

Oracle® Retail Predictive Application Server

Configuration Tools
Release 15.0.1
E74364-01

May 2016

Oracle Retail Predictive Application Server Configuration Tools, Release 15.0.1

E74364-01

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Primary Author: Ken Ramoska

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or
display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone
licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S.
Government end users are "commercial computer software" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the programs, including any operating system,
integrated software, any programs installed on the hardware, and/or documentation, shall be
subject to license terms and license restrictions applicable to the programs. No other rights are
granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications,
including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible
for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an
applicable agreement between you and Oracle.

iii

Value-Added Reseller (VAR) Language

Oracle Retail VAR Applications
The following restrictions and provisions only apply to the programs referred to in this section and
licensed to you. You acknowledge that the programs may contain third party software (VAR
applications) licensed to Oracle. Depending upon your product and its version number, the VAR
applications may include:

(i) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail
Data Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(ii) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of
Kirkland, Washington, to Oracle and imbedded in Oracle Retail Mobile Store Inventory
Management.

(iii) the software component known as Access Via™ licensed by Access Via of Seattle, Washington,
and imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(iv) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of
San Jose, California, and imbedded in Oracle Retail Promotion Planning & Optimization
application.

You acknowledge and confirm that Oracle grants you use of only the object code of the VAR
Applications. Oracle will not deliver source code to the VAR Applications to you. Notwithstanding
any other term or condition of the agreement and this ordering document, you shall not cause or
permit alteration of any VAR Applications. For purposes of this section, "alteration" refers to all
alterations, translations, upgrades, enhancements, customizations or modifications of all or any
portion of the VAR Applications including all reconfigurations, reassembly or reverse assembly, re-
engineering or reverse engineering and recompilations or reverse compilations of the VAR
Applications or any derivatives of the VAR Applications. You acknowledge that it shall be a breach
of the agreement to utilize the relationship, and/or confidential information of the VAR
Applications for purposes of competitive discovery.

The VAR Applications contain trade secrets of Oracle and Oracle's licensors and Customer shall
not attempt, cause, or permit the alteration, decompilation, reverse engineering, disassembly or
other reduction of the VAR Applications to a human perceivable form. Oracle reserves the right to
replace, with functional equivalent software, any of the VAR Applications in future releases of the
applicable program.

v

Contents
Send Us Your Comments .. xiii

Preface ... 1
Audience .. 1
Documentation Accessibility ... 1
Related Documents ... 1
Customer Support ... 1
Review Patch Documentation ... 2
Improved Process for Oracle Retail Documentation Corrections 3
Oracle Retail Documentation on the Oracle Technology Network.................................. 3
Conventions ... 3

1 Introduction .. 1
Overview .. 1

Configuration Tools Business Process .. 1
Sample Configurations .. 2

Using the Configuration Tools Online Help ... 2
About the Online Help .. 2
Formatting Conventions ... 2
Navigate the Online Help ... 2
Using Links ... 3

Navigating the Configuration Tools .. 4
Starting the Program ... 4
About the Configuration Tools Windows .. 4
A Note about RPAS Configurability and Extensibility .. 5

2 Configuration Components Pane ... 7
Know the Configuration Components ... 7

Configuration Components Pane Overview .. 8
How RPAS Uses Solution Configurations ... 11
Right-Click Menus in the Configuration Components Pane .. 12
Setting Tools Preferences ... 13

3 Projects ... 15
Working with Projects .. 15

Overview ... 15
Create a Project ... 15
Save Changes to a Project ... 17
Using the Save As Option to Save a Project using a Different Name 17
Open an Existing Project ... 17
Open an Existing Project from an Older Version of the Configuration Tools 18
Close a Project .. 20

vi

Hierarchies ... 20
Overview ... 20
The Hierarchy Definition Window .. 21

Working with Hierarchies ... 24
Create a New Hierarchy ... 24
Specify Hierarchy Properties.. 25
Delete a Hierarchy ... 27
Copy (Clone) Hierarchies ... 28
Working with Position Formats ... 28
Specifying the Position Format .. 28

Working with Dimensions ... 30
Overview ... 30
Create a Dimension ... 30
Defining Dimension Properties ... 31
Delete a Dimension .. 35
Edit a Dimension .. 35
Create a Branch in a Hierarchy .. 36
Labeled Intersections ... 36

Data Interface Manager .. 39
Overview ... 39
Specify the Data Interface for a Measure .. 39
Add/Edit Data Interface Properties for a Measure ... 40
Delete Data Interface Information for a Measure .. 43

Working with Styles ... 43
Overview ... 43
Create a Style .. 45
Remove a Style ... 46
Edit a Style .. 46

Working with Taskflows .. 47
Overview ... 47
Create a Taskflow .. 52
Adding a Task to the Taskflow .. 54
Add a Step to the Taskflow .. 56
Add a Tab to the Taskflow ... 57
Delete Items from the Taskflow ... 58
Edit Items from the Taskflow ... 58
Hyperdynamic Tasks, Steps, and Tabs ... 60
Creating a MultiSolution Taskflow ... 64

4 Solutions ... 67
Working with Solutions ... 67

Overview ... 67
Create a Solution .. 67

vii

Copy a Solution .. 67
Rename a Solution ... 68
Move a Solution ... 69
Delete a Solution .. 69

Measures and Components ... 70
Measure Manager .. 70
Measure Component Design .. 71
Create a Major Component .. 72
Create a Minor Component .. 73
Defining Measure Component Properties .. 74
Edit Components ... 85
Alerts ... 87
Measure Validation within the Measure Manager.. 87

Working with Measures ... 89
Overview ... 89
Realize and Unrealize Measures .. 91
Rename a Measure ... 92
Show all Measures ... 92
Hide Measures by Component .. 92
Hide All Measures ... 92
Sort Measures by Property Value .. 92
Filter Measures by Property Value .. 93

External Measures ... 93
Overview ... 93
Import a Measure ... 94
Remove an Imported Measure from a Solution .. 95

Rule Sets ... 95
Overview ... 95
Create a Rule Set .. 96
Delete a Rule Set... 97

Rule Groups ... 97
Overview ... 97
Create a Rule Group .. 100
Delete a Rule Group .. 101
Copy a Rule Group .. 102
Measure Validation in the Rule Definition Window .. 103
Rule Definition ... 103
Create a Rule and Add It to a Rule Group ... 104
Add an Existing Rule to a Rule Group ... 109
Apply a Rule Pattern to Create New Rules or to Update Existing Rules 111
Delete a Rule from All Rule Groups.. 113
Remove a Rule from a Rule Group.. 114
Edit Properties of a Rule ... 115

viii

Rename All Rules in a Rule Group .. 116
Filter Rules in a Rule Group ... 117
Reordering Rules in a Rule Group .. 118
Auto Generate Load and Commit Rules .. 118
Copy Selected Rules to Another Rule Group ... 119
Find and Replace Measures in the Copied Rules .. 121

Expressions and Rules .. 123
Overview ... 123
Reorder an Expression in a Rule .. 123
Edit an Expression in a Rule ... 124
Delete an Expression from a Rule .. 125
Add an Expression to a Rule .. 126

RPAS Functions, Procedures, Keywords, and Modifiers .. 126
Overview ... 126

Workbooks ... 127
Overview ... 127
Overview of Participation Measures ... 128
Create a Workbook .. 129
Edit Workbook Properties .. 129
Defining Workbook Properties .. 130
Remove a Workbook ... 168

Working with the Rule Group Simulator .. 169
Overview ... 169
About the Rule Group Simulator... 169
Invoking the Rule Group Simulator .. 171
Filtering the Measures Table .. 171
Changing the Edited Status of Measures .. 172
Using the Upstream and Downstream Panes .. 173
Exiting the Rule Group Simulator ... 174

Working with Workbook Tabs .. 174
Overview ... 174
Create a Workbook Tab .. 174
Edit Workbook Tab Properties... 175
Remove a Workbook Tab.. 175
Comprehensive Workbook Validation ... 176

Working with Worksheets ... 176
Overview ... 176
Create a Worksheet .. 178
Defining Worksheet Properties for Pivot/Chart Worksheets 178
Defining Worksheet Properties for Detail Popup Worksheets 185
Defining Worksheet Properties for Worksheets Tiled View 189
Specify Which Measures Appear in a Worksheet ... 197
Specify the Sequence of Measures on a Worksheet... 198

ix

Edit Worksheet Properties .. 200
Remove a Worksheet ... 200

Wizards .. 200
Overview ... 200
Create a Wizard Group ... 201
Create a Wizard Page .. 202
Edit Wizard Control Properties ... 203

5 System Preferences ... 205
Overview .. 205
Global Domain .. 205

Overview ... 205
Setting Workbench Preferences ... 207
Setting Configuration Properties ... 208

6 Configuration Utilities ... 211
Overview .. 211
Configuration Converter .. 211

Overview ... 211
Launching the Configuration Converter .. 211
Converting a Configuration ... 212

Functional Library Manager .. 213
Overview ... 213
Launching the Functional Library Manager .. 213
Adding a Function Library to Be Validated in the Configuration Tools.............. 213
Removing a Function Library from Being Validated in the Configuration Tools
 .. 214

Report Generator ... 214
Overview ... 214
Generate a Report .. 215

7 Integration Tool .. 217
Overview .. 217
RPAS Data Mart .. 217

Overview ... 217
Integration Configuration Components .. 218

Overview ... 218
Shared Hierarchies and Dimensions ... 218
Shared Facts .. 219
Integration Map ... 220
Domain Information .. 221

Integration Tool ... 221
Overview ... 221
Working Integration Configurations .. 222
Working with Domain Information .. 224

x

Working with Shared Hierarchies ... 225
Working with Shared Facts .. 229
Working with the Integration Map ... 232
Fact Grouping Best Practices .. 234

8 Deployment Tool .. 239
Overview .. 239
General process flow for generating deployment resources ... 239

User Interface ... 241
Deployment Tool - Distributed Workbook Storage .. 242
Deployment Tool – Global Domain Configuration ... 245
Deployment Tool – Online Administrative Tasks ... 247
Deployment Tool Limitations .. 255

A Appendix: Global Domain Technical Information .. 257
Appendix A: Global Domain Technical Information ... 257

B Appendix: Calculation Engine User Guide ... 259
Overview .. 259
Measure Definition and Base Intersections ... 259

Data Types .. 260
Base Intersection .. 261
Aggregation and Spreading Types .. 261

Aggregation ... 261
Spreading ... 262

Locks and Spreading Around Locked and Changed cells 262
Spreading Methods .. 263
Hierarchical Protection Processing .. 266
The Spreading of Recalc Type Measures .. 268

Expressions, Rules, and Rule Groups .. 268
Introduction .. 268
Expressions ... 269
Rules .. 269
Rule Groups .. 270

The Calculation Cycle ... 272
Introduction .. 272
Protection Processing .. 272
Cycle Groups .. 276

Synchronized Measures ... 278
Elapsed Period Locking ... 279
Non-Conforming Expressions ... 280

Introduction .. 280
Handling of Non-conforming Expressions .. 281

 C Appendix: Rules Function Reference Guide ... 283
Overview .. 283

xi

Functions ... 283
Procedures .. 283
Modifiers ... 284
Keywords .. 284
Syntax Conventions ... 284
Specification of Hierarchy, Dimension, or Position .. 285
Function Inverses ... 285
Functions with Multiple Results .. 285

Special Handling for Functions ... 286
Error Handling ... 286

Non-Conforming Measures ... 287
Definition .. 287

Functional Keywords ... 289
Overview ... 289
Calendar Index Functional Keywords .. 289
Session Keywords .. 291
Calendar Hierarchical Date Keywords ... 292

Modifiers .. 292
Overview ... 292
master .. 292
aggtype .. 293
level .. 293
old .. 294

Description of Functions .. 295
Calendar Index Functions ... 295
Calendar Calculation Functions... 298
Index and Position Functions ... 300
Forecast Procedure .. 303
Time Series Functions .. 307
Hierarchical Functions and Procedures .. 316
Other Functions and Procedures ... 336

D Appendix: Aggregation and Spread Types .. 361
Aggregation Types .. 361
Spread Types ... 363
Arithmetic Operators .. 364

Unary Operators .. 364
Binary Operators .. 364

E Appendix: Configuration of RPAS Extensions ... 367
Configuration of RPAS Extensions ... 367

About the RPAS Solutions Extension Framework .. 367
Launch from Navigation Tree .. 368
Module Tasks ... 368

xii

Module Steps .. 369
Launch on Home Page .. 370
Launch In-Context of a Worksheet .. 370

F Appendix: RPAS Configuration Manager and rpasConfigMgr 373
Using the rpasConfigMgr .. 373
rpasConfigMgr Process .. 373
Diff Process .. 374
Merge Process .. 375
diffAndMerge Process .. 376
rpasConfigMgr Usage .. 377
RPAS Configuration Manager .. 378
Merge Functionality.. 380
Conflict Resolution Functionality ... 380
RPAS Configuration Manager Application ... 382
Merge Operation ... 382

A Note on Saving and Loading Merge Operations ... 384
Change Report Operation .. 385

G Appendix: Dynamic Hierarchies .. 387
Dynamic Hierarchies Overview.. 387

Domain Modified Dimensions ... 387
Multiple Domain Modified Dimensions in Single Workbook 389

Multiple Domain Modified Dimensions in Single Workbook 389
Domain Modified Dimensions Dependent on Multiple Dimensions 389

Multiple Dimension Notes ... 390

H Appendix: RPAS Rule Writing Tips ... 391
RPAS Rule Writing Tips Overview .. 391
Basic RPAS Rules Information .. 391

Full and Incremental Evaluation Modes .. 391
Rule Group Transitions ... 392
NA Values and Iterators ... 392

Principles for Writing Efficient Rules ... 393
Expensive Functions, Modifiers, and Procedures ... 393
Caching Intermediate Results .. 393
Automatic Caching of Expression Phrases ... 394

Tips .. 394
Rule Groups .. 395
Non-materialized Measures ... 395
Display-Only Non-materialized Measures .. 395
The If Statement ... 395

Expression Iteration Examples .. 396
Tips to Design Efficient RPAS Expressions ... 398

xiii

Send Us Your Comments
Oracle Retail Predictive Application Server, Configuration Tools, Release 15.0.1

Oracle welcomes customers' comments and suggestions on the quality and usefulness of
this document.

Your feedback is important, and helps us to best meet your needs as a user of our
products. For example:

 Are the implementation steps correct and complete?

 Did you understand the context of the procedures?

 Did you find any errors in the information?

 Does the structure of the information help you with your tasks?

 Do you need different information or graphics? If so, where, and in what format?
 Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell us
your name, the name of the company who has licensed our products, the title and part
number of the documentation and the chapter, section, and page number (if available).

Note: Before sending us your comments, you might like to
check that you have the latest version of the document and if
any concerns are already addressed. To do this, access the
Online Documentation available on the Oracle Technology
Network Web site. It contains the most current
Documentation Library plus all documents revised or
released recently.

Send your comments to us using the electronic mail address: retail-doc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number
(optional).

If you need assistance with Oracle software, then please contact your support
representative or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your
Oracle local office and inquire about our Oracle University offerings. A list of Oracle
offices is available on our Web site at www.oracle.com.

http://www.oracle.com/

Preface 1

Preface
This guide describes the Predictive Application Server user interface. It provides step-by-
step instructions to complete most tasks that can be performed through the user
interface.

Audience
This User Guide is for users and administrators of Oracle Retail Predictive Application
Server. This includes merchandisers, buyers, business analysts, and administrative
personnel.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through
My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For more information, see the following documents in the Oracle Retail Predictive
Application Server Release 15.0.1 documentation set:
 Oracle Retail Predictive Application Server Installation Guide

 Oracle Retail Predictive Application Server Release Notes

 Oracle Retail Predictive Application Server Administration Guide for the Classic Client

 Oracle Retail Predictive Application Server Administration Guide for the Fusion Client

 Oracle Retail Predictive Application Server User Guide for the Fusion Client

Customer Support
To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com

When contacting Customer Support, please provide the following:

 Product version and program/module name
 Functional and technical description of the problem (include business impact)

 Detailed step-by-step instructions to re-create

 Exact error message received

 Screen shots of each step you take

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://support.oracle.com/

2

Review Patch Documentation
When you install the application for the first time, you install either a base release (for
example, 15.0) or a later patch release (for example, 15.0.1). If you are installing the base
release or additional patch releases, read the documentation for all releases that have
occurred since the base release before you begin installation. Documentation for patch
releases can contain critical information related to the base release, as well as information
about code changes since the base release.

Improved Process for Oracle Retail Documentation Corrections

 3

Improved Process for Oracle Retail Documentation Corrections
To more quickly address critical corrections to Oracle Retail documentation content,
Oracle Retail documentation may be republished whenever a critical correction is
needed. For critical corrections, the republication of an Oracle Retail document may at
times not be attached to a numbered software release; instead, the Oracle Retail
document will simply be replaced on the Oracle Technology Network Web site, or, in the
case of Data Models, to the applicable My Oracle Support Documentation container
where they reside.

This process will prevent delays in making critical corrections available to customers. For
the customer, it means that before you begin installation, you must verify that you have
the most recent version of the Oracle Retail documentation set. Oracle Retail
documentation is available on the Oracle Technology Network at the following URL:
http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

An updated version of the applicable Oracle Retail document is indicated by Oracle part
number, as well as print date (month and year). An updated version uses the same part
number, with a higher-numbered suffix. For example, part number E123456-02 is an
updated version of a document with part number E123456-01.

If a more recent version of a document is available, that version supersedes all previous
versions.

Oracle Retail Documentation on the Oracle Technology Network
Oracle Retail product documentation is available on the following Web site:
http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html
(Data Model documents are not available through Oracle Technology
Network. You can obtain them through My Oracle Support.)

Conventions
Navigate: This is a navigate statement. It tells you how to get to the start of the procedure
and ends with a screen shot of the starting point and the statement “the Window Name
window opens.”
This is a code sample
 It is used to display examples of code

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html
http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

Introduction 1

1
Introduction

Overview
The Oracle Retail Predictive Application Server (RPAS) Configuration Tools provide a
flexible means to configure and build RPAS-based applications with retailer-specific
business parameters. The configuration tools provide a streamlined, user-friendly
interface to leverage RPAS functionality. Once a configuration is created, an installer
script is used to build an RPAS domain.

The Configuration Tools consist of an integrated set of task-specific configuration aids
that are used to configure a solution template or to modify an existing solution template.

RPAS functionality is exposed to the Configuration Tools through Application
Programming Interfaces (APIs).
A configuration is typically created and maintained by an application administrator or
solution expert. Details of the configuration are stored locally on the administrator’s PC
or on the network. Once the configuration is complete, the administrator uses the
configuration to create a new domain or update an existing domain.

Users of the configured solution will access the RPAS domain by using the RPAS Client
that is installed on their machines. The domain accessed represents the business process
and environment that was configured in the solution by the configuration administrator
together with the appropriate data.

Once the domain is created, administrative RPAS processes (such as hierarchy
maintenance and user administration) are accomplished by an RPAS administrator using
the utilities on the server.

Note: For more information on RPAS administration and
installation, refer to the Oracle Retail Predictive Application
Server Administration Guide for the Fusion Client, the Oracle
Retail Predictive Application Server Administration Guide for the
Classic Client, and the Oracle Retail Predictive Application
Server Installation Guide.

Configuration Tools Business Process
1. Set up system properties

2. Create a project

3. Create solutions

4. Configure hierarchies and dimensions

5. Configure measures and measure components
6. Configure rules sets, rule groups, and rules

7. Configure workbooks, workbook tabs, and worksheets

8. Configure wizards

9. Define interfaces used to import data

10. Build an RPAS domain

11. Configure domain integration with an RPAS Data Mart (Optional)

Using the Configuration Tools Online Help

2 Oracle Retail Predictive Application Server

Sample Configurations
Some examples in this document use the sample configuration, which is delivered with
the RPAS platform and can be installed along with the RPAS software and Configuration
Tools. The sample configuration may not match every illustration because RPAS
software and Configuration Tools software versions might vary between users. The
examples are meant to provide a context to the reader. For information about the sample
configuration provided with the RPAS platform, refer to the Oracle Retail Predictive
Application Server Installation Guide.

Using the Configuration Tools Online Help
This Help site provides step-by-step procedures and other information about using RPAS
Configuration Tools. We have implemented some tools to assist your navigation of this
Help site. This page explains these tools.

About the Online Help
The online Help system uses JavaScript for some of its functionality. Make sure you have
enabled JavaScript for your Web browser. Refer to the online Help in your Web browser
for instructions on enabling JavaScript.

Formatting Conventions
This section provides information about the documentation conventions used in the
online Help.

Note: Notes are displayed using this convention. Notes
contain additional information about the process or
procedure that you are performing.

Navigate: The navigation sections of a procedure provide information about how to
access the window that is the starting point of a procedure.

Navigate the Online Help
This Help site provides several ways for you to navigate to your topic.

Use the Table of Contents
The table of contents is the most common way that you will navigate to your topic.

1. Select the Table of Contents tab to display the table of contents on the left side of
your screen.

2. Select the + sign in front of a book to expand it and view the topics.

3. Select a topic from the table of contents to view it.

Using the Search Feature
Use the search feature to explore the contents of your topics and find matches to queries
that you define. There are some basic rules for making queries in full-text searches.
 You can type your search in uppercase or lowercase characters. Searches are not case

sensitive.

 You can search for any combination of letters (a-z) and numbers (0-9).

 Punctuation marks such as the period, colon, semicolon, comma, and hyphen are
ignored during a search.

 Using the Configuration Tools Online Help

 Introduction 3

 Group the elements of your search using double quotes or parentheses to set apart
each element.

 You cannot search for quotation marks.

Use the following procedure to search the online Help:
1. Select the Search tab to display the search feature on the left side of your screen.

2. In the Search field, enter the word or words that you want to find.

3. Press the Enter key. Topics that match your search criteria display in the left pane.

4. Select a topic to view it.

Using the Business Process
The business process typically provides links to procedures that you need to perform to
complete a task. You can select any link in the business process to view that topic.

Using the Index
Some Help sites may have an index. The index provides another way for you to navigate
to information. There are two ways to use the index to search.

Browse the Index Entries
1. Select the Index tab. Words and phrases that are listed in the index display in

alphabetical order.

2. Scroll up or down to find a word or phrase.

3. Select the word or phrase to view additional information.

Search the Index
1. Select the Index tab. Words and phrases that are listed in the index display in

alphabetical order.

2. In the keyword field, type the word or phrase. Words and phrases that match your
entry are displayed.

3. Select the word or phrase to view additional information.

Using Links
There may be two different types of links in this online Help. Select the link type below
to learn more about it.

 Some topics contain hyperlinks that open a new page.
 Many topics have information that appears using a drop-down text link.

Drop-down text typically provides additional steps or sub-steps for a process or
procedure and displays under the linked word or phrase.

 Select the link once to view the text.

 Select the link again to hide the text.

Using Hyperlinks
Hyperlinks bring you to another page in the online Help or to a Web page on the
Internet. There are two things to remember when using hyperlinks:

 Hyperlinks always display a brief description of where the hyperlink takes you.
 If your browser controls are turned off, follow these steps to return to the previous

page:

1. Display the shortcut menu by perform one of the following actions:

Navigating the Configuration Tools

4 Oracle Retail Predictive Application Server

 Right-click with your mouse.

 Press the Application key.

2. From the shortcut menu, select Back. The previous page appears.

Navigating the Configuration Tools

Starting the Program
Once the Configuration Tools are installed, it can be accessed from the following default
location by selecting Start – Program Files – Oracle – RPAS – Configuration Tools.

The following is an example of a location for the executable file:

c:\Oracle\RPAS\ConfigTools\bin\ConfigTools.exe
Shortcuts may be created here and placed wherever they provide convenient access.

About the Configuration Tools Windows
All tasks are performed through the RPAS Configuration Tools window, which provides
the following features:

 Drop-down menus

 Toolbars
 Active buttons

 Right-click functionality

Configuration Tools Window

The primary elements in the application window are as follows:

Element Purpose

Title Bar (A)  Displays the product name

 The three buttons at the far right on the title bar allow for the
application window to be minimized, restored, maximized, and
closed

 Navigating the Configuration Tools

 Introduction 5

Element Purpose

Menu Bar (B)  Contains the menus that are used in the configuration tools

 Each menu contains a set of commands that allow the
configuration administrator to operate the configuration tool

Configuration
Components (C)

 Displays information about configurations, projects, and
solutions that are currently in use

 Configuration information is not displayed until a configuration
is opened.

Workspace (D)  As different elements are selected of a configuration in the
Configuration Components pane, the related windows are
displayed in the workspace.

Task List (E)  Displays errors and warnings within the configuration

A Note about RPAS Configurability and Extensibility
RPAS is a configurable and extensible platform providing a significant amount of
flexibility in design and implementation. Lack of specific verbiage around a platform
component does not guarantee a commitment to support its use in a non-documented
way. In case of any ambiguity in the documentation, the customer is expected to ask for
clarification with Oracle Customer Support.

Configuration Components Pane 7

2
Configuration Components Pane

Know the Configuration Components
The Configuration Components pane is the starting point for creating a new
configuration or for opening an existing configuration. It provides a high-level view of all
the components that are necessary to configure an RPAS application, and it is used to
navigate to the various tools that are used to configure those components.

The Configuration Components pane is the core of the RPAS Configuration Tools, and it
provides an overall view of the configuration components. Each configuration contains
one project and one or more solutions.

As a new configuration is created the configuration administrator assigns a name to the
configuration, the project, and the solution. The configuration administrator can drill
down through the configuration to work in specific areas. The icons in the Configuration
Components assist the configuration administrator to intuitively navigate features within
the Configuration Tools. If an area of the configuration has been modified, its icon will

contain a modification flag icon. The configuration must be saved if the modifications
are to be retained.

Icon Name Window
Displayed in
the
Workspace

 Project
None

 Hierarchies Hierarchy
Definition
window

 Data
Interface

Data Interface
Manager
window

 Styles Style
Definition
Window

 Taskflow Taskflow
Manager

 Solution None

 Measures Measure
Manager
window

 Rules Rule
Definition
window

 Workbooks Workbook
Designer
window

Know the Configuration Components

8 Oracle Retail Predictive Application Server

 Wizards Wizard
Designer
window

Configuration Components Pane Overview

Projects
Each project represents a single, logical RPAS domain although it may become several
physical domains in a 'global domain' environment. The hierarchies, dimensions, and
styles are defined within a project and are available for use within all solutions in the
project. The RPAS Configuration Tools allows for multiple projects to be viewed and
modified (the limit is 3 projects).

Solution
Each solution represents a grouping of measures, rules, and workbooks to support a
business process as defined by the retailer. A project may have multiple solutions and a
solution may use a subset of the hierarchies and dimensions defined within the project.

Hierarchy
The user may access the Hierarchy Definitions window by selecting the Hierarchy icon
in the Configuration Components pane. For each project, a single or multiple hierarchies
may be created and dimensions are defined within each hierarchy. Hierarchies are the
structures used by an organization to describe the relationships that exist between the
dimensions. The following hierarchies are automatically created when a new project is
defined:

 Calendar
 Product

 Location

Users may create and define the individual dimensions for these hierarchies and for any
additional hierarchies that may be desired.

Note: The RPAS (system) names for the default hierarchies
(CLND, PROD, LOC, and ADMU) cannot be changed, but
the default labels (Calendar, Product, and Location) can be
changed. The ADMU label cannot be changed.

Data Interface
The user may access the Data Interface Manager by selecting the Data Interface icon in
the Configuration Components pane. The data interface tool is used to define the format
of data interface files and provide some data interface parameters, such as directions to
RPAS on how to deal with data that is sourced below its base intersection. The tool sets
measure attributes that are referenced when loading measure data into the domain. The
information entered into the data interface will be referenced when the loadmeasure
utility is used to load data for a measure.

Styles
The user may access the Style Definition window by selecting the Styles icon in the
Configuration Components pane. The style tool is used to define styles that specify how
the data for a measure is to be displayed within the RPAS Client. Styles consist of a
number of attributes, such as text font, size, and color as well as specifications of

 Know the Configuration Components

 Configuration Components Pane 9

precision, alignment of text within the cell. These styles may then be assigned to
measures within the Measure and Workbook Tools.

Taskflow
The user can access the Taskflow Manager window by selecting the Taskflow icon in the
Configuration Components pane. Users can use the Taskflow tool to configure an activity
taskflow for use within the RPAS Fusion Client. This Taskflow directs users through
various steps that have been setup to help them accomplish their business process.
Taskflows contain activities that the user needs to complete. Each activity contains one or
more tasks, which are mapped to certain workbooks. Within each task are one or more
steps that are mapped to worksheets within the task’s workbook. The activities can also
be organized in an activity group. An activity group is a single, integrated taskflow that
represents a business process and can include activities from multiple solutions.

Users can use the preconfigured taskflow that is delivered with the RPAS solution,
modify that preconfigured taskflow, or configure a customized one.

Note: The taskflow is used only for the RPAS Fusion Client.
It does not affect the RPAS Classic Client.

Solutions
A solution corresponds to an application configuration (for example, Financial Planning
or Item Planning). For each solution, the following are configured:

 Measures

 Rule sets / rule groups / rules

 Workbooks / worksheets

 Wizards (optional)

Measures
Measures (multidimensional variables) are any item of data that can be represented on a
grid in a worksheet. Measures are the data points used in the retailer’s business process.

Rule Sets, Rule Groups, and Rules
Rules are collections of expressions (the basis of all calculations) that describe the
relationships between measures. They are evaluated by the RPAS calculation engine
during a calculation. Rules can consist of multiple expressions as the following example
represents:

 Expression 1: ReceiptUnits = ReceiptValue / ReceiptPrice

 Expression 2: ReceiptValue = ReceiptUnits * ReceiptPrice

 Expression 3: ReceiptPrice = ReceiptValue / ReceiptUnits

The collection of expressions represents a rule. These three expressions state the
relationship between ReceiptUnits, ReceiptValue, and ReceiptPrice. Each expression
solves for a different measure.

A rule group is a collection of rules that are treated as a unit by the calculation engine.
The rules in the rule group must be considered together to satisfy the calculation
requirements for a specific business process. The sequence of rules in a rule group
determines the calculation sequence unless the sequence is forced.

A rule set is a collection of rule groups that is used for organizational purposes by the
Configuration Tools.

Know the Configuration Components

10 Oracle Retail Predictive Application Server

Workbooks and Worksheets
A workbook is the multidimensional framework that is used to perform specific business
functions, such as creating a merchandise plan and reviewing available data. Workbooks
are easily viewed and manipulated.

A workbook can contain any number of multidimensional spreadsheets (called
worksheets) to present data. Measures and rules are used to define and calculate the
measure data. All components work together to facilitate the viewing and analysis of
business functions. The Configuration Tools allow the configuration administrator to
configure workbook templates incorporating these various components.

Wizards
A wizard is a feature that guides the user through the process of building a new
workbook. A wizard displays successive dialogs that require the user to answer a
sequence of questions or enter information regarding the content of the workbook.
Responses to these questions are used to format and populate the workbook. The layout
of these wizard dialogues could be defined using the wizard tool. However, each
workbook may use a standard wizard configuration, eliminating the need for the
configuration administrator to access the Wizard Designer.

The main purpose of the wizard is to allow the end user to make choices regarding the
scope of the workbook. For example, the first wizard will ask the user to select the SKUs
to include in the workbook. The second will ask the user to select the stores to include in
the workbook, and the third wizard will ask the user to select the dates to include in the
workbook. At the end of the series of wizards, a workbook will be created that has data
for the SKUs, stores, and dates that the user selected.

Task List
The Task List provides a centralized view of errors and warnings that are issued as a
result of information input by the user. Use the information in the Task List as a guide for
correcting errors or omissions in the Project.

The Task List title bar serves as a status indicator. If the title “Task List” is displayed in
red, the Task List contains items that need the user’s attention. If there are no errors or
warnings, the title will be displayed in black.

The title bar can also be used to show or hide the Task List. If the Task List is visible, click
anywhere on the title bar to hide the list and move the title bar to the bottom of the
window. If it is hidden, click anywhere on the title bar to display the Task List. The
amount of space used by the task list sub-pane can also be changed by dragging the
separator above the task list title bar.
The Task List has three columns:

 The first column indicates the nature of the Task List item.

– Indicates an error.

– Indicates a warning.

 The second column identifies the configuration element involved.
 The third column provides a detailed description of the issue.

Below is a sample task list.

 How RPAS Uses Solution Configurations

 Configuration Components Pane 11

Sample Task List

Errors typically indicate definite validation problems, which are shown in red in the tool
where the configuration setting is made. When the user fixes the erroneous condition, the
Task List automatically removes the error listing for that condition. Warnings indicate
the possibility of a problem occurring, and the user is advised to inspect the suspected
element to ensure that everything is in order. Since warnings are more general than
errors the Task List will not remove them automatically. The user is provided with
options to remove errors and warnings through a right-click menu.

How RPAS Uses Solution Configurations
RPAS uses the following components for solution configurations:

The RPAS Calculation Engine
The RPAS calculation engine is a very powerful and flexible engine that is built to
support On-Line Analytical Processing (OLAP) type calculations against a multi-
dimensional model.

In the OLAP model individual pieces of data (called cells) correspond to a single position
in one or more hierarchies or dimensions. Cells typically reference:

 A measure

 A calendar or time hierarchy

 Other hierarchies, such as product and location
The measure is fundamentally different to the other hierarchies, because measures
represent the events or measurements that are being recorded. The positions in the other
hierarchies provide a context for the measurement: where, when, what, and so on.
Measures relate to one another through rules and expressions. Positions in all the other
hierarchies relate to each other through hierarchical relationships.

Aggregation and Spreading
The RPAS calculation engine is designed to be robust and extensible, but in complete
control of the calculation process. It enforces integrity of the data by ensuring that all
known relationships between cells are always enforced. Much of the logic of the
processing of rules and rule groups depends on this basic principal. RPAS supports two
different forms of relationships between cells:

 Hierarchical relationships that require aggregation and spreading

 Measure relationships that require rules and expressions

Aggregation and spreading are basic capabilities of the engine that do not require coding
by the implementer, other than the selection of aggregation and spreading types to use
for a measure. Hierarchical relationships, such as weeks rolling up to months or stores

Right-Click Menus in the Configuration Components Pane

12 Oracle Retail Predictive Application Server

rolling up to regions, require the aggregation of data values from lower levels in a
hierarchy to higher levels by using a variety of methods as appropriate to the measure.

To enable such data to be manipulated at higher levels, RPAS supports spreading the
changes, which also uses a variety of methods.
The inherent relationships between measures can be modeled through a rich rule and
expression syntax. Modeling these relationships takes most of the effort in configuring an
application model.

RPAS Functions
 RPAS Functions are mechanisms for performing operations within an expression that

are controlled and executed by the calculation engine.

 Most functions have only one output.

 The calculation engine controls and executes the evaluation of a function.

 Functions may be used in long expressions with other functions and keywords.
 The data that can be referenced is limited to the scope of the workbook.

Note:

See the Appendix: Calculation Engine Users Guide for a
comprehensive definition of the RPAS calculation engine
and how it is used when configuring a solution.

See the Appendix: Rules Function Reference Guide for
details about standard RPAS functions.

Right-Click Menus in the Configuration Components Pane
The right-click menu may be accessed by right-clicking in any location within the
Configuration Components pane. Each available selection from the right-click menu is
described in the following sections.

Example: Right-click Menu

 Setting Tools Preferences

 Configuration Components Pane 13

Setting Tools Preferences
Settings made here will apply to all configuration projects created or viewed with the
tool.

Navigate: From the File menu, select Tools Preferences. The Workbench Preferences
window opens.

Workbench Preference Window

1. Select the General tab.

– Enable Measure Content Validation – Activating this checkbox enables the
immediate validation of measure properties when configuration measure
information is created or modified. This process can impact the performance of
the RPAS Configuration Tools. If this box is not checked, the manual Measure
Content Validation icon is enabled on the Rule Definition toolbar. See the Rule
Definition Tool for details.

– Save window position and size on exit – Activating this checkbox enables the
RPAS Configuration Tools to be launched in either full or minimized view based
on the status in which the configuration administrator last exited the application.
If the application is exited in a minimized view, the size of the window is also
maintained when the RPAS Configuration Tools is re-launched.

– Most Recently used workspaces to show – Use the up and down arrows to
specify the number of configurations to be displayed in the Most Recently Used
list displayed in the File menu dialog. This list allows the configuration
administrator easy selection of a recently viewed configuration.

2. Select the Measure Manager Options tab.

Setting Tools Preferences

14 Oracle Retail Predictive Application Server

Workbook Preferences - Measure Tool Options

• Number of Measures/Page – Select the number of measures to display per page
in the Measure Manager Tool. The default is 500.

• Display Measures by – Displays measures either by their name or label in
various locations of the Tools. The default setting is “name.”

• Display Measure Components by – Display measure components (in the
Measure Manager tool) either by name or by label. The default setting is “label.”

3. Click OK to save any changes and close the window.

Projects 15

3
Projects

Working with Projects

Overview
A project is used to configure the structure of a domain. Each project represents a single,
logical RPAS domain although it may become several physical domains in a global
domain environment. The hierarchies, dimensions, styles, and taskflow are defined
within a project and are available for use within all solutions in a given project.

Note: A solution can use a subset of the hierarchies and
dimensions defined within the project. Within a project, you
can additionally define certain properties (which are part of
the Data Interface Tool) that describe how measures will be
loaded into the domain.

Hierarchies are “domain-specific,” which means that they are defined at the project
(domain) level and can be used by all solutions that are defined within that project
(domain). There is no requirement that each solution use all of the hierarchies defined in
the project.

For example, a project may contain five hierarchies and three solutions, but each solution
might only use four of those hierarchies in the base intersections of its measures, so even
though five hierarchies exist, each solution may not use all of them.

Create a Project
Navigate: From the File menu, select New – Project, or right-click in the Configuration
Manager and select New – Project. The New dialog box appears.

Working with Projects

16 Oracle Retail Predictive Application Server

New Dialog Box

1. In the Configuration field, enter the name of the configuration/project.

The Use Defaults option under the Configuration field points the user to a default
path for storing the configuration. Deselect the Use Defaults option to enable the user
to navigate to the appropriate directory using the Browse button.

2. Select the default language for the domain in which this configuration will be used to
create. The default is English.

3. Select the options for Global Domain and MultiLanguage as necessary. The possible
settings for these boxes are as follows:

• Global Domain – Selecting this option overrides the default setting of “Simple
Domain.” A Global Domain allows the user to create workbooks from multiple
domains and to administer and update multiple domains from a single master
domain. Whether a domain should be Global is a technical decision that must be
made with the consultation of Oracle Services. This setting cannot be changed
after the domain is built.

• MultiLanguage – If this option is selected the resulting domain will be enabled
to support multiple languages. Multi-lingual domains allow for most data
elements (measures, labels, and so on) in an RPAS domain to be translated into
other languages. More information on Multi Language support can be found in
the "Translation Administration" chapter of the Oracle Retail Predictive Application
Server Administration Guide.

Note: The Global Domain and Multi-Language settings must
be defined before the domain is built. Changes to the Global
Domain and MultiLanguage properties are ignored when
modifying the configuration of an existing domain.

 Working with Projects

 Projects 17

4. Click OK to save any changes and close the window.

Save Changes to a Project
Navigate: From the File menu, select Save, or right-click in the Configuration
Components pane and select Save. This will save the project under the same name that
was used to create it and within the same directory.

Using the Save As Option to Save a Project using a Different Name
Navigate: From the File menu, select Save As, or right-click in the Configuration
Components pane and select Save As. The Save As dialog appears.

Save As Dialog Box

1. In the Configuration field, enter the new project name.

2. If Use Defaults is selected, click OK to save the project to the path displayed in the
Directory field. If Use Defaults is selected and you want to save the project to a
different location, deselect Use Defaults and either enter the appropriate path in the
Directory field, or click Browse to navigate to the appropriate location where you
want the project saved.

3. Click OK to save the project.

Open an Existing Project
Navigate: From the File menu, select Open, or right-click in the Configuration
Components pane and select Open. The Open dialog box appears.

1. Choose one of the following methods:

Working with Projects

18 Oracle Retail Predictive Application Server

• Browse to the directory where your project is saved. Select the file whose name is
the same as the project with an ".xml" extension and click Open. The project
appears in the Configuration Components pane.

Open Dialog Box

• To open a project that was recently opened, select the project from the recently
used projects list in the File menu. These projects appear as a numbered list
where the most recently used project is first in the list. Select the project to open
in the Configuration Components pane. The number of projects that appears in
the most recently used list may be changed from the Workbench Preferences
dialog box, which is accessed by selecting Tools Preferences from the File menu.

Open an Existing Project from an Older Version of the Configuration Tools
If you attempt to open a project saved in a previous version of the RPAS Configuration
Tools, a dialog box may appear which allows you to convert the configuration to the new
version.

Navigate: From the File menu or right-click from the Configuration Components pane,
select Open. The Open dialog box appears.

1. Choose one of the following methods:

a. Browse to the directory where your project is saved. Select the file whose name is
the same as the project with an ".xml" extension and click Open. The project
opens in the Configuration Components pane.

b. To open a project that was recently opened, select the project from the recently
used projects list in the File Menu. These projects will be in a numbered list
where the most recently used project is first in the list. Click on the project, and it
opens in the configuration manager. The number of projects that appears in the
most recently used list may be changed by using the Tools Preferences option of
the File menu.

A message box appears:

 Working with Projects

 Projects 19

Convert This Configuration Message Box

2. To convert at a later time without currently viewing or modifying the project, click
No. Click Yes to convert the project so it can be viewed or modified. If Yes is
selected, the Choose a backup location message box appears.

Choose a Backup Location Message Box

3. Click OK. The Open dialog box appears and prompts you for a location to store a
backup of the project that is to be converted.

Open Dialog for Saving Configuration Backup

Hierarchies

20 Oracle Retail Predictive Application Server

Note: You may either rename the original configuration that is to be
backed up or specify a new directory to store the original.

4. Select the directory to store the backup, and click Open. The conversion process
begins. If the conversion successfully completes the following message will be
displayed. Select OK to continue and view the project.

Successful Conversion Dialog Box

An error message appears if this process fails. The original project will remain untouched
and it will not open.

Close a Project
Navigate: From the File menu or right-click from the Configuration Components pane,
select Close. If no changes were made to the Project, the project will be closed. If changes
were made, the Save dialog box appears.

Close Project

Perform one of the following options:

 Click Yes to save the changes made to the project and close it.

 Click No to discard the changes made to the project since the last save and close it.

 Click Cancel to return to the configuration manager without closing the project.

Hierarchies

Overview
A hierarchy is a top-to-bottom set up of parent-child relationships between elements of
the same type. Hierarchies provide a means to define relationships between dimensions
(aggregates, roll-ups, and alternate roll-ups) and groups belonging to the same entity (for
example, Time = years, months, weeks, and days).
The following hierarchies are automatically created and cannot be deleted within the
Configuration Tools:

 CLND (Calendar)

 Hierarchies

 Projects 21

 PROD (Product)

 LOC (Location)

 ADMU (User)

 LNGS (Languages)
These hierarchies are required by RPAS-based solutions and cannot be removed, but
additional hierarchies can be added to support the required business process.

Hierarchies define the path of data aggregation and spreading. In a workbook, the
configuration administrator can view data at any required level of detail by drilling
down or rolling up through dimensions in the hierarchy.

Note: ADMU and LNGS are not configurable hierarchies;
therefore, they cannot be created or modified. ADMU and
LNGS are built by RPAS, and the RPAS Configuration Tools
makes them available for use in configurations. ADMU is
the user hierarchy, and it exists to allow a measure to use the
user dimension as part of its base intersection. LNGS is the
language hierarchy, and it exists to support translation in
multi-language domains. It is also available so that you can
create a measure with the language dimension as part of its
base intersection.

You can create and define dimensions for each of these hierarchies and for any additional
hierarchies that are added to the project.

Note: The names for the automatically generated hierarchies
(CLND, PROD, LOC, ADMU, and LNGS) cannot be
changed, but the default user labels for CLND, PROD, and
LOC (Calendar, Product, and Location) can be changed. The
user labels of ADMU and LNGS cannot be changed.

The CLND, ADMU, and LNGS hierarchies must exist in all
domains, but PROD and LOC are not mandatory. If there are
no dimensions created for the PROD and LOC hierarchies,
the hierarchies are not created in the resulting domain.

RPAS does not impose any limit on the number of
hierarchies that can be configured in a project.

The Hierarchy Definition Window
The Hierarchy Definition window allows you to define and construct hierarchies,
dimensions for each hierarchy, and the relationships between dimensions. It also offers
the following features:

 Provides a visual representation of a hierarchy and its dimensions

 Provides a means to define the hierarchy data load file

 Allows existing hierarchies/dimensions to be reused in a new solution in the same
project

The following diagram represents a typical structure of an organization's product
hierarchy.

Hierarchies

22 Oracle Retail Predictive Application Server

Example of Product Hierarchy

In this example, the Style dimension has two parents: Subclass and Supplier. Each
position in the Style dimension will have a parent position in both the Subclass and
Supplier dimension.

About the Hierarchy Definition Window
To access the Hierarchy Definition window, select Hierarchies (A) from the
Configuration Components pane. The Hierarchy Definition window appears in the
workspace.

 Hierarchies

 Projects 23

Example of Hierarchy Definition Window

The Hierarchy Definition window contains the following elements:

 The Hierarchy Definition toolbar (B) - This toolbar displays options that can be
performed. Buttons are enabled or disabled based on the item selected on screen.

 The Hierarchy navigation tree (C) - The navigation tree provides a visual
representation of your hierarchies. Bold elements at the top of the tree structure
represent the hierarchies. The items listed below each bolded hierarchy are the
dimensions defined in that hierarchy. Click the plus sign (+) or minus sign (-) to
expand the tree. The Hierarchy tree is also used to select a hierarchy or hierarchy
dimension. Once an item is selected, you can modify its properties from the
Dimension region in the Hierarchy Definition window. The Hierarchy navigation
tree also provides a context menu when you right-click a tree item. The available
options in the context menu depend on whether a hierarchy or dimension is selected.
This context menu can be used to create a new hierarchy or dimension at the selected
level. It also allows you to rename the selected item. When an item is renamed from
the tree, it is the Tools Name that is being modified, which appears in the
Dimensions region of the window.

 The Hierarchies region (D) - This area displays the defined hierarchies and their
properties.

 The Dimensions region (E) - This area contains hierarchy tabs and allows you to
define the dimension properties for your hierarchies. The tabs represent the
hierarchies defined. Select the appropriate hierarchy tab to display its dimensions
and modify dimension properties.

Gray fields in the Hierarchy Definition window indicate fields that cannot be modified.
Any elements that appear in red indicate problems or issues must also appear in the Task
List pane along with a brief description of the issues identified.

Working with Hierarchies

24 Oracle Retail Predictive Application Server

Working with Hierarchies

Create a New Hierarchy
When a new project is created, following default hierarchies are automatically created:
Calendar (CLND), Product (PROD), Location (LOC), User (ADMU), and Languages
(LNGS). Additional hierarchies and dimensions can be created to meet your business
needs.

Navigate: Select New Hierarchy from Hierarchy Definition toolbar, or from the
Hierarchy Definition tree, right-click and select New Hierarchy from the menu.

Note: If multiple projects are open, make sure you are
working from the desired project before adding a new
hierarchy.

Hierarchy Definition Window

1. To change the Tools Name of the newly created hierarchy in the Hierarchy
navigation tree of the Hierarchy Definition window, choose one of the following
methods:

• Right-click on the hierarchy name, and select Rename.

• Double-click the hierarchy name.
2. Enter the new name.

Note: The RPAS name can only be up to four (4) characters long.

 Working with Hierarchies

 Projects 25

3. Press Enter or click outside the hierarchy name.

Specify Hierarchy Properties
Hierarchy properties are defined from the Hierarchies region on the Hierarchy Definition
window.

Hierarchy Properties Window

From this location you can modify the following hierarchy properties:

 Tools Name – The name of the hierarchy that appears within the RPAS
Configuration Tools. This field is less restrictive than the RPAS Name field, allowing
you to view and select a meaningful label for hierarchies and dimensions while
working with the configuration rather than using the RPAS Name.

 RPAS Name – The RPAS internal name of the hierarchy. This hierarchy name is used
only by RPAS (not the user) within the domain.

Note: The RPAS Name of a hierarchy cannot be edited if it is
shaded gray; however, you can change other properties,
such as User Label.

CLND is always the innermost dimension. The order of the
other hierarchies (PROD, LOC, and so on) can be changed.

 User Label – The hierarchy label that is displayed to RPAS users within the domain.

 Purge Age – The purge age determines when a position and its corresponding
measure data are removed from a domain. Specifically, it represents the number of
days before the data is purged from the last time the position was included in the
hierarchy input file that is loaded with the loadHier utility during a batch run (most
commonly on a nightly or weekly basis). Setting this value to zero means that a
position and all of its data will be immediately purged if it is not included in the
hierarchy file.

Note: The value set in this field serves as the default value to
use when loading the corresponding hierarchy. This value
can be overwritten by one of the arguments of the loadHier
utility each time the utility is called. See the Oracle Retail
Predictive Application Server Administration Guides for more
information on the loadHier utility.

Example 1: A purge age of “0” will purge positions the first night they are not in the
input file.
Example 2: A purge age of “1000” will purge the positions the 1000th night after they
are last seen on the input file.

 Order – Hierarchy order determines the ordering of dimension fields in the physical
storage of data in the RPAS domain. This ordering is the traversal order of data for

Working with Hierarchies

26 Oracle Retail Predictive Application Server

calculations, which relates to how RPAS iterates over data when performing
calculations. Data in the domain is stored in multi-dimensional arrays with each
dimension belonging to a different hierarchy.

 To change the order of a hierarchy, select the hierarchy from the Hierarchies region

or from the Hierarchy navigation tree and use the up/down buttons
located on the Hierarchy Definition toolbar to move the hierarchy to the desired
location.

The hierarchy can also be arranged by dragging and dropping in the Hierarchy
navigation tree. The order numbers are automatically changed and generated
regardless of the utilized reordering technique.

For performance reasons, the Calendar hierarchy (and therefore all of its dimensions)
is always the “innermost” dimension and defaults to an unedited number of 999. The
ordering of any hierarchy can be changed with the exception of Calendar (CLND).
The lower the order number, the nearer the hierarchy is to the innermost dimension.
Consider the following example for the Calendar, Product, and Location hierarchies:

 CLND order = 999

 PROD order = 1001

 LOC order = 1002

 Two products: P1 and P2

 Two locations: L1 and L2
 Two calendar periods: C1 and C2

The sequence of physically storing and iterating over the data with calendar as the
innermost dimension and location as the outermost dimension would be:

 C1,P1,L1

C2,P1,L1

C3,P1,L1
C1,P2,L1

C2,P2,L1

C3,P2,L1

C1,P3,L1

C2,P3,L1

C3,P3,L1
C1,P1,L2

C2,P1,L2

C3,P1,L2

C1,P2,L2

C2,P2,L2

C3,P2,L2
.

.

With Calendar being the innermost dimension, data is first processed for all positions
in the Calendar hierarchy and for the first position of the other hierarchies. In this
example, data would be processed for all calendar positions for the first product and

 Working with Hierarchies

 Projects 27

first location. This is followed by all calendar positions for the second product and
first location, and so on.

It is recommended that retailers order their hierarchies with Calendar as the
innermost dimension (required), followed by other hierarchies in their order of
importance/traversal – most commonly Product, Location, and then other
hierarchies (if applicable).

Note: Certain RPAS-based solutions (such as Advanced Inventory
Planning and Demand Forecasting) have additional hierarchies that
are in a pre-defined order that should not be changed.

The Order column also indicates the order in which the hierarchy information is
expected in the file used for measure data loading purposes.

Note: The values “1000” or “1020” are not used as a hierarchy order
as they are used internally by RPAS.

CLND is always the innermost dimension and ADMU is always
the outermost dimension.

The order of the other hierarchies (PROD, LOC, and others created
by the configuration administrator) can be changed.

 Security Dimension – Selecting a Security Dimension for a hierarchy enables
position-level security in the domain for the corresponding hierarchy. Any
dimension along any hierarchy except the Calendar hierarchy is valid. For example,
if the security dimension for the product hierarchy is set to “Dept” (Department
Level Security) within the domain, access to departments can be granted or denied
by the administrator for individual users, user groups, or all users. If position-level
security is to be enabled in RPAS, select the security level. Refer to the Oracle Retail
Predictive Application Server Administration Guide for additional information about
position-level security.

Note: The Security Dimension hierarchy can be changed and
patched. It will not adversely affect the results if changed.

Delete a Hierarchy

Navigate: In the Configuration Components pane, select Project – Hierarchies. The
Hierarchy Definition window opens in the workspace.
1. Select the hierarchy to delete.

2. Choose one of the following methods:

• Click the Delete button. The hierarchy is removed.

• Press the Delete key from your keyboard.

• Use the right-click menu to select Remove Selected Item.

Note: The CLND, PROD, LOC, ADMU, and LNGS hierarchies
CANNOT be deleted from the configuration.

Working with Hierarchies

28 Oracle Retail Predictive Application Server

Copy (Clone) Hierarchies
The RPAS Configuration Tools allows for the hierarchies of an existing project to be
copied into a new or existing project.

Navigate: In the Configuration Components pane, select Project – Hierarchies. The
Hierarchy Definition window opens in the workspace.
1. Right-click Hierarchies in the Configuration Components pane, and select Copy. The

Clone dialog box appears.

Clone Dialog Box

2. Select the destination project for the hierarchies to be copied.

3. Click Finish. The hierarchies in the selected project are overwritten.

Note: Each project has a single set of hierarchies. Hierarchies can
only be copied from one project to another, thus multiple projects
must be open in the RPAS Configuration Tools before the copy
process is initiated.

Working with Position Formats
The Position Format is the date/time format used for the names of positions in the root
dimension of the CLND (Calendar) hierarchy (typically "day"). Positions in the root
dimension of the CLND hierarchy need names in a special format for RPAS to map
abstract positions to actual dates and times in order to support time-aware calculations.

Note: See "Appendix B - Calculation Engine Users Guide"
and "Appendix C - Rules Function Reference Guide" for
more information.

Specifying the Position Format

Navigate: In the Configuration Components pane, select Project – Hierarchies. The
Hierarchy Definition window opens in the workspace.

 Working with Hierarchies

 Projects 29

Example of Position Format in Hierarchy Definition Window

The Position Format field is located in the upper right hand side of the Hierarchy
Definition toolbar.

This is a combo box that is populated with some of the more commonly used formats.
However, the configuration administrator may also type directly in the combo box if a
different format is desired.

Specify the position format as a concatenated sequence of strings and arguments using
the appropriate syntax. Refer to "Position Format Syntax" for more information.

Position Format Syntax
The Position Format field uses the following syntax conventions:

 %YEAR – Four digit Gregorian calendar year.

 %YR – Two east significant digits of the year (for example, 15 is 2015).

 %MO – Two digit representation of month (for example, 01 is January).
 %MON – Three character abbreviation of the month name.

 %MONTH – Varying length full name of the month, displays up to nine characters.

Note: Even when configuring a solution in another language,
RPAS expects the month names and abbreviations
(%MONTH and %MON) used in the position names to be in
English (for example, Jan, Feb, Mar, and so on).

 %DAY – Two digit representation of the day of the month (for example, 01 is the first
day of the month)

 %HR – Two digit representation of the hour of the day (for example, 22 is 10 p.m.).

 %MIN – Two digit representation of minutes past the hour.

 %SEC – Two digit representation of seconds past the current minute.

 %MSEC – Three digit milliseconds past the current second.

Working with Dimensions

30 Oracle Retail Predictive Application Server

The Position Format is NOT case sensitive, so %YEAR is the same as %year.

The length of the position name must not exceed 24 characters. The Position Format field
performs validation on the Position Format in order to enforce this limitation. For
example, the Position Format %YEAR%MONTH%DAY evaluates to a total of 15
characters (4 for the year, 9 for month, and 2 for day).

Examples:

 Format: %YEAR%MO%DAY

 A position that represents the January 31, 2013 would have the name 20130131

 Format: %YR%MON%DAY

 A position that represents the January 31, 2013 would have the name 13Jan31

Working with Dimensions

Overview
Dimensions are the components within a hierarchy that define the structure and roll up
within a hierarchy. For example, the dimensions for a calendar hierarchy can be day,
week, month, and year, or they can be accounting periods.

Create a Dimension

Navigate: In the Configuration Components pane, select Project – Hierarchies. The
Hierarchy Definition window opens in the workspace.

1. Select the hierarchy or dimension under which to create the new dimension.

Note: When this document uses terms like "top" and "bottom" level
dimensions or "over" and "under," these terms are to be interpreted
visually. The bottom level is at the top of the hierarchy, and the top
levels are at the end of the hierarchy branches. For example, the top
dimension visually is the root dimension, which is the lowest
dimension in the hierarchy. The highest dimensions in the hierarchy
are at the bottom end of the hierarchy branches. For instance, Day is
the bottom level of a Calendar hierarchy, but it falls directly beneath
CLND.

2. Choose one of the following methods:

• From the Hierarchy Definition right-click menu, select New Dimension.

• Click the New Dimension button on the toolbar.

Create the first dimension, which becomes the root dimension, for a new hierarchy
when positioned on the hierarchy. Once the root dimension is defined, new
dimensions cannot be defined directly under the hierarchy. New dimensions are
added under other dimensions. For example, after "Day" is added to the CLND
hierarchy, CLND cannot be selected again to add "Hour." However, "Week" can be
added under the "Day" dimension. There can only be one root dimension created per
hierarchy.

 Working with Dimensions

 Projects 31

Note: Certain processes that support the purging of data or positions
and the mapping of real dates/times to positions require a
dimension in the CLND hierarchy that is named "day" and
represents the day level. Such a dimension must be defined,
although the user label can be changed from "day" if needed for
localization purposes.

There is no limit on the number of dimensions that may be created
for a hierarchy.

3. Define the dimension as necessary. Refer to "Defining Dimension Properties" for
more information.

Defining Dimension Properties

Navigate: In the Configuration Components pane, select Project – Hierarchies.
1. Select a dimension using one of the following methods:

• From the Hierarchy tree, select the dimension you want to modify.

• From the Dimensions region of the Hierarchy Definition window, select the
hierarchy tab that contains the dimension you want to define or modify.

Example Dimensions Properties Window – CLND Tab Selected

Example Dimensions Properties Window – PROD Tab Selected

Working with Dimensions

32 Oracle Retail Predictive Application Server

2. In the Dimensions properties region, select or double-click in the field to edit. Scroll
to the right to see all of the fields. You can resize the columns by placing the cursor
over the column until the double-sided arrow appears and then drag the column to
the desired width.
Other than the RPAS name, the columns can be reordered by dragging and dropping
the headings. The column positions will return to the default order when the session
is closed.

You can specify the following dimension information:

Note: Only four of the dimension properties are patchable in
an existing domain. Once the domain is built, changes made
to any other dimension properties are ignored.

If a dimension’s property is patchable, it will be stated in a
note in its description below.

• Tools Name – The name of the dimension that is displayed within the RPAS
Configuration Tools. This field allows you to assign meaningful labels while
working with a configuration in the Configuration Tools. For example, the Tools
Name appears in Select Intersection dialog box, making it easier for you to assign
the appropriate intersections.

• RPAS Name – The RPAS internal name of the dimension. This dimension name is
used only by RPAS (not the user) within the domain.

• User Label – The dimension description that is displayed to RPAS users in the
RPAS Client.

Note: Any alpha-numeric characters are allowed. Single or
double quotes are not allowed.

• Column – Identifies the order in which the dimension’s positions fall in the meta-

data load file. Use the left and right buttons to change the order and
the column value of the dimensions. Changing the column value will not impact
the hierarchy structure or aggregation paths.

Note: The up and down buttons are used for defining
the sequence of hierarchies.

Example:

Change the column values if the dimensions in the data load file are not in the
same order as in the tree structure. Dimensions will be moved up or down in the
table without impacting the aggregates.

• Start – This is a read-only, calculated field. This field identifies the start position of
the position names for this dimension in the hierarchy load file.

• Width – This field identifies the width of position names for this dimension in the
hierarchy load file.

• Label Start – This is a read-only, calculated field. This field identifies the start
position of the position label for this dimension in the hierarchy load file. The sum of
the dimension Start and Width fields determines the value of the Label Start.

• Label Width – This field identifies the width of position labels for this dimension in
the hierarchy load file.

 Working with Dimensions

 Projects 33

Note: When using comma separated value (CSV) files to load
data into RPAS, the following dimension are ignored:
Column, Start, Width, Label Start, and Label Width. See
the Oracle Retail Predictive Application Server Administration
Guides for more information on Comma Separated Value
(CSV) flat file format data load and export.

• Aggs – This field establishes the relationship of the dimension to the other
dimensions in the same hierarchy. Specifically, this field references the child
dimension that aggregates up to this dimension (the parent dimension). It can be
edited by using the drop-down list, or you can drag and drop dimensions in the left
hand side hierarchy pane.

• Database – This field identifies the name of the database in which the dimension
information is stored. The default value is hmaint. For each position in the
dimension, dimension information stored by RPAS includes its internal and external
names, label, and the name of parent positions in all higher dimensional positions.

Note: The database property for a dimension cannot be
patched once the domain is built. It is therefore important to
establish the databases to hold dimension information
correctly prior to the creation of the domain.

Note: The size of any RPAS database should be limited to ~2
GB for contention and performance purposes.

• User Dimension –When selected (checked), this field indicates that the dimension is
user maintained. User-defined definitions (UDD) cannot have another dimension as
a parent. Positions and position mappings (parent-child relationships) for user-
defined dimensions are established in the RPAS Administrative workbook template,
“Hierarchy Maintenance.” This meta-data cannot be loaded like regular (non-user-
defined) dimensions in the hierarchy load process.

• Translate – When selected, this field enables the position labels for the dimension to
be translated into multiple languages (if using a multi-lingual environment, which is
set as a Workspace Property for a given project). Positions are loaded into the
domain in the native language of the domain via the standard hierarchy load
process. Position labels for additional languages are loaded into special measures
that are used in multi-lingual domains. With the proper setup, these translated
position labels can be displayed in workbooks in the RPAS Client instead of the
loaded position labels. See the Oracle Retail Predictive Application Server
Administration Guide for detailed instructions for enabling position label translation.

Note: Enabling the translation of a dimension is patchable
and will not adversely affect the expected results if altered.
However, disabling translation is not patchable and may
result in failure.

• Cardinality – Use this field to specify the approximate size of a dimension in terms
of the number of positions the dimension is expected to contain. Based on the range
you select, RPAS allocates a number of bits within its internal representation of the
dimension and all measures that contain that dimension in their intersection. This
ability to configure the amount of space necessary to represent the positions of a
dimension will result in smaller domains. The range options are:

• Very small: between 1 and 100 positions (8 bits)

Working with Dimensions

34 Oracle Retail Predictive Application Server

• Small: between 100 and 800 positions (10 bits)

• Medium: between 800 and 12,000 positions (14 bits)

• Large: between 12,000 and 100,000 positions (17 bits)

• Very Large: between 100,000 and 500,000 positions (20 bits)

• Extremely Large: between 500,000 and 2,000,000 positions (22 bits)

• Ultra Large: between 2,000,000 and 4,000,000 positions (23 bits)

• Custom: selecting this option allows you to enter a specify bit number. An input
dialog box appears. Enter the bit number and click OK.

Input Dialog for Custom Cardinality Option

Note: The cardinality property of a dimension is
patchable. However, changes to the cardinality of a
dimension will not take effect until the reindexDomain
utility is executed on the domain after the dimension is
patched.

• Re-indexing Threshold – Use this field to specify the reindexing threshold. As a
dimension exhausts its supply of unused indices, RPAS recycles the deactivated
positions and compacts the indices of a dimension. This operation is known as re-
indexing. When reindexDomain is run, every dimension is analyzed to determine
how many indices are still available to be assigned. If this amount falls below a
certain number (the re-indexing threshold), that dimension is reindexed. By default,
the threshold is set to 10% of the available positions in the dimension. This means
that when more than 90% of a dimension’s positions have been allocated, the
dimension is reindexed. For more information about reindexing and the reindex
utility, see the "Hierarchy Management" chapter of the Oracle Retail Predictive
Application Server Administration Guide for the Fusion Client or the Oracle Retail
Predictive Application Server Administration Guide for the Classic Client.

Note: The re-indexing threshold property of a dimension is
patchable. However, changes to the re-indexing threshold of
a dimension will not take effect until the reindexDomain
utility is executed on the domain after the dimension is
patched.

• Enable DPM – Dynamic Position Maintenance (DPM) allows informal positions to
be added to a dimension on-the-fly from the RPAS Client. Select the Enable DPM
option for the dimensions that will be enabled to support DPM. After Enable DPM is
defined for the dimension, you must also specify workbooks and the dimensions in
each workbook that will use DPM (see the Workbook Designer window for more
details).

 Working with Dimensions

 Projects 35

Note: DPM can be enabled for all hierarchy dimensions
except for CLND, ADMU, and LNGS.

When Enable DPM is selected for a specified dimension, it is
also selected for all dimensions that roll up to it.

For more information on DPM, see the Oracle Retail Predictive
Application Server Administration Guides and Oracle Retail
Predictive Application Server User Guides.

Enabling DPM is patchable and will not adversely affect the
expected results if altered. However, disabling DPM is not
patchable. DPM may be disabled for the templates, but not
for the dimension.

• Enable Images – Select this option to enable the association of images (image paths)
to positions along the specified dimension. To disable this feature, deselect the option
for the appropriate dimensions. This option is available for all hierarchy dimensions,
except the calendar hierarchy. For the calendar hierarchy, the Enable Images column
is disabled or grayed. RPAS supports GIF, BMP, and JPEG image formats. Once
Enable Images is defined for a dimension, you must also specify the workbook that
will use this feature (see the Workbook Designer window for more details). See the
Oracle Retail Predictive Application Server Administration Guide for more
information on loading image paths.

Note: Enabling and disabling images is patchable and will
not adversely affect the expected results if altered.

Delete a Dimension

Navigate: In the Configuration Components pane, select Project – Hierarchies. The
Hierarchy Definition window opens in the workspace.

1. From the Dimensions region or from the Hierarchy navigation tree, select the
dimension to be deleted.

2. Perform one of the following options:

– Click the Delete icon.

– Press the Delete key.

– Select Delete from the right-click menu in navigating in the Hierarchy navigation
tree.

Note: Deleting a dimension causes all of the dimensions that are
structurally dependant on it (its parents, grandparents, and so on) to
also be deleted.

Note: The user dimension contained in the ADMU hierarchy cannot
be deleted.

Edit a Dimension

Navigate: In the Configuration Manager, select Project – Hierarchies. The
Hierarchy Definition window opens in the workspace.
1. Select the Hierarchy in which a dimension will be edited.

Working with Dimensions

36 Oracle Retail Predictive Application Server

2. From the Dimensions region, select the dimension to edit.

3. Update the dimension property as necessary. Refer to "Defining Dimension
Properties" for more information. property to update.

4. To change the order of the dimension, click the left button or right button
to change the order of the dimensions. Re-ordering dimensions only affects the file,
not the parent/child relationship of data.

Note: The up button and the down button are
used to change the order of hierarchies only.

Create a Branch in a Hierarchy

Navigate: In the Configuration Components pane, select Project – Hierarchies.
The Hierarchy Definition window opens in the workspace.

1. From the Dimensions region or from the hierarchy navigation tree, select the
dimension that will be the base of the branched hierarchy. The base of the branched
hierarchy is the root dimension.

Example Create a Branch in a Hierarchy

Note: Ensure that the root dimension will have more than
one parent (that is, where the branch starts), and create
another parent dimension. Branches can never join together
(for example, both style-subclass-class and style-supplier-
class roll-ups in the same hierarchy are invalid).

Choose one of the following methods:
 From the Hierarchy Definition right-click menu, select New Dimension.

 Click the New Dimension button on the toolbar.
 Press the Insert key on the keyboard.

The new dimension will be created below the selected dimension.

Example of Branch Hierarchy

Labeled Intersections
The Labeled Intersections window supports the addition, removal and modification of
hierarchy intersections. A hierarchy intersection defines the dimensionality at which data

 Working with Dimensions

 Projects 37

is defined. An intersection may be defined as using no dimension (scalar), using a single
dimension from a hierarchy, or multiple dimensions from different hierarchies.

Note: See the section on “Measures and Base Intersections”
for more information on defining intersections for data.

Navigate: In the Configuration Components pane, select Project – Hierarchies.
The Hierarchy Definition window opens in the workspace.

1. From the Hierarchy Definition toolbar, select the Labeled Intersection icon . The
Labeled Intersections dialog box appears. This dialog box allows you to add new
intersections or remove or modify existing intersections.

Labeled Intersections Dialog Box

Adding a Labeled Intersection
1. Click Add from the Labeled Intersection dialog box. The Add Intersection dialog box

appears.

Add Intersections Dialog Box

2. Perform the following:

a. In the Label field, enter a label for the Labeled Intersection.
b. In the Definition field, enter the dimension name(s) for the intersection.

c. Click OK. The dialog box closes and the new entry appears in the Labeled
Intersection dialog box.

Working with Dimensions

38 Oracle Retail Predictive Application Server

Note: If the Definition field is left empty, the measure is
assumed to be Scalar. If the level is non-scalar, dimension names
are used to define the intersection. If multiple dimension names
are to be specified, each dimension name must be separated by
an underscore (_). The last dimension specified SHOULD NOT
have an underscore following the dimension name. As well,
there is no required order of dimensions.

Example of New Labeled Intersections

3. Click OK.

4. Once the labeled intersection is added, you can perform the following:

• Define or update the Base Intersection of major or minor measure component
using the labeled intersection.

• Define or update the Load Intersection of a measure using the labeled
intersection.

• Define or update the Base Intersection of a worksheet using the labeled
intersection.

Note: RPAS imposes a limit of 5 dimensions that can be defined in a
measure or worksheet’s base intersection.

Modifying a Labeled Intersection
1. Select a labeled intersection.

2. Click Modify from the Labeled Intersection menu.

Only the Definition field can be modified.

3. Click OK. If the change is undesired, select Cancel.

When the Definition of an existing labeled intersection is modified, the base
intersections of measures and worksheets, and load intersections of measures that are

 Data Interface Manager

 Projects 39

currently assigned the labeled intersection are automatically updated. No action is
required.

Removing a Labeled Intersection
1. Highlight a labeled intersection.

2. Click Remove from the Labeled Intersection dialog box.

3. Click OK.

When an existing labeled intersection is removed, the base intersections of measures and
worksheets, and load intersections of measures that are currently assigned the labeled
intersection will be displayed as invalid (red). Warning messages will also appear in the
Task List, indicating the intersections that must be updated. These intersections must be
corrected prior to installing or patching a domain.

Data Interface Manager

Overview
The Data Interface Manager tool is used to specify information about how data will be
loaded into the domain. This includes properties of the file to be loaded and the
intersection at which data will be loaded into the domain.

Data can only be loaded into stored, realized measures in the domain. Therefore, only
such measures can be used in the Data Interface Manager. Refer to the “Working with
Measures” section of this document.

Specify the Data Interface for a Measure

Navigate: In the Configuration Components pane, select Project – Data Interface.
The Data Interface Manager window opens in the workspace.

Example of Data Interface Manager Window

1. Click New Meas. The New Measure Specification window opens.

Data Interface Manager

40 Oracle Retail Predictive Application Server

Example of New Measure Specification Window

Note: This is a filtered list of all possible measures in the
configuration. Measures will be displayed in this list if they
are: realized, stored (has a defined database), and not
already defined in the data interface tool.

2. Select the measure requiring a data interface definition.
3. Click OK. The measure appears in the Data Interface Manager window.

Add/Edit Data Interface Properties for a Measure

Navigate: In the Configuration Components pane, select Project – Data Interface.
The Data Interface Manager window opens in the workspace.

By default, the Load Intersection field is populated with the base intersection of the
measure. If the data for a given measure is being loaded at a lower intersection than the
base intersection of the measure, this value can be overridden to specify the intersection.

Note: Data can be loaded at the same intersection or lower
than the base intersection of a measure. Data cannot be
loaded at a higher intersection than the base intersection.

Data Interface Manager Window – Add/Edit

1. Click the Load Intersection field to change its value. The Select Intersection window
opens.

 Data Interface Manager

 Projects 41

Select Intersection Window

2. To specify the load intersection:

a. Using the list options, select the appropriate dimensions or Labeled Intersection.

Note: Only those dimensions that are at the same level as the
base intersection or below will be displayed for the load
intersection.

b. Click OK to save any changes and close the window.

3. Click the Clear Intersection field to change its value. The Select Intersection
window opens.

Note: The clear intersection allows support of .clr measure
data files. Using .clr files with loadMeasure allows the
clearing of selected portions of a measures data arrays.

Data Interface Manager

42 Oracle Retail Predictive Application Server

Select Intersection – Clearing the Intersection

4. To specify the clear intersection:

a. Using the list options, select the appropriate dimensions or Labeled Intersection.

Note: Only those dimensions that are at the same level as the
base intersection or above are displayed for the clear
intersection.

b. Click OK to save any changes. Close the window.

5. In the File Name field, enter the file name from which data for the measure will be
loaded.

6. In the Start Position field, enter the character position in the file where the measure
data starts. The start position defaults to the sum of all the dimension widths in the
load intersection of the measure +1, and the value specified in the field must be that
default or higher.

7. In the Column Width field, enter the number of characters in the file that will contain
the measure data.

Note: The Column Width defaults to 8, but it can be changed.

8. If the Load Intersection was overridden to specify that the data is to be loaded from
an intersection below the measure’s base intersection, the measure’s default
aggregation method is used to aggregate the data unless the Load Aggregate field is
populated to specify an alternate aggregation method. Click the Load Aggregation
Method field and select the appropriate aggregation method from the option list.

 Working with Styles

 Projects 43

Note: Hybrid is not supported for the load aggregation for a
measure.

Delete Data Interface Information for a Measure

Navigate: In the Configuration Components pane, select Project – Data Interface.
The Data Interface Manager window opens in the workspace.

1. Select the measure you want to remove from the Data Interface Manager.
2. Click Delete Meas.

3. Click Yes. The measure is removed from the table.

Working with Styles

Overview
It is possible for the RPAS Client user to modify the appearance of the data displayed for
a given measure in a grid. Text font, size, and color may all be changed. Many attributes,
such as precision (for decimal data types), alignment of the value in the cell, and the cell
border may also change.

Using the Style Tool, it is possible to define styles that may be applied to measures. These
predefined styles may specify any of a body of attributes that determine the appearance
of the data within the client. It is then possible to specify a measure as using one of these
pre-defined styles. The measure will then be displayed according to the specifications for
that style.

Note: The RPAS client is not aware of styles which are a
configuration convenience. In the client, the individual
properties are maintained individually. A style can therefore
be thought of as a mechanism to easily set many individual
properties.

The Style Definition Tool
The Style Definition Tool provides the following functionality:

 Allows the creation and management of named styles. New styles are generated as
sub-styles of existing styles.

 Allows the specification of the attributes of named styles. Style attributes follow an
inheritance scheme in which any unspecified attribute will inherit a value from its
parent style if that style has a specification.

 Allows the specified styles to be visible to the Measure and Workbook Tools where
measures are marked as using a style.

Style Attributes
A number of attributes may be specified for a style. These attributes will determine how
the data for a measure that uses the style is displayed within the RPAS Client. Style
attributes follow an inheritance framework in which an attribute defined in one style is
also defined for all of the children of that style unless a style is defined for a child. The
attributes of a style that may be specified are as follows:

 Name – The name of the style. This is used in the Measure and Workbook Tools to
assign a style to a measure. Since styles are a configuration convenience, style names
are not visible in the RPAS client.

Working with Styles

44 Oracle Retail Predictive Application Server

 Prefix – A cell value in the RPAS client will be prefixed with this string. For example,
a prefix could be “$” to denote U.S. currency values. The prefix can be any character
sequence, but cannot exceed seven characters.

 Suffix – A cell value in the RPAS client will be suffixed with this string. For example,
a suffix could be “%” to denote that the value in the field is a percentage of
something. The suffix can be any character sequence, but cannot exceed seven
characters.

 Scale Factor – A cell value in the RPAS client could use a scale factor for display
purposes. A value that is calculated as a fraction could be displayed as a percent by
selecting the scale factor to be 0.01 (The UI divides by the scale factor).

 For example, if the value in a cell is 0.5, the scale factor would have to be 0.01 for the
cell to display 50.

The value entered in the field should be greater than zero.

 Precision – Precision is the number of significant digits to be displayed in the cell of
the RPAS client. If this number is set to 3, the client must always display 3 positions
after the decimal. For example, the measure value is 1, with a Precision setting of 3; it
will be displayed as 1.000. The value entered in the field should be greater than zero.

 Separator – A cell value in the RPAS client could be formatted to have separators in
the value. The separator and the format come from the regional settings on the
computer. For example, when a separator is used, a value of 1000 would be
displayed as 1,000 or 1.000. It can also be displayed in other formats depending on
the regional settings.

 Text Font – Sets the font of cell value in the RPAS Classic Client (Times New Roman,
Arial, and so on).

 Text Style – Sets the display style of the text value in the RPAS client (Bold, Italic,
and so on).

Note: Text font is not used by the Fusion Client.

 Text Size – Sets the font size in which the cell value in the RPAS Classic Client is to
be displayed.

Note: Text size is not used by the Fusion Client.

 Text Color – Sets the color of the cell values in the RPAS client.

 Background – Sets the background color of the cells in the RPAS client.

Note: In the RPAS client, the measure formatting
background color for a measure takes priority over the
‘read/write’ background color that can be set for the
application. Therefore, the RPAS client ‘read/write’ color
will not be seen if styles are used through the Configuration
Tools. If a specific read/write color is desired for all
measures, set it as the background color of the default style,
and do not override it for any other styles. On the other
hand, the RPAS client ‘read only’ background color takes
priority over the measure formatting background color so
that ‘protection processing’ will be visible.

 Alignment – Sets the alignment of values within the cells when viewed in the RPAS
client (Left, Center, and Right

 Working with Styles

 Projects 45

 Border Style – Sets they style of border of cells. Border style determines the kind of
borders (for example, single line, dotted line, and so on) and where the borders
should be relative to the cell value (top, bottom, left, right, or any combination of
these).

Note: Border style is not used by the Fusion Client.

 Border Color – Sets the color of the border lines for cell values.

Note: Border color is not used by the Fusion Client.

 Time Format – Sets the time format for styles. Options are No Time, Twenty-Four
Hour, and Twelve Hour.

Create a Style

Navigate: In the Configuration Components pane, select Project – Styles. The Style
Definition window opens in the workspace.

Style Definition Window

1. Select or create the Style that will be the parent of the new style. All styles must
ultimately be descendents of the Default Style.

2. Choose one of the following methods:

a. Click the Create a new style button in the toolbar.

b. Select New Style from the right-click menu.
c. Press the Insert key.

If the Style Attributes for Default are populated, all of its descendants will inherit the
same attributes unless you specify new attributes for the new styles. A new style will
be created with inherited attribute values for all the properties set in its parent style.

The inherited style attribute values are displayed with lighter shade (gray) to
differentiate from the un-inherited values (black). Notice that the style attributes for
the style Default -are shown in black while the style attributes for the style ‘Percent’
are in gray.

3. Change the values of any of the new style’s attributes where a different value is
required than that which has been inherited. For those attributes that have been
overwritten from the “Default” value will be display in black while those that have
not been changed will remain gray to indicate they are inherited.

Working with Styles

46 Oracle Retail Predictive Application Server

Style Definition Window

Remove a Style

Navigate: In the Configuration Components pane, select Project – Styles. The Style
Definition window opens in the workspace.

1. Select the style to be removed.

Style Definition Dialog Box

Choose one of the following methods:

 Click the Delete Style button in the toolbar

 Select Remove from the right-click menu.

 Press the Delete key.

The selected style and all of its child styles will be removed from the style description
tool. Any measures using a deleted style will be displayed as invalid.

Style Definition Dialog Box

Edit a Style

Navigate: In the Configuration Components pane, select Project – Styles. The Style
Definition window opens in the workspace.

 Working with Taskflows

 Projects 47

Style Definition Dialog Box

1. Select the style to be edited.

2. Select the property of the style to be edited. Depending on the property selected, one
of the following will be displayed:

 a pop-up color chooser (for all color selection properties like font color,
background color, and so on)

 a pop-up dialogue (for Borders)

 a drop-down (for alignment, font, and text style)

 a free flow text cursor (for all other properties)
3. Make the selection, and enter the value for the property.

If the edited value is changed to the same as its parent’s value for an attribute, the
value is automatically changed to inherit from the parent, and it is displayed as gray
rather than black.

4. If the value is to be deleted (does not contain any value), select the property, and
press the Delete key.

Working with Taskflows

Overview
The RPAS Fusion Client provides a more flexible approach than the RPAS Classic Client
to user interaction with the workbooks configured for an RPAS domain. This flexibility
allows users to focus less on the structural elements that make up the workbook
configuration and more on the tasks that they use those structural elements to perform.

Note: Taskflows can be created only for the RPAS Fusion
Client, not the RPAS Classic Client. This entire taskflow
section only applies to the Fusion Client.

This flexibility is found in the Fusion Client taskflow. The taskflow allows configurators
to more closely describe and model their business practices within the client.
Configurators can create taskflow elements (activity groups, activities, tasks, and steps)
that can be associated with structural elements of the workbook configuration. These
taskflow elements then provide a more intuitive and business practice-oriented view of
the structural elements of the RPAS domain.

The activity group / activity / task / step can be organized however the user wants. The
task refers to a template and specific solution. Inside a Configuration Tools configuration,
they all refer to the same solution. Names are all qualified by the Solution ID, so that they
do not conflict later when they are manually combined. A single solution taskflow can
have multiple activity groups, and a combined taskflow could conceivably have just one

Working with Taskflows

48 Oracle Retail Predictive Application Server

(for example, put all the activities from the various solutions under a single activity
group).

For multiple solutions, activity groups can be used to integrate activities from the
solutions into a unified taskflow configuration that spans those solutions. The activity
group provides an integrated workflow that represents your business process across
multiple solutions, that is, it organizes activities from multiple solutions so the activities
can be presented together under a single organizing entity.

When creating an activity, the activity group name, label, and description can be
specified. When the domain is built, the activities are combined into an activity group
based on the specified activity group properties. For users upgrading to 14.0, the defaults
are used to specify activity group information so that no additional configuration work is
required if you are not implementing a taskflow across multiple solutions.

Each task is specific to a workbook template and therefore a specific solution. If there is a
restriction needed for the domain type, it can be specified for each task by selecting the
task type when specifying the task properties:

 Master – create the workbook in the master domain only.
 Locals – create the workbook in the local domains only.

 Both – create the workbook in either the master or local domains. This is the default.

Note: For clients upgrading to 14.0, the defaults are used to
specify activity group information so that no additional
configuration work is required if you are not implementing
a taskflow across multiple solutions. However, new taskflow
files need to be generated to conform to the new structure.

For users upgrading to 14.0 or later, the default task type of Both is used so that no
additional configuration work is required if you are not implementing a taskflow across
multiple solutions.

The following examples illustrate single and combined activity groups. The first example
shows an activity group that includes multiple solutions. Fashion Planning: Pre-Season
Planning is the activity group. Within this activity group, the Develop and Approve Item
Plans task is from Item Planning and the Financial Review of Item Plans activity is from
Merchandise Financial Planning.

 Working with Taskflows

 Projects 49

The following shows the activity group at the solution level. Merchandise Financial
Planning, Assortment Planning, and Item Planning each contain the taskflow for the
individual solution.

Working with Taskflows

50 Oracle Retail Predictive Application Server

Using the RPAS Configuration Tool, you have the ability to create a customized activity
taskflow for the RPAS Fusion Client. This activity taskflow helps users of the RPAS
Fusion Client understand the tasks they must complete in order to meet their planning
goals.

The RPAS Configuration Tool works on a taskflow for a single solution (configuration).
Everything within it will be qualified by Solution ID so as not to create conflicts with
other solution's taskflows. For a multi-solution configuration, these need to be combined
into a single multi-solution taskflow. This is a manual process of combining the taskflow
XML and resource properties files. For information on moving the taskflow and
resources into place, see Creating a Multi-solution Taskflow.

Some RPAS configured solutions are delivered with preconfigured taskflows. These
preconfigured taskflows can be customized using the steps below. Or, you can create
new taskflow.
Below is an example of a taskflow in the RPAS Fusion Client.

 Working with Taskflows

 Projects 51

Taskflow Within the RPAS Fusion Client

The following table describes the icons that appear with all the entries in the activity
taskflow.

Legend Icon
Name

Description

A Activity
Groups

These tabs represent the grouping of
activities

Working with Taskflows

52 Oracle Retail Predictive Application Server

Legend Icon
Name

Description

B Activities These tabs represent the predefined
activities of the application

C Tasks These are individual tasks within an
activity

D Steps One or more steps make up each task

Create a Taskflow

Navigate: In the Configuration Components pane, select Taskflow within the project
for which you want to create a taskflow.

Taskflow Icon in the Configuration Components Pane

The Taskflow Manager window appears. The first time that you use the Taskflow
Manager, it contains one bullet called Taskflow.

 Working with Taskflows

 Projects 53

Taskflow Manager

 Adding an Activity to the Taskflow
1. Select the Taskflow bullet inside the navigation pane of the Taskflow Manager. Click

Add.

Adding an Activity to the Taskflow

2. An activity called Activity1 appears in the navigation pane. Select Activity1. The
Activity Properties appear in the detail pane.

Working with Taskflows

54 Oracle Retail Predictive Application Server

Activity1 in the Taskflow

3. Enter the name of the activity in the Label field. This is the name of the task as it
appears in the taskflow of the RPAS Fusion Client. The red asterisk denotes that this
step is required. Note that as you type the name in the Label field, the name is
updated in the navigation pane.

Activity Properties

4. Enter a description for the activity in the Description field. The description appears
when the user rolls the cursor over the activity name in the RPAS Fusion Client. This
step is optional.

5. Enter the activity group name in the Activity Group Name field, group label in the
Activity Group Label field, and group description in the Activity Group
Description field. This step is optional.

After you've entered the activity properties, the new activity is created.

Adding a Task to the Taskflow
1. To create a task within an activity you created, select the activity in the navigation

pane and click Add.

 Working with Taskflows

 Projects 55

Adding a Task to an Activity

1. A task called Task1 appears in the navigation pane. Select Task1. The Task Properties
appear in the details pane.

Task Properties

2. Enter the following information in the Task Properties.

 Label: enter the name of the task as you want it to appear in the Oracle Retail
Predictive Application Server Fusion Client. This step is required.

 Description: enter the description of the task. This description appears when the
user rolls the cursor over the task name in the Oracle Retail Predictive
Application Server Fusion Client.

 Workbook Template: choose the workbook template that will be utilized in this
task. This step is required.

 Task Type: Choose whether the task can be performed over the master domain,
local domains, or both. The default is both.

 Dynamic Task: Select this option if the steps for the task are dynamic based on
the user selections made during the workbook wizard. When this option is
selected, the user will not see any steps under a task in the Oracle Retail
Predictive Application Server Fusion Client until a workbook is open.

Note: Custom workbook code is still required to provide the
ability to filter steps based on the wizard selections

 Show Unassigned Worksheets – By checking the unassigned flag, applications
that include the potential for non-configured worksheets can allow those
worksheets to be displayed within the Fusion Client while continuing to
maintain the ability to hide worksheets irrelevant to the task at hand for
workbooks that do not contain non-configured worksheets.

Working with Taskflows

56 Oracle Retail Predictive Application Server

 Non Authorized Users: Choose whether unauthorized users are able to see the
task but are unable to edit it (Disable Task) or are not able to see it at all (Hide
Task).

Task Properties

Once you've entered the task properties, the new task is created.

Add a Step to the Taskflow
1. To add a step to a task you created, select the task and click Add.

Adding a Step to a Task

2. A step called Step1 appears in the navigation pane. Select Step1. The Step Properties
appear in the details pane.

3. Enter the following information in the Step Properties:

 Label: enter the name of the step as you want it to appear in the Oracle Retail
Predictive Application Server Fusion Client. This is required.

 Description: enter the description of the step. This description appears when the
user rolls the cursor over the step name in the Oracle Retail Predictive
Application Server Fusion Client.

 Instructions: enter instructions that explain what to do in the step. These
instructions appear below the task pane.

Instructions in the RPAS Fusion Client

 Worksheets: select the worksheets that will be utilized in this step. You can select
all worksheets to be included by checking the All checkbox. Or, you can select a
subset of worksheets from that workbook template. This is required.

 Working with Taskflows

 Projects 57

 Custom Menu: if you want to include a custom menu in this step, select it in the
Available area and then use the arrow to move it to the Selected area. You can
change the order of the custom steps by using the up and down arrows.

Step Properties

Once you've entered the step properties, the new step is created.

Add a Tab to the Taskflow
1. To add a tab to a step you created, select the step and click Add.

Adding a Tab to a Step

2. A tab called Tab1 appears in the navigation pane. Select Tab1. The Tab Properties
appear in the details pane.

3. Enter the following information for the tab:

 Label: enter the name of the tab as you want it to appear in the Oracle Retail
Predictive Application Server Fusion Client. This is required.

Working with Taskflows

58 Oracle Retail Predictive Application Server

 Worksheets: select the worksheets that will be utilized in this tab. You can select
all worksheets to be included by checking the All checkbox. Or, you can select a
subset of worksheets. This is required.

Tab Properties

Once you've entered the tab properties, the new tab is created.

Delete Items from the Taskflow
To delete any activity, task, step, or tab in the taskflow, select it and click Delete.

Deleting Items in the Taskflow

Edit Items from the Taskflow
To edit an activity, task, step, or tab that you have already created, select it in the
navigation pane. It properties appear in the details pane. Then edit the properties you
want.

Order Items in the Taskflow
To change the order of activities, tasks, steps, or tabs, select the item that you want to
move and use the arrow buttons to the right of the navigation pane. Click a single arrow

 Working with Taskflows

 Projects 59

to move it one level in the list. Click the double arrow to move it to the top or bottom of
the list.

Ordering Items in the Taskflow

Validate the Taskflow
As you create the taskflow, the Task List below the Taskflow Manager displays
configuration elements that may cause validation errors. In addition, the Validation
Results tool shows you if you have configured elements that are unavailable to users. For
instance, if a configured taskflow does not have a task associated with a given workbook
template, then the RPAS Fusion Client user is not able to build or open any workbooks
built from that template.

Note: The presence of validation problems does not prevent
you from building a domain.

To validate your taskflow, click Validate at any time. The Validation Results window
appears. The Validation Results tool checks for the following:

 Workbook templates that are not associated with a task

 Worksheets that are not a part of any step
 Custom menu items that are not available in any step

When conditions such as these exist, they appear in the Validation Results window. Once
you have reviewed the results, you can choose to resolve any issues if necessary.

Working with Taskflows

60 Oracle Retail Predictive Application Server

Validation Results

The RPAS Configuration Tools also performs validation within the Task List below the
Taskflow Manager. As you edit within the Taskflow Manager, the Task List reports
potential issues and errors within the configuration. For more information, see the Task
List section.

Generate Default Mapping
Click Gen Default at any time to revert the taskflow to the default mapping.

Generate Default Mapping

The default mapping provides a basic structure to taskflow elements and can serve as
either a simple configuration of workbook elements or as a starting point for a
customized configuration of the taskflow elements.

The default mapping is setup as follows:
 There is one activity generated for every workbook group in the domain. The label of

the workbook group is used as the activity's label and description.

 Each activity contains a single task for each workbook present in the workbook
group associated with that activity. The label of that workbook is used as the task’s
label and description. By default, workbooks are disabled for unauthorized users in
all tasks.

 Each task contains a single step for each workbook tab present in the workbook
associated with that task. The label of the worksheet is used as the step’s label,
description, and instructions. Each step includes the worksheets contained within
the workbook tab associated with that step and does not include worksheets
contained within other workbook tabs present in the workbook. Each step contains
all Custom Menus present in the workbook.

 The default mapping contains no taskflow tab elements.

Hyperdynamic Tasks, Steps, and Tabs
Some RPAS solutions use custom workbook template libraries to extend the workbook
creation functionality of RPAS. For some of these solutions, some or all of the content of a
workbook is determined, not by the configuration, but by the custom template library at
the time the workbook is built.
Because the worksheet and tab content of these workbooks is dynamic, it is not possible
to configure the taskflow in the same manner that a taskflow is configured for standard
workbooks. Instead, these custom workbooks use special taskflow objects named

 Working with Taskflows

 Projects 61

hyperdynamic tasks, step, and tabs. Hyperdynamic tasks, steps, and tabs differ from
their standard counterparts in the following ways:

 A hyperdynamic task can contain only hyperdynamic steps.

 A hyperdynamic step can contain only hyperdynamic tabs.
 Hyperdynamic steps and tabs do not select visible worksheets based on the

worksheets of the workbook assigned to the task. Instead, they are populated by
providing the names of worksheets that may not exist within the configured
workbook at the time the taskflow is configured.

 At the time of workbook creation, the Fusion Client uses the configured list of
worksheet names in coordination with the set of worksheets in the built workbook to
determine which worksheets will be visible in the Fusion Client and how they will be
assigned to tabs.

 Because the worksheet membership of hyperdynamic tasks, steps, and tabs is not
determined until workbook build time, they cannot be validated using the taskflow
validation functionality.

Creating a Hyperdynamic Task
To create a hyperdynamic task to an activity, perform the following steps:

1. Select the activity and click Hyperdynamic Task.

Hyperdynamic Task Button

2. The new hyperdynamic task appears in the navigation pane. Select the new task. The
new task properties appear in the detail panel.

3. Enter the following information in the Task Properties.

 Label: Enter the name of the task as you want it to appear in the RPAS Fusion
Client. This step is required.

 Description: Enter the description of the task. This description appears when the
user rolls the cursor over the task name in the RPAS Fusion Client.

 Workbook Template: Choose the workbook template to be utilized in this task.
This step is required.

 Dynamic Task: Select this option if the steps for the task are dynamic based on
the user selections made during the workbook wizard. When this option is
selected, the user does not see any steps under a task in the RPAS Fusion Client
until a workbook is open.

Note: Custom workbook code is still required to provide the
ability to filter steps based on the wizard selections.

 Show Unassigned Worksheets – By checking the unassigned flag, applications
that include the potential for non-configured worksheets can allow those
worksheets to be displayed within the Fusion Client while continuing to
maintain the ability to hide worksheets irrelevant to the task at hand for
workbooks that do not contain non-configured worksheets.

Working with Taskflows

62 Oracle Retail Predictive Application Server

 Non Authorized Users – Choose Disable Task to allow unauthorized users to
see the task but not access it. Choose Hide Task if you do not want unauthorized
users to see the task at all.

Adding a Hyperdynamic Step to the Taskflow
To add a hyperdynamic step to a hyperdynamic task you have created, perform the
following steps:

1. Select the hyperdynamic task and click Add.

Adding a Step to a Task

2. A step named Step1 appears in the navigation pane. Click Step1. The Step Properties
appear in the details pane.

3. Enter the following information in the Step Properties:

 Label: Enter the name of the step as you want it to appear in the RPAS Fusion
Client. This is required.

 Description: Enter the description of the step. This description appears when the
user rolls the cursor over the step name in the RPAS Fusion Client.

 Instructions: Enter instructions that explain what to do in the step. These
instructions appear below the task pane.

Instructions in the RPAS Fusion Client

 Worksheets: Enter the names of the worksheets that can be visible within the
step.

 Custom Menu: If you want to include a custom menu in this step, select it in the
Available area and then use the arrow to move it to the Selected area. You can
change the order of the custom steps by using the up and down arrows.

Adding a Hyperdynamic Tab to the Taskflow
To add a hyperdynamic tab to a hyperdynamic step you created, perform the following
steps:
1. Select the hyperdynamic step and click Add.

Adding a Tab to a Step

 Working with Taskflows

 Projects 63

2. Tab1 appears in the navigation pane. Click Tab1. The Tab Properties appear in the
details pane.

3. Enter the following information for the tab:

 Label: Enter the name of the tab as you want it to appear in the RPAS Fusion
Client. This is required.

 Worksheets: Select the worksheets that will be utilized in this tab.

After you have entered the tab properties, the new tab is created.

Adding Worksheets to a Hyperdynamic Step or Tab
To add a worksheet to a hyperdynamic step or tab, perform the following steps:

1. Select the hyperdynamic step or tab. It appears in the detail pane.

2. To add a worksheet, click the Add button and specify the name of the worksheet in
the pop-up dialog.

Adding a Worksheet to a Hyperdynamic Step or Tab

3. When finished, click OK.

Removing a Worksheet from a Hyperdynamic Step or Tab
To remove a worksheet from a hyperdynamic step or tab, perform the following steps:
1. Select the step or tab that contains the worksheet you want to remove. The details of

the step or tab appear in the detail pane.

2. Select the worksheet to remove and click Remove.

Working with Taskflows

64 Oracle Retail Predictive Application Server

Removing a Worksheet from a Hyperdynamic Step or Tab

The selected worksheet is removed from the step or task.

Creating a MultiSolution Taskflow

Note: For more information on MultiSolution taskflows, see
Oracle Retail Predictive Application Server User Guide for the
Fusion Client.

There are two goals:
 The taskflow is usable without further modification in a single solution environment.

 The taskflows can be easily combined, manually, to form a multiple solution
environment:

– In the simplest form, the activity groups from each solution's taskflow can be put
into one taskflow, and the resources concatenated, to produce a simple, usable,
multi-solution taskflow.

– This must also ease the process of producing a more thoughtfully integrated
taskflow, for example, with activity groups like "Pre-Season Planning" that
comprise tasks from each solution.

Keep the following in mind:

 Solution ID – The solution ID should be standard for the application, for example,
"mfprtl". This will be used to make the taskflow definitions and resources unique to
this application. This avoids conflicts when combined with other applications into an
integrated taskflow.

 Name and description of the top-level activity group – Activity groups are a higher-
level grouping of activities in the taskflow. For a single solution taskflow, a single
activity group containing the entire application is produced.

 Each task can specify domain type restrictions:

 master – create the workbook in the master domain only.

 locals – create workbooks in local domains only.

 both – workbooks may be created in either master or local domains. This is the
default if not specified in the taskflow definition.

A simple domain always qualifies, regardless of this setting. The workbook template
may have restrictions, as well, which are also applied.

When combining taskflows, the taskflow xml and resource file need to be updated:

 Working with Taskflows

 Projects 65

 All resource IDs must be prefixed by the solution ID, both in the taskflow xml and
the .properties resource file. This makes each definition specific to this application, so
there will be no conflicts when combined with taskflows of other solutions.

 A top-level activity group needs to be created. The <activity> tags need to be inside
of the <activity_group> definitions. This provides a higher level of grouping:

<activity_group>
 <name>mrprtl.ActivityGroup1</name>
 <description>mfprtl.ActivityGroup1.Desc</description>
 <order_num>1</order_num>
 ... all activity definitions ...
</activity_group>

 Resource definition for the solution needs to be created:
{solutionId}.Solution.label={solution label}

You need to replace {solutionId} and {solution label} with the actual values.
 Resources definitions for the activity group need to be created:

mfprtl.ActivityGroup1=MFPRetail
mfprtl.ActivityGroup1.Desc=MFP Retail

• Each and every task needs to specify the solution ID via a <solution> tag:
<task>
 <name>mfprtl.Activity1.Task1</name>
 <description>mfprtl.Activity1.Task1.Desc</description>
 <solution>mfprtl</solution>
 ...

 Any task that has a domain type restriction must include the <domain_types> tag:
<domain_types>locals</domain_types>

If you are transforming old taskflows manually, each <task> needs a <solution> tag
before this.

 Note that the current generated taskflows include generated resource IDs which
include each level of grouping, that is, Activity1.Task1.Step1, etc. In 14.0, the
Solution ID is included. It is up to you whether you want to also include
ActivityGroup. For single solution taskflows, there are activity group (name, label,
description) properties on each activity, and you can produce multiple activity
groups by assigning activities to different ones. Activity groups are an additional
level of grouping that can be useful when taskflows are combined (that is, useful in
that situation, but not exclusively), which is a manual process.

 There still may be value in using tools to manipulate the existing XML and resource
files. For example, you might want to rename the solution ID to provide a test bed
solution, or apply a solution ID to a previously translated resource file.

Note: You use whatever tools you are comfortable with to
transform XML and text files.

 Not directly related to the taskflow, but the resource file is used to provide "friendly
names" for RPAS domains, as they are not available from the server. This is more an
installation/administration issue:

mfprtl.Domain.simple.label=MFP Retail Simple
mfprtl.Domain.master.label=MFP Retail Master
mfpftl.Domain.domainidx_0.label=MFP Retail Local 0
mfprtl.Domain.domainidx_1.label=MFP Retail Local 1

Working with Taskflows

66 Oracle Retail Predictive Application Server

mfprtl.Domain.domainidx_2.label=MFP Retail Local 2
etc.

Refer to the Oracle Retail Predictive Application Server Administration Guide for the Fusion
Client or the Oracle Retail Predictive Application Server Installation Guide for additional
information about domain partitioning.

Taskflow Naming
The following items are helpful for the names used in your taskflow. Understanding
these can help you avoid a lot of unnecessary work combining taskflows and
manipulating multi-solution taskflows.

 <name> and <description> for <activity_group>, <activity>, <task>, and <step> are
all IDs for resource strings that are defined in MultiSolutionBundle.properties. They
should not conflict or the display will be wrong.

 <name> for <activity_group>, <activity>, <task>, and <step> are all IDs that need to
be unique within their parent.

 <solution> within <task> refers to the Solution ID where the workbook template
resides (see <wkbk_template>). This Solution ID must have a connection mapping in
Foundation.xml (<solution>'s <name> must match) or this task will not be used.

As long as you pick different Solution IDs for each Project in ConfigTools, the automatic
naming is such that there should be no conflicts. This is true even if you move activities,
tasks, and etc. around the taskflow XML and the fully qualified names no longer reflect
their new location. For example, Sol1.ActivityGroup1.Activity2.Task.4 can be moved
inside Sol2.ActivityGroup2.Activity1 without the IDs all having to be fixed up. They are
still unique as resource IDs and the task name does not conflict with any other tasks
inside its new parent Sol2.ActivityGroup2.Activity1.

Creating the Taskflow for a Taskflow Created in a Release Earlier than 13.3.1
If you have a taskflow created in a release earlier than 13.3.1 that you want to use in 14.0
or later (without running through ConfigTools for some reason), at minimum you need
to do the following:

 Add a single <activity_group> around the existing <activity> tags to group them.
 Add a <solution> tag with the solution ID to each task in the taskflow.

 Add resources to the property file for the new activity group, for example:

 solution1.ActivityGroup1=sample activity group label

 solution1.ActivityGroup1.Desc=sample activity group description

 Add a resource to the property file for the solution’s label:
solution1.Solution.label=sample solution label

 You need to qualify all <name> and <description> IDs by putting the “solutionId.”
in front of them. Then do the same in the properties file so they match up.

Upgrading retailers may have multiple taskflows on the same server, where the users
who switch between them use profiles. In this case, you probably want to construct a
multi-solution taskflow that includes each solution. The simplest way to do this is to
combine taskflows from Configuration Tools or construct as above by putting each
<activity_group> in the multi-solution taskflow xml, one after another, and then
concatenating all the .properties resource files.

Solutions 67

4
Solutions

Working with Solutions

Overview
A solution corresponds to an application configuration (for example, Merchandise
Financial Planning or Item Planning). Each project can contain one or more solutions. For
each solution, measures, rules, workbooks, and wizards are defined. Once a solution is
created, it can be moved from one project to another.

Note: Some solutions, such as Curve, Grade, and RDF, have
configuration steps that are specific to those solutions. For
more information, see the corresponding configuration
guide for the solution.

Create a Solution
Navigate: From the File menu, select New – Solution. The New window opens.

New Window

1. In the Name field, enter the name of the solution.

2. In the Project field, select the project in which the solution is to belong. There will be
multiple projects listed if multiple projects are currently open.

3. Click OK to save any changes and close the window.

Copy a Solution
Perform the following procedure to copy a solution:

1. Select the solution to be copied.

Working with Solutions

68 Oracle Retail Predictive Application Server

2. Right-click in the Configuration Components pane, and select Copy. The Copy
solution dialog box appears.

Example of Copy Solution Dialog Box

3. Type the new name for the solution in the text box.

Note: This is the name that the solution is called after it has
been copied.

4. Select the project where the solution is to be copied.

5. Click Finish to save the copied solution in the specified project.

Rename a Solution
Perform the following procedure to rename a solution:

1. Select the solution to be renamed.

2. Right-click in the Configuration Components pane, and select Rename. The Rename
dialog box appears.

Rename Dialog Box

 Working with Solutions

 Solutions 69

3. Delete the old name from the resulting field, and type the new name.

4. Click OK to save the new name.

Move a Solution
Perform the following procedure to move a solution:

Note: The Move a Solution operation is only available when
multiple projects are open.

1. Select the solution to be moved.

2. Right-click in the Configuration Components pane, and select Move. The Move
dialog box appears.

Example of Move Dialog Box

3. Type the name of the solution in the text box.

Note: This is the name that the solution is called after it has
been moved.

4. Select the destination project for the solution from the resulting Project list.
5. Click OK to move the solution to the specified project.

Delete a Solution
Perform the following procedure to delete a solution:

1. Select the solution to be deleted.

2. Right-click in the Configuration Components pane. The Confirm Delete dialog box
appears.

3. Click OK to complete the deletion.

Measures and Components

70 Oracle Retail Predictive Application Server

Measures and Components

Measure Manager

Overview
The Measure Manager window allows you to define major and minor components of
measures and to specify properties for each component. Once the component structure is
defined, the Measure Manager generates measures by combining the components that
are selected. You may then select (realize) the valid measures and further update the
properties for individual measures.

Example of Measure Manager Window

Measure Properties

Inheritance
Measure properties are inherited at the component level. The properties defined for a
component are inherited by the minor components that belong to that component and to
the measures that are associated with that component unless it is overridden at a lower
level.

When a measure can inherit a property from more than one of the components that
construct it, the measure inherits from the component that belongs to the highest major
component in the component tree. For many properties, it is a good practice to set the
properties for just one major component or for minor components in just one major
component branch.

Overriding
Measure property inheritance can be overridden at the minor component or at the
measure level. Once a property is set at a lower level, changes made to that property at a
higher level will no longer be inherited at that lower level.

Measure Components
A major component is the highest level in the component inheritance hierarchy.
Properties defined at this level are inherited by all minor components that are created
under the major component.
Within each major component, you can create one or more minor components. You can
also create a minor component under a minor component and also modify properties at
the minor component level.

 Measures and Components

 Solutions 71

Once major and minor components are defined, the Measure Manager generates
measures that are based on the combination of selected components. These measures
cannot be used elsewhere in the configuration tools until the valid prototype measures
are Realized (see the following section on Realizing and Unrealizing measures for more
information).

Note: Components have no structural impact on the built
solutions, and they are not exposed to end users.
Components are intended to be a convenience to aid the
configuration administrator to easily group measures
together and to set measure properties at higher levels.

Component Process

Create major components, from which measures are composed.

Create minor components, which are sub-groupings or specific items in a major
component.

Define measure properties at the major component level. The minor components will
inherit the properties associated with the major component they belong within.

If necessary, modify the measure properties at the minor component level.

Measure Naming Conventions
All components used in RPAS configurations must adhere to the following naming
convention:

Characters allowed:

 Capital and lowercase letters (A, b…Z)

 Numerals (1, 2, 3…)
 Underscore (_)

With the exception of underscores, no non-alphanumeric characters are allowed.
Measure component names must start with a letter. Spaces are not allowed.

Note: Since the names of realized measures are limited to 30
characters, and those names are constructed by
concatenating the names of the components from which the
measure is built, it is usually good practice to abbreviate the
names of components where necessary.

However, there is no limit on the number of characters for
measure labels.

Measure Component Design
The following two basic principles must be kept in mind to make the Measure Manager
as powerful as possible.

1. Major and minor components should be designed with the idea of maximizing the
inheritance of properties, and minimizing the amount of property overriding.

2. Use minor components to make measure definition manageable.

For example, consider a configuration that has 2000 measures and 1500 of the measures is
of data type real. Avoid grouping all 1500 measures into a single minor component
because smaller subgroups of 1500 measures cannot be easily edited. Minor components

Measures and Components

72 Oracle Retail Predictive Application Server

can also have minor components, so within the 1500 measures, the configuration
administrator may break them out further. This could be based on the aggregation
method, such as total, max, recalc, and base intersections. Ideally, filtering by the
“checking” of a lowest level minor component should allow the configuration
administrator to easily view and manage every resulting measure for that minor
component.

Create a Major Component

Navigate: In the Configuration Components pane, select Project – Solution –
Measures – Measure Components tab. The Measure Manager window opens in the

workspace.

Example of Measure Manager Window - Measure Components Tab

1. Right-click in the left-hand pane of the Measure Manager window and select Add
Major Component, or click the Add Major Component button. The major
component is displayed in the Measure Manager navigation tree with a default
name.

 Measures and Components

 Solutions 73

Example of New Major Component

2. To change the component name, select right-click on the component and select
Rename, or select the component from the navigation tree and then modify its Label
field from the Measure Components tab.

Create a Minor Component

Navigate: In the Configuration Components pane, select Project – Solution –
Measures – Measure Components tab. The Measure Manager window opens in the

workspace.

Example of Major Measure “NewMajorComponent” Selected

1. Select the major or minor component that the new minor component is to be added
beneath. In the example above, NewMajorComponent is selected.

Measures and Components

74 Oracle Retail Predictive Application Server

2. Choose one of the following methods:

 Right-click the Measure Definition navigation tree, and select Add Minor
Component.

 Click the Add Minor Component button.
 Press the Insert key.

The minor component appears in the Measure Manager navigation tree with a
default name.

Example of New Minor Component

3. To change the name, right-click on the component from the navigation tree and select
Rename. You can also select the component from the navigation tree and modify the
Label field from the Measure Components tab.

Defining Measure Component Properties
Perform the following procedure to define the Measure Component properties:

1. Once components have been created, open the Measure Manager and select the
Measure Components tab.

2. Select the major or minor components you want to view from the Measure Manager
navigation tree. The selected components appear in the Measure Components tab.

Example of Measure Manager Window - Measure Components Tab

3. Specify the information for the component properties (for example, Name, Label,
Description, etc.), which will apply to the measures that are inheriting property
values from the component.

Note: The values that are entered for major components are inherited
by the child minor components and the auto-generated measures.
Not all properties need to be entered for all components. Properties
that are grayed out in the component properties table cannot have a
value in the current context. Typically, this is based on the data type
of the measure. For example, only components of Boolean data type
can have an alert category or an alert expression.

Measure Component Properties
This section describes the fields displayed in the Measure Components tab.

 Measures and Components

 Solutions 75

Name
The name (identifier) of a component is used to identify the component within the
Configuration Tools. Measure names are built by concatenating the names of the
components from which the measure is built. They are concatenated in the order (from
top to bottom) of the sequence that the components appear in the list of components. You
can override the measure name by manually entering a new name in the Name field.
Measure names can be up to 30 characters in length. They can include letters and
numbers, but must start with a letter.

Label
The label of the component is used to generate measure labels in a similar way that
measure names are generated. Labels are displayed to RPAS end users. There is no
maximum size limit, but keep the grid display limitations in mind when creating a
measure label.

Description
A description of the component is used to generate measure descriptions in the same
way that measure labels are generated. The configuration administrator can enter any
text to provide more information beyond the measure label to the end user. The
description can be viewed by the end user in the RPAS user interface.

Type
Select one of the following data types:

 Real – Floating point numeric values. Most measures are of this type.

 Int – Numeric integer values. There are no special "spreading" algorithms for integer
measures, which should normally be used only for measures that are calculated
‘bottoms up.’ Formatting can be used to display real measures as integer value in the
RPAS client.

 Boolean – True or false values, which are typically used for flags and indicators.

 Date – Date and time. This can easily be converted to position names using standard
RPAS functions.

 String – Variable length strings, which are typically used for notes and names.

NA Value
This is a value (typically zero for numeric measures) that is not physically stored, but is
inferred. It is used to help with storage and calculation efficiency, and it may be changed
by RPAS (in full-evaluation mode) if better efficiencies can be obtained with a different
value. See "Appendix B – Calculation Engine Users Guide" and "Appendix C – Rules
Function Reference Guide" of this document for more information.

Base Intx
The Base Intersection. The lowest level at which data is stored for a measure. In the
domain, the measure is only stored at the base intersection. Inside a workbook (for
performance reasons), values for the measure may be stored above the base intersection.
Nevertheless, whether stored or not, values for aggregated levels may be viewed in a
workbook and used in calculations in workbooks or domains. Double-click this field to
open the Select Intersection window. The hierarchies that were defined using the
Hierarchy tool are displayed. One dimension from each hierarchy can be selected, but a
dimension is not required for each hierarchy. Alternatively, a measure may be marked as
scalar. A scalar measure has only one value at any combination in the positions of

Measures and Components

76 Oracle Retail Predictive Application Server

dimensions of the domain. A Labeled Intersection may also be selected as the base
intersection of a measure. The Labeled Intersection field is populated based on the
Labeled Intersections defined through the Labeled Intersection dialog accessed in the
Hierarchy Definition manager.

Note: RPAS imposes a limit of 5 dimensions that can be
defined in a measure’s base intersection.

Default Agg
The default aggregation method should be selected from the valid aggregation methods
for the component. The valid aggregation method depends on the data “Type” selected
for the component. See Appendix B – Calculation Engine Users Guide, and Appendix C –
Rules Function Reference Guide for more information on aggregation and spread
methods.

Note: Only measures with an aggregation type of ambig, pst,
or pet can be aggregated from below the partition levels to
above the partition levels in a global domain.

Agg Spec
This hybrid aggregation mechanism is designed to allow the configuration administrator
to specify a complex method to aggregate the values of a measure. It allows a different
aggregation method to be specified for each hierarchy in the measure’s intersection.
When a measure with the hybrid agg type needs to be aggregated, this is accomplished
by separately aggregating each hierarchy of the intersection according to the agg method
for that hierarchy.
Example:

Measure XYZ is defined at day_sku_str and has a hybrid aggregation type. The specifics
for the aggregation are as follows:

 Calendar should be aggregated by the “first” method.

 Location should be aggregated by the “total” method.

 Product should be aggregate by the “total” method. -stopped

Suppose that XYZ must be aggregated to the level of mnthclssrgn_. The process of
generating this new value is accomplished by three successive aggregations:
1. day_sku_str_ to day_clssstr_ by total (product)

2. day_clssstr_ to day_clssrgn_ by total (location)

3. day_clssrgn_ to mnthclssrgn_ by first (calendar)

In this example, the user is allowed visibility to and control over the mechanism by
which pst is performed.

A brief description of the user interface functionality/constraints is as follows:

 Measures and Components

 Solutions 77

 The hybrid aggregation method now appears in the deff agg drop-down selector.

 When a measure is specified for hybrid agg, the agg spec (aggregation specification)
field becomes editable.

 An agg spec can be typed in or built through a dialog (double-click the agg spec
editor or select Ctrl-Space to launch it).

 This dialog looks very similar to the standard wizard for workbooks. On the right,
the ordering of hierarchies in the intersection of the measure is set by dragging the
hierarchies in the list. On the left, a separate aggregation type is selected for each
hierarchy. For the most part, these are the aggregation types that are available for the
measure based on its type.
Exceptions are as follows:

 Recalc or hybrid cannot be used within an agg spec.

 First and last can be used only on the Calendar hierarchy only.

 An aggregation type must be specified for each hierarchy in the intersection.

 If a value is to be typed into agg spec, the syntax and meaning is the same as the
arguments used by the aggregate function of the rule engine.

 A hybrid aggregation measure must be read only in its agg state.

 A hybrid measure must have a spread type of none.

Note: The hybrid aggregation type is not supported for
extended measures (see "Configure Extended Measures") or
for the load aggregation method for a measure. Unlike
Aggregate procedure, the "recalc" aggregation type is not
supported for any hierarchy for am measure using the
hybrid aggregation type. Measures that use the hybrid
aggregation type cannot be aggregated from a local domain
into the global domain.

Default Spread
The default spread method should be selected from the valid spread methods for the
component. The valid default spread method depends on the data “Type” selected for
the component. See "Appendix B – Calculation Engine Users Guide" and "Appendix C –
Rules Function Reference Guide" of this document for more information on aggregation
and spread methods.

Note: The spread method can be overridden on edit in the
RPAS User Interface. For all "populated" spread methods
(ending with “pop”), the spread method is the same as the
underlying method (for instance, prop_pop is like prop),
except that only cells with a value that is different from the
naval are used in the spreading, and cells with a value equal
to the naval are ignored.

Base State
The ability of the measure at the base level to be modified. The available options are read
or write.

Agg State
The editability of the measure at the aggregate level, which are all intersections above the
base intersection (read or write). Set the Base State to write and the Agg State to read for

Measures and Components

78 Oracle Retail Predictive Application Server

those measures that need to be manipulable, but where there is no business requirement
to manipulate them other than at their base intersection. Usually there is no sensible way
to spread such measures. The manipulability of measures will change according to
‘protection processing’ principles. Therefore, base state and agg state should only be used
to override the result of protection processing (for example, to make a measure non-
manipulable that protection processing would otherwise allow to be manipulated). See
"Appendix B – Calculation Engine Users Guide" and "Appendix C – Rules Function
Reference Guide" of this document for more information on the Agg State of measures.

Database
The physical location in the file system of the database that stores the data for this
measure. Those measures that contain data that persists beyond the lifetime of a given
workbook store their information within a database within the RPAS domain. This field
is used to specify the path to the location of the database to use for the measure. All
databases are contained within the data directory of the domain. If the specification does
not begin with the data directory, "data/" will be attached to the beginning of the entry at
the time of installation (for instance, the entry "Sales" will be registered as "data/Sales")

Note: The presence of multiple measures within a single
database can create unnecessary contention when the
measures' data are being updated as part of a workbook
commit or batch calculation. In order to avoid this,
measures that are updated through batch calculations or
workbook commits should be configured with unique
values for the database property so that they each get a
separate database. Measures that are only updated by data
load and that are read-only for workbook and batch
operations can be grouped together without causing
contention.

View Type
The View Type field holds properties for two types of measures:

1. Those that are calculated when viewed

2. Those that are synchronized with other measures.

If the view type is none, the measure is of neither type.

If the View Type is view_only, the measure is not calculated during a normal calculate
cycle, and it is calculated on-the-fly when required (for instance, for viewing). Such
measures must have an aggregation type of recalc and must appear on the left-hand side
of only one expression in a rule group. They may not appear on the right-hand side of
any expressions. The measure must not have a database assigned. See "Appendix B –
Calculation Engine Users Guide" of this document for more information.

Synchronized measures are in effect, views of two or more other measures where
changes and lock to those other measures are immediately reflected in the synchronized
measure (and vice versa).

Example:

A “closing stock” (cs) measure may be synchronized with a “season opening stock” (sos)
measure and an “opening stock”(os) measure so that a change to “opening stock” in
week 3 will immediately cause the same change to be applied to “closing stock” in week
2 (since closing stock in week 2 and opening stock in week 3 are the same). Synchronized
measures require a synchronization type in the View Type property, which must be one

 Measures and Components

 Solutions 79

of sync_first_lag, sync_lead_last, sync_first or sync_last, and a list of measures to
synchronize with in the Sync With property.

 none – The measure is calculated normally.

 view_only – The measure is calculated when viewed.
 sync_first_lag – Period 1 is from the first measure (no calendar). Periods 2..N are

from the second measure 1..N-1 (lag) [for example, bop synchronized with os and
eop].

 sync_lead_last – Periods 1..N-1 are from the first measure 2..N (lead). Period N is
from the second measure (no calendar) [for example, eop synchronized with bop and
cs].

 sync_first – Gets Period 1 from the measure (similar to pst along calendar
dimension) [for example, os synchronized with bop].

 sync_last – Gets Period N from the measure (equivalent to pet along calendar
dimension) [for example, cs synchronized with eop].

Sync With
A comma-separated list of measures used for synchronization. Depends on the View
Type.

Insertable
This field indicates whether the measure can be inserted as an extra measure in
workbooks built from templates that are not configured to contain the measure.
Insertable measures can be added to a workbook during the wizard process on the Extra
Measures wizard page before a workbook is built, or by inserting the measure in the
Show/Hide dialog window in the RPAS Client inside a built workbook. Measure
security must also be defined for Insertable measures in the RPAS Security
Administration workbook template. Possible values are true and false. See the Oracle
Retail Predictive Application Server Administration Guide for additional information about
measure security.

Note: The Extra Measures wizard is not available by default
for every workbook; it must be configured as a custom
wizard page.

Non-Translatable
The selected value of true will represent that a measure should be omitted from
generated translation resources. The false or unspecified value will represent that a
measure should be included in these resources and all legacy configurations will
therefore treat all measures as translatable unless further configuration is performed.

UI Type
The UI Type property affects how the user interacts with a measure within the client.
There are two supported values for UI Type; by default, UI Type is unspecified, meaning
that the measure exhibits no special behavior within the client.

 Picklist – When a measure is given a UI Type of picklist, it will no longer accept edits
within the client. Instead, the user will be provided with a drop-down box that
contains a set of valid values. Selecting an item in this drop-down will set the cell of
the measure to the appropriate value. For picklist measures, the contents of the drop-
down box are determined by the range attribute.

Measures and Components

80 Oracle Retail Predictive Application Server

 Media – When a measure is given a UI Type of media, the Fusion Client will not
display the values of the measure’s cells. Instead, it will examine the contents of a cell
to extract image location information, retrieve the appropriate image resource and
display that image in the cell. In order for a measure to have a UI Type of media, that
measure must be a string type measure.

Note: For information regarding the values that should be
loaded into a media UI Type measure; please consult the
Media measures section of the RPAS Administration Guide.

Range
Specify an allowed range for the measure at edit time. For numeric values, the syntax is
as Lower Bound : Upper Bound. If the RPAS UI user attempts to enter a value in the
RPAS Client outside of this range, the modification is rejected. For string measures, any
entry in this field is ignored.
For date measures, the lower and upper bounds specify both the date and the time. The
default time for the lower bound is 12:00:00 AM. The default time for the upper bound is
11:59:59 PM. The time portion of the bounds is included regardless of the style setting
because users can change the style setting on the client side.

For numeric or string measures with a UI Type of “picklist” (numeric and string), values
are comma separated value/label pairs, where the label is given in brackets, such as
a(labela), b(labelb), and c(labelc). If a label is not specified (for example, “a, b, c, d”), the
value is also used as the label. The value of the cell is used in calculations; however,
labels (if specified) will be displayed in the user interface, both in the grid and in the
picklist.

Note: "," and ":" are reserved characters for picklist and
range definitions of a measure with a UI Type of picklist.
These characters cannot be used to define the LABEL part of
a picklist Value/Label pair.

If a cell contains a value that is not valid for the picklist, the value is displayed in the
grid. When the measure’s range is specified in this manner, all cells in the RPAS client
will display these same values as valid options for the picklist. The valid set of options
for a picklist measure can also be defined in such a way that they are "context sensitive,"
which means that they vary from position to position. For example, a picklist measure
with a base intersection at the SKU dimension could have valid values that vary
according to which class the SKU belongs. The configuration administrator sets this up
by setting the range property of the picklist measure as “measurerange = measS” where
measS is the name of a string measure that holds the valid picklist options (in the valid
formats described earlier) in each of its cells. The measure that holds the valid picklist
values (in this example, "measS") can have a base intersection at any of the dimensions in
the hierarchies and the values shown in the picklist measure for any intersection are
effectively “looked up” using normal ‘nonconforming measure’ handling.

The valid values for a picklist for a cell are referenced from a measure dynamically. If
required, it is possible for the valid values of picklists to change during the life of the
workbook as a result of calculations or end-user edits. The value used will always be that
of the last calculate, so direct or indirect (through calculation) edits to the picklist value
measure are ignored when a calculation is pending.

 Measures and Components

 Solutions 81

Purge Age
The number of days (without a load) before measure data is purged. See the Oracle Retail
Predictive Application Server Administration Guide for details of how this property is used
in the loadmeasure utility.

Lower Bound and Upper Bound
If the range of valid values for a numeric (real or integer) measure applies across the
whole domain, the range property can be used to specify valid values for data entry
validation. If the range of valid numeric values varies according to positions in the
hierarchies, the Lower Bound and Upper Bound must be used instead. If specified by the
configuration administrator, the Lower Bound and Upper Bound properties must be a
valid, realized measure name that provides the bounding values for this measure’s data
cells. These properties must contain measure names (not numeric values).

Note: If one (but not the other) of Lower Bound and Upper
Bound is specified, only one limit is checked. For example, if
a Lower Bound is set, but an Upper Bound is not, valid
values are greater than or equal to the value held in the
Lower Bound measure, but with no upper limit. The Lower
Bound and Upper Bound measures can be non-conforming
with respect to the measure that has bounds, and the value
to be used will be obtained by normal non-conforming
processing (that is, "replicated down" from higher levels or
"aggregated up" from lower levels).

Sp Value Type and Sp Value
These two properties specify the "special value" type and the "special value" value. They
are used to define the manner in which "special values" are handled by RPAS. These two
properties can be used together to specify how to display cell values in the User Interface
(UI) that have a value equal to the "naval" of the measure. In particular, it supports
solutions that want to interpret cells with the "naval" as meaning "no value" by
displaying a null value to the end user.
The SP Value Type property specifies the type of value that will be shown. Valid values
for this property are Null, Cell Value, and User Entered. The default behavior is that such
cells will have their cell value shown, which is what the value of Cell Value in the SP
Value Type property means. However, these properties can be used to override the
default to either show null, which is defined below, or to display a specific value. To
configure the values to display null, assign Null as the SP Value Type property. When
Null is configured, the cell will be blank in the RPAS Client when the value equals the
"naval" for a numeric, a date, or a string measures. For Boolean measures, it will be a
grayed-out check box. When a specific value is required, you should select User Entered
for the SP Value Type, and enter the value to be displayed in the SP Value field.

For the Special Value field, the entry in this field must be of the same data type as the
measure, and validation is enforced in this field.
 For a Boolean measure, when the Special Value Type field is set to User Entered, the

only valid entry for the Special Value field is either true or false.

 For a Date measure, when the Special Value Type field is set to User Entered, a date
in the format of YYYYMMDD can only be entered by the user.

 By default, each measure will be registered with Cell Value as the default Special
Value behavior. For cases where a Special Value Typesetting other than ‘User
Entered’ is used, but a Special Value entry is provided, the Special Value entry will

Measures and Components

82 Oracle Retail Predictive Application Server

not be used. Instead, the measure will be registered with Cell Value as the default
behavior.

 When Special Value Type is set to User Entered, but a Special Value entry is not
entered, the Special Value Type will not be used. Instead the measure will be
registered with Cell Value as the default behavior.

 When a domain has been built that includes a measure with a special value setting,
and that special value setting for that measure is removed. When the domain is
patched the measure will get updated with Cell Value as the default special behavior.

 RPAS allows for the special value measure property to be updated.

Dim Attr Type
This checkbox option is used to indicate that the measure must be registered as a
dimension attribute. Dimension attributes allow for additional information to be defined
for the positions of a given dimension. This is commonly used to define and display an
alternate label for a position (other than the loaded position label) or to display
supplemental information about a position (such as the status of a given position).

The following requirements must be met for a measure to be eligible to be a dimension
attribute:

 The measure must be realized .
 The measure must be 1-dimensional, which means that its base intersection must

only have one dimension.

 The measure must be stored, which means that it must have a defined database.

Dim Attr Name (optional field)
This is only to be used if the measure is set to be a dimension attribute measure. When a
dimension attribute is displayed within the RPAS Client, the Dim Attr Name will be used
in place of the measure name. If no Dim Attr Name is supplied, the RPAS Client displays
the measure name.

Dim Attr Label (optional field)
This is only to be used if the measure is set to be a dimension attribute measure. When a
dimension attribute is displayed within the RPAS Client, the Dim Attr Label will be used
in place of the measure label. If no Dim Attr Label is supplied, the RPAS Client displays
the measure label.

Allowed Aggs
The set of the allowable aggregation methods for the measure based on the measure data
type. You can add so called extended measures to RPAS Client views that are normal
measures, but with aggregations based on different aggregation methods. The
aggregation methods that are available for selection are based on the Allowed Aggs of
the base measure. The same base measure can have multiple extended measures based
on different aggregation methods.

Style
One of the styles defined within the style tool may be specified as the default style to be
used to display measures based on this component inside the User Interface. See the
section on the Style Manager for details on the specification of style information.

Alert Category

 Measures and Components

 Solutions 83

Identifies the measure as an alert measure and associates the category with this measure.
Only measures of data type Boolean can be alert measures. All defined categories are
displayed in the drop-down box. right click and select Alert Manager to access the alert
categories defined in the Alert Manager. See the Oracle Retail Predictive Application Server
User Guide for a description of alerts.

Alert Expression
The evaluation method for this alert measure. Double-click this cell to open the Select
Evaluation Method for Alert dialog box. This dialog can be used to select a rule or a rule
group. Rules displayed will be those whose first expression has the given measure on its
left-hand side. Rule groups displayed will be those that have rules in which its first
expression contains the given measure on its left-hand side. See the Oracle Retail Predictive
Application Server Administration Guide for more information on Alerts.

Select Evaluation Method for Alert Dialog Box

Single Hier Select
This property is only valid for components that have a Type (data type) of string. It
specifies that cell contents are to be entered by users using the "Single Select Widget."
This is a widget in the RPAS Client that presents the end user with a view of the
positions along the dimension set in the configuration. The user may then select any
single position. You must select the hierarchy and dimension whose positions will be
displayed to the user in the RPAS Client.

Select a Dimension Dialog Box

Filename (read only)

Measures and Components

84 Oracle Retail Predictive Application Server

Measures included into the Data Interface Manager have a filename specified. This field
displays the value, if one exists, for the filename of the measure. See the section on the
Data Interface Tool for details on data interface properties. This property cannot be
modified and is displayed for diagnostic purposes.

Load Intx (read only)
Measures included in the Data Interface Manager have a load intersection [Load Intx]
specified. This field displays the value, if one exists, for the load intersection of the
measure. See the section on the Data Interface Tool for details on data interface
properties. This property cannot be modified and is displayed for diagnostic purposes.

Clear Intx (read only)
Measures included in the Data Interface Manager may have a clear intersection [Clear
Intx] specified. This field displays the value, if one exists, for the clear intersection of the
measure. See the section on the Data Interface Tool for details on data interface
properties. This property cannot be modified and is displayed for diagnostic purposes.

Start (read only)
Measures included in the Data Interface Manager will have a start position specified.
This field displays the value, if one exists, for the start position of the measure. See the
section on the Data Interface Tool for details on data interface properties. This property
cannot be modified and is displayed for diagnostic purposes.

Width (read only)
Measures included in the Data Interface Manager will have a width specified. This field
displays the value, if one exists, for the width of the measure. See the section on the Data
Interface Tool for details on data interface properties. This property cannot be modified
and is displayed for diagnostic purposes.

Load Agg (read only)
Measures included in the Data Interface Manager will have a load aggregation method
[Load Agg] specified. This field displays the value, if one exists, for the load aggregation
method of the measure. See the section on the Data Interface Tool for details on data
interface properties. This property cannot be modified and is displayed for diagnostic
purposes.

Materialized (read only)
Certain measures may be registered as display only measures in order to improve
performance within a workbook. This marking is done automatically at the time of
installation. If the measure is marked as display only, that fact will be reflected in this
field. This property cannot be modified and is displayed only for diagnostic purposes.

Creator (read only)
Certain extensions make use of plug-ins to the RPAS Configuration Tools to
automatically generate configuration content. This field displays the creator of the given
measure. The value user represents content generated by a user of the Configuration
Tools. A different value represents content generated by a plug-in. This property cannot
be modified and is displayed for diagnostic purposes only.

Signature (read only)

 Measures and Components

 Solutions 85

The signature of a measure is used to resolve ambiguity that may result from overriding
the name property of a measure. This field contains the value of the measures signature
property. The contents of this field are created and maintained automatically by the
Measure Manager. This property cannot be modified and is displayed only for diagnostic
purposes.

Edit Components

Navigate: In the Configuration Components pane, select Project – Solution –
Measures. The Measure Manager window opens in the workspace.

Move Components
1. From the Measure Manager navigation tree, select the component to be moved.
2. Drag the component to the new location and release it.

Note: A minor component cannot be moved to a different
major component.

The configuration administrator cannot move a component
so that it would be a descendent of another component that
is used in the specification of a realized measure.

Push Components Down
1. From the Measure Manager navigation tree, select the component to be pushed

down.

2. Right-click in the Measure Definition menu, and select Push Down.

Note: The component is pushed down one level in the
component hierarchy, and a new component is created to
take the place of the pushed down component.

Note: A major component cannot be pushed down.

Pull Components Up
1. From the Measure Manager navigation tree, select the component to be pulled up.

2. Right-click and select Pull Up. The component is pulled up one level in the
component hierarchy.

Note: A minor component cannot be pulled up to become a major
component, nor can a major component be pulled up.

Display or Hide Components
 To display information about a component, select the check box next to the

component name.

 To hide information about a component, clear the check box next to the component
name.

Note: Selecting or clearing a check box for a major or minor
component causes the check boxes for all minor components
underneath it to be selected or cleared. This check box is also
used to enable a component so it becomes active when
measures are generated.

Measures and Components

86 Oracle Retail Predictive Application Server

Find a Component
1. Right-click in the Measure Manager navigation tree and select Find Component. The

Input dialog box appears.

Example – Find Component Menu Option

2. Type in the name of the desired component and click OK. The tree will scroll to bring
the specified component into view.

3. Select the desired component.

Note: The full name (case sensitive) of the component is
required in order to find it. If there is no component with the
exact name entered, the tree will not scroll.

Rename a Component

Navigate: From the Measure Manager navigation tree, select the component to be
renamed.

Choose one of the following methods:

 Right-click in the Measure Manager navigation tree and select Rename. Type the
new name for the component.

 Double-click the component, and type the new name.
 Select and change the name of the component in the Measure Component tab.

Note: Changing the name of a component will result in a
change in the name of any measure that inherits from the
component unless the measure has overridden the name
property.

 Measures and Components

 Solutions 87

Remove Components

Navigate: From the Measure Manager navigation tree, select the component to be
removed.

Choose one of the following methods:

 Select Remove Component .
 Press the Delete key.

 Right-click in the Measure Manager navigation tree and select Delete.

The component is removed from the solution.

Note: It is not possible to remove a component that is used
(or that has a descendent component that is used) in the
specification of a measure.

Alerts
Alerts are an exception management tool. An alert is a measure of type Boolean
(returning a value of true or false) that is the result of the evaluation of a business rule.
Oracle Retail Predictive Application Server then notifies the user of the “true” conditions,
and it allows workbooks to be built to resolve the scenario that drove the alert.

Example:

A store’s inventory on a particular item is low, so an alert will be triggered (Boolean
expression = true).

A summary of the process for defining and finding an alert is as follows:
1. Create an alert measure. This must be a Boolean measure (true-false, yes-no) and

must be defined in the domain using the Oracle Retail Predictive Application Server
Configuration Tools.

2. Create the alert (the expression) for which the alert should be evaluated using the
Configuration Tools. This flags the registered measure as an alert so that it is
recognized when the “alert finder” is run.

3. Run the “alert finder” on the domain to evaluate the number of instances when one
or more alert expressions are true. This operation is completed using the RPAS utility
alertmgr.

For more information on alerts, see the Oracle Retail Predictive Application Server
Administration Guide.

Measure Validation within the Measure Manager
The Measure Manager performs large amounts of validation on the properties of the
measures that are created within it. Much of this validation involves dependencies of one
property of a measure upon another property of the measure. Some validation involves
dependencies of a property of a measure upon the hierarchies that are defined in the
Hierarchy Tool. These forms of validation are performed automatically as edits are made
in the Measure Manager.
In addition, the validity of rules, rule groups, and workbooks depends on the properties
of the measures that they contain. Validation of the measure content of the rules, rule
groups, and workbooks of a large solution can take a significant amount of time.

In order to facilitate the configuration process, this second form of validation does not
occur as edits are made in the Measure Manager. Instead, this validation is deferred until
Measure Manager is exited by selecting a different tool/option from the Configuration

Measures and Components

88 Oracle Retail Predictive Application Server

Components pane. At this time, a dialog briefly displays to indicate the validation
process is running.

Validation Configuration

When the full suite of solution level measure content validations is complete, the dialog
is no longer displayed and the selected tool is activated.

Note: For fast performing validations, dialog may only be
displayed for a few seconds. If the validation process is
lengthy, the dialog will be displayed for a considerably
longer time.

Disabling Measure Content Validation
For some cases you may disable the full validation (for instance, when performing a
number of changes to measure properties that require switching back and forth between
multiple tools). Validation can then be manually initiated from the Rule Definition

window by selecting Perform measure content validation from the Rule Definition
toolbar. Perform the following procedure to turn off real-time validation.

1. Select File – Tools Preferences. The Workbench Preferences dialog box appears.

 Working with Measures

 Solutions 89

Workbench Preferences – General Tab

2. Deselect Enable Measure Content Validation.

3. Click OK.

Working with Measures

Overview
The Measure Manager allows you to create and name measures by selecting major and
minor components that are already defined. By default, the measures inherit the
properties that are defined for the components. To create a measure, select the
components that will be used to construct measures. The Measure Manager will generate
measures for all of the combinations of selected components. This saves you from the
tedious task of manually creating all required measures.

Working with Measures

90 Oracle Retail Predictive Application Server

Example of Measure Manager Window

You may then override the properties for individual measures by entering them the same
way as on the Measure Components tab. Once properties are overridden at the measure
level, changes made at the component level will no longer spread down to that measure
as it will retain the overridden value. An overridden value can also be restored to its
inherited value or you may override an inherited value to be unspecified.

When a measure is auto-generated by the Measure Manager, it cannot be edited or used
in any other configuration component such as rules and workbooks until it is realized. A
measure does not need to be realized if it is not going to be used.
The Measures tab displays all auto-generated measures for the selected components.

Example of Measure Manager - Measures Tab

The Realized Measures tab only displays those measures that are realized.

 Working with Measures

 Solutions 91

Example of Measure Manager - Realized Measures Tab

Realize and Unrealize Measures

Navigate: In the Configuration Components pane, select Project – Solution –
Measures. The Measure Manager window opens in the workspace.

1. Select the Measures tab.

Example of Measure Manager - Measures Tab

2. In the components tree, select the check boxes for the components that will be
filtered. The Measure Manager will show measures using all of the combination of
selected components. This process filters the list of prototype measures that are
shown from all combinations of components to the combinations of components that
have been selected. It uses those components to determine which prototype
measures to show.

Realize a Measure
1. Select the components that are used for the measure(s) to be realized.

2. Select the check box in the Realized column for each auto-generated measure to be
realized.

Unrealize a Measure
1. Select the components that are used for the measure(s) to be unrealized.

•

Working with Measures

92 Oracle Retail Predictive Application Server

2. Deselect the check box in the Realized column for each auto-generated measure to be
unrealized.

Rename a Measure

Navigate: In the Configuration Components pane, select Project – Solution –
Measures. The Measure Manager window opens in the workspace.

1. Select the components that are used in the measures to be renamed.

2. In the Measures tab, or the Realized Measures tab, click the name of the measure
that is to be renamed.

3. Type the new name for the measure.

Note: The measure must be realized before it can be
renamed.

Show all Measures

Navigate: In the Configuration Components pane, select Project – Solution –
Measures. The Measure Manager window opens in the workspace.

Right-click in the Measure Manager window, and select Show All.

Note: Due to memory constraints when working with very
large numbers of components, all auto-generated measures
may not be displayed. In this case, the configuration
administrator will receive an error message indicating that
some measure components should be deselected.

Hide Measures by Component

Navigate: In the Configuration Components pane, select Project – Solution –
Measures. The Measure Manager window opens in the workspace.

1. In the Measure Manager window, select the Measures tab.

2. Choose one of the following methods:

 Deselect the check boxes next to the components to hide.

 Select the component used in the measures to hide.
3. Right-click in the Measure Manager navigation tree and select Hide, or press the

spacebar.

Hide All Measures

Navigate: In the Configuration Components pane, select Project – Solution –
Measures. The Measure Manager window opens in the workspace.

1. In the Measure Manager window, select the Measures tab.

2. Right-click the Measure Manager navigation tree, and select Hide All.

Sort Measures by Property Value

Navigate: In the Configuration Components pane, select Project – Solution –
Measures. The Measure Manager window opens in the workspace.

In the Realized Measures tab, measures can be sorted by property value.

 External Measures

 Solutions 93

1. Select the Realized Measures tab.

2. Hold down the control key (Ctrl) and click in the filter field at the top of the table for
the property of the measures to be sorted.

The measures are sorted in alphabetical order according to the value of the property.

Filter Measures by Property Value

Navigate: In the Configuration Components pane, select Project – Solution –
Measures. The Measure Manager window opens in the workspace.

In the Realized Measure tabs, the configuration administrator can filter measures by
property value.

1. In the Realized Measures tab, click in the filter field at the top of the table for the
property of the measures to be filtered.

2. Enter the value on which the measures are to be filtered.

Note: This field is case sensitive.

External Measures

Overview
Under most circumstances, measures exist only within the solution in which they are
defined. When working with a project with multiple solutions, it is sometimes desirable
to make use of a measure defined in a different solution. The Measure Manager allows
the "import" of a measure defined in a different solution (but not a different project) into
the current solution. These measures (called external measures) then become visible in
the External Measures tab of the Measure Manager. Within this tab, it is possible to
modify certain measure properties so that the use of the measure in the Solution into
which it has been imported will differ from its use in the Solution in which it was
originally defined. For example, the configuration administrator may want to modify a
writable measure so that it is read-only in the solution into which it is imported.

Example of Measure Manager - External Measure Tab

Within the Measure Selectors present in the Rule and Workbook tools and the Expression
Builder, there is a checkbox named Include External Measures. When this checkbox is
selected, the Measure Selector will include those measures that were imported into the
solution in addition to those that are present due to component selections in the Measure
Selector.

The following properties may be overridden for an external measure:

 Label

 Description

 Base State

 Agg State
 UI Type

 Range

External Measures

94 Oracle Retail Predictive Application Server

Import a Measure

Note: You may only import a measure into a solution for a
project that has at least one other solution.

Navigate: In the Configuration Components pane, select Project – Solution –
Measures. The Measure Manager window opens in the workspace.

1. Select the External Measures tab, and click the Import Measure button on the
toolbar. The Add External Measures dialog box appears.

Add External Measures Dialog Box

2. In the Add External Measures dialog, select the solution in which the desired
measure is defined.

3. Use the measure selector (left-hand side) to select the measure(s) to import.

 Rule Sets

 Solutions 95

Selected Measures to Be Imported and in Box to Right

External measures that are already imported appear in bold.

4. From the right-hand list, select the measure to import and click OK. The selected
measures appear in the External Measure tab.

Remove an Imported Measure from a Solution

Navigate: In the Configuration Components pane, select Project – Solution –
Measures. The Measure Manager window opens in the workspace.

1. Click the External Measures tab, and select the measure to remove.

2. Click the Remove Imported Measure button from the Measure Manager
toolbar, or right-click and select Remove Import. The selected imported measure is
removed from the External Measures tabs.

Rule Sets

Overview
A rule set is a collection of rule groups. It is used as a placeholder for containing rule
groups, which makes the visual display of rules easier. A workbook uses the rule groups
specified in one rule set.

Note: A rule set is a tools concept only. It does not appear in
the configured solution.

A rule set is created along with the following default rule groups: load, commit, calc, and
refresh.

Rule Sets

96 Oracle Retail Predictive Application Server

The rule group names are prefixed with the name of the rule set followed by an
underscore. After the default rule groups are created, the configuration administrator can
create additional rule groups as necessary. The configuration administrator can also
rename the rule groups that were automatically generated, but these rule groups cannot
be deleted.

Create a Rule Set

Navigate: In the Configuration Components pane, select Project – Solution –
Rules. The Rule Definition window opens in the workspace.

Rule Definition Window

1. From the toolbar, click the New button and select Rule Set, or select
Create/Rule Set from the right-click menu. The Add Rule Set window appears.

Add Rule Set Dialog Box

2. Perform the following:

a. In the Name field, enter the name of the rule set.

 Rule Groups

 Solutions 97

Note: A rule set name can be a maximum of ten
alphanumeric or underscore characters. It must not have a
name that is the same as any other rule set that exists in the
project.

b. In the Description field, enter a description of the rule set.
c. Click OK to save any changes and close the window. The rule set appears in the

Rules navigation tree.

Delete a Rule Set

Navigate: In the Configuration Components pane, select Project – Solution –
Rules. The Rule Definition window opens in the workspace.

1. In the Rule Definition window, select the rule set that to be deleted.

2. Choose one of the following methods:

a. From the toolbar, click the Delete button, and select Delete Rule Set.
b. Right-click in the Rule Definition window, select Delete/Remove, and select

Delete Rule Set from the drop-down list.

Note: When a rule set is deleted, any rules that were used in rule
groups in that rule set will still be in the rule pool, but they will be
unused. The rules will be permanently lost when the project is closed
unless they are used in another rule group.

Rule Groups

Overview
In RPAS, a rule group is an ordered collection of rules that are treated as a unit by the
calculation engine with the integrity of all the rules in the rule group being maintained
together.

Rules within a rule group are given a priority. The calculation engine uses this to select a
calculation path that follows business priorities. It does this by using rule priorities to
determine which rule to enforce when there is a choice to be made. Although there may
only be one active rule group at any time, multiple rule groups can be defined to satisfy
different calculation requirements.

Types of Rule Groups
Rule groups may be one of four different types:

 Load – The RPAS application automatically uses the load rule group when loading
data into a workbook from the domain.

 Calculate – The RPAS application uses a calculate rule group to apply the effects of
user changes to cells. RPAS supports multiple calculation rule groups. Menu options
may be configured to allow for the transition through different calculation rule
groups in order to support special processes, such as authorizations. RPAS ensures a
smooth transition from one rule group to another.

 Refresh – The RPAS application uses a refresh rule group to refresh the data from
the domain (for example, to update "actuals"). Multiple refresh rule groups can be
specified and selected by the user.

Rule Groups

98 Oracle Retail Predictive Application Server

 Commit – The RPAS application automatically uses the commit rule group when
committing data from the workbook to the domain.

A measure that does not have data in the domain may be loaded into a workbook by
using a rule in the load rule group to calculate it based on other measures that are
loaded. Similarly, a measure that exists in a domain, but not a workbook, may be
committed by using a rule in the commit rule group that calculates it from other
measures that are in the workbook.

Rule Group Validation
Within a solution, there may be many rules defined, and each rule is validated
individually. Rules within a rule group are also validated in the context of all the other
rules in that rule group. While a rule may be perfectly valid syntactically, it may not be
valid within the context of a particular rule group. In Rule group validation, each rule in
a rule group must represent a completely different measure relationship, which means
that the following restrictions apply:

 No two rules in a rule group may use exactly the same collection of measures. If such
a condition were allowed, the calculation engine would be unable to calculate either
of the rules, because they would be dependent upon each other, so neither could be
calculated first. This is explicitly validated in the rule tool.

 For similar reasons, a rule normally does not use a collection of measures that is a
subset of the collection of measures in another rule. If the measures that are only in
the larger rule were all changed, the situation would be equivalent to the above.
There are circumstances where this technique is valuable. For example, in a load rule
group where there may be a rule to load a measure from the domain, but other rules
that include that measure. In this case, this condition is not explicitly validated.

 There must be one (and only one) expression that calculates a recalc measure used in
a rule group.

 Other than in the special circumstance of a rule constructed from multiple result
functions or procedures, a measure may only be on the left-hand side of one
expression in a rule.

Note: When performing validation on rules in RPAS
Configuration Tools, a proxy domain is used that only
contains a small portion of information that is present in a
real domain. This proxy domain does not contain any
information about the positions that exist in various
hierarchies and dimensions. Therefore, when performing
rules validation, any rule that contains a reference to a
position will not be properly validated within Configuration
Tools and will be marked as invalid, despite the fact that it
will execute in the final domain.

Multiple Refresh Rule Groups
The Refresh Rule Group updates (supplies new values for) data, which can generally be
thought of as being "external" to the workbook. An example would be “actuals”:

 If a workbook is built in week 5, the user would have actuals for weeks 1-4.

 In week 6, the user can refresh the actuals to get the actuals for week 5.

The Configuration Tools and RPAS support the use of multiple refresh rule groups.
Within the rule tool, there is the ability to create multiple refresh rule groups within a
rule set. These multiple refresh rule groups can then be assigned to a workbook template

 Rule Groups

 Solutions 99

using the Workbook Designer, and they will be available for selection within the RPAS
Client.

 A workbook contains all of the rule groups in a single rule set, so if multiple refresh
rule groups are required in a workbook, they must all be in the same rule set.

 You may consider naming rule groups so the usage of the refresh rule groups are
reflected in their names, such as refresh_all, refresh_actuals, and refresh_manager.

Rule Group Transitions
Although only a single rule group may be active at any time, RPAS supports the
transition from one rule group to another, so the active rule group may be changed. The
calculation engine ensures the integrity of measure relationships at all times, so this
transition process is not merely a case of switching from one rule group to another,
because there are no guarantees that the integrity of the rules in the rule group being
transitioned into would have been maintained. There are different forms of rule group
transitions. When designing rule groups, you must consider the impact of anticipated
rule group transitions.

Automatic rule group transitions occur under the following circumstances:

 On workbook building – Data is loaded using the load rule group. This typically
loads measures by calculating them from the data values held on the domain using
the master modifier, but may also calculate other measures that are not explicitly
loaded. When the load is complete, the system automatically executes a full
transition to the calculate rule group.

 On data refreshing – Data refreshing causes some measures to be updated from
values held in the domain. The measures that are affected by the refreshed measures
are treated as affected in the calculate rule group, and a normal calculation of that
rule group follows. Effectively, data refreshing causes a calculation using the
calculate rule group as if the cells that were refreshed were directly changed by the
user.

 On data committing – There is a full transition from the current calculate rule group
to the commit rule group. This typically commits measures by calculating them on
the domain by using the master modifier. There is then a null transition back to the
calculation rule group (that is, no transition process is executed since the assumption
is that nothing in the workbook has changed), so no transition is required.

 On executing custom menus – There is a full transition between each rule group in
the custom menu, which is followed by a full transition back to the default calculate
rule group. An optimal custom menu transition type is implemented to handle the
rule group transition between the custom menu rule groups and the calc rule group
of the workbook. The goal is to skip all rules in the calc rule group that are not
impacted by the rules in the custom menu action, directly or indirectly, when
transition back to the calc rule group from custom menu rule groups.

Note: There is one exception to the optimal custom menu
transition. When there is shell script involved within the list
of custom menu actions, RPAS cannot assume what action
has been done to the workbook, nor can it track what
measure has been modified. In this case, the optimization
cannot be applied and RPAS must resort back to the original
full transition to the calc rule group of the workbook to
guarantee the consistency of the workbook’s data.

Rule Groups

100 Oracle Retail Predictive Application Server

Create a Rule Group

Navigate: In the Configuration Components pane, select Configuration – Project –

Solution – Rules. The Rule Definition window opens in the workspace.

Example of Rule Definition Window

1. In the Rule Definition window, select the rule set to be used to create a new rule
group.

2. From the toolbar, click the New button, and select Rule Group, or select
Create – Rule Group from the right-click menu.

Example of Create - Rule Group Menu Option

The Add Rule Group window is displayed.

 Rule Groups

 Solutions 101

Add Rule Group Window

3. Perform the following:

a. In the Name field, enter the name of the rule group.

Note: A rule group name can be a maximum of 16
alphanumeric or underscore characters. It must not have a
name that is the same as any other rule group that exists in
the project.

b. In the Description field, enter a description of the rule group.
c. Click OK to save any changes and close the window. The new rule group

appears in the Rule Definition tree window.

Delete a Rule Group

Navigate: In the Configuration Components pane, select Configuration – Project –

Solution – Rules. The Rule Definition window opens in the workspace.

Rule Definition

1. In the Rule Definition window, select the rule group to be deleted.

Rule Groups

102 Oracle Retail Predictive Application Server

Note: Only user-created rule groups within a rule set can be
deleted. You cannot delete the default load, commit, calc,
and refresh rule groups. If Delete is selected for one of the
default rule groups, it will not be deleted, but all of the rules
will be removed from the rule group. In either case, the rules
will still exist within the rule pool, but they will be lost when
the project is closed if they are not used in another rule
group.

2. From the toolbar, click the Delete button, and select Rule Group. The group is
removed from the Rule navigation tree.

Copy a Rule Group
If two rule groups are similar, it may be beneficial to copy one rule group into the other
to prevent having to create a rule group from scratch. When copying the rules of a rule
group into another rule group, it is possible to specify whether existing rules will be used
or copies of the rules will be created. The Use Existing Rules checkbox defaults to using
any existing rules in the rule pool. If this checkbox is selected, the copy rule group
operation will use the same rules that the source rule group has. If this checkbox is
unchecked, the copy rule group operation will create copies of the rules and use those
copies for appending to or replacing rules in the destination rule group.

Note: The rule group to be copied into must already exist. A new
rule group cannot be created through this process.

Navigate: In the Configuration Components pane, select Configuration – Project –

Solution – Rules. The Rule Definition window opens in the workspace.
1. In the Rule Definition window, select the rule group to be copied.
2. From the toolbar, click Advanced, and select Copy Rule Group. The Copy Rule

Group window appears.

 Rule Groups

 Solutions 103

Example of Copy Rule Group Window

3. Perform the following:

a. Using the Rule Set list, select the destination rule set.

b. From the Rule Group area, select the desired destination rule group.

c. Using the Replace or Append Rules list, select:

• Replace – To overwrite all rules that already exist in the destination rule
group.

• Append – To add to the rules already in the destination rule group.
d. Click OK. The Confirm Operation dialog appears.

4. Click OK. The rules are copied to the selected rule group.

Measure Validation in the Rule Definition Window
If Enable Measure Content Validation is NOT selected in the Workbench Preferences
window, measure content validation is turned off in the Measure Manager. Measure
validation must be manually initiated in the rule tool. See “Measure validation within the
Measure Manager.”

From the Rule Definition window, click the Perform Measure Content Validation
button on the Rule Definition toolbar.

Rule Definition
The Rule Definition tool allows the configuration administrator to define, organize, and
manage rule sets, rule groups, and rules. It also allows for the creation of expressions and
addition of expressions to rules.

Rules are groups of expressions that describe the relationship between measures.

When a rule has multiple expressions, those expressions are given a priority sequence to
help the calculation engine select a calculation path that follows business priorities.
When given a choice, the calculation engine will always select the highest priority

Rule Groups

104 Oracle Retail Predictive Application Server

expression in the rule that is available to be selected. Considerable care should be taken
in the design of rules to ensure that appropriate expression priorities are established. The
business priority may vary from implementation to implementation, and it may vary
from one type of plan to another in the same implementation.
Rules are also given a priority sequence within a rule group to help the calculation
engine select a calculation path that follows business priorities. When given a choice, the
calculation engine will always select the highest priority rule that needs to be calculated.

Those who are configuring the calculation requirements of a solution are expected to
fully understand the operation of the RPAS calculation engine.

Create a Rule and Add It to a Rule Group

Navigate: In the Configuration Components pane, select Project – Solution –
Rules. The Rule Definition window opens in the workspace.

1. In the Rule Definition window, select the rule group in which you want to create a
rule. If you want the rule to be created in a particular position in the sequence of
rules in the rule group, select the rule before which you want the new rule to be
placed. The new rule will be created above the selected rule.

2. Choose one of the following methods:

• From the toolbar, click the New button and select Rule.

• Select Create – Rule from the right-click menu.

Example of Create - Rule Menu Option

• Press CTRL+R.

The Add Rule window opens.

 Rule Groups

 Solutions 105

Add Rule Window

3. In the Name field, enter the name of the rule.

Note: A rule name can be a maximum of 24 alphanumeric or
underscore characters. It must not have a name that is the
same as any other rule that exists in the project. Rule names
may start with a letter or an underscore, but may not start
with the letter "r" or "R" followed by a number.

4. In the Description field, enter a description of the rule.

5. Click Next. The Expression Builder window of the Add Rule window is displayed.

Specify Expression

6. Type the expression in the input box or perform the following to use the Expression
Builder.

a. Click the Expression Builder button to the right of the text box. The
Expression Builder window opens.

Rule Groups

106 Oracle Retail Predictive Application Server

Expression Builder Window

b. In the upper left-hand pane, select the measure components to filter measures to
be visible for pasting into the expression. If External Measures are required in the
expression, select the Include External Measures check box. Realized measures
meeting the filtering conditions are displayed in the lower left hand pane.

c. In the lower left hand pane, double-click any measures to be used in the
expression to get the measure name pasted at the insertion point in the
expression.

 Rule Groups

 Solutions 107

Note: Place the mouse over the name of a function,
procedure, keyword, or modifier to see a tooltip that
explains its function.

Tooltip Example

d. From the drop-down list, select a category of functions, procedures, keywords, or
modifiers. Double-click on a specific function, procedure, keyword, or modifier
to be used in the expression, and (if appropriate) outline syntax pasted at the
insertion point in the expression.

Category Options List

The outline syntax of a function, procedure, keyword, or modifier is pasted with
components of the syntax separated with braces ("{}"). When the insertion point is in
a component of the outline syntax in the expression, you will see a description of the
component at the bottom of the expression window. When the insertion point is in a
component of the outline syntax, anything that is entered or pasted replaces the
whole component.

Rule Groups

108 Oracle Retail Predictive Application Server

Example Expression

If the function, procedure, keyword, or modifier that is pasted has optional
arguments (for example, the cover function has optional arguments for an offset
expression and a wrap-around expression), you will be presented with the following
dialog box to select which of the optional arguments to use in the expression. Note
that all arguments are positional, so if a later argument is selected, all earlier
arguments will be automatically selected. If an earlier argument is deselected, all
later arguments will be automatically deselected.

Select Optional Arguments Dialog Box

If the function, procedure, keyword, or modifier that is pasted has repeating
arguments (for example the min function finds the minimum of a variable number of
expressions), a dialog box appears to select how many of the repeating arguments to
use in the expression.

e. Use the keyboard or dialog buttons to add the appropriate mathematical
operators and constants to construct the expression.

f. When you have defined the expression as needed, click Finish and close the
window.

Note: If an invalid expression is created, a warning message
is displayed.

7. To add further expressions to the rule, click Add, and repeat the process of entering
an expression.

8. Click OK to save any changes and close the window.

9. If the newly defined rule’s expressions use exactly the same measures as another rule
that already exists in the Rule Pool, the Similar Rules Found window will be
displayed. The window shows all rules that use exactly the same measures as the
newly defined rule. This provides you with an opportunity to use an existing rule
from the Rule Pool or to continue with the new rule. The Similar Rules Found
window allows you to view rules, associated expressions, and rule groups that
contain the rules. The rule table may be filtered based on the rule name or by
measure. Click Use Existing Rule or Use New Rule to save changes and close the
window.

 Rule Groups

 Solutions 109

Similar Rules Found Window

The new rule is placed above the rule that was selected at the start of the process in
the sequence of rules in the rule group or at the end of the rule group if no rule was
selected.

Note: If Use Existing Rule or Use New Rule is not selected and the
window is closed manually, a new rule is created.

Add an Existing Rule to a Rule Group
Using the Add Existing Rules dialog, you may select multiple rules to add to a rule
group. If at least one of the selected rules is already in the rule group, the OK button will
gray out disallowing the operation until that rule is deselected. When multiple rules are
selected, the expression and rule group displays will go blank. However, if there is only
one selected rule, the rule’s expressions and the list of rule groups that use the rule will
be displayed.

Navigate: In the Configuration Components pane, select Project – Solution –
Rules. The Rule Definition window opens in the workspace.

1. In the Rule Definition window, select the rule group to be used to add an existing
rule. If the rule is to be placed in a particular position in the sequence of rules in the
rule group, select the rule in which the new rule is to precede.

2. Choose one of the following methods:

 From the toolbar, click the New button and select Using Existing Rule.

 Select Create – Using Existing Rule from the right-click menu.
 Press Ctrl+P.

The Add Existing Rule dialog appears.

Rule Groups

110 Oracle Retail Predictive Application Server

Add Existing Rule Dialog Box

3. Filter by Rule Name or by Measure and view the associated expressions to find the
correct rule. Filtering means that all data are compared, but only matching data are
allowed to pass through. In order to filter by Rule Name or by Measure, type a filter
string (for instance, ExCpSls in the input box directly under the Title Bar. Click Filter
by Measure, and only those measures with ExCpSls will be displayed.

Example of Filter on ExCpSls

4. Click on the rule in the table to select it.

5. Click OK to save changes and close the window.

 Rule Groups

 Solutions 111

The rule is placed above the rule that was selected at the start of the process in the
sequence of rules in the rule group or at the end of the rule group if no rule was
selected.

Apply a Rule Pattern to Create New Rules or to Update Existing Rules
The Apply Rule Pattern functionality allows you to create new rules or update existing
rules according to a pattern established by a selected "base" or "template" rule. The rule
tool recognizes inherent similarities or patterns in measure components used in some
rules when compared to the base or template rule. Based on these similarities, the rule
tool allows for the creation of new rules or update of existing rules to fit the pattern set
by the base or template rule.
When the Apply Pattern capability is enabled, there is a possibility that some of the
“New” or “Updated” rules will have the same expressions as a rule that already exists in
the rule pool. If this happens, the Similar Rules Found dialog appears and provides the
option of using the existing rule or actually creating a new one.

Navigate: In the Configuration Components pane, select Project – Solution –
Rules. The Rule Definition window opens in the workspace.

Example of Rule Definition Window

1. In the Rule Definition window, select any rule group that contains the rule to use as
the pattern basis.

2. Select the rule whose pattern is to be used as a basis for creating or updating rules.

3. From the toolbar, click Advanced and select Apply Pattern, or right-click and select
Advanced - Apply Pattern.

A New dialog box containing a set of rules will be presented for selection. This set is
composed of rules whose measures follow the selected rule’s pattern in terms of the
individual measure components used. The set of rules will be composed of potential
new rules or potential updated rules.

Rule Groups

112 Oracle Retail Predictive Application Server

New – Apply New Pattern Dialog Box

Example:

Consider a configuration with three components in the measure naming scheme:

 a "version" (such as Wp)

 a metric (such as Shrink)

 a unit of measure (such as V)

If the selected base rule is:

{ WpShrinkU WpShrinkAUR | WpShrinkV }
...then the rules:

Rule1: { WpSlsU WpSlsV WpSlsAUR | }

...and

Rule2: { WpRecU WpRecV WpRecC | }

...would fit the pattern and be included in the list.

Rule1 fits the pattern because its measures use the same measure components with
the exception of the metric component. For the Metric component, the base rule uses
Shrink, and Rule1 uses Sls consistently. In this case, the tool will present the rule:

{ WpSlsU WpSlsAUR | WpSlsV }

...as a possible update for Rule1.

The update results in the conversion of Rule1 to a rule that uses the same measures
as the original Rule1, but it has the expression pattern of the base rule.
Rule2 fits the pattern because it uses the same Version as the base rule. For the Metric
component, the base rule uses Shrink, and Rule2 uses Rec consistently. Unlike Rule1,
Rule2 uses C as the Unit of Measure in one of its measures. This is not an “exact” fit
like Rule1. In this case, the tool will present the rule { WpRecU WpRecAUR |
WpRecV } as a possible new rule. Notice that this rule is “forced” to be an “exact” fit
as Rule1 was.

4. Select the rule replacement policy in the Use Existing Rules dropdown menu. This
allows the user to select, on a rule-by-rule basis, which rules to reuse and which to
re-create. By default, this is set to “Always”.

 Rule Groups

 Solutions 113

• When “Always” is selected, rules that already exist elsewhere in the configuration
will always be used in place of newly generated rules.

• When “Never” is selected, new rules will always be created, even if an identical rule
already exists elsewhere in the configuration.

• When “Prompt” is selected, the Rule Locator dialog will be presented for each rule
whose expressions already exist elsewhere in the configuration.

5. From the list of possible new and updated rules, select those to be updated or added
to the rule group. In either case, if rule reuse is specified in Step 4, a new rule will not
be created, but the rule existing elsewhere in the configuration will be used in its
place.

6. Click OK.

A selected rule that is labeled “New Rule” will be added to the end of the rule group.
The new rule’s name will default to the template rule's name suffixed with a number
to keep the name unique. A selected rule that is labeled “Update Rule” is already in
the rule group and will be replaced. This means that the old rule will be removed
and replaced with a new rule whose expressions follow the base rule’s expression
pattern. In both cases, the rule will follow the pattern of the base rule’s expression.

Delete a Rule from All Rule Groups

Note: This procedure will delete the rule from all rule groups
that contain this rule as well as from the Rule Pool. If the
desired action is to remove the rule from a rule group, but
retain it in other rule groups, follow the Remove a Rule from
a Rule Group procedure.

Navigate: In the Configuration Components pane, select Project – Solution –
Rules. The Rule Definition window opens in the workspace.

Example of Rule Definition Window

1. In the Rule Definition window, select any rule group that contains the rule to be
deleted.

2. Select the rule to be deleted.

Note: If multiple rules are selected, only the last selected rule
will be deleted.

Rule Groups

114 Oracle Retail Predictive Application Server

3. From the toolbar, click the Delete button and select Delete Rule, or select
Delete – Remove – Delete Rule from the right-click menu. The Delete Rule Group
window appears.

4. Verify that the rule selected in the table is the rule to be deleted, or select a different
rule to delete by clicking on the rule in the table.

Example of Delete Rule Window

5. Click Delete Rule to delete the rule and close the window.

Remove a Rule from a Rule Group

Note: This procedure will remove the rule(s) only from the
currently selected rule group. If the desired action is to
delete the rule(s) from all rule groups and the rule pool, see
"Delete a Rule from All Rule Groups" in this document.

Navigate: In the Configuration Components pane, select Project – Solution –
Rules. The Rule Definition window opens in the workspace.

1. In the Rule Definition window, select the rule group that contains the rule(s) to be
removed.

2. Select the rule(s) to remove.

Note: Multiple rules can be selected by holding the Control
(Ctrl) key as the individual rules are selected, or by clicking
one rule and holding Shift key as another rule is selected,
which selects all rules between the two that were clicked. A
selected rule is indicated by a bold rule name.

3. From the toolbar, click the Delete button and select Remove Rule(s), or select
Delete – Remove… – Remove Rule(s) from the right-click menu.

 Rule Groups

 Solutions 115

The rule(s) are removed from the rule group, but are still in the rule pool. The rules
will be permanently lost when the project is closed, unless they are used in another
rule group.

Edit Properties of a Rule

Navigate: In the Configuration Components pane, select Project – Solution –
Rules. The Rule Definition window opens in the workspace.

1. In the Rule Definition window, select any rule group that contains the rule to edit.

2. From the rule group, select the rule to edit.

3. From the toolbar, click the Edit button and Select Rule, or select Edit
Properties... then Rule from the right-click menu. The Rule Properties dialog box
opens.

Rule Properties Dialog Box

4. To edit the name of the rule, enter a new name in the Name field.

Note: A rule name can be a maximum of 24 alphanumeric or
underscore characters. It must not have a name that is the
same as any other rule that exists in the project. Rule names
may start with a letter or an underscore, but may not start
with the letter "r" or "R" followed by a number.

5. To edit the description of the rule, enter a new description in the Description field.

6. To edit attributes for a rule:
a. Select the attribute to edit.

Rule Groups

116 Oracle Retail Predictive Application Server

b. Click Edit. The Edit Attribute dialog box opens.

Edit Attribute Dialog Box

c. Update the information as necessary.

d. Click OK to save any changes and close the window.

7. To remove attributes from a rule:

a. Select the attribute to delete.
b. Click Remove. The attribute is removed from the display box.

8. Click OK to save any changes and close the window.

Rename All Rules in a Rule Group

Navigate: In the Configuration Components pane, select Project – Solution –
Rules. The Rule Definitions window opens in the workspace.

1. In the Rule Definition window, select the rule group that contains the rules to
rename.

2. From the toolbar, click Advanced and select Rename All Rules, or select Advanced –
Rename All Rules from the right-click menu. The Rename All Rules dialog box
appears.

Example of Rename All Rules Dialog Box

3. In the Prefix field, enter a prefix up to ten characters in length, which will be the start
of all rule names.

4. Click OK. The Confirm Operation dialog box appears.

 Rule Groups

 Solutions 117

Confirm Operations

5. Click Yes.

Note: All of the rules in the rule group are renamed with the
prefix followed by a 4-digit numeric identifier generated by
the rule tool. The rule tool will maintain the order that the
rules were in before they were renamed, and it uses that
order in generating the numeric identifier.

Note: Since rules may appear in more than one rule group,
use of this feature may generate rule names that look out of
place in other rule groups, especially if the prefix implies the
rule group.

Filter Rules in a Rule Group

Navigate: In the Configuration Components pane, select Project – Solution –
Rules. The Rule Definitions window opens in the workspace.

1. In the Rule Definition window, select a rule group.

2. In the Rule Definition window, click Rule Filtering.

Rule Filtering Button in Rule Definition Window

Note: This is a dynamic button, and the text will change
depending on the current filter mode.

3. Select one of the following options:

• Disable Filtering – All rules are displayed.

• Filter by Measure – Works in conjunction with the measure components box in
the bottom left corner of the screen. Rules are filtered to show those whose
measures conform to the selected component scheme.

• Filter by Size – Rules are filtered to show those with more than one expression.

• Filter by Validity – Only invalid rules are displayed.

Note: When rule filtering is active, the buttons used to reorder rules
in the rule group are disabled.

Rule Groups

118 Oracle Retail Predictive Application Server

Reordering Rules in a Rule Group

Navigate: In the Configuration Components pane, select Project – Solution –
Rules. The Rule Definition window opens in the workspace.

1. In the Rule Definition window, select the rule group that contains the rules to
reorder.

2. Select the rule to reorder.

3. Perform the following as needed:

• Use the Up/Down arrows on the Rule Definition toolbar to move the rule
up or down the list.

• Click the Up/Down arrows to the left of the rule name to move the rule up or
down the list.

Auto Generate Load and Commit Rules

Navigate: In the Configuration Components pane, select Project – Solution –
Rules. The Rule Definition window opens in the workspace.

Note: Rules for the load and commit rule groups in a rule set
can be auto-generated based on the calc rule group. The
measures referenced in the calc rule group are assumed to be
all of the measures in a workbook (if there are others,
manually add their load and/or commit rules). A load or
commit rule is generated for all of those measures that have
a database allocated (those that are physically stored).

1. Select the rule set for which load or commit rules are to be auto generated, or select
any rule group in that rule set.

2. Perform one of the following methods:

• From the toolbar, click Advanced and select Generate Load Rules or Generate
Calc Rules

• Select Advanced – Generate Load Rules or Advanced – Generate Calc Rules
from the right-click menu.

The Confirm Operation dialog box appears to inform you that this process cannot be
undone.

Confirm Operation

3. Click Yes.
Rules are automatically generated and named for the load or commit rule group. There is
one rule with a single expression that is generated for each measure used in the calc rule
group for the rule set that has a database assigned.

 Rule Groups

 Solutions 119

In the load rule group, the rules are named <rulesetname>Lnnn where nnn is a 3-
digit order number. The rules in a commit rule group are similarly named
<rulesetname>Cnnn. The expression in a generated rule in a load rule group is of the
form:
<measurename> = <measurename>.master

and in the generated commit rule group are of the form:

<measurename>.master = <measurename>

Copy Selected Rules to Another Rule Group
When copying selected rules of a rule group into another rule group, it is possible to
specify whether existing rules will be used or copies of the rules will be created. The Use
Existing Rules check box defaults to using any existing rules in the rule pool. If this
checkbox is selected, the copy selected rules operation will use the same rules that the
source rule group has. If this check box is not selected, the copy selected rules operation
will create copies of the rules and use those copies for appending to or replacing rules in
the destination rule group.

When the user uses the Find/Replace feature, it is possible that a changed rule will have
the same expressions as a rule that already exists in the rule pool. If the Use Existing
Rules check box is selected, the Similar Rules Found dialog appears. you have the option
of using the existing rule or actually creating a new one.

Navigate: In the Configuration Components pane, select Project – Solution –
Rules. The Rule Definitions window opens in the workspace.

1. Select the Rule Group that contains the rules to copy, and select the individual rules
to be copied.

Note: To select multiple rules, hold down the Ctrl key and click the
rules to select, or click one rule and hold Shift key as selecting
another rule, which selects all rules between the two that have been
selected. A selected rule is indicated by a bold rule name.

2. Perform one of the following methods:

• From the toolbar, click Advanced, and select Copy Selected Rules.

• Select Advanced – Copy Selected Rules from the right-click menu.

• Press Ctrl+C.

The Copy Selected Rules dialog box opens.

Rule Groups

120 Oracle Retail Predictive Application Server

Copy Selected Rules Dialog Box

3. In the Rule Set field, select the copy's destination rule set.
4. In the Rule Group area, select the desired copy's destination Rule Group.

5. Select the Use Existing Rules checkbox if the rules should be added to the
destination Rule Group. If the User Existing Rules checkbox is not selected, copies
of the selected rules will be created for the destination Rule Group instead.

Note: If the Find/Replace functionality is used, copies will
be created for affected rules even if the Use Existing Rules
checkbox is selected.

6. In the Replace or Append Rules field, select:

• Replace – To remove all rules that already exist in the destination rule group
before the copy.

• Append – To add to the rules already in the destination rule group.
7. Click Next. The second window of the Copy Selected Rules window opens. This

window allows you to select or deselect rules from those originally selected to copy
when the check box beside the rule name is selected.

 Rule Groups

 Solutions 121

Copy Selected Rules – Rules to be copied appear with check marks

Find and Replace Measures in the Copied Rules
The ability to find/replace in the copy rules is a very powerful and useful feature. This
feature can be used to build a collection of rules and “clone” them to a very similar
collection of rules. For example, a collection of rules that calculate a series of variances
with one version can be cloned to produce rules that calculate a series of variances with
another version.

1. Click the Find/Replace button. The Find/Replace dialog box appears.

Find/Replace Dialog Box

2. In the Find field, enter the portion of the measure to replace.

Note: The Find function is case-sensitive.

3. In the Replace With field, enter the string to replace the portion of the measure name.

4. Perform one of the following:

 Select Forwards to search the rules in order
 Select Backwards to search the rules in reverse order.

Rule Groups

122 Oracle Retail Predictive Application Server

Note: Searching Forwards will proceed from left to right starting
with the first measure of the first expression of the first selected Rule
and will go through all expressions in all selected Rules. Similarly,
searching Backwards will flow in the reverse direction starting with
the rightmost measure of the last expression in the last Rule selected.

5. Click Find Next. The first candidate measure to be replaced will be displayed in the
bottom left field.

6. Perform the following as needed:

 Click Replace/Find Next to replace the current candidate measure and display
the next candidate measure.

 Click Replace All to replace all instances in all the selected Rules of the current
candidate measure. For example, if a search for Wp finds WpRecV, clicking on
Replace All will perform a replace on all instances of WpRecV in all the selected
Rules.

 Click Find Next to skip over that occurrence of the portion of the measure name,
and go onto the next one.

The Similar Rules Found dialog box appears.

Similar Rules Found Dialog Box

Using this dialog box, you can replace a portion of the rules (for instance a prefix)
either for all instances of the rules or only for the new instances (where the old
instances are not affected).

Example:

Suppose you create a series of rules for the Executive (Ex) Calc Rule Group, and
wants to use these as a model for the Manager (Mg) Calc Rule Group. Each of these
original rules contains expressions with the “Ex” prefix. Each such instance needs to
be replaced with “Mg.”

1. Click Use Existing Rules to replace every instance of “Ex.”
2. Click Use New Rule to replace the new instances of “Ex” without affecting the

previous rules that contain “Ex.”

3. Click the Close button to close the Find/Replace dialog box.

4. Click OK.

5. Click Yes to confirm.

 Expressions and Rules

 Solutions 123

The copies of the rules will be placed in the target rule group. These copies will
have names that start with as many characters as possible from the name of the
original rule and end with an underscore and number.

Expressions and Rules

Overview
An expression describes and solves the relationship between measures in a way that
causes a measure to be calculated through the expression. They form the basis for all
calculations of the relationships between measures, and they are evaluated by the
calculation engine during a calculation. In some cases, there may be business reasons for
wanting more than one of the measures in a relationship to be calculable or solvable
through that relationship. Expressions are written in a syntax that allows for the
calculation of a single measure from other measures, constants, and parameters by using
standard arithmetical functions and a rich set of mathematical, technical, and business
functions. Expressions have multiple results.

Example:

Expression 1: ReceiptUnits = ReceiptsValue / ReceiptsPrice

This expression specifies the way ReceiptUnits are calculated. ReceiptUnits are calculated
by dividing ReceiptsValue by ReceiptsPrice.

Note: Measures are not only calculated based on
expressions. They are also calculated based on spreading
and aggregating.

Reorder an Expression in a Rule

Navigate: In the Configuration Components pane, select Project – Solution –
Rules. The Rule Definition window opens in the workspace.

Example of Rule Definition Window

1. In the Rule Definition window, select any rule group that contains the rule whose
expression is to be reordered.

2. Choose one of the following methods:

• Expand the rule to view the expressions associated with the rule. Click the
Toggle button on the Rules toolbar and select Expand All Expressions.

Expressions and Rules

124 Oracle Retail Predictive Application Server

•
Toggle Button

• Click the Toggle button for the rule.

3. Use the up and down arrows to move the expression up or down the list.

Edit an Expression in a Rule

Navigate: In the Configuration Components pane, select Project – Solution –
Rules. The Rule Definition window opens in the workspace.

1. In the Rule Definition window, select any rule group that contains the rule whose
expression is to be edited.

2. In the Rule Definition window, select the rule whose expression is to be edited.

3. Choose one of the following methods:

 From the toolbar, click the Expression Builder button

 Select Edit Expressions from the right-click menu.

 Press Ctrl+E.

The Edit Expressions window appears.

Edit Expressions Window

To Edit an Expression
1. Choose one of the following methods:

 Edit the expression in its text box.

 Expressions and Rules

 Solutions 125

 Click the Expression Builder button for the expression to edit. The Edit
Expressions window appears. Use the Expression Builder to make necessary
changes and click Finish when complete.

Expression Builder Window

2. Click OK to save and changes and close the window.

Delete an Expression from a Rule

Navigate: In the Configuration Components pane, select Project – Solution –
Rules. The Rule Definition window opens in the workspace.

1. In the Rule Definition window, select any rule group that contains the rule whose
expression is to be deleted.

2. In the Rule Definition window, select the rule whose expression is to be deleted.

3. Choose one of the following methods:

 From the toolbar, click the Expression Builder button
 Select Edit Expressions from the right-click menu.

 Press Ctrl+E.

The Edit Expressions window appears.

4. Click the Delete button to the left of the expression in the Edit Expression box.
5. Click OK to delete the expression. Once OK is clicked, the expression will be

permanently deleted from the rule.

Note: If the only expression in the rule is deleted, the rule
will be flagged as being invalid, because it has no
expressions.

RPAS Functions, Procedures, Keywords, and Modifiers

126 Oracle Retail Predictive Application Server

Add an Expression to a Rule

Navigate: In the Configuration Components pane, select Project – Solution –
Rules. The Rule Definition window opens in the workspace.

1. In the Rule Definition window, select the rule group that contains the rule that will
have an expression added.

2. In the Rule Definition window, select the rule that will have an expression added.

3. Choose one of the following methods:

 From the toolbar, click the Expression Builder button
 Select Edit Expressions from the right-click menu.

 Press CTRL+E.

The Edit Expressions window appears.

Edit Expressions Window

4. Click Add to add a new expression in the Edit Expression box.

5. Choose one of the following methods:
 Enter the expression in its text box

 Click the Expression Builder button for the expression to edit. The Edit
Expressions window appears. Use the Expression Builder to define the rule and
click Finish when complete.

6. Click OK to add the expression.

RPAS Functions, Procedures, Keywords, and Modifiers

Overview
RPAS functions, procedures, keywords, and modifiers are mechanisms for performing
operations within an expression that are controlled and executed by the calculation

 Workbooks

 Solutions 127

engine. There is a rich collection of available functions, procedures, keywords, and
modifiers that can be further extended for an implementation if required.

See Appendix C, "RPAS Rules Function Reference Guide" for details about RPAS
functions, procedures, keywords, and modifiers.

Workbooks

Overview
A workbook is an easily viewed, easily manipulated multidimensional framework that is
used to perform interactive business functions in the configured solution. To present
data, a workbook can contain any number of multidimensional spreadsheets, called
worksheets, as well as graphical charts and related reports. All these components work
together to allow you to view and analyze business functions.

The Workbook Designer allows for the creation selection, and integration of the various
components of a workbook template, which is a pre-designed workbook that is
formatted for RPAS users to view and manipulate data. It contains workbook tabs,
worksheets, rule groups, wizards, and workflow processes.
Take the time to design a well-planned workbook. Workbooks must be laid out in a
logical format and must be easy to navigate. When configuring a workbook, think about
how the workbook will be used by the users in the RPAS Client. Understand the business
process flow and what end users will need to access most. Most likely, this information
must be contained in the first workbook tab and worksheet.

The names of all of the workbook components must be intuitive to an end user.

Note: The internal RPAS names need to be unique across all
workbook components in a project. This includes workbook,
tab, worksheet, wizard, and custom menu names.

Workbook Tabs
A workbook tab is a major subdivision of a workbook. Each workbook contains at least
one workbook tab by default, but additional tabs can be added for organizing workbooks
to support business needs. The workbook designer allows you to define and name tabs
and to specify their order in the workbook.

Worksheets
Worksheets are multidimensional spreadsheets that are used to display workbook-
specific information. Workbooks can include one or many worksheets. Worksheets can
present data in the form of numbers in a grid, or the numeric data values can be
converted to a graphical chart.
The Workbook Designer provides a visual represent of your workbooks, workbook tabs,
and worksheets.

Workbooks

128 Oracle Retail Predictive Application Server

Example of Workbook Designer Window

The Workbook Designer contains the following areas:

Workbook Tree - The workbook tree provides a visual representation of the workbooks,
workbook tabs, and worksheets. In the example provided, Executive Planning and
Manager Planning are workbooks. Inventory and Sales are workbook tabs.
Beginning/Ending Inventory and Sell Through are worksheets, which are contained in
the Inventory and Sales workbook tabs.

Workbook Toolbar - This toolbar is used to perform common tasks. The buttons
available depend on the item selected in the Workbook Designer window.

Workbook Tabs - The workbook tabs are used to define property at the workbook level.
The tabs displayed depend on whether a workbook, workbook tab, or worksheet is
selected from the Workbook tree. In the example above, Executive Planning (a
workbook) is selected. The seven workbook tabs displayed are available to define specific
properties for your workbook. For information on these tabs, refer to the Workbook Tabs
section.

Wizards
RPAS uses a series of wizards to obtain information in order to build a workbook. The
workbook contains a subset of the entire data available in the system; so think about the
most logical flow for the wizards. The main purpose of a wizard is to allow the end user
to make choices regarding the scope of the workbook. The workbook designer allows
you to specify which wizards will be used to build the workbooks.

Overview of Participation Measures
An "extended measure" or "participation measure" is a measure that contains the value of
the current positions as a proportion of the value at a Parent level. For example, sales as a
percent of the class sales. These measures can be viewed and edited, and they may be
preconfigured through the RPAS Configuration Tools or dynamically defined in the
RPAS Client in a worksheet.

Typical uses of this functionality are to define measures that are percentage
participations of sales measures. Typically, these are either to a fixed level (such as class)
so the participation of each item to the class can be viewed and manipulated, or they are
to the "next level up" in the product hierarchy.

The following examples will use the sample product hierarchy
structure:

 Workbooks

 Solutions 129

Sample Product Hierarchy Structure

Note the following important points when using this feature:

 Changing the percentage of the extended measure will cause the values of the
underlying measure to change to reflect the newly set percentage.

 Multiple extended measures can be defined for the same underlying measure;
however, only one extended measure or the underlying measure can be edited
before calculation occurs. All other versions will be protected.

 The value of an extended measure is a fraction between zero and one. You must
format the measure to be displayed as a percentage if desired.

Create a Workbook

Navigate: In the Configuration Components pane, select Project – Solution –
Workbooks. The Workbook Designer window opens in the workspace.

1. Choose one of the following methods:

 Click the New Workbook button from the Workbook Designer toolbar.

 Right-click in the Workbook tree area, and select New Workbook.

 Select an existing workbook and press Insert.
A new workbook is created.

2. Enter information for the tabs displayed across the top of the Workbook Designer
window as necessary. Refer to "Defining Workbook Properties" for more
information.

Note: Double-click in the fields in the Value column to enter
the information.

Edit Workbook Properties

Navigate: In the Configuration Components pane, select Project – Solution –
Workbooks. The Workbook Designer window opens in the workspace.

Workbooks

130 Oracle Retail Predictive Application Server

Workbook Designer Window

1. Select the workbook, and click on the tab to edit. For information on these tabs, see
the Defining Workbook Properties section.

2. Update the information as appropriate.
3. To remove information from any of the tables:

a. Select the row.

b. Right-click and select Remove.

Defining Workbook Properties
When a workbook is selected from the Workbook Designer window, the following tabs
appear in the workspace:
 General Tab

 Custom Menus Tab

 Workbook Hierarchies Tab

 Real Time Alerts Tab

 Workbook Transitions Tab

 Measures Tab
 Extended Measures Tab

 Dynamic Position Maintenance Tab

Refer to the topics below of information on using these tabs to define the workbook
properties.

 Workbooks

 Solutions 131

General Tab

Example of General Tab

The following sections describe the default fields appearing on the General tab.

General Tab Default Fields

RPAS Name

The RPAS internal name of the workbook.

User Label

The label that the end user will see when selecting which workbook to build.

Group

In the RPAS Client, workbooks are grouped together under tabs (workbook template
groups) to make it easier for the end user to find and select the needed workbook when
solutions have multiple workbooks. This is the internal RPAS name of the group that this
workbook will belong.

Group Label

In the RPAS Client, workbooks are grouped together under tabs (workbook template
groups) to make it easier for the end user to find and select the needed workbook when
solutions have multiple workbooks. This is the label the end user will see of the group to
which this workbook will belong. If different labels are entered for the same workbook
group against different workbooks, the workbook group label shown to the end user will
effectively be arbitrary.

Workbooks

132 Oracle Retail Predictive Application Server

Workbook Type

This property is reserved for use when custom extensions are written. It enables the
custom extension to determine the type of the template where the template type has a
meaning defined by the custom extension writer. When there is no custom extension, this
field is set to the value DynamicTemplate by default.

Library

When the Workbook Type is not DynamicTemplate, it needs to be associated with a
relevant custom shared library. This field holds the name of that library. When there are
no custom extensions, this field is set to Template by default. The name entered here
needs to be consistent with the custom extension. For example, if a value of
ABCTemplate is entered in this field, the custom library needs to be named
ABCTemplateLib and the directory where the custom extension looks for configuration
files in the domain will be repos/ABCTemplates.

Wizard Only

The Wizard Only option is only used under circumstances when custom code is to be
executed in a batch job at the end of the wizard process (which typically uses custom
wizards) instead of building and opening a standard workbook. The selections made in
the wizards are passed to the custom code. Therefore, a workbook with the Wizard Only
option selected is not a workbook. However, the workbook infrastructure is used so that
the process can have a name and label, and be assigned to a workbook group. This allows
end users to select a Wizard Only template using the same process as workbooks.
Workbooks that have the Wizard Only option selected do not need tabs or worksheets
defined, but they do need a name, label, and workbook group.

Rule Set

Select the rule set to use with the workbook. The list of rule sets to select from includes all
the rule sets in the same solution as the workbook template.

Use Default Rules

Select this option to use the default rules (Load, Commit, Calc, and Refresh) associated
with the rule set. If this option is selected, the Load Rules, Commit Rules, Calc Rules, and
Refresh Rules properties are disabled. If the option is not selected, the Load Rules,
Commit Rules, Calc Rules, and Refresh Rules properties are enabled.

Load Rules, Commit Rules, and Calc Rules

Select the rule group to apply for each rule group type. Only rule groups from the
selected rule set are offered.

Refresh Rules

This is only enabled when the Use Default Rules option is not selected. Select the rule
group(s) to use as refresh rule groups. When enabled, click in the Refresh Rules field.
The Select and Order Multiple Rule Groups dialog box opens.

 Workbooks

 Solutions 133

Select and Order Multiple Rule Groups Dialog Box

Within this window, specify which groups will be available to be used to refresh the
workbook. Partial data in a workbook can be refreshed by refreshing with a rule group
that only updates some of the measures in the workbook. The order that the rule groups
appear is the order in which they are displayed to the end user when presented with a
choice of refresh rule groups within the workbook.

1. In the Available Rule Groups column, select the rule group to add, and drag it to the
Selected Rule Groups column.

2. Click OK to save any changes and close the window.

X Axis, Y Axis, Z Axis and Unassigned

These properties are used to define the default axis layout of the worksheets in the
workbook (that is, which hierarchies will appear in each axis). Before the hierarchies will
appear in the Axis dialog, you must make sure that the database and base intersection
have been assigned from the Measure Manager. The measures must also be made
viewable. To do this, right-click in Default and select Add Matching.

1. Click in the X-Axis, Y-Axis, Z-Axis, or Unassigned field. The Axis dialog box opens.

Axis Dialog Box

2. Drag the hierarchies to the appropriate axis column.

Workbooks

134 Oracle Retail Predictive Application Server

3. Click OK to save any changes and close the window.

Note: The hierarchies that appear in this process are the
hierarchies used by measures placed on worksheets in the
workbook. If no worksheets have yet been built, no
hierarchies will appear in this process.

Use Custom Wizard

Determines the type of wizard to use for the workbook template. Select the check box to
enable the Custom Wizard property and disable the Standard Wizard Property. De-select
the check box to disable the Custom Wizard property and enable the Standard Wizard
Property. See "Wizards" in this document for more information on Custom Wizards.

Custom Wizard

Select the custom wizard that to use to build the workbook. This field is only enabled
when the Use Custom Wizard check box is selected. This field allows you to select a
wizard from a list of wizards created in the Wizard Designer.

Standard Wizard

Select the dimensions to be selected by the end-user in the standard wizard, which
presents a series of two tree selection panes to select the positions in the scope of the
workbook to be built.

1. Click in the Standard Wizard field. The Standard Wizard dialog box opens.

Standard Wizard Dialog Box

Note: Hierarchies used in the lowest base intersection for the
measures used in the rule set assigned to the workbook will
be displayed. For each hierarchy, there will be a choice of
dimensions. The dimensions offered will be the lowest
dimension in that hierarchy that is used in the base
intersection of a measure in the rule set assigned to the
workbook, plus all higher dimensions.

2. Select the check boxes next to the hierarchy names to enable the hierarchies for which
that the end user in the RPAS Client should select positions.

3. Dimension: Select the desired dimension from each of the enabled hierarchies.

 Workbooks

 Solutions 135

Note: The dimension selected will be the lowest dimension offered to
the end-user in the scope selection wizard during the workbook
build process. However, the workbook requires positions at the
lowest dimension offered. Therefore, if the selected dimension is
higher than the lowest dimension offered, the scope of the workbook
will include all of the positions in that lowest dimension that are
descended from the positions selected from that higher dimension.

4. Left Label and Right Label: (Optional) Enter the left and right labels for each
hierarchy. These labels will be displayed on the left and right trees of the
corresponding 2-tree wizards during the workbook build process. If these fields are
left blank, no labels will be displayed over the hierarchy trees.

5. Restricted Dim and Max Positions: For applications such as pricing, a retailer might
want to restrict the selection of SKUs in a planning workbook to only one category. A
planner may be allowed to plan several categories within a department, but only one
category per plan. Per the retailer’s business process, a category would establish a
coherent set of SKUs, the cross-item effects of which could be considered meaningful
for a price optimization algorithm. Mixing in SKUs from two or more categories
could be considered as polluting the cross-item effects, and therefore an undesirable
situation. What may also be required for this application is the ability to select SKUs
or Classes that comprise a subset of possible SKUs or Classes within the Category,
but not the whole category.

With this latter requirement, a single-select wizard at the category level would not
allow the user to filter subsets of SKUs or Classes. What is required is the ability to
make multiple selections at the SKU or Class levels in a standard RPAS Two Tree
selection wizard, while still ensuring that only one Category is used. Even though
this can be achieved through the disciplined selection of SKUs and Classes in a Two
Tree Wizard, RPAS allows for setting up a hard constraint so that the wizard itself
can keep the user from selecting subsets in more than one Category by displaying an
error message and preventing the user from proceeding to the next wizard page until
the constraint has been satisfied.

Example Error Message

The constraint can be easily established within the Standard Wizard definition dialog
in the Workbook Definition tool of the Configuration Tools. Two new fields are
available for every Two Tree selection page in the standard wizard, one where the
user selects the level from the hierarchy (Restricted Dim field), and another where
the user enters the maximum number of selectable positions from that level (Max
Positions field). These fields are optional, and if left empty, there is no limit on the
number of positions that may be selected using the wizard. These fields are also
available for Two Tree pages used in custom wizards.

Another possible business application of this feature is to constrain the length of the
planning period. A retailer may want the planners to never plan more than 12 weeks
at a time, and it may not matter whether these weeks belong to the same quarter or
not. In such a case, the retailer will want to establish the constraint of 12 at the week

Workbooks

136 Oracle Retail Predictive Application Server

level, the lowest level where the selection is made. The planner may select at the
quarter level, thus automatically selecting all the weeks in the Quarter; however,
RPAS will ensure that whatever the definition of the Quarter is, it does not contain
more than 12 weeks.
Apart from the functional ability to restrict selections to coherent set of positions
provided by the Max Positions feature, this feature also allows system designers to
constrain the size of workbooks by limiting the maximum number of positions that a
user can add to a workbook. In the past, users have been known to add all positions
to a workbook because such a selection is easy to make. They may only require 5-10%
of those positions, but they still add them all because they can easily work with the
desired subset in the workbook. System designers would like to prevent such abuse
of the flexibility that workbooks provide, primarily because such abuse leads to
wastage of disk space and because it slows down online performance due to the extra
work that RPAS has to do with unnecessary positions. System designers may
therefore constrain the workbook to, for example, not include more than 500 SKUs at
a time. The number 500 may not have any functional meaning, but may be chosen
because it does not constrain functionality in any way while still helping to constrain
the size of the workbooks.

Note: This is a patchable feature, for example, existing configurations
can be enhanced to benefit from this feature.

6. Wizard Label: To attach a custom label to a wizard page, enter the desired label in
this field. If this field is left blank, the wizard page will be given the default label.

7. Order: Adjust the order of the hierarchies as necessary by dragging them in the order
pane. This will be the order that the position selection wizards are presented during
the workbook build process.

8. Click OK to save any changes and close the window.

Note: If any of the offered hierarchies are not enabled in the
Standard Wizard dialog box, the end user will not be
presented with a position selection wizard to define the
scope of the workbook being built for that hierarchy. All
positions in the lowest dimension offered in that hierarchy
that the end user has access rights to will be automatically
selected.

Enable Image Modification

Select this option to allow users the ability to add, modify, or delete image paths for all
image enabled dimensions in this workbook. Refer to "Specify Dimension Properties" for
information on enabling images.

Note: A rule will be automatically created to load and
commit images for workbooks that are enabled for image
modification. If no load or commit rules exist for the
workbook, a load or commit rule group will be
automatically created to contain this new rule.

 Workbooks

 Solutions 137

Hierarchy Pre-ranging

Hierarchy pre-ranging allows you to filter available positions for selection in two-tree
wizards based on relationships established at a specific intersection between the
positions of two or more hierarchies. For example, you can set pre-ranging up so that
when users select the time period Fall 09 in the wizard, the subsequent SKU selection
screen will only display Fall-specific products, such as sweaters and jackets.

Hierarchy pre-ranging can be enabled for both standard wizards and for two-tree
wizards in custom wizards; however, in custom wizards the behavior is guaranteed only
if two-tree wizards are used as is, i.e., their code is not overridden by the implementation
team.

Pre-ranging is achieved by setting up one or more Pre-range Mask measures for the
workbook. Each hierarchy in the workbook template can be optionally assigned a pre-
range mask measure. Each of the hierarchy-specific mask measures must contain a
dimension that ties back to one or more hierarchies that will be displayed in the wizard,
along with one or more dimensions along which we want to pre-select relevant positions.
Multiple hierarchies can share a common mask measure. The masking function is
applied in the order of the wizard pages such that the selections of a wizard page may
affect the list of available positions on any subsequent wizard page, but the selections of
wizard page will not affect the list of available positions on a previous page if the user
clicks on the back button to go back.

This approach allows:

a. One or more hierarchies within the workbook template not to be ranged,
reducing the processing time and storage space.

b. The mask measure only needs to contain the target hierarchy plus optional
conditioning hierarchies at its base intersection, reducing the number of
hierarchies per mask measure and thus storage space as well.

c. Same mask measure can be used to range a common set of hierarchies in
different workbook templates.

Example

In a workbook template that contains PROD, LOC, and CLND hierarchies, two different
mask measures are used: measure prodmaskloc (sku,str) to range down the positions
that appear in the LOC wizard, and measure locmaskclnd(str,week) to range down the
positions that appear in the CLND wizard. In the ConfigTools,
“PROD:,LOC:prodmaskloc,CLND:locmaskclnd” are specified in the Pre-Range Mask
field under the General tab in the Workbook Designer tool. Assuming the order of the
wizard pages is PROD, LOC, and CLND, this is how the masks will be applied:

a. All positions in the PROD hierarchy will be available for selection as PROD is not
masked.

b. Available positions for LOC hierarchy will depend on the PROD hierarchy
selections combining with the masking values of measure “prodmaskloc”.

c. Available positions for CLND hierarchy will solely depend on the LOC hierarchy
selections combining with the masking values of measure “locmaskclnd”. The
PROD selections do not affect the CLND page directly.

Workbooks

138 Oracle Retail Predictive Application Server

Hierarchy Specific Pre-Range Mask Assignment

In order to assist in the configuration of the pre-range mask, a new dialog has been
created for the pre-range mask attribute. If a user clicks into the field, this new dialog
will be launched.

Pre-range Mask Configuration Window

The use of this tab is optional. It is used to create a workbook specific, customized menu-
driven process within
The new dialog consists of a set of rows, one for each hierarchy in the workbook, each
row lists the name of the hierarchy associated with the row and provide a field in which
a measure name can be entered.

If the existing Pre-Range mask contains a reference to a hierarchy that does not exist in
the current workbook, then when the user brings up the pre-range mask configuration
dialog, this hierarchy reference will be hidden.
Finally, each row has a button that will allow the selection of a measure as opposed to
typing in a measure name. Clicking this button launches a secondary dialog.

Mask Measure Selection Window

 Workbooks

 Solutions 139

This secondary dialog has a list of hierarchies, a list of measures and a text field to accept
a partial measure name as a filter.

By default, the list of measures will contain all Boolean measures in the domain that meet
validation criteria for the hierarchy being configured. Typing text in the filter text field
will filter the measure list to remove those measures that do not meet the pattern.
Additionally, selecting a hierarchy in the hierarchy list will remove all measures that do
not also contain the selected hierarchy or hierarchies within its base intersection.

These controls are designed to handle the values present in an upgraded version of the
configuration in which the older and simpler format for pre-range masking is present.

Mask Measure’s Type and Properties

All pre-range masking measures must be of Boolean measure type, must have an
aggregation method of OR or AND, and cannot be a scalar measure. Measure
intersection can be equal, above, or below the wizard intersection (intersection
constructed from the base dimensions of the wizards). The RPAS server uses normal
non-conforming measure handling if the measure intersection is different from the
wizard intersection. In other words, an aggregation is performed using the given agg
type when the measure intersection is below the wizard intersection. On the other hand,
if it is above the wizard intersection, then cells are mapped using the replicate method
(the measure spread type is ignored). A measure whose intersection contains a mixture
of dimensions above the wizard intersection and below the wizard intersection (e.g.
"sku_rgn_week for measure intersection vs. "sku_str_mnth" for wizard intersection)
cannot be used as a Pre-Range Mask measure.

In a RPAS Hybrid Storage Architecture environment, all masking measures are assumed
to be locally stored in the domains and so measures shared through the RPAS Data Mart
cannot be used as Pre-Range Mask measures.

Driving Hierarchies Based on the Mask Measure’s Base Intersection

Any additional hierarchies in the mask measure’s base intersection are automatically
assumed as conditioning hierarchies. For example, if a measure that has PROD, LOC,
and CLND is assigned to range LOC wizard, then PROD and CLND are assumed to be
conditioning hierarchies, and the positions selected in these hierarchies will determine
the position available in LOC wizard.

Evaluation of a Pre-Range Mask in the Wizard

The masking intersection for the mask measure during evaluation is based on ordering of
the wizards. It will only gather intersection and positions information from previous
wizard(s). For example, if the wizard ordering is CLND, LOC, PROD, then at the LOC
wizard, even if the user navigated to PROD wizard and then went back to LOC wizard,
the masking evaluation only considers the selections made in the CLND wizard. Other
hierarchies in the mask measure at the time of evaluation are considered all selected
(unfiltered).

Hierarchy without the Wizard

A workbook template can omit a wizard for a hierarchy where all the positions in that
hierarchy will be included in the workbook by default. A mask measure can still be
assigned for such a hierarchy and the positions to be included in the workbook will be

Workbooks

140 Oracle Retail Predictive Application Server

determined by the masking evaluation. This operation is performed at the end of wizard
process.

Mask Measure Error

Since the mask measure is set for each hierarchy, in the case when measure properties
were changed from the backend, any error during the execution, like incorrect measure
type, intersection, or agg type, will only disable the ranging for that hierarchy. A warning
message will be logged but the workbook build operation will continue. The hierarchy
where the error occurs will become un-masked.

Backward Compatibility with Existing Workbook Templates

When RPAS has been upgraded but the domain has not yet been patched, the field
prerangemask in the template configuration file (tmpl.cfg) is still using the old format
with only one single measure in it. The masking result will be the same as before the
RPAS upgrade. It is essentially equivalent to assigning the single masking measure to all
hierarchies in the workbook template.

No Available Position after Pre-Ranging

If there is no available position in a wizard during the workbook build process after
masking evaluation, a CancelWizardException with an appropriate error message will be
thrown which can be displayed to the end user. The workbook building process is
aborted.

Custom Menus Tab
The use of this tab is optional. It is used to create a workbook specific, customized menu-
driven process within the workbook where the defined menu options execute rule group
transitions (which cause a series of calculations to be performed) and external scripts.
Custom menus are typically used to define processes, such as an approval process.

Example of Custom Menus Tab

Create a Custom Menu
1. Select the Custom Menus tab.

2. In the Menu Label field, enter the name of the menu that will be displayed in the
RPAS Client. This menu option will appear as a top level menu option, between the
Window and Help menu options.

3. Right-click in the table area, and select Add.

4. Enter the following information:

 Label: The label that will be displayed in the menu in the RPAS Client. These
labels will appear beneath the top-level menu option named in the Menu Label
property, in the order that they are displayed in this window.

Note: Duplicate menu names are not allowed.

 Workbooks

 Solutions 141

 Function: This field defaults to RuleGroupProcessor and cannot be changed.

 Arguments: The processes that are to be executed by the menu option are
specified in the arguments property. There may be several processes specified in
the order they are to be executed, and separated by commas. There should be no
gap after the comma between any two adjacent arguments. If a process starts
with an "*", the string that follows the "*" is assumed to be the name of an
external script. Otherwise, the string is assumed to be the name of a rule group.

When the end user selects the menu option in the RPAS Client, RPAS executes the
processes from the arguments property in the specified sequence. RPAS waits until each
process has finished before executing the following process. After all of the processes
have been executed, RPAS executes a final transition using the "full" transition type back
to the calc rule group for the workbook. This transition does not have to be explicitly
specified in the arguments property.

Rule groups are executed with a "full transition" from the previous rule group, and the
calculations apply to the whole scope of the workbook (that is, they use "full" (batch)
mode rather than "incremental" mode). These terms are explained in Appendix B,
"Calculation Engine User Guide." The rule group transitions ensure that the integrity of
all rules is enforced in the new rule group.

Scripts referenced in the arguments property should meet the naming conventions for
the operating system of the RPAS Server. They can reside anywhere in the PATH and
have executable permissions. For the script to execute, the current working directory (./)
has to be in the path before the DomainDaemon is started. RPAS passes the name of the
current workbook (as RPAS would recognize the workbook to be) to the called script.
This variable could be accessed as $1 if the executable is a shell script, or arg[1] if the
executable is a binary. This argument is the internal ID that RPAS recognizes the
workbook with, so any RPAS calls that are made in the script (for example exportData)
will readily identify the workbook (if the data needs to be exported from the current
workbook).
If the script to be called requires different arguments, a "wrapper" script should be called
instead, which can call the target script with the appropriate arguments. RPAS waits
until the called script has finished before executing the next process in the menu option.
If the called script does not need to finish before the next process begins, a "wrapper"
script should be implemented that can call the target script, and then return immediately.

 Condition Measure: This field is used to specify a scalar, Boolean condition measure
in the workbook that will be checked by the custom menu to decide whether it must
execute or not.

In order for a measure to be a candidate for the condition measure of a custom menu
item, the measure must meet the following criteria:

 In the workbook. The measure must exist within the rule groups for the workbook.

 Scalar.
 Boolean.

If the value of the measure is TRUE, the custom menu executes, but if the value is FALSE,
the menu does not execute and displays a message relating that the custom menu could
not execute because the conditions were not met. (For more information on how this
message can be customized, see the Return Message Measure bullet.)

If the condition measure is not specified, meaning the field is empty, the custom menu
always executes. The table below specifies the behavior of custom menu execution and
the display of custom messages based on whether a measure name has been entered
(available) in the field and whether the measure’s value has been set (TRUE in case of the
condition measure and a non-zero length string in case of the message measure).

Workbooks

142 Oracle Retail Predictive Application Server

Condition Measure Return Message Measure Behavior

Available & Set Available & Set The Custom Menu executes and
displays the Custom Menu Response
pop-up containing the value of the
Return Message measure.

Available but Not Set The Custom Menu executes and
displays the default message.

Not Available The Custom Menu executes and
displays the default message.

Available but Not Set Available & Set The Custom menu does not execute,
but does display the Custom Menu
Response pop-up containing the
value of the Return Message
measure.

Available but Not Set The Custom Menu does not execute
and displays a Warning pop-up
message reading "Conditions for
executing the Custom Menu have
not been met!".

Not Available The Custom Menu does not execute
and displays a Warning pop-up
message reading "Conditions for
executing the Custom Menu have
not been met!".

Not Available Available & Set The Custom menu executes and
displays the Custom Menu Response
pop-up containing the value of the
Return Message measure.

Available but Not Set Custom Menu executes and displays
the default message.

Not Available Custom Menu executes and displays
the default message.

 Return Message Measure: This field is used to specify the scalar, String measure, the
value of which is displayed by the custom menu in a pop-up dialog upon the menus
successful or failed execution. If the field is empty, RPAS will display the default
message that it has historically displayed. If a measure is specified, but the value is
empty, RPAS will again display the default message. If the value is a non zero-length
string then the value is displayed.

In order for a measure to be a candidate for the return message measure of a custom
menu item, the measure must meet the following criteria:

 In the workbook. The measure must exist within the rule groups for the workbook.
 Scalar.

 String.

To effectively use this feature it is important to understand the execution of a custom
menu. When you select a custom menu from the menu, RPAS first checks if there is a
condition measure available for controlling the execution. If there is none, it continues to
run the rule groups or scripts in the argument of the custom menu. If a condition
measure is available, RPAS checks the value of the measure for controlling the execution

 Workbooks

 Solutions 143

of the custom menu. If the value is false, it checks the availability of the return message
measure. If the message measure is unavailable, RPAS displays a default message
informing the user that menu could not be executed because the conditions were not met.
However, if the measure is available, RPAS examines its value. If the value is empty, it
defaults to the same behavior as when the message measure was not available. If the
value is not empty, it displays the custom message.

If the custom menu can execute, either because the condition measure is unavailable or
because it is set to true at the time the custom menu is invoked, RPAS executes the rule
groups and scripts in the argument of the custom menu specification. RPAS will then
look for the value of the message measure, and if the value is empty, it informs the user
that the menu was successfully executed using the default message. If the value is not
empty, it displays the value of the message measure. It then transitions to the Calc rule
group and completes execution.

 Commit ASAP: It is possible to include commit rule groups (rule groups that include
commit rules) in the list of rule groups that forms the arguments of a custom menu
item. Normally, these commit rule groups execute synchronously, meaning that after
submitting a commit request, the user must wait until the commit process ends. It is
also possible to mark a custom menu item as Commit ASAP.

When marked as Commit ASAP, a custom menu item runs the commit rule group
asynchronously, returning the control to the user immediately. The commit ASAP
process creates a temporary copy of the workbook and places a commit request in a
queue. The commit rule group is executed as soon as the measure databases become
available.

In this manner, it is possible to commit certain measures within the workbook without
halting work on the workbook until the commit has been processed and without having
to deal with contention issues associated with immediate commits.

Note that when a custom menu item is marked as Commit ASAP, that menu item may
only have a single commit rule group in its list of arguments. Furthermore, it is
recommended that the commit rule group be the last rule group in the custom menu
item’s list of arguments, as any subsequent rule groups that execute will not affect the
values committed and any side effects of the commit rule group execution will not apply
to the workbook.

Note that the commit button in the Fusion UI always commits ASAP. This is independent
of how the commit works in a custom menu.
 Intraday Concurrent: This field is used to flag the custom menu as one that can run

concurrently with any intraday process running on the domain. The default setting
is false which means that the custom menu will not run when an intraday process is
running. Please see the Oracle Retail Predictive Application Server Administration
Guide for more details on intraday processes.

A custom menu that is configured to run intraday concurrent should be something that
only accesses workbook data, runs a script that uses the ride utility and/or runs commits
via the commit ASAP functionality. Custom menus that updates or reads directly from
the domain should not be configured as intraday concurrent as this would conflict with
the ride process.

Workbook Hierarchies Tab
This tab is optional. Use this tab to configure hierarchical relationships whose parent-
child relationships are not defined in The Hierarchy Definition Window or the loadHier
process, but are data driven. For instance, you can:

Workbooks

144 Oracle Retail Predictive Application Server

 Hide individual dimensions or whole branches of a hierarchy by excluding them
from the dimensions that are available to the workbook. (For more information, see
"Remove Dimension.")

 Create mappings between dimensions that are not directly related in the hierarchy
structures. (For more information, see "Change Rollup.")

 Create dynamic hierarchical relationships that are built using measure data during
the workbook build process, and may vary each time a workbook is built, but the
relationships within a workbook are constant. (For instructions on creating dynamic
hierarchies, see "Make Rollup Dynamic," "Add Workbook Dimension," and "Insert
Workbook Dimension." For in-depth examples, see the "Dynamic Hierarchies"
appendix.)

Workbook Hierarchies Tab

Any hierarchies that do not have dimension relationships specified will use the full
hierarchy specified in the Hierarchy Definition Window, with the lowest dimension in
that hierarchy used as the base intersection of a measure used in the rule set for the
workbook as its root.
Dimension relationships are specified as hyphenated child-parent pairs. In these pairs,
the child is listed first (for example scls-clss). More than one child-parent pairs are
separated by commas, as shown below.

Child-Parent Pairs

Note: The hierarchy fields in the Hier Mods section are read-
only. The child-parent pairs displayed cannot be edited
there.

Every parent-child relationship in the workbook must be explicitly specified. Only
dimensions that have been defined in The Hierarchy Definition Window can be used and
must be specified by name. The Configuration Tools validates the dimension
relationships to ensure that valid dimension names are used. It prohibits the use of the
same dimension name in both the child and the parent dimensions. In addition, the
Configuration Tools prohibits pairs where the child’s Aggs attribute is the same as the
parent’s. For example, Clss-Scls is not allowed but Scls-Clss is.

To modify a hierarchy in a workbook, perform the following steps:

1. Click the Workbook Hierarchies tab. In this tab you can see all hierarchies used in
the base intersection of measures used in the rule set in the workbook.

2. Right-click a hierarchy or dimension and choose one of the following options:

 Workbooks

 Solutions 145

 Remove Dimension

 Restore Dimension

 Change Rollup

 Make Rollup Dynamic
 Remove Dynamic Rollup

 Add Workbook Dimension

 Insert Workbook Dimension

For instructions for each of these options, scroll down.

Note: You cannot use these options on the Calendar
hierarchy.

Important Note About Using Hier Mods Options
The use of mappings that are non-structural should be carefully managed to ensure they
are only used where the non structural mapping work. For example, consider a product
hierarchy where a subclass may be supplied by multiple vendors (with a style always
supplied by a single vendor), but in some parts of the business, subclasses are only
supplied by a single vendor. An example of a product hierarchy that includes a branch
for vendor analysis is:

1. Sku-Style-Subclass-Class-Department-Division-Company

with a branch of:

Subclass-VendorClass-VendorDept-VendorDiv-Vendor-Total

If you want a workbook that includes measures with a lowest base intersection of
subclass that required the vendor branch but not the division dimension, you could
specify the Hier Mods as follows:

scls-clss, clss-dept, dept-comp, scls-vcls, vcls-vdep, vdep-vend, vend-tot

The workbook would contain the subclass, class, department, and company dimensions,
as well as a branch that contains the VendorClass, VendorDept, Vendor, and Total
dimensions.

In the example above, if this workbook is accessed by a user in a part of the business
where a subclass only includes styles from a single vendor, the hierarchy built in the
workbook will work correctly. However, if it is used in a part of the business where a
subclass includes styles with multiple vendors, RPAS determines (by looking at the
VendorClasses that the SKUs in the subclass belong to) that the scls-vcls relationship is
ambiguous because the subclass should belong to multiple VendorClasses. In these
circumstances, RPAS builds the hierarchy using one of the valid scls-vcls relationships.

Workbooks

146 Oracle Retail Predictive Application Server

As far as the end-user is concerned, the choice of VendorClass for the subclass is likely
to be seen as arbitrary, and (in any case) the vendor branch is of little or no practical
value in this case.

Remove Dimension
This option allows you to remove existing dimensions from a particular workbook. For
instance, if you have a domain that has a product hierarchy with the following
dimensions:
subclass > class > department > division > company

But you want a particular workbook to stop at the department dimension and not
include the division and company dimensions. You can make that workbook’s product
hierarchy end at department by performing the following steps:

Note: You cannot remove the lowest child-parent
relationship (the last two dimensions) of a hierarchy.

1. Select the workbook in the Workbook Designer window.

Workbook List in Workbook Designer

2. Navigate to the Workbook Hierarchies tab. The available hierarchies in the
workbook are displayed.

 Workbooks

 Solutions 147

Displayed Hierarchies and Dimensions in the Workbook Hierarchies Tab

3. Right-click the dimension you want to remove. From the right-click menu, select
Remove Dimension.

Remove Dimension Option

The dimension disappears and the hierarchy name becomes italicized to show that the
hierarchy has been modified.

Workbooks

148 Oracle Retail Predictive Application Server

Removed Dimension

4. Repeat step 3 for other dimensions if desired.

To bring back a removed dimension, use the Restore Dimension option described in the
next section.

Restore Dimension
To restore a removed dimension, perform the following steps:

1. Right-click the hierarchy or any dimension within the hierarchy of the removed
dimension.

2. In the right-click menu, click Restore Dimension.

Restore Dimension Option

3. The Restore Dimension dialog box appears. From the dropdown list, select the
dimension you want to restore. Click OK.

 Workbooks

 Solutions 149

Restore Dimension Dialog

The Restore Dimension dialog box disappears. In the Workbook Hierarchies pane, the
dimension above the restored dimension will have an expand icon next to it. Click the
icon to see the restored dimension.

Restored Dimension

Change Rollup
You can make a dimension rollup to a different dimension by using the Change Rollup
feature. For instance, if you want the company dimension to roll up from subclass rather
than division, you would perform the following steps:

1. Right-click the dimension you want to change.

2. In the right-click menu, click Change Rollup.

Workbooks

150 Oracle Retail Predictive Application Server

Change Rollup Option

3. The Select Rollup dialog box appears. Select the dimension that you want the original
dimension to roll up from. (Only dimensions below the original are available.) Click
OK.

Select Rollup Dialog

The Select Rollup dialog box disappears. In the Workbook Hierarchies pane, the
dimension now rolls up from the new dimension.

New Rollup

 Workbooks

 Solutions 151

Make Rollup Dynamic
Use this option to create a dynamic hierarchy entry for a dimension. Dynamic
hierarchical relationships are built using measure data during the workbook build
process and may vary each time a workbook is built, but the hierarchical relationships
within the workbook remain constant. Dynamic hierarchies can be based on two or more
other hierarchies.
For example, the cluster dimension may be an alternate parent of the store dimension in
the location hierarchy, and the cluster that a store belongs to may vary by the class
dimension in the product hierarchy. In one workbook, a clustering process may
determine the store-cluster relationships for each class, and store that information in a
measure. A second workbook could then use that relationship to build a dynamic
hierarchy. In this example, if the rollup of store to cluster is different for each class, and
the user brings more than one class into the workbook, the rollup of store to cluster used
in the workbook will be based on the data from the first class in the hierarchy.

The dynamic hierarchy process cannot invent a new dimension; it can only change the
parent-child relationships of the existing dimensions. So in our example, the cluster
dimension must be a normal dimension defined through the Hierarchy Definition
window and maintained through the loadHier or user-defined dimension processes. The
dimension is normal, so it may be used in the base intersection of measures.

Important Dynamic Hierarchy Notes:
If the branch of a hierarchy that has parent-child relationships defined by the dynamic
hierarchy process only has a business meaning when the dynamic hierarchy process is
used, you must use the Remove Dimension option to remove the dimensions in other
workbook templates. For example, in our above cluster example, if the store-cluster
relationship only exists in the context of a class, use the Remove Dimension option to
hide that relationship in a workbook template that does not include the product
hierarchy.

It is your responsibility to ensure that the position names contained in the measure that
drives the dynamic hierarchy are real positions that exist in the parent dimension. If not,
positions with those names will be present in the workbook, but data for them cannot be
committed to the domain, and it will be lost when the workbook is deleted.

The resulting dynamic hierarchy is created at the end of the wizard selection process and
before the actual workbook build. Therefore, the end product is only visible inside the
workbook and not in the wizards.

Reference: For in-depth examples and explanations about
dynamic hierarchies, see the "Dynamic Hierarchies"
appendix.

To make a rollup dynamic, perform the following steps:
1. Select the dimension you want to change.
2. In the right-click menu, click Make Rollup Dynamic.

Workbooks

152 Oracle Retail Predictive Application Server

Make Rollup Dynamic Option

The selected dimension is now italicized and a dynamic hierarchy appears in the
Dynamic Hierarchy section. The dimension you right-clicked in Step 1 is populated in the
modifieddim attribute.

New Dynamic Rollup

3. In the Dynamic Hierarchies section, set the following properties:

 Name – The name of the dynamic hierarchy. Duplicate names are not allowed.
This is an internal name used as a handle to the dynamic hierarchy. It is not
visible to the end user.

 Label – The label of the dynamic hierarchy entry that represents the workbook-
only dimensions that can be configured with an external label. This external label
is displayed within the RPAS Classic Client or RPAS Fusion Client in place of the
dimension name. Only dynamic hierarchy entries that represent workbook-only
dimensions have editable label properties.

 Measure – This is the name of the measure that holds the name of the parent
position. Click Select Measure to see the list of the measures that are used in the
solution. Type the first few characters of the measure name in the box at the top
of the list to go to the required measure, or scroll to find it. Double-click to select

 Workbooks

 Solutions 153

the desired measure. The measure's base intersection must contain the dimension
that is the child of the child-parent relationship (dvsn in the example) or is below
it (dept, clss and scls in the example) and one or more dimensions which the
dynamic position assignment is dependent on (such as comp). The content of the
measure is the name of the parent position in the relationship (in the example,
this would be the name of the comp that the dvsn belongs to for this comp). This
measure may or may not be included in the workbook. If the measure is included
in the workbook, changes to the measure within the workbook do not change the
parent-child relationships within the workbook, which are static after the
workbook is built.

 Label Measure – This is the name of the measure that holds the label of the
parent position. The process to select the label measure is the same as the process
to select the measure. The base intersection of the label measure must be the
same as the measure. The contents of the label measure will be the label of the
parent position in the relationship.

Note: If a given parent position name has different labels
specified for different child positions, the label for the
parent position used in the built workbook will be one of
the different labels, which are arbitrarily selected.

 Dim – This is the name of the dimension that is the child in the parent-child
relationship. It is the dimension in the modified hierarchy that is used to resolve
the modified roll-up relationship represented by the dynamic hier entry. It is
stored within the measure and the label measure. The hierarchy that the dynamic
hierarchy belongs to is derived from this property.

Note: A dimension that is the modified dimension of one
dynamic hierarchy entry cannot be used as the dim attribute
of another dynamic hierarchy.

 Modified Dim – This is the name of the dimension that is the parent in the
parent-child relationship. It is the dimension within the modified hierarchy
whose roll-up behavior is being modified by the dynamic hierarchy entry. Note
that, for dynamic hier entries that represent workbook-only dimensions, the
modified dim attribute will be the name of the dynamic hier entry and the name
of the workbook only dimension that this entry represents.

If you want to remove this new hierarchy, use the instructions described in the "Remove
Dynamic Rollup" section.

Remove Dynamic Rollup
If you have added a dynamic rollup with the Make Rollup Dynamic option, you can
remove it with the Remove Dynamic Rollup option. To remove a dynamic rollup,
perform the following steps:
1. Right-click the dimension with the dynamic rollup. The dimension’s name is in italics

2. In the right-click menu, select Remove Dynamic Rollup.

Workbooks

154 Oracle Retail Predictive Application Server

Remove Dynamic Rollup Option

The dynamic rollup is removed from the Dynamic Hierarchies section and the dimension
name is no longer in italics.

Removed Dynamic Hierarchy

Add Workbook Dimension
Use this option to add a workbook-only dimension to the workbook. Workbook-only
dimensions are driven by measures just like regular dynamic dimensions. The difference
is that workbook-only dimensions exist only in the workbook and never in the domain.
They can also be used to support a dynamic number of roll-ups and levels. If the

 Workbooks

 Solutions 155

workbook dimension does not have data in the measures, it is not displayed as a
dimension in the workbook. For more information about workbook-only dimensions, see
the Dynamic Display of Dynamic Branches section.

To add a workbook dimension, perform the following steps:
1. Right-click the dimension that you to add a dimension above.

2. In the right-click menu, click Add Workbook Dimension.

Add Workbook Dimension Option

The new workbook dimension appears below the selected dimension as well as in the
Dynamic Hierarchies table.

New Workbook Dimension

To continue editing the workbook dimension hierarchy, see the instructions in the "Make
Rollup Dynamic" section. To remove it, see the "Remove Dimension" section.

Insert Workbook Dimension
Use this option to insert a workbook-only dimension between existing dimensions in the
workbook. Workbook-only dimensions are driven by measures just like regular dynamic
dimensions. The difference is that workbook-only dimensions exist only in the workbook
and never in the domain. They can also be used to support a dynamic number of roll-ups

Workbooks

156 Oracle Retail Predictive Application Server

and levels. If the workbook dimension does not have data in the measures, it is not
displayed as a dimension in the workbook. For more information about workbook-only
dimensions, see the Dynamic Display of Dynamic Branches section in the Dynamic
Hierarchies appendix.
To insert a workbook dimension, perform the following steps:

1. Right-click the dimension that you to insert a dimension below.

2. In the right-click menu, click Insert Workbook Dimension.

Insert Workbook Dimension Option

The new dimension appears above the selected dimension as well as in the Dynamic
Hierarchies table.

New Workbook-Only Dimension

To continue editing the workbook dimension hierarchy, see the instructions in the Make
Rollup Dynamic section. To remove it, see the Remove Dimension section.

Real Time Alerts Tab
The use of this tab is optional. It allows you to create real time alerts within a workbook
that update dynamically. Unlike batch alerts configured through the Measure Tool, real
time alerts will re-evaluate every time the measures upon which they depend are
modified. Also unlike batch alerts, Real Time Alerts are not two-state (either a hit or not
a hit); any number of discrete conditions can be defined for a Real Time Alert. When the
alert is evaluated, whichever condition applies will be used (e.g. a Real Time Alert
defined on an inventory measure could define one condition for low stock and a more

 Workbooks

 Solutions 157

severe condition for no stock). The Fusion Client provides the following support for real
time alerts:

 A Real Time Alert can be set as the active alert. When an alert is active within the
Fusion Client, users can navigate between hits for that alert in the same fashion that
the user can navigate batch alerts used to build the workbook.

 A Real Time Alert can define one or more styles for a Real Time Alert. Every cell of
the target measure which evaluates as an alert hit for the Real Time Alert will use the
alert's style for that cell in place of the measure's default style. As Real Time Alerts
evaluate, the cell styles will update to reflect changes in which cells are hits and
which are not.

 One or more messages can be defined for a Real Time Alerts. This message will be
displayed as a tool tip when the user hovers the cursor over a cell that is a hit for that
alert.

Real Time Alerts Tab

Condition Definition Interface
The Condition table will allow users to create, remove and modify the conditions that are
used in alerts for the current workbook. This table will contain columns to allow the
specification of the following properties:
 Condition Name – The name will be the value populated within the alert measure to

identify which condition, if any, has been triggered for a given cell in the target
measure. The condition name will also be used to create a key to allow translation of
condition messages.

 Condition Label – The label will be the externalized label used to represent a
condition to users of the client. This label will be used to identify the condition
within the client. The condition label will be internationalized so that it can be
translated using the RPAS multi-language functionality.

 Condition Style – The style will be the name of a style configured within the Style
Definition tool that describes the formatting that should be applied to those cells
which are evaluated as ‘hits’ for the condition.

 Condition Message – The message will be the text message that will be supplied to
describe the condition that has been triggered when the workbook alert evaluates a
‘hit’ on a given cell of the base measure. This message will be internationalized so
that it can be translated using the RPAS multi-language functionality.

Workbooks

158 Oracle Retail Predictive Application Server

Condition Definition Table

Alert Definition Interface
The Alert table will allow users to create, remove and modify workbook alerts used
within the selected workbook. Selecting the row corresponding to an alert will cause the
alert conditions of that alert (if it has any defined) to be populated within the condition
table. The alert table will contain columns to allow the specification of the following
properties:

 Alert Name – The name is used as an internal key by RPAS.

 Alert Label – The label is an external identifier that is used to represent the alert to
users of RPAS.

 Target Measure – The target measure is the measure over which alert ‘hits’ will be
evaluated and to which the formatting will be applied.

 Alert Measure – The alert measure is a String measure that is used in the alert
evaluation process. It is this measure that will hold the information about what cells
in the target measure are considered ‘hits’ and which condition a given cell has
triggered. The intersection of the alert measure should be identical to the alert
intersection property of the workbook alert.

 Alert Intersection – The alert intersection is the intersection on which the workbook
alert is defined. It is possible to define multiple workbook alerts over a single target
measure, each at a different intersection. Because an alert can only register ‘hits’ at
the intersection of the alert measure, it may be desirable to create multiple alerts for a
single target measure so that users can evaluate the target measure at different
intersections within the client.

 Alert Conditions – The alert conditions field contains the list of conditions (of the
full set of defined conditions for a workbook) that are associated with a given
workbook alert. This list is used to identify which conditions should be grouped
with an alert when a workbook is registered or built.

 Alert Priority – The alert priority is used when more than one alert has been created
for a single target measure. In such cases, some cells of the target measure may
trigger alert hits for more than one alert. When this is the case, the alert with the
lower priority will be applied to that cell of the target measure. The alert priority is
validated to be unique for the same target measure.

 Workbooks

 Solutions 159

Real Time Alert Definition table

Operations within the Real Time Alerts panel
The Real Time Alerts panel supports the following operations through the right-click
menu:

 Add Alert

 Remove Alert

 Add Condition
 Remove Condition

 Copy Condition

Real Time Alerts Menu

Add Alert

Selecting the Add Alert action will create a new Real Time Alert and allow specification
of properties within the Alert Table.

Remove Alert

Selecting the Remove Alert action will remove the currently selected alert and its
conditions from the workbook. If no alert is currently selected, this option will be
disabled.

Add Condition

Selecting the Add Condition action will create a new Alert Condition within the
currently selected real time alert and allow specification of properties within the
Condition Table. If there is no currently selected Real Time Alert, this option will be
disabled.

Workbooks

160 Oracle Retail Predictive Application Server

Remove Condition

Selecting the Remove Condition action will remove the currently selected condition from
the alert. If no condition is currently selected, this option will be disabled.

Copy Condition

Selecting the Copy Condition action will allow users to copy an alert condition defined in
another real time alert so that it can be used in the currently selected real time alert.
When using the Copy Condition action, users must specify solution (for multi-solution
configurations), workbook and source alert from which the condition will be copied. The
user can then select the condition to be copied to the currently selected alert. If there is
no currently selected Real Time Alert, this option will be disabled.

The Copy Condition Dialog Box

Example of workbook configuration
The process of configuring a workbook alert requires multiple steps across several
functional areas within the Configuration Tools. For this reason, an example is being
provided that details the end-to-end process of the workbook alert configuration.

For purposes of this example, assume the existence of an inventory measure. The desire
is to create an alert to warn of low stock. Assume further that the process defines two
conditions that would be considered as a low stock situation: first, if the inventory count
falls below a projected sales figure for the period; second, if the inventory count falls
below some static threshold. For our purposes, we will assume that the failure to meet
projected sales is considered more important than falling below the static threshold.

Given these assumptions assume that the following three measures already exist in the
domain and have processes in place to be calculated or seeded:

 InvU – base inventory count

 ProjSls – projected sales

 MinThrsh – low stock threshold

Assume also that the workbook in which the alert will be defined is already configured
to contain all three of the above measure and that processes exist to load and/or calculate
the values of the three measures.
Given these inputs, the following steps illustrate the configuration of a workbook alert to
evaluate low stock conditions.

 Workbooks

 Solutions 161

Definition of the condition styles

Within the Style Definition tools, styles must be configured to represent the formatting to
be applied for each condition within the alert. Given that we have defined two distinct
conditions, it would be desirable to define two distinct styles so that it is possible to
visually distinguish which condition is triggered for any given alert hit. Note that it is
not necessary to create new styles for each condition; styles may be reused between
conditions and may be used both for static formatting of measures and for alert hits.

For our example, we will assume that the following new styles are created.

Warning: Text color yellow, Font type: bold

Error: Text color red, Font type: bold

For more information on style configuration, please see the section, Styles earlier in this
document.

Definition of alert measures

Within the Measure Definition tool, an alert measure must be defined for the workbook
alert. This measure must be a String-type measure and its base intersection should be
identical to the intersection at which the alert is going to be evaluated. In addition, the
naValue of the alert measure should always be the empty string.

The following measure will be created within the Measure Definition tool:

LowStkAlrt – type: String, naValue: “”

Note that the new measure can be configured as by identical processes to normal
measure configuration. For more information, please see the section, Measures and
Components earlier in this document.

Creation of alert calculation rule

Within the Rule Definition tool, a rule must be defined to evaluate the alert measure.
This rule should be added to the calc group for the workbook so that it will be re-
evaluated as a part of every calc cycle to allow the workbook alert to update as the data
within the workbook changes. Because the alert in question contains two conditions, the
rule must be able to evaluate either of the conditions.

The general form of alert calculation rules is one or more if statements that assign the
name of a condition to the alert measure if the condition representing the alert is
triggered. The assignment of a condition is handled by using a string literal that contains
the name of the condition. For our example, the alert rule would be:

LowStkCalc:
LowStkAlrt = if (InvU < ProjSls, “Condition1”, if (InvU < MinThrsh, “Condition2”, “”))

For more information, please see the section, Rules earlier in this document.

Creation of the workbook alert

Within the Workbook Definition tool, a workbook alert must be created. This new alert
should be configured according to the configuration already performed.

Workbooks

162 Oracle Retail Predictive Application Server

Example of Configuration of Workbook Alert

Creation of alert conditions

Within the Workbook Definition tool, conditions must be defined for the workbook alert.
These two conditions will correspond to the two triggers that will be a part of the alert.
Note that it is not necessary to configure conditions before the creation of the alert rule
but since the rule will make use of the condition names, it is suggested that they be
created prior to the rule.

Example of Configuration of Conditions

At this point, the workbook alert has been configured. Upon the execution of the
calculation cycle, the alert measure will be populated with the appropriate condition for
any cell that is evaluated as an alert hit. This information will then be used by the client
to display information about the workbook alert.

Workbook Transitions Tab
The use of this tab is optional. It allows you to define automatic transitions between the
worksheets of a workbook within the Fusion Client. This transition is initiated through
selecting an item in the context menu. When a transition is selected, the current
worksheet will be de-activated and a target worksheet will be activated.

Worksheet Transitions Tab in the Workbook Designer

Defining a Worksheet Transition
1. Select the Workbook Transitions tab.

2. Right-click in the transitions table area and select Add.

3. Enter the following information:

a. Label – The label for a worksheet transition will be the text displayed within the
right-click menu of the Fusion Client.

b. Trigger Type – The trigger type is used to define the type of content that acts as
the trigger for this transition. There are three possible types of triggers:
worksheets, measures and dimensions.

c. Trigger Content – The trigger of a worksheet transition determines under which
circumstances the menu item for a transition will be available in the context
menu. When the trigger is a worksheet, the item will be available from any
selection of the specified worksheet. If the trigger is a measure, the item will be
available whenever the selection includes the specified measure. If the trigger is a

 Workbooks

 Solutions 163

dimension, the item will be available when a position of the specified dimension
is selected.

d. Destination – The worksheet that will be activated when a worksheet transition
is selected from the context menu of the Fusion Client.

e. Shared Context Dims – When making the transition from the source to
destination worksheets, the Fusion Client is capable of automatically applying
the selection context of the source worksheet to the destination. Hierarchies listed
within the Shared Context Dims property will have this automatic filtering
applied.

Removing a Worksheet Transition
In order to remove a worksheet definition from the workbook:

1. Select the Workbook Transitions tab.
2. Select an existing worksheet transition from the worksheet transitions table.

3. Right-click and select Remove.

Measures Tab
The use of this tab is optional. It allows you to override certain properties of measures at
the workbook level. Use this tab in cases when it is necessary to configure multiple
workbooks for a solution and the processes implied by those workbooks require different
measure behavior. For example, a measure may need to be writable in one workbook in a
solution, but read only in all other workbooks. By using this tab, you can override the
following standard measure properties at the workbook level:
 Label, Description

 Base State

 Agg State

 UI Type

 Single Hier Select

 Range
In addition, there are two properties, LoadRange and LoadRangeMeas that are not
standard measure properties that may only be set though the Measures tab.

Example of Measures Tab

Defining Measure Properties Override Settings for a Workbook
1. Click the Measures tab.

2. Right-click in the measure table area, and select Add.

a. Select the newly added row.

b. Click Select Measure to get a list of the measures used in the workbook. The
Select Measure window appears.

Workbooks

164 Oracle Retail Predictive Application Server

Select Measure Window

c. Type the first few characters of the measure name in the box at the top of the list
to go to the required measure, or scroll to find it. Double-click to select the
desired measure. Measures that already have an entry in the Measures tab are
listed but disabled, and cannot be selected.

Modifying Measure Properties Override Settings for a Workbook
1. Click the Measures tab.
2. Modify the appropriate property information for the measure.

Removing a Measure Override Settings from a Workbook
Perform the following procedure to remove the measure property override settings.

1. Click the Measures tab.

2. Right-click on the measure row you want to delete and select Remove.

Defining the LoadRange and LoadRangeMeas Properties
The LoadRange and LoadRangeMeas property fields can only be set in the Measure tab.
They are used to specify dynamic picklists. Dynamic picklists are picklists whose valid
values do not vary within a workbook, but can be set dynamically during the workbook
build process.
The LoadRange and LoadRangeMeas properties are retained for backwards
compatibility purposes. In most cases "context-sensitive picklists" (that is, picklists using
the measurerange = measS syntax in the range property) and "single select wizards" will
be used instead.

Dynamic picklists are of two forms:

1. The first form has values that are set according to the data values in cells for another
measure (using the same format as for the Range property of static picklists). As with
static picklists, the value shown to the user in the UI is the label for the value. It is
more usual to use "context-sensitive picklists," where picklist values can vary
according to context in the workbook.

2. The second form is to have values that are positions in a branch of a hierarchy. The
value shown to the user in the UI is the label of the position, but the content of the
cell is the name of the position. The single select wizard provides an alternative
method for selecting a position, which is more commonly used.

Defining a Measure with a Dynamic Picklist
1. Select the row for the measure.

 Workbooks

 Solutions 165

2. Right-click in the row for the measure and select the Set Dynamic Picklist option.

3. If the picklist measure is to show hierarchy positions, an entry is required in the
LoadRange property field (and not in the LoadRangeMeas property field). Click in
the LoadRange field. The LoadRange dialog box appears.

Load Range Dialog Box

a. In the Range column, enter a name for the range. This name is used internally by
RPAS and needs to be unique across the domain.

b. In the Hierarchy column, select the hierarchy from which the user is to select a
position.

c. In the Dimension column, select the dimension from which the user is to select a
position. The positions along this dimension, which are brought into the
workbook, will be the available choices in the picklist in RPAS Client.

d. Select the Sort by Label check box if the positions in the picklist are to be sorted
alphabetically by their label. If this is not selected, the positions will be shown in
their internal order, which is the order in which they were defined.

e. Click OK to save your changes and close the window.

Note: When creating a dynamic picklist based on a
dimension, you must ensure that the position labels for the
source dimension do not contain opening or closing
parentheses. Because dynamic picklists cannot parse label
names that have parenthesis in them, using them in a label
name will cause the system to encounter a run time failure
when building or opening workbooks.

4. If the picklist measure is to display values based on the data values for a cell, an
entry is required in the LoadRangeMeas property and in the LoadRange property
fields. Click in the LoadRangeMeas field, and click the Select Measure button. Type
the first few characters of the measure name in the box at the top of the list to go to
the required measure, or scroll to find it. Double-click the measure whose contents
are the valid picklist values. In addition, there should be an entry in the LoadRange
field for each hierarchy in the base intersection of the selected LoadRangeMeasure.
Each of the entries in the LoadRange field needs a name, hierarchy, and dimension
as described above, but the value for sort label is ignored. If the scope of the
workbook is such that it covers multiple cells of the LoadRangeMeasure, the
available picklist options in the workbook will be constructed from the content of the

Workbooks

166 Oracle Retail Predictive Application Server

first cell of the LoadRangeMeasure when the dimensions are ranged to the positions
selected during the workbook build process.

Extended Measures Tab
The use of this tab is optional. It allows for the configuration of extended measures that
represent different usages of the underlying base measure. The following usages are
supported for extended measures:

 Creation of a measure that aggregates data using an alternate aggregation method
from the default aggregation type of the measure. The aggregation types available
are those configured as the Allowed Aggs of the measure.

 Creation of participation measures, such as absolute and relative percent-to-parent
measures.

 Creation of a ranking measure, which assigns a rank in either ascending or
descending order to the values of a measure.

 Creation of a cumulative total measure, which contains a running total of a measures
values based upon an ascending or descending ranking.

 Creation of a cumulative percentage measure, which contains a running percent-to-
parent contribution total based upon an ascending or descending ranking.

Once defined, these extended measures can be added onto worksheet profiles to be
viewed in the RPAS Client.

Note: Hybrid is not supported for extended measures.

Extended Measures Tab

Adding an Extended Measure
1. To add a measure, right-click in the table area and select Add. The row is inserted

into the tab and is highlight in red until you define the Measure, Usage, and
Argument fields.

2. Click Select Measure. The Select Measure window opens.

3. Double-click a measure to select it.

4. For Relative, Absolute, Ranking, Cumulative value and Cumulative percent
extended measures, a label can be specified. This label will be used to display the
extended measure within the workbook. If no label is entered, the label of the base
measure will be used

5. In the Usage field, select Relative, Absolute, Ranking, Cumulative value,
Cumulative percent, or an alternate aggregation type.

6. Click in the Arguments field and select the appropriate options. If the Usage is
defined as Absolute the Parent Intersection dialog appears, set the appropriate
options from the dialog box and click OK. If the Usage is defined as Relative, select
appropriate hierarchy from the list displayed. If the Usage is defined as Ranking,
Cumulative value or Cumulative percent, the Extended Measure Arguments dialog
appears, set the appropriate options from the dialog box and click OK.

 Workbooks

 Solutions 167

The Parent Intersection Dialog

Within the Parent Intersection Dialog the dimension that will be used to determine the
percent-to-parent contribution of an Absolute extended measure may be set. All
dimensions above the dimension of the measure’s base intersection for that hierarchy are
available as well as the value AllDim, which represents all positions within the
workbook.

Extended Measure Arguments

The following arguments may be set for Ranking, Cumulative value and Cumulative
percent extended measures:

 Rank Order – Whether the ranking must be in ascending or descending order.
 Display Type – Whether the ranking must be performed only on the base

intersection of the measure, or at all aggregate intersections also.

 Hierarchy – The hierarchy along which the values of the measure should be ranked
or totaled.

Note: Alternate aggregation extended measures do not require
arguments.

Removing an Extended Measure
Right-click on the measure you want to remove and select Remove.

Dynamic Position Maintenance Tab
If dimensions are enabled to support Dynamic Position Maintenance (DPM) in the
Dimensions pane within the Hierarchy Definition tool, the configuration administrator
will see those dimensions in the Dynamic Position Maintenance tab.

Workbooks

168 Oracle Retail Predictive Application Server

Depending on how the workbook has been configured, some dimensions that support
DPM within the domain may not be available for DPM within the workbook. The
following conditions will disqualify a dimension for DPM within a workbook:

 Dimensions below the base intersection of the workbook will not be available for
DPM. The base intersection of a workbook is the highest intersection that can be
aggregated to the intersections of all the worksheets in the workbook.

 Dimensions belonging to a hierarchy that has been modified by the Remove
Dimension or Change Rollup operations within the Workbook Hierarchies panel will
not support DPM.

 Dimensions more than one level above the modified dimension of a dynamic
hierarchy will not support DPM.

 Dimensions that are the modified dimension of a dynamic hierarchy will not support
DPM if their immediate parent dimension (where week is the parent of day) does not
support DPM.

 Dimensions whose immediate parent dimension is the modified dimension of a
dynamic hierarchy will not support DPM if that modified dimension does not
support DPM.

See the Workbook Hierarchies section and the Dynamic Hierarchies Appendix for more
information on dynamic hierarchies.

In addition, if the workbook has been configured to contain workbook-only dimensions,
those workbook-only dimensions support DPM if the dimension they aggregate supports
DPM. See the Workbook Hierarchies section and the Dynamic Hierarchies Appendix for
more information on workbook-only dimensions.

To enable DPM functionality in the workbook, select Enable Dynamic Position
Maintenance. The configuration administrator may then select the highest dimension in
the hierarchy in which the end user will add positions. See the Oracle Retail Predictive
Application Server Administration Guide and Oracle Retail Predictive Application Server User
Guide for more information on Dynamic Position Maintenance.

Example of Dynamic Position Maintenance Tab

Note: Users cannot import positions from alternate
hierarchies that are not already in the workbook to be used
as parents for new DPM positions.

Remove a Workbook

Navigate: In the Configuration Components pane, select Project – Solution –
Workbooks. The Workbook Designer window opens in the workspace.

1. Select the workbook to remove.

 Working with the Rule Group Simulator

 Solutions 169

2. From the toolbar, click the Delete button, or select Remove from the right-click
menu.

3. Click Yes. The associated worksheets and tabs are removed.

Working with the Rule Group Simulator

Overview
The RPAS calculation engine is powerful and complex. The rule group approach means
that there are very many potential calculation paths. However, during any configuration
exercise, there is a significant design verification cost to ensure that the behavior is "as
would be expected" by an end user. The rule group simulator enables the verification of
the interaction between measures from within the Configuration Tools. It cannot,
however, enable the verification of the calculations themselves because that requires a
full domain to be built.

The Rule Group Simulator is integrated into the workbook tool, and it uses all of the
measures used in the rule set in the workbook, which may be more than those mentioned
in the rule group being simulated. Users of the rule group simulator are expected to
understand the calculation cycle, especially with respect to measure protection
processing and the process that determines which expressions will be evaluated. See
Appendix B, "Calculation Engine Users Guide" for more information.

Note: The rule group simulator is not able to simulate the
expressions that will be evaluated as the result of a rule
group transition, nor simulate the calculations that will
follow if a rule group is evaluated in "full" mode, such as
when evaluated from the mace utility, or the evaluation of
the load rule group when a workbook is built.

About the Rule Group Simulator
The Rule Group Simulator feature is provided in a separate window with two areas: a
measure table, and a tree view with Upstream and Downstream Dependencies panes.

Rule Group Simulator Window

The measure table displays all of the measures in the scope of the simulation. The
Measure column displays the measure name. The measure status is reflected by color
coding. A tooltip also displays the measure status when the mouse is placed over the
measure name. All measures can be shown, or the list of measures can be filtered.

Working with the Rule Group Simulator

170 Oracle Retail Predictive Application Server

Editable measures can have their status toggled (to or from Edited), and the simulator
immediately updates all statuses, calculations, and trees. The table below explains the
meaning of the color coding used in the Rule Group Simulator window.

Color Meaning

Yellow Edited.

If it is a recalc measure, it will be calculated by indirect spreading of
another measure through a mapping rule and recalculation at aggregated
levels.

If the measure has another aggregation type, it will be calculated by
spreading and aggregation.

Pale Gray Editable.

Although the measure is not forced, and thus is still editable, it will be
calculated through the calculation engine having to select an expression
in an affected rule.

White Editable.

Will not be calculated, so it will not change at all.

Pale Blue Protected by protection processing.

Although the measure is protected (usually this will be because it is the
measure on the left-hand side of the only expression in a rule), it is not
‘forced’ because none of the right-hand side measures are changed, so it
does not need to be calculated, and it will not change at all.

Mid Blue Protected by protection processing.

Is "forced," so it will be calculated.

Dark Blue Read-only.

The measure is set as being read only in the measure properties, so it will
not change at all. A measure that is read only, but is going to be
calculated will be shown as mid-blue. That status takes priority over
read-only.

Note: The status of a measure encapsulates two concepts that
are not as closely linked as may appear at first sight:

Whether or not the measure can be edited (shades of blue =
no, white/gray/yellow = yes)

Whether or not the measure will be calculated.

It is possible for a measure to be editable, but it would be
calculated if a calculate were issued. Similarly, it is possible
for a measure to be protected by protection processing that
would not be calculated if a calculate were issued.

The Rule - Expression column of the table shows the calculation for each measure. For
those measures that would be calculated if the end user issued a "calculate" with the
current collection of edited measures, the rule and expression that would be used to
calculate the measure is shown. For non-calculated measures, this column displays the
measure status.

The tree view shows (in separate panes) the upstream and downstream measure
relationships (that is, the expressions that will be evaluated) for the measure with focus.

 Working with the Rule Group Simulator

 Solutions 171

Measures in the panes are also color coded. If the measure with focus would be
calculated, the upstream pane shows the expression to calculate it, and, all measures that
it is dependent upon (calculated from) with their expressions, if appropriate. The
downstream pane similarly shows measures that are dependent upon (calculated from)
the measure with focus, if there are any. If the measure with focus is on the right-hand
side of several expressions that will be calculated, each of the expressions can be viewed
using the forward (>>) and backward (<<) arrows.

Invoking the Rule Group Simulator

Navigate: In the Configuration Components pane, select Project – Solution –
Workbooks. The Workbook Designer window opens in the workspace.

Workbook Designer Window

1. Select one of the workbooks in the Workbook Designer tree display.

2. Select the General tab of the Workbook properties table.

3. Right-click on Calc Rules, and select Simulate Rule Group.

Simulate Rule Group Menu Option

The Rule Group Simulator window appears.

Filtering the Measures Table
Perform the following to filter measures displayed in the Rule Group Simulator:

1. Open the Rule Group Simulator. See "Invoking Rule Group Simulator."

Working with the Rule Group Simulator

172 Oracle Retail Predictive Application Server

Rule Group Simulator Showing Filter and Search Features

2. To filter the measures table, select the one of the following options from the Filter
list:

 Select All to display all measures in the workbook.

 Select Will Calculate (According to Calculation Order) to display only those
measures that will be calculated. The sequence of the measures displayed is the
sequence in which they will be calculated. Measures that are edited are not
shown.

 Select Will Not Calculate to display only those measures that will not be
calculated will be shown. Measures that are edited are not shown.

 Select Read Only to display only those measures whose status is read-only (that
is, have a Base State and Agg State of "read").

 Select Contains String to type a case-sensitive string to filter by in the text box
below the Filter list option. Only measures that include the string entered are
displayed.

 Select By Worksheet to select a worksheet from the current workbook using the
list option below the filter list option. Only the default measures from that
worksheet are shown. The Worksheet list option is disabled until By Worksheet
is selected from the Filter list.

3. If searching for a specific measure, set the filter to All, and enter a search string (case-
sensitive) in the box below the Filter list. The first measure that includes the string
will be shown and will become the measure with focus.

Changing the Edited Status of Measures

Note: Only measures that can be edited (colors gray, white,
and yellow) may have their status changed.

1. Select the name of the measure in the measure table.

a. If the status was previously Editable (gray or white), the status of the measure
changes to Edited (yellow).

b. If the status was previously Edited (yellow), the status of the measure changes to
Editable (either gray or white, depending on the rule group and the other edits
currently applied).

After any change in status, the simulator updates all necessary statuses, calculations,
and tree views.

2. To change the status of all Edited measures back to Editable (gray or white), click the
Reset button.

 Working with the Rule Group Simulator

 Solutions 173

Note: Measures that are calculated in a "cycle," which typically
includes BOP and EOP inventory values, are indicated with an "*"
next to their names in the measure table and Upstream and
Downstream Dependencies panes.

Using the Upstream and Downstream Panes
1. To change the measure with focus for the upstream and downstream panes:

a. With the Filter list option set to All, enter a search string in the field under the
Filter list option. The first measure that contains the search string will get focus.

Note: Remember, when searching by measures, the text entered
in the search text field is case-sensitive.

b. Click in the Calculation Column of the measure table for the measure.

c. Click on any occurrence of the measure in the Upstream or Downstream
Dependencies panes.

When the focus changes, the tree panes are refreshed as appropriate based on the
measure which currently has focus, and the measure table scrolls so the measure
with focus is shown.

The measure with focus always appears at the top of the Upstream Dependencies
pane. If it will be calculated, the Upstream pane shows the measures that it is
dependent upon (calculated from, directly and indirectly). This is displayed using a
parent-child tree structure with the measures used to calculate an individual
measure showing as "children" of it. If the children are also calculated, they appear
with their dependent measures, and so on. Therefore, the expanded Upstream
Dependencies tree view displays all of the measure relationships that affect the
measure with focus.
The Downstream Dependencies pane shows measures that are dependent upon
(calculated from) the measure with focus, if there are any. Measure relationships
(expressions) appear in a parent-child tree structure. If the measure with focus is on
the right-hand side of several expressions that will be calculated, the relationships
cannot all be shown at the same time in a simple tree structure, so a single
relationship is displayed. The number of such relationships, and the one being
shown, is indicated at the bottom of the pane.

2. To collapse the detail of the dependencies for a measure in the Upstream or
Downstream panes, click the (-) next to the measure name. The (-) changes to a (+),
and the detail is collapsed. To expand the detail of the dependencies for a measure in
the Upstream or Downstream Dependencies panes, click the (+) next to the measure
name. The (+) changes to a (-) and the detail is expanded.

3. To change which measure relationship for the measure with focus is shown in the
downstream pane, click back (<<) or forward (>>) buttons at the under the
Downstream Dependencies pane.

Back and Forward Controls

Working with Workbook Tabs

174 Oracle Retail Predictive Application Server

Note: The Rule-Expression column of the measures table will display
multiple result expressions with a note beside the rule name saying
that it is a “multiple result.” Furthermore, the entire expression will
be displayed showing all of the left-hand side measures that
comprise the multiple results. If a measure that has focus is one of
the multiple result measures, it will be shown in the Upstream and
Downstream Dependencies panes as MeasA [+MeasB][+MeasC]
where MeasA is the measure with focus and MeasB and MeasC are
the other multiple result measures.

Exiting the Rule Group Simulator
To exit the rule group simulator, click the Exit button.

Working with Workbook Tabs

Overview
Workbook tabs are a feature in the RPAS Client that enables the workflow to be
separated into steps or business processes. Setting up tabs described here is for the
Classic Client. The Fusion Client can have tabs, but those are set up using the taskflow.
Each workbook must have at least one tab. Users select the appropriate tab to use
depending on the stage they have reached in the business process. A tab may contain one
or more worksheets that allow the users to interact with the data in the workbook. The
measures available, the orientation of the hierarchies, and the base intersection that data
is available for may vary by worksheet within the tab.

Workbook Designer Dialog Box

Create a Workbook Tab

Navigate: In the Configuration Components pane, select Project – Solution –
Workbooks. The Workbook Designer window opens in the workspace.

 Working with Workbook Tabs

 Solutions 175

Example of Workbook Design Window (Create New Workbook Tab)

1. Select the workbook in which to create a new workbook tab.

2. Choose one of the following methods:

 Click the New Workbook tab button.
 Right-click and select the New Workbook tab.

 Select an existing workbook tab in the workbook, and press Insert.

A new workbook tab is created.
3. In the RPAS Name field, enter RPAS internal name of the workbook tab.

4. In the User Label field, enter a description of the workbook tab that users will see on
the tab in the RPAS Client.

Edit Workbook Tab Properties

Navigate: In the Configuration Component pane, select Project – Solution –
Workbooks. The Workbook Designer window opens in the workspace.

1. Select the workbook tab whose properties are to be edited.

2. In the General tab, type the RPAS Name and the User Label.

3. Perform one of the following to alter the order in which the tab is displayed in the
RPAS Client:

 To change the order of the tabs, select the up button or down button
as necessary.

 Drag and drop the tab in the Workbook Designer tree display.

Remove a Workbook Tab

Navigate: In the Configuration Component pane, select Project – Solution –
Workbooks. The Workbook Designer window opens in the workspace.

1. Select the workbook tab to remove.

2. Choose one of the following methods:

 From the toolbar, click the Delete button.

Working with Worksheets

176 Oracle Retail Predictive Application Server

 Select Remove from the right-click menu.

 Press Delete.

3. Click Yes.

The workbook tab and associated worksheets are removed.

Comprehensive Workbook Validation
In addition to the real-time validation of user inputs, the Workbook Designer has the
capability to perform a comprehensive validation of all Workbook content in the
solution. Upon performing comprehensive validation, the Task List will be updated with
any validation issues present in the Workbooks of the Configuration.

Navigate: In the Configuration Components pane, select Project – Solution –
Workbooks. The Workbook Designer window opens in the workspace.

1. From the toolbar, click the Comprehensive Validation button.

2. All Workbook content for the solution will be validated and any issues detected will
be entered into the Task List.

Working with Worksheets

Overview

Measures and Worksheets
A worksheet is a specific window into the data in a workbook. Worksheets are placed on
workbook tabs. Using the Configuration Tools, you define the measures on a worksheet,
the base intersection the worksheet uses, and the orientation of the hierarchies on the
worksheet. The workbook measures can be organized in following categories for a
worksheet:

 Selected profile
 Viewable profile

 Hidden

 Extended

Selected Profile Measures
The selected profile contains the list of measures that are initially displayed for this
profile in the RPAS Client. All worksheets have one profile that is marked as the default
profile. This default profile is the profile that appears when a workbook is initially built.
There must be at least one measure on each of the selectable profiles.

Viewable Profile Measures
The viewable profile contains the full list of measures that the RPAS Client user can view
in the worksheet by using the Show/Hide functionality within the RPAS Client. It must
contain all of the measures in the default profile, but it often includes further measures
that are not initially displayed.

Hidden Measures
Hidden measures are those that are used in the rule set assigned to a workbook, but that
are not assigned to any of the profiles in any of the worksheets contained in that

 Working with Worksheets

 Solutions 177

workbook. This might include measures that are used purely for calculation purposes
and would have no usefulness to the RPAS Client user.

Extended Measures
Extended measures, which represent different usages of the underlying base measures,
can be added to the default or viewable worksheet profile. You can add extended
measures that are aggregated based on different aggregation methods. The aggregation
methods available for selection are based on the Allowed Aggs of the base measure. The
same base measure can have multiple extended measures based on different aggregation
methods.

You can also add extended measures that represent the relative and absolute percent-to-
parent contributions. The same base measure can have multiple extended measures
based on different selections for relative and absolute percent-to-parent contributions.

You can add extended measures that rank the values of a measure in either ascending or
descending order or that contain a running total of a measure’s values based on an
ascending or descending ranking.

See the Extended Measures section for more information on extended measure types.

Worksheet Types
There are two types of worksheets supported. The Pivot/Chart type worksheet type is
supported for both Classic Client and Fusion Client. Fusion Client also supports the
Detail Popup worksheet type. By setting the Worksheet Type to “Detail Popup”, you can
change the type of view used for a worksheet to a Detail Pop-up worksheet.

Filterable Sheets
The Fusion Client provides the capability to filter the visible positions of a worksheet
based upon the selection context of a different worksheet. By default, this filtering is
enabled for all worksheets. It is possible to exclude worksheets from the list of filterable
worksheets. Selecting this attribute in the table will launch the “Select Filterable
Worksheets” dialog.

Select Filterable Worksheets Dialog Box

The Select Filterable Worksheets dialog contains the list of all candidates for filtering
from the worksheet being edited. By default all worksheets will be in the Filterable
Worksheet column. By selecting one or more worksheets and moving them to the
Unfilterable Worksheets column, those worksheets will not be able to be filtered from the
worksheet being edited.

 Auto PQD – If a worksheet is configured to be Auto PQD, then Position Query
Definitions defined for the worksheet will be automatically applied within the

Working with Worksheets

178 Oracle Retail Predictive Application Server

Fusion Client. This removes the need for the user of the client to enable the Position
Query for the worksheet when building a workbook.

 Lock PQD Dimensions – If a worksheet is configured to Lock PQD Dimensions,
then the user of the Fusion Client will not be able to modify the axis layout of the
worksheet through drag and drop of hierarchy tiles if the change to the axis layout
would invalidate the Position Query. For example, if a Z-Axis Position Query that
modified the LOC hierarchy were defined in the worksheet, the user would not be
able to move LOC off the page edge to the X or Y axes.

Create a Worksheet

Navigate: In the Configuration Component pane, select Project – Solution –
Workbooks. The Workbook Designer window opens in the workspace.

Example of Workbook Designer Window (Create New Worksheet)

1. Choose one of the following methods:
 Select the workbook tab in which to create a new worksheet by clicking the New

Worksheet button.

 Right-click and select New Worksheet.

 Select another worksheet on the same tab.
2. Press Insert.

A new worksheet is created.

3. Assign the appropriate properties using the worksheet tabs (General, Position
Queries, Measure Profiles, Style Overrides, and Window Formatting). Refer to
"Defining Worksheet Properties" for more information.

Defining Worksheet Properties for Pivot/Chart Worksheets
When the Pivot/Chart worksheet type is selected from the Workbook Designer window,
the following tabs appear in the workspace:

 General

 Measure Profiles

 Position Queries

 Style Overrides

 Working with Worksheets

 Solutions 179

 Window Formatting

Refer to the topics below of information on using these tabs to define the worksheet
properties.

General Tab

Example of General Tab for a Worksheet

1. In the RPAS Name field, enter the RPAS internal name of the worksheet.

2. In the User Label field, enter a description of the worksheet that users will see.

3. In the Worksheet Type field, select Pivot/Chart.

Worksheet Type Pick List

4. Determine candidates for filtering from the worksheet, if any.

Select Filterable Worksheets Dialog Box

Working with Worksheets

180 Oracle Retail Predictive Application Server

5. Define the axis layout of the worksheet.

a. Click the X-axis, Y-axis, Z-axis, or Unassigned field. The Axis dialog box opens.

Axis Dialog Box

b. Drag the hierarchies to the appropriate axis column.

c. Click OK to save any changes and close the window.

Note: The Hierarchies that appear in this process are those
used by measures placed on the default and viewable
profiles for the worksheet. If no measures have yet been
placed in those profiles, no hierarchies will appear in this
process.

6. Click in the Base Intersection field. The Select Intersection dialog box opens.

Select Intersection Dialog Box

Note: The hierarchies and dimensions that appear in this
process are those used by measures placed on the default
and viewable profiles for the worksheet. If no measures have
yet been placed in those profiles, no hierarchies will appear
in this process.

 Working with Worksheets

 Solutions 181

7. Select the dimension for each hierarchy. The base intersection of the sheet represents
the base set of dimensions at which the window could be displayed. Data on the
window can be viewed at any dimension/intersection above this. If the base
intersection of a measure on the sheet is below the base intersection of the sheet, the
measure’s values are shown aggregated to the displayed intersection. If measure’s
base intersection is above the sheet intersection, the measures values are hashed out
at all intersections lower than the base intersection of the measure.

8. Click OK.

Measure Profiles Tab
Usage of this tab is optional. This tab allows users to configure additional measure
profiles beyond the Default profile for the worksheet. These additional profiles may be
populated with measures in the same manner as the default profile. When the workbook
is built, these additional profiles will be available through the RPAS Client to provide
users a different set of measures or a different measure ordering for the measures of the
worksheet.

Measure Profiles Tab

Adding a measure profile
1. Click the Measure Profiles tab.

2. Right-click in the table area and select Add.

3. Enter the following information:

 Name – The name for the measure profile used by RPAS. This name has to be
unique across the worksheet.

 Label – The label for the measure profile that is used internally by RPAS. This
label has to be unique across the worksheet.

Note: Duplicate label names are not allowed within the
scope of the worksheet.

Copying a Measure Profile
1. Click the Measure Profiles tab.

2. Select an existing measure profile.

3. Right-click in the table area and select Copy.

4. A new measure profile will be created that contains the same measure membership
an ordering as the selected profile.

Working with Worksheets

182 Oracle Retail Predictive Application Server

Note: Multiple measure profiles containing the same
measure membership and ordering are not allowed. As
such, a measure profile created using the Copy operation is
marked invalid until the membership or ordering is changed
from the membership or ordering of the profile from which
it was copied.

Marking a Measure Profile as Default
1. Click the Measure Profiles tab.

2. Select an existing measure profile that is not the default (the first profile in the table is
always the default).

3. Right-click in the table area and select Make Default.

4. The selected measure profile becomes the default profile for the worksheet and
moves to the first row in the measure profile table.

Removing a Measure Profile
1. Click the Measure Profiles tab.
2. Selected an existing measure profile that is not the default.

3. Right-click in the table area and select Remove.

4. The selected measure profile is removed from the list of profiles for the worksheet.

Position Queries Tab

Example of Position Queries Tab for a Worksheet

Usage of this tab is optional. This tab allows you to specify a worksheet where the
positions that are shown in a "query" dimension are based on the current position in
"driving" dimensions. The driving dimensions must be in the slice area. The process uses
a position query that is a Boolean measure dimensioned on the query dimension and the
driving dimensions. Only positions in the query dimension that have the value TRUE for
the position query measure for the positions in the driving dimensions are shown in the
worksheet. All other positions are automatically hidden.

When more than one driving dimensions are present, all of the driving dimensions have
to be in Z-axis for the position query to execute. If one or more driving dimensions are
taken out of the Z-axis and placed in X or Y axes, associated position queries will not be

 Working with Worksheets

 Solutions 183

executed. A given window can have more than one position query, driven by one or
more dimensions in the Z-axis and driving different dimensions in the X, Y, and Z axes.

1. Click the Position Queries tab.

2. Right-click in the table area, and select Add.
3. Enter the following information:

 Name – The name for the position query used by RPAS. This name has to be
unique across the project.

 Label – The label for the position query that is used internally by RPAS. This
label has to be unique across the project.

Note: Duplicate label names are not allowed.

 Measure – This defines the position query measure. This must be a Boolean type
measure. Click in the field, and then click Select Measure to view a list of the
Boolean measures used in the workbook. Type the first few characters of the
measure name in the box at the top of the list to go to the required measure, or
scroll to find it. Double-click to select the desired measure.

 Dimension - This defines the query dimension. Select a dimension from the list
of dimensions for the selected measure.

Note: While configuring position queries, it is important that
the Boolean mask measure that drives the position queries
be reference in the workbook (by either referencing it in the
load rule group or by setting it through the calc rule groups).
Currently, there is no validation in Configuration Tools that
checks for this, and no error is thrown at configuration
time/domain build time or workbook build time.

4. To remove a row from the tab, select the row, right-click, and select Remove. The
row is deleted from the Position Queries tab.

Style Overrides Tab

Example of Style Overrides tab for a Pivot/Chart Worksheet

Usage of this tab is optional. This tab allows you to override the style property for a
measure, so that measure uses a different formatting style in the worksheet. The Style
Overrides tab can also be used to apply a formatting style to an attribute defined on any
of the dimensions used in the worksheet. This formatting style will then be applied to the
attribute where it appears within the worksheet.

Working with Worksheets

184 Oracle Retail Predictive Application Server

Note: The measures that appear in this process are those
placed on the profiles of the worksheet. Attributes that
appear are those that are defined at or above the intersection
of the worksheet. If no measures have been placed on
profiles and the worksheet has not been configured with an
intersection, no entries will appear in the Style Overrides
tab.

1. Click the Style Overrides tab.

2. Select an override formatting style for a measure. Measures whose styles have been
overridden appear in black. Those whose styles are defaulting appear in gray.

Window Formatting Tab
Usage of this tab is optional. This tab allows you to specify the display attributes for the
dimensions used within the worksheet. By default, dimensions display the position label
within the Fusion Client. If there are any additional attributes defined for a dimension,
the client can display those attributes in addition or in place of position labels. Within the
Fusion Client, if a media UI Type attribute is added to the set of display attributes, the
Fusion Client will display the appropriate image in the position display area.

Example of Window Formatting Tab for Worksheet

Add Additional Display Attributes for a Dimension
1. Click on the Window Formatting tab.

2. Right-click and select Add from the menu.

3. Within the Select Attributes dialog, specify the dimension to modify.

4. Select desired attributes from the list of available attributes for the dimension.
5. Click OK.

 Working with Worksheets

 Solutions 185

Select Attributes Dialog Box

Modify Order of Existing Attributes
1. Click the Window Formatting tab.

2. Select the dimension to modify from the hierarchy tree.
3. Within the Order column, use drag-and-drop to modify the attribute order.

Remove a Display Attribute
1. Click the Window Formatting tab.

2. Select the dimension to modify from the hierarchy tree.

3. Select an attribute doe the dimension in the Order column or attribute table.

4. Right-click and select Remove from the menu.

Note: All dimensions have the label attribute set by default
and all dimensions must retain at least one display attribute.

Defining Worksheet Properties for Detail Popup Worksheets

Working with Detail Popup Worksheets
The Detail Pop-up is an alternate type of worksheet supported by the Fusion Client. It
differs from a Pivot View in a number of aspects.

 It is not automatically realized when a workbook is built, instead Detail Pop-ups are
accessed by the user of the client through a worksheet transition.

 Detail Pop-ups cannot be minimized, restored and maximized; they are modal
dialogs that are created at user need and dismissed after us.

 Detail Pop-ups contain information for a single set of selections; only one position
along any hierarchy in the workbook can be displayed within a Detail Pop-up.

 Detail Pop-ups are capable of displaying and allowing the user to interact with data
at different dimensionalities; they do not exhibit the hashing out of measures with
fewer dimensions than the worksheet is experienced in Pivot Worksheets.

 Detail Pop-ups do not support multiple measure profiles; there is only a single
profile for measures and it serves as both the Viewable and Selected Profile.

Detail Pop-ups support a second profile for dimension attributes; these attributes can be
defined along any hierarchy present in the Detail-popup and can include both configured
dimension attributes and default RPAS attributes such as position label.

Create a Detail Pop-up Worksheet
1. Navigate to the Workbook Designer.

Working with Worksheets

186 Oracle Retail Predictive Application Server

2. Select the Workbook Tab that will contain the new worksheet in the Workbook tree.

3. Click the New Worksheet button or press Insert to create a new worksheet.

4. Change the Worksheet Type of the new worksheet to Detail Pop-up.

Defining Worksheet Properties
Detail Pop-up worksheets have the following tabs in the workspace:

 General

 Style Overrides
 Attribute Profile

Refer to the topics below for information on using these tabs to define the worksheet
properties.

General Tab

Example of General Tab for a Detail Popup Worksheet

1. In the RPAS Name field, enter the RPAS internal name of the worksheet.

2. In the User Label field, enter the description of the worksheet that the user will see.

3. The Worksheet Type can be used to change the worksheet to another type of
worksheet.

4. In the Base Intersection field, enter the base intersection for the worksheet.

Style Overrides Tab

 Working with Worksheets

 Solutions 187

Example of Style Overrides Tab for a Detail Popup Worksheet

Usage of this tab is optional. This tab allows you to override the style property for a
measure, so that measure uses a different formatting style in the worksheet.

Note: The measures that appear in this process are those
placed on the profiles of the worksheet. Attributes that
appear are those that are defined at or above the intersection
of the worksheet. If no measures have been placed on
profiles and the worksheet has not been configured with an
intersection, no entries will appear in the Style Overrides
tab.

1. Click the Style Overrides tab.

The list of measures with their current formatting style appears.

2. Select an override formatting style for a measure. Measures whose styles have been
overridden appear in black. Those whose styles are defaulting appear in gray.

Attribute Profile Tab
Detail Pop-up worksheets support two profiles. The first is a measure profile and is
configured as Pivot worksheet measure profiles are configured. The second profile is the
attribute profile which is configured through this tab.

In addition to display of measure information, the Detail Pop-up can display dimension
attributes describing the positions displayed within the worksheet. Because dimension
attributes have their data loaded into a workbook by a different mechanic from the
measures found in the load, calc, commit and refresh rule groups, they are not available
for selection using the measure selector used for populating measure profiles.

The Attribute Profile tab can be used to select the set of attributes to incorporate in a
Detail Pop-up Worksheet.

Working with Worksheets

188 Oracle Retail Predictive Application Server

Example of the Attribute Profile Tab in the Worksheet

The Attribute Profile tab contains a table listing all attributes configured for the attribute
profile of the selected worksheet. The columns in the table provide information about the
name, label, modified dimension, and, if the attribute is a configured attribute, the
measure configured to hold the attributes information. These properties are supplied for
information purposes and cannot be edited within the Attribute Profile tab.

Adding an Attribute to the Attribute Profile
1. Click on the Attribute Profile tab.

2. Right-click within the Attribute Profile display and select Add from the menu.
3. Within the Select Attributes dialog, select the dimension whose attributes are

desired.

4. Select one of more available attributes and click OK.

Select Attributes Dialog Box

Remove an Attribute from the Attribute Profile
1. Navigate to the Attribute Profile tab.

2. Select an existing attribute within the Attribute Profile table.
3. Right-click within the Attribute Profile tab and select Remove from the menu.

Modify the Order of Attributes within the Attribute Profile
1. Navigate to the Attribute Profile tab.

2. Use drag-and-drop within the Order column to modify the order of configured
attributes.

 Working with Worksheets

 Solutions 189

Defining Worksheet Properties for Worksheets Tiled View

Overview
RPAS supports a view within the Fusion Client, called the Tiled View, that supplements
the Pivot, Chart and Detail Pop-up views also supported by the Fusion Client. This view
allows for the display of a series of tiles. Each tile represents a position of the Tile Axis
hierarchy, shown at the intersection formed by row and page axis positions. Each tile is
displayed as a single visual block that contains the visible attributes for the tile position,
and cells for visible dimensional measures, if any, at that tile’s intersection.

For example, configuring the Product hierarchy to be the Tile Axis hierarchy will result
in each position along the Product hierarchy being represented by a tile. This tile can
display attribute values for the Product position. The tile may also display Measure
values for the intersection of this Product position with whatever positions are on the
row and page axis.

The Tiled View may be configured so that a tile is only displayed for an intersection
based on the value of a Boolean tile measure. Drag and Drop and Remove operations
can be configured to manipulate this Boolean value accordingly.

Tiled View Worksheet
Description

 The Workbook Designer of the RPAS Configuration Tools allows the creation and
modification of Tiled View worksheets. Users of the Configuration Tools are able, by
using the Worksheet Type attribute located within the General Properties tab of a
worksheet, to set a worksheet from the default of Pivot/Chart worksheet to the new Tile
worksheet.

Once a worksheet has been set to being a Tile Worksheet, the Workbook Tool user
interface updates to present the user of the Configuration Tools with the options
available for Tiled View worksheets in the same manner that it changes when a
worksheet is configured to be a Detail Pop-up worksheet.

Features of the Tiled View Worksheet

As mentioned in the overview, the Tiled View provides an alternative method of
displaying information to the spreadsheet-style representation found in Pivot Views.
Additionally, Tiled Views support other behaviors not found in other view types.

Dynamic Position Filtering

Like Pivot Views, Tiled Views will support filtering of visible positions within a window.
Tiled View filtering will allow more flexibility than that of Pivot Views in that, each
position along the Row Axis will be able to specify a distinct set of visible positions
within the Tile Axis hierarchy.

For example, within a Tiled View in which PROD is set as the Tile Axis hierarchy and
LOC is set as the Row Axis hierarchy, each position in LOC will potentially have a
distinct set of visible positions in the PROD hierarchy. This behavior is shown in the
following visualization of the Tiled View.

Working with Worksheets

190 Oracle Retail Predictive Application Server

Tiled View Visualization

Within '0102 STRASBOURG', the '10000010', '10000013', '10000014' positions are visible.
'0144 FRANKFURT', however, has a different set of visible positions: '10000010',
'10000011', '10000012', '10000014' and '10000017'.

This is accomplished using a measure configured as the Tile Measure of the view. These
measures, which must be Boolean and share the same base intersection as the Tiled View
worksheet, are used to compute the set of Tile Axis hierarchy positions for each
page/row hierarchy slice that should be made visible.

Drag and Drop Manipulation

Tiled View worksheets also support the use of drag and drop to manipulate the view.
These drag and drop actions, which use Tiled Views as both drag sources and drop
targets, can be used to set values into the Boolean Tile Measure. As operations modify
the values of the Tile Measure, the visible set of positions based upon that measure
updates immediately without the need for the user to calculate the worksheet.

The configuration process supports, in a limited fashion, the configuration of the action
initiated by the drag and drop gesture. This configuration is accomplished through the
specification of several view properties unique to Tiled View worksheets and detailed in
the section entitled “Properties of the Tiled View Worksheet”.

Support for Images, Attributes, and Measures

Like the Detail Pop-up view, the Tiled View provides a representation of information in
which images, attributes and dimensional measures may all display in a single
informational unit. Any given tile within the view is able to display both the values of
dimensional measures as well as attributes of the Tile Axis hierarchy. If a media UI Type

 Working with Worksheets

 Solutions 191

attribute is configured as one of the attributes of the tile, that media UI type measure is
used to assign an image to the tile.

Workbook Designer Showing a Tiled View Worksheet

Properties of the Tiled View Worksheet
Description

Tiled View Worksheets support a set of properties in the same manner as Pivot/Chart
worksheets and Detail Pop-up worksheets. The configuration of these properties is
managed through the General Properties tab of the Workbook Designer through the
same table interface used to configure properties for existing worksheet types.
From a configuration standpoint, Tiled View worksheets are very similar to Pivot/Chart
worksheets. The two views share many of the same sets of properties and optional
configuration elements (implemented through the various tabs available within the
Workbook Designer when a worksheet is selected.) However, some Pivot/Chart specific
properties may not be configurable for Tiled View worksheets (as mentioned below). In
addition, Tiled View worksheets support a number of additional, Tiled View specific
properties.

The set of configurable properties for the Tiled View worksheet and summary
information on each property can be found in this section.

RPAS Name

The RPAS Name attribute is the internal name used by RPAS to identify the worksheet.
The value of this property must be a valid RPAS name and is validated according to the
rules for RPAS names.

User Label

The User Label attribute is an external name used to identify the worksheet to the user of
the Fusion Client. The value of this property is displayed within the Fusion Client for

Working with Worksheets

192 Oracle Retail Predictive Application Server

single language domains and is the resource exported for translation in multi-language
domains.

Worksheet Type

The worksheet type attribute must be set to Tiled View in order to configure a Tiled View
worksheet.

Filterable Sheets

As with Pivot Table Views, Tiled View worksheets support the ability to filter the visible
positions of a worksheet based upon context supplied by the worksheet. The Tiled View
supports only the existing show/hide position based filtering; the application does not
allow Tile Filtering based upon the Tile Measure to other views.

Auto PQD

The Auto PQD property allows the user of the configuration tools to specify that a
configured position query should be applied to a view by default. If this property is set
to true – and if a position query is defined for the worksheet – the Fusion Client applies
the position query to the view automatically without the need for the user of the Fusion
Client to apply the query.

Lock PQD Dimensions

The Lock PQD property allows the user of the configuration tools to specify that
dimensions that serve as inputs to defined position queries should not be able to be
swapped off their axis in the Fusion Client. If this property is set to true – and if a
position query is defined for the worksheet – then dimensions assigned to the Page Axis
will not be available for pivoting within the Tiled View if those dimensions are inputs to
the defined position query.

Tiled Axis, Row Axis, Page Axis and Unassigned Axis

The Tiled View worksheet contains an axis layout that is similar but not identical to the
X-, Y- and Z-Axis layout schema used by Pivot worksheets. Like traditional axis layouts,
the Tiled View axis layout requires the hierarchies present in the base intersection of the
worksheet to be assigned to one and only one axis.

The Tiled View axis layout differs in the names and meanings of the axes used. Tiled
View axis layout consists of:

• Tile Axis – This Axis supports only one hierarchy and is the axis that corresponds to
tiles; each visible position in the Tile Axis is represented by a single tile in the view.

• Row Axis – The Row Axis may contain a single hierarchy. When configured, this
hierarchy is used to create groupings of tiles where multiple blocks of tiles
representing the Tile Axis hierarchy are organized according to the positions of the
Row Axis hierarchy. Use of the Row Axis is optional; when no Row Axis hierarchy is
configured there will be only a single block of tiles as determined by the Tile Axis
hierarchy.

• Page Axis – All hierarchies present in the base intersection of the worksheet that are
not assigned to either the Tile Axis or Row Axis must be assigned to the Page Axis.
This axis is functionally equivalent to the Page Axis, or Z-Axis, of Pivot Table views.
Hierarchies assigned to the Page Axis are navigable using a set of controls that ‘page’
the view as the selected position is modified by the user.

 Working with Worksheets

 Solutions 193

• Unassigned Axis – As with Pivot Views, there are no valid cases in which hierarchies
may be assigned to the Unassigned Axis. This attribute provides information to the
user of the Configuration Tools that one or more hierarchies has not yet been
assigned to a valid axis and details which hierarchies require axis assignment.

Base Intersection

As with Pivot Views, a Tiled View worksheet has a base intersection. Unlike Pivot View
worksheets which allow a number of valid intersections for any given view, Tiled View
worksheets require the base intersection of the worksheet to be identical to the base
intersection of the Tile Measure, if one is defined. Tiled View worksheets that do not
make use of a Tile Measure support the configuration of a base intersection based upon
the dimensional measures present in the view profiles.

Tile Measure

The Tile Measure is a measure used by the Tiled View worksheet to manage several
behaviors associated with the view and its support of filtering and drag and drop
operations within the Fusion Client. In order to use the Tiled View worksheet in
conjunction with these functionalities, the Tile Measure must be configured with the
name of the Boolean measure that will be used.

Tile Measure is an optional property. A Tiled View can be configured that does not
specify a Tile Measure. However, Tiled View worksheets that do not specify a Tile
Measure do not support the following behaviors:

• Filtering of tiles based upon Tile Measure cell values
• Drag and Drop operations
• Formatting the Background Color of the Entire Tile
When a tile measure is specified, the cell contents of the measure are used to drive tile
filtering. For any given page/row slice, the tile axis hierarchy positions whose cell values
are equal to the Tile Value is displayed and those whose cell values are different from the
Tile Value are filtered. Drag and drop operations – if they are enabled – modify the cell
values of the tile measure with the resulting change to the visible set of positions at the
time of the operations (and not as a result of a subsequent calculation cycle.)

Note: The background color of the entire tile is taken from
the formatting of the Tile Measure, if present. This can be
set via Measure/Cell styles, Boolean Exception Formatting,
or by being the target measure for a Real Time Alert.

Tile Value

When used in conjunction with the Fusion Client drag and drop functionality, the Tile
Value attribute contains the value to be set into the Tile Measure as a part of a drop
operation. It must be either true or false in order to be contained by the Boolean Tile
Measure

Filter Tiles

This attribute specifies whether the values of the Tile Measure are used to drive filtering
of visible intersections within the Tiled View worksheet. If checked, only intersections
for which the Tile Measure’s value for that tile is equal to the configured Tile Value will
be visible.

Enable Drop

 When Drop is enabled, then the worksheet can serve as a drop location within the
constraints set by the Drag Source Hierarchies attribute.

Working with Worksheets

194 Oracle Retail Predictive Application Server

Drag Source Hierarchies

This attribute is used in conjunction with the drag and drop functionality enabled by
configuring a Tile Measure, Tile Value, and checking the Enable Drop attribute. When
drag and drop is enabled, a drag and drop action transmits the selection from the
dragged tile to the Tiled View worksheet upon which is the drop target.

Those hierarchies which are configured through drag source hierarchies have their
selection context transmitted, those hierarchies which are not configured as drag source
hierarchies instead use the position context of the page and/or row upon which the tile is
dropped. Drag Source Hierarchies must include the Tile Axis hierarchy; it can optionally
include any other hierarchy in the base intersection of the Tile Measure.

For example, assume a drag and drop action between two Tiled View windows
configured along CLND, PROD and LOC. In both windows, PROD is the Tile Axis
hierarchy, LOC is the Row Axis hierarchy and CLND is the Page Axis hierarchy.
Assume also that the drag source hierarchies attribute of the target view is PROD.

When processing the drag and drop action, the position along PROD corresponding to
the tile that was dragged is combined with the LOC and CLND positions based upon the
row and page where the tile is dropped to determine the relevant intersection. If,
instead, drag source hierarchies had been configured to be PROD and LOC, then the
PROD and LOC positions would be those of the dragged tile and only the CLND
position would be determined by the page upon which the tile was dropped.

General Properties Tab of a Tiled View Worksheet

 Working with Worksheets

 Solutions 195

Process Flow for Configuring a Tiled View Worksheet

Additional tabs of the Tiled View Worksheet
Description

Tiled View worksheets support the configuration of additional options through tabs
present in the Workbook Designer when a Tiled View worksheet is loaded into the User
Interface. The additional tabs supported when working with a Tiled View worksheet
are:

Style Overrides

Tiled View worksheets support the ability to configure styles for measures displayed
within the view. The Style Override tab will therefore be available when configuring a
Tiled View worksheet and it functions in the same manner as in Pivot and Detail Pop-up
Views.
Additionally, it is possible to configure a set of formatting properties that are applied to
the tile itself in a Tiled View worksheet. The primary property supporting configuration
is the color of the tile. In order to allow the configuration of tile format properties, the
Style Override panel will also include an entry for the Tile Measure. Setting a style for
the Tile Measure within the Style Override panel will cause the set style to be used for tile
formatting and not the base configured style of the measure, if a style has been
configured for the measure.

Working with Worksheets

196 Oracle Retail Predictive Application Server

Style Override Panel for a Tiled View Worksheet Showing a Tile Measure

Measure Profiles

Tiled View worksheets support the ability to configure multiple user profiles for the
measure present in the view. The configuration of these profiles and the process of
defining the measures present in each will follow the behavior of measure profile
configuration for Pivot View worksheets with the exception that it will be considered
valid for a measure profile to contain no measures.

This is intended to support a case in which the tiles of the Tiled View contain only
dimension attributes configured through Window Formatting. One scenario is a tile that
contains only a single media measure attribute to display an image in the tile or
potentially an image and the position label for the tile.

Measure Profiles Panel for the Tiled View Worksheet

Window Formatting

Like Pivot Views, Tiled Views support worksheet style configuration through a Window
Formatting tab. Here you can define which display attributes you would like to be
visible for each dimension of the worksheet. Attributes defined for dimensions of the
Tile Axis hierarchy will appear within each tile in addition to any dimensional measures
defined for the worksheet’s profiles. If label is the first visible attribute it will appear in
the tile's header.

Window Formatting Panel for a Tiled View Worksheet

 Working with Worksheets

 Solutions 197

Position Queries

Tiled View does support the use of Position Queries. So, the Position Queries panel of
the Tiled View worksheet functions in the same manner as Pivot View worksheets.

Position Queries Panel for a Tiled View Worksheet

Specify Which Measures Appear in a Worksheet

Navigate: In the Configuration Components pane, select Project – Solution –
Workbooks. The Workbook Designer window opens in the workspace.

Workbook Designer Window

1. Select the worksheet to be used to specify measures.
2. Select the profile to be used to specify measures. When the user has specified

multiple profiles for a worksheet using the Measure Profiles tab, each of these
profiles may have a different set of measures defined for it. In cases where there is
more than one configured profile, one profile is considered to be the Selected profile.
It is this profile that will have its measure content modified through interaction
within the Profile Panel. When there are multiple configured profiles for a
worksheet, the profile that is currently Selected may be changed using the drop-
down list in the upper right of the Profile Panel.

3. In the column that displays measure components (under Include External Measures),
select the check boxes next to the Measure components. The matching measures will

Working with Worksheets

198 Oracle Retail Predictive Application Server

appear in the Matching Measures column as the components are selected. Only
realized measures that are used in the rule set that is assigned to the selected
workbook will be displayed.

4. If External Measures are to be available for placement on the worksheet, select the
Include External Measures check box.

5. To add measures from the matching measures column to the Viewable or Selected
columns, perform one of the following options:

 Select the measures to add from the Matching Measures column. Drag the
measures to the Viewable or Selected column.

 Select the measures to add from the Matching Measures column and press
Ctrl+C, and then click in the Viewable or Selected column and press Ctrl+V.

 Right-click in the Matching Measures column and select Copy, and then select
Paste from the right-click menu in the Viewable or Selected column.

 To add ALL measures from the Matching Measures column, right-click in the
Viewable or Selected column and select Add Matching from the menu.

6. To add measures from the Viewable column to the Selected column, perform one of
the following options:

 Select measures in the Viewable column, and drag the measures to the Selected
column.

 Select measures in the Viewable column and press Ctrl+C, and then click in the
Selected column and press Ctrl+V.

 Right-click in the Viewable column, and select Copy. Right-click in the Selected
column, and select Paste.

Note: Adding a measure to the Selected column also adds it
to the Viewable column if it is not already in the Viewable
column.

7. To remove measures from the Viewable or Selected columns: perform one of the
following options:

 Select the measures to remove and press Delete or Ctrl+X, or right-click and
select Cut.

 Right-click and select Remove Matching to remove all measures that are also in
the Matching Measures column, or select Remove All to remove all measures.

Note: Removing a measure from the Viewable column also
removes it from all profiles in the Selected column.

Specify the Sequence of Measures on a Worksheet

Navigate: In the Configuration Components pane, select Project – Solution –
Workbooks. The Workbook Designer window opens in the workspace.

 Working with Worksheets

 Solutions 199

Workbook Designer Window

1. Select the worksheet that will be used to sequence measures.

2. To sequence measures manually, drag and drop the measures from the Viewable
column to the Selected column.

Viewable Column to Selected Column

3. To sort the measures:

a. Right-click and select Sort in the Selected column. The Sort Measures dialog
appears.

Note: Sorting measures are based on the internal component
name (not the label).

Sort Measures Dialog Box

Wizards

200 Oracle Retail Predictive Application Server

b. Measures can be sorted based on their major components. Select the sort
sequence in which the major components are to be applied, and whether the sort
should be ascending or descending

c. Click Apply.
The measures are sorted into the specified sequence. This is a "one time" sort. If new
measures are added to the Selected column, or measures are manually sequenced, the
sort sequence previously specified will no longer apply. You would need to resort the
measures again.

Edit Worksheet Properties

Navigate: In the Configuration Components pane, select Project – Solution –
Workbooks. The Workbook Designer window opens in the workspace.

1. Click the worksheet to edit.

2. Update the information as appropriate.

3. To remove information from the Position Queries table:

a. Select the field.
b. Right-click and select Remove.

Remove a Worksheet
Perform the following procedure to remove a worksheet:

1. Select the worksheet to remove.

2. From the toolbar, click the Delete button, or right-click and select Remove.
3. Click Yes.

Wizards

Overview
This section describes the tasks you can perform by using the wizard designer. The
wizard designer supports the graphical layout for custom wizards.

When the workbook build process only involves selecting the scope of the workbook by
selecting positions from the standard hierarchies, you can use standard wizards as
described in the “General Tab” section of the “Workbook.” Most of the workbooks can be
built using the standard wizards, and no coding is required – just configuration.
If the wizard process needs to do additional processing, you need to use custom wizards.
The following two examples will help to clarify the need for custom wizards.

A simple example:

Consider the product hierarchy:

Product Hierarchy

If the workbook builder needs to select just a few SKUs from a domain that contains
many SKUs, that process could be tedious if the builder is presented with a wizard with
huge numbers of SKUs. You may want to include a two-step process to select the SKUs:

 In the first step, the builder selects a class.

 Wizards

 Solutions 201

 In the second step, the builder selects SKUs from just the SKUs in that class.

A more complex example:

The workbook build process may need the builder to make choices from some
predefined options. The choices that the builder makes could determine what further
selections or choices the builder must make. The workbook that is eventually built could
therefore be of several different ‘subtypes.’
Neither of the examples above are configurable as “Standard Wizards,” so custom
wizards must be used. The custom wizards can be designed in the custom wizard
designer, but must be accompanied with code that:

 Describes the sequence of the wizards

 Collects and processes the information from the wizards

 Generates the content of the next wizard
 Describes the content of the workbook that is generated

In the first example, the workbook designer lays out two 2-tree wizards (one for class and
the other for SKU). Then to support the wizard process, the designer would write the
code to read the selection from the class wizard and range down the available SKUs in
the second wizard.

In the second example, the designer lays out the first wizard page as a group of check
boxes (or list boxes if there are too many options). The designer would also lay out the
other wizard pages that are required. The designer writes the code to collect the
selections made in the first wizard, and to display (or not) the other wizard pages that are
dependent on the selections made.

In summary, when using custom wizards, the designer is responsible for:

 Laying out the wizards.
 Writing code to control the transition between the wizards and out of the wizards.

 Writing code to initiate the building of the workbook.

The Wizard Tool only helps the designer in the first aspect of this work. The designer
(the one who establishes the layout of these wizards) is expected to have knowledge of
the process of controlling, collecting, and processing the information from these wizards.

The rest of this section describes working with layout of the custom wizards.

Create a Wizard Group

Navigate: In the Configuration Components pane, select Project – Solution –

Wizards. The Wizard Designer window opens in the workspace.

Wizards

202 Oracle Retail Predictive Application Server

Wizard Designer Window

1. In the Wizard Designer window, click the New Wizard button.

2. In the Wizard Group area, click in the Value field, and enter the name of the Wizard
Group.

Create a Wizard Page
1. Click the button to add the appropriate control:

Button Function

Supports the creation of a new dynamic wizard.

Supports the creation of a two tree page.

Supports the creation of a label field that cannot be edited in the resulting
wizard.

Supports the creation of a radio button field from which the user can make
one choice from several options.

Supports the creation of a checkbox field from which the user can make
multiple choices from multiple options.

Allows the insertion of a drop-down list box from which the user can select
the entered choices. The selection will be displayed in the text box.

Allows the insertion of a field in which the user can enter free-form text.

Allows the insertion of a list box that contains a list of items from which the
user can select.

Supports the creation of a labeled area in the wizard where other wizard
elements can be grouped.

Allows the insertion of a date picker (spinner) that contains independently
scrollable date components.

Allows the insertion of a single tree into the wizard.

 Wizards

 Solutions 203

Button Function

Allows the insertion of a generic object in the wizard.

2. Click on the wizard page grid to place the selected control on the page.
3. If necessary, drag the control to the appropriate place on the grid to reposition it.

4. In the Widget area, enter the following information:
 Name – The RPAS internal name of the control.

 Type – The control type.

 Text – The text to be displayed on the control label.

 Time_Format – The format of the time. There are two valid inputs for this
attribute: 12 and 24. Use 12 if you want to use a 12-hour clock (for example, the
time appears like 10:58PM). Use 24 for a 24-hour clock (for example, the time
appears like 22:58).

 Align – The same as the style attribute. Valid values are left, right, center,
multiline, and flip depending on the type of widget being created.

 Func – Indicates whether the widget will be dynamic or static. These are the only
valid values for this attribute.

 Locx – The x coordinate of the control on the wizard page. The value of this field
is automatically changed when the control is moved using your mouse.

 Locy – The y coordinate of the control on the wizard page. The value of this field
is automatically changed when the control is moved using your mouse.

 Width – The width of the control in pixels.

 Height – The height of the control in pixels.

Edit Wizard Control Properties

Navigate: In the Configuration Components pane, select Project – Solution –

Wizards. The Wizard Designer window opens in the workspace.

Wizard Designer Window

1. Select the wizard group tab that contains the wizard to edit.

2. Select the wizard tab that contains the widget to edit.

Wizards

204 Oracle Retail Predictive Application Server

3. Select the widget.

4. In the Widget area, update the information as necessary.

System Preferences 205

5
System Preferences

Overview
General preferences can be set for the Configuration Tools at the workbench level, which
refers to the entire tool. This includes the domain type and general preference settings.

Global Domain

Overview
A Global Domain environment provides the ability to view data from multiple physical
domains in a single workbook, and to administer common activities centrally across the
RPAS solution.

Domains can be built in one of two methods:
 Simple Domain – This is the traditional, stand-alone domain that has no visibility to

other domains.

 Global Domain – This is a domain environment that contains two or more local
domains (or sub-domains) and a master domain that has visibility to all local
domains that are part of that environment.

There are two primary functional benefits in using a Global Domain environment:
 The ability to have a global view of data in workbooks.

 The end user can build workbooks with data from multiple local domains, refresh
global workbook data from local domains, save global workbooks, and commit the
data from global workbooks to the individual local domains.

Local domains are typically organized (partitioned) along organizational structures
that reflect user responsibilities and roles. Most users will only work within the local
domain(s) that contain their area of responsibilities, and they may not need to be
aware of the Global Domain environment. For the Fusion Client, position level
security is used to guide users into the domains in which they have some access. For
performance and user contention reasons, Global Domain usage should be limited to
relatively infrequent processes that require data from multiple local domains.

 Configuration and Administration.
 Most of the mechanisms that are required to build and administer a domain are

centralized, so they need only be run in the “master” domain, which either
propagates data to the local domains or stores it centrally so that the local domains
reference it in the master.

Note: For a Global Domain environment to function properly, all
local domains must be structurally identical.

Measure Data
In a global domain environment, measure data can be physically stored across the local
domains or in the master domain.

Global Domain

206 Oracle Retail Predictive Application Server

Measure data that is stored in local domains is split across the domains based on a pre-
determined level of a given hierarchy. This level is defined during the configuration
process, and it is referred as the “partition” level.

The base intersection of a measure (the dimensions that a measure contains) determines
whether data is stored in the local domains or in the master domain. The data will be
stored in the master domain if the base intersection of a measure is above the “partition”
level or if it does not contain the hierarchy on which the Global Domain environment is
partitioned. This type of measure is referred to as a “Global Domain measure,” or a
“Higher Base Intersection measure.”

Consider a global domain environment where the partition-level is based on the
Department dimension in the Product hierarchy. In this scenario, data for measures that
have a base intersection in the Product hierarchy at or below Department (other
hierarchies are irrelevant for this discussion) is stored in the local domain. This is based
on the Department that the underlying position in the Product hierarchy belongs to.

Measures that have a higher base intersection in the Product hierarchy than Department
(for instance, Division) or measures that do not contain the Product hierarchy (such as a
measure based at Store/Week) cannot be split across the local domains. These measures
will reside in the master domain, and they will be accessed from there when these
measures are required in workbooks.

All measures will be registered in the master domain, and they will be automatically
registered in all local domains. RPAS automatically determines where the measure needs
to be stored by comparing the base intersection of the measure against the designated
partition-level of the Global Domain environment.

The physical location of the measure data will be invisible to the user after the measure
has been registered.

Multi-Language
RPAS domains are built to be used in English only or in English and other languages.
Multi-lingual domains allow for most data elements in an RPAS domain to be translated
into another language. The translation process is managed by the Oracle Translation
group and is handled as a separate agreement with Oracle.

Note: An existing domain cannot be converted to multi-
lingual after it has been built.

Solution ID
A taskflow that includes multiple solutions creates the possibility for information in the
taskflow of one configuration to collide with the information in the taskflow of another.
For example, two different configurations could each contain an activity named
Activity1. Because it is not possible at solution configuration time to know the full set of
solutions that might be combined using a multi-solution taskflow, it is not possible to
prevent such conflicts through configuration validation.

In order to prevent collisions between the taskflow information of multiple
configurations, the solution ID is used. It is a property of the configuration. Each
configuration can have a different Solution ID which defaults to the name of the
configuration.

When generating taskflow resources, the solution ID for the configuration is used as a
prefix to all keys. In addition, every task generated out of the Configuration Tools as part
of the taskflow resources used by the Fusion Client has a solution ID attribute used to
identify to which solution the task is applicable. Note that multi-solution taskflow

 Global Domain

 System Preferences 207

implementations that contain multiple instances of a solution are required to specify
unique Solution IDs for each instance of that solution to prevent collisions.

For users upgrading to 14.0, the default value of solution name is used for the solution ID
so that no additional configuration work is required for users not implementing a multi-
solution taskflow.

Setting Workbench Preferences
Navigate: From the File menu, select Tools Preferences. The Workbench Preferences
window opens.

1. Select the General tab and select the appropriate options.

Workbench Preferences Dialog – General Tab

 The main file menu lists configurations that were recently opened. The number
of configurations is displayed in this menu. To set the number of configurations,
set the "Most recently used workspaces to show" field by using the up and down
arrows.

 Select the Measure Content Validation check box to enable measure content
validation. Deselect the check box to disable measure content validation. A
change to the properties of a measure can affect the validity of a large number of
components both within the Rule Tool and the Workbook Tool. Whenever a
measure editing session is completed (for instance, upon exiting the Measure
Manager and entering a different tool), the workbench will evaluate the effects of
the edits made upon the measures. This process can be time consuming. When
the Measure Content Validation option is unchecked, the automatic validation of
measure property edits is disabled. This allows for rapid transitioning between
tools when working on a large configuration, because it will not be necessary to
await the completion of the automatic validity checking. When automatic
validation is disabled, a manual check of measure validity can be enabled from
the Rule Tool. This allows you to manually update the measure content
validation of the Rule and Workbook Tools (see Measure Validation within the
Measure Manager for more information).

2. Select the Measure Manager Options tab and adjust the fields as needed.

Global Domain

208 Oracle Retail Predictive Application Server

Workbench Preferences Dialog – Measure Tool Options Tab

 Number of Measures/Page – The Measure Manager display only a certain
number of measures per page in the Measure tab. This option determines the
number of measures that appear on a page.

 Display Measures by – This list provides two options, name and label, and
determines whether measures are displayed using their name or label in the
Configuration Tools. For example, in the Workbook Tool when selecting
viewable measures, the name or the label will be displayed depending on the
selection here.

 Display Measure components by – This list provides two options, name and
label. Your selection determines how measure components in the Measure
Manager are displayed.

3. Click OK to save any changes, and close the window.

Setting Configuration Properties
Navigate: From the File menu, select Configuration Properties. The Configuration
Properties dialog box opens.

 Global Domain

 System Preferences 209

Configuration Properties Dialog Box

The Configuration Language field is disabled by default. English is displayed in the field
because currently configurations can only be in English.

1. Select the following options as necessary:

 Global Domain– Select this option if the configuration uses a global domain
environment. This enables the creation of workbooks in multiple domains and to
administer and update multiple domains from a single master domain.

 MultiLanguage – Select this option if the configuration supports multiple
languages in the domain.

2. Enter the following properties as necessary:

 Application Version – Enter the application version in the format
ApplicationName:ApplicationVersion.

 Solution ID – Enter a unique identifier for the configuration. The default is the
name of the configuration. The solution ID is used to help integrate multiple
domains using a combined taskflow.

Note: See the Taskflow Configuration section for more information
on multi-solution taskflow configuration.

3. Click OK to save any changes, and close the window.

Configuration Utilities 211

6
Configuration Utilities

Overview
The utilities in this section are standalone utilities that can be run externally or they can
be launched from the utilities menu of the Configuration Tools. The utilities provided
include the Configuration Converter and the Function Library Manager, which are
described in detail.

Configuration Converter

Overview

Note: The functionality for converting a configuration is
provided directly through the Configuration Tools. See the
section, “Open an Existing Project from an Older Version of
the Configuration Tools” in Chapter 3.

The Configuration Converter is a standalone utility that converts a configuration that
was originally created and saved in a prior release of the Configuration Tools. Only
configurations created in a prior major release need to be converted. Configurations
saved in previous versions of the same major release, but in different minor releases, do
not need to be converted.

Launching the Configuration Converter
The Configuration Converter can be accessed in three ways:

1. From the Utilities menu in the Configuration Tools, select Configuration Converter.
The Configuration Converter window appears.

RPAS Configuration Converter Window

212 Oracle Retail Predictive Application Server

2. From the Windows Start menu, select Oracle – RPAS – Utilities, and select
Configuration Converter. The Configuration Converter window appears. If this
shortcut does not appear, refer to the Oracle Retail Predictive Application Server
Installation Guide for information about creating it.

3. Go to a command prompt. Run the RpasConverter.exe file in the \utilities directory
where the Configuration Tools were installed and run the following command:
RpasConverter -c C:\PathToConfig\Config\Config.xml [OPTIONS]
The following options can be used from the command line:
-b BackupDir
Use this argument to create a backup of the original configuration in BackupDir
location specified.
-g
Use this argument to open the RPAS Configuration Converter screen shown above.
-h
Use this argument to display usage information.

Converting a Configuration
1. In Configuration location field, enter path and configuration file name to be

converted. This is the file in the configuration's directory that has the configuration
name with an ".xml" extension. You may also click the Browse button to navigate
and select the appropriate file. Make sure to provide the file extension in the
Configuration location field.

Example of Configuration location field entry:

C:\Configs\MyConfig\MyConfig.xml

2. Optional: In the Backup current configuration to field, enter a directory where a
copy of the original configuration will be stored. You may also click the Browse
button and to navigate and select a directory.

Note: The directory entered must not already contain a directory
whose name is the name of the original configuration. For example,
to put a backup of a configuration named "MyConfig" in a directory
"C:\Backups," "C:\Backups\MyConfig" must not exist.

3. Using the Convert to version list, select the version to convert to. This should always
be the current version of the Configuration Tools unless there is a good reason to
convert to some older version.

4. Click Convert Now.
5. If the conversion was successful, it may now be opened in the Configuration Tools. If

there was an error while converting, an error message will be displayed, and the
original configuration will remain untouched.

Note: See the Oracle Retail Predictive Application Server Administration
Guide and Oracle Retail Predictive Application Server Installation Guide
for more information on the domain installation and upgrade
process.

 Configuration Utilities 213

Functional Library Manager

Overview
The RPAS calculation engine is designed to be extensible with support for custom
functions or procedures that can be used in normal expressions. For validation purposes,
the Configuration Tools are only aware of the standard RPAS functions and procedures,
so they will generate an error for any expressions that use custom functions or
procedures. The Function Library Manager is used to provide validation for custom
functions or procedures within the Configuration Tools. The custom functions or
procedures must exist in the /applib directory of the RPAS_HOME directory. If
necessary, this utility can also be used to remove custom function libraries from being
validated. There is no validation for the existence of the function libraries in
RPAS_HOME/applib directory. When a function library is removed using the Function
Library Manager, it is removed only from the list of external libraries used for validation,
and the contents of RPAS_HOME/applib directory are left intact. The function libraries
mentioned in this list are loaded by the Configuration Tools and will be used to perform
rule validation.

Speak to an Oracle Retail Services representative for additional information about custom
functions and procedures.

Launching the Functional Library Manager
Navigate: From the Utilities menu in Configuration Tools, select the Function Library
Manager, or run the Functional Library Manager.bat file from the utilities directory
where the Configuration Tools is installed. The Function Library Manager window
appears.

Function Library Manager Window

Adding a Function Library to Be Validated in the Configuration Tools
Perform the following procedure to add a function library to the Configuration Tools:
1. Launch the Function Library Manager.

2. Click Add. The Input dialog box appears.

214 Oracle Retail Predictive Application Server

Input Dialog Box

3. Enter the name of the library you want recognized.

Note: Enter the name without the *.dll or *.so extension.

4. Click OK.

5. Click Accept to save any changes and close the window.

Removing a Function Library from Being Validated in the Configuration Tools
1. Launch the Function Library Manager.
2. Select the Function Library you want to remove from the validation process.

3. Click Remove. The Function Library is removed from the list.

4. Click Accept to save any changes and close the window.

Report Generator

Overview
The Report Generator is a utility that may be used to extract information about a
configuration for external use. The information is generated in a structured text
document that is much easier to manipulate than the XML format of the configuration
files that are saved and loaded by the workbench. Many of the reports correspond to files
generated as a part of the installation process.

Available Reports
The following reports can be created using the Report Generator:

 Measure Extractor – This report generates a text file that lists the measure content of
a solution.

 Data Interface Report – This report generates a text file that lists the properties of all
of the measures in the project that have been added to the Data Interface Tool.

 Measure Description Translation – This report generates a translation file similar to
the file generated as part of the installation process. It allows the extraction of
measure descriptions for a project without the need to build the domain first.

 Measure Label Translation – This report generates a translation file similar to the file
generated as part of the installation process. It allows the extraction of measure labels
for a project without the need to build the domain first.

 Measure Patch Report – This report examines a previous version of a configuration
to determine which measure properties have changed between the two versions. It is
used to determine which measures will be added, removed, or updated during a
patch installation.

 Rule Extractor – This report generates a text file that lists the rule content of a
solution.

 Configuration Utilities 215

 Rule Group Label Translation – This report generates a translation file that is
similar to the file generated as part of the installation process. It allows the extraction
of rule group labels for a project without the need to build the domain first.

 Workbook Extractor – This report generates a text file that lists the workbook
content of a solution.

 Workbook Group Label Translation – This report generates a translation file that is
similar to the file generated as part of the installation process. It allows the extraction
of workbook group labels for a project without the need to build the domain first.

 Workbook Label Translation – This report generates a translation file that is similar
to the file generated as part of the installation process. It allows the extraction of
workbook labels for a project without the need to build the domain first.

 Messages Translation – This report generates a translation file that is similar to the
file generated as part of the installation process. It allows the extraction of messages
issued by the RPAS Client for a project without the need to build the domain first.

 Dimension Label Translation – This report generates a translation file that is similar
to the file generated as part of the installation process. It allows the extraction of
dimension labels for a project without the need to build the domain first.

 Hierarchy Label Translation – This report generates a translation file that is similar
to the file generated as part of the installation process. It allows the extraction of
hierarchy labels for a project without the need to build the domain first.

 Hierarchy.xml Report– This report generates the hierarchy.xml resource file used by
RPAS during the domain creation and the dimension patching processes.

 Taskflow Description – This report generates the taskflow.xml document used by
the RPAS Fusion Client similar to the file generated as part of the installation
process. It allows the creation of the xml file without the need to build or patch the
domain first.

• Taskflow Resources – This report generates the Resource Bundle used by the RPAS
Fusion Client similar to the file generated as part of the installation process. It allows
the creation of the resources bundle without the need to build or patch the domain
first.

Generate a Report
Perform the following procedure to generate a report:

1. Select the project that requires the report.

2. Select Generate Reports from the Utilities menu. The Select a Report dialog box
opens.

216 Oracle Retail Predictive Application Server

Select a Report Dialog Box

3. Select the desired report from the list in the left pane of the generator dialog. The
right pane displays a short description of the currently selected report.

4. Select Generate Report to begin the report generation process.

5. Depending upon the report in question, there may be a number of options to specify
in further dialogs. These options commonly include the location where the generated
file is to be stored or the selection of a single solution from the project.

6. Once all options have been specified, click OK to generate the report. The OK button
will not be enabled until all options have been specified.

Integration Tool 217

7
Integration Tool

Overview
The RPAS platform supports the integration of domains with a Data Mart maintained
within an Oracle Database instance. Once integrated, a domain will be able to
automatically push data into and pull data out of the database in order to perform
operations such as workbook building and committing. By integrating multiple RPAS
domains with a single Data Mart, it will be possible for domains to share data
automatically through transparent platform processes without the need for batch
processes to synchronize information.

In order to support these behaviors, an RPAS Data Mart must be created within an
Oracle Database instance. Due to the highly configurable nature of RPAS domains, it will
be necessary to allow an equally flexible configuration of the objects and information
present within the Data Mart. The process of determining the objects required for a RPAS
Data Mart and the specification of their relevant properties is the Integration
Configuration process.

RPAS Data Mart

Overview
The RPAS Data Mart, or RDM, is a persistent data store maintained within an Oracle
Database. The RDM is used as a central repository and storage of record for customer
data that can be produced and/or consumed by the processes performed in one or more
RPAS domains that are integrated with that RDM.

The primary purpose of the RDM is to maintain a set of facts. These facts, which are
stored within in tables of the Oracle Database, are conceptually equivalent to the
measures of a RPAS domain. In addition, the information within a fact is structured in a
manner that is functionally equivalent to the multi-dimensional system present in a
RPAS domain.

It is therefore possible to access fact information through an address composed of a set of
positions along discrete dimensions. Each row of a fact table, like a cell within an RPAS
array, corresponds to a unique combination of positions along one or more dimensions
(for example, a single sku, store, and week). However, unlike a RPAS array, a fact table
may contain values for multiple facts within a single table. Each fact is represented by a
distinct column within the fact table.

For any given column (fact) and row (position address) a table will contain a value if the
fact has a populated value for that address but will contain an empty cell for that column
should the fact have no value for that address.

The RPAS Data Mart also maintains tables to describe the hierarchies and dimensions
used to structure the facts contained within the Data Mart. This information is stored
within a separate set of tables, known as dimension tables, in a manner analogous to the
dimension arrays of an RPAS domain. As with the hierarchies and dimensions of an
RPAS domain, the dimension tables of a RPAS Data Mart can be administered in order to
add, remove and modify individual positions and has the ability to represent the
child/parent relationships that describe the multiple levels represented by the
dimensions of a hierarchy.

218 Oracle Retail Predictive Application Server

Integration Configuration Components

Overview
In order to properly configure the RPAS Data Mart, it is necessary to supply information
about three components. These components are the Shared Hierarchies and Dimensions,
the Shared Facts and the Integration Map. The information about these components is
stored in a XML document referred to as the integration configuration which is created
and maintained by the RPAS Configuration Tools. In addition, the integration
configuration contains a fourth component used internally by the Configuration Tools to
manage the configuration process.

Shared Hierarchies and Dimensions

Overview
The information contained within the fact tables of a RPAS Data Mart, like the
information contained within the measures of a RPAS domain, is structured to represent
a set of multidimensional relationships. This structure is represented by a set of
dimensions that are defined along hierarchies that describe the space in which the
information is relevant. These hierarchies can represent common familiar constructs such
as the Calendar, Location or Product hierarchies. They can also represent concepts that
are application specific.
The Integration Configuration contains information about the hierarchies represented
within the RPAS Data Mart. It also contains information about the structure of the
dimensions that are defined within a hierarchy. As with a domain configuration,
dimensions are defined in a tree structure to allow the representation of roll-up
information.

When configuring the hierarchies and dimensions of the RDM, it is not necessary to
include every hierarchy and dimension within the domain configuration of a domain
integrated with that RDM. It is only necessary to define the set of dimensions that form
the intersections of the facts used to share measure data.

In cases where the domains integrated with a RPAS Data Mart have non-identical
hierarchical representations, it may also be necessary to include one or more dimensions
so that every hierarchy has a single root dimension and all dimensions within the
hierarchy can be fully expressed by one-to-one or one-to-many parent-child
relationships.

Furthermore, it may be desirable to include additional dimensions within a RPAS Data
Mart even if their inclusion is not motivated by requirements of integration. For example,
additional dimensions that are not used in fact intersections may be included in order to
support reporting against the Oracle Database.

Shared Hierarchies Properties
When defining a shared hierarchy, it is necessary to specify the following properties:

 Hierarchy Name – This is the name of the hierarchy. The name of a hierarchy within
the RDM should correspond to the RPAS Name of a domain hierarchy in order for
that domain hierarchy to participate in sharing data with the RDM.

 Hierarchy Label – The label is a user label used to identify the hierarchy in reporting
and user notification.

 Hierarchy Purge Age – The purge age is the amount of time RPAS will continue to
store a hierarchy position after the position is no longer included in hierarchy load

 Integration Tool 219

files. If the amount of time in days has passed since the last hierarchy load which
contained an entry for a given position, that position will be marked for purging
from the system.

 Hierarchy Order – As with hierarchies in a RPAS domain, the hierarchies of a RPAS
Data Mart must be ordered. This ordering will be used in the construction of the
tables holding fact information within the RDM. In order for a RPAS domain to
participate in sharing data with a RDM, it is necessary for the relative order of the
hierarchies within that domain to be the same as the relative ordering of the
hierarchies within the RDM. It is not necessary for the hierarchies within a domain to
have identical values for the order attribute as the RDM hierarchies but the order of
hierarchies relative to each other must be the same.

Shared Dimensions Properties
When defining a shared dimension, it is necessary to specify the following properties:
 Dimension Name – This is the name of the dimension. The name of a dimension

within the RDM should correspond to the RPAS Name of a domain dimension in
order for that domain dimension to participate in sharing data with the RDM.

 Dimension Label – The label is user label used to identify the dimension in reporting
and user notification.

 Position Format – As within a RPAS domain, the root dimension of the Calendar
hierarchy must have a defined position format. The position format describes how to
represent a time in the format of the position names of the root dimension and is
used to determine which position within the Calendar root dimension corresponds to
any given point in time.

Shared Facts

Overview
Shared Facts are entities within the RPAS Data Mart that correspond to measures within
a RPAS domain. Like domain measures, facts are defined as either scalar or multi-
dimensional. Once a RPAS domain has been integrated with a RPAS Data Mart, it is
possible to specify mappings of domain measures to RDM facts. These mappings allow a
RPAS domain to use the fact as it resides within the Oracle Database to store the
information previously associated with the domain measure.

Information can be pulled from and pushed to the Oracle Database automatically as a
part of domain operations, making the fact within the Oracle Database the store-of-
record for the information. When multiple domains are integrated into a single RPAS
Data Mart, there can be several mappings for a single fact, one in each domain. When this
occurs, the domains can seamlessly share a single version of the fact information without
the need for overt integration operations of data duplication and synchronization.

Within the RPAS Data Mart, facts are stored within fact tables. The RDM has the ability
to store multiple facts within a single table. When this occurs, each fact is represented by
a separate column within the table, while the rows of the table represent the positional
addresses for the dimensional space of the fact.

By grouping multiple facts within a single table, the RPAS Data Mart is able to reduce the
amount of time required to retrieve information from the Oracle Database. Measures that
are often read and/or written together and that contain the same fill pattern (or sets of
addresses which have data as opposed to addresses for which no data is present) can be
quickly accessed together when grouped in a single table.

220 Oracle Retail Predictive Application Server

Conversely, grouping facts together in a single table can have an adverse impact on data
access if those facts are not accessed together and if those facts do not tend to have
similar fill patterns. For this reason, the assignment of facts to fact tables and the
grouping of facts within a table can have a large impact on system performance.

Shared Fact Properties
Shared Facts are defined by a number of properties. The majority of the properties
involve the definition of the type of data represented by the fact while some are used to
describe where and how the fact is stored within the fact tables of the RDM. The
properties of a shared fact are:

 Fact Name – This is the identifier of the fact. It is used by RPAS to determine which
fact is required for any given operation.

 Fact Label – This is a user label that can be used to represent the fact in reporting and
user notification.

 Fact Intersection – The intersection of a fact, like the intersection of a measure,
describes which dimensions are used to define the address space of the fact. In order
for a domain to share a measure’s data with a RDM fact, the domain measure must
have the same intersection as the RDM fact.

 Fact Type – The fact type describes the type of data stored within the fact. These
types are drawn from the set of defined RPAS measure types (real, integer, Boolean,
Date and string). In order for a domain to share a measure’s data with a RDM fact,
the domain measure must have the same type as the RDM fact.

 Fact Group – The fact group is an organizational attribute that is used to distribute
facts across fact tables within the RDM. A single fact table will contain the
information for all facts belonging to a single fact group. Due to the large impact
efficient grouping of facts can have on system performance, best practices regarding
the assignment of facts to fact groups are described in section 3.3.

 Fact Table – The fact table is the physical name of the fact table within the Oracle
Database that will contain the data associated with the fact. This attribute is derived
from the fact group and need not be configured separately.

 Fact Description – The fact description is a property that allows the description of
the context of the data contained within a fact. It can be used for reporting or user
notification.

 Fact Na Value – The Na value of a fact is the implied value of that fact for any
positional address for which the fact’s fact table does not contain a value. It is
analogous to the Na value of a measure within a RPAS domain. In order for a
domain to share a measure’s data with a RDM fact, the domain measure must have
the same Na value as the RDM fact.

 Fact Purge Age – The fact purge age is an attribute used by RPAS to determine how
long information loaded into a fact should be maintained by the system before it is
purged as obsolete.

Integration Map

Overview
The Integration Map is the structure that describes which domain measures share data
with the facts contained within the RPAS Data Mart. The map is made up of a set of
entries; each entry describes the fact within the RPAS Data Mart and the domain and
measure that participate in the sharing.

 Integration Tool 221

Integration Map Properties
Integration Map properties include:

 Shared Fact – The fact within the RDM that will store the data to be used by the
domain measure participating in the sharing.

 Domain Id – An identifier that describes which domain the measure participating in
the sharing is defined.

 Domain Measure – The measure within the domain that participates in the data
sharing.

Integration Map Constraints
In order for a measure to be eligible to share data with a RDM fact, the measure must
have compatible values for several of the properties of the fact.

 Measure Type – The data type of the measure must be the same as the data type of
the fact.

 Measure Na Value – The Na Value of the measure must be the same as the Na Value
of the fact.

 Measure Base Intersection – The base intersection of the measure must be the same
as the fact intersection. Note that, in configurations that make use of the hierarchy
indirection feature of the Configuration Tools, the literal value of the intersection
property of a measure may differ from the fact intersection due to use of the RPAS
Name dimension attribute or labeled intersections; in such cases, the RPAS internal
intersection is used in place of the literal value of the measure intersection property
for this check.

Domain Information

Overview
The Integration Tool uses the domain information to identify the domain configurations
of the domains that are being integrated into the RPAS Data Mart. This information is
used internally be the Integration Tool for many of its processes.

Domain Information Properties
Domain Information properties include:

 Domain Identifier – This is an identifier used to describe the domain within the
Integration Map.

 Configuration Location – This is the location of the configuration that represents the
domain. It is used by the Integration Tool to determine which version of a
configuration should be used by the Integration Tool.

Integration Tool

Overview
In order to allow the creation and maintenance of the Integration Configuration, a new
tool will be added to the Configuration Tools. This tool, called the Integration Tool, will
allow users to specify the metadata of the RPAS Data Mart be creating shared
hierarchies, dimensions and facts. It will also allow users to maintain the Integration
Map used to describe which domain measures will participate in data sharing with the
RDM shared facts.

222 Oracle Retail Predictive Application Server

Unlike the other tools used within the RPAS Configuration Tools, an instance of the
Integration Tool is not tied to a domain configuration. Instead, a new XML document,
called the integration configuration, is used to store all integration-related information.
 As a result, there is no integration-related information in a domain configuration and,
therefore, it is not necessary to modify a domain configuration when specifying
integration information. This negates the need for multiple copies of domain
configurations to support different integration scenarios or to support integrated versus
non-integrated domains.

Working Integration Configurations
Like domain configurations, integration configurations can be accessed within the
Configuration Tools through the File menu. Use the Open Integration Configuration
option to open an existing configuration or the New Integration Configuration option to
create a new configuration.

New Integration Configuration Menu Item

Once an integration configuration has been created or loaded, the Integration Tool will
load into the Configuration Tools Workbench.

When creating an integration configuration, users will be prompted to give the new
configuration a name and select a location in which to save the configuration. Users will
also have the ability to specify the language of the labels entered within the Integration
Tool. When loading the labels contained within the Integration Configuration, RPAS will
associate the contained labels with the language of the configuration.

 Integration Tool 223

Integration Configuration Dialog Box

Once an integration configuration has been created, the language setting for the
configuration may be inspected and modified using the Configuration Properties dialog.

Configuration Properties Dialog Box

The Integration Tool contains four tabs: Configurations, Shared Hierarchies, Shared Facts
and Integration Map. Each tab allows configuration of one of the four components
described below.

224 Oracle Retail Predictive Application Server

Integration Tool within the RPAS Configuration Tools

The Integration Tool contains four tabs: Configurations, Shared Hierarchies, Shared Facts
and Integration Map. Each tab allows configuration of one of the four components
described below.

Changes to an integration configuration may be saved using the Save or Save As options
within the File menu and an open integration configuration can be closed using the Close
or Close All options.

When working with multiple integration configurations or with a mixture of integration
configurations and domain configurations, the Configuration Components pane can be
used to navigate to integration configurations, which are represented within the pane by

the icon.

Configuration Components Pane

Working with Domain Information
The Configurations tab can be used to register domain configurations with an integration
configuration. When working with the Integration Tool, users will be able to create
integration configuration content by referencing domain configuration content in
registered domain configurations. As such, it is necessary to add an entry to the
Configurations tab for each domain configuration that will be used in conjunction with
the configured RPAS Data Mart.

 Integration Tool 225

Configurations Tab of the Integration Tool

A domain configuration can be registered with the integration configuration by clicking
the Add menu bar button. When this happens, a dialog will appear to allow the selection
either of a domain configuration currently open in the Configuration Tools or for a
domain configuration saved on disk to be registered by entering the location of the
configuration.

Add Domain Configuration Dialog Box

The Domain Identifier and Configuration Location properties can be edited within the
Configuration tab and, should it be desired, a currently registered domain configuration
can be removed using the Remove button.

Working with Shared Hierarchies

Overview
The Shared Hierarchies tab is used to configure the shared hierarchies and dimensions
that will exist within the RPAS Data Mart.

226 Oracle Retail Predictive Application Server

Shared Hierarchies Tab of the Integration Tool

The Shared Hierarchies tab looks very similar to the Hierarchy Tool of the Configuration
Tools and behaves in many ways the same. Users of the Hierarchy Tool will therefore
find that working with the Shared Hierarchies tab will be familiar to them.

Hierarchies and Dimension can be added and removed using the appropriate menu bar
buttons. In addition, the structure of dimensions can be modified through drag-and-
drop, just as in the Hierarchy Tool.

Users can also modify the properties of a shared hierarchy or shared dimension through
editing the table present in the Shared Hierarchy tab.
One new feature within the Shared Hierarchy tab is the Import Hierarchy menu button.
 The Import Hierarchy button, when clicked will launch a dialog that allows users to
select multiple domain hierarchies and dimensions at once from an open domain
configuration. When the user clicks okay within the dialog, shared hierarchies and
dimensions will be created based upon the properties of the imported domain hierarchies
and dimensions.

 Integration Tool 227

Import Dimensions Dialog Box

In the figure above, hierarchies and dimensions that already exist inside the integration
configuration appear as a shaded and disabled check box. Dimensions present in the
selected domain configuration (should more than one be open) appear as unchecked.
 Users can check these hierarchies and dimensions to specify what content should be
created in the Integration Configuration. By clicking the okay button within the Import
Dimensions dialog, the Integration Tool will create Shared Hierarchies and Dimensions
corresponding to the selected components.

228 Oracle Retail Predictive Application Server

Shared Hierarchies Tab with the Selected Content Imported

Shared Hierarchies Tab Validations
The Integration Tool supports several validations on hierarchy and dimension content.
 As with the traditional Configuration Tools, these validations are evaluated in real-time
as content is rendered by the UI. When a property of a hierarchy or dimension violates a
validity constraint, the field displaying that property will paint with the Configuration
Tools-standard red text color. In addition, the tooltip for the invalid cell will contain a
message describing the validity constraint that has been violated.

The following validity constraints have been defined for shared hierarchies and
dimensions:

Hierarchy Name
 Hierarchy name is a required property. It cannot be empty.

 Hierarchy names must be valid names for RPAS hierarchies. They cannot exceed
four characters in length, must begin with a letter and can contain only letters and
numerals.

 All hierarchy names must be unique. No other element in the Integration
Configuration may share the name of a shared hierarchy.

Hierarchy Label
Hierarchy labels are not validated.

Hierarchy Purge Age
 Purge Age is a required property. It cannot be empty.

 Purge Age must be a positive integer value.

Hierarchy Order
 Hierarchy order values must be positive integer values between 999 and 9999.

 The Calendar hierarchy must be registered at order 999.

 No hierarchy can have a lower order value than the hierarchy that precedes it.
 If any registered domain configuration is currently loaded in the Configuration

Tools, the order of the shared hierarchies will be compared to the domain hierarchies
to validate that the relative ordering of hierarchies is identical.

 Integration Tool 229

Dimension Name
 Dimension name is a required property. It cannot be empty.

 Dimension names must be valid names for RPAS dimensions. They cannot exceed
four characters in length, must being with a letter and can contain only letters and
numerals.

 All dimension names must be unique. No other element in the Integration
Configuration may share the name of a shared dimension.

Dimension Label
Dimension labels are not validated.

Dimension Position Format
 The root dimension of the Calendar hierarchy must have a defined position format.

 No dimension that is not the root dimension of the Calendar hierarchy may have a
defined position format.

 The supplied position format must be a valid RPAS format.

 The supplied position format must be a valid Oracle date format.

Calendar Hierarchy
1. If an integration configuration includes the Calendar hierarchy, that hierarchy must

include the day dimension.

Working with Shared Facts

Overview
The Shared Facts tab allows users to configure the shared facts that will exist within the
RPAS Data Mart.

Shared Facts Tab
The main feature of the Shared Facts tab is the fact table. This table lists the shared facts
that have been defined within the integration configuration. Users can manage the
properties of configured facts by editing the appropriate cell within the fact table. As is
the case within the Measure Tool, many attributes support the use of smart editors.
 These editors allow selection from a drop-down list of options or can be used to launch a
dialog to assist in the specification of values. In addition, most fact properties are
validated and will provide feedback to the user when the specified value is not
permitted.

New facts can be added to the integration configuration be clicking the Add Fact menu
button. Existing facts can be removed by selecting the fact and clicking the Remove Fact
menu button. In addition, the Shared Fact tab contains the ability to create a fact based
upon a configured domain measure. This process can be launched by clicking the Import
Fact menu button.

230 Oracle Retail Predictive Application Server

Shared Facts Tab

Import Facts
When the Import Fact dialog is launched, it will prompt the user to select the domain
configuration (if more than one is open in the Configuration Tools) and solution the user
wants to import information from. Once the domain and application are selected, the
right-hand list will populate with all measures contained within the application that have
configured database values. If the user wishes, the list can be further filtered to exclude
all measures whose intersections contain dimensions that are not configured within the
Shared Hierarchies tab. Finally, users can enter a string of text; only measures whose
name contains that string will be shown.

When the desired measure has been selected within the list and the Ok button has been
pressed, the Integration Tool will create a new fact. The new fact will have most of its
properties automatically specified by using the value of the corresponding measure
property (for example, the fact type will be set to be the data type of the selected
measure).

Import Fact Dialog Box

 Integration Tool 231

Shared Fact Tab Validations
The Integration Tool supports several validations on fact content. As with the traditional
Configuration Tools, these validations are evaluated in real-time as content is rendered
by the UI. When a property of a fact violates a validity constraint, the field displaying
that property will paint with the Configuration Tools-standard red text color. In
addition, the tooltip for the invalid cell will contain a message describing the validity
constraint that has been violated.

The following validity constraints have been defined for shared facts:

Fact Name
 Fact name is a required property. It cannot be empty.

 Fact names must be between one and thirty characters in length. They must begin
with a letter and can contain letters, numerals and underscores.

 All fact names must be unique. No other element in the integration configuration
may share the name with a fact.

 Some names reserved for use by RPAS. In addition, fact names may not end with
certain strings, such as _id, _stg, _ft.

Fact Label
Fact labels are not validated.

Fact Intersection
 Fact intersection is a required property. It cannot be empty but may be scalar.

 All dimension references in a fact’s intersection must resolve to dimensions that exist
in the RDM.

 Intersections cannot contain references to more than one dimension in any single
hierarchy within a fact intersection.

Fact Type
 Fact type is a required property. It cannot be empty.

 Fact type must conform to one of the set of valid RPAS measure types.

Fact Group
 Fact group is a required property. It cannot be empty.

 Fact groups must be between one and twenty characters.

 Fact groups must begin with a letter and can contain letters, numerals and
underscores.

 No two facts may have the same fact group if they do not have the same intersection.

Fact Table
Fact table is a derived property and so is not itself validated

Fact Description
Fact descriptions are not validated.

Fact NA Value
 Fact NA Value is a required property. It cannot be empty.

232 Oracle Retail Predictive Application Server

 The value provided for fact NA Value must be valid based upon the type of the
measure. The guidelines for what values are valid for any given type are identical to
those used for measure NA Values.

Fact Purge Age
Fact purge age is not validated.

Working with the Integration Map

Overview
The Integration Map tab of the Integration Tool allows users to configure the domain
measures that will share data with a RDM fact.

Integration Map Tab

The primary feature of the Integration Map tab is the integration map entries table.
 Users can specify the domain measures that will participate in sharing data with the
RPAS Data Mart by adding entries to the table. Entries can be added using the Add
Entry menu button; an entry can be removed using the Remove Entry button. The values
for Fact name, Domain and Measure can be specified either through selection of a drop
down control for fact and domain or through entering a measure name for measure.

In addition, when the user clicks on the Specify Integration Mapping menu button, they
will launch a dialog:

 Integration Tool 233

Specify Integration Mapping Dialog Box

Within this dialog, the user can select a domain (when more than one is open within the
Configuration Tools) and an application. The user also selects the shared fact that will
participate in the data sharing. When these selections have been made, the Available
Measures list will populate with the measures present within the selected domain and
application whose properties are compatible with the selected fact. Users can also enter a
string into the filter box to further filter the list of candidate measures.

Once a measure has been selected, clicking the Ok button will cause the Integration Tool
to automatically create an entry in the Integration Mapping table and populate that entry
with the specified values for fact, domain and measure.

Fact
 Fact is a required property. It cannot be empty.

 The name listed for fact must correspond to a fact defined in the Shared Facts tab.

Domain
 Domain is a required property. It cannot be empty.
 The name listed for domain must correspond to a domain registered in the Domain

Configurations tab.

Measure
 Measure is a required property. It cannot be empty.

 If the domain configuration for the domain specified for this entry is loaded into the
Configuration Tools, the value of measure will be validated and must correspond to
a measure in that domain.

 If the domain configuration for the domain specified for this entry is loaded into the
Configuration Tools, the specified measure must share the values for type,
intersection and NA Value with the fact specified for this entry.

234 Oracle Retail Predictive Application Server

Fact Grouping Best Practices

Overview
With the addition of shared facts within the RPAS Data Mart, a new performance
consideration becomes important within RPAS applications. This new consideration is
the optimization of operations that access the Oracle Database to read or write fact data.
 Internal testing of RPAS Data Mart operations has shown that the organization of facts
into fact groups can have a significant impact on the amount of time required to perform
operations within the RDM.

Grouping Based on Concurrent Access
Because the tables which store the fact data within the RPAS Data Mart can contain
multiple facts, processing operations against those tables is affected not only by the
number of populated values of a single fact but also of all other facts within the table.
 This becomes even more of a concern when writing data to the fact tables, as those facts
being updated by the write operation must be merged with other facts within the fact
table that are not affected by the write.

For this reason, it would be possible to design the tables of the RPAS Data Mart so that
every fact would be contained within a separate table. While this would prevent
performance issues related to having multiple facts within a single table, it would not
result in optimal performance. If facts that are read and/or written together are placed
within a single table, they can be processed together, greatly improving performance.

It is therefore desirable to group facts together in the fact tables but to do so with a
distribution that group’s facts accessed together into common tables while excluding
facts that would not benefit from being grouped into those tables.

To illustrate the above, consider the following scenario. Assume two workbooks with
measures that load from and commit to a partially overlapping set of facts. If we
examine the sets of facts associated with the load and commit rule groups of the two
workbooks, we would see a distribution of facts being loaded and committed (listed as a
through z) such as that below:

Example of Distribution of Loaded and Committed Facts

In such a case, the measures being loaded and committed could be organized into groups
such as:

 Integration Tool 235

Sample Grouping of Facts for Rule Groups

By organizing the facts into the groups shown above, we maximize the performance
benefit from grouping facts accessed together into groups while avoiding the
performance hit from having additional facts within the groups that are not involved in
the access.

Conditional Commits of Facts
When performing fact analysis such as described above, the presence of conditional
commits should be taken into consideration. Some commit rules include a condition that
acts as a mask to prevent some range of the available data from being committed. Take
for example a measure that will only commit values for non-elapsed periods:

Measure1.master = if (current > today, Measure1, ignore)

Due to the way RPAS processes conditional commits, facts committed using different
conditions should be separated from each other, as each condition would be required to
be merged separately. In our example above, if it was determined that the measures
associated with facts w,x,y, and z are committed using the same condition but that the
condition was not used for the measures associated with facts f, g, h, I, j and k, then we
would find it preferable to assign w, x, y and z to a separate fact group from that used for
f, g, h, i, j and k.

Modified Grouping of Facts to Accommodate Conditional Commits

Fact Group Assignment Process
Internal Testing suggests that the process whose overall performance is impacted the
most by fact grouping is merging data into the Oracle Database. For this reason, it is
suggested that facts be assigned to fact groups in such a way as to optimize the writing of
data to the RPAS Data Mart. Below is a description of the suggested process for

236 Oracle Retail Predictive Application Server

determining the fact groups to use for the facts within the RPAS Data Mart and for
determining which facts should be assigned to each fact group.

1. Create a fact group for each unique intersection used by facts within the RDM.

2. Divide each group from step one into subgroups such that facts committed or loaded
together are partitioned from the other facts within the group from step one.

3. Divide each group from step two, if necessary, to accommodate the use of
conditional commits.

Create Groups Based Upon Intersection
All facts are defined along an intersection. The RPAS Data Mart does not allow facts
with different intersections to be stored together in a single table. Because the fact group
is the entity that corresponds to a single table within the Oracle Database, it is therefore
impossible to place facts with different intersections within a single fact group.

Once facts have been assigned to groups based upon the fact intersection, the set of facts
for the RPAS Data Mart will be divided into a number of pools. Treat each of these pools
as an input to the second step of the fact grouping process.

Dividing Global Fact Pool by Fact Intersection

Partition Facts Based Upon Data Source
Each group created by grouping by intersection should now be subdivided in order to
partition the facts based upon the process by which their information enters the RPAS
Data Mart. Fact data is assumed to enter the RPAS Data Mart through one of three
processes: workbook commit, batch process or import from external system (either data
load or through the RDM interface tables).

For each of the above processes, it should be possible to determine the set of facts whose
data enters the RPAS Data Mart in each operation. These sets of facts should be used to
partition the initial fact groups to create individual sub-groups for the facts in each
process.

Note that it is possible that some facts may be populated from more than one source. An
example might be a fact that gets initially populated with raw data from an external
source which is then transformed by a batch process or workbook prior to use by other
processes within the application. This possibility is potentially more likely when dealing
with applications that have never been integrated within the RPAS Data Mart.

When dealing with a fact with multiple sources, the sources should be prioritized based
upon which process is the most time-critical. Once this prioritization has been done, the
grouping suggested by the highest priority should be used. In cases in which priority
cannot be identified, or when no process’s grouping provides an acceptable trade-off, the
fact or facts in question should be assigned to a separate fact group.

 Integration Tool 237

Subdivision of Group by Data Source

Partition Groups for Conditional Commits
The final step in determining the grouping for the facts within the RPAS Data Mart is to
take the groups identified in the graphic above and split them to partition facts that use
conditional commits. Any fact groups created based upon workbook commit processes
should be examined.

If any rules for the commit make use of a conditional commit (i.e. the rule makes use of
an ‘if’ statement to commit only a subset of the measure used with the fact), the
processing of any facts that do not make use of a conditional commit will be impacted by
those facts that do use the conditional commit. In order to reduce this impact, the group
containing the facts for the conditional and non-conditional commits should be divided
again to isolate the conditional commit facts from the non-conditional commit measures.
 In cases where the commit group contains multiple conditional commits which use
different conditions, each distinct condition should be assigned to its own group.

Subdivision of Group Due to Conditional Commits

Once these steps have been performed, the initial set of facts should now be partitioned
into the set of fact groups that should be optimized for processes that write data into the
RPAS Data Mart.

238 Oracle Retail Predictive Application Server

Final Assigned Fact Groups for Facts

Deployment Tool 239

8
Deployment Tool

Overview
In order to create and maintain an RPAS domain, administrators make use of a number
of RPAS server utilities. Some of those utilities require specially formatted input or
command files. Examples of the files include the globaldomainconfig.xml used in
domain partition creation and maintenance and the distwbconfig.xml used to set up and
maintain distributed workbook storage.

While these files can be manually created and modified using a text editor, care must be
taken not only to ensure the correctness of the information contained within the
resources but also to maintain the proper XML formatting of the file. In order to assist in
file creation and maintenance, the RPAS Configuration Tools has a new tool called the
Deployment Tool.

 Using the Deployment Tool, it is possible to generate and modify the contents of RPAS
server utilities within a graphical user interface that represents the content of the
resource with user interface controls. Content can be modified through conventional
tabular interfaces and through user actions, as opposed to through manual editing of an
XML file resource. The Deployment Tool will then create the appropriately formatted
XML schema within the file so that it may be used by RPAS server utilities.

Because deployment resources are not a part of a configuration, the Deployment Tool is
not a part of creating or loading a configuration; instead, users launch and dismiss it
separately through the Configuration Tools workbench.

General process flow for generating deployment resources
The Deployment Tool supports the creation, inspection and modification of the following
RPAS deployment resources:

 Workbook storage files (distwbconfig.xml)

 Domain partitioning files (globaldomainconfig.xml)

 Online administration task description files (admintasks.xml)

For each of these resources, distributed workbook storage, global domain configuration
and administrative tasks, the following functionality is available:

Creation of new resource
1. Upon launching the Deployment Tool from the Utilities menu of the Configuration

Tool, the user will select to create a new resource of the desired type.

2. Using the UI controls present in the view designed for the desired resource, the user
will enter the information contained within the resource.

3. The user saves the created resource as a file on the user’s local system.
4. Once saved, the resource must be transferred to the system containing the RPAS

domain or upon which the RPAS domain will be created as a manual process. The
information can then be applied to the domain using the method appropriate for the
resource (e.g. rpasInstall for initial globaldomainconfig.xml information).

240 Oracle Retail Predictive Application Server

Example: Save Window when First Saving a New Resource or Using the Save as Action

Modification of an existing resource
1. The original resource file must be transferred from the system containing the RPAS

domain to the user’s local system.

2. Upon launching the Deployment Tool from the Utilities menu of the Configuration
Tool, the user will select to open an existing resource of the desired type. When
prompted by the tool, the user will select the file on their local system.

Example: Open Window Box when Opening an Existing Resource

 Deployment Tool 241

1. Using the UI controls present in the view designed for the desired resource, the user
can inspect the content of the resource and modify it as desired.

2. The user saves the modified resource to their local system.

 User Interface

Description
The Configuration Tools is extended with a new option to open the Deployment Tool.
This new option is accessed as a menu item in the Utilities menu of the Configuration
Tools workbench. Once opened, the Deployment Tool is represented within the
Configuration Manager tree to allow users to navigate between it and any other open
tools. Selecting the Deployment Tool menu item when the tool is already open will cause
the tool to close; if any resource is currently being edited within the tool, the user will be
prompted to save this resource before closing.

When first opened, the Deployment Tool presents the user with the set of deployment
resources it supports. For each resource, the user can select between creating a new
resource and opening an existing resource file.

When a new resource is created or an existing resource is opened, the Deployment Tool
changes to present a resource-specific set of UI controls that can be used to specify the
information of that particular resource. The user can then modify the resource and upon
saving the specified information will be translated into the appropriate format. The
functionality of each of these resources is described in detail in the following pages.

Navigate: In the Configuration Tools workbench pane, select Utilities and then
Deployment Tool.

Utilities Menu

Result: The Deployment Tool window opens in the workspace.

242 Oracle Retail Predictive Application Server

Deployment Tool Window

Deployment Tool - Distributed Workbook Storage

Description
The initial resource to be implemented within the Deployment Tool is Distributed
Workbook Storage or “distwbconfig.xml”. This resource is used to specify the locations
of a number of storage locations across which workbooks created for a domain can be
balanced.

The initial set of workbook storage locations can be supplied at domain creation time in
the form of an XML resource. The Deployment Tool will allow users to specify the
information required by this resource and will use that information to create the XML
resource file on the user’s local system so that it can be migrated to the RPAS domain
host system and used.

Creation of a new resource
To configure a new workbook storage location resource the user clicks on the New
button located in the upper right-hand corner of the distwbconfig.xml resource.

Distributed Workbook Storage resource

The Workbook Storage Locations window opens in the workspace.

The Workbook Storage Locations window

Upon creating a new storage location or upon selecting an existing partition, users will
set values for the following attributes:

 Storage location root – The location on drive that will serve as the root of the
workbook storage

 Deployment Tool 243

 Storage location threshold – A threshold (in disk usage percentage) beyond which
the storage location will not be used for the creation of new workbooks.

Example of the Workbook Storage Locations window

Contents of distwbconfig.xml resource
As part of the deployment information managed by Configuration Tools, design requires
an extra configuration file “distwbconfig.xml” to be created. This file should contain the
complete information of the distributed workbook storage, including its root directory
and various parameters it may have. Meanwhile, the format of the file conforms to other
similar configurations we already have.

Example of the distwbconfig.xml

Top node of <rpas> is needed to conform to other RPAS configuration files. Within
<rpas> tag, the <storage> tag is used to specify the settings of each workbook storage
location. There can be multiple entries for <storage> within the <rpas> tag.

244 Oracle Retail Predictive Application Server

Within each <storage> tag, currently we require two tags:

<path> tag specifies the root directory of the distributed storage. This root directory must
exist otherwise RPAS considers the configuration as invalid and throws exception when
it parses this file. However it is not necessary for the directory to be empty at the domain
creation time since such storage device can be shared by multiple RPAS domains.

Usually the directory specifies the path that is outside the root of the global domain,
where the extra storage is mounted. Please note that if the RPAS administrator also
wants to save workbooks under the domain as before, a workbook storage location must
be added where the parent directory of the domain is specified in the <path>.

<maxusage> tag specifies the max usage level for the storage. If the workbook size stored
in this storage location grows over this threshold, RPAS does not allow new workbooks
to be in order to prevent possible disk full failure. The level is represented as a
percentage of the total volume of the storage. When specifying the safe level, we should
keep in mind that workbook size usually doubles when opened due to the checkpoint
directories. As a result, the administrator should allow extra room in the max usage level
so that it is buffered against workbook open action. The actual percentage also depends
on the typical workbook size of the application and the total storage capacity. If the
typical workbook size is small while the storage device is larger, the max usage level can
be higher in percentage, and vice versa.

Directory Structure of the Distributed Workbook Storage
In the configuration file, the RPAS administrator specifies the root directory of the
distributed storage, which must be an existing directory. RPAS will manage the directory
structure beneath the root directory such that it reflects the same directory structure as in
a regular RPAS domain, including a directory for master domain, all local domain
directories under the master domain, users and user-id directory under each domain.
Eventually the workbooks will be stored within the user-id of the workbook owner.

These are the reasons to maintain similar directory structures:

 The distributed storage may be shared by multiple RPAS domains. So, the master
domain is needed as a direct sub directory within the distributed storage root.

 RPAS workbook names are unique within a single domain, but not unique across
domains. Both ldom1 and ldom2 may have workbook t00001, though they are
completely different workbooks. So the local domain path is put right beneath the
master domain directory.

 In the original RPAS domain, the local domain storage may be partitioned using
globaldomainconfig.xml so that each local domain may use a different storage. Here,
since we are in the distributed storage already, no need to further complicate the
local domain directory. So all local domain sub directories within a master domain
are located on the same directory level.

 In other RPAS functionalities, such as workbook copy, RPAS assumes the
workbook’s parent directory is the user-id and users of the domain. So, the
users/user-id directory must also exist in the distributed storage directory structure.

Below is an example of the directories of a Merchandise Financial Planning domain with
two distributed storage locations assigned to it, and a user “john” who has already built
two workbooks in a local domain:

 Deployment Tool 245

Example of Distributed Storage Directories

If no distributed workbook storage is specified for the domain, workbooks are saved
exactly as before.

If the RPAS administrator put the root directory of the domain as an entry for distributed
workbook storage, together with other distributed storage locations, the existing domain
directory will be used to store workbooks as well. The only caveat here is that RPAS
might create ldom0 right beneath the master domain’s directory to store the workbook
but the real local domain ldom0 with its data, input, etc. may be stored in another
location as specified by globaldomainconfig.xml.

Since RPAS only requires the root directory to exist at the time of configuration, RPAS
automatically creates any sub directories on demand when a new workbook is to be
stored in the distributed storage. As a result, actions such as adding new user, adding
new local domain, removing user, or removing a local domain have no impact on the
directory structure of the distributed storage. When a user is removed from the domain,
all workbooks belonging to this user are removed from the domain, and from the
distributed storage, but the user’s directory will stay in the distributed storage, though it
must be empty. When a new user is added to a domain, the user’s directory is created in
the domain, but not in the distributed storage. Only when this new user builds a new
workbook, is the user’s directory created in the distributed storage.

Please note that the storage location should not reside inside a domain or any other
places which may be moved or deleted frequently or outside of the control of RPAS. In
that event, the domain loses access to the workbooks in that storage.

Deployment Tool – Global Domain Configuration

Description
This release of the Deployment Tool will include support for the creation and
maintenance of the domain partitioning resource called ‘globaldomainconfig.xml’. This
resource is used to specify the path to the master domain, the partition dimension in the
master domain, the path to the subdomains and the list of positions, from each
subdomain, on the partition dimension.

246 Oracle Retail Predictive Application Server

Global Domain Configuration resource

To configure a new workbook storage location the user clicks on the New button located
in the upper right-hand corner of the globaldomainconfig.xml resource. The user is taken
to the Global Domain Configuration window.

To access an existing resource the user clicks on the Open button located in the upper
right-hand corner of the globaldomainconfig.xml resource. The user is presented with the
files saved on their local system.

To add a subdomain the user clicks on the Add Subdomain menu option.

Global Domain Configuration window

To remove a subdomain the user clicks on the Remove Subdomain menu option.

To access an existing resource the user clicks on the Open button located in the upper
right-hand corner of the globaldomainconfig.xml resource. The user is presented with the
files saved on their local system.

The initial set of globaldomainconfig can be supplied at domain creation time in the form
of an XML resource. The Deployment Tool will allow users of the Configuration Tool to
specify the information required by this resource and will use that information to create
the XML resource file.
When opening an instance of this file, the user will be presented with the path to the
master domain, the partition dimension in the master domain, the path to the
subdomains and the list of positions, from each subdomain, on the partition dimension.
When creating a new resource, all this information will be empty. Upon creating a new
global domain configuration or upon selecting an existing global domain configuration,
users will be able to set values to the following attributes:
 Path - The path to the master domain

 Partition Dimension – how each of the local domains must be partitioned based on
position groupings.

 Subpath – the path to the subdomain

 Subpositions – the list of positions, in each subdomain, on the partition dimension.

 Deployment Tool 247

Global Domain Configuration Screen

Deployment Tool – Online Administrative Tasks

Description
RPAS adds the ability for selected users of the Fusion Client to manage the execution of
server-side operations from within the client. This new functionality takes the form of a
number of standard templates that can be used to launch and monitor traditionally
offline operations.

For example, administrators of RPAS domains often have a regular data load process in
which new positions enter a hierarchy, have their roll-up information modified or are
retired from a hierarchy. This process is today managed by a system administrator
making a call to the loadhier utility on the host system of the RPAS domain.

Using the Online Administrative interface, this task is accomplished by connecting to the
RPAS domain through the Fusion Client and selecting to build the Online
Administration wizard (the Online Administrative workbook is implemented as a
wizard-only workbook). From within the workbook wizard, the administrator (or any
properly authorized user) is able to select the hierarchy load process from a set of tasks
supported by the Online Administration functionality. The user would then specify any
information the task was configured to require at the time the wizard (e.g. the hierarchy
or hierarchies to load) and then submit the task to the RPAS server which would execute
the necessary call to RPAS server utilities.

248 Oracle Retail Predictive Application Server

These new administrative task templates require a document that describes the
administrative tasks that can be performed within the domain. Currently, a minimum of
three resources is needed to describe administrative tasks:

 One resource to define common RPAS administrative tasks
 One or more resources to define application-specific administrative tasks

 One resource to define customer-specific tasks

The ability of the system to support multiple application-specific resources allows
support of domains that contain multiple applications.

The Deployment Tool supports the creation and maintenance of administrative task
resources. The Tool supports the creation of new resources and the loading, inspection
and modification of existing resources through a graphical user interface (GUI) and
allows these resources to be saved to local storage so that they can be packaged and
deployed to RPAS servers.

Administrative Tasks Resource

To configure a new administrative task resource the user clicks on the New button
located in the upper right-hand corner of the admintasks.xml resource. The user is taken
to the Administrative Task View window.

To access an existing resource the user clicks on the Open button located in the upper
right-hand corner of the admintasks.xml resource. The user is presented with the files
saved on their local system.

Administrative Task View
A new view has been added to the Deployment Tool to support the configuration of
administrative task resources. This view is used to create a standard set of tasks
packaged as a part of RPAS, by creators of applications to create application specific tasks
and by customers and/or implementers to create task resources for implementation
specific tasks.
The new view supports creating new resources or opening and modifying existing
resources. When a resource is created or opened, users of the Deployment Tool will be
presented with a set of controls to create, modify or remove the functional elements of
the administrative task resource.

Within the view, users create and modify administrative tasks. New tasks are created
through a menu bar action; existing tasks may be inspected or modified by selecting
them from the administrative task list on the left side of the view. When viewing an
existing task, additional menu bar actions allow the creation of arguments, argument lists
and argument branches. A final set of menu bar actions will allow the removal of
existing tasks, arguments, argument lists or argument branches.

Once a task is selected, the upper area of the view allows inspection and modification of
task properties. Below the task properties is a navigation tree to allow selection of
arguments, argument lists and argument branches. The center component under the task

 Deployment Tool 249

properties will be a set of controls to specify the properties of the selected argument,
argument list or argument branch.

Administrative Tasks Window

Administration Task Resource Contents
Although RPAS will support multiple resources defining administrative tasks, each of
these resources must have a common format. The resources will be stored in an XML
format with a rigidly defined internal structure.

Within the administrative task resource, the following container elements are supported:

 admin-task-list
 admin-task

 argument-list

 argument-branches

 argument-branch

 argument

Hierarchy of Elements in the Administrative Task Resource
In addition, there are a number of elements used to describe properties of the container
elements. Each of these elements is described below.

Admin Task List Element
Every administrative task resource will have as its root element the <rpas> element that
is common to all rpas XML resources. This root element will contain a single child
element, the admin-task-list element. The admin-task-list is primarily a container for the

250 Oracle Retail Predictive Application Server

admin-task elements contained within the resource but will does support the following
properties:

 label – a user label used to describe the tasks contained within this resource

Create a New Task
Upon creating a new task users will set values for the following values:

 Task List Name
 Label for the Task

 Task List Prefix

After the values have been entered the user clicks Add Task to add the new task to the
Task List.

Adding a new or selecting an existing task loads the properties of that task into the Task
Attributes panel and populates the Task Arguments tree with the arguments (if any)
defined for that task.

Remove a Task
Removes the currently selected administrative task from the list of tasks contained within
this adminTasks resource

 Deployment Tool 251

Admin Task List with task selected for removal

The user clicks on Remove Task and is presented with the following message:

 Remove Task Confirmation

The user clicks Yes to remove the task and the task is then removed from the Admin Task
List.

Task Removed from List

Task Attributes Element
Each admin-task element represents a single administration task that can be launched
through the online administration interface. These elements represent an RPAS
executable or executable script. The contents of the admin-task element define the task
and its properties. Each admin-task element supports the following properties:

252 Oracle Retail Predictive Application Server

 Task Name – a user name identifying the administrative task

 Task Label – a user label identifying the administrative task

 Task Description – a longer description of the activity performed by this task

 Task Command – the command performed by this task
 Command Type –whether the command is an executable binary or script

 Exclusive Lock – checked if the command requires an exclusive lock on the domain;
unchecked otherwise

 Offline Only - checked if the command requires all currently active DBServer
processes to be halted prior to execution of the task; unchecked otherwise

 Master Domain Only – checked if the command may only be executed on the mater
domain of a global domain environment; unchecked if the command may also be
executed on subdomains

The administrative task view of the Deployment Tool allows users to configure values for
each of the above attributes. It will also allow users to create the argument-list element
that describes the arguments to the command represented by the admin-task element.

Task Attributes Window

Task Argument List Element
The argument-list element is used to describe the group of argument elements that make
up the set of parameters passed to a command within an administrative task. The
argument-list has no properties; it serves as a container for argument elements.

Argument Element
The argument element contains the definition of a single argument passed as a parameter
to a command within an administrative task. Each argument element contains a set of
properties that describe the usage and appropriate values for the argument. These
properties are:

 Argument Name – a user name identifying the argument

 Argument Label – a user label identifying the argument

 Argument Option Tag – the argument flag (an example is –d)
 Required – checked if the argument is required, unchecked if the argument is

optional.

 Switch Only – checked if the argument takes no additional parameter, unchecked if
the argument requires a value

 Deployment Tool 253

 Editable – unchecked if the argument can be modified within the Administrative
Task Workbook, checked if the argument is fixed

 Value Type – for arguments that have a switch-only value of 0, this property holds a
value for the additional parameter. If the value of the editable property is 1, then this
value is a default that may be modified within the Administrative Task Workbook. If
the value of the editable property is 0, then this value is fixed

To add an argument the user clicks on Add Argument. The Argument Attributes
Window is opened in the workspace.

Argument Attributes Window

The argument is added according to the following rules:
1. If the argument tree has no selection or if the current selection is an argument not

contained within an argument branch, the argument will be added to the argument
list of the task.

2. If the current selection is an argument contained within an argument branch or is an
argument branch, the argument will be added to the argument list of the argument
branch.

Argument Branch element
In order to support the use of RPAS utilities that have multiple valid sets of arguments,
the argument list element also allows the definition of an argument-branches element.
Each argument-branches element represents a choice between sets of arguments.
Argument-branches elements then in turn contain an argument element and, optionally,
an argument-list element representing the arguments required by the utility when that
usage of the utility is required.

As an example, consider the loadhier utility. This utility can be used to perform multiple
operations:

 loading a single hierarchy data file, executed by the –load operation

 loading multiple hierarchy data files, executed by the –loadAll operation

 purging hierarchy data, executed by the –purgeAll operation

In order to support the above commands, the task definition for the loadhier utility
would require an argument-branches element with three child argument-branch
elements, one describing the usage for each of the three commands. When using the
Administrative Task Workbook, the user would be required first to select the desired

254 Oracle Retail Predictive Application Server

command and would then supply the information for the arguments associated with that
argument list’s arguments.

The argument-branch element is used to organize the arguments associated with one of
the set of choices represented by an argument-branch element. Each argument-branch
contains an argument element. This argument element represents the desired choice for
the argument-branch. In cases where a choice in an argument-branch requires more than
a single argument, an argument-branch may also optionally include an argument-list
element containing the additional arguments for the branch.

To add an argument branch the user clicks on Add Argument Branch. This adds a new
argument to the currently selected administrative task and the Branch Attributes window
opens in the workspace.

Branch Attributes Window

When creating argument-branches, it is required to have at least two argument-branch
options. Otherwise, a configuration element error will be generated in the Configuration
Tools Task List.

Example of Task List Error Due to only Creating One Branch

 Deployment Tool 255

To see the Branch Attributes highlight the desired argument branch. Selecting an
argument or argument branches will populate the Argument Attribute panel with the
properties of the argument or argument branch.

Argument Attribute Panel (Populated)

Remove Argument Branch

Selecting this button removes the currently selected argument branch from the argument
list of the administrative task. If the branch to be removed is the only branch contained
within its branches, the user is prompted to allow the now-empty branches to be
removed as well.

Generate Translation File
Selecting this button causes a pair of resource files to be created within the directory
containing the admintask.xml currently loaded into the UI. These files can be used to
support translation of the content present within the admin task list.

The user is prompted to save the admin task prior to generating the translation file. This
insures that the translation file is saved in the same directory as the admin task list xml.

 Deployment Tool Limitations

Validation of Resource Contents
It is important to note that the Deployment Tool provides only the most basic validation
over a deployment resource and that the validations do not reflect issues in the resource
itself, but merely detect errors that could interfere with the functioning of the
Deployment Tool.

256 Oracle Retail Predictive Application Server

The Tool only ensures that the information contained within the resource file is
formatted properly for the use of the resource (e.g. the Tool will ensure that the tag
structure of an XML resource is correct but will not prevent incorrect or incomplete
information within the tags of the resource).
The reasons for this are twofold.

First, the Deployment Tool is designed to provide light-weight interfaces for the creating
of resource files. It translates the structure of the information contained in the resources
into a set of user interface controls that remove the need to manually edit resources in a
text editor.

The Tool does not connect with RPAS domains nor is it equipped to read the contents of
a domain configuration representing a domain and so does not have access to the
information necessary to provide such validation.

Second, because the Tool operates on a user’s desktop and not necessarily on the host of
the RPAS domain, many categories of information are simply not available for
validation, such as the legitimacy of file path locations on the RPAS Server.

For these reasons, the content of a resource generated through the Deployment Tool
should always be manually inspected to ensure the correctness prior to use of the
resource in an RPAS domain.

Appendix: Global Domain Technical Information 257

A
Appendix: Global Domain Technical

Information
Appendix A: Global Domain Technical Information

A domain can be implemented as a simple domain when:

 The data size for individual measures is small

 The number of users working on the domain at any given period of time is small

The domain can be implemented as a global domain when:
 The data size is increasing due to the hierarchy size

 There are several people using the same domain

In the global domain environment, the global domain is accompanied by two or more
subdomains that contain a subset of the data that would have been in a simple domain.
Each of the subdomains contains a subset of one of the hierarchies of the global domain.
More specifically, the subdomains contain a subset of positions along the partition
dimension. All of the measures that are defined to be at or below this dimension will be
stored in the local domains. Measures above this dimension are stored in the global
domain. An administrator can directly access the local domains, and a subset of users
will be dealing with each local domain. This way, there is less contention between users.
A domain can only be partitioned along one hierarchy of the domain.

Note the following points when configuring and setting up a global domain
environment:

 When creating a new global domain configuration file, globaldomainconfig.xml,
reference the RPAS example of the configuration file,
globaldomainconfig_example.xml, which is located in the
%RPAS_HOME%/domain/config_examples directory of the RPAS installation.
Reference this to use as a guide in building this file. Once this file is created, put it in
the configdir directory path as specified by using the –configdir option in the
Installer.

 In the globaldomainconfig.xml file, specify (in the path) the entire path to the master
domain and the subdomains, including the root name of the domains. The path
leading up to the root of the master domain must exist, but the master domain root
directory must not exist at the beginning of the domain build process. The path to the
subdomains must also exist unless the subdomains are located inside the root of the
master domain.

 The master global domain will contain a directory called config, which will house the
globaldomainconfig.xml file. Do not delete this directory or file.

 Do not delete the tmp directory under the domain home directory while the domain
build process is taking place.

 To configure the global domain functionality, provide a globaldomainconfig.xml file
that specifies how each of the local domains must be partitioned based on position
groupings. If a globaldomainconfig.xml file is not provided and the partitioning
dimension is provided, a local domain will be built for each position within the
partitioning dimension. For example, if a company has five departments, and

258 Oracle Retail Predictive Application Server

"department" is the partitioning dimension, there will be five local domains and one
master global domain.

 Conditional parameters that are used by the Installer for configuring and setting up a
global domain environment are as follows:

–dh <domain_home> : where <domain_home> is the path to the directory in
which the domain will be created

 Non-Global Domain – required

 Global Domain (with globaldomainconfig.xml) - required

 Global Domain (with globaldomainconfig.xml) – throws usage error

–configdir <config_directory> : where <config_name> is the path to the
configuration XML files, including globaldomainconfig.xml, hierarchy.xml, and
calendar.xml.

 Non-Global Domain – optional, but required if using a calendar.xml file

 Global Domain (with globaldomainconfig.xml) - required

 Global Domain (without globaldomainconfig.xml) - optional, but required if using a
calendar.xml file

–p <dim_name> : where <dim_name> is the partitioning dimension. Only valid
if the configuration has been marked as a global domain configuration with the
Properties dialog box. If the configdir option is specified and a
globaldomainconfig.xml file is found in the location, the –p option will be
ignored and the partitioning dimension that is specified within the
globaldomainconfig.xml file will be used instead.

 Non-Global Domain – throws usage error

 Global Domain (with globaldomainconfig.xml) - throws usage error

 Global Domain (without globaldomainconfig.xml) - required

 For patching a global domain implementation, measures, rules, and workbook
templates can be changed, and the master domain and local domains will be patched
accordingly. A non-global domain implementation CANNOT be updated to a global-
domain implementation and vice versa. The Global Domain flag in the configuration
is ignored during the patch process, so the construction of the implementation will
not change even if its status has been changed.

 When patching a global domain implementation or a regular, standalone, or single
domain, in the call to the Installer (rpasInstall) it is imperative that none of the
parameters that were used during the original domain build are changed with the
exception of replacing fullinstall with patchinstall. We recommend using a
script for the rpasInstall call so that it is easier to change the fullinstall
parameter to patchinstall while leaving the other parameters in their original
state.

 For Fusion Client use, you can define "friendly names" for each domain in the
MultiSolutionBundle.properties file by defining solution_id.Domain.master.label and
solution_id.Domain.domainidx_0, solution_id.Domain.domainidx_1, etc. resources.
 For more information, see the Oracle Retail Predictive Application Server Administration
Guide for the Fusion Client.

Appendix: Calculation Engine User Guide 259

B
Appendix: Calculation Engine User Guide

Overview
The RPAS calculation engine is a very powerful and flexible engine that is built to
support OLAP type calculations against a multi-dimensional model. At first sight, the
engine is very complex. However, when the building blocks of the calculation engine are
properly understood, much of this apparent complexity goes away. This overview of the
calculation engine processes will therefore start by describing the three fundamental
processes of aggregation, spreading, and expression evaluation before explaining how
the various processes integrate into a comprehensive whole.

RPAS supports an OLAP-type model. In this model, individual pieces of data, called
cells, apply to a single position in one or more hierarchies or dimensions. These will
typically include a "measures" dimension, a calendar or time hierarchy, and other
hierarchies such as for products and locations. The measures dimension is fundamentally
different to the other hierarchies because measures (in other systems measures may be
referred to as facts, performance indicators, or variables) represent the fundamental
events or measurements that are being recorded, whereas the positions in the other
hierarchies provide a context for the measurement (for instance, where, when, or what).
Measures relate to one another through rules and expressions. Positions in all the other
hierarchies relate to each other through hierarchical relationships.

RPAS supports two different forms of relationships between cells:

 Hierarchical relationships that require aggregation and spreading

 Measure relationships that require rules and expressions

Hierarchical relationships, such as weeks rolling up to months or stores rolling up to
regions, require the aggregation of data values from lower levels in a hierarchy to higher
levels. This is performed using a variety of methods as appropriate to the measure. To
enable such data to be manipulated at higher levels, RPAS supports "spreading" the
changes, which are performed using a variety of methods. Aggregation and spreading
are basic capabilities of the engine that require no coding by implementation personnel,
other than the selection of aggregation and spreading types to use for a measure.
The inherent relationships between measures can be modeled through rule and
expression syntax. Most of the effort in configuring an application model is in modeling
these relationships.

The RPAS calculation engine is designed to be robust and extensible, while in complete
control of the calculation process. It enforces data integrity by ensuring that all known
relationships between cells are always enforced whenever possible. Much of the logic of
the processing of rules and rule groups depends on this basic principal.

Measure Definition and Base Intersections
Certain characteristics of a measure determine how the calculation engine must handle it
with regard to calculation, aggregation and spreading, and the dimensions in the
hierarchies at which the measure is calculated. Since this information applies across all
rules and rule groups, it is set up as part of the definition of a measure.

260 Oracle Retail Predictive Application Server

Data Types
RPAS supports the following data types:

 Real

• Floating point numeric values. Most measures are of this type.
 Integer

• Numeric integer values. There are no special "spreading" algorithms for integer
measures, which must normally be used only for measures that are calculated
"bottoms up."

 Date

• Date and time. Can easily be converted to position names by standard functions.
 String

• Variable length strings. Typically used for notes and names.

 Boolean

• True or false values. Typically used for flags and indicators.
Note the following about data types:

 Integer measures have a range of 2,147,483,648 to 2,147,483,647 which is four bytes.

[-2147483647:2147483647]

 Real measures have a range of 1.7E +/- 308 (15 digits) which is eight bytes.
[-1.7976931348623e+308:1.7976931348623e+308]

 When running printMeasure, it gives the range of the measure. However, internally
in the arrays, the integer and real data are stored as Numeric type which is eight
bytes long.

 The calculations always happen as double. Internally, the calculation always happens
on an eight-byte long number.

 The scientific representation of numbers is only for display and is not involved
during calculation. So there should not be any loss in data.

When used in the client and with exportMeasure and loadMeasure, the following was
observed:

 You can enter a number with more than 15 digits. But once you finish editing that
cell, the number is displayed as 7.777778e+036.

 For such large numbers, the position of the decimal cannot be changed to point to
any other position. It will always be displayed as above.

 For printArray, it also displays in the above format.

 When you load a measure with large values, loadMeasure stores the data in the
above format.

 When you export the measure using exportMeasure, you can specify the format in
which you want to export the data. By default, it exports in the above format. For
example, the following exports in the format you specify.

exportMeasure -d . -intx str_sku_week -out MyOut1.dat -meas
"R_EX_DEMOA.format("%13.2f")"

77777777777777781888888888888888888.00

 In all the above cases, there is no truncation directly, but it will be rounded off to the
correct precision.

 Appendix: Calculation Engine User Guide 261

Base Intersection
The base intersection for a measure is a list of dimensions (such as Class/Store/Week),
one per appropriate hierarchy, which defines the lowest level at which data is held for
the measure. Data is assumed to apply to the "All" position in any hierarchy, which is not
explicitly referenced in the base intersection (see Non-Conforming Expressions for more
information). Through aggregation, data will logically exist (though there may not be a
value) for all levels higher than the base intersection up all alternative rollups.

Aggregation and Spreading Types
The aggregation type defines the aggregation method to be used for the measure (refer to
Aggregation for more information) to produce values at higher levels from values at the
base intersection. There is a "normal" spreading method associated with an aggregation
type, which defines the method to be used to spread changes from higher levels to the
base intersection (see the Spreading section for more information). Depending upon the
desired characteristics of the measure, there may be several valid allowed spreading
types.

Aggregation
By definition, an OLAP-type model has hierarchical relationships between positions in
hierarchies. The values of measures above their base intersections for these hierarchical
relationships are automatically maintained through a process referred to as aggregation.

Different types of measures need to be aggregated in different ways. Many measures,
such as sales, receipts and markdowns, record the events that actually occurred or are
planned to occur during a period of time. Simple totaling can produce aggregate values
for these: the value for a region is the sum of the stores in the region; the value for a
month is the sum of the weeks in the month; and so on. But this technique does not work
for all types of measures. For example, with stock, the values record a snapshot at a point
in time rather than a total of events over a period of time. The value of stock for a region
is the sum of the stock in the stores in the region, but the value of stock for a month is
certainly not the sum of the stocks for the weeks in the month. It is usually either the
value for the first week or the last week in the month. Similarly, there are measures
where the appropriate aggregation type may be to calculate an average, or a minimum,
and so on. For some calculation purposes, only cells that are "populated" (have a value
other than their default value, which is typically zero) should participate in aggregations.
RPAS supports a wide variety of aggregation types to support all of these requirements.
There is also another class of measures where no aggregation technique would produce
the correct result. These measures are typically prices, ratios, variances, and similar
performance indicators. The average price of sales for a class cannot be calculated by
summing the prices of items in the class. Averaging the prices of items in the class
produces a better result, but it is still not accurate because it fails to take account of the
weighting of the sales of the items in the class. One item with a very large volume of sales
at a low price would pull down the average price attained for the class as a whole, but
this would not be reflected in an average aggregation. The way to get a correct result is to
redo the price calculation at the required level. By dividing the sales value for the class by
the sales units for the class (both of which will have been aggregated by summing), a
correctly weighted result will be produced. The type of measure that requires this type of
"aggregation" is referred to as a "recalc" measure, as "aggregation" is by recalculation of
the expression used to calculate the measure. In planning applications it is not unusual
for 40% or more of the measures to be of recalc type.

262 Oracle Retail Predictive Application Server

Finally, not all aggregation types are supported when calculating aggregated results
across multiple local domains. Some, but not all, aggregation methods can be computed
locally and then can be re-aggregated to yield an accurate globally-aggregated result.
This depends on the type of calculation performed. For performance reasons,
aggregations are computed independently for each local domain. As a result, some
aggregation methods are not supported when attempting to aggregate from local
domains to the global domain.

A complete list of the aggregation types supported by the RPAS calculation engine can be
found in Appendix D: Aggregation and Spread Types.

Spreading
By definition, an OLAP-type model has hierarchical relationships between positions in
hierarchies. Measures are calculated in dimensions above the base intersection by
aggregation by using the parent-child relationships between the positions. RPAS allows
such measures to be manipulated not only at the bottom levels, but also at aggregated
levels. In order to preserve the integrity of the data with such a change, RPAS needs to
change the underlying data values at the base intersection for the measure, so that when
they are aggregated again, they result in the changed value at the aggregated level. The
method of changing the base intersection values to achieve this is known as spreading.

Spreading always applies to cells at the base intersection of the measure. At all
aggregated levels above the base intersection, the effect of any change is applied by
considering all cells at the base intersection that are descended from the changed cell (for
instance, children and grandchildren). These calls are described as ‘child cells’ in this
description. Spreading does not operate from level to level to level down a hierarchical
roll-up, which would not only be less efficient, but would also generate different (and
generally less acceptable) results when there are changes or locks at levels between the
change being spread and the base intersection.

 The RPAS engine allows changes to be made to a measure for positions at multiple
levels, and the effect of all such changes are performed in a single calculation step. The
basic technique for managing this spreading is the same for all spreading methods, and it
is described in “Multi-Level.”

For calculation purposes, a lock to a cell for a spreadable measure is treated as a change
to that cell that re-imposes the previous value. If none of the child cells of the locked cell
have changed, the lock has no effect, and all child cell values remain unchanged.

Locks and Spreading Around Locked and Changed cells
Other than in the special case where there are no cells that are free to be changed,
spreading only affects cells that are free to be changed. All child cells are free to be
changed except for those that are elapsed (see Chapter 8), locked by the user, explicitly
changed by the user, or that have already been recalculated as the result of spreading
another (lower level) change. Spreading always attempts to spread around locked or
changed cells without changing their values. Where none of the child cells are free to be
changed, spreading applies to all child cells that are not elapsed by using the changed or
recalculated values as the base values to spread upon. For spreading purposes, when
something has to give, elapsed cells are considered to be ‘more important’ than locked or
changed cells.

Locked cells for recalc type measures are treated in an analogous manner: the mapping
expression (see The Spreading of Recalc Type Measures) is reimposed (using recalculated
values of other measures on the right hand side of the mapping expression if necessary)
to recalculate the mapped measure. It is then spread normally.

 Appendix: Calculation Engine User Guide 263

Note: The effect of spreading where there are no child cells
free to be changed is that the result for some lower level
locked or changed cells will be different to the locked value
or the change made. Effectively, higher level locks or
changes are deemed to be ‘more important’ than lower level
ones. Causing the circumstance where there are no free child
cells can be a very useful technique when initializing data.
For example, in a single calculation, a "shape" can be applied
to child cells, and then a "total" to the parent cell. The result
is that the parent total is spread across the children using the
appropriate spreading technique, but according to the
supplied shape. This is because the higher level change takes
precedence.

Spreading Methods
Just as different types of measures require different aggregation techniques, different
types of measures require different spreading techniques. Measures that cannot be
aggregated, such as recalc type measures, are not usually spread at all (see "The
Spreading of Recalc Type Measures" below), but they may employ the replicate
spreading technique through the use of rapid entry. For more information about rapid
entry, see the “REPD Functionality” section in the Oracle Retail Predictive Application
Server User Guide for the Classic Client. The default spreading method for a measure is set
up as part of the definition of the measure. This is the spreading technique that is used
for all changes to the measure unless explicitly overridden on edit by the user.
The spreading methods that are supported by RPAS are listed here and described in the
following sections:

 Proportional Spreading

 Replicate Spreading

 Even Spreading

 Delta Spreading
 PET and PST Spreading

Proportional Spreading
Proportional spreading is the most commonly used spreading technique once data has
been initialized, and it is the default spreading method for most spreadable measures. In
proportional spreading, all ‘children’ that are free to be changed are changed in the same
proportion so that their existing ratios to each other are maintained, and the required
value for the parent is achieved. If proportional spreading is used for a measure that is
not initialized (that is, its children all have the “naval”), the children are assumed to all
have the same weight, so the effect of the spreading is the same as the even spreading
method.

Example:

 Starting values – ChildA 10, ChildB 20, ChildC 30, ChildD 40, Parent 100.

 Changes – Parent changed to 145, ChildA changed to 20, ChildB locked.

 Resulting values – ChildA 20, ChildB 20, ChildC 45, ChildD 60, Parent 145.

 Spreading Process – ChildA and ChildB are not free to be changed by spreading
because ChildA was explicitly changed and ChildB was locked. The required parent
value of 145 must include 40 from ChildA and ChildB, and thus ChildC and ChildD
must total 105. The previous total for ChildC and ChildD was 70, so their values

264 Oracle Retail Predictive Application Server

must be changed by applying the multiplier of 105/70. Thus the new value for
ChildC is 45, and for ChildD is 60.

After aggregation, the result is as follows:

 The parent has the value 145, as required
 ChildA has the required 20

 ChildB did not change

 The ratio of ChildC being 75% of ChildD is maintained

This spreading method is not allowed for measures with a recalc aggregation type.

Replicate Spreading
Replicate spreading is sometimes used when initializing data, especially for recalc type
measures, and for measures with aggregation type such as average, minimum, and
maximum. It is unusual for it to be the default spreading method for any measure, but
may be used by overriding the spread method on data entry. In replicate spreading, all
child cells that are free to be changed are changed to the value of the parent cell. With
replicate spreading, there is no guarantee that after aggregation the value of the parent
cell will be the value that was replicated. In fact, it usually will not be. Replicate
spreading should be considered to be an indirect way of entering the same value into
multiple child cells.

Example:

 Starting values – ChildA 10, ChildB 20, ChildC 30, ChildD 40, Parent 100.

 Changes – Parent changed to 145, ChildA changed to 20, ChildB locked.
 Resulting values – ChildA 20, ChildB 20, ChildC 145, ChildD 145, Parent 330.

 Spreading Process – ChildA and ChildB are not free to be changed by spreading
because ChildA was explicitly changed and ChildB was locked. The parent value of
145 is replicated to ChildC and ChildD. After aggregation, the result is that the
parent has the value 330.

Even Spreading
Even spreading is sometimes used when initializing data. It is unusual for it to be the
default spreading method for any measure, but it may be used by overriding the spread
method on data entry. In even spreading, all child cells that are free to be changed are
changed to the same value, which is the total for the parent cell for the free child cells
divided by the number of free child cells.

Example:

 Starting values – ChildA 10, ChildB 20, ChildC 30, ChildD 40, Parent 100.

 Changes – Parent changed to 145, ChildA changed to 20, ChildB locked.

 Resulting values – ChildA 20, ChildB 20, ChildC 52.5, ChildD 52.5, Parent 145.

 Spreading Process – ChildA and ChildB are not free to be changed by spreading
because ChildA was explicitly changed and ChildB was locked. The required parent
value of 145 must include 40 from ChildA and ChildB, and thus ChildC and ChildD
must total 105. This is spread evenly, thus the new values for ChildC and ChildD are
both 52.5.

After aggregation, the result is:

 The parent has the value 145, as required

 ChildA has the required 20
 ChildB did not change

 Appendix: Calculation Engine User Guide 265

 The remainder has been spread to ChildC and ChildD evenly

This spreading method is not allowed for measures with a recalc aggregation type.

Delta Spreading
Delta spreading is sometimes used when data is fully initialized. If it is used when the
measure is not initialized, the effect will be the same as even spreading. It is unusual for
it to be the default spreading method for any measure, but it may be used by overriding
the spread method on data entry. In delta spreading, all child cells that are free to be
changed are changed such that the delta to the parent cell is spread evenly across those
child cells.

Example:

 Starting values – ChildA 10, ChildB 20, ChildC 30, ChildD 40, Parent 100.

 Changes – Parent changed to 145, ChildA changed to 20, ChildB locked.

 Resulting values – ChildA 20, ChildB 20, ChildC 47.5, ChildD 57.5, Parent 145.

 Spreading Process – ChildA and ChildB are not free to be changed by spreading
because ChildA was explicitly changed and ChildB was locked. The required parent
value of 145 must include 40 from ChildA and ChildB, and thus ChildC and ChildD
must total 105. The previous total for ChildC and ChildD was 70, so the delta to the
parent is 35. This delta is spread evenly across the children, so ChildC and ChildD
are both increased by 17.5. Thus the new value for ChildC is 47.5, and for ChildD is
57.5.

After aggregation, the result is as follows:
 The parent has the value 145, as required

 ChildA has the required 20

 ChildB did not change

 The increase to the parent has been evenly divided between ChildC and ChildD

This spreading method is not allowed for measures with a recalc aggregation type.

PET and PST Spreading
PET (period end total) and PST (period start total) are special spreading types to support
measures with the PET or PST aggregation types where the values of cells represent
snapshots at a period of time rather than a total of events. Opening and closing stock
(inventory) are typical examples of such measures, where the value for a month will be
the value for the first (opening stock) or last (closing stock) week in the month, but values
up non-time hierarchies will be produced by total aggregation.

PET and PST measures require special spreading. We anticipate a future enhancement to
support spreading changes to such measures at aggregated time positions by spreading
the effect of the change across all children of the time period. At present, the PET and
PST spread types change the first or last child only. At present, a change to closing stock
for a month has exactly the same effect as a change to closing stock for the last week in
the month.

Multi-Level Spreading
The RPAS engine allows changes to be made to a measure at multiple levels, all of which
are dealt with in a single calculation. Because spreading requires parent-child
relationships, and spreading is effected between the intersection that is changed and the
base intersection for the measure, there is a requirement that all changes to be effected by
a single calculation must fall on a single hierarchical roll-up. This is controlled by
Hierarchical Protection Processing, which is described in the next section.

266 Oracle Retail Predictive Application Server

When there are changes at multiple levels, the spreading process fundamentally works
"bottoms-up." That means lower level changes are implemented before higher level
changes. The spreading algorithm starts with the lowest level in the hierarchical roll-up
that has changes, and it spreads each change at that level in turn.
The result of this process is that every child cell of a changed cell is no longer free to be
changed. If it was previously free to be changed, it has now been recalculated by
spreading. When all changes at a level have been performed, the algorithm moves on to
the next lowest level in the hierarchical roll-up that has changes, and it continues in this
manner until all changes have been performed. If a higher level change overlaps a lower
level change, the lower level changes are unaffected because all child cells of the lower
level change will not be free to be changed.

Example (using proportional spreading):

 Starting values – jan 10, feb 15, mar 20, apr 25, may 30, jun 35, jul 40, aug 45, sep 50,
oct 55, nov 60, dec 65. firsthalf 135, secondhalf 315, year 450.

 Changes – year changed to 500, firsthalf changed to 150, jan changed to 15, feb
changed to 20, mar locked, jul and aug changed to 50, sep locked.

 Resulting values – jan 15, feb 20, mar 20, apr 26.39, may 31.67, jun 36.94, jul 50, aug
50, sep 50, oct 61.11, nov 66.67, dec 72.22. firsthalf 150, secondhalf 350, year 500.

 Spreading process – The first change to be spread is the change to the first half to be
150. jan, feb and mar now total 55, so apr, may and jun must total 95. By proportional
spreading the results are 26.39, 31.67 and 36.94. The second change to be spread is the
500 for the year. Only the months oct through dec are now free to be changed. The
other months total 300, so oct through dec must total 200. By proportional spreading,
the results are 61.11, 66.67, and 72.22.

Hierarchical Protection Processing
Hierarchical protection processing is a process that ensures that all changes made at
aggregated levels fall on a single hierarchical roll-up, which is a prerequisite for the
spreading process to function correctly. Hierarchical protection processing operates by
protecting (preventing direct manipulation) cells for intersections for combinations of
dimensions that cannot reside on a single hierarchical roll-up with the changes already
made.

In theory, since hierarchical protection processing is necessary to ensure the integrity of
the spreading process and each measure is individually spread, hierarchical protection
processing could operate independently for each measure. Having the manipulated
measures varying from intersection to intersection would probably cause considerable
confusion to the users and would make implementing a consistent methodology difficult.
For simplicity, hierarchical protection processing operates on all measures.

An OLAP-type model has multiple hierarchies and spreading operates from the cell that
has been changed to all child cells at the base intersection, so hierarchical protection
processing must operate across multiple hierarchies. A single hierarchy may have
multiple roll-ups, which are also considered. Whenever a change or a lock is made to an
intersection for a new combination of dimensions, the calculation engine checks all other
combinations of dimensions, and it protects those that cannot be on the same hierarchical
roll-up as changes already made. It does this by considering a "cross multiplication" of
hierarchical roll-ups across all the hierarchies.

A simple example will clarify the process. Consider the matrix of "cross multiplied"
dimension combinations that result when there is a 2-dimensional product by time model
with the dimensions Co/Div/Dept/Class and Year/Month/Week. This is shown below
schematically with parent-child relationships:

 Appendix: Calculation Engine User Guide 267

Other than at the top of a hierarchical roll-up, each combination of dimensions has two
parent combinations: one per hierarchy with the next highest dimension, so class/week
has parents of class/month and department/week.

Note: For the sake of simplicity, the picture does display the
roll-up of the “all” dimension (all products, all time periods).

All spreading is from the changed level to the base intersection (class/week in this
example). Consider a change at an intersection of Div/Month. We know that the
spreading hierarchical roll-up must be a path from the top (Co/Year) to the bottom
(Class/Week) that passes through Div/Month. There are six such paths, none of which
go through the combinations Co/Week, Dept/Year or Class/Year, so those combinations
of dimensions are all protected. If the next change is at an intersection of Class/Month,
then Div/Week and Dept/Week are similarly protected.

Note: Hierarchical protection processing always reflects the
current set of locks and changes.

RPAS allows cells that have been changed or locked to be unchanged or unlocked before
the calculation is initiated. If an unchange or unlock removes the last change or lock for a
combination of dimensions, some other combinations of dimensions that were previously
protected could become unprotected. In our example above, if the first change to a
Div/Month were now unchanged so that the only change outstanding is at Class/Month,
then Dept/Year and Class/Year is manipulated again, but Co/Week, Div/Week and
Dept/Week would still be protected.

Note: Non-conforming measures (see Non-Conforming
Expressions) may lead to hierarchical protection processing
that may appear to be over protective.

When considering hierarchical protection processing, all measures have their "scope"
expanded to include the "all" level of all hierarchies that they are not dimensioned on. For

268 Oracle Retail Predictive Application Server

example, the implications of this are that a change to a measure with a base intersection
of "class," which is interpreted as meaning "class/all," would prevent the manipulation of
a measure with a base intersection of "year," which is interpreted as "all/year."

The Spreading of Recalc Type Measures
Measures that are of recalc type are not usually spread by any spreading technique.
Spreading techniques typically rely on the existing relationships between a parent and its
children in the spreading process. In a recalc measure, those relationships cannot be
relied upon because they are not "weighted." Spreading of changes to a recalc measure is
therefore indirect, and applying a "mapping rule" effects the change.

A mapping rule is a rule (with two or more expressions) that calculate a spreadable
measure from the changed value of a recalc measure and other measures. The selected
expression for the rule is evaluated at the level of the change to the recalc measure. It
results in a changed value of a spreadable measure, and if this is above the base
intersection for that measure, it is spread normally using its default spreading method.
Therefore, a change to a recalc measure must be considered to be an indirect change to
the spreadable measure that it is mapped to.
The only constraint on the manipulability of a normally spreadable measure is through
protection processing, which prevents the manipulation of measures that will be
calculated. For a recalc measure, the measure must have a mapping rule. Without a
mapping rule, the measure cannot be manipulated.

Note: A recalc measures can only appear in a single rule in a
rule group. The RPAS calculation engine therefore knows
that rule contains the recalc expression for the recalc
measure. If there are other expressions in the rule, they may
be used as mapping expressions, which allows the recalc
measure to be manipulated. If there is just a single
expression in the rule that calculates the recalc measures, the
recalc measure is non-manipulated through normal
protection processing.

Non-Conforming Recalc Measures
Having a recalc measure on the right-hand side of an expression that calculates a
measure whose base intersection is higher than that of the recalc measure, or using the
level modifier on a recalc measure on the right-hand side of an expression can cause
incorrect values to be calculated. These incorrect values can then have a knock-on effect
onto other measures. Therefore, in these circumstances expressions must be written such
that the right-hand side of the expression should have a "recalc expression" rather than a
recalc measure. See the following section on “Non-Conforming Expressions” for more
information.

Expressions, Rules, and Rule Groups

Introduction
Measures are related together through algorithmic relationships. For example, the sales
value may be the sales units multiplied by the selling price. In RPAS, these relationships
are specified through expressions, which are grouped for usage into rules and rule
groups.

 Appendix: Calculation Engine User Guide 269

It is a fundamental principle in RPAS that the calculation engine maintains and
guarantees the integrity of all the active relationships between cells at all times.
Hierarchical relationships are maintained through the processes of spreading (see
Spreading) and aggregation (see Aggregation). Relationships between measures are
maintained by the evaluation of expressions. One of the great strengths of RPAS is that
both of these types of relationships are automatically maintained in a non-procedural
manner. You do not have to write code to determine what is calculated, how it is
calculated, or in what sequence it is calculated. All that is required is the definition of the
relationships themselves, although you do provide prioritization information to guide
the calculation engine when there is a choice of calculation paths.
In an RPAS model, all cell values at aggregated level can be determined by aggregation
from the cells at the base intersection. Although the description that follows is a
simplification, a basic understanding of the working of the calculation process, and the
importance of expressions, can be gained by understanding the interconnection between
three fundamental processes: spreading, "bottom level" expression evaluation, and
aggregation. A more detailed and precise description refers to The Calculation Cycle.
Changes to measures at aggregated levels are spread down to their base intersections.
Here, the calculation engine enforces all measure relationships that are no longer
guaranteed to be true by evaluating an expression. This is because the cell values of one
or more of the measures in the relationship have changed directly, through spreading, or
by prior evaluation of an expression When base intersection calculation is complete, all
measures at the base intersection that have been changed are aggregated to re-impose
cell integrity.

Expressions
Expressions are the basis of all calculations of the relationships between measures. They
are evaluated by the calculation engine during a calculation. Expressions are written in a
syntax that allows for the calculation of one or more measures from other measures,
constants and parameters, using standard arithmetical functions and a rich set of
mathematical, technical, and business functions. Expressions are therefore an algorithmic
statement of a relationship between measures. Details of the allowable syntax for
expressions are provided in a separate document.

Rules
An expression describes the relationship between measures in a way that causes a
measure to be calculated through the expression. An expression may be said to ‘solve’
the relationship for the measure that is calculated through the expression. In some cases,
there may be business methodology reasons for wanting more than one of the measures
in a relationship to be calculable or solvable through that relationship.

To support this requirement, RPAS has the concept of a rule, which consists of one or
more expressions that describe the same relationship between measures, but that solve
for different measures. All of the expressions in a rule must use the same measures, and
must have a different target measure. The target measure is the measure on the left-hand
side (LHS) of the expression that is calculated by the expression.

Where a rule has multiple expressions, those expressions are given a priority sequence to
help the calculation engine select a calculation path that follows business priorities.
Consider the rule that relates together sales value, sales units, and sales price. Let us
assume that there are three expressions in this rule. Each of the measures involved in the
rule may be ‘solved’ through the rule. For instance, if there is a change to a sales value, it
should be clear that the calculation engine could enforce the mutual integrity of all the
cells by holding the sales price constant and recalculating a new sales unit. It could also

270 Oracle Retail Predictive Application Server

achieve the same end by keeping the sales units constant and recalculating the sales
price. Both approaches are mathematically valid, and produce a consistent result with
complete data integrity. However, it is likely that one approach makes more ‘business
sense’ than the other. In this case, most businesses in most circumstances would want the
price to remain constant and have the units recalculated. The prioritization of the
expressions in the rule provides this information to the calculation engine. Considerable
care must be taken in the design of models to ensure that appropriate expression
priorities are established.

When given a choice, the calculation engine will always select the highest priority
expression in the rule that is available to be selected. In this example, the expression that
calculates sales units would have a higher priority than the expression that calculates
sales price. Similar consideration of the desired effect of a change to sales units will
probably lead to a conclusion that the expression that calculates sales value would also
have a higher priority than the expression that calculates sales price.

What of the relative priority of the expressions to calculate sales value and sales units,
and the "business priority" for those expressions? That may vary from implementation to
implementation. It may even vary from one type of plan to another in the same
implementation. For a financial merchandise plan, the preferred behavior may be that a
change to the sales price only causes a recalculation of the sales units, whereas in a unit-
oriented lower level plan, the preferred behavior may be that a change to the sales price
causes a recalculation of sales value.

The same measure may appear in multiple rules. This will often be necessary because the
same measure can be involved in many different relationships with other measures. For
example, there may be a relationship between sales value, sales units, and sales price.
Sales value may also be involved in another relationship with closing stock and a cover
value, and yet another with opening stock, receipts, markdowns and closing stock.

Rule Groups
It is most unusual for a model to only require a single rule. In most cases, there will be a
collection of relationships between measures that must be maintained. In RPAS, a Rule
Group is a collection of rules that are treated as a unit by the calculation engine with the
integrity of all the rules in the rule group being maintained together. The calculation
engine always has one (and only one) active rule group. Even if all that is required is a
single expression, that single expression will be in a rule, and that single rule will be in a
rule group. The process by which the integrity of all the rules in a rule group is
maintained is quite complex. It is described in detail in The Calculation Cycle topic.

Rules within a rule group are given a priority. The calculation engine uses this to select a
calculation path that follows business priorities by using rule priorities to determine
which rule to enforce when there is a choice to be made. This is described in more detail
in The Calculation Cycle topic.

There may be many rules defined within a system as a whole. The validation of rules is
performed in isolation, but rules within a rule group are also validated in the context of
all the other rules in the rule group. This can mean that a rule that is perfectly valid
syntactically, but it is not valid within a particular rule group. Rule group validations
include:

 Each rule in a rule group must represent a completely different measure relationship.
Therefore no two rules in a rule group may use exactly the same collection of
measures, and neither may one rule group use a collection of measures that is a sub-
set of the collection of measures in another rule.

 There must be an expression that calculates each recalc measure.

 Appendix: Calculation Engine User Guide 271

 Any measure that is on the LHS of the only expression in a rule may not be on the
LHS of any other expression.

Although there may only be one active rule group at any time, RPAS allows for the
definition of multiple rule groups to satisfy different calculation requirements. Rule
groups may be one of four different types:

 load – The RPAS application automatically uses the load rule group when loading
data into the workbook.

 calculate – RPAS supports multiple calculation rule groups. Menu options may be
configured to allow the user to select a different calculation rule group. RPAS
ensures a smooth transition from one calc rule group to another.

 refresh – The RPAS application automatically uses the refresh rule group to refresh
data.

 commit – The RPAS application automatically uses the commit rule group when
committing data to the domain.

These rule groups are perfectly ‘normal,’ so although they will typically include many
rules that use the master modifier to load or commit data, they may also have other rules.
For example, it is perfectly possible to commit data to the domain for a measure that does
not exist in the workbook merely by including the appropriate rule to calculate the
measure (with the master modifier) in the commit rule group. Similarly, a measure may
be loaded into a workbook that does not exist in the domain by including an appropriate
rule to calculate the measure in the load rule group.

Rule Group Transitions
Although only a single rule group may be active at any time, RPAS supports the
transition from one rule group to another. The calculation engine ensures the integrity of
measure relationships at all times so this process is not merely a case of switching from
one rule group to another. There is no guarantee that the integrity of the rules in the rule
group being transitioned has been maintained.

RPAS makes a worst case assumption when transitioning rule groups. Any rule that is in
both the old and new rule groups is assumed to have its integrity maintained. Any other
rule is assumed to be potentially wrong, and so is flagged as "affected." A normal
calculation is then initiated. Expressions to be evaluated are determined by the usual
process (see The Calculation Cycle). All affected rules will therefore have their integrity
imposed by the evaluation of an expression, and ‘knock-on’ effects may cause some rules
that occur in both the old and new rule groups to also be evaluated. Since all base
intersections must be calculated during rule group transition, a large or complex rule
group transition is likely to take longer than a normal calculate.

There are circumstances when automatic rule group transitions occur:
 On data loading

– Data is loaded using the load rule group. This will typically load measures by
calculating them from the data values held on the domain using the master
modifier, but it may also calculate other measures that are not explicitly loaded.
When the load is complete, the system will automatically transition to the
calculate rule group.

 On data refreshing

– Data refreshing causes some measures to be updated from values held on the
domain. Refreshing uses the refresh rule group, but there is no real transition.
The measures that are affected by the refreshed measures are treated as affected
in the calculate rule group, and a normal calculate of that rule group follows.

272 Oracle Retail Predictive Application Server

Effectively, data refreshing causes a calculation by using the calculate rule group
as if the cells that were refreshed were directly changed by the user.

 On data committing

– There is a normal transition from the current calculate rule group to the commit
rule group. This will typically commit measures by calculating them on the
domain by using the master modifier. When transitioning back from the commit
rule group to the calculate rule group, there is an assumption that only measures
with a “master” modifier have changed and therefore no transition is required.

The Calculation Cycle

Introduction
The calculation cycle always uses the current active rule group. It is a comprehensive
process that uses non-procedural hierarchical cell relationships and expression-driven
measure relationships from the rule group. These relationships are used together with
details of the locks and changes to individual cells to determine and then execute the
required actions to apply the effect of the changes and locks. This section describes how
the calculation engine determines what to calculate, how to calculate it, and in what
order to perform the calculations. Refer to the Oracle Retail Predictive Application Server
User Guide and the Oracle Retail Predictive Application Server Administrator Guide for details
of processes, such as spreading, aggregation, and the evaluation of expressions.

There are four distinct stages of the calculation cycle.

1. In the first stage, protection processing occurs while the user is making changes to
cell values, and it protects those measures that the user cannot change either because
they are never changeable or because changes already made force them to be
calculated.

2. In the second stage, the engine decides what expressions will be evaluated.

3. In the third stage, the sequence of calculation is determined.

4. The final stage is the physical process of doing the calculation.

Note: The calculation cycle can operate in one of two modes:
“full” and “incremental.” In “full” mode, it is assumed that
all of the cells for the measures being evaluated need to be
calculated. This mode is used when calculating in batch, and
in all rule group transitions. “Incremental” mode is used
when manipulating cells in an online session, and only those
cells that are directly or indirectly affected by user edits are
calculated.

Protection Processing
Other than in exceptional circumstances, the calculation engine guarantees the integrity
of all relationships and ensures that the value for a cell changed by a user after
calculation is the value entered by the user. In order to ensure this, the calculation engine
must prevent the user from making changes to any cells where it would be unable to
guarantee that integrity. The process that achieves this is called protection processing.

A measure may only be manipulated when the calculation engine is able to change other
cells by spreading and/or evaluation of an expression to enforce the integrity of
relationships. A measure that is not used in any rules may only be manipulated if it has a
spreading technique other than recalc.

 Appendix: Calculation Engine User Guide 273

It is a basic principle of the calculation engine that a measure that is changed (or locked)
cannot also be recalculated by evaluating an expression. It will be aggregated, which in
the case of a recalc measure, does involve the evaluation of an expression. A measure
that is to be evaluated can only be evaluated using one expression because there is no
guarantee that the same result would be produced from two expressions that represent
different measure relationships. It is also a basic principle that any measure relationship
(rule) must be evaluated when one or more of the measures in that relationship have
been changed because this is the only way to enforce the integrity of the rule relationship.
Therefore, a rule where there is just a single expression means that the measure
calculated by that expression cannot be changed by the user because there is no
expression to evaluate to effect that change for that measure relationship. Such measures
can never be manipulated in any rule group that uses the rule and are protected.

Where a rule has two expressions, the two measures that are calculated by those
expressions are available to be manipulated. However, as soon as one measure is
manipulated by the user, we know that the expression that calculates the other measure
must be evaluated, as one of the expressions in the rule has to be evaluated, and we
cannot evaluate the expression that calculates the measure that was changed. The
expression that must be calculated is said to be forced, and the measure that it calculates
is protected to prevent the user from changing it. That measure may be involved in more
than one rule, and in the other rules in which it is used it must be treated as if the user
changed it. This so-called knock-on effect may force further measures to be forced and
protected. Evaluating these effects is the basic technique of protection processing.
Protection processing occurs continuously while the user is editing cells. Each time the
‘changed state’ of a measure changes, protection processing evaluates the measures that
should now be protected. The ‘changed state’ of a measure means the measure goes from
not having changes or locks to having them. Protection processing always reflects the
current set of locks and changes. RPAS allows cells that have been changed or locked to
be unchanged or unlocked before the calculation is initiated. If an unchange or unlock
removes the last change or lock for the measure so that the measure is no longer affected,
protection processing is quite likely to find the other measures that were previously
forced, but are no longer forced. These measures are free to be manipulated, so they must
be unprotected.

Protection Processing Details
The following terms are used in this description:

 An affected measure is a measure that has been changed by the user, is locked by the
user, or is forced.

 An affected rule is a rule that contains one or more affected measures.
 A free measure is a measure that is not affected.

 A free expression is an expression for an affected rule that calculates a free measure.

 A forced rule is an affected rule that has only one free expression.

 A forced measure is the measure calculated by the free expression in a forced rule.

Any measure that is the measure on the LHS of the only expression in a rule is protected.

Protection processing considers each affected rule in turn. Each affected rule will be in
one of three conditions:

 Affected rules that have previously been forced are ignored

 If the affected rule has two or more free expressions, it is ignored because nothing is
forced.

 If the affected rule has just a single free expression, it becomes a forced rule, and the
measure calculated by the free expression is forced and becomes an affected measure.

274 Oracle Retail Predictive Application Server

The forced measure is protected. All rules that use the forced measure become
affected.

When a new measure becomes forced, checking of affected rules begins again. When all
affected rules have been considered without any further measures becoming forced, the
first stage of protection processing is complete.

The second stage of protection processing is to perform "look ahead" protection
processing. Look ahead protection processing ensures that all measures that are visible in
windows (and still unprotected) can be manipulated. It does this by performing the
protection processing that would occur if the measure were changed. This includes
ensuring that there is a solution to the processes of determining what to calculate and
ordering the calculation. If these processes fail to find a solution, the process that
determines what to calculate will repeatedly back up the decision tree and select a
different expression that is looking for a solution. If there is no such solution, the
measure that was being checked is protected. In this manner, the calculation engine
ensures that there will always be a method to calculate the effects of all changes that it
allows the user to make.

Note: This is a somewhat simplified description of protection
processing, as it ignores the implications of "cycle groups"
(see Cycle Groups) and "synchronized measures" (see
Synchronized Measures).

Protection Processing Example
The following example illustrates the evaluation of protection processing. For purposes
of this example, consider the following set of rules:

Rule 1:

1. A = B + C

2. B = A - C
Rule 2:

1. D = E + A

2. E = D – A

Rule 3:

1. H = F + G

For this set of rules, assume a user edited or locked measure B. Upon evaluation of the
protection processing process, the following would occur:

1. B becomes an affected measure.

2. Rule 1 becomes an affected rule.

3. The expression A = B + C in Rule 1 is a free expression that calculates the free
measure A.

4. Because Rule 1 has only one free expression, it becomes a forced rule.
5. A becomes a forced measure and therefore an affected measure.

6. Rule 2 becomes an affected rule because it contains the affected measure A.

7. Because Rule 2 contains two free expressions, it does not at this time become a forced
rule.

8. Because Rule 3 contains a single expression and because the measure calculated by
that expression cannot be mapped back to the right-hand side measures, measure H
is protected by the calc engine and cannot be edited.

 Appendix: Calculation Engine User Guide 275

And so, at the conclusion of evaluating protection processing for the given set of rules,
the states of the measures is as follows:

 B is edited.

 A is forced and therefore, protected.
 C is not protected and can be edited.

 D and E are free measures of an affected rule. Either can be edited but editing one
will cause the other to be forced and, therefore, to be protected.

 F and G unaffected measures and therefore can be edited.

 H is protected as the calc engine cannot resolve changes to the measure’s values.

At this point, the calc engine would begin to calculate knock-on effects based on the
protections of B, A and H. These knock-on effects could result in the forcing and
protection of additional measures. The process will be evaluated iteratively until all the
knock-on effects of the original edit have been processed.

To provide an example of how protection processing can force measures outside the
scope of the triggering rule, consider the case where Rule 1 and Rule 2 are unchanged but
the expression of Rule 3 is instead:
Rule 3:

A = F + G

In this scenario, protection processing causes measure A to be protected because changes
to A cannot be resolved against measures F and G. Furthermore, measure B also
becomes protected, as changes to it would cause A to be an affected measure. In this case
the state of the measures, before any edits by the user, will be:
 A is protected.

 B is protected as changes to it would force an update to A.

 C is not protected and can be edited.

 D and E are both unaffected and can be edited (the presence of the protected measure
A on the right-hand side of an expression does not cause them to be protected).

 F and G are both unaffected and can be edited. Because measure B is protected, the
calc engine can resolve changes to F or G by making B a forced measure.

Determining What to Calculate
The protection processing process has established which measures are forced given the
current set of changes and locks. When a calculate is issued, those forced measures will
be calculated (using the forced expressions). However, there may be affected rules that
are not forced. For those affected rules, we know that an expression must be evaluated,
and the calculation engine must select one of the expressions. Otherwise the integrity of
the rule is compromised.

When there are one or more affected rules that are not forced, the highest priority
affected rule is selected. From this selected rule, the highest priority free expression is
selected, and it will be evaluated. These are the only uses to which the rule and
expression priorities are put. The measure that is calculated by the selected expression is
then treated as forced, and knock-on effects considered, which are likely to cause other
rules and measures to become forced. At the end of this process, if there are still affected
rules that are not forced, the process is repeated until there are no affected rules that are
not forced. At this point, any rule that is not affected does not need to be evaluated, and
an expression has been forced or selected for all rules that need to be evaluated to ensure
the integrity of all measures.

276 Oracle Retail Predictive Application Server

Determining the Calculation Sequence
The previous section has established which expressions to evaluate, but not the sequence
in which they are evaluated. The sequence of evaluation of expressions is driven by the
status of the right-hand side (RHS) measures. All normally spreadable (not of recalc type)
measures that are changed can be spread and then aggregated at the start of the
calculation cycle. Normally, spreadable measures that have been changed and those
measures that will not change during the calculate are considered to be "complete." Any
expression whose RHS measures are all complete may be evaluated. If the expression is a
mapping rule for a recalc measure, the changed values for the mapped spreadable
measure will be calculated for all changed cells. That measure may then be spread and
aggregated normally. If the expression is for normal ‘base intersection’ evaluation, the
measure will be calculated, and may then be aggregated. In either case, the calculated
measure is now ‘complete,’ which may make further expressions available to be
evaluated. The process continues until all expressions have been sequenced.

When determining the sequence of calculation, the evaluation of expressions is
intermingled with spreading and aggregation. In very trivial cases, where all changed
measures are spreadable, there will be:
 a phase where a number of measures are spread.

 a second phase where a number of measures are calculated at the base intersection.

 a third phase where a number of measures are aggregated.

However, if any recalc measures have been changed at aggregated levels, the ‘mapping
rule’ cannot be applied until any affected measures on the RHS of the expression have
been spread or calculated and then aggregated.

Note: This is a simplified description of the calculation
sequence. For efficiency purposes, groups of measures that
must be spread, aggregated, or evaluated are batched
together, so that an individual measure is not necessarily
spread, aggregated, or evaluated as soon as it is available for
that action. However, it is always spread, aggregated, or
evaluated before the results of that action are required for
another step. Also, expressions are not evaluated for all cells,
but only for those cells where one or more of the measures
on the RHS of the expression have changed. There are
similar efficiencies in aggregation to avoid the redundant re-
aggregation of cells that will not have changed.

Cycle Groups
This section describes the cycle group feature of the RPAS calculation engine. This
feature enables relationships between measures that have cyclic dependencies from the
measure perspective (there appears to be a ‘deadly embrace’ where each measure
depends upon the other), but are actually acyclic when the time dimension of these
measures is considered. Without this feature, such relationships could not be set up
because the calculation engine would be unable to find a calculation sequence that
enabled both measures to be calculated.

A common application of cycle groups can be found in inventory calculations that
involve measures, such as beginning of period (BOP) and end of period (EOP). It is
typical that EOP is calculated in some way from BOP for the same period. Other than in
the very first period, the BOP of a period is equal to the EOP of the previous period. Since
BOP is dependent on EOP and EOP is dependent on BOP, a cycle exists from a measure
perspective. However, when the time dimension is considered, calculations can be

 Appendix: Calculation Engine User Guide 277

performed in an acyclic fashion. In this example, if EOP for the first period is calculated
first, then BOP for the second period can be calculated. This allows EOP for the second
period to be calculated, and so on.

Cycle Breaking Functions
Some of the functions supported by the calculation engine have special cycle breaking
logic associated with them. These include functions that reference previous time periods
and functions that reference future time periods. When these functions are used, the
calculation engine automatically determines when measure dependencies that appear to
be cyclic are in fact acyclic when the calculations are performed one period at a time. The
lag and lead functions are examples of cycle breaking functions.

Cycle Group Evaluation
A cycle group is a group of expressions that the calculation engine must calculate
together in order to avoid cyclic dependencies. If the apparent cycle is broken by a
function that looks backwards in the time dimension (such as lag), calculation proceeds
with the first time period of each expression in sequence. This is followed by the second
time period of each expression in sequence, and it continues until all time periods have
been calculated. If the apparent cycle is broken by a function that looks forwards in the
time dimension (such as lead), calculation proceeds in reverse order starting with the last
time period.

Note: Since the acyclic calculation of expressions in a cycle
group is a ‘base level calculation,’ all measures being
calculated in the cycle group must share the same base
intersection. That is, the cycle group evaluation process
cannot aggregate measures calculated in the cycle group
during the cycle group evaluation.

Cycle Group Example:

Consider the following measures:

BOP: beginning of period inventory

EOP: end of period inventory

OS: opening stock (that is, the opening inventory for the first period in the plan horizon)

SLS: sales
RCP: receipts

And consider the following rules:

R1: BOP = if(current == first, OS, lag(EOP))

R2: EOP = BOP – SLS + RCP

RCP = EOP – BOP + SLS

When the measure RCP is edited, R2 is affected and the EOP expression in this rule is
forced. Then rule R1 is affected and the BOP expression in this rule is forced.

Since the calculation of EOP requires BOP and the calculation of BOP requires EOP, a
cycle is detected that contains both of the selected expressions. This is a valid cycle group
because the calculation of BOP is dependent on the lag of EOP. Therefore, the cycle can
be broken and the intra-cycle ordering results in the BOP expression being evaluated first
and EOP expression second.
The evaluation of this cycle group involves the calculation of the first time period of BOP,
followed by the first time period of EOP, followed by the second time period of BOP,

278 Oracle Retail Predictive Application Server

followed by the second time period of EOP, and continues until all time periods have
been calculated.

Synchronized Measures
Measure synchronization is an RPAS user interface and calculation engine feature. It
enables measures that are very closely related to be represented in the user interface (UI)
in a more intuitive manner. It can give the appearance of a cell edit or lock affecting two
different measures. From a calculation perspective, the cell edit or lock is only applied to
one of these measures. A common application of synchronized measures is to allow BOP
and EOP to be synchronized. From a business logic perspective, the BOP in one period
and the EOP in the previous period are the same thing, and measure synchronization
means that even before calculation, an edit or lock of BOP in one period also appears on
the UI as an edit or lock of EOP for the previous period, and vice versa.

To accomplish measure synchronization, a measure is defined with a synchronized view
type and a list of synchronized source measures. The measure defined with these
attributes is called the synchronized target measure. Synchronized target measures may
be edited, but any such edits are actually treated as edits to the underlying synchronized
source measures. Protection processing is performed on the synchronized source
measures. The protection state of the target measure is then derived from that of the
source measures. An edit to one of the source measures is also reflected in the display of
the target measure.

The synchronized view types that can be used to define synchronized target measures
are as follows:

1. sync_first_lag: The first period of the target measure is synchronized with the first
source measure, and periods 2..N of the target measure are synchronized with
periods 1..N-1 of the second source measure, where N represents the last period. The
first source measure will not have a time dimension. This view type is particularly
useful for defining BOP target measures. Here the first source measure would be an
opening inventory, and the second source measure would be the EOP.

2. sync_lead_last: Periods 1..N-1 of the target measure are synchronized with periods
2..N of the first source measure and period N of the target measure is synchronized
with the second source measure, where N represents the last period. The second
source measure will not have a time dimension. This view type is particularly useful
for defining EOP target measures. Here the first source measure would be BOP, and
the second source measure would be a closing inventory.

3. sync_first: The target measure is synchronized with the first period of source
measure. The target measure will not have a time dimension. This view type is
particularly useful when defining OS target measures.

4. sync_ last: The target measure is synchronized with last period of the source
measure. The target measure will not have a time dimension. This view type is
particularly useful when defining CS target measures.

Note: In order for a synchronized measure to be editable, all
of the measures that it is synchronized with must be
viewable on the worksheet, but they do not need to be
visible.

Synchronized Inventory Examples:

Consider the following measures:

BOP: beginning of period inventory

 Appendix: Calculation Engine User Guide 279

EOP: end of period inventory

OS: opening stock (that is, the opening inventory for the first period in the plan horizon)

CS: closing stock (that is, the closing inventory for the last period in the plan horizon)

SLS: sales
RCP: receipts

And consider the following rules:

R1: BOP = if(current == first, OS, lag(EOP))

R2: EOP = BOP – SLS + RCP

RCP = EOP – BOP + SLS

BOP can be defined as a synchronized measure constructed from the OS and EOP
measures with the sync_first_lag type. Only one expression in the rule group may have
BOP on the LHS. This expression is used to construct views of BOP, and it is merged
with expressions that require BOP on the RHS.

When edits or locks are made to BOP, it is the underlying values of OS or EOP that are
actually changed or locked. Thus, even though rule R1 has only one expression and this
expression calculates BOP, the BOP measure is not protected by protection processing
because of the measure synchronization. The BOP measure is only protected when the
underlying OS or EOP measures are protected, so the first period is protected when OS is
protected and the remaining periods are protected when EOP is protected.

In this example, a CS measure is not required for calculation purposes, but it may be
desired for viewing and editing purposes. For example, a window that contains only OS
and CS but not BOP nor EOP may be wanted. In this case, the CS measure should be
defined as a synchronized measure with type sync_last and the synchronized source
measure would be EOP. As a result, an edit to CS becomes an edit to the last period of
EOP.

Elapsed Period Locking
Many planning and prediction applications will cover a time horizon where some of the
time periods are in the past (i.e., have elapsed), and others are in the future. RPAS
assumes that time periods that have elapsed contain actuals, and that these actuals
should not be editable. Therefore, all measures are rendered un-editable during elapsed
periods. For positions at aggregated levels in a time hierarchy, the position is considered
elapsed when the last lowest level time period descended from it has elapsed.

The RPAS Calculation Engine has special logic for handling elapsed time. Apart from
being un-editable in the user interface, spreading never spreads a value to an elapsed cell
(for more information, please see the previous Locks and Spreading Around Locke and
Changed Cells section).

Measures that represent beginning of period (BOP) data have special handling. From a
business perspective, the BOP in a period is the same as the end of period (EOP) in the
previous period. Therefore, when an EOP value is elapsed, the following BOP value must
also be elapsed. In RPAS, all measures with a default spread method of Period Start Total
(PST) (for more information, please see the previous Spreading Methods section), or with
their measure property Period Start Value set to TRUE are assumed to be "BOP type"
measures, and are protected for all elapsed periods, and for the first non-elapsed period.
The following example worksheet demonstrates a situation in which the elapsed
threshold has been set to 12/2/2013. The pink-colored cells have been set to read-only by
RPAS in order to honor elapsed period locking. In this example, the measure e_ex_pet is
a regular measure, whereas, r_es_pst is a BOP type measure.

280 Oracle Retail Predictive Application Server

Elapsed Period Locks for BOP and Non-BOP Measures

There is also special handling of BOP type measures for aggregated time positions. These
are treated as elapsed, and are therefore protected when the first bottom level time
period descended from it is elapsed.

To set up elapsed period locking in a workbook, workbook designers should set the
elapsed time threshold in the load rule of the workbook using the elapsed keyword (for
more information, please see the Functional Keywords section in Appendix C: Rules and
Functions Reference Guide). If the elapsed time threshold is not set, elapsed period
locking will not be available in the workbook.

Example:

To setup the elapsed threshold to today, you would first create a one-dimensional
measure, pDay for example, with its intersection at the Day level of the Calendar
hierarchy. Then, you would set up a rule like the one shown below to initialize this
measure with the index of today.
pDay = prefer (today-1, if (now>end, last, -1))
You would then aggregate this measure using the PST aggregation method to set the
elapsed time threshold as shown in the following rule.
elapsed = pDay.pst
Setting up the elapsed threshold in the load rule fixes the threshold for the life of the
workbook; however, in-season planning applications may require the elapsed threshold
to change during the lifetime of a workbook. To achieve this, you can reset the elapsed
threshold in a Refresh rule-group or in the Calc rule-group using rules exemplified in the
preceding discussion. RPAS inspects the value of threshold after execution of these rule-
groups and immediately adjusts the elapsed period locks in the UI. Note that since
elapsed threshold is evaluated and executed after the execution of these rule-groups, any
spreading performed in the Calc cycle itself would use the state of elapsed threshold
before the rule-group was invoked.

Non-Conforming Expressions

Introduction
One of the strengths of the RPAS calculation engine is that a workbook may contain
measures with different "scopes." The size and shape of the "multidimensional cube" of
data may vary by measure. Any two given measures in a workbook may have scopes
that align exactly (for example, both measures have a base intersection of
SKU/Store/Week), or where one is a subset of the other (for example, one has a base
intersection of SKU/Store/Week and the other is at Class/Week). There can also be
circumstances where each measure includes a hierarchy in its base intersection that the
other dimension does not use (for example, one has a base intersection of Class/Week

 Appendix: Calculation Engine User Guide 281

and the other is Store/Week). In extreme circumstances, the scopes of two measures may
have no point of overlap at all (for example, one has a base intersection of Class and the
other Store).

It is the scope of the measure on the LHS of an expression that determines the cells that
must be calculated by the expression, even though that scope may be changed by the use
of a modifier such as level. Where one or more measures on the RHS of an expression
have a scope that is different (in any way) to the scope of the LHS measure, the
expression is deemed to be "non-conforming." There is special logic to handle the
calculation of non-conforming expressions, which depends on the type of nonconformity.

Although not explicitly declared, there is a single logical "All" position at the top of every
hierarchy. When considering non-conformity, any measure that is not explicitly
dimensioned on a hierarchy is implicitly assumed to be dimensioned on the "All"
dimension of that hierarchy, so all data values are assumed to be for the "All" position.
This concept is the key to understanding the handling of non-conforming expressions.

Handling of Non-conforming Expressions
When the concept of the "All" position is understood, all expressions can be considered to
contain measures that use exactly the same hierarchies. The only potential differences
between them are the "bottom levels" (dimensions in the base intersection). Thus for
handling non-conformity, only three cases need to be considered, for each hierarchy:

 RHS same:

– In this case the RHS measure has the same bottom level as the LHS measure. The
RHS measure is "conforming" for that hierarchy, and values for the RHS measure
are taken from the same position as the position being calculated for the LHS
measure.

 RHS higher:

– In this case the RHS measure has a higher bottom level than the LHS measure.
The RHS measure is ‘non-conforming’ for that hierarchy. The values for the RHS
measure for the position being calculated are assumed to be the same as the
value of the RHS measure for the position in its bottom dimension that is the
parent (ancestor) of the position being calculated. Effectively, it can be
considered that the value of the measure has been "replicated" down the
hierarchy to the required level.

 RHS lower:

– In this case the RHS measure has a lower bottom level than the LHS measure.
The RHS measure is "non-conforming" for that hierarchy, but because the scope
of the RHS measure includes the bottom level for the LHS measure, values for
the RHS measure are taken from the same position as the position being
calculated for the LHS measure.

The conceptual case where the measures have scopes that do not overlap, because
they have base intersections in a hierarchy that are for dimensions that are up
different "branches" of the hierarchy, fails rule validation.

Examples
These examples all use the simple expression a = b + c

Example 1:

Consider the following values:

 a has a base intersection of SKU/Store/Week

 b has a base intersection of SKU/Week

282 Oracle Retail Predictive Application Server

 c has a base intersection of SKU/Region/Week

For each SKU/Store/Week, a is calculated from the value of b at SKU/Week (that is, it is
assumed that the value of b is the same for all positions in the location hierarchy) and the
value of c at SKU/Region/Week, for the Region the Store belongs in. If ‘replication’ of c
from the Region level is not appropriate, the rule writer can simulate other ‘spreading’
techniques by the use of functions and modifiers such as count and level. For example,
the count function may be used to determine the number of Stores in the Region, and so
dividing the measure c by that count will simulate ‘even’ spreading.

Example 2:

Consider the following values:

 a has a base intersection of SKU/Store/Week

 b has a base intersection of SKU/Week
 c has a base intersection of SKU

For each SKU/Store/Week, a is calculated from the value of b at SKU/Week (that is, it is
assumed that the value of b is the same for all positions in the location hierarchy) and the
value of c at SKU (that is, it is assumed that the value of b is the same for all positions in
the location hierarchy and time hierarchy). Note that an alternative approach, if required,
would be to use a level modifier on the measure a, so that it is calculated at, say,
SKU/Week, and then spread down to SKU/Store/Week, using the existing store
participations to the measure a.

Example 3:

Consider the following values:

 a has a base intersection of SKU/Week

 b has a base intersection of SKU/Store/Week

 c has a base intersection of SKU/Region/Week

For each SKU/Week, a is calculated from the value of b and c at SKU/’All’/Week.

 Appendix: Rules Function Reference Guide 283

C
Appendix: Rules Function Reference Guide

Overview
This section provides the syntax and design of functions, procedures, modifiers, and
keywords that are used in expressions in the RPAS calculation engine. There are
important distinctions between each of these definitions.

Functions
Functions are separated into two types: single result functions and multiple result
functions.

Functions (single result) – Mechanisms for performing operations within an expression
that are controlled and executed by the calculation engine.

 Functions are most commonly used in RPAS.
 Most functions in base RPAS return only a single measure.

 Calculation engine controls and executes the evaluation of a function.

 Functions may be used in expressions with other functions and keywords.

Multiple result functions – Similar to the features and behavior of single result
functions, but with semantic and syntactic differences.

 There can be more than one left-hand side (result) measure that can be specified
implicitly by position in the expression or explicitly by label.

 Left-hand side measures have to be at same intersection; however, the calendar
hierarchy can be dropped or added.

 The result(s) from a multiple result function cannot be used as arguments to another
function, nor can the result(s) be chained with other operations to form long
expression.

 Expressions can be used as arguments to multiple result functions.

 Multiple result functions cannot be part of a cycle group.

Procedures
Procedures are mechanisms for performing operations in an expression where the
calculation engine controls the execution, which is performed by the procedure itself.

 Procedures can only use measures or scalars

 Procedure executes the evaluation (instead of RPAS/calculation engine), but the
calculation engine still controls protection processing, sequence of calculation, when
the procedure is called, and so on.

 Procedures can have multiple arguments on the left and right hand sides.

 Procedures cannot be used with functions, other procedures, keywords, and certain
modifiers.

 Because of their flexibility and the control available to the developer, procedures can
be used for a wide variety of special calculations and activities.

 Procedures require a different syntax. The syntax uses “<-“ instead of “=” in the
expression.

284 Oracle Retail Predictive Application Server

Modifiers
Modifiers directly modify the source or destination of measures, to override the level,
aggregation type, position, and so on.

Modifier Syntax
<measure>.<modifier>

Keywords
Keywords appear in expressions or as arguments inside functions to return specific data
values.

Syntax Conventions
The syntax is as quick and straightforward to implement as possible. Function names,
keywords, and so on are currently in lowercase.

Keywords are allowed, but they are kept to a minimum. Function parameters are comma
separated and may be optional; however, they are positional, so that the absence of a
parameter needs to be specified by commas if a subsequent parameter is supplied.

The table below displays the syntax conventions used in this procedure.

Indicator Definition

[…] All options listed in brackets are optional.

{…|…} Options listed in “{}” with “|” separators are mutually exclusive
(either/or).

{…,…} Options listed in “{}” with “,” separators way are a complete set.

Bold Labels.

Italics Italics indicate a temporary placeholder for a constant or a measure.

Italics/meas This indicates that the placeholder can be either a constant or a measure.

Bold Italics This indicates a numeric placeholder for the dynamic portion of a label.
Usually a number from 1 to N.

Normal Normal text signifies required information.

Underlined This convention is used to identify the function or procedure name.

The following is the functional syntax used in this document:

 Large square brackets [] are used to indicate an optional parameter.

 Small square brackets [] are part of the expression syntax and are used to specify a
hierarchy, dimension, and/or position.

 Large braces { } indicate a choice where one of the items (which will be separated
by a pipe sign "|") must be selected.

 Small braces {} are part of the expression syntax, and are used to specify a measure
set for functions that accept a variable number of arguments (that is, {<measureset>}
).

 Parameters of a specific type (such as expressions or dimension names) are shown in
angle brackets <>.

 A plus “+” sign is used to specify an intersection, which is done by connecting two or
more dimension specifications.

 Appendix: Rules Function Reference Guide 285

 Keywords, modifiers, function names, and procedure names are shown in bold.

Specification of Hierarchy, Dimension, or Position
Many functions in RPAS require the specification of a hierarchy, dimension, or a
combination thereof, to define the level at which an expression is evaluated. When
defining the hierarchy and dimension names in expressions square brackets [] must be
used.

In the document, the following syntax is used to designate a hierarchy and dimension:

Hierarchy, Dimension, and Position Syntax
[<hierarchy>].[<dimension>].[[<position>]]

Note: position is noted as optional because it can only be
specified in a limited number of functions.

For simplicity of parsing and clarity of rule writing, the <hierarchy> must be supplied in
all cases, even when, as in calendar index functions, it might be implied from the context.
Functions that require a hierarchy and dimension specification have standard validation
rules whereby [<hierarchy>] must be a valid hierarchy name, [<dimension>] must be a
valid dimension in [<hierarchy>], and [<position>] must be a valid position name in
[<dimension>]. If the position name starts with a number, the position name must be
nested in a pair of double quotes. In some functions or procedures, one of the hierarchical
keywords top, bottom, or current (used conditionally based on context) can be used to
specify the dimension. Should this validation fail, an error will be generated.

Function Inverses
Some functions (such as cover) have what are referred to as "inverse" functions. This is
required, as all expressions in a rule group must be algorithmic inverses of each other.
Each function states whether it has an inverse, and, if so, what the syntax of the inverse
is.

An inverse function is only relevant when the function encompasses the whole of the
expression. Functions embedded in longer expressions do not have inverses, though the
expression itself may have an inverse as long as the measure being "solved" for is not an
input into the function. Functions that have inverses usually have enough scope in their
syntax to cover the eventualities that would typically cause them to be embedded in
longer expressions (such as code to prevent an error result).

Functions with Multiple Results
The following special syntax should be used for functions with multiple results.

The left-hand side measures in a multiple result expression are comma-separated and can
be identified by a labeling mechanism.

Label Syntax
<measure>:<label>

Valid label names are specified by the multiple result function syntax. If a multiple result
function specifies valid labels, the function can be used in an expression without
specifying all possible results. The multiple result function itself is aware of which results
are being stored and may be able to run faster by skipping the computation of unneeded
results.

286 Oracle Retail Predictive Application Server

Special Handling for Functions

Error Handling
There are several keywords and functions that have special control flow over the
evaluation of the expression.

RPAS has no facility for holding an "error" value for a cell. Should the evaluation of any
expression, or clause in an expression, result in an error, the value for the cell or clause
will be the "naval."

Note: It is good programming practice to check for any
clauses that may return an error, and the prefer function
provides a way to specify the behavior under these
circumstances. Some functions have their own implicit error
handling.

if
Used for handling conditional logic and masking updates within expressions.

Syntax
if(<condition>, <use-expression>, <else-expression>)

where <condition> is any valid Boolean expression. <use-expression> and <else-
expression> are any valid expressions that are evaluated based on the result of
<condition>; one (and only one) of these expressions can contain the keyword ignore.
<use-expression> is evaluated when the result of <condition> is true; <else-expression>
is evaluated when the result of <condition> is not true.

<expression> is any valid expression. ignore is a keyword that is used to indicate that the
entire expression is not to be evaluated (that is, masking the update to the entire
expression).

Note: ignore can ONLY be used in either the <use-
expression> or <else-expression>, but not both.

The use of ignore always flags the expression as a masked update – this will always
prevent the expression from being evaluated or involved with aggregations when the
condition is not met. To reiterate, note that the entire expression is not evaluated, not just
the sub-expression that uses the if clause. When ignore is used in expression where the
LHS measure is modified with the master keyword (typically in a commit rule group),
then the <condition> must be a Boolean measure (in other words, not an expression). This
syntactical restriction is validated when the expression is parsed.

if clauses can be nested without restrictions but must be enclosed with parentheses when
used more than once within an expression.
Examples:

Conditional logic:
 BOP = if(current == first, SeasOP, lag(EOP))

 OTB = if(ProjEOP > PlanEOP, 0, PlanRecpt – OnOrder)

Masked update with a single expression:

 SalesOP = if(Approved, SalesWP, ignore) Updates Sales for the Original Plan
version to the value in the Working Plan version when the Boolean measure Approved
is set to true. ignore designates that no update is made to SalesOP if the Approved
measure is false. This is functionally equivalent to the next example.

 Appendix: Rules Function Reference Guide 287

 SalesOP = if(NotApproved, ignore, SalesWP) Does not update the measure SalesOP
with the values from the measure SalesWP when the Boolean measure NotApproved is
true.

 Note the distinctly different behavior between the following similar expressions:
 a = b + (if(<condition>, c, ignore)) This is an example of a masked update where

no update is made to measure a if the condition is not met (that is, the entire
expression is not evaluated).

 a = b + (if(<condition>,c, 0)) - This is an example of conditional logic where an
else clause is provided and the expression is always evaluated, thus “a” is always
updated to either “b” or “b+c”.

prefer
Returns the first non-error value from a series of expressions.

The primary use is to enable the capture and appropriate calculation of error conditions.
Syntax
prefer(<expression1>, <expression2> [, <expression3> … <expressionn>])

Where < expression1-n> are expressions which return values of the appropriate data
type. The function returns the value of the first of the expressions that does not generate
an error when it is evaluated. It is good coding practice to use a prefer function around
any clause of an expression, which could potentially generate an error.

Inverse

The prefer function does not have an inverse.

Examples:

 prefer(A/B, 100) - This example returns the value of A divided by B, unless that
generates an error (as it would if B is zero), when it returns 100.

 prefer(lag(A), B) - This example returns the value the lag of A, unless that generates
an error (as it would when evaluating the first period of the plan horizon), when it
returns the value of B. The prefer function in this example is thus the functional
equivalent of the expression:

 if(current == first, B, lag(A))

Non-Conforming Measures

Definition
One of the strengths of the RPAS engine is that a workbook may contain measures with
different scopes: the size and shape of the multidimensional cube of data may vary by
measure. Any two given measures in a workbook may have scopes that align exactly (for
instance, both measures have a base intersection of SKU/Store/Week), or where one is a
subset of the other (for instance, one has a base intersection of SKU/Store/Week, and the
other is at Class/Week). There can also be circumstances where each measure includes a
hierarchy in its base intersection that the other dimension does not use (for instance, one
has a base intersection of Class/Week and the other is Store/Week). In extreme
circumstances, the scopes of two measures may have no point of overlap at all (for
instance, one has a base intersection of Class and the other Store).
It is the scope of the measure on the left hand side of an expression (referred to as the
LHS measure) that determines the cells that must be calculated by the expression, though
that scope may be modified by the use of a modifier such as level. Where one or more
measures on the right-hand side (RHS) of an expression have a scope that is different (in

288 Oracle Retail Predictive Application Server

any way) to the left-hand side (LHS) measure, the expression is deemed to be "non-
conforming." There is special logic to handle the calculation of non-conforming
expressions, which depends on the type of nonconformity.

Although not explicitly declared, there is a single logical "All" position at the top of every
hierarchy. When considering non-conformity, any measure that is not dimensioned on a
hierarchy, is implicitly assumed to be dimensioned on the "All" level of that hierarchy,
and thus all data values are assumed to be for the "All" position. This concept is the key
to understanding the handling of non-conforming expressions.

When the concept of the "All" position is understood, all expressions can be considered to
contain measures that use exactly the same hierarchies. The only potential differences
between them are the "bottom levels" (dimensions in the base intersection). Thus, for
handling non-conformity, only three cases need to be considered, for each hierarchy:

1. RHS same

In this case, the RHS measure has the same bottom level as the LHS measure. The
RHS measure is "conforming" for that hierarchy, and values for the RHS measure are
taken from the same position as the position being calculated for the LHS measure.

2. RHS higher

In this case, the RHS measure has a higher bottom level than the LHS measure. The
RHS measure is "non-conforming" for that hierarchy. The values for the RHS
measure for the position being calculated are assumed to be the same as the value of
the RHS measure for the position in its bottom dimension that is the parent
(ancestor) of the position being calculated. Effectively, it can be considered that the
value of the measure has been "replicated" down the hierarchy to the required level.

3. RHS lower

In this case, the RHS measure has a lower bottom level than the LHS measure. The
RHS measure is "non-conforming" for that hierarchy, but because the scope of the
RHS measure includes the bottom level for the LHS measure, values for the RHS
measure are taken from the same position as the position being calculated for the
LHS measure. RHS measure is aggregated using the default aggregation method.

The conceptual case where the measures have scopes that do not overlap, because
they have base intersections in a hierarchy that are for dimensions that are up
different "branches" of the hierarchy, fails rule validation.

Examples

Note: The following examples all use the simple expression a
= b + c.

Example 1

Consider the following scenario:

 “a” has a base intersection of SKU/Store/Week

 “b” has a base intersection of SKU/Week
 “c” has a base intersection of SKU/Region/Week

For each SKU/Store/Week, “a” is calculated from the value of b at SKU/Week (it is
assumed that the value of “b” is the same for all positions in the location hierarchy) and
the value of “c” at SKU/Region/Week, for the Region the Store belongs in. If
"replication" from the Region level is not appropriate, the rule writer can simulate other
spreading techniques using functions and modifiers such as count and level.
For example, the count function may be used to determine the number of Stores in the
Region, and so dividing the measure c by that count will simulate ‘even’ spreading.
Additionally level could be used to force the calculation of a at Region instead of a’s base

 Appendix: Rules Function Reference Guide 289

intersection, Store (a.level([loc].[reg])=b+c). In this scenario edits to “b” or “c” would
calculate “a” at Region and would then spread those values down to Store for measure a
using the default spread method.

Example 2

Consider the following scenario:

 “a” has a base intersection of SKU/Store/Week
 “b” has a base intersection of SKU/Week

 “c” has a base intersection of SKU

For each SKU/Store/Week, “a” is calculated from the value of b at SKU/Week (it is
assumed that the value of b is the same for all positions in the location hierarchy) and the
value of “c” at SKU (it is assumed that the value of “b” is the same for all positions in the
location hierarchy and time hierarchy).

Note: An alternative approach, if required, would be to use a
level modifier on the measure a, so that it is calculated at
SKU/Week, and then spread down to SKU/Store/Week,
using the existing store participations to the measure a.

Example 3

Consider the following scenario:

 “a” has a base intersection of SKU/Week

 “b” has a base intersection of SKU/Store/Week

 “c” has a base intersection of SKU/Region/Week
For each SKU/Week combination, “a” is calculated from the value of “b” and “c” at
SKU/’All’/Week. Otherwise stated b and c are aggregated up the location hierarchy, and
then added to “a” for each position in SKU/Week.

Functional Keywords

Overview
Functional keywords are keywords that may be used in expressions that return specific
data values. There are a group of keywords that provide information (in the form of
index numbers) about the calendar hierarchy, and a further group of keywords that
provide information of the current session.

Calendar Index Functional Keywords
Certain calendar index functional keywords are supported in the syntax, as described
below. In this context, a calendar index number is an ordinal position counter of the
position in a dimension within the scope of the calendar horizon, where the dimension is
as for the cell being evaluated. For example, in a plan whose scope is a year, the first
week will have an index of 0, week 26 will have an index of 25, and week 52 will have an
index of 51. Similarly, if an expression is being evaluated at the quarter level, the first
quarter will have an index of 0, and the last one an index of 3. Calendar index functional
keywords may be included in any numeric expression.

first
Returns the index number of the first calendar position.
This keyword is provided for completeness and clarity of rule function writing, since the
value will always be zero!

290 Oracle Retail Predictive Application Server

last
Returns the index number of the last calendar position.

last + 1 will therefore always be the number of positions in the calendar horizon in the
current dimension.

current
Returns the index number of the period being evaluated.

current can be used as a standalone keyword only under the context of time.

Note: It can also be used in the syntax of a function as a
hierarchical keyword (for specifying the current level in a
hierarchy) and is allowed for any hierarchy (but must follow
the syntax <hierarchy>.current).

today
Returns the index number of the period that contains the current time as given by the
system clock.

The index number that today returns is determined by the base intersection of the
measure that is being evaluated (on the left hand side of the expression). For example, if
the base intersection of the measure being evaluated is week, today will return the index
number of the current week.

Note: The effect of this keyword may be overridden by
providing the environment variable RPAS_TODAY. If this is
present, the time in the RPAS_TODAY environment variable
is used instead of the system clock time.

Note: The difference between the keywords today and now is
that today returns an index number; now returns the value of
the current date and time. An error is generated when the
current period is not included in the workbook.

elapsed
Returns the index number of the period that is the last elapsed period.

elapsed is interpreted as the last period for which actuals have been posted. When used
on the RHS of an expression, it returns the index number of the period that is the last
elapsed period for the level of calendar hierarchy at which the calculation takes place.
When used on the LHS, this sets the last elapsed period along the base dimension of the
Calendar hierarchy to the given index number, that is, it is assumed that the index
number used to set elapsed is along the base dimension of the hierarchy. If there is no
elapsed period, this keyword returns –1. Furthermore, when used on the RHS of an
expression whose LHS does not have the Calendar hierarchy, this keyword returns -1.

elapsed must be assigned a value corresponding to the index of the last elapsed period
before it can be used in calculations (on the right hand side of other rule groups). This
assignment can happen in load, refresh, or calc rule-groups but not in commit rule
groups. Use the following syntax for assigning the index number in the base calendar
dimension as the elapsed value.
Syntax
elapsed = <expression>
Where <expression> is any valid expression that returns a numeric value, of which only
the integer portion is used.

 Appendix: Rules Function Reference Guide 291

For example, to update elapsed to always correspond to today:

1. Add a new single dimensional measure with base intersection at day.

a. Call this measure pDay.

2. In the Calc rule group or in the Load and Refresh rule group.
a. Add rules that initialize the new measure with the calendar index of today, as

shown in the example below.
pDay=prefer(today-1,if(now>end,last,-1))

b. b. Add a new rule that sets the elapsed measure:
elapsed=pDay.pst

The examples below illustrate the behavior of the keyword. For these examples, assume
that RPAS, using the mechanism above, has calculated that the index for the last period
along the base dimension (Day) to be 30 and that in the Calendar hierarchy, this day rolls
up to week with index 4 and month with index 2. In this scenario, the following would
occur:

 “LHS_week = elapsed” puts a value of 4 in the LHS_week measure which is along the
Week dimension.

 “LHS_day = elapsed” puts a value of 30 in the LHS_day measure which is along the
day dimension.

 “LHS_sku_str_day = elapsed” puts a value of 30 in the LHS_sku_str_day measure
whose calendar hierarchy is along the Day dimension.

 “LHS = elapsed” changes the navalue of LHS to -1, where the LHS measure is a scalar.
Since the measure does not have a Calendar hierarchy, elapsed cannot determine the
period index that this measure needs. In order to get a scalar populated, declare a
measure along the level at which the elapsed index is required, assign it the elapsed
keyword, and then assign this measure to the scalar with an aggregate of PST, PET,
or AMBIG.

Session Keywords

now
Returns the current date and time from the system clock.

now is stored with date and time information.

Note: The difference between the keywords today and now is
that today returns an index number; now returns the value of
the current date and time.

The displayed format of now is based on the measure type.
This keyword can be used to hold information about when data was changed (for
instance, the beginning date and time of a batch run). The value returned by now can be
overridden by RPAS_TODAY environment variable.

userID
Returns a string that contains the id of the current user.

This keyword can be used to hold information about the user who made a specific
change.

username
Returns a string that contains the account name of the current user.

292 Oracle Retail Predictive Application Server

This keyword can be used to hold information about the user who made a specific
change.

Calendar Hierarchical Date Keywords

begin
Returns a date type value for the first index in the MeasureStore calendar dimension.

Because it returns a date type value, this keyword is not context sensitive (meaning it
does not depend on where it is being used) and can be compared with the now keyword.

Note: The root calendar dimension is defined as the unique
dimension that is at the root of the calendar hierarchy.

end
Returns a date type value for the last index in the MeasureStore calendar dimension.
Because it returns a date type value, this keyword is not context sensitive (meaning it
does not depend on where it is being used) and can be compared with the now keyword.

Modifiers

Overview
Modifiers are used to directly modify the source or destination of measures. Modifiers
must be used in conjunction with a measure in the manner displayed under Syntax:
Syntax
<measure>[.<modifier>[.<modifier>]…]
The following modifiers can be used with measures in a variety of ways. Note the
acceptable uses for each modifier as there are restrictions regarding use on the left hand
side and if they can be used in conjunction with other modifiers.

master
References the domain-version of a measure.

master is used as a modifier to a measure to reference the version of the measure that
resides in the domain. It can only be used in load and commit rule groups. It cannot be
used in calculation rule groups.

Syntax
<measure>.master

Where <measure> is any valid measure. master can be used on both the left hand side
and right hand side of expressions and can be used with functions. When used with
other modifiers, master must be the first modifier.

On the right-hand side of an expression, master can be used with both level and aggtype.
On the left-hand side, master must be used by itself.
Examples:
 Sales=Sales.master

Used in load rule group to retrieve Sales from the domain into a workbook.
 Sales.master=Sales

Used in commit rule group to commit the updated Sales measure to the domain from
the version in the workbook.

 Appendix: Rules Function Reference Guide 293

aggtype
References to alternative aggregation types.

When a measure is referenced just by name in an expression, or as a parameter in a rule
function, the value used is for the default aggregation type for the measure. Values from
alternative aggregation types are also available by using the syntax:

Syntax
<measure>.<aggtype>

Where <aggtype> is a supported aggregation type as listed in an appendix of this
document. Every function parameter that requires a measure will also accept this
extended form.

Note: If alternate aggregation types are required for a
measure in rules, this approach is more efficient that
defining another measure with the alternate aggregation
type, as data values at the base intersection are not
duplicated.

The aggtype modifier can only be used on the right-hand side of an expression, but it can
be used with functions and other modifiers. When used with level and/or master
modifiers, aggtype must be the specified last.

level
Returns the value of an expression for a specific intersection of parent positions, or forces
the calculation at a specific intersection.

The parents specified may be in one or more hierarchies.

Syntax
<measure>.level(<dimspec1>[+<dimspec2>… +<dimspecn>])

Where <dimspec1-n> is [<hierarchy>].{[<dimension>] | top | current} and each
dimension specification is separated by a plus (+) sign.

<measure> is the measure to be specified. <hierarchy> is the name of a valid hierarchy. top
and current are keywords referring to the highest, and current (that is, being evaluated if
on the RHS, or base intersection in the hierarchy if on the LHS) dimensions in the
hierarchy. If a hierarchy is not specified, the <dimension> for that hierarchy is assumed to
be current. If the <dimension> for a hierarchy is lower than the base intersection for the
measure (when used on the LHS), or the <dimension> is not a valid dimension in the
specified hierarchy, an error is generated.

This modifier can be used on both the LHS and RHS of a rule expression. It can only be
used by itself on the LHS, but it can be combined with other functions and modifiers on
the RHS.

When this modifier is on the LHS of a rule expression, the rule is evaluated at the
specified intersection. The newly calculated value at an aggregated intersection is then
spread down the hierarchies to the base intersection for the measure, using the default
spread-type for the measure. A typical usage of this modifier on the LHS of a rule
expression is to calculate a "non-conforming" measure where the scope of the measure
includes hierarchies not present in the measures on the RHS of the expression. The
calculation would usually be at the base intersection of the common hierarchies, but at
the "top" of the additional hierarchies, and spread to their base intersections.

When this modifier is on the RHS of a rule expression, the measure being modified is
evaluated at the specified intersection.

294 Oracle Retail Predictive Application Server

Note: Just the measure, not the rule, is evaluated at the
designated level.

Under normal circumstances a measure is always calculated at the base intersection, or
the intersection at which the LHS is being evaluated if it is higher. Use of the modifier
will evaluate the measure at the designated (higher) level using the measure’s default
aggregation type, which can be overridden by the aggtype modifier. An example of its
use on the RHS could be calculating a ratio of sales for each SKU with respect to its
parent department.

Examples:
 sales.level([loc].top)

Returns the value for the measure sales for the position at the top of the location
hierarchy and for the current position in all other hierarchies.

 sales.level([loc].[area])

Returns the value for the measure sales for the position in the area dimension that is
the parent of the position being evaluated and the current position in all other
hierarchies (that is, the total sales in my area).

 sales.level([loc].[area]+[prod].[div])
Returns the value for the measure sales for the position in the area and division
dimensions that is the parent of the position being evaluated and current position in
all other hierarchies (that is, the total sales in my area for my division).

 recpts.level([rec].top) = <expression>
The measure recpts is calculated at the base intersection of all hierarchies except the
rec hierarchy, where it is calculated at the top. This value is spread down to the base
intersection for the measure.

old
References the value of a measure as of the previous calculate.

Syntax
<measure>.old

Any measure modified with old will use the value that was available at the start of the
calculation process, which means that these modified measures can be ignored for such
things as protection processing. Most importantly, this means that a measure can
effectively be calculated from itself, as the .old modifier breaks the cycle.

Assumptions/Restrictions
The following assumptions/restrictions apply to old:

 Can only be used in a rule group of type “calculation”.

 Can only be used on the right-hand side of an expression.

 Cannot be used in combination with .master, .level, or .aggtype modifiers.

 Cannot be used with (cannot modify) non-materialized measures.

Use of the old modifier has no effect on calculation sequence or protection processing, as
the values of measures modified with old are known before the calculation starts.

 Appendix: Rules Function Reference Guide 295

Note: The old modifier is not designed to operate with
measures whose aggregation type is recalc. In particular,
expressions that attempt to use the old modifier on a
measure with an aggregation type of recalc, such as

a=b + c.old

where c is a measure with an aggregation type of recalc, are
not allowed. Similarly, expressions that attempt to calculate
a measure with an aggregation type of recalc, but which use
the old modifier, such as

c=a + b.old

where c is a measure with an aggregation type of recalc, are
also not allowed.

Example:

The old modifier can be used in conjunction with the propspread function to implement a
hierarchical relationship among measures. In the following example, Total sales
(TotalSls) is the “parent” measure and regular sales (RegSls), promotional sales
(PromSls), and markdown sales (MkdSales) are the “child” measures. Using old and
propspread to configure this relationship allows the manipulation of any combination of
these measures before calculating, except for all of them.

In the following example and in other such hierarchical measure relationships, the order
of the expressions within a rule is critical for the measures to be correctly calculated.
TotalSls = RegSls + PromoSls + MkdSls
RegSls, PromoSls, MkdSls = propspread(TotalSls, RegSls.old, PromoSls.old,
MkdSls.old)

PromoSls, MkdSls = propspread(TotalSls - RegSls, PromoSls.old, MkdSls.old)
RegSls, MkdSls = propspread(TotalSls - PromoSls, RegSls.old, MkdSls.old)

RegSls, PromoSls = propspread(TotalSls - MkdSls, RegSls.old, PromoSls.old)

RegSls = TotalSls - PromoSls - MkdSls

PromoSls = TotalSls - RegSls - MkdSls

MkdSls = TotalSls - RegSls - PromoSls

Description of Functions

Calendar Index Functions
These are functions that return the calendar index numbers of positions that are specified
relative to the current position through hierarchical relationships, or by date. Support is
in place for functions to find the first and last children of a parent at a given dimension
(for instance, the first week of the current quarter, the last week of the current month).
These are to support relative time series functions, such as month to date totals. These
may be constrained by setting a condition under which the expression is evaluated.

indexfirst
Returns the calendar index number of the first position in the current dimension that is
descended from the parent of the current position at the specified dimension.

296 Oracle Retail Predictive Application Server

See the tssum function for an example of typical usage. The function may be constrained
by setting a condition for the evaluation.

Syntax
indexfirst([<clndhierarchy>].{[<dimension>] | top}[, <boolexpr>])
Where <clndhierarchy> is the name of the calendar (time) hierarchy, and <dimension> is
the name of a dimension in the calendar hierarchy. top is a keyword that implies the top
dimension in the calendar hierarchy. If <dimension> is not a valid dimension in the
calendar hierarchy or it is not a dimension that is equal to or higher than the current
(being evaluated) dimension in any alternate hierarchy, an error is generated.

<boolexpr> is optional and is any valid Boolean expression used to set a condition for the
evaluation of the function. If <boolexpr> is not specified, the function returns the index
number of the first position of the dimension descended from the parent of the current
position of the specified dimension. When <boolexpr> is specified, the function returns
the index number of the first position of the dimension descended from the parent of the
current position at the specified dimension where the <boolexpr> evaluates to true.

Inverse

The indexfirst function does not have an inverse.

Examples:

 indexfirst([clnd].[qtr])

 If the cell being evaluated is a week, this returns the calendar index number of the
first week in the quarter that the week of the cell being evaluated belongs to (that is,
the first week in the current quarter).

 indexfirst([clnd].[week], Receipts != 0)

 If the cell being evaluated is a day, this returns the calendar index number of the first
day of the current week when that has a value for Receipts that is not equal zero (that
is, the first day in the current week with recorded Receipts).

 indexfirst([clnd].top)

 If the cell being evaluated is a week, this returns the calendar index number of the
first week in the calendar horizon. This keyword is included for consistency with
other functions, as it will always return the value first (that is, zero).

indexlast
Returns the calendar index number of the last position in the current dimension that is
descended from the parent of the current position at the specified dimension.

The function may be constrained by setting a condition for the evaluation.

Syntax
indexlast([<clndhierarchy>].{[<dimension>] | top}[, <boolexpr>])
Where <clndhierarchy> is the name of the calendar (time) hierarchy. <dimension> is the
name of a dimension in the calendar hierarchy. top is a keyword that implies the top
dimension in the calendar hierarchy. If <dimension> is not a valid dimension in the
calendar hierarchy, or is not a dimension that is equal to or higher than the current (being
evaluated) dimension (in any alternate hierarchy), an error is generated.

<boolexpr> is optional and is any valid Boolean expression used to set a condition for the
evaluation of the function. If <boolexpr> is not specified, the function returns the index
number of the last position of the dimension descended from the parent of the current
position at the specified dimension. When <boolexpr> is specified, the function returns
the index number of the last position of the dimension descended from the parent of the
current position at the specified dimension where the <boolexpr> evaluates to true.

Inverse

 Appendix: Rules Function Reference Guide 297

The indexlast function does not have an inverse.

Examples:

 indexlast([clnd].[qtr])

 If the cell being evaluated is a week, this returns the calendar index number of the
last week in the quarter that the week for the cell being evaluated belongs to (that is,
the last week in the current quarter).

 indexlast([clnd].[week], Receipts != 0)

 If the cell being evaluated is a day, this returns the calendar index number of the last
day of the current week that has a value for Receipts that is not equal to zero (that is,
the last day of the current week with recorded Receipts).

 indexlast([clnd].top)

 If the cell being evaluated is a week, this returns the calendar index number of the
last week in the calendar horizon. This keyword is included for consistency with
other functions, as it will always return the value last.

indextostartdate
Returns the start date of the period whose index number is supplied.

Syntax
indextostartdate(<index>[,[<clndhierarchy>].{[<dimension>] | current}])
Where <clndhierarchy> is the name of the calendar (time) hierarchy, and <dimension> is
the name of a dimension in the calendar hierarchy. current is a keyword that implies the
current dimension in the calendar hierarchy. If <dimension> is not a valid dimension in
the calendar hierarchy, an error is generated. If the calendar hierarchy and dimension are
not supplied, the default is the current calendar dimension.

Note: This function requires that the day dimension of the
calendar hierarchy be included in the workbook. If the
lowest dimension of the calendar hierarchy is above the day
dimension, the function will not be able to return a valid
date.

<index> is an expression that returns an index number in the indicated calendar
dimension. If <index> is non-integer, only the integer portion is used. If <index> is not a
valid index number for the specified dimension, an error is generated. If the measure
being evaluated does not have a base intersection in the calendar hierarchy, and the
current option is used, an error is generated.

The function returns a date that is the start date of the period indicated by the dimension
and index number. If the period being evaluated is at or below the day level, the start
date is the date of the whole of the period. If the period being evaluated is above the day
level, the start date is the date of the first child position at the day level of the period
being evaluated.

Inverse

The indextostartdate function does not have an inverse.

Examples:

 indextostartdate(current)

 Returns the start date of the current time period.

 indextostartdate (indexfirst([clnd].[qtr]))

 Returns the start date of the first period in the current time dimension in the current
quarter.

298 Oracle Retail Predictive Application Server

 indextostartdate (index([clnd].[week], openweek), [clnd].[week])

 Returns the start date of the period at the week level whose name is held in the
openweek measure.

indextoenddate
Returns the end date of the period whose index number is supplied.

Syntax
indextoenddate(<index>[,[<clndhierarchy>].{[<dimension>] | current}])
Where <clndhierarchy> is the name of the calendar (time) hierarchy, and <dimension> is
the name of a dimension in the calendar hierarchy. current is a keyword that implies the
current dimension in the calendar hierarchy. If <dimension> is not a valid dimension in
the calendar hierarchy, an error is generated. If the calendar hierarchy and dimension are
not supplied, the default is the current calendar dimension.

Note: This function requires that the day dimension of the
calendar hierarchy be included in the workbook. If the
lowest dimension of the calendar hierarchy is above the day
dimension, the function will not be able to return a valid
date.

<index> is an expression that returns an index number in the indicated calendar
dimension. If <index> is non-integer, only the integer portion is used. If <index> is not a
valid index number for the specified dimension, an error is generated. If the measure
being evaluated does not have a base intersection in the calendar hierarchy, and the
current option is used, an error is generated.

The function returns a date that is the end date of the period indicated by the dimension
and index number. If the period being evaluated is at or below the day level, the end date
is the date of the whole of the period. If the period being evaluated is above the day level,
the end date is the date of the last child position at the day level of the period being
evaluated.

Inverse

The indextoenddate function does not have an inverse.

Examples:

 indextoenddate(current)

 Returns the end date of the current time period.

 indextoenddate (indexfirst([clnd].[qtr]))
 Returns the end date of the last period in the current time dimension in the current

quarter.

 indextoenddate (index([clnd].[week], openweek), [clnd].[week])

 Returns the end date of the period at the week level whose name is held in the
openweek measure.

Calendar Calculation Functions
These are functions that return calendar calculations.

addPeriods
This function requires three inputs and generates one output. It produces a Date value
output by adding a number of periods specified by a dimension name to an input Date
value.

 Appendix: Rules Function Reference Guide 299

Input

 Date: Input Date value.

 Integer: Number of periods to be added to the input Date specified by 1.

 String: The Dimension Name of the period, such as DAY, MNTH, and so on.

Output

 Date: The input Date plus number of periods.

Example

targetDate = addPeriods(srcDate, 1, "DAY")

Note: If srcDate evaluates to Jan/01/2012, targetDate should
be Jan/02/2012.

calendarStart
This function has no input and produces one output. The output is a Date type value
specifying the starting date of the current domain's calendar hierarchy. If called in a
workbook, it still returns the starting date of the domain's calendar hierarchy, not the
first date included in the workbook.

Output

 Date: First date in the current domain’s calendar hierarchy.

Example

targetDate = calendarStart()

dateDiff
This function requires three inputs and generates one output. It calculates the difference
of two date values. It returns the difference as an integer value as number of days,
months, and so on, depending on a third string type input that specifies the scale of the
output as a dimension name.

The dateDiff() function has a restriction that it can only calculate using dates loaded in the
CLND hierarchy. If either the start or the end date is outside of CLND range, the function returns
0 (the same as if the start date = the end date).

Input

 Date: First date.

 Date: Second date.

 String: Dimension name for the scale of the diff to be calculated, such as DAY,
MNTH, and so on.

300 Oracle Retail Predictive Application Server

Output

 Integer: Number of periods calculated by firstDate - secondDate, in the scale of the
dimension name provided.

Example

targetDate = dateDiff(date1, date2, "MNTH")

Note: If date1 is Jan/01/2012, and date2 is Jan/01/2011, the
resulting targetDate is 12, since the two dates are 12 months
apart.

Date
This function requires two inputs and produces one output. It produces a date value
based on an input date as a string, and a formatting string.

Input

 String: Input date string
 String: Date formatting string

The date formatting string follows the format of %[variable]%{variable]%[variable]. The
specific options are as follows:

– B: month, full name

– h: month, 3 character abbreviation, such as JAN, FEB, MAR

– Y: 4 digit year
– y: 2 digit year

– m: 2 digit month

– d: 2 digit day

– H: 2 digit hour

– M: 2 digit minute

– S: 2 digit second
– s: 3 digit millisecond

For instance, if the format string evaluates to %Y%m%d and the date string is 20120102,
the date is January 02, 2012. If the format string is %Y%h%d%H%M%S and the date
string is 2012JAN02073030, the time and date is 7:30:30am on January 02, 2012.

Output

 Date: Date value by parsing the input date string using the input date format.

Example

targetDate = date(dateStr, formatStr)

Index and Position Functions
This is a class of general functions that may be used for any hierarchy that enables
reference to positions in a generic manner. In most cases, the functions do not generate

 Appendix: Rules Function Reference Guide 301

results that are useful in themselves, but they are typically used as parameters that are
passed into other functions.

An "index" is an internal reference to a position in a dimension. For dimensions in the
calendar hierarchy, the index reflects an ordering of positions because there is a well-
defined sequence (oldest to newest, based on the start and end dates) of periods. There
are special calendar index functions that exploit this property. For other dimensions,
there is no such ordering, and the index number can be considered to be "random."

Note: Index numbers (including calendar index numbers)
should not be saved and reused between planning sessions,
as there is no guarantee that the same index numbers will
apply in subsequent sessions since the positions or
relationships in a hierarchy may change.

These general index functions may be used for any hierarchy, including the calendar
hierarchy.

index
Returns the index number of the specified position in the specified dimension of the
specified hierarchy.

Syntax

index([<hierarchy>].{[<dimension>] | current}[,{ <stringexpr> | <dateexpr>}])

Where <hierarchy> is the name of a valid hierarchy, and <dimension> is the name of a
valid dimension in that hierarchy. current is a keyword that returns the current
dimension in <hierarchy>. If <hierarchy> is not a valid hierarchy or <dimension> is not a
valid dimension in that hierarchy, an error is generated.

<stringexpr> and <dateexpr> are optional expressions that can be used to specify a
position. If neither <stringexpr> nor <dateexpr> are specified the function returns the
index number of the current position of the dimension being evaluated. <stringexpr> is a
string expression that results in a position name. If the result of <stringexpr> is not a
valid position name in the dimension being evaluated, an error is generated. <dateexpr>
is a numeric expression that results in a date type value and can only be used if
<hierarchy> is the calendar hierarchy. If the result of <dateexpr> is not a date type value,
or the result is returned when evaluating a dimension that is not in the calendar
hierarchy, an error is generated.

The function returns the index number of the indicated position in the specified
dimension of the specified hierarchy. When used with dates, the indicated position is the
position that contains the date specified.

Inverse

The index function does not have an inverse.

Examples:

 index([prod].[item], likeitem)

 This returns the index number of the string position in the item dimension referenced
in the likeitem measure.

 index([prod].[cls], “cls123”)

 This returns the index number of the class cls123.

 index([clnd].[mnth], opendate)
 This returns the index number of the month that contains the date that results from

the opendate measure.

302 Oracle Retail Predictive Application Server

position
Returns the position name of the position in the specified dimension of the specified
hierarchy with the supplied index number. The returned string is in upper case.

Syntax

position([<hierarchy>].{[<dimension>] | current}[, <indexexpression>])

<hierarchy> must be the name of a valid hierarchy. If specified, <dimension> must be the
name of a valid dimension in that hierarchy. current is a keyword that returns the current
dimension in <hierarchy>. If <hierarchy> is not a valid hierarchy or <dimension> is not a
valid dimension in that hierarchy, an error is generated.

<indexexpression> is an optional parameter to specify the index of the position to be
evaluated. If <indexexpression> is not specified, the current position is assumed. The
expression must be a valid expression that results in a numeric measure. The integers of
the resulting values of the expression are used as the index numbers to determine the
position to be evaluated. If <indexexpression> does not return a valid index number for
the specified dimension an error is generated.

The function returns an uppercase string that is the position name of the position with
the specified index number for the specified dimension of the specified hierarchy.

Inverse

The position function does not have an inverse.

Examples:

 position([prod].[item], 3)

 This returns the position name of the item with index number =3.

 position([prod].[item], likeindex)
 This returns the position name of the item with the index number in the measure

likeindex.

 position([prod].current)

 This returns the position name of the current position of the current dimension in the
product hierarchy.

attribute
Returns the value of the specified attribute for the current position, or the position with
the supplied index number.

Syntax

attribute(<attribute>, [<hierarchy>].{[<dimension>] | current}[, <indexexpression>])

Where <attribute> is a valid attribute for the dimension to be used, otherwise an error is
generated. <hierarchy> must be the name of a valid hierarchy. If specified, <dimension>
must be the name of a valid dimension in that hierarchy. current is a keyword that
returns the current dimension in <hierarchy>. If <hierarchy> is not a valid hierarchy or
<dimension> is not a valid dimension in that hierarchy, an error is generated.

<indexexpression> is an optional parameter to specify the index of the position to be
evaluated. If <indexexpression> is not specified, the current position is assumed. The
expression must be a valid expression that results in a numeric measure. The integers of
the resulting values of the expression are used as the index numbers to determine the
position to be evaluated. If <expression> does not return a valid index number for the
specified dimension an error is generated.

Valid values for <attribute> for all non-measure dimensions include the following,
which must be specified using quotes:

 Appendix: Rules Function Reference Guide 303

 “label” – The label (description) for the position. This value must be specified using
quotes. The attribute function requires left-hand side measure to be a string measure.
All keywords which need to be passed to a function must be wrapped in double
quotes. Any other syntax will throw an error.

 “dpmstatus” – The DPM status of the position. This attribute function required left-
hand side measure to be a Boolean measure. TRUE value corresponds to an
“informal” status. A FALSE value corresponds to a “formal” status.

The function returns the value of the specified attribute for the specified position.

Inverse

The attribute function does not have an inverse.

Examples:

 attribute("label", [prod].current)
 This returns the value of the label attribute for the current position of the current

dimension in the product hierarchy.

 attribute("dpmstatus", [prod].[item], likeindex)

 This returns the value of the dpmstatus attribute for the item with the index number
in the measure likeindex (that is, the label for my like item).

Forecast Procedure
Using the RPAS Configuration Tools, a time-series demand forecast may be configured
as part of a planning workflow or business process. The Forecast procedure provides
only a small subset of the functionality that is available through RDF. The differences
between these solution extensions are as follows:

 The forecast produced by the Forecast procedure is a single-level forecast.

 RDF allows for forecasts to be generated at aggregate levels in the data (to remove
sparsity), and then this forecast is spread down to the execution level by using a
profile.

 The Forecast procedure allows for a single forecasting method to be specified in the
calculation of the forecast.

 RDF allows for forecasting methods and forecasting parameters to be modified as
needed at all levels in your data.

 No standard approval process of the resulting forecasts are included as part of the
Forecast procedure.

 RDF allows for forecast adjustments and approvals to be made at the lowest level
necessary in your data.

The “Forecast Procedure Syntax” section contains the specifications and syntax for
configuring the Forecast procedure.

Forecast Requirements
The following libraries must be registered in any domain(s) that will use the Forecast
solution extension:
 AppFunctions

 RdfFunctions

Using the Forecast Procedure
The following notes are intended to serve as a guide for configuring the Forecast
procedure within the RPAS Configuration Tools.

304 Oracle Retail Predictive Application Server

 Refer to the appropriate input parameters and output measures when using the
Forecast procedure.

 The resultant measure (that is, the forecast output) should be at the same intersection
as your history measure (that is, pos). This will be the base intersection of the final
level.

 The Forecast procedure is a multiple result procedure, meaning that it can return
multiple results with one procedure call within a rule. In order to get multiple
results, the resultant measures must be configured in the Measure Tool and the
specific measure label must be used on the left-hand side (LHS) of the procedure call.
The resultant measure parameters must be comma-separated in the procedural call.

Syntax Conventions
The table below displays the syntax conventions used in this procedure.

Indicator Definition

[…] All options listed in brackets are optional.

{…|…} Options listed in “{}” with “|” separators are mutually exclusive
(either/or).

{…,…} Options listed in “{}” with “,” separators way are a complete set.

Bold Labels.

Italics Italics indicate a temporary placeholder for a constant or a measure.

Italics/meas This indicates that the placeholder can be either a constant or a measure.

BoldItailics This indicates a numeric placeholder for the dynamic portion of a label.
Usually a number from 1 to N.

Normal Normal text signifies required information.

Underlined This convention is used to identify the function or procedure name.

Forecast Procedure Syntax
The syntax for using the Forecast procedure appears below. The example below is a
simplified syntax version of the Forecast procedure. For the complete syntax version,
refer to the RDF Configuration Guide. The input and output parameter tables explain the
specific usage of the parameters names use in the procedure.

Generic Example:
FORECAST: FORMEAS , PEAKS:PEAKSMEAS, CHMETHOD:METHMEAS<-FORECAST(MASK:MEASKMEAS,
{STARTDATE:STARTDATE | STARTDATEMEAS:STARTDATEMEAS}, HISTORY: HISTORYMEAS,
FORECASTLENGTH:FORECASTLENGTH, PERIOD:PERIOD ,{FRCSTSTARTMEAS:FRCSTSTARTMEAS |
FRCSTSTART:FRCSTSTART}, PLAN:PLAN, PROFILE:PROFILE, BAYESIAN_HORIZ:BAYESIAN_HORIZ,
{VALID_DD:VALID_DD, DDPROFILE:DDPROFILE })

Sample:

forecast:frcstout,cumint:cumintout,int:intout<-
Forecast(forecastlength:12,history:pos,mask:frcstmask,period:26,startdatemeas:todaymea
s)

Configuration Parameters and Rules

Input Parameters
The table below provides the input parameters for the Forecast procedure.

 Appendix: Rules Function Reference Guide 305

Parameter Name Description

FORECASTLENGTH The length of the forecast.

Data Type: Integer

Multiple Allowed: No

Required: Yes

HISTORY The input measure the forecast is based on.

Data Type: Real

Multiple Allowed: No

Required: Yes

MASK Array that identifies what forecast method is
used for each time series. Refer to Forecast
Model/Model List table.

Data Type: Boolean

Multiple Allowed: No

Required: Yes

MAXALPHA The maximum alpha value.

Data Type: Real

Multiple Allowed: No

Required: No

PERIOD The forecasting period for calculating seasonal
coefficients.

Data Type: Integer

Multiple Allowed: No

Required: Yes

PLAN The Plan measure.

Data Type: Real

Multiple Allowed: No

Required: No

PROFILE The Seasonal Profile measure.

Data Type: Real

Multiple Allowed: No

Required: No

STARTDATE/
STARTDATEMEAS

The forecast start date. Either STARTDATE or
STARTDATEMEAS is required.
STARTDATEMEAS, if used, must be a scalar for
AutoES method.

Data Type: STARTDATE - Date as a string.

Data Type: STARTDATEMEAS – Date as
measure.

Multiple Allowed: No

Required: Yes

306 Oracle Retail Predictive Application Server

Parameter Name Description

VALID_DD The maximum non-zero history to use de-
seasonalized demand value for seasonal profile
based forecasting.

Data Type: Integer

Multiple Allowed: No

Required: No

DDPROFILE De-seasonalized demand measure. Used only for
profile-based forecasting.

Data Type: Double

Multiple Allowed: No

Required: No

Output Parameters
The table below provides the output parameters for the Forecast procedure.

Parameter Name Description

CHMETHOD Selected method. Refer to Forecast
Model/Model List table.

Data Type: Integer

Multiple Allowed: No

Required: No

FORECAST Forecast output.
Data Type: Real
Multiple Allowed: No
Required: Yes

PEAKS Peaks, which are used for calculating
baseline of the forecast.

Data Type: Real

Multiple Allowed: No

Required: No

Forecast Method/Model List
The table below provides the numeric value assigned to the forecast model/model list.

Model Numeric
Value

AUTO ES 1

SIMPLE 2

HOLT 3

WINTERS 4

CASUAL 5

AVERAGE 6

NO FORECAST 7

 Appendix: Rules Function Reference Guide 307

Model Numeric
Value

COPY 8

CROSTON 9

M. WINTERS 10

A. WINTERS 11

SIMPLE CROSTON 12

BAYESIAN 13

LOADPLAN 14

PROFILE 15

Time Series Functions

Overview
This is a collection of very similar functions to perform typical calculation tasks over a
range of cells in one or more time series. The <start> and <end> positions, defined using
calendar index numbers, specifies the range of cells to be used. Typically, there may be
some arithmetic performed to calculate the start and/or end positions.

Note: By using the indexdate or index functions to provide
calendar index numbers, the <start> and <end> positions to
be used in the time series can effectively be specified by
position name or by date.

Note: If the level modifier is used, the current keyword only
has a value when the level used is higher than the level
being evaluated (since, for example, the concept of “the
current week” is ambiguous when evaluating a month, so an
error is generated).

Single Time Series Functions

tssum
Produces a sum of the cells in the time series for the measure defined by the start and end
positions.

tssum is used for the following types of calculations:

 Season to date

 Balance to achieve
 4 week moving sum

The function produces a sum of the cells in the time series for the positions implied by
the <start> and <end> for the specified dimension.

Syntax

tssum(<expression>[, <start>[, <end>]])

Where <expression> is an expression or measure whose time series is to be used, and
<start> and <end> are expressions that calculate numbers. The current calendar
dimension is assumed, and if the cell being evaluated does not have a calendar

308 Oracle Retail Predictive Application Server

dimension, the bottom calendar dimension is assumed. If the values of <start> or <end>
are numeric, but non-integer, only the integer portion will be used. If <end> is less than
<start>, or either parameter is non-numeric or outside the scope of the calendar index
numbers for the specified dimension, an error is generated.
<expression> is mandatory, the other parameters are optional. If <start> is not specified,
the default value is first (that is, 0). If <end> is not specified, the default value is current.

Use the level modifier to specify a dimension in the calendar hierarchy when calculating
above or below the current calendar dimension.

Inverse

The tssum function does not have an inverse.

Examples:

• tssum(PlanSales)

• This is a plan-to-date or running total value for sales.

• tssum(PlanSales, current, last)

• This provides a "balance to achieve" (that is, a sum from the current period to the end
of the horizon).

• tssum(PlanSales.level([clnd].[week]), current – 3, current)

• This provides a 4 week moving total for sales.

• tssum(PlanSales, indexfirst([clnd].[qtr]))

• This provides a "quarter to date" running total (see the indexfirst function).

tsavg
The average (mean) value of the cells in the range.
The function produces an average of the cells in the time series for the positions implied
by the <start> and <end> for the specified dimension.

Syntax

tsavg(<expression>[, <start>[, <end>]])

Where <expression> is an expression or measure whose time series is to be used, and
<start> and <end> are expressions that calculate numbers. The current calendar
dimension is assumed, and if the cell being evaluated does not have a calendar
dimension, the bottom calendar dimension is assumed. If the values of <start> or <end>
are numeric, but non-integer, only the integer portion will be used. If <end> is less than
<start>, or either parameter is non-numeric or outside the scope of the calendar index
numbers for the specified dimension, an error is generated.

<expression> is mandatory; the other parameters are optional. If <start> is not specified,
the default value is first (for instance, 0). If <end> is not specified, the default value is
current.
Use the level modifier to specify a dimension in the calendar hierarchy when calculating
above or below the current calendar dimension.

Inverse

The tsavg function does not have an inverse.

tsmax
The maximum value of any cell in the range.

The function returns the maximum value of the cells in the time series for the positions
implied by the <start> and <end> for the specified dimension.

Syntax

 Appendix: Rules Function Reference Guide 309

tsmax(<expression>[, <start>[, <end>]])

Where <expression> is an expression or measure whose time series is to be used, and
<start> and <end> are expressions that calculate numbers. The current calendar
dimension is assumed, and if the cell being evaluated does not have a calendar
dimension, the bottom calendar dimension is assumed. If the values of <start> or <end>
are numeric, but non-integer, only the integer portion will be used. If <end> is less than
<start>, or either parameter is non-numeric or outside the scope of the calendar index
numbers for the specified dimension, an error is generated.

<expression> is mandatory; the other parameters are optional. If <start> is not specified,
the default value is first (for instance, 0). If <end> is not specified, the default value is
current.

Use the level modifier to specify a dimension in the calendar hierarchy when calculating
above or below the current calendar dimension.

Inverse

The tsmax function does not have an inverse.

tsmin
The minimum value of any cell in the range.

The function returns the minimum value of the cells in the time series for the positions
implied by the <start> and <end> for the specified dimension.

Syntax

tsmin(<expression>[, <start>[, <end>]])

Where <expression> is an expression or measure whose time series is to be used, and
<start> and <end> are expressions that calculate numbers. The current calendar
dimension is assumed, and if the cell being evaluated does not have a calendar
dimension, the bottom calendar dimension is assumed. If the values of <start> or <end>
are numeric, but non-integer, only the integer portion will be used. If <end> is less than
<start>, or either parameter is non-numeric or outside the scope of the calendar index
numbers for the specified dimension, an error is generated.
<expression> is mandatory; the other parameters are optional. If <start> is not specified,
the default value is first (for instance, 0). If <end> is not specified, the default value is
current.

Use the level modifier to specify a dimension in the calendar hierarchy when calculating
above or below the current calendar dimension.

Inverse

The tsmin function does not have an inverse.

tsmode
The modal value of the cells in the range.

The function returns the modal value of the cells in the time series for the positions
implied by the <start> and <end> for the specified dimension.

Syntax

tsmode(<expression>[, <start>[, <end>]])

Where <expression> is an expression or measure whose time series is to be used, and
<start> and <end> are expressions that calculate numbers. The current calendar
dimension is assumed, and if the cell being evaluated does not have a calendar
dimension, the bottom calendar dimension is assumed. If the values of <start> or <end>
are numeric, but non-integer, only the integer portion will be used. If <end> is less than

310 Oracle Retail Predictive Application Server

<start>, or either parameter is non-numeric or outside the scope of the calendar index
numbers for the specified dimension, an error is generated.

<expression> is mandatory; the other parameters are optional. If <start> is not specified,
the default value is first (for instance, 0). If <end> is not specified, the default value is
current.

If there is more than one value for the mode, then the function returns the first value that
is calculated.

Use the level modifier to specify a dimension in the calendar hierarchy when calculating
above or below the current calendar dimension.

Inverse

The tsmode function does not have an inverse.

tsmedian
The median value of the cells in the range.

The function returns the median value of the cells in the time series for the positions
implied by the <start> and <end> for the specified dimension.

Syntax

tsmedian(<expression>[, <start>[, <end>]])

Where <expression> is an expression or measure whose time series is to be used, and
<start> and <end> are expressions that calculate numbers. The current calendar
dimension is assumed, and if the cell being evaluated does not have a calendar
dimension, the bottom calendar dimension is assumed. If the values of <start> or <end>
are numeric, but non-integer, only the integer portion will be used. If <end> is less than
<start>, or either parameter is non-numeric or outside the scope of the calendar index
numbers for the specified dimension, an error is generated.

<expression> is mandatory; the other parameters are optional. If <start> is not specified,
the default value is first (for instance, 0). If <end> is not specified, the default value is
current.

If there is no middle number, the function returns the average of the middle two
numbers.

Use the level modifier to specify a dimension in the calendar hierarchy when calculating
above or below the current calendar dimension.

Inverse

The tsmedian function does not have an inverse.

tsstd
The standard deviation of the cells in the range.

The function returns the standard deviation of the cells in the time series for the positions
implied by the <start> and <end> for the specified dimension.

Syntax

tsstd(<expression>[, <start>[, <end>]])

Where <expression> is an expression or measure whose time series is to be used, and
<start> and <end> are expressions that calculate numbers. The current calendar
dimension is assumed, and if the cell being evaluated does not have a calendar
dimension, the bottom calendar dimension is assumed. If the values of <start> or <end>
are numeric, but non-integer, only the integer portion will be used. If <end> is less than
<start>, or either parameter is non-numeric or outside the scope of the calendar index
numbers for the specified dimension, an error is generated.

 Appendix: Rules Function Reference Guide 311

<expression> is mandatory; the other parameters are optional. If <start> is not specified,
the default value is first (for instance, 0). If <end> is not specified, the default value is
current.

Use the level modifier to specify a dimension in the calendar hierarchy when calculating
above or below the current calendar dimension.

Inverse

The tsstd function does not have an inverse.

tsvar
The variance of the cells in the range.

The function returns the variance of the cells in the time series for the positions implied
by the <start> and <end> for the specified dimension.

Syntax

tsvar(<expression>[, <start>[, <end>]])

Where <expression> is an expression or measure whose time series is to be used, and
<start> and <end> are expressions that calculate numbers. The current calendar
dimension is assumed, and if the cell being evaluated does not have a calendar
dimension, the bottom calendar dimension is assumed. If the values of <start> or <end>
are numeric, but non-integer, only the integer portion will be used. If <end> is less than
<start>, or either parameter is non-numeric or outside the scope of the calendar index
numbers for the specified dimension, an error is generated.

<expression> is mandatory; the other parameters are optional. If <start> is not specified,
the default value is first (for instance, 0). If <end> is not specified, the default value is
current.

Use the level modifier to specify a dimension in the calendar hierarchy when calculating
above or below the current calendar dimension.

Inverse

The tsvar function does not have an inverse.

Double Time Series (Statistical Error) Functions

tsme
Produces the Mean Error of an ‘estimate’ time series compared to an ‘actuals’ time series.

Syntax

tsme(<x>, <y>[, <start>[, <end>]])

Where <x> is an expression or measure that represents the estimate and <y> is an
expression or measure that represents the actuals, and <start> and <end> are expressions
that calculate numbers. The current calendar dimension is assumed, and if the cell being
evaluated does not have a calendar dimension, the bottom calendar dimension is
assumed. If the values of <start> or <end> are numeric, but non-integer, only the integer
portion will be used. If <end> is less than <start>, or either parameter is non-numeric or
outside the scope of the calendar index numbers for the specified dimension, an error is
generated

<x> and <y> are mandatory, and the other parameters are optional. If <start> is not
specified, the default value is first (that is, 0). If <end> is not specified, the default value
is current. The Mean error is calculated using the following formula:

312 Oracle Retail Predictive Application Server

Inverse

The tsme function does not have an inverse.

Examples:

 tsme(FcstSales, ActSales)

 This calculates the Mean Error of the FcstSales measure from the start of the calendar
horizon until the current time period.

 tsme(FcstSales, ActSales, first, elapsed)

 This calculates the Mean Error of the FcstSales measure from the start of the calendar
horizon until the last time period with actuals loaded.

 tsme(FcstSales, ActSales, first, min(elapsed, current))

 This calculates the Mean Error of the FcstSales measure from the start of the calendar
horizon until the first of the period being evaluated or the last time period with
actuals loaded.

tsmae
Mean Absolute Error.

Syntax

tsmae(<x>, <y>[, <start>[, <end>]])

Where <x> is an expression or measure that represents the estimate and <y> is an
expression or measure that represents the actuals, and <start> and <end> are expressions
that calculate numbers. The current calendar dimension is assumed, and if the cell being
evaluated does not have a calendar dimension, the bottom calendar dimension is
assumed. If the values of <start> or <end> are numeric, but non-integer, only the integer
portion will be used. If <end> is less than <start>, or either parameter is non-numeric or
outside the scope of the calendar index numbers for the specified dimension, an error is
generated.

<x> and <y> are mandatory, the other parameters are optional. If <start> is not specified,
the default value is first (that is, 0). If <end> is not specified, the default value is current.

The Mean Absolute error is calculated using the following formula:

 Appendix: Rules Function Reference Guide 313

Inverse

The tsmae function does not have an inverse.

tsmape
Mean Absolute Percentage Error.

Syntax

tsmape(<x>, <y>[, <start>[, <end>]])

Where <x> is an expression or measure that represents the estimate and <y> is an
expression or measure that represents the actuals, and <start> and <end> are expressions
that calculate numbers. The current calendar dimension is assumed, and if the cell being
evaluated does not have a calendar dimension, the bottom calendar dimension is
assumed. If the values of <start> or <end> are numeric, but non-integer, only the integer
portion will be used. If <end> is less than <start>, or either parameter is non-numeric or
outside the scope of the calendar index numbers for the specified dimension, an error is
generated.

<x> and <y> are mandatory, and the other parameters are optional. If <start> is not
specified, the default value is first (for instance, 0). If <end> is not specified, the default
value is current. The Mean Absolute Percentage error is calculated using the following
formula:

314 Oracle Retail Predictive Application Server

Inverse

The tsmape function does not have an inverse.

tsrmse
Root Mean Square Error.

Syntax

tsrmse(<x>, <y>[, <start>[, <end>]])

Where <x> is an expression or measure that represents the estimate and <y> is an
expression or measure that represents the actuals, and <start> and <end> are expressions
that calculate numbers. The current calendar dimension is assumed, and if the cell being
evaluated does not have a calendar dimension, the bottom calendar dimension is
assumed. If the values of <start> or <end> are numeric, but non-integer, only the integer
portion will be used. If <end> is less than <start>, or either parameter is non-numeric or
outside the scope of the calendar index numbers for the specified dimension, an error is
generated.
<x> and <y> are mandatory, and the other parameters are optional. If <start> is not
specified, the default value is first (that is, 0). If <end> is not specified, the default value
is current. The Root Mean Square error is calculated using the following formula:

 Appendix: Rules Function Reference Guide 315

Inverse

The tsrmse function does not have an inverse.

tspae
Percentage Absolute Error.

Syntax

tspae(<x>, <y>[, <start>[, <end>]])

Where <x> is an expression or measure that represents the estimate and <y> is an
expression or measure that represents the actuals, and <start> and <end> are expressions
that calculate numbers. The current calendar dimension is assumed, and if the cell being
evaluated does not have a calendar dimension, the bottom calendar dimension is
assumed. If the values of <start> or <end> are numeric, but non-integer, only the integer
portion will be used. If <end> is less than <start>, or either parameter is non-numeric or
outside the scope of the calendar index numbers for the specified dimension, an error is
generated.
<x> and <y> are mandatory, and the other parameters are optional. If <start> is not
specified, the default value is first (that is, 0). If <end> is not specified, the default value
is current. The Percentage Absolute error is calculated using the following formula:

316 Oracle Retail Predictive Application Server

Inverse

The tspae function does not have an inverse.

Hierarchical Functions and Procedures

Overview
This is a collection of functions and procedures that provide some knowledge of
hierarchical structures, and the how the current position fits in, or uses knowledge of
hierarchical structures.

count
Returns the count of children at a specified level that belong to a parent at a higher level.
Syntax
count([<hierarchy>][.<childdimspec>[,<parentdimspec>]])

Where <childdimspec> is {[<childdimension>] | bottom | current}
and <parentdimspec> is [<hierarchy>].{[<parentdimension>] | top | current}

<hierarchy> is the name of a valid hierarchy (same hierarchy must be referenced
throughout the function). <childdimension> and <parentdimension> must be valid
dimensions in the specified hierarchy. If both are specified, then <childdimension> must
be lower than <parentdimension> in a roll-up, or an error is generated. bottom, top, and
current are keywords referring to the lowest, highest, and current (being evaluated)
dimensions in the hierarchy. If <childdimspec> is not specified, the default is bottom. If
<parentdimension> is not specified, the default is current.

The function returns the number of children in the dimension <childdimension> that are
descended from the implied position (the current position or the ancestor of the current
position at the specified level) in the dimension <parentdimension>. If the
<childdimension> and the <parentdimension> are the same, the function returns the value
of 1.

 Appendix: Rules Function Reference Guide 317

Inverse

The count function does not have an inverse.

Examples:

 count([loc].bottom)

 Returns the number of children in the bottom dimension in the location hierarchy for
the current position in the location hierarchy

 count([loc].[str])

 Returns the number of children in the store dimension (str) in the location hierarchy
for the current position in the location hierarchy (that is, ‘how many stores do I own’)

 count([loc].[str], [loc].[area])

 Returns the number of children in the store dimension in the location hierarchy for
the position in the dimension “area” that is the ancestor of the current position in the
location hierarchy (that is, ‘how many stores in my area’).

lookup
Procedure that returns the value of an expression for a specific intersection.

The positions to be "looked up” may be in one or more hierarchies. This procedure has
the following special uses and restrictions:
 lookup is a procedure and thus cannot be combined with functions and other

procedures in any manner.

 Used for history mapping and like SKU/sister store functionality.

 The base intersection of the output measure must be the same as the input measure
and/or one or more of the mapping measures.

Syntax
<output> <- lookup(<input>, <dimspec1> [, <dimspec2> ... , <dimspecn>])

Where <dimspec1-n> is [<hierarchy>].{[<dimension>] | bottom | current | top}, <map>

<output> is the measure being updated. <input> is the measure to be evaluated. Each
<dimspec> is used to specify the hierarchy and dimension to be used in the mapping
process and the measure that contains the mapping values.

For each <dimspec> that is specified, the <hierarchy> must be the name of a valid
hierarchy and the <dimension> must be the name of a valid dimension in that hierarchy.
top is a keyword that refers to the highest dimension in the hierarchy, bottom is a
keyword that refers to the lowest dimension in the hierarchy, and current is a keyword
that refers to the current dimension (that is, the dimension of the cell being evaluated).

<map> is either a measure or an explicitly stated position used to designate how positions
in <input> are mapped to determine the resulting values in <output>. The output, input,
and mapping measures used in the lookup procedure must conform in a certain manner.
Specifically, the resulting measure <output> must have the same base intersection as
<input>, <map>, or both measures so that all conform.
When <map> is a measure, it must result in either index numbers or position names, either
of which must be valid index numbers or position names from the related dimension
specification. When <map> contains index numbers that do not map to valid positions, an
error is generated and the na value for <output> is returned. There is no special "cycle
breaking" logic for the lookup procedure. This means that a measure may never be
calculated from the lookup of the same measure.

318 Oracle Retail Predictive Application Server

Note: lookup is a procedure so it cannot be combined with
functions, modifiers, or other procedures in any manner. As
a procedure, it requires a different syntax: “<-“ instead of
“=” when being assigned.

Inverse

The lookup procedure does not have an inverse.

Examples:
 output <- lookup(input, [presentationstyle].[presentationstyle], map)

 Where output is at sku-week, input is at sku-presentationstyle, and map is at sku-
week with position names or index numbers from the presentation style dimension.
The output and mapping measures have the same base intersection. This expression
calculates the output measure from the mapping of presentation styles that vary for
each sku-week combination.

 output <- lookup(input, [prod].[sku], map)

• Where output and input are at sku-week and map is at sku with position names or
index numbers from the sku dimension. This expression calculates the output
measure from the like sku of the input measure.

Tablelookup
Procedure that returns the value (interpolated if necessary) from the entry in a "table" of
information held in measures that matches with supplied "keys."

Syntax
tablelookup(<expression>, <matching technique>, <keymeasure> [,<resultmeasure>])

Where <matching technique> is {exactmatch, <nomatchvalue> | average | nearest |
high | low | interpolate}
The tablelookup procedure requires that a "table" be available that may be the target of
the lookup. This table will be formed from normal measures with a base intersection of
"normal" dimensions. Nevertheless, the most usual usage will be where the table
measures are dimensioned on a dimension built for the purpose, plus other dimensions
as required.

Note: The usage of the tablelookup special expression
requires the arguments to be conformed in certain way. For
example in the tablelookup expression (valueMeasure,
nearest, keyMeasure), it is required to address the following:

1. The keyMeasure's baseint must have a 'table entry' dimension, and this table entry
dimension must be the innermost. Let’s assume the keyMeasure is at clss/rgn/te
level where dimension 'te' is the table entry dimension, and it is the innermost. The
'subspace' of the key entry is defined as the baseint of the key measure minus the
table entry dimension; in this case, the subspace will be 'clss/rgn'.

2. The valueMeasure's baseint must be able to map to the subspace (clss/rgn) with a
many to one mapping, that is, the baseint of the valueMeasure must be below
'clss/rgn'. So it is a valid expression if the valueMeasure's baseint is 'sku/str',
'clss/str', 'sku/rgn'. If the valueMeasure's baseint is the same or higher than clss/rgn,
or cannot create a valid map to clss/rgn, the above error message will be triggered.
For example, below baseint for valueMeasure will trigger the error: clss/rgn,
dept/rgn, clss/chn, dept/chn, dept/str, sku/chn.

It is suggested to examine the baseint of the input measure with the above criteria in
mind.

 Appendix: Rules Function Reference Guide 319

Example:

Imagine a requirement to look up valid price points that may be applied as prices for an
item. The collection of valid price points will be different for each class. To satisfy this
requirement, a table is built. A ‘table’ hierarchy is defined with a "tableentry" dimension
with a number of positions, which are named e01, e02, e03, … e99 to allow for 99 entries
in the table, with the order of the positions being the same as their natural sort sequence,
and the order of the hierarchy being the highest (innermost) non-time hierarchy. A
measure named "pp" is defined with a base intersection of tableentry/class. The "pp"
measure is populated with valid price points for each class, with the lowest valid price
point in position e01, the next lowest in e02, and so on. This "table" can now be used to
look up valid price points. The procedure call (indirectly) provides a class and (directly)
provides a target price as arguments, and a valid price point is returned based on the
selected matching technique. See the following examples for an example that uses this
"table."

<expression> is any valid expression that results in a value of the same data type as the
<keymeasure>. In the description that follows, this value is referred to as the key value.
<keymeasure> is the name of the measure to be used as a key when matching the key
value against the "table." <resultmeasure> is an optional measure that holds the return
value. If <resultmeasure> is not specified, <keymeasure> is used for the values of the result
as in the price point example, below.

The procedure attempts to match the key value against an entry in the "table." The
innermost non-time dimension in the base intersection of the <keymeasure> is assumed to
be the dimension along which entries in the table are indexed. For all other dimensions in
the base intersection of the <keymeasure>, the procedure will match against the parent at
that dimension of the cell being evaluated.

Note: The values in <keymeasure> must be in ascending order
and must not contain any repeated values. A value that is
either out of sequence or repeated designates that the
previous value is the last entry in the "table." In other words,
only the sorted elements in the key measure will be
considered in the lookup process.

The <matching technique> specifies the matching technique to be used when an exact
match of the <keymeasure> against the key value is not found. If the matching technique is
exactmatch, <nomatchvalue> is a numeric value that must be specified to indicate the
value to use in cells when there is no exact match. Otherwise, if the key value is higher
than the highest value in the “table,” or lower than the lowest value in the table, it is
assumed to match against the highest or lowest value accordingly. If the matching
technique is high and no match against the key value is found, the procedure returns the
value of the <resultmeasure> for the entry immediately higher than the key value. If the
matching technique is low and no match against the key value is found, the procedure
returns the value of the <resultmeasure> for the entry immediately lower than the key
value. If the matching technique is nearest and no match against the key value is found,
the procedure returns the value of the <resultmeasure> for the entry immediately lower
than the key value or immediately higher than the key value, depending upon which
entry is nearest (this is like rounding to the nearest value). If the matching technique is
average and no match against the key value is found, the procedure returns the numeric
average of the value of the <resultmeasure> for the entry immediately lower and
immediately higher than the key value, or it generates an error if the <resultmeasure> is
not of numeric data type.
If the matching technique is interpolate and no match against the key value is found, the
procedure returns an interpolated value between the value of the <resultmeasure> for the

320 Oracle Retail Predictive Application Server

entry immediately lower and immediately higher than the key value, or it generates an
error if the <resultmeasure> is not of numeric data type. The interpolation is calculated as
follows:

Inverse

The tablelookup procedure does not have an inverse.

Examples:

• tablelookup(tgtpr, nearest, pp)

• Returns the nearest valid value of the pp measure to the supplied target price (tgtpr).

• tablelookup(perc, interpolate, epct, elast)

• Looks up the percentage markdown (perc) of the current position against a
percentage change elasticity table (epct). Returns the matching elasticity value (elast).
If the percentage markdown is not found in the table, the procedure will interpolate
the elasticity value from the nearest values above and below the percentage
markdown.

flookup
The fixed look up function that returns the value of a measure for an explicitly named
fixed intersection.
Syntax

flookup(<measure>, <posspec1> [, <posspec2> … , <posspecn>])
Where <posspec1-n> is: [<hierarchy>].[<dimension>].[<positionname>]

<measure> is the measure to be looked up. This <measure> must conform to the measure
being calculated as follows. Some hierarchies may be present in the base intersection of
both measures, and these are handled by normal "non-conforming" logic. For any
hierarchies that are only in the base intersection of the measure being calculated (output
measure), all positions will look up the same value. For any hierarchies that are only in
the base intersection of the <measure> (input measure), the position to be used must be
explicitly named through a position specification (<posspec>).

Note: If the position to be used can only be specified
indirectly (for example, if it is held in a measure), the
flookup function cannot be used, and the more powerful
lookup procedure should be used instead.

flookup can be used to return a constant or a slice. In case of a constant, the NA value of
the flookup function will be the value of the constant. In case of a slice, the NA value of
the flookup function will be the NA value of <measure>.

For each <posspec> that is specified, the <hierarchy> must be the name of a valid
hierarchy, the <dimension> must be the name of a valid dimension in that hierarchy, and
the <positionname> must be the name of a valid position in that dimension, If the position
name includes special characters, it can be enclosed in quotes (" ") in addition to the
standard requirement for square brackets ([]). If <hierarchy> is not a valid hierarchy or
<dimension> is not a valid dimension in that hierarchy, or <positionname> is not a valid
position in that dimension, an error is generated.

 Appendix: Rules Function Reference Guide 321

Additionally, <dimension> must be a dimension in the base intersection of <measure>. To
use dimensions not in the base intersection, the <measure> must have a level modifier to
explicitly raise it to the desired dimension.

There is no special "cycle breaking" logic for the flookup function. This means that a
measure may never be calculated from the flookup of the same measure. The flookup
function returns the value of the expression from the specified fixed intersection.

Inverse

The flookup function does not have an inverse.

Examples:

• flookup(perc, [flvl].[flvl].[flvla])

• Returns the value for the measure perc for the position flvla in the flvl dimension
of the flvl hierarchy.

• flookup(leadtime, [prod].[cls].[class1], [loc].[whse].[whseA])

• Returns the value for the measure leadtime for the class class1 for the warehouse
whseA.

aggregate
The aggregate procedure provides similar functionality to the hybrid aggregation type.
Measures that use the hybrid aggregation type cannot be manipulated above their base
intersection (as there is no mechanism to spread changes), but since the aggregate
procedure is used on recalc measures, they can be changed with the change being
applied through normal mapping rules. In addition, the aggregate procedure has a recalc
aggregation type that is not available in the hybrid aggregation method.

This procedure returns the value of a measure aggregated from the base intersection to
the current level using the supplied aggregation type.

Syntax
aggregate (<cachemeasure>, <hierspec1> [, <hierspec2> … , <hierspecn>])

where <hierspec1-n> is [<hierarchy>].<aggtype>

The rule writer specifies a <cachemeasure> that holds the base intersection values to be
aggregated, and it is also the source of values for recalc aggregation.

The rule writer also specifies the aggregation type for each hierarchy and the priority
sequence to be used. The priority sequence is required because at levels that are
aggregated in more than one hierarchy (for instance, Department/Region/Month for a
measure with a base intersection of Class/Store/Week), different results would usually
be obtained by aggregating up each of the hierarchies. For example, if the requirement is
to aggregate up the product hierarchy by using the total aggregation type, up the
location hierarchy by using the average aggregation type, and up the calendar hierarchy
by using the first aggregation type. There are three potential ways to calculate a value at
Department/Region/Month. We could total from Class/Region/Month, average from
Department/Store/Month, or first from Department/Region/Week. These would almost
certainly generate three completely different values. By providing a priority sequence,
the rule writer explicitly determines which of these values are required. See the worked
example, below.

322 Oracle Retail Predictive Application Server

Note: The effect of a series of aggregations of the same type
up a single hierarchy may return different results from those
of a measure with the same aggregation type.

‘Normal’ aggregation for a measure driven by its
aggregation type is performed from all base intersection cells
descended from the cell being evaluated. For example, for a
measure with a base intersection of Class/Week and an
‘average’ aggregation type, the value calculated for a cell at
Department/Month is the average of all values for all
Class/Week cells for the Department/Month. If the measure
is a recalc measure, calculated at aggregated levels from a
rule with an aggregate function, such as aggregate(x,
[prod].average, [clnd].average), the value for the
Department/Month will be the average of all the
Class/Months (not Class/Weeks) that belong to the
Department/Month. Other than coincidentally, this would
generate a different value.

<cachemeasure> is the measure to be aggregated, and the value of <cachemeasure> is also
the value used for cells that are at the base intersection (bottom levels), and at aggregated
levels when the required aggregation type is recalc. <hierarchy> is the name of a valid
hierarchy. Each hierarchy may only be specified once in the procedure, but hierarchies
may appear in any order. The sequence that the hierarchies are specified in is used to
determine which hierarchy to aggregate up if the cell being evaluated is at an aggregated
level in more than one hierarchy. In this circumstance, aggregation is performed up the
first specified hierarchy that the cell is at an aggregated level in, and the other hierarchies
are ignored. <aggtype> specifies the aggregation type to be used. The <aggtype> must be
one of the standard aggregation types. If any hierarchy that is in the scope of the measure
being calculated is not explicitly specified, the aggregation type of that hierarchy is
assumed to be total. Such hierarchies are assumed to be sequenced after all hierarchies
that are explicitly referenced, and they are ordered from innermost to outermost.

Note: The value of the <cachemeasure> is used at the base
intersection of the measure being calculated. If, for a given
cell, the aggregation type to be used is recalc, the value is
also obtained directly from the <cachemeasure> at that level,
which will normally have an aggregation type of recalc.

Note: aggregate is a procedure so it cannot be combined with
functions, modifiers, or other procedures in any manner. As
a procedure it requires a different syntax: “<-“ instead of “=”
when being assigned.

Inverse

The aggregate procedure does not have an inverse.

Examples:

 result <- aggregate(x, [clnd].recalc)
 For cells at the base intersection, the value is calculated from the measure x. For cells

at an aggregated level in the calendar hierarchy, the value is also obtained from the
measure x, which we can assume has an aggregation type of recalc, and thus the
result of the procedure is as if the aggregation type were recalc, using the usual
expression to calculate measure x. If the cell is not at an aggregated level in the time

 Appendix: Rules Function Reference Guide 323

hierarchy, and assuming in this example that the other hierarchies are product and
location; in that priority, the value for a cell at an aggregated product level is
calculated as the total of all cells for products descended from that product for the
same location and time. Otherwise, the value for the cell is calculated as the total of
all cells for locations descended from the cell’s location for the same product and
time.

 result <- aggregate(x, [loc].average)

 In a similar manner to the previous example, cells at aggregated levels in the location
hierarchy will be calculated by averaging the values of cells for all descendent
locations. Otherwise, the value will be totaled up the product or time hierarchy as
appropriate.

 result <- aggregate(x, [clnd].average)

 Totals up all hierarchies except time, which uses an average aggregation type.

 result <- aggregate(x, [prod].average, [clnd].first)

 Averages up the product hierarchy if possible. Otherwise, takes the first child value
up the calendar hierarchy. Otherwise, totals up the other hierarchies.

 result <- aggregate(x, [prod].average, [clnd].last)

 Averages up the product hierarchy if possible. Otherwise, takes the last child value
up the calendar hierarchy. Otherwise, totals up the other hierarchies.

Multi-Level Calculation Example
Consider a measure calculated from the expression aggregate(x, [prod].total,
[loc].avg, [clnd].first). The measure is assumed to have a base intersection of
Class/Store/Week.

Examples:

Examples of the calculations that would be applied at various levels are as follows:

 Class/Store/Month: first from Class/Store/Week
 Class/Region/Month: avg from Class/Store/Month

 Department/Region/Month: total from Class/Region/Month

Transform Procedures
RPAS offers the following transformation procedures:

 transformSum

 transformMax

 transformOr

 transformProp

 transformEven
 transformRepl

Transform Procedure Requirements
The following libraries must be registered in any domain(s) that will use the transform
procedures:

 Transform

Example:
regfunction -d <pathToDomain> -l Transform -add

transformSum

324 Oracle Retail Predictive Application Server

transformSum converts data across hierarchies using sum aggregation. The procedure
converts data between measures of different dimensionality using a set of map measures
to convert positions from the source measure to positions in the target measure. Source
measures are aggregated into the target using the sum aggregation method.
Syntax
<target> <- transformSum(<source>, <transformspec1> [, <transformspec2> … ,
<transformspecn>])

Input Parameters

The table below provides the input parameters for the transformSum procedure.

Parameter Name Description

source Measure that is being aggregated into <target> measure
using the aggregation type of sum.

transformspec1-n This parameters is [<source hierarchy>].[<source
dimension>], [<target hierarchy>].[<target dimension>] ,
[LABEL|POSNAME], <map>

The <transformspec> defines which dimension in the source
is mapped to which dimension in the target and how the
positions are mapped between the dimensions.

The <map> measure may either be text or Boolean. If it is text
then the value of the cell contains the position id or label
name of a position in the target dimension. The compulsory
[LABEL|POSNAME] parameter specifies which method is
used. If the <map> measure is Boolean then its base
intersection must include the <source dimension>; any true
cells in the map measure will define the positions that are
transformed to the target.

If a label is not unique within a dimension and the LABEL
option is used, then only the first position in the dimension
that includes the label will be part of the transformation.

Output Parameters

The table below provides the output parameter for the transformSum procedure.

Parameter Name Description

target Measure into which the <source> measure is aggregated
into using the aggregation type of sum.

Notes
If a hierarchy is in both the source and target measures, then the dimension for that
hierarchy in the source and target must be the same, unless the transformation is defined
through a mapping transformspec, meaning the source measure cannot have a base
intersection of item if the target measure has a base intersection of class and there is no
explicit transformation specified from item to class in transformspec.
If a dimension in the target is not in the source and is also not defined by a mapping,
then transformation is applied to every position in that dimension.

transformSum only works for numeric measures. Text or Boolean measures will not get
transformed.

 Appendix: Rules Function Reference Guide 325

If a cell in the source cannot be mapped to a position in the target then it is ignored. The
Transform procedure always writes a status message to rpas.log indicating how many
cells were successfully transformed, how many cells failed and how many seconds the
transformation took to execute.
T he source measure and any map measure may be non-conforming. For instance, the
source may be defined at month and the map defined at season.

Example:
WpVRSlsR <-transformSum(WpSlsR, [LOC].[STR], [DVR].[VR], LABEL, WpRankTx)

Takes WpSlsR (store/class/month) and transforms it to WpVRSlsR (volume
rank/class/month) using label mappings defined in WpRankTx (store/class/season).

transformMax
The transformMax procedure converts data across hierarchies using max aggregation. The
procedure operates in the same way as transformSum, except that the aggregation method
used is max.
Syntax

<target> <- transformMax(<source>, <transformspec1> [, <transformspec2> … ,
<transformspecn>])

Input Parameters

The table below provides the input parameters for the transformMax procedure.

Parameter Name Description

source Measure that is being aggregated into <target> measure
using the aggregation type of max.

transformspec1-n This parameter is [<hierarchy>].[<dimension>],
[<hierarchy>].[<dimension>] , [LABEL|POSNAME],
<map>

Output Parameters

The table below provides the output parameter for the transformMax procedure.

Parameter Name Description

target Measure into which the <source> measure is
aggregated into using the aggregation type of max.

Example:

r_ut_out<-transformMax(r_ut_in, [prod].[sku], [clnd].[week], 0, r_ut_map)

Takes r_ut_in (sku/str/day) and transforms it to r_ut_out (sku/str/week) using label
mappings defined in r_ut_map (sku/str). Here the maximum across all the days of a
week is taken from r_ut_in and stored in the r_ut_out measure using label mappings
defined in r_ut_map (sku/str).

transformOr
The transformOr procedure converts data across hierarchies using or aggregation. The
procedure operates in the same way as transformSum, except that the aggregation method
used is or. Both source and target measures must be Boolean measure types.

326 Oracle Retail Predictive Application Server

Syntax

<target> <- transformOr(<source>, <transformspec1> [, <transformspec2> … ,
<transformspecn>])

Input Parameters

The table below provides the input parameters for the transformOr procedure.

Parameter Name Description

Acsource Measure that is being aggregated into <target> measure
using the aggregation type of or. Must be a Boolean
measure type.

transformspec1-n This parameter is [<hierarchy>].[<dimension>],
[<hierarchy>].[<dimension>] , [LABEL|POSNAME],
<map>

Output Parameters

The table below provides the output parameter for the transformOr procedure.

Parameter Name Description

Target Measure into which the <source> measure is aggregated
into using the aggregation type of or. Must be a Boolean
measure type.

Example:

r_ut_out<-transformOr(r_ut_in, [prod].[sku], [clnd].[week], 0, r_ut_map)

Takes r_ut_in (sku/str/day) and transforms it to r_ut_out (sku/str/week) using label
mappings defined in r_ut_map (sku/str). Here the Boolean OR across all the days of a
week is taken from r_ut_in and stored in the r_ut_out measure using label mappings
defined in r_ut_map (sku/str).

transformProp
The transformProp procedure converts data across hierarchies using Proportional
spreading. The procedure converts data between measures of different dimensionality
using a set of map measures to convert positions from the source measure to positions in
the target measure. While the transformSum procedure (and related aggregation
procedures) assumes a many->one relationship as it performs the transformation
(aggregation), the transformProp assumes a one->many relationship between source and
target cells (spreading).

Each source value is spread to a set of target values, leaving the ratio between the target
values intact.

If the sum of all target cells is zero, then the source is spread evenly to the targets.

Syntax
<target> <- transformProp(<source>, <transformspec1> [, <transformspec2> … ,
<transformspecn>])

Input Parameters

The table below provides the input parameters for the transformProp procedure.

 Appendix: Rules Function Reference Guide 327

Parameter Name Description

source Measure that is being spread into <target> measure.

transformspec1-n This parameter is [<hierarchy>].[<dimension>],
[<hierarchy>].[<dimension>] , [LABEL|POSNAME],
<map>

Output Parameters

The table below provides the output parameter for the transformProp procedure.

Parameter Name Description

target Measure into which the <source> measure is spread.

Note
If the <source> measure has a calendar dimension, then the r_elapsed measure has to
have a value. (This is true for all TransformSpread flavors: transformProp, transformRepl,
transformEven)
Example:
mace -d . -run -expression "r_ut_out <- transformProp(r_ut_in, [clnd].[day], [loc]
.[str], 0, r_ut_map)

transformEven
The transformEven procedure converts data across hierarchies using Even spreading.

Syntax

<target> <- transformEven(<source>, <transformspec1> [, <transformspec2> … ,
<transformspecn>])

Input Parameters

The table below provides the input parameters for the transformEven procedure.

Parameter Name Description

source Measure that is being spread into <target> measure.

transformspec1-n This parameter is [<hierarchy>].[<dimension>],
[<hierarchy>].[<dimension>] , [LABEL|POSNAME],
<map>

Output Parameters

The table below provides the output parameter for the transformEven procedure.

Parameter Name Description

target Measure into which the <source> measure is spread.

Note
If the <source> measure has a calendar dimension, then the r_elapsed measure has to
have a value. (This is true for all TransformSpread flavors: transformProp, transformRepl,
transformEven)

328 Oracle Retail Predictive Application Server

Example:
mace -d . -run -expression "r_ut_out <- transformEven(r_ut_in, [clnd].[day], [loc]
.[str], 0, r_ut_map)"

transformRepl
The transformRepl procedure converts data across hierarchies using Replicate spreading.

Syntax
<target> <- transformRepl(<source>, <transformspec1> [, <transformspec2> … ,
<transformspecn>])

Input Parameters

The table below provides the input parameters for the transformRepl procedure.

Parameter Name Description

source Measure that is being spread into <target> measure.

transformspec1-n This parameter is [<hierarchy>].[<dimension>],
[<hierarchy>].[<dimension>] , [LABEL|POSNAME],
<map>

Output Parameters

The table below provides the output parameter for the transformRepl procedure.

Parameter Name Description

target Measure into which the <source> measure is spread.

Note
If the <source> measure has a calendar dimension, then the r_elapsed measure has to
have a value. (This is true for all TransformSpread flavors: transformProp, transformRepl,
transformEven)

Example:
mace -d . -run -expression "r_ut_out <- transformRepl(r_ut_in, [clnd].[day], [loc]
.[str], 0, r_ut_map)"

Normalization and Resizing Functions

resize
Uses the "shape" of a time series to produce another time series of a different length, but
with the same shape.

Syntax

resize(<expression>, <start>, <fromlength>, <tolength>, <dst_start>)

Where <expression> is a measure or expression whose time series is to be used, and
<start>, <fromlength> and <tolength> are expressions that calculate numbers. <start> is
assumed to be a calendar index number; if its value is numeric but non-integer, only the
integer portion will be used. If its value is a date type, the date value is converted to a
calendar index internally. If <fromlength> or <tolength> are less than 0, or either
parameter is non-numeric or when added to <start>-1 is outside the scope of the
calendar index numbers for the dimension being calculated, an error is generated. If
<fromlength> or <tolength> are non-integer, only the integer portion will be used.

 Appendix: Rules Function Reference Guide 329

<dst_start> is an optional input. It can be a date type measure. If so, the date value is
converted to a calendar index internally. It can also be a numeric value. If it’s a numeric
value, it represents the first calendar index that the output time series is written to. If
omitted, it is always 0.
The function returns a time series that is resized such that the overall shape of the values
is retained, but the number of time periods is stretched or shrunk from <fromlength> or
<tolength>. For time periods outside the horizon covered by <start> and <start> -1 +
<tolength> (if there are any), the function will return zero – if values other than this are
required, or if no update to those periods is required, the function should be wrapped in
an if function that can set the appropriate value or use the ignore clause, as appropriate.
The function stretches or shrinks the section of the time series by interpolation or
decimation. The algorithm uses upsampling, convolution, and then downsizing. The
filter used in convolution is a finite impulse response (FIR) lowpass filter, using a
hamming window with cut-off frequency and length determined from greatest common
denominator of the source and destination time series lengths.

The values generated for individual cells through this process are not normalized (for a
similar function that normalizes the result, see the resizenorm function), and will be of
similar magnitude to the cell values for the source cells.

Inverse

The resize function does not have an inverse.

Examples:
 resize(profile, first, 10, 17)

 The first 17 periods of the result time series will have values with a shape the same as
the first 10 periods of the measure profile. All other periods will be zero.

 resize(lag(profile,startweek), startweek, profilelength, numweeks)

 This example should be compared with the similar example of the normalize
function. It uses a profile to generate a sales plan for an item for a specified length of
time from a specified period of time. The profile is not necessarily the same length as
the period for which sales are to be generated. The measure profile is assumed to
have a profile (shape) for the sales of an item, starting in the first period with values
for a number of periods given by the measure profilelength. startweek is an index
number of the period from which sales should be generated for the item. numweeks
has the length of the sales profile to be generated. Periods before the startweek or
after the startweek-1+numweeks will have a result of zero. The periods from startweek
to startweek-1+numweeks will have the result of the first profilelength weeks of the
profile measure, stretched or shrunk to fit the appropriate number of periods.

resizenorm
Uses the "shape" of a time series to produce another time series of a different length, but
with the same shape, normalized to a specific total.

Syntax
resizenorm(<expression>, <start>, <fromlength>, <tolength>[, <total>],
<dst_start>)
<total> is an expression that returns a numeric value. If <total> is not specified, it is
assumed to be the sum of the cells of <expression> from startweek to startweek-
1+fromlength. See the resize function for an explanation of the other parameters.

This function is identical to the resize function, except that the calculation engine
automatically normalizes the resized values to the specified <total>.

Inverse

330 Oracle Retail Predictive Application Server

The resizenorm function does not have an inverse.

Examples:
 resizenorm(profile, first, 10, 17)
 The first 17 periods of the result time series will have values with a shape the same as

the first 10 periods of the measure profile. All other periods will be zero. The values of
the cells will be such that sum of the 17 generated periods of the result time series
will be the same as the first 10 periods of the measure profile.

 resizenorm(lag(profile,startweek), startweek, profilelength, numweeks,
targetsales)

 This example should be compared with the similar example of the resize function.
The generated sales will be normalized so that their sum is the value of the targetsales
measure.

 resizeprofile

The "resizeprofile" function is a rewrite of the "resizenorm" function. The resizeprofile
function is intended as a functional replacement for the resize and resizenorm functions.

Note: Users are encouraged to replace the expressions
containing resize and resizenorm functions with
resizeprofile. The resize and resizenorm functions are
still maintained for backward compatibility.

Syntax
 resizeprofile(expression, start, fromlength, tolength, dststart: <dststart>,

total: <total>)
 Where <expression> is a measure or expression whose time series is to be used, and

<start>, <fromlength> and <tolength> are expressions that calculate numbers. <start>
is assumed to be a calendar index number; if its value is numeric but non-integer,
only the integer portion will be used. If its value is a date type, the date value is
converted to a calendar index internally. If <fromlength> or <tolength> are less than 0,
or either parameter is non-numeric or when added to <start>-1 is outside the scope
of the calendar index numbers for the dimension being calculated, an error is
generated. If <fromlength> or <tolength> are non-integer, only the integer portion
will be used. <dststart> is an optional input. It can be a date type measure. If so, the
date value is converted to a calendar index internally. It can also be a numeric value.
If it is a numeric value, it represents the first calendar index that the output time
series is written to. If omitted, it is always 0.

 The function returns a time series that is resized such that the overall shape of the
values is retained, but the number of time periods is stretched or shrunk from
<fromlength> or <tolength>. For time periods outside the horizon covered by <start>
and <start> -1 + <tolength> (if there are any), the function will return zero. If values
other than this are required, or if no update to those periods is required, the function
should be wrapped in an if function that can set the appropriate value or use the
ignore clause, as appropriate.

 The function stretches or shrinks the section of the time series by interpolation or
decimation. The algorithm uses upsampling, convolution, and then downsizing. The
calculation engine automatically normalizes the resized values to the specified
<total>.

The usage text of this function is as follows:

 resizeprofile(expression, start, fromlength, tolength, dst_start: <dst_start>, total:
<total>) where:

 Appendix: Rules Function Reference Guide 331

 expression: is a measure or expression, whose time series is to be used in the
calculations. This is a required input.

 start: denotes the index number of the calendar dimension of expression. The
algorithm processes data points from this index number going forward. This is a
required input.

 fromlength: together with start, this input establishes which portion of the curve
should be processed. fromlength determines the length of the original curve. This is a
required input.

 tolength: determines the length of the output curve. This is a required input.

 dst_start: this is a named value pair denoting an optional input, which determines
the index of the starting point of the output curve. If not specified, it defaults to zero.

 total: this is a named value pair denoting an optional input whose numeric value is
used to normalize the resized curve. If total is not specified, skip the ‘Normalize’
step.

Examples:
 "MeasureB=resizeProfile(MeasureA, 0, 10, 30, dststart:1)"
 resizeprofile will take the curve represented by the 10 positions starting at index 0 in

MeasureA and resize that curve to fit the 30 positions starting at index 1 in
MeasureB.

 "MeasureD=resizeProfile(MeasureA, 0, 10, 25, dststart:1, total:200)"
 resizeprofile will take the curve represented by the 10 positions starting at index 0 in

MeasureA and resize that curve to fit the 25 positions starting at index 1 in
MeasureD. While performing the resize operation, resizeProfile will normalize the
curve to a total of 200 across all destination positions.

 "MeasureD=resizeProfile(MeasureC + MeasureA, 0, 15, 30, dststart:2,
total:100)"

 resizeprofile will take the curve represented by the 15 positions starting at index 0 in
the expression “MeasureC + MeasureA” and resize that curve to fit the 30 positions
starting at index 2 in MeasureD. While performing the resize operation, resizeProfile
will normalize the curve to a total of 100 across all destination positions.

String Functions

uppercase
Converts a string to upper case.

Syntax
uppercase(<expression>)

Where the value of <expression> is returned as a string with upper case characters.
Useful in making string comparisons.

lowercase
Converts a string to lower case.

Syntax
lowercase(<expression>)

Where the value of <expression> is returned as a string with lower case characters. Useful
in making string comparisons.

textCompare
Performs a case-sensitive comparison of two strings.

332 Oracle Retail Predictive Application Server

Syntax
textCompare(<expression1>, <exprssion2>)
Where the two input arguments <expression1> and <expression2> must have a type of
string. The result type is Boolean. The result value is a Boolean value of the case-sensitive
comparison of the two RHS (right hand side) expressions.

The number of input arguments is 2. The number of output is 1.

textConcat
Concatenates string arguments.
Syntax
textConcat(<expression1> ,<expression2>[,… ,<expressionN>])
Where the value of all expressions is either a string type measure or a string literal.
Concatenates two or more values into a single string.

substr
Returns a portion of the input String measure’s value.

Syntax
substr(<inputMeasure>[,<startIndex>,<length>])
Where <inputMeasure> must be a string type measure and the optional <startIndex> and
<length> arguments are either integer measures or literal integer values. The substr
function will take the portion of the input string beginning at <startIndex> (which defaults
to 0 if not specified) and spanning the amount of characters specified by the <length>
argument (which defaults to the length of the input string if not specified). If the end
index of the copy (calculated as <startIndex> + <length>) is greater than the length of the
input string, substr will pad the input string with spaces to make it long enough to be
copied.

 ConvertToString
The ConvertToString function will return the string representation of any non-string
measure. The number and type of input arguments will change depending on the type of
first argument to the function but it will always return string values.

The first argument is the input measure which contains the non-string values which
needs to be converted to string. This is a mandatory input for ConvertToString.

Syntax - ConvertToString when input measure type is real
strMeas = ConvertToString(realMeas,precision:
<precision>,separator:<separator>,decimalmark:<decimalmark>)

If we pass in a real measure as first input argument to the ConvertToString function then
the output measure will contain the input measure’s real numbers converted to string.

When the input measure is of type real the function will accept an additional optional
argument of type integer which is the precision to be used on the input real values before
they are converted to string. Precision is an optional integer constant or scalar integer
measure. If precision is not specified a default precision value of 14 will be used. This is
because as a general rule default value is set to be as precise as possible. This is consistent
with current default used by RPAS, 14 is the internal default precision used by the RPAS
when converting a double to string by utilities like printArray.

 Appendix: Rules Function Reference Guide 333

Another optional argument is the decimal mark which is also of type string. Decimal
mark can be a string constant or a scalar string measure. If the decimal mark string is not
provided ‘.’ will be used as the default decimal mark.

Syntax - ConvertToString when input measure type is integer
strMeas = ConvertToString(intMeas,separator:<separator>)

If we pass in an integer measure as first input argument to ConvertToString function
then the output measure will contain the input measure’s integer numbers converted to
string.

Syntax - ConvertToString when input measure type is date
strMeas = ConvertToString(dateMeas,dateFormat)

If we pass in a date measure as first input argument to ConvertToString function then the
output measure will contain the input measure’s numeric date values converted to string.
Also, if the first input argument is a date type measure ConvertToString function will
accept a second optional argument of type string which is the date format string. The
internal numeric dates in the input measure will be converted to string according to the
format specified in the format string and stored in the output string measure. If second
argument is not specified the result string will be in the format "%d %h %Y”.

The date format string is expected in the form “%[variable]”. Variable can be any of the
following.
 B: month, full name

 h: month, 3 character abbreviation, such as JAN, FEB, MAR

 Y: 4 digit year

 y: 2 digit year

 m: 2 digit month

 d: 2 digit day
 H: 2 digit hour

 M: 2 digit minute

 S: 2 digit second

 s: 3 digit millisecond

Syntax - ConvertToString when input measure type is Boolean
strMeas = ConvertToString(boolMeas, trueString:<trueString>,
falseString:<falseString>)

If we pass in a Boolean measure as first input argument to the ConvertToString function
then the output string measure will contain the input measure’s Boolean values
converted to string. This function takes three additional string arguments. We will refer
to the first two as trueString and falseString. These two strings are expected to be used in
place of Boolean values true and false in the result. Each true cell value in the input
measure will be stored as the trueString in the output string measure and each false cell
value in the input measure will be stored as falseString in the output string measure. If

334 Oracle Retail Predictive Application Server

the second and third arguments are not specified then by default English strings “true”
and “false” will be used.

Math Functions

pow
Returns the value of a number raised to the power of another number (x to the power of
y).

Syntax
pow(<x>, <y>)
<x> and <y> are expressions that return real numbers. <y> designates the exponent to
which <x> is raised.

exp
Returns the value of the transcendental number “e” raised to the power of a number (e to
the power of x).
e is the base of natural logarithms.

Syntax

exp(<x>)

<x> is an expression that returns a real number to which the number “e” (value
2.71828183) is raised.

sqrt
Returns the square root of a number.

Syntax
sqrt(<x>)
<x> is an expression that returns a real number. This function returns the equivalent of
“pow(x, 0.5)”.

log
Returns the logarithm of a number.

This function returns the exponent that indicates the power to which a number is raised
to produce a given number.

Syntax
log(<x>, [<base>])
Where <x> and <base> are expressions that return real numbers. If <base> is not
specified the default value is 10.

Examples:
 log(100)

 The logarithm of 100 to the base 10 is 2.
 log(125, 5)
 The logarithm of 125 to the base 5 is 3.

ln
Returns the natural logarithm of a number.

This function returns the logarithm of <x> to base “e” (2.71828183).

 Appendix: Rules Function Reference Guide 335

Syntax
ln(<x>)
<x> is an expression that returns a real number.

mod
Returns the remainder as the result of the division of 2 numbers.

The result of this function is the remainder of <x> divided by <y>.

Syntax
mod(<x>, <y>)
<x> and <y> are expressions that return real numbers.

Example:
 mod(5, 2)
 The remainder of 5 divided by 2 is 1.

abs
Returns the absolute value of a number.

Syntax
abs(<x>)
<x> is an expression that returns a real number.

rand
used to generate random values of type integer, real, and date. The return type of rand
and the number and type of input arguments will depend on the type of the LHS
measure.

In all cases of the rand function described in the sections below, low and high must be
the first two parameters. They don’t need to be in a fixed order; the function will select
the upper value for high and the lower value for low. Low and high can be constants,
scalar measures, or regular measures with a base intersection.

 Base intersection of the low and high measures can be at or above the base
intersection of the LHS measure. If they are at a higher intersection the values will be
spread down using the repl method before being used.

 When the upper limit is lower than the lower limit rand function will internally
compare the limit values and generate a random value that falls between the two
limit values. Also, low and high are included in the range of possible random values
generated by rand. Therefore rand(1, 10) can generate 1 or 10 or anything in between,
same as rand(10, 1). If low and high are measures then rand generates values that fall
between the two measures.

 Seed is an optional input into the random generation algorithm. Seed can be either an
integer or a real number. The same seed will produce the same set of random values.
Note that this is the behavior of random number generator algorithms in general and
not specific to RPAS. The seed argument may be more applicable in the
testing/verification process where the same test random data can be generated
multiple times using the same seed. When using the seed argument, the value needs
to be preceded by the “seed:” label. The use cases have an example of proper usage.

Syntax - For real and integer type
resultMeas = rand(lowerLimit,upperLimit[,seed:<seed>])

When the LHS measure is an int or real type measure the rand procedure generates
random numbers that falls between the lower limit number (lowerLimit) and the upper

336 Oracle Retail Predictive Application Server

limit number (upperLimit). For int or real type LHS measures lowerLimit and
upperLimit are mandatory inputs.

If you pass in real numbers as lowerLimit or upperLimit and the LHS measure is an int
type measure then the real limit values will be rounded to the nearest integer before
being used.

Syntax - For date type
dateMeas = rand(startDate,endDate[,dateformat:<datefomrat>][, seed:<seed>])

When the LHS measure is a date type measure, the rand procedure generates random
dates that fall between startDate and endDate. startDate is the lower limit date for the
range of dates within which random dates need to be generated and endDate is the
upper limit of that range. When LHS measure is date type startDate and endDate are
mandatory inputs. startDate and endDate can be constants, scalar measures or regular
measures with a base intersection.

String type is allowed for startDate and endDate when they are constants or scalar
measures. In that case date format string will be used to convert startDate and endDate to
internal numeric date values.

If startDate and endDate are measures with base intersection then they need to be of type
date and cannot be of string type. In this case date format argument if supplied will be
ignored.

dateformat is an optional input string that specifies the format of the startDate and
endDate if they are strings. If dateformat string is not provided the default position
format value in the domain will be used. Internally this format can be found in be found
in the diminfo array of the meta.db. Position format is usually specified only for the inner
most dimension in the calendar hierarchy (usually day dimension). This argument must
be preceded by the label “dateformat:”.

The date format string is expected in the form “%[variable]”. Variable can be any of the
following:

 B: month, full name

 h: month, 3 character abbreviation, such as JAN, FEB, MAR

 Y: 4 digit year
 y: 2 digit year

 m: 2 digit month

 d: 2 digit day

 H: 2 digit hour

 M: 2 digit minute

 S: 2 digit second
 s: 3 digit millisecond

If date format is being used Year, month and day are required. Time (hour, minute,
second and millisecond) is optional. If time is not specified all 0’s will be used for time
which will be 00:00:00:000 using format H:M:S:s.

Other Functions and Procedures

multisource
The multisource procedure calculates a workbook-only recalc measure, based upon the
intersection that the measure is currently displayed at. The multisource procedure takes
as arguments a list of measures at different base intersections. When evaluating the

 Appendix: Rules Function Reference Guide 337

output measure, the intersection of the current worksheet is used to determine which of
the right hand side (RHS) measure’s values must be assigned to the LHS measure.

Syntax
multisource(<inputMeas1>,<inputMeas2>…<inputMeasN>[,<performAggregation>])
Where <inputMeas1> through <inputMeasN> are measures at differing base intersections.
When the multisource expression is evaluated, the input measure with the appropriate
base intersection is used.

The <performAggregation> flag is a Boolean value (true or false). When this flag is set to
TRUE and there is no input measure at the evaluated intersection, then the closest
measure will have its values aggregated based on that measure's aggregation method
 and those values are used.

Multisource is useful when you need to load and display non-aggregated data at
different intersections within a single measure. To achieve this without multisource
measures, you must have multiple measures at each of the required intersections. This
decreases usability since the user sees many different measures and a large number of
invalid cells. The example below shows the number of measures that would be needed to
support just the different levels of the product hierarchy. This would be exploded out for
each combination of intersections along the different hierarchies.

Without Multisource Measures

However, with the use of multisource measures, the same requirements met by the
previous example are achieved with a single measure, the result of which is shown in the
figure below.

338 Oracle Retail Predictive Application Server

With Multisource Measures

Left Hand Side (LHS) Measure Properties
LHS measures must have the following attributes and properties:

 Base intersection: At or above the worksheet intersection like any other workbook
measure.

 Aggregation Type: RECLC. (This is recalculated whenever the display intersection
changes.)

 Spread Type: None (gets recalculated whenever the measure gets spread down)

 Materialized Type: Persistent. (This is persisted only in the workbook database. It
cannot have a domain database).

 Base State: Read only

 Agg State: Read only

 Measure Type: Numeric, Date, String and Boolean
 The special expression must be part of a calc rule only. This validation check must be

exclusively performed in the RPAS Configuration Tools.

LHS Measure Restrictions and Validations

If the expression is triggered as part of a calc rule through workbook and any of the LHS
measure properties are not met, then a marshallable exception is thrown by the server.
An error message is displayed that describes the cause of exception. After closing the
error message dialog, you can either close the workbook normally or continue working
on the same workbook without performing any calculation. On the Configuration Tools
side, a validation failure results in displaying the context of validation in red text and

 Appendix: Rules Function Reference Guide 339

prevents the rpaInstall from building the domain. The properties listed above must be
validated for the LHS measure on the RPAS Server and Configuration Tools.

Right Hand Side (RHS) Measure Properties
RHS measures must have the following attributes and properties:

 MeasureType: RHS measures inputMeas1, inputMeas2,inputMeas3 are of the same
type as the type of the LHS measure.

 Base Intersection: RHS measures inputMeas1, inputMeas2,inputMeas3 must have
different base intersections.

 Min and Max Number of RHS measures: The minimum number is 1 and maximum
number is 200.

 Scalar measure: If LHS measure is a scalar, there can be only one RHS measure, and
it must be a scalar measure. Since the number of RHS arguments can vary from 1 to
200, the condition when LHS measure is scalar can be met by providing a single RHS
measure which is also a scalar.

 Since aggregation of RHS measures is allowed, the RHS measures base intersection
can be at or above or below the LHS measure base intersection. Whenever an exact
match for the LHS measure display intersection is found on the RHS side, that
measure gets used otherwise whichever RHS measure that has the nearest base
intersection to the LHS measure’s display intersection gets used after aggregation.

 RHS measures can have a domain database as they can be persisted in both domain
and workbook.

 The right most argument of RHS must be checked for a constant after the above
validation check. If it is a constant, then the remaining RHS arguments must be all
measures. There can be only one optional constant in the expression and that must be
the right most argument.

RHS Measure Restrictions and Validations

The conditions described above must be validated for the RHS measures on the RPAS
Server and Configuration Tools. If the validation fails, a marshallable exception is thrown
on the RPAS Server side.

Rule Group Restrictions
The following validation checks must be exclusively performed in the Configuration
Tools:

 The multisource expression can be used only in calc rule groups.

 LHS measure cannot appear on the RHS of any expression in any rule group.

cover
The cover function returns the number of future periods for which "stock" covers "sales."

Alternately phrased, that is a "forwards weeks of supply," or the number of future
periods of "sales" that could be satisfied from the "stock" with no further receipts.

The cover function allows for two "sales" expressions, where the second is a "wrap
around" expression to provide a well-defined cover for periods at or near the end of the
calendar horizon that would otherwise "run out" of forward sales. An offset is also
specified to allow the cover function to behave appropriately for both opening and
closing stock.

340 Oracle Retail Predictive Application Server

Unlike other functions, use of the level modifier is not supported in the stockexpression,
salesexpression, offsetexpression, or wraparoundsalesexpression. Calculation at
aggregate levels is possible, but the aggregates need to be computed first, and then the
aggregated expressions can be used in cover/uncover.
Syntax
cover(<stockexpression>, <salesexpression>[, <offsetexpression>,
[<wraparoundsalesexpression>]])
Where <stockexpression> is an expression or measure that represents the ‘stock.’
<salesexpression> is an expression or measure that represents the "sales."
<offsetexpression> is an expression that calculates a number that represents the offset to
apply. If the value is non-integer, only the integer portion is used. If the value is non-
numeric, an error is generated. If <offsetexpression> is not provided, the default value
will be 1. <wraparoundsalesexpression> is an expression or measure that represents the
"wrap around sales." If <wraparoundsalesexpression> is not provided, there will be no
wraparound, and the function will generate an error if there is insufficient "forward
sales" to calculate the cover.

The <salesexpression> can be considered to define a time series of sales data values,
starting at the current period offset by the <offsetexpression>, and stretching until the
end of the calendar horizon. If this time series is too short to evaluate the cover value, it
can be considered to be extended by one or more copies of the time series implied by the
<wraparoundsalesexpression>, if specified, from the start until the end of the calendar
horizon. The cover value is calculated by summing down the time series until a sum is
reached that is equal to or greater than the value of the <stockexpression>. If the sum is
equal to the <stockexpression>, the number of periods used is returned. If the sum is
greater than the <stockexpression>, the value returned is the number of periods used
minus 1, plus the proportion of the last period reached that is required to exactly reach
the value of the <stockexpression>. If the <offsetexpression> causes the start of the time
series to be before the start of the calendar horizon, or no <wraparoundsalesexpression> is
specified, and there is insufficient ‘forward sales’ to determine the cover, an error is
generated.

Inverse

The cover function has an inverse function, uncover. uncover returns the amount of
"stock" that is required to give a specified number of "forward periods cover." There is no
inverse function that solves this relationship for "sales" (which is used as a time series,
rather than a single value).

Note: The inverse can only apply if the <stockexpression> is
a single measure, rather than an expression.

Examples:
 cover(EOP, Sales)

 This provides an EOP based forward cover. There is no "wraparound" sales
expression, so this function will generate errors towards the end of the plan horizon.

 cover(BOP, Sales + MD, 0)

 This provides a BOP based forward cover, using Sales plus markdowns as the
expression to be covered. There is no ‘wraparound’ sales expression, so this function
will probably generate errors towards the end of the plan horizon.

 cover(EOP, Sales, 1, Sales)

 This provides an EOP based forward cover. Sales itself is used as the "wraparound
sales expression" (this is typical where the plan horizon is a year, since the Sales
measure has the appropriate seasonality; where this is not the case, another measure,

 Appendix: Rules Function Reference Guide 341

such as "next season sales" would be used) so this function will return "reasonable"
values towards the end of the plan horizon when the cover is greater than the
number of weeks remaining.

Note: The cover function is always calculated at the current
time dimension. For example, in a plan where the bottom
time dimension is week, a measure with an aggregation type
of recalc that is calculated from a cover function at the
month level will calculate "forward months of supply." If
forward weeks of supply are required to be calculated for
the month dimension, it would be more appropriate to
specify the measure with an aggregation type of first or last,
so that aggregation, rather than calculation through the rule,
is used to generate the values at the month dimension.

Make sure that the wrap around expression, if used, is
seeded with appropriate values.

Both the "stock" and the "sales" used in the cover function
are expressions. This supports various business needs, such
as using covers based on "sales plus markdowns." If the
"stock" is provided as an expression, rather than just a single
measure, the function will not have an inverse.

The offset expression is used to define the offset: from which
period to start using the sales expression. It is assumed to be
an offset from the current period, so that a value of zero
means that the sales for the current period must be used in
evaluating the cover (which is appropriate for an "opening
stock" based cover), and an offset of 1 means start in the
period following the current period (which is appropriate
for a "closing stock" based cover). Values other than 0 and 1
may be used.

uncover
The uncover function returns the amount of "stock" required to cover "sales" for the
specified number of forward periods.
The uncover function allows for two "sales" expressions where the second is a "wrap
around" expression that provides a well defined cover for periods at or near the end of
the calendar horizon that would otherwise "run out" of forward sales. An offset is also
specified to allow the uncover function to behave appropriately for both opening and
closing stock.

Unlike other functions, use of the level modifier is not supported in the stockexpression,
salesexpression, offsetexpression, or wraparoundsalesexpression. Calculation at
aggregate levels is possible, but the aggregates need to be computed first, and then the
aggregated expressions can be used in cover/uncover.

Syntax
uncover(<coverexpression>, <salesexpression>[, <offsetexpression>,
[<wraparoundsalesexpression>]])
Where <coverexpression> is an expression or measure that represents the "cover value."
<salesexpression> is an expression or measure that represents the "sales."
<offsetexpression> is an expression that calculates a number that represents the offset to
apply. If the value is non-integer, only the integer portion is used. If the value is non-

342 Oracle Retail Predictive Application Server

numeric, an error is generated. If <offsetexpression> is not provided, the default value
will be 1. <wraparoundsalesexpression> is an expression or measure that represents the
"wrap around sales." If <wraparoundsalesexpression> is not provided, there will be no
wraparound, and the function will generate errors if there is insufficient "forward sales"
to calculate the stock.

The <salesexpression> can be considered to define a time series of sales data values,
starting at the current period offset by the <offsetexpression>, and stretching until the
end of the calendar horizon. If this time series is too short to evaluate the stock value, it
can be considered to be extended by one or more copies of the time series implied by the
<wraparoundsalesexpression>, if specified, from the start until the end of the calendar
horizon. The stock value is calculated by summing down the time series for a number of
periods equal to the integer portion of the <coverexpression> and adding the value of the
next period, multiplied by the fractional portion of the <coverexpression>. If the
<offsetexpression> causes the start of the time series to be before the start of the calendar
horizon, or no <wraparoundsalesexpression>, is specified, and there is insufficient
"forward sales" to determine the stock, an error is generated.
Inverse

The uncover function has an inverse function, the cover function. This function returns
the number of forward periods of cover implicit in the specified stock. There is no inverse
function that "solves" this relationship for "sales" (which is used as a time series, rather
than a single value).

Note: The inverse can only apply if the <coverexpression> is
a single measure, rather than an expression.

Examples:
 uncover(WOS, Sales)
 This provides an EOP stock value that gives the specified weeks of supply. There is

no "wraparound" sales expression, so this function will generate errors towards the
end of the plan horizon.

 uncover(WOS, Sales + MD, 0)
 This provides a BOP stock value that gives the specified weeks of supply, using Sales

plus markdowns as the expression to be covered. There is no "wraparound" sales
expression, so unless the value of WOS is less than 1, this function will generate
errors towards the end of the plan horizon.

 uncover(WOS, Sales, 1, Sales)
 This provides an EOP stock value that gives the specified weeks of supply. Sales

itself is used as the "wraparound sales expression" (this is typical where the plan
horizon is a year, since the Sales measure has the appropriate seasonality; where this
is not the case, another measure, such as "next season sales" would be used) so this
function will return "reasonable" values towards the end of the plan horizon when
the cover is greater than the number of weeks remaining.

 Appendix: Rules Function Reference Guide 343

Note: The uncover function is always calculated at the
current time dimension. For example, in a plan where the
bottom time dimension is week, a rule or mapping rule that
uses an uncover function at the month level will calculate the
"stock" on the assumption that the <coverexpression>
provides a "forward months of supply."

Make sure that the wrap around expression, if used, is
seeded with appropriate values.

Both the "cover" and the "sales" used in the uncover function
are expressions. This supports various business needs, such
as using covers based on "sales plus markdowns." If the
"cover" is provided as an expression, rather than just a
measure, the function will not have an inverse.

The offset expression is used to define the offset: from which
period to start using the sales expression. It is assumed to be
an offset from the current period, so that a value of zero
means that the sales for the current period should be used in
evaluating the cover (which is appropriate for an "opening
stock" based cover), and an offset of 1 means start in the
period following the current period (which is appropriate
for a "closing stock" based cover). Values other than 0 and 1
may be used.

min
The min function returns the minimum value from a series of expressions or set of
measures.

Syntax
min(<expression1>, <expression2> [, <expression3> … <expressionn>])

Where <expression1-n> are expressions or a set of measures (denoted by {<measureset>}
), which return numeric values. The function returns the minimum value of the
expressions.

Inverse

The min function does not have an inverse.

Example:

 min (A, B, C)

 Returns the minimum of the measures A, B, and C.

•

max
The max function returns the maximum value from a series of expressions or set of
measures.

Syntax
max(<expression1>, <expression2> [, <expression3> … <expressionn>])

Where <expression1-n> are expressions or a set of measures (denoted by {<measureset>}
), which return numeric values. The function returns the maximum value of the
expressions.

344 Oracle Retail Predictive Application Server

Inverse

The max function does not have an inverse.

Example:
 max (A, B, C)

 Returns the maximum of the measures A, B, and C.

sum
The sum function returns the sum of a series of expressions or measure set.

Syntax
sum(<expression1>, <expression2> [, <expression3> … <expressionn>])

Where <expression1-n> are expressions or a set of measures (denoted by {<measureset>}
), which return numeric values. The function returns the summed value of the
expressions or measure set.

Inverse

The sum function does not have an inverse.

Example:
 sum (A, B, C)

 Returns the sum of the measures A, B, and C.

lag
The lag function returns the value of an expression from the previous time period in the
dimension being evaluated.

The lag function cannot be used in rule groups containing
recalc measures.

Syntax
lag(<expression>)

Where <expression> is any valid expression. The function returns the value of the
expression in the previous period. If the current period being evaluated is the first period
in the calendar horizon (so that there is no previous period), an error is generated. For
that reason, lag functions are usually embedded in if functions or prefer functions to
check for that case.

Inverse

The lag function does not have an inverse.

Example:
 lag(EOP)
 Returns the value of the measure EOP from the previous period.

 Appendix: Rules Function Reference Guide 345

Note: The lag function is deliberately intended as a "simple"
version of the timeshift procedure for one of the most
frequently used cases, which is that the offset is one period
in the past. Use the timeshift procedure for lagging with a
variable offset.

The lag function has special "cycle breaking" logic that
enables a series of expressions to be calculated in a manner
that allows them to be evaluated "period wise." This allows
an apparent "deadly embrace" to be broken. Thus the
following two expressions are allowed, and can be
calculated in the same rule group, even though EOP appears
to depend on BOP, which appears to depend on EOP:

EOP = BOP + Rec – SLs – MD
BOP = lag(EOP)

Note, however, that the cycle breaking logic does not
support the measure being calculated being lagged on the
RHS of the expression. Thus the following expression is not
allowed:
AccumSls = Sls + lag(AccumSls)

lead
The lead function returns the value of an expression from the next (following) time
period in the dimension being evaluated.

The lead function cannot be used in rule groups containing
recalc measures.

Syntax
lead(<expression>)

Where <expression> is any valid expression. The function returns the value of the
expression in the following period. If the current period being evaluated is the last period
in the calendar horizon (so that there is no following period), an error is generated. For
that reason, lead functions are usually embedded in if functions or prefer functions to
check for that case.

Inverse

The lead function does not have an inverse.

Example:

• lead(BOP)

• Returns the value of the measure BOP from the next period.

346 Oracle Retail Predictive Application Server

Note: The lead function is deliberately intended as a "simple"
version of the timeshift procedure for one of the most
frequently used cases, which is that the offset is one period
in the future. Use the timeshift procedure for leading with a
variable offset.

In a similar manner to the lag function, the lead function has
special "cycle breaking" logic that enables a series of
expressions to be calculated in a manner that allows them to
be evaluated "period wise." This allows an apparent ‘deadly
embrace’ to be broken.

Even when an error is generated because the current period
is the last period in the calendar horizon, the lead function
itself, if not guarded by if or prefer functions, returns the
re-evaluated NA value of the measure. For example, for the
following expression group:

A = lead(B)
B = A + 1

...assume that the NA value for both A and B is 0. The
system first re-evaluates B's NA value to be A's NA value + 1
= 1 based on the second expression. The system will attempt
to retrieve the time period after B's last time period when A =
lag(B) is evaluated. Because that time period does not exist,
the lead function will return B's re-evaluated NA value
instead, which is 1.

timeshift
The timeshift procedure that returns the value of a measure from a time period in the
dimension being evaluated that is lagged by a designated number of periods.

This procedure has the following special uses and restrictions:

 Measures used in this procedure can be modified with the master modifier.
 Currently timeshift cannot be used in calculation rule groups.

 Used for lagging the values of a measure by more than one period.

 Used for retrieving values from time periods outside the scope of the workbook.

 Used for addressing 52-53 week year differences.

Syntax
<output> <- timeshift(<input>, {<lagvalue> | <lagmeas> | <lagmap>})

<input> is the measure that is being lagged and must have the same base intersection as
<output> or must be forced to evaluate at the base intersection of <output> by using the
level modifier. <input> must include a dimension in the calendar hierarchy and must be
the same data type as <output>.

<lagvalue> is a scalar value that designates the number of periods each position in
<input> is shifted. A negative value refers to shift forward in calendar dimension (lead),
and a positive value refers to shift backward in calendar dimension (lag).

<lagmeas> is a numeric measure that contains values that determine how each position is
shifted. <lagmeas> cannot have a calendar dimension and all non-calendar dimensions
must be identical to <input>.

 Appendix: Rules Function Reference Guide 347

Note: This implies that if either <input> or <lagmeas>
measure is modified with the master modifier, the other
measure must also be modified with the master modifier.

<lagmap> is a string measure used for sophisticated mappings. The measure contains
position names that indicate how each time period is mapped, and it must only contain
positions from the dimension from the calendar hierarchy. The value of each position
(called the source position here) in the lagmap measure is the name of position in the
destination measure to which the data for that source position in the input is mapped.
Multiple positions can be specified by separating them using a space. In other words,
<lagmap> defines a mapping of positions from the input measure to the destination
measure along time. Entries in <lagmap> that are not the names of valid positions in the
dimension from the calendar hierarchy are ignored.

Note: This implies that if either <input> or <lagmap> measure
is modified with the master modifier, the other measure
must also be modified with the master modifier.

This mapping technique is primarily used when lagging measures between 52 and 53-
week years. When mapping multiple positions to a single position (such as mapping the
last 2 weeks in a 53-week year to the last week in a 52-week year), the resulting value is
the sum of the source values (that is, the sum of the last 2 weeks of the 53-week year).
When mapping a single position to multiple positions (such as mapping the last week in
a 52-week year to the last 2 weeks in a 53-week year), the source value is replicated to the
resulting values (that is, weeks 52 and 53 in the 53-week year are updated to week 52 in
the 52-week year).

Note: timeshift is a procedure so it cannot be combined with
functions, modifiers, or other procedures in any manner. As
a procedure, it requires a different syntax: “<-“ instead of
“=” when being assigned.

Inverse

The timeshift procedure does not have an inverse.

Examples:

• salesly <- timeshift(sales.master, -4)

• Updates the positions in the workbook measure for last year’s sales with the values
from the domain measure sales where each position is advanced by 4 periods.

Input sales chnl scls week Value

 - Catalog Loafer w01_2007 10

- Catalog Loafer w02_2007 20

- Catalog Loafer w03_2007 30

- Catalog Loafer w04_2007 40

- Catalog Loafer w05_2007 0

- Catalog Loafer w06_2007 0

- Catalog Loafer w07_2007 0

348 Oracle Retail Predictive Application Server

- Catalog Loafer w08_2007 0

Output salesly chnl scls week Value

 - Catalog Loafer w01_2007 0

- Catalog Loafer w02_2007 0

- Catalog Loafer w03_2007 0

- Catalog Loafer w04_2007 0

- Catalog Loafer w05_2007 10

- Catalog Loafer w06_2007 20

- Catalog Loafer w07_2007 30

- Catalog Loafer w08_2007 40

• salesly <- timeshift(sales.master, saleslag)

• Where sales and salesly have a base intersection of SKU-week, the numeric measure
saleslag contains a value for each SKU that indicates the number of periods to lag by
SKU.

Input sales chnl scls week Value

 - Catalog Loafer w01_2007 10

- Catalog Loafer w02_2007 20

- Catalog Loafer w03_2007 30

- Catalog Loafer w04_2007 40

- Catalog Loafer w05_2007 0

- Catalog Loafer w06_2007 0

- Catalog Loafer w07_2007 0

- Catalog Loafer w08_2007 0

- Catalog Boots w01_2007 10

- Catalog Boots w02_2007 20

- Catalog Boots w03_2007 30

- Catalog Boots w04_2007 40

- Catalog Boots w05_2007 0

- Catalog Boots w06_2007 0

- Catalog Boots w07_2007 0

- Catalog Boots w08_2007 0

saleslag chnl scls - Value

- Catalog Loafer - 2

- Catalog Boots - -2

 Appendix: Rules Function Reference Guide 349

Output salesly chnl scls week Value

 - Catalog Loafer w01_2007 30

- Catalog Loafer w02_2007 40

- Catalog Loafer w03_2007 0

- Catalog Loafer w04_2007 0

- Catalog Loafer w05_2007 0

- Catalog Loafer w06_2007 0

- Catalog Loafer w07_2007 0

- Catalog Loafer w08_2007 0

- Catalog Boots w01_2007 0

- Catalog Boots w02_2007 0

- Catalog Boots w03_2007 10

- Catalog Boots w04_2007 20

- Catalog Boots w05_2007 30

- Catalog Boots w06_2007 40

- Catalog Boots w07_2007 0

- Catalog Boots w08_2007 0

• salesly <- timeshift(sales.master, salesmap)

• Where salesmap is a string measure that contains position names indicating which
position in sales to use for each position in salesly; the position in salesly whose
name is cell contents of salesmap receives the corresponding value from sales. In
cases where the current year in the workbook contains 52 weeks, the previous year
that is not in the workbook contains 53 weeks; the 52nd position in salesmap could
contain the position names “w52_2007” and “w53_2007”, causing the value of salesly
to contain the sum of the 2 positions.

Input sales chnl scls week Value

 - Catalog Loafer w02_2007 20

- Catalog Loafer w03_2007 30

- Catalog Loafer w04_2007 40

- Catalog Loafer w05_2007 0

- Catalog Loafer w06_2007 0

- Catalog Loafer w07_2007 0

- Catalog Loafer w08_2007 0

salesmap - - week Value

- - - w01_2007 w05_2007

- - w02_2007 w06_2007

- - w03_2007 w07_2007

350 Oracle Retail Predictive Application Server

- - w04_2007 w08_2007

- - w05_2007 w01_2007

- - w06_2007 w02_2007

- - w07_2007 w03_2007

- - - w08_2007 w04_2007

Output salesly chnl scls week Value

 - Catalog Loafer w01_2007 0

- Catalog Loafer w02_2007 0

- Catalog Loafer w03_2007 0

- Catalog Loafer w04_2007 0

- Catalog Loafer w05_2007 10

- Catalog Loafer w06_2007 20

- Catalog Loafer w07_2007 30

- Catalog Loafer w08_2007 40

round
Returns the value of an expression rounded up or down to the nearest multiple.

Syntax
round(<expression>[, <multipleexpression>])

Where <expression> is any valid expression, which specifies the value to be rounded,
<multipleexpression> is an expression that calculates a number that represents the
multiplier to use. If the value is not specified, it is assumed to be 1. The value may be
non-integer. If the value of either expression is non-numeric, an error is generated. The
rounding is up or down to the nearest multiple of the multiplier. If there are 2 multiples
equally near to the value (for instance, rounding 1.5 to the nearest integer), then
rounding is up (away from zero).

Note: When the round function is called with the
<multipleexpression> argument, round first determines the
nearest integer to the input and then determines the nearest
multiple of the <multipleexpression>. For instance, round(2.8,
2) first rounds 2.8 to 3 and then returns 4 as the final value.
However, round(3.8, 3) first rounds 3.8 to 4 and then returns
3 as the final value.

Inverse

The round function does not have an inverse.

Examples:

• round(qty)

• Returns the value of the measure qty, rounded up or down to the nearest integer. If
the qty is 14.324, this returns the result of 14, if the qty is 14.824, this returns the
result of 15.

• round(qty, packsize)

 Appendix: Rules Function Reference Guide 351

• Returns the value of the measure qty, rounded up or down to the nearest multiple of
the pack size. If the qty is 14.324 and the packsize is 6, this returns the result of 12. If
the qty is 16.824 and the packsize is 6, this returns the result of 18.

roundup
The roundup function returns the value of an expression rounded up to the nearest
multiple.

Syntax
roundup(<expression>[, <multipleexpression>])

Where <expression> is any valid expression, which specifies the value to be rounded.
<multipleexpression> is an expression that calculates a number that represents the
multiplier to use. If the value is not specified, it is assumed to be 1. The value may be
non-integer. If the value of either expression is non-numeric, an error is generated.
Rounding is always up (to the nearest multiple of the multiplier further away from zero).
Inverse

The roundup function does not have an inverse
Examples:

• roundup(qty)

• Returns the value of the measure qty, rounded up to the nearest integer. If the qty is
14.324 or 14.824, this returns the result of 15.

• roundup(qty, packsize)

• Returns the value of the measure qty, rounded up to the nearest multiple of the pack
size. If the packsize is 6 and the qty is 14.324 or 16.824, this returns the result of 18.

rounddown
The rounddown function returns the value of an expression rounded down to the nearest
multiple.

Syntax
rounddown(<expression>[, <multipleexpression>])

Where <expression> is any valid expression, which specifies the value to be rounded,
<multipleexpression> is an expression that calculates a number that represents the
multiplier to use. If the value is not specified, it is assumed to be 1. The value may be
non-integer. If the value of either expression is non-numeric, an error is generated.
Rounding is always down (to the nearest multiple of the multiplier closer to zero).

Inverse

The rounddown function does not have an inverse.

Examples:

• rounddown(qty)

• Returns the value of the measure qty, rounded down to the nearest integer. If the qty
is 14.324 or 14.824, this returns the result of 14.

• rounddown(qty, packsize)

• Returns the value of the measure qty, rounded down to the nearest multiple of the
pack size. If the packsize is 6 and the qty is 14.324 or 16.824, this returns the result of
12.

352 Oracle Retail Predictive Application Server

Note: The round functions have no inverses. Great care
should be used in designing rule groups that use these
functions, and the preferred technique for rounding is often
to not round during calculation, but to round values on
display only.

The round functions cause problems because they can
compromise the integrity of rule and expression
relationships. Consider a typical relationship between value,
units and price. If the units are calculated through a round
function (on the apparently reasonable assumption that
units should be integers) after a change to, say, the value,
then the integrity of the rule relationships is immediately
compromised because the price is no longer the value
divided by the units.

navalue
The navalue function returns the NA value of the specified expression.

Syntax
navalue(<expression>)

<expression> can be a constant, a measure, or an expression.

The navalue function does not directly generate errors, but it can propagate errors
generated by <expression>.

Inverse

The navalue function does not have an inverse.

Examples:

• navalue(<meas>)

• This returns the NA value of <meas>.

• navalue(<meas1> + <meas2>)

• This returns the NA value of the expression <meas1> + <meas2>. In this example, if
the NA value of <meas1> is 2 and the NA value of <meas2> is 5, the result of the
navalue function will be 7.

propspread
propspread is a multiple result function that spreads a value across a collection of
measures while retaining their relative proportions. The multiple results are not named,
and are therefore positional only. The typical usage of this function is to allow spreading
of "hierarchical measures."
Syntax
propspread(<totalexpression>, <childexp1>, … <childexpn>)

Where <totalexpression> is an expression that returns a numeric value to which to
balance the results of the function, <childexp1> - <childexpn> are expressions that
provide the "shape" of the results. They will typically be the same measures as those
assigned to the result of the function, but using the old modifier. A measure defined as a
result cannot be used on the right-hand side without old.

The function generates n positional results, where n is the number of "child expressions."
The results will sum to the <totalexpression>, using the "shapes" of the child expressions
in the order of the child expressions.

 Appendix: Rules Function Reference Guide 353

The number of results must be equal to the number of child expressions, which means
that there should be one more argument on the right-hand side than output measures on
the left-hand side. Additional child expressions are ignored. If too few child expressions
are defined, the function will fail. Currently, there is no validation to warn when this
condition occurs.

If the sum of the child expressions is zero, the spread will be even.

Inverse

The propspread function does not have an inverse.

Example:

The old modifier can be used in conjunction with the propspread function to implement a
hierarchical relationship among measures. In the following example, Total sales
(TotalSls) is the “parent” measure and regular sales (RegSls), promotional sales
(PromSls), and markdown sales (MkdSales) are the “child” measures. Using old and
propspread to configure this relationship allows the manipulation of any combination of
these measures before calculating, except for all of them.

In the following example and in other such hierarchical measure relationships, the order
of the expressions within a rule is critical for the measures to be correctly calculated.
TotalSls = RegSls + PromoSls + MkdSls
RegSls, PromoSls, MkdSls = propspread(TotalSls, RegSls.old, PromoSls.old,
MkdSls.old)
PromoSls, MkdSls = propspread(TotalSls - RegSls, PromoSls.old, MkdSls.old)
RegSls, MkdSls = propspread(TotalSls - PromoSls, RegSls.old, MkdSls.old)
RegSls, PromoSls = propspread(TotalSls - MkdSls, RegSls.old, PromoSls.old)
RegSls = TotalSls - PromoSls - MkdSls
PromoSls = TotalSls - RegSls - MkdSls
MkdSls = TotalSls - RegSls - PromoSls

passthrough
passthrough is a multiple result function that is used to encapsulate any number of
normal computations into a single expression.

Note: The passthrough function is not allowed for measures
with a recalc agg type.

Syntax
passthrough(<exp1>, <exp2>, …, <exp-n>)
Where <exp1> - <exp-n> are normal expressions used to calculate the resulting measures.

All measures on the left hand side must be computed at the same base intersection. The
number of results must be less than or equal to the number of calculation expressions
(additional calculation expressions are ignored). If too few calculation expressions are
defined then function will fail. Currently, there is no validation to warn an individual
when this condition is met.

There are two main reasons for using this function:
1. Use passthrough in an expression for a rule when computing values for multiple

measures without having to write (develop) a multiple-result function or procedure.

2. To improve performance. If many measures are computed using the same or similar
set of RHS measures, combining those calculations using passthrough may be faster
because there is less physical input/output with the data.

Inverse

The passthrough function does not have an inverse.

354 Oracle Retail Predictive Application Server

Examples:

 A, B = passthrough(C + D, C - D)

 Computes the sum and difference of two measures simultaneously.

 SalesA, SalesB =passthrough(SalesA.old * TempMeas / TotalSales.old, SalesB.old *
TempMeas / TotalSales.old)

 Proportionately spread TotalSales down to its components, SalesA and SalesB.

rankagg
This procedure is to use a numeric ranking to assign a value. When used in conjunction
with the recalc aggregation type, rankagg will return the value associated with the
highest/lowest rank cell as the aggregate value.

Syntax

The special expression is of the form “D <- rankagg(R, B [, S])”, where

On the left hand side,

 D is a string type measure, with aggregation type recalc.

On the right hand side,

 R is a numeric measure that contains rank information for each cell in the base
intersection of S (if S is available), or each cell in the base intersection of D (if S is not
available). This ranking can be generated as a result of calculation or can be loaded at
workbook build time.

 B is a Boolean value (or a scalar Boolean measure). If B is TRUE, the procedure will
select the highest rank value, otherwise, the lowest rank value.

 S is a source measure, which is optional. The rankagg procedure will assign the
values of S to the LHS measure D, when evaluated at the base intersection of D.
When evaluated at the aggregated intersection, S will provide the value returned by
the procedure. When S is not provided, D will be used as both source and
destination. At this time, the rankagg procedure will have no effect when evaluated
at the base intersection of D. When evaluated at the aggregate level, the procedure
will populate the aggregate array from base intersection of D based on the value of R,
and then pass the value.

Example:

Here is an example for the usage of rankagg procedure, D<-rankagg(R, B, S).
SKU-A, SKU-B, and SKU-C, are positions in a hierarchy that aggregate to SCLS-1.

In the procedure, the measure R is a numeric-valued measure. This is the measure from
which the rankagg procedure will identify the maximum or minimum value, based on
the Boolean measure B. A value of TRUE instructs the procedure to select the maximum
value; FALSE corresponds to the minimum value. In the worksheet, R corresponds to
the “Sales value” measure. For the purposes of this example, “Sales value” has an agg
type of “max”, just to show what’s going on at the SCLS-1 level.

The measure S represents a measure from which the procedure will draw the values that
will eventually feed into the “Cell value” measure on the worksheet. The “Cell value”
measure would be the expression’s D (for display) measure. S (for source) in this
example is a hidden measure. S contains values that could be specified by some
calculation. The values in S could be, for example, strings that represent images, though
they need not be so.

By evaluating the procedure, at the lowest (SKU/week) level, the rankagg procedure will
just copy over the values of S to D. At higher levels, say SCLS-1/week, the rankagg
procedure will select a representative value for the “Cell value” measure (S) that is equal

 Appendix: Rules Function Reference Guide 355

to the SKU-level value where the corresponding “Sales value” measure (R) has its max
(from B) value over the SKU positions.

Note:. In cases where there are more than one cell in the rank
measure with the highest (or lowest, if lowest rank is
specified) value, RPAS will select one of the tied cells to be
the highest (or lowest) ranked position

In cases where the source data need not be calculated by an
expression, then the rankagg procedure will also support a
variant syntax. That is, the rule writer could specify simply
D <- rankagg(R, B). In this case, D will be the source (at the
base level) and the target (at the aggregate level).

ranksort
The ranksort procedure returns the rank of intersections given the rank order (ascending
or descending), the measure to rank upon and the dimensions to rank over.

Syntax
<output> <- ranksort(<input>,<rank order> [,<dimspec1>, …, <dimspecn>])
<output> is the measure that will contain the ranking results. The result of ranking will
always be an integer value, so the data type of <output> must be integer or numeric.
<input> is the measure to be ranked.

<rank order> is {ascending | descending}. ascending is a keyword meaning that the
intersection will be ranked in ascending value of the <input> measure, and descending is
a keyword meaning that the intersection will be ranked in descending value of the
<input> measure. All keywords which need to be passed to a function must be wrapped
in double quotes (" "). Any other syntax will throw an error.
<dimspec1-n> is [<hierarchy>].{[<dimension>] | top} <dimspec1-n> specifies the
dimensions to rank over. For each <dimspec> that is specified, the <hierarchy> must be the
name of a valid hierarchy and the <dimension> must be the name of a valid dimension in
that hierarchy. top is a keyword that refers to the highest dimension ("all") in the
hierarchy. <dimspec1-n> is optional, and if omitted the value for each hierarchy in the
base intersection of <output> will be [hierarchy].top. A <dimspec> for a hierarchy that is
not in the base intersection of <output>, or that references a dimension that is not higher
than (a parent/grandparent etc. of) the dimension in that hierarchy in the base
intersection of <output>, or which references a hierarchy that already has a <dimspec>, is
an error.

The base intersection of <output> determines the intersections that will be ranked. If the
base intersection of <input> is different to that of <output>, as will usually be the case,
then the values of <input> used for ranking will be the values at the intersections implied
by the base intersection of <output> obtained by normal non-conforming measure
handling, with replication from higher dimensions and/or aggregation from lower
dimensions.

The scope of the ranking is dictated by <dimspec1-n>. These will usually be implied rather
than explicitly specified, and be at the top of the hierarchy. However, when a dimension
is specified, there will be a separate ranking for each position (or combination of
positions where a dimension is specified in two or more hierarchies) in that dimension.
Thus, for example, when evaluating a measure calculated from the ranksort procedure
that has a base intersection of sku/week, where the <dimspecs> reference the dimensions
class and season, in a workbook with 4 classes and 2 seasons, there will be eight sets of

356 Oracle Retail Predictive Application Server

ranks, one per class/season, and the value for each sku/week intersection will be the
order of that sku/week within its class/season.

The ranking process sorts the intersections in ascending or descending value of <input>,
as required, and the ranking number is the order that each position is after sorting. The
intersection with the highest value of <input> (lowest when ranking ascending) will have
a rank of 1, with subsequent intersections having a rank higher by one. Where two or
more intersections have the same value of <input>, they will be given the same rank, but
the next rank value will account for the number of intersections with identical rankings.
Thus for example, the first few rankings might be 1, 2, 3, 3, 5, 6, …

Note: ranksort is a procedure and thus cannot be combined
with functions, modifiers, or other procedures in any
manner. As a procedure, it requires a different syntax: “<-“
instead of “=” when being assigned.

The level modifier cannot be used on the LHS of an
expression that uses the ranksort procedure. That is, the
level at which the ranking is executed will always be
determined by the base intersection of <output>.

The ranksort procedure must, by its nature, calculate a rank
value for every intersection within a scope, not just those
that have changed values for measures on the right-hand
side of the expression. In incremental calculation mode (for
example, when planning online) this may cause longer than
expected calculation times, especially when the measure
calculated through the ranksort procedure is used on the
right-hand side of other expressions, as those expressions,
plus any "knock-on" effects will also have to be calculated
for every intersection within the scope.

Examples:
 Rank <- ranksort(WpSlsR, "descending")

– If Rank has a base intersection of sku, the result of this procedure is the integer
value representing where each SKU’s Sales value ranks amongst all SKUs. The
SKU with the highest WpSlsR value will have a rank of 1.

 Rank <- ranksort(WpSlsU, "descending", [prod].[clss])

– If Rank has a base intersection of sku, the result of this procedure is the integer
value representing where each SKU’s Sales units ranks amongst all SKUs within
its class. The SKU with the highest WpSlsU value in each class will have a rank of
1, and there will be several SKUs with a rank of 1, one per class.

 Rank <- ranksort(WpSlsR, "descending", [prod].[clss])

– If Rank has a base intersection of sku/week, the result of this procedure is the
integer value representing where each SKU/Week’s Sales value ranks amongst
all SKU/weeks within its class for the whole time horizon. The SKU/week with
the highest WpSlsR value in each class will have a rank of 1, and there will be
several SKU/weeks with a rank of 1, one per class.

• Rank <- ranksort(WpSlsR, "descending", [prod].[clss], [clnd].[seas])

– If Rank has a base intersection of sku/week, the result of this procedure is the
integer value representing where each SKU/Week’s Sales value ranks amongst
all SKU/weeks within its class/season. The SKU/week with the highest WpSlsR

 Appendix: Rules Function Reference Guide 357

value in each class/season will have a rank of 1, and there will be several
SKU/weeks with a rank of 1, one per class/season.

positionLocked
Position locking allows a user to lock one or more positions at any level of a hierarchy in
a workbook. Once locked, the values of cells corresponding to locked positions cannot
change as a result of incremental evaluation, i.e., calculations resulting from user edits in
the workbook. However, those values can change as a result of full evaluation resulting
from either a full transition to the Calc rule after a refresh, a custom menu execution, or
from the execution of an expression that cannot be evaluated incrementally; for example,
lhsmeasure = 25. None of the RPAS procedures, such as lookup or flookup, honor position
locking.

The positionLocked function has been provided to help solution designers honor
position locking during full evaluation. However, since usage of functions cannot be
combined with the evaluation of special expressions (procedures), this provision does not
help designers in honoring position locking when special expressions (procedures) are
used. Position locking is not supported for special expressions. Position locking is also
not supported or honored in scripts, whether they appear in batch or as part of a custom
menu.

The positionLocked function is evaluated at the level at which calculation is being
performed. It returns a FALSE if none of the positions for the current cell’s dimensions
are locked and returns TRUE otherwise. Since position locking is only available in a
workbook and can only be used after a workbook has been built, the function always
returns a FALSE when evaluated in a domain, used in the load rule group, or used in a
workbook. When used in a domain, the function will log a warning in the RPAS logs, but
will not fail evaluation. The function will work as expected when used in refresh, calc
and commit rule groups. It will also work as expected in custom menu rule groups that
operate on the workbook.

The positionLocked function does not provide for hierarchical protection processing.
Refer to the following examples for a better understanding of this behavior.

Syntax
positionLocked()
The function does not take any arguments and returns a Boolean value. The function can
be used by itself on the RHS.

Inverse

The function does not have an inverse.

Examples:

 Output = positionLocked()

– Populates the Output measure with values that tell whether a cell is locked as a
result of position locking along any of the dimensions in the base intersection of
the measure.

 Output = !positionLocked()

– Populates the Output measure with values that tell whether a cell is not locked as
a result of position locking along any of the dimensions in the base intersection
of the measure.

 Output.level([PROD].[clss]) = positionLocked()

– Populates the Output measure (default spread type: repl) with values that tell
whether a cell is locked as a result of position locking along any of the
dimensions, except those belonging to the PROD hierarchy, in the base

358 Oracle Retail Predictive Application Server

intersection of the measure. For the PROD hierarchy, the check is done at the clss
dimension and the results would be spread down to the base intersection of the
Output measure. Therefore, at the base intersection level, the cell value will be
TRUE if all child positions of the cell’s clss are position locked, and FALSE if any
of them are unlocked irrespective of whether the position itself is locked or not;
i.e., the positionLocked function does not provide for hierarchical protection
processing.

 Price = if (positionLocked(), ignore, Price.master)

– When used in a load rule group, this expression behaves the same as “Price =
Price.master” because positionLocked() always returns FALSE. When used in a
refresh rule group, the LHS is not updated for positions that are locked.

 Price.level([PROD].[clss]) = if (positionLocked(), ignore, Price.master)

– When used in a load rule group, this expression behaves the same as
“Price.level([PROD].[clss]) = Price.master” because positionLocked() always
returns FALSE. When used in a refresh rule group, the LHS is not updated for
clss level positions that are locked, i.e., all their children are locked. However, if
any of the children is unlocked, and hence the clss level position is unlocked, the
result of the spread after the expression evaluation will alter the child position’s
value, even if the child position was locked, i.e., positionLocked function does
not provide for hierarchical protection processing.

randMask
Used to create a randomly populated mask measure. In contrast to rand, the return type
is always Boolean. Also in contrast to rand, it is a procedure rather than a function.

Syntax
boolMeas <- randMask(density:<density>, seed:<seed>)
Labels are required with all parameters since randMask can be called without any input
parameters. A description of each of the optional parameters is provided below:

– Density is the percentage of cells in the LHS measure that need to be filled with
randomly determined true or false values. The cells that are set with random
values depends on the iterator order but randMask will try to space out the
values evenly so they are not concentrated in any particular area in the dimspace.
Density is an optional parameter and can be either a real or integer constant or
scalar measure. Default value of density is 5, corresponding to 5% of the total
cells being set.

– Seed is an optional input into the random generation algorithm. Seed can be
either an int or a real number. The same seed will produce the same set of
random values. Note that this is the behavior of random number generator
algorithms in general and not specific to RPAS. The seed argument may be more
applicable in the testing/verification process where the same test random data
can be generated multiple times using the same seed. When using the seed
argument, the value needs to be preceded by the “seed:” label. The use cases
have an example of proper usage.

– Because both arguments are either literals or scalar measures, incremental mode
evaluation of randMask is exactly the same as full mode

Examples:

 boolMeas <- randMask()

 Appendix: Rules Function Reference Guide 359

– Set a LHS measure of type Boolean with random Boolean values. Since density is
not provided, a 5% (default density) of the LHS measures cells will be set with
random values.

 boolMeas <- randMask() (density:12.2, seed:1729)

– Set approximately 12.2% of the cells in the LHS measure to random Boolean
values and use 1729 as the seeded to the random generator algorithm.

Appendix: Aggregation and Spread Types 361

D
Appendix: Aggregation and Spread Types

Aggregation Types
The following table describes the supported aggregation types.

Aggregation
Type

Description Valid
Data
Types

Recommended
Spread Types

Aggregate
over Partition
Dim

recalc The measure is not aggregated, but is
recalculated at all aggregated levels
through a recalc expression. The
passthrough function is not
supported with this agg type.

numeric,
string,
date,
Boolean

none Yes

ambig The measure is aggregated by
considering the values of all child
cells. If all child cells have the same
value, the aggregated value is the
same as the child cells. Otherwise, it
is ambig.

numeric,
string,
date,
Boolean

none No

ambig_pop The measure is aggregated by
considering the values of all
populated child cells. If all populated
child cells have the same value, the
aggregated value is the same as the
child cells. Otherwise, it is ambig.

numeric,
string,
date,
Boolean

none No

popcount The measure is aggregated by
counting the number of child cells
that are populated (meaning that they
have a value different from the NA
value for the measure).

numeric,
string

none No

mode Picks the most frequently occurring
cell value from the base intersection
to represent the cell value of the
aggregate dimension

string repl No

mode_pop Very similar to the mode agg type,
except that it will skip all NA values
on the base intersection

string repl No

hybrid The measure is aggregated using a
specific aggregation type for each
hierarchy. This is selected from the
valid aggregation types for the
measure type.

numeric,
string,
date,
Boolean

none No

total The measure is aggregated by taking
the total (numeric sum) of the values
of all child cells at the base
intersection.

numeric prop Yes

362 Oracle Retail Predictive Application Server

Aggregation
Type

Description Valid
Data
Types

Recommended
Spread Types

Aggregate
over Partition
Dim

total_pop The measure is aggregated by taking
the total (numeric sum) of the values
of all populated child cells at the base
intersection.

numeric prop_pop Yes

average The measure is aggregated by taking
the numeric average of the values of
all child cells at the base intersection.

numeric prop No

average_pop The measure is aggregated by taking
the numeric average of the values of
all populated child cells at the base
intersection.

numeric prop_pop No

max The measure is aggregated by taking
the maximum of the values of all
child cells at the base intersection.

numeric,
date

repl Yes

max_pop The measure is aggregated by taking
the maximum of the values of all
populated child cells at the base
intersection.

numeric,
date

repl_pop Yes

min The measure is aggregated by taking
the minimum of the values of all
child cells at the base intersection.

Note: For most purposes, the
min_pop aggregation type is
appropriate because the minimum
value of all child values is typically
the NA value, which is usually zero.

numeric,
date

repl Yes

min_pop The measure is aggregated by taking
the minimum of the values of all
populated child cells at the base
intersection.

numeric,
date

repl_pop

Yes

pst The measure is aggregated by
selecting the first value along the
innermost hierarchy and by taking
the total of all child values along all
others.

Note: "First" only has a meaning in
the calendar hierarchy. Therefore,
this agg type must only be used for
measures whose innermost hierarchy
is the calendar hierarchy.

numeric ps Yes

 Appendix: Aggregation and Spread Types 363

Aggregation
Type

Description Valid
Data
Types

Recommended
Spread Types

Aggregate
over Partition
Dim

pet The measure is aggregated by
selecting the last value along the
innermost hierarchy and by taking
the total of all child values along all
others.

Note: "Last" only has a meaning in
the calendar hierarchy. Therefore,
this agg type must only be used for
measures whose innermost hierarchy
is the calendar hierarchy.

numeric pe Yes

median The measure is aggregated as the
median value (the middle value
when sorted from lowest to highest)
of the values of all child cells.

numeric repl No

median_pop The measure is aggregated as the
median value (the middle value
when sorted from lowest to highest)
of the values of all populated child
cells.

numeric repl_pop No

and The measure is aggregated by
performing a Boolean And operation
on the values of all child cells.

Boolean repl Yes

or The measure is aggregated by
performing a Boolean Or operation
on the values of all child cells.

Boolean repl yes

Note: Not all aggregation types are supported when
calculating aggregated results across multiple local domains.
Some, but not all, aggregation methods can be computed
locally and then can be re-aggregated to yield an accurate
globally-aggregated result. This depends on the type of
calculation performed. For performance reasons,
aggregations are computed independently for each local
domain. As a result, some aggregation methods are not
supported when attempting to aggregate from local domains
to the global domain. Whether or not this is possible for a
particular aggregation type is noted in the column
“Aggregate over Partition Dim”.

Spread Types
The following table describes the supported spread types.

Spread Type Description Valid Data Types

none Values are not spread numeric, string, date,
Boolean

364 Oracle Retail Predictive Application Server

repl Replicate the value to each cell numeric, string, date,
Boolean

repl_pop Replicate the value to each populated cell numeric, string, date,
Boolean

prop Spread value proportionally (previous total non-
zero) or evenly (previous total zero)

numeric

prop_pop Spread value proportionally (previous total non-
zero) or evenly (previous total zero) to all
populated cells

numeric

even Spread value evenly numeric

delta Increment/decrement each cell evenly.
Effectively the "even" spreading of the change
("delta").

numeric

ps Apply delta to starting period numeric

pe Apply delta to ending period numeric

Arithmetic Operators
This section provides information about the arithmetic operators supported in
Configuration Tools.

Unary Operators
The following unary arithmetic operators are supported:

Symbol Type Function

- real Negation

! Boolean Compliment

Binary Operators
The following binary arithmetic operators are supported:

Symbol Type Function

= real, Boolean, string,
date

Assignment

+ real Addition

- real Subtraction

* real Multiplication

/ real Division

&& Boolean Boolean and

|| Boolean Boolean or

== real, Boolean, string,
date

Equality

Note: When used to compare two strings, this operator
performs a case-insensitive compare.

 Appendix: Aggregation and Spread Types 365

!= real, Boolean, string,
date

Inequality

< real, Boolean, string,
date

Less than

<= real, Boolean, string,
date

Less than or equal to

> real, Boolean, string,
date

Greater than

>= real, Boolean, string,
date

Greater than or equal to

Appendix: Configuration of RPAS Extensions 367

E
Appendix: Configuration of RPAS

Extensions
Configuration of RPAS Extensions

This section provides information about the configuration of the Fusion Client that is
needed in order to complete the integration of RPAS extensions with the Fusion Client.
For more information about the RPAS extension framework read the relevant sections of
the Fusion Client installation guide. Here we provide a brief summary of this feature.

About the RPAS Solutions Extension Framework
The RPAS Extension Framework refers to the process of incorporating “small” external
applications within the user interface of the Fusion Client. We term such applications as
“RPAS extensions” or “plug-ins”. They are external in the sense that they present a UI to
interact with external systems that are not RPAS domains and workbooks. For example,
in the current Fusion Client release a plug-in called “PO View” is available. It displays
purchase order data from an RMS database for items selected in an RPAS worksheet.

Plug-ins are distributed as a bundle, which is a collection of one or more related plug-ins,
sharing a common install process.

At a high level plug-ins are integrated with the Fusion Client by performing the
following steps.

 The plug-in bundle’s installer is run. It installs a shared library in the Weblogic
Server.

 The Fusion Client’s installer is re-run. This creates a reference to the above-
mentioned shared library within the Fusion Client.

 The activity/task flow configuration file is modified in a fashion suitable for
displaying the plug-in’s UI within the Fusion Client UI.

There are three styles in which a plug-in can be displayed:
 Launched from navigation tree: The user clicks a new kind of link in the navigation

tree on the left. This launches the corresponding plug-in’s UI in the content area on
the right. We term such links module links to distinguish them from the tree
elements corresponding to RPAS tasks and steps. This launch style is appropriate
when the plug-in function is a step in the overall business workflow represented by
the tasks and steps in the navigation tree. An example here is the set of Space
Optimization plug-ins that go with the Category Management application and
augment its workflow.

 Home Page: In the content area of the home page. No clicking of links is necessary.
The plug-in UI is displayed right away upon login, or upon clicking the Home link
while in an open workbook. This launch style is appropriate when the plug-in is
intended to provide a snapshot view of the issues needing the user’s attention after
logging into the application. An example here is the Dashboard plug-in that is
distributed with the AIP application.

 Context Menu: The user clicks a link corresponding to a plug-in in the context menu
available on the body of a RPAS worksheet. This launches the plug-in in a separate
panel that appears and behaves similarly to the usual RPAS worksheet panels. This

368 Oracle Retail Predictive Application Server

launch style is appropriate when the plug-in function pertains to the positions
selected in the RPAS worksheet. For example the PO View plug-in shows the
purchase orders pertaining to the products and locations selected on an RPAS
worksheet.

In the following sections we describe the configuration that is needed to enable the
display of a plug-in in one style or the other.

Note: For the purpose of configuration, plug-ins are known as
“modules”.

In the configuration process the bundle name and the plug-in name need to be specified.
 As described in the installation guide, the bundle name is found in the name of the
bundle manifest file. The manifest file, it may be recalled, is named as <bundlename>-
bundle-manifest.xml. For example, the aip bundle (part of the AIP application
distribution) has its manifest file named as aip-bundle-manifest.xml.

The module name refers to the name of a plug-in in the bundle. A bundle has one or
more plug-ins. The plug-ins are described in the bundle manifest file. Each plug-in has a
<module> entry. The value of the name sub-element of <module> is the module name.

For example, the AIP Dashboard plug-in bundle’s manifest file, named “aip-bundle-
manifest.xml”: has the following XML content:

 <modules>

 <module>

 <name>aipdashboard</name>

 <description>AIP Dashboard</description>

The name of the manifest tells us the name of the plug-in bundle, namely “aip”. The
“name” sub-element under the “module” element above, gives us the plug-in name,
namely “aipdashboard”.

Launch from Navigation Tree
There are two types of links that can be created in the navigation tree: module tasks and
module steps. Module tasks are links created at the same level as RPAS tasks. Unlike
RPAS tasks, module tasks do not have child entries. Rather, they are links that can be
clicked to launch the associated plug-in in the content area on the right.

Module steps are links created within an RPAS task. They are peers of the regular RPAS
steps that are children of the RPAS task.

The choice of whether a plug-in is to be configured as a module step or task could hinge
on at which stage one wants the plug-in function to be executed, regarding the
navigation tree as a sequencing of processes and sub-processes as read from top to
bottom.

Module Tasks
Like RPAS tasks, module tasks are configured in the file TaskFlow_MultiSolution.xml. The
structure of the entry is as follows.
 <module_task>
 <name>SpaceOpt.VPOG.name</name>
<description>SpaceOpt.VPOG.desc</description
<solution>CatMan</solution> <!-- solution is optional -->
 <module>vpog</module>
 <module_bundle>so</module_bundle>
 <order_num>1</order_num>
 </module_task>

 Appendix: Configuration of RPAS Extensions 369

This element is to be inserted within an activity element, as a peer of RPAS tasks.

The following table describes the fields of the entry:

Field Description

name The key of a string resource defined in
MultiSolutionBundle.properties. E.g.
“SpaceOpt.VPOG.name=Planogram”. This appears
as the text of the module task in the navigation tree.

description The key of a string resource defined in
MultiSolutionBundle.properties. E.g.
“SpaceOpt.VPOG.desc=View Planogram”. This
appears as a popup when the user hovers over the
link.

solution Optional field. If specified, the link will not appear if
for some reason the SpaceOpt set of plug-ins is
plugged into a different RPAS solution than
Category Management. The only reason to use this
field is to prevent inadvertent use of a plug-in in the
wrong context.

module The name of the plug-in. (e.g. “pogmap”)

module_bundle The name of the bundle containing the plug-in. (e.g.
“so”)

order_num The position of the task in the sequence of tasks (of
both kinds) under the parent activity in the
navigation tree.

Module Steps
Like module tasks, module steps are configured in TaskFlow_MultiSolution.xml. The
structure of the entry is as follows.
 <module_step>
 <name> SpaceOpt.POGMap.name</name>
 <module>pogmap</module>
 <module_bundle>so</module_bundle>
 <order_num>1</order_num>
 </module_step>

The element should be placed inside an RPAS task entry, as a peer element of its child
RPAS steps.

The following table describes the fields of a module step entry.

Field Description

name The key of a string resource defined in
MultiSolutionBundle.properties. E.g.
“SpaceOpt.POGMap.name=Product to Planogram
Mapping”. This appears as the text of the module step in
the navigation tree.

module Name of the plug-in (e.g. “vpog”)

module_bundle Name of the bundle containing the plug-in (e.g. “so”)

order_num Position of the module step in the sequence of steps (of
both kinds) under the parent RPAS task.

370 Oracle Retail Predictive Application Server

Launch on Home Page
When a functional module is displayed as an alternative home page in the fusion client it
is not declared in the Taskflow_Multisolution.xml, but is instead identified in
config.properties, as follows:

homepage.module=<bundle-name>|<plug-in-name>

This earmarks the referenced module as the one to launch on the Fusion Client home
page upon login.

If the property is left undefined, then there is no functional module to launch.

The following figure illustrates a plug-in launched on the home page:

Plug In Example - Home Page

Launch In-Context of a Worksheet
In-context launch is also configured as an XML element in the task flow configuration
file, namely Taskflow_MultiSolution.xml. The element specifies the plug-in to be
launched. Where the element is inserted determines which worksheet’s context menu
makes the plug-in available for launch.
The structure of the task flow configuration file can be described briefly as follows: it is a
set of activities. Each activity has a set of tasks. A task has a set of steps; a step has a set of
worksheets.

The in-context launch entry can be created as a sub-element of a task, step or worksheet.
The implication of each insertion point is described in the following table.

Insertion Point Effect

Task The plug-in is available on every worksheet of
every step under the task

Step The plug-in is available in every worksheet under
the step

Worksheet The plug-in is available on that worksheet

We term this mechanism as in-context plug-in inheritance. The intention is provide
configuration convenience, by allowing a one-place definition of an in-context plug-in for
a whole set of worksheets based on a common parent step or task.

 Appendix: Configuration of RPAS Extensions 371

In-Context launch entry
This is the structure of the XML element:
 <incontext_modules>
 <module name="poview" bundle="poview" label="poview.label"

resource_bundle="oracle.rgbu.ard.util.i18n.SolutionResourceBundle"/>
 <module reportName="billablerpt" name="obiee" bundle="obiee"
label="billablerpt.label"
 resource_bundle="oracle.rgbu.ard.util.i18n.SolutionResourceBundle"/>
 </incontext_modules>

The following table describes the fields of the element:

Field Description

name Name of the plug-in

reportName For plug-ins supporting the generation of reports, this
parameter identifies the report name as it appears in
the reportConfig.xml

bundle Name of the bundle containing the plug-in

label Key of the string resource that must be defined in
MultiSolutionBundle.properties. For example it could
be defined as “poview.label = Purchase Order View”.
This is the label that identifies the plug-in in the
context menu.

resource_bundle The base name of the resource bundle file. Use the
value as given in the above example if the label
resource is defined in MultiSolutionBundle.properties.

An alternative location for placing the label resource
is a resource bundle file shipped with the plug-ins. If
you wish to use this location, please refer to the
corresponding installation guide for ascertaining the
location of the file and the “base name” to use to refer
to it.

The following figure illustrates the launch of the “PO View” plug-in in the context of an MFP
worksheet:

 Plug In Example - Home Page

Appendix: RPAS Configuration Manager and rpasConfigMgr 373

F
Appendix: RPAS Configuration Manager and

rpasConfigMgr
Using the rpasConfigMgr

Many RPAS users customize their configurations of RPAS and RPAS applications in
order to be more aligned with their business needs. When those users want to upgrade to
a new RPAS or RPAS application release, they can use the RPAS Configuration Manager
or the rpasConfigMgr utility to replicate their customizations on the new base release
with as little manual configuration as possible. By using these tools to upgrade to a new
release, users can take advantage of the new features of that release while maintaining
their customized configuration.

rpasConfigMgr Process
The rpasConfigMgr utility consists of two processes: diff and merge. Diffing is the
identification of modifications between two versions of a configuration. Merging is the
reconciliation between a base version and two modified versions of a configuration.
These processes are shown at a high level in the figure below.

The Diff and Merge Processes

When a user has modified the base release (base) to create a customized configuration
(modified), that user can use the rpasConfigMgr process to upgrade to the next base

374 Oracle Retail Predictive Application Server

release (target) and then apply their configuration to create a customized configuration of
the new release (output).

To do this, the user first runs the diff process which finds the customized aspects of the
modified version by identifying the differences between the base and modified version.
The output of the diff process is a change log file which records the differences between
the base and the modified versions.

Then, the user runs the merge process which automatically applies the customized
configuration to the target version if possible. If an aspect of the customized
configuration cannot be applied to the target version, it is recorded in the conflict log file.
The output of the merge process is the reconciled version of the configuration, a change
log, and a conflict log.

Alternatively, the user can run a diffAndMerge process that combines the two processes
and performs them together. The result of that process is a reconciled version of the
configuration, a change log, and a conflict log.

These three processes, diff, merge, and diffAndMerge, are explained in greater detail on
the next pages.

Diff Process
The diff process analyzes two different versions of a configuration in order to determine
the differences in the configuration between them. Examples of such differences could be
property changes, altered parent/child relationships, or reordered information of
elements that obey strict ordering. These differences are recorded in a change log file.

Diff Process

The change log is an XML file that contains two distinct classes of elements: scope
elements and operations elements.

Scope elements contain the structural information of the RPAS domain configured
content. Scope elements by nature do not encode any information about modifications;
they only provide information about the area of the configuration in which any given
modification occurs.

Since the structural information can be very large and complex, the change log can
contain numerous nested scope elements. These elements have an overall structure that
mirrors the directory structure used within a configuration. The top level of the scope
represents the entire domain. This level contains sub-scopes that represent the changes

 Appendix: RPAS Configuration Manager and rpasConfigMgr 375

that directly affect hierarchies, styles, and data interface entries. Other sub-scopes
represent the solutions in the domain. Solution scopes contain within them sub-scopes
that represent changes that affect measures, rules, workbooks, and wizards.

To reduce the overall size and complexity of the structural information, unnecessary
scope elements are removed from the change log. Unnecessary scope elements are those
that contain only other scope nodes within its sub-tree. These elements usually occur
when an aspect of a configuration has not changed between versions. For example, a
change log that is generated for a configuration that has modifications made only to
workbook measure labels would not contain any meaningful change information about
hierarchies since no changes to the hierarchy information were made. Therefore, there is
no need for scope elements relating to hierarchy and dimension structure to be included
in the change log. For this reason, the hierarchy scope elements are removed in order to
reduce the size of the change log.

Operation elements, also called change elements, are the other class of element in the
change log. Within the structure created by the scope elements are the modifications
made to the content of the domain. The operation elements describe the nature of the
change so that the corresponding modification can be made in the merging process.

There are several operations that can be performed during the configuration process.
Each of these requires its own operation tag. The operations are described below.

 Element removal: an operation that removes a piece of configured content from its
parent container. This operation requires no additional information.

 Element addition: An operation that inserts an additional piece of configured content
to a parent container. This operation requires specification of any attributes of the
new content. If the new element obeys a strict ordering (such as a position of a new
rule within a rule group), then information about the position of the new element is
required as well.

 Element attribute modification: an operation that modifies one or more attributes of a
piece of configured content. This operation requires information that identifies which
attribute was modified and its new value.

 Element reordering: an operation that specifies a change in the order of a piece of
configured content that has a meaningful order (such as the order of a rule within a
rule group). This operation requires information about the new order of the element.

Each of the operation elements described above must provide enough information in
order for the configuration merging process to recreate the modification within the target
configuration. The total collection of the operation elements of a change log should
provide enough information to completely capture all changes made to the input
configuration.

Merge Process
The merge process automatically applies the modifications that were identified in the
change log to a target configuration. The merge process uses the change log and the
target configuration to create the output configuration and a conflict log, as shown in the
diagram below.

376 Oracle Retail Predictive Application Server

Merge Process

The merge process attempts to recreate each operation represented in the change log. In
cases where the modification can be correctly applied, the merge process performs the
modification on the target configuration. However, if the differences between the base
and target configurations make the operation impossible to perform, then the
modification is not applied to the target configuration. In those cases, the operation is
documented in the conflict log.
The conflict log is an XML file that contains the same scope structure as the change log.
The conflict log also contains conflict nodes that describe the operations that could not be
performed automatically. This information is provided so that you can manually
configure them after the merge process.

diffAndMerge Process
The diffAndMerge process is the combination of the diff and merge processes. Use the
diffAndMerge process if you do not want to review the change log before continuing to
the merge process. The diffAndMerge process loads the three versions of a configuration
(the base, the modified, and the target versions), performs the diff command on the base
and modified versions, and then immediately applies the detected changes to the target.
The output of the diffAndMerge process is the reconciled version of the configuration, a
change log, and a conflict log, as shown in the diagram below.

 Appendix: RPAS Configuration Manager and rpasConfigMgr 377

diffAndMerge Process

For more information about the diff and merge steps of the diffAndMerge process, see
the Diff Process and Merge Process pages.

rpasConfigMgr Usage
The rpasConfigMgr utility supports three commands:

 –diff : The –diff command loads two versions of a configuration and produces a
change log that describes all of the changes in the modified version of the
configuration.

 –merge: The –merge command loads and parses a change log and attempts to apply
the changes described within it to a configuration that you specify. It then outputs a
modified version of the configuration and a conflict log to the specified location.

 –diffAndMerge: The –diffAndMerge command loads three versions of a configuration
(the base, the modified, and the target versions), performs the diff command on the
base and modified versions, and then immediately applies the detected changes to
the target. The output of the diffAndMerge process is the reconciled version of the
configuration, a change log, and a conflict log. These are output to the location you
specify.

378 Oracle Retail Predictive Application Server

Below are examples of rpasConfigMgr commands. In these commands,
[baseConfigPath], [modifiedConfigPath], and [targetConfigPath] are paths to the root
document of the base, modified, and target versions of a configuration, respectively.
[outputDirectory] is the location you specify for the outputs of the commands, and
[changeReportPath] is the path to the location of the change log used in the –merge
command.

rpasConfigMgr –diff –base [baseConfigPath]–mod [modifiedConfigPath]–output
[outputDirectory]
rpasConfigMgr –merge –target [targetConfigPath] –change [changeReportPath] –
output [outputDirectory]
rpasConfigMgr –diffAndMerge –base [baseConfigPath]–mod [modifiedConfigPath]–
target [targetConfigPath] –output [outputDirectory]

RPAS Configuration Manager
The RPAS Configuration Manager extends the rpasConfigMgr utility to provide a more
powerful and flexible tool to manage differences between different versions of a
configuration. This is accomplished through two operations:

 Creating a detailed Change Report which describes the differences between two
versions of a configuration.

 Creating different modified versions of a configuration in reference to a base version
of the configuration.

RPAS Configuration Manager uses the same diff and merge functionality that
rpasConfigMgr uses, but expands on that functionality in order to provide the user with
more information about and control over the merge process.

 RPAS Configuration Manager gives users the ability to interact with the process,
enabling the user to select from a subset of all of the potential changes which diffs to
apply to the upgrade.

 The rpasConfigMgr is sensitive to the changes in the base and the mod only. RPAS
Configuration Manager has two diffs:

 Between base and modified

 Between base and the update

A set of algorithms compares these two diffs and detects changes present in the two
modified configurations that could potentially create conflicts. RPAS Configuration
Manager then allows users to resolve these conflicts before attempting the merge
operation.

 Appendix: RPAS Configuration Manager and rpasConfigMgr 379

Change Report

When the user wants to determine the set of changes present between two versions of a
configuration, they select the Change Report activity from the main UI. After being
prompted to supply a base configuration and a modified configuration, the user is
presented with a description of the changes present between the two versions.

Field/UI Item Description
 Green dot: Content that was added

 Red dot: Content that was deleted from the configuration

 Blue dot: Content that has been moved in the context of something where ordering
matters (ordering of rules inside of a rule group matters).

 Black dot: Piece of content that has had some property of that content modified

 Attribute: Displays the name of the property that was changed

Note: Selecting a node/dot will make more info about that
change appear in the content area.

In addition to allowing the user to inspect the changes between two versions of a
configuration, the UI provides the ability to output information about the changes in the
form of a report. This report differs from the Change Log created as a part of the original
rpasConfigMgr functionality in that it is intended to describe the detected changes in a
readable format

The change report provides summary information about changes to the configuration as
well as separate summaries for the various functional areas of the configuration (for
example, Hierarchies, Measures). It also provides detailed information about individual
changes.

380 Oracle Retail Predictive Application Server

Merge Functionality
RPAS Configuration Manager also provides support for and expands the functionality of
the merge operation of the rpasConfigMgr. As with the diff operation, the user can
specify a new merge activity. The user is then prompted for a base version of the
configuration, as well as two modified versions of the configuration.

RPAS Configuration Manager performs the diff operation to compare each of the
modified configurations to the base configuration. This creates two distinct change lists.
These change lists are used as the inputs to the conflict reconciliation process. The
reconciliation process identifies conflicts between the changes in the two change lists and
the user’s directives for those changes to resolve conflicts that would prevent a successful
merge of changes to the configurations.

After the reconciliation process is complete, the utility merges the two distinct change
lists into a single, comprehensive list of changes. This merged change list is then applied
to the base configuration to generate a merged output configuration containing all
changes present in both modified configurations that have not been discarded by the
user as part of the reconciliation process. This merged configuration is then saved to a
location specified by the user along with a Change Report which contains changes from
the merged change list.

Conflict Resolution Functionality
The user specifies the base and two modified versions of the configuration. Oracle Retail
Predictive Application Server Configuration Manager performs a diff between the base
and each of the modified versions.

The user has the ability to examine each of the Change Log summaries. The user can
discard any changes they do not wish to merge before moving forward.

The user initiates an action to detect conflicts between the two sets of changes. In its most
basic form, this entails performing a series of basic merge operations from the
rpasConfigMgr and recording the resulting merges.

After conflicts (whether potential or actual) have been discovered, the utility presents the
conflicts in the UI. The user can examine the conflicts present between the two modified
versions of the configuration and begin resolving the conflicts.

Conflict Reconciliation

This screen shows information about the new set of algorithms, the ones that find the
differences between the two diffs. Oracle Retail Predictive Application Server

 Appendix: RPAS Configuration Manager and rpasConfigMgr 381

Configuration Manager takes the two sets of changes and runs a collision detection
algorithm. This algorithm produces an enhanced node structure, which identifies every
place that could potentially have a conflict during the merge step.

After all collisions are resolved, a change list opens. This change list describes all changes
from both of the configurations except for the ones discarded. This list is a union of both
sets of changes, all the changes between the original base configuration and the output at
the end. This list can be used to review the changes before the merger is committed.

Oracle Retail Predictive Application Server Configuration Manager attempts to do the
merge. If there are still conflicts interfering with the merge process, the Conflict
Resolution screen summarizes the conflicts. This enables the user to disable the change or
modify it is that stops that change from working. The user can then attempt the merge
again. This is an iterative process.

Merged Changes Review

To reduce the complexity of the resolution process and to provide a greater level of
assurance that the output configuration is self-consistent, conflicts are grouped into
scopes by default. These scopes correspond to the entities inside an RPAS domain (for
example, a measure or a workbook). Users select which of the two modified versions of
the configuration they want to accept changes from. The selected version has its changes
retained, while any conflicting changes in the other configuration are discarded.

For example, if both modified versions of a configuration modify properties of a measure
in the base configuration, it is possible that some of the changes cannot be merged
without causing a non-consistent configuration. One modified configuration might
change the na value or range of the measure, whereas the other modified configuration
might change the type. Although no two changes affect the same property, the
combination of the changes results in an invalid measure configuration. For this reason,
the user takes either one or the other of the two sets of changes to the measure to be the
final change set.
This all-or-nothing approach be too limiting for the user. For example, consider a case
where one modified configuration modifies data-centric properties of a measure, such as
type or base intersection, and the other modified configuration modified purely cosmetic

382 Oracle Retail Predictive Application Server

properties such as the measure label. In this case, both sets of changes can be retained
without creating a non-consistent output configuration.

The conflict is presented to the user on a conflict-by-conflict basis (as opposed to an
aggregate level of the entity) and users can select individual conflicts. Users can then
manually select which changes result in conflicts and disable those changes. After
satisfied that conflicts have been eliminated, the user can mark that collision as resolved
and continue to the next collision.

For example, if both modified versions of a configuration contain instructions to modify
the label of a measure, the user experiences a conflict. The merge process must accept one
of the new label values or the other (or at the scope level, one set of changes to measure
properties or the other). The simplest way of resolving this conflict is for the user to
decide which of the two new label values is desired. After this has been determined, the
instruction for the undesired label change is disabled in the Change Logs (a disabled
change is one that is not applied as part of the merge process). At this point, the merge is
successful; only the desired modification is processed.

A more complicated scenario would involve some change present in one modified
configuration that can no longer be performed due to changes made in the other
modified configuration that do not result in direct collisions, as above, but instead result
in changes to some dependent piece of content.

For example, consider the situation in which one configuration deletes a measure from
the solution. The second configuration, having not deleted the measure, might attempt to
add it to a measure profile. This operation cannot be performed because the operation
has a dependency on some non-local content (the base measure) that can no longer exist
within the merged configuration.

The utility also attempts to detect these non-local collisions. When a collision is detected,
the utility reports that collision the same way that it reports local collisions. As with local
collisions, users can reconcile the collision by selectively disabling changes.

RPAS Configuration Manager Application
The RPAS Configuration Manager application can be launched by calling the
ConfigManager.sh script located in the bin directory of your Tools distribution.

The application provides two main functions, a Change Report and a Merge Operation:

Merge Operation
1. Select New Merge Operation to begin a new operation. Select Open to resume a

suspended operation.

2. You are prompted to enter locations for three configurations:

 base

 mod1

 mod2
These represent the original unmodified configuration and two updated versions of
that configuration. The field expects the path to the root .xml document of the
configuration (the file selected during the open operation in the tools).

Note: Mod1 and Mod2 are labels that can be changed using
buttons, if this is desired. The new labels are used wherever
Mod1 or Mod2 are referenced in the UI.

 Appendix: RPAS Configuration Manager and rpasConfigMgr 383

3. Click Next to proceed to the first step. This step is a review of the changes between
the base configuration and the Mod1 configuration. In this step, there is only a single
operation available. If a change node is selected, then the Disable Change button:

is enabled. Clicking this button marks the selected change so that it is ignored for the
remainder of the operation and is not applied when the merged configuration is
generated. If a previously disabled change is selected, the Enable Change button:

is enabled. Clicking this button clears the status of the change so that it is processed
in future steps.

4. When satisfied with the set of changes between base and Mod1, click Next. You are
provided with the changes between the base and Mod2 configurations. The same
options exist in this step as in the previous review of the changes between the base
configuration and the Mod1 configuration.

5. Click Next. In this step, you are presented with a list of locations where changes from
the previous two steps might conflict have been identified. A conflict of this type is
called a collision, and the navigation tree can be used to navigate between and view
details about the conflicts.

6. You cannot progress until all collisions have been resolved. There are multiple ways
to resolve collisions:

a. Select the collision node. You can resolve the collision by disabling all changes
related to the conflict in Mod1:

or Mod2:

If either of these options is selected, all changes listed in the Mod1 Changes or
Mod2 Changes section of the collision are marked as disabled, exactly as if they
had been individually selected and the Disable Change button was clicked.
Selecting either Discard Mod1 Changes or Discard Mod2 Changes marks the
collision as resolved so that the merge can proceed.

b. Collisions can be manually resolved by the user. Individual changes in either the
Mod1 list or the Mod2 list can be selected and disabled using the Disable
Change button. Disabled changes cannot be re-enabled using the Enable Change
button in this step; that operation can only be performed in the first two steps.
Note also that changes disabled either through the use of the Disable Change
button or through use of the Discard Mod1/Mod2 Changes button will be
disabled throughout the UI, even if they appear in more than one collision. It can
often be the case that resolving one collision results in one or more other
collisions automatically being marked as resolved because the disabled changes
were the cause of those other collisions, as well as the resolved collision.

c. Sometimes, the user is satisfied that a collision does not create a problem during
the merge step. This might be because the changes in the collision do not

384 Oracle Retail Predictive Application Server

interfere with each other in any meaningful way (this is especially common if
one of the sets of changes are to cosmetic attributes such as labels), or because
any troublesome changes have been manually disabled. In such cases, the user
can manually mark a collision as resolved using the Mark as Resolved button:

This button causes the collision to be treated as resolved without disabling any
additional changes in the collision (changes that were previously disabled
remain disabled).

d. There is an additional button called Recompute Collisions:

Clicking this button causes the collision detection to be re-applied to the sets of
changes that are an input to the process. However, any changes that have been
disabled are ignored for this new pass. As a result, the collisions those now-
disabled changes would cause do not appear after the re-application of the
algorithm. This is useful when presented with a large number of collisions. As
collisions are resolved, the collision set can be periodically recomputed to reduce
the amount of information and make remaining collisions easier to deal with.

7. After all collisions are resolved, click Next to proceed to the final step of the process.
You are presented with a set of changes, much like in the first and second steps.
However, this step of changes is the combination of the changes found in both the
first step (between base and Mod1) and the second step (between base and Mod2).
This list contains the union of all changes from either change set that have not been
disabled at some point in the process. In this step, you can still choose to disable any
changes that you do not want applied.

8. After satisfied with the list of changes, click Next. At this point, the combined set of
changes is applied to the base configuration to produce a new configuration that
represents the merging of the changes in Mod1 and Mod2. You are prompted for a
location in which to save this new configuration, as well as a summary report. In
some cases, it might be possible that changes in the separate configurations cannot be
applied even though the collision detection algorithms did not detect the conflicts. In
this case, the user is presented with a description of the conflicts. If this should occur,
the user must go back to the merge step and manually disable changes to resolve the
undetected conflict. The user can then move forward to the output step.

A Note on Saving and Loading Merge Operations
Because the merge process can take a considerable amount of time for complex
configurations where a large number of changes differentiate the Mod1 and Mod2
versions, RPAS Configuration Manager provides a mechanism to capture the current
state of the merge operation and save it disk. This saved record can then be reloaded at a
later date to enable the user to pick up on the process where the user left off without
starting again from scratch. This functionality is available by making use of the Save and
Open menu items within the File menu.

 Appendix: RPAS Configuration Manager and rpasConfigMgr 385

Caution: The save operation prompts you to select a
directory in which resources describing the state of the
merge operation will be saved. This directory should not
contain any existing files or directories to prevent conflicts
with the resources created by RPAS Configuration Manager.
 When loading a saved operation, you should provide the
directory specified during the save operation.

Change Report Operation
1. Select New Change Report from the file menu. You are prompted to enter the paths

to a base version of a configuration and a modified version of the configuration.
2. Click Next to move to a visual description of the changes present in the two versions

of the configuration. This visual description is identical to the view presented during
the merge operation when reviewing differences between a base and mod
configuration. However, this view is only intended to allow a visual inspection of the
detected changes; there are no meaningful operations that can be performed at this
point.

3. Click Next to move to the final step. In this step you are prompted to provide a
directory for output. In this directory a summary of the changes detected is
generated.

Merged Changes Review

Appendix: Dynamic Hierarchies 387

G
Appendix: Dynamic Hierarchies

Dynamic Hierarchies Overview
A dynamic hierarchy is a dimension within a workbook whose relationship is dynamic
based on the context of the workbook and thus can vary from one workbook to another.
 The positions within a dynamic hierarchy are built using measure data during the
workbook build process. They may vary each time a workbook is built, but the
hierarchical relationships within the workbook remain constant.

There are two types of dynamic hierarchies available in RPAS. The first is referred to as
domain modified dimensions. These dimensions exist in the domain hierarchy, but are
modified in the workbook. The second is referred to as workbook-only dimensions.
 These dimensions only exist in the workbook and are available for viewing purposes.
 This appendix will provide additional details on these two types of dynamic hierarchies
and how they are configured and used within RPAS.

Note: RPAS currently does not support Dynamic Hierarchies
on Calendar Dimensions. These dimensions are unique in
the sense that they are ordered unlike other dimensions.
Allowing dynamic rollup changes on these dimensions will
cause unpredictable workbook behavior and is not
recommended. A feasibility study may be taken up in future
releases of RPAS with proper infrastructure in place
followed by extensive QA testing.

Domain Modified Dimensions
As explained previously, domain modified dimensions are dynamic hierarchies that have
the dimension defined in the domain hierarchy structure but the positions in the
workbook are dynamically assigned on workbook build. The positions are driven based
on the content of measures defined in the workbook configuration of the Configuration
Tools. A measure is defined to drive the dimension name and a different one for the
label.

The following is an example of a domain modified dimension. Here is an example of a
location hierarchy that is configured in a domain.

388 Oracle Retail Predictive Application Server

Hierarchy with Levels that Correspond to CDTs

Within a particular workbook, the relationship between store and cluster will vary based
on the class in the workbook. The dimension information in the domain is basically a
placeholder and is replaced with the contents of the mapping measures. If the workbook
contains more than a single class, then RPAS will only use the mapping for the first class.
There are multiple uses of domain modified dimensions. Some users may need to use
domain modified dimensions as follows:

 They need to bring in more than one dynamic hierarchy dimension into workbooks.

See Multiple Dynamic Hierarchies in Single Workbook for more information.

 They need dynamic hierarchies to depend on more than one other dimension to
determine the value. For example, you can have clusters based on the department
that you are working within, but in the future you may need the cluster to be defined
based on the department as well as the time period contained in the workbook.

See Dynamic Hierarchies Dependent on Multiple Dimensions for more information

 They need to display dynamic branches of a hierarchy only when applicable. For
example, a given branch may only apply when within a specific category of
department.
See Dynamic Display of Dynamic Branches for more information.

 Appendix: Dynamic Hierarchies 389

Multiple Domain Modified Dimensions in Single Workbook
In the hierarchy example from above, there are dynamic positions in the location
hierarchy. The roll-up of store to cluster is dynamic based on the class selected. In
addition to this relationship, the workbook could also have a dynamic position within
the product hierarchy. The roll-up of an item to an alternate level can also be dynamic
based on at least one dimension within another hierarchy like location or calendar. Both
of these hierarchies can be brought into the same workbook. This is an example of two
dynamic hierarchies configured for the same workbook template.

Multiple Domain Modified Dimensions in Single Workbook
In the hierarchy example, there are dynamic positions in the Location hierarchy. The roll-
up of Store Cluster is dynamic based on the Class selected. In addition to this
relationship, the workbook could also have a dynamic position within the Product
hierarchy. The roll-up of an item to an alternate level can also be dynamic based on at
least one dimension within another hierarchy like location or calendar. Both of these
hierarchies can be brought into the same workbook. This is an example of two dynamic
hierarchies configured for the same workbook template.

Domain Modified Dimensions Dependent on Multiple Dimensions
A domain modified dimension can vary by more than a single other dimension. Based
on the previous hierarchy example, the cluster dimension can vary in a workbook based
both on the class and the year brought into the workbook This is done by RPAS,
allowing you to define measures that are more than two dimensional and contain the
dynamic position information.

To help you understand the multiple dimension concept, the single dimension concept is
explained here first. In the example, there is a Cluster dimension that is a roll-up of Store.
The Cluster that a Store is assigned to varies by Class within the Merchandise hierarchy.
Through the Configuration Tools you can create a normal dimension and then create the
dynamic hierarchy for the workbook. When defining the dynamic hierarchy, you must
set several values. The values that relate to multiple dimensions are explained below:

 Measure: This is the measure name that holds the name of the parent position. The
measure must have a base intersection of the dimensions that the parent-child
relationship is dependent on. In the example, this is Class. The dimension that is the
child in the parent-child relationship is Store in the example. The content of the
measure is the name of the parent position in the relationship: in the example, this is
the name of the Cluster that the Store belongs to for the Class.

 Label Measure: This measure holds the label of the parent position. In the example,
this is the label for the Cluster. This label measure should have the same intersection
as the measure that contains the name.

 Measure Hier: This is the name of the hierarchy that the parent-child relationship is
dependent on. In the example, this is prod (Product).

 Measure Dim: This is the name of the dimension that the parent-child relationship is
dependent on. In the example, this is clss (Class).

 Hier: This is the name of the hierarchy that the parent-child relationship belongs to.
In the example, this is loc (Location).

 Dim: This is the name of the dimension that is the child in the parent-child
relationship. In the example, this is str (Store).

 Modified Dim: This is the name of the dimension that is the parent in the parent-
child relationship. In the example, this is clstr (Cluster).

390 Oracle Retail Predictive Application Server

With the above information, the multiple dimension functionality can be described more
clearly. The Measure that is defined that contains the name of the parent position needs
the ability to be more than just two-dimensional. Continuing from the example, assume
that the Cluster dimension varies not only by Class within the Merchandise hierarchy but
also by Year within the Calendar hierarchy. The Measure intersection could be set to
Store/Class/Year. Based on the Class and Year included in the workbook, the positions
of the Cluster dimension are determined from the value in the Measure. If more than one
Class or Year are in the workbook, the value of the Cluster positions are determined
based on the first value in the measure, similar to how this is handled without multiple
dimensions.

Multiple Dimension Notes
 The multiple dimensions functionality is not limited by the dimensionality of the

measures. This does, however, increase the configuration load. Therefore, an
updated configuration process must be analyzed. This configuration process must
allow you to select a measure, and then the hierarchy and dimension information is
automatically determined based on the intersection of the measure.

 When defining the measures that contain the position names and label that will
define the dynamic positions, the measure must contain the dimension that is the
child in the parent-child relationship. Based on the example, this means that the
measures must include Store. This allows the measures to be based at a higher level
of the dynamic hierarchy that is predefined. For example, assume that the Location
Hierarchy in the example has a main branch that has the following relationships:

Store -> District -> Region -> Area
RPAS allows the measures to be based at Region. In this case, the value at the Region can
be spread down to Store to determine the correct parent Cluster value.

Appendix: RPAS Rule Writing Tips 391

H
Appendix: RPAS Rule Writing Tips

RPAS Rule Writing Tips Overview
This appendix includes tips and information to help you write RPAS rules that are as
efficient as possible. In many cases, a good understanding of the internal workings of the
calculation engine and RPAS I/O fundamentals is needed to create good RPAS rules.
This appendix also provides functional solutions to some general functional problems
that may be encountered.

 Basic RPAS Rules Information

 Principles for Writing Efficient Rules

 Tips

 Expression Iteration Examples

Basic RPAS Rules Information
The following sections provide basic RPAS rules information.

 Full and Incremental Evaluation Modes

 Rule Group Transitions

 NA Values and Iterators

Full and Incremental Evaluation Modes
As a rule writer, you must know that there are two evaluation modes used in the RPAS
calculation engine: full and incremental.

Full evaluation mode is used in instances when the whole workbook is being calculated.
These instances include the following:

 Committing, loading, or refreshing workbooks
 Using custom menus

 Running mace in batch mode

 During rule group transitions, such as between the load and calculate operations that
are part of a workbook build

Incremental mode is used when calculating workbooks with the Calculate function.
Incremental mode evaluates only the cells that the user has changed as well as any cells
that are affected by the user’s changes. For instance, if a user changes one cell in a sales
measure, the RPAS calculation engine evaluates that cell and all cells associated with
calculations that use that sales measure, such a variance measures, inventory measures,
and so on. However, the RPAS calculation engine does not evaluate measures that are
not affected by that sales change, such a receipt variance of last year’s sales. In addition,
the RPAS calculation engine does not calculate any unchanged cells in that sales
measure, meaning that if the user changed the sales in the Week1 cell, the calculation
engine evaluates only the Week1 cell and not any other week’s cell. In short, unaffected
cells are not calculated.

392 Oracle Retail Predictive Application Server

Note: As a rule writer, you can use techniques to optimize
rules, but these techniques rarely apply when rules are run
in incremental mode.

Rule Group Transitions
Rule group transitions occur when the active rule group is changed. There are automatic
rule group transitions when transitioning from the load rule group to the calc rule group
during a workbook build as well as when transitioning between rule groups for
refreshing and committing. Rule group transitions may also occur through user-defined
menu options.

Rule group transitions ensure that the integrity of the rule group being transitioned to is
enforced. This is done by evaluating an expression from every rule (and knock-on effects)
that is not already known to be correct. The only rules known to be correct are those that
were active in the rule group being transitioned from. Rule group transitions are
inherently very expensive because they must operate in full evaluation mode. Therefore,
logically at least, every intersection is visited, although the iteration efficiencies outlined
above are employed. Therefore, rule group transitions must be avoided wherever
possible.

NA Values and Iterators
NA values (also known as navals) are designed to store values that occur often so that
the measures can be iterated efficiently. Cell values in the internal RPAS array are stored
only when the cell value differs from the naval. Maximum efficiency is achieved if the
naval is the value that is most often (logically) present in the data. This is typically zero
for numeric data. The sparsity levels are likely to vary considerably from application to
application and customer to customer. When data is sparse, efficient iteration patterns
that visit only the populated cells are needed to support fast response times. RPAS will
change the naval of the array as necessary to allow it to use this technique. Thus, the
naval of the array may differ from the naval of the measure (which do not dynamically
change). Since the array naval may change dynamically and expressions use the array
naval instead of the measure naval, rule writers must not write expressions that assume a
particular naval.

In full evaluation mode, the measure is logically recalculated at every cell location,
including those where the value is the naval. RPAS employs a collection of iteration
optimizations that reduces the number of physical cell evaluations. The optimization
decisions are dependent on the following: expression syntax, navals, logical cell counts,
and populated (non naval) cell counts. Therefore, it is vital that data only be added or
changed through RPAS processes that maintain this information. Otherwise, the wrong
optimization decisions may be made that result in poor performance results.

In full evaluation mode, there are two fundamentally different iteration approaches. The
basic iterator is to pass the cells sequentially (in the order of the positions in the
hierarchies). Although, this can be very expensive if the data, and thus the cells that need
to be evaluated, is sparse. There is also an iterator that iterates over just the cells that
have a value different from the naval. These cells are referred to as populated. Processing
is likely to be much faster when this iterator is used, especially where the data is sparse.
For example, an expression such as a = b + c is evaluated by iterating over just those
cells where b or c are populated.

With an expression such as a = if(condition, b,0) where the naval of a and b is zero, the
fastest way to evaluate the expression is to remove all the data for a and then perform
one of the following two options:

 Appendix: RPAS Rule Writing Tips 393

 Iterate over the intersections where the condition is true, calculating a=b

 Iterate over the positions where b is populated, setting a=b if the condition is true

The intersections that are not visited already have the correct value for a because they
were effectively set to zero (the naval) when the data for a was removed. If the naval of a
is not zero, RPAS sets it to zero so that the efficient iteration pattern can be deployed.
RPAS automatically selects the methods to use based on the population density of the
expressions along with other factors. RPAS used a runtime heuristic to guess which of
these two evaluation modes is most efficient and then uses that method.

Principles for Writing Efficient Rules
The following sections describe the principles for writing efficient rules in RPAS.

 Expensive Functions, Modifiers and Procedures

 Caching Intermediate Results

Expensive Functions, Modifiers, and Procedures
As a rule writer, you should understand the relative cost of rule functions, modifiers, and
procedures. If you know these costs, you can understand that you should use expensive
functions only where necessary and that you must avoid any unnecessary evaluation of
those functions.

Functions: You can assume that most basic functions are inexpensive. Functions that can
be more expensive are those that require large amounts of data to be processed.

 All of the time series functions (such as tssum) can potentially require large amounts
of data (depending on how long the time series being used is) and are therefore
potentially expensive.

 The same is true of the normalization functions (such as norm, resize, resizenorm).

 Cover and uncover functions can also use large time series, depending upon the data
contents.

Modifiers: The use of aggregation type modifiers is not in itself expensive; although it
does mean that extra aggregation effort is required to support them.
Procedures: In general, you should assume that all procedures are expensive.

Caching Intermediate Results
If an expression must be evaluated, then the whole expression is evaluated, and the
results of intermediate phrases in the calculation of the expression are not cached. Many
expressions are relatively short and simple, and therefore no issues arise. There are,
however, two particular cases where you must be careful when writing expressions so
that you avoid expensive, redundant calculation of phrases.
Case 1

The first case is where a phrase changes infrequently and is relatively expensive to
evaluate. Consider an expression in the following format:
a = b + c + functionof(d, e, f)
Here, if functionof(d, e, f) is relatively expensive to evaluate, you should keep its
evaluation to a minimum. If d, e, and f change infrequently, then functionof(d, e, f)
will also change infrequently. However, if b and/or c change frequently, then every time
b and/or c changes, the whole expression is evaluated, including the functionof(d, e,
f) phrase. This portion of the calculation is usually redundant since d, e and f change
infrequently. The result from evaluating the phrase is likely to be the same as from the

394 Oracle Retail Predictive Application Server

previous evaluation. You can avoid this inefficiency by forcing the intermediate result of
the phrase to be cached by writing:
x = functionof(d, e, f)
a = b + c + x
Note that the rule syntax forces the instantiation of the result of a procedure, since
procedures must be the only phrase in an expression. Since procedures often are
particularly expensive to evaluate, the technique of caching intermediate results is
automatically applied.

It is important to note that this method does not always increase performance. In some
cases, it may actually decrease performance. For instance, if the normal usage of the rule
group is in full evaluation mode, the caching intermediate results approach may be less
efficient. This is because the phrase may only be evaluated once, and there could be an
unnecessary write (and subsequent read) of the measure. See the Expression Iteration
Examples section to learn how the expression is iterated. This can help you determine if
using this method is beneficial.
Case 2

The second case of when you should avoid expensive calculations is when the same
phrase is used repeatedly in the same or multiple expressions. Since the phrase is not
automatically cached, it could be evaluated multiple times. There have been cases with
nested If statements where, down some paths, the same condition can be evaluated three
or four times. Using the cache intermediate results technique in these situations could
lead to a significant performance increase.

Automatic Caching of Expression Phrases
The conditions that RPAS automatically instantiates behind the scenes are single time-
based conditions where the current keyword (which translates to the index number of
the current position in the time dimension) is compared (using one of the comparison
operators ==, !=, >, <, >=, <=) directly with one of the following keywords: first, last,
elapsed, or today. For example, the expression
if(current > elapsed, x, y)
will have the condition automatically instantiated. However, the expression
if(current > elapsed + leadtime, x, y)
where lead time is a measure, will not have the condition automatically instantiated, and
the condition current > elapsed + leadtime may need to be instantiated into a measure
for improved performance.

Similarly, an expression such as
if(current > elapsed && current < last, x, y)
is not automatically evaluated by instantiating the condition. Either of the subconditions
would be evaluated by instantiation if they stood alone, but when they are combined,
RPAS cannot automatically evaluate them. The efficient way to write such conditions is
to instantiate the result of each subcondition as described in "Caching Intermediate
Results" section above.

This particular expression could be written as
z = current > elapsed && current < last
if(z, x, y)

Tips
The following sections describe tips for writing efficient rules in RPAS.

 Appendix: RPAS Rule Writing Tips 395

 Rule Groups

 Non-materialize Measures

Rule Groups
The RPAS engine recognizes rules that are the same in the rule group being transitioned
from and to by rule name. Therefore, it is important to ensure that the same rule (and not
a copy of the rule with a different name) is used in both rule groups.

Non-materialized Measures
Non-materialized measures must be used whenever possible. These measures are not
necessarily calculated as part of the calculation cycle, but rather they are calculated only
if needed to evaluate another expression. Therefore, these non-materialized measures
have the potential to significantly decrease the regular calculation time. Note that there
are several different types of non-materialized measures available, and their usage and
performance profile varies.

Display-Only Non-materialized Measures
Display-only non-materialized measures are intended for display-only use. They cannot
be manipulated and cannot be used in calculations. They must have an aggregation type
of recalc, and they must be at the very end of a calculation. Since they cannot be used in
calculations (other than the calculation to calculate them), they do not need to be
calculated by the calculation engine during a normal calculation. They are therefore
ignored during the calculate operation. They are calculated only when required and only
for the positions required at the time. Typically, the calculation is initiated during the
fetch cycle when the measure is to be displayed.
Normally, all measures that are candidates to be display-only non-materialized measures
should be defined that way. The exceptions to this rule are when the measure is likely to
be viewed much more frequently than it would be calculated, such that calculating it
normally through the calc cycle would provide an overall saving.

The If Statement
The following sections describe the If statement.

 Caching the If Condition Phrase
 The Ignore Keyword

See the Expression Iteration Examples section for examples that show how the If
statement is iterated.

Caching the If Condition Phrase
The simple way for RPAS to iterate over the cells where a condition is true, is for that
condition to be instantiated into a Boolean measure with a naval of false. This allows
RPAS to iterate over just the populated cells. Otherwise, the engine must pass all
intersections to determine whether the condition is true, which may be a very expensive
operation. There are some specific time-based conditions where RPAS instantiates the
condition behind the scenes (see the Automatic Caching of Expression Phrases section for
these examples). Otherwise, you must instantiate the result of evaluating the condition to
have efficient calculations. This can be done by setting a measure to the result of the
condition. This is especially important if the same condition is used repeatedly in
expressions, or if the input measures that are used to calculate the condition change
infrequently.

396 Oracle Retail Predictive Application Server

This is not necessary if the condition phrase meets the requirements to be automatically
cached (see Automatic Caching of Expression Phrases for more information).

The Ignore Keyword
The If function supports an Ignore argument. This argument means that the calculation
must not change the current value of the cell. Under some circumstances, expressions
that use this construct in full evaluation mode can be particularly expensive to evaluate,
so it should be used only when necessary. For instance, with an expression such as
a = if(b, ignore, 1)
where the naval of a is 0, and the naval of b is false, the effective naval of the expression is
1. RPAS cannot simply change the naval of a from 0 to 1 because of the ignore. Therefore,
RPAS must iterate over all logical cells of b. This problem happens when using ignore
whenever the naval of the expression is different from the naval of the measure being
calculated.

Note: Using multiple ‘ignore’ keywords in the ‘if’ expressions
should be avoided while configuring expressions as such
expressions can cause performance issues.

Expression Iteration Examples
This section demonstrates how RPAS iterates over various expressions. Use the table
below as a reference for evaluating the relative performance of an expression due to
iteration. None of these expressions are necessarily bad. The relative populated/logical
size and naval of the measures must be taken into consideration to determine if the
performance can be improved.

The naval of all measures are 0 or false unless otherwise noted. Measures are 10%
populated unless otherwise noted. The calendar dimension has 100 positions.

Sample
Expression

Iteration
Based On

Notes

N1 = if(B1,
0, 1)

B1 This is the simplest case, iteration-
wise.

N1 = if(B1,
0, N2)

N2 Navalue of N2 equals navalue of 0. N2
and 0 has a fill factor of 10%, while N2
combined with B1 has a combined fill
factor of 19%. Therefore, iterate just
N2.

N1 = if(B1,
0, N2)
Same as
above but
navalue of
N2 is 1.

B1, N2

Navalues do not match.

N1 = if(B1,
N2, N3)
(N2 fill
factor =
30%)

B1, N3

N2 x N3 fill factor: 1 – (1 - .3) * (1 – 0.1)
or 37%. B1 x N3 fill factor: 1 – (1 – 0.1)
* (1 – 0.1) or 19%. Thus, iterate B1 and
N3.

 Appendix: RPAS Rule Writing Tips 397

Sample
Expression

Iteration
Based On

Notes

N1 = if(B1,
N2, 0)

B1 (N2
could be
chosen if it
had a lower
fill factor).

Navalue of if is 0.

N1 =
prefer(10 /
N2, N3)

N2, N3 Navalue of first prefer subexpression
causes error, so no optimization
applies here.

N1 =
prefer(10 /
(N2 + 1),
N3)

N2 Navalue of first prefer subexpression
does not cause error, so optimization
applies here.

N1 = if(B1,
ignore, 0)

B1, N1 Expression navalue is 0.

N1 = if(B1,
0, ignore)

B1 Expression navalue is ignore.

N1 = if(B1,
ignore, N2)

B1, N2

Because B1’s navalue is false, the RHS
navalue comes from N2. No
optimization applies here. However, if
the navalue of the RHS (in this case,
N2) does not match the pre-existing
navalue of N1, then “all cells are
dirty” mode is invoked to avoid
changing the navalue of N1 (and thus
changing the value of unpopulated
cells that should have been ignored).

N1 = if(B1,
N2, ignore)

B1 Expression navalue is ignore.

N1 = if(B1,
N2, ignore)
+ if(B2,
ignore, N2)

B1, B2, N2 Expression navalue is ignore.

Note: RPAS does not support the
syntax if() + if(). Although, it still
illustrates a useful point from an
iteration point of view.

N1 = current All logical
cells

current is not used in a comparison so
no optimization applies here.

B1 =
(current ==
first)

first
calendar
position

current is used in a comparison so
simple comparisons to current apply
here.

N1 = if
(current >
elapsed, N2,
N3)
elapsed =
25; N3 is
50%
populated

First 25
calendar
positions
and N2.

Fill factor of N2 x N3 is 55%. Fill
factor of current > elapsed x N2 is
33%. Therefore, iterate current >
elapsed and N2.

398 Oracle Retail Predictive Application Server

Tips to Design Efficient RPAS Expressions
Sometimes fairly simple expressions take a very long time to run. Most of the time, the
problem exists in the way the expressions are designed and configured. The following is
an attempt to explain how to design efficient expressions.

1. Consider the following nested “if” expression:
L1 = if (R1 > 0, V, if (R2 > 0, V, if (R3 > 0, V, if(R4 > 0, V, if(R5 >
0, V, 0)))))

Measure Type BaseInt

L1 Real SKU/STR/DAY

R1, R2, R3, R4,
R5

Real DEPT/DAY

V Real SKU/STR

The domain is partitioned on DEPT where SKU rolls up to DEPT.
This expression is not designed correctly and may have a performance hit because
the left hand side (LHS) measure L1 is at SKU/STR/DAY, the R1, R2, R3, R4, R5
measures are at DEPT/DAY, and the V measure is at SKU/STR. Here, you need to
first spread the R1, R2, etc. measures from DEPT/DAY to SKU/STR/DAY and the V
measure from SKU/STR to SKU/STR/DAY. Spreading is a time consuming process,
but any effort to reduce it within an expression should give a performance benefit.
If you redesign the expression as follows, performance can be improved:

a. Register a temporary measure, such as “tmpmask”, which is at SKU/DAY.

b. Add an expression to generate the tmpmask measure as follows:
tmpmask = R1 > 0 || R2 > 0 || R3 > 0 || R4 > 0 || R5 > 0

c. Modify the above expression as follows:

L1 = if (tmpmask, V, 0)
d. The above two expressions will only take a fraction of the time taken to run the

original expression.

2. Consider an expression which uses the RPAS “prefer” function:

L2 = prefer(A/B, 0)

Measure Type BaseInt

L2 Real SKU/STR/DAY

A Real SKU/STR/DAY

B Real SKU

Here also, there is a lot of spreading to be done for the B measure from SKU to
 SKU/STR/DAY.

There are two approaches to optimize this expression:

a. Make use of the RPAS CalcEngine's division by zero support where it will now
return a 0 when it encounters a division by 0 situation. It effectively is mimicking
the “prefer” behavior and it evaluates faster than “prefer”.

The function can be revised as:
L2 = A / B

 Appendix: RPAS Rule Writing Tips 399

b. When the preferred value is not equal to 0, then use the following approach as
the RPAS CalcEngine only returns zero in division by 0 situations.

If baseint of B is much higher than A, use a temporary intermediate measure.

Since B is at SKU and A is at SKU/STR/DAY, use an intermediate measure C at
either SKU/STR or SKU/STR/DAY and spread B to C using the expression:

C = B
Then, modify the “prefer” expression as follows:

L2 = prefer(A/C, 5)
The spreading is much less when C is used inside “prefer” compared to B and it
should evaluate faster than:

L2 = prefer(A/B, 5)

	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Access to Oracle Support

	Related Documents
	Customer Support
	Review Patch Documentation
	Improved Process for Oracle Retail Documentation Corrections
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	Introduction
	Overview
	Configuration Tools Business Process
	Sample Configurations

	Using the Configuration Tools Online Help
	About the Online Help
	Formatting Conventions
	Navigate the Online Help
	Use the Table of Contents
	Using the Search Feature
	Using the Business Process
	Using the Index
	Browse the Index Entries
	Search the Index

	Using Links
	Using Hyperlinks

	Navigating the Configuration Tools
	Starting the Program
	About the Configuration Tools Windows
	A Note about RPAS Configurability and Extensibility

	Configuration Components Pane
	Know the Configuration Components
	Configuration Components Pane Overview
	Projects
	Solution
	Hierarchy
	Data Interface
	Styles
	Taskflow
	Solutions
	Measures
	Rule Sets, Rule Groups, and Rules
	Workbooks and Worksheets
	Wizards
	Task List

	How RPAS Uses Solution Configurations
	The RPAS Calculation Engine
	Aggregation and Spreading
	RPAS Functions

	Right-Click Menus in the Configuration Components Pane
	Setting Tools Preferences

	Projects
	Working with Projects
	Overview
	Create a Project
	Save Changes to a Project
	Using the Save As Option to Save a Project using a Different Name
	Open an Existing Project
	Open an Existing Project from an Older Version of the Configuration Tools
	Close a Project

	Hierarchies
	Overview
	The Hierarchy Definition Window
	About the Hierarchy Definition Window

	Working with Hierarchies
	Create a New Hierarchy
	Specify Hierarchy Properties
	Delete a Hierarchy
	Copy (Clone) Hierarchies
	Working with Position Formats
	Specifying the Position Format
	Position Format Syntax

	Working with Dimensions
	Overview
	Create a Dimension
	Defining Dimension Properties
	Delete a Dimension
	Edit a Dimension
	Create a Branch in a Hierarchy
	Labeled Intersections
	Adding a Labeled Intersection
	Modifying a Labeled Intersection
	Removing a Labeled Intersection

	Data Interface Manager
	Overview
	Specify the Data Interface for a Measure
	Add/Edit Data Interface Properties for a Measure
	Delete Data Interface Information for a Measure

	Working with Styles
	Overview
	The Style Definition Tool
	Style Attributes

	Create a Style
	Remove a Style
	Edit a Style

	Working with Taskflows
	Overview
	Create a Taskflow
	Adding an Activity to the Taskflow

	Adding a Task to the Taskflow
	Add a Step to the Taskflow
	Add a Tab to the Taskflow
	Delete Items from the Taskflow
	Edit Items from the Taskflow
	Order Items in the Taskflow
	Validate the Taskflow
	Generate Default Mapping

	Hyperdynamic Tasks, Steps, and Tabs
	Creating a Hyperdynamic Task
	Adding a Hyperdynamic Step to the Taskflow
	Adding a Hyperdynamic Tab to the Taskflow
	Adding Worksheets to a Hyperdynamic Step or Tab
	Removing a Worksheet from a Hyperdynamic Step or Tab

	Creating a MultiSolution Taskflow
	Taskflow Naming
	Creating the Taskflow for a Taskflow Created in a Release Earlier than 13.3.1

	Solutions
	Working with Solutions
	Overview
	Create a Solution
	Copy a Solution
	Rename a Solution
	Move a Solution
	Delete a Solution

	Measures and Components
	Measure Manager
	Overview
	Measure Properties
	Inheritance
	Overriding

	Measure Components
	Measure Naming Conventions

	Measure Component Design
	Create a Major Component
	Create a Minor Component
	Defining Measure Component Properties
	Measure Component Properties
	Name
	Label
	Description
	Type
	NA Value
	Base Intx
	Default Agg
	Agg Spec
	Default Spread
	Base State
	Agg State
	Database
	View Type
	Sync With
	Insertable
	Non-Translatable
	UI Type
	Range
	Purge Age
	Lower Bound and Upper Bound
	Sp Value Type and Sp Value
	Dim Attr Type
	Dim Attr Name (optional field)
	Dim Attr Label (optional field)
	Allowed Aggs
	Style
	Alert Category
	Alert Expression
	Single Hier Select
	Filename (read only)
	Load Intx (read only)
	Clear Intx (read only)
	Start (read only)
	Width (read only)
	Load Agg (read only)
	Materialized (read only)
	Creator (read only)
	Signature (read only)

	Edit Components
	Move Components
	Push Components Down
	Pull Components Up
	Display or Hide Components
	Find a Component
	Rename a Component
	Remove Components

	Alerts
	Measure Validation within the Measure Manager
	Disabling Measure Content Validation

	Working with Measures
	Overview
	Realize and Unrealize Measures
	Realize a Measure
	Unrealize a Measure

	Rename a Measure
	Show all Measures
	Hide Measures by Component
	Hide All Measures
	Sort Measures by Property Value
	Filter Measures by Property Value

	External Measures
	Overview
	Import a Measure
	Remove an Imported Measure from a Solution

	Rule Sets
	Overview
	Create a Rule Set
	Delete a Rule Set

	Rule Groups
	Overview
	Types of Rule Groups
	Rule Group Validation
	Multiple Refresh Rule Groups
	Rule Group Transitions

	Create a Rule Group
	Delete a Rule Group
	Copy a Rule Group
	Measure Validation in the Rule Definition Window
	Rule Definition
	Create a Rule and Add It to a Rule Group
	Add an Existing Rule to a Rule Group
	Apply a Rule Pattern to Create New Rules or to Update Existing Rules
	Delete a Rule from All Rule Groups
	Remove a Rule from a Rule Group
	Edit Properties of a Rule
	Rename All Rules in a Rule Group
	Filter Rules in a Rule Group
	Reordering Rules in a Rule Group
	Auto Generate Load and Commit Rules
	Copy Selected Rules to Another Rule Group
	Find and Replace Measures in the Copied Rules

	Expressions and Rules
	Overview
	Reorder an Expression in a Rule
	Edit an Expression in a Rule
	To Edit an Expression

	Delete an Expression from a Rule
	Add an Expression to a Rule

	RPAS Functions, Procedures, Keywords, and Modifiers
	Overview

	Workbooks
	Overview
	Workbook Tabs
	Worksheets
	Wizards

	Overview of Participation Measures
	Create a Workbook
	Edit Workbook Properties
	Defining Workbook Properties
	General Tab
	General Tab Default Fields
	RPAS Name
	User Label
	Group
	Group Label
	Workbook Type
	Library
	Wizard Only
	Rule Set
	Use Default Rules
	Load Rules, Commit Rules, and Calc Rules
	Refresh Rules
	X Axis, Y Axis, Z Axis and Unassigned
	Use Custom Wizard
	Custom Wizard
	Standard Wizard
	Enable Image Modification
	Hierarchy Pre-ranging

	Custom Menus Tab
	Create a Custom Menu

	Workbook Hierarchies Tab
	Important Note About Using Hier Mods Options

	Remove Dimension
	Restore Dimension

	Change Rollup
	Make Rollup Dynamic
	Important Dynamic Hierarchy Notes:

	Remove Dynamic Rollup
	Add Workbook Dimension
	Insert Workbook Dimension
	Real Time Alerts Tab
	Condition Definition Interface
	Alert Definition Interface
	Operations within the Real Time Alerts panel
	Add Alert
	Remove Alert
	Add Condition
	Remove Condition
	Copy Condition

	Example of workbook configuration
	Definition of the condition styles
	Definition of alert measures
	Creation of alert calculation rule
	Creation of the workbook alert
	Creation of alert conditions

	Workbook Transitions Tab
	Defining a Worksheet Transition
	Removing a Worksheet Transition

	Measures Tab
	Defining Measure Properties Override Settings for a Workbook
	Modifying Measure Properties Override Settings for a Workbook
	Removing a Measure Override Settings from a Workbook
	Defining the LoadRange and LoadRangeMeas Properties
	Defining a Measure with a Dynamic Picklist

	Extended Measures Tab
	Adding an Extended Measure
	Removing an Extended Measure

	Dynamic Position Maintenance Tab

	Remove a Workbook

	Working with the Rule Group Simulator
	Overview
	About the Rule Group Simulator
	Invoking the Rule Group Simulator
	Filtering the Measures Table
	Changing the Edited Status of Measures
	Using the Upstream and Downstream Panes
	Exiting the Rule Group Simulator

	Working with Workbook Tabs
	Overview
	Create a Workbook Tab
	Edit Workbook Tab Properties
	Remove a Workbook Tab
	Comprehensive Workbook Validation

	Working with Worksheets
	Overview
	Measures and Worksheets
	Selected Profile Measures
	Viewable Profile Measures
	Hidden Measures
	Extended Measures
	Worksheet Types
	Filterable Sheets

	Create a Worksheet
	Defining Worksheet Properties for Pivot/Chart Worksheets
	General Tab
	Measure Profiles Tab
	Adding a measure profile
	Copying a Measure Profile
	Marking a Measure Profile as Default
	Removing a Measure Profile

	Position Queries Tab
	Style Overrides Tab
	Window Formatting Tab
	Add Additional Display Attributes for a Dimension
	Modify Order of Existing Attributes
	Remove a Display Attribute

	Defining Worksheet Properties for Detail Popup Worksheets
	Working with Detail Popup Worksheets
	Create a Detail Pop-up Worksheet
	Defining Worksheet Properties
	General Tab
	Style Overrides Tab
	Attribute Profile Tab
	Adding an Attribute to the Attribute Profile
	Remove an Attribute from the Attribute Profile
	Modify the Order of Attributes within the Attribute Profile

	Defining Worksheet Properties for Worksheets Tiled View
	Overview
	Tiled View Worksheet
	Properties of the Tiled View Worksheet
	Additional tabs of the Tiled View Worksheet

	Specify Which Measures Appear in a Worksheet
	Specify the Sequence of Measures on a Worksheet
	Edit Worksheet Properties
	Remove a Worksheet

	Wizards
	Overview
	Create a Wizard Group
	Create a Wizard Page
	Edit Wizard Control Properties

	System Preferences
	Overview
	Global Domain
	Overview
	Measure Data
	Multi-Language
	Solution ID

	Setting Workbench Preferences
	Setting Configuration Properties

	Configuration Utilities
	Overview
	Configuration Converter
	Overview
	Launching the Configuration Converter
	Converting a Configuration

	Functional Library Manager
	Overview
	Launching the Functional Library Manager
	Adding a Function Library to Be Validated in the Configuration Tools
	Removing a Function Library from Being Validated in the Configuration Tools

	Report Generator
	Overview
	Available Reports

	Generate a Report

	Integration Tool
	Overview
	RPAS Data Mart
	Overview

	Integration Configuration Components
	Overview
	Shared Hierarchies and Dimensions
	Overview
	Shared Hierarchies Properties
	Shared Dimensions Properties

	Shared Facts
	Overview
	Shared Fact Properties

	Integration Map
	Overview
	Integration Map Properties
	Integration Map Constraints

	Domain Information
	Overview
	Domain Information Properties

	Integration Tool
	Overview
	Working Integration Configurations
	Working with Domain Information
	Working with Shared Hierarchies
	Overview
	Shared Hierarchies Tab Validations
	Hierarchy Name
	Hierarchy Label
	Hierarchy Purge Age
	Hierarchy Order
	Dimension Name
	Dimension Label
	Dimension Position Format
	Calendar Hierarchy

	Working with Shared Facts
	Overview
	Import Facts
	Shared Fact Tab Validations
	Fact Name
	Fact Label
	Fact Intersection
	Fact Type
	Fact Group
	Fact Table
	Fact Description
	Fact NA Value
	Fact Purge Age

	Working with the Integration Map
	Overview
	Fact
	Domain
	Measure

	Fact Grouping Best Practices
	Overview
	Grouping Based on Concurrent Access
	Conditional Commits of Facts
	Fact Group Assignment Process
	Create Groups Based Upon Intersection
	Partition Facts Based Upon Data Source
	Partition Groups for Conditional Commits

	Deployment Tool
	Overview
	General process flow for generating deployment resources
	Creation of new resource
	Modification of an existing resource
	User Interface
	Description

	Deployment Tool - Distributed Workbook Storage
	Description
	Creation of a new resource
	Contents of distwbconfig.xml resource
	Directory Structure of the Distributed Workbook Storage

	Deployment Tool – Global Domain Configuration
	Description

	Deployment Tool – Online Administrative Tasks
	Description
	Administrative Task View
	Administration Task Resource Contents
	Hierarchy of Elements in the Administrative Task Resource
	Admin Task List Element
	Create a New Task
	Remove a Task

	Task Attributes Element
	Task Argument List Element
	Argument Element
	Argument Branch element
	Remove Argument Branch
	Generate Translation File

	Deployment Tool Limitations
	Validation of Resource Contents

	Appendix: Global Domain Technical Information
	Appendix A: Global Domain Technical Information

	Appendix: Calculation Engine User Guide
	Overview
	Measure Definition and Base Intersections
	Data Types
	Base Intersection
	Aggregation and Spreading Types

	Aggregation
	Spreading
	Locks and Spreading Around Locked and Changed cells
	Spreading Methods
	Proportional Spreading
	Replicate Spreading
	Even Spreading
	Delta Spreading
	PET and PST Spreading
	Multi-Level Spreading

	Hierarchical Protection Processing
	The Spreading of Recalc Type Measures
	Non-Conforming Recalc Measures

	Expressions, Rules, and Rule Groups
	Introduction
	Expressions
	Rules
	Rule Groups
	Rule Group Transitions

	The Calculation Cycle
	Introduction
	Protection Processing
	Protection Processing Details
	Protection Processing Example
	Determining What to Calculate
	Determining the Calculation Sequence

	Cycle Groups
	Cycle Breaking Functions
	Cycle Group Evaluation

	Synchronized Measures
	Elapsed Period Locking
	Non-Conforming Expressions
	Introduction
	Handling of Non-conforming Expressions
	Examples

	Appendix: Rules Function Reference Guide
	Overview
	Functions
	Procedures
	Modifiers
	Keywords
	Syntax Conventions
	Specification of Hierarchy, Dimension, or Position
	Function Inverses
	Functions with Multiple Results

	Special Handling for Functions
	Error Handling
	if
	prefer

	Non-Conforming Measures
	Definition

	Functional Keywords
	Overview
	Calendar Index Functional Keywords
	first
	last
	current
	today
	elapsed

	Session Keywords
	now
	userID
	username

	Calendar Hierarchical Date Keywords
	begin
	end

	Modifiers
	Overview
	master
	aggtype
	level
	old
	Assumptions/Restrictions

	Description of Functions
	Calendar Index Functions
	indexfirst
	indexlast
	indextostartdate
	indextoenddate

	Calendar Calculation Functions
	addPeriods
	Input
	Output
	Example

	calendarStart
	Output
	Example

	dateDiff
	Input
	Output
	Example

	Date
	Input
	Output
	Example

	Index and Position Functions
	index
	position
	attribute

	Forecast Procedure
	Forecast Requirements
	Using the Forecast Procedure
	Syntax Conventions
	Forecast Procedure Syntax
	Configuration Parameters and Rules
	Input Parameters
	Output Parameters

	Forecast Method/Model List

	Time Series Functions
	Overview
	Single Time Series Functions
	tssum
	tsavg
	tsmax
	tsmin
	tsmode
	tsmedian
	tsstd
	tsvar

	Double Time Series (Statistical Error) Functions
	tsme
	tsmae
	tsmape
	tsrmse
	tspae

	Hierarchical Functions and Procedures
	Overview
	count
	lookup
	Tablelookup
	flookup
	aggregate
	Multi-Level Calculation Example

	Transform Procedures
	Transform Procedure Requirements
	transformSum
	Input Parameters
	Output Parameters

	transformMax
	Input Parameters
	Output Parameters

	transformOr
	Input Parameters
	Output Parameters

	transformProp
	Input Parameters
	Output Parameters

	transformEven
	Input Parameters
	Output Parameters

	transformRepl
	Input Parameters
	Output Parameters

	Normalization and Resizing Functions
	resize
	resizenorm

	String Functions
	uppercase
	lowercase
	textCompare
	textConcat
	substr
	ConvertToString

	If we pass in an integer measure as first input argument to ConvertToString function then the output measure will contain the input measure’s integer numbers converted to string.
	If we pass in a date measure as first input argument to ConvertToString function then the output measure will contain the input measure’s numeric date values converted to string. Also, if the first input argument is a date type measure ConvertToString...
	The date format string is expected in the form “%[variable]”. Variable can be any of the following.
	Math Functions
	pow
	exp
	sqrt
	log
	ln
	mod
	abs
	rand

	Other Functions and Procedures
	multisource
	Left Hand Side (LHS) Measure Properties
	LHS Measure Restrictions and Validations

	Right Hand Side (RHS) Measure Properties
	RHS Measure Restrictions and Validations

	Rule Group Restrictions

	cover
	uncover
	min
	max
	sum
	lag
	lead
	timeshift
	round
	roundup
	rounddown
	navalue
	propspread
	passthrough
	rankagg
	ranksort
	positionLocked
	randMask

	Appendix: Aggregation and Spread Types
	Aggregation Types
	Spread Types
	Arithmetic Operators
	Unary Operators
	Binary Operators

	Appendix: Configuration of RPAS Extensions
	Configuration of RPAS Extensions
	About the RPAS Solutions Extension Framework
	Launch from Navigation Tree
	Module Tasks
	Module Steps
	Launch on Home Page
	Launch In-Context of a Worksheet
	In-Context launch entry

	Appendix: RPAS Configuration Manager and rpasConfigMgr
	Using the rpasConfigMgr
	rpasConfigMgr Process
	Diff Process
	Merge Process
	diffAndMerge Process
	rpasConfigMgr Usage
	RPAS Configuration Manager
	Field/UI Item Description

	Merge Functionality
	Conflict Resolution Functionality
	RPAS Configuration Manager Application
	Merge Operation
	A Note on Saving and Loading Merge Operations

	Change Report Operation

	Appendix: Dynamic Hierarchies
	Dynamic Hierarchies Overview
	Domain Modified Dimensions
	Multiple Domain Modified Dimensions in Single Workbook

	Multiple Domain Modified Dimensions in Single Workbook
	Domain Modified Dimensions Dependent on Multiple Dimensions
	Multiple Dimension Notes

	Appendix: RPAS Rule Writing Tips
	RPAS Rule Writing Tips Overview
	Basic RPAS Rules Information
	Full and Incremental Evaluation Modes
	Rule Group Transitions
	NA Values and Iterators

	Principles for Writing Efficient Rules
	Expensive Functions, Modifiers, and Procedures
	Caching Intermediate Results
	Automatic Caching of Expression Phrases

	Tips
	Rule Groups
	Non-materialized Measures
	Display-Only Non-materialized Measures
	The If Statement
	Caching the If Condition Phrase
	The Ignore Keyword

	Expression Iteration Examples
	Tips to Design Efficient RPAS Expressions

