

Oracle® Retail Predictive Application Server

Configuration Tools User Guide
Release 13.0.1

June 2008

Oracle® Retail Predictive Application Server Configuration Tools User Guide, Release 13.0.1

Copyright © 2008, Oracle. All rights reserved.

Primary Author: Gary O'Hara

The Programs (which include both the software and documentation) contain proprietary
information; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the
extent required to obtain interoperability with other independently created software or as specified
by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. This document is not
warranted to be error-free. Except as may be expressly permitted in your license agreement for
these Programs, no part of these Programs may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the
Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and
technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the Programs, including documentation and technical data, shall be subject to the
licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software—
Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate
fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the
Programs are used for such purposes, and we disclaim liability for any damages caused by such
use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation
and/or its affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from
third parties. Oracle is not responsible for the availability of, or any content provided on, third-
party Web sites. You bear all risks associated with the use of such content. If you choose to
purchase any products or services from a third party, the relationship is directly between you and
the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or
(b) fulfilling any of the terms of the agreement with the third party, including delivery of products
or services and warranty obligations related to purchased products or services. Oracle is not
responsible for any loss or damage of any sort that you may incur from dealing with any third
party.

Value-Added Reseller (VAR) Language

(i) the software component known as ACUMATE developed and licensed by Lucent Technologies
Inc. of Murray Hill, New Jersey, to Oracle and imbedded in the Oracle Retail Predictive
Application Server – Enterprise Engine, Oracle Retail Category Management, Oracle Retail Item
Planning, Oracle Retail Merchandise Financial Planning, Oracle Retail Advanced Inventory
Planning and Oracle Retail Demand Forecasting applications.

(ii) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail
Data Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(iii) the SeeBeyond component developed and licensed by Sun MicroSystems, Inc. (Sun) of Santa
Clara, California, to Oracle and imbedded in the Oracle Retail Integration Bus application.

(iv) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of
Kirkland, Washington, to Oracle and imbedded in Oracle Retail Store Inventory Management.

(v) the software component known as Crystal Enterprise Professional and/or Crystal Reports
Professional licensed by Business Objects Software Limited (“Business Objects”) and imbedded in
Oracle Retail Store Inventory Management.

(vi) the software component known as Access Via™ licensed by Access Via of Seattle, Washington,
and imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(vii) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of
San Jose, California, and imbedded in Oracle Retail Promotion Planning & Optimization
application.

(viii) the software component known as Style Report™ developed and licensed by InetSoft
Technology Corp. of Piscataway, New Jersey, to Oracle and imbedded in the Oracle Retail Value
Chain Collaboration application.

(ix) the software component known as WebLogic™ developed and licensed by BEA Systems, Inc.
of San Jose, California, to Oracle and imbedded in the Oracle Retail Value Chain Collaboration
application.

(x) the software component known as DataBeacon™ developed and licensed by Cognos
Incorporated of Ottawa, Ontario, Canada, to Oracle and imbedded in the Oracle Retail Value Chain
Collaboration application.

iii

Contents
Preface .. xiii

Audience .. xiii
Related Documents... xiii
Customer Support... xiii
Review Patch Documentation ... xiii
Oracle Retail Documentation on the Oracle Technology Network.............................. xiv
Conventions... xiv

1 Introduction .. 1
Overview..1

Configuration Tools Business Process ..1
Sample Configurations..2

Using the Configuration Tools Online Help ...2
About the Online Help..2
Formatting Conventions ...2
Navigate the Online Help...2
Using Links...3

Know the Configuration Manager..4
Navigating the Configuration Tools ..5

Starting the Program ...5
About the Configuration Tools Windows ..5

2 Configuration Manager ... 7
Overview..7

Projects ..7
Solution ...7
Hierarchy ..7
Data Interface ...8
Styles..8
Solutions..8
Measures ...8
Rule Sets, Rule Groups, and Rules ..8
Workbooks and Worksheets ..9
Wizards ...9
Task List ..9

How RPAS Uses Solution Configurations...10
The RPAS Calculation Engine..10
Aggregation and Spreading ...10
RPAS Functions..11

Right-Click Menus in the Configuration Manager...11
Setting Tools Preferences ...12

v

3 Projects... 15
Working with Projects..15

Overview...15
Create a Project...15
Save Changes to a Project ...17
Using “Save As” to Save a Project Using a Different Name17
Open an Existing Project...18
Open an Existing Project from an Older Version of the Configuration Tools.......18
Close a Project ..20

Hierarchies ...21
Overview...21
The Hierarchy Definition Window..22

Working with Hierarchies ...24
Overview...24
Create a New Hierarchy ...24
Specify Hierarchy Properties..25
Delete a Hierarchy ...28
Copy (Clone) Hierarchies ...28
Working with Position Formats...29
Specifying the Position Format ..29

Working with Dimensions...31
Overview...31
Create a Dimension ...31
Defining Dimension Properties ...32
Delete a Dimension..35
Edit a Dimension..36
Create a Branch in a Hierarchy ..36
Labeled Intersections...37

Data Interface Tool..39
Overview...39
Specify the Data Interface for a Measure..40
Add/Edit Data Interface Properties for a Measure...41
Delete Data Interface Information for a Measure..42

Working with Styles ...42
Overview...42
Create a Style ..44
Remove a Style ...45
Edit a Style ..46

vi

4 Solutions... 47
Working with Solutions ...47

Overview...47
Create a Solution..47
Copy a Solution..48
Rename a Solution ...49
Move a Solution ...50
Delete a Solution ..50

Measures and Components ...51
Measure Manager ..51
Measure Component Design..53
Create a Major Component ..53
Create a Minor Component..55
Defining Measure Component Properties..56
Edit Components ...66
Alerts ...68
Measure Validation within the Measure Manager..69

Working with Measures...70
Overview...70
Realize and Unrealize Measures..73
Rename a Measure...74
Show all Measures ...74
Hide Measures by Component ..74
Hide All Measures ...74
Sort Measures by Property Value..75
Filter Measures by Property Value..75

External Measures...76
Overview...76
Import a Measure...77
Remove an Imported Measure from a Solution ..78

Rule Sets ...79
Overview...79
Create a Rule Set ..79
Delete a Rule Set...80

Rule Groups...81
Overview...81
Create a Rule Group..83
Delete a Rule Group ..85
Copy a Rule Group..85
Measure Validation in the Rule Definition Window ..86

Rules ...87
Overview...87

vii

Create a Rule and Add It to a Rule Group ...87
Add an Existing Rule to a Rule Group ...93
Apply a Rule Pattern to Create New Rules or to Update Existing Rules...............94
Delete a Rule from All Rule Groups..97
Remove a Rule from a Rule Group..98
Edit Properties of a Rule ...99
Rename All Rules in a Rule Group..100
Filter Rules in a Rule Group...101
Reordering Rules in a Rule Group ..102
Auto Generate Load and Commit Rules ..102
Copy Selected Rules to Another Rule Group...103
Find and Replace Measures in the Copied Rules ..105

Expressions and Rules..107
Overview...107
Reorder an Expression in a Rule..108
Edit an Expression in a Rule...108
Delete an Expression from a Rule..110
Add an Expression to a Rule ..110

RPAS Functions, Procedures, Keywords, and Modifiers ..112
Overview...112

Workbooks...112
Overview...112
Overview of Participation Measures...113
Create a Workbook ..114
Configure Extended Measures...114
The Usage and Arguments Properties..115
Edit Workbook Properties ..117
Defining Workbook Properties ..117
Remove a Workbook ...134

Working with the Rule Group Simulator ..135
Overview...135
About the Rule Group Simulator...135
Invoking the Rule Group Simulator..137
Filtering the Measures Table ..138
Changing the Edited Status of Measures..139
Using the Upstream and Downstream Panes ..139
Exiting the Rule Group Simulator ...140

Working with Workbook Tabs..141
Overview...141
Create a Workbook Tab ..142
Edit Workbook Tab Properties...142
Remove a Workbook Tab ...143

Working with Worksheets...144

viii

Overview...144
Create a Worksheet..145
Defining Worksheet Properties..146
Specify Which Measures Appear in a Worksheet ...150
Specify the Sequence of Measures on a Worksheet...151
Edit Worksheet Properties..152
Remove a Worksheet...153

Wizards ..153
Overview...153
Create a Wizard Group ...154
Create a Wizard Page ..155
Edit Wizard Control Properties ...156

5 System Preferences .. 157
Overview..157
Global Domain ..157

Overview...157
Setting Workbench Preferences ...159
Setting Configuration Properties ...161

6 Configuration Utilities ... 163
Overview..163
Configuration Converter..163

Overview...163
Launching the Configuration Converter ..163
Converting a Configuration ...164

Functional Library Manager..165
Overview...165
Launching the Functional Library Manager ..165
Adding a Function Library to Be Validated in the Configuration Tools..............166
Removing a Function Library from Being Validated in the Configuration Tools
..166

Report Generator...166
Overview...166
Generate a Report ..168

A Appendix: Global Domain Technical Information .. 169
Overview..169

B Appendix: Calculation Engine Users Guide ... 171
Overview..171
Measure Definition and Base Intersections ...171

Data Types ..172
Base Intersection ..172
Aggregation and Spreading Types..172

ix

Aggregation ...172
Overview...172
Aggregation Types ..173

Spreading ...175
Introduction..175
Locks and Spreading around Locked and Changed cells175
Spreading Methods..176
Hierarchical Protection Processing..180
The Spreading of Recalc Type Measures ..182

Expressions, Rules, and Rule Groups ..183
Introduction..183
Expressions ...183
Rules ..183
Rule Groups..184

The Calculation Cycle...186
Introduction..186
Protection Processing ..187
Cycle Groups ..190

Synchronized Measures ...191
Elapsed Period Locking ...193

Elapsed Periods and Spreading ...193
Non-Conforming Expressions...194

Introduction..194
Handling of Non-conforming Expressions ..194

C Appendix: Rules Function Reference Guide .. 197
Overview..197

Functions...197
Procedures ..197
Modifiers ...198
Keywords..198
Syntax Conventions...198
Specification of Hierarchy, Dimension, or Position ..199
Function Inverses...199
Functions with Multiple Results..199

Special Handling for Functions...200
Error Handling...200

Non-Conforming Measures...202
Definition ..202

Functional Keywords ...204
Overview...204
Calendar Index Functional Keywords ..204
Session Keywords ..205

x

Calendar Hierarchical Date Keywords ...206
Modifiers ..207

Overview...207
master ..207
aggtype..207
level..208
old ..209

Description of Functions ..211
Calendar Index Functions...211
Index and Position Functions...215
Forecast Procedure ..218
Time Series Functions..222
Hierarchical Functions and Procedures..231
Normalization and Resizing Functions ..245
Other Functions and Procedures ...246
String Functions ...261
Math Functions ..262

D Appendix: Aggregation and Spread Types... 265
Aggregation Types..265
Spread Types ...267
Arithmetic Operators..267

Unary Operators ..267
Binary Operators..268

xi

Preface
Oracle Retail Configuration Guides are designed so that you can view and understand
the application’s “behind-the-scenes” processing, including such information as the
following:
 Key system administration configuration settings
 Technical architecture
 Functional integration dataflow across the enterprise
 Batch processing

Audience
This document is intended for the users and administrators of Oracle Retail Predictive
Application Server. This may include merchandisers, buyers, and business analysts.

Related Documents
For more information, see the following documents in the Oracle Retail Predictive
Application Server Release 13.0.1 documentation set:
 Oracle Retail Predictive Application Server Release Notes
 Oracle Retail Predictive Application Server Installation Guide
 Oracle Retail Predictive Application Server Administration Guide
 Oracle Retail Predictive Application Server User Guide

Customer Support
 https://metalink.oracle.com

When contacting Customer Support, please provide:
 Product version and program/module name.
 Functional and technical description of the problem (include business impact).
 Detailed step-by-step instructions to recreate.
 Exact error message received.
 Screen shots of each step you take.

Review Patch Documentation
For a base release (".0" release, such as 13.0), Oracle Retail strongly recommends that you
read all patch documentation before you begin installation procedures. Patch
documentation can contain critical information related to the base release, based on new
information and code changes that have been made since the base release.

xiii

https://metalink.oracle.com/

Oracle Retail Documentation on the Oracle Technology Network
In addition to being packaged with each product release (on the base or patch level), all
Oracle Retail documentation is available on the following Web site:
http://www.oracle.com/technology/documentation/oracle_retail.html
Documentation should be available on this Web site within a month after a product
release. Note that documentation is always available with the packaged code on the
release date.

Conventions
Navigate: This is a navigate statement. It tells you how to get to the start of the procedure
and ends with a screen shot of the starting point and the statement “the Window Name
window opens.”

Note: This is a note. It is used to call out information that is
important, but not necessarily part of the procedure.

This is a code sample
 It is used to display examples of code

A hyperlink appears like this.

xiv

http://www.oracle.com/technology/documentation/oracle_retail.html

1
Introduction

Overview
The Oracle Retail Predictive Application Server (RPAS) Configuration Tools provide a
flexible means to configure and build RPAS-based applications with retailer-specific
business parameters. The configuration tools provide a streamlined, user-friendly
interface to leverage RPAS functionality. Once a configuration is created, an installer
script is used to build an RPAS domain.
The Configuration Tools consist of an integrated set of task-specific configuration aids
that are used to configure a solution template or to modify an existing solution template.
RPAS functionality is exposed to the Configuration Tools via Application Programming
Interfaces (APIs).
A configuration is typically created and maintained by an application administrator or
solution expert. Details of the configuration are stored locally on the administrator’s PC
or on the network. Once the configuration is complete, the administrator uses the
configuration to create a new domain or update an existing domain.
Users of the configured solution will access the RPAS domain by using the RPAS Client
that is installed on their machines. The domain accessed represents the business process
and environment that was configured in the solution together with the appropriate data.
Once the domain is created, administrative RPAS processes (such as hierarchy
maintenance and user administration) are accomplished by an RPAS administrator using
the utilities on the server.

Note: For more information on RPAS administration and
installation, refer to the RPAS Administration Guide and the
RPAS Installation Guide.

Configuration Tools Business Process
 1. Set up system properties

2. Create a project
3. Create solutions
4. Configure hierarchies and dimensions
5. Configure measures and measure components
6. Configure rules sets, rule groups, and rules
7. Configure workbooks, workbook tabs, and worksheets
8. Configure wizards
9. Define interfaces used to import data
10. Build an RPAS domain

Introduction 1

Using the Configuration Tools Online Help

Sample Configurations
Some examples in this document use the sample configuration, which is delivered with
the RPAS platform and can be installed along with the RPAS software and Configuration
Tools. The sample configuration may not match every illustration because RPAS
software and Configuration Tools software versions might vary between users. The
examples are meant to provide a context to the reader. For information about the sample
configuration provided with the RPAS platform, refer to the RPAS Installation Guide.

Using the Configuration Tools Online Help
This Help site provides step-by-step procedures and other information about using RPAS
Configuration Tools. We have implemented some tools to assist your navigation of this
Help site. This page explains these tools.

About the Online Help
The online Help system uses JavaScript for some of its functionality. Make sure you have
enabled JavaScript for your Web browser. Refer to the online Help in your Web browser
for instructions on enabling JavaScript.

Formatting Conventions
This section provides information about the documentation conventions used in the
online Help.

Note: Notes are displayed using this convention. Notes
contain additional information about the process or
procedure that you are performing.

Navigate: The navigation sections of a procedure provide information about how to
access the window that is the starting point of a procedure.

Navigate the Online Help
This Help site provides several ways for you to navigate to your topic.

Use the Table of Contents
The table of contents is the most common way that you will navigate to your topic.

 1. Select the Table of Contents tab to display the table of contents on the left side of
your screen.

2. Select the + sign in front of a book to expand it and view the topics.
3. Select a topic from the table of contents to view it.

Using the Search Feature
Use the search feature to explore the contents of your topics and find matches to queries
that you define. There are some basic rules for making queries in full-text searches.
 You can type your search in uppercase or lowercase characters. Searches are not case

sensitive.
 You can search for any combination of letters (a-z) and numbers (0-9).
 Punctuation marks such as the period, colon, semicolon, comma, and hyphen are

ignored during a search.

2 Oracle Retail Predictive Application Server

Using the Configuration Tools Online Help

 Group the elements of your search using double quotes or parentheses to set apart
each element.

 You cannot search for quotation marks.
Use the following procedure to search the online Help:

 1. Select the Search tab to display the search feature on the left side of your screen.
2. In the Search field, enter the word or words that you want to find.
3. Press the Enter key. Topics that match your search criteria display in the left pane.
4. Select a topic to view it.

Using the Business Process
The business process typically provides links to procedures that you need to perform to
complete a task. You can select any link in the business process to view that topic.

Using the Index
Some Help sites may have an index. The index provides another way for you to navigate
to information. There are two ways to use the index to search.

Browse the Index Entries
 1. Select the Index tab. Words and phrases that are listed in the index display in

alphabetical order.
2. Scroll up or down to find a word or phrase.
3. Select the word or phrase to view additional information.

Search the Index
 1. Select the Index tab. Words and phrases that are listed in the index display in

alphabetical order.
2. In the keyword field, type the word or phrase. Words and phrases that match your

entry are displayed.
3. Select the word or phrase to view additional information.

Using Links
There may be two different types of links in this online Help. Select the link type below
to learn more about it.
Some topics contain hyperlinks that open a new page.
Many topics have information that appears using a drop-down text link.
Drop-down text typically provides additional steps or sub-steps for a process or
procedure and displays under the linked word or phrase.
 Select the link once to view the text.
 Select the link again to hide the text.

Introduction 3

Know the Configuration Manager

Using Hyperlinks
Hyperlinks bring you to another page in the online Help or to a Web page on the
Internet. There are two things to remember when using hyperlinks:
 Hyperlinks always display a brief description of where the hyperlink takes you.
 If your browser controls are turned off, follow these steps to return to the previous

page:
 1. Display the shortcut menu by perform one of the following actions:

 Right-click with your mouse.
 Press the Application key.

2. From the shortcut menu, select Back. The previous page appears.

Know the Configuration Manager
As a new configuration is created, you assign a name to the configuration, the project,
and the solution. You can drill down through the configuration to work in specific areas.
The icons in the Configuration Manager help you navigate the Configuration Tools. If an

area of the configuration has been modified, its icon will contain a modification flag
icon. The configuration must be saved if the modifications are to be retained.

Icon Name Window Displayed in the Workspace

 Project
None

 Hierarchies Hierarchy Definition window

 Data Interface Data Interface Manager window

 Styles Style Definition Window

 Solution None

 Measures Measure Manager window

 Rules Rule Definition window

 Workbooks Workbook Designer window

 Wizards Wizard Designer window

4 Oracle Retail Predictive Application Server

Navigating the Configuration Tools

Navigating the Configuration Tools

Starting the Program
Once the Configuration Tools are installed, it can be accessed from the following default
location by selecting Start – Program Files – Oracle – RPAS – Configuration Tools.
The executable file (ConfigTools.exe) can also be used to start the program. It is accessed
in the following default location:
C:\Oracle\RPAS\ConfigTools\bin\ConfigTools.exe
Shortcuts may be created here and placed wherever they provide convenient access.

About the Configuration Tools Windows
All tasks are performed through the RPAS Configuration Tools window, which provides
the following features:
 Drop-down menus
 Toolbars
 Active buttons
 Right-click functionality

Configuration Tools Window

Introduction 5

Navigating the Configuration Tools

The primary elements in the application window are described in the table below.

Element Purpose

Title Bar (A) Displays the product name.

 The three buttons at the far right on the title bar allow for the
application window to be minimized, restored, maximized, and
closed.

Menu Bar (B) Contains the menus that are used in the Configuration Tools.

 Each menu contains a set of commands that allow you to operate the
Configuration Tools.

Configuration
Manager (C)

 Displays information about configurations, projects, and solutions
that are currently in use.

 Configuration information is not displayed until a configuration is
opened.

Workspace (D) As different configuration elements are selected in the Configuration
Manager, the related windows are displayed in the workspace.

Task List (E) Displays errors and warnings within the configuration.

6 Oracle Retail Predictive Application Server

2
Configuration Manager

Overview
The Configuration Manager is the starting point for creating a new configuration or for
opening an existing configuration. It provides a high-level view of all the components
that are necessary to configure an RPAS application, and it is used to navigate to the
various tools that are used to configure those components.
The configuration manager is the core of the RPAS Configuration Tools, and it provides
an overall view of the configuration components. Each configuration contains one project
and one or more solutions.

Projects
 Each project represents a single, logical RPAS domain although it may become several

physical domains in a 'global domain' environment. The hierarchies, dimensions, and
styles are defined within a project and are available for use within all solutions in the
project. The RPAS Configuration Tools allows for multiple projects to be viewed and
modified (the limit is 3 projects).

Solution
 Each solution represents a grouping of measures, rules, and workbooks to support a

business process as defined by the retailer. A project may have multiple solutions and a
solution may use a subset of the hierarchies and dimensions defined within the project.

Hierarchy
 The user may access the Hierarchy Definitions window by either selecting the icon or

Hierarchy from the Configuration Manager. For each project, a single or multiple
hierarchies may be created and dimensions are defined within each hierarchy.
Hierarchies are the structures used by an organization to describe the relationships that
exist between the dimensions. The following hierarchies are automatically created when
a new project is defined:
 Calendar
 Product
 Location

Users may create and define the individual dimensions for these hierarchies and for any
additional hierarchies that may be desired.

Note: The RPAS (system) names for the default hierarchies
(CLND, PROD, LOC, and ADMU) cannot be changed, but
the default labels (Calendar, Product, and Location) can be
changed. The ADMU label cannot be changed.

Configuration Manager 7

Overview

Data Interface
 The user may access the Data Interface Manager by either selecting the icon or Data

Interface from the Configuration Manager. The data interface tool is used to define the
format of data interface files and provide some data interface parameters, such as
directions to RPAS on how to deal with data that is sourced below its base intersection.
The tool sets measure attributes that are referenced when loading measure data into the
domain. The information entered into the data interface will be referenced when the
loadmeasure utility is used to load data for a measure.

Styles
 The user may access the Style Definition window by either selecting the icon or Styles

form the Configuration Manager. The style tool is used to define styles that specify how
the data for a measure is to be displayed within the RPAS Client. Styles consist of a
number of attributes; such as text font, size, and color as well as specifications of
precision, alignment of text within the cell. These styles may then be assigned to
measures within the Measure and Workbook Tools.

Solutions
 A solution corresponds to an application configuration (for example, Financial

Planning or Item Planning). For each solution, the following are configured:
 Measures
 Rule sets / rule groups / rules
 Workbooks / worksheets
 Wizards (optional)

Measures
 Measures (multidimensional variables) are any item of data that can be represented on

a grid in a worksheet. Measures are the data points used in the retailer’s business
process.

Rule Sets, Rule Groups, and Rules
 Rules are collections of expressions (the basis of all calculations) that describe the

relationships between measures. They are evaluated by the RPAS calculation engine
during a calculation. Rules can consist of multiple expressions as the following example
represents:
 Expression 1: ReceiptUnits = ReceiptValue / ReceiptPrice
 Expression 2: ReceiptValue = ReceiptUnits * ReceiptPrice
 Expression 3: ReceiptPrice = ReceiptValue / ReceiptUnits

The collection of expressions represents a rule. These three expressions state the
relationship between ReceiptUnits, ReceiptValue, and ReceiptPrice. Each expression
solves for a different measure.
A rule group is a collection of rules that are treated as a unit by the calculation engine.
The rules in the rule group must be considered together to satisfy the calculation
requirements for a specific business process. The sequence of rules in a rule group
determines the calculation sequence unless the sequence is forced.
A rule set is a collection of rule groups that is used for organizational purposes by the
Configuration Tools.

8 Oracle Retail Predictive Application Server

Overview

Workbooks and Worksheets
 A workbook is the multidimensional framework that is used to perform specific

business functions, such as creating a merchandise plan and reviewing available data.
Workbooks are easily viewed and manipulated.
A workbook can contain any number of multidimensional spreadsheets (called
worksheets) to present data. Measures and rules are used to define and calculate the
measure data. All of these components work together to facilitate the viewing and
analysis of business functions. The Configuration Tools allow you to configure workbook
templates incorporating these various components.

Wizards
 A wizard is a feature that guides the user through the process of building a new

workbook. A wizard displays successive dialogs that require the user to answer a
sequence of questions or enter information regarding the content of the workbook.
Responses to these questions are used to format and populate the workbook. The layout
of these wizard dialogues could be defined using the wizard tool. However, each
workbook may use a standard wizard configuration, eliminating the need for you to
access the Wizard Designer.
The main purpose of the wizard is to allow the end user to make choices regarding the
scope of the workbook. For example, the first wizard might ask the user to select the
SKUs to include in the workbook. The second might ask the user to select the stores to
include in the workbook, and the third wizard might ask the user to select the dates to
include in the workbook. At the end of the series of wizards, a workbook will be created
that has data for the SKUs, stores, and dates that the user selected.

Task List
The Task List provides a centralized view of errors and warnings that are issued as a
result of information input by the user. Use the information in the Task List as a guide for
correcting errors or omissions in the project.
The Task List title bar serves as a status indicator. If the title Task List is displayed in red,
the Task List contains items that need the user’s attention. If there are no errors or
warnings, the title will be displayed in black.
The title bar can also be used to show or hide the Task List. If the Task List is visible, click
anywhere on the title bar to hide the list and move the title bar to the bottom of the
window. If it is hidden, click anywhere on the title bar to display the Task List. The
amount of space used by the task list sub-pane can also be changed by dragging the
separator above the task list title bar.
The Task List displays the following columns:

 The first column indicates the nature of the Task List item. A indicates an error. A
 indicates a warning.

 The second column identifies the configuration element involved.
 The third column provides a description of the issue.

Errors typically indicate definite validation problems, which are shown in red in the tool
where the configuration setting is made. When the user fixes the erroneous condition, the
Task List automatically removes the error listing for that condition. Warnings indicate
the possibility of a problem occurring, and the user is advised to inspect the suspected
element to ensure that everything is in order. Since warnings are more general than
errors the Task List will not remove them automatically. The user is provided with
options to remove errors and warnings via a right-click menu.

Configuration Manager 9

How RPAS Uses Solution Configurations

How RPAS Uses Solution Configurations

The RPAS Calculation Engine
The RPAS calculation engine is a very powerful and flexible engine that is built to
support On-Line Analytical Processing (OLAP) type calculations against a multi-
dimensional model.
In the OLAP model individual pieces of data (called cells) correspond to a single position
in one or more hierarchies or dimensions. Cells typically reference:
 A measure
 A calendar or time hierarchy
 Other hierarchies, such as product and location

The measure is fundamentally different to the other hierarchies, because measures
represent the events or measurements that are being recorded. The positions in the other
hierarchies provide a context for the measurement: where, when, what, and so on.
Measures relate to one another through rules and expressions. Positions in all the other
hierarchies relate to each other through hierarchical relationships.

Aggregation and Spreading
The RPAS calculation engine is designed to be robust and extensible, but in complete
control of the calculation process. It enforces integrity of the data by ensuring that all
known relationships between cells are always enforced. Much of the logic of the
processing of rules and rule groups depends on this basic principal. RPAS supports two
different forms of relationships between cells:
 Hierarchical relationships that require aggregation and spreading
 Measure relationships that require rules and expressions

Aggregation and spreading are basic capabilities of the engine that do not require coding
by the implementer, other than the selection of aggregation and spreading types to use
for a measure. Hierarchical relationships, such as weeks rolling up to months or stores
rolling up to regions, require the aggregation of data values from lower levels in a
hierarchy to higher levels by using a variety of methods as appropriate to the measure.
To enable such data to be manipulated at higher levels, RPAS supports spreading the
changes, which also uses a variety of methods.
The inherent relationships between measures can be modeled through a rich rule and
expression syntax. Modeling these relationships takes most of the effort in configuring an
application model.

10 Oracle Retail Predictive Application Server

Right-Click Menus in the Configuration Manager

RPAS Functions
 RPAS Functions are mechanisms for performing operations within an expression that

are controlled and executed by the calculation engine.
 Most functions have only one output.
 The calculation engine controls and executes the evaluation of a function.
 Functions may be used in long expressions with other functions and keywords.
 The data that can be referenced is limited to the scope of the workbook.

See Appendix: Calculation Engine Users Guide for a
comprehensive definition of the RPAS calculation engine
and how it is used when configuring a solution.

See Appendix: Rules Function Reference Guide for details
about standard RPAS functions.

Right-Click Menus in the Configuration Manager
The right-click menu may be accessed by right-clicking in any location within the
Configuration Manager. Each available selection from the right-click menu is described
in the following sections.

Example: Right-click Menu

Configuration Manager 11

Setting Tools Preferences

Setting Tools Preferences
Settings made here will apply to all configuration projects created or viewed with the
tool.

Navigate: From the File menu, select Tools Preferences. The Workbench Preferences
window opens.

Workbench Preference Window

 1. Select the General tab.
 Enable Measure Content Validation – Activating this checkbox enables the

immediate validation of measure properties when configuration measure
information is created or modified. This process can impact the performance of
the RPAS Configuration Tools. If this box is not checked, the manual Measure
Content Validation icon is enabled on the Rule Definition toolbar. See the Rule
Definition Tool for details.

 Save window position and size on exit – Selecting this option opens the RPAS
Configuration Tools in the same view state (full or minimized view) in which the
configuration was lasted viewed. If the application is exited in a minimized view,
the size of the window is also maintained when the RPAS Configuration Tools is
re-launched.

 Most Recently used workspaces to show – Use the up and down arrows to
specify the number of configurations to be displayed in the Most Recently Used
list displayed in the File menu dialog. This list allows you to view and select
recently viewed configuration.

12 Oracle Retail Predictive Application Server

Setting Tools Preferences

2. Select the Measure Manager Options tab.

Workbook Preferences - Measure Tool Options

 Number of Measures/Page – Select the number of measures to display per page
in the Measure Manager Tool. The default value is 500.

 Display Measures by – Displays measures either by their name or label in
various locations of the Tools. The default setting is name.

 Display Measure Components by – Display measure components (in the
Measure Manager tool) either by name or by label. The default setting is label.

3. Click OK to save any changes and close the window.

Configuration Manager 13

3
Projects

Working with Projects

Overview
A project is used to configure the structure of a domain. Each project represents a single,
logical RPAS domain although it may become several physical domains in a "global
domain" environment. The hierarchies, dimensions, and styles are defined within a
project and are available for use within all solutions in a given project.

Note: A solution can use a subset of the hierarchies and
dimensions defined within the project. Within a project, you
can additionally define certain properties (which are part of
the Data Interface Tool) that describe how measures will be
loaded into the domain.

Hierarchies are “domain-specific,” which means that they are defined at the project
(domain) level and can be used by all solutions that are defined within that project
(domain). There is no requirement that each solution use all of the hierarchies defined in
the project.
For example, a project may contain five hierarchies and three solutions, but each solution
might only use four of those hierarchies in the base intersections of its measures, so even
though five hierarchies exist, each solution may not use all of them.

Create a Project
Navigate: From the File menu, select New – Project, or right-click in the Configuration
Manager and select New – Project. The New dialog box appears.

Projects 15

Working with Projects

New Dialog Box

 1. In the Configuration field, enter the name of the configuration/project.
The Use Defaults option under the Configuration field points the user to a default
path for storing the configuration. Deselect the Use Defaults option to enable the
user to navigate to the appropriate directory using the Browse button.

2. Select the default language for the domain in which this configuration will be used to
create. The default is English.

3. Select the options for Global Domain and MultiLanguage as necessary. The possible
settings for these boxes are as follows:
 Global Domain – Selecting this option overrides the default setting of “Simple

Domain.” A Global Domain allows the user to create workbooks from multiple
domains and to administer and update multiple domains from a single master
domain. Whether a domain should be Global is a technical decision that should
be made with the consultation of Oracle Services. This setting cannot be changed
after the domain is built.

 MultiLanguage – If this option is selected the resulting domain will be enabled
to support multiple languages. Multi-lingual domains allow for most data
elements (measures, labels, and so on) in an RPAS domain to be translated into
other languages. More information on Multi Language support can be found in
the "Translation Administration" chapter of the RPAS Administration Guide.

Note: The Global Domain and Multi-Language settings must
be defined before the domain is built. Changes to the Global
Domain and MultiLanguage properties are ignored when
modifying the configuration of an existing domain.

4. Click OK to save any changes and close the window.

16 Oracle Retail Predictive Application Server

Working with Projects

Save Changes to a Project
Navigate: From the File menu, select Save, or right-click in the Configuration Manager
window and select Save. This will save the project under the same name that was used to
create it and within the same directory.

Using “Save As” to Save a Project Using a Different Name
Navigate: From the File menu, select Save As, or right-click in the Configuration
Manager window and select Save As. The Save As dialog appears.

Save As Dialog Box

 1. In the Configuration field, enter the new project name.
2. If Use Defaults is selected, click OK to save the project to the path displayed in the

Directory field. If Use Defaults is selected and you want to save the project to a
different location, deselect Use Defaults and either enter the appropriate path in the
Directory field, or click Browse to navigate to the appropriate location where you
want the project saved.

3. Click OK to save the project.

Projects 17

Working with Projects

Open an Existing Project
Navigate: From the File menu, select Open, or right-click in the Configuration Manager
window and select Open. The Open dialog box appears.

 1. Choose one of the following methods:
 Browse to the directory where your project is saved. Select the file whose name is

the same as the project with an ".xml" extension and click Open. The project
appears in the Configuration Manager.

Open Dialog Box

 To open a project that was recently opened, select the project from the recently
used projects list in the File menu. These projects appear as a numbered list
where the most recently used project is first in the list. Select the project, and it
will open in the Configuration Manager. The number of projects that appears in
the most recently used list may be changed from the Workbench Preferences
dialog box, which is accessed by selecting Tools Preferences from the File menu.

Open an Existing Project from an Older Version of the Configuration Tools
If you attempt to open a project saved in a previous version of the RPAS Configuration
Tools, a dialog box may appear which allows you to convert the configuration to the new
version.

Navigate: From the File menu or right-click from the Configuration Manager, select
Open. The Open dialog box appears.

 1. Choose one of the following methods:
a. Browse to the directory where your project is saved. Select the file whose name is

the same as the project with an XML file extension and click Open. The project
opens in the Configuration Manager.

b. To open a project that was recently opened, select the project from the recently
used projects list in the File menu. These projects will be in a numbered list

18 Oracle Retail Predictive Application Server

Working with Projects

where the most recently used project is first in the list. Click on the project, and it
opens in the configuration manager. The number of projects that appears in the
most recently used list may be changed by using the Tools Preferences option of
the File menu.
A message box appears:

Convert This Configuration Message Box

2. To convert at a later time without currently viewing or modifying the project, click
No. Click Yes to convert the project so it can be viewed or modified. If Yes is
selected, the Choose a backup location message box appears.

Choose a Backup Location Message Box

3. Click OK. The Open dialog box appears and prompts you for a location to store a
backup of the project that is to be converted.

Open Dialog for Saving Configuration Backup

Projects 19

Working with Projects

Note: You may either rename the original configuration that
is to be backed up or specify a new directory to store the
original.

4. Select the directory to store the backup, and click Open. The conversion process
begins. If the conversion successfully completes the following message will be
displayed. Select OK to continue and view the project.

Successful Conversion Dialog Box

An error message appears if this process fails. The original project will remain
untouched and it will not open.

Close a Project
Navigate: From the File menu or right-click from the Configuration Manager, select
Close. If no changes were made to the Project, the project will be closed. If changes were
made, the Save dialog box appears.

Perform one of the following options:
 Click Yes to save the changes made to the project and close it.
 Click No to discard the changes made to the project since the last save and close it.
 Click Cancel to return to the configuration manager without closing the project.

20 Oracle Retail Predictive Application Server

Hierarchies

Hierarchies

Overview
A hierarchy is a top-to-bottom set up of parent-child relationships between elements of
the same type. Hierarchies provide a means to define relationships between dimensions
(aggregates, roll-ups, and alternate roll-ups) and groups belonging to the same entity (for
example; Time = years, months, weeks, and days).
The following hierarchies are automatically created and cannot be deleted within the
Configuration Tools:
 CLND (Calendar)
 PROD (Product)
 LOC (Location)
 ADMU (ADMU)

These hierarchies are required by RPAS-based solutions and cannot be removed, but
additional hierarchies can be added to support the required business process.
Hierarchies define the path of data aggregation and spreading. In a workbook, you can
view data at any required level of detail by drilling down or rolling up through
dimensions in the hierarchy.

Note: ADMU is not a configurable hierarchy, so no one can
create or modify it. ADMU is built by RPAS, and the
configuration tools make it available for use in
configurations. ADMU is the user hierarchy, and it exists to
allow a measure to use the dimension "user" as part of its
base intersection.

You can create and define dimensions for each of these hierarchies and for any additional
hierarchies that are added to the project.

Note: The names for the automatically generated hierarchies
(CLND, PROD, LOC, and ADMU) cannot be changed, but
the default user labels for CLND, PROD, and LOC
(Calendar, Product, and Location) can be changed. The user
label of ADMU cannot be changed. The CLND and ADMU
hierarchies must exist in all domains, but PROD and LOC
are not mandatory. If there are no dimensions created for
these hierarchies, the hierarchies will not be created in the
resulting domain.

RPAS does not impose any limit on the number of
hierarchies that can be configured in a Project.

Projects 21

Hierarchies

The Hierarchy Definition Window
The Hierarchy Definition window allows you to define and construct hierarchies,
dimensions for each hierarchy, and the relationships between dimensions. It also offers
the following features:
 Provides a visual representation of a hierarchy and its dimensions
 Provides a means to define the hierarchy data load file
 Allows existing hierarchies/dimensions to be reused in a new solution in the same

project
The following diagram represents a typical structure of an organization's product
hierarchy.

Example of Product Hierarchy

In this example, the Style dimension has two parents: Subclass and Supplier. Each
position in the Style dimension will have a parent position in both the Subclass and
Supplier dimension.

22 Oracle Retail Predictive Application Server

Hierarchies

About the Hierarchy Definition Window
To access the Hierarchy Definition window, select Hierarchies from the Configuration
Manager navigation tree. The Hierarchy Definition window appears in the workspace.

Example of Hierarchy Definition Window

The Hierarchy Definition window contains the following elements:
 The Hierarchy Definition toolbar - This toolbar displays options that can be

performed. Buttons are enabled or disabled based on the item selected on screen.
 The Hierarchy navigation tree - The navigation tree provides a visual representation

of your hierarchies. Bold elements at the top of the tree structure represent the
hierarchies. The items listed below each bolded hierarchy are the dimensions defined
in that hierarchy. Click the plus sign (+) or minus sign (-) to expand the tree. The
Hierarchy tree is also used to select a hierarchy or hierarchy dimension. Once an item
is selected, you can modify its properties from the Dimension region in the
Hierarchy Definition window. The Hierarchy navigation tree also provides a context
menu when you right-click a tree item. The available options in the context menu
depend on whether a hierarchy or dimension is selected. This context menu can be
used to create a new hierarchy or dimension at the selected level. It also allows you
to rename the selected item. When an item is renamed from the tree, it is the Tools
Name that is being modified, which appears in the Dimensions region of the
window.

 The Hierarchies region - This area displays the defined hierarchies and their
properties.

 The Dimensions region - This area contains hierarchy tabs and allows you to define
the dimension properties for your hierarchies. The tabs represent the hierarchies
defined. Select the appropriate hierarchy tab to display its dimensions and modify
dimension properties.

Projects 23

Working with Hierarchies

Gray fields in the Hierarchy Definition window indicate fields that cannot be modified.
Any elements that appear in red indicate problems or issues, which should also appear in
the Task List pane along with a brief description of the issues identified.

Working with Hierarchies

Overview
When a new project is created, following default hierarchies are automatically created:
Calendar (CLND), Product (PROD), Location (LOC), and User (ADMU). Additional
hierarchies and dimensions can be created to meet your business needs.

Create a New Hierarchy
Navigate: Select New Hierarchy from Hierarchy Definition toolbar, or from the
Hierarchy Definition tree, right-click and select New Hierarchy from the menu.

Note: If multiple projects are open, make sure you are
working from the desired project before adding a new
hierarchy.

Hierarchy Definition Window

 1. To change the Tools Name of the newly created hierarchy in the Hierarchy
navigation tree of the Hierarchy Definition window, choose one of the following
methods:
 Right-click on the hierarchy name, and select Rename.
 Double-click the hierarchy name.

2. Enter the new name.

24 Oracle Retail Predictive Application Server

Working with Hierarchies

Note: The RPAS Name can only be up to four (4) characters
long.

3. Press Enter or click outside the hierarchy name.

Specify Hierarchy Properties
Hierarchy properties are defined from the Hierarchies region on the Hierarchy Definition
window.

Hierarchy Properties Window

From this location you can modify the following hierarchy properties:
 Tools Name – The name of the hierarchy that appears within the RPAS

Configuration Tools. This field is less restrictive than the RPAS Name field, allowing
you to view and select a meaningful label for hierarchies and dimensions while
working with the configuration rather than using the RPAS Name.

 RPAS Name – The RPAS internal name of the hierarchy. This hierarchy name is used
only by RPAS (not the user) within the domain.

Note: The RPAS Name of a hierarchy cannot be edited if it is
shaded gray; however, you can change other properties,
such as User Label.

CLND is always the innermost dimension and ADMU is
always the outermost dimension.

The order of the other hierarchies (PROD, LOC, etc.) can be
changed.

 User Label – The hierarchy label that is displayed to RPAS users within the domain.
 Purge Age – The purge age determines when a position and its corresponding

measure data are removed from a domain. Specifically, it represents the number of
days before the data is purged from the last time the position was included in the
hierarchy input file that is loaded with the loadHier utility during a batch run (most
commonly on a nightly or weekly basis). Setting this value to zero means that a
position and all of its data will be immediately purged if it is not included in the
hierarchy file.

Projects 25

Working with Hierarchies

Note: The value set in this field serves as the default value to
use when loading the corresponding hierarchy. This value
can be overwritten by one of the arguments of the loadHier
utility each time the utility is called. See the RPAS
Administration Guide for more information on the loadHier
utility.

Example 1: A purge age of “0” will purge positions the first night they are not in the
input file.
Example 2: A purge age of “1000” will purge the positions the 1000th night after they
are last seen on the input file.

 Order – Hierarchy order determines the ordering of dimension fields in the physical
storage of data in the RPAS domain. This ordering is the traversal order of data for
calculations, which relates to how RPAS iterates over data when performing
calculations. Data in the domain is stored in multi-dimensional arrays with each
dimension belonging to a different hierarchy.
To change the order of a hierarchy, select the hierarchy from the Hierarchies region
or from the Hierarchy navigation tree and use the up/down buttons located on the
Hierarchy Definition toolbar to move the hierarchy to the desired location.

Hierarchy Definition Toolbar

The hierarchy can also be arranged by dragging and dropping in the Hierarchy
navigation tree. The order numbers are automatically changed and generated
regardless of the utilized reordering technique.
For performance reasons, the Calendar hierarchy (and therefore all of its dimensions)
is always the “innermost” dimension and defaults to an uneditable number of 999.
The ordering of any hierarchy can be changed with the exception of Calendar
(CLND). The lower the order number, the nearer the hierarchy is to the innermost
dimension.
Consider the following example for the Calendar, Product, and Location hierarchies:
CLND order = 999
PROD order = 1001
LOC order = 1002
Two products: P1 and P2
Two locations: L1 and L2
Two calendar periods: C1 and C2
The sequence of physically storing and iterating over the data with calendar as the
innermost dimension and location as the outermost dimension would be:
L1/P1/C1
L1/P1/C2
L1/P2/C1
L1/P2/C2
L2/P1/C1

26 Oracle Retail Predictive Application Server

Working with Hierarchies

L2/P1/C2
L2/P2/C1
L2/P2/C2
With Calendar being the innermost dimension, data is first processed for all positions
in the Calendar hierarchy and for the first position of the other hierarchies. In this
example; data would be processed for all calendar positions for the first product and
first location. This is followed by all calendar positions for the second product and
first location, and so on.
It is recommended that retailers order their hierarchies with Calendar as the
innermost dimension (required), followed by other hierarchies in their order of
importance/traversal – most commonly Product, Location, and then other
hierarchies (if applicable).

Note: Certain RPAS-based solutions (such as Advanced
Inventory Planning and Demand Forecasting) have
additional hierarchies that are in a pre-defined order that
should not be changed.

The Order column also indicates the order in which the hierarchy information is
expected in the file used for measure data loading purposes.

Note: The values “1000” or “1020” are not used as a
hierarchy order as they are used internally by RPAS.

CLND is always the innermost dimension and ADMU is
always the outermost dimension.

The order of the other hierarchies (PROD, LOC, etc.) can be
changed.

 Security Dimension – Selecting a Security Dimension for a hierarchy enables
position-level security in the domain for the corresponding hierarchy. Any
dimension along any hierarchy except the Calendar hierarchy is valid. For example,
if the security dimension for the product hierarchy is set to “Dept” (Department
Level Security); within the domain, access to departments can be granted or denied
by the administrator for individual users, user groups, or all users. If position-level
security is to be enabled in RPAS, select the security level. Refer to the RPAS
Administration Guide for additional information about position-level security.

Projects 27

Working with Hierarchies

Delete a Hierarchy

Navigate: In the Configuration Manager, select Project – Hierarchies. The
Hierarchy Definition window opens in the workspace.

 1. Select the hierarchy to delete.
2. Choose one of the following methods:

 Click the Delete button. The hierarchy is removed.
 Press the Delete key from your keyboard.
 Use the right-click menu to select Remove Selected Item.

Note: The CLND, PROD, LOC, or ADMU hierarchies
CANNOT be deleted from the configuration.

Copy (Clone) Hierarchies
The RPAS Configuration Tools allows for the hierarchies of an existing project to be
copied into a new or existing project.

Navigate: In the Configuration Manager, select Project – Hierarchies. The
Hierarchy Definition window opens in the workspace.

 1. Right-click Hierarchies in the Configuration Manager, and select Copy. The Clone
dialog box appears.

Clone Dialog Box

2. Select the destination project for the hierarchies to be copied.
3. Click Finish. The hierarchies in the selected project are overwritten.

28 Oracle Retail Predictive Application Server

Working with Hierarchies

Note: Each project has a single set of hierarchies. Hierarchies
can only be copied from one project to another, thus
multiple projects must be open in the RPAS Configuration
Tools before the copy process is initiated.

Working with Position Formats
The Position Format is the date/time format used for the names of positions in the root
dimension of the CLND (Calendar) hierarchy (typically "day"). Positions in the root
dimension of the CLND hierarchy need names in a special format for RPAS to map
abstract positions to actual dates and times in order to support time-aware calculations.

Note: See "Appendix B - Calculation Engine Users Guide"
and "Appendix C - Rules Function Reference Guide" for
more information.

Specifying the Position Format

Navigate: In the Configuration Manager, select Project – Hierarchies. The
Hierarchy Definition window opens in the workspace.

Example of Position Format in Hierarchy Definition Window

The Position Format field is located in the upper right hand side of the Hierarchy
Definition toolbar.

This is a combo box that is populated with some of the more commonly used formats.
However, you may also type directly in the combo box if a different format is desired.
Specify the position format as a concatenated sequence of strings and arguments using
the appropriate syntax. Refer to "Position Format Syntax" for more information.

Projects 29

Working with Hierarchies

Position Format Syntax
The Position Format field uses the following syntax conventions:
 %YEAR – Four digit Gregorian calendar year.
 %YR – Two east significant digits of the year (for example, 05 is 2005).
 %MO – Two digit representation of month (for example, 01 is January).
 %MON – Three character abbreviation of the month name.
 %MONTH – Varying length full name of the month, displays up to nine characters.

Note: Even when configuring a solution in another
language, RPAS expects the month names and abbreviations
(%MONTH and %MON) used in the position names to be in
English (for example, Jan, Feb, Mar, and so on).

 %DAY – Two digit representation of the day of the month (for example, 01 is the first
day of the month)

 %HR – Two digit representation of the hour of the day (for example, 22 is 10 p.m.).
 %MIN – Two digit representation of minutes past the hour.
 %SEC – Two digit representation of seconds past the current minute.
 %MSEC – Three digit milliseconds past the current second.

The Position Format is NOT case sensitive, so %YEAR is the same as %year.

Note: The resulting position names in the root dimension of
the CLND hierarchy must start with an alphabetic character.
So the Position Format must either start with a literal string
like "DAY," or it must start with %MONTH or %MON.

The length of the position name should not exceed 24 characters. The Position Format
field performs validation on the Position Format in order to enforce this limitation. For
example, the Position Format DAY%YEAR%MONTH%DAY evaluates to a total of 18
characters (3 for the literal, 4 for the year, 9 for month, and 2 for day).
Examples:

 Format: DAY%YEAR%MO%DAY
A position that represents the 31st January 2006 would have the name DAY20060131.

 Format: d%YR%MON%DAY
A position that represents the 31st January 2006 would have the name d06Jan31.

30 Oracle Retail Predictive Application Server

Working with Dimensions

Working with Dimensions

Overview
Dimensions are the components within a hierarchy that define the structure and roll up
within a hierarchy. For example, the dimensions for a calendar hierarchy can be day,
week, month, and year; or they can be accounting periods.

Create a Dimension

Navigate: In the Configuration Manager, select Project – Hierarchies. The
Hierarchy Definition window opens in the workspace.

 1. Select the hierarchy or dimension under which to create the new dimension.

Note: When this document uses terms like "top" and
"bottom" level dimensions; or "over" and "under," these
terms are to be interpreted visually. The bottom level is at
the top of the hierarchy, and the top levels are at the end of
the hierarchy branches. For example, the top dimension
visually is the root dimension, which is the lowest
dimension in the hierarchy. The highest dimensions in the
hierarchy are at the bottom end of the hierarchy branches.
For instance, Day is the bottom level of a Calendar
hierarchy, but it falls directly beneath CLND.

2. Choose one of the following methods:
 From the Hierarchy Definition right-click menu, select New Dimension.
 Click the New Dimension button on the toolbar.

Create the first dimension, which becomes the root dimension, for a new hierarchy
when positioned on the hierarchy. Once the root dimension is defined, new
dimensions cannot be defined directly under the hierarchy. New dimensions are
added under other dimensions. For example, after "Day" is added to the CLND
hierarchy, CLND cannot be selected again to add "Hour." However, "Week" can be
added under the "Day" dimension. There can only be one root dimension created per
hierarchy.

Note: Certain processes that support the purging of data or
positions and the mapping of real dates/times to positions
require a dimension in the CLND hierarchy that is named
"day" and represents the day level. Such a dimension should
be defined, although the user label can be changed from
"day" if needed for localization purposes.

There is no limit on the number of dimensions that may be
created for a hierarchy.

Define the dimension as necessary. Refer to "Defining Dimension Properties" for more
information.

Projects 31

Working with Dimensions

Defining Dimension Properties

Navigate: In the Configuration Manager, select Project – Hierarchies.
 1. Select a dimension using one of the following methods:

 From the Hierarchy tree, select the dimension you want to modify.
 From the Dimensions region of the Hierarchy Definition window, select the

hierarchy tab that contains the dimension you want to define or modify.

Example Dimensions Properties Window – CLND Tab Selected

Example Dimensions Properties Window – PROD Tab Selected

2. In the Dimensions properties region, select or double-click in the field to edit. Scroll
to the right to see all of the fields. You can resize the columns by placing the cursor
over the column until the double-sided arrow appears and then drag the column to
the desired width.
Other than the RPAS Name, the columns can be reordered by dragging and
dropping the headings. The column positions will return to the default order when
the session is closed.
You can specify the following dimension information:
 Tools Name – The name of the dimension that is displayed within the RPAS

Configuration Tools. This field allows you to assign meaningful labels while
working with a configuration in the Configuration Tools. For example, the Tools
Name appears in Select Intersection dialog box, making it easier for you to assign
the appropriate intersections.

 RPAS Name – The RPAS internal name of the dimension. This dimension name
is used only by RPAS (not the user) within the domain.

 User Label – The dimension description that is displayed to RPAS users in the
RPAS Client.

Note: Any alpha-numeric characters are allowed. Single or
double quotes are not allowed.

32 Oracle Retail Predictive Application Server

Working with Dimensions

 Column – Identifies the order in which the dimension’s positions fall in the

meta-data load file. Use the left and right buttons to change the order
and the column value of the dimensions. Changing the column value will not
impact the hierarchy structure or aggregation paths.

Note: The up and down buttons are used for
defining the sequence of hierarchies.

Example:

Change the column values if the dimensions in the data load file are not in the
same order as in the tree structure. Dimensions will be moved up or down in the
table without impacting the aggregates.

 Prefix – The number of characters (0 to 4) for an automatic prefix to be put on all
position names loaded and stripped from all position names exported. The prefix
is taken from the internal dimension name. If the number of characters is greater
than the dimension name, an underscore is used to pad the prefix. If the number
of characters is less than the dimension name, the left-most characters from the
dimension name are used. The default is 4. For example, if data loads and
exports use numeric SKU identifiers, such as 123456, the internal representation
in RPAS could be to prefix this identifier with “SKU,” such as SKU123456.

Note: Use of a prefix is optional. If a prefix of zero (0) is
defined, then there is no prefix.

 Start – This is a read-only, calculated field. This field identifies the start position
of the position names for this dimension in the hierarchy load file.

 Width – This field identifies the width of position names for this dimension in
the hierarchy load file.

 Label Start – This is a read-only, calculated field. This field identifies the start
position of the position label for this dimension in the hierarchy load file. The
sum of the dimension Start and Width fields determines the value of the Label
Start.

 Label Width – This field identifies the width of position labels for this dimension
in the hierarchy load file.

Note: When using comma separated value (CSV) files to
load data into RPAS, the following dimension are ignored:
Column, Prefix, Start, Width, Label Start, and Label Width.
See the RPAS Administration Guide for more information on
Comma Separated Value (CSV) flat file format data load and
export.

 Aggs – This field establishes the relationship of the dimension to the other
dimensions in the same hierarchy. Specifically, this field references the child
dimension that aggregates up to this dimension (the parent dimension). It can be
edited by using the drop-down list, or you can drag and drop dimensions in the
left hand side hierarchy pane.

Projects 33

Working with Dimensions

 Database – This field identifies the name of the database in which the dimension
information is stored. The default value is hmaint. For each position in the
dimension, dimension information stored by RPAS includes its internal and
external names, label, and the name of parent positions in all higher dimensional
positions.

Note: The database property for a dimension cannot be
patched once the domain is built. It is therefore important to
establish the databases to hold dimension information
correctly prior to the creation of the domain.

Note: The size of any RPAS database should be limited to ~2
GB for contention and performance purposes.

 User Dimension –When selected (checked), this field indicates that the
dimension is user maintained. Positions and position mappings (parent-child
relationships) for user-defined dimensions are established in the RPAS
Administrative workbook template, “Hierarchy Maintenance.” This metadata
cannot be loaded like regular (non-user-defined) dimensions in the hierarchy
load process.

Note: The exportHier and loadHier utilities will skip any
user defined dimensions. This is true for both fixed width
and CSV formats. At this time, there is no way to export or
import user-defined dimensions.

 Translate – When selected, this field enables the position labels for the
dimension to be translated into multiple languages (if using a multi-lingual
environment, which is set as a Workspace Property for a given project). Positions
are loaded into the domain in the native language of the domain via the standard
hierarchy load process. Position labels for additional languages are loaded into
special measures that are used in multi-lingual domains. With the proper setup,
these translated position labels can be displayed in workbooks in the RPAS
Client instead of the loaded position labels.

Note: This option must be selected before building a domain
for it to take effect.

 Buffer % Low and Buffer % High – These properties are used to enable "dummy
positions" for the dimension and to establish the size of the buffer of dummy
positions. The appropriate values to use for the Buffer % Low and Buffer % High
depend on the rebuffering policy for the implementation. Using the dimensionMgr
utility, you can define an absolute minimum size (-minBufferSize minSize) for a
dimension buffer. Refer to the RPAS Administration Guide for more information.

 Enable DPM – Dynamic Position Maintenance (DPM) allows informal positions
to be added to a dimension on-the-fly from the RPAS Client. Select the Enable
DPM option for the dimensions that will be enabled to support DPM. For each
enabled dimension, a Buffer % Low and Buffer % High must also be specified.
Once Enable DPM is defined for the dimension, you must also specify
workbooks and the dimensions in each workbook that will use DPM (see the
Workbook Designer window for more details).

34 Oracle Retail Predictive Application Server

Working with Dimensions

Note: DPM can be enabled for all hierarchy dimensions
except for CLND and ADMU.

When Enable DPM is selected for a specified dimension, it is
also selected for all dimensions that roll up to it.

For more information on DPM, see the RPAS Administration
Guide and RPAS User Guide.

 Enable Images – Select this option to enable the association of images (image
paths) to positions along the specified dimension. To disable this feature,
deselect the option for the appropriate dimensions. This option is available for all
hierarchy dimensions, except the calendar hierarchy. For the calendar hierarchy,
the Enable Images column is disabled or grayed. RPAS supports GIF, BMP, and
JPEG image formats. Once Enable Images is defined for a dimension, you must
also specify the workbook that will use this feature (see the Workbook Designer
window for more details). See the RPAS Administration Guide for more
information on loading image paths.

Delete a Dimension

Navigate: In the Configuration Manager, select Project – Hierarchies. The
Hierarchy Definition window opens in the workspace.

 1. From the Dimensions region or from the Hierarchy navigation tree, select the
dimension to be deleted.

2. Perform one of the following options:

 Click the Delete icon.
 Press the Delete key.
 Select Delete from the right-click menu in navigating in the Hierarchy navigation

tree.

Note: Deleting a dimension causes all of the dimensions that
are structurally dependant on it (its parents, grandparents,
and so on) to also be deleted.

Note: The user dimension contained in the ADMU hierarchy
cannot be deleted.

Projects 35

Working with Dimensions

Edit a Dimension

Navigate: In the Configuration Manager, select Project – Hierarchies. The
Hierarchy Definition window opens in the workspace.

 1. Select the hierarchy in which a dimension will be edited.
2. From the Dimensions region, select the dimension to edit.
3. Update the dimension property as necessary. Refer to "Defining Dimension

Properties" for more information.

4. To change the order of the dimension, click the left button or right button
to change the order of the dimensions. Re-ordering dimensions only affects the file,
not the parent/child relationship of data.

Note: The up button and the down button are
used to change the order of hierarchies only.

Create a Branch in a Hierarchy

Navigate: In the Configuration Manager, select Project – Hierarchies. The
Hierarchy Definition window opens in the workspace.

 1. From the Dimensions region or from the hierarchy navigation tree, select the

dimension that will be the base of the branched hierarchy. The base of the branched
hierarchy is the root dimension.

Note: Ensure that the root dimension will have more than
one parent (that is, where the branch starts), and create
another parent dimension. Branches can never join together
(for example, both style-subclass-class and style-supplier-
class roll-ups in the same hierarchy are invalid).

2. Choose one of the following methods:
 From the Hierarchy Definition right-click menu, select New Dimension.
 Click the New Dimension button on the toolbar.
 Press the Insert key on the keyboard.

36 Oracle Retail Predictive Application Server

Working with Dimensions

The new dimension is created below the selected dimension.

Example of Branch Hierarchy

Labeled Intersections
The Labeled Intersections window supports the addition, removal and modification of
hierarchy intersections. A hierarchy intersection defines the dimensionality at which data
is defined. An intersection may be defined as using no dimension (scalar), using a single
dimension from a hierarchy, or multiple dimensions from different hierarchies.

Note: See the section on “Measures and Base Intersections”
for more information on defining intersections for data.

Navigate: In the Configuration Manager, select Project – Hierarchies. The
Hierarchy Definition window opens in the workspace.

1. From the Hierarchy Definition toolbar, select the Labeled Intersection icon .
The Labeled Intersections dialog box appears. This dialog box allows you to add new
intersections or remove or modify existing intersections.

Labeled Intersections Dialog Box

Projects 37

Working with Dimensions

Adding a Labeled Intersection
 1. Click Add from the Labeled Intersection dialog box. The Add Intersection dialog box

appears.

Add Intersections Dialog Box

2. Perform the following:
a. In the Label field, enter a label for the Labeled Intersection.
b. In the Definition field, enter the dimension name(s) for the intersection.
c. Click OK. The dialog box closes and the new entry appears in the Labeled

Intersection dialog box.

Note: If the Definition field is left empty, the measure is
assumed to be Scalar. If the level is non-scalar, dimension
names are used to define the intersection. If multiple
dimension names are to be specified, each dimension name
must be separated by an underscore (_). The last dimension
specified SHOULD NOT have an underscore following the
dimension name. As well, there is no required order of
dimensions.

Example of New Labeled Intersections

3. Click OK.
4. Once the labeled intersection is added, you can perform the following:

 Define or update the Base Intersection of major or minor measure component
using the labeled intersection.

 Define or update the Load Intersection of a measure using the labeled
intersection.

 Define or update the Base Intersection of a worksheet using the labeled
intersection.

38 Oracle Retail Predictive Application Server

Data Interface Tool

Note: RPAS imposes a limit of 5 dimensions that can be
defined in a measure or worksheet’s base intersection.

Modifying a Labeled Intersection
 1. Select a labeled intersection.

2. Click Modify from the Labeled Intersection menu.
Only the Definition field can be modified.

3. Click OK. If the change is undesired, select Cancel.
When the Definition of an existing labeled intersection is modified, the base
intersections of measures and worksheets, and load intersections of measures that are
currently assigned the labeled intersection are automatically updated. No action is
required.

Removing a Labeled Intersection
 1. Highlight a labeled intersection.

2. Click Remove from the Labeled Intersection dialog box.
3. Click OK.

When an existing labeled intersection is removed, the base intersections of measures
and worksheets, and load intersections of measures that are currently assigned the
labeled intersection will be displayed as invalid (red). Warning messages will also
appear in the Task List, indicating the intersections that must be updated. These
intersections must be corrected prior to installing or patching a domain.

Data Interface Tool

Overview
The Data Interface Manager tool is used to specify information about how data will be
loaded into the domain. This includes properties of the file to be loaded and the
intersection at which data will be loaded into the domain.
Data can only be loaded into stored, realized measures in the domain. Therefore, only
such measures can be used in the Data Interface Manager. Refer to the “Working with
Measures” section of this document.

Projects 39

Data Interface Tool

Specify the Data Interface for a Measure

Navigate: In the Configuration Manager, select Project – Data Interface. The Data
Interface Manager window opens in the workspace.

Example of Data Interface Manager Window

 1. Click New Meas. The New Measure Specification window opens.

Example of New Measure Specification Window

Note: This is a filtered list of all possible measures in the
configuration. Measures will be displayed in this list if they
are: realized, stored (has a defined database), and not
already defined in the data interface tool.

2. Select the measure requiring a data interface definition.
3. Click OK. The measure appears in the Data Interface Manager window.

40 Oracle Retail Predictive Application Server

Data Interface Tool

Add/Edit Data Interface Properties for a Measure

Navigate: In the Configuration Manager, select Project – Data Interface. The Data
Interface Manager window opens in the workspace.
By default, the Load Intersection field is populated with the base intersection of the
measure. If the data for a given measure is being loaded at a lower intersection than the
base intersection of the measure, this value can be overridden to specify the intersection

Note: Data can be loaded at the same intersection or lower
than the base intersection of a measure. Data cannot be
loaded at a higher intersection than the base intersection.

 1. Click the Load Intersection field to change its value. The Select Intersection window

opens.

Select Intersection Window

2. To specify the load intersection:
a. Using the list options, select the appropriate dimensions or Labeled Intersection.

Note: Only those dimensions that are at the same level as the
base intersection or below will be displayed for the load
intersection.

b. Click OK to save any changes and close the window.
3. In the File Name field, enter the file name from which data for the measure will be

loaded.

Projects 41

Working with Styles

4. In the Start Position field, enter the character position in the file where the measure
data starts. The start position defaults to the sum of all the dimension widths in the
load intersection of the measure +1, and the value specified in the field must be that
default or higher.

5. In the Column Width field, enter the number of characters in the file that will contain
the measure data.

Note: The Column Width defaults to 8, but it can be
changed.

6. If the Load Intersection was overridden to specify that the data is to be loaded from
an intersection below the measure’s base intersection, the measure’s default
aggregation method is used to aggregate the data unless the Load Aggregate field is
populated to specify an alternate aggregation method. Click the Load Aggregation
Method field and select the appropriate aggregation method from the option list.

Note: Hybrid is not supported for the load aggregation for a
measure.

Delete Data Interface Information for a Measure

Navigate: In the Configuration Manager, select Project – Data Interface. The Data
Interface Manager window opens in the workspace.

 1. Select the measure you want to remove from the Data Interface Manager.
2. Click Delete Meas.
3. Click Yes. The measure is removed from the table.

Working with Styles

Overview
It is possible for the RPAS Client user to modify the appearance of the data displayed for
a given measure in a grid. Text font, size, and color may all be changed. Many attributes,
such as precision (for decimal data types), alignment of the value in the cell, and the cell
border may also change.
Using the Style Tool, it is possible to define styles that may be applied to measures. These
predefined styles may specify any of a body of attributes that determine the appearance
of the data within the client. It is then possible to specify a measure as using one of these
pre-defined styles. The measure will then be displayed according to the specifications for
that style.

Note: The RPAS Client is not aware of styles which are a
configuration convenience. In the client, the individual
properties are maintained individually. A style can therefore
be thought of as a mechanism to easily set many individual
properties.

42 Oracle Retail Predictive Application Server

Working with Styles

The Style Definition Tool
The Style Definition Tool provides the following functionality:
 Allows the creation and management of named styles. New styles are generated as

sub-styles of existing styles.
 Allows the specification of the attributes of named styles. Style attributes follow an

inheritance scheme in which any unspecified attribute will inherit a value from its
parent style if that style has a specification.

 Allows the specified styles to be visible to the Measure and Workbook Tools where
measures are marked as using a style.

Style Attributes
A number of attributes may be specified for a style. These attributes will determine how
the data for a measure that uses the style is displayed within the RPAS Client. Style
attributes follow an inheritance framework in which an attribute defined in one style is
also defined for all of the children of that style unless a style is defined for a child. The
attributes of a style that may be specified are as follows:
 Name – The name of the style. This is used in the Measure and Workbook Tools to

assign a style to a measure. Since styles are a configuration convenience, style names
are not visible in the RPAS Client.

 Prefix – A cell value in the RPAS Client will be prefixed with this string. For
example, a prefix could be “$” to denote U.S. currency values. The prefix can be any
character sequence, but cannot exceed seven characters.

 Suffix – A cell value in the RPAS Client will be suffixed with this string. For
example, a suffix could be “%” to denote that the value in the field is a percentage of
something. The suffix can be any character sequence, but cannot exceed seven
characters.

 Scale Factor – A cell value in the RPAS Client could use a scale factor for display
purposes. A value that is calculated as a fraction could be displayed as a percent by
selecting the scale factor to be 0.01 (The UI divides by the scale factor).
For example, if the value in a cell is 0.5, the scale factor would have to be 0.01 for the
cell to display 50.
The value entered in the field should be greater than zero.

 Precision – Precision is the number of significant digits to be displayed in the cell of
the RPAS Client. If this number is set to 3, the client must always display 3 positions
after the decimal. For example, the measure value is 1, with a Precision setting of 3, it
will be displayed as 1.000. The value entered in the field should be greater than zero.

 Separator – A cell value in the RPAS Client could be formatted to have separators in
the value. The separator and the format come from the regional settings on the
computer. For example, when a separator is used, a value of 1000 would be
displayed as 1,000 or 1.000. It can also be displayed in other formats depending on
the regional settings.

 Text Font – Sets the font of cell value in the RPAS Client (“Times New Roman,”
“Arial,” and so on).

 Text Style – Sets the display style of the text value in the RPAS Client (“Bold,”
“Italic,” and so on).

 Text Size – Sets the font size in which the cell value in the RPAS Client is to be
displayed.

 Text Color – Sets the color of the cell values in the RPAS Client.

Projects 43

Working with Styles

 Background – Sets the background color of the cells in the RPAS Client.

Note: In the RPAS Client, the measure formatting
background color for a measure takes priority over the
‘read/write’ background color that can be set for the
application. Therefore, the RPAS Client “read/write” color
will not be seen if styles are used through the Configuration
Tools. If a specific read/write color is desired for all
measures, set it as the background color of the default style,
and do not override it for any other styles. On the other
hand, the RPAS Client “read only” background color takes
priority over the measure formatting background color so
that “protection processing” will be visible.

 Alignment – Sets the alignment of values within the cells when viewed in the RPAS
Client (Left, Center, and Right).

 Border Style – Sets they style of border of cells. Border style determines the kind of
borders (for example, single line, dotted line, and so on) and where the borders
should be relative to the cell value (top, bottom, left, right, or any combination of
these).

 Border Color – Sets the color of the border lines for cell values.

Create a Style

Navigate: In the Configuration Manager, select Project – Styles. The Style
Definition window opens in the workspace.

Style Definition Window

 1. Select or create the Style that will be the parent of the new style. All styles must
ultimately be descendents of the Default style.

2. Choose one of the following methods:

 Click the Create a new style button in the toolbar.
 Select New Style from the right-click menu.
 Press the Insert key.

If the Style Attributes for Default are populated, all of its descendants will inherit the
same attributes unless you specify new attributes for the new styles. A new style will
be created with inherited attribute values for all the properties set in its parent style.

44 Oracle Retail Predictive Application Server

Working with Styles

The inherited style attribute values are displayed with lighter shade (gray) to
differentiate from the un-inherited values (black). Notice that the style attributes for
the style Default -are shown in black while the style attributes for the style “Percent”
are in gray.

3. Change the values of any of the new style’s attributes where a different value is
required than that which has been inherited. For those attributes that have been
overwritten from the “Default” value will be display in black while those that have
not been changed will remain gray to indicate they are inherited.

Remove a Style

Navigate: In the Configuration Manager, select Project – Styles. The Style
Definition window opens in the workspace.

 1. Select the style to be removed.

2. Choose one of the following methods:
 Click the Delete Style button in the toolbar
 Select Remove from the right-click menu.
 Press the Delete key.

The selected style and all of its child styles will be removed from the style description
tool. Any measures using a deleted style will be displayed as invalid.

Projects 45

Working with Styles

Edit a Style

Navigate: In the Configuration Manager, select Project – Styles. The Style
Definition window opens in the workspace.

 1. Select the style to be edited.

2. Select the property of the style to be edited. Depending on the property selected, one
of the following will be displayed:
 a pop-up color chooser (for all color selection properties like font color,

background color, and so on)
 a pop-up dialogue (for Borders)
 a drop-down (for alignment, font, and text style)
 a free flow text cursor (for all other properties)

3. Make the selection, and enter the value for the property.
If the edited value is changed to the same as its parent’s value for an attribute, the
value is automatically changed to inherit from the parent, and it is displayed as gray
rather than black.

4. If the value is to be deleted (does not contain any value), select the property, and
press the Delete key.

46 Oracle Retail Predictive Application Server

4
Solutions

Working with Solutions

Overview
A solution corresponds to an application configuration (for example, Merchandise
Financial Planning or Item Planning). Each project can contain one or more solutions. For
each solution, measures, rules, workbooks, and wizards are defined. Once a solution is
created, it can be moved from one project to another.

Note: Some solutions; such as Curve, Grade, and RDF have
configuration steps that are specific to those solutions. For
more information, see the corresponding configuration
guide for the solution.

Create a Solution
Navigate: From the File menu, select New – Solution. The New window opens.

New Window

 1. In the Name field, enter the name of the solution.

Solutions 47

Working with Solutions

2. In the Project field, select the project in which the solution is to belong. There will be
multiple projects listed if multiple projects are currently open.

3. Click OK to save any changes and close the window.

Copy a Solution
Perform the following procedure to copy a solution:

 1. Select the solution to be copied.
2. Right-click in the Configuration Manager, and select Copy. The Copy solution dialog

box appears.

Example of Copy Solution Dialog Box

3. Type the new name for the solution in the text box.

Note: This is the name that the solution is called after it has
been copied.

4. Select the project where the solution is to be copied.
5. Click Finish to save the copied solution in the specified project.

48 Oracle Retail Predictive Application Server

Working with Solutions

Rename a Solution
Perform the following procedure to rename a solution:

 1. Select the solution to be renamed.
2. Right-click in the Configuration Manager, and select Rename. The Rename dialog

box appears.

Rename Dialog Box

3. Delete the old name from the resulting field, and type the new name.
4. Click OK to save the new name.

Solutions 49

Working with Solutions

Move a Solution
Perform the following procedure to move a solution:

 1. Select the solution to be moved.
2. Right-click in the Configuration Manager, and select Move. The Move dialog box

appears.

Example of Move Dialog Box

3. Type the name of the solution in the text box.

Note: This is the name that the solution is called after it has
been moved.

4. Select the destination project for the solution from the resulting Project list.
5. Click OK to move the solution to the specified project.

Delete a Solution
Perform the following procedure to delete a solution:

 1. Select the solution to be deleted.
2. Right-click in the Configuration Manager. The Confirm Delete dialog box appears.

3. Click OK to complete the deletion.

50 Oracle Retail Predictive Application Server

Measures and Components

Measures and Components

Measure Manager

Overview
The Measure Manager window allows you to define major and minor components of
measures and to specify properties for each component. Once the component structure is
defined, the Measure Manager generates measures by combining the components that
are selected. You may then select (realize) the valid measures and further update the
properties for individual measures.

Example of Measure Manager Window

Measure Properties

Inheritance
Measure properties are inherited at the component level. The properties defined for a
component are inherited by the minor components that belong to that component and to
the measures that are associated with that component unless it is overridden at a lower
level.
When a measure can inherit a property from more than one of the components that
construct it, the measure inherits from the component that belongs to the highest major
component in the component tree. For many properties, it is a good practice to set the
properties for just one major component or for minor components in just one major
component branch.

Overriding
Measure property inheritance can be overridden at the minor component or at the
measure level. Once a property is set at a lower level, changes made to that property at a
higher level will no longer be inherited at that lower level.

Solutions 51

Measures and Components

Measure Components
A major component is the highest level in the component inheritance hierarchy.
Properties defined at this level are inherited by all minor components that are created
under the major component.
Within each major component, you can create one or more minor components. You can
also create a minor component under a minor component and also modify properties at
the minor component level.
Once major and minor components are defined, the Measure Manager generates
measures that are based on the combination of selected components. These measures
cannot be used elsewhere in the Configuration Tools until the valid prototype measures
are Realized (see the following section on Realizing and Unrealizing measures for more
information).

Component Process

Create major components, from which measures are composed.

Create minor components, which are sub-groupings or specific items in a major
component.

Define measure properties at the major component level. The minor components will
inherit the properties associated with the major component they belong within.

If necessary, modify the measure properties at the minor component level.

Note: Components have no structural impact on the built
solutions, and they are not exposed to end users.
Components are intended to be a convenience to aid you in
easily grouping measures together and setting measure
properties at higher levels.

Measure Naming Conventions
All components used in RPAS configurations must adhere to the following naming
convention:
Characters allowed:
 Capital and lowercase letters (A, b…Z)
 &
 $
 %
 Numerals (1, 2, 3…)
 Underscore (_)
 Measure component Names must start with a letter
 No spaces are allowed

52 Oracle Retail Predictive Application Server

Measures and Components

Note: Since the names of realized measures are limited to 15
characters, and those names are constructed by
concatenating the names of the components from which the
measure is built, it is usually good practice to abbreviate the
names of components where necessary.

There is no limit on the number of characters for Measure
Labels.

Measure Component Design
The following two basic principles should be kept in mind to make the Measure Manager
as powerful as possible.

 1. Major and minor components should be designed with the idea of maximizing the
inheritance of properties, and minimizing the amount of property overriding.

2. Use minor components to make measure definition manageable.
For example, consider a configuration that has 2000 measures and 1500 of the measures
are of data type real. Avoid grouping all 1500 measures into a single minor component
because smaller subgroups of 1500 measures cannot be easily edited. Minor components
can also have minor components, so within the 1500 measures, you may break them out
further. This could be based on the aggregation method, such as total, max, recalc, and
base intersections. Ideally, filtering by the “checking” of a lowest level minor component
should allow you to easily view and manage every resulting measure for that minor
component.

Create a Major Component

Navigate: In the Configuration Manager, select Project – Solution – Measures –
Measure Components tab. The Measure Manager window opens in the workspace.

Example of Measure Manager Window - Measure Components Tab

 1. Right-click in the left-hand pane of the Measure Manager window and select Add
Major Component, or click the Add Major Component button. The major
component is displayed in the Measure Manager navigation tree with a default
name.

Solutions 53

Measures and Components

Example of New Major Component

2. To change the component name, select right-click on the component and select
Rename, or select the component from the navigation tree and then modify its Label
field from the Measure Components tab.

54 Oracle Retail Predictive Application Server

Measures and Components

Create a Minor Component

Navigate: In the Configuration Manager, select Project – Solution – Measures –
Measure Components tab. The Measure Manager window opens in the workspace.

Example of Major Measure “NewMajorComponent” Selected

 1. Select the major or minor component that the new minor component is to be added
beneath. In the example above, NewMajorComponent is selected.

2. Choose one of the following methods:
 Right-click the Measure Definition navigation tree, and select Add Minor

Component.

 Click the Add Minor Component button.
 Press the Insert key.

The minor component appears in the Measure Manager navigation tree with a
default name.

Example of New Minor Component

3. To change the name, right-click on the component from the navigation tree and select
Rename. You can also select the component from the navigation tree and modify the
Label field from the Measure Components tab.

Solutions 55

Measures and Components

Defining Measure Component Properties
Perform the following procedure to define the Measure Component properties:

 1. Once components have been created, open the Measure Manager and select the
Measure Components tab.

2. Select the major or minor components you want to view from the Measure Manager
navigation tree. The selected components appear in the Measure Components tab.

Example of Measure Manager Window - Measure Components Tab

3. Specify the information for the component properties (for example, Name, Label,
Description, etc.), which will apply to the measures that are inheriting property
values from the component.

Note: The values that are entered for major components are
inherited by the child minor components and the auto-
generated measures. Not all properties need to be entered
for all components. Properties that are grayed out in the
component properties table cannot have a value in the
current context. Typically, this is based on the data type of
the measure. For example, only components of Boolean data
type can have an alert category or an alert expression.

Measure Component Properties
This section describes the fields displayed in the Measure Components tab.

Name
The name (identifier) of a component is used to identify the component within the
Configuration Tools. Measure names are built by concatenating the names of the
components from which the measure is built. They are concatenated in the order (from
top to bottom) of the sequence that the components appear in the list of components.

Label
The label of the component is used to generate measure labels in a similar way that
measure names are generated. Labels are displayed to RPAS end users. There is no
maximum size limit, but keep the grid display limitations in mind when creating a
measure label.

56 Oracle Retail Predictive Application Server

Measures and Components

Description
A description of the component is used to generate measure descriptions in the same
way that measure labels are generated. You can enter any text to provide more
information beyond the measure label to the end user. The description can be viewed by
the end user in the RPAS Client.

Type
The Data type. Select one of the following:
 Real – Floating point numeric values. Most measures are of this type.
 Int – Numeric integer values. There are no special "spreading" algorithms for integer

measures, which should normally be used only for measures that are calculated
‘bottoms up.’ Formatting can be used to display real measures as integer value in the
RPAS Client.

 Boolean – True or false values, which are typically used for flags and indicators.
 Date – Date and time. This can easily be converted to position names using standard

RPAS functions.
 String – Variable length strings, which are typically used for notes and names.

NA Value
This is a value (typically zero for numeric measures) that is not physically stored, but is
inferred. It is used to help with storage and calculation efficiency, and it may be changed
by RPAS (in full-evaluation mode) if better efficiencies can be obtained with a different
value. See "Appendix B – Calculation Engine Users Guide" and "Appendix C – Rules
Function Reference Guide" of this document for more information.

Base Intx
The Base Intersection. The lowest level at which data is stored for a measure. In the
domain, the measure is only stored at the base intersection. Inside a workbook (for
performance reasons), values for the measure may be stored above the base intersection.
Nevertheless, whether stored or not, values for aggregated levels may be viewed in a
workbook and used in calculations in workbooks or domains. Double-click this field to
open the Select Intersection window. The hierarchies that were defined using the
Hierarchy tool are displayed. One dimension from each hierarchy can be selected, but a
dimension is not required for each hierarchy. Alternatively, a measure may be marked as
scalar. A scalar measure has only one value at any combination in the positions of
dimensions of the domain. A Labeled Intersection may also be selected as the base
intersection of a measure. The Labeled Intersection field is populated based on the
Labeled Intersections defined through the Labeled Intersection dialog accessed in the
Hierarchy Definition manager.

Note: RPAS imposes a limit of 5 dimensions that can be
defined in a measure’s base intersection.

Default Agg
The default aggregation method should be selected from the valid aggregation methods
for the component. The valid aggregation method depends on the data “Type” selected
for the component. See Appendix B – Calculation Engine Users Guide, and Appendix C –
Rules Function Reference Guide for more information on aggregation and spread
methods.

Solutions 57

Measures and Components

Note: Only measures with an aggregation type of ambig, pst,
or pet can be aggregated from below the partition levels to
above the partition levels in a global domain.

Agg Spec
This hybrid aggregation mechanism is designed to allow you to specify a complex
method to aggregate the values of a measure. It allows a different aggregation method to
be specified for each hierarchy in the measure’s intersection. When a measure with the
hybrid agg type needs to be aggregated, this is accomplished by separately aggregating
each hierarchy of the intersection according to the agg method for that hierarchy.
Example:
Measure XYZ is defined at day_sku_str and has a hybrid aggregation type. The specifics
for the aggregation are as follows:
 Calendar should be aggregated by the “first” method.
 Location should be aggregated by the “total” method.
 Product should be aggregate by the “total” method. -stopped

Suppose that XYZ must be aggregated to the level of mnthclssrgn_. The process of
generating this new value is accomplished by three successive aggregations:

 1. day_sku_str_ to day_clssstr_ by total (product)
2. day_clssstr_ to day_clssrgn_ by total (location)
3. day_clssrgn_ to mnthclssrgn_ by first (calendar)
In this example, the user is allowed visibility to and control over the mechanism by
which pst is performed.
A brief description of the user interface functionality/constraints is as follows:
 The hybrid aggregation method now appears in the deff agg drop-down selector.
 When a measure is specified for hybrid agg, the agg spec (aggregation specification)

field becomes editable.
 An agg spec can be typed in or built through a dialog (double-click the agg spec

editor or select Ctrl-Space to launch it).
 This dialog looks very similar to the standard wizard for workbooks. On the right,

the ordering of hierarchies in the intersection of the measure is set by dragging the
hierarchies in the list. On the left, a separate aggregation type is selected for each
hierarchy. For the most part, these are the aggregation types that are available for the
measure based on its type.
Exceptions are as follows:
Recalc or hybrid cannot be used within an agg spec.
First and last can be used only on the Calendar hierarchy only.
An aggregation type must be specified for each hierarchy in the intersection.
If a value is to be typed into agg spec, the syntax and meaning is the same as the

arguments used by the aggregate function of the rule engine.
A hybrid aggregation measure must be read only in its agg state.
A hybrid measure must have a spread type of none.

58 Oracle Retail Predictive Application Server

Measures and Components

Note: The hybrid aggregation type is not supported for
extended measures (see "Configure Extended Measures") or
for the load aggregation method for a measure.

Unlike Aggregate procedure, the "recalc" aggregation type is
not supported for any hierarchy for am measure using the
hybrid aggregation type.

Measures that use the hybrid aggregation type cannot be
aggregated from a local domain into the global domain.

Default Spread
The default spread method should be selected from the valid spread methods for the
component. The valid default spread method depends on the data “Type” selected for
the component. See "Appendix B – Calculation Engine Users Guide" and "Appendix C –
Rules Function Reference Guide" of this document for more information on aggregation
and spread methods.

Note: The spread method can be overridden on edit in the
RPAS User Interface. For all "populated" spread methods
(ending with “pop”), the spread method is the same as the
underlying method (for instance, prop_pop is like prop),
except that only cells with a value that is different from the
naval are used in the spreading, and cells with a value equal
to the naval are ignored.

Base State
The ability of the measure at the base level to be modified. The available options are read
or write.

Agg State
The editability of the measure at the aggregate level, which are all intersections above the
base intersection (read or write). Set the Base State to write and the Agg State to read for
those measures that need to be manipulable, but where there is no business requirement
to manipulate them other than at their base intersection. Usually there is no sensible way
to spread such measures. The manipulability of measures will change according to
‘protection processing’ principles. Therefore, base state and agg state should only be used
to override the result of protection processing (for example, to make a measure non-
manipulable that protection processing would otherwise allow to be manipulated). See
"Appendix B – Calculation Engine Users Guide" and "Appendix C – Rules Function
Reference Guide" of this document for more information on the Agg State of measures.

Database
The physical location in the file system of the database that stores the data for this
measure. Those measures that contain data that persists beyond the lifetime of a given
workbook store their information within a database within the RPAS domain. This field
is used to specify the path to the location of the database to use for the measure. All
databases are contained within the data directory of the domain. If the specification does
not begin with the data directory, "data/" will be attached to the beginning of the entry at
the time of installation (for instance, the entry "Sales" will be registered as "data/Sales").

Solutions 59

Measures and Components

View Type
The View Type field holds properties for two types of measures:
 Those that are calculated when viewed
 Those that are synchronized with other measures.

If the view type is none, the measure is of neither type.
If the View Type is view_only, the measure is not calculated during a normal calculate
cycle, and it is calculated on-the-fly when required (for instance, for viewing). Such
measures must have an aggregation type of recalc and should appear on the left-hand
side of only one expression in a rule group. They may not appear on the right-hand side
of any expressions. The measure should not have a database assigned. See "Appendix B –
Calculation Engine Users Guide" of this document for more information.
Synchronized measures are in effect, views of two or more other measures where
changes and lock to those other measures are immediately reflected in the synchronized
measure (and vice versa).
Example:
A “closing stock” measure may be synchronized with a “season opening stock” measure
and an “opening stock” measure so that a change to “opening stock” in week 3 will
immediately cause the same change to be applied to “closing stock” in week 2 (since
closing stock in week 2 and opening stock in week 3 are the same). Synchronized
measures require a synchronization type in the View Type property, which must be one
of sync_first_lag, sync_lead_last, sync_first or sync_last, and a list of measures to
synchronize with in the Sync With property.
 none – The measure is calculated normally.
 view_only – The measure is calculated when viewed.
 sync_first_lag – Period 1 is from the first measure (no calendar). Periods 2..N are

from the second measure 1..N-1 (lag) [for example, bop synchronized with os and
eop].

 sync_lead_last – Periods 1..N-1 are from the first measure 2..N (lead). Period N is
from the second measure (no calendar) [for example, eop synchronized with bop and
cs].

 sync_first – Gets Period 1 from the measure (similar to pst along calendar
dimension) [for example, os synchronized with bop].

 sync_last – Gets Period N from the measure (equivalent to pet along calendar
dimension) [for example, cs synchronized with eop].

Sync With
A comma-separated list of measures used for synchronization. Depends on the View
Type.

Insertable
This field indicates whether the measure can be inserted as an extra measure in
workbooks built from templates that are not configured to contain the measure.
Insertable measures can be added to a workbook during the wizard process on the Extra
Measures wizard page before a workbook is built, or by inserting the measure in the
Show/Hide dialog window in the RPAS Client inside a built workbook. Measure
security must also be defined for Insertable measures in the RPAS Security
Administration workbook template. Possible values are true and false. See the RPAS
Administration Guide for additional information about measure security.

60 Oracle Retail Predictive Application Server

Measures and Components

UI Type
Indicates whether the measure is a picklist or not. If a measure is defined as a picklist, the
RPAS UI User must choose a value for the measure from a list of valid values defined
using the range property. Possible values are “picklist” or blank.

Range
Specify an allowed range for the measure at edit time. For numeric values, the syntax is
as Lower Bound : Upper Bound. If the RPAS Client user attempts to enter a value in the
RPAS Client outside of this range, the modification is rejected. For string measures, any
entry in this field is ignored.
For numeric or string measures with a UI Type of “picklist” (numeric and string), values
are comma separated value/label pairs, where the label is given in brackets, such as
a(labela), b(labelb), and c(labelc). If a label is not specified (for example, “a, b, c, d”), the
value is also used as the label. The value of the cell is used in calculations; however,
labels (if specified) will be displayed in the user interface, both in the grid and in the
picklist. If a cell contains a value that is not valid for the picklist, the value is displayed in
the grid. When the measure’s range is specified in this manner, all cells in the RPAS
Client will display these same values as valid options for the picklist. The valid set of
options for a picklist measure can also be defined in such a way that they are "context
sensitive," which means that they vary from position to position. For example, a picklist
measure with a base intersection at the SKU dimension could have valid values that vary
according to which class the SKU belongs. You set this up by setting the range property
of the picklist measure as “measurerange = measS” where measS is the name of a string
measure that holds the valid picklist options (in the valid formats described earlier) in
each of its cells. The measure that holds the valid picklist values (in this example,
"measS") can have a base intersection at any of the dimensions in the hierarchies and the
values shown in the picklist measure for any intersection are effectively “looked up”
using normal ‘nonconforming measure’ handling.
The valid values for a picklist for a cell are referenced from a measure dynamically. If
required, it is possible for the valid values of picklists to change during the life of the
workbook as a result of calculations or end-user edits. The value used will always be that
of the last calculate, so direct or indirect (through calculation) edits to the picklist value
measure are ignored when a calculation is pending.

Purge Age
The number of days (without a load) before measure data is purged. See the RPAS
Administration Guide for details of how this property is used in the loadmeasure utility.

Lower Bound and Upper Bound
If the range of valid values for a numeric (real or integer) measure applies across the
whole domain, the range property can be used to specify valid values for data entry
validation. If the range of valid numeric values varies according to positions in the
hierarchies, the Lower Bound and Upper Bound must be used instead. If specified, the
Lower Bound and Upper Bound properties must be a valid, realized measure name that
provides the bounding values for this measure’s data cells. These properties must contain
measure names (not numeric values).

Solutions 61

Measures and Components

Note: If one (but not the other) of Lower Bound and Upper
Bound is specified, only one limit is checked. For example, if
a Lower Bound is set, but an Upper Bound is not, valid
values are greater than or equal to the value held in the
Lower Bound measure, but with no upper limit. The Lower
Bound and Upper Bound measures can be non-conforming
with respect to the measure that has bounds, and the value
to be used will be obtained by normal non-conforming
processing (that is, "replicated down" from higher levels or
"aggregated up" from lower levels).

Sp Value Type and Sp Value
These two properties specify the "special value" type and the "special value" value. They
are used to define the manner in which "special values" are handled by RPAS. These two
properties can be used together to specify how to display cell values in the User Interface
(UI) that have a value equal to the "naval" of the measure. In particular, it supports
solutions that want to interpret cells with the "naval" as meaning "no value" by
displaying a null value to the end user.
The SP Value Type property specifies the type of value that will be shown. Valid values
for this property are Null, Cell Value, and User Entered. The default behavior is that
such cells will have their cell value shown, which is what the value of Cell Value in the
SP Value Type property means. However, these properties can be used to override the
default to either show null, which is defined below, or to display a specific value. To
configure the values to display null, assign Null as the SP Value Type property. When
Null is configured, the cell will be blank in the RPAS Client when the value equals the
"naval" for a numeric, a date, or a string measures. For Boolean measures, it will be a
grayed-out check box. When a specific value is required, you should select User Entered
for the SP Value Type, and enter the value to be displayed in the SP Value field.
For the Special Value field; the entry in this field must be of the same data type as the
measure, and validation is enforced in this field.
 For a Boolean measure; when the Special Value Type field is set to User Entered, the

only valid entry for the Special Value field is either true or false.
 For a Date measure; when the Special Value Type field is set to User Entered, a date

in the format of YYYYMMDD can only be entered by the user.
 By default, each measure will be registered with Cell Value as the default Special

Value behavior. For cases where a Special Value Type setting other than ‘User
Entered’ is used, but a Special Value entry is provided, the Special Value entry will
not be used. Instead, the measure will be registered with Cell Value as the default
behavior.

 When Special Value Type is set to User Entered, but a Special Value entry is not
entered, the Special Value Type will not be used. Instead the measure will be
registered with Cell Value as the default behavior.

 When a domain has been built that includes a measure with a special value setting,
and that special value setting for that measure is removed. When the domain is
patched the measure will get updated with Cell Value as the default special
behavior.

 RPAS allows for the special value measure property to be updated.

62 Oracle Retail Predictive Application Server

Measures and Components

Dim Attr Type
This checkbox option is used to indicate that the measure should be registered as a
dimension attribute. Dimension attributes allow for additional information to be defined
for the positions of a given dimension. This is commonly used to define and display an
alternate label for a position (other than the loaded position label) or to display
supplemental information about a position (such as the status of a given position).
The following requirements must be met for a measure to be eligible to be a dimension
attribute:
 The measure must be realized.
 The measure must be 1-dimensional, which means that its base intersection must

only have one dimension.
 The measure must be stored, which means that it must have a defined database.

Dim Attr Name (optional field)
This is only to be used if the measure is set to be a dimension attribute measure. When a
dimension attribute is displayed within the RPAS Client, the Dim Attr Name will be used
in place of the measure name. If no Dim Attr Name is supplied, the RPAS Client displays
the measure name.

Dim Attr Label (optional field)
This is only to be used if the measure is set to be a dimension attribute measure. When a
dimension attribute is displayed within the RPAS Client, the Dim Attr Label will be used
in place of the measure label. If no Dim Attr Label is supplied, the RPAS Client displays
the measure label.

Allowed Aggs
The set of the allowable aggregation methods for the measure based on the measure data
type. You can add so called extended measures to RPAS Client views that are normal
measures, but with aggregations based on different aggregation methods. The
aggregation methods that are available for selection are based on the Allowed Aggs of
the base measure. The same base measure can have multiple extended measures based
on different aggregation methods.

Style
One of the styles defined within the style tool may be specified as the default style to be
used to display measures based on this component inside the User Interface. See the
section on the Style Manager for details on the specification of style information.

Alert Category
Identifies the measure as an alert measure and associates the category with this measure.
Only measures of data type Boolean can be alert measures. All defined categories are
displayed in the drop-down box. Note that alert categories are defined in the Alert
Manager, which can be accessed by right-clicking a measure and selecting Alert
Manager. See the RPAS User Guide for a description of alerts.

Solutions 63

Measures and Components

Alert Expression
The evaluation method for this alert measure. When this cell is double-clicked, the Select
Evaluation Method for Alert dialog box opens; this dialog can be used to select a rule or a
rule group. Rules displayed will be those whose first expression has the given measure
on its left-hand side. Rule groups displayed will be those that have rules in which its first
expression contains the given measure on its left-hand side. See the RPAS Administration
Guide for more information on Alerts.

Select Evaluation Method for Alert Dialog Box

Single Hier Select
This property is only valid for components that have a Type (data type) of string. It
specifies that cell contents are to be entered by users using the "Single Select Widget."
This is a widget in the RPAS Client that presents the end user with a view of the
positions along the dimension set in the configuration. The user may then select any
single position. You must select the hierarchy and dimension whose positions will be
displayed to the user in the RPAS Client.

Select a Dimension Dialog Box

Filename (read only)
Measures included into the Data Interface Manager have a filename specified. This field
displays the value, if one exists, for the filename of the measure. See the section on the
Data Interface Tool for details on data interface properties. This property cannot be
modified and is displayed for diagnostic purposes.

Load Intx (read only)
Measures included in the Data Interface Manager have a load intersection [Load Intx]
specified. This field displays the value, if one exists, for the load intersection of the
measure. See the section on the Data Interface Tool for details on data interface
properties. This property cannot be modified and is displayed for diagnostic purposes.

64 Oracle Retail Predictive Application Server

Measures and Components

Start (read only)
Measures included in the Data Interface Manager will have a start position specified.
This field displays the value, if one exists, for the start position of the measure. See the
section on the Data Interface Tool for details on data interface properties. This property
cannot be modified and is displayed for diagnostic purposes.

Width (read only)
Measures included in the Data Interface Manager will have a width specified. This field
displays the value, if one exists, for the width of the measure. See the section on the Data
Interface Tool for details on data interface properties. This property cannot be modified
and is displayed for diagnostic purposes.

Load Agg (read only)
Measures included in the Data Interface Manager will have a load aggregation method
[Load Agg] specified. This field displays the value, if one exists, for the load aggregation
method of the measure. See the section on the Data Interface Tool for details on data
interface properties. This property cannot be modified and is displayed for diagnostic
purposes.

Materialized (read only)
Certain measures may be registered as display only measures in order to improve
performance within a workbook. This marking is done automatically at the time of
installation. If the measure has been marked as display only, that fact will be reflected in
this field. This property cannot be modified and is displayed only for diagnostic
purposes.

Creator (read only)
Certain extensions make use of plug-ins to the RPAS Configuration Tools to
automatically generate configuration content. This field displays the creator of the given
measure. The value user represents content generated by a user of the Configuration
Tools. A different value represents content generated by a plug-in. This property cannot
be modified and is displayed for diagnostic purposes only.

Signature (read only)
The signature of a measure is used to resolve ambiguity that may result from overriding
the name property of a measure. This field contains the value of the measures signature
property. The contents of this field are created and maintained automatically by the
Measure Manager. This property cannot be modified and is displayed only for diagnostic
purposes.

Solutions 65

Measures and Components

Edit Components

Navigate: In the Configuration Manager, select Project – Solution – Measures.
The Measure Manager window opens in the workspace.

Move Components
 1. From the Measure Manager navigation tree, select the component to be moved.

2. Drag the component to the new location and release it.

Note: A minor component cannot be moved to a different
major component.

You cannot move a component so that it would be a
descendent of another component that is used in the
specification of a realized measure.

Push Components Down
 1. From the Measure Manager navigation tree, select the component to be pushed

down.
2. Right-click in the Measure Definition menu, and select Push Down.

Note: The component is pushed down one level in the
component hierarchy, and a new component is created to
take the place of the pushed down component.

Note: A major component cannot be pushed down.

Pull Components Up
 1. From the Measure Manager navigation tree, select the component to be pulled up.

2. Right-click and select Pull Up. The component is pulled up one level in the
component hierarchy.

Note: A minor component cannot be pulled up to become a
major component, nor can a major component be pulled up.

Display or Hide Components
 To display information about a component, select the check box next to the

component name.
 To hide information about a component, clear the check box next to the component

name.

Note: Selecting or clearing a check box for a major or minor
component causes the check boxes for all minor components
underneath it to be selected or cleared. This check box is also
used to enable a component so it becomes active when
measures are generated.

66 Oracle Retail Predictive Application Server

Measures and Components

Find a Component
 1. Right-click in the Measure Manager navigation tree and select Find Component. The

Input dialog box appears.

Example – Find Component Menu Option

2. Type in the name of the desired component and click OK. The tree will scroll to bring
the specified component into view.

3. Select the desired component.

Note: The full name (case sensitive) of the component is
required in order to find it. If there is no component with the
exact name entered, the tree will not scroll.

Solutions 67

Measures and Components

Rename a Component

Navigate: From the Measure Manager navigation tree, select the component to be
renamed.
Choose one of the following methods:
 Right-click in the Measure Manager navigation tree and select Rename. Type the

new name for the component.
 Double-click the component, and type the new name.
 Select and change the name of the component in the Measure Component tab.

Note: Changing the name of a component will result in a
change in the name of any measure that inherits from the
component unless the measure has overridden the name
property.

Remove Components

Navigate: From the Measure Manager navigation tree, select the component to be
removed.
Choose one of the following methods:

 Select Remove Component .
 Press the Delete key.
 Right-click in the Measure Manager navigation tree and select Delete.

The component is removed from the solution.

Note: It is not possible to remove a component that is used
(or that has a descendent component that is used) in the
specification of a measure.

Alerts
Alerts are an exception management tool. An alert is a measure of type Boolean
(returning a value of true or false) that is the result of the evaluation of a business rule.
RPAS then notifies the user of the “true” conditions, and it allows workbooks to be built
to resolve the scenario that drove the alert.
Example:

A store’s inventory on a particular item is low, so an alert will be triggered (Boolean
expression = true).
A summary of the process for defining and finding an alert is as follows:

 1. Create an alert measure. This must be a Boolean measure (true-false, yes-no) and
must be defined in the domain using the RPAS Configuration Tools.

2. Create the alert (the expression) for which the alert should be evaluated using the
Configuration Tools. This flags the registered measure as an alert so that it is
recognized when the “alert finder” is run.

3. Run the “alert finder” on the domain to evaluate the number of instances when one
or more alert expressions are true. This operation is completed using the RPAS utility
alertmgr.

For more information on alerts, see the RPAS Administration Guide.

68 Oracle Retail Predictive Application Server

Measures and Components

Measure Validation within the Measure Manager
The Measure Manager performs large amounts of validation on the properties of the
measures that are created within it. Much of this validation involves dependencies of one
property of a measure upon another property of the measure. Some validation involves
dependencies of a property of a measure upon the hierarchies that are defined in the
Hierarchy Tool. These forms of validation are performed automatically as edits are made
in the Measure Manager.
In addition; the validity of rules, rule groups, and workbooks depends on the properties
of the measures that they contain. Validation of the measure content of the rules, rule
groups, and workbooks of a large solution can take a significant amount of time.
In order to facilitate the configuration process, this second form of validation does not
occur as edits are made in the Measure Manager. Instead, this validation is deferred until
Measure Manager is exited by selecting a different tool/option from the Configuration
Manager. At this time, a dialog briefly displays to indicate the validation process is
running.

When the full suite of solution level measure content validations is complete, the dialog
is no longer displayed and the selected tool is activated.

Note: For fast performing validations, dialog may only be
displayed for a few seconds. If the validation process is
lengthy, the dialog will be displayed for a considerably
longer time.

Disabling Measure Content Validation
For some cases you may disable the full validation (for instance, when performing a
number of changes to measure properties that require switching back and forth between
multiple tools). Validation can then be manually initiated from the Rule Definition

window by selecting Perform measure content validation from the Rule Definition
toolbar. Perform the following procedure to turn off real-time validation.

 1. Select File – Tools Preferences. The Workbench Preferences dialog box appears.

Solutions 69

Working with Measures

Workbench Preferences – General Tab

2. Deselect Enable Measure Content Validation.
3. Click OK.

Working with Measures

Overview
The Measure Manager allows you to create and name measures by selecting major and
minor components that are already defined. By default, the measures inherit the
properties that are defined for the components. To create a measure, select the
components that will be used to construct measures. The Measure Manager will generate
measures for all of the combinations of selected components. This saves you from the
tedious task of manually creating all required measures.

70 Oracle Retail Predictive Application Server

Working with Measures

Example of Measure Manager Window

You may then override the properties for individual measures by entering them the same
way as on the Measure Components tab. Once properties are overridden at the measure
level, changes made at the component level will no longer spread down to that measure
as it will retain the overridden value. An overridden value can also be restored to its
inherited value or you may override an inherited value to be unspecified.
When a measure is auto-generated by the Measure Manager, it cannot be edited or used
in any other configuration component such as rules and workbooks until it is realized. A
measure does not need to be realized if it is not going to be used.
The Measures tab displays all auto-generated measures for the selected components.

Example of Measure Manager - Measures Tab

Solutions 71

Working with Measures

The Realized Measures tab only displays those measures that are realized.

Example of Measure Manager - Realized Measures Tab

72 Oracle Retail Predictive Application Server

Working with Measures

Realize and Unrealize Measures

Navigate: In the Configuration Manager, select Project – Solution – Measures.
The Measure Manager window opens in the workspace.

 1. Select the Measures tab.

Example of Measure Manager - Measures Tab

2. In the components tree, select the check boxes for the components that will be
filtered. The Measure Manager will show measures using all of the combination of
selected components. This process filters the list of prototype measures that are
shown from all combinations of components to the combinations of components that
have been selected. It uses those components to determine which prototype
measures to show.

Realize a Measure
 1. Select the components that are used for the measure(s) to be realized.

2. Select the check box in the Realized column for each auto-generated measure to be
realized.

Unrealize a Measure
 1. Select the components that are used for the measure(s) to be unrealized.

2. Deselect the check box in the Realized column for each auto-generated measure to be
unrealized.

Solutions 73

Working with Measures

Rename a Measure

Navigate: In the Configuration Manager, select Project – Solution – Measures.
The Measure Manager window opens in the workspace.

 1. Select the components that are used in the measures to be renamed.
2. In the Measures tab, or the Realized Measures tab, click the name of the measure

that is to be renamed.
3. Type the new name for the measure.

Note: The measure must be realized before it can be
renamed.

Show all Measures

Navigate: In the Configuration Manager, select Project – Solution – Measures.
The Measure Manager window opens in the workspace.
Right-click in the Measure Manager window, and select Show All.

Note: Due to memory constraints when working with very
large numbers of components, all auto-generated measures
may not be displayed. In this case, you will receive an error
message indicating that some measure components should
be deselected.

Hide Measures by Component

Navigate: In the Configuration Manager, select Project – Solution – Measures.
The Measure Manager window opens in the workspace.

 1. In the Measure Manager window, select the Measures tab.
2. Choose one of the following methods:

 Deselect the check boxes next to the components to hide.
 Select the component used in the measures to hide.

3. Right-click in the Measure Manager navigation tree and select Hide, or press the
spacebar.

Hide All Measures

Navigate: In the Configuration Manager, select Project – Solution – Measures.
The Measure Manager window opens in the workspace.

 1. In the Measure Manager window, select the Measures tab.
2. Right-click the Measure Manager navigation tree, and select Hide All.

74 Oracle Retail Predictive Application Server

Working with Measures

Sort Measures by Property Value

Navigate: In the Configuration Manager, select Project – Solution – Measures.
The Measure Manager window opens in the workspace.
In the Realized Measures tab, measures can be sorted by property value.

 1. Select the Realized Measures tab.
2. Hold down the control key (Ctrl) and click in the filter field at the top of the table for

the property of the measures to be sorted.
The measures are sorted in alphabetical order according to the value of the property.

Filter Measures by Property Value

Navigate: In the Configuration Manager, select Project – Solution – Measures.
The Measure Manager window opens in the workspace.
In the Realized Measure tabs, you can filter measures by property value.

 1. In the Realized Measures tab, click in the filter field at the top of the table for the
property of the measures to be filtered.

2. Enter the value on which the measures are to be filtered.

Note: This field is case sensitive.

Solutions 75

External Measures

External Measures

Overview
Under most circumstances, measures exist only within the solution in which they are
defined. When working with a project with multiple solutions, it is sometimes desirable
to make use of a measure defined in a different solution. The Measure Manager allows
the "import" of a measure defined in a different solution (but not a different project) into
the current solution. These measures (called external measures) then become visible in
the External Measures tab of the Measure Manager. Within this tab, it is possible to
modify certain measure properties so that the use of the measure in the Solution into
which it has been imported will differ from its use in the Solution in which it was
originally defined. For example, you may want to modify a writable measure so that it is
read-only in the solution into which it is imported.

Example of Measure Manager - External Measure Tab

Within the Measure Selectors present in the Rule and Workbook tools and the Expression
Builder, there is a checkbox named Include External Measures. When this option is
selected, the Measure Selector will include those measures that were imported into the
solution in addition to those that are present due to component selections in the Measure
Selector.
The following properties may be overridden for an external measure:
 Label
 Description
 Base State
 Agg State
 UI Type
 Range

76 Oracle Retail Predictive Application Server

External Measures

Import a Measure

Note: Y may only import a measure into a solution for a
project that has at least one other solution.

Navigate: In the Configuration Manager, select Project – Solution – Measures.
The Measure Manager window opens in the workspace.

1. Select the External Measures tab, and click the Import Measure button on the
toolbar. The Add External Measures dialog box appears.

Add External Measures Dialog Box

2. In the Add External Measures dialog, select the solution in which the desired
measure is defined.

3. Use the measure selector (left-hand side) to select the measure(s) to import.

Solutions 77

External Measures

Selected Measures to Be Imported and in Box to Right

External measures that are already imported appear in bold.
4. From the right-hand list, select the measure to import and click OK. The selected

measures appear in the External Measure tab.

Remove an Imported Measure from a Solution

Navigate: In the Configuration Manager, select Project – Solution – Measures.
The Measure Manager window opens in the workspace.

 1. Click the External Measures tab, and select the measure to remove.

2. Click the Remove Imported Measure button from the Measure Manager
toolbar, or right-click and select Remove Import. The selected imported measure is
removed from the External Measures tabs.

78 Oracle Retail Predictive Application Server

Rule Sets

Rule Sets

Overview
A rule set is a collection of rule groups. It is used as a placeholder for containing rule
groups, which makes the visual display of rules easier. A workbook uses the rule groups
specified in one rule set.

Note: A rule set is a tools concept only. It does not appear in
the configured solution.

A rule set is created along with the following default rule groups: load, commit, calc, and
refresh.
The rule group names are prefixed with the name of the rule set followed by an
underscore. After the default rule groups are created, you can create additional rule
groups as necessary. You can also rename the rule groups that were automatically
generated, but these rule groups cannot be deleted.

Create a Rule Set

Navigate: In the Configuration Manager, select Project – Solution – Rules. The
Rule Definition window opens in the workspace.

Rule Definition Window

1. From the toolbar, click the New button and select Rule Set, or select

Create/Rule Set from the right-click menu. The Add Rule Set window appears.

Solutions 79

Rule Sets

Add Rule Set Dialog Box

2. Perform the following:
a. In the Name field, enter the name of the rule set.

Note: A rule set name can be a maximum of ten
alphanumeric or underscore characters. It must not have a
name that is the same as any other rule set that exists in the
project.

b. In the Description field, enter a description of the rule set.
c. Click OK to save any changes and close the window. The rule set appears in the

Rules navigation tree.

Delete a Rule Set

Navigate: In the Configuration Manager, select Project – Solution – Rules. The
Rule Definition window opens in the workspace.

 1. In the Rule Definition window, select the rule set that to be deleted.
2. Choose one of the following methods:

 From the toolbar, click the Delete button, and select Delete Rule Set.
 Right-click in the Rule Definition window, select Delete/Remove, and select

Delete Rule Set from the drop-down list.

Note: When a rule set is deleted, any rules that were used in
rule groups in that rule set will still be in the rule pool, but
they will be unused. The rules will be permanently lost
when the project is closed unless they are used in another
rule group.

80 Oracle Retail Predictive Application Server

Rule Groups

Rule Groups

Overview
In RPAS, a rule group is an ordered collection of rules that are treated as a unit by the
calculation engine with the integrity of all the rules in the rule group being maintained
together.
Rules within a rule group are given a priority. The calculation engine uses this to select a
calculation path that follows business priorities. It does this by using rule priorities to
determine which rule to enforce when there is a choice to be made. Although there may
only be one active rule group at any time, multiple rule groups can be defined to satisfy
different calculation requirements.

Types of Rule Groups
Rule groups may be one of four different types:
 Load – The RPAS application automatically uses the load rule group when loading

data into a workbook from the domain.
 Calculate – The RPAS application uses a calculate rule group to apply the effects of

user changes to cells. RPAS supports multiple calculation rule groups. Menu options
may be configured to allow for the transition through different calculation rule
groups in order to support special processes, such as authorizations. RPAS ensures a
smooth transition from one rule group to another.

 Refresh – The RPAS application uses a refresh rule group to refresh the data from
the domain (for example, to update "actuals"). Multiple refresh rule groups can be
specified and selected by the user.

 Commit – The RPAS application automatically uses the commit rule group when
committing data from the workbook to the domain.

A measure that does not have data in the domain may be loaded into a workbook by
using a rule in the load rule group to calculate it based on other measures that are
loaded. Similarly, a measure that exists in a domain, but not a workbook, may be
committed by using a rule in the commit rule group that calculates it from other
measures that are in the workbook.

Rule Group Validation
Within a solution, there may be many rules defined, and each rule is validated
individually. Rules within a rule group are also validated in the context of all the other
rules in that rule group. While a rule may be perfectly valid syntactically, it may not be
valid within the context of a particular rule group. In Rule group validation, each rule in
a rule group must represent a completely different measure relationship, which means
that the following restrictions apply:
 No two rules in a rule group may use exactly the same collection of measures. If such

a condition were allowed, the calculation engine would be unable to calculate either
of the rules, because they would be dependent upon each other, so neither could be
calculated first. This is explicitly validated in the rule tool.

 For similar reasons, a rule normally does not use a collection of measures that is a
subset of the collection of measures in another rule. If the measures that are only in
the larger rule were all changed, the situation would be equivalent to the above.
There are circumstances where this technique is valuable. For example, in a load rule
group where there may be a rule to load a measure from the domain, but other rules
that include that measure. In this case, this condition is not explicitly validated.

Solutions 81

Rule Groups

 There must be one (and only one) expression that calculates a recalc measure used in
a rule group.

 Other than in the special circumstance of a rule constructed from multiple result
functions or procedures, a measure may only be on the left-hand side of one
expression in a rule.

Multiple Refresh Rule Groups
The Refresh Rule Group updates (supplies new values for) data, which can generally be
thought of as being "external" to the workbook. An example would be “actuals”:
 If a workbook is built in week 5, the user would have actuals for weeks 1-4.
 In week 6, the user may want to refresh the actuals to get the actuals for week 5.

The Configuration Tools and RPAS support the use of multiple refresh rule groups.
Within the rule tool, there is the ability to create multiple refresh rule groups within a
rule set. These multiple refresh rule groups can then be assigned to a workbook template
using the Workbook Designer, and they will be available for selection within the RPAS
Client.
 A workbook contains all of the rule groups in a single rule set, so if multiple refresh

rule groups are required in a workbook, they must all be in the same rule set.
 You may consider naming rule groups so the usage of the refresh rule groups are

reflected in their names; such as refresh_all, refresh_actuals, and refresh_manager.

Rule Group Transitions
Although only a single rule group may be active at any time, RPAS supports the
transition from one rule group to another, so the active rule group may be changed. The
calculation engine ensures the integrity of measure relationships at all times, so this
transition process is not merely a case of switching from one rule group to another,
because there are no guarantees that the integrity of the rules in the rule group being
transitioned into would have been maintained. There are different forms of rule group
transitions. When designing rule groups, you should consider the impact of anticipated
rule group transitions.
Automatic rule group transitions occur under the following circumstances:
 On workbook building – Data is loaded using the load rule group. This typically

loads measures by calculating them from the data values held on the domain using
the master modifier, but may also calculate other measures that are not explicitly
loaded. When the load is complete, the system automatically executes a full
transition to the calculate rule group.

 On data refreshing – Data refreshing causes some measures to be updated from
values held in the domain. The measures that are affected by the refreshed measures
are treated as affected in the calculate rule group, and a normal calculation of that
rule group follows. Effectively, data refreshing causes a calculation using the
calculate rule group as if the cells that were refreshed were directly changed by the
user.

 On data committing – There is a full transition from the current calculate rule group
to the commit rule group. This typically commits measures by calculating them on
the domain by using the master modifier. There is then a null transition back to the
calculation rule group (that is, no transition process is executed since the assumption
is that nothing in the workbook has changed), so no transition is required.

 On executing custom menus – There is a full transition between each rule group in
the custom menu, which is followed by a full transition back to the default calculate
rule group.

82 Oracle Retail Predictive Application Server

Rule Groups

Create a Rule Group

Navigate: In the Configuration Manager, select Configuration – Project –
Solution – Rules. The Rule Definition window opens in the workspace.

Example of Rule Definition Window

 1. In the Rule Definition window, select the rule set to be used to create a new rule
group.

2. From the toolbar, click the New button, and select Rule Group, or select Create
– Rule Group from the right-click menu.

Example of Create - Rule Group Menu Option

The Add Rule Group window is displayed.

Solutions 83

Rule Groups

Add Rule Group Window

3. Perform the following:
a. In the Name field, enter the name of the rule group.

Note: A rule group name can be a maximum of 16
alphanumeric or underscore characters. It must not have a
name that is the same as any other rule group that exists in
the project.

b. In the Description field, enter a description of the rule group.
c. Click OK to save any changes and close the window. The new rule group

appears in the Rule Definition tree window.

84 Oracle Retail Predictive Application Server

Rule Groups

Delete a Rule Group

Navigate: In the Configuration Manager, select Configuration – Project –
Solution – Rules. The Rule Definition window opens in the workspace.

 1. In the Rule Definition window, select the rule group to be deleted.

Note: Only user-created rule groups within a rule set can be
deleted. You cannot delete the default load, commit, calc,
and refresh rule groups. If Delete is selected for one of the
default rule groups, it will not be deleted, but all of the rules
will be removed from the rule group. In either case, the rules
will still exist within the rule pool, but they will be lost when
the project is closed if they are not used in another rule
group.

2. From the toolbar, click the Delete button, and select Rule Group. The group is
removed from the Rule navigation tree.

Copy a Rule Group
If two rule groups are similar, it may be beneficial to copy one rule group into the other
to prevent having to create a rule group from scratch. When copying the rules of a rule
group into another rule group, it is possible to specify whether existing rules will be used
or copies of the rules will be created. The Use Existing Rules checkbox defaults to using
any existing rules in the rule pool. If this checkbox is selected, the copy rule group
operation will use the same rules that the source rule group has. If this checkbox is
unchecked, the copy rule group operation will create copies of the rules and use those
copies for appending to or replacing rules in the destination rule group.

Note: The rule group to be copied into must already exist. A
new rule group cannot be created through this process.

Navigate: In the Configuration Manager, select Configuration – Project –
Solution – Rules. The Rule Definition window opens in the workspace.

 1. In the Rule Definition window, select the rule group to be copied.
2. From the toolbar, click Advanced, and select Copy Rule Group. The Copy Rule

Group window appears.

Solutions 85

Rule Groups

Example of Copy Rule Group Window

3. Perform the following:
a. Using the Rule Set list, select the destination rule set.
b. From the Rule Group area, select the desired destination rule group.
c. Using the Replace or Append Rules list, select:

– Replace – To overwrite all rules that already exist in the destination rule
group.

– Append – To add to the rules already in the destination rule group.
d. Click OK. The Confirm Operation dialog appears.

4. Click OK. The rules are copied to the selected rule group.

Measure Validation in the Rule Definition Window
If Enable Measure Content Validation is NOT selected in the Workbench Preferences
window, measure content validation is turned off in the Measure Manager. Measure
validation must be manually initiated in the rule tool. See “Measure validation within the
Measure Manager.”

From the Rule Definition window, click the Perform Measure Content Validation
button on the Rule Definition toolbar.

86 Oracle Retail Predictive Application Server

Rules

Rules

Overview
The Rule Definition tool allows you to define, organize, and manage rule sets, rule
groups, and rules. It also allows for the creation of expressions and addition of
expressions to rules.
Rules are groups of expressions that describe the relationship between measures.
When a rule has multiple expressions, those expressions are given a priority sequence to
help the calculation engine select a calculation path that follows business priorities.
When given a choice, the calculation engine will always select the highest priority
expression in the rule that is available to be selected. Considerable care should be taken
in the design of rules to ensure that appropriate expression priorities are established. The
business priority may vary from implementation to implementation, and it may vary
from one type of plan to another in the same implementation.
Rules are also given a priority sequence within a rule group to help the calculation
engine select a calculation path that follows business priorities. When given a choice, the
calculation engine will always select the highest priority rule that needs to be calculated.
Those who are configuring the calculation requirements of a solution are expected to
fully understand the operation of the RPAS calculation engine.

Create a Rule and Add It to a Rule Group

Navigate: In the Configuration Manager, select Project – Solution – Rules. The
Rule Definition window opens in the workspace.

 1. In the Rule Definition window, select the rule group in which you want to create a
rule. If you want the rule to be created in a particular position in the sequence of
rules in the rule group, select the rule before which you want the new rule to be
placed. The new rule will be created above the selected rule.

2. Choose one of the following methods:

 From the toolbar, click the New button and select Rule.
 Select Create – Rule from the right-click menu.

Example of Create - Rule Menu Option

 Press Ctrl+R.

Solutions 87

Rules

The Add Rule window opens.

Add Rule Window

3. In the Name field, enter the name of the rule.

Note: A rule name can be a maximum of 24 alphanumeric or
underscore characters. It must not have a name that is the
same as any other rule that exists in the project. Rule names
may start with a letter or an underscore, but may not start
with the letter "r" or "R" followed by a number.

4. In the Description field, enter a description of the rule.
5. Click Next. The Expression Builder window of the Add Rule window is displayed.

88 Oracle Retail Predictive Application Server

Rules

Specify Expression

6. Type the expression in the input box or perform the following to use the Expression
Builder.

a. Click the Expression Builder button to the right of the text box. The
Expression Builder window opens.

Expression Builder Window

Solutions 89

Rules

b. In the upper left-hand pane, select the measure components to filter measures to
be visible for pasting into the expression. If External Measures are required in the
expression, select the Include External Measures check box. Realized measures
meeting the filtering conditions are displayed in the lower left hand pane.

c. In the lower left hand pane, double-click any measures to be used in the
expression to get the measure name pasted at the insertion point in the
expression.

Note: Place the mouse over the name of a function,
procedure, keyword, or modifier to see a tooltip that
explains its function.

Tooltip Example

d. From the drop-down list, select a category of functions, procedures, keywords, or
modifiers. Double-click on a specific function, procedure, keyword, or modifier
to be used in the expression, and (if appropriate) outline syntax pasted at the
insertion point in the expression.

90 Oracle Retail Predictive Application Server

Rules

Category Options List

The outline syntax of a function, procedure, keyword, or modifier is pasted with
components of the syntax separated with braces ("{}"). When the insertion point is in
a component of the outline syntax in the expression, you will see a description of the
component at the bottom of the expression window. When the insertion point is in a
component of the outline syntax, anything that is entered or pasted replaces the
whole component.

Example Expression

If the function, procedure, keyword, or modifier that is pasted has optional
arguments (for example, the cover function has optional arguments for an offset
expression and a wrap-around expression), you will be presented with the following
dialog box to select which of the optional arguments to use in the expression. Note
that all arguments are positional, so if a later argument is selected, all earlier
arguments will be automatically selected. If an earlier argument is deselected, all
later arguments will be automatically deselected.

Select Optional Arguments Dialog Box

Solutions 91

Rules

If the function, procedure, keyword, or modifier that is pasted has repeating
arguments (for example the min function finds the minimum of a variable number of
expressions), a dialog box appears to select how many of the repeating arguments to
use in the expression.
e. Use the keyboard or dialog buttons to add the appropriate mathematical

operators and constants to construct the expression.
f. When you have defined the expression as needed, click Finish and close the

window.

Note: If an invalid expression is created, a warning message
is displayed.

7. To add further expressions to the rule, click Add, and repeat the process of entering
an expression.

8. Click OK to save any changes and close the window.
9. If the newly defined rule’s expressions use exactly the same measures as another rule

that already exists in the Rule Pool, the Similar Rules Found window will be
displayed. The window shows all rules that use exactly the same measures as the
newly defined rule. This provides you with an opportunity to use an existing rule
from the Rule Pool or to continue with the new rule. The Similar Rules Found
window allows you to view rules, associated expressions, and rule groups that
contain the rules. The rule table may be filtered based on the rule name or by
measure. Click Use Existing Rule or Use New Rule to save changes and close the
window.

Similar Rules Found Window

The new rule is placed above the rule that was selected at the start of the process in
the sequence of rules in the rule group or at the end of the rule group if no rule was
selected.

Note: If Use Existing Rule or Use New Rule is not selected
and the window is closed manually, a new rule is created.

92 Oracle Retail Predictive Application Server

Rules

Add an Existing Rule to a Rule Group
Using the Add Existing Rules dialog, you may select multiple rules to add to a rule
group. If at least one of the selected rules is already in the rule group, the OK button will
gray out disallowing the operation until that rule is deselected. When multiple rules are
selected, the expression and rule group displays will go blank. However, if there is only
one selected rule, the rule’s expressions and the list of rule groups that use the rule will
be displayed.

Navigate: In the Configuration Manager, select Project – Solution – Rules. The
Rule Definition window opens in the workspace.

 1. In the Rule Definition window, select the rule group to be used to add an existing
rule. If the rule is to be placed in a particular position in the sequence of rules in the
rule group, select the rule in which the new rule is to precede.

2. Choose one of the following methods:

 From the toolbar, click the New button and select Using Existing Rule.
 Select Create – Using Existing Rule from the right-click menu.
 Press Ctrl+P.

The Add Existing Rule dialog appears.

Add Existing Rule Dialog Box

3. Filter by Rule Name or by Measure and view the associated expressions to find the
correct rule. Filtering means that all data are compared, but only matching data are
allowed to "pass through." In order to filter by Rule Name or by Measure, type a
filter string (for instance, "GrLYS" in the input box directly under the Title Bar. Click
Filter by Measure, and only those measures with "GrLYS" will be displayed.

Solutions 93

Rules

Example of Filter on GrLYS

4. Click on the rule in the table to select it.
5. Click OK to save changes and close the window.

The rule is placed above the rule that was selected at the start of the process in the
sequence of rules in the rule group or at the end of the rule group if no rule was
selected.

Apply a Rule Pattern to Create New Rules or to Update Existing Rules
The Apply Rule Pattern functionality allows you to create new rules or update existing
rules according to a pattern established by a selected "base" or "template" rule. The rule
tool recognizes inherent similarities or patterns in measure components used in some
rules when compared to the base or template rule. Based on these similarities, the rule
tool allows for the creation of new rules or update of exiting rules to fit the pattern set by
the base or template rule.
When the Apply Pattern capability is enabled, there is a possibility that some of the
“New” or “Updated” rules will have the same expressions as a rule that already exists in
the rule pool. If this happens, the Similar Rules Found dialog appears and provides the
option of using the existing rule or actually creating a new one.

Navigate: In the Configuration Manager, select Project – Solution – Rules. The
Rule Definition window opens in the workspace.

94 Oracle Retail Predictive Application Server

Rules

Example of Rule Definition Window

 1. In the Rule Definition window, select any rule group that contains the rule to use as
the pattern basis.

2. Select the rule whose pattern is to be used as a basis for creating or updating rules.
3. From the toolbar, click Advanced and select Apply Pattern, or right-click and select

Advanced - Apply Pattern.
A New dialog box containing a set of rules will be presented for selection. This set is
composed of rules whose measures follow the selected rule’s pattern in terms of the
individual measure components used. The set of rules will be composed of potential
new rules or potential updated rules.

New – Apply New Pattern Dialog Box

Solutions 95

Rules

Example:
Consider a configuration with three components in the measure naming scheme:
 a “version” (such as ‘Wp’)
 a metric (such as ‘Shrink’)
 a unit of measure (such as ‘V’).

If the selected base rule is:
{ WpShrinkU WpShrinkAUR | WpShrinkV }
...then the rules:
Rule1: { WpSlsU WpSlsV WpSlsAUR | }
...and
Rule2: { WpRecU WpRecV WpRecC | }
...would fit the pattern and be included in the list.
Rule1 fits the pattern because its measures use the same measure components with
the exception of the metric component. For the Metric component, the base rule uses
Shrink, and Rule1 uses Sls consistently. In this case, the tool will present the rule:
{ WpSlsU WpSlsAUR | WpSlsV }
...as a possible update for Rule1.
The update results in the conversion of Rule1 to a rule that uses the same measures
as the original Rule1, but it has the expression pattern of the base rule.
Rule2 fits the pattern because it uses the same Version as the base rule. For the Metric
component, the base rule uses Shrink, and Rule2 uses Rec consistently. Unlike Rule1,
Rule2 uses C as the Unit of Measure in one of its measures. This is not an “exact” fit
like Rule1. In this case, the tool will present the rule { WpRecU WpRecAUR |
WpRecV } as a possible new rule. Notice that this rule is “forced” to be an “exact” fit
as Rule1 was.

4. From the list of possible new and updated rules, select those to be updated or added
to the rule group.

5. Click OK.
A selected rule that is labeled “New Rule” will be added to the end of the rule group.
The new rule’s name will default to the RuleSet’s name suffixed with a number to
keep the name unique. A selected rule that is labeled “Update Rule” is already in the
rule group and will be updated. This means that the rule’s measures will be retained,
but its expression pattern will be changed to follow the base rule’s expression
pattern. In both cases, the rule will follow the pattern of the base rule’s expressions.

96 Oracle Retail Predictive Application Server

Rules

Delete a Rule from All Rule Groups

Note: This procedure will delete the rule from all rule
groups that contain this rule as well as from the Rule Pool. If
the desired action is to remove the rule from a rule group,
but retain it in other rule groups, follow the "Remove a Rule
from a Rule Group" procedure.

Navigate: In the Configuration Manager, select Project – Solution – Rules. The
Rule Definition window opens in the workspace.

Example of Rule Definition Window

 1. In the Rule Definition window, select any rule group that contains the rule to be
deleted.

2. Select the rule to be deleted.

Note: If multiple rules are selected, only the last selected rule
will be deleted.

3. From the toolbar, click the Delete button and select Delete Rule, or select
Delete – Remove – Delete Rule from the right-click menu. The Delete Rule Group
window appears.

4. Verify that the rule selected in the table is the rule to be deleted, or select a different
rule to delete by clicking on the rule in the table.

Solutions 97

Rules

Example of Delete Rule Window

5. Click Delete Rule to delete the rule and close the window.

Remove a Rule from a Rule Group

Note: This procedure will remove the rule(s) only from the
currently selected rule group. If the desired action is to
delete the rule(s) from all rule groups and the rule pool, see
"Delete a Rule from All Rule Groups" in this document.

Navigate: In the Configuration Manager, select Project – Solution – Rules. The
Rule Definition window opens in the workspace.

 1. In the Rule Definition window, select the rule group that contains the rule(s) to be
removed.

2. Select the rule(s) to remove.

Note: Multiple rules can be selected by holding the Control
(Ctrl) key as the individual rules are selected, or by clicking
one rule and holding Shift key as another rule is selected,
which selects all rules between the two that were clicked. A
selected rule is indicated by a bold rule name.

3. From the toolbar, click the Delete button and select Remove Rule(s), or select
Delete – Remove – Remove Rule(s) from the right-click menu.
The rule(s) are removed from the rule group, but are still in the rule pool. The rules
will be permanently lost when the project is closed, unless they are used in another
rule group.

98 Oracle Retail Predictive Application Server

Rules

Edit Properties of a Rule

Navigate: In the Configuration Manager, select Project – Solution – Rules. The
Rule Definition window opens in the workspace.

 1. In the Rule Definition window, select any rule group that contains the rule to edit.
2. From the rule group, select the rule to edit.

3. From the toolbar, click the Edit button and Select Rule, or select Rename –
Rule from the right-click menu. The Rename Rule dialog box opens.

Rename Rule Dialog Box

4. To edit the name of the rule, enter a new name in the Name field.

Note: A rule name can be a maximum of 24 alphanumeric or
underscore characters. It must not have a name that is the
same as any other rule that exists in the project. Rule names
may start with a letter or an underscore, but may not start
with the letter "r" or "R" followed by a number.

5. To edit the description of the rule, enter a new description in the Description field.
6. To edit attributes for a rule:

a. Select the attribute to edit.
b. Click Edit. The Edit Attribute dialog box opens.

Edit Attribute Dialog Box

c. Update the information as necessary.

Solutions 99

Rules

d. Click OK to save any changes and close the window.
7. To remove attributes from a rule:

a. Select the attribute to delete.
b. Click Remove. The attribute is removed from the display box.

8. Click OK to save any changes and close the window.

Rename All Rules in a Rule Group

Navigate: In the Configuration Manager, select Project – Solution – Rules. The
Rule Definitions window opens in the workspace.

 1. In the Rule Definition window, select the rule group that contains the rules to
rename.

2. From the toolbar, click Advanced and select Rename All Rules, or select Advanced –
Rename All Rules from the right-click menu. The Rename All Rules dialog box
appears.

Example of Rename All Rules Dialog Box

3. In the Prefix field, enter a prefix up to ten characters in length, which will be the start
of all rule names.

4. Click OK. The Confirm Operation dialog box appears.

5. Click Yes.

100 Oracle Retail Predictive Application Server

Rules

Note: All of the rules in the rule group are renamed with the
prefix followed by a 4-digit numeric identifier generated by
the rule tool. The rule tool will maintain the order that the
rules were in before they were renamed, and it uses that
order in generating the numeric identifier.

Note: Since rules may appear in more than one rule group,
use of this feature may generate rule names that look out of
place in other rule groups, especially if the prefix implies the
rule group.

Filter Rules in a Rule Group

Navigate: In the Configuration Manager, select Project – Solution – Rules. The
Rule Definitions window opens in the workspace.

 1. In the Rule Definition window, select a rule group.
2. In the Rule Definition window, click Rule Filtering.

Rule Filtering Button in Rule Definition Window

Note: This is a dynamic button, and the text will change
depending on the current filter mode.

3. Select one of the following options:
 Disable Filtering – All rules are displayed.
 Filter by Measure – Works in conjunction with the measure components box in

the bottom left corner of the screen. Rules are filtered to show those whose
measures conform to the selected component scheme.

 Filter by Size – Rules are filtered to show those with more than one expression.
 Filter by Validity – Only invalid rules are displayed.

Note: When rule filtering is active, the buttons used to
reorder rules in the rule group are disabled.

Solutions 101

Rules

Reordering Rules in a Rule Group

Navigate: In the Configuration Manager, select Project – Solution – Rules. The
Rule Definition window opens in the workspace.

 1. In the Rule Definition window, select the rule group that contains the rules to
reorder.

2. Select the rule to reorder.
3. Perform the following as needed:

 Use the Up/Down arrows on the Rule Definition toolbar to move the rule
up or down the list.

 Click the Up/Down arrows to the left of the rule name to move the rule up or
down the list.

Auto Generate Load and Commit Rules

Navigate: In the Configuration Manager, select Project – Solution – Rules. The
Rule Definition window opens in the workspace.

Note: Rules for the load and commit rule groups in a rule set
can be auto-generated based on the calc rule group. The
measures referenced in the calc rule group are assumed to be
all of the measures in a workbook (if there are others,
manually add their load and/or commit rules). A load or
commit rule is generated for all of those measures that have
a database allocated (those that are physically stored).

 1. Select the rule set for which load or commit rules are to be auto generated, or select
any rule group in that rule set.

2. Perform one of the following methods:
 From the toolbar, click Advanced and select Generate Load Rules or Generate

Calc Rules
 Select Advanced – Generate Load Rules or Advanced – Generate Calc Rules

from the right-click menu.
The Confirm Operation dialog box appears to inform you that this process cannot be
undone.

3. Click Yes.

102 Oracle Retail Predictive Application Server

Rules

Rules are automatically generated and named for the load or commit rule group.
There is one rule with a single expression that is generated for each measure used in
the calc rule group for the rule set that has a database assigned.
In the load rule group, the rules are named <rulesetname>Lnnn where nnn is a 3-
digit order number. The rules in a commit rule group are similarly named
<rulesetname>Cnnn. The expression in a generated rule in a load rule group is of the
form:
<measurename> = <measurename>.master
and in the generated commit rule group are of the form:
<measurename>.master = <measurename>

Copy Selected Rules to Another Rule Group
When copying selected rules of a rule group into another rule group, it is possible to
specify whether existing rules will be used or copies of the rules will be created. The Use
Existing Rules check box defaults to using any existing rules in the rule pool. If this
checkbox is selected, the copy selected rules operation will use the same rules that the
source rule group has. If this check box is not selected, the copy selected rules operation
will create copies of the rules and use those copies for appending to or replacing rules in
the destination rule group.
When the user uses the Find/Replace feature, it is possible that a changed rule will have
the same expressions as a rule that already exists in the rule pool. If the Use Existing
Rules check box is selected, the Similar Rules Found dialog appears. you have the option
of using the existing rule or actually creating a new one.

Navigate: In the Configuration Manager, select Project – Solution – Rules. The
Rule Definitions window opens in the workspace.

 1. Select the Rule Group that contains the rules to copy, and select the individual rules
to be copied.

Note: To select multiple rules, hold down the Ctrl key and
click the rules to select, or click one rule and hold Shift key
as selecting another rule, which selects all rules between the
two that have been selected. A selected rule is indicated by a
bold rule name.

2. Perform one of the following methods:
 From the toolbar, click Advanced, and select Copy Selected Rules.
 Select Advanced – Copy Selected Rules from the right-click menu.
 Press Ctrl+C.

Solutions 103

Rules

The Copy Selected Rules dialog box opens.

Copy Selected Rules Dialog Box

3. In the Rule Set field, select the copy's destination rule set.
4. In the Rule Group area, select the desired copy's destination Rule Group.
5. In the Replace or Append Rules field, select:

 Replace – To remove all rules that already exist in the destination rule group
before the copy.

 Append – To add to the rules already in the destination rule group.
6. Click Next. The second window of the Copy Selected Rules window opens. This

window allows you to select or deselect rules from those originally selected to copy
when the check box beside the rule name is selected.

104 Oracle Retail Predictive Application Server

Rules

Copy Selected Rules – Rules to be copied appear with check marks

Find and Replace Measures in the Copied Rules
The ability to find/replace in the copy rules is a very powerful and useful feature. This
feature can be used to build a collection of rules and “clone” them to a very similar
collection of rules. For example, a collection of rules that calculate a series of variances
with one version can be cloned to produce rules that calculate a series of variances with
another version.

 1. Click the Find/Replace button. The Find/Replace dialog box appears.

Find/Replace Dialog Box

2. In the Find field, enter the portion of the measure to replace.

Note: The Find function is case-sensitive.

3. In the Replace With field, enter the string to replace the portion of the measure
name.

4. Perform one of the following:
 Select Forwards to search the rules in order
 Select Backwards to search the rules in reverse order.

Solutions 105

Rules

Note: Searching Forwards will proceed from left to right
starting with the first measure of the first expression of the
first selected Rule and will go through all expressions in all
selected Rules. Similarly, searching Backwards will flow in
the reverse direction starting with the rightmost measure of
the last expression in the last Rule selected.

5. Click Find Next. The first candidate measure to be replaced will be displayed in the
bottom left field.

6. Perform the following as needed:
 Click Replace/Find Next to replace the current candidate measure and display

the next candidate measure.
 Click Replace All to replace all instances in all the selected Rules of the current

candidate measure. For example, if a search for Wp finds WpRecV, clicking on
Replace All will perform a replace on all instances of WpRecV in all the selected
Rules.

 Click Find Next to skip over that occurrence of the portion of the measure name,
and go onto the next one.

The Similar Rules Found dialog box appears.

Similar Rules Found Dialog Box

Using this dialog box, you can replace a portion of the rules (for instance a prefix)
either for all instances of the rules or only for the new instances (where the old
instances are not affected).

106 Oracle Retail Predictive Application Server

Expressions and Rules

Example:
Suppose you create a series of rules for the Executive (Ex) Calc Rule Group, and
wants to use these as a model for the Manager (Mg) Calc Rule Group. Each of these
original rules contains expressions with the “Ex” prefix. Each such instance needs to
be replaced with “Mg.”
 Click Use Existing Rules to replace every instance of “Ex.”
 Click Use New Rule to replace the new instances of “Ex” without affecting the

previous rules that contain “Ex.”

7. Click the Close button to close the Find/Replace dialog box.
8. Click OK.
9. Click Yes to confirm.

The copies of the rules will be placed in the target rule group. These copies will have
names that start with as many characters as possible from the name of the original
rule and end with an underscore and number.

Expressions and Rules

Overview
An expression describes and solves the relationship between measures in a way that
causes a measure to be calculated through the expression. They form the basis for all
calculations of the relationships between measures, and they are evaluated by the
calculation engine during a calculation. In some cases, there may be business reasons for
wanting more than one of the measures in a relationship to be calculable or solvable
through that relationship. Expressions are written in a syntax that allows for the
calculation of a single measure from other measures, constants, and parameters by using
standard arithmetical functions and a rich set of mathematical, technical, and business
functions. Expressions have multiple results.
Example:
Expression 1: ReceiptUnits = ReceiptsValue / ReceiptsPrice
This expression specifies the way ReceiptUnits are calculated. ReceiptUnits are calculated
by dividing ReceiptsValue by ReceiptsPrice.

Note: Measures are not only calculated based on
expressions. They are also calculated based on spreading
and aggregating.

Solutions 107

Expressions and Rules

Reorder an Expression in a Rule

Navigate: In the Configuration Manager, select Project – Solution – Rules. The
Rule Definition window opens in the workspace.

Example of Rule Definition Window

 1. In the Rule Definition window, select any rule group that contains the rule whose
expression is to be reordered.

2. Choose one of the following methods:
 Expand the rule to view the expressions associated with the rule. Click the

Toggle button on the Rules toolbar and select Expand All Expressions.

Toggle Button

 Click the Toggle button for the rule.

3. Use the up and down arrows to move the expression up or down the list.

Edit an Expression in a Rule

Navigate: In the Configuration Manager, select Project – Solution – Rules. The
Rule Definition window opens in the workspace.

 1. In the Rule Definition window, select any rule group that contains the rule whose
expression is to be edited.

2. In the Rule Definition window, select the rule whose expression is to be edited.
3. Choose one of the following methods:

 From the toolbar, click the Expression Builder button
 Select Edit Expressions from the right-click menu.
 Press Ctrl+E.

108 Oracle Retail Predictive Application Server

Expressions and Rules

The Edit Expressions window appears.

Edit Expressions Window

To Edit an Expression
 1. Choose one of the following methods:

 Edit the expression in its text box.

 Click the Expression Builder button for the expression to edit. The Edit
Expressions window appears. Use the Expression Builder to make necessary
changes and click Finish when complete.

Solutions 109

Expressions and Rules

Expression Builder Window

2. Click OK to save and changes and close the window.

Delete an Expression from a Rule

Navigate: In the Configuration Manager, select Project – Solution – Rules. The
Rule Definition window opens in the workspace.

 1. In the Rule Definition window, select any rule group that contains the rule whose
expression is to be deleted.

2. In the Rule Definition window, select the rule whose expression is to be deleted.
3. Choose one of the following methods:

 From the toolbar, click the Expression Builder button
 Select Edit Expressions from the right-click menu.
 Press Ctrl+E.

The Edit Expressions window appears.
4. Click the Delete button to the left of the expression in the Edit Expression box.
5. Click OK to delete the expression. Once OK is clicked, the expression will be

permanently deleted from the rule.

Note: If the only expression in the rule is deleted, the rule
will be flagged as being invalid, because it has no
expressions.

Add an Expression to a Rule

Navigate: In the Configuration Manager, select Project – Solution – Rules. The
Rule Definition window opens in the workspace.

 1. In the Rule Definition window, select the rule group that contains the rule that will
have an expression added.

110 Oracle Retail Predictive Application Server

Expressions and Rules

2. In the Rule Definition window, select the rule that will have an expression added.
3. Choose one of the following methods:

 From the toolbar, click the Expression Builder button
 Select Edit Expressions from the right-click menu.
 Press CTRL+E.

The Edit Expressions window appears.

Edit Expressions Window

4. Click Add to add a new expression in the Edit Expression box.
5. Choose one of the following methods:

 Enter the expression in its text box

 Click the Expression Builder button for the expression to edit. The Edit
Expressions window appears. Use the Expression Builder to define the rule and
click Finish when complete.

6. Click OK to add the expression.

Solutions 111

RPAS Functions, Procedures, Keywords, and Modifiers

RPAS Functions, Procedures, Keywords, and Modifiers

Overview
RPAS functions, procedures, keywords, and modifiers are mechanisms for performing
operations within an expression that are controlled and executed by the calculation
engine. There is a rich collection of available functions, procedures, keywords, and
modifiers that can be further extended for an implementation if required.
See Appendix C, "RPAS Rules Function Reference Guide" for details about RPAS
functions, procedures, keywords, and modifiers.

Workbooks

Overview
A workbook is an easily viewed, easily manipulated multidimensional framework that is
used to perform interactive business functions in the configured solution. To present
data, a workbook can contain any number of multidimensional spreadsheets, called
worksheets, as well as graphical charts and related reports. All of these components work
together to allow you to view and analyze business functions.
The Workbook Designer allows for the creation selection, and integration of the various
components of a workbook template, which is a pre-designed workbook that is
formatted for RPAS users to view and manipulate data. It contains workbook tabs,
worksheets, rule groups, wizards, and workflow processes.
Take the time to design a well-planned workbook. Workbooks should be laid out in a
logical format and should be easy to navigate. When configuring a workbook, think
about how the workbook will be used by the users in the RPAS Client. Understand the
business process flow and what end users will need to access most. Most likely, this
information should be contained in the first workbook tab and worksheet.
The names of all of the workbook components should be intuitive to an end user.

Note: The internal RPAS names need to be unique across all
workbook components in a project. This includes workbook,
tab, worksheet, wizard, and custom menu names.

Workbook Tabs
A workbook tab is a major subdivision of a workbook. Each workbook contains at least
one workbook tab by default, but additional tabs can be added for organizing workbooks
to support business needs. The workbook designer allows you to define and name tabs
and to specify their order in the workbook.

Worksheets
Worksheets are multidimensional spreadsheets that are used to display workbook-
specific information. Workbooks can include one or many worksheets. Worksheets can
present data in the form of numbers in a grid, or the numeric data values can be
converted to a graphical chart.
The Workbook Designer provides a visual represent of your workbooks, workbook tabs,
and worksheets.

112 Oracle Retail Predictive Application Server

Workbooks

Example of Workbook Designer Window

The Workbook Designer contains the following areas:
The Workbook tree - The Workbook tab provides a visual representation of the
workbooks, workbook tabs, and worksheets. In the example provided, Sample and
Workbook1 are workbooks. Simple Balance Set and WorkbookTab0 are workbook tabs.
Daily by Subclass and Weekly by Class are worksheets, which are contained in the
Simple Balance Set workbook tab.
The Workbook toolbar - This toolbar is used to perform common tasks. The buttons
available depend on the item selected in the Workbook Designer window.
The Workbook tabs - The workbook tabs are used to define property at the workbook
level. The tabs displayed depend on whether a workbook, workbook tab, or worksheet is
selected from the Workbook tree. In the example above, Sample (a workbook) is selected.
The 7 workbook tabs displayed are available to define specific properties for your
workbook. For information on these tabs, refer to the "Workbook Tab" section.

Wizards
RPAS uses a series of wizards to obtain information in order to build a workbook. The
workbook contains a subset of the entire data available in the system; so think about the
most logical flow for the wizards. The main purpose of a wizard is to allow the end user
to make choices regarding the scope of the workbook. The workbook designer allows
you to specify which wizards will be used to build the workbooks.

Overview of Participation Measures
A "percent-to-parent measure" or "participation measure" is a measure that contains the
value of the current positions as a proportion of the value at a Parent level (for example,
sales as a percent of the class sales). These measures can be viewed and edited, and they
may be preconfigured through the RPAS Configuration Tools or dynamically defined in
the RPAS Client in a worksheet.
Typical uses of this functionality are to define measures that are percentage
participations of sales measures. Typically, these are either to a fixed level (such as class)
so the participation of each item to the class can be viewed and manipulated, or they are
to the "next level up" in the product hierarchy.
The following examples will use the sample product hierarchy structure: SKU-style-
subclass-class-company-all.

Solutions 113

Workbooks

Note the following important points when using this feature:
 Changing the percentage of the percent-to-parent measure will cause the values of

the underlying measure to change to reflect the newly set percentage.
 Multiple percent-to-parent measures can be defined for the same underlying

measure; however, only one percent to parent measure or the underlying measure
can be edited before calculation occurs. All other versions will be protected.

 The value of a percent-to-parent measure is a fraction between zero and one. You
must format the measure to be displayed as a percentage if desired.

Create a Workbook

Navigate: In the Configuration Manager, select Project – Solution –
Workbooks. The Workbook Designer window opens in the workspace.

 1. Choose one of the following methods:

 Click the New Workbook button from the Workbook Designer toolbar.
 Right-click in the Workbook tree area, and select New Workbook.
 Select an existing workbook and press Insert.

A new workbook is created.
2. Enter information for the tabs displayed across the top of the Workbook Designer

window as necessary. Refer to "Defining Workbook Properties" for more
information.

Note: Double-click in the fields in the Value column to enter
the information.

Configure Extended Measures

To specify an extended measure for a workbook:
 1. Click the Extended Measures tab.

2. Right-click in the table area, and select Add.
a. Select the newly added row.
b. Click Select Measure to get a list of the measures used in the workbook. Type

the first few characters of the measure name in the box at the top of the list to go
to the required measure, or scroll to find it.

c. Double-click to select the required measure.
3. Specify the appropriate property information for the extended measure.

To change properties for an extended measure for a workbook:
 1. Click the Extended Measures tab.

2. Specify the desired property information for the extended measure.

To remove an extended measure from a workbook:
 1. Click the Extended Measures tab.

2. Select the row for the extended measure.
3. Right-click the row for the extended measure, and select Remove.

114 Oracle Retail Predictive Application Server

Workbooks

The Usage and Arguments Properties

Navigate: In the Configuration Manager, select Project – Solution –
Workbooks. The Workbook Designer window opens in the workspace. Select a

workbook from the Workbook navigation tree and click the Extended Measures tab.
The Usage property describes the type of extended measure that is being defined. The
choices offered will include all the “Allowed Aggs” for the measure, plus “Relative % To
Parent” and “Absolute % to Parent.”

 1. To define the extended measure to use an alternative aggregation type from the list
of Allowed Aggs, click the Usage field and select the aggregation type.

2. To define the extended measure to be a Relative % to Parent, click the Usage field
and select Relative % to Parent. Select the hierarchy that the parent should be in
from the Args property. The extended measure will contain the value of the measure
as a proportion of the value of the measure at the next higher dimension in the
chosen hierarchy that is visible in the window.
The "relative" percent-to-parent measure type calculates the value for a given level
that is the percentage of that level and its immediate parent (meaning one level
higher). This type can only be set for a single hierarchy.
Using the previously defined sample hierarchy structure, the percentage displayed at
the "SKU" level is the "SKU" as a percent of the "style"; at the "style" level, the "style"
as a percent of the "subclass"; and at the "subclass" level, the "subclass" as a percent of
the "class."
Note that only a single hierarchy is possible with the “relative” percent to parent
measure type.
In the case of multiple branching hierarchies, where certain dimensions will have
multiple parents, for relative percent-to-parent measures, the percentage will always
be calculated based on the active roll-up in the current window.
Note that the calculated value is based on the actual next level up in the hierarchy
(based on the hierarchy structure), not necessarily the one that is being displayed. In
the previous examples, imagine that SKU-subclass-class is displayed in the client, but
the underlying structure is SKU-style-subclass-class. When viewing the value at
SKU, the percentage will be based on style (not subclass) even though style is not
displayed.
Cells at the top of the hierarchy will be hashed out because those values cannot be
calculated.

3. To define the extended measure to be an Absolute % to Parent, click the Usage field
and select Absolute % to Parent. Click the Arguments field. The Parent Intersection
dialog box appears, which allows you to specify the intersection to be used in the %
participation. A dimension should be selected from each hierarchy list options
displayed. If a dimension is not selected along one of the hierarchies, the top of that
hierarchy is effectively selected.

Solutions 115

Workbooks

Parent Intersection Dialog Box

The “absolute” type of percent-to-parent measures allows you to explicitly define the
parent level(s) that are used to calculate the percentage at all child levels.
Using the previously defined sample hierarchy structure, setting the absolute parent
level to the "class" dimension in the product hierarchy, the percent-to-parent measure
will show the "SKU" as a percent of the "class" at the "SKU" level, the "style" as a
percent of the "class" at the "style" level, and the "subclass" as a percent of the "class"
at the "subclass" level.
For the "absolute" relationships, cells at or above the explicitly set dimension/level
will be hashed out.

Note: Multiple different extended measures may be defined
based on the same measure, but it is an error to define
identical extended measures based on the same measure.

Note: The extended measure will have the same label as the
base measure. A difference will only be apparent when the
% attribute is displayed. Displaying this attribute takes up a
lot of screen space, so it should usually be avoided.

Note: Percent-to-parent measures should be defined only on
measures that have "total" as their default aggregate
methods.

116 Oracle Retail Predictive Application Server

Workbooks

Edit Workbook Properties

Navigate: In the Configuration Manager, select Project – Solution –
Workbooks. The Workbook Designer window opens in the workspace.

Workbook Designer Window

 1. Select the workbook, and click on the tab to edit.
When a workbook is selected from the Workbook Designer window, the following
tabs appear in the workspace:
 General
 Custom Menus
 Hier Mods
 Dynamic Hierarchies
 Measures
 Extended Measures
 Dynamic Position Maintenance

For information on these tabs, refer to "Defining Workbook Properties."
2. Update the information as appropriate.
3. To remove information from any of the tables:

a. Select the row.
b. Right-click and select Remove.

Defining Workbook Properties
When a workbook is selected from the Workbook Designer window, the following tabs
appear in the workspace:
 General
 Custom Menus
 Hier Mods
 Dynamic Hierarchies
 Measures
 Extended Measures
 Dynamic Position Maintenance

Refer to the topics below of information on using these tabs to define the workbook
properties.

Solutions 117

Workbooks

General Tab

Example of General Tab

The General tab contains the following fields:
 RPAS Name – The RPAS internal name of the workbook.
 User Label – The label that the end user will see when selecting which workbook to

build.
 Group – In the RPAS Client, workbooks are grouped together under tabs (workbook

template groups) to make it easier for the end user to find and select the needed
workbook when solutions have multiple workbooks. This is the internal RPAS name
of the group that this workbook will belong.

 Group Label – In the RPAS Client, workbooks are grouped together under tabs
(workbook template groups) to make it easier for the end user to find and select the
needed workbook when solutions have multiple workbooks. This is the label the end
user will see of the group to which this workbook will belong. If different labels are
entered for the same workbook group against different workbooks, the workbook
group label shown to the end user will effectively be arbitrary.

 Workbook Type – This property is reserved for use when custom extensions are
written. It enables the custom extension to determine the "type" of the template
where the template type has a meaning defined by the custom extension writer.
When there is no custom extension, this field is set to the value DynamicTemplate
by default.

 Library – When the Workbook Type is not Dynamic Template, it needs to be
associated with a relevant custom shared library. This field holds the name of that
library. When there are no custom extensions, this field is set to Template by default.
The name entered here needs to be consistent with the custom extension. For
example, if a value of ABCTemplate is entered in this field, the custom library needs
to be named ABCTemplateLib and the directory where the custom extension looks
for configuration files in the domain will be repos/ABCTemplates.

 Wizard Only – The Wizard Only option is only used under circumstances when
custom code is to be executed in a batch job at the end of the wizard process (which
typically uses custom wizards) instead of building and opening a standard
workbook. The selections made in the wizards are passed to the custom code.

118 Oracle Retail Predictive Application Server

Workbooks

Therefore, a workbook with the Wizard Only option selected is not a workbook.
However, the workbook infrastructure is used so that the process can have a name
and label, and be assigned to a workbook group. This allows end users to select a
Wizard Only template using the same process as workbooks. Workbooks that have
the Wizard Only option selected do not need tabs or worksheets defined, but they do
need a name, label, and workbook group.

 Rule Set – Select the rule set to use with the workbook. The list of rule sets to select
from includes all the rule sets in the same solution as the workbook template.

 Use Default Rules – Select this option to use the default rules (Load, Commit, Calc,
and Refresh) associated with the rule set. If this option is selected, the Load Rules,
Commit Rules, Calc Rules, and Refresh Rules properties are disabled. If the option is
not selected, the Load Rules, Commit Rules, Calc Rules, and Refresh Rules properties
are enabled.

 Load Rules, Commit Rules, and Calc Rules – Select the rule group to apply for each
rule group type. Only rule groups from the selected rule set are offered.

 Refresh Rules – This is only enabled when the Use Default Rules option is not
selected. Select the rule group(s) to use as refresh rule groups. When enabled, click in
the Refresh Rules field. The Select and Order Multiple Rule Groups dialog box
opens.

Select and Order Multiple Rule Groups Dialog Box

Within this window, specify which groups will be available to be used to refresh the
workbook. Partial data in a workbook can be refreshed by refreshing with a rule
group that only updates some of the measures in the workbook. The order that the
rule groups appear is the order in which they are displayed to the end user when
presented with a choice of refresh rule groups within the workbook.

 a. In the Available Rule Groups column, select the rule group to add, and drag it to
the Selected Rule Groups column.

b. Click OK to save any changes and close the window.
 X Axis, Y Axis, Z Axis and Unassigned –These properties are used to define the

default axis layout of the worksheets in the workbook (that is, which hierarchies will
appear in each axis). Before the hierarchies will appear in the Axis dialog, you must
make sure that the database and base intersection have been assigned from the
Measure Manager. The measures must also be made viewable. To do this, right-click
in Default and select Add Matching,

Solutions 119

Workbooks

 a. Click in the X-Axis, Y-Axis, Z-Axis, or Unassigned field. The Axis dialog box
opens.

Axis Dialog Box

b. Drag the hierarchies to the appropriate axis column.
c. Click OK to save any changes and close the window.

Note: The hierarchies that appear in this process are the
hierarchies used by measures placed on worksheets in the
workbook. If no worksheets have yet been built, no
hierarchies will appear in this process.

 Use Custom Wizard – Determines the type of wizard to use for the workbook
template. Select the check box to enable the Custom Wizard property and disable the
Standard Wizard Property. Deselect the check box to disable the Custom Wizard
property and enable the Standard Wizard Property. See "Wizards" in this document
for more information on Custom Wizards.

 Custom Wizard – Select the custom wizard that to use to build the workbook. This
field is only enabled when the Use Custom Wizard check box is selected. This field
allows you to select a wizard from a list of wizards created in the Wizard Designer.

 Standard Wizard – Select the dimensions to be selected by the end-user in the
standard wizard, which presents a series of two tree selection panes to select the
positions in the scope of the workbook to be built.

 a. Click in the Standard Wizard field. The Standard Wizard dialog box opens.

120 Oracle Retail Predictive Application Server

Workbooks

Standard Wizard Dialog Box

Note: Hierarchies used in the lowest base intersection for the
measures used in the rule set assigned to the workbook will
be displayed. For each hierarchy, there will be a choice of
dimensions. The dimensions offered will be the lowest
dimension in that hierarchy that is used in the base
intersection of a measure in the rule set assigned to the
workbook, plus all higher dimensions.

b. Select the check boxes next to the hierarchy names to enable the hierarchies for
which that the end user in the RPAS Client should select positions.

c. Select the desired dimension from each of the enabled hierarchies.

Note: The dimension selected will be the lowest dimension
offered to the end-user in the scope selection wizard during
the workbook build process. However, the workbook
requires positions at the lowest dimension offered.
Therefore, if the selected dimension is higher than the lowest
dimension offered, the scope of the workbook will include
all of the positions in that lowest dimension that are
descended from the positions selected from that higher
dimension.

d. Optional: Enter the left and right labels for each hierarchy. These labels will be
displayed on the left and right trees of the corresponding 2-tree wizards during
the workbook build process. If these fields are left blank, no labels will be
displayed over the hierarchy trees.

e. Adjust the order of the hierarchies as necessary by dragging them in the order
pane. This will be the order that the position selection wizards are presented
during the workbook build process.

Solutions 121

Workbooks

f. Click OK to save any changes and close the window.

Note: If any of the offered hierarchies are not enabled in the
Standard Wizard dialog box, the end user will not be
presented with a position selection wizard to define the
scope of the workbook being built for that hierarchy. All
positions in the lowest dimension offered in that hierarchy
that the end user has access rights to will be automatically
selected.

 Enable Image Modification – Select this option to allow users the ability to add,
modify, or delete image paths for all image enabled dimensions in this workbook.
Refer to "Specify Dimension Properties" for information on enabling images.

Custom Menus Tab
The use of this tab is optional. It is used to create a workbook specific, customized menu-
driven process within the workbook where the defined menu options execute rule group
transitions (which cause a series of calculations to be performed) and external scripts.
Custom menus are typically used to define processes, such as an approval process.

Example of Custom Menus Tab

Create a Custom Menu
 1. Select the Custom Menus tab.

2. In the Menu Label field, enter the name of the menu that will be displayed in the
RPAS Client. This menu option will appear as a top level menu option, between the
Window and Help menu options.

3. Right-click in the table area, and select Add.
4. Enter the following information:

 Label – The label that will be displayed in the menu in the RPAS Client. These
labels will appear beneath the top-level menu option named in the Menu Label
property, in the order that they are displayed in this window.

Note: Duplicate menu names are not allowed.

122 Oracle Retail Predictive Application Server

Workbooks

 Function – This field defaults to RuleGroupProcessor and cannot be changed.
 Arguments – The processes that are to be executed by the menu option are

specified in the arguments property. There may be several processes specified in
the order they are to be executed, and separated by commas. If a process starts
with an "*", the string that follows the "*" is assumed to be the name of an
external script. Otherwise, the string is assumed to be the name of a rule group.

When the end user selects the menu option in the RPAS Client, RPAS executes the
processes from the arguments property in the specified sequence. RPAS waits until
each process has finished before executing the following process. After all of the
processes have been executed, RPAS executes a final transition using the "full"
transition type back to the calc rule group for the workbook. This transition does not
have to be explicitly specified in the arguments property.
Rule groups are executed with a "full transition" from the previous rule group, and
the calculations apply to the whole scope of the workbook (that is, they use "full"
(batch) mode rather than "incremental" mode). These terms are explained in
Appendix B, "Calculation Engine User Guide." The rule group transitions ensure that
the integrity of all rules is enforced in the new rule group.
Scripts referenced in the arguments property should meet the naming conventions
for the operating system of the RPAS Server. They must reside in the root directory
of the domain and have executable permissions. For the script to execute, the current
working directory (./) has to be in the path before the DomainDeamon is started.
RPAS passes the name of the current workbook (as RPAS would recognize the
workbook to be) to the called script. This variable could be accessed as $1 if the
executable is a shell script, or arg[1] if the executable is a binary. This argument is the
internal ID that RPAS recognizes the workbook with, so any RPAS calls that are
made in the script (for example exportData) will readily identify the workbook (if the
data needs to be exported from the current workbook).
If the script to be called requires different arguments, a "wrapper" script should be
called instead, which can call the target script with the appropriate arguments. RPAS
waits until the called script has finished before executing the next process in the
menu option. If the called script does not need to finish before the next process
begins, a "wrapper" script should be implemented that can call the target script, and
then return immediately.

Note: Rule groups listed in the arguments for the menu
option are not limited to those in the rule set used in the
workbook, but they may be any rule groups used in the
project.

Note: If any of the processes in a menu option should fail
unexpectedly, execution of the menu option stops along
with an error message to the user. This may leave the data in
the workbook in an inconsistent state.

Solutions 123

Workbooks

Hier Mods Tab
The use of this tab is optional. The Hier Mods (Hierarchy Modifications) function is used
to define the workbook hierarchy structure if that is required to differ from the hierarchy
structure defined using the Hierarchy Definition Tool. Hier Mods can effectively be used
to hide individual dimensions or whole branches of a hierarchy by excluding them from
the dimensions that are made available to the workbook. In some limited circumstances,
it can also be used to create mappings between dimensions that are not directly related in
the hierarchy structure specified in the Hierarchy Definition window, but where you
know that the relationship can be accurately deduced.

Example of Hier Mods Tab

 1. Click the Hier Mods tab.
All hierarchies that are used in the base intersection of measures that are used in the
rule set that are used in the workbook will be shown.

2. For each hierarchy to override, specify the required dimension relationships.

Note: Any hierarchies that do not have dimension
relationships specified will use the full hierarchy
specification from the hierarchy tool in the workbook, using
the lowest dimension in that hierarchy used in the base
intersection of a measure used in the rule set for the
workbook as its root.

Dimension relationships are specified as hyphenated child-parent pairs with the
child first and the pairs separated by commas. Every parent-child relationship that is
wanted in the workbook must be explicitly specified. Only dimensions that have
been defined in the hierarchy tool can be used, and the dimensions must be specified
by name. The dimension relationships are validated to ensure that valid dimension
names are used, and the use of the same dimension name in both the child and the
parent is prohibited. Furthermore, validation prohibits the use of a pair where the
child dimension’s Aggs attribute is the same as the parent dimension. For example,
mnth-week is not allowed but week-mnth is.
Example 1 – Hiding Dimensions

Consider a product hierarchy where a subclass is only supplied by a single vendor.
An example of a product hierarchy that includes a branch for vendor analysis is:
Sku-Style-Subclass-Class-Department-Division-Company
with a branch of:
Subclass-VendorClass-VendorDept-VendorDiv-Vendor-Total

124 Oracle Retail Predictive Application Server

Workbooks

If a workbook was wanted that included measures with a lowest base intersection in
the product hierarchy of subclass that did not require the vendor branch or the
division dimension, the specification of Hier Mods for the product hierarchy would
be as follows:
scls-clss, clss-dept, dept-comp
The resultant workbooks would only contain the subclass, class, department, and
company dimensions.
Example 2 – Defining a "Non-Structural" Dimension Relationship
Consider a product hierarchy where a subclass may be supplied by multiple vendors
(with a style always supplied by a single vendor), but in some parts of the business,
subclasses are only supplied by a single vendor. An example of a product hierarchy
that includes a branch for vendor analysis is:
Sku-Style-Subclass-Class-Department-Division-Company
with a branch of:
Style-VendorSubclass-VendorClass-VendorDept-VendorDiv-Vendor-Total

If a workbook was wanted that included measures with a lowest base intersection in
the product hierarchy of subclass, that did require the vendor branch and did not
want the division dimension, the specification of Hier Mods for the product
hierarchy would be as follows:
scls-clss, clss-dept, dept-comp, scls-vcls, vcls-vdep, vdep-vend, vend-tot
The resultant workbooks would contain the subclass, class, department, and
company dimensions, as well as a branch that contains the VendorClass,
VendorDept, Vendor, and Total dimensions.

Solutions 125

Workbooks

Note: The use of mappings that are non-structural should be
carefully managed to ensure they are only used where the
‘non structural’ mapping happens to work. In our example,
if this workbook is used by an end-user in a part of the
business where a subclass happens to only include Styles
from a single vendor, the hierarchy built in the workbook
will work correctly. However, if it is used in a part of the
business where a subclass may include styles with multiple
vendors, RPAS will determine (by looking at the
VendorClasses that the SKUs in the subclass belong to) that
the scls-vcls relationship is ambiguous, because the subclass
should belong to multiple VendorClasses. In these
circumstances, RPAS will build the hierarchy using one of
the valid scls-vcls relationships. As far as the end-user is
concerned, the choice of VendorClass for the subclass is
likely to be seen as arbitrary, and (in any case) the vendor
branch will be of little or no practical value in this case.

Dynamic Hierarchies Tab
Use of this tab is optional. It is used to configure a hierarchical relationship whose
parent-child relationships are not defined through the normal loadHier process, but are
data driven. The dynamic hierarchical relationships are built using measure data during
the workbook build process, and may vary each time a workbook is built; but the
relationships within a workbook are constant. For example, the “Cluster” dimension may
be an alternate parent of the “Store” dimension in the Location Hierarchy, and the
Cluster that a Store belongs to may vary by the “Class” dimension in the Product
Hierarchy. In one workbook, a clustering process may determine the Store-Cluster
relationships for each Class, and store that information in a measure. A second workbook
could then use that relationship to build a dynamic hierarchy. In this example, if the
rollup of Store to Cluster is different for each Class, and the user brings more than one
Class into the workbook, the rollup of Store to Cluster used in the workbook will be
based on the data from the first class in the hierarchy. There can only be one dynamic
hierarchy defined in a workbook.
The Dynamic Hierarchy process cannot "invent" a new dimension; it can only change the
parent-child relationships of the existing dimensions. So in our example, the Cluster
dimension must be a normal dimension defined through the hierarchy tool, and
maintained through the loadHier or user defined dimension processes. The dimension is
normal, so it may be used in the base intersection of measures.

126 Oracle Retail Predictive Application Server

Workbooks

Note: If the branch of a hierarchy that has parent-child
relationships defined by the dynamic hierarchy process only
has a business meaning when the dynamic hierarchy process
is used, you should use the Hier Mods process to "hide" the
dimensions in other workbook templates. For example, in
our above Cluster example, if the Store-Cluster relationship
only exists in the context of a class, use the Hier Mods tab to
hide that relationship in a workbook template that does not
include the product hierarchy.

Note: It is your responsibility to ensure that the position
names contained in the measure that drives the dynamic
hierarchy are real positions that exist in the parent
dimension. If not, positions with those names will be present
in the workbook, but data for them cannot be committed to
the domain, and it will be lost when the workbook is
deleted.

Note: The resulting Dynamic hierarchy is created at the end
of the wizard selection process and before the actual
workbook build. Therefore, the end product is only visible
inside the workbook and not in the wizards.

Defining a Dynamic Hierarchy

Note: There can be only one dynamic hierarchy per
workbook.

 1. Click the Dynamic Hierarchies tab.

Solutions 127

Workbooks

Example of Dynamic Hierarchies Tab

2. Right-click in the table area and select Add. A row appears with properties to define
the dynamic hierarchy.

3. Set the properties as follows:
 Name – The name of the dynamic hierarchy. Duplicate names are not allowed.

This is an internal name used as a “handle” to the dynamic hierarchy, and it is
not visible to the end user.

 Measure – This is the name of the measure that holds the name of the parent
position. Click Select Measure to get a list of the measures that are used in the
solution. Type the first few characters of the measure name in the box at the top
of the list to go to the required measure, or scroll to find it. Double-click to select
the desired measure. The Measure should have a base intersection of the
dimension(s) that the parent-child relationship is dependant on (Class in our
example), and the dimension that is the child in the parent-child relationship
(Store in our example). The content of the Measure is the name of the parent
position in the relationship (in our example, this is the name of the Cluster that
the Store belongs to for the Class). This Measure may or may not be included in
the workbook. If the Measure is included in the workbook, changes to the
Measure within the workbook do not change the parent-child relationships
within the workbook, which are static once the workbook is built.

 Label Measure – This is the name of the measure that holds the label of the
parent position. The process to select the Label Measure is the same as the
process to select the Measure. The base intersection of the Label Measure should
be the same as the Measure. The contents of the Label Measure will be the label
of the parent position in the relationship.

128 Oracle Retail Predictive Application Server

Workbooks

Note: If a given parent position name has different labels
specified for different child positions, the label for the parent
position used in the built workbook will be one of the
different labels, which are arbitrarily selected.

 Measure Hier – This is the name of the hierarchy that the parent-child
relationship is dependant on. In our example this is Product.

 Measure Dim – This is the name of the dimension that the parent-child
relationship is dependant on. In our example this is Class.

 Hier – This is the name of the hierarchy that the parent-child relationship
belongs to. In our example this is Location.

 Dim – This is the name of the dimension that is the child in the parent-child
relationship. In our example this is Store.

 Modified Dim – This is the name of the dimension that is the parent in the
parent-child relationship. In our example this is Cluster.

Measures Tab
The use of this tab is optional. It allows you to override certain properties of measures at
the workbook level. Use this tab in cases when it is necessary to configure multiple
workbooks for a solution and the processes implied by those workbooks require different
measure behavior. For example, a measure may need to be writable in one workbook in a
solution, but read only in all other workbooks. By using this tab, you can override the
following standard measure properties at the workbook level:
 Label, Description
 Base State
 Agg State
 UI Type
 Single Hier Select
 Range

In addition, there are two properties, LoadRange and LoadRangeMeas that are not
standard measure properties that may only be set though the Measures tab.

Example of Measures Tab

Solutions 129

Workbooks

Defining Measure Properties Override Settings for a Workbook
 1. Click the Measures tab.

2. Right-click in the measure table area, and select Add.
a. Select the newly added row.
b. Click Select Measure to get a list of the measures used in the workbook. The

Select Measure window appears.

Select Measure Window

c. Type the first few characters of the measure name in the box at the top of the list
to go to the required measure, or scroll to find it. Double-click to select the
desired measure. Measures that already have an entry in the Measures tab are
listed but disabled, and cannot be selected.

130 Oracle Retail Predictive Application Server

Workbooks

Modifying Measure Properties Override Settings for a Workbook
 1. Click the Measures tab.

2. Modify the appropriate property information for the measure.

Removing a Measure Override Settings from a Workbook
Perform the following procedure to remove the measure property override settings.

 1. Click the Measures tab.
2. Right-click on the measure row you want to delete and select Remove.

Defining the LoadRange and LoadRangeMeas Properties
The LoadRange and LoadRangeMeas property fields can only be set in the Measure tab.
They are used to specify dynamic picklists. Dynamic picklists are picklists whose valid
values do not vary within a workbook, but can be set dynamically during the workbook
build process.
The LoadRange and LoadRangeMeas properties are retained for backwards
compatibility purposes. In most cases "context-sensitive picklists" (that is, picklists using
the “measurerange = measS” syntax in the range property) and "single select wizards"
will be used instead.
Dynamic picklists are of two forms:

 1. The first form has values that are set according to the data values in cells for another
measure (using the same format as for the Range property of static picklists). As with
static picklists, the value shown to the user in the UI is the label for the value. It is
more usual to use "context-sensitive picklists," where picklist values can vary
according to context in the workbook.

2. The second form is to have values that are positions in a branch of a hierarchy. The
value shown to the user in the UI is the label of the position, but the content of the
cell is the name of the position. The single select wizard provides an alternative
method for selecting a position, which is more commonly used.

Defining a Measure with a Dynamic Picklist
 1. Select the row for the measure.

2. Right-click in the row for the measure and select the Set Dynamic Picklist option.
3. If the picklist measure is to show hierarchy positions, an entry is required in the

LoadRange property field (and not in the LoadRangeMeas property field). Click in
the LoadRange field. The LoadRange dialog box appears.

Solutions 131

Workbooks

Load Range Dialog Box

a. In the Range column, enter a name for the range. This name is used internally by
RPAS and needs to be unique across the domain.

b. In the Hierarchy column, select the hierarchy from which the user is to select a
position.

c. In the Dimension column, select the dimension from which the user is to select a
position. The positions along this dimension, which are brought into the
workbook, will be the available choices in the picklist in RPAS Client.

d. Select the Sort by Label check box if the positions in the picklist are to be sorted
alphabetically by their label. If this is not selected, the positions will be shown in
their internal order, which is the order in which they were defined.

e. Click OK to save your changes and close the window.
4. If the picklist measure is to display values based on the data values for a cell, an

entry is required in the LoadRangeMeas property and in the LoadRange property
fields. Click in the LoadRangeMeas field, and click the Select Measure button. Type
the first few characters of the measure name in the box at the top of the list to go to
the required measure, or scroll to find it. Double-click the measure whose contents
are the valid picklist values. In addition, there should be an entry in the LoadRange
field for each hierarchy in the base intersection of the selected LoadRangeMeasure.
Each of the entries in the LoadRange field needs a name, hierarchy, and dimension
as described above; but the value for sort label is ignored. If the scope of the
workbook is such that it covers multiple cells of the LoadRangeMeasure, the
available picklist options in the workbook will be constructed from the content of the
first cell of the LoadRangeMeasure when the dimensions are ranged to the positions
selected during the workbook build process.

132 Oracle Retail Predictive Application Server

Workbooks

Extended Measures Tab
The use of this tab is optional. It allows for the configuration of “extended measures” that
represent different usages of the underlying base measure. Extended measures support
using different aggregation methods for the same base measure and participation
measures, such as absolute and relative percent-to-parent measures. Once defined, these
extended measures can be added onto worksheet profiles to be viewed in the RPAS
Client.

Note: Hybrid is not supported for extended measures.

Extended Measures Tab

Adding an Extended Measure
 1. To add a measure, right-click in the table area and select Add. The row is inserted

into the tab and is highlight in red until you define the Measure, Usage, and
Argument fields.

2. Click Select Measure. The Select Measure window opens.
3. Double-click a measure to select it.
4. Click in the Usage field and select Relative % To Parent or Absolute % To Parent

from list.
5. Click in the Arguments field and select the appropriate options. If the Usage is

defined as Absolute % To Parent the Parent Intersection dialog appears; set the
appropriate options from the dialog box and click OK. If the Usage is defined as
Relative % To Parent, select appropriate hierarchy from the list displayed.

Removing an Extended Measure
 1. Right-click on the measure you want to remove and select Remove.

Solutions 133

Workbooks

Dynamic Position Maintenance Tab
If dimensions are enabled to support Dynamic Position Maintenance (DPM) in the
Dimensions pane within the Hierarchy Definition tool, you will see those dimensions in
the Dynamic Position Maintenance tab. To enable DPM functionality in the workbook,
select Enable Dynamic Position Maintenance. You may then select the highest
dimension in the hierarchy in which the end user will add positions. See the RPAS
Administration Guide and RPAS User Guide for more information on Dynamic Position
Maintenance.

Example of Dynamic Position Maintenance Tab

Remove a Workbook

Navigate: In the Configuration Manager, select Project – Solution –
Workbooks. The Workbook Designer window opens in the workspace.

 1. Select the workbook to remove.

2. From the toolbar, click the Delete button, or select Remove from the right-click
menu.

3. Click Yes. The associated worksheets and tabs are removed.

134 Oracle Retail Predictive Application Server

Working with the Rule Group Simulator

Working with the Rule Group Simulator

Overview
The RPAS calculation engine is powerful and complex. The rule group approach means
that there are very many potential calculation paths. However, during any configuration
exercise, there is a significant design verification cost to ensure that the behavior is "as
would be expected" by an end user. The rule group simulator enables the verification of
the interaction between measures from within the Configuration Tools. It cannot,
however, enable the verification of the calculations themselves because that requires a
full domain to be built.
The Rule Group Simulator is integrated into the workbook tool, and it uses all of the
measures used in the rule set in the workbook, which may be more than those mentioned
in the rule group being simulated. Users of the rule group simulator are expected to
understand the calculation cycle, especially with respect to measure protection
processing and the process that determines which expressions will be evaluated. See
Appendix B, "Calculation Engine Users Guide" for more information.

Note: The rule group simulator is not able to simulate the
expressions that will be evaluated as the result of a rule
group transition, nor simulate the calculations that will
follow if a rule group is evaluated in "full" mode, such as
when evaluated from the mace utility, or the evaluation of
the load rule group when a workbook is built.

About the Rule Group Simulator
The Rule Group Simulator feature is provided in a separate window with two areas: a
measure table, and a tree view with Upstream and Downstream Dependencies panes.

Rule Group Simulator Window

The measure table displays all of the measures in the scope of the simulation. The
Measure column displays the measure name. The measure status is reflected by color
coding. A tooltip also displays the measure status when the mouse is placed over the
measure name. All measures can be shown, or the list of measures can be filtered.
Editable measures can have their status toggled (to or from Edited), and the simulator
immediately updates all statuses, calculations, and trees.

Solutions 135

Working with the Rule Group Simulator

The table below explains the meaning of the color coding used in the Rule Group
Simulator window.

Color Meaning

Yellow Edited.

If it is a recalc measure, it will be calculated by
indirect spreading of another measure through
a mapping rule and recalculation at aggregated
levels.

If the measure has another aggregation type, it
will be calculated by spreading and
aggregation.

Pale Gray Editable.

Although the measure is not forced, and thus is
still editable, it will be calculated through the
calculation engine having to select an
expression in an affected rule.

White Editable.

Will not be calculated, so it will not change at
all.

Pale Blue Protected by protection processing.

Although the measure is protected (usually this
will be because it is the measure on the left-
hand side of the only expression in a rule), it is
not ‘forced’ because none of the right-hand side
measures are changed, so it does not need to be
calculated, and it will not change at all.

Mid Blue Protected by protection processing.

Is "forced," so it will be calculated.

Dark Blue Read-only.

The measure is set as being read only in the
measure properties, so it will not change at all.
A measure that is read only, but is going to be
calculated will be shown as mid-blue. That
status takes priority over read-only.

Note: The status of a measure encapsulates two concepts
that are not as closely linked as may appear at first sight:

Whether or not the measure can be edited (shades of blue =
no, white/gray/yellow = yes)

Whether or not the measure will be calculated.

It is possible for a measure to be editable, but it would be
calculated if a calculate were issued. Similarly, it is possible
for a measure to be protected by protection processing that
would not be calculated if a calculate were issued.

136 Oracle Retail Predictive Application Server

Working with the Rule Group Simulator

The Rule - Expression column of the table shows the calculation for each measure. For
those measures that would be calculated if the end user issued a "calculate" with the
current collection of edited measures, the rule and expression that would be used to
calculate the measure is shown. For non-calculated measures, this column displays the
measure status.
The tree view shows (in separate panes) the upstream and downstream measure
relationships (that is, the expressions that will be evaluated) for the measure with focus.
Measures in the panes are also color coded. If the measure with focus would be
calculated, the upstream pane shows the expression to calculate it, and, all measures that
it is dependent upon (calculated from) with their expressions, if appropriate. The
downstream pane similarly shows measures that are dependent upon (calculated from)
the measure with focus, if there are any. If the measure with focus is on the right-hand
side of several expressions that will be calculated, each of the expressions can be viewed
using the forward (>>) and backward (<<) arrows.

Invoking the Rule Group Simulator

Navigate: In the Configuration Manager, select Project – Solution –
Workbooks. The Workbook Designer window opens in the workspace.

Workbook Designer Window

 1. Select one of the workbooks in the Workbook Designer tree display.
2. Select the General tab of the Workbook properties table.
3. Right-click on Calc Rules, and select Simulate Rule Group.

Simulate Rule Group Menu Option

The Rule Group Simulator window appears.

Solutions 137

Working with the Rule Group Simulator

Filtering the Measures Table
Perform the following to filter measures displayed in the Rule Group Simulator:

 1. Open the Rule Group Simulator. See "Invoking Rule Group Simulator."

Rule Group Simulator Showing Filter and Search Features

2. To filter the measures table, select the one of the following options from the Filter
list:
 Select All to display all measures in the workbook.
 Select Will Calculate (According to Calculation Order) to display only those

measures that will be calculated. The sequence of the measures displayed is the
sequence in which they will be calculated. Measures that are edited are not
shown.

 Select Will Not Calculate to display only those measures that will not be
calculated will be shown. Measures that are edited are not shown.

 Select Read Only to display only those measures whose status is read-only (that
is, have a Base State and Agg State of "read").

 Select Contains String to type a case-sensitive string to filter by in the text box
below the Filter list option. Only measures that include the string entered are
displayed.

 Select By Worksheet to select a worksheet from the current workbook using the
list option below the filter list option. Only the default measures from that
worksheet are shown. The Worksheet list option is disabled until By Worksheet
is selected from the Filter list.

3. If searching for a specific measure, set the filter to All, and enter a search string (case-
sensitive) in the box below the Filter list. The first measure that includes the string
will be shown and will become the measure with focus.

138 Oracle Retail Predictive Application Server

Working with the Rule Group Simulator

Changing the Edited Status of Measures

Note: Only measures that can be edited (colors gray, white,
and yellow) may have their status changed.

 1. Select the name of the measure in the measure table.
a. If the status was previously Editable (gray or white), the status of the measure

changes to Edited (yellow).
b. If the status was previously Edited (yellow), the status of the measure changes to

Editable (either gray or white, depending on the rule group and the other edits
currently applied).

After any change in status, the simulator updates all necessary statuses, calculations,
and tree views.

2. To change the status of all Edited measures back to Editable (gray or white), click the
Reset button.

Note: Measures that are calculated in a "cycle," which
typically includes BOP and EOP inventory values, are
indicated with an "*" next to their names in the measure
table and Upstream and Downstream Dependencies panes.

Using the Upstream and Downstream Panes
 1. To change the measure with focus for the upstream and downstream panes:

a. With the Filter list option set to All, enter a search string in the field under the
Filter list option. The first measure that contains the search string will get focus.

Note: Remember, when searching by measures, the text
entered in the search text field is case-sensitive.

b. Click in the Calculation Column of the measure table for the measure.
c. Click on any occurrence of the measure in the Upstream or Downstream

Dependencies panes.
When the focus changes, the tree panes are refreshed as appropriate based on the
measure which currently has focus, and the measure table scrolls so the measure
with focus is shown.
The measure with focus always appears at the top of the Upstream Dependencies
pane. If it will be calculated, the Upstream pane shows the measures that it is
dependent upon (calculated from, directly and indirectly). This is displayed using a
parent-child tree structure with the measures used to calculate an individual
measure showing as "children" of it. If the children are also calculated, they appear
with their dependent measures, and so on. Therefore, the expanded Upstream
Dependencies tree view displays all of the measure relationships that affect the
measure with focus.
The Downstream Dependencies pane shows measures that are dependent upon
(calculated from) the measure with focus, if there are any. Measure relationships
(expressions) appear in a parent-child tree structure. If the measure with focus is on
the right-hand side of several expressions that will be calculated, the relationships
cannot all be shown at the same time in a simple tree structure, so a single
relationship is displayed. The number of such relationships, and the one being
shown, is indicated at the bottom of the pane.

Solutions 139

Working with the Rule Group Simulator

2. To collapse the detail of the dependencies for a measure in the Upstream or
Downstream panes, click the (-) next to the measure name. The (-) changes to a (+),
and the detail is collapsed. To expand the detail of the dependencies for a measure in
the Upstream or Downstream Dependencies panes, click the (+) next to the measure
name. The (+) changes to a (-) and the detail is expanded.

3. To change which measure relationship for the measure with focus is shown in the
downstream pane, click back (<<) or forward (>>) buttons at the under the
Downstream Dependencies pane.

Back and Forward Controls

Note: The Rule-Expression column of the measures table
will display multiple result expressions with a note beside
the rule name saying that it is “multiple result.”
Furthermore, the entire expression will be displayed
showing all of the left-hand side measures that comprise the
multiple results. If a measure that has focus is one of the
multiple result measures, it will be shown in the Upstream
and Downstream Dependencies panes as MeasA
[+MeasB][+MeasC] where MeasA is the measure with focus
and MeasB and MeasC are the other multiple result
measures.

Exiting the Rule Group Simulator
To exit the rule group simulator, click the Exit button.

140 Oracle Retail Predictive Application Server

Working with Workbook Tabs

Working with Workbook Tabs

Overview
Workbook tabs are a feature in the RPAS Client that enables the workflow to be
separated into steps or business processes. Each workbook must have at least one tab.
Users select the appropriate tab to use depending on the stage they have reached in the
business process. A tab may contain one or more worksheets that allow the users to
interact with the data in the workbook. The measures available, the orientation of the
hierarchies, and the base intersection that data is available for may vary by worksheet
within the tab.

Solutions 141

Working with Workbook Tabs

Create a Workbook Tab

Navigate: In the Configuration Manager, select Project – Solution –
Workbooks. The Workbook Designer window opens in the workspace.

Example of Workbook Design Window

 1. Select the workbook in which to create a new workbook tab.
2. Choose one of the following methods:

 Click the New Workbook Tab button.
 Right-click and select New Workbook tab.
 Select an existing workbook tab in the workbook, and press Insert.

A new workbook tab is created.
3. In the RPAS Name field, enter RPAS internal name of the workbook tab.
4. In the User Label field, enter a description of the workbook tab that users will see on

the tab in the RPAS Client.

Edit Workbook Tab Properties

Navigate: In the Configuration Manager, select Project – Solution –
Workbooks. The Workbook Designer window opens in the workspace.

 1. Select the workbook tab whose properties are to be edited.
2. In the General tab, type the RPAS Name and the User Label.
3. Perform one of the following to alter the order in which the tab is displayed in the

RPAS Client:

 To change the order of the tabs, select the up button or down button
as necessary.

 Drag and drop the tab in the Workbook Designer tree display.

142 Oracle Retail Predictive Application Server

Working with Workbook Tabs

Remove a Workbook Tab

Navigate: In the Configuration Manager, select Project – Solution –
Workbooks. The Workbook Designer window opens in the workspace.

 1. Select the workbook tab to remove.
2. Choose one of the following methods:

 From the toolbar, click the Delete button.
 Select Remove from the right-click menu.
 Press Delete.

3. Click Yes.
The workbook tab and associated worksheets are removed.

Solutions 143

Working with Worksheets

Working with Worksheets

Overview

Measures and Worksheets
A worksheet is a specific window into the data in a workbook. Worksheets are placed on
workbook tabs. Using the Configuration Tools, you define the measures on a worksheet,
the base intersection the worksheet uses, and the orientation of the hierarchies on the
worksheet. The workbook measures can be organized in following categories for a
worksheet:
 default profile
 viewable profile
 hidden
 extended

Default Profile Measures
The default profile contains the list of measures that will initially be displayed for this
worksheet in the RPAS Client. There must be at least one measure on the default profile.

Viewable Profile Measures
The viewable profile contains the full list of measures that the RPAS Client user can view
in the worksheet by using the Show/Hide functionality within the RPAS Client. It must
contain all of the measures in the default profile, but it often includes further measures
that are not initially displayed.

Hidden Measures
Hidden measures are those that are used in the rule set assigned to a workbook, but that
are not assigned to any of the profiles in any of the worksheets contained in that
workbook. This might include measures that are used purely for calculation purposes
and would have no usefulness to the RPAS Client user.

Extended Measures
Extended measures, which represent different usages of the underlying base measures,
can be added to the default or viewable worksheet profile. You can add extended
measures that are aggregated based on different aggregation methods. The aggregation
methods available for selection are based on the Allowed Aggs of the base measure. The
same base measure can have multiple extended measures based on different aggregation
methods.
You can also add extended measures that represent the relative and absolute percent-to-
parent contributions. The same base measure can have multiple extended measures
based on different selections for relative and absolute percent-to-parent contributions.

144 Oracle Retail Predictive Application Server

Working with Worksheets

Create a Worksheet

Navigate: In the Configuration Manager, select Project – Solution –
Workbooks. The Workbook Designer window opens in the workspace.

Example of Workbook Designer Window

 1. Choose one of the following methods:
 Select the workbook tab in which to create a new worksheet by clicking the New

Worksheet button.
 Right-clicking and selecting New Worksheet.
 Select another worksheet on the same tab.

2. Press Insert.
A new worksheet is created.
Assign the appropriate properties using the worksheet tabs (General, Position
Queries, and Style Overrides). Refer to "Defining Worksheet Properties" for more
information.

Solutions 145

Working with Worksheets

Defining Worksheet Properties
When a worksheet is selected from the Workbook Designer window, the following tabs
appear in the workspace:
 General
 Position Queries
 Style Overrides

Refer to the topics below of information on using these tabs to define the worksheet
properties.

General Tab

Example of General Tab for a Worksheet

 1. In the RPAS Name field, enter the RPAS internal name of the worksheet.
2. In the User Label field, enter a description of the worksheet that users will see.
3. Define the axis layout of the worksheet.

a. Click the X-axis, Y-axis, Z-axis, or Unassigned field. The Axis dialog box opens.

Axis Dialog Box

b. Drag the hierarchies to the appropriate axis column.
c. Click OK to save any changes and close the window.

146 Oracle Retail Predictive Application Server

Working with Worksheets

Note: The Hierarchies that appear in this process are those
used by measures placed on the default and viewable
profiles for the worksheet. If no measures have yet been
placed in those profiles, no hierarchies will appear in this
process.

4. Click in the Base Intersection field. The Select Intersection dialog box opens.

Select Intersection Dialog Box

Note: The hierarchies and dimensions that appear in this
process are those used by measures placed on the default
and viewable profiles for the worksheet. If no measures have
yet been placed in those profiles, no hierarchies will appear
in this process.

5. Select the dimension for each hierarchy. The base intersection of the sheet represents
the base set of dimensions at which the window could be displayed. Data on the
window can be viewed at any dimension/intersection above this. If the base
intersection of a measure on the sheet is below the base intersection of the sheet, the
measure’s values are shown aggregated to the displayed intersection. If measure’s
base intersection is above the sheet intersection, the measures values are hashed out
at all intersections lower than the base intersection of the measure.

6. Click OK.

Solutions 147

Working with Worksheets

Position Queries Tab

Example of Position Queries Tab for a Worksheet

Usage of this tab is optional. This tab allows you to specify a worksheet where the
positions that are shown in a "query" dimension are based on the current position in
"driving" dimension(s). The driving dimension(s) must be in the slice area, and the query
dimension must be in the X or Y axes. The process uses a position query that is a Boolean
measure dimensioned on the query dimension and the driving dimension(s). Only
positions in the query dimension that have the value TRUE for the position query
measure for the position(s) in the driving dimension(s) are shown in the worksheet. All
other positions are automatically hidden. When more than one driving dimensions are
present, all of the driving dimensions have to be in Z-axis for the position query to
execute. If one or more driving dimensions are taken out of the Z-axis and placed in X or
Y axes, associated position queries will not be executed. A given window can have more
than one position query, driven by one or more dimensions in the Z-axis and driving
different dimensions in the X and Y axes.

 1. Click the Position Queries tab.
2. Right-click in the table area, and select Add.
3. Enter the following information:

 Name – The name for the position query used by RPAS. This name has to be
unique across the project.

 Label – The label for the position query that is used internally by RPAS. This
label has to be unique across the project.

Note: Duplicate label names are not allowed.

 Measure – This defines the position query measure. This must be a Boolean type
measure. Click in the field, and then click Select Measure to view a list of the
Boolean measures used in the workbook. Type the first few characters of the
measure name in the box at the top of the list to go to the required measure, or
scroll to find it. Double-click to select the desired measure.

 Dimension – This defines the query dimension. Select a dimension from the list
of dimensions for the selected measure.

148 Oracle Retail Predictive Application Server

Working with Worksheets

Note: While configuring position queries, it is important that
the Boolean mask measure that drives the position queries
be reference in the workbook (by either referencing it in the
load rule group or by setting it through the calc rule groups).
Currently, there is no validation in Configuration Tools that
checks for this, and no error is thrown at configuration
time/domain build time or workbook build time.

To remove a row from the tab, select the row, right-click, and select Remove. The row is
deleted from the Position Queries tab.

Style Overrides Tab

Example of Style Overrides tab for Worksheet

Usage of this tab is optional. This tab allows you to override the style property for a
measure, so that the measure uses a different formatting style on this worksheet.

Note: The measures that appear in this process are those
placed on the default and viewable profiles for the
worksheet. If no measures have been placed in those
profiles, no measures will appear in this process.

 1. Click the Style Overrides tab.
The list of measures appears with their current formatting style appears.

2. Select an override formatting style for a measure. Measures whose styles have been
overridden appear in black. Those whose styles are defaulting appear in gray.

Solutions 149

Working with Worksheets

Specify Which Measures Appear in a Worksheet

Navigate: In the Configuration Manager, select Project – Solution –
Workbooks. The Workbook Designer window opens in the workspace.

Workbook Designer Window

 1. Select the worksheet to be used to specify measures.
2. In the column that displays measure components (under Include External Measures),

select the check boxes next to the Measure components. The matching measures will
appear in the Matching Measures column as the components are selected. Only
realized measures that are used in the rule set that is assigned to the selected
workbook will be displayed.

3. If External Measures are to be available for placement on the worksheet, select the
Include External Measures check box.

4. To add measures from the matching measures column to the Viewable or Default
columns, perform one of the following options:
 Select the measures to add from the Matching Measures column. Drag the

measures to the Viewable or Default column.
 Select the measures to add from the Matching Measures column and press

Ctrl+C, and then click in the Viewable or Default column and press Ctrl+V.
 Right-click in the Matching Measures column and select Copy, and then select

Paste from the right-click menu in the Viewable or Default column.
 To add ALL measures from the Matching Measures column, right-click in the

Viewable or Default column and select Add Matching from the menu.
5. To add measures from the Viewable column to the Default column, perform one of

the following options:
 Select measures in the Viewable column, and drag the measures to the Default

column.
 Select measures in the Viewable column and press Ctrl+C, and then click in the

Default column and press Ctrl+V.
 Right-click in the Viewable column, and select Copy. Right-click in the Default

column, and select Paste.

Note: Adding a measure to the Default column also adds it
to the Viewable column if it is not already in the Viewable
column.

150 Oracle Retail Predictive Application Server

Working with Worksheets

6. To remove measures from the Viewable or Default columns: perform one of the
following options:
 Select the measures to remove and press Delete or Ctrl+X, or right-click and

select Cut.
 Right-click and select Remove Matching to remove all measures that are also in

the Matching Measures column, or select Remove All to remove all measures.

Note: Removing a measure from the Viewable column also
removes it from the Default column.

Specify the Sequence of Measures on a Worksheet

Navigate: In the Configuration Manager, select Project – Solution –
Workbooks. The Workbook Designer window opens in the workspace.

Workbook Designer Window

 1. Select the worksheet that will be used to sequence measures.
2. To sequence measures manually, drag and drop the measures from the Viewable

column to the Default column.

3. To sort the measures:
a. Right-click and select Sort in the Default column. The Sort Measures dialog

appears.

Note: Sorting measures are based on the internal component
name (not the label).

Solutions 151

Working with Worksheets

Sort Measures Dialog Box

b. Measures can be sorted based on their major components. Select the sort
sequence in which the major components are to be applied, and whether the sort
should be ascending or descending

c. Click Apply.
The measures are sorted into the specified sequence. This is a "one time" sort. If new
measures are added to the Default Measures column, or measures are manually
sequenced, the sort sequence previously specified will no longer apply. You would
need to resort the measures again.

To be able to see the Measures in this Order in RPAS Client...
 1. Right-click in the measure axes of RPAS Client and select Sort. The Sort dialog

appears.
2. Select User Specified Order, and click OK.

The measures in the RPAS Client for that window will be shown in the same order as
that specified in the Default column of the window in the Configuration Tools.

Edit Worksheet Properties

Navigate: In the Configuration Manager, select Project – Solution –
Workbooks. The Workbook Designer window opens in the workspace.

 1. Click the worksheet to edit.
2. Update the information as appropriate.
3. To remove information from the Position Queries table:

a. Select the field.
b. Right-click and select Remove.

152 Oracle Retail Predictive Application Server

Wizards

Remove a Worksheet
Perform the following procedure to remove a worksheet:

 1. Select the worksheet to remove.

2. From the toolbar, click the Delete button, or right-click and select Remove.
3. Click Yes.

Wizards

Overview
This section describes the tasks you can perform by using the wizard designer. The
wizard designer supports the graphical layout for custom wizards.
When the workbook build process only involves selecting the scope of the workbook by
selecting positions from the standard hierarchies, you can use standard wizards as
described in the “General Tab” section of the “Workbook.” Most of the workbooks can be
built using the standard wizards, and no coding is required – just configuration.
If the wizard process needs to do additional processing, you need to use custom wizards.
The following two examples will help to clarify the need for custom wizards.
A simple example:
Consider the product hierarchy:

If the workbook builder needs to select just a few SKUs from a domain that contains
many SKUs, that process could be tedious if the builder is presented with a wizard with
huge numbers of SKUs. You may want to include a two-step process to select the SKUs:
 In the first step, the builder selects a class.
 In the second step, the builder selects SKUs from just the SKUs in that class.

A more complex example:
The workbook build process may need the builder to make choices from some
predefined options. The choices that the builder makes could determine what further
selections or choices the builder must make. The workbook that is eventually built could
therefore be of several different ‘subtypes.’
Neither of the examples above are configurable as “Standard Wizards,” so custom
wizards must be used. The custom wizards can be designed in the custom wizard
designer, but must be accompanied with code that:
 Describes the sequence of the wizards
 Collects and processes the information from the wizards
 Generates the content of the next wizard
 Describes the content of the workbook that is generated

In the first example, the workbook designer lays out two 2-tree wizards (one for class and
the other for SKU). Then to support the wizard process, the designer would write the
code to read the selection from the class wizard and range down the available SKUs in
the second wizard.
In the second example, the designer lays out the first wizard page as a group of check
boxes (or list boxes if there are too many options). The designer would also lay out the
other wizard pages that are required. The designer writes the code to collect the

Solutions 153

Wizards

selections made in the first wizard, and to display (or not) the other wizard pages that are
dependent on the selections made.
In summary, when using custom wizards, the designer is responsible for:
 Laying out the wizards.
 Writing code to control the transition between the wizards and out of the wizards.
 Writing code to initiate the building of the workbook.

The Wizard Tool only helps the designer in the first aspect of this work. The designer
(the one who establishes the layout of these wizards) is expected to have knowledge of
the process of controlling, collecting, and processing the information from these wizards.
The rest of this section describes working with layout of the custom wizards.

Create a Wizard Group

Navigate: In the Configuration Manager, select Project – Solution – Wizards.
The Wizard Designer window opens in the workspace.

Wizard Designer Window

1. In the Wizard Designer window, click the New Wizard button.
2. In the Wizard Group area, click in the Value field, and enter the name of the Wizard

Group.

154 Oracle Retail Predictive Application Server

Wizards

Create a Wizard Page
 1. Click the button to add the appropriate control:

Button Function

Supports the creation of a new dynamic wizard.

Supports the creation of a two tree page.

Supports the creation of a label field that cannot be edited in the resulting
wizard.

Supports the creation of a radio button field from which the user can make
one choice from several options.

Supports the creation of a checkbox field from which the user can make
multiple choices from multiple options.

Allows the insertion of a drop-down list box from which the user can select
the entered choices. The selection will be displayed in the text box.

Allows the insertion of a field in which the user can enter free-form text.

Allows the insertion of a list box that contains a list of items from which the
user can select.

Supports the creation of a labeled area in the wizard where other wizard
elements can be grouped.

Allows the insertion of a date picker (spinner) that contains independently
scrollable date components.

Allows the insertion of a single tree into the wizard.

Allows the insertion of a generic object in the wizard.

2. Click on the wizard page grid to place the selected control on the page.
3. If necessary, drag the control to the appropriate place on the grid to reposition it.
4. In the Widget area, enter the following information:

 Name – The RPAS internal name of the control.
 Type – The control type.
 Text – The text to be displayed on the control label.
 Align – The same as the style attribute. Valid values are left, right, center,

multiline, and flip depending on the type of widget being created.
 Func – Indicates whether the widget will be dynamic or static. These are the only

valid values for this attribute.
 Locx – The x coordinate of the control on the wizard page. The value of this field

is automatically changed when the control is moved using your mouse.

Solutions 155

Wizards

 Locy – The y coordinate of the control on the wizard page. The value of this field
is automatically changed when the control is moved using your mouse.

 Width – The width of the control in pixels.
 Height – The height of the control in pixels.

Edit Wizard Control Properties

Navigate: In the Configuration Manager, select Project – Solution – Wizards.
The Wizard Designer window opens in the workspace.

Wizard Designer Window

 1. Select the wizard group tab that contains the wizard to edit.
2. Select the wizard tab that contains the widget to edit.
3. Select the widget.
4. In the Widget area, update the information as necessary.

156 Oracle Retail Predictive Application Server

5
System Preferences

Overview
General preferences can be set for the Configuration Tools at the workbench level, which
refers to the entire tool. This includes the domain type and general preference settings.

Global Domain

Overview
A Global Domain environment provides the ability to view data from multiple physical
domains in a single workbook, and to administer common activities centrally across the
RPAS solution.
Domains can be built in one of two methods:
 Simple Domain – This is the traditional, stand-alone domain that has no visibility to

other domains.
 Global Domain – This is a domain environment that contains two or more local

domains (or sub-domains) and a master domain that has visibility to all local
domains that are part of that environment.

There are two primary functional benefits in using a Global Domain environment:
 The ability to have a global view of data in workbooks.

The end user can build workbooks with data from multiple local domains, refresh
global workbook data from local domains, save global workbooks, and commit the
data from global workbooks to the individual local domains.
Local domains are typically organized (partitioned) along organizational structures
that reflect user responsibilities and roles. Most users will only work within the local
domain(s) that contain their area of responsibilities, and they may not need to be
aware of the Global Domain environment. For performance and user contention
reasons, Global Domain usage should be limited to relatively infrequent processes
that require data from multiple local domains.

 Configuration and Administration.
Most of the mechanisms that are required to build and administer a domain are
centralized, so they need only be run in the “master” domain, which either
propagates data to the local domains or stores it centrally so that the local domains
reference it in the master.

Note: For a Global Domain environment to function
properly, all local domains must be structurally identical.

System Preferences 157

Global Domain

Measure Data
In a global domain environment, measure data can be physically stored across the local
domains or in the master domain.
Measure data that is stored in local domains is split across the domains based on a pre-
determined level of a given hierarchy. This level is defined during the configuration
process, and it is referred as the “partition” level.
The base intersection of a measure (the dimensions that a measure contains) determines
whether data is stored in the local domains or in the master domain. The data will be
stored in the master domain if the base intersection of a measure is above the “partition”
level or if it does not contain the hierarchy on which the Global Domain environment is
partitioned. This type of measure is referred to as a “Global Domain measure,” or a
“Higher Base Intersection measure.”
Consider a global domain environment where the partition-level is based on the
Department dimension in the Product hierarchy. In this scenario, data for measures that
have a sbase intersection in the Product hierarchy at or below Department (other
hierarchies are irrelevant for this discussion) is stored in the local domain. This is based
on the Department that the underlying position in the Product hierarchy belongs to.
Measures that have a higher base intersection in the Product hierarchy than Department
(for instance, Division) or measures that do not contain the Product hierarchy (such as a
measure based at Store/Week) cannot be split across the local domains. These measures
will reside in the master domain, and they will be accessed from there when these
measures are required in workbooks.
All measures will be registered in the master domain, and they will be automatically
registered in all local domains. RPAS automatically determines where the measure needs
to be stored by comparing the base intersection of the measure against the designated
partition-level of the Global Domain environment.
The physical location of the measure data will be invisible to the user after the measure
has been registered.

Multi-Language
RPAS domains are built to be used in English only or in English and other languages.
Multi-lingual domains allow for most data elements in an RPAS domain to be translated
into another language. The translation process is managed by the Oracle Translation
group and is handled as a separate agreement with Oracle.

Note: An existing domain cannot be converted to multi-
lingual after it has been built.

158 Oracle Retail Predictive Application Server

Global Domain

Setting Workbench Preferences
Navigate: From the File menu, select Tools Preferences. The Workbench Preferences
window opens.

 1. Select the General tab and select the appropriate options.

Workbench Preferences Dialog – General Tab

 The main file menu lists configurations that were recently opened. The number
of configurations is displayed in this menu. To set the number of configurations,
set the Most recently used workspaces to show field by using the up and down
arrows.

 Select the Measure Content Validation check box to enable measure content
validation. Deselect the check box to disable measure content validation. A
change to the properties of a measure can affect the validity of a large number of
components both within the Rule Tool and the Workbook Tool. Whenever a
measure editing session is completed (for instance, upon exiting the Measure
Manager and entering a different tool), the workbench will evaluate the effects of
the edits made upon the measures. This process can be time consuming. When
the Measure Content Validation option is unchecked, the automatic validation of
measure property edits is disabled. This allows for rapid transitioning between
tools when working on a large configuration, because it will not be necessary to
await the completion of the automatic validity checking. When automatic
validation is disabled, a manual check of measure validity can be enabled from
the Rule Tool. This allows you to manually update the measure content
validation of the Rule and Workbook Tools (see “Measure Validation within the
Measure Manager” for more information).

2. Select the Measure Manager Options tab and adjust the fields as needed.

System Preferences 159

Global Domain

Workbench Preferences Dialog – Measure Tool Options Tab

 Number of Measures/Page – The Measure Manager display only a certain
number of measures per page in the Measure tab. This option determines the
number of measures that appear on a page.

 Display Measures by – This list provides two options, name and label, and
determines whether measures are displayed using their name or label in the
Configuration Tools. For example, in the Workbook Tool when selecting
viewable measures, the name or the label will be displayed depending on the
selection here.

 Display Measure components by – This list provides two options, name and
label. Your selection determines how measure components in the Measure
Manager are displayed.

3. Click OK to save any changes, and close the window.

160 Oracle Retail Predictive Application Server

Global Domain

Setting Configuration Properties
Navigate: From the File menu, select Configuration Properties. The Configuration
Properties dialog box opens.

Configuration Properties Dialog Box

The Configuration Language field is disabled by default. English is displayed in the field
because currently configurations can only be in English.

 1. Select the following options as necessary:
 Global Domain– Select this option if the configuration uses a global domain

environment. This enables the creation of workbooks in multiple domains and to
administer and update multiple domains from a single master domain.

 MultiLanguage – Select this option if the configuration supports multiple
languages in the domain.

2. Click OK to save any changes, and close the window.

System Preferences 161

6
Configuration Utilities

Overview
The utilities in this section are standalone utilities that can be run externally or they can
be launched from the utilities menu of the Configuration Tools. The utilities provided
include the Configuration Converter and the Function Library Manager, which are
described in detail.

Configuration Converter

Overview

Note: The functionality for converting a configuration is
provided directly through the Configuration Tools. See the
section, “Open an Existing Project from an Older Version of
the Configuration Tools” in Chapter 3.

The Configuration Converter is a standalone utility that converts a configuration that
was originally created and saved in a prior release of the Configuration Tools. Only
configurations created in a prior major release need to be converted. Configurations
saved in previous versions of the same major release, but in different minor releases, do
not need to be converted.

Launching the Configuration Converter
The Configuration Converter can be accessed in three ways:

 1. From the Utilities menu in the Configuration Tools, select Configuration Converter.
The Configuration Converter window appears.

RPAS Configuration Converter Window

2. From the Windows Start menu, select Oracle – RPAS – Utilities, and select
Configuration Converter. The Configuration Converter window appears. If this
shortcut does not appear, refer to the RPAS Installation Guide for information about
creating it.

Configuration Utilities 163

Configuration Converter

3. Go to a command prompt. Run the RpasConverter.exe file in the \utilities directory
where the Configuration Tools were installed and run the following command:
RpasConverter -c C:\PathToConfig\Config\Config.xml [OPTIONS]

The following options can be used from the command line: T

-b BackupDir

Use this argument to create a backup of the original configuration in BackupDir
location specified.
-g

Use this argument to open the RPAS Configuration Converter screen shown above.
-h

Use this argument to display usage information.

Converting a Configuration
 1. In Configuration location field, enter path and configuration file name to be

converted. This is the file in the configuration's directory that has the configuration
name with an ".xml" extension. You may also click the Browse button to navigate
and select the appropriate file. Make sure to provide the file extension in the
Configuration location field.
Example of Configuration location field entry:

C:\Configs\MyConfig\MyConfig.xml
2. Optional: In the Backup current configuration to field, enter a directory where a

copy of the original configuration will be stored. You may also click the Browse
button and to navigate and select a directory.

Note: The directory entered must not already contain a
directory whose name is the name of the original
configuration. For example, to put a backup of a
configuration named "MyConfig" in a directory
"C:\Backups," "C:\Backups\MyConfig" must not exist.

3. Using the Convert to version list, select the version to convert to. This should always
be the current version of the Configuration Tools unless there is a good reason to
convert to some older version.

4. Click Convert Now.
5. If the conversion was successful, it may now be opened in the Configuration Tools. If

there was an error while converting, an error message will be displayed, and the
original configuration will remain untouched.

Note: See the RPAS Administration Guide and RPAS
Installation Guide for more information on the domain
installation and upgrade process.

164 Oracle Retail Predictive Application Server

Functional Library Manager

Functional Library Manager

Overview
The RPAS calculation engine is designed to be extensible with support for custom
functions or procedures that can be used in normal expressions. For validation purposes,
the Configuration Tools are only aware of the standard RPAS functions and procedures,
so they will generate an error for any expressions that use custom functions or
procedures. The Function Library Manager is used to provide validation for custom
functions or procedures within the Configuration Tools. The custom functions or
procedures must exist in the /applib directory of the RPAS_HOME directory. If
necessary, this utility can also be used to remove custom function libraries from being
validated. There is no validation for the existence of the function libraries in
RPAS_HOME/applib directory. When a function library is removed using the Function
Library Manager, it is removed only from the list of external libraries used for validation,
and the contents of RPAS_HOME/applib directory are left intact. The function libraries
mentioned in this list are loaded by the Configuration Tools and will be used to perform
rule validation.
Speak to an Oracle Retail Services representative for additional information about custom
functions and procedures.

Launching the Functional Library Manager
Navigate: From the Utilities menu in Configuration Tools, select the Function Library
Manager, or run the Functional Library Manager.bat file from the utilities directory
where the Configuration Tools is installed. The Function Library Manager window
appears.

Function Library Manager Window

Configuration Utilities 165

Report Generator

Adding a Function Library to Be Validated in the Configuration Tools
Perform the following procedure to add a function library to the Configuration Tools:

 1. Launch the Function Library Manager.
2. Click Add. The Input dialog box appears.

Input Dialog Box

3. Enter the name of the library you want recognized.

Note: Enter the name without the *.dll or *.so extension.

4. Click OK.
5. Click Accept to save any changes and close the window.

Removing a Function Library from Being Validated in the Configuration Tools
 1. Launch the Function Library Manager.

2. Select the Function Library you want to remove from the validation process.
3. Click Remove. The Function Library is removed from the list.
4. Click Accept to save any changes and close the window.

Report Generator

Overview
The Report Generator is a utility that may be used to extract information about a
configuration for external use. The information is generated in a structured text
document that is much easier to manipulate than the XML format of the configuration
files that are saved and loaded by the workbench. Many of the reports correspond to files
generated as a part of the installation process.

Available Reports
The following reports can be created using the Report Generator:
 Measure Extractor – This report generates a text file that lists the measure content of

a solution.
 Data Interface Report – This report generates a text file that lists the properties of all

of the measures in the project that have been added to the Data Interface Tool.
 Measure Description Translation – This report generates a translation file similar to

the file generated as part of the installation process. It allows the extraction of
measure descriptions for a project without the need to build the domain first.

 Measure Label Translation – This report generates a translation file similar to the file
generated as part of the installation process. It allows the extraction of measure labels
for a project without the need to build the domain first.

166 Oracle Retail Predictive Application Server

Report Generator

 Measure Patch Report – This report examines a previous version of a configuration
to determine which measure properties have changed between the two versions. It is
used to determine which measures will be added, removed, or updated during a
patch installation.

 Rule Extractor – This report generates a text file that lists the rule content of a
solution.

 Rule Group Label Translation – This report generates a translation file that is
similar to the file generated as part of the installation process. It allows the extraction
of rule group labels for a project without the need to build the domain first.

 Workbook Extractor – This report generates a text file that lists the workbook
content of a solution.

 Workbook Group Label Translation – This report generates a translation file that is
similar to the file generated as part of the installation process. It allows the extraction
of workbook group labels for a project without the need to build the domain first.

 Workbook Label Translation – This report generates a translation file that is similar
to the file generated as part of the installation process. It allows the extraction of
workbook labels for a project without the need to build the domain first.

 Messages Translation – This report generates a translation file that is similar to the
file generated as part of the installation process. It allows the extraction of messages
issued by the RPAS Client for a project without the need to build the domain first.

Configuration Utilities 167

Report Generator

Generate a Report
Perform the following procedure to generate a report:

 1. Select the project that requires the report.
2. Select Generate Reports from the Utilities menu. The Select a Report dialog box

opens.

Select a Report Dialog Box

3. Select the desired report from the list in the left pane of the generator dialog. The
right pane displays a short description of the currently selected report.

4. Select Generate Report to begin the report generation process.
5. Depending upon the report in question, there may be a number of options to specify

in further dialogs. These options commonly include the location where the generated
file is to be stored or the selection of a single solution from the project.

6. Once all options have been specified, click OK to generate the report. The OK button
will not be enabled until all options have been specified.

168 Oracle Retail Predictive Application Server

A
Appendix: Global Domain Technical

Information
Overview

A domain can be implemented as a simple domain when:
 the data size for individual measures is small
 the number of users working on the domain at any given period of time is small

The domain can be implemented as a global domain when:
 the data size is increasing due to the hierarchy size
 there are several people using the same domain

In the global domain environment, the global domain is accompanied by two or more
subdomains that contain a subset of the data that would have been in a simple domain.
Each of the subdomains contains a subset of one of the hierarchies of the global domain.
More specifically, the subdomains contain a subset of positions along the partition
dimension. All of the measures that are defined to be at or below this dimension will be
stored in the local domains. Measures above this dimension are stored in the global
domain. An administrator can directly access the local domains, and a subset of users
will be dealing with each local domain. This way, there is less contention between users.
A domain can only be partitioned along one hierarchy of the domain.
Note the following points when configuring and setting up a global domain
environment:
 When creating a new global domain configuration file, globaldomainconfig.xml,

reference the RPAS example of the configuration file,
globaldomainconfig_example.xml, which is located in the
%RPAS_HOME%/domain/config_examples directory of the RPAS installation.
Reference this to use as a guide in building this file. Once this file is created, put it in
the configdir directory path as specified by using the –configdir option in the
Installer.

 In the globaldomainconfig.xml file, specify (in the path) the entire path to the master
domain and the subdomains, including the root name of the domains. The path
leading up to the root of the master domain must exist, but the master domain root
directory must not exist at the beginning of the domain build process. The path to the
subdomains must also exist unless the subdomains are located inside the root of the
master domain.

 The master global domain will contain a directory called config, which will house the
globaldomainconfig.xml file. Do not delete this directory or file.

 Do not delete the tmp directory under the domain home directory while the domain
build process is taking place.

 To configure the global domain functionality, provide a globaldomainconfig.xml file
that specifies how each of the local domains should be partitioned based on position
groupings. If a globaldomainconfig.xml file is not provided and the partitioning
dimension is provided, a local domain will be built for each position within the
partitioning dimension. For example, if a company has five departments, and

Appendix: Global Domain Technical Information 169

Overview

"department" is the partitioning dimension, there will be five local domains and one
master global domain.

 Conditional parameters that are used by the Installer for configuring and setting up a
global domain environment are as follows:
–dh <domain_home> : where <domain_home> is the path to the directory in which
the domain will be created
Non-Global Domain – required
Global Domain (with globaldomainconfig.xml) - required
Global Domain (with globaldomainconfig.xml) – throws usage error
–configdir <config_directory> : where <config_name> is the path to the
configuration XML files, including globaldomainconfig.xml, hierarchy.xml, and
calendar.xml.
Non-Global Domain – optional, but required if using a calendar.xml file
Global Domain (with globaldomainconfig.xml) - required
Global Domain (without globaldomainconfig.xml) - optional, but required if using a

calendar.xml file
–p <dim_name> : where <dim_name> is the partitioning dimension. Only valid if
the configuration has been marked as a global domain configuration with the
Properties dialog box. If the configdir option is specified and a
globaldomainconfig.xml file is found in the location, the –p option will be ignored
and the partitioning dimension that is specified within the globaldomainconfig.xml
file will be used instead.
Non-Global Domain – throws usage error
Global Domain (with globaldomainconfig.xml) - throws usage error
Global Domain (without globaldomainconfig.xml) - required

 For patching a global domain implementation; measures, rules, and workbook
templates can be changed; and the master domain and local domains will be patched
accordingly. A non-global domain implementation CANNOT be updated to a global-
domain implementation and vice versa. The Global Domain flag in the configuration
is ignored during the patch process, so the construction of the implementation will
not change even if its status has been changed.

 When patching either a global domain implementation or a regular, standalone, or
single domain; in the call to the Installer (rpasInstall); it is imperative that none of
the parameters that were used during the original domain build are changed with
the exception of replacing fullinstall with patchinstall. We recommend using a
script for the rpasInstall call so that it is easier to change the fullinstall parameter
to patchinstall while leaving the other parameters in their original state.

170 Oracle Retail Predictive Application Server

B
Appendix: Calculation Engine Users Guide

Overview
The RPAS calculation engine is a very powerful and flexible engine that is built to
support OLAP type calculations against a multi-dimensional model. At first sight, the
engine is very complex. However, when the building blocks of the calculation engine are
properly understood, much of this apparent complexity goes away. This overview of the
calculation engine processes will therefore start by describing the three fundamental
processes of aggregation, spreading, and expression evaluation before explaining how
the various processes integrate into a comprehensive whole.
RPAS supports an OLAP-type model. In this model, individual pieces of data, called
cells, apply to a single position in one or more hierarchies or dimensions. These will
typically include a "measures" dimension, a calendar or time hierarchy, and other
hierarchies such as for products and locations. The measures dimension is fundamentally
different to the other hierarchies because measures (in other systems measures may be
referred to as facts, performance indicators, or variables) represent the fundamental
events or measurements that are being recorded, whereas the positions in the other
hierarchies provide a context for the measurement (for instance; where, when, or what).
Measures relate to one another through rules and expressions. Positions in all the other
hierarchies relate to each other through hierarchical relationships.
RPAS supports two different forms of relationships between cells:
 Hierarchical relationships that require aggregation and spreading
 Measure relationships that require rules and expressions

Hierarchical relationships, such as weeks rolling up to months or stores rolling up to
regions, require the aggregation of data values from lower levels in a hierarchy to higher
levels. This is performed using a variety of methods as appropriate to the measure. To
enable such data to be manipulated at higher levels, RPAS supports "spreading" the
changes, which is also performed using a variety of methods. Aggregation and spreading
are basic capabilities of the engine that require no coding by implementation personnel,
other than the selection of aggregation and spreading types to use for a measure.
The inherent relationships between measures can be modeled through rule and
expression syntax. Most of the effort in configuring an application model is in modeling
these relationships.
The RPAS calculation engine is designed to be robust and extensible, while in complete
control of the calculation process. It enforces data integrity by ensuring that all known
relationships between cells are always enforced whenever possible. Much of the logic of
the processing of rules and rule groups depends on this basic principal.

Measure Definition and Base Intersections
Certain characteristics of a measure determine how the calculation engine should handle
it with regard to calculation, aggregation and spreading, and the dimensions in the
hierarchies at which the measure is calculated. Since this information applies across all
rules and rule groups, it is set up as part of the definition of a measure.

Appendix: Calculation Engine Users Guide 171

Aggregation

Data Types
RPAS supports the following data types:
 Real

Floating point numeric values. Most measures are of this type.
 Integer

Numeric integer values. There are no special "spreading" algorithms for integer
measures, which should normally be used only for measures that are calculated
"bottoms up."

 Date
Date and time. Can easily be converted to position names by standard functions.

 String
Variable length strings. Typically used for notes and names.

 Boolean
True or false values. Typically used for flags and indicators.

Base Intersection
The base intersection for a measure is a list of dimensions (such as Class/Store/Week),
one per appropriate hierarchy, which defines the lowest level at which data is held for
the measure. Data is assumed to apply to the "All" position in any hierarchy, which is not
explicitly referenced in the base intersection (see Non-Conforming Expressions for more
information). Through aggregation, data will logically exist (though there may not be a
value) for all levels higher than the base intersection up all alternative rollups.

Aggregation and Spreading Types
The aggregation type defines the aggregation method to be used for the measure (refer to
Aggregation for more information) to produce values at higher levels from values at the
base intersection. There is a "normal" spreading method associated with an aggregation
type, which defines the method to be used to spread changes from higher levels (see
Spreading) to the base intersection. Depending upon the desired characteristics of the
measure, there may be several valid allowed spreading types.

Aggregation

Overview
By definition, an OLAP-type model has hierarchical relationships between positions in
hierarchies. The values of measures above their base intersections for these hierarchical
relationships are automatically maintained through a process referred to as aggregation.
Different types of measures need to be aggregated in different ways. Many measures,
such as sales, receipts and markdowns, record the events that actually occurred or are
planned to occur during a period of time. Simple totaling can produce aggregate values
for these: the value for a region is the sum of the stores in the region; the value for a
month is the sum of the weeks in the month; and so on. But this technique does not work
for all types of measures. For example, with stock, the values record a snapshot at a point
in time rather than a total of events over a period of time. The value of stock for a region
is the sum of the stock in the stores in the region, but the value of stock for a month is
certainly not the sum of the stocks for the weeks in the month. It is usually either the
value for the first week or the last week in the month. Similarly, there are measures
where the appropriate aggregation type may be to calculate an average, or a minimum,

172 Oracle Retail Predictive Application Server

Aggregation

and so on. For some calculation purposes, only cells that are "populated" (have a value
other than their default value, which is typically zero) should participate in aggregations.
RPAS supports a wide variety of aggregation types to support all of these requirements.
There is also another class of measures where no aggregation technique would produce
the correct result. These measures are typically prices, ratios, variances, and similar
performance indicators. The average price of sales for a class cannot be calculated by
summing the prices of items in the class. Averaging the prices of items in the class
produces a better result, but it is still not accurate because it fails to take account of the
weighting of the sales of the items in the class. One item with a very large volume of sales
at a low price would pull down the average price attained for the class as a whole, but
this would not be reflected in an average aggregation. The way to get a correct result is to
redo the price calculation at the required level. By dividing the sales value for the class by
the sales units for the class (both of which will have been aggregated by summing), a
correctly weighted result will be produced. The type of measure that requires this type of
"aggregation" is referred to as a "recalc" measure, as "aggregation" is by recalculation of
the expression used to calculate the measure. In planning applications it is not unusual
for 40% or more of the measures to be of recalc type.

Aggregation Types
The table below displays the aggregation types supported by the RPAS calculation
engine.

Aggregation
Type

Measure Type Description

Hybrid For any measure type The measure is aggregated using a specific
aggregation type for each hierarchy. This is selected
from the valid aggregation types for the measure type.
At intersections that are aggregated in more than one
hierarchy, the aggregation type used is that for the
highest priority hierarchy.

recalc For any measure type The measure is not aggregated, but is recalculated at
all aggregated levels through a recalc expression. The
passthrough function is not supported with this agg
type.

total For numeric measures
only

The measure is aggregated by taking the total
(numeric sum) of all child values at the base
intersection.

average For numeric measures
only

The measure is aggregated by taking the numeric
average of all child values at the base intersection.

min For numeric and date
measures only

The measure is aggregated by taking the minimum of
all child values at the base intersection.

Note: For most purposes, the min_pop aggregation
type will be more appropriate because the minimum
value of all child values will typically be the naval,
which is usually zero.

max For numeric and date
measures only

The measure is aggregated by taking the maximum of
all child values at the base intersection.

median For numeric measures
only

The measure is aggregated as the median value (the
middle value when sorted from lowest to highest) of
all child values.

Appendix: Calculation Engine Users Guide 173

Aggregation

Aggregation
Type

Measure Type Description

pst [period
start total]

For numeric measures
only

For cells at the base intersection in the time hierarchy,
the measure is aggregated by taking the total (numeric
sum) of all child values. For cells at aggregated levels
in the time hierarchy, the measure is aggregated by
taking the value of the first child time period.

pet [period
end total]

For numeric measures
only

For cells at the base intersection in the time hierarchy,
the measure is aggregated by taking the total (numeric
sum) of all child values. For cells at aggregated levels
in the time hierarchy, the measure is aggregated by
taking the value of the last child time period.

and For Boolean measures
only

The measure is aggregated by performing a Boolean
and of all child values.

or For Boolean measures
only

The measure is aggregated by performing a Boolean or
of all child values.

ambig For string type measures
only

The measure is aggregated by considering the values
of all child cells. If all child cells have the same value,
the aggregated value is the same as the child cells.
Otherwise it is ambig.

popcount For any measure type The measure is aggregated by counting the number of
child cells that are populated (have a value different to
the naval for the measure).

There are also "pop" (that is, “populated”) versions of several aggregation types. These
aggregate in the same manner as the aggregation type above, but only consider cells that
are populated, which means that they have a value different to the naval for the measure.
This may not necessarily mean a value that an end-user thinks of as being “populated.”
These aggregation types are as follows:
 ambig_pop - ambig of all populated values

 average_pop - Average of populated values

 min_pop - Minimum of populated values

 max_pop - Maximum of populated values

 median_pop - Median of populated values

 total_pop - Total of populated values

Note: Only measures with an aggregation type of ambig, pst,
or pet can be aggregated from below the partition levels to
above the partition levels in a global domain.

174 Oracle Retail Predictive Application Server

Spreading

Spreading

Introduction
By definition, an OLAP-type model has hierarchical relationships between positions in
hierarchies. Measures are calculated in dimensions above the base intersection by
aggregation by using the parent-child relationships between the positions. RPAS allows
such measures to be manipulated not only at the bottom levels, but also at aggregated
levels. In order to preserve the integrity of the data with such a change, RPAS needs to
change the underlying data values at the base intersection for the measure, so that when
they are aggregated again, they result in the changed value at the aggregated level. The
method of changing the base intersection values to achieve this is known as spreading.
Spreading always applies to cells at the base intersection of the measure. At all
aggregated levels above the base intersection, the effect of any change is applied by
considering all cells at the base intersection that are descended from the changed cell (for
instance, children and grandchildren). These calls are described as ‘child cells’ in this
description. Spreading does not operate from level to level to level down a hierarchical
roll-up, which would not only be less efficient, but would also generate different (and
generally less acceptable) results when there are changes or locks at levels between the
change being spread and the base intersection.
 The RPAS engine allows changes to be made to a measure for positions at multiple
levels, and the effect of all such changes are performed in a single calculation step. The
basic technique for managing this spreading is the same for all spreading methods, and it
is described in “Multi-Level.”
For calculation purposes, a lock to a cell for a spreadable measure is treated as a change
to that cell that re-imposes the previous value. If none of the child cells of the locked cell
have changed, the lock has no effect, and all child cell values remain unchanged.

Locks and Spreading around Locked and Changed cells
Other than in the special case where there are no cells that are free to be changed,
spreading only affects cells that are free to be changed. All child cells are free to be
changed except for those that are elapsed (see Chapter 8), locked by the user, explicitly
changed by the user, or that have already been recalculated as the result of spreading
another (lower level) change. Spreading always attempts to spread around locked or
changed cells without changing their values. Where none of the child cells are free to be
changed, spreading applies to all child cells that are not elapsed by using the changed or
recalculated values as the base values to spread upon. For spreading purposes, when
something has to give, elapsed cells are considered to be ‘more important’ than locked or
changed cells.
Locked cells for recalc type measures are treated in an analogous manner: the mapping
expression (see The Spreading of Recalc Type Measures) is reimposed (using recalculated
values of other measures on the right hand side of the mapping expression if necessary)
to recalculate the mapped measure. It is then spread normally.

Appendix: Calculation Engine Users Guide 175

Spreading

Note: The effect of spreading where there are no child cells
free to be changed is that the result for some lower level
locked or changed cells will be different to the locked value
or the change made. Effectively, higher level locks or
changes are deemed to be ‘more important’ than lower level
ones. Causing the circumstance where there are no free child
cells can be a very useful technique when initializing data.
For example, in a single calculation, a "shape" can be applied
to child cells, and then a "total" to the parent cell. The result
is that the parent total is spread across the children using the
appropriate spreading technique, but according to the
supplied shape. This is because the higher level change takes
precedence.

Spreading Methods
Just as different types of measures require different aggregation techniques, different
types of measures require different spreading techniques. Measures that cannot be
aggregated (that is, are of “recalc” type) are not usually spread at all (see The Spreading
of Recalc Type Measures), but they may employ the replicate spreading technique. The
default spreading method for a measure is set up as part of the definition of the measure.
This is the spreading technique that is used for all changes to the measure unless
explicitly overridden on edit by the user.
The spreading methods that are supported by RPAS are listed here and described in the
following sections:
 Proportional Spreading
 Replicate Spreading
 Even Spreading
 Delta Spreading
 PET and PST Spreading

Proportional Spreading
Proportional spreading is the most commonly used spreading technique once data has
been initialized, and it is the default spreading method for most spreadable measures. In
proportional spreading, all ‘children’ that are free to be changed are changed in the same
proportion so that their existing ratios to each other are maintained, and the required
value for the parent is achieved. If proportional spreading is used for a measure that is
not initialized (that is, its children all have the “naval”), the children are assumed to all
have the same weight, so the effect of the spreading is the same as the even spreading
method.

176 Oracle Retail Predictive Application Server

Spreading

Example:
 Starting values – ChildA 10, ChildB 20, ChildC 30, ChildD 40, Parent 100.
 Changes – Parent changed to 145, ChildA changed to 20, ChildB locked.
 Resulting values – ChildA 20, ChildB 20, ChildC 45, ChildD 60, Parent 145.
 Spreading Process – ChildA and ChildB are not free to be changed by spreading

because ChildA was explicitly changed and ChildB was locked. The required parent
value of 145 must include 40 from ChildA and ChildB, and thus ChildC and ChildD
must total 105. The previous total for ChildC and ChildD was 70, so their values
must be changed by applying the multiplier of 105/70. Thus the new values for
ChildC is 45, and for ChildD is 60.
After aggregation, the result is as follows:
The parent has the value 145, as required
ChildA has the required 20
ChildB did not change
The ratio of ChildC being 75% of ChildD is maintained

This spreading method is not allowed for measures with a recalc aggregation type.

Replicate Spreading
Replicate spreading is sometimes used when initializing data, especially for recalc type
measures, and for measures with aggregation type such as average, minimum, and
maximum. It is unusual for it to be the default spreading method for any measure, but
may be used by overriding the spread method on data entry. In replicate spreading, all
child cells that are free to be changed are changed to the value of the parent cell. With
replicate spreading, there is no guarantee that after aggregation the value of the parent
cell will be the value that was replicated. In fact, it usually will not be. Replicate
spreading should be considered to be an indirect way of entering the same value into
multiple child cells.
Example:
 Starting values – ChildA 10, ChildB 20, ChildC 30, ChildD 40, Parent 100.
 Changes – Parent changed to 145, ChildA changed to 20, ChildB locked.
 Resulting values – ChildA 20, ChildB 20, ChildC 145, ChildD 145, Parent 330.
 Spreading Process – ChildA and ChildB are not free to be changed by spreading

because ChildA was explicitly changed and ChildB was locked. The parent value of
145 is replicated to ChildC and ChildD. After aggregation, the result is that the
parent has the value 330.

This spreading method is allowed for measures with a recalc aggregation type.

Even Spreading
Even spreading is sometimes used when initializing data. It is unusual for it to be the
default spreading method for any measure, but it may be used by overriding the spread
method on data entry. In even spreading, all child cells that are free to be changed are
changed to the same value, which is the total for the parent cell for the free child cells
divided by the number of free child cells.

Appendix: Calculation Engine Users Guide 177

Spreading

Example:
 Starting values – ChildA 10, ChildB 20, ChildC 30, ChildD 40, Parent 100.
 Changes – Parent changed to 145, ChildA changed to 20, ChildB locked.
 Resulting values – ChildA 20, ChildB 20, ChildC 52.5, ChildD 52.5, Parent 145.
 Spreading Process – ChildA and ChildB are not free to be changed by spreading

because ChildA was explicitly changed and ChildB was locked. The required parent
value of 145 must include 40 from ChildA and ChildB, and thus ChildC and ChildD
must total 105. This is spread evenly, thus the new values for ChildC and ChildD are
both 52.5.
After aggregation, the result is:
The parent has the value 145, as required
ChildA has the required 20
ChildB did not change
The remainder has been spread to ChildC and ChildD evenly

This spreading method is not allowed for measures with a recalc aggregation type.

Delta Spreading
Delta spreading is sometimes used when data is fully initialized. If it is used when the
measure is not initialized, the effect will be the same as even spreading. It is unusual for
it to be the default spreading method for any measure, but it may be used by overriding
the spread method on data entry. In delta spreading, all child cells that are free to be
changed are changed such that the delta to the parent cell is spread evenly across those
child cells.
Example:

 Starting values – ChildA 10, ChildB 20, ChildC 30, ChildD 40, Parent 100.
 Changes – Parent changed to 145, ChildA changed to 20, ChildB locked.
 Resulting values – ChildA 20, ChildB 20, ChildC 47.5, ChildD 57.5, Parent 145.
 Spreading Process – ChildA and ChildB are not free to be changed by spreading

because ChildA was explicitly changed and ChildB was locked. The required parent
value of 145 must include 40 from ChildA and ChildB, and thus ChildC and ChildD
must total 105. The previous total for ChildC and ChildD was 70, so the delta to the
parent is 35. This delta is spread evenly across the children, so ChildC and ChildD
are both increased by 17.5. Thus the new values for ChildC is 47.5, and for ChildD is
57.5.
After aggregation, the result is as follows:
The parent has the value 145, as required
ChildA has the required 20
ChildB did not change
The increase to the parent has been evenly divided between ChildC and ChildD

This spreading method is not allowed for measures with a recalc aggregation type.

178 Oracle Retail Predictive Application Server

Spreading

PET and PST Spreading
PET (period end total) and PST (period start total) are special spreading types to support
measures with the PET or PST aggregation types where the values of cells represent
snapshots at a period of time rather than a total of events. Opening and closing stock
(inventory) are typical examples of such measures, where the value for a month will be
the value for the first (opening stock) or last (closing stock) week in the month, but values
up non-time hierarchies will be produced by total aggregation.
PET and PST measures require special spreading. We anticipate a future enhancement to
support spreading changes to such measures at aggregated time positions by spreading
the effect of the change across all children of the time period. At present, the PET and
PST spread types change the first or last child only. At present, a change to closing stock
for a month has exactly the same effect as a change to closing stock for the last week in
the month.

Multi-Level Spreading
The RPAS engine allows changes to be made to a measure at multiple levels, all of which
are dealt with in a single calculation. Because spreading requires parent-child
relationships, and spreading is effected between the intersection that is changed and the
base intersection for the measure, there is a requirement that all changes to be effected by
a single calculation must fall on a single hierarchical roll-up. This is controlled by
Hierarchical Protection Processing, which is described in the next section.
When there are changes at multiple levels, the spreading process fundamentally works
"bottoms-up." That means lower level changes are implemented before higher level
changes. The spreading algorithm starts with the lowest level in the hierarchical roll-up
that has changes, and it spreads each change at that level in turn.
The result of this process is that every child cell of a changed cell is no longer free to be
changed. If it was previously free to be changed, it has now been recalculated by
spreading. When all changes at a level have been performed, the algorithm moves on to
the next lowest level in the hierarchical roll-up that has changes, and it continues in this
manner until all changes have been performed. If a higher level change overlaps a lower
level change, the lower level changes are unaffected because all child cells of the lower
level change will not be free to be changed.
Example (using proportional spreading):

 Starting values – jan 10, feb 15, mar 20, apr 25, may 30, jun 35, jul 40, aug 45, sep 50,
oct 55, nov 60, dec 65. firsthalf 135, secondhalf 315, year 450.

 Changes – year changed to 500, firsthalf changed to 150, jan changed to 15, feb
changed to 20, mar locked, jul and aug changed to 50, sep locked.

 Resulting values – jan 15, feb 20, mar 20, apr 26.39, may 31.67, jun 36.94, jul 50, aug
50, sep 50, oct 61.11, nov 66.67, dec 72.22. firsthalf 150, secondhalf 350, year 500.

 Spreading process – The first change to be spread is the change to the first half to be
150. jan, feb and mar now total 55, so apr, may and jun must total 95. By proportional
spreading the results are 26.39, 31.67 and 36.94. The second change to be spread is the
500 for the year. Only the months oct-dec are now free to be changed. The other
months total 300, so oct-dec must total 200. By proportional spreading, the results are
61.11, 66.67, 72.22.

Appendix: Calculation Engine Users Guide 179

Spreading

Hierarchical Protection Processing
Hierarchical protection processing is a process that ensures that all changes made at
aggregated levels fall on a single hierarchical roll-up, which is a prerequisite for the
spreading process to function correctly. Hierarchical protection processing operates by
protecting (preventing direct manipulation) cells for intersections for combinations of
dimensions that cannot reside on a single hierarchical roll-up with the changes already
made.
In theory, since hierarchical protection processing is necessary to ensure the integrity of
the spreading process and each measure is individually spread, hierarchical protection
processing could operate independently for each measure. Having the manipulatable
measures varying from intersection to intersection would probably cause considerable
confusion to the users and would make implementing a consistent methodology difficult.
For simplicity, hierarchical protection processing operates on all measures.
An OLAP-type model has multiple hierarchies and spreading operates from the cell that
has been changed to all child cells at the base intersection, so hierarchical protection
processing must operate across multiple hierarchies. A single hierarchy may have
multiple roll-ups, which are also considered. Whenever a change or a lock is made to an
intersection for a new combination of dimensions, the calculation engine checks all other
combinations of dimensions, and it protects those that cannot be on the same hierarchical
roll-up as changes already made. It does this by considering a "cross multiplication" of
hierarchical roll-ups across all the hierarchies.
A simple example will clarify the process. Consider the matrix of "cross multiplied"
dimension combinations that result when there is a 2-dimensional product by time model
with the dimensions Co/Div/Dept/Class and Year/Month/Week. This is shown below
schematically with parent-child relationships:

Other than at the top of a hierarchical roll-up, each combination of dimensions has two
parent combinations: one per hierarchy with the next highest dimension, so class/week
has parents of class/month and department/week.

Note: For the sake of simplicity, the picture does display the
roll-up of the “all” dimension (all products, all time periods).

All spreading is from the changed level to the base intersection (class/week in this
example). Consider a change at an intersection of Div/Month. We know that the
spreading hierarchical roll-up must be a path from the top (Co/Year) to the bottom
(Class/Week) that passes through Div/Month. There are six such paths, none of which
go through the combinations Co/Week, Dept/Year or Class/Year, so those combinations
of dimensions are all protected. If the next change is at an intersection of Class/Month,
then Div/Week and Dept/Week are similarly protected.

180 Oracle Retail Predictive Application Server

Spreading

Note: Hierarchical protection processing always reflects the
current set of locks and changes.

RPAS allows cells that have been changed or locked to be unchanged or unlocked before
the calculation is initiated. If an unchange or unlock removes the last change or lock for a
combination of dimensions, some other combinations of dimensions that were previously
protected could become unprotected. In our example above, if the first change to a
Div/Month were now unchanged so that the only change outstanding is at Class/Month,
then Dept/Year and Class/Year would now become manipulatable again, but Co/Week,
Div/Week and Dept/Week would still be protected.

Note: Non-conforming measures (see Non-Conforming
Expressions) may lead to hierarchical protection processing
that may appear to be over protective.

When considering hierarchical protection processing, all measures have their "scope"
expanded to include the "all" level of all hierarchies that they are not dimensioned on. For
example, the implications of this are that a change to a measure with a base intersection
of "class," which is interpreted as meaning "class/all," would prevent the manipulation of
a measure with a base intersection of "year," which is interpreted as "all/year."

Appendix: Calculation Engine Users Guide 181

Spreading

The Spreading of Recalc Type Measures
Measures that are of recalc type are not usually spread by any spreading technique.
Spreading techniques typically rely on the existing relationships between a parent and its
children in the spreading process. In a recalc measure, those relationships cannot be
relied upon because they are not "weighted." Spreading of changes to a recalc measure is
therefore indirect, and applying a "mapping rule" effects the change.
A mapping rule is a rule (with two or more expressions) that calculate a spreadable
measure from the changed value of a recalc measure and other measures. The selected
expression for the rule is evaluated at the level of the change to the recalc measure. It
results in a changed value of a spreadable measure, and if this is above the base
intersection for that measure, it is spread normally using its default spreading method.
Therefore, a change to a recalc measure should be considered to be an indirect change to
the spreadable measure that it is mapped to.
The only constraint on the manipulability of a normally spreadable measure is through
protection processing, which prevents the manipulation of measures that will be
calculated. For a recalc measure, the measure must have a mapping rule. Without a
mapping rule, the measure cannot be manipulated.

Note: A recalc measures can only appear in a single rule in a
rule group. The RPAS calculation engine therefore knows
that rule contains the recalc expression for the recalc
measure. If there are other expressions in the rule, they may
be used as mapping expressions, which allows the recalc
measure to be manipulatable. If there is just a single
expression in the rule that calculates the recalc measures, the
recalc measure is non-manipulatable through normal
protection processing.

Non-Conforming Recalc Measures
Having a recalc measure on the right-hand side of an expression that calculates a
measure whose base intersection is higher than that of the recalc measure, or using the
level modifier on a recalc measure on the right-hand side of an expression can cause
incorrect values to be calculated. These incorrect values can then have a knock-on effect
onto other measures. Therefore, in these circumstances expressions should be written
such that the right-hand side of the expression should have a "recalc expression" rather
than a recalc measure. See the following section on “Non-Conforming Expressions” for
more information.

182 Oracle Retail Predictive Application Server

Expressions, Rules, and Rule Groups

Expressions, Rules, and Rule Groups

Introduction
Measures are related together through algorithmic relationships. For example, the sales
value may be the sales units multiplied by the selling price. In RPAS, these relationships
are specified through expressions, which are grouped for usage into rules and rule
groups.
It is a fundamental principle in RPAS that the calculation engine maintains and
guarantees the integrity of all the active relationships between cells at all times.
Hierarchical relationships are maintained through the processes of spreading (see
Spreading) and aggregation (see Aggregation). Relationships between measures are
maintained by the evaluation of expressions. One of the great strengths of RPAS is that
both of these types of relationships are automatically maintained in a non-procedural
manner. You do not have to write code to determine what is calculated, how it is
calculated, or in what sequence it is calculated. All that is required is the definition of the
relationships themselves, although you do provide prioritization information to guide
the calculation engine when there is a choice of calculation paths.
In an RPAS model, all cell values at aggregated level can be determined by aggregation
from the cells at the base intersection. Although the description that follows is a
simplification, a basic understanding of the working of the calculation process, and the
importance of expressions, can be gained by understanding the interconnection between
three fundamental processes: spreading, "bottom level" expression evaluation, and
aggregation. A more detailed and precise description refer to The Calculation Cycle.
Changes to measures at aggregated levels are spread down to their base intersections.
Here, the calculation engine enforces all measure relationships that are no longer
guaranteed to be true by evaluating an expression. This is because the cell values of one
or more of the measures in the relationship have changed directly, through spreading, or
by prior evaluation of an expression When base intersection calculation is complete, all
measures at the base intersection that have been changed are aggregated to re-impose
cell integrity.

Expressions
Expressions are the basis of all calculations of the relationships between measures. They
are evaluated by the calculation engine during a calculation. Expressions are written in a
syntax that allows for the calculation of one or more measures from other measures,
constants and parameters, using standard arithmetical functions and a rich set of
mathematical, technical, and business functions. Expressions are therefore an algorithmic
statement of a relationship between measures. Details of the allowable syntax for
expressions are provided in a separate document.

Rules
An expression describes the relationship between measures in a way that causes a
measure to be calculated through the expression. An expression may be said to ‘solve’
the relationship for the measure that is calculated through the expression. In some cases,
there may be business methodology reasons for wanting more than one of the measures
in a relationship to be calculable or solvable through that relationship.
To support this requirement, RPAS has the concept of a rule, which consists of one or
more expressions that describe the same relationship between measures, but that solve
for different measures. All of the expressions in a rule should use the same measures, and

Appendix: Calculation Engine Users Guide 183

Expressions, Rules, and Rule Groups

must have a different target measure. The target measure is the measure on the left-hand
side (LHS) of the expression that is calculated by the expression.
Where a rule has multiple expressions, those expressions are given a priority sequence to
help the calculation engine select a calculation path that follows business priorities.
Consider the rule that relates together sales value, sales units, and sales price. Let us
assume that there are three expressions in this rule. Each of the measures involved in the
rule may be ‘solved’ through the rule. For instance, if there is a change to a sales value, it
should be clear that the calculation engine could enforce the mutual integrity of all the
cells by holding the sales price constant and recalculating a new sales units. It could also
achieve the same end by keeping the sales units constant and recalculating the sales
price. Both approaches are mathematically valid, and produce a consistent result with
complete data integrity. However, it is likely that one approach makes more ‘business
sense’ than the other. In this case, most businesses in most circumstances would want the
price to remain constant and have the units recalculated. The prioritization of the
expressions in the rule provides this information to the calculation engine. Considerable
care should be taken in the design of models to ensure that appropriate expression
priorities are established.
When given a choice, the calculation engine will always select the highest priority
expression in the rule that is available to be selected. In this example, the expression that
calculates sales units would have a higher priority than the expression that calculates
sales price. Similar consideration of the desired effect of a change to sales units will
probably lead to a conclusion that the expression that calculates sales value would also
have a higher priority than the expression that calculates sales price.
What of the relative priority of the expressions to calculate sales value and sales units,
and the "business priority" for those expressions? That may vary from implementation to
implementation. It may even vary from one type of plan to another in the same
implementation. For a financial merchandise plan, the preferred behavior may be that a
change to the sales price only causes a recalculation of the sales units, whereas in a unit-
oriented lower level plan, the preferred behavior may be that a change to the sales price
causes a recalculation of sales value.
The same measure may appear in multiple rules. This will often be necessary because the
same measure can be involved in many different relationships with other measures. For
example, there may be a relationship between sales value, sales units, and sales price.
Sales value may also be involved in another relationship with closing stock and a cover
value, and yet another with opening stock, receipts, markdowns and closing stock.

Rule Groups
It is most unusual for a model to only require a single rule. In most cases, there will be a
collection of relationships between measures that must be maintained. In RPAS, a Rule
Group is a collection of rules that are treated as a unit by the calculation engine with the
integrity of all the rules in the rule group being maintained together. The calculation
engine always has one (and only one) active rule group. Even if all that is required is a
single expression, that single expression will be in a rule, and that single rule will be in a
rule group. The process by which the integrity of all the rules in a rule group is
maintained is quite complex. It is described in detail in The Calculation Cycle topic.
Rules within a rule group are given a priority. The calculation engine uses this to select a
calculation path that follows business priorities by using rule priorities to determine
which rule to enforce when there is a choice to be made. This is described in more detail
in The Calculation Cycle topic.
There may be many rules defined within a system as a whole. The validation of rules is
performed in isolation, but rules within a rule group are also validated in the context of

184 Oracle Retail Predictive Application Server

Expressions, Rules, and Rule Groups

all the other rules in the rule group. This can mean that a rule that is perfectly valid
syntactically, but it is not valid within a particular rule group. Rule group validations
include:
 Each rule in a rule group must represent a completely different measure relationship.

Therefore no two rules in a rule group may use exactly the same collection of
measures, and neither may one rule group use a collection of measures that is a sub-
set of the collection of measures in another rule.

 There must be an expression that calculates each recalc measure.
 Any measure that is on the LHS of the only expression in a rule may not be on the

LHS of any other expression.
Although there may only be one active rule group at any time, RPAS allows for the
definition of multiple rule groups to satisfy different calculation requirements. Rule
groups may be one of four different types:
 load – The RPAS application automatically uses the load rule group when loading

data into the workbook.
 calculate – RPAS supports multiple calculation rule groups. Menu options may be

configured to allow the user to select a different calculation rule group. RPAS
ensures a smooth transition from one calc rule group to another.

 refresh – The RPAS application automatically uses the refresh rule group to refresh
data.

 commit – The RPAS application automatically uses the commit rule group when
committing data to the domain.

These rule groups are perfectly ‘normal,’ so although they will typically include many
rules that use the master modifier to load or commit data, they may also have other rules.
For example, it is perfectly possible to commit data to the domain for a measure that does
not exist in the workbook merely by including the appropriate rule to calculate the
measure (with the master modifier) in the commit rule group. Similarly, a measure may
be loaded into a workbook that does not exist in the domain by including an appropriate
rule to calculate the measure in the load rule group.

Rule Group Transitions
Although only a single rule group may be active at any time, RPAS supports the
transition from one rule group to another. The calculation engine ensures the integrity of
measure relationships at all times so this process is not merely a case of switching from
one rule group to another. There is no guarantee that the integrity of the rules in the rule
group being transitioned have been maintained.
RPAS makes a worst case assumption when transitioning rule groups. Any rule that is in
both the old and new rule groups is assumed to have its integrity maintained. Any other
rule is assumed to be potentially wrong, and so is flagged as "affected." A normal
calculation is then initiated. Expressions to be evaluated are determined by the usual
process (see The Calculation Cycle). All affected rules will therefore have their integrity
imposed by the evaluation of an expression, and ‘knock-on’ effects may cause some rules
that occur in both the old and new rule groups to also be evaluated. Since all base
intersections must be calculated during rule group transition, a large or complex rule
group transition is likely to take longer than a normal calculate.

Appendix: Calculation Engine Users Guide 185

The Calculation Cycle

There are circumstances when automatic rule group transitions occur:
 On data loading

Data is loaded using the load rule group. This will typically load measures by
calculating them from the data values held on the domain using the master modifier,
but it may also calculate other measures that are not explicitly loaded. When the load
is complete, the system will automatically transition to the calculate rule group.

 On data refreshing
Data refreshing causes some measures to be updated from values held on the
domain. Refreshing uses the refresh rule group, but there is no real transition. The
measures that are affected by the refreshed measures are treated as affected in the
calculate rule group, and a normal calculate of that rule group follows. Effectively,
data refreshing causes a calculation by using the calculate rule group as if the cells
that were refreshed were directly changed by the user.

 On data committing
There is a normal transition from the current calculate rule group to the commit rule
group. This will typically commit measures by calculating them on the domain by
using the master modifier. When transitioning back from the commit rule group to
the calculate rule group, there is an assumption that only measures with a “master”
modifier have changed and therefore no transition is required.

The Calculation Cycle

Introduction
The calculation cycle always uses the current active rule group. It is a comprehensive
process that uses non-procedural hierarchical cell relationships and expression-driven
measure relationships from the rule group. These relationships are used together with
details of the locks and changes to individual cells to determine and then execute the
required actions to apply the effect of the changes and locks. This section describes how
the calculation engine determines what to calculate, how to calculate it, and in what
order to perform the calculations. Refer to the RPAS User Guide and the RPAS
Administrator Guide for details of processes; such as spreading, aggregation, and the
evaluation of expressions.
There are four distinct stages of the calculation cycle.

 1. In the first stage, protection processing occurs while the user is making changes to
cell values, and it protects those measures that the user cannot change either because
they are never changeable or because changes already made force them to be
calculated.

2. In the second stage, the engine decides what expressions will be evaluated.
3. In the third stage, the sequence of calculation is determined.
4. The final stage is the physical process of doing the calculation.

Note: The calculation cycle can operate in one of two modes:
“full” and “incremental.” In “full” mode, it is assumed that
all of the cells for the measures being evaluated need to be
calculated. This mode is used when calculating in batch, and
in all rule group transitions. “Incremental” mode is used
when manipulating cells in an online session, and only those
cells that are directly or indirectly affected by user edits are
calculated.

186 Oracle Retail Predictive Application Server

The Calculation Cycle

Protection Processing
Other than in exceptional circumstances, the calculation engine guarantees the integrity
of all relationships and ensures that the value for a cell changed by a user after
calculation is the value entered by the user. In order to ensure this, the calculation engine
must prevent the user from making changes to any cells where it would be unable to
guarantee that integrity. The process that achieves this is called protection processing.
A measure may only be manipulated when the calculation engine is able to change other
cells by spreading and/or evaluation of an expression to enforce the integrity of
relationships. A measure that is not used in any rules may only be manipulated if it has a
spreading technique other than recalc.
It is a basic principle of the calculation engine that a measure that is changed (or locked)
cannot also be recalculated by evaluating an expression. It will be aggregated, which in
the case of a recalc measure, does involve the evaluation of an expression. A measure
that is to be evaluated can only be evaluated using one expression because there is no
guarantee that the same result would be produced from two expressions that represent
different measure relationships. It is also a basic principle that any measure relationship
(rule) must be evaluated when one or more of the measures in that relationship have
been changed because this is the only way to enforce the integrity of the rule relationship.
Therefore, a rule where there is just a single expression means that the measure
calculated by that expression cannot be changed by the user because there is no
expression to evaluate to effect that change for that measure relationship. Such measures
can never be manipulated in any rule group that uses the rule and are protected.
Where a rule has two expressions, the two measures that are calculated by those
expressions are available to be manipulated. However, as soon as one measure is
manipulated by the user, we know that the expression that calculates the other measure
must be evaluated, as one of the expressions in the rule has to be evaluated, and we
cannot evaluate the expression that calculates the measure that was changed. The
expression that must be calculated is said to be forced, and the measure that it calculates
is protected to prevent the user from changing it. That measure may be involved in more
than one rule, and in the other rules in which it is used it must be treated as if the user
changed it. This so-called knock-on effect may force further measures to be forced and
protected. Evaluating these effects is the basic technique of protection processing.
Protection processing occurs continuously while the user is editing cells. Each time the
‘changed state’ of a measure changes, protection processing evaluates the measures that
should now be protected. The ‘changed state’ of a measure means the measure goes from
not having changes or locks to having them. Protection processing always reflects the
current set of locks and changes. RPAS allows cells that have been changed or locked to
be unchanged or unlocked before the calculation is initiated. If an unchange or unlock
removes the last change or lock for the measure so that the measure is no longer affected,
protection processing is quite likely to find the other measures that were previously
forced, but are no longer forced. These measures are free to be manipulated, so they must
be unprotected.

Appendix: Calculation Engine Users Guide 187

The Calculation Cycle

Protection Processing Details
The following terms are used in this description:
 An affected measure is a measure that has been changed by the user, is locked by the

user, or is forced.
 An affected rule is a rule that contains one or more affected measures.
 A free measure is a measure that is not affected.
 A free expression is an expression for an affected rule that calculates a free measure.
 A forced rule is an affected rule that has only one free expression.
 A forced measure is the measure calculated by the free expression in a forced rule.

Any measure that is the measure on the LHS of the only expression in a rule is protected.
Protection processing considers each affected rule in turn. Each affected rule will be in
one of three conditions:
 Affected rules that have previously been forced are ignored
 If the affected rule has two or more free expressions, it is ignored because nothing is

forced.
 If the affected rule has just a single free expression, it becomes a forced rule, and the

measure calculated by the free expression is forced and becomes an affected measure.
The forced measure is protected. All rules that use the forced measure become
affected.

When a new measure becomes forced, checking of affected rules begins again. When all
affected rules have been considered without any further measures becoming forced, the
first stage of protection processing is complete.
The second stage of protection processing is to perform "look ahead" protection
processing. Look ahead protection processing ensures that all measures that are visible in
windows (and still unprotected) can be manipulated. It does this by performing the
protection processing that would occur if the measure were changed. This includes
ensuring that there is a solution to the processes of determining what to calculate and
ordering the calculation. If these processes fail to find a solution, the process that
determines what to calculate will repeatedly back up the decision tree and select a
different expression that is looking for a solution. If there is no such solution, the
measure that was being checked is protected. In this manner, the calculation engine
ensures that there will always be a method to calculate the effects of all changes that it
allows the user to make.

Note: This is a somewhat simplified description of
protection processing, as it ignores the implications of "cycle
groups" (see Cycle Groups) and "synchronized measures"
(see Synchronized Measures).

Determining What to Calculate
The protection processing process has established which measures are forced given the
current set of changes and locks. When a calculate is issued, those forced measures will
be calculated (using the forced expressions). However, there may be affected rules that
are not forced. For those affected rules, we know that an expression must be evaluated,
and the calculation engine must select one of the expressions. Otherwise the integrity of
the rule is compromised.
When there are one or more affected rules that are not forced, the highest priority
affected rule is selected. From this selected rule, the highest priority free expression is
selected, and it will be evaluated. These are the only uses to which the rule and

188 Oracle Retail Predictive Application Server

The Calculation Cycle

expression priorities are put. The measure that is calculated by the selected expression is
then treated as forced, and knock-on effects considered, which are likely to cause other
rules and measures to become forced. At the end of this process, if there are still affected
rules that are not forced, the process is repeated until there are no affected rules that are
not forced. At this point, any rule that is not affected does not need to be evaluated, and
an expression has been forced or selected for all rules that need to be evaluated to ensure
the integrity of all measures.

Determining the Calculation Sequence
The previous section has established which expressions to evaluate, but not the sequence
in which they are evaluated. The sequence of evaluation of expressions is driven by the
status of the right-hand side (RHS) measures. All normally spreadable (not of recalc type)
measures that are changed can be spread and then aggregated at the start of the
calculation cycle. Normally, spreadable measures that have been changed and those
measures that will not change during the calculate are considered to be "complete." Any
expression whose RHS measures are all complete may be evaluated. If the expression is a
mapping rule for a recalc measure, the changed values for the mapped spreadable
measure will be calculated for all changed cells. That measure may then be spread and
aggregated normally. If the expression is for normal ‘base intersection’ evaluation, the
measure will be calculated, and may then be aggregated. In either case, the calculated
measure is now ‘complete,’ which may make further expressions available to be
evaluated. The process continues until all expressions have been sequenced.
When determining the sequence of calculation, the evaluation of expressions is
intermingled with spreading and aggregation. In very trivial cases, where all changed
measures are spreadable, there will be:
 a phase where a number of measures are spread.
 a second phase where a number of measures are calculated at the base intersection.
 a third phase where a number of measures are aggregated.

However, if any recalc measures have been changed at aggregated levels, the ‘mapping
rule’ cannot be applied until any affected measures on the RHS of the expression have
been spread or calculated and then aggregated.

Note: This is a simplified description of the calculation
sequence. For efficiency purposes; groups of measures that
must be spread, aggregated, or evaluated are batched
together, so that an individual measure is not necessarily
spread, aggregated, or evaluated as soon as it is available for
that action. However, it is always spread, aggregated, or
evaluated before the results of that action are required for
another step. Also, expressions are not evaluated for all cells,
but only for those cells where one or more of the measures
on the RHS of the expression have changed. There are
similar efficiencies in aggregation to avoid the redundant re-
aggregation of cells that will not have changed.

Appendix: Calculation Engine Users Guide 189

The Calculation Cycle

Cycle Groups
This section describes the cycle group feature of the RPAS calculation engine. This
feature enables relationships between measures that have cyclic dependencies from the
measure perspective (there appears to be a ‘deadly embrace’ where each measure
depends upon the other), but are actually acyclic when the time dimension of these
measures is considered. Without this feature, such relationships could not be set up
because the calculation engine would be unable to find a calculation sequence that
enabled both measures to be calculated.
A common application of cycle groups can be found in inventory calculations that
involve measures, such as beginning of period (BOP) and end of period (EOP). It is
typical that EOP is calculated in some way from BOP for the same period. Other than in
the very first period, the BOP of a period is equal to the EOP of the previous period. Since
BOP is dependent on EOP and EOP is dependent on BOP, a cycle exists from a measure
perspective. However, when the time dimension is considered, calculations can be
performed in an acyclic fashion. In this example, if EOP for the first period is calculated
first, then BOP for the second period can be calculated. This allows EOP for the second
period to be calculated, and so on.

Cycle Breaking Functions
Some of the functions supported by the calculation engine have special cycle breaking
logic associated with them. These include functions that reference previous time periods
and functions that reference future time periods. When these functions are used, the
calculation engine automatically determines when measure dependencies that appear to
be cyclic are in fact acyclic when the calculations are performed one period at a time. The
lag and lead functions are examples of cycle breaking functions.

Cycle Group Evaluation
A cycle group is a group of expressions that the calculation engine must calculate
together in order to avoid cyclic dependencies. If the apparent cycle is broken by a
function that looks backwards in the time dimension (such as lag), calculation proceeds
with the first time period of each expression in sequence. This is followed by the second
time period of each expression in sequence, and it continues until all time periods have
been calculated. If the apparent cycle is broken by a function that looks forwards in the
time dimension (such as lead), calculation proceeds in reverse order starting with the last
time period.

Note: Since the acyclic calculation of expressions in a cycle
group is a ‘base level calculation,’ all measures being
calculated in the cycle group must share the same base
intersection. That is, the cycle group evaluation process
cannot aggregate measures calculated in the cycle group
during the cycle group evaluation.

190 Oracle Retail Predictive Application Server

Synchronized Measures

Cycle Group Example:
Consider the following measures:
BOP: beginning of period inventory
EOP: end of period inventory
OS: opening stock (that is, the opening inventory for the first period in the plan horizon)
SLS: sales
RCP: receipts
And consider the following rules:
R1: BOP = if(current == first, OS, lag(EOP))
R2: EOP = BOP – SLS + RCP
RCP = EOP – BOP + SLS
When the measure RCP is edited, R2 is affected and the EOP expression in this rule is
forced. Then rule R1 is affected and the BOP expression in this rule is forced.
Since the calculation of EOP requires BOP and the calculation of BOP requires EOP, a
cycle is detected that contains both of the selected expressions. This is a valid cycle group
because the calculation of BOP is dependent on the lag of EOP. Therefore, the cycle can
be broken and the intra-cycle ordering results in the BOP expression being evaluated first
and EOP expression second.
The evaluation of this cycle group involves the calculation of the first time period of BOP,
followed by the first time period of EOP, followed by the second time period of BOP,
followed by the second time period of EOP, and continues until all time periods have
been calculated.

Synchronized Measures
Measure synchronization is an RPAS user interface and calculation engine feature. It
enables measures that are very closely related to be represented in the user interface (UI)
in a more intuitive manner. It can give the appearance of a cell edit or lock affecting two
different measures. From a calculation perspective, the cell edit or lock is only applied to
one of these measures. A common application of synchronized measures is to allow BOP
and EOP to be synchronized. From a business logic perspective, the BOP in one period
and the EOP in the previous period are the same thing, and measure synchronization
means that even before calculation, an edit or lock of BOP in one period also appears on
the UI as an edit or lock of EOP for the previous period, and vice versa.
To accomplish measure synchronization, a measure is defined with a synchronized view
type and a list of synchronized source measures. The measure defined with these
attributes is called the synchronized target measure. Synchronized target measures may
be edited, but any such edits are actually treated as edits to the underlying synchronized
source measures. Protection processing is performed on the synchronized source
measures. The protection state of the target measure is then derived from that of the
source measures. An edit to one of the source measures is also reflected in the display of
the target measure.
The synchronized view types that can be used to define synchronized target measures
are as follows:

 1. sync_first_lag: The first period of the target measure is synchronized with the first
source measure, and periods 2..N of the target measure are synchronized with
periods 1..N-1 of the second source measure, where N represents the last period. The
first source measure will not have a time dimension. This view type is particularly

Appendix: Calculation Engine Users Guide 191

Synchronized Measures

useful for defining BOP target measures. Here the first source measure would be an
opening inventory, and the second source measure would be the EOP.

2. sync_lead_last: Periods 1..N-1 of the target measure are synchronized with periods
2..N of the first source measure and period N of the target measure is synchronized
with the second source measure, where N represents the last period. The second
source measure will not have a time dimension. This view type is particularly useful
for defining EOP target measures. Here the first source measure would be BOP, and
the second source measure would be a closing inventory.

3. sync_first: The target measure is synchronized with the first period of source
measure. The target measure will not have a time dimension. This view type is
particularly useful when defining OS target measures.

4. sync_ last: The target measure is synchronized with last period of the source
measure. The target measure will not have a time dimension. This view type is
particularly useful when defining CS target measures.

Note: In order for a synchronized measure to be editable, all
of the measures that it is synchronized with must be
viewable on the worksheet, but they do not need to be
visible.

Synchronized Inventory Examples:

Consider the following measures:
BOP: beginning of period inventory
EOP: end of period inventory
OS: opening stock (that is, the opening inventory for the first period in the plan horizon)
CS: closing stock (that is, the closing inventory for the last period in the plan horizon)
SLS: sales
RCP: receipts
And consider the following rules:
R1: BOP = if(current == first, OS, lag(EOP))
R2: EOP = BOP – SLS + RCP
RCP = EOP – BOP + SLS
BOP can be defined as a synchronized measure constructed from the OS and EOP
measures with the sync_first_lag type. Only one expression in the rule group may have
BOP on the LHS. This expression is used to construct views of BOP, and it is merged
with expressions that require BOP on the RHS.
When edits or locks are made to BOP, it is the underlying values of OS or EOP that are
actually changed or locked. Thus, even though rule R1 has only one expression and this
expression calculates BOP, the BOP measure is not protected by protection processing
because of the measure synchronization. The BOP measure is only protected when the
underlying OS or EOP measures are protected, so the first period is protected when OS is
protected and the remaining periods are protected when EOP is protected.
In this example, a CS measure is not required for calculation purposes, but it may be
desired for viewing and editing purposes. For example, a window that contains only OS
and CS but not BOP nor EOP may be wanted. In this case, the CS measure should be
defined as a synchronized measure with type sync_last and the synchronized source
measure would be EOP. As a result, an edit to CS becomes an edit to the last period of
EOP.

192 Oracle Retail Predictive Application Server

Elapsed Period Locking

Elapsed Period Locking
Many RPAS models will cover a time horizon where some of the time periods are in the
past, and other periods are in the future. There is special logic for handling such models.
In particular, the manner in which time periods that are in the past (referred to as elapsed
periods) affect spreading and the measure modifications. The bottom level time period
that is the last elapsed period is set through a rule.
RPAS assumes that time periods that are elapsed contain actuals, and that these actuals
should not be editable. Therefore, all measures are uneditable during elapsed periods.
For positions at aggregated levels in a time hierarchy, the position is only elapsed when
the last bottom level time period descended from it is elapsed.
RPAS allows you to change the elapsed threshold after a workbook is built using the
workbook refresh or calculation processes. Using the elapsed threshold measure,
r_elapsed, from a refresh or calc rule group, users can modify the elapsed threshold and
avoid rebuilding their workbooks. In order to take advantage of this feature, you need to
modify the workbook configuration such that the corresponding refresh or calc rule
group contains a rule for updating the r_elapsed measure. This scalar measure should be
included in a workbook so that it can be edited directly or gets calculated or refreshed as
an effect of editing other measures. At the end of the calc or refresh cycle, the RPAS
Server inspects the elapsed threshold for any change. Any changes to the elapsed
threshold are passed to the RPAS Client which then reloads the new set of position locks.
Measures that represent beginning of period (BOP) data have special handling. From a
business perspective, the BOP in a period is the same as the end of period (EOP) in the
previous period. Therefore, when an EOP value is elapsed, the following BOP value must
also be elapsed. In RPAS, all measures with a default spread method of PST (see
Spreading Methods) are assumed to be "BOP type" measures, and are protected for all
elapsed periods, and for the first non-elapsed period. There is also special handling of
these measures for aggregated time positions. These are treated as elapsed, and are
therefore protected when the first bottom level time period descended from it is elapsed.

Elapsed Periods and Spreading
The user may make changes to measures at high levels of aggregation whose scope
covers elapsed periods. When such changes are spread, values for elapsed periods are
never changed. They may be considered to be of higher priority than normal cell locks.

Appendix: Calculation Engine Users Guide 193

Non-Conforming Expressions

Non-Conforming Expressions

Introduction
One of the strengths of the RPAS calculation engine is that a workbook may contain
measures with different "scopes." The size and shape of the "multidimensional cube" of
data may vary by measure. Any two given measures in a workbook may have scopes
that align exactly (for example, both measures have a base intersection of
SKU/Store/Week), or where one is a subset of the other (for example, one has a base
intersection of SKU/Store/Week and the other is at Class/Week). There can also be
circumstances where each measure includes a hierarchy in its base intersection that the
other dimension does not use (for example, one has a base intersection of Class/Week
and the other is Store/Week). In extreme circumstances, the scopes of two measures may
have no point of overlap at all (for example, one has a base intersection of Class and the
other Store).
It is the scope of the measure on the LHS of an expression that determines the cells that
must be calculated by the expression, even though that scope may be changed by the use
of a modifier such as level. Where one or more measures on the RHS of an expression
have a scope that is different (in any way) to the scope of the LHS measure, the
expression is deemed to be "non-conforming." There is special logic to handle the
calculation of non-conforming expressions, which depends on the type of nonconformity.
Although not explicitly declared, there is a single logical "All" position at the top of every
hierarchy. When considering non-conformity, any measure that is not explicitly
dimensioned on a hierarchy is implicitly assumed to be dimensioned on the "All"
dimension of that hierarchy, so all data values are assumed to be for the "All" position.
This concept is the key to understanding the handling of non-conforming expressions.

Handling of Non-conforming Expressions
When the concept of the "All" position is understood, all expressions can be considered to
contain measures that use exactly the same hierarchies. The only potential differences
between them are the "bottom levels" (dimensions in the base intersection). Thus for
handling non-conformity, only three cases need to be considered, for each hierarchy:
 RHS same:

In this case the RHS measure has the same bottom level as the LHS measure. The
RHS measure is "conforming" for that hierarchy, and values for the RHS measure are
taken from the same position as the position being calculated for the LHS measure.

 RHS higher:
In this case the RHS measure has a higher bottom level than the LHS measure. The
RHS measure is ‘non-conforming’ for that hierarchy. The values for the RHS measure
for the position being calculated are assumed to be the same as the value of the RHS
measure for the position in its bottom dimension that is the parent (ancestor) of the
position being calculated. Effectively, it can be considered that the value of the
measure has been "replicated" down the hierarchy to the required level.

 RHS lower:
In this case the RHS measure has a lower bottom level than the LHS measure. The
RHS measure is "non-conforming" for that hierarchy, but because the scope of the
RHS measure includes the bottom level for the LHS measure, values for the RHS
measure are taken from the same position as the position being calculated for the
LHS measure.

194 Oracle Retail Predictive Application Server

Non-Conforming Expressions

The conceptual case where the measures have scopes that do not overlap, because
they have base intersections in a hierarchy that are for dimensions that are up
different "branches" of the hierarchy, fails rule validation.

Examples
These examples all use the simple expression a = b + c
Example 1:

Consider the following values:
 a has a base intersection of SKU/Store/Week
 b has a base intersection of SKU/Week
 c has a base intersection of SKU/Region/Week

For each SKU/Store/Week, a is calculated from the value of b at SKU/Week (that is, it is
assumed that the value of b is the same for all positions in the location hierarchy) and the
value of c at SKU/Region/Week, for the Region the Store belongs in. If ‘replication’ of c
from the Region level is not appropriate, the rule writer can simulate other ‘spreading’
techniques by the use of functions and modifiers such as count and level. For example,
the count function may be used to determine the number of Stores in the Region, and so
dividing the measure c by that count will simulate ‘even’ spreading.
Example 2:
Consider the following values:
 a has a base intersection of SKU/Store/Week
 b has a base intersection of SKU/Week
 c has a base intersection of SKU

For each SKU/Store/Week, a is calculated from the value of b at SKU/Week (that is, it is
assumed that the value of b is the same for all positions in the location hierarchy) and the
value of c at SKU (that is, it is assumed that the value of b is the same for all positions in
the location hierarchy and time hierarchy). Note that an alternative approach, if required,
would be to use a level modifier on the measure a, so that it is calculated at, say,
SKU/Week, and then spread down to SKU/Store/Week, using the existing store
participations to the measure a.
Example 3:
Consider the following values:
 a has a base intersection of SKU/Week
 b has a base intersection of SKU/Store/Week
 c has a base intersection of SKU/Region/Week

For each SKU/Week, a is calculated from the value of b and c at SKU/’All’/Week.

Appendix: Calculation Engine Users Guide 195

C
Appendix: Rules Function Reference Guide

Overview
This section provides the syntax and design of functions, procedures, modifiers, and
keywords that are used in expressions in the RPAS calculation engine. There are
important distinctions between each of these definitions.

Functions
Functions are separated into two type: single result functions and multiple result
functions.
Functions (single result) – Mechanisms for performing operations within an expression
that are controlled and executed by the calculation engine.
 Functions are most commonly used in RPAS.
 Most functions in base RPAS return only a single measure.
 Calculation engine controls and executes the evaluation of a function.
 Functions may be used in expressions with other functions and keywords.

Multiple result functions – Similar to the features and behavior of single result
functions, but with semantic and syntactic differences.
 There can be more than one left-hand side (result) measure that can be specified

implicitly by position in the expression or explicitly by label.
 Left-hand side measures have to be at same intersection; however, the calendar

hierarchy can be dropped or added.
 The result(s) from a multiple result function cannot be used as arguments to another

function, nor can the result(s) be chained with other operations to form long
expression.

 Expressions can be used as arguments to multiple result functions.
 Multiple result functions cannot be part of a cycle group.

Procedures
Procedures are mechanisms for performing operations in an expression where the
calculation engine controls the execution, which is performed by the procedure itself.
 Procedures can only use measures or scalars
 Procedure executes the evaluation (instead of RPAS/calculation engine), but the

calculation engine still controls protection processing, sequence of calculation, when
the procedure is called, and so on.

 Procedures can have multiple arguments on the left and right hand sides.
 Procedures cannot be used with functions, other procedures, keywords, and certain

modifiers.
 Because of their flexibility and the control available to the developer, procedures can

be used for a wide variety of special calculations and activities.
 Procedures require a different syntax. The syntax uses “<-“ instead of “=” in the

expression.

Appendix: Rules Function Reference Guide 197

Overview

Modifiers
Modifiers directly modify the source or destination of measures, to override the level,
aggregation type, position, and so on.
Modifier Syntax
<measure>.<modifier>

Keywords
Keywords appear in expressions or as arguments inside functions to return specific data
values.

Syntax Conventions
The syntax is as quick and straightforward to implement as possible. Function names,
keywords, and so on are currently in lowercase.
Keywords are allowed, but they are kept to a minimum. Function parameters are comma
separated and may be optional; but they are positional, so that the absence of a parameter
needs to be specified by commas if a subsequent parameter is supplied.
The table below displays the syntax conventions used in this procedure.

Indicator Definition

[…] All options listed in brackets are optional.

{…|…} Options listed in “{}” with “|” separators are
mutually exclusive (either/or).

{…,…} Options listed in “{}” with “,” separators way
are a complete set.

Bold Labels.

Italics Italics indicate a temporary placeholder for a
constant or a measure.

Italics/meas This indicates that the placeholder can be either
a constant or a measure.

BoldItailics This indicates a numeric placeholder for the
dynamic portion of a label. Usually a number
from 1 to N.

Normal Normal text signifies required information.

Underlined This convention is used to identify the function
or procedure name.

198 Oracle Retail Predictive Application Server

Overview

Specification of Hierarchy, Dimension, or Position
Many functions in RPAS require the specification of a hierarchy, dimension, or a
combination thereof, to define the level at which an expression is evaluated. When
defining the hierarchy and dimension names in expressions square brackets [] must be
used.
In the document, the following syntax will be used to designate a hierarchy and
dimension:
Hierarchy, Dimension, and Position Syntax
[<hierarchy>].[<dimension>].[[<position>]]

Note: That position is noted as optional because it can only
be specified in a limited number of functions.

For simplicity of parsing and clarity of rule writing, the <hierarchy> must be supplied in
all cases, even when, as in calendar index functions, it might be implied from the context.
Functions that require a hierarchy and dimension specification will have standard
validation rules whereby [<hierarchy>] must be a valid hierarchy name and
[<dimension>] must be a valid dimension in [<hierarchy>]; in some functions or
procedures one of the hierarchical keywords top, bottom, or current (used conditionally
based on context) can be used to specify the dimension. Should this validation fail, an
error will be generated.

Function Inverses
Some functions (such as cover) have what are referred to as "inverse" functions. This is
required, as all expressions in a rule group must be algorithmic inverses of each other.
Each function states whether it has an inverse, and, if so, what the syntax of the inverse
is.
An inverse function is only relevant when the function encompasses the whole of the
expression. Functions embedded in longer expressions do not have inverses, though the
expression itself may have an inverse as long as the measure being "solved" for is not an
input into the function. Functions that have inverses usually have enough scope in their
syntax to cover the eventualities that would typically cause them to be embedded in
longer expressions (such as code to prevent an error result).

Functions with Multiple Results
The following special syntax should be used for functions with multiple results.
The left-hand side measures in a multiple result expression are comma-separated and can
be identified by a labeling mechanism.
Label Syntax
<measure>:<label>

Valid label names are specified by the multiple result function syntax. If a multiple result
function specifies valid labels, the function can be used in an expression without
specifying all possible results. The multiple result function itself is aware of which results
are being stored and may be able to run faster by skipping the computation of unneeded
results.

Appendix: Rules Function Reference Guide 199

Special Handling for Functions

Special Handling for Functions

Error Handling
There are several keywords and functions that have special control flow over the
evaluation of the expression.
RPAS has no facility for holding an "error" value for a cell. Should the evaluation of any
expression, or clause in an expression, result in an error, the value for the cell or clause
will be the "naval."

Note: It is good programming practice to check for any
clauses that may return an error, and the prefer function
provides a way to specify the behavior under these
circumstances. Some functions have their own implicit error
handling.

if
Used for handling conditional logic and masking updates within expressions.
Syntax
if(<condition>, <use-expression>, <else-expression>)

where <condition> is any valid Boolean expression. <use-expression> and <else-
expression> are any valid expressions that are evaluated based on the result of
<condition>; one (and only one) of these expressions can contain the keyword ignore.
<use-expression> is evaluated when the result of <condition> is true; <else-expression>
is evaluated when the result of <condition> is not true.
<expression> is any valid expression. ignore is a keyword that is used to indicate that the
entire expression is not to be evaluated (that is, masking the update to the entire
expression).

Note: ignore can ONLY be used in either the <use-
expression> or <else-expression>, but not both.

The use of ignore always flags the expression as a masked update – this will always
prevent the expression from being evaluated or involved with aggregations when the
condition is not met. To reiterate, note that the entire expression is not evaluated, not just
the sub-expression that uses the if clause. When ignore is used in expression where the
LHS measure is modified with the master keyword (typically in a commit rule group),
then the <condition> must be a Boolean measure (in other words, not an expression). This
syntactical restriction is validated when the expression is parsed.
if clauses can be nested without restrictions but must be enclosed with parentheses when
used more than once within an expression.

200 Oracle Retail Predictive Application Server

Special Handling for Functions

Examples:
Conditional logic:
 BOP = if(current == first, SeasOP, lag(EOP))
 OTB = if(ProjEOP > PlanEOP, 0, PlanRecpt – OnOrder)

Masked update with a single expression:
 SalesOP = if(Approved, SalesWP, ignore) Updates Sales for the Original Plan

version to the value in the Working Plan version when the Boolean measure Approved
is set to true. ignore designates that no update is made to SalesOP if the Approved
measure is false. This is functionally equivalent to the next example.

 SalesOP = if(NotApproved, ignore, SalesWP) Does not update the measure SalesOP
with the values from the measure SalesWP when the Boolean measure NotApproved is
true.

Note the distinctly different behavior between the following similar expressions:
 a = b + (if(<condition>, c, ignore)) - This is an example of a masked update

where no update is made to measure a if the condition is not met (that is, the entire
expression is not evaluated).

 a = b + (if(<condition>,c, 0)) - This is an example of conditional logic where an
else clause is provided and the expression is always evaluated, thus a is always
updated to either b or b+c.

prefer
Returns the first non-error value from a series of expressions.
The primary use is to enable the capture and appropriate calculation of error conditions.
Syntax
prefer(<expression1>, <expression2> [, <expression3> … <expressionn>])

Where < expression1-n> are expressions which return values of the appropriate data
type. The function returns the value of the first of the expressions that does not generate
an error when it is evaluated. It is good coding practice to use a prefer function around
any clause of an expression, which could potentially generate an error.
Inverse
The prefer function does not have an inverse.
Examples:
 prefer(A/B, 100) - This example returns the value of A divided by B, unless that

generates an error (as it would if B is zero), when it returns 100.
 prefer(lag(A), B) - This example returns the value the lag of A, unless that generates

an error (as it would when evaluating the first period of the plan horizon), when it
returns the value of B. The prefer function in this example is thus the functional
equivalent of the expression:

 if(current == first, B, lag(A))

Appendix: Rules Function Reference Guide 201

Non-Conforming Measures

Non-Conforming Measures

Definition
One of the strengths of the RPAS engine is that a workbook may contain measures with
different scopes: the size and shape of the multidimensional cube of data may vary by
measure. Any two given measures in a workbook may have scopes that align exactly (for
instance, both measures have a base intersection of SKU/Store/Week), or where one is a
subset of the other (for instance, one has a base intersection of SKU/Store/Week, and the
other is at Class/Week). There can also be circumstances where each measure includes a
hierarchy in its base intersection that the other dimension does not use (for instance, one
has a base intersection of Class/Week and the other is Store/Week). In extreme
circumstances, the scopes of two measures may have no point of overlap at all (for
instance, one has a base intersection of Class and the other Store).
It is the scope of the measure on the left hand side of an expression (referred to as the
LHS measure) that determines the cells that must be calculated by the expression, though
that scope may be modified by the use of a modifier such as level. Where one or more
measures on the right-hand side (RHS) of an expression have a scope that is different (in
any way) to the left-hand side (LHS) measure, the expression is deemed to be "non-
conforming." There is special logic to handle the calculation of non-conforming
expressions, which depends on the type of nonconformity.
Although not explicitly declared, there is a single logical "All" position at the top of every
hierarchy. When considering non-conformity, any measure that is not dimensioned on a
hierarchy, is implicitly assumed to be dimensioned on the "All" level of that hierarchy,
and thus all data values are assumed to be for the "All" position. This concept is the key
to understanding the handling of non-conforming expressions.
When the concept of the "All" position is understood, all expressions can be considered to
contain measures that use exactly the same hierarchies. The only potential differences
between them are the "bottom levels" (dimensions in the base intersection). Thus, for
handling non-conformity, only three cases need to be considered, for each hierarchy:

 1. RHS same

In this case, the RHS measure has the same bottom level as the LHS measure. The
RHS measure is "conforming" for that hierarchy, and values for the RHS measure are
taken from the same position as the position being calculated for the LHS measure.

2. RHS higher
In this case, the RHS measure has a higher bottom level than the LHS measure. The
RHS measure is "non-conforming" for that hierarchy. The values for the RHS
measure for the position being calculated are assumed to be the same as the value of
the RHS measure for the position in its bottom dimension that is the parent
(ancestor) of the position being calculated. Effectively, it can be considered that the
value of the measure has been "replicated" down the hierarchy to the required level.

3. RHS lower
In this case, the RHS measure has a lower bottom level than the LHS measure. The
RHS measure is "non-conforming" for that hierarchy, but because the scope of the
RHS measure includes the bottom level for the LHS measure, values for the RHS
measure are taken from the same position as the position being calculated for the
LHS measure. RHS measure is aggregated using the default aggregation method.
The conceptual case where the measures have scopes that do not overlap, because
they have base intersections in a hierarchy that are for dimensions that are up
different "branches" of the hierarchy, fails rule validation.

202 Oracle Retail Predictive Application Server

Non-Conforming Measures

Examples

Note: The following examples all use the simple expression a
= b + c.

Example 1
Consider the following scenario:
 “a” has a base intersection of SKU/Store/Week
 “b” has a base intersection of SKU/Week
 “c” has a base intersection of SKU/Region/Week

For each SKU/Store/Week, “a” is calculated from the value of b at SKU/Week (it is
assumed that the value of “b” is the same for all positions in the location hierarchy) and
the value of “c” at SKU/Region/Week, for the Region the Store belongs in. If
"replication" from the Region level is not appropriate, the rule writer can simulate other
spreading techniques using functions and modifiers such as count and level.
For example, the count function may be used to determine the number of Stores in the
Region, and so dividing the measure c by that count will simulate ‘even’ spreading.
Additionally level could be used to force the calculation of a at Region instead of a’s base
intersection, Store (a.level([loc].[reg])=b+c). In this scenario edits to “b” or “c” would
calculate “a” at Region and would then spread those values down to Store for measure a
using the default spread method.
Example 2

Consider the following scenario:
 “a” has a base intersection of SKU/Store/Week
 “b” has a base intersection of SKU/Week
 “c” has a base intersection of SKU

For each SKU/Store/Week, “a” is calculated from the value of b at SKU/Week (it is
assumed that the value of b is the same for all positions in the location hierarchy) and the
value of “c” at SKU (it is assumed that the value of “b” is the same for all positions in the
location hierarchy and time hierarchy).

Note: An alternative approach, if required, would be to use a
level modifier on the measure a, so that it is calculated at
SKU/Week, and then spread down to SKU/Store/Week,
using the existing store participations to the measure a.

Example 3
Consider the following scenario:
 “a” has a base intersection of SKU/Week
 “b” has a base intersection of SKU/Store/Week
 “c” has a base intersection of SKU/Region/Week

For each SKU/Week combination, “a” is calculated from the value of “b” and “c” at
SKU/’All’/Week. Otherwise stated b and c are aggregated up the location hierarchy, and
then added to “a” for each position in SKU/Week.

Appendix: Rules Function Reference Guide 203

Functional Keywords

Functional Keywords

Overview
Functional keywords are keywords that may be used in expressions that return specific
data values. There are a group of keywords that provide information (in the form of
index numbers) about the calendar hierarchy, and a further group of keywords that
provide information of the current session.

Calendar Index Functional Keywords
Certain calendar index functional keywords are supported in the syntax, as described
below. In this context, a calendar index number is an ordinal position counter of the
position in a dimension within the scope of the calendar horizon, where the dimension is
as for the cell being evaluated. For example, in a plan whose scope is a year, the first
week will have an index of 0, week 26 will have an index of 25, and week 52 will have an
index of 51. Similarly, if an expression is being evaluated at the quarter level, the first
quarter will have an index of 0, and the last one an index of 3. Calendar index functional
keywords may be included in any numeric expression.

first
Returns the index number of the first calendar position.
This keyword is provided for completeness and clarity of rule function writing, since the
value will always be zero!

last
Returns the index number of the last calendar position.
last + 1 will therefore always be the number of positions in the calendar horizon in the
current dimension.

current
Returns the index number of the period being evaluated.
current can be used as a standalone keyword only under the context of time.

Note: It can also be used in the syntax of a function as a
hierarchical keyword (for specifying the current level in a
hierarchy) and is allowed for any hierarchy (but must follow
the syntax <hierarchy>.current).

today
Returns the index number of the period that contains the current time as given by the
system clock.
The index number that today returns is determined by the base intersection of the
measure that is being evaluated (on the left hand side of the expression). For example, if
the base intersection of the measure being evaluated is week, today will return the index
number of the current week.

204 Oracle Retail Predictive Application Server

Functional Keywords

Note: The effect of this keyword may be overridden by
providing the environment variable RPAS_TODAY. If this is
present, the time in the RPAS_TODAY environment variable
is used instead of the system clock time.

Note: The difference between the keywords today and now is
that today returns an index number; now returns the value of
the current date and time. An error is generated when the
current period is not included in the workbook.

elapsed
Returns the index number of the period that is the last elapsed period.
elapsed is interpreted as the last period for which actuals have been posted. If there is no
elapsed period, this keyword returns –1.
elapsed must be assigned (to a measure on the left-hand side of an expression evaluated
in a load, refresh, and calc rule groups) before it can be used in calculations (on the right-
hand side of other rule groups). Use the following syntax for assigning the index number
in the base calendar dimension as the elapsed value.
Syntax
elapsed = <expression>

Where <expression> is any valid expression that returns a numeric value, of which only
the integer portion is used. elapsed can only be used on the left-hand side of an
expression in the load, refresh, and calc rule groups. The elapsed keyword can be used
on the right hand side of other rule groups only after the elapsed value has been
assigned.

Session Keywords

now
Returns the current date and time from the system clock.
now is stored with date and time information.

Note: The difference between the keywords today and now is
that today returns an index number; now returns the value of
the current date and time.

The displayed format of now is based on the measure type.
This keyword can be used to hold information about when data was changed (for
instance, the beginning date and time of a batch run). The value returned by now can be
overridden by RPAS_TODAY environment variable.

userid
Returns a string that contains the id of the current user.
This keyword can be used to hold information about the user who made a specific
change.

Appendix: Rules Function Reference Guide 205

Functional Keywords

Calendar Hierarchical Date Keywords

begin
Returns a date type value for the first index in the root calendar dimension.
Because it returns a date type value, this keyword is not context sensitive (meaning it
does not depend on where it is being used) and can be compared with the now keyword.

Note: The root calendar dimension is defined as the unique
dimension that is at the root of the calendar hierarchy.

end
Returns a date type value for the last index in the root calendar dimension.
Because it returns a date type value, this keyword is not context sensitive (meaning it
does not depend on where it is being used) and can be compared with the now keyword.

206 Oracle Retail Predictive Application Server

Modifiers

Modifiers

Overview
Modifiers are used to directly modify the source or destination of measures. Modifiers
must be used in conjunction with a measure in the manner displayed under Syntax:
Syntax
<measure>[.<modifier>[.<modifier>]…]

The following modifiers can be used with measures in a variety of ways. Note the
acceptable uses for each modifier as there are restrictions regarding use on the left hand
side and if they can be used in conjunction with other modifiers.

master
References the domain-version of a measure.
master is used as a modifier to a measure to reference the version of the measure that
resides in the domain. It can only be used in load and commit rule groups. It cannot be
used in calculation rule groups.
Syntax
<measure>.master

Where <measure> is any valid measure. master can be used on both the left hand side and
right hand side of expressions and can be used with functions. When used with other
modifiers, master must be the first modifier.
On the right-hand side of an expression, master can be used with both level and aggtype.
On the left-hand side, master must be used by itself.
Examples:
 Sales=Sales.master

Used in load rule group to retrieve Sales from the domain into a workbook.
 Sales.master=Sales

Used in commit rule group to commit the updated Sales measure to the domain from
the version in the workbook.

aggtype
References to alternative aggregation types.
When a measure is referenced just by name in an expression, or as a parameter in a rule
function, the value used is for the default aggregation type for the measure. Values from
alternative aggregation types are also available by using the syntax:
Syntax
<measure>.<aggtype>

Where <aggtype> is a supported aggregation type as listed in an appendix of this
document. Every function parameter that requires a measure will also accept this
extended form.

Note: If alternate aggregation types are required for a
measure in rules, this approach is more efficient that
defining another measure with the alternate aggregation
type, as data values at the base intersection are not
duplicated.

Appendix: Rules Function Reference Guide 207

Modifiers

The aggtype modifier can only be used on the right-hand side of an expression, but it can
be used with functions and other modifiers. When used with level and/or master
modifiers, aggtype must be the specified last.

level
Returns the value of an expression for a specific intersection of parent positions, or forces
the calculation at a specific intersection.
The parents specified may be in one or more hierarchies.
Syntax
<measure>.level(<dimspec1>[+<dimspec2>… +<dimspecn>])

Where <dimspec1-n> is [<hierarchy>].{[<dimension>] | top | current} and each
dimension specification is separated by a plus (+) sign.
<measure> is the measure to be specified. <hierarchy> is the name of a valid hierarchy. top
and current are keywords referring to the highest, and current (that is, being evaluated if
on the RHS, or base intersection in the hierarchy if on the LHS) dimensions in the
hierarchy. If a hierarchy is not specified, the <dimension> for that hierarchy is assumed to
be current. If the <dimension> for a hierarchy is lower than the base intersection for the
measure (when used on the LHS), or the <dimension> is not a valid dimension in the
specified hierarchy, an error is generated.
This modifier can be used on both the LHS and RHS of a rule expression. It can only be
used by itself on the LHS, but it can be combined with other functions and modifiers on
the RHS.
When this modifier is on the LHS of a rule expression, the rule is evaluated at the
specified intersection. The newly calculated value at an aggregated intersection is then
spread down the hierarchies to the base intersection for the measure, using the default
spread-type for the measure. A typical usage of this modifier on the LHS of a rule
expression is to calculate a "non-conforming" measure where the scope of the measure
includes hierarchies not present in the measures on the RHS of the expression. The
calculation would usually be at the base intersection of the common hierarchies, but at
the "top" of the additional hierarchies, and spread to their base intersections.
When this modifier is on the RHS of a rule expression, the measure being modified is
evaluated at the specified intersection.

Note: Just the measure, not the rule, is evaluated at the
designated level.

Under normal circumstances a measure is always calculated at the base intersection, or
the intersection at which the LHS is being evaluated if it is higher. Use of the modifier
will evaluate the measure at the designated (higher) level using the measure’s default
aggregation type, which can be overridden by the aggtype modifier. An example of its
use on the RHS could be calculating a ratio of sales for each SKU with respect to its
parent department.

208 Oracle Retail Predictive Application Server

Modifiers

Examples:
 sales.level([loc].top)

Returns the value for the measure sales for the position at the top of the location
hierarchy and for the current position in all other hierarchies.

 sales.level([loc].[area])
Returns the value for the measure sales for the position in the area dimension that is
the parent of the position being evaluated and the current position in all other
hierarchies (that is, the total sales in my area).

 sales.level([loc].[area]+[prod].[div])
Returns the value for the measure sales for the position in the area and division
dimensions that is the parent of the position being evaluated and current position in
all other hierarchies (that is, the total sales in my area for my division).

 recpts.level([rec].top) = <expression>
The measure recpts is calculated at the base intersection of all hierarchies except the
rec hierarchy, where it is calculated at the top. This value is spread down to the base
intersection for the measure.

old
References the value of a measure as of the previous calculate.
Syntax
<measure>.old

Any measure modified with old will use the value that was available at the start of the
calculation process, which means that these modified measures can be ignored for such
things as protection processing. Most importantly, this means that a measure can
effectively be calculated from itself, as the .old modifier breaks the cycle.

Assumptions/Restrictions
The following assumptions/restrictions apply to old:
 Can only be used in a rule group of type “calculation”.
 Can only be used on the right-hand side of an expression.
 Cannot be used in combination with .master, .level, or .aggtype modifiers.
 Cannot be used with (cannot modify) non-materialized measures.

Use of the old modifier has no effect on calculation sequence or protection processing, as
the values of measures modified with old are known before the calculation starts.

Appendix: Rules Function Reference Guide 209

Modifiers

Note: The old modifier is not designed to operate with
measures whose aggregation type is recalc. In particular,
expressions that attempt to use the old modifier on a
measure with an aggregation type of recalc, such as

a=b + c.old

where c is a measure with an aggregation type of recalc, are
not allowed. Similarly, expressions that attempt to calculate
a measure with an aggregation type of recalc, but which use
the old modifier, such as

c=a + b.old

where c is a measure with an aggregation type of recalc, are
also not allowed.

Example:
The old modifier can be used in conjunction with the propspread function to implement a
hierarchical relationship among measures. In the following example, Total sales
(TotalSls) is the “parent” measure and regular sales (RegSls), promotional sales
(PromSls), and markdown sales (MkdSales) are the “child” measures. Using old and
propspread to configure this relationship allows the manipulation of any combination of
these measures before calculating, except for all of them.
In the following example and in other such hierarchical measure relationships, the order
of the expressions within a rule is critical for the measures to be correctly calculated.
TotalSls = RegSls + PromoSls + MkdSls
RegSls, PromoSls, MkdSls = propspread(TotalSls, RegSls.old, PromoSls.old,
MkdSls.old)
PromoSls, MkdSls = propspread(TotalSls - RegSls, PromoSls.old, MkdSls.old)
RegSls, MkdSls = propspread(TotalSls - PromoSls, RegSls.old, MkdSls.old)
RegSls, PromoSls = propspread(TotalSls - MkdSls, RegSls.old, PromoSls.old)

RegSls = TotalSls - PromoSls - MkdSls

PromoSls = TotalSls - RegSls - MkdSls

MkdSls = TotalSls - RegSls - PromoSls

210 Oracle Retail Predictive Application Server

Description of Functions

Description of Functions

Calendar Index Functions
These are functions that return the calendar index numbers of positions that are specified
relative to the current position through hierarchical relationships, or by date. Support is
in place for functions to find the first and last children of a parent at a given dimension
(for instance, the first week of the current quarter, the last week of the current month).
These are to support relative time series functions, such as month to date totals. These
may be constrained by setting a condition under which the expression is evaluated.

indexfirst
Returns the calendar index number of the first position in the current dimension that is
descended from the parent of the current position at the specified dimension.
See the tssum function for an example of typical usage. The function may be constrained
by setting a condition for the evaluation.
Syntax
indexfirst([<clndhierarchy>].{[<dimension>] | top}[, <boolexpr>])

Where <clndhierarchy> is the name of the calendar (time) hierarchy, and <dimension> is
the name of a dimension in the calendar hierarchy. top is a keyword that implies the top
dimension in the calendar hierarchy. If <dimension> is not a valid dimension in the
calendar hierarchy, or it is not a dimension that is equal to or higher than the current
(being evaluated) dimension in any alternate hierarchy, an error is generated.
<boolexpr> is optional and is any valid Boolean expression used to set a condition for the
evaluation of the function. If <boolexpr> is not specified, the function returns the index
number of the first position of the dimension descended from the parent of the current
position of the specified dimension. When <boolexpr> is specified, the function returns
the index number of the first position of the dimension descended from the parent of the
current position at the specified dimension where the <boolexpr> evaluates to true.
Inverse
The indexfirst function does not have an inverse.
Examples:
 indexfirst([clnd].[qtr])

If the cell being evaluated is a week, this returns the calendar index number of the
first week in the quarter that the week of the cell being evaluated belongs to (that is,
the first week in the current quarter).

 indexfirst([clnd].[week], Receipts != 0)
If the cell being evaluated is a day, this returns the calendar index number of the first
day of the current week when that has a value for Receipts that is not equal zero
(that is, the first day in the current week with recorded Receipts).

 indexfirst([clnd].top)
If the cell being evaluated is a week, this returns the calendar index number of the
first week in the calendar horizon. This keyword is included for consistency with
other functions, as it will always return the value first (that is, zero).

Appendix: Rules Function Reference Guide 211

Description of Functions

indexlast
Returns the calendar index number of the last position in the current dimension that is
descended from the parent of the current position at the specified dimension.
The function may be constrained by setting a condition for the evaluation.
Syntax
indexlast([<clndhierarchy>].{[<dimension>] | top}[, <boolexpr>])

Where <clndhierarchy> is the name of the calendar (time) hierarchy. <dimension> is the
name of a dimension in the calendar hierarchy. top is a keyword that implies the top
dimension in the calendar hierarchy. If <dimension> is not a valid dimension in the
calendar hierarchy, or is not a dimension that is equal to or higher than the current (being
evaluated) dimension (in any alternate hierarchy), an error is generated.
<boolexpr> is optional and is any valid Boolean expression used to set a condition for the
evaluation of the function. If <boolexpr> is not specified, the function returns the index
number of the last position of the dimension descended from the parent of the current
position at the specified dimension. When <boolexpr> is specified, the function returns
the index number of the last position of the dimension descended from the parent of the
current position at the specified dimension where the <boolexpr> evaluates to true.
Inverse
The indexlast function does not have an inverse.
Examples:
 indexlast([clnd].[qtr])

If the cell being evaluated is a week, this returns the calendar index number of the
last week in the quarter that the week for the cell being evaluated belongs to (that is,
the last week in the current quarter).

 indexlast([clnd].[week], Receipts != 0)
If the cell being evaluated is a day, this returns the calendar index number of the last
day of the current week that has a value for Receipts that is not equal to zero (that is,
the last day of the current week with recorded Receipts).

 indexlast([clnd].top)
If the cell being evaluated is a week, this returns the calendar index number of the
last week in the calendar horizon. This keyword is included for consistency with
other functions, as it will always return the value last.

212 Oracle Retail Predictive Application Server

Description of Functions

indextostartdate
Returns the start date of the period whose index number is supplied.
Syntax
indextostartdate(<index>[,[<clndhierarchy>].{[<dimension>] | current}])

Where <clndhierarchy> is the name of the calendar (time) hierarchy, and <dimension> is
the name of a dimension in the calendar hierarchy. current is a keyword that implies the
current dimension in the calendar hierarchy. If <dimension> is not a valid dimension in
the calendar hierarchy, an error is generated. If the calendar hierarchy and dimension are
not supplied, the default is the current calendar dimension.

Note: This function requires that the day dimension of the
calendar hierarchy be included in the workbook. If the
lowest dimension of the calendar hierarchy is above the day
dimension, the function will not be able to return a valid
date.

<index> is an expression that returns an index number in the indicated calendar
dimension. If <index> is non-integer, only the integer portion is used. If <index> is not a
valid index number for the specified dimension, an error is generated. If the measure
being evaluated does not have a base intersection in the calendar hierarchy, and the
current option is used, an error is generated.
The function returns a date that is the start date of the period indicated by the dimension
and index number. If the period being evaluated is at or below the day level, the start
date is the date of the whole of the period. If the period being evaluated is above the day
level, the start date is the date of the first child position at the day level of the period
being evaluated.
Inverse
The indextostartdate function does not have an inverse.
Examples:
 indextostartdate(current)

Returns the start date of the current time period.
 indextostartdate (indexfirst([clnd].[qtr]))

Returns the start date of the first period in the current time dimension in the current
quarter.

 indextostartdate (index([clnd].[week], openweek), [clnd].[week])
Returns the start date of the period at the week level whose name is held in the
openweek measure.

Appendix: Rules Function Reference Guide 213

Description of Functions

indextoenddate
Returns the end date of the period whose index number is supplied.
Syntax
indextoenddate(<index>[,[<clndhierarchy>].{[<dimension>] | current}])

Where <clndhierarchy> is the name of the calendar (time) hierarchy, and <dimension> is
the name of a dimension in the calendar hierarchy. current is a keyword that implies the
current dimension in the calendar hierarchy. If <dimension> is not a valid dimension in
the calendar hierarchy, an error is generated. If the calendar hierarchy and dimension are
not supplied, the default is the current calendar dimension.

Note: This function requires that the day dimension of the
calendar hierarchy be included in the workbook. If the
lowest dimension of the calendar hierarchy is above the day
dimension, the function will not be able to return a valid
date.

<index> is an expression that returns an index number in the indicated calendar
dimension. If <index> is non-integer, only the integer portion is used. If <index> is not a
valid index number for the specified dimension, an error is generated. If the measure
being evaluated does not have a base intersection in the calendar hierarchy, and the
current option is used, an error is generated.
The function returns a date that is the end date of the period indicated by the dimension
and index number. If the period being evaluated is at or below the day level, the end date
is the date of the whole of the period. If the period being evaluated is above the day level,
the end date is the date of the last child position at the day level of the period being
evaluated.
Inverse
The indextoenddate function does not have an inverse.
Examples:
 indextoenddate(current)

Returns the end date of the current time period.
 indextoenddate (indexfirst([clnd].[qtr]))

Returns the end date of the last period in the current time dimension in the current
quarter.

 indextoenddate (index([clnd].[week], openweek), [clnd].[week])
Returns the end date of the period at the week level whose name is held in the
openweek measure.

214 Oracle Retail Predictive Application Server

Description of Functions

Index and Position Functions
This is a class of general functions that may be used for any hierarchy that enables
reference to positions in a generic manner. In most cases, the functions do not generate
results that are useful in themselves, but they are typically used as parameters that are
passed into other functions.
An "index" is an internal reference to a position in a dimension. For dimensions in the
calendar hierarchy, the index reflects an ordering of positions because there is a well-
defined sequence (oldest to newest, based on the start and end dates) of periods. There
are special calendar index functions that exploit this property. For other dimensions,
there is no such ordering, and the index number can be considered to be "random."

Note: Index numbers (including calendar index numbers)
should not be saved and reused between planning sessions,
as there is no guarantee that the same index numbers will
apply in subsequent sessions since the positions or
relationships in a hierarchy may change.

These general index functions may be used for any hierarchy, including the calendar
hierarchy.

Appendix: Rules Function Reference Guide 215

Description of Functions

index
Returns the index number of the specified position in the specified dimension of the
specified hierarchy.
Syntax
index([<hierarchy>].{[<dimension>] | current}[,{ <stringexpr> | <dateexpr>}])

Where <hierarchy> is the name of a valid hierarchy, and <dimension> is the name of a
valid dimension in that hierarchy. current is a keyword that returns the current
dimension in <hierarchy>. If <hierarchy> is not a valid hierarchy or <dimension> is not a
valid dimension in that hierarchy, an error is generated.
<stringexpr> and <dateexpr> are optional expressions that can be used to specify a
position. If neither <stringexpr> nor <dateexpr> are specified the function returns the
index number of the current position of the dimension being evaluated. <stringexpr> is a
string expression that results in a position name. If the result of <stringexpr> is not a
valid position name in the dimension being evaluated, an error is generated. <dateexpr>
is a numeric expression that results in a date type value and can only be used if
<hierarchy> is the calendar hierarchy. If the result of <dateexpr> is not a date type value,
or the result is returned when evaluating a dimension that is not in the calendar
hierarchy, an error is generated.
The function returns the index number of the indicated position in the specified
dimension of the specified hierarchy. When used with dates, the indicated position is the
position that contains the date specified.
Inverse

The index function does not have an inverse.
Examples:
 index([prod].[item], likeitem)

This returns the index number of the string position in the item dimension referenced
in the likeitem measure.

 index([prod].[cls], “cls123”)
This returns the index number of the class cls123.

 index([clnd].[mnth], opendate)
This returns the index number of the month that contains the date that results from
the opendate measure.

position
Returns the position name of the position in the specified dimension of the specified
hierarchy with the supplied index number. The returned string is in upper case.
Syntax
position([<hierarchy>].{[<dimension>] | current}[, <indexexpression>])

<hierarchy> must be the name of a valid hierarchy. If specified, <dimension> must be the
name of a valid dimension in that hierarchy. current is a keyword that returns the
current dimension in <hierarchy>. If <hierarchy> is not a valid hierarchy or <dimension>
is not a valid dimension in that hierarchy, an error is generated.
<indexexpression> is an optional parameter to specify the index of the position to be
evaluated. If <indexexpression> is not specified, the current position is assumed. The
expression must be a valid expression that results in a numeric measure. The integers of
the resulting values of the expression are used as the index numbers to determine the
position to be evaluated. If <indexexpression> does not return a valid index number for
the specified dimension an error is generated.

216 Oracle Retail Predictive Application Server

Description of Functions

The function returns an uppercase string that is the position name of the position with
the specified index number for the specified dimension of the specified hierarchy.
Inverse

The position function does not have an inverse.
Examples:
 position([prod].[item], 3)

This returns the position name of the item with index number =3.
 position([prod].[item], likeindex)

This returns the position name of the item with the index number in the measure
likeindex.

 position([prod].current)
This returns the position name of the current position of the current dimension in the
product hierarchy.

attribute
Returns the value of the specified attribute for the current position, or the position with
the supplied index number.
Syntax
attribute(<attribute>, [<hierarchy>].{[<dimension>] | current}[,
<indexexpression>])

Where <attribute> is a valid attribute for the dimension to be used, otherwise an error is
generated. <hierarchy> must be the name of a valid hierarchy. If specified, <dimension>
must be the name of a valid dimension in that hierarchy. current is a keyword that
returns the current dimension in <hierarchy>. If <hierarchy> is not a valid hierarchy or
<dimension> is not a valid dimension in that hierarchy, an error is generated.
<indexexpression> is an optional parameter to specify the index of the position to be
evaluated. If <indexexpression> is not specified, the current position is assumed. The
expression must be a valid expression that results in a numeric measure. The integers of
the resulting values of the expression are used as the index numbers to determine the
position to be evaluated. If <expression> does not return a valid index number for the
specified dimension an error is generated.
Valid values for <attribute> for all non-measure dimensions include the following,
which must be specified using quotes:
 “label” – The label (description) for the position. This value must be specified using

quotes. The attribute function requires left-hand side measure to be a string measure.
All keywords which need to be passed to a function must be wrapped in double
quotes. Any other syntax will throw an error.

 “dpmstatus” – The DPM status of the position. This attribute function required left-
hand side measure to be a Boolean measure. TRUE value corresponds to an
“informal” status. A FALSE value corresponds to a “formal” status.

The function returns the value of the specified attribute for the specified position.
Inverse
The attribute function does not have an inverse.

Appendix: Rules Function Reference Guide 217

Description of Functions

Examples:
 attribute("label", [prod].current)

This returns the value of the label attribute for the current position of the current
dimension in the product hierarchy.

 attribute("dpmstatus", [prod].[item], likeindex)
This returns the value of the dpmstatus attribute for the item with the index number
in the measure likeindex (that is, the label for my like item).

Forecast Procedure
Using the RPAS Configuration Tools, a time-series demand forecast may be configured
as part of a planning workflow or business process. The Forecast procedure provides
only a small subset of the functionality that is available through RDF. The differences
between these solution extensions are as follows:
 The forecast produced by the Forecast procedure is a single-level forecast.
 RDF allows for forecasts to be generated at aggregate levels in the data (to remove

sparsity), and then this forecast is spread down to the execution level by using a
profile.

 The Forecast procedure allows for a single forecasting method to be specified in the
calculation of the forecast.

 RDF allows for forecasting methods and forecasting parameters to be modified as
needed at all levels in your data.

 No standard approval process of the resulting forecasts are included as part of the
Forecast procedure.

 RDF allows for forecast adjustments and approvals to be made at the lowest level
necessary in your data.

The “Forecast Procedure Syntax” section contains the specifications and syntax for
configuring the Forecast procedure.

Forecast Requirements
The following libraries must be registered in any domain(s) that will use the Forecast
solution extension:
 AppFunctions
 RdfFunctions

Using the Forecast Procedure
The following notes are intended to serve as a guide for configuring the Forecast
procedure within the RPAS Configuration Tools.
 Refer to the appropriate input parameters and output measures when using the

Forecast procedure.
 The resultant measure (that is, the forecast output) should be at the same intersection

as your history measure (that is, pos). This will be the base intersection of the final
level.

 The Forecast procedure is a multiple result procedure, meaning that it can return
multiple results with one procedure call within a rule. In order to get multiple
results, the resultant measures must be configured in the Measure Tool and the
specific measure label must be used on the left-hand side (LHS) of the procedure call.
The resultant measure parameters must be comma-separated in the procedural call.

218 Oracle Retail Predictive Application Server

Description of Functions

Syntax Conventions
The table below displays the syntax conventions used in this procedure.

Indicator Definition

[…] All options listed in brackets are optional.

{…|…} Options listed in “{}” with “|” separators are
mutually exclusive (either/or).

{…,…} Options listed in “{}” with “,” separators way
are a complete set.

Bold Labels.

Italics Italics indicate a temporary placeholder for a
constant or a measure.

Italics/meas This indicates that the placeholder can be either
a constant or a measure.

BoldItailics This indicates a numeric placeholder for the
dynamic portion of a label. Usually a number
from 1 to N.

Normal Normal text signifies required information.

Underlined This convention is used to identify the function
or procedure name.

Forecast Procedure Syntax
The syntax for using the Forecast procedure appears below. The example below is a
simplified syntax version of the Forecast procedure. For the complete syntax version,
refer to the RDF Configuration Guide. The input and output parameter tables explain the
specific usage of the parameters names use in the procedure.
Generic Example:
FORECAST: FORMEAS , PEAKS:PEAKSMEAS, CHMETHOD:METHMEAS<-FORECAST(MASK:MEASKMEAS,
{STARTDATE:STARTDATE | STARTDATEMEAS:STARTDATEMEAS}, HISTORY: HISTORYMEAS,
FORECASTLENGTH:FORECASTLENGTH, PERIOD:PERIOD ,{FRCSTSTARTMEAS:FRCSTSTARTMEAS |
FRCSTSTART:FRCSTSTART}, PLAN:PLAN, PROFILE:PROFILE,
BAYESIAN_HORIZ:BAYESIAN_HORIZ, {VALID_DD:VALID_DD, DDPROFILE:DDPROFILE })

Sample:
forecast:frcstout,cumint:cumintout,int:intout<-
Forecast(forecastlength:12,history:pos,mask:frcstmask,period:26,startdatemeas:toda
ymeas)

Configuration Parameters and Rules

Input Parameters
The table below provides the input parameters for the Forecast procedure.

Parameter Name Description

FORECASTLENGTH The length of the forecast.

Data Type: Integer

Multiple Allowed: No

Required: Yes

Appendix: Rules Function Reference Guide 219

Description of Functions

Parameter Name Description

HISTORY The input measure the forecast is based on.

Data Type: Real

Multiple Allowed: No

Required: Yes

MASK Array that identifies what forecast method is
used for each time series. Refer to Forecast
Model/Model List table.

Data Type: Integer

Multiple Allowed: No

Required: Yes

MAXALPHA The maximum alpha value.

Data Type: Real

Multiple Allowed: No

Required: No

PERIOD The forecasting period for calculating seasonal
coefficients.

Data Type: Integer

Multiple Allowed: No

Required: Yes

FRCSTSTARTMEAS The measure of the forecast start dates.

Data Type: Datetime

Multiple Allowed: No

Required: No

FRCSTSTART The forecast start date.

Data Type: Datetime

Multiple Allowed: No

Required: No

PLAN The Plan measure.

Data Type: Real

Multiple Allowed: No

Required: No

PROFILE The Seasonal Profile measure.

Data Type: Real

Multiple Allowed: No

Required: No

STARTDATE/
STARTDATEMEAS

The forecast start date. Either STARTDATE or
STARTDATEMEAS is required. STARTDATEMEAS, if
used, must be a scalar for AutoES method.

Data Type: STARTDATE - Date as a string.

Data Type: STARTDATEMEAS – scalar measure.

Multiple Allowed: No

Required: Yes

220 Oracle Retail Predictive Application Server

Description of Functions

Parameter Name Description

BAYESIAN_HORIZ The horizon to which the Bayesian adjust is
applied.

Data Type: Integer

Multiple Allowed: No

Required: No

BAYESIAN_HORIZ should have the same base
intx as METHOD.

VALID_DD The maximum non-zero history to use de-
seasonalized demand value for seasonal profile
based forecasting.

Data Type: Integer

Multiple Allowed: No

Required: No

DDPROFILE De-seasonalized demand measure. Used only
for profile-based forecasting.

Data Type: Double

Multiple Allowed: No

Required: No

Output Parameters
The table below provides the output parameters for the Forecast procedure.

Parameter Name Description

CHMETHOD Selected method. Refer to Forecast
Model/Model List table.

Data Type: Integer

Multiple Allowed: No

Required: No

FORECAST Forecast output.

Data Type: Real

Multiple Allowed: No

Required: Yes

PEAKS Peaks, which are used for calculating baseline
of the forecast.

Data Type: Real

Multiple Allowed: No

Required: No

Forecast Method/Model List
The table below provides the numeric value assigned to the forecast model/model list.

Model Numeric Value

AUTO ES 1

SIMPLE 2

Appendix: Rules Function Reference Guide 221

Description of Functions

Model Numeric Value

HOLT 3

WINTERS 4

CASUAL 5

AVERAGE 6

NO FORECAST 7

COPY 8

CROSTON 9

M. WINTERS 10

A. WINTERS 11

SIMPLE CROSTON 12

BAYESIAN 13

LOADPLAN 14

PROFILE 15

Time Series Functions

Overview
This is a collection of very similar functions to perform typical calculation tasks over a
range of cells in one or more time series. The <start> and <end> positions, defined using
calendar index numbers, specifies the range of cells to be used. Typically, there may be
some arithmetic performed to calculate the start and/or end positions.

Note: By using the indexdate or index functions to provide
calendar index numbers, the <start> and <end> positions to
be used in the time series can effectively be specified by
position name or by date.

Note: If the level modifier is used, the current keyword only
has a value when the level used is higher than the level
being evaluated (since, for example, the concept of “the
current week” is ambiguous when evaluating a month, so an
error is generated).

Single Time Series Functions

tssum
Produces a sum of the cells in the time series for the measure defined by the start and end
positions.
tssum is used for the following types of calculations:
 Season to date
 Balance to achieve
 4 week moving sum

222 Oracle Retail Predictive Application Server

Description of Functions

The function produces a sum of the cells in the time series for the positions implied by
the <start> and <end> for the specified dimension.
Syntax

tssum(<expression>[, <start>[, <end>]])
Where <expression> is an expression or measure whose time series is to be used, and
<start> and <end> are expressions that calculate numbers. The current calendar
dimension is assumed, and if the cell being evaluated does not have a calendar
dimension, the bottom calendar dimension is assumed. If the values of <start> or <end>
are numeric, but non-integer, only the integer portion will be used. If <end> is less than
<start>, or either parameter is non-numeric or outside the scope of the calendar index
numbers for the specified dimension, an error is generated.
<expression> is mandatory, the other parameters are optional. If <start> is not specified,
the default value is first (that is, 0). If <end> is not specified, the default value is current.
Use the level modifier to specify a dimension in the calendar hierarchy when calculating
above or below the current calendar dimension.
Inverse
The tssum function does not have an inverse.
Examples:
 tssum(PlanSales)

This is a plan-to-date or running total value for sales.
 tssum(PlanSales, current, last)

This provides a "balance to achieve" (that is, a sum from the current period to the end
of the horizon).

 tssum(PlanSales.level([clnd].[week]), current – 3, current)
This provides a 4 week moving total for sales.

 tssum(PlanSales, indexfirst([clnd].[qtr]))
This provides a "quarter to date" running total (see the indexfirst function).

Appendix: Rules Function Reference Guide 223

Description of Functions

tsavg
The average (mean) value of the cells in the range.
The function produces an average of the cells in the time series for the positions implied
by the <start> and <end> for the specified dimension.
Syntax

tsavg(<expression>[, <start>[, <end>]])
Where <expression> is an expression or measure whose time series is to be used, and
<start> and <end> are expressions that calculate numbers. The current calendar
dimension is assumed, and if the cell being evaluated does not have a calendar
dimension, the bottom calendar dimension is assumed. If the values of <start> or <end>
are numeric, but non-integer, only the integer portion will be used. If <end> is less than
<start>, or either parameter is non-numeric or outside the scope of the calendar index
numbers for the specified dimension, an error is generated.
<expression> is mandatory; the other parameters are optional. If <start> is not specified,
the default value is first (for instance, 0). If <end> is not specified, the default value is
current.
Use the level modifier to specify a dimension in the calendar hierarchy when calculating
above or below the current calendar dimension.
Inverse

The tsavg function does not have an inverse.

224 Oracle Retail Predictive Application Server

Description of Functions

tsmax
The maximum value of any cell in the range.
The function returns the maximum value of the cells in the time series for the positions
implied by the <start> and <end> for the specified dimension.
Syntax

tsmax(<expression>[, <start>[, <end>]])
Where <expression> is an expression or measure whose time series is to be used, and
<start> and <end> are expressions that calculate numbers. The current calendar
dimension is assumed, and if the cell being evaluated does not have a calendar
dimension, the bottom calendar dimension is assumed. If the values of <start> or <end>
are numeric, but non-integer, only the integer portion will be used. If <end> is less than
<start>, or either parameter is non-numeric or outside the scope of the calendar index
numbers for the specified dimension, an error is generated.
<expression> is mandatory; the other parameters are optional. If <start> is not specified,
the default value is first (for instance, 0). If <end> is not specified, the default value is
current.
Use the level modifier to specify a dimension in the calendar hierarchy when calculating
above or below the current calendar dimension.
Inverse

The tsmax function does not have an inverse.

tsmin
The minimum value of any cell in the range.
The function returns the minimum value of the cells in the time series for the positions
implied by the <start> and <end> for the specified dimension.
Syntax
tsmin(<expression>[, <start>[, <end>]])
Where <expression> is an expression or measure whose time series is to be used, and
<start> and <end> are expressions that calculate numbers. The current calendar
dimension is assumed, and if the cell being evaluated does not have a calendar
dimension, the bottom calendar dimension is assumed. If the values of <start> or <end>
are numeric, but non-integer, only the integer portion will be used. If <end> is less than
<start>, or either parameter is non-numeric or outside the scope of the calendar index
numbers for the specified dimension, an error is generated.
<expression> is mandatory; the other parameters are optional. If <start> is not specified,
the default value is first (for instance, 0). If <end> is not specified, the default value is
current.
Use the level modifier to specify a dimension in the calendar hierarchy when calculating
above or below the current calendar dimension.
Inverse
The tsmin function does not have an inverse.

Appendix: Rules Function Reference Guide 225

Description of Functions

tsmode
The modal value of the cells in the range.
The function returns the modal value of the cells in the time series for the positions
implied by the <start> and <end> for the specified dimension.
Syntax

tsmode(<expression>[, <start>[, <end>]])
Where <expression> is an expression or measure whose time series is to be used, and
<start> and <end> are expressions that calculate numbers. The current calendar
dimension is assumed, and if the cell being evaluated does not have a calendar
dimension, the bottom calendar dimension is assumed. If the values of <start> or <end>
are numeric, but non-integer, only the integer portion will be used. If <end> is less than
<start>, or either parameter is non-numeric or outside the scope of the calendar index
numbers for the specified dimension, an error is generated.
<expression> is mandatory; the other parameters are optional. If <start> is not specified,
the default value is first (for instance, 0). If <end> is not specified, the default value is
current.
If there is more than one value for the mode, then the function returns the first value that
is calculated.
Use the level modifier to specify a dimension in the calendar hierarchy when calculating
above or below the current calendar dimension.
Inverse
The tsmode function does not have an inverse.

tsmedian
The median value of the cells in the range.
The function returns the median value of the cells in the time series for the positions
implied by the <start> and <end> for the specified dimension.
Syntax
tsmedian(<expression>[, <start>[, <end>]])
Where <expression> is an expression or measure whose time series is to be used, and
<start> and <end> are expressions that calculate numbers. The current calendar
dimension is assumed, and if the cell being evaluated does not have a calendar
dimension, the bottom calendar dimension is assumed. If the values of <start> or <end>
are numeric, but non-integer, only the integer portion will be used. If <end> is less than
<start>, or either parameter is non-numeric or outside the scope of the calendar index
numbers for the specified dimension, an error is generated.
<expression> is mandatory; the other parameters are optional. If <start> is not specified,
the default value is first (for instance, 0). If <end> is not specified, the default value is
current.
If there is no middle number, the function returns the average of the middle two
numbers.
Use the level modifier to specify a dimension in the calendar hierarchy when calculating
above or below the current calendar dimension.
Inverse

The tsmedian function does not have an inverse.

226 Oracle Retail Predictive Application Server

Description of Functions

tsstd
The standard deviation of the cells in the range.
The function returns the standard deviation of the cells in the time series for the positions
implied by the <start> and <end> for the specified dimension.
Syntax

tsstd(<expression>[, <start>[, <end>]])
Where <expression> is an expression or measure whose time series is to be used, and
<start> and <end> are expressions that calculate numbers. The current calendar
dimension is assumed, and if the cell being evaluated does not have a calendar
dimension, the bottom calendar dimension is assumed. If the values of <start> or <end>
are numeric, but non-integer, only the integer portion will be used. If <end> is less than
<start>, or either parameter is non-numeric or outside the scope of the calendar index
numbers for the specified dimension, an error is generated.
<expression> is mandatory; the other parameters are optional. If <start> is not specified,
the default value is first (for instance, 0). If <end> is not specified, the default value is
current.
Use the level modifier to specify a dimension in the calendar hierarchy when calculating
above or below the current calendar dimension.
Inverse

The tsstd function does not have an inverse.

tsvar
The variance of the cells in the range.
The function returns the variance of the cells in the time series for the positions implied
by the <start> and <end> for the specified dimension.
Syntax
tsvar(<expression>[, <start>[, <end>]])
Where <expression> is an expression or measure whose time series is to be used, and
<start> and <end> are expressions that calculate numbers. The current calendar
dimension is assumed, and if the cell being evaluated does not have a calendar
dimension, the bottom calendar dimension is assumed. If the values of <start> or <end>
are numeric, but non-integer, only the integer portion will be used. If <end> is less than
<start>, or either parameter is non-numeric or outside the scope of the calendar index
numbers for the specified dimension, an error is generated.
<expression> is mandatory; the other parameters are optional. If <start> is not specified,
the default value is first (for instance, 0). If <end> is not specified, the default value is
current.
Use the level modifier to specify a dimension in the calendar hierarchy when calculating
above or below the current calendar dimension.
Inverse
The tsvar function does not have an inverse

Appendix: Rules Function Reference Guide 227

Description of Functions

Double Time Series (Statistical Error) Functions

tsme
Produces the Mean Error of an ‘estimate’ time series compared to an ‘actuals’ time series.
Syntax
tsme(<x>, <y>[, <start>[, <end>]])
Where <x> is an expression or measure that represents the estimate and <y> is an
expression or measure that represents the actuals, and <start> and <end> are expressions
that calculate numbers. The current calendar dimension is assumed, and if the cell being
evaluated does not have a calendar dimension, the bottom calendar dimension is
assumed. If the values of <start> or <end> are numeric, but non-integer, only the integer
portion will be used. If <end> is less than <start>, or either parameter is non-numeric or
outside the scope of the calendar index numbers for the specified dimension, an error is
generated
<x> and <y> are mandatory, and the other parameters are optional. If <start> is not
specified, the default value is first (that is, 0). If <end> is not specified, the default value
is current. The Mean error is calculated using the following formula:

Inverse
The tsme function does not have an inverse.
Examples:
 tsme(FcstSales, ActSales)

This calculates the Mean Error of the FcstSales measure from the start of the
calendar horizon until the current time period.

 tsme(FcstSales, ActSales, first, elapsed)
This calculates the Mean Error of the FcstSales measure from the start of the
calendar horizon until the last time period with actuals loaded.

 tsme(FcstSales, ActSales, first, min(elapsed, current))
This calculates the Mean Error of the FcstSales measure from the start of the
calendar horizon until the first of the period being evaluated or the last time period
with actuals loaded.

228 Oracle Retail Predictive Application Server

Description of Functions

tsmae
Mean Absolute Error.
Syntax
tsmae(<x>, <y>[, <start>[, <end>]])
Where <x> is an expression or measure that represents the estimate and <y> is an
expression or measure that represents the actuals, and <start> and <end> are expressions
that calculate numbers. The current calendar dimension is assumed, and if the cell being
evaluated does not have a calendar dimension, the bottom calendar dimension is
assumed. If the values of <start> or <end> are numeric, but non-integer, only the integer
portion will be used. If <end> is less than <start>, or either parameter is non-numeric or
outside the scope of the calendar index numbers for the specified dimension, an error is
generated.
<x> and <y> are mandatory, the other parameters are optional. If <start> is not specified,
the default value is first (that is, 0). If <end> is not specified, the default value is current.
The Mean Absolute error is calculated using the following formula:

Inverse
The tsmae function does not have an inverse.

tsmape
Mean Absolute Percentage Error.
Syntax
tsmape(<x>, <y>[, <start>[, <end>]])
Where <x> is an expression or measure that represents the estimate and <y> is an
expression or measure that represents the actuals, and <start> and <end> are expressions
that calculate numbers. The current calendar dimension is assumed, and if the cell being
evaluated does not have a calendar dimension, the bottom calendar dimension is
assumed. If the values of <start> or <end> are numeric, but non-integer, only the integer
portion will be used. If <end> is less than <start>, or either parameter is non-numeric or
outside the scope of the calendar index numbers for the specified dimension, an error is
generated..
<x> and <y> are mandatory, and the other parameters are optional. If <start> is not
specified, the default value is first (for instance, 0). If <end> is not specified, the default
value is current. The Mean Absolute Percentage error is calculated using the following
formula:

Inverse
The tsmape function does not have an inverse.

Appendix: Rules Function Reference Guide 229

Description of Functions

tsrmse
Root Mean Square Error.
Syntax
tsrmse(<x>, <y>[, <start>[, <end>]])
Where <x> is an expression or measure that represents the estimate and <y> is an
expression or measure that represents the actuals, and <start> and <end> are expressions
that calculate numbers. The current calendar dimension is assumed, and if the cell being
evaluated does not have a calendar dimension, the bottom calendar dimension is
assumed. If the values of <start> or <end> are numeric, but non-integer, only the integer
portion will be used. If <end> is less than <start>, or either parameter is non-numeric or
outside the scope of the calendar index numbers for the specified dimension, an error is
generated.
<x> and <y> are mandatory, and the other parameters are optional. If <start> is not
specified, the default value is first (that is, 0). If <end> is not specified, the default value
is current. The Root Mean Square error is calculated using the following formula:

Inverse
The tsrmse function does not have an inverse.

tspae
Percentage Absolute Error.
Syntax
tspae(<x>, <y>[, <start>[, <end>]])

Where <x> is an expression or measure that represents the estimate and <y> is an
expression or measure that represents the actuals, and <start> and <end> are expressions
that calculate numbers. The current calendar dimension is assumed, and if the cell being
evaluated does not have a calendar dimension, the bottom calendar dimension is
assumed. If the values of <start> or <end> are numeric, but non-integer, only the integer
portion will be used. If <end> is less than <start>, or either parameter is non-numeric or
outside the scope of the calendar index numbers for the specified dimension, an error is
generated.
<x> and <y> are mandatory, and the other parameters are optional. If <start> is not
specified, the default value is first (that is, 0). If <end> is not specified, the default value
is current. The Percentage Absolute error is calculated using the following formula:

Inverse

The tspae function does not have an inverse.

230 Oracle Retail Predictive Application Server

Description of Functions

Hierarchical Functions and Procedures

Overview
This is a collection of functions and procedures that provide some knowledge of
hierarchical structures, and the how the current position fits in, or uses knowledge of
hierarchical structures.

count
Returns the count of children at a specified level that belong to a parent at a higher level.
Syntax
count([<hierarchy>][.<childdimspec>[,<parentdimspec>]])

Where <childdimspec> is {[<childdimension>] | bottom | current}
and <parentdimspec> is [<hierarchy>].{[<parentdimension>] | top | current}
<hierarchy> is the name of a valid hierarchy (same hierarchy must be referenced
throughout the function). <childdimension> and <parentdimension> must be valid
dimensions in the specified hierarchy. If both are specified, then <childdimension> must
be lower than <parentdimension> in a roll-up, or an error is generated. bottom, top, and
current are keywords referring to the lowest, highest, and current (being evaluated)
dimensions in the hierarchy. If <childdimspec> is not specified, the default is bottom. If
<parentdimension> is not specified, the default is current.
The function returns the number of children in the dimension <childdimension> that are
descended from the implied position (the current position or the ancestor of the current
position at the specified level) in the dimension <parentdimension>. If the
<childdimension> and the <parentdimension> are the same, the function returns the value
of 1.
Inverse
The count function does not have an inverse.
Examples:
 count([loc].bottom)

Returns the number of children in the bottom dimension in the location hierarchy for
the current position in the location hierarchy

 count([loc].[str])

Returns the number of children in the store dimension (str) in the location hierarchy
for the current position in the location hierarchy (that is, ‘how many stores do I own’)

 count([loc].[str], [loc].[area])

Returns the number of children in the store dimension in the location hierarchy for
the position in the dimension “area” that is the ancestor of the current position in the
location hierarchy (that is, ‘how many stores in my area’)

Appendix: Rules Function Reference Guide 231

Description of Functions

lookup
Procedure that returns the value of an expression for a specific intersection.
The positions to be "looked up” may be in one or more hierarchies. This procedure has
the following special uses and restrictions:
 lookup is a procedure and thus cannot be combined with functions and other

procedures in any manner.
 Used for history mapping and like SKU/sister store functionality.
 The base intersection of the output measure must be the same as the input measure

and/or one or more of the mapping measures.
Syntax
<output> <- lookup(<input>, <dimspec1> [, <dimspec2> ... , <dimspecn>])

Where <dimspec1-n> is [<hierarchy>].{[<dimension>] | bottom | current | top}, <map>
<output> is the measure being updated. <input> is the measure to be evaluated. Each
<dimspec> is used to specify the hierarchy and dimension to be used in the mapping
process and the measure that contains the mapping values.
For each <dimspec> that is specified, the <hierarchy> must be the name of a valid
hierarchy and the <dimension> must be the name of a valid dimension in that hierarchy.
top is a keyword that refers to the highest dimension in the hierarchy, bottom is a
keyword that refers to the lowest dimension in the hierarchy, and current is a keyword
that refers to the current dimension (that is, the dimension of the cell being evaluated).
<map> is either a measure or an explicitly stated position used to designate how positions
in <input> are mapped to determine the resulting values in <output>. The output, input,
and mapping measures used in the lookup procedure must conform in a certain manner.
Specifically, the resulting measure <output> must have the same base intersection as
<input>, <map>, or both measures so that all conform.
When <map> is a measure, it must result in either index numbers or position names, either
of which must be valid index numbers or position names from the related dimension
specification. When <map> contains index numbers that do not map to valid positions, an
error is generated and the na value for <output> is returned. There is no special "cycle
breaking" logic for the lookup procedure. This means that a measure may never be
calculated from the lookup of the same measure.

Note: lookup is a procedure so it cannot be combined with
functions, modifiers, or other procedures in any manner. As
a procedure, it requires a different syntax: “<-“ instead of
“=” when being assigned.

Inverse
The lookup procedure does not have an inverse.

232 Oracle Retail Predictive Application Server

Description of Functions

Examples:
 output <- lookup(input, [presentationstyle].[presentationstyle], map)

Where output is at sku-week, input is at sku-presentationstyle, and map is at sku-
week with position names or index numbers from the presentation style dimension.
The output and mapping measures have the same base intersection. This expression
calculates the output measure from the mapping of presentation styles that vary for
each sku-week combination.

 output <- lookup(input, [prod].[sku], map)

Where output and input are at sku-week and map is at sku with position names or
index numbers from the sku dimension. This expression calculates the output
measure from the like sku of the input measure.

tablelookup
Procedure that returns the value (interpolated if necessary) from the entry in a "table" of
information held in measures that matches with supplied "keys."
Syntax
tablelookup(<expression>, <matching technique>, <keymeasure> [,<resultmeasure>])

Where <matching technique> is {exactmatch, <nomatchvalue> | average | nearest |
high | low | interpolate}

The tablelookup procedure requires that a "table" be available that may be the target of
the lookup. This table will be formed from normal measures with a base intersection of
"normal" dimensions. Nevertheless, the most usual usage will be where the table
measures are dimensioned on a dimension built for the purpose, plus other dimensions
as required.
Example:
Imagine a requirement to look up valid price points that may be applied as prices for an
item. The collection of valid price points will be different for each class. To satisfy this
requirement, a table is built. A ‘table’ hierarchy is defined with a "tableentry" dimension
with a number of positions, which are named e01, e02, e03, … e99 to allow for 99 entries
in the table, with the order of the positions being the same as their natural sort sequence,
and the order of the hierarchy being the highest (innermost) non-time hierarchy. A
measure named "pp" is defined with a base intersection of tableentry/class. The "pp"
measure is populated with valid pricepoints for each class, with the lowest valid
pricepoint in position e01, the next lowest in e02, and so on. This "table" can now be used
to look up valid pricepoints. The procedure call (indirectly) provides a class and
(directly) provides a target price as arguments, and a valid price point is returned based
on the selected matching technique. See the following examples for an example that uses
this "table."
<expression> is any valid expression that results in a value of the same data type as the
<keymeasure>. In the description that follows, this value is referred to as the key value.
<keymeasure> is the name of the measure to be used as a key when matching the key
value against the "table." <resultmeasure> is an optional measure that holds the return
value. If <resultmeasure> is not specified, <keymeasure> is used for the values of the result
as in the price point example, below.
The procedure attempts to match the key value against an entry in the "table." The
innermost non-time dimension in the base intersection of the <keymeasure> is assumed to
be the dimension along which entries in the table are indexed. For all other dimensions in
the base intersection of the <keymeasure>, the procedure will match against the parent at
that dimension of the cell being evaluated.

Appendix: Rules Function Reference Guide 233

Description of Functions

Note: The values in <keymeasure> must be in ascending order
and must not contain any repeated values. A value that is
either out of sequence or repeated designates that the
previous value is the last entry in the "table." In other words,
only the sorted elements in the key measure will be
considered in the lookup process.

The <matching technique> specifies the matching technique to be used when an exact
match of the <keymeasure> against the key value is not found. If the matching technique is
exactmatch, <nomatchvalue> is a numeric value that must be specified to indicate the
value to use in cells when there is no exact match. Otherwise, if the key value is higher
than the highest value in the “table,” or lower than the lowest value in the table, it is
assumed to match against the highest or lowest value accordingly. If the matching
technique is high and no match against the key value is found, the procedure returns the
value of the <resultmeasure> for the entry immediately higher than the key value. If the
matching technique is low and no match against the key value is found, the procedure
returns the value of the <resultmeasure> for the entry immediately lower than the key
value. If the matching technique is nearest and no match against the key value is found,
the procedure returns the value of the <resultmeasure> for the entry immediately lower
than the key value or immediately higher than the key value, depending upon which
entry is nearest (this is like rounding to the nearest value). If the matching technique is
average and no match against the key value is found, the procedure returns the numeric
average of the value of the <resultmeasure> for the entry immediately lower and
immediately higher than the key value, or it generates an error if the <resultmeasure> is
not of numeric data type.
If the matching technique is interpolate and no match against the key value is found, the
procedure returns an interpolated value between the value of the <resultmeasure> for the
entry immediately lower and immediately higher than the key value, or it generates an
error if the <resultmeasure> is not of numeric data type. The interpolation is calculated as
follows:

Inverse
The tablelookup procedure does not have an inverse.
Examples:
 tablelookup(tgtpr, nearest, pp)

Returns the nearest valid value of the pp measure to the supplied target price (tgtpr).
 tablelookup(perc, interpolate, epct, elast)

Looks up the percentage markdown (perc) of the current position against a
percentage change elasticity table (epct). Returns the matching elasticity value
(elast). If the percentage markdown is not found in the table, the procedure will
interpolate the elasticity value from the nearest values above and below the
percentage markdown.

234 Oracle Retail Predictive Application Server

Description of Functions

flookup
The fixed look up function that returns the value of a measure for an explicitly named
fixed intersection.
Syntax
flookup(<measure>, <posspec1> [, <posspec2> … , <posspecn>])

Where <posspec1-n> is: [<hierarchy>].[<dimension>].[<positionname>]
<measure> is the measure to be looked up. This <measure> must conform with the measure
being calculated as follows. Some hierarchies may be present in the base intersection of
both measures, and these are handled by normal "non-conforming" logic. For any
hierarchies that are only in the base intersection of the measure being calculated (output
measure), all positions will lookup the same value. For any hierarchies that are only in
the base intersection of the <measure> (input measure), the position to be used must be
explicitly named through a position specification (<posspec>).

Note: If the position to be used can only be specified
indirectly (for example, if it is held in a measure), the
flookup function cannot be used, and the more powerful
lookup procedure should be used instead.

flookup can be used to return a constant or a slice. In case of a constant, the NA value of
the flookup function will be the value of the constant. In case of a slice, the NA value of
the flookup function will be the NA value of <measure>.
For each <posspec> that is specified, the <hierarchy> must be the name of a valid
hierarchy, the <dimension> must be the name of a valid dimension in that hierarchy, and
the <positionname> must be the name of a valid position in that dimension, If the position
name includes special characters, it can be enclosed in quotes (" ") in addition to the
standard requirement for square brackets ([]). If <hierarchy> is not a valid hierarchy or
<dimension> is not a valid dimension in that hierarchy, or <positionname> is not a valid
position in that dimension, an error is generated.
Additionally, <dimension> must be a dimension in the base intersection of <measure>. To
use dimensions not in the base intersection, the <measure> must have a level modifier to
explicitly raise it to the desired dimension.
There is no special "cycle breaking" logic for the flookup function. This means that a
measure may never be calculated from the flookup of the same measure. The flookup
function returns the value of the expression from the specified fixed intersection.
Inverse
The flookup function does not have an inverse.
Examples:
 flookup(perc, [flvl].[flvl].[flvla])

Returns the value for the measure perc for the position flvla in the flvl dimension
of the flvl hierarchy.

 flookup(leadtime, [prod].[cls].[class1], [loc].[whse].[whseA])
Returns the value for the measure leadtime for the class class1 for the warehouse
whseA.

Appendix: Rules Function Reference Guide 235

Description of Functions

aggregate
The aggregate procedure provides similar functionality to the hybrid aggregation type.
Measures that use the hybrid aggregation type cannot be manipulated above their base
intersection (as there is no mechanism to spread changes), but since the aggregate
procedure is used on recalc measures, they can be changed with the change being
applied through normal mapping rules. In addition, the aggregate procedure has a recalc
aggregation type that is not available in the hybrid aggregation method.
This procedure returns the value of a measure aggregated from the base intersection to
the current level using the supplied aggregation type.
Syntax
aggregate (<cachemeasure>, <hierspec1> [, <hierspec2> … , <hierspecn>])

where <hierspec1-n> is [<hierarchy>].<aggtype>
The rule writer specifies a <cachemeasure> that holds the base intersection values to be
aggregated, and it is also the source of values for recalc aggregation.
The rule writer also specifies the aggregation type for each hierarchy and the priority
sequence to be used. The priority sequence is required because at levels that are
aggregated in more than one hierarchy (for instance, Department/Region/Month for a
measure with a base intersection of Class/Store/Week), different results would usually
be obtained by aggregating up each of the hierarchies. For example, if the requirement is
to aggregate up the product hierarchy by using the total aggregation type, up the
location hierarchy by using the average aggregation type, and up the calendar hierarchy
by using the first aggregation type; there are three potential ways to calculate a value at
Department/Region/Month. We could total from Class/Region/Month, average from
Department/Store/Month, or first from Department/Region/Week. These would almost
certainly generate three completely different values. By providing a priority sequence,
the rule writer explicitly determines which of these values are required. See the worked
example, below.

Note: The effect of a series of aggregations of the same type
up a single hierarchy may return different results from those
of a measure with the same aggregation type.

‘Normal’ aggregation for a measure driven by its
aggregation type is performed from all base intersection cells
descended from the cell being evaluated. For example, for a
measure with a base intersection of Class/Week and an
‘average’ aggregation type, the value calculated for a cell at
Department/Month is the average of all values for all
Class/Week cells for the Department/Month. If the measure
is a recalc measure, calculated at aggregated levels from a
rule with an aggregate function, such as aggregate(x,
[prod].average, [clnd].average), the value for the
Department/Month will be the average of all the
Class/Months (not Class/Weeks) that belong to the
Department/Month. Other than coincidentally, this would
generate a different value.

<cachemeasure> is the measure to be aggregated, and the value of <cachemeasure> is also
the value used for cells that are at the base intersection (bottom levels), and at aggregated
levels when the required aggregation type is recalc. <hierarchy> is the name of a valid
hierarchy. Each hierarchy may only be specified once in the procedure, but hierarchies
may appear in any order. The sequence that the hierarchies are specified in is used to

236 Oracle Retail Predictive Application Server

Description of Functions

determine which hierarchy to aggregate up if the cell being evaluated is at an aggregated
level in more than one hierarchy. In this circumstance, aggregation is performed up the
first specified hierarchy that the cell is at an aggregated level in, and the other hierarchies
are ignored. <aggtype> specifies the aggregation type to be used. The <aggtype> must be
one of the standard aggregation types. If any hierarchy that is in the scope of the measure
being calculated is not explicitly specified, the aggregation type of that hierarchy is
assumed to be total. Such hierarchies are assumed to be sequenced after all hierarchies
that are explicitly referenced, and they are ordered from innermost to outermost.

Note: The value of the <cachemeasure> is used at the base
intersection of the measure being calculated. If, for a given
cell, the aggregation type to be used is recalc, the value is
also obtained directly from the <cachemeasure> at that level,
which will normally have an aggregation type of recalc.

Note: aggregate is a procedure so it cannot be combined
with functions, modifiers, or other procedures in any
manner. As a procedure it requires a different syntax: “<-“
instead of “=” when being assigned.

Inverse
The aggregate procedure does not have an inverse.
Examples:
 result <- aggregate(x, [clnd].recalc)

For cells at the base intersection, the value is calculated from the measure x. For cells
at an aggregated level in the calendar hierarchy, the value is also obtained from the
measure x, which we can assume has an aggregation type of recalc, and thus the
result of the procedure is as if the aggregation type were recalc, using the usual
expression to calculate measure x. If the cell is not at an aggregated level in the time
hierarchy, and assuming in this example that the other hierarchies are product and
location; in that priority, the value for a cell at an aggregated product level is
calculated as the total of all cells for products descended from that product for the
same location and time. Otherwise, the value for the cell is calculated as the total of
all cells for locations descended from the cell’s location for the same product and
time.

 result <- aggregate(x, [loc].average)
In a similar manner to the previous example, cells at aggregated levels in the location
hierarchy will be calculated by averaging the values of cells for all descendent
locations. Otherwise, the value will be totaled up the product or time hierarchy as
appropriate.

 result <- aggregate(x, [clnd].average)
Totals up all hierarchies except time, which uses an average aggregation type.

 result <- aggregate(x, [prod].average, [clnd].first)
Averages up the product hierarchy if possible. Otherwise, takes the first child value
up the calendar hierarchy. Otherwise, totals up the other hierarchies.

 result <- aggregate(x, [prod].average, [clnd].last)
Averages up the product hierarchy if possible. Otherwise, takes the last child value
up the calendar hierarchy. Otherwise, totals up the other hierarchies.

Appendix: Rules Function Reference Guide 237

Description of Functions

Multi-Level Calculation Example
Consider a measure calculated from the expression aggregate(x, [prod].total,
[loc].avg, [clnd].first). The measure is assumed to have a base intersection of
Class/Store/Week.
Examples:

Examples of the calculations that would be applied at various levels are as follows:
 Class/Store/Month: first from Class/Store/Week
 Class/Region/Month: avg from Class/Store/Month
 Department/Region/Month: total from Class/Region/Month

Transform Procedures
RPAS offers the following transformation procedures:
 transformSum
 transformMax
 transformOr
 transformProp
 transformEven
 transformRepl

Transform Procedure Requirements
The following libraries must be registered in any domain(s) that will use the transform
procedures:
 Transform

Example:
regfunction -d <pathToDomain> -l Transform -add

transformSum
transformSum converts data across hierarchies using sum aggregation. The procedure
converts data between measures of different dimensionality using a set of map measures
to convert positions from the source measure to positions in the target measure. Source
measures are aggregated into the target using the sum aggregation method.
Syntax
<target> <- transformSum(<source>, <transformspec1> [, <transformspec2> … ,
<transformspecn>])

Input Parameters

The table below provides the input parameters for the transformSum procedure.

Parameter Name Description

source Measure that is being aggregated into
<target> measure using the aggregation type
of sum.

238 Oracle Retail Predictive Application Server

Description of Functions

Parameter Name Description

transformspec1-n This parameters is [<source
hierarchy>].[<source dimension>],
[<target hierarchy>].[<target
dimension>] , [LABEL|POSNAME], <map>

The <transformspec> defines which
dimension in the source is mapped to which
dimension in the target and how the positions
are mapped between the dimensions.

The <map> measure may either be text or
Boolean. If it is text then the value of the cell
contains the position id or label name of a
position in the target dimension. The
compulsory [LABEL|POSNAME] parameter
specifies which method is used. If the <map>
measure is Boolean then its base intersection
must include the <source dimension>; any true
cells in the map measure will define the
positions that are transformed to the target.

If a label is not unique within a dimension and
the LABEL option is used, then only the first
position in the dimension that includes the
label will be part of the transformation.

Output Parameters

The table below provides the output parameter for the transformSum procedure.

Parameter Name Description

target Measure into which the <source> measure is
aggregated into using the aggregation type of
sum.

Notes
If a hierarchy is in both the source and target measures, then the dimension for that
hierarchy in the source and target must be the same, unless the transformation is defined
through a mapping transformspec, meaning the source measure cannot have a base
intersection of item if the target measure has a base intersection of class and there is no
explicit transformation specified from item to class in transformspec.
If a dimension in the target is not in the source and is also not defined by a mapping,
then transformation is applied to every position in that dimension.
transformSum only works for numeric measures. Text or Boolean measures will not get
transformed.
If a cell in the source cannot be mapped to a position in the target then it is ignored. The
Transform procedure always writes a status message to rpas.log indicating how many
cells were successfully transformed, how many cells failed and how many seconds the
transformation took to execute.
The source measure and any map measure may be non-conforming. For instance, the
source may be defined at month and the map defined at season.

Appendix: Rules Function Reference Guide 239

Description of Functions

Example:
WpVRSlsR <-transformSum(WpSlsR, [LOC].[STR], [DVR].[VR], LABEL, WpRankTx)

Takes WpSlsR (store/class/month) and transforms it to WpVRSlsR (volume
rank/class/month) using label mappings defined in WpRankTx (store/class/season).

transformMax
The transformMax procedure converts data across hierarchies using max aggregation. The
procedure operates in the same way as transformSum, except that the aggregation method
used is max.
Syntax
<target> <- transformMax(<source>, <transformspec1> [, <transformspec2> … ,
<transformspecn>])

Input Parameters

The table below provides the input parameters for the transformMax procedure.

Parameter Name Description

source Measure that is being aggregated into
<target> measure using the aggregation type
of max.

transformspec1-n This parameter is
[<hierarchy>].[<dimension>],
[<hierarchy>].[<dimension>] ,
[LABEL|POSNAME], <map>

Output Parameters

The table below provides the output parameter for the transformMax procedure.

Parameter Name Description

target Measure into which the <source> measure is
aggregated into using the aggregation type of
max.

Example:
r_ut_out<-transformMax(r_ut_in, [prod].[sku], [clnd].[week], 0, r_ut_map)

Takes r_ut_in (sku/str/day) and transforms it to r_ut_out (sku/str/week) using label
mappings defined in r_ut_map (sku/str). Here the maximum across all the days of a week
is taken from r_ut_in and stored in the r_ut_out measure using label mappings defined
in r_ut_map (sku/str).

240 Oracle Retail Predictive Application Server

Description of Functions

transformOr
The transformOr procedure converts data across hierarchies using or aggregation. The
procedure operates in the same way as transformSum, except that the aggregation method
used is or. Both source and target measures must be Boolean measure types.
Syntax
<target> <- transformOr(<source>, <transformspec1> [, <transformspec2> … ,
<transformspecn>])

Input Parameters

The table below provides the input parameters for the transformOr procedure.

Parameter Name Description

source Measure that is being aggregated into
<target> measure using the aggregation type
of or. Must be a Boolean measure type.

transformspec1-n This parameter is
[<hierarchy>].[<dimension>],
[<hierarchy>].[<dimension>] ,
[LABEL|POSNAME], <map>

Output Parameters

The table below provides the output parameter for the transformOr procedure.

Parameter Name Description

target Measure into which the <source> measure is
aggregated into using the aggregation type of
or. Must be a Boolean measure type.

Example:
r_ut_out<-transformOr(r_ut_in, [prod].[sku], [clnd].[week], 0, r_ut_map)

Takes r_ut_in (sku/str/day) and transforms it to r_ut_out (sku/str/week) using label
mappings defined in r_ut_map (sku/str). Here the Boolean OR across all the days of a
week is taken from r_ut_in and stored in the r_ut_out measure using label mappings
defined in r_ut_map (sku/str).

Appendix: Rules Function Reference Guide 241

Description of Functions

transformProp
The transformProp procedure converts data across hierarchies using Proportional
spreading. The procedure converts data between measures of different dimensionality
using a set of map measures to convert positions from the source measure to positions in
the target measure. While the transformSum procedure (and related aggregation
procedures) assumes a many->one relationship as it performs the transformation
(aggregation), the transformProp assumes a one->many relationship between source and
target cells (spreading).
Each source value is spread to a set of target values, leaving the ratio between the target
values in tact.
If the sum of all target cells is zero, then the source is spread evenly to the targets.
Syntax
<target> <- transformProp(<source>, <transformspec1> [, <transformspec2> … ,
<transformspecn>])

Input Parameters

The table below provides the input parameters for the transformProp procedure.

Parameter Name Description

source Measure that is being spread into <target>
measure.

transformspec1-n This parameter is
[<hierarchy>].[<dimension>],
[<hierarchy>].[<dimension>] ,
[LABEL|POSNAME], <map>

Output Parameters

The table below provides the output parameter for the transformProp procedure.

Parameter Name Description

target Measure into which the <source> measure is
spread.

Note
If the <source> measure has a calendar dimension, then the r_elapsed measure has to
have a value. (This is true for all TransformSpread flavors: transformProp, transformRepl,
transformEven)
Example:
mace -d . -run -expression "r_ut_out <- transformProp(r_ut_in, [clnd].[day], [loc]
.[str], 0, r_ut_map)

242 Oracle Retail Predictive Application Server

Description of Functions

transformEven
The transformEven procedure converts data across hierarchies using Even spreading.
Syntax
<target> <- transformEven(<source>, <transformspec1> [, <transformspec2> … ,
<transformspecn>])

Input Parameters

The table below provides the input parameters for the transformEven procedure.

Parameter Name Description

source Measure that is being spread into <target>
measure.

transformspec1-n This parameter is
[<hierarchy>].[<dimension>],
[<hierarchy>].[<dimension>] ,
[LABEL|POSNAME], <map>

Output Parameters

The table below provides the output parameter for the transformEven procedure.

Parameter Name Description

target Measure into which the <source> measure is
spread.

Note
If the <source> measure has a calendar dimension, then the r_elapsed measure has to
have a value. (This is true for all TransformSpread flavors: transformProp, transformRepl,
transformEven)
Example:
mace -d . -run -expression "r_ut_out <- transformEven(r_ut_in, [clnd].[day], [loc]
.[str], 0, r_ut_map)"

Appendix: Rules Function Reference Guide 243

Description of Functions

transformRepl
The transformRepl procedure converts data across hierarchies using Replicate spreading.
Syntax
<target> <- transformRepl(<source>, <transformspec1> [, <transformspec2> … ,
<transformspecn>])

Input Parameters

The table below provides the input parameters for the transformRepl procedure.

Parameter Name Description

source Measure that is being spread into <target>
measure.

transformspec1-n This parameter is
[<hierarchy>].[<dimension>],
[<hierarchy>].[<dimension>] ,
[LABEL|POSNAME], <map>

Output Parameters

The table below provides the output parameter for the transformRepl procedure.

Parameter Name Description

target Measure into which the <source> measure is
spread.

Note
If the <source> measure has a calendar dimension, then the r_elapsed measure has to
have a value. (This is true for all TransformSpread flavors: transformProp, transformRepl,
transformEven)
Example:
mace -d . -run -expression "r_ut_out <- transformRepl(r_ut_in, [clnd].[day], [loc]
.[str], 0, r_ut_map)"

244 Oracle Retail Predictive Application Server

Description of Functions

Normalization and Resizing Functions

resize
Uses the "shape" of a time series to produce another time series of a different length, but
with the same shape.
Syntax
resize(<expression>, <start>, <fromlength>, <tolength>)

Where <expression> is a measure or expression whose time series is to be used, and
<start>, <fromlength> and <tolength> are expressions that calculate numbers. <start> is
assumed to be a calendar index number: if its value is numeric but non-integer, only the
integer portion will be used. If <fromlength> or <tolength> are less than 0, or either
parameter is non-numeric or when added to <start>-1 is outside the scope of the
calendar index numbers for the dimension being calculated, an error is generated. If
<fromlength> or <tolength> are non-integer, only the integer portion will be used.
The function returns a time series that is resized such that the overall shape of the values
is retained, but the number of time periods is stretched or shrunk from <fromlength> or
<tolength>. For time periods outside the horizon covered by <start> and <start> -1 +
<tolength> (if there are any) the function will return zero – if values other than this are
required, or if no update to those periods is required, the function should be wrapped in
an if function that can set the appropriate value or use the ignore clause, as appropriate.
The function stretches or shrinks the section of the time series by interpolation or
decimation. The algorithm uses upsampling, convolution, and then downsizing. The
filter used in convolution is a finite impulse response (FIR) lowpass filter, using a
hamming window with cut-off frequency and length determined from greatest common
denominator of the source and destination time series lengths.
The values generated for individual cells through this process are not normalized (for a
similar function that normalizes the result, see the resizenorm function), and will be of
similar magnitude to the cell values for the source cells.
Inverse
The resize function does not have an inverse.
Examples:
 resize(profile, first, 10, 17)

The first 17 periods of the result time series will have values with a shape the same as
the first 10 periods of the measure profile. All other periods will be zero.

 resize(tssum(profile,startweek, startweek), profilelength, numweeks)
This example should be compared with the similar example of the normalize
function. It uses a profile to generate a sales plan for an item for a specified length of
time from a specified period of time. The profile is not necessarily the same length as
the period for which sales are to be generated. The measure profile is assumed to
have a profile (shape) for the sales of an item, starting in the first period with values
for a number of periods given by the measure profilelength. startweek is an index
number of the period from which sales should be generated for the item. numweeks
has the length of the sales profile to be generated. Periods before the startweek or
after the startweek-1+numweeks will have a result of zero. The periods from startweek
to startweek-1+numweeks will have the result of the first profilelength weeks of the
profile measure, stretched or shrunk to fit the appropriate number of periods.

Appendix: Rules Function Reference Guide 245

Description of Functions

resizenorm
Uses the "shape" of a time series to produce another time series of a different length, but
with the same shape, normalized to a specific total.
Syntax
resizenorm(<expression>, <start>, <fromlength>, <tolength>[, <total>])

<total> is an expression that returns a numeric value. If <total> is not specified, it is
assumed to be the sum of the cells of <expression> from startweek to startweek-
1+fromlength. See the resize function for an explanation of the other parameters.
This function is identical to the resize function, except that the calculation engine
automatically normalizes the resized values to the specified <total>.
Inverse
The resizenorm function does not have an inverse.
Examples:
 resizenorm(profile, first, 10, 17)

The first 17 periods of the result time series will have values with a shape the same as
the first 10 periods of the measure profile. All other periods will be zero. The values
of the cells will be such that sum of the 17 generated periods of the result time series
will be the same as the first 10 periods of the measure profile.

 resizenorm(tssum(profile,startweek, startweek), profilelength, numweeks,
targetsales)
This example should be compared with the similar example of the resize function.
The generated sales will be normalized so that their sum is the value of the
targetsales measure.

Other Functions and Procedures

cover
The cover function returns the number of future periods for which "stock" covers "sales."
Alternately phrased, that is a "forwards weeks of supply," or the number of future
periods of "sales" that could be satisfied from the "stock" with no further receipts.
The cover function allows for two "sales" expressions, where the second is a "wrap
around" expression to provide a well-defined cover for periods at or near the end of the
calendar horizon that would otherwise "run out" of forward sales. An offset is also
specified to allow the cover function to behave appropriately for both opening and
closing stock.
Syntax
cover(<stockexpression>, <salesexpression>[, <offsetexpression>,
[<wraparoundsalesexpression>]])

Where <stockexpression> is an expression or measure that represents the ‘stock.’
<salesexpression> is an expression or measure that represents the "sales."
<offsetexpression> is an expression that calculates a number that represents the offset to
apply. If the value is non-integer, only the integer portion is used. If the value is non-
numeric, an error is generated. If <offsetexpression> is not provided, the default value
will be 1. <wraparoundsalesexpression> is an expression or measure that represents the
"wrap around sales." If <wraparoundsalesexpression> is not provided, there will be no
wraparound, and the function will generate an error if there is insufficient "forward
sales" to calculate the cover.
The <salesexpression> can be considered to define a time series of sales data values,
starting at the current period offset by the <offsetexpression>, and stretching until the

246 Oracle Retail Predictive Application Server

Description of Functions

end of the calendar horizon. If this time series is too short to evaluate the cover value, it
can be considered to be extended by one or more copies of the time series implied by the
<wraparoundsalesexpression>, if specified, from the start until the end of the calendar
horizon. The cover value is calculated by summing down the time series until a sum is
reached that is equal to or greater than the value of the <stockexpression>. If the sum is
equal to the <stockexpression>, the number of periods used is returned. If the sum is
greater than the <stockexpression>, the value returned is the number of periods used
minus 1, plus the proportion of the last period reached that is required to exactly reach
the value of the <stockexpression>. If the <offsetexpression> causes the start of the time
series to be before the start of the calendar horizon, or no <wraparoundsalesexpression> is
specified, and there is insufficient ‘forward sales’ to determine the cover, an error is
generated.
Inverse
The cover function has an inverse function, uncover. uncover returns the amount of
"stock" that is required to give a specified number of "forward periods cover." There is no
inverse function that solves this relationship for "sales" (which is used as a time series,
rather than a single value).

Note: The inverse can only apply if the <stockexpression> is
a single measure, rather than an expression.

Examples:
 cover(EOP, Sales)

This provides an EOP based forward cover. There is no "wraparound" sales
expression, so this function will generate errors towards the end of the plan horizon.

 cover(BOP, Sales + MD, 0)
This provides a BOP based forward cover, using Sales plus markdowns as the
expression to be covered. There is no ‘wraparound’ sales expression, so this function
will probably generate errors towards the end of the plan horizon.

 cover(EOP, Sales, 1, Sales)
This provides an EOP based forward cover. Sales itself is used as the "wraparound
sales expression" (this is typical where the plan horizon is a year, since the Sales
measure has the appropriate seasonality; where this is not the case, another measure,
such as "next season sales" would be used) so this function will return "reasonable"
values towards the end of the plan horizon when the cover is greater than the
number of weeks remaining.

Appendix: Rules Function Reference Guide 247

Description of Functions

Note: The cover function is always calculated at the current
time dimension. For example, in a plan where the bottom
time dimension is week, a measure with an aggregation type
of recalc that is calculated from a cover function at the
month level will calculate "forward months of supply." If
forward weeks of supply are required to be calculated for
the month dimension, it would be more appropriate to
specify the measure with an aggregation type of first or last,
so that aggregation, rather than calculation through the rule,
is used to generate the values at the month dimension.

Make sure that the wrap around expression, if used, is
seeded with appropriate values.

Both the "stock" and the "sales" used in the cover function
are expressions. This supports various business needs, such
as using covers based on "sales plus markdowns." If the
"stock" is provided as an expression, rather than just a single
measure, the function will not have an inverse.

The offset expression is used to define the offset: from which
period to start using the sales expression. It is assumed to be
an offset from the current period, so that a value of zero
means that the sales for the current period should be used in
evaluating the cover (which is appropriate for an "opening
stock" based cover), and an offset of 1 means start in the
period following the current period (which is appropriate
for a "closing stock" based cover). Values other than 0 and 1
may be used.

uncover
The uncover function returns the amount of "stock" required to cover "sales" for the
specified number of forward periods.
The uncover function allows for two "sales" expressions where the second is a "wrap
around" expression that provides a well defined cover for periods at or near the end of
the calendar horizon that would otherwise "run out" of forward sales. An offset is also
specified to allow the uncover function to behave appropriately for both opening and
closing stock.
Syntax
uncover(<coverexpression>, <salesexpression>[, <offsetexpression>,
[<wraparoundsalesexpression>]])

Where <coverexpression> is an expression or measure that represents the "cover value."
<salesexpression> is an expression or measure that represents the "sales."
<offsetexpression> is an expression that calculates a number that represents the offset to
apply. If the value is non-integer, only the integer portion is used. If the value is non-
numeric, an error is generated. If <offsetexpression> is not provided, the default value
will be 1. <wraparoundsalesexpression> is an expression or measure that represents the
"wrap around sales." If <wraparoundsalesexpression> is not provided, there will be no
wraparound, and the function will generate errors if there is insufficient "forward sales"
to calculate the stock.

248 Oracle Retail Predictive Application Server

Description of Functions

The <salesexpression> can be considered to define a time series of sales data values,
starting at the current period offset by the <offsetexpression>, and stretching until the
end of the calendar horizon. If this time series is too short to evaluate the stock value, it
can be considered to be extended by one or more copies of the time series implied by the
<wraparoundsalesexpression>, if specified, from the start until the end of the calendar
horizon. The stock value is calculated by summing down the time series for a number of
periods equal to the integer portion of the <coverexpression> and adding the value of the
next period, multiplied by the fractional portion of the <coverexpression>. If the
<offsetexpression> causes the start of the time series to be before the start of the calendar
horizon, or no <wraparoundsalesexpression>, is specified, and there is insufficient
"forward sales" to determine the stock, an error is generated.
Inverse

The uncover function has an inverse function, the cover function. This function returns
the number of forward periods of cover implicit in the specified stock. There is no inverse
function that "solves" this relationship for "sales" (which is used as a time series, rather
than a single value).

Note: The inverse can only apply if the <coverexpression> is
a single measure, rather than an expression.

Examples:
 uncover(WOS, Sales)

This provides an EOP stock value that gives the specified weeks of supply. There is
no "wraparound" sales expression, so this function will generate errors towards the
end of the plan horizon.

 uncover(WOS, Sales + MD, 0)
This provides a BOP stock value that gives the specified weeks of supply, using Sales
plus markdowns as the expression to be covered. There is no "wraparound" sales
expression, so unless the value of WOS is less than 1, this function will generate
errors towards the end of the plan horizon.

 uncover(WOS, Sales, 1, Sales)
This provides an EOP stock value that gives the specified weeks of supply. Sales
itself is used as the "wraparound sales expression" (this is typical where the plan
horizon is a year, since the Sales measure has the appropriate seasonality; where this
is not the case, another measure, such as "next season sales" would be used) so this
function will return "reasonable" values towards the end of the plan horizon when
the cover is greater than the number of weeks remaining.

Appendix: Rules Function Reference Guide 249

Description of Functions

Note: The uncover function is always calculated at the
current time dimension. For example, in a plan where the
bottom time dimension is week, a rule or mapping rule that
uses an uncover function at the month level will calculate the
"stock" on the assumption that the <coverexpression>
provides a "forward months of supply."

Make sure that the wrap around expression, if used, is
seeded with appropriate values.

Both the "cover" and the "sales" used in the uncover function
are expressions. This supports various business needs, such
as using covers based on "sales plus markdowns." If the
"cover" is provided as an expression, rather than just a
measure, the function will not have an inverse.

The offset expression is used to define the offset: from which
period to start using the sales expression. It is assumed to be
an offset from the current period, so that a value of zero
means that the sales for the current period should be used in
evaluating the cover (which is appropriate for an "opening
stock" based cover), and an offset of 1 means start in the
period following the current period (which is appropriate
for a "closing stock" based cover). Values other than 0 and 1
may be used.

min
The min function returns the minimum value from a series of expressions or set of
measures.
Syntax
min(<expression1>, <expression2> [, <expression3> … <expressionn>])

Where <expression1-n> are expressions or a set of measures (denoted by {<measureset>}
), which return numeric values. The function returns the minimum value of the
expressions.
Inverse

The min function does not have an inverse.
Example:
 min (A, B, C)

Returns the minimum of the measures A, B, and C.

250 Oracle Retail Predictive Application Server

Description of Functions

max
The max function returns the maximum value from a series of expressions or set of
measures.
Syntax
max(<expression1>, <expression2> [, <expression3> … <expressionn>])

Where <expression1-n> are expressions or a set of measures (denoted by {<measureset>}
), which return numeric values. The function returns the maximum value of the
expressions.
Inverse
The max function does not have an inverse.
Example:
 max (A, B, C)

Returns the maximum of the measures A, B, and C.

sum
The sum function returns the sum of a series of expressions or measure set.
Syntax
sum(<expression1>, <expression2> [, <expression3> … <expressionn>])

Where <expression1-n> are expressions or a set of measures (denoted by {<measureset>}
), which return numeric values. The function returns the summed value of the
expressions or measure set.
Inverse

The sum function does not have an inverse.
Example:
 sum (A, B, C)

Returns the sum of the measures A, B, and C.

lag
The lag function returns the value of an expression from the previous time period in the
dimension being evaluated.
Syntax
lag(<expression>)

Where <expression> is any valid expression. The function returns the value of the
expression in the previous period. If the current period being evaluated is the first period
in the calendar horizon (so that there is no previous period), an error is generated. For
that reason, lag functions are usually embedded in if functions or prefer functions to
check for that case.
Inverse
The lag function does not have an inverse.
Example:
 lag(EOP)

Returns the value of the measure EOP from the next period.

Appendix: Rules Function Reference Guide 251

Description of Functions

Note: The tssum procedure can be used if you need to lag or
lead by more than one period.

The lag function has special "cycle breaking" logic that
enables a series of expressions to be calculated in a manner
that allows them to be evaluated "period wise." This allows
an apparent "deadly embrace" to be broken. Thus the
following two expressions are allowed, and can be
calculated in the same rule group, even though EOP appears
to depend on BOP, which appears to depend on EOP:

EOP = BOP + Rec – SLs – MD
BOP = lag(EOP)

Note, however, that the cycle breaking logic does not
support the measure being calculated being lagged on the
RHS of the expression. Thus the following expression is not
allowed:
AccumSls = Sls + lag(AccumSls)

lead
The lead function returns the value of an expression from the next (following) time
period in the dimension being evaluated.
Syntax
lead(<expression>)

Where <expression> is any valid expression. The function returns the value of the
expression in the following period. If the current period being evaluated is the last period
in the calendar horizon (so that there is no following period), an error is generated. For
that reason, lead functions are usually embedded in if functions or prefer functions to
check for that case.
Inverse

The lead function does not have an inverse.
Examples:
 lead(BOP)

Returns the value of the measure BOP from the next period.

252 Oracle Retail Predictive Application Server

Description of Functions

Note: The lead function is deliberately intended as a
"simple" version of the timeshift procedure for one of the
most frequently used cases, which is that the offset is one
period in the future. Use the timeshift procedure for leading
with a variable offset.

In a similar manner to the lag function, the lead function has
special "cycle breaking" logic that enables a series of
expressions to be calculated in a manner that allows them to
be evaluated "period wise." This allows an apparent ‘deadly
embrace’ to be broken.

Even when an error is generated because the current period
is the last period in the calendar horizon, the lead function
itself, if not guarded by if or prefer functions, returns the
re-evaluated NA value of the measure. For example, for the
following expression group:

A = lead(B)
B = A + 1

...assume that the NA value for both A and B is 0. The
system first re-evaluates B's NA value to be A's NA value + 1
= 1 based on the second expression. The system will attempt
to retrieve the time period after B's last time period when A =
lag(B) is evaluated. Because that time period does not exist,
the lead function will return B's re-evaluated NA value
instead, which is 1.

timeshift
The timeshift procedure that returns the value of a measure from a time period in the
dimension being evaluated that is lagged by a designated number of periods.
This procedure has the following special uses and restrictions:
 Measures used in this procedure can be modified with the master modifier.
 Currently timeshift cannot be used in calculation rule groups.
 Used for lagging the values of a measure by more than one period.
 Used for retrieving values from time periods outside the scope of the workbook.
 Used for addressing 52-53 week year differences.

Syntax
<output> <- timeshift(<input>, {<lagvalue> | <lagmeas> | <lagmap>})

<input> is the measure that is being lagged and must have the same base intersection as
<output> or must be forced to evaluate at the base intersection of <output> by using the
level modifier. <input> must include a dimension in the calendar hierarchy and must be
the same data type as <output>.
<lagvalue> is a scalar value that designates the number of periods each position in
<input> is shifted. A negative value refers to shift forward in calendar dimension (lead),
and a positive value refers to shift backward in calendar dimension (lag).
<lagmeas> is a numeric measure that contains values that determine how each position is
shifted. <lagmeas> cannot have a calendar dimension and all non-calendar dimensions
must be identical to <input>.

Appendix: Rules Function Reference Guide 253

Description of Functions

Note: This implies that if either <input> or <lagmeas>
measure is modified with the master modifier, the other
measure must also be modified with the master modifier.

<lagmap> is a string measure used for sophisticated mappings. The measure contains
position names that indicate how each time period is mapped, and it must only contain
positions from the dimension from the calendar hierarchy. Multiple positions can be
specified by separating them using a space. In other words, <lagmap> defines a mapping
of positions from the input measure to the destination measure along time. Entries in
<lagmap> that are not the names of valid positions in the dimension from the calendar
hierarchy are ignored.

Note: This implies that if either <input> or <lagmap> measure
is modified with the master modifier, the other measure
must also be modified with the master modifier.

This mapping technique is primarily used when lagging measures between 52 and 53-
week years. When mapping multiple positions to a single position (such as mapping the
last 2 weeks in a 53-week year to the last week in a 52-week year), the resulting value is
the sum of the source values (that is, the sum of the last 2 weeks of the 53-week year).
When mapping a single position to multiple positions (such as mapping the last week in
a 52-week year to the last 2 weeks in a 53-week year), the source value is replicated to the
resulting values (that is, weeks 52 and 53 in the 53-week year are updated to week 52 in
the 52-week year).

Note: timeshift is a procedure so it cannot be combined
with functions, modifiers, or other procedures in any
manner. As a procedure, it requires a different syntax: “<-“
instead of “=” when being assigned.

Inverse
The timeshift procedure does not have an inverse.
Examples:
 salesly <- timeshift(sales.master, -52)

Updates the positions in the workbook measure for last year’s sales with the values
from the domain measure sales where each position is lagged by 52 periods.

 salesly <- timeshift(sales.master, saleslag)
Where sales and salesly have a base intersection of SKU-week, the numeric
measure saleslag contains a value for each SKU that indicates the number of periods
to lag by SKU.

 salesly <- timeshift(sales.master, salesmap)
Where salesmap is a string measure that contains position names indicating which
position in sales to use for each position in salesly; the current year in the workbook
contains 52 weeks, the previous year that is not in the workbook contains 53 weeks;
the 52nd position in salesly contains the position names “week52” and “week53”
and results in the sum of the 2 positions.

254 Oracle Retail Predictive Application Server

Description of Functions

round
Returns the value of an expression rounded up or down to the nearest multiple.
Syntax
round(<expression>[, <multipleexpression>])

Where <expression> is any valid expression, which specifies the value to be rounded,
<multipleexpression> is an expression that calculates a number that represents the
multiplier to use. If the value is not specified, it is assumed to be 1. The value may be
non-integer. If the value of either expression is non-numeric, an error is generated. The
rounding is up or down to the nearest multiple of the multiplier. If there are 2 multiples
equally near to the value (for instance, rounding 1.5 to the nearest integer), then
rounding is up (away from zero).
Inverse
The round function does not have an inverse.
Examples:
 round(qty)

Returns the value of the measure qty, rounded up or down to the nearest integer. If
the qty is 14.324, this returns the result of 14, if the qty is 14.824, this returns the
result of 15.

 round(qty, packsize)
Returns the value of the measure qty, rounded up or down to the nearest multiple of
the pack size. If the qty is 14.324 and the packsize is 6, this returns the result of 12. If
the qty is 16.824 and the packsize is 6, this returns the result of 18.

roundup
The roundup function returns the value of an expression rounded up to the nearest
multiple.
Syntax
roundup(<expression>[, <multipleexpression>])

Where <expression> is any valid expression, which specifies the value to be rounded.
<multipleexpression> is an expression that calculates a number that represents the
multiplier to use. If the value is not specified, it is assumed to be 1. The value may be
non-integer. If the value of either expression is non-numeric, an error is generated.
Rounding is always up (to the nearest multiple of the multiplier further away from zero).
Inverse

The roundup function does not have an inverse
Examples:
 roundup(qty)

Returns the value of the measure qty, rounded up to the nearest integer. If the qty is
14.324 or 14.824, this returns the result of 15.

 roundup(qty, packsize)
Returns the value of the measure qty, rounded up to the nearest multiple of the pack
size. If the packsize is 6 and the qty is 14.324 or 16.824, this returns the result of 18.

Appendix: Rules Function Reference Guide 255

Description of Functions

rounddown
The rounddown function returns the value of an expression rounded down to the nearest
multiple.
Syntax
rounddown(<expression>[, <multipleexpression>])

Where <expression> is any valid expression, which specifies the value to be rounded,
<multipleexpression> is an expression that calculates a number that represents the
multiplier to use. If the value is not specified, it is assumed to be 1. The value may be
non-integer. If the value of either expression is non-numeric, an error is generated.
Rounding is always down (to the nearest multiple of the multiplier closer to zero).
Inverse
The rounddown function does not have an inverse.
Examples:
 rounddown(qty)

Returns the value of the measure qty, rounded down to the nearest integer. If the qty
is 14.324 or 14.824, this returns the result of 14.

 rounddown(qty, packsize)
Returns the value of the measure qty, rounded down to the nearest multiple of the
pack size. If the packsize is 6 and the qty is 14.324 or 16.824, this returns the result of
12.

Note: The round functions have no inverses. Great care
should be used in designing rule groups that use these
functions, and the preferred technique for rounding is often
to not round during calculation, but to round values on
display only.

The round functions cause problems because they can
compromise the integrity of rule and expression
relationships. Consider a typical relationship between value,
units and price. If the units are calculated through a round
function (on the apparently reasonable assumption that
units should be integers) after a change to, say, the value,
then the integrity of the rule relationships is immediately
compromised because the price is no longer the value
divided by the units.

256 Oracle Retail Predictive Application Server

Description of Functions

navalue
The navalue function returns the NA value of the specified expression.
Syntax
navalue(<expression>)

<expression> can be a constant, a measure, or an expression.
The navalue function does not directly generate errors, but it can propagate errors
generated by <expression>.
Inverse
The navalue function does not have an inverse.
Examples:
 navalue(<meas>)

This returns the NA value of <meas>.
 navalue(<meas1> + <meas2>)

This returns the NA value of the expression <meas1> + <meas2>. In this example, if the
NA value of <meas1> is 2 and the NA value of <meas2> is 5, the result of the navalue
function will be 7.

propspread
propspread is a multiple result function that spreads a value across a collection of
measures while retaining their relative proportions. The multiple results are not named,
and are therefore positional only. The typical usage of this function is to allow spreading
of "hierarchical measures."
Syntax
propspread(<totalexpression>, <childexp1>, … <childexpn>)

Where <totalexpression> is an expression that returns a numeric value to which to
balance the results of the function, <childexp1> - <childexpn> are expressions that
provide the "shape" of the results. They will typically be the same measures as those
assigned to the result of the function, but using the old modifier. A measure defined as a
result cannot be used on the right-hand side without old.
The function generates n positional results, where n is the number of "child expressions."
The results will sum to the <totalexpression>, using the "shapes" of the child expressions
in the order of the child expressions.
The number of results should be equal to the number of child expressions, which means
that there should be one more argument on the right-hand side than output measures on
the left-hand side. Additional child expressions are ignored. If too few child expressions
are defined, the function will fail. Currently, there is no validation to warn when this
condition occurs.
If the sum of the child expressions is zero, the spread will be even.
Inverse
The propspread function does not have an inverse.
Example:
The old modifier can be used in conjunction with the propspread function to implement a
hierarchical relationship among measures. In the following example, Total sales
(TotalSls) is the “parent” measure and regular sales (RegSls), promotional sales
(PromSls), and markdown sales (MkdSales) are the “child” measures. Using old and
propspread to configure this relationship allows the manipulation of any combination of
these measures before calculating, except for all of them.

Appendix: Rules Function Reference Guide 257

Description of Functions

In the following example and in other such hierarchical measure relationships, the order
of the expressions within a rule is critical for the measures to be correctly calculated.
TotalSls = RegSls + PromoSls + MkdSls
RegSls, PromoSls, MkdSls = propspread(TotalSls, RegSls.old, PromoSls.old,
MkdSls.old)
PromoSls, MkdSls = propspread(TotalSls - RegSls, PromoSls.old, MkdSls.old)
RegSls, MkdSls = propspread(TotalSls - PromoSls, RegSls.old, MkdSls.old)
RegSls, PromoSls = propspread(TotalSls - MkdSls, RegSls.old, PromoSls.old)

RegSls = TotalSls - PromoSls - MkdSls

PromoSls = TotalSls - RegSls - MkdSls

MkdSls = TotalSls - RegSls - PromoSls

passthrough
passthrough is a multiple result function that is used to encapsulate any number of
normal computations into a single expression.

Note: The passthrough function is not allowed for measures
with a recalc agg type.

Syntax
passthrough(<exp1>, <exp2>, …, <exp-n>)

Where <exp1> - <exp-n> are normal expressions used to calculate the resulting measures.
All measures on the left hand side must be computed at the same base intersection. The
number of results should be less than or equal to the number of calculation expressions
(additional calculation expressions are ignored). If too few calculation expressions are
defined then function will fail. Currently, there is no validation to warn an individual
when this condition is met.
There are two main reasons for using this function:
1. Use passthrough in an expression for a rule when computing values for multiple

measures without having to write (develop) a multiple-result function or procedure.

2. To improve performance. If many measures are computed using the same or similar
set of RHS measures, combining those calculations using passthrough may be faster
because there is less physical input/output with the data.

Inverse
The passthrough function does not have an inverse.
Examples:
 A, B = passthrough(C + D, C - D)

Computes the sum and difference of two measures simultaneously.
 SalesA, SalesB = passthrough(SalesA.old * TotalSales / TotalSales.old,

SalesB.old * TotalSales / TotalSales.old)
Proportionately spread TotalSales down to its components, SalesA and SalesB.

258 Oracle Retail Predictive Application Server

Description of Functions

ranksort
The ranksort procedure returns the rank of intersections given the rank order (ascending
or descending), the measure to rank upon and the dimensions to rank over.
Syntax
<output> <- ranksort(<input>,<rank order> [,<dimspec1>, …, <dimspecn>])

<output> is the measure that will contain the ranking results. The result of ranking will
always be an integer value, so the data type of <output> must be integer or numeric.
<input> is the measure to be ranked.
<rank order> is {ascending | descending}. ascending is a keyword meaning that the
intersection will be ranked in ascending value of the <input> measure, and descending is
a keyword meaning that the intersection will be ranked in descending value of the
<input> measure. All keywords which need to be passed to a function must be wrapped
in double quotes (" "). Any other syntax will throw an error.
<dimspec1-n> is [<hierarchy>].{[<dimension>] | top} <dimspec1-n> specifies the
dimensions to rank over. For each <dimspec> that is specified, the <hierarchy> must be the
name of a valid hierarchy and the <dimension> must be the name of a valid dimension in
that hierarchy. top is a keyword that refers to the highest dimension ("all") in the
hierarchy. <dimspec1-n> is optional, and if omitted the value for each hierarchy in the
base intersection of <output> will be [hierarchy].top. A <dimspec> for a hierarchy that is
not in the base intersection of <output>, or that references a dimension that is not higher
than (a parent/grandparent etc. of) the dimension in that hierarchy in the base
intersection of <output>, or which references a hierarchy that already has a <dimspec>, is
an error.
The base intersection of <output> determines the intersections that will be ranked. If the
base intersection of <input> is different to that of <output>, as will usually be the case,
then the values of <input> used for ranking will be the values at the intersections implied
by the base intersection of <output> obtained by normal non-conforming measure
handling, with replication from higher dimensions and/or aggregation from lower
dimensions.
The scope of the ranking is dictated by <dimspec1-n>. These will usually be implied rather
than explicitly specified, and be at the top of the hierarchy. However, when a dimension
is specified, there will be a separate ranking for each position (or combination of
positions where a dimension is specified in two or more hierarchies) in that dimension.
Thus, for example, when evaluating a measure calculated from the ranksort procedure
that has a base intersection of sku/week, where the <dimspecs> reference the dimensions
class and season, in a workbook with 4 classes and 2 seasons, there will be eight sets of
ranks, one per class/season, and the value for each sku/week intersection will be the
order of that sku/week within its class/season.
The ranking process sorts the intersections in ascending or descending value of <input>,
as required, and the ranking number is the order that each position is after sorting. The
intersection with the highest value of <input> (lowest when ranking ascending) will have
a rank of 1, with subsequent intersections having a rank higher by one. Where two or
more intersections have the same value of <input>, they will be given the same rank, but
the next rank value will account for the number of intersections with identical rankings.
Thus for example, the first few rankings might be 1, 2, 3, 3, 5, 6, …

Appendix: Rules Function Reference Guide 259

Description of Functions

Note: ranksort is a procedure and thus cannot be combined
with functions, modifiers, or other procedures in any
manner. As a procedure, it requires a different syntax: “<-“
instead of “=” when being assigned.

The level modifier cannot be used on the LHS of an
expression that uses the ranksort procedure. That is, the
level at which the ranking is executed will always be
determined by the base intersection of <output>.

The ranksort procedure must, by its nature, calculate a rank
value for every intersection within a scope, not just those
that have changed values for measures on the right-hand
side of the expression. In incremental calculation mode (for
example, when planning online) this may cause longer than
expected calculation times, especially when the measure
calculated through the ranksort procedure is used on the
right-hand side of other expressions, as those expressions,
plus any "knock-on" effects will also have to be calculated
for every intersection within the scope.

Examples:
 Rank <- ranksort(WpSlsR, "descending")

If Rank has a base intersection of sku, the result of this procedure is the integer value
representing where each SKU’s Sales value ranks amongst all SKUs. The SKU with
the highest WpSlsR value will have a rank of 1.

 Rank <- ranksort(WpSlsU, "descending", [prod].[clss])

If Rank has a base intersection of sku, the result of this procedure is the integer value
representing where each SKU’s Sales units ranks amongst all SKUs within its class.
The SKU with the highest WpSlsU value in each class will have a rank of 1, and there
will be several SKUs with a rank of 1, one per class.

 Rank <- ranksort(WpSlsR, "descending", [prod].[clss])

If Rank has a base intersection of sku/week, the result of this procedure is the integer
value representing where each SKU/Week’s Sales value ranks amongst all
SKU/weeks within its class for the whole time horizon. The SKU/week with the
highest WpSlsR value in each class will have a rank of 1, and there will be several
SKU/weeks with a rank of 1, one per class.

 Rank <- ranksort(WpSlsR, "descending", [prod].[clss], [clnd].[seas])

If Rank has a base intersection of sku/week, the result of this procedure is the integer
value representing where each SKU/Week’s Sales value ranks amongst all
SKU/weeks within its class/season. The SKU/week with the highest WpSlsR value in
each class/season will have a rank of 1, and there will be several SKU/weeks with a
rank of 1, one per class/season.

260 Oracle Retail Predictive Application Server

Description of Functions

String Functions

uppercase
Converts a string to upper case.
Syntax
uppercase(<expression>)

Where the value of <expression> is returned as a string with upper case characters.
Useful in making string comparisons.

lowercase
Converts a string to lower case.
Syntax
lowercase(<expression>)

Where the value of <expression> is returned as a string with lower case characters. Useful
in making string comparisons.

Appendix: Rules Function Reference Guide 261

Description of Functions

Math Functions

pow
Returns the value of a number raised to the power of another number (x to the power of
y).
Syntax
pow(<x>, <y>)

<x> and <y> are expressions that return real numbers. <y> designates the exponent to
which <x> is raised.

exp
Returns the value of the transcendental number “e” raised to the power of a number (e to
the power of x).
e is the base of natural logarithms.
Syntax
exp(<x>)

<x> is an expression that returns a real number to which the number “e” (value
2.71828183) is raised.

sqrt
Returns the square root of a number.
Syntax
sqrt(<x>)

<x> is an expression that returns a real number. This function returns the equivalent of
“pow(x, 0.5)”.

log
Returns the logarithm of a number.
This function returns the exponent that indicates the power to which a number is raised
to produce a given number.
Syntax
log(<x>, [<base>])

Where <x> and <base> are expressions that return real numbers. If <base> is not specified
the default value is 10.
Examples:
 log(100)

The logarithm of 100 to the base 10 is 2.
 log(125, 5)

The logarithm of 125 to the base 5 is 3.

ln
Returns the natural logarithm of a number.
This function returns the logarithm of <x> to base “e” (2.71828183).
Syntax
ln(<x>)

<x> is an expression that returns a real number.

262 Oracle Retail Predictive Application Server

Description of Functions

mod
Returns the remainder as the result of the division of 2 numbers.
The result of this function is the remainder of <x> divided by <y>.
Syntax
mod(<x>, <y>)

<x> and <y> are expressions that return real numbers.
Example:
 mod(5, 2)

The remainder of 5 divided by 2 is 1.

abs
Returns the absolute value of a number.
Syntax
abs(<x>)

<x> is an expression that returns a real number.

Appendix: Rules Function Reference Guide 263

D
Appendix: Aggregation and Spread Types

Aggregation Types
The following table describes the supported aggregation types.

Aggregation Type Description Valid Data Types Recommended
Spread Types

recalc Recalculate measure at
each level, via recalc
expression. The
passthrough function
is not valid for use
with this agg type.

numeric, string, date,
Boolean

none

ambig ambig of all values (all
values equal,
otherwise ambig)

string none

ambig_pop ambig of all populated
values

string none

popcount Count of populated
values in base

numeric, string, date,
Boolean

none

hybrid

total Sum of all values numeric prop

total_pop Sum of all populated
values

numeric prop_pop

average Average of all values numeric prop

average_pop Average of all
populated values

numeric prop_pop

max Maximum of all
values

numeric, date repl

max_pop Maximum of
populated values

numeric, date repl_pop

min Minimum of all values numeric, date repl

min_pop Minimum of
populated values

numeric, date repl_pop

Appendix: Aggregation and Spread Types 265

Aggregation Types

Aggregation Type Description Valid Data Types Recommended
Spread Types

pst First value in
innermost hierarchy,
total in others
hierarchies

Note: “First” only has
a meaning in the
calendar hierarchy.
Therefore, this agg
type should only be
used for measures
whose innermost
hierarchy is the
calendar hierarchy.

numeric ps

pet Last value in
innermost hierarchy,
total in other
hierarchies

Note: “First” only has
a meaning in the
calendar hierarchy.
Therefore, this agg
type should only be
used for measures
whose innermost
hierarchy is the
calendar hierarchy.

numeric pe

median Median of all values numeric repl

median_pop Median of populated
values

numeric repl_pop

and and of all values Boolean repl

or or of all values Boolean repl

Note: Only measures with an aggregation type of ambig, pst,
or pet can be aggregated from below the partition levels to
above the partition levels in a global domain.

266 Oracle Retail Predictive Application Server

Spread Types

Spread Types
The following table describes the supported spread types.

Spread Type Description Valid Data Types

none Values are not spread numeric, string, date, Boolean

repl Replicate the value to each cell numeric, string, date, Boolean

prop Spread value proportionally
(previous total non-zero) or
evenly (previous total zero)

numeric

prop_pop Spread value proportionally
(previous total non-zero) or
evenly (previous total zero) to
all populated cells

numeric

even Spread value evenly numeric

delta Increment/decrement each cell
evenly. Effectively the "even"
spreading of the change
("delta").

numeric

ps Apply delta to starting period numeric

pe Apply delta to ending period numeric

Arithmetic Operators
This section provides information about the arithmetic operators supported in
Configuration Tools.

Unary Operators
The following unary arithmetic operators are supported:

Symbol Type Function

- real Negation

! Boolean Compliment

Appendix: Aggregation and Spread Types 267

Arithmetic Operators

Binary Operators
The following binary arithmetic operators are supported:

Symbol Type Function

= real, Boolean, string, date Assignment

+ real Addition

- real Subtraction

* real Multiplication

/ real Division

&& Boolean Boolean and

|| Boolean Boolean or

== real, Boolean, string, date Equality

!= real, Boolean, string, date Inequality

< real, Boolean, string, date Less than

<= real, Boolean, string, date Less than or equal to

> real, Boolean, string, date Greater than

>= real, Boolean, string, date Greater than or equal to

268 Oracle Retail Predictive Application Server

	Contents
	Preface
	Audience
	Related Documents
	Customer Support
	Review Patch Documentation
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	Introduction
	Overview
	Configuration Tools Business Process
	Sample Configurations

	Using the Configuration Tools Online Help
	About the Online Help
	Formatting Conventions
	Navigate the Online Help
	Using Links

	Know the Configuration Manager
	 Navigating the Configuration Tools
	Starting the Program
	About the Configuration Tools Windows

	Configuration Manager
	Overview
	Projects
	Solution
	Hierarchy
	Data Interface
	Styles
	Solutions
	Measures
	Rule Sets, Rule Groups, and Rules
	Workbooks and Worksheets
	Wizards
	Task List

	How RPAS Uses Solution Configurations
	The RPAS Calculation Engine
	Aggregation and Spreading
	RPAS Functions

	Right-Click Menus in the Configuration Manager
	Setting Tools Preferences

	Projects
	Working with Projects
	Overview
	Create a Project
	Save Changes to a Project
	Using “Save As” to Save a Project Using a Different Name
	Open an Existing Project
	Open an Existing Project from an Older Version of the Configuration Tools
	Close a Project

	Hierarchies
	Overview
	The Hierarchy Definition Window

	Working with Hierarchies
	Overview
	Create a New Hierarchy
	Specify Hierarchy Properties
	Delete a Hierarchy
	Copy (Clone) Hierarchies
	Working with Position Formats
	Specifying the Position Format

	Working with Dimensions
	Overview
	Create a Dimension
	Defining Dimension Properties
	Delete a Dimension
	Edit a Dimension
	Create a Branch in a Hierarchy
	Labeled Intersections

	Data Interface Tool
	Overview
	Specify the Data Interface for a Measure
	Add/Edit Data Interface Properties for a Measure
	Delete Data Interface Information for a Measure

	Working with Styles
	Overview
	Create a Style
	Remove a Style
	Edit a Style

	Solutions
	Working with Solutions
	Overview
	Create a Solution
	Copy a Solution
	Rename a Solution
	Move a Solution
	Delete a Solution

	Measures and Components
	Measure Manager
	Measure Component Design
	Create a Major Component
	Create a Minor Component
	Defining Measure Component Properties
	Edit Components
	Alerts
	Measure Validation within the Measure Manager

	Working with Measures
	Overview
	Realize and Unrealize Measures
	Rename a Measure
	Show all Measures
	Hide Measures by Component
	Hide All Measures
	Sort Measures by Property Value
	Filter Measures by Property Value

	External Measures
	Overview
	Import a Measure
	Remove an Imported Measure from a Solution

	Rule Sets
	Overview
	Create a Rule Set
	Delete a Rule Set

	Rule Groups
	Overview
	Create a Rule Group
	Delete a Rule Group
	Copy a Rule Group
	Measure Validation in the Rule Definition Window

	Rules
	Overview
	Create a Rule and Add It to a Rule Group
	Add an Existing Rule to a Rule Group
	Apply a Rule Pattern to Create New Rules or to Update Existing Rules
	Delete a Rule from All Rule Groups
	Remove a Rule from a Rule Group
	Edit Properties of a Rule
	Rename All Rules in a Rule Group
	Filter Rules in a Rule Group
	Reordering Rules in a Rule Group
	Auto Generate Load and Commit Rules
	Copy Selected Rules to Another Rule Group
	Find and Replace Measures in the Copied Rules

	Expressions and Rules
	Overview
	Reorder an Expression in a Rule
	Edit an Expression in a Rule
	Delete an Expression from a Rule
	Add an Expression to a Rule

	RPAS Functions, Procedures, Keywords, and Modifiers
	Overview

	Workbooks
	Overview
	Overview of Participation Measures
	Create a Workbook
	Configure Extended Measures
	The Usage and Arguments Properties
	Edit Workbook Properties
	Defining Workbook Properties
	Remove a Workbook

	Working with the Rule Group Simulator
	Overview
	About the Rule Group Simulator
	Invoking the Rule Group Simulator
	Filtering the Measures Table
	Changing the Edited Status of Measures
	Using the Upstream and Downstream Panes
	Exiting the Rule Group Simulator

	Working with Workbook Tabs
	Overview
	Create a Workbook Tab
	Edit Workbook Tab Properties
	Remove a Workbook Tab

	Working with Worksheets
	Overview
	Create a Worksheet
	Defining Worksheet Properties
	Specify Which Measures Appear in a Worksheet
	Specify the Sequence of Measures on a Worksheet
	Edit Worksheet Properties
	Remove a Worksheet

	Wizards
	Overview
	Create a Wizard Group
	Create a Wizard Page
	Edit Wizard Control Properties

	System Preferences
	Overview
	Global Domain
	Overview
	Setting Workbench Preferences
	Setting Configuration Properties

	Configuration Utilities
	Overview
	Configuration Converter
	Overview
	Launching the Configuration Converter
	Converting a Configuration

	Functional Library Manager
	Overview
	Launching the Functional Library Manager
	Adding a Function Library to Be Validated in the Configuration Tools
	Removing a Function Library from Being Validated in the Configuration Tools

	Report Generator
	Overview
	Generate a Report

	Appendix: Global Domain Technical Information
	Overview

	Appendix: Calculation Engine Users Guide
	Overview
	Measure Definition and Base Intersections
	Data Types
	Base Intersection
	Aggregation and Spreading Types

	Aggregation
	Overview
	Aggregation Types

	Spreading
	Introduction
	Locks and Spreading around Locked and Changed cells
	Spreading Methods
	Hierarchical Protection Processing
	The Spreading of Recalc Type Measures

	Expressions, Rules, and Rule Groups
	Introduction
	Expressions
	Rules
	Rule Groups

	The Calculation Cycle
	Introduction
	Protection Processing
	Cycle Groups

	Synchronized Measures
	Elapsed Period Locking
	Elapsed Periods and Spreading

	Non-Conforming Expressions
	Introduction
	Handling of Non-conforming Expressions

	Appendix: Rules Function Reference Guide
	Overview
	Functions
	Procedures
	Modifiers
	Keywords
	Syntax Conventions
	Specification of Hierarchy, Dimension, or Position
	Function Inverses
	Functions with Multiple Results

	Special Handling for Functions
	Error Handling

	Non-Conforming Measures
	Definition

	Functional Keywords
	Overview
	Calendar Index Functional Keywords
	Session Keywords
	Calendar Hierarchical Date Keywords

	Modifiers
	Overview
	master
	aggtype
	level
	old

	Description of Functions
	Calendar Index Functions
	Index and Position Functions
	Forecast Procedure
	Time Series Functions
	Hierarchical Functions and Procedures
	Normalization and Resizing Functions
	Other Functions and Procedures
	String Functions
	Math Functions

	Appendix: Aggregation and Spread Types
	Aggregation Types
	Spread Types
	Arithmetic Operators
	Unary Operators
	Binary Operators

