Yes No No No

ITEM_MASTER Yes No No No

V_PACKSKU_QTY Yes No No No

ITEM_XFORM_HEAD Yes No No No

ITEM_XFORM_DETAIL Yes No No No

CURRENCIES Yes No No No

Subscription Designs

248 Oracle Retail Merchandising System

TABLE SELECT INSERT UPDATE DELETE

CURRENCY_RATES Yes No No No

PERIOD Yes No No No

SYSTEM_OPTIONS Yes No No No

RTV Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 249

RTV Subscription API
Functional Area

Return to Vendor

Business Overview
RMS subscribes to return-to-vendor (RTV) messages from the RIB. When an RTV is
shipped out from a warehouse or store, the RTV information is sent from the external
system (such as RWMS and SIM) to the RIB. RMS subscribes to the RTV information as
published from the RIB and places the information onto RMS tables, depending on the
validity of the records enclosed within the message.
The RTV message can be processed as a flat message when the header description
contains information for one RTV item. The message can also be processed as a
hierarchical message when the detail node is populated with one or more RTV items.
RMS primarily uses these messages to update inventory quantities and stock ledger
values.

L10N Localization Decoupling Layer:
This is a layer of code which enables decoupling of localization logic that is only required
for certain country-specific configuration. This layer affects the RIB API flows including
RTV subscription. This allows RMS to be installed without requiring customers to install
or use this localization functionality, where not required.

Package Impact

Filename: rmssub_rtvs/b.pls
RMSSUB_RTV.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure initially ensures that the passed in message type is a valid type for RTV
messages. The valid message types for RTV messages are listed in the Message XSD
section below.

If the message type is invalid, a status of “E” is returned to the external system along
with an appropriate error message informing the external system that the message type
is invalid.
If the message type is valid, the generic RIB_OBJECT is downcast to the actual object
using the Oracle treat function. If the downcast fails, a status of “E” is returned to the
external system along with an appropriate error message informing the external system
that the object passed in is invalid.

If the downcast is successful, then consume parses the message, verifies that the message
passes all of RMS’s business validation and persists the information to the RMS database.
It does this by calling CONSUME_RTV.

 RMSSUB_RTV.CONSUME_RTV

 (O_status_code IN OUT VARCHAR2,

 O_error_message IN OUT VARCHAR2,

 I_message IN RIB_OBJECT,

 I_message_type IN VARCHAR2,

Subscription Designs

250 Oracle Retail Merchandising System

 I_check_l10n_ind IN VARCHAR2)

 Performs localization check. If localized, invoke RFM’s logic through L10N_SQL
decoupling layer for procedure key ‘CONSUME_RTV’. If not localized, call
CONSUME_RTV for normal processing.

 RMSSUB_RTV.CONSUME_RTV

 (O_error_message IN OUT VARCHAR2,

 IO_L10N_RIB_REC IN OUT L10N_OBJ)

 Public function to call RMSSUB_RTV.CONSUME_RTV_CORE.

 RMSSUB_RTV.CONSUME_RTV_CORE

 (O_error_message IN OUT VARCHAR2,
 I_message IN RIB_OBJECT,

 I_message_type IN VARCHAR2)

This function contains the main processing logic:

If the downcast is successful, then consume calls PARSE_RTV to parse the RTV message
and PROCESS_RTV to perform business validation and desired functionality. Any time
the message fails business validation, a status of “E” is returned to the external system
along with an appropriate error message.

Once the message has been successfully processed, a success status, “S”, is returned to
the external system indicating that the message has been successfully received and
persisted to the RMS database.

PARSE_RTV
This function parses the RIB_OBJECT and builds an API rtv_record for processing.

Gross cost can be included in the detail RIB_RTVDtl_REC. If the gross cost is present,
then it is stored as unit_cost and unit_cost is stored as extended_base_cost.

Jurisdiction code also is determined based on supplier.

PROCESS_RTV
This function calls RTV_SQL.APPLY_PROCESS to perform all business validation and
desired functionality associated with a RTV message.
For break to sell items, if a sellable only item is on the message, CHECK_ITEMS and
GET_ORDERABLE_ITEMS are called to convert the sellable item(s) to the corresponding
orderable item(s). The orderable items are inserted or updated on the tables affected by
an RTV.

The RTV_SQL.APPLY_PROCESS is called for each of the orderable items and each of the
regular items.

CHECK_ITEMS
This function separates the item details on the message into two groups: one contains
sellable only items and one contains regular items.

GET_ORDERABLE_ITEMS
This function builds a collection of orderable items based on the sellable items. It calls
ITEM_XFORM_SQL.RTV_ORDERABLE_ITEM_INFO to distribute the sellable quantities
among the orderable items.

RTV Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 251

Filename: rtvs/b.pls

RTV_SQL.APPLY_PROCESS
This function performs business validation and desired functionality for a RTV message.
It includes the following:

 Verifies that an orderable but non-sellable and non-inventory item cannot be an RTV
item.

 Verifies that an RTV item must be a tran-level or above tran-level item.

 If the RTV item is a simple pack catch weight item, verifies that weight and weight
unit of measure (UOM) are either both defined or both NULL, and weight UOM is in
the MASS UOM class.

 Verifies that the item supplier relation exists.

 Verifies that the location is a valid store or warehouse.

 Verifies that the item/loc relation exists.

 If returning a pack to a warehouse, the pack must be received as pack at the
warehouse.

 Verifies that from disposition is a valid inventory status code (on
INV_STATUS_CODES).

 Verifies that the reason code is a valid RTV reason code (code type ‘RTVR’ on
CODE_DETAIL).

 For an externally generated RTV, if the location is a warehouse, then physical
location is on the message. RTV quantity will be distributed among the virtual
locations of the physical location.

 Checks for the existence of RTV in RTV_HEAD based on: a) rtv_order_no; b)
ext_ref_no and location. An RTV is updated if it already exists and inserted if not.
The RTV is marked as shipped.

 Checks for the existence of RTV item in RTV_DETAIL based on: rtv_order_no, item,
reason and inventory status. An RTV_DETAIL is updated if it already exists and
inserted if not.

 If the RTV item is a content item of a deposit item, RTV_DETAIL is inserted or
updated for the associated container item.

 Determines RTV unit cost as the following:

 Uses the unit cost on the RTV message if defined. It is in location currency.
Otherwise.

 Uses RTV_DETAIL.unit_cost if exists. It is in supplier currency. Otherwise.

 Uses the last receipt cost if exists. It is in location currency. Otherwise.

 Uses item’s WAC at the location. It is in location currency.

 The unit cost is used to evaluate the cost of the RTV goods. The cost values on
RTV tables are written in supplier currency, but all TRAN_DATA records are
written in location currency.

 If the RTV item is a simple pack catch weight item, the total RTV cost is based on
weight.

 Updates the following stock buckets on ITEM_LOC_SOH: RTV_QTY,
STOCK_ON_HAND, PACK_COMP_SOH. For a simple pack catch weight item at
the warehouse, also updates average weight.

 Writes the following TRAN_DATA records:

 24 – for RTV. It writes units, total_cost and total_retail.

Subscription Designs

252 Oracle Retail Merchandising System

 71/72 – for cost variance between item’s WAC at the location and RTV unit cost.
It writes units and total_cost.

 65 – for restocking fees. For a non-MRT type of RTV, the restocking fee is written
for the RTV location. For an MRT type of RTV, the restocking fee is distributed
among the MRT locations. It writes units and total_cost.

 22 – for stock adjustment, if stock counting has already happened at the store for
the item.

If the RTV item is a pack, TRAN_DATA is written for component items. If the
RTV location is a physical warehouse, TRAN_DATA is written for virtual
locations. TRAN_DATA total cost and total retail are always written in location
currency.

 Creates or updates INVC_HEAD and INVC_DETAIL for the RTV.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

rtvcre RTV Create Message RTVDesc.xsd

Design Assumptions
1. Catch weight functionality is not applied to the following areas:

 Any of the retail calculations (including total_retail on TRAN_DATA and retail
markup/markdown).

 The total amount on SUP_DATA.

 Open to buy buckets.
 When a catch weight component item’s standard UOM is a MASS UOM,

TRAN_DATA.units is based on V_PACKSKU_QTY.qty instead of the actual
weight.

2. MRT RTV can only be created in RMS. Therefore it will only contain virtual
locations. Physical location distribution logic does not apply to MRT RTVs.

Table Impact

TABLE SELECT INSERT UPDATE DELETE

RTV_HEAD Yes Yes Yes No

RTV_DETAIL Yes Yes Yes No

ITEM_LOC_SOH Yes No Yes No

TRAN_DATA No Yes No No

INV_STATUS_CODES Yes No No No

CODE_DETAIL Yes No No No

ITEM_MASTER Yes No No No

ITEM_SUPPLIER Yes No No No

RTV Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 253

TABLE SELECT INSERT UPDATE DELETE

ITEM_SUPP_COUNTRY Yes No No No

ITEM_LOC Yes No No No

STORE Yes No No No

WH Yes No No No

SHIPMENT Yes No No No

SHIPSKU Yes No No No

DEPS Yes No No No

SUPS Yes No No No

ADDR Yes No No No

UOM_CLASS Yes No No No

V_PACKSKU_QTY Yes No No No

MRT_ITEM_LOC Yes No No No

ITEM_XFORM_HEAD Yes No No No

ITEM_XFORM_DETAIL Yes No No No

INVC_HEAD Yes Yes Yes Yes

INVC_DETAIL Yes Yes No Yes

INVC_NON_MERCH No Yes No Yes

INVC_MERCH_VAT Yes Yes Yes Yes

INVC_DETAIL_VAT Yes No No Yes

INVC_MATCH_QUEUE Yes No No Yes

INVC_DISCOUNT Yes No No Yes

INVC_TOLERANCE Yes No No Yes

ORDLOC_INVC_COST Yes No Yes No

NON_MERCH_CODE_HEAD Yes No No No

Subscription Designs

254 Oracle Retail Merchandising System

Stock Order Status Subscription API

Functional Area
Stock Order Status

Business Overview
A stock order is an outbound merchandise request from a warehouse or store. In RMS, a
stock order takes the form of either a transfer or allocation. RMS subscribes to stock order
status messages from the RIB, published by an external application, such as a store
system (SIM, for example) or a warehouse management system (RWMS, for example) to
communicate the status of a specific stock order. This communication provides for the
synchronization of data between RWMS/SIM and RMS. The information from RWMS
and SIM has only one level, in other words no detail records. RMS uses the data
contained in the messages to:

 Updates are made to the following tables when the status of the ‘distro’ changes at
the store or warehouse:

 ALLOC_DETAIL
 ITEM_LOC_SOH

 TSFDETAIL

 Used to determine when the store or warehouse is processing a transfer or allocation.
In-process transfers or allocations cannot be edited and are determined by the initial
and final quantities to be filled by the external system.

 When RMS is integrated with an external Order Management System (OMS), OMS
will subscribe to SOStatus messages published from SIM and WMS when a store or
warehouse cannot fulfill a customer order. OMS, in turn, sends a customer order
cancellation request to RMS. In order to prevent duplicate processing for the same
cancellation message, this subscription API will ignore ‘no inventory’ statuses
received from RWMS and SIM for a customer order transfer.

Stock Order Status Explanations
The following tables describe the stock order statuses for both transfers and allocation
document types and what occurs in RMS after receiving the respective status.
Document_types of ‘T’, ‘D’ and ‘S’ indicate if the transfer is initiated in RMS, a
warehouse system, or a store system respectively. Statuses other than listed below are
ignored by RMS.

Stock order status received in message on a transfer
(where ‘distro_document_type’ = ‘T’, ‘D’, ‘S’)

What RMS does

SI
(Stock Increased)

When SIM or RWMS publishes a message on a transfer with a
status of SI (Stock Increased), RMS will insert or update
TSFDETAIL for the transfer/item combination.

Insert or increase
tsfdetail.tsf_qty

Increase
item_loc_soh.tsf_reserved_qty
for the from location and
item_loc_soh.tsf_expected_qty
for the to location

Stock Order Status Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 255

Stock order status received in message on a transfer
(where ‘distro_document_type’ = ‘T’, ‘D’, ‘S’)

What RMS does

SD
(Stock Decreased)

When SIM or RWMS publishes a message on a transfer with a
status of SD (Stock Decreased), RMS will delete or update
TSFDETAIL for the transfer/item combination.

Delete or decrease
tsfdetail.tsf_qty.

Decrease
item_loc_soh.tsf_reserved_qty
for the from location and
item_loc_soh.tsf_expected_qty
for the to location

DS
(Details Selected)

When RWMS publishes a message on a transfer with a status of
DS (Details Selected), RMS will increase the selected quantity
on TSFDETAIL for the transfer/item combination.

Increase tsfdetail.selected_qty

DU
(Details Un-selected)

When RWMS publishes a message on a transfer with a status of
DU (Details Un-Selected), RMS decreases the selected quantity
on TSFDETAIL for the transfer/item combination.

Decrease tsfdetail.selected_qty

NI
(WMS Line Cancellation)

When RWMS publishes a message on a transfer with a status
of NI (No Inventory – WMS Line Cancellation), RMS will
decrease the selected quantity by the quantity on the
message. RMS will also increase the cancelled quantity,
decrease the transfer quantity, decrease the reserved
quantity* for the from location, and decrease the expected
quantity* for the to location by the lesser of 1.) the quantity
on the message; 2.) the transfer quantity – shipped quantity.

 *If the transfer status is not Closed.

Decrease tsfdetail.selected_qty and
tsfdetail.tsf_qty, increase
tsfdetail.cancelled_qty, decrease
item_loc_soh.tsf_reserved_qty for
the from location and
item_loc_soh.tsf_expected_qty for
the from location

Put transfer on doc_close_queue

PP
(Distributed)

When RWMS publishes a message on a transfer with a status
of PP (Pending Pick - Distributed), RMS will decrease the
selected quantity and increase the distro quantity.

Decrease tsfdetail.selected_qty,
increase tsfdetail.distro_qty

PU
(Un-Distribute)

When RWMS publishes a message on a transfer with a status
of PU (Un-Distribute), RMS will decrease the distributed qty.

Decrease tsfdetail.distro_qty

RS
(Return To Stock)

When RWMS published a message on a transfer with a
status of RS (Return To Stock), RMS will decrease the
distributed qty. RMS will also increase the cancelled
quantity, decrease the transfer quantity, decrease the
reserved quantity* for the from location, and decrease the
expected quantity* for the to location by the lesser of 1.) the
quantity on the message; 2.) the transfer quantity – shipped
quantity.

 *If the transfer status is not Closed.

Decrease tsfdetail.distro_qty and
tsfdetail.tsf_qty, increase
tsfdetail.cancelled_qty, decrease
item_loc_soh.tsf_reserved_qty for
the from location and
item_loc_soh.tsf_expected_qty for
the from location

Subscription Designs

256 Oracle Retail Merchandising System

Stock order status received in message on a transfer
(where ‘distro_document_type’ = ‘T’, ‘D’, ‘S’)

What RMS does

EX
(Expired)

When RWMS publishes a message on a transfer with a status
of EX (Expired), RMS will increase the cancelled quantity,
decrease the transfer quantity, decrease the reserved
quantity* for the from location, and decrease the expected
quantity* for the to location by the lesser of 1.) the quantity
on the message; 2.) the transfer quantity – shipped quantity.

*If the transfer status is not Closed.

Increase tsfdetail.cancelled_qty,
decrease tsfdetail.tsf_qty,
item_loc_soh.tsf_reserved_qty for
the from location and
item_loc_soh.tsf_expected_qty for
the To location

Put transfer on doc_close_queue

SR
(Store Reassign)

When RWMS publishes a message on a transfer with a status
of SR (Store Reassign) the quantity can be either positive or
negative. In either case it will be added to the distro_qty
(adding a negative will have the same effect as subtracting
it).

Add to tsfdetail.distro_qty

Stock order status received in message

on an ALLOCATION
(where ‘distro_document_type’ = ‘A’)

What RMS does

SI
(Stock Increased)

When SIM or RWMS publishes a message on an allocation with
a status of SI (Stock Increased), RMS will increase
ALLOC_DETAIL for the allocation/item combination.

Increase
alloc_detail.qty_allocated

Increase
item_loc_soh.tsf_reserved_qty
for the from location and
item_loc_soh.tsf_expected_qty
for the To location

SD
(Stock Decreased)

When SIM or RWMS publishes a message on an allocation with
a status of SD (Stock Decreased), RMS will decrease
ALLOC_DETAIL for the allocation/item combination.

Decrease
alloc_detail.qty_allocated.

Decrease
item_loc_soh.tsf_reserved_qty
for the from location and
item_loc_soh.tsf_expected_qty
for the To location

DS
(Details Selected)

When RWMS publishes a message on an allocation with a status of DS
(Details Selected), RMS will increase the selected quantity on
alloc_detail for the allocation/item/location combination.

Increase alloc_detail.selected_qty

DU
(Details Un-Selected)

When RWMS publishes a message on an allocation with a status of DU
(Details Un-Selected), RMS will decrease the selected quantity on
alloc_detail for the allocation/item combination.

Decrease alloc_detail.selected_qty

Stock Order Status Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 257

Stock order status received in message

on an ALLOCATION
(where ‘distro_document_type’ = ‘A’)

What RMS does

NI
(WMS Line Cancellation)

When RWMS publishes a message on an allocation with a status of NI
(No Inventory – WMS Line Cancellation), RMS will decrease the
selected quantity by the quantity on the message. RMS will also
increase the cancelled quantity, decrease the allocated quantity,
decrease the reserved quantity* for the from location, and decrease the
expected quantity* for the to location by the lesser of 1.) the quantity on
the message; 2.) the allocation quantity – shipped quantity.

 *If the allocation status is not Closed and the allocation is a stand alone
allocation.

Decrease alloc_detail.qty_ selected
and alloc_detail.qty_allocated,
increase alloc_detail.cancelled_qty,
decrease
item_loc_soh.tsf_reserved_qty for
the from location and
item_loc_soh.tsf_expected_qty for
the to location

Put allocation on doc_close_queue

PP
(Distributed)

When RWMS publishes a message on an allocation with a status of PP
(Pending Pick - Distributed), RMS will decrement the selected quantity
and increment the distro quantity.

Decrease
alloc_detail.qty_selecteded,
increase alloc_detail.qty_distro

PU
(Un-Distribute)

When RWMS publishes a message on an allocation with a status of PU
(Un-Distribute), RMS will decrease the distributed qty.

Decrease alloc_detail.qty_distro

RS
(Return to Stock)

When RWMS published a message on an allocation with a status of RS
(Return to Stock), RMS will decrease the distributed qty. RMS will also
increase the cancelled quantity, decrease the allocated quantity,
decrease the reserved quantity* for the from location, and decrease the
expected quantity* for the to location by the lesser of 1.) the quantity on
the message; 2.) the allocation quantity – shipped quantity.

 *If the allocation status is not Closed and the allocation is a stand alone
allocation.

Decrease alloc_detail.qty_distro
and alloc_detail.qty_allocated,
increase alloc_detail.cancelled_qty,
decrease
item_loc_soh.tsf_reserved_qty for
the from location and
item_loc_soh.tsf_expected_qty for
the to location

EX
(Expired)

When RWMS publishes a message on an allocation with a status of EX
(Expired), RMS will increase the cancelled quantity, decrease the
allocated quantity, decrease the reserved quantity* for the from
location, and decrease the expected quantity* for the to location by the
lesser of 1.) the quantity on the message; 2.) the transfer quantity –
shipped quantity.

*If the allocation status is not Closed and the allocation is a stand alone
allocation.

Decrease alloc_detail.qty_allocated,
increase alloc_detail.qty_cancelled,
decrease
item_loc_soh.tsf_reserved_qty for
the from location and
item_loc_soh.tsf_expected_qty for
the to location

Put allocation on doc_close_queue

SR
(Store Reassign)

When RWMS publishes a message on an allocation with a status of SR
(Store Reassign) the quantity can be either positive or negative. In
either case, it will be added to the qty_distro (adding a negative will
have the same affect as subtracting it).

Add to alloc_detail.qty_distro

Subscription Designs

258 Oracle Retail Merchandising System

Pack Considerations
Whenever the from location is a warehouse, a check if the item is a pack or an each is
performed. If the item is not a pack item, no special considerations are necessary. For
each warehouse-pack item combination, the receive_as_type on ITEM_LOC is checked to
determine if it is received into the warehouse as a pack or a component item. If it is
received as an each, ITEM_LOC_SOH for the component item is updated. If it is received
as a pack, ITEM_LOC_SOH for the pack item and the component item are updated.

Package Impact

Filename: rmssub_sostatuss/b.pls

CONSUME
RMSSUB_SOSTATUS.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN “RIB_SOStatusDesc_REC”,
 I_message_type IN VARCHAR2);

This procedure accepts Stock Order Status information in the form of an Oracle Object
data type from the RIB (I_message) and a message type of ‘sostatuscre’. The procedure
first calls the RESET function to initialize internal variables. The procedure then extracts
the values from the oracle object. These are then passed on to private internal functions
which validate the values and place them on the database depending upon the success of
the validation.

BUILD_XTSFDESC
This function builds a RIB_XTsfDesc_REC object to be passed in the
RMSSUB_XTSF.CONSUME function.

HANDLE_ERRORS
HANDLE_ERRORS(O_status IN OUT VARCHAR2,
 IO_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_cause IN VARCHAR2,
 I_program IN VARCHAR2);

If an error occurs in this procedure or any of the internal functions, this procedure places
a call to HANDLE_ERRORS in order to parse a complete error message and pass back a
status to the RIB.

This function is used to put error handling in one place in order to make future error
handling enhancements easier to implement. The function consists of a call to
API_LIBRARY.HANDLE_ERRORS. API_LIBRARY.HANDLE_ERRORS accepts a
program name, the cause of the error and potentially an unparsed error message if one
has been created through a call to SQL_LIB.CREATE_MESSAGE. The function uses these
input variables to parse a complete error message and pass back a status, depending
upon the message and error type, back up through the consume function and up to the
RIB.

PARSE_SOS
This function first calls VALIDATE to check that the transfer or allocation from the oracle
object exists in RMS. If the transfer or allocation exists, the function breaks down the
message into its component parts and sends these parts into PROCESS_SOS. For
customer order transfers, the customer order number and fulfill order number is also
validated against the corresponding record in ORDCUST.

Stock Order Status Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 259

When RMS is integrated to OMS, this function skips processing for ‘NI’, ‘EX’, ‘SI’, ‘SD’,
‘PP’, ‘PU’ statuses received from RWMS and SIM for customer order transfers.

PROCESS_SOS
Based on the status sent from RWMS and SIM, quantity fields on either TSFDETAIL or
ALLOC_DETAIL and ITEM_LOC_SOH are updated.

VALIDATE
Validates the distro is valid. A distro refers to either a transfer or an allocation.

UPDATE_TSF
Updates the record on TSFDETAIL, if the message is for a transfer.

UPDATE_ALLOC
Updates the record on ALLOC_DETAIL, if the message is for an allocation.

UPD_FROM_ITEM_LOC
Updates item_loc_soh.tsf_reserved_qty for the From Location. If the comp_level_upd
indicator is ‘Y’ then it will also update the item_loc_soh.pack_comp_resv field for the
item passed in.

UPD_TO_ITEM_LOC
Updates item_loc_soh.tsf_expected_qty for the To Location. If the comp_level_upd
indicator is ‘Y’ then it will also update the item_loc_soh.pack_comp_exp field for the
item passed in.

GET_RECEIVE_AS_TYPE
This function gets the Receive as type value from ITEM_LOC for the passed-in item and
location combination.

POPULATE_DOC_CLOSE_QUEUE
This function is called to populate an array which holds stock order information that will
be placed on the DOC_CLOSE_QUEUE table.

RESET
This function deletes any values that are currently held in the package’s global variables.

DO_BULK
This function is used to do bulk inserts or updates of the ALLOC_DETAIL, TSFDETAIL,
TSFHEAD and DOC_CLOSE_QUEUE tables. The tables are updated/inserted using the
arrays that were built in the rest of the package.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

sostatuscre Stock Order Status Create Message SOStatusDesc.xsd

Subscription Designs

260 Oracle Retail Merchandising System

Design Assumptions
 One of the primary assumptions in the current API approach is that ease of code will

outweigh performance considerations. It is hoped that the ‘trickle’ nature of the flow
of data will decrease the need to dwell on performance issues and instead allow
developers to code in the easiest and most straight forward manner.

 The adaptor is only setup to call stored procedures, not stored functions. Any public
program then needs to be a procedure.

 SOStatus supports transfers and allocations linked to a franchise order or return. For
an existing transfer and allocation modified by a stock order status message, the
quantity change is NOT reflected on the franchise order or return since the franchise
order or return would have been approved already.

Table Impact

TABLE SELECT INSERT UPDATE DELETE

ITEM_LOC_SOH Yes Yes Yes No

ITEM_LOC Yes No No No

ALLOC_DETAIL Yes No Yes No

ALLOC_HEADER Yes No No No

TSFDETAIL Yes No Yes No

TSFHEAD Yes No Yes No

DOC_CLOSE_QUEUE No Yes No No

ORDCUST Yes No No No

SYSTEM_OPTIONS Yes No No No

V_PACKSKU_QTY Yes No No No

WF_ORDER_HEAD Yes Yes No No

WF_ORDER_DETAIL No Yes No No

WF_ORDER_EXP No Yes No No

Stock Count Schedule Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 261

Stock Count Schedule Subscription API

Functional Area
Inventory – Stock Counts

Business Overview
Stock count schedule messages are published to the RIB by an integration subsystem,
such as a store inventory management system, to communicate unit and value stock
count schedules to RMS. RMS uses stock count schedule data to help synchronize the
inventories of another application and RMS. The other application performs a physical
inventory count and uploads the results, and RMS compares the discrepancies.
This API allows external systems to create, update, and delete stock counts within RMS.
Only Unit and Value stock counts (stocktake_type = ‘B’) are subscribed by RMS at this
time. Department, class and subclass can be null; if not provided a full count is
presumed.

If the other application requires at year-end to consolidate annual and booking numbers,
the annual count can be initiated by the other application and uploaded into RMS. RMS
accepts the unit variances and processes these automatically. The financial values will
need user input from the central office.

Package Impact

Filename: rmssub_stakeschedules/b.pls
CONSUME (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2);

This package is used to subscribe to stock count schedule message, parse the details, and
pass them into the stock schedule package.

 If the message type is StkCountSchDel, validates before deleting the cycle count.

 For other message types, business validations are performed before creating or
updating the cycle count.

 Once the message has been successfully processed, there is nothing more for the
consume procedure to do. A success status, “S”, should be returned to the external
system indicating that the message has been successfully received and persisted to
the RMS database.

Filename: stake_schedules/b.pls
This package is used to validate stock schedule data and insert/update to the stock count
tables.

VALIDATE_VALUES
 Cannot delete a cycle count if it has been processed.

 Cannot update a cycle count that has started or has been set to be deleted.

 Cannot process anything if stock count is currently locked

VALIDATE_HIERARCHY
 Unit and Value stock counts at a warehouse must be at the department level only.

 Validates department, class and subclass.

Subscription Designs

262 Oracle Retail Merchandising System

VALIDATE_LOCATION
 Only stockholding (virtual) warehouses can be on a stock count.

PROCESS_PROD
 Validates and creates a STAKE_PRODUCT record. No validation is done if the

record is passed in for initial processing.

PROCESS_LOC
 Validates and creates a STAKE_LOCATION record. No validation is done if the

record is passed in for initial processing.

PROCESS_DEL
CREATE_SH_REC

 Creates a record for STAKE_HEAD.
CREATE_SP_REC

 Creates a STAKE_PRODUCT record.

DELETE_RECS

 Deletes from STAKE_PRODUCT and STAKE_LOCATION tables.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

StkCountSchCre Stock Count SCH Create Message StkCountSchDesc.xsd

StkCountSchMod Stock Count SCH Modify Message StkCountSchDesc.xsd

StkCountSchDel Stock Count SCH Delete Message StkCountSchRef.xsd

Table Impact

TABLE SELECT INSERT UPDATE DELETE

DEPS Yes No No No

STORE Yes No No No

WH Yes No No No

STAKE_HEAD Yes Yes Yes No

STAKE_PRODUCT No Yes No Yes

STAKE_LOCATION No Yes No Yes

SYSTEM_OPTIONS Yes No No No

Store Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 263

Store Subscription API

Functional Area
Foundation Data

Business Overview
The Store Subscription API provides the ability to keep store data in RMS in sync with an
external system, if RMS is not being used as the system of record for organizational
hierarchy information. The store data handled by the API includes basic store data plus
relationship data between stores and their location traits and walk-through stores.

When creating a new store in RMS, the API uses RMS store creation batch logic. When a
store creation message is received, it is validated and placed onto a staging table
STORE_ADD. The store creation in RMS reads from this table and creates the store in
RMS in an asynchronous mode.

When updating an existing store in RMS, the API performs the update immediately upon
message receipt.

The API also handles store delete messages. But, like the store creation message
subscription process, stores will not actually be deleted from the system upon receipt of
the message. After the data has been validated, the store is added to the DAILY_PURGE
table for processing via a batch process.

By default, stores inherit the location traits of the district to which they belong. However,
specific location traits can also be assigned at the store level. Using the incoming external
data, the API will create or delete relationships between stores and existing location
traits.

Walkthrough stores are used in RMS as part of the transfer reconciliation process and are
used to indicate two or more stores that have a ‘walk through’ connection between them
– on the sales floor and/or the backroom. Using the incoming external data, the API will
create or delete these relationships with stores as well.

Location trait and walkthrough store data cannot be sent in on a store create message.
The store creates program must first process the store before it can have details attached
to it.

Location trait and walkthrough store data must be processed separately as they each
have their own distinct message types. These detail create messages will contain a
snapshot of the store record. Note that location traits must already exist prior to being
added to the store.
Deletion of location trait and walkthrough store relationships will also be handled within
this API. The detail delete messages must be processed separately as they each have
their own distinct message types.

Consume Module

Filename: rmssub_xstores/b.pls
RMSSUB_XSTORE.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure will initially ensure that the passed in message type is a valid type for
store messages. If the message type is invalid, a status of ‘E’ will be returned to the

Subscription Designs

264 Oracle Retail Merchandising System

external system along with an appropriate error message informing the external system
that the status is invalid.

If the message type is valid, the generic RIB_OBJECT will be downcast to the actual
object using the Oracle’s treat function. If the downcast fails, a status of ‘E’ will be
returned to the external system along with an appropriate error message informing the
external system that the object passed in is invalid.

If the downcast is successful, then consume will verify that the message passes all of
RMS’s business validation. It does not actually perform any validation itself, instead, it
will call the RMSSUB_XSTORE_VALIDATE.CHECK_MESSAGE function to determine
whether the message is valid. If the message has failed RMS business validation, a status
of ‘E’ will be returned to the external system along with the error message returned from
the CHECK_MESSAGE function.

Once the message has passed RMS business validation, it can be persisted to the RMS
database by calling RMSSUB_XSTORE_SQL.PERSIST_MESSAGE() function. If the
database persistence fails, the function will return false. A status of ‘E’ should be
returned to the external system along with the error message returned from the
PERSIST_MESSAGE() function.

Once the message has been successfully persisted, a success status, ‘S’, should be
returned to the external system indicating that the message has been successfully
received and persisted to the RMS database.

RMSSUB_XSTORE.HANDLE_ERROR() – This is the standard error handling function
that wraps the API_LIBRARY.HANDLE_ERROR function.

Business Validation Module

Filename: rmssub_xstorevals/b.pls
RMSSUB_XSTORE_VALIDATE.CHECK_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 O_store_rec OUT NOCOPY STORE_SQL.STORE_ROW_TYPE,
 I_message IN RIB_XStoreDesc,
 I_message_type IN VARCHAR2)

This function performs all business validation associated with messages and builds the
store record for persistence. Some of the key validations performed are:

 Check if a like store was passed in. If it is, then the price store and cost location must
match the like store. If a like store was not passed in, the copy replenishment,
activity, and delivery indicators must be No or null.

 For new stores, check that the store number passed in is not currently being used for
a store or warehouse. Note that stores and warehouses in RMS cannot have the same
unique identifier.

 Verify the start order days are greater than or equal to zero.
 For updates or deletes, verify the store exists on the base table

Package Impact
All insert, update and delete SQL statements are located in the family package. This
package is STORE_SQL. The private functions in RMSSUB_STORE_SQL will call this
package.

Filename: rmssub_xstoresqls/b.pls
RMSSUB_XSTORE_SQL.PERSIST_MESSAGE
 (O_error_message IN OUT VARCHAR2,
 I_store_rec IN STORE_SQL. STORE_ROW_TYPE,

Store Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 265

 I_message_type IN VARCHAR2,)

This function determines what type of database transaction it will call based on the
message type.

STORE CREATE
 Create messages get added to the staging table to be processed in a batch cycle. The

address on the message is inserted as the primary address for the primary address
type in the ADDR table. No other detail (child) processing occurs for creates.

STORE MODIFY

 Modify messages directly update the store table with changes. The address on the
message is updated in the ADDR table. If the stores district has changed, the location
traits from the old district will be removed, and the location traits for the new district
will be added.

LOCATION TRAIT CREATE

 Adds location trait(s) to the store.

WALKTHROUGH CREATE

 Adds walkthrough store(s) to the store.
LOCATION TRAIT DELETE

 Removes location trait(s) to the store.

WALKTHROUGH DELETE

 Removes walkthrough store(s) to the store.

STORE DELETE

 Store gets added to a purging table to be processed in a batch cycle.

Message XSD
Here are the filenames that correspond with each message type. Please consult the
mapping documents for each message type in order to get a detailed picture of the
composition of each message.

Message Type Message Type Description XML Schema Definition
(XSD)

XStoreCre External Store Create XStoreDesc.xsd

XStoreDel External Store Delete XStoreRef.xsd

XStoreLocTrtCre External Store Location Trait Create XStoreDesc.xsd

XStoreLocTrtDel External Store Location Trait Delete XStoreRef.xsd

XStoreMod External Store Modification XStoreDesc.xsd

XStoreWTCre External Walk Through Store Create XStoreDesc.xsd

XStoreWTDel External Walk Through Store Delete XStoreRef.xsd

Design Assumptions
• Location traits already exist in RMS.

• Location trait and walkthrough store data cannot be sent in on a store create
message.

Subscription Designs

266 Oracle Retail Merchandising System

• Some of the business validation is referential or involves uniqueness. This validation
is handled automatically by the referential integrity constraints and the unique
indexes implemented on the database.

Table Impact

TABLE SELECT INSERT UPDATE DELETE

STORE_ADD No Yes No No

STORE Yes No Yes No

ADDR Yes Yes Yes No

DAILY_PURGE No Yes No No

LOC_TRAITS_MATRIX Yes Yes No Yes

SYSTEM_OPTIONS Yes No No No

TSF_ENTITY Yes No No No

WH Yes No No No

WALK_THROUGH_STORE No Yes No Yes

LOC_DISTRICT_TRAITS Yes No No No

Transfer Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 267

Transfer Subscription API

Functional Area
Transfer

Business Overview
RMS subscribes to transfers from external systems to create, update or delete transfers in
RMS. Oracle Retail’s Advanced Inventory Planning system (AIP) also utilizes this API to
create standalone warehouse to warehouse and warehouse to store transfers.

The transfer RIB API has defaulting logic which the API uses to populated defaulted
fields. This is designed so that multiple sources can use the transfer API without having
to conform to the same default values. Retailers can set-up their own set of default values
or logic without having to modify the API code. For fields that are exposed on the
message, if a value is provided, it will be used. Default values will only be used if a value
is not provided on the message.

L10N Localization Decoupling Layer:
This is a layer of code which enables decoupling of localization logic that is only required
for certain country-specific configuration. This layer affects the RIB API flows including
Transfer subscription. This allows RMS to be installed without requiring customers to
install or use this localization functionality, where not required.

Package Impact
Filename: rmssub_xtsfs/b.pls
RMSSUB_XTSF.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure initially ensures that the passed in message type is a valid type for
transfer messages.

If the message type is invalid, a status of “E” is returned to the external system along
with an appropriate error message informing the external system that the status is
invalid.
If the message type is valid, the generic RIB_OBJECT is downcast to the actual object
using the Oracle treat function. There is an object type that corresponds with each
message type. If the downcast fails, a status of “E” is returned to the external system
along with an appropriate error message informing the external system that the object
passed in is invalid.

If the downcast is successful, then consume verifies that the message passes all of RMS’s
business validation. It calls the RMSSUB_XTSF_VALIDATE.CHECK_MESSAGE function
to determine whether the message is valid. If the message passed RMS business
validation, then the function returns true, otherwise it returns false. If the message fails
RMS business validation, a status of “E” is returned to the external system along with the
error message returned from the CHECK_MESSAGE function.

Once the message has passed RMS business validation, it is persisted to the RMS
database. It calls the RMSSUB_XTSF_SQL.PERSIST() function. If the database persistence
fails, the function returns false. A status of “E” is returned to the external system along
with the error message returned from the PERSIST() function.

Subscription Designs

268 Oracle Retail Merchandising System

Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success status, “S”, is returned to the external system indicating that
the message has been successfully received and persisted to the RMS database.

Filename: rmssub_xtsfvals/b.pls
It should be noted that some of the business validation is referential or involves
uniqueness. This validation is handled automatically by the referential integrity
constraints and the unique indexes implemented on the database.

RMSSUB_XTSF_VALIDATE.CHECK_MESSAGE
This overloaded function performs all business validation associated with create/modify
messages and builds the transfer API record with default values for persistence in the
transfer related tables. Any invalid records passed at any time result in message failure.

Like other APIs, the transfer API expects a snapshot of the record on both a header
modify and a detail modify message, instead of only the fields that are changed. For a
detail creates or a detail modify message, only the TSF number is validated at the header
level; all other header fields are ignored.

TRANSFER CREATE
 Checks required fields.

 Validates fields.

 Defaults fields (status at header, freight type and tsf type)
 Builds transfer records.

TRANSFER MODIFY
 Checks required fields on the header nodes.

 Verifies TSF number already exists.
 Validates fields.

 Populates record.

TRANSFER DETAIL CREATE
 Checks required fields on the detail node.

 Verifies TSF number already exists.

 Verifies tsf/item/loc does not already exist.

 Creates item/loc relation if not already exists, including creating ITEM_LOC_SOH,
ITEM_SUPP_COUNTRY_LOC, and PRICE_HIST records. If a pack item is involved,
these records are created for all component items.

 Populates record.

TRANSFER DETAIL MODIFY
 Checks required fields on the detail node.
 Verifies transfer/item/loc already exists.

 If TSF quantity is reduced, verifies the new quantity is not below what has already
been received plus what is being shipped or expected.

 Populates record.

Transfer Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 269

RMSSUB_XTSF_VALIDATE.CHECK_MESSAGE
This overloaded function performs all business validation associated with delete
messages and builds the transfer API record with default values for persistence in the
transfer related tables. Any invalid records passed at any time results in message failure.

TRANSFER DELETE
 Checks required fields.

 Verifies TSF number already exists.

 Verifies that TSF is not already shipped or received.

 Populates record for delete.

TRANSFER DETAIL DELETE
 Checks required fields.

 Verifies TSF/item/loc already exists.
 Verifies that TSF line is not already shipped or received.

 Populates record with the TSF no/item/location for delete.

Filename: rmssub_xtsfs/b.pls
RMSSUB_XTSF_SQL.PERSIST
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_tsf_rec IN RMSSUB_XTSF.TSF_REC,
 I_message_type IN VARCHAR2)

This function checks the message type to route the object to the appropriate internal
functions that perform DML insert, update and delete processes.

TRANSFER CREATE
 Inserts records in the TSFHEAD, TSFDETAIL, TSFDETAIL_CHRG tables.

 Updates records in the ITEM_LOC_SOH table.

TRANSFER MODIFY
 Updates a record in the TSFHEAD table.

TRANSFER DELETE
 Deletes a transfer from TSFHEAD, TSFDETAIL, TSFDETAIL_CHRG tables.

TRANSFER DETAIL CREATE
 Inserts records in the TSFDETAIL, TSFDETAIL_CHRG tables.

 Updates records in the ITEM_LOC_SOH table.

TRANSFER DETAIL MODIFY
 Updates records in the TSFDETAIL, ITEM_LOC_SOH tables.

TRANSFER DETAIL DELETE
 Delete records from TSFDETAIL, TSFDETAIL_CHRG tables.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Subscription Designs

270 Oracle Retail Merchandising System

Message Types Message Type Description XML Schema Definition
(XSD)

Xtsfcre Transfer Create Message XTsfDesc.xsd

Xtsfmod Transfer Modify Message XTsfDesc.xsd

Xtsfdel Transfer Delete Message XTsfRef.xsd

Xtsfdtlcre Transfer Detail Create Message XTsfDesc.xsd

Xtsfdtlmod Transfer Detail Modify Message XTsfDesc.xsd

Xtsfdtlcel Transfer Detail Delete Message XTsfRef.xsd

Table Impact

TABLE SELECT INSERT UPDATE DELETE

TSFHEAD Yes Yes Yes Yes

TSFDETAIL Yes Yes Yes Yes

TSFDETAIL_CHRG Yes Yes Yes Yes

ITEM_LOC Yes Yes No No

ITEM_LOC_SOH Yes Yes No No

PRICE_HIST No Yes No No

ITEM_MASTER Yes No No No

PACKITEM_BREAKOUT Yes No No No

STORE Yes No No No

WH Yes No No No

SYSTEM_OPTIONS Yes No No No

WF_ORDER_HEAD Yes Yes Yes No

WF_ORDER_DETAIL Yes Yes Yes Yes

WF_ORDER_EXP Yes Yes Yes Yes

Vendor Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 271

Vendor Subscription API

Functional Area
Foundation Data

Business Overview
RMS subscribes to supplier information that is published from an external financial
application. ‘Vendor’ refers to either a partner or a supplier, but only supplier
information is subscribed to by RMS. Supplier information also includes supplier
addresses and the org unit.

Processing includes a check for the appropriate financial application in RMS on the
SYSTEM_OPTIONS table’s FINANCIAL_AP column, which will result in different
processing. The financial application (such as Oracle EBS) sends the information to RMS
through RIB.

The financial application publishes a supplier type vendor, placing the supplier
information onto the RIB (Oracle Retail Information Bus). RMS subscribes to the supplier
information as published from the RIB and places the information onto RMS tables
depending upon the validity of the records enclosed within the message.

Package Impact

Filename: rmssub_vendorcres/b.pls

Public API Procedures
RMSSUB_VENDORCRE.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN CLOB);

This procedure accepts a XML file in the form of an Oracle CLOB data type from the RIB
(I_message). This message contains a supplier message consisting of the aforementioned
header and detail records. The procedure then places a call to the main
RMSSUB_SUPPLIER.CONSUME function in order to validate the XML file format and, if
successful, parses the values within the file through a series of calls to RIB_XML. The
values extracted from the file are then passed on to private internal functions, which
validate the values and place them on the supplier and address tables depending upon
the success of the validation.

Private Internal Functions and Procedures (rmssub_vendorcre.pls):
Error Handling

If an error occurs in this procedure, a call is placed to HANDLE_ERRORS in order to
parse a complete error message and pass back a status to the RIB.
HANDLE_ERRORS
 (O_status IN OUT VARCHAR2,
 IO_error_message IN OUT VARCHAR2,
 I_cause IN VARCHAR2,
 I_program IN VARCHAR2);

This function is used to put error handling in one place in order to make future error
handling enhancements easier to implement. All error handling in the internal
RMSSUB_SUPPLIER package and all errors that occur during subscription in the
RMSSUB_VENDORCRE package (and whatever packages it calls) flow through this
function.

Subscription Designs

272 Oracle Retail Merchandising System

The function consists of a call to API_LIBRARY.HANDLE_ERRORS.
API_LIBRARY.HANDLE_ERRORS accepts a program name, the cause of the error and
potentially an unparsed error message if one has been created through a call to
SQL_LIB.CREATE_MESSAGE. The function uses these input variables to parse a
complete error message and pass back a status, depending upon the message and error
type, back up through the consume function and up to the RIB.

Private Internal Functions and Procedures (other):
All of the following functions exist within RMSSUB_SUPPLIER.

Main Consume Function:
RMSSUB_SUPPLIER.CONSUME
 (O_status OUT VARCHAR2,
 O_error_message OUT VARCHAR2,
 I_document IN CLOB);

This procedure accepts a XML file in the form of an Oracle CLOB data type from the RIB
(I_message) from the aforementioned public vendor procedure whenever a message is
made available by the RIB. This message consists of the aforementioned header and
detail records.

The record is processed and then validates the XML file format and, if successful, calls
internal functions to parse the values within the file through a series of calls to RIB_XML.
The values extracted from the file are then passed on to private internal functions, which
validate the values and place them on the appropriate supplier and address database
tables depending upon the success of the validation. The procedure then calls the
PROCESS_ADDRESS function to check that the proper addresses have been associated
with the supplier and store the address details in ADDR table. After processing the
address records, the procedure calls PROCESS_ORGUNIT function to process the org
units.

PARSE_SUPPLIER
This function is used to extract the header level information from the supplier XML file
and place that information onto an internal supplier header record.

The record is based upon the supplier table.

PARSE_ADDRESS
This function extracts the address level information from the supplier XML file and
places that information onto an internal address record.

The record is based upon the address table.

PROCESS_SUPPLIER
After the values are parsed for a particular supplier record,
RMSSUB_SUPPLIER.CONSUME calls this function, which in turn calls various functions
inside RMSSUB_SUPPLIER in order to validate the values and place them on the
appropriate supplier table depending upon the success of the validation. Either
INSERT_SUPPLIER or UPDATE_SUPPLIER is called to actually insert or update the
supplier table.

PROCESS_ADDRESS
After the values are parsed for a particular address record,
RMSSUB_SUPPLIER.CONSUME calls this function. If the FINANCIAL_AP system
option is set to ‘O’, this function calls various functions inside RMSSUB_SUPPLIER in

Vendor Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 273

order to validate the values and place them on the appropriate address table depending
upon the success of the validation. Either INSERT_ADDRESS or UPDATE_ADDRESS is
called to actually insert or update the address table.

INSERT_SUPPLIER
This function first checks the PROCUREMENT_UNIT_OPTIONS table to determine
what the value of dept_level_orders is. If the dept_level_orders value is ‘Y’, the
inv_mgmt_lvl is defaulted to ‘D’. If the dept_level_orders value is anything other than
‘Y’, the inv_mgmt_lvl is set to ‘S.’

The function then takes the information from the passed-in supplier record and inserts it
into the SUPS table.

FUNCTION UPDATE_SUPPLIER
This function updates the SUPS table using the values contained in the I_supplier_record.

If the primary address of the supplier is localized then supplier status will be ‘I’ -
Inactive.

FUNCTION UPDATE_ADDRESS
This function updates the supplier information to the address table.

CHECK_CODES
The RMSSUB_SUPPLIER package, specifically the functions check_codes() and
check_fkeys(), sends back descriptive error messages when codes are not valid or if a
foreign key constraint is violated.

INSERT_ADDRESS
Insert supplier information to address table. If the address in the passed-in address
record is the primary address for a particular supplier/address type, this function
updates the current primary address so that it is no longer the primary.

VALIDATE_SUPPLIER_RECORD
Validate that all the necessary records are populated. In the supplier site enabled
environment (system_options.supplier_site_ind = ‘Y’) supplier_parent must be present.

VALIDATE_ADDRESS_RECORD
Validate that all the necessary records are populated.

CHECK_NULLS
This function checks that the passed-in record variable is not null. If it is, it will return an
error message.

VALIDATE_ORG_UNIT_RECORD
This function checks that the passed-in record variable is not null. If it is, it will return an
error message. When not null, it checks for a valid org unit in ORG_UNIT table.

PROCESS_ORGUNIT
After validating the org unit, this function either inserts or updates the record in
PARTNER_ORG_UNIT table. If the vendor/orgunit in the passed-in Org Unit record is
the primary pay site for a particular vendor/orgunit type, this function updates the
current primary paysite so that it is no longer the primary. When supplier_site_ind = 'Y',

Subscription Designs

274 Oracle Retail Merchandising System

partner_org_unit only exists for supplier sites, not for parent supplier hence this function
will be called for supplier sites and not for supplier.

Message XSD
Here are the filenames that correspond with each message type. Please consult Oracle
Retail Integration Bus information for each message type in order to get a detailed
picture of the composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

VendorCre Vendor Create Message VendorDesc.xsd

Design Assumptions

Table Impact

TABLE SELECT INSERT UPDATE DELETE

SUPS Yes Yes Yes No

ADDR Yes Yes Yes No

SYSTEM_OPTIONS Yes No No No

UNIT_OPTIONS Yes No No No

CODE_DETAIL Yes No No No

PARTNER_ORG_UNIT Yes Yes Yes No

ORG_UNIT Yes No No No

Work Order Status Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 275

Work Order Status Subscription API

Functional Area
Work Order Status

Business Overview
RMS subscribes to a work order status message sent from internal finishers. Work order
status messages contain the items for which the activities have been completed along
with the quantity that was completed. All items on transfers that pass through an
internal finisher must have at least one work order activity performed upon them. When
work order status messages are received for a particular item/quantity, it is assumed that
all work order activities associated with the item/quantity have been completed. If work
order activities involve item transformation or repacking, the work order status messages
are always created in terms of the resultant item.

The work order status message is only necessary when the internal finisher and the final
receiving location are in the same physical warehouse. If the internal finisher belongs to
the receiving location, a book transfer is made between the internal finisher (which is
held as a virtual warehouse) and the final receiving location (also a virtual warehouse). If
the internal finisher belongs to the sending location’s transfer entity, intercompany out
and intercompany in transactions are recorded. Quantities on hand, reserved quantities,
and weighted average costs are adjusted to accurately reflect the status of the stock.

Assume that a quantity of 20 of item 100 (White XL T-shirt) are sent to an internal
finisher at the receiving physical warehouse where they will be dyed black, thereby
transforming them into item 101 (Black XL T-shirt). If all finishing activities were
successfully completed in this example, RMS could expect to receive a Work Order Status
message containing item 101 with a quantity of 20.

It is possible to receive multiple Work Order Status messages for a particular
item/transfer. Work order completion of partial quantities addresses the following
scenarios:
1. Work order activities could not be performed for the entire quantity of a particular

item at one time.

2. A given quantity of the particular item was damaged while work order activities
were performed.

In terms of the previous example, RMS could receive a message containing item
101(Black XL T-shirt) with a quantity of 10. A message stating that work order activities
were completed for the remaining 10 items could then be received at a later time.

The only scenario in which a Work Order Status message is necessary is when work
order activities are taking place at an internal finisher that resides in the same physical
warehouse as the transfer’s final receiving location. In this scenario, the final ‘leg’ of the
transfer will ‘move’ merchandise between two virtual warehouses in the same physical
warehouse. As this movement cannot be done until all work order activities are
completed for a specific item/quantity, the finisher must inform RMS of this completion.

Other finishing scenarios exist in which the finisher is not a virtual warehouse that shares
a physical warehouse with the transfer’s final receiving location. In these instances, Work
Order Status messages are not necessary. This is because these scenarios dictate that
merchandise must be physically shipped from the finisher to the transfer’s final receiving
location. RMS assumes that a finisher will not ship merchandise until all finishing
activities have been completed for said merchandise. RMS will disregard Work Order
Status messages sent in these scenarios.

Subscription Designs

276 Oracle Retail Merchandising System

Package Impact

Filename: rmssub_wostatuss/b.pls
PROCEDURE CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT VARCHAR2,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure is passed an Oracle Object, which it will validate to ensure all required
data is present. It will ensure that the finisher and the transfer’s final receiving location
are in the same physical warehouse. If not, processing is deemed successful and halted. If
the message contains an item, RMS work order complete processing will be called for
that item. Otherwise, said processing will be called for all items on the transfer. If the
entire transfer is processed, the child transfer (that is, the ‘second leg’) will be set to
‘S’hipped status. Note that work orders are always associated with the second leg of
multi-leg transfers. Whether processing is performed at the item or transfer level, transfer
closing queue logic will be called to determine if the entire multi-leg transfer can be
closed.
PROCEDURE HANDLE_ERRORS
 (O_status_code IN OUT VARCHAR2,
 IO_error_message IN OUT VARCHAR2,
 I_cause IN VARCHAR2,
 I_program IN VARCHAR2)

This is the standard error handling procedure that wraps the
API_LIBRARY.HANDLE_ERROR function.

Message XSD
Here are the filenames that correspond with each message type. Please consult RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

wostatuscre Work Order Status Create Message WOStatusDesc.xsd

Table Impact

TABLE SELECT INSERT UPDATE DELETE

TSFHEAD Yes No Yes No

TSF_DETAIL Yes No Yes No

TSF_ITEM_COST Yes No Yes No

DOC_CLOSE_QUEUE No Yes No No

ITEM_LOC_SOH Yes Yes Yes No

TRAN_DATA(VIEW) No Yes No No

INV_ADJ No Yes No No

INV_STATUS_QTY No Yes Yes Yes

INV_ADJ_REASON Yes No No No

Work Order Status Subscription API

Operations Guide, Volume 2 - Message Publication and Subscription Design 277

TABLE SELECT INSERT UPDATE DELETE

V_PACKSKU_QTY Yes No No No

ITEM_LOC Yes No No No

ITEM_MASTER Yes No No No

INV_STATUS_CODES Yes No No No

SHIPSKU Yes No No No

Operations Guide, Volume 2 - Message Publication and Subscription Design 279

4
Oracle Retail Service Layer for RMS

The Oracle Retail Service Layer (RSL) is a framework that allows Oracle Retail
applications to expose APIs to other Oracle Retail applications. As shown in diagram
Client Application and Service Provider Processing through RSL, in RSL terms, there is a
‘client application layer’ and a ‘service provider layer’. RMS includes the ‘service
provider layer’ that owns the business logic.
The RMS implementation of RSL exposes a synchronous method to communicate with
other applications (RIB-facilitated processing is asynchronous). All RSL services are
contained within an interface offered by a Stateless Session Bean (SSB). To a client
application, each service appears to be merely a method call.

For information about RSL-related configuration within the RMS application, see RSL
documentation.

RSL

Client
application

layer

Service
accessor

layer

Service
integration

layer

Implemented by
client application
(for example,
Oracle Retail
Allocation)

Implemented
by RSL

Service
provider

layer

Implemented by
RSL and RMS

Client Application and Service Provider Processing through RSL

Oracle Retail Service Layer for RMS

280 Oracle Retail Merchandising System

Functional Description of the Packages Used by RSL
The table below offers a functional description of the packages used by RSL.

Package Description

RMSSVC_XLOCPOTSF Through RSL, this call to RMS allows Oracle Retail
Allocation to create/update a purchase order in RMS
from a ‘what if” allocation.

StoreOrderServices RSL is used to integrate SIM with RMS for store order
inquiry and creation. RSL for RMS runs as a
standalone service that is part of the Retail Integration
application.

SIM makes a call to RMS for the store order creation
and inquiry. In addition to queries, there are
requests/replies for the creation, modification, and
deletion of store orders.

Operations Guide, Volume 2 - Message Publication and Subscription Design 281

5
Web Service Provider Implementation

This chapter gives an overview about the Web Service provider implementation API
designs used in the RMS environment and various functional attributes used in the APIs.

Note: The following service provider implementation API
designs are intended only to give a high level overview of
the APIs available.

The implementation of these services, along with the
associated Web Service Definition Language (WSDL), may
be used to get a full understanding of the data requirements,
validation rules, persistence rules, and return values
associated with the service.

Supplier Service

Functional Area
Foundation Data

Business Overview
RMS subscribes supplier information from external financial applications via this web
service. The Supplier Service Provider is used by external financial systems to send RMS
the supplier information that includes supplier addresses and the operating unit. The
header record contains information about the supplier as a whole. The address records
identify the addresses associated with the supplier and the operating unit records specify
the operating units associated with the supplier.

Package Impact
This public package is called by the supplier web service to send supplier information to
RMS.

Filename: rmsaiasub_suppwebss/b.pls

Public API Procedures
SupplierServiceProviderImpl.createSupplierDesc

(I_serviceoperationcontext IN "RIB_ServiceOpContext_REC",
 I_businessobject IN "RIB_SupplierDesc_REC",
 O_serviceoperationstatus OUT "RIB_ServiceOpStatus_REC",
 O_businessobject OUT "RIB_SupplierRef_REC")

This procedure populates the first record of "RIB_SupplierColDesc_REC" and passes the
record to the function RMSAIASUB_SUPPLIER.CONSUME() with a message type of
‘suppadd’. The procedure RMSAIA_LIB.BUILD_SERVICE_OP_STATUS() is used to
return status to the calling web service. If there is any error then the O_error_message
from consume will be assigned to the RIB_OBJECT O_serviceOperationStatus as per the
signature of the new RIB_OBJECT.

Web Service Provider Implementation

282 Oracle Retail Merchandising System

SupplierServiceProviderImpl.updateSupplierDesc
(I_serviceoperationcontext IN "RIB_ServiceOpContext_REC",
 I_businessobject IN "RIB_SupplierDesc_REC",
 O_serviceoperationstatus OUT "RIB_ServiceOpStatus_REC",
 O_businessobject OUT "RIB_SupplierDesc_REC")

This procedure populates the first record of "RIB_SupplierColDesc_REC" and passes the
record to the function RMSAIASUB_SUPPLIER.CONSUME() with a message type of
‘suppmod’. The procedure RMSAIA_LIB.BUILD_SERVICE_OP_STATUS() is used to
return status to the calling web service. If there is any error then the O_error_message
from consume will be assigned to the RIB_OBJECT O_serviceOperationStatus as per the
signature of the new RIB_OBJECT.

The following procedures are part of the package, but are not supported by RMS. When
called by the web service, these procedures will return without further processing with
an error message “This webservice is not supported now”. These procedures are:

 SupplierServiceProviderImpl.createSupSiteUsingSupplierDesc()

 SupplierServiceProviderImpl.updateSupSiteUsingSupplierDesc()

 updateSupSiteAddrUsingSupplier()

 updateSupSiteOrgUnitUsingSuppl()
 updateSupSiteUsingSupplierDesc()

 createSupSiteAddrUsingSupplier()

 createSupSiteUsingSupplierDesc()

 findSupplierDesc()

 deleteSupplierDesc()

 findSupplierColDesc()
 deleteSupplierColDesc()

SupplierServiceProviderImpl.updateSupplierColDesc
(I_serviceOperationContext IN "RIB_ServiceOpContext_REC",
 I_businessObject IN "RIB_SupplierColDesc_REC",
 O_serviceOperationStatus OUT "RIB_ServiceOpStatus_REC",
 O_businessObject OUT "RIB_SupplierColDesc_REC")

This procedure passes the record to the function RMSAIASUB_SUPPLIER.CONSUME()
with message type as “suppmod”. The procedure
RMSAIA_LIB.BUILD_SERVICE_OP_STATUS() is used to return status to the calling web
service.
SupplierServiceProviderImpl.createSupplierColDesc

(I_serviceoperationcontext IN "RIB_ServiceOpContext_REC",
 I_businessobject IN "RIB_SupplierColDesc_REC",
 O_serviceoperationstatus OUT "RIB_ServiceOpStatus_REC",
 O_businessobject OUT "RIB_SupplierColRef_REC")

This procedure passes the record to the function RMSAIASUB_SUPPLIER.CONSUME()
with message type as “suppadd”. The procedure
RMSAIA_LIB.BUILD_SERVICE_OP_STATUS() is used to return status to the calling web
service.

Supplier Service

Operations Guide, Volume 2 - Message Publication and Subscription Design 283

Private Internal Functions and Procedures (rmsaiasub_supplierb/s.pls)
This is the main consume function:
RMSAIASUB_SUPPLIER.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_outputobject IN OUT "RIB_SupplierColRef_REC",
 I_inputobject IN "RIB_SupplierColDesc_REC",
 I_inputobject_type IN VARCHAR2)

This procedure is called by the package SupplierServiceProviderImpl to consume
supplier information coming from the Financial System via the web service. It then
validates the data and persists it to the RMS Supplier tables. It does most of the
validation through the
RMSAIASUB_SUPPLIER_VALIDATE.PROCESS_SUPPLIER_RECORD() function, which
utilizes the internal functions VALIDATE_RECORD() and POPULATE_RECORD. After
the validation checks the data, the RMSAIASUB_SUPPLIER_SQL.PERSIST() is called to
update the RMS supplier maintenance tables.
Private Internal Functions and Procedures (rmsaiasub_supplier_valb/s.pls)
RMSSUB_SUPPLIER_VAL.PROCESS_SUPPLIER_RECORD

(O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_supplier_object IN OUT SUPP_REC,
 O_ref_outputobject IN OUT "RIB_SupplierColRef_REC",
 I_inputobject IN "RIB_SupplierColDesc_REC",
 I_inputobject_type IN VARCHAR2)

This function is the main validation function for the supplier web service interface. It
calls various internal functions to verify NULLs, validate codes in the CODE_DETAIL
table, or confirm values have the necessary foreign keys in the RMS system. If the
validation processes do not fail, the next step is to populate the local record groups to be
used later for populating RMS tables.
Private Internal Functions and Procedures (rmsaiasub_supplier_sqlb/s.pls)
RMSAIASUB_SUPPLIER_SQL.PERSIST

(O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_supplier_record IN OUT SUPP_REC)

This function is called from RMSAIASUB_SUPPLIER.CONSUME() to insert into the RMS
tables. The following internal functions are utilized:

INSERT_SUPPLIER

This function will insert to the SUPS table is it does not exist yet, and will update the
records if it already exists in RMS.

INSERT_SUPPLIER_SITES

This function will insert to the SUPS table is it does not exist yet, and will update the
records if it already exists in RMS.

INSERT_ADDRESS
This function will insert to the ADDR table is it does not exist yet, and will update the
records if it already exists in RMS.
INSERT_ORG_UNIT
This function will insert to the PARTNER_ORG_UNIT table is it does not exist yet, and
will update the records if it already exists in RMS.

Design Assumptions
 The web service initially calls the package SupplierServiceProviderImpl that serves

as a wrapper for the main consume function RMSAIASUB_SUPPLIER.CONSUME().
The consume function utilizes the packages RMSSUB_SUPPLIER_VAL and
RMSAIASUB_SUPPLIER_SQL to process the supplier data consumption.

Web Service Provider Implementation

284 Oracle Retail Merchandising System

Table Impact

TABLE SELECT INSERT UPDATE DELETE

SUPS Yes Yes Yes No

ADDR Yes Yes Yes No

SYSTEM_OPTIONS Yes No No No

UNIT_OPTIONS Yes No No No

CODE_DETAIL Yes No No No

PARTNER_ORG_UNIT Yes Yes Yes No

ORG_UNIT Yes No No No

Pay Term Service

Operations Guide, Volume 2 - Message Publication and Subscription Design 285

Pay Term Service

Functional Area
Financial Integration

Business Overview
The Pay Term Service Provider is used by external financial systems to send RMS new
and updated payment term information. Header and detail level payment term
information is written to the TERMS_HEAD and TERMS_DETAIL tables.

This document describes the Pay Term web service integration between RMS and an
external financial application. In this integration context, RMS acts as the service provider
that exposes a web service to be invoked by an external financial application.

Package Impact
The process flow diagram for Pay Term Service API.

External Financial
Application Invokes the

Pay Term Service

RSE generated service contracts in
PayTermServiceProviderImpl
(rmsaiasub_ptrmwebss/b.pls) -
• createPayTermDesc
• createDetailTermDesc
• updatePayTermDesc
• updateHeaderPayTermDesc
• updateDetailPayTermDesc

RMSAIASUB_PAYTERM.CONSUME
(rmsaiasub_ptrms/b.pls)

RMSAIASUB_PAYTERM_VALIDATE
(rmsaiasub_ptrmvalb/s.pls)

RMSAIASUB_PAYTERM_SQL.PERSIST
(rmsaiasub_ptrmsqlb/s.pls)

TERMS_SQL
(termsqlb/s.pls)

Process Flow for Pay Term Service

Web Service Provider Implementation

286 Oracle Retail Merchandising System

Public API Procedures

Filename: rmsaiasub_ptrmwebss/b.pls
Package name: PayTermServiceProviderImpl
createPayTermDesc

(I_serviceOperationContext IN "RIB_ServiceOpContext_REC",
 I_businessObject IN "RIB_PayTermDesc_REC",
 O_serviceOperationStatus OUT "RIB_ServiceOpStatus_REC",
 O_businessObject OUT "RIB_PayTermRef_REC")

This procedure corresponds to the ‘create’ operation of the Pay Term web service. It calls
RMSAIASUB_PAYTERM.CONSUME with a message type of
RMSAIASUB_PAYTERM.HDR_ADD to create payment terms in RMS. It returns RMS’s
pay term id through output O_businessObject and success or failure status through
O_serviceOperationStatus.

createDetailPayTermDesc

(I_serviceOperationContext IN "RIB_ServiceOpContext_REC",
 I_businessObject IN "RIB_PayTermDesc_REC",
 O_serviceOperationStatus OUT "RIB_ServiceOpStatus_REC",
 O_businessObject OUT "RIB_PayTermRef_REC")

This procedure corresponds to the ‘createDetail’ operation of the Pay Term web service.
It calls RMSAIASUB_PAYTERM.CONSUME with a message type of
RMSAIASUB_PAYTERM.DTL_ADD to create payment term details in RMS. It returns
RMS’s pay term id through output O_businessObject and success or failure status
through O_serviceOperationStatus.
updatePayTermDesc

(I_serviceOperationContext IN "RIB_ServiceOpContext_REC",
 I_businessObject IN "RIB_PayTermDesc_REC",
 O_serviceOperationStatus OUT "RIB_ServiceOpStatus_REC",
 O_businessObject OUT "RIB_PayTermDesc_REC")

This procedure corresponds to the ‘update’ operation of the Pay Term web service. It
calls RMSAIASUB_PAYTERM.CONSUME with a message type of
RMSAIASUB_PAYTERM.DTL_UPD to update payment terms in RMS. It returns a
“RIB_PayTermDesc_REC’ object through output O_businessObject and success or failure
status through O_serviceOperationStatus.
updateHeaderPayTermDesc

(I_serviceOperationContext IN "RIB_ServiceOpContext_REC",
 I_businessObject IN "RIB_PayTermDesc_REC",
 O_serviceOperationStatus OUT "RIB_ServiceOpStatus_REC",
 O_businessObject OUT "RIB_PayTermDesc_REC")

This procedure corresponds to the ‘updateHeader’ operation of the Pay Term web
service. It calls RMSAIASUB_PAYTERM.CONSUME with a message type of
RMSAIASUB_PAYTERM.HDR_UPD to update header level payment term information
in RMS. It returns a “RIB_PayTermDesc_REC’ object through output O_businessObject
and success or failure status through O_serviceOperationStatus.
updateDetailPayTermDesc

(I_serviceOperationContext IN "RIB_ServiceOpContext_REC",
 I_businessObject IN "RIB_PayTermDesc_REC",
 O_serviceOperationStatus OUT "RIB_ServiceOpStatus_REC",
 O_businessObject OUT "RIB_PayTermDesc_REC")

This procedure corresponds to the ‘updateDetail’ operation of the Pay Term web service.
It calls RMSAIASUB_PAYTERM.CONSUME with a message type of
RMSAIASUB_PAYTERM.DTL_UPD to update detail level payment term information in
RMS. It returns a “RIB_PayTermDesc_REC’ object through output O_businessObject and
success or failure status through O_serviceOperationStatus.

Pay Term Service

Operations Guide, Volume 2 - Message Publication and Subscription Design 287

Filename: rmsaiasub_ptrms/b.pls
Package name: RMSAIASUB_PAYTERM
CONSUME(O_status_code OUT VARCHAR2,
 O_error_message OUT VARCHAR2,
 O_rib_paytermref_rec OUT "RIB_PayTermRef_REC",
 I_message IN "RIB_PayTermDesc_REC",
 I_message_type IN VARCHAR2)

This procedure validates the message content in I_message with respect to the message
type (I_message_type) and persists payment terms information in RMS’s TERMS_HEAD
and TERMS_DETAIL tables. It returns RMS’s term id through output
O_rib_paytermref_rec.

Filename: rmsaiasub_ptrmvals/b.pls
Package name: RMSAIASUB_PAYTERM_VALIDATE
FUNCTION CHECK_MESSAGE(O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_paytermref_rec IN OUT "RIB_PayTermRef_REC",
 O_payterm_rec IN OUT TERMS_SQL.PAYTERM_REC,
 I_message IN "RIB_PayTermDesc_REC",
 I_message_type IN VARCHAR2)
RETURN BOOLEAN;

This function performs validation on the message content in I_message with respect to
the message type (I_message_type). It returns RMS’s term id through output
O_rib_paytermref_rec.

Filename: rmsaiasub_ptrmsqls/b.pls
Package name: RMSAIASUB_PAYTERM_SQL
FUNCTION PERSIST(O_error_message OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message IN TERMS_SQL.PAYTERM_REC,
 I_message_type IN VARCHAR2)
RETURN BOOLEAN;

This function calls TERMS_SQL.MERGE_HEADER and TERMS_SQL.MERGE_DETAIL
functions to persist payment terms information to RMS’s TERMS_HEAD and
TERMS_DETAIL tables.

Filename: termsqls/b.pls
Package name: TERMS_SQL
FUNCTION MERGE_HEADER(O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_paytermrec IN PAYTERM_REC)
RETURN BOOLEAN;

This function persists payment terms header level information to RMS’s TERMS_HEAD
table.

FUNCTION MERGE_DETAIL(O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_paytermrec IN PAYTERM_REC)
RETURN BOOLEAN;

This function persists payment terms detail level information to RMS’s TERMS_DETAIL
table.

Web Service Provider Implementation

288 Oracle Retail Merchandising System

Message XSD

Message Types Message Type Description XML Schema Definition
(XSD)

paytermcre create payment terms PayTermDesc.xsd,
PayTermRef.xsd

paytermmod update payment terms header PayTermDesc.xsd,
PayTermRef.xsd

paytermdtlcre create payment terms detail PayTermDesc.xsd,
PayTermRef.xsd

paytermdtlmod Update payment terms detail PayTermDesc.xsd,
PayTermRef.xsd

Design Assumptions
N/A

Table Impact

TABLE SELECT INSERT UPDATE DELETE

SYSTEM_OPTIONS Yes No No No

TERMS_HEAD Yes Yes Yes No

TERMS_DETAIL Yes Yes Yes No

Customer Order Fulfillment Service

Operations Guide, Volume 2 - Message Publication and Subscription Design 289

Customer Order Fulfillment Service

Functional Area
Customer Order Fulfillment

Business Overview
RMS provides an interface to process Customer Order Fulfillment requests from an
external order management system (OMS). If the system option OMS_IND = ‘Y’, then
RMS expects to receive customer orders via this API.

RMS supports two integration methods for processing Customer Order Fulfillment
messages from OMS – either through RIB or Web Service. At implementation time,
clients should decide on either one or the other integration method, but not both. The
same core logic is used to validate and persist customer orders to RMS tables.

• In a RIB implementation, RMS subscribes to Customer Order Fulfillment
messages. When a customer order is created, or partially or fully cancelled, the
customer order information is sent from the Order Management System (OMS)
to the RIB. RMS subscribes to the customer order information as published from
the RIB and places the information onto RMS tables.

• In a Web Service implementation, RMS exposes a FulfillOrder Web Service to
create or cancel a customer order in RMS. OMS will invoke the service with
customer order details to place the information on RMS tables.

The Customer Order Fulfillment message staged in the RMS tables will go through a
process of validation. Records that pass validation will create new customer order
records. If any validation error occurs, transaction will be rolled back and no customer
orders will be created.

There are two scenarios where a customer order fulfillment request cannot be created in
RMS:

1) Due to data validation errors (e.g. invalid item).
2) Due to ‘No Inventory’ - There is not enough inventory available at the source

location or item is not ranged or inactive at the source location, or item is not
supplied by the supplier (in a PO scenario).

Web Service Deployment
• Accepts a collection of fulfillment orders as input. If one order fails, the

entire service call fails and no order will be created in RMS.

• RMS returns Failure status as part of the response object in the Web Service
call if customer orders are not created due to validation errors.

• RMS returns Success status and a confirmation message of type ‘X’ as part of
the response object if customer orders are not created due to ‘No Inventory’
or a confirmation message of type ‘P’ if customer orders are partially created
due to insufficient inventory.

Web Service Provider Implementation

290 Oracle Retail Merchandising System

RIB Deployment
• Accepts a single fulfillment order as input to allow RIB’s sequencing

mechanism to work as designed.

• RMS returns Failure to the RIB and the message will land in the RIB hospital
if a customer order is not created due to validation errors. No confirmation
message will be sent.

• RMS returns Success. In a separate transaction, a confirmation message of
type ‘X’ will be sent to the RIB if a customer order is not created due to ‘No
Inventory’, or a confirmation message of type ‘P’ will be sent to the RIB if a
customer order is partially created due to insufficient inventory. Based on
the confirmation message, OMS will take action to source the order from a
different location. See Customer Order Fulfillment Confirmation Publication
API.

The Customer Order Fulfillment messages contain information such as delivery type,
source type and destination type. Based on these, the system should proceed to create a
Purchase Order, Transfer or Inventory Reservation. The table below shows the customer
order scenarios for the combination of delivery type, source type and destination type:

Scenario # Source Location Fulfillment
Location

Delivery Type Transaction created

1 Warehouse Store Pickup in
Store

Virtual WH to Physical Store
Transfer + Reservation

FulfilOrdDesc will contain:
1st leg: source_loc_type = ‘WH’,
fulfill_loc_type = ‘S’
2nd leg: source_loc_type = NULL,
fulfill_loc_type = ‘S’

2 Warehouse Store Ship to
Customer

Virtual WH to Physical Store
Transfer + Reservation

FulfilOrdDesc will contain:
1st leg: source_loc_type = ‘WH’,
fulfill_loc_type = ‘S’
2nd leg: source_loc_type = NULL,
fulfill_loc_type = ‘S’

3 Store A Store B Pickup in
Store

Physical Store to Physical Store
Transfer + Reservation

FulfilOrdDesc will contain:
1st leg: source_loc_type = ‘ST’,
fulfill_loc_type = ‘S’
2nd leg: source_loc_type = NULL,
fulfill_loc_type = ‘S’

4 Store A Store B Ship to
Customer

Physical Store to Physical Store
Transfer + Reservation

FulfilOrdDesc will contain:
1st leg: source_loc_type = ‘ST’,
fulfill_loc_type = ‘S’
2nd leg: source_loc_type = NULL,
fulfill_loc_type = ‘S’

Customer Order Fulfillment Service

Operations Guide, Volume 2 - Message Publication and Subscription Design 291

Scenario # Source Location Fulfillment
Location

Delivery Type Transaction created

5 NULL Store Pickup in
Store

Reservation

FulfilOrdDesc will contain:
Single-leg: source_loc_type =
NULL, fulfill_loc_type = ‘S’

6 NULL Store Ship to
Customer

Reservation

FulfilOrdDesc will contain:
Single-leg: source_loc_type =
NULL, fulfill_loc_type = ‘S’

7 NULL Warehouse Ship to
Customer

Virtual WH to Virtual Store
Transfer

FulfilOrdDesc will contain:
Single-leg: source_loc_type =
‘WH’, fulfill_loc_type = ‘V’

8 Vendor Store Pickup in
Store

Purchase Order to Physical Store
+ Reservation

FulfilOrdDesc will contain:
1st leg: source_loc_type = ‘SU’,
fulfill_loc_type = ‘S’
2nd leg: source_loc_type = NULL,
fulfill_loc_type = ‘S’

9 Vendor Store Ship to
Customer

Purchase Order to Physical Store+
Reservation

FulfilOrdDesc will contain:
1st leg: source_loc_type = ‘SU’,
fulfill_loc_type = ‘S’
2nd leg: source_loc_type = NULL,
fulfill_loc_type = ‘S’

10 NULL Vendor Ship to
Customer

Purchase Order to Virtual Store

FulfilOrdDesc will contain:
Single-leg: source_loc_type =
‘SU’, fulfill_loc_type = ‘V’

The customer order subscription API supports create and cancel operations using the
following message types belonging to the ‘fulfilord’ message family:

• fulfilordapprdel – used by RMS to cancel customer orders.

• fulfilordreqdel – used by SIM to request a customer order cancellation. This message
type is used only by SIM and is ignored by RMS.

• fulfilordpocre – used to create purchase orders as a result of customer order
fulfillment requests.

• fulfilordtsfcre – used to create transfers as a result of customer order fulfillment
requests.

Web Service Provider Implementation

292 Oracle Retail Merchandising System

• fulfilordstdlvcre – used to perform inventory reservation as a result of customer
order fulfillment requests.

In a RIB implementation, once fulfillment create messages are processed in RMS, RMS
will publish to the RIB a customer order fulfillment confirmation message with a
message type of ‘fulfilordcfmcre’ via the customer order fulfillment confirmation
publishing API, rmsmfm_ordcust. Confirmation messages will only be sent for customer
order fulfillment creates requests that result in creating purchase orders and transfers in
RMS. It will not be sent for cancel requests, or for customer order fulfillment requests
that result in inventory reservation.

• If a customer order is partially fulfilled, a confirmation message with status ‘P’ will
be sent with details of fulfilled order quantity.

• If a customer order is not fulfilled at all due to unavailable inventory, a confirmation
message with status ‘X’ will be sent without any details.

In a Web Service implementation, confirmation messages will be sent in a collection as
part of the response object. In a RIB implementation, separate confirmation messages will
be published from RMS in independent transactions.

Package Impact

Public Interface:

Filename: stgsvc_fulfilords/b.pls
This package provides public interfaces (pop_create_tables and pop_cancel_tables) to
stage customer order fulfillment create and cancel requests in the collection to interface
tables. It also provides a public interface (cleanup_tables) to clear out data in the interface
staging tables after processing.

Business Validation Module

Filename: coresvc_fulfilordvals/b.pls
This package contains logic that performs generic validation of customer order
fulfillment create and cancel requests in the following interface staging tables:

 SVC_FULFILORD
 SVC_FULFILORDDTL

 SVC_FULFILORDCUST

 SVC_FULFILORDREF
 SVC_FULFILORDDTLREF

Subscription Package

Filename: rmssub_fulfilords/b.pls
RMS will subscribe to the customer order fulfillment create or cancel message from the
RIB. The RIB message will be parsed and staged into staging tables for initial validation
via stgsvc_fulfilord.pop_tables. The coresvc_fulfilordval package will be called to
perform generic validation. If no error is encountered during initial validation, transfer,
PO, inventory reservation specific validation functions will be invoked to perform
further validation and to create customer order transfers, purchase orders, or reserve
inventory in RMS. The staging table will be purged at the end of the processing. The

Customer Order Fulfillment Service

Operations Guide, Volume 2 - Message Publication and Subscription Design 293

diagram RIB JMS Deployment for Customer Order Fulfillment Requests illustrates this
process:

RIB JMS Deployment for Customer Order Fulfillment Requests

Filename: FulfillOrderServiceProviderImplSpec.pls
FulfillOrderServiceProviderImplBody.pls
For a Web Service deployment, a new Web Service ‘FulfillOrder’ with two supported
operations of ‘create’ and ‘cancel’ is available for OMS to send customer order fulfillment
create and cancel requests to RMS. The Web Services will invoke public interfaces for the
Customer Order Fulfillment Create Request
(FulfillOrderServiceProviderImp.createFulfilOrdColDesc) and the Customer Order
Fulfillment Cancel Request (FulfillOrderServiceProviderImp.cancelFulfilOrdColRef).

Web Service Provider Implementation

294 Oracle Retail Merchandising System

These public interfaces calls create and cancel procedures in svcprov_fulfilord to do
major processing logic. Similar to a RIB JMS deployment, the messages will be staged,
validated, and persisted to RMS using the same core functions. At the end of the
processing, the staging tables are purged and a confirmation status is returned. The
diagram Web Service Deployment for Customer Order Fulfillment Requests illustrates
this process.

Web Service Deployment for Customer Order Fulfillment Requests

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

Fulfilordapprdel Fulfilment Cancel Message FulfilOrdRef.xsd

Fulfilordreqdel Fulfilment Cancel Request Message FulfilOrdRef.xsd

Fulfilordpocre Fulfilment PO Create Message FulfilOrdDesc.xsd

Fulfilordtsfcre Fulfilment Transfer Create Message FulfilOrdDesc.xsd

Fulfilordstdlvcre Fulfilment Store Delivery Create Message FulfilOrdDesc.xsd

Customer Order Fulfillment Service

Operations Guide, Volume 2 - Message Publication and Subscription Design 295

Design Assumptions
1. Customer order fulfillment request cannot be created in RMS for the following

scenarios:

 Customer orders are not created due to any validation error.
 Customer orders are created in ‘X’ status due to ‘no inventory’ (e.g. not enough

available at the source location, or item not ranged to or active at the source
location, or in a PO scenario, item not supplied by the supplier).

2. RMS currently does NOT support customer orders to franchise stores.

3. Only approved, inventoried and sellable items will be published to OMS. Therefore,
item types like catch weight, concession, consignment and transformable sellable
items will NOT be published to OMS, and will NOT be supported by this interface.
To sell items that can vary by weight, like bananas, through online channels, setup
should be done as a regular (non-catch weight) item with a unit cost and standard
UOM defined in items of eaches.

4. It is assumed that customer orders will be captured in the selling UOM in OMS, but
that all transactions will be communicated to RMS in standard UOM.

Web Service Provider Implementation

296 Oracle Retail Merchandising System

Table Impact

TABLE SELECT INSERT UPDATE DELETE

SVC_FULFILORDREF Yes Yes Yes Yes

SVC_FULFILORDREFDTL Yes Yes Yes Yes

SVC_FULFILORD Yes Yes Yes Yes

SVC_FULFILORDCUST Yes Yes Yes Yes

SVC_FULFILORDDTL Yes Yes Yes Yes

TSFHEAD Yes Yes Yes No

TSFDETAIL Yes Yes Yes No

ORDCUST Yes Yes No No

ORDCUST_DETAIL Yes Yes Yes No

ORDHEAD Yes Yes Yes Yes

ORDLOC Yes Yes Yes No

ORDSKU Yes Yes No No

ORDSKU_HTS No Yes No No

ORDSKU_HTS_ASSESS No Yes No No

ORDLOC_EXP No Yes Yes No

TSFHEAD Yes Yes Yes No

TSFDETAIL Yes Yes Yes No

TSFHEAD_L10N_EXT No Yes Yes No

ORDCUST_L10N_EXT No Yes Yes N o

ORDCUST_PUB_TEMP No Yes No No

ITEM_MASTER Yes No No No

ITEM_LOC_SOH Yes Yes Yes No

ITEM_LOC Yes No No No

Customer Order Item Substitution Service

Operations Guide, Volume 2 - Message Publication and Subscription Design 297

Customer Order Item Substitution Service

Functional Area
Customer Orders

Business Overview
When a store is allowed to pick inventory to fulfill a Customer Order, when the
inventory of the item ordered does not meet quality standards or is unavailable, then the
order indicates that substitutions are allowed for that item. In that case, the store may
choose to fulfill the order with a substitute item. If that occurs, SIM has the ability to
substitute items on the Customer Order with another predefined Substitute Item.
In such cases, SIM notifies OMS through the SO Status message that an alternative item
has been pushed into the order.

Based on the notification from SIM, OMS updates the customer order. OMS notifies RMS
with the same details received from SIM so that RMS updates the inventory and
customer order details. Based on OMS notification RMS updates the cancelled quantity
for the original item and also creates the customer order reservation for the substitute
item by updating the customer reserve inventory.

Package Impact

PL/SQL Web Service Wrapper

Package: CustOrdSubstituteServiceProvid

This layer is the entry point for calling the Customer Order Item Substitution webservice.
The following operation is available:
createCustOrdSubColDesc (
 I_serviceOperationContext IN OUT "RIB_ServiceOpContext_REC",
 I_businessObject IN "RIB_CustOrdSubColDesc_REC",
 O_serviceOperationStatus OUT "RIB_ServiceOpStatus_REC",
 O_businessObject OUT "RIB_InvocationSuccess_REC"
)

• This procedure validates the input service operation context and initializes the
output service operation status.

• Calls CREATE_CO_SUBSTITUTE to process the Customer Order Item
Substitution message.

• Any failures (validation errors) encountered during the processing are passed
back into the response object. If there are no failures, success status is returned.

Service Provider Layer

Package: SVCPROV_CUSTORDSUB

This layer, called from Web Service wrapper, inserts the input business objects into the
staging tables and calls the core business logic to process the request. The following
operation is available.
CREATE_CO_SUBSTITUTE (O_serviceOperationStatus IN OUT "RIB_ServiceOpStatus_REC",

 I_businessObject IN "RIB_CustOrdSubColDesc_REC")

• The count of detail message in the input business object is validated against the
collection_size to make sure entire message has been received.

Web Service Provider Implementation

298 Oracle Retail Merchandising System

• The input business object is staged into the staging tables - SVC_CUSTORDSUB
and SVC_CUSTORDSUBDTL..

• Calls the core business layer CREATE_CO_SUBSTITUTE to process the input
item substitution request.

• In case of errors received from the core business logic, the error message from the
staging table is retrieved and written to the failure table of the output business
object.

• On successful processing, the processed data from the staging table is deleted.

Core Logic Layer

Package: CORESVC_CUSTORDSUB

The layer implements the core business logic for customer order subscription. The
following operation is available.
CREATE_CO_SUBSTITUTE (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_process_id IN SVC_CUSTORDSUB.PROCESS_ID%TYPE,
 I_chunk_id IN SVC_CUSTORDSUB.CHUNK_ID%TYPE)

• The data in the staging table is validated. The header table svc_custordsub is
validated first and if there are no errors in the header data then the detail table
svc_custordsubdtl gets validated. In case of errors, all the validation errors are
written back to the staging table and the function returns back with error.

• Post successful validation, the customer order details are updated in
ordcust_detail table. The cancelled quantity for the original ordered item is
updated. New customer order detail record is created for the substituted item.

• The customer reserve bucket in item_loc_soh table is updated by making a call to
CUSTOMER_RESERVE_SQL to release the reserved quantity for original item
and increase the reserve quantity for the substituted item.

• The status in the staging table is updated to ‘C’ompleted to indicate successful
processing of the data.

Message XSD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get detailed information of the
composition of each message.

Message Types Message Type Description XML Schema Definition (XSD)

CustOrdSubDesc Customer Order Substitute Message CustOrdSubDesc.xsd

CustOrdSubColDesc Collection of Customer Order
Substitute Message

CustOrdSubColDesc.xsd

Design Assumptions
 Substitution logic holds good only for the customer orders fulfilled from stores.

 Catchweight, Transformable, Consignment, Concession and Deposit container items
are not supported for customer order item substitution.

 The quantities are always in Standard UOM.

Customer Order Item Substitution Service

Operations Guide, Volume 2 - Message Publication and Subscription Design 299

Table Impact

TABLE SELECT INSERT UPDATE DELETE

SVC_CUSTORDSUB Yes Yes Yes Yes

SVC_CUSTORDSUBDTL Yes Yes Yes Yes

ORDCUST Yes No No No

ORDCUST_DETAIL Yes Yes Yes No

ITEM_MASTER Yes No No No

DEPS Yes No No No

ITEM_LOC Yes Yes No No

ITEM_LOC_SOH No Yes Yes No

INV_RESV_UPDATE_TEMP No Yes No No

Web Service Provider Implementation

300 Oracle Retail Merchandising System

Inventory Detail Lookup Service

Functional Area
Inventory

Business Overview
This real-time inventory availability lookup facility provided by RMS can be used by
external systems, such as an on-line order capture system (OOC) and order management
system (OMS), to retrieve item/location inventory based on RMS’s view of inventory at a
point in time. RMS will provide this information for any warehouse or store which is
valid for customer order sourcing/fulfillment via a web service.
This web service requires code to abstract the interface logic (service provider layer) from
the business processing logic (core layer) and RMS packages will be used by the core
layer to perform the actual validations and processing for inventory detail.

Package Impact

PL/SQL Web Service Wrapper

Package: InventoryDetailServiceProvider

This layer is the entry point for the inventory detail lookup web service. The following
operation is available:
lookupInvAvailCriVo(
 I_serviceOperationContext IN OUT "RIB_ServiceOpContext_REC",
 I_businessObject IN "RIB_InvAvailCriVo_REC",
 O_serviceOperationStatus OUT "RIB_ServiceOpStatus_REC",
 O_businessObject OUT "RIB_InvAvailColDesc_REC")

 This procedure validates the input service operation context and initializes the
output service operation status.

 Calls GET_INV_DETAIL to get the inventory details for the input message.

 Any failures (validation errors) encountered during the processing are passed back
into the response object. If there are no failures, success status is returned.

Service Provider Layer

Package: SVCPROV_INVAVAIL

This layer calls the core business layer to process the inventory lookup request. The
following operation is available.
GET_INV_DETAIL(O_ServiceOperationStatus IN OUT "RIB_ServiceOpStatus_REC",
 O_business_object OUT "RIB_InvAvailColDesc_REC",
 I_business_object IN "RIB_InvAvailCriVo_REC")

 Calls the core business layer CORESVC_INVAVAIL to process the inventory detail
lookup request.

 In case of errors received from the core business logic, the error message is written to
the failure table of the output business object.

Inventory Detail Lookup Service

Operations Guide, Volume 2 - Message Publication and Subscription Design 301

Core Logic Layer

Package: CORESVC_INVAVAIL

This layer implements the core business logic for inventory detail lookup. The following
operation is available.
GET_INV_DETAIL(O_error_message OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_business_object OUT "RIB_InvAvailColDesc_REC",
 O_error_tbl OUT SVCPROV_UTILITY.ERROR_TBL,
 I_business_object IN "RIB_InvAvailCriVo_REC")

 The data in the input business object is validated. If validation errors are
encountered, this layer returns the errors in a collection.

 The available inventory is fetched from RMS based on the following:
 The available quantity is fetched from item_loc_soh as stock_on_hand – SUM of

tsf_reserved_qty, customer_resv, rtv_qty and non_sellable_qty.

 The warehouse inventory for physical warehouse/channel is only taken for
customer orderable stockholding virtual warehouse under it.

 If the inventory detail lookup is for a pack item at store, the pack inventory is
estimated based on the maximum number of complete packs which can be
created by using all the available inventory of its component. The
pack_calculate_ind is set to ‘Y’ to indicate the pack inventory is estimated.

Message XSD
Below are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition
(XSD)

InvDetailCriVo Inventory Detail Lookup Criteria InvAvailCriVo.xsd

InvAvailDesc Inventory Detail response Description InvAvailDesc.xsd

InvAvailColDesc Collection of Inventory Detail Description InvAvailColDesc.xsd

Design Assumptions
 Catchweight, Transformable, Consignment, Concession and Deposit container items

are not supported for available inventory lookup.
 This inventory detail lookup is only for customer orderable inventory.

Web Service Provider Implementation

302 Oracle Retail Merchandising System



Table Impact

TABLE SELECT INSERT UPDATE DELETE

ITEM_LOC_SOH YES NO NO NO

ITEM_MASTER YES NO NO NO

WH YES NO NO NO

STORE YES NO NO NO

CHANNELS YES NO NO NO

DEPS YES NO NO NO

PACKITEM_BREAKOUT YES NO NO NO

Inventory Back Order Service

Operations Guide, Volume 2 - Message Publication and Subscription Design 303

Inventory Back Order Service

Functional Area
Inventory

Business Overview
Retailers selling through ecommerce channels often take customer orders even if
inventory is not available with the expectation of future inventory being available to fill
the order. If an order is captured against future inventory the quantity is placed in
‘Backordered’ status in the external system and a backorder message is sent to RMS
through the backorder web service.
This web service will update the backorder quantity in RMS. An external order
management system will send backorder reserve requests to RMS when a customer
fulfillment is made and backorder release requests when inventory is made available at
the fulfillment location.

Package Impact

PL/SQL Web Service Wrapper

Package: InventoryBackOrderServiceProvi

This layer is the entry point for calling the BackOrder. The following operation is
available:
createInvBackOrdColDesc(
 I_serviceOperationContext IN OUT "RIB_ServiceOpContext_REC",
 I_businessObject IN "RIB_InvBackOrdColDesc_REC",
 O_serviceOperationStatus OUT "RIB_ServiceOpStatus_REC",
 O_businessObject OUT "RIB_InvocationSuccess_REC"
)

• This procedure validates the input service operation context and initializes the
output service operation status.

• Calls CREATE_BACKORDER to process the Backorder message.

• Any failures (validation errors) encountered during the processing are passed
back into the response object. If there are no failures, success status is returned.

Service Provider Layer

Package: SVCPROV_ INVBACKORD

This layer, called from web service wrapper, inserts the input business objects into the
staging tables and calls the core business logic to process the request. The following
operation is available.
CREATE_BACKORDER (O_serviceOperationStatus IN OUT "RIB_ServiceOpStatus_REC",

 I_businessObject IN "RIB_InvBackOrdColDesc_REC")

The count of detail records in the input business object is validated against the
collection_size to make sure entire message has been received.

• The input business object is staged into the staging table - SVC_INVBACKORD.

• Calls the core business layer CREATE_BACKORDER to process the input
backorder request.

Web Service Provider Implementation

304 Oracle Retail Merchandising System

• In case of errors received from the core business logic, the error message from the
staging table is retrieved and written to the failure table of the output business
object.

• On successful processing, the processed data from the staging table is deleted.

Core Logic Layer

Package: CORESVC_ INVBACKORD

The layer implements the core business logic for backorder subscription. The following
operation is available.
CREATE_BACKORDER (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_process_id IN SVC_CUSTORDSUB.PROCESS_ID%TYPE,
 I_chunk_id IN SVC_CUSTORDSUB.CHUNK_ID%TYPE)

• The data in the staging table svc_invbackord is validated. In case of errors, all the
validation errors are written back to the staging table and the function returns
back with error.

• Post successful validation, the backorder details are updated in the item_loc_soh
table. The backorder details are updated for both Stores and Warehouses. In case
of warehouses, the corresponding virtual warehouses are fetched and the details
are updated accordingly.

• The customer backorder bucket or pack comp customer backorder bucket in the
item_loc_soh table are updated based on the input request item being a regular
item or pack item.

• In the case of a negative quantity (which indicates backorder release) in the input
message, the quantity is subtracted from the customer backorder column in
item_loc_soh indicating the release of backorder when the quantity is available in
the fulfillment location. In this case also, for warehouses, the corresponding
virtual warehouses will be identified from which the quantity has to be released.

• An insert is made into inv_resv_update_temp table for a location which has been
backordered for the current day. This table is used by inventory extract to AIP to
identify the location for which the inventory feed to AIP should be extracted
signifying a change in inventory or back order position.

• The status in the staging table is updated to ‘C’ompleted to indicate successful
processing of the data.

Message XSD
Below are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition (XSD)

InvBackOrdDesc Inventory Backorder Message InvBackOrdDesc.xsd

InvBackOrdColDesc Collection of Inventory Backorder
Message

InvBackOrdColDesc.xsd

Design Assumptions
 Catchweight, Transformable, Consignment, Concession and Deposit container items

are not supported for backorder requests.

Inventory Back Order Service

Operations Guide, Volume 2 - Message Publication and Subscription Design 305

Table Impact

TABLE SELECT INSERT UPDATE DELETE

SVC_INVBACKORD Yes Yes Yes Yes

INV_RESV_UPDATE_TEMP Yes Yes No No

STORE Yes No No No

WH Yes No No No

CHANNELS Yes No No No

DEPS

UOM_CLASS

ITEM_MASTER

Yes

Yes

Yes

No

No

No

No

No

No

No

No

No

ITEM_LOC

ITEM_LOC_SOH

V_PACKSKU_QTY

Yes

Yes

Yes

No

No

No

No

Yes

No

No

No

No

Web Service Provider Implementation

306 Oracle Retail Merchandising System

Pricing Cost Lookup Service

Functional Area
Foundation Data

Business Overview
This Web Service used by RMS to expose pricing cost information to external systems.
The primary user of this information is assumed to be an Order Management System
(OMS), which manages wholesale customer orders and needs visibility to cost
information as part of the negotiation process for margin visibility. This API supports
providing cost information for an item/location or item/supplier/location.

Package Impact

PL/SQL Web Service Wrapper

Package: PricingCostServiceProviderImpl

This layer is the entry point for calling the Pricing Cost Web Service. The following
operation is available:
lookupPrcCostColCriVo(I_serviceOperationContext IN OUT "RIB_ServiceOpContext_REC",
 I_businessObject IN "RIB_PrcCostColCriVo_REC",
 O_serviceOperationStatus OUT "RIB_ServiceOpStatus_REC",
 O_businessObject OUT "RIB_PrcCostColDesc_REC")

This procedure:

• Validates the input service operation context and initializes the output service
operation status

• Calls SVCPROV_PRICECOST_SQL.GET_PRICING_COST to get the pricing cost

Any failures (validation errors) encountered during the processing are passed back into
the response object. If there are no failures, success status is returned.

Service Provider Layer

Package: SVCPROV_ PRICECOST_SQL

This layer is called from Web Service wrapper which calls the core business logic to
process the request.

CORESVC_PRICECOST_SQL.GET_PRICING_COST

 (O_error_message OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_business_object OUT "RIB_PrcCostColDesc_REC",
 O_error_tbl OUT SVCPROV_UTILITY.ERROR_TBL,
 I_business_object IN "RIB_PrcCostColCriVo_REC")

• In case of errors received from the core business logic, the error message from the
staging table is retrieved and written to the failure table of the output business
object.

• On successful processing, the output object O_business_object will have the
pricing cost.

Pricing Cost Lookup Service

Operations Guide, Volume 2 - Message Publication and Subscription Design 307

Core Logic Layer

Package: CORESVC_PRICECOST_SQL

This layer implements the core business logic to get the pricing cost. The following
operation is available.
GET_PRICING_COST(O_error_message OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_business_object OUT "RIB_PrcCostColDesc_REC",
 O_error_tbl OUT SVCPROV_UTILITY.ERROR_TBL,
 I_business_object IN "RIB_PrcCostColCriVo_REC")

• The data in the input business object is validated. In case of errors, all the
validation errors are written back to the staging table and the function returns
back with error.

• Post successful validation, the pricing cost field is returned from the
FUTURE_COST table with all the input fields as output business object.

Message XSD
This table contains the filenames that correspond with each message type. Please consult
the RIB documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description XML Schema Definition (XSD)

PrcCostCriVo Collection of input parameters PrcCostCriVo.xsd

PrcCostDesc Collection of input parameters with

Pricing_cost

PrcCostDesc.xsd

Design Assumptions
 Only Approved and transaction level items are valid.

 Location must be company store or physical warehouse that is customer orderable.

 Since FUTURE_COST only holds virtual warehouses, the filter criteria to get the
correct virtual warehouse will be:

 Channel id match,

 Low number Channel type match not protected.

 Low number Channel type match protected.

 Primary not protected.

 Primary protected.

 If there are multiple results for any level match, the lowest number virtual
warehouse in the result set will be the one returned. In case a match is not found, the
next warehouse returned will be passed till a match is found. If no match found the
record gets rejected.

Web Service Provider Implementation

308 Oracle Retail Merchandising System

Table Impact

TABLE SELECT INSERT UPDATE DELETE

ITEM_MASTER Yes No No No

COUNTRY Yes No No No

SUPS Yes No No No

STORE Yes No No No

CHANNELS Yes No No No

WH Yes No No No

FUTURE_COST Yes No No No

Customer Credit Check Web Service

Operations Guide, Volume 2 - Message Publication and Subscription Design 309

Customer Credit Check Web Service

Functional Area
Franchise

Business Overview
RMS provides an interface to update the credit_ind for a franchise customer in RMS. A
credit check for the franchisee will be performed before a franchisee order can be
approved. Credit_ind is a column in WF_CUSTOMER table. It determines whether
customer has a good credit. Valid values are ‘Y’ and ‘N’. For each
customer_id/customer_group_id combination, the credit_ind should be updated in the
WF_CUSTOMER table. RMS supports web service for processing Customer Credit Check
message from external financial application. RMS exposes a ‘CustCreditcheckservice’
web service to update the credit_ind. An external financial application will invoke the
service with input collection to update the credit_ind in RMS table.

Web Service Deployment
 Accepts a collection of input parameters. The input is a collection of customer_id,

customer_group_id and credit_ind. For each customer_id/customer_group_id
combination, the credit_ind should be updated in the WF_CUSTOMER table.

 RMS returns failure status as part of the response object in the web service call if
credit_ind is not updated due to validation errors.

 Package Impact

Filename: CustCreditCheckServiceProviderImplSpec and

CustCreditCheckServiceproviderImplBody
The web service ‘CustomerCreditCheckService’ with an operation of ‘updateCustCredit’
is available for external financial application to send update request for credit_ind to
RMS. The web service invokes the public interface ‘CreateCustCreditChkColDesc’
(CustCreditCheckServiceProviderImpl.CreateCustCreditChkColDesc).
The input is a collection of customer_id, customer_group_id and credit_ind. For each
customer_id/customer_group_id combination, the credit_ind should be updated in the
WF_CUSTOMER table. This public interface will call
svcprov_context.set_svcprov_context and svcprov_custcreditchk.create_credit_ind to
update the credit_ind in WF_CUSTOMER table. The messages are staged, validated and
persisted to RMS using the core functions. At the end of the processing, the staging
tables are purged and a confirmation status is returned.

Web Service Provider Implementation

310 Oracle Retail Merchandising System

The flowchart below illustrates the complete process:

Process Flow for Customer Credit Check Web Service

Design Assumptions
 Record should be present in WF_CUSTOMER table for the given wf_customer_id

and wf_customer_group_id.

 Credit_ind will not be updated if there is any validation error. Only Approved and
transaction level items are valid.

Table Impact

TABLE SELECT INSERT UPDATE DELETE

 SVC_CUSTCREDITCHK Yes Yes No Yes

WF_CUSTOMER Yes No Yes No

WF_CUSTOMER_GROUP Yes No No No

Operations Guide, Volume 2 - Message Publication and Subscription Design 311

6
Web Service Consumer Implementation

This chapter gives an overview about the Web Service Consumer Implemenation API
designs used in the RMS environment and various functional attributes used in the APIs.

GL Account Validation Service

Functional Area
Financial Integration

Business Overview
RMS holds the general ledger chart of account (GLCOA) information in the
FIF_GL_ACCT table. A chart of account is essentially the financial application’s debit and
credit account segments (for example, company, cost center, account, and so on) that
apply to the RMS product hierarchy. In some financial applications, this is known as
code combination IDs (CCID). The GL Cross Reference form is then used to associate the
appropriate department, class, subclass, and location data to a CCID and to populate that
data to the GL_FIF_CROSS_REF table.

From RMS’s GL Cross Reference form, RMS invokes a GL Account Validation web
service to validate the general ledger chart of accounts information against an external
financial application. The segments like department, class, subclass and location cross
reference to a CCID can only be established if the account is valid for the same segment
combination in financial application.

This document describes the GL Account Validation web service integration between
RMS and an external financial application. In this integration context, RMS acts as the
service consumer that invokes a web service hosted by an external financial application.

Web Service Consumer Implementation

312 Oracle Retail Merchandising System

Package Impact
The process flow for the web service API.

RMS’s GL Cross
Reference Form

ACC_VALIDATE_API.VALIDATE_ACC
(rmsaiapub_coavals/b.pls)

AIA_WEBSERVICE_SQL.VALIDATE_ACCOUNT
(rmsaiapub_dbcoawebss/b.pls)

RSE generated service contracts in
GlAccountValidationServiceCons –
• setSystemProperty for secured service call
• setUsername
• setPassword
• setEndPoint
• validateGlAccount

Web Services API

Public API Procedures

Filename: rmsaiapub_coavals/b.pls
ACC_VALIDATE_API.VALIDATE_ACC
 (O_error_message OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_acc_val_rec IN OUT ACC_VALIDATE_API.ACC_VALIDATE_TBL)
RETURN BOOLEAN;

This function validates the segments, set_of_book_id and ccid combination in the input
collection. It invokes AIA_WEBSERVICE_SQL.VALIDATE_ACCOUNT to do that.

Filename: rmsaiapub_dbcoawebss/b.pls
VALIDATE_ACCOUNT
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 O_requesting_system IN OUT VARCHAR2,
 O_set_of_books_id IN OUT ORG_UNIT.SET_OF_BOOKS_ID%TYPE,
 O_ccid IN OUT FIF_GL_CROSS_REF.DR_CCID%TYPE,
 O_segment1 IN OUT FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 O_segment2 IN OUT FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 O_segment3 IN OUT FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 O_segment4 IN OUT FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 O_segment5 IN OUT FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 O_segment6 IN OUT FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 O_segment7 IN OUT FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 O_segment8 IN OUT FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 O_segment9 IN OUT FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 O_segment10 IN OUT FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 O_segment11 IN OUT FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 O_segment12 IN OUT FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 O_segment13 IN OUT FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 O_segment14 IN OUT FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 O_segment15 IN OUT FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 O_segment16 IN OUT FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,

GL Account Validation Service

Operations Guide, Volume 2 - Message Publication and Subscription Design 313

 O_segment17 IN OUT FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 O_segment18 IN OUT FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 O_segment19 IN OUT FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 O_segment20 IN OUT FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 O_account_status IN OUT VARCHAR2,
 I_requesting_system IN VARCHAR2,
 I_set_of_books_id IN ORG_UNIT.SET_OF_BOOKS_ID%TYPE,
 I_ccid IN FIF_GL_CROSS_REF.DR_CCID%TYPE,
 I_segment1 IN FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 I_segment2 IN FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 I_segment3 IN FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 I_segment4 IN FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 I_segment5 IN FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 I_segment6 IN FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 I_segment7 IN FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 I_segment8 IN FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 I_segment9 IN FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 I_segment10 IN FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 I_segment11 IN FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 I_segment12 IN FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 I_segment13 IN FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 I_segment14 IN FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 I_segment15 IN FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 I_segment16 IN FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 I_segment17 IN FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 I_segment18 IN FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 I_segment19 IN FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE,
 I_segment20 IN FIF_GL_CROSS_REF.DR_SEQUENCE1%TYPE)
RETURN BOOLEAN;

This function validates the segments, set_of_book_id and ccid combination in the input.
It invokes the RSE generated service contract as defined in the
GlAccountValidationServiceCons package to make a secure web service call.
The service function that validates the account (validateGlAccount takes an
OBJ_GLACCTCOLDESC as the input and returns OBJ_GLACCTCOLREF as the output.
The structure of the objects is also defined in the service contract.

Message XSD
N/A

Design Assumptions
N/A

Table Impact
N/A

	Contents
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Access to Oracle Support

	Related Documents
	Customer Support
	Review Patch Documentation
	Improved Process for Oracle Retail Documentation Corrections
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	1 Introduction
	Message Publication and Subscription Designs
	Oracle Retail Service Layer for RMS
	Service Provider Implementations API Designs

	2 Publication Designs
	Allocations Publication API
	Functional Area
	Business Overview
	Package Impact
	Business Object ID:
	Allocation number
	Create Header
	Modify Header
	Create Detail
	Modify Detail
	Approve
	Close
	Delete
	Package Name: RMSMFM_ALLOC
	Body File Name: rmsmfm_allocb.pls
	Functional Level Description – ADDTOQ
	Functional Level Description – GETNXT
	Function Level Description – PUB_RETRY
	PROCEDURE PUB_RETRY
	Function Level Description – PROCESS_QUEUE_RECORD (local)
	Function Level Description – MAKE_CREATE (local)
	Function Level Description – BUILD_HEADER_OBJECT (local)
	Function Level Description – BUILD_DETAIL_OBJECTS (local)
	Function Level Description – BUILD_SINGLE_DETAIL (local)
	Function Level Description – BUILD_DETAIL_CHANGE_OBJECTS (local)
	Function Level Description – BUILD_DETAIL_DELETE_OBJECTS (local)
	Function Level Description – LOCK_THE_BLOCK (local)
	Function Level Description – HANDLE_ERRORS (local)
	Function Level Description – DELETE_QUEUE_REC (local)
	Function Level Description – GET_ROUTING_TO_LOCS (local)
	Function Level Description – GET_NOT_BEFORE_DAYS (local)
	Function Level Description – GET_RETAIL (local)
	Function Level Description – CHECK_STATUS (local)

	Trigger Impact
	Trigger name: EC_TABLE_ALH_AIUDR
	Trigger file name: ec_table_alh_aiudr.trg
	Table: ALLOC_HEADER
	Inserts
	Updates
	Deletes
	Trigger name: EC_TABLE_ALD_AIUDR
	Trigger file name: ec_table_ald_aiudr.trg
	Table: ALLOC_DETAIL
	Inserts
	Updates
	Deletes

	Message XSD
	Design Assumptions
	Table Impact

	ASNOUT Publication API
	Functional Area
	Business Overview
	Franchise Order Shipment and Return

	Package Impact
	Business Object ID
	Shipment number
	Package name: RMSMFM_SHIPMENT
	Function Level Description – ADDTOQ
	Function Level Description – GETNXT
	Function Level Description – PUB_RETRY
	Function Level Description – PROCESS_QUEUE_RECORD (local)
	Function Level Description – BUILD_HEADER_OBJECT (local)
	Function Level Description – BUILD_DETAIL_OBJECTS (local)
	Function Level Description – LOCK_THE_BLOCK (local)
	Function Level Description – HANDLE_ERRORS (local)
	Function Level Description – UPDATE_QUEUE_REC (local)

	Trigger Impact
	Trigger name: EC_TABLE_SPT_AIR
	Trigger file name: ec_table_spt_air.trg
	Table: SHIPMENT_PUB_TEMP

	Message XSD
	Design Assumptions
	Table Impact

	Banner Publication API
	Functional Area
	Business Overview
	Package Impact
	Create
	Modify
	Delete
	Package name: RMSMFM_banner
	Spec file name: rmsmfm_banners.pls
	Body file name: rmsmfm_bannerb.pls
	Package Specification – Global Variables
	Function Level Description – ADDTOQ
	Function Level Description – GETNXT
	Function Level Description – GETNXT(local)

	Trigger Impact
	Trigger name: EC_TABLE_BAN_AIUDR.TRG
	Trigger file name: ec_table_ban_aiudr.trg
	Table: BANNER
	Inserts
	Updates
	Deletes
	Trigger name: EC_TABLE_CHN_AIUDR.TRG
	Trigger file name: ec_table_chn_aiudr.trg
	Table: CHANNELS
	Inserts
	Updates
	Deletes

	Message XSD
	Table Impact
	Design Assumptions

	Customer Order Fulfillment Confirmation Publication API
	Functional Area
	Business Overview
	Package Impact
	Business Object ID
	Package name: RMSMFM_ORDCUST
	Spec file name: rmsmfm_ordcusts.pls
	Body file name: rmsmfm_ordcustb.pls
	Package Specification – Global Variables
	Function Level Description – ADDTOQ
	Function Level Description – GETNXT
	Function Level Description – PUB_RETRY
	Function Level Description – PROCESS_QUEUE_RECORD (local)
	Function Level Description – BUILD_MSG_OBJECT (local)
	Function Level Description – LOCK_THE_BLOCK (local)
	Function Level Description – HANDLE_ERRORS (local)

	Trigger Impact
	Trigger name: EC_TABLE_ORP_AIR
	Trigger file name: ec_table_orp_air.trg
	Table: ORDCUST_PUB_TEMP

	Message XSD
	Design Assumptions
	Table Impact

	Delivery Slot Publication API
	Business Overview
	Package Impact
	Create Delivery_Slot
	Update Delivery_Slot
	Delete Delivery_slot
	Package name: RMSMFM_DLVYSLT
	Spec file name: rmsmfm_dlvyslts.pls
	Body file name: rmsmfm_dlvysltb.pls
	Package Specification – Global Variables
	Function Level Description – ADDTOQ
	Function Level Description – GETNXT
	Function Level Description – PUB_RETRY
	Function Level Description – PROCESS_QUEUE_DLVY_SLT (local)

	Delete the record from the delivery_slot_mfqueue table. Trigger Impact
	Trigger name: EC_TABLE_DLVY_AIUDR.TRG
	Trigger file name: ec_table_dlvy_aiudr.trg
	Table: Delivery_Slot
	Inserts
	Updates
	Deletes

	Message XSD
	Table Impact
	Design Assumptions

	Differentiator Groups Publication API
	Business Overview
	Package Impact
	Create Diff Group
	Modify Diff Group
	Create Diff Group Detail
	Modify Diff Group Detail
	Delete Diff Group Detail
	Delete Diff Group
	Package name: RMSMFM_DIFFGRP
	Spec file name: rmsmfm_diffgrps.pls
	Body file name: rmsmfm_diffgrpb.pls
	Function Level Description – GETNXT

	Trigger Impact
	Trigger name: EC_TABLE_DGH_AIUDR.TRG
	Trigger file name: ec_table_dgh_aiudr.trg
	Table: DIFF_GROUP_HEAD
	Inserts
	Updates
	Deletes
	Trigger name: EC_TABLE_DGD_AIUDR.TRG
	Trigger file name: ec_table_dgd_aiudr.trg
	Table: DIFF_GROUP_DETAIL
	Inserts
	Updates
	Deletes

	Message XSD
	Table Impact
	Design Assumptions

	Differentiator ID Publication API
	Functional Area
	Business Overview
	Diff message processes

	Package Impact
	Package name: RMSMFM_DIFFID
	Spec file name: rmsmfm_diffids.pls
	Body file name: rmsmfm_diffidb.pls
	Package Specification – Global Variables
	Function Level Description – ADDTOQ
	Function Level Description – GETNXT
	Function Level Description – GETNXT(local)

	Trigger Impact
	Trigger name: EC_TABLE_DID_AIUDR.TRG
	Trigger file name: ec_table_did_aiudr.trg
	Table: DIFF_IDs
	Inserts
	Updates
	Deletes

	Message XSD
	Table Impact
	Design Assumptions

	Item Publication API
	Functional Area
	Business Overview
	Deposit items
	Catch-Weight Items
	Receiving and inventory movement impact on catch-weight items
	Item Transformation
	Item transformation
	Item and Item Component Descriptions
	New Item Message Processes
	Basic Item Message
	New Item Message Publication
	Subordinate Data and XML Tags
	Modify and Delete Messages
	Modify Messages
	Delete messages
	Design Overview
	Business Object Records

	Package Impact
	Business Object ID
	Package name: RMSMFM_ITEMS
	Spec file name: rmsmfm_itemss.pls
	Body file name: rmsmfm_itemsb.pls
	Package Specification – Global Variables
	Function Level Description – ADDTOQ
	Function Level Description – GETNXT
	Function Level Description – PUB_RETRY
	Function Level Description – PROCESS_QUEUE_RECORD (local)
	Function Level Description – MAKE_CREATE (local)
	Function Level Description – HANDLE_ERRORS (local)
	Package name: RMSMFM_ITEMS_BUILD
	Spec file name: rmsmfm_items.pls
	Body file name: rmsmfm_itemb.pls
	Function Level Description – BUILD_MESSAGE
	Function Level Description – BUILD_DELETE_MESSAGE
	Function Level Description – BUILD_HEADER_OBJECT (local)
	Function Level Description – BUILD DETAIL functions (all local)
	Function Level Description – GET_ITEM_INFO (local)
	Function Level Description – BUILD_DIMENSION_DESCRIPTIONS (local)

	Trigger Impact
	Trigger name: EC_TABLE_IEM_AIUDR.TRG (mod)
	Trigger file name: ec_table_iem_aiudr.trg (mod)
	Table: ITEM_MASTER
	Inserts
	Updates
	Deletes
	Trigger name: EC_TABLE_ISP_AIUDR.TRG (mod)
	Trigger file name: ec_table_isp_aiudr.trg (mod)
	Table: ITEM_SUPPLIER
	Inserts
	Updates
	Deletes
	Trigger name: EC_TABLE_ISC_AIUDR.TRG (mod)
	Trigger file name: ec_table_isc_aiudr.trg (mod)
	Table: ITEM_SUPP_COUNTRY
	Inserts
	Updates
	Deletes
	Trigger name: EC_TABLE_ISD_AIUDR.TRG (mod)
	Trigger file name: ec_table_isd_aiudr.trg (mod)
	Table: ITEM_SUPP_COUNTRY_DIM
	Inserts
	Updates
	Deletes
	Trigger name: EC_TABLE_PKS_AIUDR.TRG (mod)
	Trigger file name: ec_table_pks_aiudr.trg (mod)
	Table: PACKITEM_BREAKOUT
	Trigger name: EC_TABLE_PKS_IUDS.TRG (mod)
	Trigger file name: ec_table_pks_aiudr.trg (mod)
	Table: PACKITEM_BREAKOUT
	Trigger name: EC_TABLE_UIT_AIUDR.TRG (mod)
	Trigger file name: ec_table_uit_aiudr.trg (mod)
	Table: UDA_ITEM_DATE
	Inserts
	Updates
	Deletes
	Trigger name: EC_TABLE_UIF_AIUDR.TRG (mod)
	Trigger file name: ec_table_uif_aiudr.trg (mod)
	Table: UDA_ITEM_FF
	Inserts
	Updates
	Deletes
	Trigger name: EC_TABLE_UIL_AIUDR.TRG (mod)
	Trigger file name: ec_table_uil_aiudr.trg (mod)
	Table: UDA_ITEM_LOV
	Inserts
	Updates
	Deletes
	Trigger name: EC_TABLE_RIH_AIUDR.TRG (mod)
	Trigger file name: ec_table_rih_aiudr.trg (mod)
	Table: RELATED_ITEM_HEAD
	Inserts
	Updates
	Deletes
	Trigger name: EC_TABLE_RID_AIUDR.TRG (mod)
	Trigger file name: ec_table_rid_aiudr.trg (mod)
	Table: RELATED_ITEM_DETAIL
	Inserts
	Updates
	Deletes

	Message XSD
	Table Impact
	Design Assumptions

	Item Location Publication API
	Functional Area
	Business Overview
	Package Impact
	Package name: RMSMFM_ITEMLOC
	Spec file name: rmsmfm_itemlocs.pls
	Body file name: rmsmfm_itemlocb.pls
	Package Specification – Global Variables
	Function Level Description – ADDTOQ
	Function Level Description – GETNXT
	Function Level Description – PUB_RETRY
	Function Level Description – PROCESS_QUEUE_RECORD (local)
	Function Level Description – BUILD_DETAIL_OBJECTS (local)
	Function Level Description – BUILD_DETAIL_DELETE_OBJECTS (local)
	Function Level Description – HANDLE_ERRORS (local)

	Trigger Impact
	Trigger name: EC_TABLE_ITL_AIUDR.TRG (mod)
	Trigger file name: ec_table_itl_aiudr.trg (mod)
	Table: ITEMLOC
	Inserts
	Updates
	Deletes
	Trigger name: EC_TABLE_RIL_AIUDR.TRG (mod)
	Trigger file name: ec_table_ril_aiudr.trg (mod)
	Table: REPL_ITEM_LOC

	Message XSD
	Table Impact
	Design Assumptions

	Merchandise Hierarchy Publication API
	Functional Area
	Business Overview
	Package Impact
	Business Object ID
	File name: rmsmfm_merchhiers/b.pls

	Message XSD
	Design Assumptions
	Table Impact

	Order Publication API
	Functional Area
	Business Overview
	Creating of Purchase Orders
	Purchase Order Messages
	Order Message Processes

	Package Impact
	Create a Worksheet Order
	Modify Pre-Approved
	Approve
	Modify in ‘A’ status
	Redistribute
	Unapprove
	Modify
	Close
	Reinstate
	Delete
	Filename: rmsmfm_orderb.pls
	Function Level Description – ADDTOQ
	Function Level Description – GETNXT
	Function Level Description – PUB_RETRY
	Function Level Description – PROCESS_QUEUE_RECORD (local)
	Function Level Description – MAKE_CREATE (local)
	Function Level Description – BUILD_HEADER_OBJECT (local)
	Function Level Description – BUILD_DETAIL_OBJECTS (local)
	Function Level Description – BUILD_SINGLE_DETAIL (local)
	Function Level Description – BUILD_DETAIL_CHANGE_OBJECTS (local)
	Function Level Description – BUILD_DETAIL_DELETE (local)
	Function Level Description – DELETE_QUEUE_REC (local)
	Function Level Description – BUILD_DETAIL_DELETE_WH (local)
	Function Level Description – ROUTING_INFO_ADD (local)
	Function Level Description – GET_ROUTING_TO_LOCS (local)
	Function Level Description – GET_MSG_HEADER (local)
	Function Level Description – LOCK_THE_BLOCK (local)
	Function Level Description – HANDLE_ERRORS (local)

	Message XSD
	Design Assumptions
	Table Impact

	Partner Publication API
	Functional Area
	Business Overview
	External Finishers

	Package Impact
	Filename: rmsmfm_partnerb.pls
	Function Level Description – ADDTOQ
	Function Level Description – PUB_RETRY
	Function Level Description – PROCESS_QUEUE_RECORD (local)
	Function Level Description – MAKE_CREATE (local)
	Function Level Description – BUILD_HEADER_OBJECT (local)
	Function Level Description – BUILD_HEADER_OBJECT (local)
	Function Level Description – BUILD_DETAIL_OBJECTS (local)
	Function Level Description – BUILD_SINGLE_DETAIL (local)
	Function Level Description – BUILD_DETAIL_CHANGE_OBJECTS (local)
	Function Level Description – BUILD_DETAIL_DELETE_OBJECTS (local)
	Function Level Description – LOCK_THE_BLOCK (local)
	Function Level Description – HANDLE_ERRORS (local)
	Function Level Description – DELETE_QUEUE_REC (local)

	Message XSD
	Design Assumptions
	Table Impact

	Receiver Unit Adjustment Publication API
	Functional Area
	Business Overview
	Package Impact
	Business object id
	Package name
	Spec file name: rmsmfm_rcvunitadjs.pls
	Body file name: rmsmfm_rcvunitadjb.pls
	Package Specification – Global Variables
	Function Level Description – ADDTOQ
	Function Level Description – GETNXT
	Function Level Description – PUB_RETRY
	Function Level Description – PROCESS_QUEUE_RECORD (local)
	Function Level Description – MAKE_CREATE (local)
	Function Level Description – BUILD_HEADER_OBJECT (local)
	Function Level Description – BUILD_DETAIL_OBJECTS (local)
	Function Level Description – BUILD_SINGLE_DETAIL (local)
	Function Level Description – LOCK_THE_BLOCK (local)
	Function Level Description – HANDLE_ERRORS (local)
	Function Level Description – DELETE_QUEUE_REC (local)

	Trigger Impact
	Trigger name: EC_TABLE_RUA_AIR.TRG
	Trigger file name: ec_table_rua_air.trg
	Table: RAU_RIB_INTERFACE
	Inserts

	Message XSD
	Design Assumptions
	Table Impact

	RTV Request Publication API
	Functional Area
	Business Overview
	Package Impact
	Business Object ID
	Package name: RMSMFM_RTVREQ
	Spec file name: rmsmfm_rtvreqs.pls
	Body file name: rmsmfm_rtvreqb.pls
	Function Level Description – ADDTOQ
	Function Level Description – GETNXT
	Function Level Description – PUB_RETRY
	Function Level Description – PROCESS_QUEUE_RECORD (local)
	Function Level Description – MAKE_CREATE (local)
	Function Level Description – BUILD_HEADER_OBJECT (local)
	Function Level Description – BUILD_DETAIL_CHANGE_OBJECTS (local)
	Function Level Description – BUILD_DETAIL_OBJECTS (local)
	Function Level Description – BUILD_DETAIL_DELETE_OBJECTS (local)
	Function Level Description – BUILD_SINGLE_DETAIL (local)
	Function Level Description – LOCK_THE_BLOCK (local)
	Function Level Description – DELETE_QUEUE_REC (local)
	Function Level Description – HANDLE_ERRORS (local)

	Trigger Impact
	Trigger name: EC_TABLE_RHD_AIUDR.TRG
	Trigger file name: ec_table_rhd_aiudr.trg
	Table: RTV_HEAD
	Inserts
	Updates
	Deletes
	Trigger name: EC_TABLE_RDT_AIUDR.TRG
	Trigger file name: ec_table_rdt_aiudr.trg
	Table: RTV_DETAIL
	Inserts
	Updates
	Deletes

	Message XSD
	Design Assumptions
	Table Impact

	Seed Data Publication API
	Functional Area
	Business Overview
	Package Impact
	File name: rmsmfm_seeddatas/b.pls
	Function Level Description – ADDTOQ
	Function Level Description – GETNXT
	Function Level Description – DO_GETNXT (local)
	Function Level Description – DELETE_QUEUE_REC (local)
	File name: code_head_xmls/b.pls
	Function Level Description – BUILD_MESSAGE
	Function Level Description – DELETE_CODE_HEAD
	Function Level Description – ADD_UPDATE_CODE_HEAD
	File name: code_detail_xmls/b.pls
	Function Level Description – BUILD_MESSAGE
	Function Level Description – DELETE_CODE_DETAIL
	Function Level Description – ADD_UPDATE_CODE_DETAIL
	File name: diff_type_xmls/b.pls
	Function Level Description – BUILD_MESSAGE
	Function Level Description – DELETE_DIFF_TYPE
	Function Level Description – ADD_UPDATE_CODE_DETAIL

	Message XSD
	Design Assumptions
	Table Impact

	Seed Object Publication API
	Functional Area
	Business Overview
	Package Impact
	File name: rmsmfm_seedobjs/b.pls
	Function Level Description – GETNXT
	Function Level Description – PUB_RETRY

	Message XSD
	Table Impact

	Store Publication API
	Functional Area
	Business Overview
	Package Impact
	File name: rmsmfm_stores/b.pls
	Function Level Description – ADDTOQ
	Function Level Description – GETNXT
	Function Level Description – PUB_RETRY
	Function Level Description – PROCESS_QUEUE_RECORD (local)
	Function Level Description – MAKE_CREATE (local)
	Function Level Description – BUILD_HEADER_OBJECT (local)
	Function Level Description – BUILD_DETAIL_OBJECTS (local)
	Function Level Description – BUILD_SINGLE_DETAIL (local)
	Function Level Description – BUILD_DETAIL_CHANGE_OBJECTS (local)
	Function Level Description – BUILD_DETAIL_DELETE_OBJECTS (local)
	Function Level Description – LOCK_THE_BLOCK (local)
	Function Level Description – HANDLE_ERRORS (local)

	Message XSD
	Table Impact
	Design Assumptions

	Transfers Publication API
	Functional Area
	Business Overview
	Package Impact
	Business Object ID:
	Transfer number
	Create Header
	Approve
	Modify Header
	Create Details
	Modify Details
	Delete Details
	Close
	Delete
	Package name: RMSMFM_TRANSFERS
	Spec file name: rmsmfm_transferss.pls
	Body file name: rmsmfm_transfersb.pls
	Package Specification – Global Variables
	Function Level Description – ADDTOQ
	Function Level Description – GETNXT
	Function Level Description – PUB_RETRY
	Function Level Description – PROCESS_QUEUE_RECORD (local)
	Function Level Description – MAKE_CREATE (local)
	Function Level Description – BUILD_HEADER_OBJECT (local)
	Function Level Description – BUILD_DETAIL_OBJECTS (local)
	Function Level Description – BUILD_SINGLE_DETAIL (local)
	Function Level Description – GET_RETAIL (local)
	Function Level Description – GET_GLOBALS (local)
	Function Level Description – BUILD_DETAIL_CHANGE_OBJECTS (local)
	Function Level Description – BUILD_DETAIL_DELETE_OBJECTS (local)
	Function Level Description – LOCK_THE_BLOCK (local)
	Function Level Description – LOCK_DETAILS (local)
	Function Level Description – DELETE_QUEUE_REC (local)
	Function Level Description – HANDLE_ERRORS (local)

	Trigger Impact
	Trigger name: EC_TABLE_THD_AIUDR.TRG
	Trigger file name: ec_table_thd_aiudr.trg
	Table: TSFHEAD
	Inserts
	Updates
	Deletes
	Trigger name: EC_TABLE_TDT_AIUDR.TRG
	Trigger file name: ec_table_tdt_aiudr.trg
	Table: TSFDETAIL
	Inserts
	Updates
	Deletes
	Trigger name: EC_TABLE_ORC_AUR.TRG
	Trigger file name: ec_table_orc_aur.trg
	Table: ORDCUST
	Updates

	Message XSD
	Design Assumptions
	Table Impact

	UDA Publication API
	Functional Area
	Business Overview
	Package Impact
	File name: rmsmfm_udas/b.pls
	Function Level Description – ADDTOQ
	Function Level Description – GETNXT

	Message XSD
	Design Assumptions
	Table Impact

	Vendor Publication API
	Functional Area
	Business Overview
	Package Impact
	File name: rmsmfm_vendors/b.pls
	Function Level Description – ADDTOQ
	Function Level Description – GETNXT
	Function Level Description – CREATE_PREVIOUS (local)
	Function Level Description – CLEAN_QUEUE (local)
	Function Level Description – CAN_CREATE (local)
	Function Level Description – MAKE_CREATE (local)
	Function Level Description – DELETE_QUEUE_REC (local)
	Function Level Description – REPLACE_QUEUE_SUP (local)
	Function Level Description – REPLACE_QUEUE_ADR (local)
	Function Level Description – CHECK_STATUS (local)
	Function Level Description – MAKE_CREATE_POU (local)

	Message XSD
	Design Assumptions
	Table Impact

	Warehouse Publication API
	Functional Area
	Business Overview
	Package Impact
	File name: rmsmfm_whs/b.pls
	Function Level Description – ADDTOQ
	Function Level Description – GETNXT
	Function Level Description – PUB_RETRY
	Function Level Description – PROCESS_QUEUE_RECORD (local)
	Function Level Description – DELETE_QUEUE_REC (local)
	Function Level Description – MAKE_CREATE (local)
	Function Level Description – BUILD_HEADER_OBJECT (local)
	Function Level Description – BUILD_HEADER_OBJECT (local)
	Function Level Description – BUILD_DETAIL_OBJECTS (local)
	Function Level Description – BUILD_SINGLE_DETAIL (local)
	Function Level Description – BUILD_DETAIL_CHANGE_OBJECTS (local)
	Function Level Description – BUILD_DETAIL_DELETE_OBJECTS (local)
	Function Level Description – LOCK_THE_BLOCK (local)
	Function Level Description – HANDLE_ERRORS (local)

	Design Assumptions
	Table Impact

	Work Orders In Publication API
	Functional Area
	Business Overview
	Package Impact
	Business Object ID:
	Work Order Id
	Create
	Modify
	Delete
	Package name: RMSMFM_WOIN
	Spec file name: rmsmfm_woins.pls
	Body file name: rmsmfm_woinb.pls
	Package Specification – Global Variables
	Function Level Description – ADDTOQ
	Function Level Description – GETNXT
	Function Level Description – PUB_RETRY
	Function Level Description – PROCESS_QUEUE_RECORD (local)
	Function Level Description – BUILD_DETAIL_OBJECTS (local)
	Function Level Description – BUILD_DETAIL_DELETE_OBJECTS (local)
	Function Level Description – LOCK_THE_BLOCK (local)
	Function Level Description – ROUTING_INFO_ADD (local)
	Function Level Description – HANDLE_ERRORS (local)

	Trigger Impact
	Trigger name: EC_TABLE_WDL_AIUDR.TRG
	Trigger file name: ec_table_wdl_aiudr.trg
	Table: WO_DETAIL
	Inserts
	Updates
	Deletes

	Message XSD
	Table Impact
	Design Assumptions

	Work Orders Out Publication API
	Functional Area
	Business Overview
	Package Impact
	Business Object ID:
	Approve
	Delete
	Unapproved
	Package name: RMSMFM_WOOUT
	Spec file name: rmsmfm_woouts.pls
	Body file name: rmsmfm_wooutb.pls
	Package Specification – Global Variables
	Function Level Description – ADDTOQ
	Function Level Description – GETNXT
	Function Level Description – PUB_RETRY
	Function Level Description – PROCESS_QUEUE_RECORD (local)
	Function Level Description – MAKE_CREATE (local)
	Function Level Description – BUILD_HEADER_OBJECT (local)
	Function Level Description – BUILD_DETAIL_OBJECTS (local)
	Function Level Description – DELETE_QUEUE_REC (local)
	Function Level Description – BUILD_WODTL_OBJECT (local)
	Function Level Description – BUILD_PACKING_OBJECT (local)
	Function Level Description – LOCK_THE_BLOCK (local)
	Function Level Description – HANDLE_ERRORS (local)

	Trigger Impact
	Trigger file name: ec_table_thd_aiudr.trg
	Table: TSFHEAD
	Inserts
	Updates
	Deletes

	Message XSD
	Design Assumptions
	Table Impact

	3 Subscription Designs
	Allocation Subscription API
	Functional Area
	Business Overview
	Package Impact
	Filename: rmssub_xallocs/b.pls
	Filename: rmssub_xallocvals/b.pls
	Filename: rmssub_xallocsqls/b.pls

	Message XSD
	Design Assumptions
	Table Impact

	Appointments Subscription API
	Functional Area
	Business Overview
	Appointment status
	Appointment processing

	Package Impact
	Filename: rmssub_receivings/b.pls
	Filename: rmssub_appoints/b.pls
	Appointment Create
	Appointment Modify
	Appointment Delete
	Appointment Detail Create
	Appointment Detail Modify
	Appointment Detail Delete

	Message XSD
	Design Assumptions
	Table Impact

	ASNIN Subscription API
	Functional Area
	Business Overview
	Package Impact
	Filename: rmssub_asnins/b.pls
	Error Handling
	Private Internal Functions and Procedures
	PARSE_ASN
	PARSE_ORDER
	PARSE_CARTON
	PARSE_ITEM

	Validation
	PROCESS_ASN
	PROCESS_DELETE

	Message XSD
	Design Assumptions
	Table Impact

	ASNOUT Subscription API
	Functional Area
	Business Overview
	BOL Message Structure

	Package Impact
	Filename: rmssub_asnouts/b.pls
	PARSE_BOL
	PROCESS_BOL
	PARSE_DISTRO
	PARSE_ITEM
	PROCESS_DISTRO
	CHECK_ITEMS
	GET_ORDERABLE_ITEMS
	HANDLE_ERRORS
	Filename: bolsqls/b.pls
	BOL_SQL.PUT_BOL
	BOL_SQL.PUT_TSF
	BOL_SQL.PUT_TSF_ITEM
	BOL_SQL.PROCESS_TSF
	BOL_SQL.PUT_ALLOC
	BOL_SQL.PUT_ALLOC_ITEM
	BOL_SQL.PROCESS_ALLOC

	Message XSD
	Design Assumptions
	Table Impact

	COGS Subscription API
	Functional Area
	Business Overview
	Package Impact
	Filename: rmssub_cogsb/s.pls
	Business Validation Mode
	Filename: rmssub_cogsvalb/s.pls
	DML Module
	Filename: rmssub_cogssqlb/s.pls

	Message XSD
	Design Assumptions
	Table Impact

	Cost Change Subscription API
	Functional Area
	Design Overview
	Consume Module
	Filename: rmssub_xcostchgs/b.pls
	Business Validation Module
	Cost Change Modify
	POPULATING RECORD

	Package Impact
	Filename: rmssub_xcchgsqls/b.pls
	Cost Change

	Message XSD
	Design Assumptions
	Table Impact

	Currency Exchange Rates Subscription API
	Functional Area
	Business Overview
	Data Flow
	Message Structure

	Package Impact
	Filename: rmssub_curratecres/b.pls
	Public API Procedures:
	Private Internal Functions and Procedures (rmssub_curratecre.pls)
	Private Internal Functions and Procedures (other):

	Message XSD
	Design Assumptions
	Table Impact

	Diff Group Subscription API
	Functional Area
	Design Overview
	Differentiators

	Package Impact
	Package Impact
	Filename: rmssub_xdiffgrps/b.pls
	Business Validation Module
	Filename: rmssub_xdiffgrpvals/b.pls
	Bulk or Single DML Module
	Filename: rmssub_xdiffgrpsqls/b.pls

	Message XSD
	Design Assumptions
	Table Impact

	Diff ID Subscription API
	Functional Area
	Design Overview
	Package Impact
	Filename: rmssub_xdiffids/b.pls
	Business Validation Module
	Filename: rmssub_xdiffidvals/b.pls
	Bulk or single DML module
	Filename: rmssub_xdiffidsqls/b.pls

	Message XSD
	Design Assumptions
	Table Impact

	Direct Ship Receipt Subscription API
	Functional Area
	Business Overview
	Package Impact
	Filename: rmssub_dsrcpts/b.pls
	Filename: rmssub_dsrcpt_vals/b.pls
	Filename: rmssub_dsrcpt_sqls/b.pls

	Message XSD
	Design Assumptions
	Table Impact

	DSD Deals Subscription API
	Functional Area
	Business Overview
	Package Impact
	Filename: rmssub_dsddealss/b.pls
	RMSSUB_DSDDEALS.COMPLETE_TRANSACTION
	RMSSUB_DSDDEALS.HANDLE_ERRORS

	Message XSD
	Design Assumptions
	Table Impact

	DSD Receipt Subscription API
	Functional Area
	Business Overview
	Package Impact
	Filename: rmssub_dsds/b.pls
	RMSSUB_DSD.CONSUME
	RMSSUB_DSD.GET_ORDER_NO
	RMSSUB_DSD.HANDLE_ERRORS

	Message XSD
	Design Assumptions
	Table Impact

	Freight Terms Subscription API
	Functional Area
	Business Overview
	Message Structure

	Package Impact
	Filename: rmssub_frttermcres/b.pls rmssub_fterms/b.pls
	Public API Procedures
	Private Internal Functions and Procedures (rmssub_frttermcre.pls):
	Error Handling

	Private Internal Functions and Procedures (rmssub_fterm.pls):
	Main Consume Function
	XML Parsing
	PARSE_FTERM

	Validation
	PROCESS_FTERM

	Message XSD
	Design Assumptions
	Table Impact

	GL Chart of Accounts Subscription API
	Functional Area
	Business Overview
	Package Impact
	Public API Procedures:
	Filename: rmssub_glcoacreb.pls
	Private Internal Functions and Procedures (rmssub_glcoacreb.pls):
	Error Handling:
	Private Internal Functions and Procedures (other):
	Filename: rmssub_glcacctb.pls
	Main Consume Function:
	XML Parsing:
	Validation:
	PROCESS_HEADER
	PROCESS_GLACCT
	INSERT_GLACCT
	UPDATE_GLACCT
	VALIDATE_GLACCT
	CHECK_NULLS
	CHECK_ATTRS

	Message XSD
	Design Assumptions
	Table Impact

	Inventory Adjustment Subscription
	Functional Area
	Business Overview
	Inventory Quantity and Status Evaluation
	Stock Adjustment Transaction Codes
	L10N Localization Decoupling Layer:

	Package Impact
	Filename: rmssub_invadjusts/b.pls
	Filename: invadjs/b.pls
	INVADJ_SQL.BUILD_PROCESS_INVADJ

	Message XSD
	Design Assumptions
	Table Impact

	Inventory Request Subscription API
	Functional Area
	Business Overview
	Package Impact
	Filename: rmssub_invreqs/b.pls
	Filename: rmssub_invreq_errors/b.pls
	RMSSUB_INVREQ_ERROR.FINISH
	RMSSUB_INVREQ_ERROR.GET_MESSAGE_KEY
	Filename: invrequests/b.pls
	INV_REQUEST_SQL.VERIFY_REPL_INFO (local)
	INV_REQUEST_SQL.FUNCTION CONVERT_NEED_QTY (local)
	INV_REQUEST_SQL.PREPARE_AD_HOC (local)
	INV_REQUEST_SQL.VERIFY_ON_STORE (local)
	INV_REQUEST_SQL. PREPARE_INSERT (local)
	INV_REQUEST_SQL. PREPARE_UPDATE (local)
	INV_REQUEST_SQL. FLUSH (local)

	Message XSD
	Design Assumptions
	Table Impact

	Item Subscription API
	Functional Area
	Design Overview
	Consume Module
	Filename: rmssub_items/b.pls
	Business Validation Module
	Filename: rmssub_xitemvals/b.pls

	Package Impact
	Filename: rmssub_item_sql

	Message XSD
	Design Assumptions
	Table Impact

	Item Location Subscription API
	Functional Area
	Design Overview
	L10N Localization Decoupling Layer:

	Package Impact
	Consume Module
	Filename: rmssub_xitemlocs/b.pls
	Business Validation Module
	Package Impact
	Filename: rmssub_xitemlocsqls/b.pls

	Message XSD
	Table Impact

	Item Reclassification Subscription API
	Functional Area
	Design Overview
	Package Impact
	Consume Module
	Filename: rmssub_xitemrclss/b.pls
	Business Validation Module
	Filename: rmssub_xitemrclsvals/b.pls
	Package Impact
	Filename: rmssub_xitemrclssqls/b.pls

	Message XSD
	Design Assumptions
	Table Impact

	Location Trait Subscription API
	Functional Area
	Design Overview
	Consume Module
	Filename: rmssub_xloctrts/b.pls
	Business Validation Module
	Filename: rmssub_xloctrtvals/b.pls

	Package Impact
	Filename: rmssub_xloctrtsqls/b.pls

	Message XSD
	Design Assumptions
	Table Impact

	Merchandise Hierarchy Subscription API
	Functional Area
	Business Overview
	Package Impact
	Filename: rmssub_xmrchhrs/b.pls
	Filename: rmssub_xmrchhr[family_name]vals/b.pls
	Filename: rmssub_xmrchhr[family_name]sqls/b.pls

	Message XSD
	Design Assumptions
	Table Impact

	Merchandise Hierarchy Reclassification Subscription API
	Functional Area
	Business Overview
	Consume Module
	Rmssub_xmrchhrclss/b.pls
	Business Validation Module
	Filename: rmssub_xmrchhrrclsvals/b.pls

	Package Impact
	Filename: rmssub_ xmrchhrrclssqls /b.pls

	Message XSD
	Design Assumptions
	Table Impact

	Organizational Hierarchy Subscription API
	Functional Area
	Business Overview
	Package Impact
	Filename: rmssub_xorghiers/b.pls
	Filename rmssub_xohvals/b.pls
	Filename: rmssub_xorghr_sqls/b.pls

	Message XSD
	Design Assumptions
	Table Impact

	Payment Terms Subscription API
	Functional Area
	Business Overview
	Package Impact
	Filename: rmssub_ptrms/b.pls
	Internal Procedure:
	Internal Functions:
	CHECK_REQUIRED_FIELDS
	POPULATE_RECORDS
	CHECK_ENABLED
	CHECK_TERMS_HEAD
	CHECK_TERMS_DETAIL
	DML Module
	Filename: rmssub_ptrm_sqls/b.pls

	Message XSD
	Design Assumptions
	Table Impact

	PO Subscription API
	Functional Area
	Business Overview
	Package Impact
	Filename: rmssub_xorders/b.pls
	Filename: rmssub_xordervals/b.pls
	ORDER Create
	ORDER Modify
	ORDER DETAIL Create
	ORDER DETAIL MODIFY
	ORDER Delete
	ORDER Detail Delete
	Filename: rmssub_xorders/b.pls
	ORDER Create
	ORDER Modify
	ORDER Delete
	ORDER Detail Create
	ORDER Detail Modify
	ORDER Detail Delete

	Message XSD
	Design Assumptions
	Table Impact

	Receiving Subscription API
	Functional Area
	Business Overview
	Carton-Level Receiving
	Doc Types
	Blind Receipt Processing
	L10N Localization Decoupling Layer:

	Package Impact
	Filename: rmssub_receivings/b.pls
	Filename: rmssub_receipts/b.pls
	Filename: rmssub_stkord_receipts/b.pls
	Filename: rmssub_stkord_rct_vals/b.pls
	Filename: rmssub_receipt_errors/b.pls
	Filename: stkordrcvs/b.pls
	Filename: ordrcvs/b.pls

	Message XSD
	Design Assumptions
	Table Impact

	RTV Subscription API
	Functional Area
	Business Overview
	L10N Localization Decoupling Layer:

	Package Impact
	Filename: rmssub_rtvs/b.pls
	PARSE_RTV
	PROCESS_RTV
	CHECK_ITEMS
	GET_ORDERABLE_ITEMS
	Filename: rtvs/b.pls
	RTV_SQL.APPLY_PROCESS

	Message XSD
	Design Assumptions
	Table Impact

	Stock Order Status Subscription API
	Functional Area
	Business Overview
	Stock Order Status Explanations
	Pack Considerations

	Package Impact
	Filename: rmssub_sostatuss/b.pls
	CONSUME
	BUILD_XTSFDESC
	This function builds a RIB_XTsfDesc_REC object to be passed in the RMSSUB_XTSF.CONSUME function.
	HANDLE_ERRORS
	PARSE_SOS
	PROCESS_SOS
	VALIDATE
	UPDATE_TSF
	UPDATE_ALLOC
	UPD_FROM_ITEM_LOC
	UPD_TO_ITEM_LOC
	GET_RECEIVE_AS_TYPE
	POPULATE_DOC_CLOSE_QUEUE
	RESET
	DO_BULK

	Message XSD
	Design Assumptions
	Table Impact

	Stock Count Schedule Subscription API
	Functional Area
	Business Overview
	Package Impact
	Filename: rmssub_stakeschedules/b.pls
	Filename: stake_schedules/b.pls
	VALIDATE_VALUES
	VALIDATE_HIERARCHY
	VALIDATE_LOCATION
	PROCESS_PROD
	PROCESS_LOC

	Message XSD
	Table Impact

	Store Subscription API
	Functional Area
	Business Overview
	Consume Module
	Filename: rmssub_xstores/b.pls
	Business Validation Module
	Filename: rmssub_xstorevals/b.pls

	Package Impact
	Filename: rmssub_xstoresqls/b.pls

	Message XSD
	Design Assumptions
	Table Impact

	Transfer Subscription API
	Functional Area
	Business Overview
	L10N Localization Decoupling Layer:

	Package Impact
	Filename: rmssub_xtsfvals/b.pls
	RMSSUB_XTSF_VALIDATE.CHECK_MESSAGE
	TRANSFER CREATE
	TRANSFER MODIFY
	TRANSFER DETAIL CREATE
	TRANSFER DETAIL MODIFY
	RMSSUB_XTSF_VALIDATE.CHECK_MESSAGE

	TRANSFER DELETE
	TRANSFER DETAIL DELETE
	Filename: rmssub_xtsfs/b.pls
	TRANSFER CREATE
	TRANSFER MODIFY
	TRANSFER DELETE
	TRANSFER DETAIL CREATE
	TRANSFER DETAIL MODIFY
	TRANSFER DETAIL DELETE

	Message XSD
	Table Impact

	Vendor Subscription API
	Functional Area
	Business Overview
	Package Impact
	Filename: rmssub_vendorcres/b.pls
	Public API Procedures
	Private Internal Functions and Procedures (rmssub_vendorcre.pls):
	Private Internal Functions and Procedures (other):
	Main Consume Function:
	PARSE_SUPPLIER
	PARSE_ADDRESS
	PROCESS_SUPPLIER
	PROCESS_ADDRESS
	INSERT_SUPPLIER
	FUNCTION UPDATE_SUPPLIER
	FUNCTION UPDATE_ADDRESS
	CHECK_CODES
	INSERT_ADDRESS
	VALIDATE_SUPPLIER_RECORD
	VALIDATE_ADDRESS_RECORD
	CHECK_NULLS
	VALIDATE_ORG_UNIT_RECORD
	PROCESS_ORGUNIT

	Message XSD
	Design Assumptions
	Table Impact

	Work Order Status Subscription API
	Functional Area
	Business Overview
	Package Impact
	Filename: rmssub_wostatuss/b.pls

	Message XSD
	Table Impact

	4 Oracle Retail Service Layer for RMS
	Functional Description of the Packages Used by RSL

	5 Web Service Provider Implementation
	Supplier Service
	Functional Area
	Business Overview
	Package Impact
	Filename: rmsaiasub_suppwebss/b.pls
	Public API Procedures
	Private Internal Functions and Procedures (rmsaiasub_supplierb/s.pls)

	Design Assumptions
	Table Impact

	Pay Term Service
	Functional Area
	Business Overview
	Package Impact
	Public API Procedures
	Filename: rmsaiasub_ptrmwebss/b.pls
	Filename: rmsaiasub_ptrms/b.pls
	Filename: rmsaiasub_ptrmvals/b.pls
	Filename: rmsaiasub_ptrmsqls/b.pls
	Filename: termsqls/b.pls

	Message XSD
	Design Assumptions
	Table Impact

	Customer Order Fulfillment Service
	Functional Area
	Business Overview
	Web Service Deployment
	RIB Deployment

	Package Impact
	Public Interface:
	Filename: stgsvc_fulfilords/b.pls
	Business Validation Module
	Filename: coresvc_fulfilordvals/b.pls
	Subscription Package
	Filename: rmssub_fulfilords/b.pls
	Filename: FulfillOrderServiceProviderImplSpec.pls FulfillOrderServiceProviderImplBody.pls

	Message XSD
	Design Assumptions
	Table Impact

	Customer Order Item Substitution Service
	Functional Area
	Business Overview
	Package Impact
	PL/SQL Web Service Wrapper
	Package: CustOrdSubstituteServiceProvid
	Service Provider Layer
	Package: SVCPROV_CUSTORDSUB
	Core Logic Layer
	Package: CORESVC_CUSTORDSUB

	Message XSD
	Design Assumptions
	Table Impact

	Inventory Detail Lookup Service
	Functional Area
	Business Overview
	Package Impact
	PL/SQL Web Service Wrapper
	Package: InventoryDetailServiceProvider
	Package: SVCPROV_INVAVAIL
	Core Logic Layer
	Package: CORESVC_INVAVAIL

	Message XSD
	Design Assumptions
	Table Impact

	Inventory Back Order Service
	Functional Area
	Business Overview
	Package Impact
	PL/SQL Web Service Wrapper
	Package: InventoryBackOrderServiceProvi
	Service Provider Layer
	Package: SVCPROV_ INVBACKORD
	Core Logic Layer
	Package: CORESVC_ INVBACKORD

	Message XSD
	Design Assumptions
	Table Impact

	Pricing Cost Lookup Service
	Functional Area
	Business Overview
	Package Impact
	PL/SQL Web Service Wrapper
	Package: PricingCostServiceProviderImpl
	Service Provider Layer
	Package: SVCPROV_ PRICECOST_SQL
	Core Logic Layer
	Package: CORESVC_PRICECOST_SQL

	Message XSD
	Design Assumptions
	Table Impact

	Customer Credit Check Web Service
	Functional Area
	Business Overview
	Web Service Deployment

	Package Impact
	Filename: CustCreditCheckServiceProviderImplSpec and
	CustCreditCheckServiceproviderImplBody

	Design Assumptions
	Table Impact

	6 Web Service Consumer Implementation
	GL Account Validation Service
	Functional Area
	Business Overview
	Package Impact
	Public API Procedures
	Filename: rmsaiapub_coavals/b.pls
	Filename: rmsaiapub_dbcoawebss/b.pls

	Message XSD
	Design Assumptions
	Table Impact

