

Oracle® Retail Merchandising System

Operations Guide, Volume 3 - Back End Configuration and
Operations
Release 15.0.1
E75566-01

June 2016

Oracle® Retail Merchandising System Operations Guide, Volume 3 - Back End Configuration and
Operations, Release 15.0.1

E75566-01

Copyright © 2016, Oracle. All rights reserved.

Primary Author: Maria Andrew

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or
display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone
licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S.
Government end users are "commercial computer software" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the programs, including any operating system,
integrated software, any programs installed on the hardware, and/or documentation, shall be
subject to license terms and license restrictions applicable to the programs. No other rights are
granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications,
including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible
for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an
applicable agreement between you and Oracle.

iii

Value-Added Reseller (VAR) Language

Oracle Retail VAR Applications

The following restrictions and provisions only apply to the programs referred to in this section and
licensed to you. You acknowledge that the programs may contain third party software (VAR
applications) licensed to Oracle. Depending upon your product and its version number, the VAR
applications may include:

(i) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail
Data Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(ii) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of
Kirkland, Washington, to Oracle and imbedded in Oracle Retail Mobile Store Inventory
Management.

(iii) the software component known as Access Via™ licensed by Access Via of Seattle, Washington,
and imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(iv) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of
San Jose, California, and imbedded in Oracle Retail Promotion Planning & Optimization
application.

You acknowledge and confirm that Oracle grants you use of only the object code of the VAR
Applications. Oracle will not deliver source code to the VAR Applications to you. Notwithstanding
any other term or condition of the agreement and this ordering document, you shall not cause or
permit alteration of any VAR Applications. For purposes of this section, "alteration" refers to all
alterations, translations, upgrades, enhancements, customizations or modifications of all or any
portion of the VAR Applications including all reconfigurations, reassembly or reverse assembly, re-
engineering or reverse engineering and recompilations or reverse compilations of the VAR
Applications or any derivatives of the VAR Applications. You acknowledge that it shall be a breach
of the agreement to utilize the relationship, and/or confidential information of the VAR
Applications for purposes of competitive discovery.

The VAR Applications contain trade secrets of Oracle and Oracle's licensors and Customer shall
not attempt, cause, or permit the alteration, decompilation, reverse engineering, disassembly or
other reduction of the VAR Applications to a human perceivable form. Oracle reserves the right to
replace, with functional equivalent software, any of the VAR Applications in future releases of the
applicable program.

v

Contents

Send Us Your Comments .. ix

Preface ... xi
Audience .. xi
Documentation Accessibility ... xi
Related Documents ... xi
Customer Support .. xii
Review Patch Documentation .. xii
Improved Process for Oracle Retail Documentation Corrections xii
Oracle Retail Documentation on the Oracle Technology Network.............................. xiii
Conventions ... xiii

1 Introduction .. 1
Contents Covered in this Volume ... 1

2 Pro*C Restart and Recovery ... 3
Table of Description and Definition ... 3

RESTART_CONTROL .. 4
RESTART_PROGRAM_STATUS .. 5
RESTART_PROGRAM_HISTORY .. 6
RESTART_BOOKMARK .. 7
V_RESTART_<X> .. 8

Restart and Recovery Data Model Design ... 8
Physical Set-Up.. 8
Table and File-Based Restart/Recovery... 8
API Functional Descriptions .. 11

RESTART_INIT .. 11
RESTART_FILE_INIT .. 11
RESTART_COMMIT ... 11
RESTART_FILE_COMMIT ... 12
RESTART_CLOSE ... 12
PARSE_ARRAY_ARGS... 12
RESTART_FILE_WRITE ... 12
RESTART_CAT .. 12
Restart Headers and Libraries .. 12
RESTART.H .. 12
STD_REST.H ... 13
Updating Restart Headers and Libraries .. 13

Query-Based Commit Thresholds .. 17

3 Pro*C Multi-Threading .. 19
Threading Description.. 19
Threading Function for Query-Based .. 19

vi

Restarting View for Query-Based ... 20
Thread Scheme Maintenance... 21

File-Based .. 21
Query-Based ... 22

Batch Maintenance .. 22
Scheduling and Initialization of Restart Batch .. 22
Pre-Processing and Post-Processing ... 23
ksh Driven Batch Programs ... 23

4 Pro*C Array Processing .. 25

5 Pro*C Input and Output Formats ... 27
General Interface Discussion ... 27

Standard File Layouts ... 27
Detail-Only Files ... 27

Master and Detail Files .. 28

6 RETL Program Overview for the RMS-RPAS Interface.. 31
Oracle Retail ETL Architecture ... 31
RETL Program Overview .. 32

Configuration ... 32
Program Return Code .. 35
Program Status Control Files ... 35

File Naming Conventions ... 35
Restart and Recovery ... 35

Message Logging .. 36
Daily Log File ... 36
Format ... 36
Program Error File ... 36

RMSE Reject Files .. 37
Schema Files Overview .. 37
Command Line Parameters ... 37

rmse_rpas_config.env ... 38
RMSE I/O File Names ... 39

Typical Run and Debugging Situations ... 40
RPAS/AIP Configuration .. 40

RETL Program Overview for the RMS-Time-Phased Inventory Planning Tool
Interface ... 41
Configuration ... 41
Program Return Code ... 42
Program Status Control Files ... 42
Message Logging ... 44
RMSE and Transformation Reject Files... 45
Schema Files Overview ... 45
Command Line Parameters .. 45

vii

Typical Run and Debugging Situations .. 46

7 Internationalization .. 49
Translation ... 49
RMS User Interface Language Display Settings ... 50

Multiple Languages in one RMS Forms Session ... 50
Key RMS Tables for User Interface Related Internationalization 50

FORM_ELEMENTS ... 50
FORM_ELEMENTS_LANGS ... 51
MENU_ELEMENTS .. 51
MENU_ELEMENTS_LANGS .. 51
FORM_MENU_LINK .. 51
CODE_DETAIL_TRANS .. 51
UOM_LANG .. 51
New Data Translation Tables ... 52

8 Integrating RMS with Store Inventory Management ... 53
Supplier .. 54
Merchandise Hierarchy .. 54
Warehouse ... 54
SIM Store .. 54
Inventory Adjustment Reason .. 54

Adding Inventory Adjustment Reason in SIM .. 55
Mapping Inventory Adjustment Reason in RMS .. 55

Diff ID ... 55
Item With/Without UIN And Item Locations .. 55

SIM GUI Item Look up .. 56
Transactions ... 56

Purchase Order... 56
Transfers .. 57
Return to Warehouse ... 59
Return to Vendor ... 61
Store Orders .. 62
Inventory Adjustment ... 62
Stock Count ... 63
Price Change ... 64

9 Integrating RMS with Oracle E-Business Suite Financials Using Oracle Retail
Financial Integration .. 67

Participating Applications ... 67
Assumptions and Dependencies .. 67
Data Setup .. 68

RMS Data Set up and Configuration ... 68
ReIM Data Setup and Configuration... 74

ReIM Transactional Maintenance ... 79

viii

Calculation of TRANS_AMOUNT .. 79
Generation of Outgoing Data ... 79
Validation of Accounts When Posting Financial Entries .. 80
Validation of Accounts When Prepaying a Merchandise Invoice 80
Maintenance of Valid Accounts ... 81

10 Integrating RMS with PeopleSoft Financials Using Oracle Retail Financial
Integration .. 83

Participating Applications ... 83
Assumptions and Dependencies .. 83
Data Constraints .. 84
Data Setup .. 84

RMS Data Setup and Configuration .. 84
Configuring Drill Back and Forward Web Services .. 90
ReIM Data Setup and Configuration... 91
CURRENCY_PRECISION .. 91
Chart of Accounts Setup ... 92

ReIM Transactional Maintenance ... 95
Calculation of TRANS_AMOUNT .. 95
Generation of Outgoing Data ... 95
Validation of Accounts When Posting Financial Entries .. 96
Maintenance of Valid Accounts ... 97
Building and Posting Reference IDs .. 97
Drilling Back ... 97
Drilling Back to RMS and ReSA from PeopleSoft Enterprise Financials 98
Drilling Back to ReIM from PeopleSoft Enterprise Financials 98

Drilling Forward ... 99
Drilling Forward From RMS/ReSA to PeopleSoft Enterprise Financials 100
Drilling Forward From ReIM to PeopleSoft Enterprise Financials 100

11 Understanding Data Access Schema .. 101
DAS Views ... 102

12 Using Oracle Wallet .. 103

ix

Send Us Your Comments
Oracle Retail Merchandising System Operations Guide, Volume 3 - Back End
Configuration and Operations, Release 15.0.1

Oracle welcomes customers' comments and suggestions on the quality and usefulness of
this document.

Your feedback is important, and helps us to best meet your needs as a user of our
products. For example:

 Are the implementation steps correct and complete?

 Did you understand the context of the procedures?

 Did you find any errors in the information?

 Does the structure of the information help you with your tasks?

 Do you need different information or graphics? If so, where, and in what format?
 Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell us
your name, the name of the company who has licensed our products, the title and part
number of the documentation and the chapter, section, and page number (if available).

Note: Before sending us your comments, you might like to
check that you have the latest version of the document and if
any concerns are already addressed. To do this, access the
new Applications Release Online Documentation CD
available on My Oracle Support and www.oracle.com. It
contains the most current Documentation Library plus all
documents revised or released recently.

Send your comments to us using the electronic mail address: retail-doc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number
(optional).

If you need assistance with Oracle software, then please contact your support
representative or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your
Oracle local office and inquire about our Oracle University offerings. A list of Oracle
offices is available on our Web site at www.oracle.com.

http://www.oracle.com/
mailto:retail-doc_us@oracle.com
http://www.oracle.com/

xi

Preface
This Retail Merchandising System Operations Guide, Volume 3 - Back End Configuration and
Operations provides critical information about the processing and operating details of
Oracle Retail Merchandising System (RMS), including the following:

 System configuration settings

 Technical architecture
 Functional integration dataflow across the enterprise

 Batch processing

Audience
This guide is for:

 Systems administration and operations personnel
 Systems analysts

 Integrators and implementers

 Business analysts who need information about Merchandising System processes and
interfaces

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through
My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information, see the following documents:
 Oracle Retail Merchandising System Installation Guide

 Oracle Retail Merchandising System Reports User Guide

 Oracle Retail Merchandising System User Guide and Online Help

 Oracle Retail Merchandising System Release Notes

 Oracle Retail Merchandising System Custom Flex Attribute Solution Implementation Guide

 Oracle Retail Merchandising System Data Model

 Oracle Retail Merchandising System Data Access Schema Data Model

 Oracle Retail Merchandising Security Guide

 Oracle Retail Merchandising Implementation Guide

 Oracle Retail Merchandising Data Conversion Operations Guide

 Oracle Retail Merchandising Batch Schedule

 Oracle Retail POS Suite/Merchandising Operations Management Implementation Guide

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

xii

 Oracle Retail Xstore Suite 15.0/Merchandising 15.0 Implementation Guide

 Oracle Retail Sales Audit documentation

 Oracle Retail Trade Management documentation

 Oracle Retail Fiscal Management documentation

Customer Support
To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com
When contacting Customer Support, please provide the following:

 Product version and program/module name

 Functional and technical description of the problem (include business impact)

 Detailed step-by-step instructions to re-create

 Exact error message received

 Screen shots of each step you take

Review Patch Documentation
When you install the application for the first time, you install either a base release (for
example, 15.0) or a later patch release (for example, 15.0.1). If you are installing the base
release or additional patch releases, read the documentation for all releases that have
occurred since the base release before you begin installation. Documentation for patch
releases can contain critical information related to the base release, as well as information
about code changes since the base release.

Improved Process for Oracle Retail Documentation Corrections
To more quickly address critical corrections to Oracle Retail documentation content,
Oracle Retail documentation may be republished whenever a critical correction is
needed. For critical corrections, the republication of an Oracle Retail document may at
times not be attached to a numbered software release; instead, the Oracle Retail
document will simply be replaced on the Oracle Technology Network Web site, or, in the
case of Data Models, to the applicable My Oracle Support Documentation container
where they reside.

This process will prevent delays in making critical corrections available to customers. For
the customer, it means that before you begin installation, you must verify that you have
the most recent version of the Oracle Retail documentation set. Oracle Retail
documentation is available on the Oracle Technology Network at the following URL:
http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

An updated version of the applicable Oracle Retail document is indicated by Oracle part
number, as well as print date (month and year). An updated version uses the same part
number, with a higher-numbered suffix. For example, part number E123456-02 is an
updated version of a document with part number E123456-01.

If a more recent version of a document is available, that version supersedes all previous
versions.

https://support.oracle.com/
http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

xiii

Oracle Retail Documentation on the Oracle Technology Network
Oracle Retail product documentation is available on the following web site:
http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

(Data Model documents are not available through Oracle Technology Network. You can
obtain them through My Oracle Support.)

Conventions
Navigate: This is a navigate statement. It tells you how to get to the start of the procedure
and ends with a screen shot of the starting point and the statement “the Window Name
window opens”.
This is a code sample
 It is used to display examples of code

Introduction 1

1
Introduction

Welcome to the Oracle Retail Merchandising System Operations Guide, Volume 3 - Back
End Configuration and Operations. The guide is designed to inform you about the
‘backend’ of RMS: data inputs, processes, and outputs. As a member of the Oracle Retail
family, RMS provides many benefits of Enterprise Application Integration (EAI).

Contents Covered in this Volume
This volume describes the important features that are necessary to run the Pro*C
programs and the RETL programs associated with RMS. Additional RMS configuration,
RMS Integration and Operations information is also included in this volume. Topics
included are:

 Pro*C Restart and Recovery
 Pro*C Multi-Threading

 Pro*C Array Processing

 Pro*C Input and Output Formats

 RETL Program Overview for the RMS-RPAS Interface

 Internationalization

 Integrating RMS with Store Inventory Management
 Integrating RMS with Oracle Financials using Oracle Retail Financial Integration

 Integrating RMS with PeopleSoft Financials Using Oracle Retail Financial Integration

 Understanding Data Access Schema

 Using Oracle Wallet

Note: For setting up Business Intelligence Publisher, see
Oracle Retail Merchandising System Installation Guide.

Pro*C Restart and Recovery 3

2
Pro*C Restart and Recovery

RMS has implemented a restart recovery process in most of its batch architecture. The
general purpose of restart/recovery is to:

 Recover a halted process from the point of failure.

 Prevent system halts due to large numbers of transactions.

 Allow multiple instances of a given process to be active at the same time.
Further, the RMS restart/recovery tracks batch execution statistics and does not require
DBA authority to execute.

The restart capabilities revolve around a program’s logical unit of work (LUW). A batch
program processes transactions, and commit points are enabled based on the LUW.
LUWs consist of a relatively unique transaction key (such as sku/store) and a maximum
commit counter. Commit events take place after the number of processed transaction
keys meet or exceed the maximum commit counter. For example, after every 10,000
sku/store combinations, a commit occurs. At the time of commit, key data information
that is necessary for restart is stored in the restart tables. In the event of a handled or un-
handled exception, transactions is rolled back to the last commit point, and upon restart
the key information is retrieved from the tables so that processing can continue from the
last commit point.

Table of Description and Definition
The RMS restart/recovery process is driven by a set of four tables. These tables are
shown in Entity Relationship diagram. For detailed table description, see
RESTART_CONTROL, RESTART_PROGRAM_STATUS, RESTART_BOOKMARK and
RESTART_PROGRAM_HISTORY.

Table of Description and Definition

4 Oracle Retail Merchandising System

(PK) program_ name
program_ desc
driver_ name
num_ threads
update_ allowed
process_ flag
commit _max_ ctr
lock_wait_ time
retry_max_ctr

restart program status
(PK) restart_name
(PK) thread_ val
start_time
program_name
program_status
restart_flag
restart_time
finish_time
current_pid
current_operator_id
err_ message
current_ oracle_ sid *
current_ shadow_ pid *

restart bookmark
restart_ name
thread_ val
bookmark_ string
application_ image
out_file_ string *
non_fatal_err_ flag *
num_ commits *
avg_time_btwn_ commits *

restart program history
restart_ name
thread_ val
start_ time
program_ name
num_ threads
commit_max_ ctr
restart_ time
finish_ time
shadow_ pid *
success_ flag *
non_fatal_err_ flag *
num_ commits *
avg_time_btwn_ commits*
lread *
lwrite *
pread *
uga_max *
pga_max *
sqlnet_bytes_from_client *
sqlnet_bytes_to_client *
sqlnet_roundtrips *
commits *

restart _control

RMS Restart Recovery Entity Relationships Diagram

RESTART_CONTROL
The RESTART_CONTROL table is the master table in the restart/recovery table set. One
record exists on this table for each batch program that is run with restart/recovery logic
in place. The restart/recovery process uses this table to determine:

 Whether the restart/recovery is table-based or file-based.
 The total number of threads used for each batch program.

 The maximum records processed before a commit event takes place.

 The driver for the threading (multi-processing) logic.

 Time to wait for a lock and the number of lock retry.

RESTART_CONTROL

(PK)
PROGRAM_NAME

varchar2 25 Batch program name.

PROGRAM_DESC varchar2 120 A brief description of the program function.

DRIVER_NAME varchar2 25 Driver on query, for example, department (non-
updatable).

NUM_THREADS num 10 Number of threads used for current process.

Table of Description and Definition

Pro*C Restart and Recovery 5

UPDATE_ALLOWED varchar2 2 Indicates whether user can update thread numbers or if
done programmatically.

PROCESS_FLAG varchar2 1 Indicates whether the process is table-based (T) or file-
based (F).

COMMIT_MAX_CTR num 6 Numeric maximum value for counter before commit
occurs.

LOCK_WAIT_TIME num 6 Contains the number of seconds between the last and
the next lock retry.

RETRY_MAX_CTR num 10 Contains the maximum number of lock retry.

RESTART_PROGRAM_STATUS
The RESTART_PROGRAM_STATUS table is the table that holds record keeping
information about current program processes. The number of rows for a program on the
status table is equal to its NUM_THREADS value on the RESTART_CONTROL table.
The status table is modified during restart/recovery initialization and close logic. For
table-based processing, the restart/recovery initialization logic assigns the next available
thread to a program based on the program status and restart flag. For file-based
processing, the thread value is passed in from the input file name. When a thread is
assigned, the PROGRAM_STATUS is updated to prevent the assignment of that thread
to another process. Information is logged on the current status of a given thread, as well
as record keeping information such as operator and process timing information.

RESTART_PROGRAM_STATUS

(PK)RESTART_NAME varchar2 50 Program name

(PK)THREAD_VAL num 10 Thread counter

START_TIME date dd-mon-yy hh:mi:ss

PROGRAM_NAME varchar2 25 Program name

PROGRAM_STATUS varchar2 25 Started, aborted, aborted in init, aborted in
process, aborted in final, completed, ready for
start.

RESTART_FLAG varchar2 1 Automatically set to ‘N’ after abnormal end,
must be manually set to ‘Y’ for program to
restart.

RESTART_TIME date dd-mon-yy hh:mi:ss.

FINISH_TIME date dd-mon-yy hh:mi:ss.

CURRENT_PID num 15 Starting program ID.

CURRENT_OPERATOR_ID varchar2 20 Operator that started the program.

ERR_MESSAGE varchar2 255 Record that caused program abort and
associated error message.

CURRENT_ORACLE_SID num 15 Oracle SID for the session associated with the
current process.

CURRENT_SHADOW_PID num 15 O/S process ID for the shadow process
associated with the current process. It is used
to locate the session trace file when a process is
not finished successfully.

Table of Description and Definition

6 Oracle Retail Merchandising System

RESTART_PROGRAM_HISTORY
The RESTART_PROGRAM_HISTORY table will contain one record for every
successfully completed program thread with restart/recovery logic. Upon the successful
completion of a program thread, its record on the RESTART_PROGRAM_STATUS table
will be inserted into the history table. Table purging will be at user discretion.

RESTART_PROGRAM_HISTORY

RESTART_NAME varchar2 50 Program name.

THREAD_VAL Num 10 Thread counter.

START_TIME Date dd-mon-yy hh:mi:ss.

PROGRAM_NAME varchar2 25 Program name.

NUM_THREADS Num 10 Number of threads.

COMMIT_MAX_CTR num 6 Numeric maximum value for counter
before commit occurs.

RESTART_TIME date dd-mon-yy hh:mi:ss.

FINISH_TIME date dd-mon-yy hh:mi:ss.

SHADOW_PID num 15 O/S process ID for the shadow process
associated with the process. It is used to
locate the session trace file.

SUCCESS_FLAG varchar2 1 Indicates whether the process finished
successfully (reserved for future use).

NON_FATAL_ERR_FLAG varchar2 1 Indicates whether non-fatal errors have
occurred for the process.

NUM_COMMITS num 12 Total number of commits for the process.
The possible last commit when
restart/recovery is closed is not counted.

AVG_TIME_BTWN_COMMITS num 12 Accumulated average time between
commits for the process. The possible last
commit when restart/recovery is closed is
not counted.

LREAD num Session logical reads. The sum of "db block
gets" plus "consistent gets". This includes
logical reads of database blocks from either
the buffer cache or process private
memory.

LWRITE num Session logical writes. The sum of "db
block changes" plus "consistent changes".

PREAD num Physical reads. Total number of data
blocks read from disk.

UGA_MAX num Peak UGA (user global area) size for a
session.

PGA_MAX num Peak PGA (program global area) size for
the session.

SQLNET_BYTES_FROM_CLIENT num Total number of bytes received from the
client over Oracle Net Services.

Table of Description and Definition

Pro*C Restart and Recovery 7

RESTART_PROGRAM_HISTORY

SQLNET_BYTES_TO_CLIENT num Total number of bytes sent to the client
from the foreground processes.

SQLNET_ROUNDTRIPS num Total number of Oracle Net Services
messages sent to and received from the
client.

COMMITS num Number of user commits. When a user
commits a transaction, the redo generated
that reflects the changes made to database
blocks must be written to disk. Commits
often represent the closest thing to a user
transaction rate.

RESTART_BOOKMARK
When a restart/recovery program thread is active, its state is started or aborted, and a
record for it exists on the RESTART_BOOKMARK table. Restart/recovery initialization
logic inserts the record into the table for a program thread. The restart/recovery commit
process updates the record with the following restart information:
 A concatenated string of key values for table processing

 A file pointer value for file processing

 Application context information such as counters and accumulators

The restart/recovery closing process deletes the program thread record if the program
finishes successfully. In the event of a restart, the program thread information on this
table will allow the process to begin from the last commit point.

RESTART_BOOKMARK

(PK) RESTART_NAME varchar2 50 Program name.

(PK) THREAD_VAL num 10 Thread counter.

BOOKMARK_STRING varchar2 255 Character string of key of last committed
record.

APPLICATION_IMAGE varchar2 1000 Application parameters from the last
save point.

OUT_FILE_STRING varchar2 255 Concatenated file pointers (UNIX
sometimes refers to these as stream
positions) of all the output files from the
last commit point of the current process.
It is used to return to the right restart
point for all the output files during
restart process.

NON_FATAL_ERR_FLAG varchar2 1 Indicates whether non-fatal errors have
occurred for the current process.

NUM_COMMITS num 12 Number of commits for the current
process. The possible last commit when
restart/recovery is closed is not counted.

Restart and Recovery Data Model Design

8 Oracle Retail Merchandising System

AVG_TIME_BTWN_COMMITS num 12 Average time between commits for the
current process. The possible last commit
when restart/recovery is closed is not
counted.

V_RESTART_<X>
Restart views are used for query-based programs that require multi-threading. Separate
views (ex v_restart_dept, and v_restart_store) are created for each threading driver, for
example, department or store. A join is made to a view based on threading driver to force
the separation of discrete data into particular threads. See the threading discussion for
more details.

V_RESTART_<X>

DRIVER_NAME varchar2 Example dept, store, region, and others.

NUM_THREADS number Total number of threads in set (defined on restart control).

DRIVER_VALUE number Numeric value of the driver_name.

THREAD_VAL number Thread value defined for driver_value and num_threads
combination.

Restart and Recovery Data Model Design
The RESTART_PROGRAM_STATUS and RESTART_BOOKMARK are separate tables.
This is because the initialization process needs to fetch all of the rows associated with
RESTART_NAME/schema, but will only update one row. The commit process will
continually lock a row with a specific RESTART_NAME and THREAD_VAL. The data
involved with these two processes is separated into two tables to reduce the number of
hangs that could occur due to locked rows. Even if you allow ‘dirty reads’ on locked
rows, a process will still hang if it attempts to do an update on a locked row. The commit
process is only interested in a unique row, so if we move the commit process data to a
separate table with row level (not page level) locking, there will not be contention issues
during the commit. With the separate tables, the initialization process will now see fewer
problems with contention because rows will only be locked twice, at the beginning and
end of the process.

Physical Set-Up
The restart/recovery process needs to be as robust as possible in the event of database
related failure. The costs outweigh the benefits of placing the restart/recovery tables in a
separate database. The tables should, however, be setup in a separate, mirrored table
space with a separate rollback segment.

Table and File-Based Restart/Recovery
The restart/recovery process works by storing all the data necessary to resume
processing from the last commit point. Therefore, the necessary information is updated
on the RESTART_BOOKMARK table before the processed data is committed. Query-
based and file-based module stores different information on the restart tables, and
therefore calls different functions within the restart/recovery API to perform their tasks.

When a program’s process is query-based on a module is driven by a driving query that
processes the retrieved rows, the information that is stored on the

Table and File-Based Restart/Recovery

Pro*C Restart and Recovery 9

RESTART_BOOKMARK table is related to the data retrieved in the driving query. If the
program fails while processing, the information that is stored on the restart-tables can be
used in the conditional where-clause of the driving query to only retrieve data that has
yet to be processed since the last commit event.
File-based processing, needs to store the file location at the time of the last commit point.
This file’s byte location is stored on the RESTART_BOOKMARK table and will be
retrieved at the time of a restart. This location information will be used further be used in
reopening the file when the data was last committed. Because there is different
information being saved to and retrieved from the RESTART_BOOKMARK table for
each of the different types of processing, different functions need to be called to perform
the restart/recovery logic. The query-based processing calls the RESTART_INIT or
RETEK_INIT and RESTART_COMMIT or RETEK_COMMIT functions while the file-
based processing calls the RESTART_FILE_INIT and RESTART_FILE_COMMIT
functions.

In addition to the differences in API function calls, the batch processing flow of the
restart/recovery differs between the files. Table-based restart/recovery needs to use a
priming fetch logical flow, while the file-based processing usually reads lines in a batch.
Table-based processing requires its structure to ensure that the LUW key has changed
before a commit event is allowed to occur, while the file-based processing does not need
to evaluate the LUW, which can typically be thought of as the type of transaction being
processed by the input file.

The following diagram depicts table-based Restart/Recovery program flow:

Table-Based Restart/Recovery Program Flow

Priming fetch

Process

Fetch

Commit

Close Logic

Initialization Logic
(call restart_ init)

Process Function

Table and File-Based Restart/Recovery

10 Oracle Retail Merchandising System

The following diagram depicts file-based Restart/Recovery program flow

File-based Restart/Recovery Program Flow

Initialization logic:

 Variable declarations

 File initialization

 Call restart_init() or restart_file_init() function - determines start or restart logic
 First fetch on driving query

Start logic: initialize counters/accumulators to start values

Restart logic:

 Parse application_image field on bookmark table into counters/accumulators

 Initialize counters/accumulators to values of parsed fields

Process/commit loop:
 Process updates and manipulations

 Fetch new record

 Create varchar from counters/accumulators to pass into application_image field on
restart_bookmark table

 Call restart_commit() or restart_file_commit()

Close logic:
 Reset pointers

 Close files/cursors

 Call Restart_close()

Inner Loop
Process individual records

Process

End Inner Loop

Commit

End Outer Loop

Initialization Logic
(call restart_ init)

File Open and Seek

Outer Loop
feed multiple records into buffer

Close Logic

API Functional Descriptions

Pro*C Restart and Recovery 11

API Functional Descriptions

RESTART_INIT
An initialization functions for table-based batch processing.
The batch process gathers the following information from the restart control tables:

 Total number of threads for a program and thread value assigned to current process.

 Number of records to loop through in driving cursor before commit (LUW).

 Start string - bookmark of last commit to be used for restart or a null string if current
process is an initial start and initializes the restart record-keeping
(restart_program_status).

 Program status is changed to ‘started’ for the first available thread.

 Operational information is updated: operator, process, start_time, and bookmarking
(restart_bookmark) tables.

 On an initial start, a record is inserted.

 On restart, the start string and application context information from the last commit
is retrieved.

 Lock wait time and maximum retry for locking.

RESTART_FILE_INIT
An initialization functions for file-based batch processing. It is called from program
modules.

The batch process gathers the following information from the restart control tables:

 Number of records to read from file for array processing and for commit cycle.
 File start point- bookmark of last commit to be used for restart or 0 for initial start.

The process initializes the restart record-keeping (restart_program_status):

 Program status is changed to ‘started’ for the current thread.

 Operational information is updated: operator, process, START_TIME.

The process initializes the restart bookmarking (restart_bookmark) tables:

 On an initial start, a record is inserted.
 On restart, the file starting point information and application context information

from the last commit is retrieved.

RESTART_COMMIT
A function that commits the processed transaction for a given number of driving query
fetches. It is called from program modules.

The process updates the RESTART_BOOKMARK start string and application image
information if a commit event has taken place:

 The current number of driving query fetches is greater than or equal to the maximum
set in the restart_program_status table (and fetched in the restart_init function).

 The bookmark string of the last processed record is greater than or equal to the
maximum set in the restart_program_status table (and fetched in the restart_init
function).

 The bookmark string increments the counter.

 The bookmark string sets the current string to be the most recently fetched key
string.

API Functional Descriptions

12 Oracle Retail Merchandising System

RESTART_FILE_COMMIT
A function that commits processed transactions after reading a number of lines from a
flat file. It is called from program modules.

The process updates the RESTART_BOOKMARK table:
 Start_string is set to the file pointer location in the current read of the flat file.

 Application image is updated with context information.

RESTART_CLOSE
A function that updates the restart tables after program completion.

The process determines whether the program was successful. If the program finished
successfully:
 The restart_program_status table is updated with finish information and the status is

reset.

 The corresponding record in the RESTART_BOOKMARK table is deleted.

 The restart_program_history table has a copy of the restart_program_status table
record inserted into it.

 The restart_program_status is re-initialized.
If the program ends with errors:

 The transactions are rolled back.

 The program_status column on the restart_program_status table is set to ‘aborted in
*’ where * is one of the three main functions in batch: init, process or final.

 The changes are committed.

PARSE_ARRAY_ARGS
This function parses a string into components and places results into multidimensional
array. It is only called within API functions and will never be called in program modules.

The process is passes a string to parse, and a pointer to an array of characters.

The first character of the passed string is the delimiter.

RESTART_FILE_WRITE
This function will append output in temporary files to final output files when a commit
point is reached. It is called from program modules.

RESTART_CAT
This function contains the logic that appends one file to another. It is only called within
the restart/recovery API functions and never called directly in program modules.

Restart Headers and Libraries
The RESTART.H and the STD_ERR.H header files are included in RETEK.H to utilize the
restart/recovery functionality.

RESTART.H
This library header file contains constant, macro substitutions, and external global
variable definitions as well as restart/recovery functions prototypes.

The global variables that are defined include:

API Functional Descriptions

Pro*C Restart and Recovery 13

 The thread number assigned to the current process.

 The value of the current process’s thread maximum counter:

– For table-based processing, it is equal to the number of iterations of the
driving query before a commit can take place.

– For file-based processing, it is equal to the number of lines that is read from a
flat file and processed using a structured array before a commit can take
place.

 The current count of driving query iterations used for table-based processing or the
current array index used in file-based processing.

 The name assigned to the program/logical unit of work by the programmer. It is the
same as the restart_name column on the restart_program_status,
restart_program_history, and RESTART_BOOKMARK tables.

STD_REST.H
This library header file contains standard restart variable declarations that are used in the
program modules.
The variable definitions that are included are:

 The concatenated string value of the fetched driving query key that is currently being
processed.

 The concatenated string value of the fetched driving query key that will be processed
next.

 The error message passed to the restart_close function and updated to
restart_program_status.

 Concatenated string of application context information, for example, counters and
accumulators.

 The name of the threading driver, for example, department, store, warehouse and
others.

 The total number of threads used by this program.
 The pointer to pass to initialization function to retail number of threads value.

Updating Restart Headers and Libraries
Restart/recovery performs the following, among other capabilities:

 Organizes global variables associated with restart recovery.

 Allows the batch developer full control of restart recovery variables parameter
passing during initialization.

 Removes temporary write files to speed up the commit process.

 Moves more information and processing from the batch code into the library code.

 Adds more information into the restart recovery tables for tuning purposes.

retek_2.h
This library header file is included by all C code within Retail and serves to centralize
system includes, macro defines, globals, function prototypes, and, especially, structs for
use in the new restart/recovery library.

The globals used by the old restart/recovery library are all discarded. Instead, each batch
program declares variables needed and calls retek_init() to get them populated from
restart/recovery tables. Therefore, only the following variables are declared:

API Functional Descriptions

14 Oracle Retail Merchandising System

 gi_no_commit: flag for NO_COMMIT command line option (used for tuning
purposes).

 gi_error_flag: fatal error flag.

 gi_non_fatal_err_flag: non-fatal error flag.
In addition, a rtk_file struct is defined to handle all file interfaces associated with
restart/recovery. Operation functions on the file struct are also defined.
#define NOT_PAD 1000 /* Flag not to pad thread_val */
#define PAD 1001 /* Flag to pad thread_val at the end */
#define TEMPLATE 1002 /* Flag to pad thread_val using filename template
*/
#define MAX_FILENAME_LEN 50
typedef struct
{
 FILE* fp; /* File pointer */
 char filename[MAX_FILENAME_LEN + 1]; /* Filename */
 int pad_flag; /* Flag whether to pad thread_val to filename */
} rtk_file;

int set_filename(rtk_file* file_struct, char* file_name, int pad_flag);
FILE* get_FILE(rtk_file* file_struct);
int rtk_print(rtk_file* file_struct, char* format, ...);
int rtk_seek(rtk_file* file_struct, long offset, int whence);

The parameters that retek_init() needs to populate passed using a format known to
retek_init(). A struct is defined here for this purpose. An array of parameters of this
struct type is needed in each batch program. Other requirements have to be initialized at
each batch program.

 The lengths of name, type and sub_type should not exceed the definitions here.

 Type can only be: "int", “uint”, "long", "string", or "rtk_file".
 For type "int", “uint” or "long", use "" as sub_type.

 For type "string", sub_type can only be "S" (start string) unless the string is the thread
value or number of threads, in which case use “” as sub_type or "I" (image string).

 For type "rtk_file", sub_type can only be "I" (input) or "O" (output).
#define NULL_PARA_NAME 51
#define NULL_PARA_TYPE 21
#define NULL_PARA_SUB_TYPE 2
typedef struct
{
 char name[NULL_PARA_NAME];
 char type[NULL_PARA_TYPE];
 char sub_type[NULL_PARA_SUB_TYPE];
} init_parameter;

API Functional Descriptions

Pro*C Restart and Recovery 15

INT RETEK_INIT(INT NUM_ARGS, INIT_PARAMETER *parameter, ...)
RETEK_INIT initializes restart/recovery (for both table and file-based):

Pass in NUM_ARGs as the number of elements in the INIT_PARAMETER array, and
then the INIT_PARAMETER array, then variables a batch program needs to initialize in
the order and types defined in the INIT_PARAMETER array. Note that all int, uint and
long variables need to be passed by reference.

Get all global and module level values from databases.

Initialize records for RESTART_PROGRAM_STATUS and RESTART_BOOKMARK.

Parse out user-specified initialization variables (variable arg list).

Return NO_THREAD_AVAILABLE if no qualified record in RESTART_CONTROL or
RESTART_PROGRAM_STATUS.
Commit work.

INT RETEK_COMMIT(INT NUM_ARGS, ...)
RETEK_COMMIT checks and commits if needed (for both table and file-based):
Pass in num_args, then variables for start_STRING first, and those for image string (if
needed) second. The num_args is the total number of these two groups. All are string
variables and are passed in the same order as in retek_init().

Concatenate start_string either from passed in variables (table-based) or from ftell of
input file pointers (file-based).

Check if commit point is reached (counter check and, if table-based, start string
comparison).

If reached, concatenated image_string from passed in variables (if needed) and call
internal_commit() to get out_file_string and update RESTART_BOOKMARK.

If table-based, increment pl_current_count and update ps_cur_string.

INT COMMIT_POINT_REACHED(INT NUM_ARGS, ...)
COMMIT_POINT_REACHED checks if the commit point is reached (for both table- and
file-based). The difference between this function and the check in RETEK_COMMIT() is
that here the PL_CURRENT_COUNT and PS_CUR_STRING are not updated. This
checking function is designed to be used with RETEK_FORCE_COMMIT(), and the logic
to ensure integrity of LUW exists in user batch program. It can also be used together with
RETEK_COMMIT() for extra processing at the time of commit.

Pass in num_args, then all string variables for start_string in the same order as in
retek_init(). The num_args is the number of variables for start_string. If no start_string
(as in file-based), pass in NULL.

For table-based, if pl_curren_count reaches pl_max_counter and if newly concatenated
bookmark string is different from ps_cur_string, return 1; otherwise return 0.

For file-based, if pl_curren_count reaches pl_max_counter return 1; otherwise return 0.

API Functional Descriptions

16 Oracle Retail Merchandising System

INT RETEK_FORCE_COMMIT(INT NUM_ARGS, ...)
RETEK_FORCE_COMMIT always commits (for both table and file-based):

Pass in num_args, then variables for start_string first, and those for image string (if
needed) second. The num_args is the total number of these two groups. All are string
variables and are passed in the same order as in retek_init().

Concatenate start_string either from passed in variables (table-based) or from ftell of
input file pointers (file-based).
Concatenated image_string from passed in variables (if needed) and call
internal_commit() to get out_file_string and update RESTART_BOOKMARK.

If table-based, increment pl_current_count and update ps_cur_string.

INT RETEK_CLOSE(VOID)
RETEK_CLOSE closes restart/recovery (for both table and file-based):

If gi_error_flag or NO_COMMIT command line option is TRUE, rollback all database
changes.

Update RESTART_PROGRAM_STATUS according to gi_error_flag.

If no gi_error_flag, insert record into RESTART_PROGRAM_HISTORY with information
fetched from RESTART_CONTROL, RESTART_PROGRAM_BOOKMARK and
RESTART_PROGRAM_STATUS tables.

If no gi_error_flag, delete RESTART_BOOKMARK record.

Commit work.

Close all opened file streams.

INT RETEK_REFRESH_THREAD(VOID)
You must refresh a program’s thread, so that it can be run again.

Updates the RESTART_PROGRAM_STATUS record for the current program’s
PROGRAM_STATUS to be ‘ready for start’.
Deletes any RESTART_BOOKMARK records for the current program.

Commits work.

VOID INCREMENT_CURRENT_COUNT(VOID)
INCREMENT_CURRENT_COUNT increases PL_CURRENT_COUNT by 1.

Note: This is called from GET_RECORD() of intrface.pc for
file-based input/output.

INT PARSE_NAME_FOR_THREAD_VAL(CHAR* NAME)
PARSE_NAME_FOR_THREAD_VAL parses thread value from the extension of the
specified file name.

INT IS_NEW_START(VOID)
IS_NEW_START checks if current run is a new start; if yes, return 1; otherwise 0.

Query-Based Commit Thresholds

Pro*C Restart and Recovery 17

Query-Based Commit Thresholds
The restart capabilities revolve around a program’s logical unit of work (LUW). A batch
program processes transactions and enables commit points based on the LUW. An LUW
is comprised of a transaction key (such as item-store) and a maximum commit counter.
Commit events occur after a given number of transaction keys are processed. At the time
of the commit, key data information that is necessary for restart is stored in the restart
table. In the event of a handled or un-handled exception, transactions will be rolled back
to the last commit point. Upon restart the restart key information will be retrieved from
the tables so that processing can resume with the unprocessed data.

Pro*C Multi-Threading 19

3
Pro*C Multi-Threading

Processing multiple instances of a given program can be accomplished through
“threading”. This requires driving cursors to be separated into discrete segments of data
to be processed by different threads. This is accomplished through a stored procedure
that separates threading mechanisms (for example, departments or stores) into particular
thread given value (for example, department 1001) and the total number of threads for a
given process.

File-based processing will not “thread” its processing. The same data file will never be
acted upon by multiple processes. Multi-threading is accomplished by dividing the data
into separate files using a separate process for each file. The thread value is related to the
input file. This is necessary to ensure that the appropriate information can be tied back to
the relevant file in the event of a restart.
The store length in RMS is ten digits. Therefore, thread value which is based on the store
number must allow ten digits. As the thread value is declared as a ‘C’ variable of type
integer (long), the system restricts thread values to nine digits.

This does not mean that you cannot use ten digit store numbers. It means that if you do
use ten digit store numbers you cannot use them as thread values.

Threading Description
The use of multiple threads or processes in Oracle Retail batch processing increases
efficiency and decrease processing time. The design of the threading process allows
maximum flexibility to the end user in defining the number of processes over which a
program is divided.

Originally, the threading function was used directly in the driving queries. This was a
slow process. Instead of using the function call directly in the driving queries, the designs
call for joining driving query tables to a view (for example, v_restart_store) that includes
the function.

Threading Function for Query-Based
A stored procedure has been created to determine thread values. Restart_thread_return
returns a thread value derived from a numeric driver value, such as department number,
and the total number of threads in a given process. Retailers should be able to determine
the best algorithm for their design, and if a different means of segmenting data is
required, then either the restart_thread_return function can be altered, or a different
function can be used in any of the views in which the function is contained.

Currently the restart_thread_return function is a very simple modulus routine:
CREATE OR REPLACE FUNCTION RESTART_THREAD_RETURN(in_unit_value NUMBER,
 in_total_threads NUMBER)
 RETURN NUMBER IS
 ret_val NUMBER;
BEGIN
 ret_val := MOD(ABS(in_unit_value),in_total_threads) + 1;
 RETURN ret_val;
END;

Restarting View for Query-Based

20 Oracle Retail Merchandising System

Restarting View for Query-Based
Each restart view will have four elements:

 The name of the threading mechanism, driver_name.
 The total number of threads in a grouping, num_threads.

 The value of the driving mechanism, driver_value.

 The thread value for that given combination of driver_name, num_threads, and
driver value, thread_val.

The view will be based on the restart_control table and an information table such as
DEPS or STORES. A row will exist in the view for every driver value and every total
number of threads value. Therefore, if a retailer were to always use the same number of
threads for a given driver (dept, store, and others), then the view would be relatively
small. As an example, if all of a retailer’s programs threaded by department have a total
of 5 threads, then the view will contain only one value for each department. For example,
if there are 10 total departments, 10 rows will exist in v_restart_dept. However, if the
retailer wants to have one of the programs to have ten threads, then there will be 2 rows
for every department: one for five total threads and one for ten total threads (for
example, if 10 total departments, 20 rows will exist in v_restart_dept). Obviously,
retailers should be advised to keep the number of total thread values for a thread driver
to a minimum to reduce the scope of the table joins of the driving cursor with the view.

Below is an example of how the same driver value can result in differing thread values.
This example uses the restart_thread_return function as it currently is written to derive
thread values.

Driver_name num_threads driver_val thread_val

DEPT 1 101 1

DEPT 2 101 2

DEPT 3 101 3

DEPT 4 101 2

DEPT 5 101 2

DEPT 6 101 6

DEPT 7 101 4

Below is an example of what a distribution of stores might look like given 10 stores and 5
total threads:

Driver_name num_threads driver_val thread_val

STORE 5 1 2

STORE 5 2 3

STORE 5 3 4

STORE 5 4 5

STORE 5 5 1

STORE 5 6 2

STORE 5 7 3

STORE 5 8 4

Thread Scheme Maintenance

Pro*C Multi-Threading 21

Driver_name num_threads driver_val thread_val

STORE 5 9 5

STORE 5 10 1

View syntax:

The following is an example of the syntax needed to create the view for the multi-
threading join, created with script (see threading discussion for details on
RESTART_THREAD_RETURN function):

create or replace view v_restart_store as
 select rc.driver_name driver_name,
 rc.num_threads num_threads,
 s.store driver_value,
 restart_thread_return(s.store, rc.num_threads) thread_val
 from restart_control rc, store s
 where rc.driver_name = 'STORE'

There is a different threading scheme used within Oracle Retail Sales Audit (ReSA).
Because ReSA needs to run 24 hours a day and seven days a week, there is no batch
window. This means that there may be batch programs running at the same time that
there are online users. ReSA solved this concurrency problem by creating a locking
mechanism for data that is organized by store days. These locks provide a natural
threading scheme. Programs that cycle through all of the store day data attempt to lock
the store day first. If the lock fails, the program simply goes on to the next store day. This
has the affect of automatically balancing the workload between all of the programs
executing.

Thread Scheme Maintenance
All program names will be stored on the restart_control table along with a functional
description, the query driver (department, store, class, and others) and the user-defined
number of threads associated with them. Users should be able to scroll through all
programs to view the name, description, and query driver, and if the update_allowed
flag is set to true, to modify the number of threads (update is set to true).

File-Based
File-based processing does not truly “multi-thread” and therefore the number of threads
defined on restart_control will always be one. However, a restart_program_status record
needs to be created for each input file that is to be processed for the program module.
Further, the thread value that is assigned must be part of the input file name. The
restart_parse_name function included in the program module will parse the thread value
from the program name and use that to determine the availability and restart
requirements on the RESTART_PROGRAM_STATUS table.

Refer to the beginning of this multi-threading section for a discussion of limits on using
large (greater than nine digits) thread values.

Batch Maintenance

22 Oracle Retail Merchandising System

Query-Based
When the number of threads is modified in the restart_control table, the form must first
validate that no records for that program are currently being processed in the
restart_program_status_table (that is, all records = ‘Completed’). The program must
insert or delete rows depending on whether the new thread number is greater than or
less than the old thread number. In the event that the new number is less than the
previous number, all records for that program_name with a thread number greater than
the new thread number will be deleted. If the new number is greater than the old
number, new rows will be inserted. A new record is inserted for each
RESTART_NAME/THREAD_VAL combination.
For example if the batch program SALDLY has its number of processes changed from 2
to 3, then an additional row (3) will be added to the restart_program_status table. In the
same way, if the number of threads was reduced to 1 in this example, rows 2 and 3
would be deleted.

Row RESTART_NAME THREAD_VA program_name

1 SALDLY 1 SALDLY

2 SALDLY 2 SALDLY

RESTART_PROGRAM_STATUS table after insert:

Row RESTART_NAME THREAD_VA program_name

1 SALDLY 1 SALDLY

2 SALDLY 2 SALDLY

3 SALDLY 3 SALDLY

RESTART_PROGRAM_STATUS table after delete:

Row RESTART_NAME THREAD_VA program_name

1 SALDLY 1 SALDLY

Users should also be able to modify the commit_max_ctr column in
restart_program_status table. This controls the number of iterations in driving query or
the number of lines read from a flat file that determine the logical unit of work (LUW).

Batch Maintenance
Users must be able to view the status of all records in restart_program_status table. This
is where the user gets to view error messages from aborted programs, and statistics and
histories of batch runs. The only fields that are modified will be program_status and
restart_flag. The user should be able to reset the restart_flag to ‘Y’ from ‘N’ on records
with a status of aborted, started records to aborted in the event of an abend (abnormal
termination), and all records in the event of a restore from tape/re-run of all batch.

Scheduling and Initialization of Restart Batch
Before any batch with restart/recovery logic is run, an initialization program must be run
to update the status in the restart_program_status table. This program must update the
program_status to ‘ready for start’ wherever a record’s program_status is ‘completed.’
This leaves unchanged all programs that ended unsuccessfully in the last batch run.

Pre-Processing and Post-Processing

Pro*C Multi-Threading 23

Pre-Processing and Post-Processing
Due to the nature of threading algorithm, individual programs needs a pre or a post
program run to initialize variables or files before any of the threads have run or to update
final data when all the threads are run. The decision was made to create pre-programs
and post-programs in these cases rather than let the restart/recovery logic decide
whether the currently processed thread is the first thread to start or the last thread to end
for a given program.

ksh Driven Batch Programs
For ksh driven batch programs that call PL/SQL for its main processing logic, multi-
threading is also supported. An example of this type of batch job is ksh script
stockcountupload.ksh calling PL/SQL package CORESVC_STOCK_UPLOAD_SQL. The
threading configuration for each program is defined in table
RMS_PLSQL_BATCH_CONFIG (instead of RESTART_CONTROL for the ProC
programs). Column MAX_CONSURRENT_THREAD holds the maximum number of
concurrent threads. MAX_CHUNK_SIZE defines the commit size within each thread,
similar to the RESTART_CONTROL.COMMIT_MAX_CTR column.

Pro*C Array Processing 25

4
Pro*C Array Processing

Oracle Retail batch architecture uses array processing to improve performance. Instead of
processing SQL statements using scalar data, data is grouped into arrays and used as
bind variables in SQL statements. This improves performance by reducing the
server/client and network traffic.

Array processing is used in selecting, inserting, deleting, and updating statements.
Oracle Retail typically does not statically define the array sizes, but uses the restart
maximum commit variable as a sizing multiple. The user must remember this when
defining the system's maximum commit counters.

Remember, when using array processing in Oracle, it does not allow a single array
operation to be performed for more than 32000 records in one step. The Oracle Retail
restart/recovery libraries have been updated to define macros for this value:
MAX_ORACLE_ARRAY_SIZE.

All batch programs that use array processing need to limit the size of their array
operations to MAX_ORACLE_ARRAY_SIZE.

If the commit max counter is used for array processing size, check it after the call to
restart_init() and, if necessary, reset it to the maximum value if greater. If retek_init() is
used to initialize, check the returned commit max counter and reset it to the maximum
size if it is greater. In case of retek_init(), reset the library’s internal commit max counter
by calling extern int limit_commit_max_ctr(unsigned int new_max_ctr).

If some other variable is used for sizing the array processing, the actual array-processing
step must be encapsulated in a calling loop that performs the array operation in sub
segments of the total array size where each sub-segment is at most
MAX_ORACLE_ARRAY_SIZE large. Currently all Oracle Retail batch programs are
implemented in the similar way.

Pro*C Input and Output Formats 27

5
Pro*C Input and Output Formats

Oracle Retail batch processing utilizes input from both tables and flat files. Further, the
outcome of processing can both modify data structures and write output data. Interfacing
Oracle Retail with external systems is the main use of file based I/O.

General Interface Discussion
To simplify the interface requirements, Oracle Retail requires that all in-bound and out-
bound file-based transactions adhere to standard file layouts. There are two types of file
layouts, detail-only and master-detail, which are described in the sections below.

An interfacing API exists within Oracle Retail to simplify the coding and the
maintenance of input files. The API provides functionality to read input from files,
ensure file layout integrity, and write and maintain files for rejected transactions.

Standard File Layouts
The RMS interface library supports two standard file layouts; one for master/detail
processing, and one for processing detail records only. True sub-details are not
supported within the RMS base package interface library functions.

A 5-character identification code or record type identifies all records within an I/O file,
regardless of file type. The following includes the valid record type values:
 FHEAD—File Header

 FDETL—File Detail

 FTAIL—File Tail

 THEAD—Transaction Header

 TDETL—Transaction Detail

 TTAIL—Transaction Tail
Each line of the file must begin with the record type code followed by a 10-character
record ID.

Detail-Only Files
File layouts have a standard file header record, a detail record for each transaction to be
processed, and a file trailer record. Valid record types are FHEAD, FDETL, and FTAIL.
Example:
FHEAD0000000001STKU1996010100000019960929
FDETL0000000002SKU100000040000011011
FDETL0000000003SKU100000050003002001
FDETL0000000004SKU100000050003002001
FTAIL00000000050000000003

Detail-Only Files

28 Oracle Retail Merchandising System

Master and Detail Files
File layouts consists of:

 Standard file header record

 Set of records for each transaction to be processed
 File trailer record.

The transaction set consists of:

 Transaction set header record

 Transaction set detail for detail within the transaction

 Transaction trailer record

Valid record types are FHEAD, THEAD, TDETL, TTAIL, and FTAIL.
Example:
FHEAD0000000001RTV 19960908172000
THEAD000000000200000000000001199609091202000000000003R
TDETL000000000300000000000001000001SKU10000012
TTAIL0000000004000001
THEAD000000000500000000000002199609091202001215720131R
TDETL000000000600000000000002000001UPC400100002667
TDETL0000000007000000000000020000021UPC400100002643 0
TTAIL0000000008000002
FTAIL00000000090000000007

Record Name Field Name Field Type Default Value Description

File Header File Type Record
Descriptor

Char(5) FHEAD Identifies file
record type.

 File Line
Identifier

Number(10) Specified by
external system

Line number of
the current file.

 File Type
Definition

Char(4) n/a Identifies
transaction type.

 File Create Date Date Create date Date file was
written by
external system.

Transaction
Header

File Type Record
Descriptor

Char(5) THEAD Identifies file
record type.

 File Line
Identifier

Number(10) Specified by
external system

Line number of
the current file.

 Transaction Set
Control Number

Char(14) Specified by
external system

Used to force
unique transaction
check.

 Transaction Date Char(14) Specified by
external system

Date the
transaction was
created in external
system.

Transaction
Detail

File Type Record
Descriptor

Char(5) TDETL Identifies file
record type.

 File Line
Identifier

Number(10) Specified by
external system

Line number of
the current file.

Detail-Only Files

Pro*C Input and Output Formats 29

Record Name Field Name Field Type Default Value Description

 Transaction Set
Control Number

Char(14) Specified by
external system

Used to force
unique transaction
check.

 Detail Sequence
Number

Char(6) Specified by
external system

Sequential
number assigned
to detail records
within a
transaction.

Transaction
Trailer

File Type Record
Descriptor

Char(5) TTAIL Identifies file
record type.

 File Line
Identifier

Number(10) Specified by
external system

Line number of
the current file.

 Transaction
Detail Line Count

Number(6) Sum of detail lines Sum of the detail
lines within a
transaction.

File Trailer File Type Record
Descriptor

Char(5) FTAIL Identifies file
record type.

 File Line
Identifier

Number(10) Specified by
external system

Line number of
the current file.

 Total Transaction
Line Count

Number(10) Sum of all
transaction lines

All lines in file less
the file header and
trailer records.

RETL Program Overview for the RMS-RPAS Interface 31

6
RETL Program Overview for the RMS-RPAS

Interface
This chapter covers information about the Oracle Retail Extract Transform and Load
(RETL) program overview for the RMS and the RPAS interface. The RETL architecture is
mentioned along with the RETL program overview.

Oracle Retail ETL Architecture
RMS works with the Oracle Retail Extract Transform and Load (RETL) framework. This
architecture utilizes a high performance data processing tool that allows database batch
processes to take advantage of parallel processing capabilities.

The RETL framework runs and parses through the valid operators composed in XML
scripts. For more information on RETL tool, see RETL Programmer’s Guide.

The figure The two stages of RETL processing illustrates the extraction processing
architecture. Instead of managing the change captures as they occur in the source system
during the day, the process involves extracting the current data from the source system.
The extracted data is output to flat files. These flat files are then available for
consumption by products such as RPAS.

The target system has its own way of completing the transformations and loading the
necessary data into the system, where it can be used for further processing.. For more
information on transformation and loading, see RPAS documentation.
The architecture relies upon two distinct stages, shown in the figure The two stages of
RETL processing.

 Stage 1- Extraction from the RMS database using well-defined flows specific to the
RMS database. The resulting output is comprised of data files written in a well-
defined schema file format. This stage includes no destination specific code.

 Stage 2- Introduces a flow specific to the destination. In this case, flows for RPAS are
designed to transform the data so that RPAS can import the data properly.

RETL Program Overview

32 Oracle Retail Merchandising System

Stage 1
 RMS extraction

process

RMS extraction
flows and output

schemas

Stage 2
 Transformation

process
Transformation

flows

RMS DB

Destination DB

RMS extraction files
(in output schema format)

Load files

The two stages of RETL processing

RETL Program Overview
This section summarizes the RETL program features utilized in the RMS extractions and
loads. Installation information about the RETL tool is available in the latest RETL
Programmer’s Guide.

Configuration

Version of RETL
Before trying to configure and run RMS RETL, install RETL version 13.0 or later, which is
requires RMS RETL to run. For thorough installation procedure, see RETL Programmer’s
Guide.

RETL User and Permissions
The permissions are set up as per the RETL Programmer’s Guide. RMS RETL reads and
writes data files, you can also create, delete, update and insert into tables. The extraction
fails, if it is not set up properly.

RETL Program Overview

RETL Program Overview for the RMS-RPAS Interface 33

Environment Variables
See the RETL Programmer’s Guide for RETL environment variables that must be set up
for your version of RETL. You will need to set RDF_HOME to your base directory for
RMS RETL. This is the top level directory that you select during the installation process.
Add export RDF_HOME=<base directory for RMS RETL> in. profile.

rmse_rpas_config.env Settings for RPAS
There are several constants that must be set in rmse_rpas_config.env depending upon a
retailer’s preferences and the local environment. This is summarized in the table below.

Constant Name Default Value Alternate Value Description

DATE_TYPE vdate current_date Determines whether the
date used in naming the
error, log, and status
files is the current date
or the VDATE value
found in the PERIOD
table.

DBNAME rtkdev01 Depends on
installation

The database schema
name.

RMS_OWNER RPASINT Depends on
installation

The username of the
RMS database schema
owner.

BA_OWNER Depends on
installation

The username of the
RMS batch user (not
currently used by RMS-
RPAS).

CONN_TYPE thin oci The way in which RMS
connects to the
database.

DBHOST mspdev17 Depends on
installation

The computer
hardware node name.

DBPORT 1524 Depends on
installation

The port on which the
database listener
resides.

LOC_ATTRIBUTES_
ACTIVE

False True Determines whether
rmse_rpas_attributes.ks
h is run or not.

PROD_
ATTRIBUTES_ACTIVE

False True Determines whether
rmse_rpas_attributes.ks
h is run or not.

DIFFS_ACTIVE True False Determines whether
rmse_rpas_merchhier.k
sh generates data files
that contain diff
allocation information.

RETL Program Overview

34 Oracle Retail Merchandising System

Constant Name Default Value Alternate Value Description

ISSUES_ACTIVE True False If set to ‘True’,
rmse_rpas_stock_on_ha
nd also extracts stock at
the warehouse level. If
set to ‘False’,
rmse_rpas_stock_on_ha
nd extracts stock at the
store level only.

LOAD_TYPE CONVENTIONAL DIRECT Data loading method to
be used by SQL*Loader

(Direct may be faster
than conventional).

DB_ENV ORA DB2, TERA Database type
(Additional changes to
the software may be
needed if a database
other than Oracle is
selected).

NO_OF_CPUS 4 Depends on
installation

Used in parallel
database query hints to
improve performance.

LANGUAGE en Various En = English

RFX_OPTIONS -c $RDF_HOME/

rfx/etc/rfx.conf

-s SCHEMAFILE

-c $RDF_

HOME/

rfx/etc/rfx

.conf

Processing speed may
be increased for some
extractions if the

 -s SCHEMAFILE

option is omitted.

You must set up the wallet alias in the rmse_aip_config.env. The wallet and wallet alias
creation is required to use programs in a secured mode. The following variables must be
setup RETL_WALLET_ALIAS, ORACLE_WALLET_ALIAS, SQLPLUS_LOGON.

Be sure to review the environmental parameters in the rmse_rpas_config.env file before
executing batch modules.

Steps to Configure RETL
Log in to the UNIX server with a UNIX account that will run the RETL scripts.

Change directories to <base_directory>/rfx/etc.
Modify the constants from the table above in the rmse_rpas_config.env script as needed.

Program Return Code

RETL Program Overview for the RMS-RPAS Interface 35

Program Return Code
RETL programs use a return code to indicate successful completion. If the program
successfully runs, a zero (0) is returned. If the program fails, no number is returned.

Program Status Control Files
To prevent a program from running while the same program is already running against
the same set of data, the code utilizes a program status control file. At the beginning of
each module, rmse_rpas_config.env is run. This script checks for the existence of the
program status control file. If the file exists, then a message stating, ‘${PROGRAM_NAME}
has already started’, is logged and the module exits. If the file does not exist, a
program status control file is created and the module executes.

If the module fails at any point, the program status control file is not removed, and the
user is responsible for removing the control file before running the module again.

File Naming Conventions
The name and directory of the program status control file is set in the configuration script
(rmse_rpas_config.env). The directory defaults to $RDF_HOME/error.

The naming convention for the program status control file itself defaults to the following
dot separated file name:

 The program name.

 The program status is mentioned under the ‘status’ parameter.
 The business virtual date for which the module was run.

For example, a program status control file for the rmse_rpas_daily_sales.ksh program is
named as follows for a batch run on the business virtual date of January 5, 2001:
$RDF_HOME/error/rmse_rpas_daily_sales.status.20010105

Restart and Recovery
Because RETL processes all records as a set, as opposed to one record at a time, the
method for restart and recovery must be different from the method that is used for
Pro*C. The restart and recovery process serves the following two purposes:

It prevents the loss of data due to program or database failure.

It increases performance when restarting after a program or database failure by limiting
the amount of reprocessing that needs to occur.

The RMS extract (RMSE) modules extract from a source transaction database or text file
and write to a text file. The RMS loads module import data from flat files, performs
necessary transformations, and then loads the data into the applicable RMS table.

Most modules use a single RETL flow and do not require the use of restart and recovery.
If the extraction process fails for any reason, the problem can be fixed, and the entire
process is started again without the loss of data. No RMS to RPAS extraction programs
has any restart/recovery capability. The single RMS load program,
rmsl_rpas_forecast.ksh, takes a text file as its input, and the following choices are
available, that enables the program to complete the load in the event of an error:

 Re-run the program with the entire input file.

 Re-run the program with only the input records that were not processed successfully
the first time.

Message Logging

36 Oracle Retail Merchandising System

Message Logging
Message logs are written daily in a format as described in this section.

Daily Log File
Every RETL program writes a message to the daily log file when it starts and when it
finishes. In some cases, progress messages are also written. The name and directory of
the daily log file is set in the configuration script (rmse_rpas_config.env). The directory
defaults to $RDF_HOME/log. All log files are encoded UTF-8.

The naming convention of the daily log file defaults to the following “dot” separated file
name:
 The business virtual date for which the modules are run.

 The log file format should be ‘.log’.

For example, the location and the name of the log file for the business virtual date of
January 5, 2001 would be the following:
$RDF_HOME/log/20010105.log

Format
As the following examples illustrate, every message written to a log file has the name of
the program, a timestamp, and either an informational or error message. For example:
rmse_rpas_item_retail 17:09:07: Program started ...
rmse_rpas_item_retail 17:09:12: Program completed successfully

Some error messages are also written to the log file, such as ‘No output file
specified’.

Program Error File
In addition to the daily log file, each program also writes its own detailed flow and error
messages. Rather than clutter the daily log file with these messages, each program writes
out its errors to a separate error file unique to each execution.

If a program finishes unsuccessfully, a message is usually written in the error file that
indicates where the problem occurred in the process.

The name and directory of the program error file is set in the applicable configuration file
(rmse_rpas_config.env). The directory defaults to $RDF_HOME/error. All errors and all
routine processing messages for a given program on a given day go into this error file (for
example, it contains both the stderr and stdout produced during execution of the
program).

The naming convention for the program’s error file defaults to the following “dot”
separated file name:

 The program name
 The business virtual date for which the module was run

For example, all errors and detailed log information for the rms_item_master.ksh
program would be placed in the following file for the batch run on the business virtual
date of January 5, 2001:
$MMHOME/error/rms_item_master.20010105

RMSE Reject Files

RETL Program Overview for the RMS-RPAS Interface 37

RMSE Reject Files
RMSE extract modules may produce a reject file if they encounter data related problems,
such as the inability to find data on required lookup tables. The module tries to process
all data and then indicates that records were rejected so that all data problems can be
identified in one pass and corrected; then, the module can be re-run to successful
completion. If a module does reject records, the reject file is not removed, and the user is
responsible for removing the reject file before re-running the module. The records in the
reject file consist of the rejected records.

The name and directory of the reject file are defined in the applicable configuration script
(rmse_rpas_config.env). The directory defaults to $RDF_HOME/data.

Note: A directory specific to reject files can be created. The
rmse_rpas_config.env script would need to be changed to
define the reject directory constant such that it would point
to that directory.

The naming convention for the reject file defaults to the following “dot” separated file
name:
 The program name.

 The first filename, if one is specified on the command line.

 The file format should be as ‘.rej’.

 The business virtual date for which the module was run.

Schema Files Overview
RETL uses schema files to specify the format of incoming or outgoing datasets. The
schema file defines each column’s data type and format, which is then used within RETL
to format/handle the data. For more information about schema files, see the latest RETL
Programmer’s Guide. Schema file names are hard-coded within each module because
they do not change on a day-to-day basis. All schema files end with “.schema” and are
placed in the “$RDF_HOME/rfx/schema” directory.

Command Line Parameters
The only programs or scripts that allows the command line parameters (or arguments)
are:

 rmse_rpas_config.env script

 pre_rmse_rpas.ksh
 rmse_rpas.ksh programs.

All of the command line parameters for these modules are optional and are described in
section rmse_rpas_config.env, the square brackets indicate that the parameter is optional.

Command Line Parameters

38 Oracle Retail Merchandising System

rmse_rpas_config.env
Usage: $RDF_HOME/rfx/etc/rmse_rpas_config.env [-t $*] [-r $*] [-s $*] [-v $* | -c
$*]

Description of Command Line Options

Note: See the end of this description for an explanation of
the need for the ‘$*’ that appears after each command line
option.

 -t: This option causes rmse_rpas_config.env to skip the initializing of the
environment variables that obtains the values from the ‘.txt’ files, except for VDATE
which is initialized with the date found in the vdate.txt file. This option is utilized by
pre_rmse_rpas.ksh, rmse_rpas.ksh, rdft.ksh and outage.ksh when they call
rmse_rpas_config.env.

 -r: This option prevents the redirection of all output (stdout and stderr) to the error
file. This can be useful during debugging and maintenance. This option can also be
utilized by rmse_rpas.ksh, rdft.ksh and outage.ksh when they call
rmse_rpas_config.env.

o The ‘-t’ and ‘-r’ options must be followed by ‘$*’ on the line which
invokes this script. This step is necessary in order to preserve the
command line arguments or options that may have been present on the
command line for the RETL script that invokes this script. However, the
‘$*’ must only appear once if both options are used.

 -s: This option causes rmse_rpas_config.env to skip the STATUS_FILE test. This is
also useful during maintenance and debugging.

 -v: If DATE_TYPE (in rmse_rpas_config.env) is set to ‘vdate’, this option prevents
the normal exit with an error message when the vdate.txt file is empty or non-
existent; instead, it uses the current date to derive FILE_DATE. However, if
DATE_TYPE is set to ‘vdate’, and vdate.txt actually does exist and is non-empty, the
date in vdate.txt continues to be used even if this option is set. If DATE_TYPE is set
to ‘current_date’, this option has no effect.

 -c: This option overrides the DATE_TYPE switch setting and causes the current
date to be used to derive FILE_DATE regardless of what DATE_TYPE is set to. This
option is utilized by pre_rmse_rpas.ksh when it calls rmse_rpas_config.env, if it is
run with the -c option on its command line. The ‘-c’ option is normally only used
when rmse_rpas_config.env is called from pre_rmse_rpas.ksh.

o If only one command line option is used, it must be followed by ‘$*’. But
if more than one option is specified, then ‘$*’ must be entered on the
command line only once after all options have been entered. The ‘$*’ is
necessary in order to preserve the command line arguments or options
(if there are any) that are present on the command line that is used to
execute the RETL script which invokes this script.

o If more than one option is specified, options must appear on the
command line in the same order as shown on the “Usage” line, above.

Command Line Parameters

RETL Program Overview for the RMS-RPAS Interface 39

pre_rmse_rpas.ksh

 Usage: pre_rmse_rpas.ksh [-c]

 The ‘-c’ option is used to specify what option is to be placed on the
rmse_rpas_config.env command line when it is called by this program. It is usually
used the first time that pre_rmse_rpas.ksh is run at a new installation or if the state of
the vdate.txt file is unknown. This option is passed directly to rmse_rpas_config.env
when it is called by pre_rmse_rpas.ksh. No other use is made of this parameter by
pre_rmse_rpas.ksh.

 This option causes rmse_rpas_config.env to use the current date to initialize
FILE_DATE instead of possibly setting it to VDATE, which is obtained from the
vdate.txt file. (FILE_DATE is the date that is used to name the error, log, and status
files).

 The current date is used regardless of how DATE_TYPE is set in
rmse_rpas_config.env. By using the ‘-c’ option, there is no need to manually set up
the vdate.txt file before running this script.

 The normal mode for pre_rmse_rpas.ksh (without the -c option) is that when it calls
rmse_rpas_config.env, FILE_DATE is set to VDATE or the current date, depending
on how DATE_TYPE is set in rmse_rpas_config.env. If DATE_TYPE is set to ‘vdate’,
and if the vdate.txt file does not exist or is empty, rmse_rpas_config.env (and this
program) exits with an error message.

 The use of this option does not affect what date is used by any of the other RETL
scripts that run after this script is done. After pre_rmse_rpas.ksh has run, when the
other RETL scripts are run, they call rmse_rpas_config.env with no options on the
command line, and their files are named using VDATE or the current date,
depending on how DATE_TYPE is set in rmse_rpas_config.env.

rmse_rpas.ksh

 Usage: rmse_rpas.ksh [-c]

 The presence of the ‘-c’ option causes FILE_DATE in rmse_rpas_config.env to be set
to the current date instead of possibly using VDATE (which gets its value from the
vdate.txt file), but only when it is called by rmse_rpas.ksh and pre_rmse_rpas.ksh
(pre_rmse_rpas.ksh is invoked by rmse_rpas.ksh). It has no effect when other extract
programs call rmse_rpas_config.env, at the time that they are invoked by
rmse_rpas.ksh. This option is passed directly to rmse_rpas_config.env and
pre_rmse_rpas.ksh when they are called by rmse_rpas.ksh. No other use is made of
this parameter by rmse_rpas.ksh.

Note: During the rmse_rpas_config.env configuration to
connect to the JDBC, enter the connection details as follows:
jdbc:oracle:thin:@<DB host server>:<PORT ID>:<connection
string>. For example,
oracle:thin:@msp52417.us.oracle.com:1521:dolsp01app.

RMSE I/O File Names
Most of the output path/filenames have the format,
$DATA_DIR/(RMSE_RPAS_program name).dat. Similarly, the schema format for the
records in these files are specified in the file - $SCHEMA_DIR/(RMSE_RPAS_program
name).schema.

Typical Run and Debugging Situations

40 Oracle Retail Merchandising System

Typical Run and Debugging Situations
The following examples illustrate typical run and debugging situations for programs.
The log, error, etc. file names referenced below assumes that the module is run on the
business virtual date of March 9, 2001. For more information on naming convention, see
File Naming Conventions section.

For example:

To run rmse_rpas_stores.ksh:

Change directories to $RDF_HOME/rfx/src.

At a UNIX prompt ($) enter:
$rmse_rpas_stores.ksh

If the module runs successfully, the following results:

Log file: Today’s log file, 20010309.log, contains the messages “Program started …” and
“Program completed successfully” for rmse_rpas_stores.

Data: The rmse_rpas_stores.dat file exists in the data directory and contains the extracted
records.
Schema: The rmse_rpas_stores.schema file exists in the schema directory and contains
the definition of the data file in #2 above.

Error file: The program’s error file, rmse_rpas_stores.20010309, contains the standard
RETL flow (ending with “All threads complete” and “Flow ran successfully”) and no
error messages.

Program status control: The program status control file,
rmse_rpas_stores.status.20010309, will not exist.

Reject file: The reject file, rmse_rpas_stores.rej.20010309, will not exist.

If the module does not run successfully, the following results:

Log file: Today’s log file, 20010309.log, does not contain the “Program completed
successfully” message for rmse_rpas_stores.

Data: The rmse_rpas_stores.dat file may exist in the data directory but may not contain
all the extracted records.

Schema: The rmse_rpas_stores.schema file exists in the schema directory and contains
the definition of the data file in #2 above.

Error file: The program’s error file, rmse_rpas_stores.20010309, may contain one or more
error messages.

Program status control: The program status control file,
rmse_rpas_stores.status.20010309, exists.

Reject file: The reject file, rmse_rpas_stores.status.20010309, does not exist because this
module does not reject records.

To re-run the module, perform the following actions:

Determine and fix the problem causing the error.

Remove the program’s status control file.
Change directories to $RDF_HOME/rfx/src. At a UNIX prompt, enter:
$rmse_rpas_stores.ksh

RPAS/AIP Configuration
This section covers information about the configuration of RPAS/AIP. It gives an
overview of handling installation and configuration in RMS ETL.

RPAS/AIP Configuration

RETL Program Overview for the RMS-RPAS Interface 41

RETL Program Overview for the RMS-Time-Phased Inventory Planning Tool Interface
This section summarizes the RETL program features utilized in the RMS Extractions
(RMSE) for the RMS–time-phased inventory planning tool integration. Starting with RMS
version 11, the RMS extract for a time-phased inventory planning tool is separate from
the RMS extracts for RPAS. In prior RMS version, time-phased inventory planning tool
and RPAS had common RETL extracts.

More installation information about the RETL tool is available in the latest RETL
Programmer’s Guide.

Note: In this section, some examples refer to RETL programs
that are not related to RMS or are related to other versions of
RMS than this document addresses. Such examples are
included for illustration purposes only.

Installation
Select a directory where you would like to install RMS ETL. This directory (also called
MMHOME) is the location from which the RMS ETL files are extracted.

The following code tree is utilized for the RETL framework during the extractions,
transformations, and loads and is referred to in this documentation.
<base directory (MMHOME)>
 /data
 /error
 /log
 /rfx
 /bookmark
 /etc
 /lib
 /schema
 /src

Configuration

RETL
Before trying to configure and run RMS RETL, install RETL version 13.0 or later, which is
required to run RMS ETL. For thorough installation process, see the latest RETL
Programmer’s Guide.

RETL user and permissions
RMS ETL is installed and run as the RETL user. Additionally, the permissions are set up
as per the RETL Programmer’s Guide. RMS ETL reads data, creates, deletes and updates
tables. If these permissions are not set up properly, extractions fail.

Environment Variables
To set up RETL environment variable for the RETL version you have installed, see RETL
Programmers Guide. You will need to set MMHOME to your base directory for RMS
RETL. This is the top level directory that you selected during the installation process (see
the section, ‘Installation’, above). In your .kshrc, you should add a line such as the
following:
export MMHOME=<base directory for RMS ETL>

rmse_aip_config.env Settings
There variables you must be change depending upon your local settings:

RPAS/AIP Configuration

42 Oracle Retail Merchandising System

For example:
export DBNAME=int9i
export RMS_OWNER=steffej_rms1011
export BA_OWNER=rmsint1011

You must set up the wallet alias in the rmse_aip_config.env. The wallet and wallet alias
creation is required to use programs in a secured mode. The following variables must be
setup RETL_WALLET_ALIAS, ORACLE_WALLET_ALIAS, SQLPLUS_LOGON.

Make sure to review the environmental parameters in the rmse_aip_config.env file file
before executing batch modules.

Steps to Configure RETL
Log in to the UNIX server with a UNIX account that will run the RETL scripts.

Change directories to <base_directory>/rfx/etc.
Modify the rmse_aip_config.env script.

For example:

b. Change the DBNAME variable to the name of the RMS database.

c. Change the RMS_OWNER variable to the username of the RMS schema owner.

d. Change the BA_OWNER variable to the username of the RMSE batch user.

Note: During the rmse_aip_config.env configuration to
connect to the JDBC, enter the connection details as follows:
jdbc:oracle:thin:@<DB host server>:<PORT ID>:<connection
string>. For example,
oracle:thin:@msp52417.us.oracle.com:1521:dolsp01app.

Program Return Code
RETL program uses one return code to indicate successful completion. If the program
successfully runs, a zero (0) is returned. If the program fails then, zero is not returned.

Program Status Control Files
To prevent a program from running while the same program is already running against
the same set of data, the code utilizes a program status control file. At the beginning of
each module, rmse_aip_config.env is run. These files check for the existence of the
program status control file. If the file exists, then a message stating,
‘${PROGRAM_NAME} has already started’, is logged and the module exits. If the file
does not exist, a program status control file is created and the module executes.

If the module fails at any point, the program status control file is not removed, and the
user is responsible for removing the control file before re-running the module.

RPAS/AIP Configuration

RETL Program Overview for the RMS-RPAS Interface 43

File Naming Conventions
The naming convention of the program status control file allows a program whose input
is a text file to be run multiple times at the same time against different files.

The name and directory of the program status control file is set in the applicable
configuration file (rmse_aip_config.env). The directory defaults to $MMHOME/error.
The naming convention for the program status control file itself defaults to the following
dot separated file name:

 The program name.

 The status of the program name should be specified in ‘status’.

 The business virtual date for which the module was run.

For example, a program status control file for one program is named as follows for the
batch run of January 5, 2001:
$MMHOME/error/rmse_aip_banded_item.status.20010105

Restart and Recovery
Because RETL processes all records as a set, as opposed to one record at a time, the
method for restart and recovery must be different from the method that is used for
Pro*C. The restart and recovery process serves the following two purposes:

It prevents the loss of data due to program or database failure.

It increases performance when restarting after a program or database failure by limiting
the amount of reprocessing that needs to occur.

The RMS Extract (RMSE) module extracts a source transaction database or text file and
writes to a text file. The RMS Load (RMSL) modules import data from flat files, performs
transformation if necessary and then loads the data into the applicable RMS tables.

Most modules use a single RETL flow and do not require the use of restart and recovery.
If the extraction process fails for any reason, the problem is fixed, and the entire process
runs from the beginning without the loss of data. For a module that takes a text file as its
input, the following two choices are available that enables the module to be re-run from
the beginning:

Re-run the module with the entire input file.

Re-run the module with only the records that were not processed successfully the first
time and concatenate the resulting file with the output file from the first time.

To limit the amount of data that needs to be re-processed, more complicated modules
that require the use of multiple RETL flows utilize a bookmark method for restart and
recovery. This method allows the module to be restarted at the point of last success and
run to completion. The bookmark restart/recovery method incorporates the use of a
bookmark flag to indicate which step of the process should be run next. For each step in
the process, the bookmark flag is written to and read from a bookmark file.

Note: If the fix for the problem causing the failure requires
changing data in the source table or file, then the bookmark
file must be removed and the process must be re-run from
the beginning in order to extract the changed data.

RPAS/AIP Configuration

44 Oracle Retail Merchandising System

Message Logging
Message logs are written daily in a format described in this section.

Daily Log File
Every RETL program writes a message to the daily log file when it starts and when it
finishes. The name and directory of the daily log file is set in the configuration file
(rmse_aip_config.env). The directory defaults to $MMHOME/log. All log files are
encoded UTF-8.
The naming convention of the daily log file defaults to the following “dot” separated file
name:

 The business virtual date for which the modules are run

 ‘.log’

For example, the location and the name of the log file for the business virtual date of
January 5, 2001 would be the following:
$MMHOME/log/20010105.log

Format
As the following examples illustrate, every message written to a log file has the name of
the program, a timestamp, and either an informational or error message:
aipt_item 17:07:43: Program started ...
aipt_item 17:07:50: Program completed successfully
rmse_aip_item_master 17:08:53: Program started ...
rmse_aip_item_master 17:08:59: Program completed successfully
rmse_item_retail 17:09:07: Program started ...
rmse_item_retail 17:09:12: Program completed successfully

If a program finishes unsuccessfully, an error file is usually written that indicates where
the problem occurred in the process. There are some error messages written to the log
file, such as ‘No output file specified’, that require no further explanation written to the
error file.

Program Error File

In addition to the daily log file, each program also writes its own detail flow and error
messages. Rather than clutter the daily log file with these messages, each program writes
out its errors to a separate error file unique to each execution.

The name and directory of the program error file is set in the applicable configuration file
(rmse_aip_config.env). The directory defaults to $MMHOME/error. All errors and all
routine processing messages for a given program on a given day go into this error file (for
example, it will contain both the stderr and stdout from the call to RETL). All error files
are encoded UTF-8.
The naming convention for the program’s error file defaults to the following “dot”
separated file name:

 The program name

 The business virtual date for which the module was run

For example, all errors and detail log information for the rms_aip_item_master
program would be placed in the following file for the batch run of January 5, 2001:
$MMHOME/error/rms_aip_item_master.20010105

RPAS/AIP Configuration

RETL Program Overview for the RMS-RPAS Interface 45

RMSE and Transformation Reject Files
RMSE extract and transformation modules may produce a reject file if they encounter
data related problems, such as the inability to find data on required lookup tables. The
module tries to process all data and then indicates that records were rejected so that all
data problems can be identified in one pass and corrected; then, the module can be re-run
to successful completion. If a module does reject records, the reject file is not removed,
and the user is responsible for removing the reject file before re-running the module.

The record in the reject file contains an error message and key information from the
rejected record. The following example illustrates a record that is rejected due to
problems within the currency conversion library:
Currency Conversion Failed|101721472|20010309

The following example illustrates a record that is rejected due to problems looking up
information on a source table:
Unable to find item_master record for Item|101721472

The name and directory of the reject file is set in the applicable configuration file
(rmse_config.env or config.env). The directory defaults to $MMHOME/data.

Note: A directory specific to reject files can be created. The
rmse_config.env and/or config.env file would need to be
changed to point to that directory.

The naming convention for the reject file defaults to the following “dot” separated file
name:

 The program name

 The first filename, if one is specified on the command line

 ‘rej’
 The business virtual date for which the module was run

For example, all rejected records for the slsildmex program would be placed in the
following file for the batch run of January 5, 2001:
$MMHOME/data/slsildmex.slsildmdm.txt.rej.20010105

Schema Files Overview
RETL uses schema files to specify the format of incoming or outgoing datasets. The
schema file defines each column’s data type and format, which is then used within RETL
to format/handle the data. For more information about schema files, see the latest RETL
Programmer’s Guide. Schema file names are hard-coded within each module since they
do not change on a day-to-day basis. All schema files end with “.schema” and are placed
in the “rfx/schema” directory.

Command Line Parameters
In order for each RETL module to run, the input/output data file paths and names may
need to be passed in at the UNIX command line.

RMSE and Transformation
Most RMSE and transformation modules do not require the passing in of any
parameters. The output path/filename defaults to $DATA_DIR/(RMSE and transfer
program name).dat. Similarly, the schema format for the records in these files are
specified in the file - $SCHEMA_DIR/(RMSE program name).schema.

RPAS/AIP Configuration

46 Oracle Retail Merchandising System

Scripts that need Parameter to Run
The scripts below are run on a full snapshot basis. The parameter is F (for full snapshot).
 rmse_aip_store_cur_inventory.ksh

 rmse_aip_wh_cur_inventory.ksh

Typical Run and Debugging Situations
The following examples illustrate typical run and debugging situations for types of
programs. The log, error, and other file names referenced below assume that the module
is run on the business virtual date of March 9, 2001. See the previously described naming
conventions for the location of each file.

For example:

To run rmse_aip_store.ksh:

Change directories to $MMHOME/rfx/src.

At a UNIX prompt enter:
%rmse_aip_store.ksh

If the module runs successfully, the following results:

 Log file: Today’s log file, 20010309.log, contains the messages “Program started …”
and “Program completed successfully” for rmse_aip_store.

 Data: The rmse_aip_store.dat file exists in the data directory and contains the
extracted records.

 Schema: The rmse_aip_store.schema file exists in the schema directory and contains
the definition of the data file in #2 above.

 Error file: The program’s error file, rmse_aip_store.20010309, contains the standard
RETL flow (ending with “All threads complete” and “Flow ran successfully”) and no
additional error messages.

 Program status control: The program status control file,
rmse_aip_store.status.20010309, does not exist.

 Reject file: The reject file, rmse_aip_store.rej.20010309, does not exist because this
module does not reject records.

 If the module does not run successfully, the following results:

 Log file: Today’s log file, 20010309.log, does not contain the “Program completed
successfully” message for rmse_stores.

 Data: The rmse_aip_store.dat file may exist in the data directory but may not contain
all the extracted records.

 Schema: The rmse_aip_store.schema file exists in the schema directory and contains
the definition of the data file in #2 above.

 Error file: The program’s error file, rmse_aip_store.20010309, may contain an error
message.

 Program status control: The program status control file,
rmse_aip_store.status.20010309, exists.

 Reject file: The reject file, rmse_aip_store.status.20010309, does not exist because this
module does not reject records.

RPAS/AIP Configuration

RETL Program Overview for the RMS-RPAS Interface 47

To re-run the module, perform the following actions:

Determine and fix the problem causing the error.

Remove the program’s status control file.

Change directories to $MMHOME/rfx/src. At a UNIX prompt, enter:
%rmse_aip_store.ksh.

Internationalization 49

7
Internationalization

Internationalization is the process of creating software that can be translated more easily.
Changes to the code are not specific to any particular market. RMS is internationalized to
support multiple languages.

This section describes configuration settings and features of the software that ensure that
the base application can handle multiple languages.

Translation
Translation is the process of interpreting and adapting text from one language into
another. Although the code itself is not translated, components of the application that are
translated may include the following:

 Graphical user interface (GUI)
 Error messages

 Reports

The following components are not translated:

 Documentation (online help, release notes, installation guide, user guide, operations
guide)

 Batch programs and messages
 Log files

 Configuration tools

 Demonstration data

 Training materials

The user interface for RMS is translated into:

 Chinese (simplified)
 Chinese (traditional)

 Croatian

 Dutch

 French

 German

 Greek
 Hungarian

 Italian

 Japanese

 Korean

 Polish

 Portuguese (Brazilian)
 Russian

 Spanish

 Swedish

 Turkish

RMS User Interface Language Display Settings

50 Oracle Retail Merchandising System

RMS User Interface Language Display Settings
You can select a preferred language through the RMS UI or the database on the
USER_ATTRIB table. The selected language is connected to your ID in RMS and the
translated strings are displayed in the selected language. RMS has a fail/safe mechanism
built into the code. If the preferred language is not found, then RMS rolls back to English
language display of the UI label.

Note: A retailer has the three options regarding
internationalization when installing the application. See the
RMS Installation Guide for the procedures related to each.

 English and multiple secondary languages.

 Translated language (fully translated non-English
installation). No secondary languages are installed when
your primary language is one other than English.

 Install a translated language as the primary language.
Obtain the whitepapers, which allows you to install
English as a secondary language.

Multiple Languages in one RMS Forms Session
RMS allows for multiple application servers to point to a single instance of forms and
database. This is specific to users who want to have a multi-lingual install of RMS and
have two URLs, each with a separate NLS_LANG session setting. This helps to facilitate
secondary user language sessions as some UI elements are displayed in the language of
the NLS_LANG session of the application server.
To set up multiple URLs:

Copy URL information in formsweb.cfg.

e. Change the URL (the part in square brackets) to something new.

f. Change the .env file reference to a new file (to be created in step 2).

Copy the current .env file to the new name created in step 1.

Modify the new .env file by setting NLS_LANG to the new value.

Key RMS Tables for User Interface Related Internationalization
Several tables handle displayable text that can also be translated.

If the retailer creates a new form, a new menu, or a new object on a form, then the retailer
has to populate these tables with the corresponding information. If the retailer
customizes the information in any of the tables FORM_ELEMENTS,
FORM_ELEMENTS_LANGS, MENU_ELEMENTS, or MENU_ELEMENTS_LANGS, the
base_ind field in customized records must contain ‘N’.

FORM_ELEMENTS
This table is used for screen display and holds the master list of items for all forms whose
labels/prompts are translated. This information will always be in English. The
BASE_IND=Y means that the item is part of the base Oracle Retail code set. BASE_IND
=N indicates that the item was added as part of retailer customization.

Key RMS Tables for User Interface Related Internationalization

Internationalization 51

FORM_ELEMENTS_LANGS
This table is used for screen display. This table holds translated values for
labels/prompts on forms. This information will be in a language that is defined on the
lang column of the user_attrib table. All users see data from this table, as the retailer may
customize the text of a given field. The access key for a button is defined by filling in the
LANG_ACCESS_KEY/LANG_LABEL_PROMPT field. At run time, that character will be
marked in the string, and function as the access key. Any time the retailer changes the
LANG_ACCESS_KEY/LANG_LABEL_PROMPT or
LANG_ACCESS_KEY/LANG_LABEL_PROMPT, the BASE_IND should be updated to
N because it is not part of the base language translations provided by Oracle Retail.

MENU_ELEMENTS
This table is used for screen display. This table holds the master list for all menus whose
items are translated. This information will always be in English. The access key for a
menu option is defined by using the ampersand (&) before the character that is the access
key in the default description. The BASE_IND=Y means that the item is part of the base
Oracle Retail code set. BASE_IND=N indicates that the item was added as part of retailer
customization.

MENU_ELEMENTS_LANGS
This table is used for screen display. This table holds the values for all menus whose
items are translated. This information will be in a language that is defined on the lang
table. Even English language users see data from this table, as the retailer may customize
the text of a given menu option. Any time the retailer changes the LANG_LABEL, the
BASE_IND should be updated to N because it is not part of the base language
translations provided by Oracle Retail.

FORM_MENU_LINK
This table is used for screen display. This table holds the intersection of form and menu
files, mapping each form to the menu that it displays.

CODE_DETAIL_TRANS
This table holds non-primary language descriptions of code types defined on the
CODE_DETAIL table. The retailer has a multi-language option. The column
CODE_DESC on the tables CODE_DETAIL and CODE_DETAIL_TRANS have been
increased to 250 bytes. (They were 40 in previous versions of RMS).

UOM_LANG
This table contains translations for the UOM_CLASS table. The column UOM_TRANS
holds translations of the abbreviations of the units of measure. UOM_DESC_TRANS
holds translated descriptions.

Key RMS Tables for User Interface Related Internationalization

52 Oracle Retail Merchandising System

New Data Translation Tables
In RMS, several tables have been redesigned to handle multilingual information. For
these tables, the translated text has been moved to a related table that has the same name
but with “_TL” added to it.
The original table contains all information that does not need translation. All of the
strings that could be translated are on the related *_TL table. The following is a list of
new tables:

 ADD_TYPE_TL

 COST_CHG_REASON_TL

 DEAL_COMP_TYPE_TL
 FREIGHT_SIZE_TL

 FREIGHT_TERMS_TL

 FREIGHT_TYPE_TL

 INV_ADJ_REASON_TL

 INV_STATUS_CODES_TL

 INV_STATUS_TYPES_TL
 NON_MERCH_CODE_HEAD_TL

 ORDER_TYPES_TL

 TERMS_HEAD_TL

Integrating RMS with Store Inventory Management 53

8
Integrating RMS with Store Inventory

Management
Oracle Retail Store Inventory Management (ORSIM or SIM) is a Java based application
with multitier architecture. SIM assists store operation, tracking item and item inventory
with all the integrated systems.

SIM helps store personnel in performing the following in-store operations:

 Receiving merchandise from the warehouse or directly from the vendor.

 Replenishing and order stock.
 Requesting and implementing price changes.

 Managing physical inventories and performing stock count.

 Lookup for the detailed information about merchandise items, suppliers, containers,
and customer orders.

 Transferring or returning stock.

SIM function includes administration, shipping, receiving, inventory management,
lookups and reporting.

The administration function is performed either by the SIM administrator or the
Manager. The function includes:

 Setup and technical maintenance of SIM.

 Security setup to define SIM users and their roles.

 Setup and maintenance of serial numbers that are Unique Identification Numbers
(UIN) based.

The usage of serial numbers for item is an optional feature.

The inventory management function helps to maintain an accurate perpetual store
Inventory for the Stock Counts, Sequencing, Pick Lists, Item Requests, Store Orders, Price
Changes, and Ticketing.

The inventory management system provides detailed information about inventory items,
suppliers, containers and customer orders which are created in RMS. You can check for
the related information in parallel. For example, when you are checking for an item, the
supplier information of the item can also be viewed.

Using inventory management, you can perform lookup along with the other SIM tasks.
For example, lookup for an item while preparing an item request or lookup for a supplier
information when preparing the store order.
SIM includes many standard reports, which can be customized as per your requirement.
SIM uses Oracle BI Publisher as an interface for the SIM reports. The SIM reports are
custom designed as per the organizational requirement. The BI Publisher interface is also
customized to organize and present the reports available to the SIM users.

All the location, item and supplier information are created in RMS whether it is ranged or
not ranged to a store, flows to SIM using the RIB Adapter.

Supplier

54 Oracle Retail Merchandising System

Supplier
Supplier is created in RMS. The details of the supplier are sent to SIM through RIB.

RIB Validation: After successful execution of the batches, check for the stores in the RIB.
 VENDOR_PUBLISHER in RIB-RMS

 VENDOR_SUBSCRIBER in RIB-SIM

When RIB message shows as succeeded, the vendor will be available in the SIM.

Merchandise Hierarchy
Merchandise hierarchy includes Department, Class, and Sub-Class which are created in
RMS. After they are created successfully in RMS, the details are sent to SIM through RIB.

RIB Validation: After successful execution of the batches, check for the stores in the RIB.

 MERCHHIER_PUBLISHER in RIB-RMS

 MERCHHIER_SUBSCRIBER in RIB-SIM

When RIB message shows as succeeded, the Department, Class and Subclass is available
in SIM.

Warehouse
When a warehouse is created in the RMS, the details of warehouse are sent to SIM
through RIB.

RIB Validation: After successful execution of the batches, check for the stores in the RIB.

 WH_PUBLISHER in RIB-RMS
 WH_SUBSCRIBER in RIB-SIM

When RIB message shows as succeeded, warehouse will be available in SIM.

SIM Store
The SIM Store function allows you to set operating parameters for stores managed with
SIM. The Store is created in RMS and flows to SIM application.
RIB Validation: After successful creation of the stores, check for the stores message in the
RIB.

 STORES_PUBLISHER in RIB-RMS

 STORE_SUBSCRIBER in RIB-SIM

When RIB message shows as succeeded, the store is available in SIM.

 Inventory Adjustment Reason
You can add, change, and delete reason codes used for inventory adjustments. In
addition to showing the reasons for inventory adjustments, the reason code specifies how
inventory adjustments affect stock on hand, unavailable inventory, or customer order
reserve inventory.

Note: The Reason Codes created in SIM must be mapped to
the RMS Inventory Adjustment Reason Codes.

Diff ID

Integrating RMS with Store Inventory Management 55

Adding Inventory Adjustment Reason in SIM
To add an Inventory Adjustment Reason in SIM:

Navigate and select Admin > Setup > Inv. Adj. Reason. >The Inventory Adjustment
Reason Maintenance window opens.
Click Add.

Enter ID: 123.

Description: Test Inventory Reason Code.

The UI must be check.

Select Stock on Hand from the Disposition dropdown list.

Click Done.
Validate the database in the INV_ADJUSTMENT_REASON table.

When the Inventory reason code is set up in SIM, it must be mapped to RMS.

Mapping Inventory Adjustment Reason in RMS
To map Inventory Adjustment Reasons in RMS:

Navigate and select Control > Setup > Inventory Adjustment Reason >Edit.

Click Add. The next available line is enabled.
Enter the details as entered in SIM, enter ID: 123.

Description: Test Inventory Reason Code.

Click OK to save your changes and close the window.

Database Validation

Functionality SIM Table RMS Table

Inventory Adjustment
Reason

INV_ADJUSTMENT_REAS
ON

INV_ADJ_REASON

Diff ID
To create a Diff ID in RMS, navigate and select Items > Diffs > Diff Group/Diff IDs.

RIB Validation: Validate the details in RIB.

 Diffs Publisher in RIB-RMS

 Diffs Subscriber in RIB-SIM

When the Diff ID is available in both publisher and subscriber, it will be available in SIM.

 Item With/Without UIN And Item Locations
You can create the item with diff or without diff in RMS. To create you must navigate
and select Item> Items. Select the items to be created in RMS. If you have associated the
stores to the item, then you can validate the item availability in SIM.

RIB Validation: Validate the details in RIB.

 Items Publisher (for item) and ItemLoc Publisher (For location) in RIB-RMS.
 Items Subscriber and ItemLoc Subscriber in RIB-SIM.

 When the item and location are available in publisher and subscriber, it will be
available in SIM.

Transactions

56 Oracle Retail Merchandising System

Database Validation

Functionality SIM Table RMS Table

Item ITEM ITEM_MASTER

Country of Manufacture SUPPLIER_ITEM_MANUF
ACTURE

ITEM_SUPP_MANU_C
OUNTRY

Item Supplier Relationship SUPPLIER_ITEM ITEM_SUPPLIER

Item Supplier Relationship SUPPLIER_ITEM_COUNTR
Y

ITEM_SUPP_COUNTRY

Item Location Relationship STORE_SEQUENCE_ITEM ITEM_LOC

SIM GUI Item Look up
To view SIM GUI item lookup:

Log in to SIM and select the associated store.

Navigate and select Lookups > Item Lookup.
Enter the item created in RMS and search.

You get the details with the diff (optional) available in the Merchandise Hierarchy block.

Transactions
There are different types of transactions created and maintained in SIM.

Purchase Order
Transfer

Return to Warehouse

Return to Vendor

Store Order

Inventory Adjustment

Stock Count
Price Change

Purchase Order
To create a purchase order in RMS for a store you must navigate and select
Ordering>Orders. When the order is created and submitted, approve the Purchase
Order (PO). The order details is be sent to SIM successfully.

RIB Validation: When the purchase order is create, make sure to verify the order number
for the following:

 ORDER_PUBLISHER in RIB-RMS

 ORDER_SUBSCRIBER in RIB-SIM

Transactions

Integrating RMS with Store Inventory Management 57

Receiving the Order in SIM
The Purchase Order is received with different combinations as given below:

Receive with Exact Quantity.

Under Receive Quantity.

Over Receive Quantity.
Receive with Damage Quantity.

PO On The FLY – In this scenario, the Purchase Order is created in SIM and not RMS.
This can be done based on the item and supplier’s detail, when we have the details in
SIM a PO is displayed.

Transfers
Transfer implies to movement of goods from one location to another. Accordingly to
SIM, transfer is either store to store transfer or warehouse to store transfer. Transfers can
be generated in SIM also.

Store To Store Transfer
The Store to Store transfer is created for the movement of goods from Store A to Store B.

RIB Validation:

 Verify the Stock-Order/Transfer in Transfer_Publisher in RIB-RMS.

 Verify the Stock-Order/Transfer in StockOrder_Subscriber in RIB-SIM.

Transfer Receiving
 To receive a transfer, select the receiving store in the SIM login form. For dispatching
transfer from store to store:

Log in to the correct FROM store.

Navigate and select > Shipping/Receiving > Transfers.

Double-click the record and update the quantity column with the unit which needs to be
transferred. The transfer functionality supports both overage and underage.

Click Dispatch and accept the warnings.
RIB Validation: When the dispatch is completed, a message is sent to RMS.

 ASNOUT_PUBLISHER in RIB SIM

 ASNOUT_SUBSCRIBER in RIB RMS

To receive the transfer from store to store:

Log in to the correct TO store.

Navigate and select Shipping/Receiving > Transfers.
Double-click the record and updates the quantity column with the unit which needs to be
transferred. The transfer functionality supports overage and underage.

Click Receive All and accept the warning.

RIB Validation: When the receiving is done, a message is sent to RMS. Verify the order
number in:

 Receiving_Publisher in RIB-SIM
 Receiving _Subscriber in RIB-RMS

Transactions

58 Oracle Retail Merchandising System

RMS Database Validation
 Stock on Hand gets updated in ITEM_LOC_SOH table in RMS. Received quantity is

deducted from FROM store and added in TO store.

 Tran code 37 and 38 is posted in TRAN_DATA table.

Warehouse To Store Transfer
In this case of transfer, the goods are moved from warehouse to another store. The user
must login to the receiving store to receive the transfer. Before receiving in SIM, the
transfer must to be shipped from the corresponding warehouse.
To receive the transfer from Warehouse to Store:

Log in to the correct TO store.

Navigate and select Shipping/Receiving > Warehouse Delivery.

Double-click the container ID which has received from Warehouse.

Edit quantities or record damages.

Click Receive. The status changes to Received.
Click Confirm and accept the warning message.

RIB Validation: When the transfer is received, a message is sent to RMS. Verify the
order number in:

 Receiving_Publisher in RIB-SIM

 Receiving _Subscriber in RIB-RMS

RMS Database Validation:

 Stock on Hand gets updated in ITEM_LOC_SOH table in RMS. Received quantity is
deducted from FROM Warehouse and added in TO store.

 Tran code 30 and 32 is posted in TRAN_DATA table.

SIM Database Validation:

 STORE_ITEM_STOCK is increased in SOH for the store.

Transfer On The Fly
 You can create the transfers from one store to another. No other transfers are possible.
Navigate and select Shipping/Receiving > Transfer > Create Transfer.

Select Transfer To store from the dropdown.

Enter the item and shipped quantity.

Click BOL and select the pickup date.

Click Dispatch and accept the warning message.

To receive the transfer on the FLY:
The user must log in to the correct TO store.

Navigate and select Shipping/Receiving > Transfers.

Double-click on the record and updates the quantity column with the units which needs
to be transferred. The transfer functionality supports overage and underage.

Click Receive All and accept the warning in the pop up.

Click Done to save changes and confirm the transfer.
RIB Validation: When receiving is done, message is sent to RMS. Verify the order
number in:

 Receiving_Publisher in RIB-SIM

 Receiving _Subscriber in RIB-RMS

Transactions

Integrating RMS with Store Inventory Management 59

RMS Database Validation
 Stock on Hand is updated in ITEM_LOC_SOH table in RMS. The received quantity is

deducted from FROM store and added in TO store.

 Tran code 30, 32 and 22 is posted in TRAN_DATA table.

Note:

 The Reason Codes created in SIM must be mapped to the RMS
Inventory Adjustment Reason Codes.

 If the external ID is a number and the user is external it implies
that the transfer is generated in RMS.

 If a transfer request is initiated in SIM this message is not
published in RMS or any other integrated application.

 A transfer handles damaged quantities which in turn are put in
the non-sellable bucket in RMS.

 Negative receiving though cannot be done nor can be
transferred.

 We can also receive multiple times against the same transfer for
the expected quantity. This action will be allowed as long as the
transfer is open and not restricted by expected quantity.

 While transferring we can also add items which were not part of
the original transfer but we cannot remove the original item
while we transfer as long as we have stock on hand.

 Non ranged items can also be part of the transfer. These are
items which are not ranged to that particular location but it is
ranged by raising the transfer.

Return to Warehouse
You can create, edit, and dispatch returns from the store to a company-owned
warehouse, or directly to a vendor. If there is unavailable stock for a returned item, you
have an option to use items from unavailable stock for the return. A completed
(dispatched) return decreases available Stock on Hand.

The store to warehouse transfer is created in RMS, which is displayed as a return to
warehouse in SIM. A similar transfer is created in SIM.

Note: Unless the return is dispatched from SIM, WMS
cannot see the transaction.

Transactions

60 Oracle Retail Merchandising System

Creating Return to Warehouse in SIM
To create a return to Warehouse in SIM:

Select the correct store from the dropdown in the Login page.

Navigate and select Shipping/Receiving > Returns.

Click Create.
In the Return Type field, select Warehouse from the dropdown.

Enter warehouse, inventory status, authorization number, item details, reason to return
and quantity.

Click Dispatch.

Click Done to save the changes.

RIB Validation: After dispatch is cleared, a message is sent to RMS.
 Verify the order number in:

 RTV_Publisher in RIB-SIM

 RTV _Subscriber in RIB-RMS

A transfer (RTW) is created in RMS with APPROVED status.

RMS/SIM Database Validation

 Stock on Hand gets updated in ITEM_LOC_SOH table in RMS. Inventory must be
reduced from SIM and RMS by correct quantity.

 Tran code 30 and 32 is posted in TRAN_DATA table.

Creating Return to Warehouse in RMS
When initiated by RMS, a warehouse to store transfer is created in RMS, and is returned
back to warehouse then it is called Return to Warehouse.
RMS functionality includes, create a transfer, return to warehouse in RMS and APPROVE
it.

RIB Validation: When the dispatch is completed, a message is sent to RMS.

 RTV_Publisher in RIB-RMS

 RTV _Subscriber in RIB-SIM

 Transfer_Publisher in RIB-RMS

Dispatching in SIM
To dispatch to SIM:

Select the correct store from the login form.
Navigate and select Shipping/Receiving > Returns.

Select the transfer you need to return. The user ID will be external along with the external
ID number which indicates that the transfer originated in ORMS.

Double-click on the Record.

Update the quantity column with the unit which needs to be returned.

Click Dispatch and accept the warning message.
RIB Validation: When the dispatch is completed, a message is sent to RMS.

 RTV_Publisher in RIB-SIM

 RTV _Subscriber in RIB-RMS

Transactions

Integrating RMS with Store Inventory Management 61

RMS/SIM Database Validation:

 Stock on Hand is updated in ITEM_LOC_SOH table in RMS. Inventory should be
reduced from SIM and RMS by correct quantity.

 Tran code 30 and 32 is posted in TRAN_DATA table.

Return to Vendor
Return to vendor can be created both in SIM and ORMS.

Initiating SIM in RTV
Following the the steps to initiate SIM in RTV:

Select the correct store from the dropdown in the login page.

Navigate and select Main menu > Shipping/Receiving > Returns.

Click Create.

In the Return Type field, select Supplier from the dropdown.

Enter supplier, authorization number, item details, reason to return and quantity.
Click Dispatch.

RIB Validation: When the dispatch is done, message is sent to RMS

 RTV_Publisher in RIB-SIM

 RTV _Subscriber in RIB-RMS

A transfer (RTV) is created in ORMS.

RMS/SIM Database Validation

 Stock on hand gets updated in ITEM_LOC_SOH table in RMS (Inventory should be
reduced from SIM and RMS by correct quantity).

 Tran code 24 is posted in TRAN_DATA table.

Initiating RMS in RTV
When a Return to vendor along with a mass return transfer is created in ORMS, and is
returned back to vendor then it is called Return to Vendor.

Steps for creating Returns in SIM:

Select the correct store from the login form.

Navigate and select Main menu > Shipping/Receiving > Returns.

Select the transfer you need to return. (The user ID will be external along with the
external ID number which indicates that the transfer originated in RMS).
Double-click on the record which needs to be returned.

Update the quantity column with the units which need to be returned.

Click Dispatch and accept the warning message.

RIB Validation: When dispatch is completed, message is sent to RMS

 RTV_PUBLISHER in RIB-SIM

 RTV _SUBSCRIBER in RIB-RMS
RMS/SIM Database Validation:

Stock on hand gets updated in ITEM_LOC_SOH table in RMS (Inventory should be
reduced from SIM and RMS by correct quantity). Tran code 24 is posted in TRAN_DATA
table.

Transactions

62 Oracle Retail Merchandising System

Store Orders
Store ordering allows to View, Create, Modify, and Approve orders to a supplier or
Transfer requests from a warehouse. Use store-level ordering to order items that are not
set up for automatic replenishment, when items run short, or demand increases.

Creating a Store Order
Create a store orders to replenish items for which you have the authority to place orders
from the store.
Log in to SIM with the correct store.

Navigate and select Inv Mgmt > Store Orders.

Click Create Order.

Specify a delivery date range.

Enter Item number, quantity, and UOM.

Click Done. Order is created in Pending Status.

Approving a Store Order
Log in to the SIM with the correct store.

Navigate and select Inv Mgmt > Store Orders.
Double-click on the store order to be approved.

Specify a delivery date range.

Click Approve. Order status is changed to Approved Status.

Database Validation

Functionality SIM Table RMS Table

Store Order PRINT_STORE_ORDER_ITE
M

STORE_ORDER

 PRINT_STORE_ORDER N/A

Inventory Adjustment
Inventory adjustments that you enter in SIM are supplied to the merchandising system to
adjust stock levels and maintain perpetual inventory. Inventory adjustments increment
or decrement inventory levels such as Stock on Hand and unavailable inventory.

Each inventory adjustment contains a reason code that determines the disposition of the
inventory being adjusted. For example, inventory removed for repair is added to the
unavailable inventory and the Stock on Hand is decreased. When the items are returned
to inventory, unavailable inventory is decreased and the Stock on Hand is increased.

Log in to SIM with the store where you need to do the inventory adjustment.

Navigate and select Inv Mgmt > Inventory Adjustment.

Click Create.
Enter the item number in the Item field.

Update the UOM, Quantity, and Reason.

Click Done.

Enter UINs for an Inventory Adjustment

If an item requires a serial number type UIN, the Quantity field is disabled on the
Inventory Adjustment Detail window.

Transactions

Integrating RMS with Store Inventory Management 63

Double-click the UIN Qty field.

Click Add.

Enter valid number in the in the Unique Identification Number (UIN) field.

Click Save to return to the Inventory Adjustment Detail window.
RIB Validation: When the Inventory adjustment is completed in SIM, a message is sent
to ORMS to update the inventory stock. Message flows through RIB:

 InvAdjust_Publisher in RIB-SIM

 InvAdjust_Subscriber in RIB-RMS

SIM TABLES Validation:

 INV_ADJUSTMENT: STORE_ID, ITEM_ID, QUANTITY
RMS DATABASE Validation

 INV_ADJ: ITEM, ADJ_QTY, LOCATION

 INV_STATUS_QTY : ITEM, QTY

Stock Count
Stock counts are the principal tools to ensure that the perpetual inventory for a store
remains accurate. For maximum flexibility in performing stock counts, SIM allows the
following types of stock counts:

 Unit - Unit stock counts are scheduled counts that update the RMS and SIM
inventory positions, but only for the physical count values. These counts are
performed on regular schedules.

 Unit and Amount - A Unit and Amount count is an annual count that can be used to
adjust the financial systems in a corporate merchandising system, in addition to
updating inventory positions in SIM.

 Problem Line - Problem Line stock counts are similar to Unit counts. Problem Line
product groups use.

Pre-defined criteria to the identify problem items. For example, you might use a
Problem Line count for all of the items that have negative Stock on Hand values.

 Ad hoc - An ad hoc stock count is an unscheduled stock count that is initiated on a
handheld device. An ad hoc count is similar to a Unit count, but the items are not
pre-assigned and there is no schedule.

Each stock count must be generated, except for ad hoc stock count type. To generate a
stock count, you must first create a product group and schedule. Product groups can
include a particular inventory item or entire segments of the inventory hierarchy,
including all items in a store.

Transactions

64 Oracle Retail Merchandising System

Stock Counting Process
The general process to conduct a stock count in SIM is as follows:

Create the stock count product group.

Schedule the stock count.

Perform a stock count using both or any of the hand held devices or a personal computer.
Recount discrepant items, depending on whether the product group requires a recount.

Review the count information and authorize the count quantities.

For Unit and Amount counts, export the stock count results to the merchandising system
to update Stock on Hand.

The following diagram illustrates the general process flow.

Inv
Management

menu
Stock count

Access a
single master
stock count

from the stock
count list
window

Child stock
count list
window

Stock count
details for child

count

Recount Detail
for child count

(if recount
required)

Stock count
authorization
window (all

child counts)

General Process Flow

Executing a Stock Count
The steps to execute a stock count from start to finish are as follows:

Take a Snapshot.

Enter Stock Count Results.

Enter Recount Results.
Complete a Child Stock Count.

Authorize a Stock Count.

RIB Validations: When the Stock Count is schedule, a message flows to ORMS using RIB
as interface:

 STKCOUNTSCH_PUBLISHER in RIB-SIM

 STKCOUNTSCH_SUBSCRIBER in RIB-RMS

Price Change
Using the Price Change function, you can request price changes for items at your store.
Price changes are set in the pricing system. The pricing system might be in Oracle Retail
Price Management (RPM) or another application.

You can request price changes only for items for which you can control prices. This is
controlled by an indicator at the store (location) level. Your price change requests are
submitted to the pricing system, where they may be approved or rejected. After a price
change is approved in the pricing system, a price change event is sent from the pricing
system to SIM.

A price change request that is approved in the pricing system creates a pricing event that
is sent back to SIM. For an approved price change, you can print labels and tickets for the
re-priced items.

Creating Price Change
You can request price changes for those items for which you are allowed to make pricing
changes at the store (location) level. For these items, you can request changes to retail,
promotion, or clearance pricing.
The request is sent to the pricing system, where it may be approved or rejected. Your
price change requests are checked for possible conflicts. You cannot request price

Transactions

Integrating RMS with Store Inventory Management 65

changes for items involved in complex promotions (such as buy one, get one free). You
cannot request multiple price changes on the same day. Your request may be rejected if it
conflicts with any other pricing events.

To create price change and promotions in SIM:
Navigate and select Inv Mgmt > Price Change.

Enter search criteria to limit the price change requests that you want displayed, and click
Search.

Click Create.

Enter Item, start date, price change description and new price.

For clearance or promotion, select end date.
Click Done and accept the warning message.

RIB Validations: When the price is completed, a message is sent to ORPM using RIB as
interface.

 PRCCHGREQ_PUBLISHER in RIB-SIM

SIM DATABASE VALIDATION

 ITEM_PRICE : ID_ITM, EFFECTIVE_DATE, UNIT_RETAIL, STATUS.

Integrating RMS with Oracle E-Business Suite Financials Using Oracle Retail Financial Integration 67

9
Integrating RMS with Oracle E-Business

Suite Financials Using Oracle Retail
Financial Integration

This chapter describes the integration between Oracle Retail systems and Oracle E-
Business Suite Financials (including Oracle General Ledger and Oracle Payables), as
developed and supported by Oracle Retail Financial Integration (ORFI).

When the option to integrate is chosen, the selected information is shared between the
systems. Integration and validation services are in place to ensure the shared data
matches.

Note: This chapter addresses the points within Oracle Retail
systems that are essential to integration. For more
information about the entire integration process, including
mapping to Oracle E-Business Suite data and settings, see
the ORFI documents, Oracle Retail Financial Integration for
Oracle Retail Merchandising Suite and Oracle E-Business Suite
Financials - Implementation Guide. For more information about
Web services, see the following chapters in the Oracle Retail
Merchandising System Operations Guide, Volume 2: "Service
Provider Implementations API Designs" and "Web Services”.

Participating Applications
The following Oracle Retail applications are included in the integration covered by this
chapter:

 Oracle Retail Merchandising System (RMS)

 Oracle Retail Sales Audit (ReSA)
 Oracle Retail Invoice Matching (ReIM)

 Oracle Retail Integration Bus (RIB)

Assumptions and Dependencies
 The option to integrate must be selected during initial set up of the RMS system.

 ReIM accesses RMS to determine if integration is active. The RMS set up must be
done before integrating with REIM.

 The URLs for the RFI Web services that are necessary for this integration are
maintained in the RETAIL_SERVICE_REPORT_URL table and in the ReIM
IM_SYSTEM_OPTIONS table.

 Real time account validation is done only when the financial integration with Oracle
E-Business Suite is ON.

Data Setup

68 Oracle Retail Merchandising System

 Partners must be set up as suppliers in Oracle E-Business Suite and manually set up
in RMS using the RMS Supplier ID. The RMS supplier ID generated when the Oracle
E-Business Suite supplier is interfaced with Oracle Retail. The RMS supplier
generated as part of this process is not used.

 Payment terms and freight terms are manually maintained.

Data Setup
Integration of Oracle Retail applications and Oracle E-Business Suite Financials relies on
synchronization of essential data, such as currency exchange rates and suppliers.
Through careful discussions, the users of both systems determine the common codes and
descriptions that will best serve their business needs.

When an agreement is reached, this information is set up and maintained. Depending on
the volume, some shared information is set up in Oracle Retail applications or in Oracle
E-Business Suite and electronically transferred to other systems. Otherwise, shared
information is set up manually within each system, and the users of both systems must
ensure that the code and the description match.

RMS Data Set up and Configuration
This section describes setup considerations for RMS data.

RMS System Options
As part of the RMS system options setup, set the following options as indicated:

The SYSTEM_OPTION indicates that the Oracle Retail system is integrated with a
financial system:

 FINANCIAL_AP=A

A value of A indicates that the financial system to which RMS is interfaced is Oracle E-
Business Suite through Oracle Retail Financial Integration (ORFI).
 GL_ROLL_UP can be D/S/C

 SUPPLIER_SITES_IND = Y

 ORG_UNIT_IND = Y

Organization Units
Use the Organizational Unit window (RMS Start Menu > Control > Setup > Org Unit
>Edit) to define organizational units in RMS that match those being setup in Oracle E-
Business Suite. When an organizational unit is entered in RMS, the valid organizational
units are those associated with the Set Of Books (SOB) used for the general ledger
interface.

Data Setup

Integrating RMS with Oracle E-Business Suite Financials Using Oracle Retail Financial Integration 69

Currency Exchange Rates
Currency exchange rate is used to translate the monetary value of one currency in terms
of another. Depending on business needs, a Currency Exchange Rate Type of Operational
or Consolidation is selected for use in all transactions.

This value is set up manually in RMS and mapped to Oracle E-Business Suite through the
Currency Exchange Type mapping window. Currency Exchange Rate data is owned by
Oracle General Ledger and updates are sent to Oracle Retail applications.

Determine the Exchange Type being sent by Oracle General Ledger (for example,
Consolidation or Operational) that you want RMS to use.

Update the FIF_CURRENCY_XREF for mapping the external exchange type being sent
by Oracle General Ledger with RMS Exchange Type. For example, for Consolidation and
Operational exchange types, the FIF_CURRENCY_XREF table holds the following
entries:

FIF_EXCHANGE_TYPE RMS_EXCHANGE_TYPE

C C

O O

Supplier Address Types
Within RMS, supplier information (such as Order From and Remit To addresses) is used
for generating the purchase orders. Oracle Payables uses supplier information for
payment generation. It is important that this information is synchronized.

Partner Org Unit

Data Setup

70 Oracle Retail Merchandising System

Suppliers are created in Oracle Payables and exported to RMS. When FINANCIAL_AP is
set to A, suppliers cannot be created using the RMS forms. However, if a supplier exists
in RMS, all data values for the supplier (except supplier name and status) are updated
using the RMS forms. The association of supplier sites to organization units is accessed
only in view mode through RMS forms. One supplier site per supplier and organization
unit combination can be marked as primary payment site.

Where SYSTEM_OPTIONS.FINANCIAL_AP is A, disable auto generate
supplier/partner numbers and associated check boxes.

Note: Supplier information is created, updated and
inactivated only in Oracle Payables. This information is
transferred from Oracle Payables to the participating Oracle
Retail applications, where additional retail-specific attributes
are maintained.

Country Codes
When country codes are defined and seeded in RMS, ensure that country codes are
mapped to Oracle E-Business Suite country codes through RFI DVM mapping. The
following is an example of RFI DVM Mapping (Table RFI_XREF_DVM, available in RFI
schema in Retail.

EXT_SYSTEM_ID COMMON_ID RETL_ID

USA 700 US

CAN 701 CA

Financial Calendar
The financial calendar within Oracle Retail systems is manually set up and maintained
separately from the Oracle General Ledger financial calendar.

Freight Terms
A freight term is an agreement between the retailer and a supplier regarding
transportation charges for goods delivered by the supplier. Freight terms are used by
RMS as purchase orders are generated.

Within the RMS system, freight terms are set up and maintained manually. They are also
maintained in Oracle Payables.

Payment Terms and Currency Exchange Rates
Currency, exchange rates are created and updated in Oracle General Ledger and
exported to RMS. Changes to Retail currency exchange rates are not propagated to Oracle
General Ledger. Payment terms, however, are manually set up and maintained in each
system.

Oracle E-Business Suite Financials Units and Site IDs
The data concepts of Org Units and Site IDs in RMS mirror the data maintained in Oracle
E-Business Suite. RMS forms are used to manage and view Oracle Org Units and Site IDs.
The RMS windows for Store and Warehouse maintenance allow for the association of
each store and warehouse with an Org Unit. The following is an example of the
Organizational Unit form:

Data Setup

Integrating RMS with Oracle E-Business Suite Financials Using Oracle Retail Financial Integration 71

Organizational Unit

Store and Warehouse Maintenance
The organizational unit is found in the Store Maintenance and Warehouse forms, which
allow the Oracle E-Business Suite operating unit to be associated with the Store or
Warehouse.
 When RMS is set up for multi-channel operation, the organizational unit is set up at

the virtual warehouse level.

Financial sales audit and inventory information is identified through interface routines
and posted to the appropriate general ledger accounts. An organizational unit must be
designated for each Store and Warehouse location in the RMS.

Data Setup

72 Oracle Retail Merchandising System

The following are examples of the Store Maintenance and Warehouse Maintenance
forms:

Store Maintenance Window

Virtual Warehouse Maintenance

RMS General Ledger Setup
For RMS and ReSA, manual setup is required for validating the chart of accounts. Valid
chart of accounts are created and stored in general ledger cross reference tables. Once the
validation is completed, transaction data is assigned to specific account codes.

Data Setup

Integrating RMS with Oracle E-Business Suite Financials Using Oracle Retail Financial Integration 73

Ongoing maintenance of the chart of accounts information (such as adding, changing, or
deleting chart of accounts) requires re-validation. In this regard, Oracle General Ledger is
the system of record, as it is used to verify the chart of accounts used by Oracle Retail
applications. When these applications send a chart of accounts for validation, Oracle
General Ledgers issues a message with:

 Valid or invalid status

 Response date

 Chart of accounts

The RMS table FIF_GL_SETUP, stores the Oracle E-Business Suite Set of Books IDs to
post financial information. This table must be setup manually after Set of Books IDs are
determined. Where a system indicator Multiple Set of Books ID is set to N,
FIF_GL_SETUP must hold a single Set of Books (SOB) record.

The Set of Books IDs is associated with the chart of accounts when setting up general
ledger cross-reference.

RMS General Ledger Cross Reference
Select RMS Start Menu > Finance> GL Cross Reference. The General Ledger Search
window opens. Map Chart of Accounts to department, Class, Subclass, Set Of Books,
location, and transaction codes using the GL cross reference form in RMS.

GL Cross Reference

Data Setup

74 Oracle Retail Merchandising System

ReSA General Ledger Cross Reference
Select ReSA task list>Foundation Data>Data Loading>Manage Data. The manage data
screen opens. Through this screen, the user can choose the General Ledger template to
maintain the data using spreadsheet download and upload.

When SYSTEM_OPTIONS.FINANCIAL_AP is A, the upload validates entries of valid
segment combinations.

Manage Data

ReIM Data Setup and Configuration
This section describes setup considerations for ReIM data.

System Options
As part of the RMS system options setup script, set the following options as indicated:

 FINANCIAL_AP =A

Data Setup

Integrating RMS with Oracle E-Business Suite Financials Using Oracle Retail Financial Integration 75

Chart of Accounts Setup
The chart of accounts is set up manually in Oracle Retail applications and in Oracle
General Ledger. All account combinations are set up in each Set Of Books. Account
validation is done while executing Financial Posting batch.

Segment Mapping
The retailer determines how many segments are populated. Up to 20 account segments
can be specified. The following is an example of how segments are mapped between the
ReIM transaction table and Oracle General Ledger:

ReIM Segments Oracle General Ledger Chart of
Accounts

Segment 1 PRODUCT

Segment 2 ACCOUNT

Segment 3 ALTACCT

Segment 4 OPERATING_UNIT

Segment 5 FUND_CODE

Segment 6 DEPTID

Segment 7 PROGRAM_CODE

Segment 8 CLASS_FLD

Segment 9 BUDGET_REF

Segment 10 BUSINESS_UNIT_PC

Segment 11 PROJECT_ID

Segment 12 ACTIVITY_ID

Segment 13 RESOURCE_TYPE

Segment 14 RESOURCE_CATEGORY

Segment 15 RESOURCE_SUB_CAT

Segment 16 CHARTFIELD1

Segment 17 CHARTFIELD2

Segment 18 CHARTFIELD3

Segment 19 AFFILIATE

Segment 20 AFFILIATE_INTRA1

If any one of the values in the 20 segments does not match the Oracle General Ledger, the
account combination is considered as invalid. The following error message is added to
IM_POSTING_DOC_ERRORS table “One or more accounts subjected to posting is
invalid”.

Segments 1 and 2 may be set up as dynamic at the Location level, or Segments 4 and 5
can be dynamic at the Department and Class level respectively. Segments defined as
dynamic are allowed to be null for certain types of Basic Transaction or Reason Code
cross-reference types. When a segment is null, the segment is assigned dynamically when
transactions are posted. (Non-dynamic segments cannot be blank). Validation applies to
the segment combination, not to individual segments.

Data Setup

76 Oracle Retail Merchandising System

Note: For Tran code TAP, each segment must have a value
regardless of whether the segment is dynamic.

Data Setup

Integrating RMS with Oracle E-Business Suite Financials Using Oracle Retail Financial Integration 77

Running the Initial Load from Oracle E-Business Suite Financials
The initial load for ReIM is run by Oracle E-Business Suite and includes the following
information:

 Suppliers

 Currency Rates

Note: The view, mv_currency_conversion_rates should be
refreshed once the initial loads of currencies from Oracle
General Ledger are loaded to ReIM.

IM_SYSTEM_OPTIONS table setup
To accommodate integration, the IM_SYSTEM_OPTOINS table should be configured
with the following properties.
WS_FIN_ACC_VALID_URL - This attribute holds the URL for the financial account
validation web service.

WS_FIN_ACC_VALID_CRED - This attribute indicates if the account validation web service
call is authenticated or not. Y means Authentication enabled. N means Authentication is
not enabled (See configuring web service credentials in weblogic server).

WS_FIN_DRILL_FWD_URL - This attribute holds the URL for the financial drill forward
web service.

WS_FIN_DRILL_FWD_CRED - This attribute indicates if the drill forward web service call
is authenticated or not. Y means Authentication enabled. N means Authentication is not
enabled (See configuring web service credentials in weblogic server).

The above attributes are configured in the System Options screen.

Configuring WebService Credentials in Weblogic Server Enterprise Manager:

The credentials for the web service call are configured in the default domain credential
store of the weblogic server through the admin console.

Data Setup

78 Oracle Retail Merchandising System

Create A Map:

Creating Credentials:

Note: Select the map as ReIM. The Key name should always
be WS-ALIAS. Any user name / password can be assigned
to the key

ReIM Transactional Maintenance

Integrating RMS with Oracle E-Business Suite Financials Using Oracle Retail Financial Integration 79

Reports are created by Business Intelligence Publisher for the following:
The URL for each report must be updated in the table,
RETAIL_SERVICE_REPORT_URL. The following table provides sample URLs.

ReIM Transactional Maintenance
Integration to Oracle General Ledger includes a number of transactions, as described
below.

Calculation of TRANS_AMOUNT
The TRANS_AMOUNT field in the IM_FINANCIAL_STAGE table stores the value of the
journal entry to be posted to Oracle General Ledger. (The currency for the calculated
amount is the currency assigned to the transaction). The TRANS_AMOUNT value is
calculated as follows:

Row Description DEBIT_CREDIT_IND TRANS_AMOUNT Value

Normal Debit Transaction Amount

Normal Credit (-1) * Transaction Amount

VAT Debit Transaction Amount * VAT Rate

VAT Credit (-1) * Transaction Amount * VAT Rate

Note: Transaction Amount is taken from the database
column, IM_FINANCIALS_STAGE.AMOUNT.

Generation of Outgoing Data
A staging table accommodates the outgoing transfer of data. The reference key assigned
to each document or receipt is used to find data on this table.

From To Transactions

ReIM Oracle Payables Invoices

Debit Memos

Credit Memos

Credit Notes

ReIM Transactional Maintenance

80 Oracle Retail Merchandising System

From To Transactions

ReIM Oracle General Ledger General Ledger accounting entries resulting from the
Invoice Matching process, including:

Pre-paid invoices

Receipt Write-offs

RMS Oracle General Ledger Accounting entry data (potentially very high
volume)

ReSA Oracle General Ledger Accounting entry data (potentially very high
volume)

Validation of Accounts When Posting Financial Entries
Valid chart of accounts are stored in the ReIM table, IM_VALID_ACCOUNTS, which
includes the Set of Books ID (sob_id) and 20 segments. An ORFI Web service validates
accounts against the Oracle General Ledger. Valid accounts are posted to
IM_VALID_ACCOUNTS; invalid accounts are posted to IM_POSTING_DOC_ERROR.
The following steps describe the validation process:

1. The ReIM system invokes the validation Web service to validate the chart of
accounts. (A URL for the ORFI Web service is configured in the SYSTEM_OPTIONS
table.
The posting batch job checks the accounts to be posted against the
IM_VALID_ACCOUNTS table.

If the chart of accounts is in the table, the transaction is posted to staging tables.

If the chart of account does not exist in the table, a collection of accounts is built.
These collected accounts are validated against the Oracle General Ledger, and a
status is returned.
 If the status of the collected accounts is valid, the accounts are inserted in the

IM_VALID_ACCOUNTS table, and the transactions are posted to the staging
tables.

 If the status of the accounts is NOT valid, the entire collection is flagged as
errors, and transactions are posted to IM_POSTING_DOC_ERROR.

Note: ReIM completes the first level of account validation
and posts the transaction to staging tables. It is assumed the
second level of account validation is done at the end of the
extraction process (where transactions are moved from ReIM
staging tables to Oracle General Ledger). If account
validation fails at this point, Oracle General Ledger must
change the account information before transactions are
loaded to Oracle General Ledger, and the chart of accounts
must be re-validated in ReIM.

Validation of Accounts When Prepaying a Merchandise Invoice
A Merchandise document with a ready for match status can be pre paid before matching.
The Document Search screen provides this option.

ReIM Transactional Maintenance

Integrating RMS with Oracle E-Business Suite Financials Using Oracle Retail Financial Integration 81

Valid chart of accounts are stored in the ReIM table, IM_VALID_ACCOUNTS, which
includes the Set of Books ID (sob_id) and 20 segments. An ORFI Web service validates
accounts against the Oracle General Ledger. Valid accounts are posted to
IM_VALID_ACCOUNTS; invalid accounts are posted to IM_POSTING_DOC_ERROR.
The following steps describe the validation process:

1. The ReIM system invokes the validation Web service to validate the chart of
accounts. (A URL for the ORFI Web service is configured in the SYSTEM_OPTIONS
table.

2. The Prepay operation checks the accounts to be posted against the
IM_VALID_ACCOUNTS table.
If the chart of accounts is in the table, the transaction is posted to staging tables.

If the chart of account does not exist in the table, a collection of accounts is built. These
collected accounts are validated against the Oracle General Ledger, and a status is
returned.

 If the status of the collected accounts is valid, the accounts are inserted in the
IM_VALID_ACCOUNTS table, and the transactions are posted to the staging
tables.

 If the status of the accounts is NOT valid, the entire collection is flagged as
errors, and transactions are posted to IM_POSTING_DOC_ERROR and the user
will be shown an error message “One or more accounts subjected to posting is
invalid”.

Maintenance of Valid Accounts
As account information is changed in the Oracle General Ledger, Retail must re-validate
the locally stored chart of accounts. Oracle General Ledger will not propagate chart of
account changes to Retail. The AccountWorkspacePurge Batch can clear all valid
accounts in the IM_VALID_ACCOUNTS table or only those that are considered updates
in Oracle E-Business Suite.

Usage
AccountWorkspacePurge userid/password PURGE [ALL | <Accounts>]

Where:

 The argument is a combination of user ID and password.

 The argument is the word PURGE.

 The argument is either ALL or specific accounts to be deleted from the local
table.

ReIM Transactional Maintenance

82 Oracle Retail Merchandising System

Integrating RMS with PeopleSoft Financials Using Oracle Retail Financial Integration 83

10
Integrating RMS with PeopleSoft Financials

Using Oracle Retail Financial Integration
This chapter describes the integration between Oracle Retail systems and PeopleSoft
Financials (including PeopleSoft General Ledger and PeopleSoft Payables), as developed
and supported by Oracle Retail Financial Integration (ORFI).

When the option to integrate is chosen, the selected information is shared between the
systems. Integration and validation services are in place to ensure the shared data
matches.

Note: This chapter addresses the points within Oracle Retail
systems that are essential to integration. For more
information about the entire integration process, including
mapping to data and settings, see the ORFI document, Oracle
Retail Financial Integration for Oracle Retail Merchandise
Operations Management and Oracle Financials Implementation
Guide. For more information about Web services, see the
following chapters in the Oracle Retail Merchandising System
Operations Guide, Volume 2: "Service Provider
Implementations API Designs" and "Web Services”.

Participating Applications
The following Oracle Retail applications are included in the integration covered by this
chapter:

 Oracle Retail Merchandising System (RMS)
 Oracle Retail Sales Audit (ReSA)

 Oracle Retail Invoice Matching (ReIM)

 Oracle Retail Integration Bus (RIB)

Assumptions and Dependencies
 The option to integrate must be selected during initial set up of the RMS system.
 ReIM accesses RMS to determine if integration is active. The RMS set up must be

done before integrating with REIM.

 The URLs for the RFI Web services that are necessary for this integration are
maintained in the RETAIL_SERVICE_REPORT_URL table and in the ReIM
SYSTEM_OPTIONS table.

 Real time account validation is done only when the financial integration with Oracle
E-Business Suite is ON.

Data Constraints

84 Oracle Retail Merchandising System

 Partners must be set up as suppliers in Oracle E-Business Suite and manually set up
in RMS using the RMS Supplier ID. The RMS supplier ID generated when the Oracle
E-Business Suite supplier is interfaced with Oracle Retail. The RMS supplier
generated as part of this process is not used.

 Payment terms and freight terms are manually maintained.

Data Constraints
The Location ID field is restricted to eight characters, to accommodate PeopleSoft
Operating Unit, which has a maximum of eight characters.

The Ext_Doc_ID field is restricted to 30 characters, because the corresponding PeopleSoft
field has only 30 characters. Characters beyond 30 are truncated.

RMS allows for four decimals, and PeopleSoft allows only three. Truncation may occur
when data is passed to PeopleSoft Enterprise Financials.

ReIM values in the IM_CURRENCY_LOCALE are restricted to three decimals, because
the corresponding PeopleSoft Enterprise Financials field can accept no more than three
decimal positions.

Data Setup
Integration of Oracle Retail applications and PeopleSoft Financials relies on
synchronization of essential data, such as currency exchange rates, suppliers, and
payment terns. Through careful discussions, the users of both systems determine the
common codes and descriptions that will best serve their business needs.
Once agreement is reached, this information is set up and maintained. Depending on the
volume, some shared information is set up in Oracle Retail applications or in PeopleSoft
and electronically transferred to the other systems. Otherwise, shared information is set
up manually within each system, and the user of both systems must ensure that the code
and the description match.

RMS Data Setup and Configuration
This section describes setup considerations for the RMS data.

This SYSTEM_OPTION indicates that the Oracle Retail system is integrated with a
financial system:

 FINANCIAL_AP=A

A value of A indicates that the financial system to which RMS is interfaced is PeopleSoft
through Oracle Retail Financial Integration (ORFI).
 GL_ROLL_UP can be D/S/C

 SUPPLIER_SITE_IND = Y

 ORG_UNIT_IND = Y

Organization Units
Use the Organizational Unit window (RMS Start Menu > Control > Setup > Org Unit
>Edit) to define organizational units in RMS that match those being setup in PeopleSoft.
When an organizational unit is entered in RMS, the valid organizational units are those
associated with the Set Of Books (SOB) that is being used for the general ledger interface.

Data Setup

Integrating RMS with PeopleSoft Financials Using Oracle Retail Financial Integration 85

Currency Exchange Rates
Currency exchange rate is used to translate the monetary value of one currency in terms
of another. Depending on business needs, a Currency Exchange Rate Type of Operational
or Consolidation is selected for use in all transactions.

This value is set up manually in RMS and mapped to PeopleSoft through the Currency
Exchange Type mapping window. Currency Exchange Rate data is owned by PeopleSoft
General Ledger and updates are sent to Oracle Retail applications.

Determine the Exchange Type being sent by PeopleSoft General Ledger (for example,
Consolidation or Operational) that you want RMS to use. Update the
FIF_CURRENCY_XREF for mapping the external exchange type being sent by PeopleSoft
General Ledger with RMS Exchange Type.
For example, for Consolidation and Operational exchange types, the
FIF_CURRENCY_XREF table holds the following entries:

FIF_EXCHANGE_TYPE RMS_EXCHANGE_TYP
E

C C

O O

Supplier Address Types
Within RMS, supplier information (such as Order From and Remit To addresses) is used
for generating the purchase orders. PeopleSoft Payables uses supplier information for
payment generation. It is important that this information is synchronized.

Partner Org Unit window

Data Setup

86 Oracle Retail Merchandising System

Suppliers are created in PeopleSoft Payables and exported to RMS. When
FINANCIAL_AP is set to A, suppliers cannot be created using the RMS forms. However,
after the supplier exists in RMS, all data values for the supplier (except supplier name
and status) continue to be updated using the RMS forms. The association of supplier sites
to organization units is accessed only in view mode through RMS forms. One supplier
site per supplier organization unit combination can be marked as primary payment site.

Where SYSTEM_OPTIONS.FINANCIAL_AP is A, disable auto generate
supplier/partner numbers and associated check boxes.

Note: Supplier information is created, updated and
inactivated only in PeopleSoft Payables. This information is
transferred from PeopleSoft Payables to the participating
Oracle Retail applications, where additional retail-specific
attributes may be maintained.

Country Codes
When country codes are defined and seeded in RMS, ensure that country codes are
mapped to PeopleSoft country codes through RFI DVM mapping. The following is an
example of RFI DVM Mapping (Table RFI_XREF_DVM, available in RFI schema in
Retail.

EXT_SYSTEM_ID COMMON_ID RETL_ID

USA 700 US

CAN 701 CA

Financial Calendar
The financial calendar within Oracle Retail systems is manually set up and maintained
separately from the PeopleSoft General Ledger financial calendar.

Freight Terms
A freight term is an agreement between the retailer and a supplier regarding
transportation charges for goods delivered by the supplier. Freight terms are used by
RMS as purchase orders are generated.

Within the RMS system, freight terms are set up and maintained manually. They also are
maintained in PeopleSoft Payables.

Payment Terms and Currency Exchange Rates
Currency exchange rates are created and updated in PeopleSoft General Ledger and
exported to RMS. Changes to Retail currency exchange rates are not propagated to
PeopleSoft General Ledger. Payment terms set up in PeopleSoft are propagated to RMS
but changes to payment terms in RMS are not propagated back to PeopleSoft.

Data Setup

Integrating RMS with PeopleSoft Financials Using Oracle Retail Financial Integration 87

PeopleSoft Financials Units and Site IDs
The data concepts of Org Units and Site IDs in RMS mirror the data maintained in
PeopleSoft. RMS forms are used to manage and view Oracle Org Units and Site IDs. The
RMS windows for Store and Warehouse maintenance allows for the association of each
store and warehouse with an Org Unit. The following is an example of the
Organizational Unit form:

Organizational Unit

Store and Warehouse Maintenance
The organizational unit is found in the Store Maintenance and Warehouse forms, which
allow the PeopleSoft operating unit to be associated with the Store or Warehouse. When
RMS is set up for single-channel operation, the organizational unit is set at the physical
warehouse level. When RMS is set up for multi-channel operation, the organizational
unit is set up at the virtual warehouse level. Financial sales audit and inventory
information can then be identified through interface routines and posted to the
appropriate general ledger accounts. An organizational unit must be designated for each
Store and Warehouse location in the RMS.

Data Setup

88 Oracle Retail Merchandising System

The following are examples of the Store Maintenance and Warehouse Maintenance
forms:

Store Maintenance Window

Virtual Warehouse Window

RMS General Ledger Setup
For RMS and ReSA, manual setup is required for validating the chart of accounts. Valid
chart of accounts are created and stored in general ledger cross reference tables. Once the
validation is completed, transaction data can be assigned to specific account codes.

Data Setup

Integrating RMS with PeopleSoft Financials Using Oracle Retail Financial Integration 89

Ongoing maintenance of the chart of accounts information (such as adding, changing, or
deleting chart of accounts) requires re-validation. In this regard, PeopleSoft General
Ledger is the system of record, as it is used to verify the chart of accounts used by Oracle
Retail applications. When these applications send a chart of accounts for validation,
PeopleSoft General Ledgers issues a message with:

 Valid or invalid status

 Response date

 Chart of accounts

The RMS table, FIF_GL_SETUP, stores the PeopleSoft Set of Books IDs to post financial
information. This table must be setup manually after Set of Books IDs are determined.
Where system indicator Multiple Set of Books ID is set to N, FIF_GL_SETUP must hold a
single Set of Books (SOB) record.

The Set of Books IDs is associated with the chart of accounts when setting up general
ledger cross reference.

RMS General Ledger Cross Reference
Navigate: RMS Start Menu > Finance> GL Cross Reference. The General Ledger
Search window opens. Map Chart of Accounts to department, Class, Subclass, Set Of
Books, location, and transaction codes using the GL cross reference form in RMS.

GL Cross Reference

Data Setup

90 Oracle Retail Merchandising System

ReSA General Ledger Cross Reference
Select ReSA task list>Foundation Data>Data Loading>Manage Data. The manage data
screen opens. Through this screen, the user can choose the General Ledger template to
maintain the data using spreadsheet download and upload.

When SYSTEM_OPTIONS.FINANCIAL_AP is A, the upload validates entries of valid
segment combinations.

Manage Data

Configuring Drill Back and Forward Web Services
Retail web services table, RETAIL_SERVICE_REPORT_URL, must be updated with
appropriate URLs to integrate with PeopleSoft Enterprise Financials.

The records in the table for Services (indicated by RS_TYPE=S) for Account Validation
(RAV) and Drill Forward (RDF), must be updated with the URL information from AIA
where the services are hosted.

Note: If Web services are secure, then the SYS_ACCOUNT
column must be populated with authentication information
in the form of user name/password.

The records in the table for Reports (indicated by RS_TYPE=R) for both RMS and ReIM
reports, must be updated with the URL information from the BIP Server where the
reports are hosted.

Data Setup

Integrating RMS with PeopleSoft Financials Using Oracle Retail Financial Integration 91

ReIM Data Setup and Configuration
This section describes setup considerations for ReIM data.

System Options
As part of the RMS system options setup script, set the following options as indicated:

 FINANCIAL_AP =A

CURRENCY_PRECISION
Because PeopleSoft Enterprise Financials uses only three decimals, the transactions
generated by the Oracle Retail ReIM application must not include more than three
decimals.

Make sure that the RMS table CURRENCIES has maximum of 3 decimal places for the
currency_cost_dec attribute for difference currency codes. The currency_rates table in
RMS should be loaded initially by PeopleSoft Enterprise Financials.

System Options window

Data Setup

92 Oracle Retail Merchandising System

Chart of Accounts Setup
The chart of accounts is set up manually in Oracle Retail applications and in PeopleSoft
General Ledger. All account combinations are set up in each Set Of Books. Account
validation is done while executing Financial Posting batch.

Segment Mapping
The retailer determines how many segments are populated. Up to 20 account segments
can be specified. The following is an example of how segments are mapped between the
ReIM transaction table and PeopleSoft General Ledger:

ReIM Segments PeopleSoft General Ledger Chart of
Accounts

Segment 1 ACCOUNT

Segment 2 ALTACCT

Segment 3 DEPTID

Segment 4 OPERATING_UNIT

Segment 5 PRODUCT

Segment 6 FUND_CODE

Segment 7 CLASS_FLD

Segment 8 PROGRAM_CODE

Segment 9 BUDGET_REF

Segment 10 AFFILIATE

Segment 11 AFFILIATE_INTRA1

Segment 12 AFFILIATE_INTRA2

Segment 13 CHARTFIELD1

Segment 14 CHARTFIELD2

Segment 15 CHARTFIELD3

Segment 16 RESOURCE_TYPE

Segment 17 RESOURCE_CATEGORY

Segment 18 RESOURCE_SUB_CAT

Segment 19 BUSINESS_UNIT_PC

Segment 20 PROJECT_ID

If any one of the values in the 20 segments does not match the PeopleSoft General
Ledger, the account combination is considered as invalid. The following error message is
added to IM_POSTING_DOC_ERRORS table: “One or more accounts subjected to
posting is invalid“
Segments 1 and 2 may be set up as dynamic at the Location level, or Segments 4 and 5
can be dynamic at the Department and Class level respectively. Segments defined as
dynamic are allowed to be null for certain types of Basic Transaction or Reason Code
cross-reference types. When a segment is null, the segment is assigned dynamically when

Data Setup

Integrating RMS with PeopleSoft Financials Using Oracle Retail Financial Integration 93

transactions are posted. (Non-dynamic segments cannot be blank). Validation applies to
the segment combination, not to individual segments.

Note: For Tran code TAP, each segment must have a value
regardless of whether the segment is dynamic.

Running the Initial Load from PeopleSoft Financials
The initial load for ReIM is run by PeopleSoft and includes the following information:

 Suppliers
 Currency Rates

 Payment Terms

Note: The view, mv_currency_conversion_rates should be
refreshed once the initial loads of currencies from PeopleSoft
General Ledger are loaded to ReIM

IM_SYSTEM_OPTIONS table Setup
To accommodate integration, IM_SYSTEM_OPTOINS table should be configured to with
the following properties.

Note: Drill forward functionality is applicable for PeopleSoft
– RMS and ReIM integration. Drill backward functionality is
only applicable for PeopleSoft – RMS integration.

Drill forward and drill backward functionality is applicable
for Peoplesoft - RMS integration only.

WS_FIN_ACC_VALID_URL - This attribute holds the URL for the financial account
validation web service.

WS_FIN_ACC_VALID_CRED - This attribute indicates if the account validation web
service call is authenticated or not. Y means Authentication enabled. N means
Authentication is not enabled (See configuring web service credentials in weblogic
server).

WS_FIN_DRILL_FWD_URL - This attribute holds the URL for the financial drill forward
web service.

WS_FIN_DRILL_FWD_CRED - This attribute indicates if the drill forward web service call
is authenticated or not. Y means Authentication enabled. N means Authentication is not
enabled (See configuring web service credentials in weblogic server).

The above attributes are configured in the System Options screen.

Reports are created by Business Intelligence Publisher for the following:
The URL for each report must be updated in the table, retail_service_report_url. The
following table provides sample URLs.

Reporting
Reports are created by Business Intelligence Publisher for the following:

 Merchandise Invoice

 Non-Merchandise Invoice

Data Setup

94 Oracle Retail Merchandising System

 Credit Note

 Credit Memo

 Debit Memo

 Receipt Write-Off
The URL for each report must be updated in the table, retail_service_report_url. The
following table provides sample URLs:

Document Type Report Name Sample Report URL

MRCHI Merchandise invoice
document Report

http://hostname:portno/x
mlpserver_nonsso/

Guest/REIM13/Finance/inv
report/invreport.xdo

NMRCHI Non-Merchandise invoice
document Report

http://hostname:portno
/xmlpserver_nonsso/

Guest/REIM13/Finance/inv
report/invreport.xdo

CRDNT Credit Note document
Report

http://hostname:portno/x
mlpserver_nonsso/

Guest/REIM13/Finance/inv
report/crnreport.xdo

CRDMEC Credit Memo cost
document Report

http://hostname:portno/x
mlpserver_nonsso/

Guest/REIM13/Finance/inv
report/memoreport.xdo

CRDMEQ Credit Memo quantity
document Report

http://hostname:portno/x
mlpserver_nonsso/

Guest/REIM13/Finance/inv
report/memoreport.xdo

DEBMEC Debit Memo cost
document Report

http://hostname:portno/x
mlpserver_nonsso/

Guest/REIM13/Finance/inv
report/imemoreport.xdo

DEBMEQ Debit Memo quantity
document Report

http://hostname:portno/x
mlpserver_nonsso/

Guest/REIM13/Finance/inv
report/memoreport.xdo

DEBMEV Debit Memo Tax document
Report

http://hostname:portno/x
mlpserver_nonsso/

Guest/REIM13/Finance/inv
report/memoreport.xdo

ReIM Transactional Maintenance

Integrating RMS with PeopleSoft Financials Using Oracle Retail Financial Integration 95

Document Type Report Name Sample Report URL

RWO Receipt Write Off
document Report

http://hostname:portno/x
mlpserver_nonsso/

Guest/REIM13/Finance/inv
report/rworeport.xdo

ReIM Transactional Maintenance
Integration to PeopleSoft General Ledger includes a number of transactions, as described
below.

Calculation of TRANS_AMOUNT
The TRANS_AMOUNT field in the im_financial_stage table stores the value of the
journal entry to be posted to PeopleSoft General Ledger. (The currency for the calculated
amount is the currency assigned to the transaction). The TRANS_AMOUNT value is
calculated as follows:

Row Description DEBIT_CREDIT_IN
D

TRANS_AMOUNT Value

Normal Debit Transaction Amount

Normal Credit (-1) * Transaction Amount

VAT Debit Transaction Amount * Tax Rate

VAT Credit (-1) * Transaction Amount * Tax Rate

Note:Transaction Amount is taken from the database
column, IM_FINANCIALS_STAGE.AMOUNT.

Generation of Outgoing Data
A staging table accommodates the outgoing transfer of data. The reference key assigned
to each document or receipt is used to find data on this table.

Outgoing Data

From To Transactions

ReIM PeopleSoft Accounts
Payable

Invoices

Debit Memos

Credit Memos

Credit Notes

ReIM PeopleSoft General Ledger General Ledger accounting
entries resulting from the
Invoice Matching process,
including:

Pre-paid invoices

Receipt Write-offs

ReIM Transactional Maintenance

96 Oracle Retail Merchandising System

RMS PeopleSoft General Ledger Accounting entry data
(potentially very high
volume)

ReSA PeopleSoft General Ledger Accounting entry data
(potentially very high
volume)

Validation of Accounts When Posting Financial Entries
Valid accounts are stored in the ReIM table, IM_VALID_ACCOUNTS, which includes
the Set of Books ID (sob_id) and 20 segments. An ORFI Web service validates accounts
against the PeopleSoft Enterprise Financials system. Valid accounts are posted to
IM_VALID_ACCOUNTS; invalid accounts are posted to IM_POSTING_DOC_ERROR.
The following steps describe the validation process:

1. The ReIM system invokes the account validation Web service to validate the
account. (A URL for the ORFI Web service is configured in the ReIM
SYSTEM_OPTIONS table.

2. The posting batch job checks the accounts to be posted against the
IM_VALID_ACCOUNTS table.

3. If the account entries are in the table, the transaction is posted to the G/L or AP
tables.

4. If the account does not exist in the table, a collection of accounts is built. These
collected accounts are validated against the PeopleSoft Enterprise Financials
system, and a status is returned.

 If the status of the collected accounts is valid, the accounts are inserted in the
IM_VALID_ACCOUNTS table, and the transactions are posted to the staging
tables.

ReIM Transactional Maintenance

Integrating RMS with PeopleSoft Financials Using Oracle Retail Financial Integration 97

 If the status of the accounts is NOT valid, the entire collection is flagged as
errors, and transactions are posted to IM_POSTING_DOC_ERROR.

Note: ReIM completes the first level of account validation
and posts the transaction to staging tables. It is assumed the
second level of account validation is done at the end of the
extraction process (where transactions are moved from ReIM
staging tables to PeopleSoft). If account validation fails at
this point, Oracle Data Integrator (ODI) or PeopleSoft must
change the account information before transactions are
loaded to PeopleSoft, and the account change must be
communicated to ReIM.

Maintenance of Valid Accounts
As account information is changed in the PeopleSoft system, the same changes are
communicated to, and manually completed in, the ReIM system. After ReIM is updated
accordingly, the AccountWorkspacePurge Batch is run to clear the valid accounts
maintained locally in ReIM.
The AccountWorkspacePurge Batch can clear all valid accounts in the
IM_VALID_ACCOUNTS table or only those that are considered updates in PeopleSoft.

Usage:
AccountPurge batch-alias-name PURGE [ALL | <Accounts>]

Where:

The first argument is batch alias name.

The second argument is the word PURGE.
The third argument is either ALL or specific accounts to be deleted from the local table.

Building and Posting Reference IDs
Drill back and drill forward functionality uses Reference ID to locate documents and
receipts. A Reference ID is a combination of document type and document (or receipt)
ID, as illustrated in the table below:

Type Doc ID Receipt ID Reference ID

Merchandise
Invoice

101 Null MRCHI#101

Non-Merchandise
Invoice

102 Null NMRCHI#102

Receipt Null 103 RECEIPT#103

For documents, the Resolution Posting Batch program builds the Reference ID using the
standard, Document Type + DeLimiter + Doc_id. For receipts, the program builds the
Reference ID using the standard, Document Type + DeLimiter + Receipt_id.

To enable drill down functionality, Reference IDs are loaded to staging tables.
FinancialsAPStageDao and FinancialsGLStageDao are populated, as are
IM_RWO_SHIPMENT_HIST and IM_RWO_SHIPSKU_HIST.

Drilling Back
Drilling back allows users to view the source of posted PeopleSoft transactions that
originated in Oracle Retail systems (from a voucher to an invoice, for example).

ReIM Transactional Maintenance

98 Oracle Retail Merchandising System

When drilling back from PeopleSoft Enterprise Financials, users are not directed to an
actual screen within RMS, ReIM or ReSA. Rather, a retail Web service generates and
launches a URL to a BI Publisher report. The report contains the information that
typically appears on the appropriate retail screen.
Depending on the information requested by the user, PeopleSoft invokes web service in
the ORFI layer which in turn calls the report locator service available in RMS. This
service returns back BIP report reference URL which is passed back to PeopleSoft and
report gets launched in browser window.

Information from the reference key determines what kind of report URL to issue. For
example, if the retail key has a prefix of ReIM, the ReIM_REPORT_URL function is
called, else the RMS_REPORT_URL function is called to retrieve the appropriate report
URL. If the key does not match any key in the retail systems, an error message is
launched.

Drilling Back to RMS and ReSA from PeopleSoft Enterprise Financials
The following function determines which RMS report to return to the user:
RMS_REPORT_URL() -
 O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE
 O_rpt_url IN OUT RETAIL_SERVICE_REPORT_URL.URL%TYPE
 I_ref_key IN KEY_MAP_GL.REFERENCE_TRACE_ID%TYPE

The appropriate report URL is found and issued as follows:

1. The ref_trace_type is found on KEY_MAP_GL by matching I_ref_key with the
KEY_MAP_GL.REFERENCE_TRACE_ID column.

2. When ref type is determined, the re_trace_type is used to find the appropriate
report URL on the RETAIL_SERVICE_REPORT_URL table.

3. The value of I_ref_key is appended to the end of the URL retrieved from the
table.

4. The URL is sent back to the calling function.

5. If I_ref_key does not exist on KEY_MAP_GL, an error message is sent back to the
calling function.

Drilling Back to ReIM from PeopleSoft Enterprise Financials
The following drill back options are available for viewing information within the ReIM
system:

Using Document ID, users can drill back to ReIM to view information related to a
voucher or payment. The report includes information from im_doc_head and
im_invoice_detail, the same data shown on the Document Maintenance Header screen
within ReIM.

Using the Receipt ID, users can drill back to view information from the Receipt Write-off
History screen. Receipt write-offs occur either when an open receipt is closed in ReIM or
if a receipt is purged in RMS before it is fully matched. Details come from the
IM_RWO_SHIPMENT_HIST and IM_RWO_SHIPSKU_HIST tables.

The function below determines which of the two ReIM reports to return to the user:
REIM_REPORT_URL() -
 O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE
 O_rpt_url IN OUT RETAIL_SERVICE_REPORT_URL.URL%TYPE
 I_ref_key IN KEY_MAP_GL.REFERENCE_TRACE_ID%TYPE

Drilling Forward

Integrating RMS with PeopleSoft Financials Using Oracle Retail Financial Integration 99

The I_ref_key contains the reference ID, which ultimately determines the type of report
required. The appropriate BI Publisher report URL is found on the
RETAIL_SERVICE_REPORT_URL table.

In general, if the reference ID has a prefix of RECEIPT, the report type (RS_CODE) is
RCPT. Otherwise, the report type is DOC. For example:

Reference ID Report Type (RS_CODE)

MRCHI#101 DOC

NMRCHI#102 DOC

RECEIPT#103 RCPT

The following is an example of a BI Publisher URL that is generated upon drilling back to
PeopleSoft Enterprise Financials for information on an invoice in ReIM, using Document
ID as the search parameter:
http://mspdev6970vip:7777/BIPublisher/Guest/ReIM/13.0.3/doc/tsf_det.xdo
?doc_id=101

Where
http://mspdev6970vip:7777/BIPublisher = the BI Publisher application server
address and port

Guest/ReIM/13.0.3 = the directory/folder location

doc/tsf_det.xdo ? = report name (Document Report)
doc_id=101 = the parameter name and value (Document ID 101)

The following is an example of an Oracle Business Intelligence Publisher URL that is
generated upon drilling back to PeopleSoft Enterprise Financials for information on an
invoice in ReIM, using Receipt ID as the search parameter:
http://mspdev6970vip:7777/BIPublisher/Guest/ReIM/13.0.3/doc/tsf_det.xdo ?receipt_id=101

Where
http://mspdev6970vip:7777/BIPublisher = the BI Publisher application server
address and port

Guest/ReIM/13.0.3 = the directory/folder location

doc/tsf_det.xdo ? = report name (Receipt Report)

receipt_id=101 = the parameter name and value (Receipt ID 101)

Drilling Forward
Drilling forward allows users to see detailed information about retail transactions that
have been posted to PeopleSoft Enterprise Financials. When drilling forward, users are
directed to selected "view-only" screens.

Drilling Forward

100 Oracle Retail Merchandising System

Drilling Forward From RMS/ReSA to PeopleSoft Enterprise Financials
The following forms may be used to drill forward from RMS/ReSA:

 RMS StartMenu->Finance->Transaction Data View (trandata.fmb)

 RMS StartMenu->Ordering->Fixed Deals->Fixed Deal Transaction Data View
(fdltrandata.fmb)

 Resa Task List-> Operations->General Level Transaction View

Drilling Forward From ReIM to PeopleSoft Enterprise Financials
For drilling forward, the ORFI Web service uses the Invoice ID and Accounting Entry
parameters. The ReIM system uses these parameters together as the Reference ID.

From the Document search screen, users can drill forward to PeopleSoft Enterprise
Financials accounts payable to view voucher and payment status. The information is
displayed on a read-only Payment Doc Status Inquiry screen. Drill forward access to the
accounts payable system is available only for pre-paid invoices (but not for manually
pre-paid invoices).

To drill down to the payables/ledger screens, the user invokes the Web service as
follows:
Invoice ID/Accounting Entry parameter = Reference ID

Drill forward access to the G/L system is available only for pre-paid and manually pre-
paid invoices.

Note: For more information on drilling forward, see the
Oracle Retail Financial Integration for Oracle Retail Merchandise
Operations Management and Oracle Financials Suite (E-Business
Suite Financials or PeopleSoft Financials).

Understanding Data Access Schema 101

11
Understanding Data Access Schema

The Data Access Schema (DAS) is a new schema that allows third party applications to
access RMS owned data. A subset of the data mastered by RMS is replicated to a new
database schema. This replicated data is in a READ ONLY format. The DAS is an
optional function; where the base RMS does not require DAS. However, you may want
to install DAS for the following reasons:
 Accelerate integration with some of the third party systems.

 Insulate core RMS processes from the resource demands for the third party systems.

 Provide downstream applications with data 24x7, instead of a predetermined time
for the batch cycle that extracts RMS data.

 Perform custom operational reporting without impacting the core RMS operations.

 Use out of box integration with Merchandise Financial Planning’s (MFP) PoViewer
micro application.

Views are layered on top of the replicated data to shape it in a less RMS specific terms.

Oracle recommends that DAS be deployed in a separate database instance on a separate
hardware. This insulates the operations and performance of RMS from all demands
made of DAS by other systems.

For more information on DAS, see the Oracle Retail Merchandising System Data Access
Schema Developer’s Guide and the Oracle Retail Merchandising System Data Access Schema
Data Model.

The process flow diagram of a DAS system:

DAS Process Flow

DAS Views

102 Oracle Retail Merchandising System

DAS Views
DAS contains replicated tables and parallel layers of views. The two parallel layers of
views are:
 Generic Data Shaping View

 Client Specific Data Shaping View

DAS Views

The Generic Data Shaping View makes RMS owned data more understandable to
external systems by both flattening and exploding some of the concepts in RMS.

The client specific data shaping views presents data for specific downstream client
applications. You can add additional client specific data shaping views to execute
queries that are important to manage the DAS integrations with the third party systems.
You are encouraged to use the DAS for downstream, custom integration batch, and
query service integrations. The following are the advantages of using DAS instead of the
core RMS system of record tables:

 DAS insulates core RMS processing from the resource demands of third party
systems.

 DAS allows constant access to data that of a RMS batch cycle which is processed once
in a day, restricting the access of data or a real time query that is slower when
processing demands of high point of RMS batch cycles.

 Custom client specific data shaping views can accelerate the development of custom
integrations.

Using Oracle Wallet 103

12
Using Oracle Wallet

RMS Batch programs runs using wallet alias as the first parameter to the batch command
line arguments. This is enabled to prevent the security concerns around exposing
database user ID and password while running the batch programs.

The wallet creation steps are described in the RMS Installation Guide. The wallet and
wallet alias creation are a required in order to use batch programs in secured mode.
If we assume wallet alias is “dvols29_rms01batch”;

Usage:
./dtesys $UP

(where UP will be set during installation to the wallet alias, that is:
$UP=/@dvols29_rms01batch)

or
./dtesys /@dvols29_rms01batch (wallet alias)
RMS/RPAS and RMS/AIP RETL scripts uses Oracle Wallet. Defined Oracle Wallet is
referenced in rmse_config.env, rmse_aip_config.env and rmse_rpas_config.env files.

mailto:$UP=/@dvols29_rms01batch

	Contents
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Access to Oracle Support

	Related Documents
	Customer Support
	Review Patch Documentation
	Improved Process for Oracle Retail Documentation Corrections
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	Introduction
	Contents Covered in this Volume

	Pro*C Restart and Recovery
	Table of Description and Definition
	RESTART_CONTROL
	RESTART_PROGRAM_STATUS
	RESTART_PROGRAM_HISTORY
	RESTART_BOOKMARK
	V_RESTART_<x>

	Restart and Recovery Data Model Design
	Physical Set-Up
	Table and File-Based Restart/Recovery
	API Functional Descriptions
	RESTART_INIT
	RESTART_FILE_INIT
	RESTART_COMMIT
	RESTART_FILE_COMMIT
	RESTART_CLOSE
	PARSE_ARRAY_ARGS
	RESTART_FILE_WRITE
	RESTART_CAT
	Restart Headers and Libraries
	RESTART.H
	STD_REST.H
	Updating Restart Headers and Libraries
	retek_2.h
	INT RETEK_INIT(INT NUM_ARGS, INIT_PARAMETER *parameter, ...)
	INT RETEK_COMMIT(INT NUM_ARGS, ...)
	INT COMMIT_POINT_REACHED(INT NUM_ARGS, ...)
	INT RETEK_FORCE_COMMIT(INT NUM_ARGS, ...)
	INT RETEK_CLOSE(void)
	INT RETEK_REFRESH_THREAD(void)
	VOID INCREMENT_CURRENT_COUNT(void)
	INT PARSE_NAME_FOR_THREAD_VAL(char* name)
	INT IS_NEW_START(void)

	Query-Based Commit Thresholds

	Pro*C Multi-Threading
	Threading Description
	Threading Function for Query-Based
	Restarting View for Query-Based
	Thread Scheme Maintenance
	File-Based
	Query-Based

	Batch Maintenance
	Scheduling and Initialization of Restart Batch
	Pre-Processing and Post-Processing
	ksh Driven Batch Programs

	Pro*C Array Processing
	Pro*C Input and Output Formats
	General Interface Discussion
	Standard File Layouts

	Detail-Only Files
	Master and Detail Files

	RETL Program Overview for the RMS-RPAS Interface
	Oracle Retail ETL Architecture
	RETL Program Overview
	Configuration
	Version of RETL
	RETL User and Permissions
	Environment Variables
	rmse_rpas_config.env Settings for RPAS
	Steps to Configure RETL

	Program Return Code
	Program Status Control Files
	File Naming Conventions
	Restart and Recovery

	Message Logging
	Daily Log File
	Format
	Program Error File

	RMSE Reject Files
	Schema Files Overview
	Command Line Parameters
	rmse_rpas_config.env
	Description of Command Line Options

	RMSE I/O File Names

	Typical Run and Debugging Situations
	RPAS/AIP Configuration
	RETL Program Overview for the RMS-Time-Phased Inventory Planning Tool Interface
	Installation

	Configuration
	RETL
	RETL user and permissions
	Environment Variables
	rmse_aip_config.env Settings
	Steps to Configure RETL

	Program Return Code
	Program Status Control Files
	File Naming Conventions
	Restart and Recovery

	Message Logging
	Daily Log File
	Format

	RMSE and Transformation Reject Files
	Schema Files Overview
	Command Line Parameters
	RMSE and Transformation
	Scripts that need Parameter to Run

	Typical Run and Debugging Situations

	Internationalization
	Translation
	RMS User Interface Language Display Settings
	Multiple Languages in one RMS Forms Session

	Key RMS Tables for User Interface Related Internationalization
	FORM_ELEMENTS
	FORM_ELEMENTS_LANGS
	MENU_ELEMENTS
	MENU_ELEMENTS_LANGS
	FORM_MENU_LINK
	CODE_DETAIL_TRANS
	UOM_LANG
	New Data Translation Tables

	Integrating RMS with Store Inventory Management
	Supplier
	Merchandise Hierarchy
	Warehouse
	SIM Store
	Inventory Adjustment Reason
	Adding Inventory Adjustment Reason in SIM
	Mapping Inventory Adjustment Reason in RMS
	Database Validation

	Diff ID
	Item With/Without UIN And Item Locations
	Database Validation
	SIM GUI Item Look up

	Transactions
	Purchase Order
	Receiving the Order in SIM

	Transfers
	Store To Store Transfer
	Transfer Receiving
	RMS Database Validation
	Warehouse To Store Transfer
	Transfer On The Fly
	RMS Database Validation

	Return to Warehouse
	Creating Return to Warehouse in SIM
	Creating Return to Warehouse in RMS
	Dispatching in SIM

	Return to Vendor
	Initiating SIM in RTV
	Initiating RMS in RTV

	Store Orders
	Creating a Store Order
	Approving a Store Order

	Inventory Adjustment
	Stock Count
	Stock Counting Process
	Executing a Stock Count

	Price Change
	Creating Price Change

	Integrating RMS with Oracle E-Business Suite Financials Using Oracle Retail Financial Integration
	Participating Applications
	Assumptions and Dependencies
	Data Setup
	RMS Data Set up and Configuration
	RMS System Options
	Organization Units
	Currency Exchange Rates
	Supplier Address Types
	Country Codes
	Financial Calendar
	Freight Terms
	Payment Terms and Currency Exchange Rates
	Oracle E-Business Suite Financials Units and Site IDs
	Store and Warehouse Maintenance
	RMS General Ledger Setup
	RMS General Ledger Cross Reference
	ReSA General Ledger Cross Reference

	ReIM Data Setup and Configuration
	System Options
	Chart of Accounts Setup
	Segment Mapping
	Running the Initial Load from Oracle E-Business Suite Financials
	IM_SYSTEM_OPTIONS table setup

	ReIM Transactional Maintenance
	Calculation of TRANS_AMOUNT
	Generation of Outgoing Data
	Validation of Accounts When Posting Financial Entries
	Validation of Accounts When Prepaying a Merchandise Invoice
	Maintenance of Valid Accounts

	Integrating RMS with PeopleSoft Financials Using Oracle Retail Financial Integration
	Participating Applications
	Assumptions and Dependencies
	Data Constraints
	Data Setup
	RMS Data Setup and Configuration
	Organization Units
	Currency Exchange Rates
	Supplier Address Types
	Country Codes
	Financial Calendar
	Freight Terms
	Payment Terms and Currency Exchange Rates
	PeopleSoft Financials Units and Site IDs
	Store and Warehouse Maintenance
	RMS General Ledger Setup
	RMS General Ledger Cross Reference
	ReSA General Ledger Cross Reference

	Configuring Drill Back and Forward Web Services
	ReIM Data Setup and Configuration
	System Options

	CURRENCY_PRECISION
	Chart of Accounts Setup
	Segment Mapping
	Running the Initial Load from PeopleSoft Financials
	IM_SYSTEM_OPTIONS table Setup
	Reporting

	ReIM Transactional Maintenance
	Calculation of TRANS_AMOUNT
	Generation of Outgoing Data
	Outgoing Data

	Validation of Accounts When Posting Financial Entries
	Maintenance of Valid Accounts
	Building and Posting Reference IDs
	Drilling Back
	Drilling Back to RMS and ReSA from PeopleSoft Enterprise Financials
	Drilling Back to ReIM from PeopleSoft Enterprise Financials

	Drilling Forward
	Drilling Forward From RMS/ReSA to PeopleSoft Enterprise Financials
	Drilling Forward From ReIM to PeopleSoft Enterprise Financials

	Understanding Data Access Schema
	DAS Views

	Using Oracle Wallet

