o2 7
2 hea
L/

AqualLogic BPM Process API
Developer Guide

Version: 6.0

2| ALBPM | TOC

Contents

ALBPM ProCess API (PAPI) ... ettt sttt sttt s 3
ALBPM ProCess AP (PAPI).....c.iiiiiiiieee ettt bbbt sn e sne e 3
WAL IS PAPI?Z .ttt s b et b et b et b et e b et e e e ket e be st et e sbebe st ebesbereebenea 3
Process API USAGE SCENANIOS.cuurueuirteiirteiiitiieteiete ettt btttk bbbt sb ettt ettt 3
Process APl ArChitECtUIE OVEIVIEW........cuiuiiiiiiiieieieeieseee ettt sbe ettt e st 4
Structure of @ Java PAPT APPIICAIION. ..ot 5
Writing Your First Java PAPT PrOQIaM.........ccoeiuiiiiiieiieiceeiese sttt s e e e e ena e sesresnesnesnens 6
Compiling @ Java PAPT PrOGIaIM.........c.eiiiiiiiiiieiieiinieic sttt 10
RUNNING @ JAVA PAPT PrOGIaM......c.vciiicieetiiieste sttt eete st testeste e ste st et e sae st ensesaesaenestessesnens 11
ALBPM PAPI WED SENVICE......eei ittt sttt ettt s ene s 13
What IS PAPT WED SEIVICE?......c.iiiiiii ettt sttt et ne e nesne e e 13
What's New in PAPIWED SErVICE 2.07....c.ociiiiiieieeeeee et 13
PAPT Web Service USagE SCENAIOS.c.eruiriruerirtiiiteietereete ettt se st ese bbb s bt neens 14
PAPI Web Service ArchiteCture OVEIVIEW..........cciiiiiiirieiirieiesieieseeie sttt ssene e seens 14
ENabIiNg PAPT WED SEIVICE.......cviiiiiiriiiiieic bbb 15
Enabling PAPI Web Service in ALBPM StUIO.........cccccviiiieiiiiie e 15
Enabling PAPI Web Service in ALBPM ENEEIPIiSE.......cceoviiriieriierieiiieeienieesieesree e 15
Installing PAPI Web Service on a J2EE Application SErVer.........c.cccceeeieveieieieeeeese e 16

PAPI Web Service ConfigUIation...........oooieiiiiiieeieie e 17
PAPI Web Service Configuration CONSOIE...........c.coviieiiieie i 17
Editing PAP1 Web Service Configuration.............cccoceriiniiiineieseseseee e 18
Configuring PAPI WED SEIVICE LOG......c.civiiiiiiiiiiiie ettt re et s 19

PAPI Web Service Security AUTNENTICALION.c.oiiiiiiiiiece s 19
Configuring Single Sign On AUtNENTICALION..........c.ccciiiiiiicee e 20
Configuring Username ToKeN Profile...........oooiiiiiiiiiiccee e 20
Configuring HTTP Basic AUthENtICALION...........ccciiiiiie e e 21
Configuring PRESET AULNENTICATION.ooviviiieiiieiicie e 22

PAPI WeD SErVICe EXAMPIES......cviieiieieciectice ettt sttt sttt sa s e e e saeneeneetesrearens 22
Java JAX WS CHENt EXAMPIE........ooviiiiiiiiieee e 22
JAX-WS CHENt MAIN =CIaSS.....c.viuiiiiiiciiiciieesie et 23
Running Java JAX WS Client EXample.......ccociiiiiiiicieeee e 27

PAPI Web Service .NET Clent EXAMPIE.......c.cccoveiiiieiece e 28

INET CHENE MAIN-CIASS......eviiieeie ettt ettt et e st e e st e e s st e e s st e e s sbaeessbaeesssbeeesans 28

ALBPM | ALBPM Process APl (PAPI) | 3

ALBPM Process API (PAPI)

This guide is an introduction to ALBPM Process API (PAPI). It contains relevant information about the API architecture,
an analysis of the structure of a Java application using PAPI, and instructions on how to compile and run a Java PAPI
application.

ALBPM Process API (PAPI)

This guide is an introduction to ALBPM Process API (PAPI). It contains relevant information about the API architecture,
an analysis of the structure of a Java application using PAPI, and instructions on how to compile and run a Java PAPI
application.

What is PAPI?

PAPI is a Java client-server API that allows you to interact with processes deployed on an ALBPM Process Execution
Engine.

PAPI is a Java APl a Java API that can be invoked by any Java application written in Java 1.5.
PAPI provides the following operations:

« Create, send and abort process instances

« Select and unselect process instances

* Reassign process instances

e Audit an instance

« Suspend and resume process instances

« Grab and un-grab process instances

¢ Run intactive and global interactive activities
* Run external tasks

« Send notifications

« Get a list of process instances

e Geta list of deployed processes

» List the activities in a deployed process

« Get the latest version of a deployed process
« Manage views and presentations

e Manage attachments

ALBPM WorkSpace is built on PAPI. All the communication between the WorkSpace and the Process Engine is done
through PAPI.

The complete reference documentation for PAPI is available at
http://edocs.bea.conmval bsi/docs60/papi_javadocs/index.html

Process APl Usage Scenarios
PAPI provides a way for external applications to interact with ALBPM.

You should use PAPI to interact with external or legacy applications. Some common usage scenarios are:

http://edocs.bea.com/albsi/docs60/papi_javadocs/index.html
http://edocs.bea.com/albsi/docs60/papi_javadocs/index.html

4| ALBPM | ALBPM Process APl (PAPI)

« A web application that needs to create a process instance in ALBPM with the information entered by the user
* An external application whose execution final result is the execution of an ALBPM process

« An external application that need to perform a search, or to list information about processes in ALBPM

« An external application that needs to trigger the execution of an activity

» Batch or automatic processing of process instances

Although you can use PAPI to replace ALBPM WorkSpace with a similar graphical application interface, consider
customizing ALBPM WorkSpace to suit your needs instead. Replacing ALBPM WorkSpace causes you to lose-and
then to have to rebuild-most of the out-of-the-box functionality WorkSpace provides including, for example, both the
authentication framework and the interactive execution framework.

Process API Architecture Overview

PAPI is a Java API that allows you to build a client to connect to the engine and perform operations on the deployed
processes.

When PAPI is initialized, the connected user is authenticated against the data in the directory service. Once authenticated,
the Java client using PAPI can interact with any of the engines configured in the directory service.

PAPI must connect to a Process Execution Engine only to search for or operate on process instances and deployed
processes. It does not need to connect to an Engine if a request or operation requires only data stored in the Directory
Service.

The following operations do not require a connection to the engine:

o List available views

» Search for a specific view

« List available presentations
 List participants in the organization

You can successfully execute these operations even when the Process Engine is down.

PAPI can connect to one or more engines at a time, provided they are configured in the same directory service. When
a client makes a request, PAPI automatically routes this request to the corresponding engine.

The following diagram shows interaction between a PAPI client, the Directory Service and the Process Engine in runtime.
The diagram shows a custom Java client and ALBPM Workspace that is also a PAPI client.

ALBPM | ALBPM Process API (PAPI) | 5

-

ALBFM Workspace - Performs authentication.
- Retrieves participants, roles, and groups.
- Retrieves views and presentations.

PAPT -[

L3

™| Directory Service
o

- Retrieves processes and configuration
— informaticn.
- Retrieves participants, roles, and groups.

Custom Java Client

- Performs operations.
- Retrieves processes and
process instances.

o ALBPM Process
Execution Engine

Figure 1: PAPI Components Runtime Diagram

Structure of a Java PAPI Application

A Java PAPI application should follow a certain structure. The different methods that you need to invoke before and
after performing operations with PAPI determine this structure.

A Java application that uses PAPI goes through the following stages:

1. Initialize the API.
Establish a session.
Operate with PAPI.
Close the session.
Release API resources.

akrcwn

Initialize the API

The ProcessSer vi ce class is the main entry point to the API. Before you start using PAPI, you must create a
Pr ocessSer vi ce object.

A ProcessSer vi ce acts as a factory for Pr ocessSer vi ceSessi on objects. To create a session, you must first create
and configure a Pr ocessSer vi ce.

When you create a Pr ocessSer vi ce object, a connection to the Directory Service is established. This connection is
used to load ALBPM's environment configuration information and later to authenticate the user creating the process
service session.

6| ALBPM | ALBPM Process API (PAPI)

Establish a Session

A ProcessSer vi ceSessi on represents the dialog between a participant and the Directory Service or one or more
engines.

You need a ProcessSer vi ceSessi on to manage and obtain information about process instances, participants, views,
and presentations.

To create a ProcessSer vi ceSessi on you need to provide the valid credentials--for example, the user identifier and
password--of a participant that exists in the Directory Service.

Operate with PAPI

Once you obtain a Pr ocessSer vi ceSessi on you are ready to query for information and invoke any of the operations
provided by PAPI.

Close the Session

You need to close PAPI sessions before your application finishes so that caches are cleared and the connections to the
engine are closed.

Leaving sessions open may both cause a memory leak and use network resources unnecessarily. This is because the
allocated resources are never freed and the Engine continues to send information to the connected participant.

Leaving sessions open can also cause problems in updating a participant’s role assignment. Because changes to role
assignments are applied only after the last session has been closed, leaving a session open indefinitely means that changes
to roles and permissions are never applied.

PAPI sessions do not expire by timing out. The application using PAPI is responsible for closing open sessions.

Once the session is closed it cannot be used again. Trying to invoke a method over a closed session results in an exception.

Release API resources
It is advisable to close the Pr ocessSer vi ce so that the resources it uses are released.
When a Pr ocessSer vi ce is closed, the following events occur:

« All opened PAPI sessions are closed.

» Temporary files used by the API are deleted.

« The connection to the Directory Service is closed.
« Caches used by PAPI are cleared.

Writing Your First Java PAPI Program

This section shows you how to build a Java PAPI Client that retrieves a list of process instances visible to the connected
user.

Programming a Java PAPI Client
The typical steps you have to follow when building a Java PAPI Client are:

e Import the required libraries.

» Create a process service.

» Create a process service session.
« Perform operations with PAPI.

« Close the process service.

ALBPM | ALBPM Process API (PAPI) | 7

Import the Required Libraries

You need to import PAPI classes to be able to use them in your code. The following code imports the PAPI classes
needed for this example.

i mport fuego. papi . Conmuni cati onExcepti on;
i nport fuego. papi .| nstancel nfo;

i mport fuego. papi . ProcessServi ce;

i mport fuego. papi . ProcessServi ceSessi on;
i mport fuego. papi . Operati onExcepti on;

Create a Process Service

In order to create a ProcessServi ce you need a java.util.Properties object containing its configuration. You can
create this property object and build it within your Java code, or you can load it from a properties file. This example
adds the properties within the code for practical reasons.

The two mandatory properties you need to specify are the directory id and the path to the di rect ory. xni file.

Properties configuration = new Properties();
properties. set Property(ProcessService. DI RECTORY_I D, "default");
properties. set Property(ProcessServi ce. Dl RECTORY_PROPERTI ES_FI LE, "directory.xm");

To create a ProcessServi ce object you need to invoke the factory method ProcessServi ce. create() from
the class Pr ocessSer vi ce passing it the Property object as an argument.

If there is a problem locating the Directory Service, this method throws a Conmuni cati onExcepti on , S0 you need
to call it inside a try-catch block.

try {
ProcessServi ce processService = ProcessService. create(configuration);

/...

} catch (Communi cati onException e) {
System out . println("Could not connect to Directory Service");
e.printStackTrace();

Create a Process Service Session

To create a ProcessServi ceSessi on you must invoke the factory method cr eat eSessi on over the
Pr ocessSer vi ce object you've just created. This methods requires three String arguments:

e user: an existing participant in the Directory Service.
» password: the participant's password.

 host: the host from which the conection is stablished. This is an optional argument, it is used for monitoring purposes,
so if this information is not available this argument's value can be null.

If there is a problem authenticating the specified participant, this method throws an Oper at i onExcepti on , S0 you
need to invoke it inside a try-catch block.

try {
...

ProcessServi ceSessi on sessi on = processService. creat eSession("user", "password",
"host");

/...
} catch (OperationException e) {

System out . println("Could not performthe requested operation");

e.print StackTrace();

http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessService.html
http://java.sun.com/javase/6/docs/api/java/util/Properties.html
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessService.html
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessService.html#create(java.util.Properties)
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/CommunicationException.html
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessServiceSession.html
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessService.html#createSession(java.lang.String,%20java.lang.String,%20java.lang.String)
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/OperationException.html

8| ALBPM | ALBPM Process APl (PAPI)

Perform Operations with PAPI

The following code retrieves a list of available processes by invoking the method processesGet | ds() overa
ProcessServi ceSessi on object.

It then iterates over them using those ids to obtain the process instances for each process by invoking the method
processGet | nst ances() over the session object.If there is a problem performing any of the requested operations,
this method throws an Qper at i onExcepti on , so you need to invoke it inside a try-catch block.

Finally it iterates over those instances invoking the method get I d() and prints its result.

try {
...

System out . println("Show | nstances by process:");
for (String processld : session.processesGetlds()) {
Systemout.println("\n Process: " + processld);
for (lnstancelnfo instance : session.processGetlnstances(processlid)) ({
Systemout.printIn(" ->" + instance.getld());

}

} catch (OperationException e) {
Systemout. println("Could not performthe requested operation");
e.printStackTrace();

Close the Process Service Session

To close the session, invoke the method cl ose() over the ProcessServiceSession object.

session. cl ose();

Closing a session releases all the resources this session is using. After calling the method cl ose() , the session can no
longer be used. If you try to invoke a method on a closed session, its execution failsand a Sessi onCl osedExcepti on
is thrown.

Close the Process Service

To close the ProcessService object, invoke the method cl ose() overthe ProcessServi ce object.

processServi ce. cl ose();

This releases all the resources used by PAPI, clears the caches, deletes the temporary files, and closes the connections
to the Process Engine and the Directory Service.

Complete Code Example

The following class contains all the steps described in this section.

package papi doc. exanpl es;

i mport fuego. papi . Conmuni cati onExcepti on;
i mport fuego. papi . | nstancel nfo;

i mport fuego. papi . ProcessServi ce;

i mport fuego. papi . ProcessServi ceSessi on;

i mport fuego. papi . Operati onExcepti on;

i mport java.util.Properties;

http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessServiceSession.html#processesGetIds()
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessServiceSession.html
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessServiceSession.html
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessServiceSession.html#processGetInstances(java.lang.String)
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessServiceSession.html#processGetInstances(java.lang.String)
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/OperationException.html
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/InstanceInfo.html#getId()
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessServiceSession.html#close()
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/exception/SessionClosedException.html
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessService.html#close()
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessService.html

ALBPM | ALBPM Process APl (PAPI) | 9

public class Papi Exanpl e {
public static void main(String[] args) {

LEEEEEEEErrrrrrrrrl AP Initialization [/ 1TTTTTTTTTTTTTTT

Properties configuration = new Properties();

configuration. set Property(ProcessService. Dl RECTORY_I D, "default");

configuration. set Property(ProcessService. DI RECTORY_PROPERTI ES _FI LE,
"directory.xm");

configuration.setProperty(ProcessServi ce. WORKI NG FOLDER, "/tnp");

try {
ProcessServi ce processServi ce = ProcessService. create(configuration);

[IDEEEEErrIrirrlll Establish a session [/ /11111 TTHTTTTETTT
ProcessServi ceSessi on sessi on = processService. createSession("test", "test",

"host");

FIEEEEEETEErrrrrrl Operate with PAPL (/111 1TTTTTTTTTTTTT
for (String processld : session.processesGetlds()) {
Systemout.println("\n Process: " + processld);
for (lInstancelnfo instance : session. processGetlnstances(processlid)) {
Systemout.println(" ->" + instance.getld());
}

}

FEEEEEEEEEErrrrrlll aose the session (/111 TTTTTTTTTTTTT]
session. cl ose();

FEEEEEEEEEEEEETET] Rel ease APL Resources [/ 11TTTTTTTTTTTTT]
processServi ce. cl ose();

} catch (Communi cati onException e) {
System out. println("Could not connect to Directory Service");
e.printStackTrace();

} catch (OperationException e) {
Systemout . println("Could not performthe requested operation");
e.printStackTrace();

The following sequence diagram shows the interaction between the classes used in the example.

10 | ALBPM | ALBPM Process API (PAPI)

PapiExample |Processsewice | ‘ProcessSewiceSession | ‘ Instanceinfo

APl Initialization

_create(configuration:Froperty)

‘ProcessService

Establish a Session

createSessigniparticipant:String, password:5tring, host:String)
create()]

L J

g - - ProcessserviceSession

Operate with PAPI

[processids] processesGetlds(} -
i wirlndUistessErr it nas L]
processesCetinstances(processid:String) =

‘Instancelnfolist

[instances]

Close the Session close()]

| Release APl resources | close() o

Figure 2: PAPI Client Example Sequence Diagram

Compiling a Java PAPI Program
The following procedures show you how to compile from the command line a Java class that uses PAPI.

To compile a Java PAPI program from the command line you need to have a Java SE Development Kit 5 (JDK 5)
installed. You can download the JDK from Sun Developer Network. You may also use the JDK bundled with some
installations of ALBPM Enterprise, which gets installed under BEA_HOVE/ al bpn6. O/ ent erpri se/jrel.

PAPI classes are contained in the f uegopapi - cl i ent . j ar JAR file, which is distributed with ALBPM Enterprise
under BEA_HOVE/ al bpn6. 0/ ent er pri se/client/papi/lib/fuegopapi-client.jar.

1. Open a command-line session.

2. Add the PAPI library to the classpath by setting the environment variable CLASSPATH. The way of doing this
depends on your operating system.

¢ Linux:

$export CLASSPATH="/bea/ al bpnb. 0/ enterpri se/client/papi/lib/fuegopapi-client.jar"

e Windows:
C. >set CLASSPATH="C:./ bea/ al bpn6. 0/ enterprise/client/papi/lib/fuegopapi-client.jar"

http://java.sun.com/javase/downloads/index_jdk5.jsp

ALBPM | ALBPM Process API (PAPI) | 11

3. Compile the Java PAPI program using javac (Java Compiler) provided by the JDK:
javac MFir st Papi Application.java
These two steps can be merged into one by using the -classpath option when calling the java compiler:

javac -classpath "C:/beal/ al bpnb. 0/ enterprise/client/papi/lib/fuegopapi-client.jar"
MyFi r st PAPI Appl i cation. j ava

A file with the extension .class is generated in the directory where you compiled your program.

Running a Java PAPI Program
The following procedures show you how to run from the command line a Java program that uses PAPI.

To run a Java PAPI program you need to have a Java SE Development Kit 5 (JDK 5) installed. You can download the
JDK from Sun Developer Network. You may also use the JDK bundled with some installations of ALBPM Enterprise,
which gets installed under BEA_HOVE/ al bpn6. 0/ ent erprise/jrel.

PAPI classes are contained in the f uegopapi - cl i ent. j ar JAR file, which is distributed with ALBPM Enterprise
under BEA_HOVE/ al bpn6. 0/ ent er pri se/client/papi/lib/fuegopapi-client.jar.

1. Open a command-line session.

2. If you are not running the program from the same command-line session where you have compiled it, you need to
add the PAPI library to the Java classpath by setting the environment variable CLASSPATH. The way of doing this
depends on your operating system.

e Linux:
$export CLASSPATH="/bea/ al bpn6. O/ enterprise/client/papi/lib/fuegopapi-client.jar"

e Windows:
C. >set CLASSPATH="C:./ bea/ al bpnb. O/ enterprise/client/papi/lib/fuegopapi-client.jar"

3. Copy thefile di rectory. xnl to the location specified in your properties file or in your PAPI program. The file
directory. xm resides in the directory al bpn6. 0/ ent er pri se/ conf.
In the analyzed example the di rect ory. xm file was copied to the directory from where the example is run. This
location is specified in the following lines of code:

Properties configuration = new Properties();
/...
configuration. setProperty(ProcessServi ce. Dl RECTORY_PROPERTI ES FI LE, "directory.xm");

4. Run your PAPI program using the j ava command provided by the JDK:
java MyFir st Papi Application

This step and step one can be merged into one by using the -classpath option when calling the java command:

java -classpath "C:./beal/al bpn6. 0/ enterprise/client/papi/lib/fuegopapi-client.jar"
MyFi r st PAPI Appl i cati on

When you run the program you see a list of the deployed processes and their instances. The following lines illustrate
the generated output when executing this program connecting to an engine that has three instances sitting on the deployed
process "Process":

http://java.sun.com/javase/downloads/index_jdk5.jsp

12| ALBPM | ALBPM Process API (PAPI)

Process: /Process#Default-1.0
-> [Process#Default-1.0/1/0
-> [Process#Default-1.0/3/0

2/ 0

-> [Process#Defaul t-1. 0/

ALBPM PAPI Web Service

ALBPM | ALBPM PAPI Web Service | 13

This guide contains relevant information about PAPI Web Service architecture, an analysis of the structure of PAPI
Web Service clients written in different languages, and procedures that show you how to modify PAPI Web Service

configuration.

What is PAPI Web Service?

PAPI Web Service is an independent web application built on top of PAPI. This application exposes a subset of PAPI

functionality using SOAP over HTTP.

Using PAPI Web Service to communicate with the Engine has the following advantages over using PAPI:

* You can use it from any programming language that supports XML and HTTP.

« It does not need any external libraries on the client side.

» The application using PAPI Web Service does not need a connection to the Directory Server. This application can

run outside the domain where ALBPM is installed.

There are a few minor disadvantages:

« Performance overhead: PAPI Web Service is a layer on top of PAPI. The web services client communicates with
PAPI using XML. This adds a small overhead that makes PAPI Web Service slightly less performant than using

PAPI directly.
« Attachments functionality is not available.

« PAPI Web Service does not handle complex types. Only methods with primitive and/or catalogued XML schema
type arguments, and primitive return type can be invoked.

What's New in PAPI Web Service 2.0?

PAPI Web Service was completely rewritten based on the feedback obtained from its previous version. This section

describes the features supported by PAPI Web Service 2.0.

The following table shows the difference between PAPI Web Service 2.0 and PAPI Web Service 1.0:

PAPI Web Service 2.0

PAPI Web Service 1.0

Independent web application.
You can modify its default configuration.
Document/literal wrapped style WSDL SOAP binding.

Supports WS Security Username Token Profile 1.1, HTTP Basic
and Single Sign On (SSO) authentication mechanisms.

Method arguments support calogued schema type objects in
addition to primitive types.

The signature of the exposed methods matches the signature of
their equivalent methods in PAPI.

Bundled with ALBPM Workspace.
Supports only the default configuration.
RPC/encoded style WSDL SOAP binding.

Does not support any standard authentication mechanisms.You
need to send a session ID every time you invoke an operation.

Method arguments only support primitive types.

Its semantics are completely different from PAPI's semantics.

@ Note: PAPI Web Service 1.0 is deprecated. If you still need to use it in ALBPM 6.0 you have to enable and start

ALBPM Classic WorkSpace.

14| ALBPM | ALBPM PAPI Web Service

PAPI Web Service Usage Scenarios

PAPI Web Service provides access to a considerable subset of PAPI operations. This section describes the scenarios
where PAPI Web Service is more suitable than PAPI.

PAPI Web Service complies with Web Services standards. This allows you to take advantage of the the existing common
infrastructure used by other applications such as load balancers, proxies, security services and monitoring. PAPI Web
Service fits perfectly into a SOA architecture.

Use PAPI Web Service to expose PAPI operations to:

« external applications written in virtually any programming language.
« applications running outside the domain where ALBPM resides.
 applications running behind a fire wall.

PAPI Web Service Architecture Overview
PAPI Web Service is a web service application that exposes a considerable set of PAPI operations.

PAPI Web Service is an independent web application that runs on top of PAPI. PAPI Web Service provides a WSDL
(Web Services Definition Language) descriptor that defines the operations the client can invoke and the complex types
these operations may use. The client application connected to PAPI Web Service, uses SOAP (Simple Object Access
Protocol) over HTTP to invoke any of the functions listed in the WSDL.

PAPI Web Service relies on PAPI to obtain the information the client requests. Then it translates this information into
XML and uses SOAP to send it back to the client.

PAPI Web Service implementation is based on the following:

o JAX-WS 2.0 web service
e WS-| 1.1 compliant
» Document/literal wrapped style WSDL SOAP binding

The following diagram shows the interaction between PAPI Web Service components during runtime.

ALBPM | ALBPM PAPI Web Service | 15

Application
%
Java SOAP -[
Application PAPI - @ Service

ALBPM Workspace - Performs authenbcafion.

- Retrieves participanis, roles, and groups.
- Retrieves views and presentations.

'S

- Retrieves processes and
configuration infermation.
- Retrieves participants,
roles, and groups.

- Performs operations.
- Retrieves processes and process instances.

ALEFM Process
Execution Engine

Figure 3: PAPI Web Service Runtime Architecture

Enabling PAPI Web Service

PAPI Web Service is not enabled by default. This section shows the how to enable PAPI Web Service for each of the
possible environment and configurations. These procedures depend on the type and configuration of ALBPM installation.

Enabling PAPI Web Service in ALBPM Studio
The following procedures show you how to enable PAPI Web Service in Studio.

By default PAPI Web Service application is not enabled. To enable PAPI Web Service in Studio:

w DN e

4,

Right-click on the project.

Select Engine Preferences.
Select Advanced.

Check Start PAPI Web Services.

The next time you start the engine PAPI Web Service application is started. To verify this launch PAPI Web Service
Console.

See Launching PAPI Web Service Console in ALBPM Sudio on page 18

Enabling PAPI Web Service in ALBPM Enterprise
The following procedures show you how to enable PAPI Web Service in ALBPM Enterprise.

To enable PAPI Web Service:

1

Edit ALBPM Admin Center configuration.

16 | ALBPM | ALBPM PAPI Web Service

2. Select BPM Web Applications tab.

3. Select PAPI Web Services checkbox in the list of BPM web applications to run.
The next time you start BPM Web Applications, PAPI Web Service is started.

The next time you start the engine PAPI Web Service application is started. To verify this launch PAPI Web Service
Console.

See Launching PAPI Web Service Consolein ALBPM Enterprise on page 18.

Installing PAPI Web Service on a J2EE Application Server

To install PAP1 Web Service when the Process Execution Engine is running on a J2EE application server, you have to
follow the procedures that describe how to install an ALBPM web application on that specific server. This section shows
the procedures for WebLogic Application Sever and WebSphere Application Server.

Installing PAPI Web Service on WebLogic Server
The following procedures show you how to install PAPI Web Service on WebLogic Server

To install PAPI Web Service on WebLogic Server:

1. Build PAPI Web Service Application.
For information on how to build a web application on WebLogic Server, see Build and Deploy Applications (.ear)
on page 16.
This generates two ear files, that correspond to the two supported versions of WebLogic.

2. Choose the ear file that corresponds to the version of the WebLogic Server you are using.

The following table shows the correspondence between the version of WebLogic Server and the generated ear file.

WebL ogic Server Version ear File
WebLogic Server 10 07-papiws-XAFDIDS.ear
WebLogic Server 9.2 07-papiws-wls92-XAFDIDS.ear

3. Deploy PAPI Web Service Application.

For information on how to deploy a web application on WebLogic Sever, see Build and Deploy Applications (.ear)
on page 16.

Build and Deploy Applications (.ear)
The ALBPM Process Administrator allows you to bundle the ALBPM applications as . ear files for installation on
WebLogic.

Before creating the ALBPM application archives, you must have an ALBPM Engine for WebLogic configured.

1. Loginto ALBPM Process Administrator. By default, it runs on ht t p: / / host : 8686/ webconsol e.

2. Click on Enginesand then click on the name of your ALBPM Engine for WebL ogic.
You should see the configuration properties for your Engine.

3. Click on the Basic Configuration tab and then on J2EE Application Server Files.
This page allows you to (re)create the .ear files of those ALBPM applications associated with this Engine.

@ Note: When you access this page, the Process Administrator gets the status of each of the applications by
contacting ALBPM Deployer. You will get a warning message at the bottom of the page if there was any problem
contacting ALBPM Deployer. If this is the case, make sure the BPM Application Deployer URL (within the
Application Server tab) is correct and that ALBPM Deployer is up and running on WebL ogic.

4. Click on the "new" icon (D*) next to each of the applications you want to install.

5. Click on the "install" icon (E7 next to each of the applications you want to install.

ALBPM | ALBPM PAPI Web Service | 17

4. Attention: This may take several minutes. Do not click any link on the page and do back in your browser until

' the page is automatically reloaded. When you click on the icon, ALBPM Process Administrator transfers the
file over to WebLogic's Deployment Manager (by means of ALBPM Deployer) and then WebL ogic goes through
the application installation process.

Installing PAPI Web Service on WebSphere Application Server
The following procedures show you how to install PAPI Web Service on WebSphere Application Server.

To install PAPI Web Service on WebSphere Application Server:

1. Build and deploy PAPI Web Service application.

For information on how to build and deploy ALBPM applications on WebSphere Application Server, see "WAS
Basic Configuration, Deploy ALBPM Apps in WebSphere" in ALBPM Configuration Guide, WebSphere Edition .
Open WebSphere Console.

Choose Applications [Enterprise Applications.

Click 07-papiws-FDIDS.ear link.

Select Class loading and update detection.

Select Classes |loaded with application class |oader first.

Select Single classloader for application.

Click OK.

If you do not enter a value in the field labeled Polling interval for updated files an error message appears.

A message asking you to confirm your changes appears.

9. ClickSave.

10. Restart the server.

© N o g~ DN

The next time you start the server PAPI Web Service application starts. To verify this lauch PAPI Web Service Console.

PAPI Web Service Configuration

You can configure PAPI Web Service by modifying a set of properties either by using the provided user interface or by
editing the file where these properties are stored. This section shows you how to modify PAPI Web Service configuration
in ALBPM Studio and Enterprise.

PAPI Web Service Configuration Console

PAPI Web Service provides a console where you can view its configuration properties and other useful information
such as the endpoint and the WSDL URLSs.

PAPI Web Service console is available in ALBPM Enterprise and Studio. In the you can edit the information it shows
to change PAPI Web Service configuration.

The following list shows the information displayed in PAPI Web Service console:

« Style: the format that the WSDL defines for the SOAP messages sent between the web service and the client. PAPI
Web Service uses document/literal wrapped format. You cannot change this style.

e SSO: shows if Single Sign On authenticaton is enabled.

» WS-Security Username Toke Profile Authentication: shows if Username Token Profile authentication is enabled.

« HTTP Basic Authentication: shows if HTTP Basic authentication is enabled.

« PRESET Authentication: shows if PRESET authentication is enabled. This type of authentication is valid only for
ALBPM Enterprise. In ALBPM Studio the value of this property is always false, and it cannot be changed.

* Endpoint: shows the URL of PAPI Web Service endpoint.

http://edocs.bea.com/albsi/docs60/config_was/index.html?t=enterprise/was/c_Head_Deploy_ALBPM_Apps.html
http://edocs.bea.com/albsi/docs60/config_was/index.html?t=enterprise/was/c_Head_Deploy_ALBPM_Apps.html

18| ALBPM | ALBPM PAPI Web Service

e WSDL: shows the URL where PAPI Web Service WSDL is published. Most web services stacks include a tool to
automatically generate stubs based on a WSDL. You need to provide this tool with the WSDL URL displayed here.

Launching PAPI Web Service Console in ALBPM Studio
The following procedure shows you how to launch PAPI Web Service console in ALBPM Studio.

To launch PAPI Web Service console:

1. Enable PAPI Web Service in an already existing project.
See Enabling PAPI Web Service in ALBPM Studio on page 15.

2. Start the Process Engine.
3. Choose Run [dunch PAPI Web Services.

The default browser opens showing ALBPM Web Service console.

Launching PAPI Web Service Console in ALBPM Enterprise
The following procedure shows you how to launch PAPI Web Service console in ALBPM Enterprise.

1. Start ALBPM Admin Center.
2. Enable PAPI Web Service.
See Enabling PAPI Web Service in ALBPM Enterprise on page 15

3. Click Start BPM Web Applications.
4. Click Launch PAPI Web Services Console.

The default browser opens showing ALBPM Web Service console.

Editing PAPI Web Service Configuration
This section shows you how to change PAPI Web Service configuration in Studio and in Enterprise.

The way of editing PAPI Web Service configuration varies between both types of installation.

In an Enterpise installation PAPI Web Service's configuration is stored in the papi ws. pr operti es file, located under
BEA HOVE/ al bpn6. 0/ ent er pri se/ webapps/ papi ws/ WEB- | NF. This file contains additional advanced properties
that you can use to tune PAPI Web Service performance. Each property has a comment that describes their function.

Editing PAPI Web Service Configuration in Studio
The following procedures show how to edit PAPI Web Service configuration in Studio.

To edit PAPI Web Service configuration:

1. Launch PAPI Web Service console
See Launching PAPI Web Service Console in ALBPM Sudio on page 18
2. Click Change configur ation.

The displayed properties become editable and a Save changes button appears next to the Change configuration
button.

3. Modify the values of the properties you need to change.

4. Click Save changes.
A message informing changes were succesfully applied appears.

5. Restart the engine to apply changes.

Launch PAPI Web Service console to verify your changes were applied.

Editing PAPI Web Service Configuration in ALBPM Enterprise
The following procedures show you how to edit PAPI Web Service configuration in an ALBPM Enterprise.

ALBPM | ALBPM PAPI Web Service | 19

To edit PAPI Web Service configuration:

Start ALBPM Admin Center.

Modify the values of the properties you need to change.
Click OK.

Click Start BPM Web Applicationsto apply the changes.

A w DN PR

Click Launch PAPI Web Services Console to verify your changes were applied.

Configuring PAPI Web Service Log
PAPI Web Service keeps a log of the performed operations that can be used for troubleshooting. The following procedures
show you how to configure the directory where log files are stored, and the severity to filter the logged messages.

To enable the log for PAPI Web Service application:

Start ALBPM Admin Center.
Click Configuration.
Select PAPI Web Services tab.

Enter the complete path of the directory where you want to save PAPI Web Service logs in the L og Folder field, or
click Browse... and select the directory.

5. Select a severity level from the L og M essage Severity L evel drop-down list.

A wDNPE

The available severity levels are:

e Debug

e Info

e Warning
e Severe

e Fatal

The next time you start PAPI Web Service the changes made to the log configuration are applied.

PAPI Web Service Security Authentication
This section describes the different types of authentication mechanisms that PAPI Web Service supports.
PAPI Web Service supports the following types of authentication:

e Custom Single Sign On (SSO) authentication
» UsernameToken Profile 1.1 (Plain-text)

e HTTP Basic authentication

e PRESET authentication

You can independently enable or disable any of these authentication mechanisms.

@ Note: By default Username Token Profile authentication is selected. You must select at least one authentication
method to provide PAPI Web Service the necessary information to authenticate against the engine.

When PAPI Web Service starts running it activates the authentication providers that correspond to the enabled
authentication mechanisms.

Every time a client makes a request to PAPI Web Service, this request goes through an authentication phase before
reaching the service endpoint. During this phase the activated authentication providers will be called in the order they
appear in the preceding list. When one of these providers succesfully authenticates the request the application grants
access to the web service. If all the activated providers reject acess, the request is rejected.

20| ALBPM | ALBPM PAPI Web Service

Configuring Single Sign On Authentication
Papi Web Service can use a custom Single Sign On (SSO) implementation to authenticate the client. These following
procedures show you how to configure SSO Authentication for PAPI Web Service.

To compile the class containing your custom SSO implementation you need to have a Java SE Development Kit 5 (JDK
5) installed. You can download the JDK from Sun Developer Network.

To configure SSO Authentication for PAPI Web Service:

1. Implement the interfacef uego. sso. SSOUser Logi nl nt er f ace.
a) Add the file f uego. core. j ar to the CLASSPATH.

* In a Studio installation this file resides in BEA_HOVE/ al bpn6. 0/ studi o/ i b
« Inan Enterprise installation this file resides in
BEA HOWVE/ al bpn6. 0/ ent er pri se/ webapps/ papi ws/ VEB- | NF/ i b

b) Create a Java class that implements the interface fuego.sso.SSOUserLoginInterface.
This class should contain your custom SSO implementation.

¢) Compile the class created in the previous step.

2. Copy the compiled class that contains your SSO implementation to the WEB- | NF/ | i b directory of the PAPI Web
Service web application.

< Ina Studio installation this directory is located under: BEA_HOVE/ al bpn®. 0/ st udi o/ webapps/ papi ws
« Inan Enterprise installation this directory is located under:
BEA_ HOVE/ al bpn6. 0/ ent er pri se/ webapps/ papi ws

3. Edit PAPI Web Service configuration and select the SSO option.
See Editing PAPI Web Service Configuration on page 18

4. Enter the fully qualified name of the class containing the SSO implementation.

The next time you start the PAPI Web Service application, SSO authentication is activated.

Configuring Username Token Profile
PAPI Web Service can use Web Services Security Username Token Profile to authenticate the client. The following
procedures show you how to configure Username Token Profile for PAPI Web Service.

To configure Username Toke Profile authentication:

« Edit PAPI Web Service configuration and select the Username Token Profile authentication option.
See Editing PAPI Web Service Configuration on page 18.
The next time you start PAPI Web Service application, Username Token Profile authentication is activated.
» Configure your web services client to send the Username Token SOAP header when it authenticates against PAPI
Web Service.
The way of doing this depends on the programming language and the stack used to code your client.

For example, for a client using Java JAX-WS stack you need to add the following method, and invoke it before
executing any operation.

i mport javax.xm .soap. SCAPEl enment ;

i mport javax.xnl .soap. SOAPExcepti on;

i nport javax.xnm .soap. SOAPFact ory;

i mport com sun. xm . ws. api . nressage. Header ;

i mport com sun. xm . ws. api . ressage. Header s;

i mport com sun. xm . ws. devel oper . WSBi ndi ngPr ovi der ;

...

http://java.sun.com/javase/downloads/index_jdk5.jsp

ALBPM | ALBPM PAPI Web Service | 21

private static final String SECURI TY_NAMESPACE =
"http://docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss-wssecurity-secext-1.0. xsd";

I .

private static void addUser NameTokenPr of i | e(Papi WebSer vi ce papi WebSer vi cePort)
t hrows SOAPException {

SQAPFact ory soapFactory = SOAPFact ory. newl nst ance();
Mane security@anme = new QNanme(SECURI TY_NAMESPACE, "Security");
SOAPE!l enent security = soapFactory. creat eEl enent (securityQ\ane);
Nane t okenQNanme = new QNane(SECURI TY_NAMESPACE, "User naneToken");
SQOAPE!l erent t oken = soapFactory. creat eEl enent (t okenQNane) ;
Mane user QNane = new QNane(SECURI TY_NAMESPACE, "Usernane");
SQOAPE!l enent user nane = soapFactory. creat eEl enent (user QNane) ;
user nane. addText Node("test");
MNanme passwor dQName = new QName(SECURI TY_NAMESPACE, "Password");
SOAPEl enent password = soapFactory. cr eat eEl enent (passwor dQNane) ;
passwor d. addText Node("test");
t oken. addChi | dEl enrent (user nane) ;
t oken. addChi | dEl ermrent (passwor d) ;
security. addChi | dEl ement (t oken);
Header header = Headers. create(security);
((W8Bi ndi ngProvi der) papi WebServi cePort) . set Qut boundHeader s(header) ;

...

Configuring HTTP Basic Authentication

PAPI Web Service can use HTTP Basic authentication to authenticate the client. The following procedures show you
how to configure HTTP Basic authentication for PAPI Web Service.

To configure HTTP Basic authentication:

Edit PAPI Web Service configuration and select the HTTP Basic authentication option.
See Editing PAPI Web Service Configuration on page 18
The next time you start PAPI Web Service application, HTTP Basic authentication is activated.

Configure your web services client to use HTTP Basic authentication when it authenticates against PAPI Web
Service.

The way of doing this depends on the programming language used to code your client.

For example, for a client using Java JAX-WS stack you need to add the following method, and invoke it before
executing any operation.

i mport java.util.Mp;
i mport javax.xml .ws. Bi ndi ngProvi der;

...
private static void addHtt pBasi cAut henti cati on(Papi WebSer vi ce papi WebSer vi cePort)
Map<Stri ng, Obj ect > request Context = ((Bi ndi ngProvi der)
papi WebSer vi cePort) . get Request Cont ext () ;

r equest Cont ext . put (Bi ndi ngPr ovi der . USERNAME_PROPERTY, "test");
r equest Cont ext . put (Bi ndi ngPr ovi der . PASSWORD PROPERTY, "test");

Il ..

22| ALBPM | ALBPM PAPI Web Service

Configuring PRESET Authentication

A PRESET is a set of properties that you can define in adi rect ory. xm file for different purposes. This mechanism
of authentication is only available for Enterprise installations. The following procedures shows you how configure
PRESET authentication for PAPI Web Service.

To configure PRESET authentication:

1. Use the ant task managedirectory, to add a PRESET with a valid user and password to the di r ect ory. xm file that
corresponds to the PAPI Web Service web application.

The directory. xm file for PAPI Web Service web application is located under
BEA _HOVE/ al bpn6. 0/ ent er pri se/ webapps/ papi ws/ VEB- | NF. This file is a copy of the xml file named after
the Directory Configuration name located under BEA_HOME/ al bpn®. O/ ent er pri se/ webapps/ conf .

See managedirectory ant task .

2. Edit PAPI Web Service configuration and enter the PRESET name in the field labeled "Set PRESET ID for PRESET
authentication™.

See Editing PAPI Web Service Configuration on page 18

The next time you start the PAPI Web Service application, PRESET authentication is activated.

PAPI Web Service Examples

You can develop a PAPI Web Service client in different programming languages. Some languages may even provide
more than one stack to develop a web service client. This section shows examples of PAPI Web Service clients developed
in different languages and stacks.

Java JAX WS Client Example

This section shows you how to develop a Java client using the JAX WS stack. It uses the PAPI Web Service to retrieve
a list of process instances visible to the connected user.

This example contains an analysis of the code of a PAPI Web Service client developed using JAX WS. The source code
includes:

« A set of ant scripts to generate the stubs from the WSDL, compile the code and run it.
* Alib directory containing the external libraries needed to code an compile the JAX-WS client.

You can use this project as a basis to develop more complex examples. To do this you have to replace the class
Papi WsJaxWsExanpl e by the classes you develop, and change target run in the ant script so that it executes the new
class.

A Java JAX-WS client contains two different type of classes:

e JAX-WS portable artifacts
« Client Java classes

JAX-WS portable artifacts

The web service client code uses these artifacts to operate with PAPI Web Service. JAX-WS provides a tool called
Wsimport to generate these classes based on the WSDL PAPI Web Service. When you run Wsimport using PAPI Web
Service WSDL as an input argument it generates the following classes:

« Service Endpoint Interface

e Service

» Exception classes

« Java classes mapped from the schema types referenced in the WSDL

http://edocs.bea.com/albsi/docs60/anttasks/fuego.tools.ant.enterprise.taskdefs.ManageDirectoryFileTask.html

ALBPM | ALBPM PAPI Web Service | 23

This example uses Wsimport ant task to generate this artifacts. For information about Wsimport, see
https: //jax-ws.dev.java.net/nonav/2.1.2/docs/wsimport.html .

Client Java Classes

A PAPI Web Service client includes one or more Java classes that contain the code to invoke PAPI Web Service and
operate with it. You have to code this classes yourself. The code in these classes uses JAX-WS portable artifacts to
access the web service and to operate with it.

The client shown in this example contains only one class because it is a simple example. The code in this class performs
the following actions:

* Invokes the web service.
» Authenticates using Username Token Profile and HTTP authentication.
» Uses JAX-WS portable artifacts to obtain the list of process instances.

For a detailed analyses of this class, see JAXWS Client Main Class.

Download

You can download the set of java classes of this example from
http://edocs.bea.convalbsi/docs60/resources/papi_ws/ALBPM-PapiWs-JaxWs-Example.zip . For information on how
to run this example seeRunning Java JAX WS Client Example on page 27.

JAX-WS Client Main -Class
This section analyzes the main-class of the JAX-WS client example step by step.

Programming a JAX-WS Client
The typical steps you have to follow to use PAPI Web Service with JAX-WS stack are:

* Import the required libraries.

* Initialize the web service client.
« Configure authentication.

e Operate with PAPI Web Service.

Import the Required Libraries

This example uses classes formj ava. net, j avax. xm and com sun. xmi . ws packages. You have to import these
classes to be able to use them in your code. The following code imports the classes from these packages that are used
in this example.

i mport java.net. Ml f ormedURLExcepti on;

i mport java.net. URL;

i nport java.util. Map;

i mport javax.xm . nanmespace. QNane;

i mport javax.xm .soap. SCAPEl enent ;

i mport javax.xnl .soap. SOAPExcepti on;

i nport javax.xm .soap. SOAPFact ory;

i mport javax.xmn .ws. Bi ndi ngProvi der;

i mport javax.xm .ws. Service;

i mport com sun. xml . ws. api . ressage. Header ;

i nport com sun. xm . ws. api . nessage. Header s;
i mport com sun. xm . ws. devel oper . WEBi ndi ngPr ovi der;

You also have to import the automatically generated JAX-WS portable artifacts. It is common to call these classes stubs.

i nport stubs. | nstancel nf oBean;
i mport stubs. | nstancel nfoBeanlLi st;
i mport stubs. Operati onExcepti on_Excepti on;

https://jax-ws.dev.java.net/nonav/2.1.2/docs/wsimport.html
https://jax-ws.dev.java.net/nonav/2.1.2/docs/wsimport.html
c_Java_JAX_WS_Client_Step_by_Step.xml
http://edocs.bea.com/albsi/docs60/resources/papi_ws/ALBPM-PapiWs-DotNet-Example.zip
http://edocs.bea.com/albsi/docs60/resources/papi_ws/ALBPM-PapiWs-DotNet-Example.zip

24| ALBPM | ALBPM PAPI Web Service

i mport stubs. Papi WebSer vi ce;
i mport stubs. Papi WebSer vi ce_Servi ce;
i nport stubs. StringlLi stBean;

Initialize the Web Service Client

To invoke PAPI Web Service you have to create a Ser vi ce object. The constructor of a service object receives an URL
object that contains the URL of the WSDL. In this example the URL of the WSDL is passed as an argument to the main
method.

public class Papi WJaxWsExanpl e {
private static final String SECURI TY_NAMESPACE =

"http://docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss-wssecurity-secext-1.0. xsd";

public static void main(String[] args) {

try {
String endPoint = args[O0];
Name gNane = new QName("http://bea. coni al bpm Papi WebSer vi ce",
" Papi WebSer vi ce");
Service service = Papi WebServi ce_Servi ce. creat e(new URL(endPoi nt), gNane);

To be able to invoke operations over PAPI Web Service you have to obtain a Papi WebSer vi ce object. Papi WebSer vi ce
exposes all the operations that you can invoke remotely over PAPI Web Service.

Papi WebSer vi ce papi WebServi cePort = servi ce. get Port (Papi WebSer vi ce. cl ass) ;

If there is a problem accessing the WSDL endpoint the URL constructor throws a Mal f or mredURLExcept i on, SO you
need to call it inside a try-catch block.

[/... Configure Authentication
//... Operate with PAPI Wb Service
} catch (Ml formedURLException e) {
System out . println("Could not connect to the web service endpoint");
e.print StackTrace();

Configure Authentication

Before invoking any operation over the web service the client has to authenticate itself. This example shows you how
to use JAX-WS with Username Token Profile and HTTP Basic authentication. Usually you choose one of these two
mechanisms because PAPI Web Service only uses the second one in case the first authentication mechanism fails. For
more information on how authentications mechanisms work in PAPI Web Service, see PAPI Web Service Security
Authentication on page 19.

The code for this authentication mechanisms is divided into two methods, one for each mechanism. These methods
should be invoked before invoking any operation over the web service.

addUser naneTokenPr of i | e(papi WebSer vi cePort) ;
addHt t pBasi cAut henti cati on(papi WebSer vi cePort);

The method addUser naneTokenPr of i | e() configures Username Token Profile authentication. Some of the operations
performed in this method throw aSOAPExcept i on, so you need to call them inside a try-catch block.

ALBPM | ALBPM PAPI Web Service | 25

This example adds the header programmatically but you can also configure Username Token Profile using Web Services
Interoperability Technologies (WSIT) from Metro Web Services stack. For information about WSIT,
seehttp://wsit.dev.java.

private static voi d addUser naneTokenProf i | e(Papi WebSer vi ce papi WebSer vi cePort)
t hrows SOAPException {
try {
SQAPFact ory soapFactory = SOAPFact ory. newl nstance();
Mane security@anme = new QNanme(SECURI TY_NAMESPACE, "Security");
SOAPE!l enent security = soapFactory. createEl enent (securityQ\ane);
Nane t okenQNanme = new QNane(SECURI TY_NAMESPACE, "User naneToken");
SOAPE!l enrent t oken = soapFactory. creat eEl enent (t okenQNane) ;
Nane user QNane = new QNanme(SECURI TY_NAMESPACE, "Usernane");
SQAPE!l enent user nane = soapFactory. creat eEl enent (user QNane) ;
user nane. addText Node("test");
Nanme passwor dQName = new QName(SECURI TY_NAMESPACE, "Password");
SOAPEl ement password = soapFactory. cr eat eEl enent (passwor dQNane) ;
passwor d. addText Node("test");
t oken. addChi | dEl enent (user nane) ;
t oken. addChi | dEl ermrent (passwor d) ;
security. addChi | dEl enent (t oken);
Header header = Headers. create(security);
((WBBi ndi ngProvi der) papi WebServi cePort) . set Qut boundHeader s(header) ;
} catch (SCAPException e) {
System out . println("Coul d not configure Username Token Profile authentication");

e.printStackTrace();

The method addHt t pBasi cAut henti cati on() configures HTTP Basic authentication by obtaining the request
context and adding it the username and password properties.

private static void addHtt pBasi cAut henti cati on(Papi WebSer vi ce papi WebServi cePort) {
Map<String, Object> request =
((Bi ndi ngProvi der) papi WebServi cePort). get Request Cont ext () ;
request . put (Bi ndi ngProvi der. USERNAME_PROPERTY, "test");
request . put (Bi ndi ngProvi der. PASSWORD PROPERTY, "test");

Operate with PAPI Web Service

Once PAPI Web Service succesfully authenticates the client, the client is ready to perform operations over the web
service.

The following code retrieves a list of available processes by invoking the method pr ocessesGet | ds() over a

Papi WebSer vi ce object. It then iterates over them using those ids to obtain the instances for each process by invoking
the method pr ocessGet | nst ances() over the Papi WebSer vi ce object.If there is a problem performing any of the
requested operations, this method throws an Oper at i onExcept i on, S0 you need to invoke it inside a try-catch block.
Finally it iterates over those instances invoking the method get | d() and prints its result.

try {
StringLi st Bean processlds = papi WebSer vi cePort . processesGet | ds(true);

for (String processld : processlds.getStrings()) {
Systemout. println("\nProcess: " + processld);
I nst ancel nf oBeanLi st i nstances =
papi WebSer vi cePort. processCGet | nst ances(processld);
for (Instancel nfoBean instance : instances.getlnstances()) {
Systemout.println("->" + instance.getld());
}

} catch (OperationExcepti on_Exception e) {
Systemout. println("Could not performthe requested operation");

http://wsit.dev.java.net

26 | ALBPM | ALBPM PAPI Web Service
e.print StackTrace();

Complete Code Example

The following class contains all the steps described in this section.

package exanpl e;

i mport java. net. Mal f or mredURLExcepti on;

i mport java. net. URL;

i mport java.util.Mp;

i mport javax.xml . namespace. QNane;

i mport javax.xm .soap. SOAPEl enent ;

i mport javax.xnl .soap. SOAPExcepti on;

i mport javax.xm .soap. SOAPFact ory;

i mport javax.xmnl .ws. Bi ndi ngProvi der;

i mport javax.xm .ws. Servi ce;

i mport com sun. xm . ws. api . nressage. Header ;

i mport com sun. xm . ws. api . ressage. Header s;
i mport com sun. xm . ws. devel oper. WSBi ndi ngPr ovi der ;
i mport stubs. | nstancel nf oBean;

i nport stubs. | nstancel nf oBeanlLi st ;

i mport stubs. Operati onExcepti on_Excepti on;
i mport stubs. Papi WebSer vi ce;

i mport stubs. Papi WebSer vi ce_Servi ce;

i nport stubs. StringlLi stBean;

public class Papi WJaxWsExanpl e {
private static final String SECURI TY_NAMESPACE =

"http://docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss- wssecurity-secext-1.0. xsd";
public static void main(String[] args) {

try {
FEEEELEEEEErrrrrrrl Initialize the web service client [//1111TTTTTT11111]
String endPoint = args[O0];
Nanme gNane = new QName("http://bea. conl al bpm Papi WebSer vi ce",
" Papi WebSer vi ce");
Servi ce service = Papi WbServi ce_Servi ce. creat e(new URL(endPoi nt), gNane);
Papi WebSer vi ce papi WebServi cePort = servi ce. get Port (Papi WebSer vi ce. cl ass) ;

FEEELEEEEEErrrrr D Configure authentication ////11111T1T1111T11]1
addUser naneTokenPr of i | e(papi WebSer vi cePort) ;
addHt t pBasi cAut henti cati on(papi WebSer vi cePort);

LELTETETETETErrrrll Operate with PAPL Web Service (/1111 11111T111111]1
try {
StringLi st Bean processlds = papi WebServi cePort. processesGet|ds(true);
for (String processld : processlds.getStrings()) {
Systemout. println("\nProcess: " + processld);
I nst ancel nf oBeanLi st i nstances =
papi WebSer vi cePort. processCGet | nst ances(processld);
for (Instancel nfoBean instance : instances.getlnstances()) {
Systemout.println("->" + instance.getld());
}

} catch (OperationExcepti on_Exception e) {
Systemout. println("Could not performthe requested operation");
e.print StackTrace();

}

} catch (Ml fornedURLException e) ({
System out. println("Could not connect to the web service endpoint");
e.print StackTrace();

ALBPM | ALBPM PAPI Web Service | 27

private static void addHtt pBasi cAut henti cati on(Papi WebSer vi ce papi WebSer vi cePort) {
Map<String, Object> request =
((Bi ndi ngProvi der) papi WebSer vi cePort) . get Request Cont ext () ;
request . put (Bi ndi ngProvi der . USERNAME_PROPERTY, "test");
request . put (Bi ndi ngProvi der . PASSWORD_PROPERTY, "test");

}
private static void addUser nameTokenPr of i | e(Papi WebSer vi ce papi WebServi cePort) {
try {
SOAPFact ory soapFactory = SOAPFact ory. newl nstance();
Nanme security@ame = new QName(SECURI TY_NAMESPACE, "Security");
SOAPE!l emrent security = soapFactory. createEl enent (securityQ\ane);
MNane tokenQNanme = new QNane(SECURI TY_NAMESPACE, " User naneToken");
SQOAPE!l enent token = soapFactory. creat eEl enent (t okenQNane) ;
Nanme user Nane = new QNanme(SECURI TY_NAMESPACE, "Usernane");
SQAPE!l erent user name = soapFactory. creat eEl enent (user QNane) ;
user nane. addText Node("test");
Nanme passwor dQName = new QNanme(SECURI TY_NAMESPACE, " Password");
SQAPE!l emrent password = soapFactory. creat eEl enent (passwor dQNane) ;
passwor d. addText Node("test");
t oken. addChi | dEl enent (user nane) ;
t oken. addChi | dEl enent (passwor d) ;
security. addChi | dEl ement (t oken);
Header header = Headers.create(security);
((WBBi ndi ngProvi der) papi WebServi cePort). set Qut boundHeader s(header) ;
} catch (SQAPException e) {
System out. println("Coul d not configure Usernane Token Profil e authentication");
e.printStackTrace();
}
}

Running Java JAX WS Client Example

The example contains all the necessary libraries to generate the stubs, compile and run it. These libraries are contained
in the directory lib. It also contains an ant script that contains all the necesary configurations to compile and run the
client.

To run the example you need to install Ant. You can download it from http://ant.apache.org/bindownload.cgi

To Run this example:

1. Enable PAPI Web Service for an already existing project.
See Enabling PAPI Web Service on page 15.
2. Download the example from
http://edocs.bea.conval bsi/docs60/resources/papi_ ws/ALBPM-PapiWs-JaxWs-Example.zip.
3. Unzip the file. This will generate a directory named ALBPM-PapiWs-JaxWs-Example.
4. Open a command-line sesssion.

5. Change to the generated directory.
For example in Linux:cd ALBPM Papi - JaxWé- Exanpl e.

6. Type ant run.
Executing this task generates the stubs the client code needs to run, using the ant task JAX WS provides for this
purpose, and compiles the classes used in the example before running them.

7. Enter PAPI Web Service's endpoint.

You can copy this from the link displayed next to WSDL in the Web Services Console. For information on how to
launch the Web Services Console see PAPI Web Service Configuration Console on page 17.

http://ant.apache.org/bindownload.cgi
http://edocs.bea.com/albsi/docs60/resources/papi_ws/ALBPM-PapiWs-JaxWs-Example.zip
http://edocs.bea.com/albsi/docs60/resources/papi_ws/ALBPM-PapiWs-JaxWs-Example.zip

28 | ALBPM | ALBPM PAPI Web Service

After executing this procedure the example program runs. You will see a list of the processes deployed in the running
process engine and below them a list of all the in flight instances in each process.

PAPIWeb Service .NET Client Example

This section shows an example of a client developed with .NET Framework. This example uses PAPI Web Service to
retrieve a list of process instances visible to the connected user.

Download

You can download the complete code of this example from
http: //edocs.bea.comval bsi/docsb0/resources/papi ws/ALBPM-PapiWs-DotNet-Example.zip . This project was developed
using .NET Framework 2.0.5 and Microsoft Web Service Enhancements 3.0.

The syntax used for this example is C#.

.NET Client Main-Class
This section analyzes the main-class of the .NET client example step by step.

Programming a .NET Client
The typical steps you have to follow to use PAPI Web Service with JAX-WS stack are:

e Import the required libraries.

« Initialize the web service.

« Configure authentication.

« Operate with PAPI Web Service.

Import the Required Libraries

This example uses classes from Syst em Web. Ser vi ces. Prot ocol s and Syst em Net packages. You have to import
these classes to be able to use them in your code. The following code imports the classes from these packages that are
used in this example.

usi ng System Web. Servi ces. Prot ocol s;
usi ng System Net;

The following code imports the classes that the client needs to perform authentication.

usi ng M crosoft.Wb. Servi ces3. Security. Tokens;
usi ng M crosoft.Wb. Servi ces3. Desi gn;

You also have to import the automatically generated stubs. In the example project these classes were generated in the
package PAPI _W52_Sanpl e. papi ws.

usi ng PAPI _WB2_Sanpl e. papi ws;

Initialize the Web Service

The following code instantiates a web service proxy. This proxy will provide access to the operations exposed by PAPI
Web Service.

papi ws. Papi WebSer vi ceWse proxy = new papi ws. Papi WebSer vi ceWse() ;

http://edocs.bea.com/albsi/docs60/resources/papi_ws/ALBPM-PapiWs-DotNet-Example.zip
http://edocs.bea.com/albsi/docs60/resources/papi_ws/ALBPM-PapiWs-DotNet-Example.zip

ALBPM | ALBPM PAPI Web Service | 29

Configure Authentication

Before invoking any operation over the web service the client has to authenticate. This example uses plain text Username
Token Profile authentication. The authentication mechanism has to match the one you define in WSE 3 policy settings.

The following code creates a username token and sets it as the client credentials. Then it it sets the client security policy
by passing the id of this policy as an argument, to the method Set Pol i cy().

User naneToken token = new User naneToken("test", "test", PasswordOption. SendPl ai nText);
proxy. Set C i ent Credent i al <User nameToken>(t oken) ;
proxy. Set Pol i cy(" ALBPM Pol i cy");

Operate with PAPI Web Service

The following code retrieves a list of available processes by invoking the method pr ocessesGet | ds over a

Papi WebSer vi ceWse object. It then iterates over them using those ids to obtain the instances for each process by
invoking the method pr ocessGet | nst ances() over the Papi WebSer vi ceWse object.If there is a problem performing
any of the requested operations, this method throws a SoapExcept i on, so you need to invoke it inside a try-catch block.
It is a good practice to wrap this exception in user-defined exception. Finally it iterates over those instances invoking
the method get | d() and prints its result.

try {
...
foreach (string processld in processlds)
{
Consol e. Qut. WitelLine("\n Process: " + processld);
i nst ancel nfoBean[] instances = proxy.processCetl nstances(processld);
foreach (instancel nfoBean instance in instances)
Consol e. Qut. WiteLine(" -> " + instance.id);
}
}
catch (SoapException e)
{
Oper ati onException oe = new Operati onExcepti on(e. Message) ;
t hrow oe;
}

Complete Code Example

The following class is the main class of the .NET PAPI Web Service client example.

usi ng System

usi ng System Col | ecti ons. Generi c;

usi ng System Text;

usi ng System Web. Servi ces. Prot ocol s;
usi ng System Net;

usi ng PAPI _WS2_Sanpl e. papi ws;

usi ng M crosoft.Wb. Servi ces3. Security. Tokens;
usi ng M crosoft.Wb. Servi ces3. Desi gn;

nanespace PAPI _W52_ Sanpl e
{

cl ass Program

{
static void Main(string[] args)

//Set a custom handl er for unhandl ed excepti ons (optional)
AppDorrai n. Cur r ent Donmai n. Unhandl edExcepti on += Program Unhandl edExcept i onHandl er;

30| ALBPM | ALBPM PAPI Web Service

try
[EEETEEEEErrrrrrll Initialize the web service client /1111111 11TTT11111
papi ws. Papi WebSer vi ceWse proxy = new papi ws. Papi WebSer vi ceWse();

[IETEEEErrrrrrirll Configure authentication [/ 111 11TTTTTTTTTTT
User naneToken token = new User naneToken("test", "test",
Passwor dOpt i on. SendPl ai nText) ;
proxy. Set C i ent Credent i al <User naneToken>(t oken) ;
proxy. Set Pol i cy(" ALBPM Pol i cy");

//set tinmeout and encoding
proxy. Ti meout = 60000;
proxy. Request Encodi ng = Encodi ng. UTFS;

TIETELEEErrririllll Operate with PAPI Web Service [/11111TTTTTTTTTTTT
string[] processlds = proxy.processesGCetlds(false);

foreach (string processld in processlds)

Consol e. Qut. WitelLine("\n Process: " + processld);
i nst ancel nfoBean[] instances = proxy.processGetl|nstances(processld);

foreach (instancelnfoBean instance in instances)

Consol e. Qut. WiteLine(" -> " + instance.id);

}
catch (SoapException e)

Oper ati onException oe = new QOperati onExcepti on(e. Message) ;
t hr ow oe;

}

static public void Unhandl edExcepti onHandl er (obj ect sender,
Unhandl edExcept i onEvent Args e)
{

Consol e. Error. Wi teLi ne("Unhandl ed Exception: \n" +
e. Excepti onCbj ect. ToString());
Envi ronment . Exi t(-1);
}

}
public class Operati onException : Exception
publ i c OperationException(String nmessage) : base(nessage)

}

	Contents
	ALBPM Process API (PAPI)
	ALBPM Process API (PAPI)
	What is PAPI?
	Process API Usage Scenarios
	Process API Architecture Overview
	Structure of a Java PAPI Application
	Writing Your First Java PAPI Program
	Compiling a Java PAPI Program
	Running a Java PAPI Program

	ALBPM PAPI Web Service
	What is PAPI Web Service?
	What's New in PAPI Web Service 2.0?
	PAPI Web Service Usage Scenarios
	PAPI Web Service Architecture Overview
	Enabling PAPI Web Service
	Enabling PAPI Web Service in ALBPM Studio
	Enabling PAPI Web Service in ALBPM Enterprise
	Installing PAPI Web Service on a J2EE Application Server
	Installing PAPI Web Service on WebLogic Server
	Build and Deploy Applications (.ear)
	Installing PAPI Web Service on WebSphere Application Server

	PAPI Web Service Configuration
	PAPI Web Service Configuration Console
	Launching PAPI Web Service Console in ALBPM Studio
	Launching PAPI Web Service Console in ALBPM Enterprise

	Editing PAPI Web Service Configuration
	Editing PAPI Web Service Configuration in Studio
	Editing PAPI Web Service Configuration in ALBPM Enterprise

	Configuring PAPI Web Service Log

	PAPI Web Service Security Authentication
	Configuring Single Sign On Authentication
	Configuring Username Token Profile
	Configuring HTTP Basic Authentication
	Configuring PRESET Authentication

	PAPI Web Service Examples
	Java JAX WS Client Example
	JAX-WS Client Main -Class
	Running Java JAX WS Client Example
	PAPI Web Service .NET Client Example
	.NET Client Main-Class

