

Oracle® Retail Service Layer

Programmer's Guide
Release 13.0.1

June 2008

Oracle® Retail Service Layer Programmer's Guide, Release 13.0.1

Copyright © 2008, Oracle. All rights reserved.

Primary Author: Gary O’Hara

Contributors:

The Programs (which include both the software and documentation) contain proprietary
information; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the
extent required to obtain interoperability with other independently created software or as specified
by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. This document is not
warranted to be error-free. Except as may be expressly permitted in your license agreement for
these Programs, no part of these Programs may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the
Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and
technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the Programs, including documentation and technical data, shall be subject to the
licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software—
Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate
fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the
Programs are used for such purposes, and we disclaim liability for any damages caused by such
use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation
and/or its affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from
third parties. Oracle is not responsible for the availability of, or any content provided on, third-
party Web sites. You bear all risks associated with the use of such content. If you choose to
purchase any products or services from a third party, the relationship is directly between you and
the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or
(b) fulfilling any of the terms of the agreement with the third party, including delivery of products
or services and warranty obligations related to purchased products or services. Oracle is not
responsible for any loss or damage of any sort that you may incur from dealing with any third
party.

Value-Added Reseller (VAR) Language

(i) the software component known as ACUMATE developed and licensed by Lucent Technologies
Inc. of Murray Hill, New Jersey, to Oracle and imbedded in the Oracle Retail Predictive
Application Server – Enterprise Engine, Oracle Retail Category Management, Oracle Retail Item
Planning, Oracle Retail Merchandise Financial Planning, Oracle Retail Advanced Inventory
Planning and Oracle Retail Demand Forecasting applications.

(ii) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail
Data Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(iii) the SeeBeyond component developed and licensed by Sun MicroSystems, Inc. (Sun) of Santa
Clara, California, to Oracle and imbedded in the Oracle Retail Integration Bus application.

(iv) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of
Kirkland, Washington, to Oracle and imbedded in Oracle Retail Store Inventory Management.

(v) the software component known as Crystal Enterprise Professional and/or Crystal Reports
Professional licensed by Business Objects Software Limited (“Business Objects”) and imbedded in
Oracle Retail Store Inventory Management.

(vi) the software component known as Access Via™ licensed by Access Via of Seattle, Washington,
and imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(vii) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of
San Jose, California, and imbedded in Oracle Retail Promotion Planning & Optimization
application.

(viii) the software component known as Style Report™ developed and licensed by InetSoft
Technology Corp. of Piscataway, New Jersey, to Oracle and imbedded in the Oracle Retail Value
Chain Collaboration application.

(ix) the software component known as WebLogic™ developed and licensed by BEA Systems, Inc.
of San Jose, California, to Oracle and imbedded in the Oracle Retail Value Chain Collaboration
application.

(x) the software component known as DataBeacon™ developed and licensed by Cognos
Incorporated of Ottawa, Ontario, Canada, to Oracle and imbedded in the Oracle Retail Value Chain
Collaboration application.

iii

Contents
Preface ... vii

Audience ... vii
Related Documents.. vii
Customer Support.. vii
Review Patch Documentation .. vii
Oracle Retail Documentation on the Oracle Technology Network............................... vii
Conventions...viii
Third-Party Open-Source Applications ...viii

1 Introduction .. 1
RSL Overview..1

2 Technical Architecture .. 3
Overview..3
Architecture Layers ..3
Java EE Application Model..4
Oracle PL/SQL-based Application Model ..5

3 Basic Operations ... 7
Simple Service Call ...7

4 Service Provider How-To Guide... 9
Service Provider Application Configuration...9

retek/services_rsl.xml...9
retek/service_flavors.xml...9

Service Provider Application Layer Code for J2EE Models..9
Service Provider Application Layer Code for Oracle PL/SQL-Based Models.............10

5 Client How-To Guide.. 13
Client Application Layer Configuration..13

retek/services_rsl.xml...13
retek/service_flavors.xml...13
retek/jndi_providers.xml ...13

Client Application Layer Code ...14
6 RSLTestClient Utility ... 15

Installation and Configuration..15
Execution..16

A Appendix: Configuration Files ... 17
Services Framework Configuration..17

jndi_providers.xml ..17
services_rsl.xml ..17
service_flavors.xml ..17
service_context_factory.xml ...17

Log4j Configuration..17

v

log4j.dtd...17
log4j.xml..17

Other Configuration ...18
commons-logging.properties ...18

B Appendix: Common Libraries .. 19
Common Components ...19

platform-server.jar ...19
platform-api.jar ..19
platform-conf.jar ..19
platform-resources.jar ...19
platform-common.jar...19

RSL/Integration ..19
rib-public-payload-java-beans.jar..19
rib-public-api.jar ..19
rib-private-kernel.jar ...20
rsl.jar ..20
rsl-<service provider application>-access.jar...20
rsl-<service provider application>-business-logic.jar...20

Third Party Provided..20
castor-1.0.5-xml.jar...20
ojdbc14.jar ...20
commons-lang.jar...20
dom4j.jar..20
commons-collections.jar..21
commons-logging.jar...21
log4j.jar ..21

vi

Preface
The purpose of this manual is to provide a basic understanding of the Oracle Retail
Service Layer components, including the flow of a synchronous call between two
applications.

Audience
This manual is designed for System Administrators, Developers, and Applications
Support personnel.

Related Documents
For more information, see the following documents in the Oracle Retail Service Layer
Release 13.0.1 documentation set:
 Oracle Retail Service Layer Installation Guide
 Oracle Retail Service Layer Release Notes

Customer Support
 https://metalink.oracle.com

When contacting Customer Support, please provide:
 Product version and program/module name.
 Functional and technical description of the problem (include business impact).
 Detailed step-by-step instructions to recreate.
 Exact error message received.
 Screen shots of each step you take.

Review Patch Documentation
For a base release (".0" release, such as 13.0), Oracle Retail strongly recommends that you
read all patch documentation before you begin installation procedures. Patch
documentation can contain critical information related to the base release, based on new
information and code changes that have been made since the base release.

Oracle Retail Documentation on the Oracle Technology Network
In addition to being packaged with each product release (on the base or patch level), all
Oracle Retail documentation is available on the following Web site:
http://www.oracle.com/technology/documentation/oracle_retail.html
Documentation should be available on this Web site within a month after a product
release. Note that documentation is always available with the packaged code on the
release date.

vii

https://metalink.oracle.com/
http://www.oracle.com/technology/documentation/oracle_retail.html

Conventions
Navigate: This is a navigate statement. It tells you how to get to the start of the procedure
and ends with a screen shot of the starting point and the statement “the Window Name
window opens.”

Note: This is a note. It is used to call out information that is
important, but not necessarily part of the procedure.

This is a code sample
 It is used to display examples of code

A hyperlink appears like this.

Third-Party Open-Source Applications
Oracle Retail Security Manager includes the following third-party open-source
applications:
Software Provider: Intalio Inc.
Software Name: Castor
Software Version: 1.0.5
Jar File Name: castor-1.0.5-xml.jar
Provider Web Site: www.castor.org
License: ExoLab Public License (based on the BSD License)

Software Provider: The Apache Software Foundation
Software Name: Commons Beanutils
Software Version: 1.6
Jar File Name: commons-beanutils.jar
Provider Web Site: http://jakarta.apache.org/commons/beanutils/
License: The Apache Software License, Version 1.1

Software Provider: The Apache Software Foundation
Software Name: Commons Collections
Software Version: 2.1
Jar File Name: commons-collections.jar
Provider Web Site: http://jakarta.apache.org/commons/collections/
License: The Apache Software License, Version 1.1

Software Provider: The Apache Software Foundation
Software Name: Commons Digester
Software Version: 1.5
Jar File Name: commons-digester.jar
Provider Web Site: http://jakarta.apache.org/commons/digester/
License: The Apache Software License, Version 1.1

Software Provider: The Apache Software Foundation
Software Name: Commons Lang
Software Version: 2.0
Jar File Name: commons-lang.jar
Provider Web Site: http://jakarta.apache.org/commons/lang/
License: Apache License Version 2.0

viii

http://www.castor.org/
http://jakarta.apache.org/commons/beanutils/
http://jakarta.apache.org/commons/collections/
http://jakarta.apache.org/commons/digester/
http://jakarta.apache.org/commons/lang/

Software Provider: The Apache Software Foundation
Software Name: Commons Logging
Software Version: 1.0.3
Jar File Name: commons-logging.jar
Provider Web Site: http://jakarta.apache.org/commons/logging/
License: The Apache Software License, Version 1.1

Software Provider: The Apache Software Foundation
Software Name: Commons Validator
Software Version: 1.0.2
Jar File Name: commons-validator.jar
Provider Web Site: http://jakarta.apache.org/commons/validator/
License: The Apache Software License, Version 1.1

Software Provider: dom4j.org
Software Name: DOM4J Project
Software Version: 1.4
Jar File Name: dom4j.jar
Provider Web Site: http://www.dom4j.org
License: BSD style license

Software Provider: The Apache Software Foundation
Software Name: Apache Jakarta Project
Software Version: 1.3
Jar File Name: jakarta-regexp.jar
Provider Web Site: http://jakarta.apache.org/regexp/
License: The Apache Software License, Version 1.1

Software Provider: JDOM Project
Software Name: jdom
Software Version: 1.0 beta9
Jar File Name: jdom.jar
Provider Web Site: http://www.jdom.org/
License: Apache: BSD/Apache style

Software Provider: JUnit.org
Software Name: JUnit
Software Version: 3.8.1
Jar File Name: junit.jar
Provider Web Site: http://www.junit.org/index.htm
License: Common Public License Version 1.0

Software Provider: The Apache Software Foundation
Software Name: Log4j
Software Version: 1.2.6
Jar File Name: log4j.jar
Provider Web Site: http://logging.apache.org/log4j/docs/index.html
License: The Apache Software License, Version 1.1

ix

http://jakarta.apache.org/commons/logging/
http://jakarta.apache.org/commons/validator/
http://www.dom4j.org/
http://jakarta.apache.org/regexp/
http://www.jdom.org/
http://www.junit.org/index.htm
http://logging.apache.org/log4j/docs/index.html

Software Provider: The Apache Software Foundation
Software Name: Xerces
Software Version: 2.0.2
Jar File Name: xercesImpl.jar
Provider Web Site: http://xerces.apache.org/
License: The Apache Software License, Version 1.1

Software Provider: The Apache Software Foundation
Software Name: xml-commons
Software Version: 1.0.b2
Jar File Name: xml-apis.jar
Provider Web Site: http://xml.apache.org/commons/
License: The Apache Software License, Version 1.1

x

http://xerces.apache.org/
http://xml.apache.org/commons/

1
Introduction

RSL Overview
RSL handles the interface between a client application and a server application. The client
application typically runs on a different host than the service. However, RSL allows for
the service to be called internally in the same program or Java Virtual Machine as the
client without the need for code modification.
All services are defined using the same basic paradigm -- the input and output to the
service, if any, is a single set of values. Errors are communicated via Java Exceptions that
are thrown by the services. The normal behavior when a service throws an exception is
for all database work performed in the service call being rolled back.
RSL works within the Java EE framework. All services are contained within an interface
offered by a Stateless Session Bean. To a client application, each service appears to be
merely a method call.
Some Oracle Retail applications, such as RMS, are implemented in the PL/SQL language,
which runs inside of the Oracle Database. RSL uses a generalized conversion process that
converts the input java object to a native Oracle Object and any output Oracle Objects to
the returned java object from the service. There is a one-to-one correspondence of all
fields contained in the Java parameters as in the Oracle Objects used.
A client does not need to know if the business logic is implemented as an Oracle Stored
Procedure or in some other language.

Introduction 1

2
Technical Architecture

Overview
This chapter describes the overall architecture of the Oracle Retail Service Layer. The RSL
architecture is built upon Java EE Java Enterprise Bean technology. It is composed of
different architecture layers that perform specific task within the overall workflow of
integration between two applications.
RSL provides two different models for service providers. The election of what model to
use depends on what type of application the “service provider” developer is adding the
RSL layer to. For applications that follow the Java EE or simple Java architecture, a Java
EE model will be a better fit. An Oracle PL/SQL model is better fit for applications that
heavily depend on database business logic, such as Oracle Forms-based applications
(RMS).
“Client application” developers do not need to be aware of this distinction. The
developer needs only to implement the code that retrieves an instance of the service
proxy using the service interface and the Common Components provided
ServiceAccessor class and makes the calls using a predefined set of payload objects for
argument and return type.

Architecture Layers
The RSL is divided into a series of layers. These layers are as follow:
 The Client Application Layer (CAL). This layer is developed by client application

developers. The code for this is dependent on the business processes of the Client.
 The Service Access Layer (SAL). This layer is generated by the Oracle Retail

Integration Team. Its purpose is to provide a typed set of interfaces and
implementations for accessing services. The SAL is the only set of interfaces that the
CAL developer needs to be aware of. Although different implementations of the SAL
might be used by the Client application, depending on the local or remote location of
the required services, the CAL developer doesn’t need to be aware of this.

 The Service Provider Layer (SPL). This layer is implemented by the developers
belonging to the service provider or knowledgeable in the service application
domain. Each service must implement its corresponding interface as declared in the
SAL. For RMS, RWMS or other Oracle Forms applications, each service will be
offered via a PL/SQL Stored Procedure and use Oracle Object technology for input
and output parameters. For Java EE offered services, input and output parameters
will be generated via Value Objects – old fashioned Java beans that a) implement a
defined interface and b) consist of “getter”, “setter” and “adder” methods. Refer to
the next sections for a discussion of the Java EE and Oracle PL/SQL-based models.

Note: There is a one-to-one mapping of APIs detailed in the
SPL versus APIs offered in the SAL. For Oracle based
applications, a generic “Stored Procedure Caller” class,
provided by the Integration Team, will be accessible through
the Common Components CommandExecutionServiceEjb
Stateless Session Bean. This class will handle all RMS
provided simple services.

Technical Architecture 3

Java EE Application Model

Note: The services offered by a single service should be a
logical unit that is functionally cohesive. This has
implications if a retailer wishes to use a different
implementation, such as a completely home-grown
implementation for this functionality.

Java EE Application Model
Figure 1 depicts the model and workflow to be used when integrating RSL with a Java
EE or simple Java application. The objects on the left side of the dashed lines symbolize
the client view of the transaction while the right side characterizes the service provider
part. In the diagram, objects in blue are implementations provided by either the “client
application” developer (left side) or “service provider” developer (right side.) The red
objects indicate the interfaces, classes and payload objects provided by the Oracle Retail
Integration Team to both developers. Oracle Retail’s Common Components objects are
denoted in green.
The SPL developer needs to create a POJO (Plain Old Java Object) class that implements
the SAL interface provided by the Integration Team. This class should be made available
in the Java EE environment through the CommandExecutionService EJB. Please refer to
Chapter 4 – Service Provider How-To Guide for an in-depth discussion on how to
develop the Service Provider Layer and make it available to RSL client applications.
The CAL developer will create the code that will make it possible for the client
application to contact the RSL service. This involves using the Common Components
provided ServiceAccessor class to retrieve an instance of the Service Proxy to
communicate with the service. Once this proxy is obtained, the CAL invokes calls as
declared in the service interface provided by the Integration Team as part of the SAL
deliverables. Chapter 5 – Client How-To Guide explains in details how to develop the
client code and configurations to successfully invoke RSL services.

4 Oracle Retail Service Layer

Oracle PL/SQL-based Application Model

Figure 1

Oracle PL/SQL-based Application Model
Figure 2 shows the model and workflow to be used when integrating RSL with an
application based on Oracle PL/SQL language (that is, RMS.) The objects on the far left
symbolize the client view of the transaction; the objects between both dashed lines
characterize the service provider part; finally, the objects on the extreme right represent
the Oracle-based application. In this model, the Integration Team is responsible for
distributing the “service provider” implementation of RSL. In the diagram, objects in
blue are implementations provided by either the “client application” developer (left side)
or “Application Team” developer (right side.) The red objects indicate the interfaces,
classes and payload objects provided by the Integration Team to both developers. Oracle
Retail’s Common Components objects are denoted in green.
The Oracle Retail Application Team is responsible for developing the PL/SQL Stored
Procedure following the guidelines provided by the Integration Team and discussed in
details in Chapter 4 – “Service Provider” How-To Guide.
The CAL developer will create the code that will make it possible for the client
application to contact the RSL service. This involves using the Common Components
provided ServiceAccessor class to retrieve an instance of the Service Proxy to
communicate with the service. Once this proxy is obtained, the CAL invokes calls as
declared in the service interface provided by the Integration Team as part of the SAL
deliverables. Chapter 5 – Client How-To Guide explains in details how to develop the
client code and configurations to successfully invoke RSL services.

Technical Architecture 5

Oracle PL/SQL-based Application Model

Figure 2

6 Oracle Retail Service Layer

3
Basic Operations

This section details the synchronous data flow of a payload between end applications.
The business logic is completely owned by the application implementing the service.

Simple Service Call
In the client application, some event triggers a service call. The first step is for the client
to find the location of the service. This is done by using the “ServiceAccessor” which
connects to the application server’s Java Naming and Directory Interface (JNDI) instance.
Once the “Remote Home” of the service is located, the client then creates a “Remote”
instance or handle to the service which is returned to the client to perform calls to the
service.
At this point, the Java EE application server infrastructure takes control and performs a
remote method invocation on the CommandExecutionService Stateless Session Bean.
This EJB is responsible for looking up the implementation of the service interface,
invoking the client requested service method call and returning the result.
The execution and control of database commits and rollbacks is dependent on three
factors: the configuration of the Stateless Session Bean, the success or failure of the
service call, and whether the transaction is started by the client or the application server.
Configuration of the Stateless Session Beans: Normally, RSL Beans are configured with
“Container Managed” transactions. This means that the Application Server EJB
Container will decide if database work will be committed or not. Furthermore, there is
the assumption that the configuration of the database connection is a “Container
Managed” resource. Within a container each resource has a specific name. A service may
use one or more resources during its execution.
Success or Failure of the service call: If an error is encountered during the service
execution, normal behavior is to roll back all database work. This is performed when an
exception is thrown by the service for container managed transactions.
Clients Starting a Transaction: Most service calls have their transactions started by the
service implementation or the Application Server and NOT by the client. However, it is
possible for the Client to start a transaction and make multiple service calls within the
same transaction.

Basic Operations 7

4
Service Provider How-To Guide

Service Provider Application Configuration
As mentioned earlier, the Service itself is developed by the service provider application.
The following files need to be properly configured in the service provider application.

retek/services_rsl.xml
<?xml version="1.0" encoding="UTF-8"?>
<services-config>
 <customizations>
 <interface package="com.retek.rsl.<app>">
 <impl package="<application specific>" />
 </interface>
 </customizations>
</services-config>

The name of the package for the interface usually follows the com.retek.rsl.<app>
convention, where <app> will be substituted by the name of the service provider
application: rms, rpm.
The implementation package name will be provided by the service provider once the
code is developed; this name is irrelevant for the client application.

retek/service_flavors.xml
<?xml version="1.0" encoding="UTF-8"?>
<services-config>
 <flavors set="server">
 <flavor name="java"
locator="com.retek.platform.service.SimpleServiceLocator" suffix="Java"/>
 </flavors>
</services-config>

Service Provider Application Layer Code for J2EE Models
An example of a SPL Service implementation is seen below. This sample implements the
PriceInquiryService interface. All of the methods have been stubbed out, as the logic is
unknown to anyone outside of the service providing application.

Note: The name of these implementation classes should
follow a naming convention such as
ServiceInterfaceNameJava (see example above). This allows
the Common Components service framework to locate the
SPL’s implementation class by using the “server” flavor.
This naming convention is configured in the SPL’s
service_flavors.xml file.

Service Provider How-To Guide 9

Service Provider Application Layer Code for Oracle PL/SQL-Based Models

package com.retek.rpm.service;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

import com.retek.platform.exception.RetekBusinessException;
import com.retek.platform.service.ClientContext;
import com.retek.platform.service.FallbackHandler;
import com.retek.rib.binding.payload.PrcInqDesc;
import com.retek.rib.binding.payload.PrcInqReq;
import com.retek.rsl.rpm.PriceInquiryService;

public class PriceInquiryServiceJava implements PriceInquiryService {

 protected final Log LOG = LogFactory.getLog(getClass());

 public void attachFallbackHandler(FallbackHandler arg0) {
LOG.debug("Executing business logic for attachFallbackHandler");
 }

public PrcInqDesc prcinqqry(ClientContext client, PrcInqReq query) throws
RetekBusinessException {
 LOG.deb "Executing business logic for query"); ug(
 return new PrcInqDesc();
 }

}

Service Provider Application Layer Code for Oracle PL/SQL-Based Models
For each service interface in the Service Access Layer, the application developer must
create a package that contains a stored procedure named SERVICE_HANDLER. The signature
of this stored procedure is as follow:
PROCEDURE SERVICE_HANDLER(O_status OUT RIB_OBJECT,
 O_payload OUT RIB_OBJECT,
 I_action IN VARCHAR2,
 I_payload IN RIB_OBJECT,
 I_client IN RIB_OBJECT);

The O_status return object should be an instance of a RIB_STATUS_REC Oracle type object in
the database. This object contains two variables. A status_code variable of type varchar2
that holds the status of the SERVICE_HANDLER() call; a value of “S” will indicate the call was
successful; any other status code should be accompanied by a description, assigned to the
second varchar2 variable of the RIB_STATUS_REC object.
The O_payload return object is the value that will be returned to the client application
after the service call.
I_action is a varchar2 representing what type of action to perform for the given payload.
Actions should match one-to-one to methods in the service interface. Each method call
from the client application will pass a different I_action value to the SERVICE_HANDLER()
stored procedure; this way, the application developer can route the request to different
business processes in their application.

10 Oracle Retail Service Layer

Service Provider Application Layer Code for Oracle PL/SQL-Based Models

I_payload corresponds to the object sent by the client application and used by the stored
procedure to perform some business process action.
I_client is an object of type RIB_CLIENT_REC that represents the instance of the
ClientContext object sent by the client application to the RSL service. This ClientContext
is translated to a RIB_CLIENT_REC Oracle type that can be used by the application
developer to identify the context used for the invocation of this call.

Service Provider How-To Guide 11

5
Client How-To Guide

Client Application Layer Configuration
As mentioned earlier, the CAL is developed by the “client application” developer. The
following files need to be properly configured in the client application.

retek/services_rsl.xml
<?xml version="1.0" encoding="UTF-8"?>
<services-config>
 <customizations>
 <interface package="com.retek.rsl.<app>" app="<app>">
 <impl package="" />
 </interface>
 </customizations>
</services-config>

An entry like the following should exist in the client application’s services_rsl.xml file.
The name of the package for the interface usually follows the “com.retek.rsl.<app>”
convention, where <app> will be substituted by the name of the service provider
application: rms, rpm.
The implementation package name is irrelevant in the client application, since this will
go through the CommandExecutionService EJB to make the service calls.

retek/service_flavors.xml
<?xml version="1.0" encoding="UTF-8"?>
<services-config>
 <flavors set="client">
 <flavor name="ejb" locator="com.retek.platform.service.EjbServiceLocator"
remote-suffix="Remote" home-suffix="RemoteHome"/>
 </flavors>
</services-config>

retek/jndi_providers.xml
<?xml version="1.0" ?>
<ejb_context_overrides>
 <!-- For managed OC4J -->
 <provider app="<app>"
url="opmn:ormi://<oas_host>:<oas_port>:<app_oc4j_instance_name>/<app>"
factory="oracle.j2ee.rmi.RMIInitialContextFactory" />

 <!-- For standalone OC4J -->
<provider app="<app>"
url="ormi://<oas_host>:<oas_port>/<app>"
factory="oracle.j2ee.rmi.RMIInitialContextFactory" />
</ejb_context_overrides>

Client How-To Guide 13

Client Application Layer Code

Client Application Layer Code
An example of a CAL method call is seen below. This sample calls the “prcinqqry”
method of the PriceInquiryService. The Service interface and the input and output
Payload classes will be provided by the Integration Team.
One parameter seen below is the Oracle Retail Common Components ClientContext
object. The CAL must create this object. It is used for application logging and tracking
purposes. It will be a required object on every service interface. Besides the constructor
parameters, this object will identify the host name the object was created on, the Process
ID, the Thread ID that created the object and the Locale, or language, of the client.
import com.retek.platform.exception.RetekBusinessException;
import com.retek.platform.service.ClientContext;
import com.retek.platform.service.ServiceAccessor;
import com.retek.platform.util.type.security.SecureUser;
import com.retek.rib.binding.payload.PrcInqDesc;
import com.retek.rib.binding.payload.PrcInqReq;

public class ClientCode {
 public PrcInqDesc prcinqqry(PrcInqReq request)
throws RetekBusinessException {

// create a client ID. This may be cached and reused.
 ClientContext ctx = ClientContext.getInstance();
SecureUser user = new SecureUser("username", "firstname",
 "lastname", null);
 ctx.setUser(user);
 ctx.setLocale(Locale.US);

// create a new client handle.
PriceInquiryService service =
ServiceAccessor.getService(PriceInquiryService.class);

//
try {

call the query method on service

PrcInqDesc price = service.prcinqqry(request);
return price;
} catch (RetekBusinessException rbe) {
 throw rbe;
}
 }
}

14 Oracle Retail Service Layer

6
RSLTestClient Utility

The RSL Client Test Application is a tool created to help verify that a Client Application
can successfully establish communication with an RSL Service Provider Application.
The test consist of very simple service calls that upon success will return a message
indicating that a call has been made with a specific timestamp. In case of errors, it will
display a message indicating the possible causes for the problem and how to fix it.
This test support both RSL's Java EE Application Model and Oracle PL/SQL-based
Application Model. If the RSL Service Provider follows the Java EE Application Model,
an error message might occur during execution of the last test. As indicated by the error,
this is not a concern if the test fails in the Java EE Application Model, as the last test
might not be applicable for such model. If the RSL Service Provider follows the Oracle
PL/SQL-based Application Model, then make sure that all installations instructions have
been followed as outlined by the next section.

Installation and Configuration
The first two steps are only required if the RSL Service Providers follows the Oracle
PL/SQL-based Application Model; if not, please ignore these steps and go directly to
step 3.

 1. Load the RSL Test objects in the database. This can be done by executing the
@CreateRslTestObjects command in a SQL Plus terminal. The
CreateRslTestObjects.sql script should be found in the testapp directory of the RSL
Server or Client pak.

2. Load the RSLSVC_TEST package in the database. This can be done by executing the
@RSLSVC_TEST.pkb command in a SQL Plus terminal. The RSLSVC_TEST.pkb script
should be found in the testapp directory of the RSL Server or Client pak.

3. Edit the jndi.properties file located in the testapp directory of the RSL Server or
Client pak and enter the java.naming.security.principal and
java.naming.security.credentials values. This must be the same as the username and
password of the user that has started the OC4J instance, which is typically an
administrative account created when a new OC4J instance was created.

RSLTestClient Utility 15

Execution

4. Edit the rsltestclient.bat or rsltestclient.sh script and customize it for the Client
Application environment:
a. Set the JAVA_HOME variable to the location of a 1.5 or higher JDK installation.
b. Set the RSL_SERVER_PROVIDER variable to OC4J.
c. The CONFIG_DIR variable should be set to the location of the directory that

contains the retek/jndi_providers.xml, retek/service_flavors.xml and
retek/services_rsl.xml files to be used by the Client Application. Do not include
"retek" in the path. For this test, it is recommended the use of the same
configuration files as the Client Application will use when released.

d. Set CLIENT_LIB to the folder that contains all the jar files required for this test.
The RSL paks do not distribute these jar files (except for the RSL specifics). It is
assumed that all jar files will be already available in the Client Application
library directory.

Execution
Make sure the RSL Service Provider Application is up and running; then execute the
rsltestclient.bat or rsltestclient.sh script. After all tests have been completed, the
following message will be shown:
 >>>>> Test completed successfully <<<<<
indicating that all tests completed successfully, or the following message:
 >>>>> Test completed with possible errors, see sections above <<<<<
indicating that there might have been an error during the execution of one of the tests.
Once an error has been detected, the other tests will not be performed. Please examine
the output to determine the cause of the error.
When executing this test against an RSL Service Provider that follows the Java EE
Application Model, and if steps (1) and (2) in the “Installation and Configuration” section
were not followed, the following message will be shown
 >>>>> Test completed with possible errors, see sections above <<<<<
even if all tests passed successfully. Ignore this message and assume all tests passed
successfully if the last test ran was the SERVICE_HANDLER stored procedure test, as
this is the last test and is not relevant for Java EE Application Models.

16 Oracle Retail Service Layer

A
Appendix: Configuration Files

The RSL uses a variety of configuration files. These are mostly Common Components
related that we’ve packaged as part of the RSL to allow independent configuration.

Services Framework Configuration

jndi_providers.xml
The file must be in the classpath located in a retek directory. The JNDI providers’s XML is
used by the EJBServiceLocator to lookup Services in remote JNDI’s. Please reference the
Common Components documentation for specific formatting of this file.

services_rsl.xml
The file must be in the classpath located in a retek directory. Within this file are the
package locations of the Service Implementations, which are used to configure the
ServiceFactory. Please reference the Common Components documentation for specific
formatting of this file.

service_flavors.xml
The file must be in the classpath located in a retek directory. Within this file are flavorsets,
which are used to configure the ServiceFactory. Please reference the Common
Components documentation for specific formatting of this file

service_context_factory.xml
The file must be in the classpath located in a retek directory. This specifies the factory
class used by Common Components to retrieve a service context implementation for
RSL.

Log4j Configuration
We utilize the commons-logging framework provided by Jakarta.apache.org. The current
property file is configured to use Log4J as its default factory.

log4j.dtd
This file must be in the classpath. This is required for validation of the log4j.xml. For
more information regarding the use of this file, please review
http://logging.apache.org/log4j/docs/

log4j.xml
This file must be in the classpath. This is the main configuration for log4j. For more
information regarding the use of this file, please review
http://logging.apache.org/log4j/docs/

Appendix: Configuration Files 17

http://logging.apache.org/log4j/docs/
http://logging.apache.org/log4j/docs/

Other Configuration

Other Configuration

commons-logging.properties
This file must be in the classpath. It contains the correct logging factory to instantiate for
RSL. We utilize the Log4Jfactory, but you may configure you application differently via
this file.

18 Oracle Retail Service Layer

B
Appendix: Common Libraries

This section lists the third party jars necessary for RSL functionality. It also describes why
each is necessary and what it provides to the framework.
The RSL is built upon multiple existing technologies developed within Oracle Retail. Its
reuse is essential to interoperability between the RSL and other applications

Common Components

platform-server.jar
This jar contains common components specific code for Oracle Retail. This includes the
Service framework. All services developed will be dependant on this jar for its use of
AbstractService and Service related classes.

platform-api.jar
This jar contains common components specific code for Oracle Retail. This includes
Exceptions and other Objects that could be transferred “over the wire”.

platform-conf.jar
This jar contains common components specific configuration files.

platform-resources.jar
This jar contains common components specific resource files for Oracle Retail.

platform-common.jar
This jar contains common components specific code for Oracle Retail.

RSL/Integration

rib-public-payload-java-beans.jar
This jar contains the java bean representation of business objects. They are collectively
referred to as payloads. The payloads are generated utilizing the RIB artifact generator.
They are dependant on castor for marshalling and unmarshalling. Payloads located in
this jar are type specific, this may cause interoperability issues with legacy applications
that are non-type specific, but follows in the future path of the project.

rib-public-api.jar
This jar contains external public RIB APIs. Java interfaces, factories and exception reside
in this jar.

Appendix: Common Libraries 19

Third Party Provided

rib-private-kernel.jar
This jar contains bulk of the RIB kernel code. This jar contains various utilities for use
with Oracle Retail projects. Included is an OracleStructDumper, which aides in the
debugging of converting objects. There are also various string and factory objects that
may be of use.

rsl.jar
This jar contains utility, helper and exception classes used by the RSL framework.

rsl-<service provider application>-access.jar
This jar contains the specific Interface(s) to access Services from another application
(SPL). These classes will ultimately be automatically generated by the RIB Framework
GUI.

rsl-<service provider application>-business-logic.jar
This jar contains specific RSL implementations of the Interface(s). The
CommandExcecutionServiceEjb will look up these Implementations. This jar is provided
only for Oracle PL/SQL-based applications where the Integration Team provides the
Service Provider Layer.

Third Party Provided
Most of these jars are provided via open source. It is recommended to use the packaged
jars within the RSL ear and not upgrades. The RSL will provide updates in related
releases that will include the update to these jars.

castor-1.0.5-xml.jar
This jar contains classes related to the castor subsystem. Payloads for marshalling and
un-marshalling between XML and Java Bean representations utilize it. Documentation
and related information is located at http://castor.exolab.org

ojdbc14.jar
This jar contains classes related to the Oracle JDBC driver. It is utilized within the
conversion utilities in the rsl.jar. This jar file has been updated for JDK 1.5
Documentation and related information is located at
http://otn.oracle.com/software/tech/java/sqlj_jdbc/htdocs/jdbc10203.html

commons-lang.jar
This jar contains various utility classes for use in math, string and time operations.
Documentation and related information is located at
http://jakarta.apache.org/commons/lang/

dom4j.jar
This jar contains XML DOM processing ability. It is needed for processing of the
configuration file in xml format. Documentation and related information is located at
http://www.dom4j.org/

20 Oracle Retail Service Layer

http://castor.exolab.org/
http://otn.oracle.com/software/tech/java/sqlj_jdbc/htdocs/jdbc10203.html
http://jakarta.apache.org/commons/lang/
http://www.dom4j.org/

Third Party Provided

commons-collections.jar
This jar contains various utility classes for use with the Java collection API.
Documentation and related information is located at
http://jakarta.apache.org/commons/collections/

commons-logging.jar
This jar contains various utility classes for use with Java Logging. It provides an
additional abstraction layer to common logging functionality. Documentation and
related information is located at http://jakarta.apache.org/commons/logging/

log4j.jar
This jar contains the log4j subsystem. This is the RSL’s logging system of choice and is
utilized through the commons-logging.jar. Documentation and related information is
located at http://logging.apache.org/log4j/docs/index.html.
Other jar files included with the RSL release are required by the Oracle Retail’s Common
Components.

Appendix: Common Libraries 21

http://jakarta.apache.org/commons/collections/
http://jakarta.apache.org/commons/logging/
http://logging.apache.org/log4j/docs/index.html

	Contents
	Preface
	Audience
	Related Documents
	Customer Support
	Review Patch Documentation
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions
	Third-Party Open-Source Applications

	Introduction
	RSL Overview

	Technical Architecture
	Overview
	Architecture Layers
	Java EE Application Model
	Oracle PL/SQL-based Application Model

	Basic Operations
	Simple Service Call

	Service Provider How-To Guide
	Service Provider Application Configuration
	retek/services_rsl.xml
	retek/service_flavors.xml

	Service Provider Application Layer Code for J2EE Models
	Service Provider Application Layer Code for Oracle PL/SQL-Based Models

	Client How-To Guide
	Client Application Layer Configuration
	retek/services_rsl.xml
	retek/service_flavors.xml
	retek/jndi_providers.xml

	Client Application Layer Code

	RSLTestClient Utility
	Installation and Configuration
	Execution

	Appendix: Configuration Files
	Services Framework Configuration
	jndi_providers.xml
	services_rsl.xml
	service_flavors.xml
	service_context_factory.xml

	Log4j Configuration
	log4j.dtd
	log4j.xml

	Other Configuration
	commons-logging.properties

	Appendix: Common Libraries
	Common Components
	platform-server.jar
	platform-api.jar
	platform-conf.jar
	platform-resources.jar
	platform-common.jar

	RSL/Integration
	rib-public-payload-java-beans.jar
	rib-public-api.jar
	rib-private-kernel.jar
	rsl.jar
	rsl-<service provider application>-access.jar
	rsl-<service provider application>-business-logic.jar

	Third Party Provided
	castor-1.0.5-xml.jar
	ojdbc14.jar
	commons-lang.jar
	dom4j.jar
	commons-collections.jar
	commons-logging.jar
	log4j.jar

