
AquaLogic BPM Process API
Developer Guide

Version: 6.0

Contents

ALBPM Process API (PAPI)..3
ALBPM Process API (PAPI)..3

What is PAPI?..3

Process API Usage Scenarios...3

Process API Architecture Overview...4

Structure of a Java PAPI Application...5

Writing Your First Java PAPI Program...6

Compiling a Java PAPI Program..10

Running a Java PAPI Program...11

ALBPM PAPI Web Service..13
What is PAPI Web Service?...13

What's New in PAPI Web Service 2.0?..13

PAPI Web Service Usage Scenarios...14

PAPI Web Service Architecture Overview...14

Enabling PAPI Web Service...15

Enabling PAPI Web Service in ALBPM Studio...15

Enabling PAPI Web Service in ALBPM Enterprise...15

Installing PAPI Web Service on a J2EE Application Server..16

PAPI Web Service Configuration...17

PAPI Web Service Configuration Console...17

Editing PAPI Web Service Configuration..18

Configuring PAPI Web Service Log..19

PAPI Web Service Security Authentication..19

Configuring Single Sign On Authentication..20

Configuring Username Token Profile..20

Configuring HTTP Basic Authentication...21

Configuring PRESET Authentication..22

PAPI Web Service Examples..22

Java JAX WS Client Example..22

JAX-WS Client Main -Class..23

Running Java JAX WS Client Example...27

PAPI Web Service .NET Client Example...28

.NET Client Main-Class...28

2 | ALBPM | TOC

ALBPM Process API (PAPI)

This guide is an introduction to ALBPM Process API (PAPI). It contains relevant information about the API architecture,
an analysis of the structure of a Java application using PAPI, and instructions on how to compile and run a Java PAPI
application.

ALBPM Process API (PAPI)
This guide is an introduction to ALBPM Process API (PAPI). It contains relevant information about the API architecture,
an analysis of the structure of a Java application using PAPI, and instructions on how to compile and run a Java PAPI
application.

What is PAPI?
PAPI is a Java client-server API that allows you to interact with processes deployed on an ALBPM Process Execution
Engine.

PAPI is a Java API a Java API that can be invoked by any Java application written in Java 1.5.

PAPI provides the following operations:

• Create, send and abort process instances
• Select and unselect process instances
• Reassign process instances
• Audit an instance
• Suspend and resume process instances
• Grab and un-grab process instances
• Run intactive and global interactive activities
• Run external tasks
• Send notifications
• Get a list of process instances
• Get a list of deployed processes
• List the activities in a deployed process
• Get the latest version of a deployed process
• Manage views and presentations
• Manage attachments

ALBPM WorkSpace is built on PAPI. All the communication between the WorkSpace and the Process Engine is done
through PAPI.

The complete reference documentation for PAPI is available at
http://edocs.bea.com/albsi/docs60/papi_javadocs/index.html

Process API Usage Scenarios
PAPI provides a way for external applications to interact with ALBPM.

You should use PAPI to interact with external or legacy applications. Some common usage scenarios are:

ALBPM | ALBPM Process API (PAPI) | 3

http://edocs.bea.com/albsi/docs60/papi_javadocs/index.html
http://edocs.bea.com/albsi/docs60/papi_javadocs/index.html

• A web application that needs to create a process instance in ALBPM with the information entered by the user
• An external application whose execution final result is the execution of an ALBPM process
• An external application that need to perform a search, or to list information about processes in ALBPM
• An external application that needs to trigger the execution of an activity
• Batch or automatic processing of process instances

Although you can use PAPI to replace ALBPM WorkSpace with a similar graphical application interface, consider
customizing ALBPM WorkSpace to suit your needs instead. Replacing ALBPM WorkSpace causes you to lose-and
then to have to rebuild-most of the out-of-the-box functionality WorkSpace provides including, for example, both the
authentication framework and the interactive execution framework.

Process API Architecture Overview
PAPI is a Java API that allows you to build a client to connect to the engine and perform operations on the deployed
processes.

When PAPI is initialized, the connected user is authenticated against the data in the directory service. Once authenticated,
the Java client using PAPI can interact with any of the engines configured in the directory service.

PAPI must connect to a Process Execution Engine only to search for or operate on process instances and deployed
processes. It does not need to connect to an Engine if a request or operation requires only data stored in the Directory
Service.

The following operations do not require a connection to the engine:

• List available views
• Search for a specific view
• List available presentations
• List participants in the organization

You can successfully execute these operations even when the Process Engine is down.

PAPI can connect to one or more engines at a time, provided they are configured in the same directory service. When
a client makes a request, PAPI automatically routes this request to the corresponding engine.

The following diagram shows interaction between a PAPI client, the Directory Service and the Process Engine in runtime.
The diagram shows a custom Java client and ALBPM Workspace that is also a PAPI client.

4 | ALBPM | ALBPM Process API (PAPI)

Figure 1: PAPI Components Runtime Diagram

Structure of a Java PAPI Application
A Java PAPI application should follow a certain structure. The different methods that you need to invoke before and
after performing operations with PAPI determine this structure.

A Java application that uses PAPI goes through the following stages:

1. Initialize the API.
2. Establish a session.
3. Operate with PAPI.
4. Close the session.
5. Release API resources.

Initialize the API

The ProcessService class is the main entry point to the API. Before you start using PAPI, you must create a
ProcessService object.

A ProcessService acts as a factory for ProcessServiceSession objects. To create a session, you must first create
and configure a ProcessService.

When you create a ProcessService object, a connection to the Directory Service is established. This connection is
used to load ALBPM's environment configuration information and later to authenticate the user creating the process
service session.

ALBPM | ALBPM Process API (PAPI) | 5

Establish a Session

A ProcessServiceSession represents the dialog between a participant and the Directory Service or one or more
engines.

You need a ProcessServiceSession to manage and obtain information about process instances, participants, views,
and presentations.

To create a ProcessServiceSession you need to provide the valid credentials--for example, the user identifier and
password--of a participant that exists in the Directory Service.

Operate with PAPI

Once you obtain a ProcessServiceSession you are ready to query for information and invoke any of the operations
provided by PAPI.

Close the Session

You need to close PAPI sessions before your application finishes so that caches are cleared and the connections to the
engine are closed.

Leaving sessions open may both cause a memory leak and use network resources unnecessarily. This is because the
allocated resources are never freed and the Engine continues to send information to the connected participant.

Leaving sessions open can also cause problems in updating a participant’s role assignment. Because changes to role
assignments are applied only after the last session has been closed, leaving a session open indefinitely means that changes
to roles and permissions are never applied.

PAPI sessions do not expire by timing out. The application using PAPI is responsible for closing open sessions.

Once the session is closed it cannot be used again. Trying to invoke a method over a closed session results in an exception.

Release API resources

It is advisable to close the ProcessService so that the resources it uses are released.

When a ProcessService is closed, the following events occur:

• All opened PAPI sessions are closed.
• Temporary files used by the API are deleted.
• The connection to the Directory Service is closed.
• Caches used by PAPI are cleared.

Writing Your First Java PAPI Program
This section shows you how to build a Java PAPI Client that retrieves a list of process instances visible to the connected
user.

Programming a Java PAPI Client

The typical steps you have to follow when building a Java PAPI Client are:

• Import the required libraries.
• Create a process service.
• Create a process service session.
• Perform operations with PAPI.
• Close the process service.

6 | ALBPM | ALBPM Process API (PAPI)

Import the Required Libraries

You need to import PAPI classes to be able to use them in your code. The following code imports the PAPI classes
needed for this example.

import fuego.papi.CommunicationException;
import fuego.papi.InstanceInfo;
import fuego.papi.ProcessService;
import fuego.papi.ProcessServiceSession;
import fuego.papi.OperationException;

Create a Process Service

In order to create a ProcessService you need a java.util.Properties object containing its configuration. You can
create this property object and build it within your Java code, or you can load it from a properties file. This example
adds the properties within the code for practical reasons.

The two mandatory properties you need to specify are the directory id and the path to the directory.xml file.

Properties configuration = new Properties();
properties.setProperty(ProcessService.DIRECTORY_ID, "default");
properties.setProperty(ProcessService.DIRECTORY_PROPERTIES_FILE, "directory.xml");

To create a ProcessService object you need to invoke the factory method ProcessService.create() from
the class ProcessService passing it the Property object as an argument.

If there is a problem locating the Directory Service, this method throws a CommunicationException , so you need
to call it inside a try-catch block.

try {
 ProcessService processService = ProcessService.create(configuration);
 //...
} catch (CommunicationException e) {
 System.out.println("Could not connect to Directory Service");
 e.printStackTrace();
}

Create a Process Service Session

To create a ProcessServiceSession you must invoke the factory method createSession over the
ProcessService object you've just created. This methods requires three String arguments:

• user: an existing participant in the Directory Service.
• password: the participant's password.
• host: the host from which the conection is stablished. This is an optional argument, it is used for monitoring purposes,

so if this information is not available this argument's value can be null.

If there is a problem authenticating the specified participant, this method throws an OperationException , so you
need to invoke it inside a try-catch block.

try {
 //...
 ProcessServiceSession session = processService.createSession("user", "password",
"host");
 //...
} catch (OperationException e) {
 System.out.println("Could not perform the requested operation");
 e.printStackTrace();

ALBPM | ALBPM Process API (PAPI) | 7

http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessService.html
http://java.sun.com/javase/6/docs/api/java/util/Properties.html
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessService.html
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessService.html#create(java.util.Properties)
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/CommunicationException.html
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessServiceSession.html
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessService.html#createSession(java.lang.String,%20java.lang.String,%20java.lang.String)
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/OperationException.html

}

Perform Operations with PAPI

The following code retrieves a list of available processes by invoking the method processesGetIds() over a
ProcessServiceSession object.

It then iterates over them using those ids to obtain the process instances for each process by invoking the method
processGetInstances() over the session object.If there is a problem performing any of the requested operations,
this method throws an OperationException , so you need to invoke it inside a try-catch block.

Finally it iterates over those instances invoking the method getId() and prints its result.

try {
 //...
 System.out.println("Show Instances by process:");
 for (String processId : session.processesGetIds()) {
 System.out.println("\n Process: " + processId);
 for (InstanceInfo instance : session.processGetInstances(processId)) {
 System.out.println(" -> " + instance.getId());
 }
 }
} catch (OperationException e) {
 System.out.println("Could not perform the requested operation");
 e.printStackTrace();
}

Close the Process Service Session

To close the session, invoke the method close() over the ProcessServiceSession object.

session.close();

Closing a session releases all the resources this session is using. After calling the method close(), the session can no
longer be used. If you try to invoke a method on a closed session, its execution fails and a SessionClosedException

is thrown.

Close the Process Service

To close the ProcessService object, invoke the method close() over the ProcessService object.

processService.close();

This releases all the resources used by PAPI, clears the caches, deletes the temporary files, and closes the connections
to the Process Engine and the Directory Service.

Complete Code Example

The following class contains all the steps described in this section.

package papidoc.examples;

import fuego.papi.CommunicationException;
import fuego.papi.InstanceInfo;
import fuego.papi.ProcessService;
import fuego.papi.ProcessServiceSession;
import fuego.papi.OperationException;
import java.util.Properties;

8 | ALBPM | ALBPM Process API (PAPI)

http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessServiceSession.html#processesGetIds()
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessServiceSession.html
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessServiceSession.html
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessServiceSession.html#processGetInstances(java.lang.String)
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessServiceSession.html#processGetInstances(java.lang.String)
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/OperationException.html
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/InstanceInfo.html#getId()
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessServiceSession.html#close()
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/exception/SessionClosedException.html
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessService.html#close()
http://edocs.bea.com/albsi/docs60/papi_javadocs/fuego/papi/ProcessService.html

public class PapiExample {

 public static void main(String[] args) {

 /////////////////// API Initialization ///////////////////
 Properties configuration = new Properties();
 configuration.setProperty(ProcessService.DIRECTORY_ID, "default");
 configuration.setProperty(ProcessService.DIRECTORY_PROPERTIES_FILE,
"directory.xml");
 configuration.setProperty(ProcessService.WORKING_FOLDER, "/tmp");

 try {
 ProcessService processService = ProcessService.create(configuration);

 /////////////////// Establish a session ///////////////////
 ProcessServiceSession session = processService.createSession("test", "test",
 "host");

 /////////////////// Operate with PAPI ///////////////////
 for (String processId : session.processesGetIds()) {
 System.out.println("\n Process: " + processId);
 for (InstanceInfo instance : session.processGetInstances(processId)) {
 System.out.println(" -> " + instance.getId());
 }
 }

 /////////////////// Close the session ///////////////////
 session.close();

 /////////////////// Release API Resources ///////////////////
 processService.close();
 } catch (CommunicationException e) {
 System.out.println("Could not connect to Directory Service");
 e.printStackTrace();
 } catch (OperationException e) {
 System.out.println("Could not perform the requested operation");
 e.printStackTrace();
 }
 }
}

The following sequence diagram shows the interaction between the classes used in the example.

ALBPM | ALBPM Process API (PAPI) | 9

Figure 2: PAPI Client Example Sequence Diagram

Compiling a Java PAPI Program
The following procedures show you how to compile from the command line a Java class that uses PAPI.

To compile a Java PAPI program from the command line you need to have a Java SE Development Kit 5 (JDK 5)
installed. You can download the JDK from Sun Developer Network. You may also use the JDK bundled with some
installations of ALBPM Enterprise, which gets installed under BEA_HOME/albpm6.0/enterprise/jre/.

PAPI classes are contained in the fuegopapi-client.jar JAR file, which is distributed with ALBPM Enterprise
under BEA_HOME/albpm6.0/enterprise/client/papi/lib/fuegopapi-client.jar.

1. Open a command-line session.

2. Add the PAPI library to the classpath by setting the environment variable CLASSPATH. The way of doing this
depends on your operating system.

• Linux:

$export CLASSPATH="/bea/albpm6.0/enterprise/client/papi/lib/fuegopapi-client.jar"

• Windows:

C:>set CLASSPATH="C:/bea/albpm6.0/enterprise/client/papi/lib/fuegopapi-client.jar"

10 | ALBPM | ALBPM Process API (PAPI)

http://java.sun.com/javase/downloads/index_jdk5.jsp

3. Compile the Java PAPI program using javac (Java Compiler) provided by the JDK:

javac MyFirstPapiApplication.java

These two steps can be merged into one by using the -classpath option when calling the java compiler:

javac -classpath "C:/bea/albpm6.0/enterprise/client/papi/lib/fuegopapi-client.jar"
MyFirstPAPIApplication.java

A file with the extension .class is generated in the directory where you compiled your program.

Running a Java PAPI Program
The following procedures show you how to run from the command line a Java program that uses PAPI.

To run a Java PAPI program you need to have a Java SE Development Kit 5 (JDK 5) installed. You can download the
JDK from Sun Developer Network. You may also use the JDK bundled with some installations of ALBPM Enterprise,
which gets installed under BEA_HOME/albpm6.0/enterprise/jre/.

PAPI classes are contained in the fuegopapi-client.jar JAR file, which is distributed with ALBPM Enterprise
under BEA_HOME/albpm6.0/enterprise/client/papi/lib/fuegopapi-client.jar.

1. Open a command-line session.

2. If you are not running the program from the same command-line session where you have compiled it, you need to
add the PAPI library to the Java classpath by setting the environment variable CLASSPATH. The way of doing this
depends on your operating system.

• Linux:

$export CLASSPATH="/bea/albpm6.0/enterprise/client/papi/lib/fuegopapi-client.jar"

• Windows:

C:>set CLASSPATH="C:/bea/albpm6.0/enterprise/client/papi/lib/fuegopapi-client.jar"

3. Copy the file directory.xml to the location specified in your properties file or in your PAPI program. The file
directory.xml resides in the directory albpm6.0/enterprise/conf.
In the analyzed example the directory.xml file was copied to the directory from where the example is run. This
location is specified in the following lines of code:

 Properties configuration = new Properties();
 //...
 configuration.setProperty(ProcessService.DIRECTORY_PROPERTIES_FILE, "directory.xml");

4. Run your PAPI program using the java command provided by the JDK:

java MyFirstPapiApplication

This step and step one can be merged into one by using the -classpath option when calling the java command:

java -classpath "C:/bea/albpm6.0/enterprise/client/papi/lib/fuegopapi-client.jar"
MyFirstPAPIApplication

When you run the program you see a list of the deployed processes and their instances. The following lines illustrate
the generated output when executing this program connecting to an engine that has three instances sitting on the deployed
process "Process":

ALBPM | ALBPM Process API (PAPI) | 11

http://java.sun.com/javase/downloads/index_jdk5.jsp

 Process: /Process#Default-1.0
 -> /Process#Default-1.0/1/0
 -> /Process#Default-1.0/3/0
 -> /Process#Default-1.0/2/0

12 | ALBPM | ALBPM Process API (PAPI)

ALBPM PAPI Web Service

This guide contains relevant information about PAPI Web Service architecture, an analysis of the structure of PAPI
Web Service clients written in different languages, and procedures that show you how to modify PAPI Web Service
configuration.

What is PAPI Web Service?
PAPI Web Service is an independent web application built on top of PAPI. This application exposes a subset of PAPI
functionality using SOAP over HTTP.

Using PAPI Web Service to communicate with the Engine has the following advantages over using PAPI:

• You can use it from any programming language that supports XML and HTTP.
• It does not need any external libraries on the client side.
• The application using PAPI Web Service does not need a connection to the Directory Server. This application can

run outside the domain where ALBPM is installed.

There are a few minor disadvantages:

• Performance overhead: PAPI Web Service is a layer on top of PAPI. The web services client communicates with
PAPI using XML. This adds a small overhead that makes PAPI Web Service slightly less performant than using
PAPI directly.

• Attachments functionality is not available.
• PAPI Web Service does not handle complex types. Only methods with primitive and/or catalogued XML schema

type arguments, and primitive return type can be invoked.

What's New in PAPI Web Service 2.0?
PAPI Web Service was completely rewritten based on the feedback obtained from its previous version. This section
describes the features supported by PAPI Web Service 2.0.

The following table shows the difference between PAPI Web Service 2.0 and PAPI Web Service 1.0:

PAPI Web Service 1.0PAPI Web Service 2.0

Bundled with ALBPM Workspace.Independent web application.

Supports only the default configuration.You can modify its default configuration.

RPC/encoded style WSDL SOAP binding.Document/literal wrapped style WSDL SOAP binding.

Does not support any standard authentication mechanisms.You
need to send a session ID every time you invoke an operation.

Supports WS Security Username Token Profile 1.1, HTTP Basic
and Single Sign On (SSO) authentication mechanisms.

Method arguments only support primitive types.Method arguments support calogued schema type objects in
addition to primitive types.

Its semantics are completely different from PAPI's semantics.The signature of the exposed methods matches the signature of
their equivalent methods in PAPI.

Note: PAPI Web Service 1.0 is deprecated. If you still need to use it in ALBPM 6.0 you have to enable and start
ALBPM Classic WorkSpace.

ALBPM | ALBPM PAPI Web Service | 13

PAPI Web Service Usage Scenarios
PAPI Web Service provides access to a considerable subset of PAPI operations. This section describes the scenarios
where PAPI Web Service is more suitable than PAPI.

PAPI Web Service complies with Web Services standards. This allows you to take advantage of the the existing common
infrastructure used by other applications such as load balancers, proxies, security services and monitoring. PAPI Web
Service fits perfectly into a SOA architecture.

Use PAPI Web Service to expose PAPI operations to:

• external applications written in virtually any programming language.
• applications running outside the domain where ALBPM resides.
• applications running behind a fire wall.

PAPI Web Service Architecture Overview
PAPI Web Service is a web service application that exposes a considerable set of PAPI operations.

PAPI Web Service is an independent web application that runs on top of PAPI. PAPI Web Service provides a WSDL
(Web Services Definition Language) descriptor that defines the operations the client can invoke and the complex types
these operations may use. The client application connected to PAPI Web Service, uses SOAP (Simple Object Access
Protocol) over HTTP to invoke any of the functions listed in the WSDL.

PAPI Web Service relies on PAPI to obtain the information the client requests. Then it translates this information into
XML and uses SOAP to send it back to the client.

PAPI Web Service implementation is based on the following:

• JAX-WS 2.0 web service
• WS-I 1.1 compliant
• Document/literal wrapped style WSDL SOAP binding

The following diagram shows the interaction between PAPI Web Service components during runtime.

14 | ALBPM | ALBPM PAPI Web Service

Figure 3: PAPI Web Service Runtime Architecture

Enabling PAPI Web Service
PAPI Web Service is not enabled by default. This section shows the how to enable PAPI Web Service for each of the
possible environment and configurations. These procedures depend on the type and configuration of ALBPM installation.

Enabling PAPI Web Service in ALBPM Studio
The following procedures show you how to enable PAPI Web Service in Studio.

By default PAPI Web Service application is not enabled. To enable PAPI Web Service in Studio:

1. Right-click on the project.

2. Select Engine Preferences.

3. Select Advanced.

4. Check Start PAPI Web Services.

The next time you start the engine PAPI Web Service application is started. To verify this launch PAPI Web Service
Console.

See Launching PAPI Web Service Console in ALBPM Studio on page 18

Enabling PAPI Web Service in ALBPM Enterprise
The following procedures show you how to enable PAPI Web Service in ALBPM Enterprise.

To enable PAPI Web Service:

1. Edit ALBPM Admin Center configuration.

ALBPM | ALBPM PAPI Web Service | 15

2. Select BPM Web Applications tab.

3. Select PAPI Web Services checkbox in the list of BPM web applications to run.
The next time you start BPM Web Applications, PAPI Web Service is started.

The next time you start the engine PAPI Web Service application is started. To verify this launch PAPI Web Service
Console.

See Launching PAPI Web Service Console in ALBPM Enterprise on page 18.

Installing PAPI Web Service on a J2EE Application Server
To install PAPI Web Service when the Process Execution Engine is running on a J2EE application server, you have to
follow the procedures that describe how to install an ALBPM web application on that specific server. This section shows
the procedures for WebLogic Application Sever and WebSphere Application Server.

Installing PAPI Web Service on WebLogic Server
The following procedures show you how to install PAPI Web Service on WebLogic Server

To install PAPI Web Service on WebLogic Server:

1. Build PAPI Web Service Application.

For information on how to build a web application on WebLogic Server, see Build and Deploy Applications (.ear)
on page 16.

This generates two ear files, that correspond to the two supported versions of WebLogic.

2. Choose the ear file that corresponds to the version of the WebLogic Server you are using.

The following table shows the correspondence between the version of WebLogic Server and the generated ear file.

ear FileWebLogic Server Version

07-papiws-XAFDIDS.earWebLogic Server 10

07-papiws-wls92-XAFDIDS.earWebLogic Server 9.2

3. Deploy PAPI Web Service Application.

For information on how to deploy a web application on WebLogic Sever, see Build and Deploy Applications (.ear)
on page 16.

Build and Deploy Applications (.ear)
The ALBPM Process Administrator allows you to bundle the ALBPM applications as .ear files for installation on
WebLogic.

Before creating the ALBPM application archives, you must have an ALBPM Engine for WebLogic configured.

1. Login to ALBPM Process Administrator. By default, it runs on http://host:8686/webconsole.

2. Click on Engines and then click on the name of your ALBPM Engine for WebLogic.
You should see the configuration properties for your Engine.

3. Click on the Basic Configuration tab and then on J2EE Application Server Files.

This page allows you to (re)create the .ear files of those ALBPM applications associated with this Engine.

Note: When you access this page, the Process Administrator gets the status of each of the applications by
contacting ALBPM Deployer. You will get a warning message at the bottom of the page if there was any problem
contacting ALBPM Deployer. If this is the case, make sure the BPM Application Deployer URL (within the
Application Server tab) is correct and that ALBPM Deployer is up and running on WebLogic.

4. Click on the "new" icon () next to each of the applications you want to install.

5. Click on the "install" icon () next to each of the applications you want to install.

16 | ALBPM | ALBPM PAPI Web Service

Attention: This may take several minutes. Do not click any link on the page and do back in your browser until
the page is automatically reloaded. When you click on the icon, ALBPM Process Administrator transfers the
file over to WebLogic's Deployment Manager (by means of ALBPM Deployer) and then WebLogic goes through
the application installation process.

Installing PAPI Web Service on WebSphere Application Server
The following procedures show you how to install PAPI Web Service on WebSphere Application Server.

To install PAPI Web Service on WebSphere Application Server:

1. Build and deploy PAPI Web Service application.

For information on how to build and deploy ALBPM applications on WebSphere Application Server, see "WAS
Basic Configuration, Deploy ALBPM Apps in WebSphere" in ALBPM Configuration Guide, WebSphere Edition .

2. Open WebSphere Console.

3. Choose Applications ➤ Enterprise Applications.

4. Click 07-papiws-FDIDS.ear link.

5. Select Class loading and update detection.

6. Select Classes loaded with application class loader first.

7. Select Single class loader for application.

8. Click OK.

If you do not enter a value in the field labeled Polling interval for updated files an error message appears.

A message asking you to confirm your changes appears.

9. ClickSave.

10. Restart the server.

The next time you start the server PAPI Web Service application starts. To verify this lauch PAPI Web Service Console.

PAPI Web Service Configuration
You can configure PAPI Web Service by modifying a set of properties either by using the provided user interface or by
editing the file where these properties are stored.This section shows you how to modify PAPI Web Service configuration
in ALBPM Studio and Enterprise.

PAPI Web Service Configuration Console
PAPI Web Service provides a console where you can view its configuration properties and other useful information
such as the endpoint and the WSDL URLs.

PAPI Web Service console is available in ALBPM Enterprise and Studio. In the you can edit the information it shows
to change PAPI Web Service configuration.

The following list shows the information displayed in PAPI Web Service console:

• Style: the format that the WSDL defines for the SOAP messages sent between the web service and the client. PAPI
Web Service uses document/literal wrapped format. You cannot change this style.

• SSO: shows if Single Sign On authenticaton is enabled.
• WS-Security Username Toke Profile Authentication: shows if Username Token Profile authentication is enabled.
• HTTP Basic Authentication: shows if HTTP Basic authentication is enabled.
• PRESET Authentication: shows if PRESET authentication is enabled. This type of authentication is valid only for

ALBPM Enterprise. In ALBPM Studio the value of this property is always false, and it cannot be changed.
• Endpoint: shows the URL of PAPI Web Service endpoint.

ALBPM | ALBPM PAPI Web Service | 17

http://edocs.bea.com/albsi/docs60/config_was/index.html?t=enterprise/was/c_Head_Deploy_ALBPM_Apps.html
http://edocs.bea.com/albsi/docs60/config_was/index.html?t=enterprise/was/c_Head_Deploy_ALBPM_Apps.html

• WSDL: shows the URL where PAPI Web Service WSDL is published. Most web services stacks include a tool to
automatically generate stubs based on a WSDL. You need to provide this tool with the WSDL URL displayed here.

Launching PAPI Web Service Console in ALBPM Studio
The following procedure shows you how to launch PAPI Web Service console in ALBPM Studio.

To launch PAPI Web Service console:

1. Enable PAPI Web Service in an already existing project.

See Enabling PAPI Web Service in ALBPM Studio on page 15.

2. Start the Process Engine.

3. Choose Run ➤ Launch PAPI Web Services.

The default browser opens showing ALBPM Web Service console.

Launching PAPI Web Service Console in ALBPM Enterprise
The following procedure shows you how to launch PAPI Web Service console in ALBPM Enterprise.

1. Start ALBPM Admin Center.

2. Enable PAPI Web Service.

See Enabling PAPI Web Service in ALBPM Enterprise on page 15

3. Click Start BPM Web Applications.

4. Click Launch PAPI Web Services Console.

The default browser opens showing ALBPM Web Service console.

Editing PAPI Web Service Configuration
This section shows you how to change PAPI Web Service configuration in Studio and in Enterprise.

The way of editing PAPI Web Service configuration varies between both types of installation.

In an Enterpise installation PAPI Web Service's configuration is stored in the papiws.properties file, located under
BEA_HOME/albpm6.0/enterprise/webapps/papiws/WEB-INF. This file contains additional advanced properties
that you can use to tune PAPI Web Service performance. Each property has a comment that describes their function.

Editing PAPI Web Service Configuration in Studio
The following procedures show how to edit PAPI Web Service configuration in Studio.

To edit PAPI Web Service configuration:

1. Launch PAPI Web Service console

See Launching PAPI Web Service Console in ALBPM Studio on page 18

2. Click Change configuration.
The displayed properties become editable and a Save changes button appears next to the Change configuration
button.

3. Modify the values of the properties you need to change.

4. Click Save changes.
A message informing changes were succesfully applied appears.

5. Restart the engine to apply changes.

Launch PAPI Web Service console to verify your changes were applied.

Editing PAPI Web Service Configuration in ALBPM Enterprise
The following procedures show you how to edit PAPI Web Service configuration in an ALBPM Enterprise.

18 | ALBPM | ALBPM PAPI Web Service

To edit PAPI Web Service configuration:

1. Start ALBPM Admin Center.

2. Modify the values of the properties you need to change.

3. Click OK.

4. Click Start BPM Web Applications to apply the changes.

Click Launch PAPI Web Services Console to verify your changes were applied.

Configuring PAPI Web Service Log
PAPI Web Service keeps a log of the performed operations that can be used for troubleshooting. The following procedures
show you how to configure the directory where log files are stored, and the severity to filter the logged messages.

To enable the log for PAPI Web Service application:

1. Start ALBPM Admin Center.

2. Click Configuration.

3. Select PAPI Web Services tab.

4. Enter the complete path of the directory where you want to save PAPI Web Service logs in the Log Folder field, or
click Browse... and select the directory.

5. Select a severity level from the Log Message Severity Level drop-down list.

The available severity levels are:

• Debug
• Info
• Warning
• Severe
• Fatal

The next time you start PAPI Web Service the changes made to the log configuration are applied.

PAPI Web Service Security Authentication
This section describes the different types of authentication mechanisms that PAPI Web Service supports.

PAPI Web Service supports the following types of authentication:

• Custom Single Sign On (SSO) authentication
• UsernameToken Profile 1.1 (Plain-text)
• HTTP Basic authentication
• PRESET authentication

You can independently enable or disable any of these authentication mechanisms.

Note: By default Username Token Profile authentication is selected. You must select at least one authentication
method to provide PAPI Web Service the necessary information to authenticate against the engine.

When PAPI Web Service starts running it activates the authentication providers that correspond to the enabled
authentication mechanisms.

Every time a client makes a request to PAPI Web Service, this request goes through an authentication phase before
reaching the service endpoint. During this phase the activated authentication providers will be called in the order they
appear in the preceding list. When one of these providers succesfully authenticates the request the application grants
access to the web service. If all the activated providers reject acess, the request is rejected.

ALBPM | ALBPM PAPI Web Service | 19

Configuring Single Sign On Authentication
Papi Web Service can use a custom Single Sign On (SSO) implementation to authenticate the client. These following
procedures show you how to configure SSO Authentication for PAPI Web Service.

To compile the class containing your custom SSO implementation you need to have a Java SE Development Kit 5 (JDK
5) installed. You can download the JDK from Sun Developer Network.

To configure SSO Authentication for PAPI Web Service:

1. Implement the interfacefuego.sso.SSOUserLoginInterface.

a) Add the file fuego.core.jar to the CLASSPATH.

• In a Studio installation this file resides in BEA_HOME/albpm6.0/studio/lib
• In an Enterprise installation this file resides in

BEA_HOME/albpm6.0/enterprise/webapps/papiws/WEB-INF/lib

b) Create a Java class that implements the interface fuego.sso.SSOUserLoginInterface.

This class should contain your custom SSO implementation.

c) Compile the class created in the previous step.

2. Copy the compiled class that contains your SSO implementation to the WEB-INF/lib directory of the PAPI Web
Service web application.

• In a Studio installation this directory is located under: BEA_HOME/albpm6.0/studio/webapps/papiws
• In an Enterprise installation this directory is located under:

BEA_HOME/albpm6.0/enterprise/webapps/papiws

3. Edit PAPI Web Service configuration and select the SSO option.

See Editing PAPI Web Service Configuration on page 18

4. Enter the fully qualified name of the class containing the SSO implementation.

The next time you start the PAPI Web Service application, SSO authentication is activated.

Configuring Username Token Profile
PAPI Web Service can use Web Services Security Username Token Profile to authenticate the client. The following
procedures show you how to configure Username Token Profile for PAPI Web Service.

To configure Username Toke Profile authentication:

• Edit PAPI Web Service configuration and select the Username Token Profile authentication option.

See Editing PAPI Web Service Configuration on page 18.

The next time you start PAPI Web Service application, Username Token Profile authentication is activated.
• Configure your web services client to send the Username Token SOAP header when it authenticates against PAPI

Web Service.

The way of doing this depends on the programming language and the stack used to code your client.

For example, for a client using Java JAX-WS stack you need to add the following method, and invoke it before
executing any operation.

import javax.xml.soap.SOAPElement;
import javax.xml.soap.SOAPException;
import javax.xml.soap.SOAPFactory;
import com.sun.xml.ws.api.message.Header;
import com.sun.xml.ws.api.message.Headers;
import com.sun.xml.ws.developer.WSBindingProvider;

//...

20 | ALBPM | ALBPM PAPI Web Service

http://java.sun.com/javase/downloads/index_jdk5.jsp

 private static final String SECURITY_NAMESPACE =
"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd";

//...

private static void addUserNameTokenProfile(PapiWebService papiWebServicePort)
 throws SOAPException {
 SOAPFactory soapFactory = SOAPFactory.newInstance();
 QName securityQName = new QName(SECURITY_NAMESPACE, "Security");
 SOAPElement security = soapFactory.createElement(securityQName);
 QName tokenQName = new QName(SECURITY_NAMESPACE, "UsernameToken");
 SOAPElement token = soapFactory.createElement(tokenQName);
 QName userQName = new QName(SECURITY_NAMESPACE, "Username");
 SOAPElement username = soapFactory.createElement(userQName);
 username.addTextNode("test");
 QName passwordQName = new QName(SECURITY_NAMESPACE, "Password");
 SOAPElement password = soapFactory.createElement(passwordQName);
 password.addTextNode("test");
 token.addChildElement(username);
 token.addChildElement(password);
 security.addChildElement(token);
 Header header = Headers.create(security);
 ((WSBindingProvider) papiWebServicePort).setOutboundHeaders(header);
}

//...

Configuring HTTP Basic Authentication
PAPI Web Service can use HTTP Basic authentication to authenticate the client. The following procedures show you
how to configure HTTP Basic authentication for PAPI Web Service.

To configure HTTP Basic authentication:

• Edit PAPI Web Service configuration and select the HTTP Basic authentication option.

See Editing PAPI Web Service Configuration on page 18

The next time you start PAPI Web Service application, HTTP Basic authentication is activated.
• Configure your web services client to use HTTP Basic authentication when it authenticates against PAPI Web

Service.

The way of doing this depends on the programming language used to code your client.

For example, for a client using Java JAX-WS stack you need to add the following method, and invoke it before
executing any operation.

import java.util.Map;
import javax.xml.ws.BindingProvider;

//...

 private static void addHttpBasicAuthentication(PapiWebService papiWebServicePort)
 {
 Map<String,Object> requestContext = ((BindingProvider)
papiWebServicePort).getRequestContext();
 requestContext.put(BindingProvider.USERNAME_PROPERTY, "test");
 requestContext.put(BindingProvider.PASSWORD_PROPERTY, "test");
 }

//...

ALBPM | ALBPM PAPI Web Service | 21

Configuring PRESET Authentication
A PRESET is a set of properties that you can define in a directory.xml file for different purposes. This mechanism
of authentication is only available for Enterprise installations. The following procedures shows you how configure
PRESET authentication for PAPI Web Service.

To configure PRESET authentication:

1. Use the ant task managedirectory, to add a PRESET with a valid user and password to the directory.xml file that
corresponds to the PAPI Web Service web application.

The directory.xml file for PAPI Web Service web application is located under
BEA_HOME/albpm6.0/enterprise/webapps/papiws/WEB-INF. This file is a copy of the xml file named after
the Directory Configuration name located under BEA_HOME/albpm6.0/enterprise/webapps/conf.

See managedirectory ant task .

2. Edit PAPI Web Service configuration and enter the PRESET name in the field labeled "Set PRESET ID for PRESET
authentication".

See Editing PAPI Web Service Configuration on page 18

The next time you start the PAPI Web Service application, PRESET authentication is activated.

PAPI Web Service Examples
You can develop a PAPI Web Service client in different programming languages. Some languages may even provide
more than one stack to develop a web service client. This section shows examples of PAPI Web Service clients developed
in different languages and stacks.

Java JAX WS Client Example
This section shows you how to develop a Java client using the JAX WS stack. It uses the PAPI Web Service to retrieve
a list of process instances visible to the connected user.

This example contains an analysis of the code of a PAPI Web Service client developed using JAX WS. The source code
includes:

• A set of ant scripts to generate the stubs from the WSDL, compile the code and run it.
• A lib directory containing the external libraries needed to code an compile the JAX-WS client.

You can use this project as a basis to develop more complex examples. To do this you have to replace the class
PapiWsJaxWsExample by the classes you develop, and change target run in the ant script so that it executes the new
class.

A Java JAX-WS client contains two different type of classes:

• JAX-WS portable artifacts
• Client Java classes

JAX-WS portable artifacts

The web service client code uses these artifacts to operate with PAPI Web Service. JAX-WS provides a tool called
Wsimport to generate these classes based on the WSDL PAPI Web Service. When you run Wsimport using PAPI Web
Service WSDL as an input argument it generates the following classes:

• Service Endpoint Interface
• Service
• Exception classes
• Java classes mapped from the schema types referenced in the WSDL

22 | ALBPM | ALBPM PAPI Web Service

http://edocs.bea.com/albsi/docs60/anttasks/fuego.tools.ant.enterprise.taskdefs.ManageDirectoryFileTask.html

This example uses Wsimport ant task to generate this artifacts. For information about Wsimport, see
https://jax-ws.dev.java.net/nonav/2.1.2/docs/wsimport.html .

Client Java Classes

A PAPI Web Service client includes one or more Java classes that contain the code to invoke PAPI Web Service and
operate with it. You have to code this classes yourself. The code in these classes uses JAX-WS portable artifacts to
access the web service and to operate with it.

The client shown in this example contains only one class because it is a simple example. The code in this class performs
the following actions:

• Invokes the web service.
• Authenticates using Username Token Profile and HTTP authentication.
• Uses JAX-WS portable artifacts to obtain the list of process instances.

For a detailed analyses of this class, see JAX WS Client Main Class .

Download

You can download the set of java classes of this example from
http://edocs.bea.com/albsi/docs60/resources/papi_ws/ALBPM-PapiWs-JaxWs-Example.zip . For information on how
to run this example seeRunning Java JAX WS Client Example on page 27.

JAX-WS Client Main -Class
This section analyzes the main-class of the JAX-WS client example step by step.

Programming a JAX-WS Client

The typical steps you have to follow to use PAPI Web Service with JAX-WS stack are:

• Import the required libraries.
• Initialize the web service client.
• Configure authentication.
• Operate with PAPI Web Service.

Import the Required Libraries

This example uses classes formjava.net, javax.xml and com.sun.xml.ws packages. You have to import these
classes to be able to use them in your code. The following code imports the classes from these packages that are used
in this example.

import java.net.MalformedURLException;
import java.net.URL;
import java.util.Map;
import javax.xml.namespace.QName;
import javax.xml.soap.SOAPElement;
import javax.xml.soap.SOAPException;
import javax.xml.soap.SOAPFactory;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.Service;
import com.sun.xml.ws.api.message.Header;
import com.sun.xml.ws.api.message.Headers;
import com.sun.xml.ws.developer.WSBindingProvider;

You also have to import the automatically generated JAX-WS portable artifacts. It is common to call these classes stubs.

import stubs.InstanceInfoBean;
import stubs.InstanceInfoBeanList;
import stubs.OperationException_Exception;

ALBPM | ALBPM PAPI Web Service | 23

https://jax-ws.dev.java.net/nonav/2.1.2/docs/wsimport.html
https://jax-ws.dev.java.net/nonav/2.1.2/docs/wsimport.html
c_Java_JAX_WS_Client_Step_by_Step.xml
http://edocs.bea.com/albsi/docs60/resources/papi_ws/ALBPM-PapiWs-DotNet-Example.zip
http://edocs.bea.com/albsi/docs60/resources/papi_ws/ALBPM-PapiWs-DotNet-Example.zip

import stubs.PapiWebService;
import stubs.PapiWebService_Service;
import stubs.StringListBean;

Initialize the Web Service Client

To invoke PAPI Web Service you have to create a Service object. The constructor of a service object receives an URL
object that contains the URL of the WSDL. In this example the URL of the WSDL is passed as an argument to the main
method.

public class PapiWsJaxWsExample {
 private static final String SECURITY_NAMESPACE =

"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd";

 public static void main(String[] args) {
 try {
 String endPoint = args[0];
 QName qName = new QName("http://bea.com/albpm/PapiWebService",
"PapiWebService");
 Service service = PapiWebService_Service.create(new URL(endPoint), qName);

To be able to invoke operations over PAPI Web Service you have to obtain a PapiWebService object. PapiWebService
exposes all the operations that you can invoke remotely over PAPI Web Service.

 PapiWebService papiWebServicePort = service.getPort(PapiWebService.class);

If there is a problem accessing the WSDL endpoint the URL constructor throws a MalformedURLException, so you
need to call it inside a try-catch block.

 //... Configure Authentication
 //... Operate with PAPI Web Service
 } catch (MalformedURLException e) {
 System.out.println("Could not connect to the web service endpoint");
 e.printStackTrace();
 }
 }
}

Configure Authentication

Before invoking any operation over the web service the client has to authenticate itself. This example shows you how
to use JAX-WS with Username Token Profile and HTTP Basic authentication. Usually you choose one of these two
mechanisms because PAPI Web Service only uses the second one in case the first authentication mechanism fails. For
more information on how authentications mechanisms work in PAPI Web Service, see PAPI Web Service Security
Authentication on page 19.

The code for this authentication mechanisms is divided into two methods, one for each mechanism. These methods
should be invoked before invoking any operation over the web service.

 addUsernameTokenProfile(papiWebServicePort);
 addHttpBasicAuthentication(papiWebServicePort);

The method addUsernameTokenProfile() configures Username Token Profile authentication. Some of the operations
performed in this method throw aSOAPException, so you need to call them inside a try-catch block.

24 | ALBPM | ALBPM PAPI Web Service

This example adds the header programmatically but you can also configure Username Token Profile using Web Services
Interoperability Technologies (WSIT) from Metro Web Services stack. For information about WSIT,
seehttp://wsit.dev.java.

 private static void addUsernameTokenProfile(PapiWebService papiWebServicePort)
 throws SOAPException {
 try {
 SOAPFactory soapFactory = SOAPFactory.newInstance();
 QName securityQName = new QName(SECURITY_NAMESPACE, "Security");
 SOAPElement security = soapFactory.createElement(securityQName);
 QName tokenQName = new QName(SECURITY_NAMESPACE, "UsernameToken");
 SOAPElement token = soapFactory.createElement(tokenQName);
 QName userQName = new QName(SECURITY_NAMESPACE, "Username");
 SOAPElement username = soapFactory.createElement(userQName);
 username.addTextNode("test");
 QName passwordQName = new QName(SECURITY_NAMESPACE, "Password");
 SOAPElement password = soapFactory.createElement(passwordQName);
 password.addTextNode("test");
 token.addChildElement(username);
 token.addChildElement(password);
 security.addChildElement(token);
 Header header = Headers.create(security);
 ((WSBindingProvider) papiWebServicePort).setOutboundHeaders(header);
 } catch (SOAPException e) {
 System.out.println("Could not configure Username Token Profile authentication");

 e.printStackTrace();
 }
 }

The method addHttpBasicAuthentication() configures HTTP Basic authentication by obtaining the request
context and adding it the username and password properties.

 private static void addHttpBasicAuthentication(PapiWebService papiWebServicePort) {
 Map<String, Object> request =
 ((BindingProvider) papiWebServicePort).getRequestContext();
 request.put(BindingProvider.USERNAME_PROPERTY, "test");
 request.put(BindingProvider.PASSWORD_PROPERTY, "test");
 }

Operate with PAPI Web Service

Once PAPI Web Service succesfully authenticates the client, the client is ready to perform operations over the web
service.

The following code retrieves a list of available processes by invoking the method processesGetIds() over a
PapiWebService object. It then iterates over them using those ids to obtain the instances for each process by invoking
the method processGetInstances() over the PapiWebService object.If there is a problem performing any of the
requested operations, this method throws an OperationException, so you need to invoke it inside a try-catch block.
Finally it iterates over those instances invoking the method getId() and prints its result.

 try {
 StringListBean processIds = papiWebServicePort.processesGetIds(true);

 for (String processId : processIds.getStrings()) {
 System.out.println("\nProcess: " + processId);
 InstanceInfoBeanList instances =
 papiWebServicePort.processGetInstances(processId);
 for (InstanceInfoBean instance : instances.getInstances()) {
 System.out.println("-> " + instance.getId());
 }
 }
 } catch (OperationException_Exception e) {
 System.out.println("Could not perform the requested operation");

ALBPM | ALBPM PAPI Web Service | 25

http://wsit.dev.java.net

 e.printStackTrace();
 }

Complete Code Example

The following class contains all the steps described in this section.

package example;

import java.net.MalformedURLException;
import java.net.URL;
import java.util.Map;
import javax.xml.namespace.QName;
import javax.xml.soap.SOAPElement;
import javax.xml.soap.SOAPException;
import javax.xml.soap.SOAPFactory;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.Service;
import com.sun.xml.ws.api.message.Header;
import com.sun.xml.ws.api.message.Headers;
import com.sun.xml.ws.developer.WSBindingProvider;
import stubs.InstanceInfoBean;
import stubs.InstanceInfoBeanList;
import stubs.OperationException_Exception;
import stubs.PapiWebService;
import stubs.PapiWebService_Service;
import stubs.StringListBean;

public class PapiWsJaxWsExample {
 private static final String SECURITY_NAMESPACE =

"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd";

 public static void main(String[] args) {

 try {
 /////////////////// Initialize the web service client ///////////////////
 String endPoint = args[0];
 QName qName = new QName("http://bea.com/albpm/PapiWebService",
"PapiWebService");
 Service service = PapiWebService_Service.create(new URL(endPoint), qName);
 PapiWebService papiWebServicePort = service.getPort(PapiWebService.class);

 /////////////////// Configure authentication ///////////////////
 addUsernameTokenProfile(papiWebServicePort);
 addHttpBasicAuthentication(papiWebServicePort);

 /////////////////// Operate with PAPI Web Service ///////////////////
 try {
 StringListBean processIds = papiWebServicePort.processesGetIds(true);
 for (String processId : processIds.getStrings()) {
 System.out.println("\nProcess: " + processId);
 InstanceInfoBeanList instances =
papiWebServicePort.processGetInstances(processId);
 for (InstanceInfoBean instance : instances.getInstances()) {
 System.out.println("-> " + instance.getId());
 }
 }
 } catch (OperationException_Exception e) {
 System.out.println("Could not perform the requested operation");
 e.printStackTrace();
 }
 } catch (MalformedURLException e) {
 System.out.println("Could not connect to the web service endpoint");
 e.printStackTrace();
 }
 }

26 | ALBPM | ALBPM PAPI Web Service

 private static void addHttpBasicAuthentication(PapiWebService papiWebServicePort) {
 Map<String, Object> request =
 ((BindingProvider) papiWebServicePort).getRequestContext();
 request.put(BindingProvider.USERNAME_PROPERTY, "test");
 request.put(BindingProvider.PASSWORD_PROPERTY, "test");
 }

 private static void addUsernameTokenProfile(PapiWebService papiWebServicePort) {
 try {
 SOAPFactory soapFactory = SOAPFactory.newInstance();
 QName securityQName = new QName(SECURITY_NAMESPACE, "Security");
 SOAPElement security = soapFactory.createElement(securityQName);
 QName tokenQName = new QName(SECURITY_NAMESPACE, "UsernameToken");
 SOAPElement token = soapFactory.createElement(tokenQName);
 QName userQName = new QName(SECURITY_NAMESPACE, "Username");
 SOAPElement username = soapFactory.createElement(userQName);
 username.addTextNode("test");
 QName passwordQName = new QName(SECURITY_NAMESPACE, "Password");
 SOAPElement password = soapFactory.createElement(passwordQName);
 password.addTextNode("test");
 token.addChildElement(username);
 token.addChildElement(password);
 security.addChildElement(token);
 Header header = Headers.create(security);
 ((WSBindingProvider) papiWebServicePort).setOutboundHeaders(header);
 } catch (SOAPException e) {
 System.out.println("Could not configure Username Token Profile authentication");

 e.printStackTrace();
 }
 }
}

Running Java JAX WS Client Example
The example contains all the necessary libraries to generate the stubs, compile and run it. These libraries are contained
in the directory lib. It also contains an ant script that contains all the necesary configurations to compile and run the
client.

To run the example you need to install Ant. You can download it from http://ant.apache.org/bindownload.cgi

To Run this example:

1. Enable PAPI Web Service for an already existing project.

See Enabling PAPI Web Service on page 15.

2. Download the example from
http://edocs.bea.com/albsi/docs60/resources/papi_ws/ALBPM-PapiWs-JaxWs-Example.zip.

3. Unzip the file. This will generate a directory named ALBPM-PapiWs-JaxWs-Example.

4. Open a command-line sesssion.

5. Change to the generated directory.
For example in Linux:cd ALBPM-PapiWs-JaxWs-Example.

6. Type ant run.

Executing this task generates the stubs the client code needs to run, using the ant task JAX WS provides for this
purpose, and compiles the classes used in the example before running them.

7. Enter PAPI Web Service's endpoint.

You can copy this from the link displayed next to WSDL in the Web Services Console. For information on how to
launch the Web Services Console see PAPI Web Service Configuration Console on page 17.

ALBPM | ALBPM PAPI Web Service | 27

http://ant.apache.org/bindownload.cgi
http://edocs.bea.com/albsi/docs60/resources/papi_ws/ALBPM-PapiWs-JaxWs-Example.zip
http://edocs.bea.com/albsi/docs60/resources/papi_ws/ALBPM-PapiWs-JaxWs-Example.zip

After executing this procedure the example program runs. You will see a list of the processes deployed in the running
process engine and below them a list of all the in flight instances in each process.

PAPI Web Service .NET Client Example
This section shows an example of a client developed with .NET Framework. This example uses PAPI Web Service to
retrieve a list of process instances visible to the connected user.

Download

You can download the complete code of this example from
http://edocs.bea.com/albsi/docs60/resources/papi_ws/ALBPM-PapiWs-DotNet-Example.zip . This project was developed
using .NET Framework 2.0.5 and Microsoft Web Service Enhancements 3.0.

The syntax used for this example is C#.

.NET Client Main-Class
This section analyzes the main-class of the .NET client example step by step.

Programming a .NET Client

The typical steps you have to follow to use PAPI Web Service with JAX-WS stack are:

• Import the required libraries.
• Initialize the web service.
• Configure authentication.
• Operate with PAPI Web Service.

Import the Required Libraries

This example uses classes from System.Web.Services.Protocols and System.Net packages. You have to import
these classes to be able to use them in your code. The following code imports the classes from these packages that are
used in this example.

using System.Web.Services.Protocols;
using System.Net;

The following code imports the classes that the client needs to perform authentication.

using Microsoft.Web.Services3.Security.Tokens;
using Microsoft.Web.Services3.Design;

You also have to import the automatically generated stubs. In the example project these classes were generated in the
package PAPI_WS2_Sample.papiws.

using PAPI_WS2_Sample.papiws;

Initialize the Web Service

The following code instantiates a web service proxy. This proxy will provide access to the operations exposed by PAPI
Web Service.

papiws.PapiWebServiceWse proxy = new papiws.PapiWebServiceWse();

28 | ALBPM | ALBPM PAPI Web Service

http://edocs.bea.com/albsi/docs60/resources/papi_ws/ALBPM-PapiWs-DotNet-Example.zip
http://edocs.bea.com/albsi/docs60/resources/papi_ws/ALBPM-PapiWs-DotNet-Example.zip

Configure Authentication

Before invoking any operation over the web service the client has to authenticate. This example uses plain text Username
Token Profile authentication. The authentication mechanism has to match the one you define in WSE 3 policy settings.

The following code creates a username token and sets it as the client credentials. Then it it sets the client security policy
by passing the id of this policy as an argument, to the method SetPolicy().

UsernameToken token = new UsernameToken("test", "test", PasswordOption.SendPlainText);
proxy.SetClientCredential<UsernameToken>(token);
proxy.SetPolicy("ALBPM_Policy");

Operate with PAPI Web Service

The following code retrieves a list of available processes by invoking the method processesGetIds over a
PapiWebServiceWse object. It then iterates over them using those ids to obtain the instances for each process by
invoking the method processGetInstances() over the PapiWebServiceWse object.If there is a problem performing
any of the requested operations, this method throws a SoapException, so you need to invoke it inside a try-catch block.
It is a good practice to wrap this exception in user-defined exception. Finally it iterates over those instances invoking
the method getId() and prints its result.

try {
 //...
 foreach (string processId in processIds)
 {
 Console.Out.WriteLine("\n Process: " + processId);
 instanceInfoBean[] instances = proxy.processGetInstances(processId);
 foreach (instanceInfoBean instance in instances)
 {
 Console.Out.WriteLine(" -> " + instance.id);
 }
 }

}
catch (SoapException e)
{
 OperationException oe = new OperationException(e.Message);
 throw oe;
}

Complete Code Example

The following class is the main class of the .NET PAPI Web Service client example.

using System;
using System.Collections.Generic;
using System.Text;
using System.Web.Services.Protocols;
using System.Net;
using PAPI_WS2_Sample.papiws;

using Microsoft.Web.Services3.Security.Tokens;
using Microsoft.Web.Services3.Design;

namespace PAPI_WS2_Sample
{
 class Program
 {
 static void Main(string[] args)
 {
 //Set a custom handler for unhandled exceptions (optional)
 AppDomain.CurrentDomain.UnhandledException += Program.UnhandledExceptionHandler;

ALBPM | ALBPM PAPI Web Service | 29

 try
 {
 /////////////////// Initialize the web service client ///////////////////

 papiws.PapiWebServiceWse proxy = new papiws.PapiWebServiceWse();

 /////////////////// Configure authentication ///////////////////
 UsernameToken token = new UsernameToken("test", "test",
PasswordOption.SendPlainText);
 proxy.SetClientCredential<UsernameToken>(token);
 proxy.SetPolicy("ALBPM_Policy");

 //set timeout and encoding
 proxy.Timeout = 60000;
 proxy.RequestEncoding = Encoding.UTF8;

 /////////////////// Operate with PAPI Web Service ///////////////////
 string[] processIds = proxy.processesGetIds(false);

 foreach (string processId in processIds)
 {
 Console.Out.WriteLine("\n Process: " + processId);
 instanceInfoBean[] instances = proxy.processGetInstances(processId);

 foreach (instanceInfoBean instance in instances)
 {
 Console.Out.WriteLine(" -> " + instance.id);
 }
 }

 }
 catch (SoapException e)
 {
 OperationException oe = new OperationException(e.Message);
 throw oe;
 }

 }

 static public void UnhandledExceptionHandler(object sender,
UnhandledExceptionEventArgs e)
 {

 Console.Error.WriteLine("Unhandled Exception: \n" +
e.ExceptionObject.ToString());
 Environment.Exit(-1);
 }
 }

 public class OperationException : Exception
 {
 public OperationException(String message) : base(message)
 {
 }
 }
}

30 | ALBPM | ALBPM PAPI Web Service

	Contents
	ALBPM Process API (PAPI)
	ALBPM Process API (PAPI)
	What is PAPI?
	Process API Usage Scenarios
	Process API Architecture Overview
	Structure of a Java PAPI Application
	Writing Your First Java PAPI Program
	Compiling a Java PAPI Program
	Running a Java PAPI Program

	ALBPM PAPI Web Service
	What is PAPI Web Service?
	What's New in PAPI Web Service 2.0?
	PAPI Web Service Usage Scenarios
	PAPI Web Service Architecture Overview
	Enabling PAPI Web Service
	Enabling PAPI Web Service in ALBPM Studio
	Enabling PAPI Web Service in ALBPM Enterprise
	Installing PAPI Web Service on a J2EE Application Server
	Installing PAPI Web Service on WebLogic Server
	Build and Deploy Applications (.ear)
	Installing PAPI Web Service on WebSphere Application Server

	PAPI Web Service Configuration
	PAPI Web Service Configuration Console
	Launching PAPI Web Service Console in ALBPM Studio
	Launching PAPI Web Service Console in ALBPM Enterprise

	Editing PAPI Web Service Configuration
	Editing PAPI Web Service Configuration in Studio
	Editing PAPI Web Service Configuration in ALBPM Enterprise

	Configuring PAPI Web Service Log

	PAPI Web Service Security Authentication
	Configuring Single Sign On Authentication
	Configuring Username Token Profile
	Configuring HTTP Basic Authentication
	Configuring PRESET Authentication

	PAPI Web Service Examples
	Java JAX WS Client Example
	JAX-WS Client Main -Class
	Running Java JAX WS Client Example
	PAPI Web Service .NET Client Example
	.NET Client Main-Class

