ORACLE

Oracle® Business Rules
User's Guide

109 (10.1.3.1.0)
B28965-02

September 2006

Oracle Business Rules User’s Guide, 10g (10.1.3.1.0)
B28965-02

Copyright © 2005, 2006, Oracle. All rights reserved.
Primary Author: Thomas Van Raalte
Contributing Author: Kevin Yu Hwang

Contributors: Qun Chen, Ching Luan Chung, David Clay, Kathryn Gruenefeldt, Gary Hallmark, Phil
Varner, Neal Wyse, Lance Zaklan

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

PlrOIACE ...ttt eenaeen iX
AN Lo 1= V< T SURSRRTT iX
Documentation AcCeSSIDILItYcccciiiiiiiiiiiiiiiiiici e iX
Related DOCUIMENEATIONcvviieieeiiiceie ettt ettt e et eeaeeeaae e eteeesteeateesatesrseesnssensessseesnseenseesneeenees X
(@03 4 T£<3 015 (o) 0 - I RR R ORPRRORPRRN X

1 Overview of Oracle Business Rules

11 Introduction to Oracle Business Rules.............ccccccoviviviniiiniiiiin, 1-2
111 What Are Business RUIES? ..o 1-2
112 What Is a Data Model? ..o 1-3
113 What Is a Rule-Based System? ..o 1-3
12 Oracle Business Rules COMPONENLS..........ccciuiuiiiiiiiiiiiiiiiiiiceicieeeieeseeeas 1-4
121 Introducing Oracle Business Rules Rule AUthor ... 1-4
122 Introducing Oracle Business Rules Rules SDKcooooiiiiiiiicc, 1-5
123 Introducing Oracle Business Rules RL Language...........ccccccoeeeuiiiiiiiiciiiniiiiienns 1-5
124 Introducing Oracle Business Rules Rules Engine..........c.cccccccoeiiiiiciiiicicccncnene 1-6
13 Oracle Business Rules Rule Author Terms and Conceptscocooerueiiiiiciciiiciicicieccne 1-6
131 Working With RUIES..........coioiiiiiiiiiiiii s 1-6
132 Working with Rule Setscoiiiiiiii e, 1-7
1.3.3 Working with Repositories and Dictionariesc.ocooeueieioicicieiiiciceecccecee 1-7
134 Working With FaCEScccooiiiiiiiiiiiiii s 1-7
135 Working with Functions Variables and Constraintsccccceviiieieiincieiiccicnn, 1-8
14 Steps for Rule-Enabling a Java Application ... 1-9
141 Identify Application Areas to Rule-Enable............cccccooviinniininine, 1-9
142 Provide Rule Author Definitions for the Data Model...........ccccooviinvniiinnnnn, 1-10
143 Develop a Business Vocabulary for the Data Model.........c.ccoooiiiiiiiiiie 1-10
1.4.4 Write and Customize Rules...........ccocooiiiiiiiiiiiiiiiccceees 1-10
145 Modify or Create Application Logic That Uses Oracle Rules Engine....................... 1-10
1.4.6 Test the Rule-Enabled Applicationcooeueieiiiiiiiiiic e 1-10

2 Getting Started with Rule Author

21 Creating a Rule AUthor USer ... 2-2
2.2 Starting Rule AUhOTccccciiiiic e 2-2
2.3 Rule Author HOme Page.........cooeuiiiiiiiiic e 2-4
2.4 Creating and Saving a Dictionary for the Car Rental Sample..........cccooouoiiiiiiiiniinne. 2-4

24.1
24.2
243
24.4
2.5
251
2.5.2
253
254
2.6
26.1
2.6.2
2.6.3
2.7
27.1
2.7.2
2.8
2.9
29.1
29.2
293
294
295
2.9.6
2.9.7
2.10

Connecting to a Rule Author Repository ..o 2-4

Creating a Rule Author Dictionaryoooceiiiieieiiicec e 2-6
Saving a Rule Author Dictionary with a Versionccccceevvvvvnnnnnnnnencnnnecne. 2-7
Saving a Rule Author Dictionary ..o, 2-8
Defining a Data Model for the Car Rental Sampleccccooomiiiiiiiiiiice 2-8
Using Java Objects as Facts in the Car Rental Sample..........ccccoooiveviiiiiiiciiicnnnne 2-9
Adding Java Classes and Packages to Rule Author ..o, 2-9
Importing Java Classes to a Data Model ..o 2-11
Saving the Current State of Definitions..........cccocoeeiieiiciiicicccccccceccceeees 2-12
Defining the Business Vocabulary for the Car Rental Sample..........cccccooviiiiinii 2-13
Specifying the Business Vocabulary for Java Fact Definitions...........ccccccceeuviiinnnnn 2-13
Specifying the Business Vocabulary for FUNctions............cccoceevevvviicnvnccnene 2-13
Specifying the Visibility for Properties and Methods ..o 2-14
Defining a Rule for the Car Rental Sampleccooviiiiii 2-14
Creating a Rule Set for the Car Rental Sample...........cccccoceeiiiiiiiiiicciicceene 2-14
Creating a Rule for the Car Rental Samplecccoooeioiiiiiiiie, 2-15
Customizing Rules for the Car Rental Sampleccccoooiiiiiiiiii 2-23
Creating a Java Application Using Oracle Business Rulesccccccceceeiiivvnnnnnnne. 2-24
Importing the Rules SDK and Rules RL Language Classesccccccoeueviiiniernnnnnn. 2-25
Initializing the Repository with Rules SDK...........c.c.coooiiiiiiiiiiice 2-25
Loading a Dictionary with Rules SDK..........cccccccceiiviiiiininicrcereeeeerreeceees 2-26
Specifying a Rule Set and Generating RL Language with Rules SDK...................... 2-26
Initializing and Executing a Rule Sessionc.coeoiiiiiiicice 2-27
Asserting Business Objects Within a Rule Sessionccccccoevvvvvvnvnncnncncecnes 2-27
Using the Run Function with a Rule SesSion..........cccovieieiiiciciiiccee 2-28
Running the Car Rental Sample Using the Test Program...........c.cccooooeeiiiiininiiinncinnes 2-28

3 Working with Rule Author Features

3.1
3.2
3.3
3.4
3.5
3.6
3.6.1
3.7
3.7.1
3.8
3.8.1
3.8.2
3.9
3.10
3.11
3.12
3.12.1
3.12.2
3.12.3

Working with Variables ... 3-1
Working with CONSEIAINTSccovviiiiiriiii e 3-2
Working with RLEFACES........c.coiiiiiicic e 3-4
Working with FUNCHONS ... 3-6
Working With RULES ..o 3-8
Viewing Java Objects in a Data Modelccooiiiiiiii 3-9
Specifying Visibility and Object Chaining for Rule Author Lists...........ccccccceueunene 3-10
Generating Oracle Business Rules RL Language Textcccccceoeciiiininicenceeeene 3-11
Generating Viewing and Checking RL Language Textcccccoovvrriiiiiiiciiiinne, 3-11
Configuring Rule Author Dictionary Properties...........cccccovivniiiinivnininniiiine 3-11
Using the Advanced Test Expression Option..........cccceovciiiiincccicccccceeenes 3-12
Using the Logging Option ..o 3-13
Deleting a Rule Author Dictionary ... 3-13
Importing and Exporting a Dictionary ... 3-14
Working with Test RUIESetScooouoiiiiiii 3-16
Invoking Rules and Obtaining Rules Engine Results...........ccccoeeviiiiiniiiiiiiii 3-18
Overview of Results EXamplescccccociiiiiiiiiiiiicccceccceeeeeeeeeeeeenenes 3-19
Using a Global Variable to Obtain Results..........ccccooiiiiiiiiiie 3-19
Using Container Objects to Obtain Results..........ccccccocciiiiiiiiiiiiiiiicccce, 3-20

3.12.4 Using Reasoned On Objects to Obtain Results..........cccoooerieiiiiiiiiiic 3-21

Using XML Facts with Rule Author

4.1 Overview of Using XML Documents and Schemas with Rule Author ..o 4-2
4.2 Creating a Rule Author User and Starting Rule Author ... 4-2
4.3 Creating and Saving a Dictionary for the XML Car Rental Sample........c.ccccccevuvueiiurnnnnne 4-2
43.1 Connecting to a Rule Author Repository ..., 4-3
4.3.2 Creating a Rule Author Dictionary ... 4-4
433 Saving a Rule Author Dictionary with a Versionc.cccccocevenvnnnnnnnnnncncneneene. 4-5
4.3.4 Saving a Rule Author Dictionary ..o 4-6
4.4 Defining a Data Model for the XML Car Rental Sample.........ccccocooorriiiiiiiiiiiiiiiine 4-7
441 Using XML Schema as Facts in the XML Car Rental Sample.........cccccccoceiecriennnnnne 4-7
4.4.2 Adding XML Facts for the Car Rental Sample (XML Schema Processing)................. 4-7
4.4.3 Importing XML Schema Elements to a Data Model..........c.cccoooeinii 4-10
4.4.4 Viewing XML Facts in a Data Model..........ccccoiiiiiiiiiccceeeeceeeeenes 4-12
4.4.5 Saving the Current State of XML Fact Definitions...........cccccooeeieiiiiniiiiie, 4-12
4.5 Defining the Business Vocabulary for the XML Car Rental Sample............ccccccoerneiinnes 4-12
451 Specifying the Business Vocabulary for XML Fact Definitionsccccccevueueununene. 4-13
4.5.2 Specifying the Business Vocabulary for Functions............cccooeviiniiiiniccicicen, 4-14
4.5.3 Specifying the Visibility for Properties and Methods for XML Facts 4-14
4.6 Defining a Rule for the XML Car Rental Samplecccccoceueeiiiiiiiieiicceieeeeee 4-14
4.6.1 Creating a Rule Set for the XML Car Rental Sample...........ccccoooeviiiniiiiiniiiciininen, 4-15
4.6.2 Creating a Rule for the XML Car Rental Samplecccoooeiiiiiiiiiie 4-15
4.7 Customizing Rules for the XML Car Rental Samplecccccoevvviiivnnniinnricene 4-23
4.8 Creating a Java Application with a Rule Session Using XML Facts...........cccccccevvvnvrnnnnne. 4-24
4.8.1 Importing the Rules SDK and Rules RL Classes...........ccccoceueiiireieiniicieicicceee 4-25
4.8.2 Creating a JAXB Context and Unmarshalling the XML Document.......................... 4-26
4.8.3 Initialize the Repository with Rules SDK...........cccoooiiiiiiiiiii e 4-26
4.8.4 Loading A Dictionary with Rules SDKccccooiii e 4-26
4.8.5 Loading a RuleSet and Generating RL Language for a Data Model and Rule Set. 4-27
4.8.6 Initializing and Executing a Rule SesSion ... 4-27
4.8.7 Asserting XML Data from Within a Rule Session..........ccccccovvvviiinnnninnncnne. 4-28
4.8.8 Using the Run Function with a Rule Session...........c.ccccceiviiiiiiciciciccccccee 4-28
4.9 Running the XML Car Rental Sample Using the Test Program............ccccccecevvvivirnrnnnnnnn. 4-28

Using JSR-94

51 Oracle Business Rules with JSR-94 Rule Execution Setsccccoevevieniiinencncncneneneeene 5-1
51.1 Creating a JSR-94 Rule Execution Set from Rule Sets in a File Repository 5-1
5.1.2 Creating a JSR-94 Rule Execution Set from a WebDAYV Repositorycccccccueuvunence 5-2
5.1.3 Creating a Rule Execution Set from Oracle Business Rules RL Language Text......... 5-3
5.1.4 Creating a Rule Execution Set from RL Language Text Specified ina URL............... 5-5
515 Creating Rule Execution Sets with Rule Sets from Multiple Sources.............c.ccccc....... 5-6
5.2 Using the JSR-94 Interface with Oracle Business Rules...........cccccoooiiiiiiiiiiiiinine 5-6
521 Creating a Rule Execution Set with CreateRuleExecutionSet............cccccoevuviviiinininnce. 5-6
5.2.2 Creating a Rule Session with createRuleSession...........c.cccccoceeciiccccciceccceennns 5-7
5.2.3 Working with JSR-94 Metadataccccoooeiiiioiiiicii e 5-7

vi

5.2.4 Using Oracle Business Rules JSR-94 EXteNSIioNScccocoeueveiiieieiiicieiciecceei 5-8

Using Oracle Business Rules SDK

6.1 Rules SDK Building BlOCKS.........ccoueiiiiiiiiiici e 6-1
6.2 Working with a Repository and a Dictionary..........ccccceeeereeieicicieiiccceceece 6-2
6.2.1 Establishing Contact with a WebDAYV Repositorycccccoceueucieiiiciicicinicceiceene 6-2
6.2.2 Establishing Contact with a File Repositorycccoiiieiiiiiniiiie, 6-3
6.2.3 Loading a DiCtiONArYc.occueiiiieieieiiceie et 6-3
6.3 Working with a Data Model.........ccccooiiiiiiiiiieeeceeeeee e 6-3
6.3.1 Creating a Data Modelc.ooiiiiiii 6-4
6.3.2 Creating Data Model COMPONENLtSc.coruiieiiiiiiiieiiceec e 6-4
6.3.3 Creating a Function Argument Listccccocooviviniiiiiiiiccce 6-5
6.3.4 Creating an Initializing EXPression...........coocoeeiiieiiiiicieece 6-5
6.3.5 Creating RL Function Bodiesooouiiiiiiii 6-6
6.4 Using Rule Sets and Creating and Modifying Rulesccoooiiiiiiiiiiiciiiccceenns 6-6
6.4.1 Creating a Rule Set ... 6-7
6.4.2 Adding a Rule to a Rule Set ..o, 6-7
6.4.3 Adding a Pattern to a Rulec.ccccooiiiiiiiiiiicccee e 6-8
6.4.4 Adding a Test to a Pattern.........ccoouoiiiiii 6-8
6.4.5 Adding an Action to a Rule..........o.ooiiii 6-9
6.4.6 Notes for Adding RuleSets and Rulesccccccovuviiiiiinininincccnnenenreeceenes 6-10

Oracle Business Rules Files and Limitations

Al Rule Author Naming COnVENtioNnsccccceueuiiiieieiiiieeeeceeeeeeeeeneeee e neeenes A-1
All Rule Set NamMINgooouoviiiiii s A-1
Al?2 Dictionary Namingcccceeeiiiiiiiiiii e A-1
A.1.3 Version INAMUINEG ..o A-1
Al4 Alias NAIMING. ..ot A-2
Al5 XML Schema Target Package Namingcccooooiriiiiiiiiiccccc e A-2
A2 Rule Author Session TimeoUt ..., A-2
A3 Rules SDK and Rule Author Temporary Files...........ccoooeoiiiiiiiiiiiicc, A-2

Using Rule Author and Rules SDK with Repositories

B.1 Working with a WebDAV RepoSitOrycccouiurieiiiiiiiiieiicicicc i B-2
B.1.1 Setting up a WebDAV RePOSItOrY.....c.ccceuiuiiiiiiiiiiiiiiiiiiciciiiiiccices s B-2
B.1.2 Connecting to a WebDAV RePOSItOTYcovuvuririririiiriririrrrcrreer s B-3
B.1.3 Connecting to a WebDav Repository Using a ProXy......ccceeevreieiiiiicieieiicciee B-3
B.2 WebDAV RepOoSItOry SECUTILYc.c.vuiuiuiiiiiiiiiiiiiiicciciccicc s B-4
B.2.1 Communicating with a WebDAYV Repository Over SSL from Rule Author.............. B-4
B.2.2 Setting the Location of Your Oracle Wallet..........c.ccccoooiiiiiiiii B-4
B.2.3 Configuring Rule Author for WebDAYV Repository Authentication............cc.c.c........ B-5
B.2.4 Storing Data in an Oracle Wallet for WebDAYV Repository Authentication.............. B-5
B.3 Working with a File RepOSItOryccoiiiiiiiiiiiiiii B-6
B.3.1 Setting up a File REPOSITOTYc.couiuiiiiiiiiiiiiiiciciccc s B-6
B.3.2 File Repository Updates and Temporary Files.........cccccccovvrinnnnnnnnnnncccaes B-7
B.4 High Availability for your Repository.......ccccceeiiieiiiiiiiiiiiic e, B-7

C Oracle Business Rules Frequently Asked Questions

Cl
Cl1
C.l1l2
C.13
Cl4
C.z2
C3
C31
C.3.2
C.33
C4
C5
C.6
c.7
C.8
C.9
Cc.10

Frequently Asked Questions About Rules Operations............ccccoovvvnvinnnnnninnnnnn C-1
Why is the State of a Fact in a Rule Action Inconsistent with the Rule Condition?. C-1
A Changed Java Object was Asserted as a Fact, but no Rules Fired. Why?............... C-2
What are the Differences Between Oracle Business Rules RL Language and Java?. C-2
How Do I Use Rules SDK to Include a null in an Expression...........ccccccccvvveeeennenne. C-2
What JAR Files are Required for Working with Oracle Business Rules? C-2
How do I Deploy Rule Author on Non-Oracle Containers?ccccoevvvvvniniinninnnnnn C-3
Deploying Rule Author on WebSphere V6.1 (WAS V6.1) ..o C-3
Deploying Rule Author on WebLogic Server ..o C-6
Deploying Rule Author on JBoss 4.0........c.ccceueieiiiiiiiiceeec e C-8
How Does a RuleSession Handle Concurrency and Synchronization?..............ccc.c........ C-10
How Do I Improve Oracle Business Rules Runtime Performance?cccccoeueviveneee. c-11
How Do I Correctly Use an RL Language Cross Product?...........cccooriiiiiiiiiiiicenes C-12
How Do I Access a Rule in a Dictionary Using a URL?ccccccoceiiiiiiiiiiiiccees C-14
How Do I Use a Property Change Listener in Oracle Business Rules?............................ C-15
How Do I Modify the Single Sign-On Timeout for Oracle Application Server?............ C-16
Does Oracle Business Rules Provide High Availability?..........cccccccoeiiiiiiinniiiene. C-16

D Oracle Business Rules Troubleshooting

D.1
D.2
D.3
D.4
D.5
D.6
D.7
D.8
D.9
D.10
D.11
D.12

D.13
D.14
D.15

D.16

Index

Public Fact Variables are not Accessible with Rule Author ..o, D-1
Global Variables may not be Used in RL FUNCHONSc.coiiiiiiiiiii D-2
Importing JDK 1.4.2 CLaSSESccoeeueirurieiicieie ettt D-2
Managing Popup Windows on FIrefoXcccccciiiiniiiinciceccceececeeceeeeeeeees D-2
Using the String Data Type with Methods...........ccooiii, D-2
Preserving Class Order and Hierarchies in the Data Modelcccccoeiiiiinininnnnnn. D-3
Validating and Checking Generated RL from Rule Author.........c.ccccccooeeiininnnnnnnene. D-3
Using RL Reserved Words as Part of a Java Package Name..........c.ccccoooeeiiiiiiiciiinnnnnn, D-3
Getter and Setter Methods are not Visible ..., D-3
XML Facts not Asserted at RUNEIMEcccovviiiiiiiiiiiiice D-4
Changing Language When Using Rule Author ... D-4

Why Do I Get a File Error When Simultaneously Editing and Executing a Ruleset Under
Microsoft Windows? D-4

Why are Ancestor Methods not Visible from Sub-Classescccccccvvviivrvnvnnnenenes D-5
Adding an XML Schema Results in Error RUL-01627..........c.cccooiimieiiiiiieiiiccieei, D-5
Choice List with Client and Server Using Different Locale Generates Invalid RL Language.
D-5

Invalid RL Language Generated When Inherited Classes are Used...........cccccccevuveverunnce. D-6

Vii

viii

Audience

Preface

This Preface contains these topics:
= Audience

= Documentation Accessibility
= Related Documentation

« Conventions

Oracle Business Rules User’s Guide is intended for application programmers, system
administrators, and other users who perform the following tasks:

« Create Oracle Business Rules programs

= Modify or customize existing Oracle Business Rules programs
« Create new Java applications using rules programs

= Add rules programs to existing Java applications

To use this document, you need a working knowledge of Java programming language
fundamentals.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://ww. oracl e. com accessibility/

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (ITTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documentation

Printed documentation is available for sale in the Oracle Store at
http://oracl estore. oracl e.comf
To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://ww. oracl e. conf t echnol ogy/ nenber shi p/ i ndex. ht m

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://ww. oracl e. conft echnol ogy/ docunent ati on/i ndex. ht m

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Overview of Oracle Business Rules

This guide provides information about using Oracle Business Rules. Oracle Business
Rules is a component of Oracle Application Server that enables applications to rapidly
adapt to regulatory and competitive pressures. This increased agility is possible
because business analysts using Oracle Business Rules can create and change business
rules that are separated from the application code. By using Oracle Business Rules,
business analysts can change business rules without stopping business processes.
Also, externalizing business rules allows business analysts to manage business rules
directly, without involving programmers.

This guide shows you how to work with Oracle Business Rules Rule Author (Rule
Author), describes the Oracle Business Rules SDK (Rules SDK), and describes how to
create a rule-enabled Java program.

This chapter covers the following topics:

» Introduction to Oracle Business Rules

« Oracle Business Rules Components

= Oracle Business Rules Rule Author Terms and Concepts

= Steps for Rule-Enabling a Java Application

Overview of Oracle Business Rules 1-1

Introduction to Oracle Business Rules

1.1 Introduction to Oracle Business Rules

This section introduces the concept of business rules and covers the following:
= What Are Business Rules?

= WhatIs a Data Model?

= WhatIs a Rule-Based System?

1.1.1 What Are Business Rules?

Business rules are statements that describe business policies. For example, a car rental
company might use the following business rule:

If the age of a driver is younger than 21, then decline to rent.

An airline might use a business rule such as the following:

If a frequent flyer account has total miles for the year that are greater than 100,000, then status is Gold.
A financial institution could use a business rule such as:

If annual income is less than $10,000, then deny loan.

These examples represent individual business rules. In practice, you can use Oracle
Business Rules to combine many business rules.

For the car rental example, you can name the driver age rule the Under Age rule.
Traditionally, business rules such as the Under Age rule are buried in application code,
and might appear in a Java application as follows:

public bool ean checkUnder AgeRul e (Driver driver) {
bool ean declineRent = fal se;
int age = driver.getAge();
if(age <21) {
declineRent = true;

}

return declineRent;

This code is not easy for nontechnical users to read and can be difficult to understand
and modify. For example, suppose that the rental company changes its policy to
"Under 18", so that all drivers under 18 match for the Under Age rule. In many
production environments, the developer must modify the application, recompile, and
then redeploy the application. Using Oracle Business Rules, this process can be
simplified because a business rules application is built to support easily changing
business rules.

Oracle Business Rules allows a business analyst to change policies that are expressed
as business rules, with little or no assistance from a programmer. Applications using
Oracle Business Rules, called rule-enabled applications, support continuous change
that allows the applications to adapt to new government regulations, improvements in
internal company processes, or changes in relationships between customers and
suppliers.

See Also: "Steps for Rule-Enabling a Java Application” on page 1-9

1-2 Oracle Business Rules User's Guide

Introduction to Oracle Business Rules

1.1.2 What Is a Data Model?

In Oracle Business Rules, facts are data objects that are asserted in the Rules Engine.
Rules, such as the Under Age rule, constrain and support facts. In Oracle Business
Rules, a data model specifies the types of facts or business objects that you can use to
create business rules. For example, for a car rental company that needs to create a rule
to match the age of a driver, the driver information represents the facts used in the
rule. Using Rule Author, you can define a data model and then use the objects in the
data model when you create rules.

1.1.3 What Is a Rule-Based System?

This section covers the following:
= Rule-Based Systems Using the Rete Algorithm

= Oracle Business Rules Rule-Based Systems

1.1.3.1 Rule-Based Systems Using the Rete Algorithm

The Rete algorithm was first developed by artificial intelligence researchers in the late
1970s and is at the core of Rules Engines from several vendors. Oracle Business Rules
uses the Rete algorithm to optimize the pattern matching process for rules and facts.
The Rete algorithm stores partially matched results in a single network of nodes in
current working memory.

By using the Rete algorithm, the Rules Engine avoids unnecessary rechecking when
facts are deleted, added, or modified. To process facts and rules, the Rete algorithm

creates and uses an input node for each fact definition and an output node for each

rule. Fact references flow from input to output nodes'.

The Rete algorithm provides the following benefits:

= Independence from rule order: Rules can be added and removed without affecting
other rules.

= Optimization across multiple rules: Rules with common conditions share nodes in
the Rete network.

= High performance inference cycles: Each rule firing typically changes just a few
facts and the cost of updating the Rete network is proportional to the number of
changed facts, not to the total number of facts or rules.

1.1.3.2 Oracle Business Rules Rule-Based Systems
A rule-based system using the Rete algorithm is the foundation of Oracle Business
Rules. A rule-based system consists of the following:

= The rule-base: Contains the appropriate business policies or other knowledge
encoded into If-Then rules.

« Working memory: Contains the information that has been added to the system.
With Oracle Business Rules you add a set of facts to the system using assert calls.

! Fact references flow from input to output nodes. In between input and output nodes are test
nodes and join nodes. A test occurs when a rule condition has a Boolean expression. A join
occurs when a rule condition ANDs two facts. A rule is activated when its output node
contains fact references. Fact references are cached throughout the network to speed up
recomputing activated rules. When a fact is added, removed, or changed, the Rete network
updates the caches and the rule activations; this requires only an incremental amount of work.

Overview of Oracle Business Rules 1-3

Oracle Business Rules Components

» Inference Engine: The Rules Engine, which processes the rules, performs
pattern-matching to determine which rules match the facts, for a given run
through the set of facts.

In Oracle Business Rules the rule-based system is a data-driven forward chaining
system. The facts determine which rules can fire. When a rule fires that matches a set
of facts, the rule may add new facts. These new facts are once again run against the
rules. This process repeats until a conclusion is reached or the cycle is stopped or reset.
Thus, in a forward-chaining rule-based system, facts cause rules to fire, and firing
rules can create more facts, which in turn can fire more rules. This process is called an
inference cycle.

1.2 Oracle Business Rules Components
Figure 1-1 shows the Oracle Business Rules components.
This section covers the following topics:
= Introducing Oracle Business Rules Rule Author
= Introducing Oracle Business Rules Rules SDK
= Introducing Oracle Business Rules RL Language

= Introducing Oracle Business Rules Rules Engine

Figure 1-1 Oracle Business Rules Architecture

Facts: Java Objects, XML, or AL Faots

Aules Enabled Java Application

Slorage lor
Orace Fuies and
Busirass | pssocaied
Ovacka s AL Delinilions
Facts Business Language
| — p———— Fules I Program
-— Bules Bulas "
Application Engina S0 4
Logiz \
RulaSassl [RulaDictionary
Class o Class
Orace Business Fules
Aule Authear

1.2.1 Introducing Oracle Business Rules Rule Author

Oracle Business Rules Rule Author (Rule Author) lets you work with rules from
anywhere using a Web browser. It provides a point-and-click interface for creating new
rules and editing existing rules. Rule Author allows you to work directly with business
rules and a data model. You do not need to understand the Oracle Business Rules RL
Language (RL Language) to work with Rule Author. Rule Author provides an easy
way for you to create, view, and modify business rules.

Rule Author supports several types of users, including the application developer and
the business analyst. The application developer uses Rule Author to define a data
model and an initial set of rules. The business analyst uses Rule Author either to work

1-4 Oracle Business Rules User's Guide

Oracle Business Rules Components

with the initial set of rules, or to modify and customize the initial set of rules according
to business needs. Using Rule Author, a business analyst can create and customize
rules with little or no assistance from a programmer.

Rule Author stores rules programs in a dictionary that is saved to a repository using a
Rule Author dictionary storage plug-in. You can create as many dictionaries as
necessary, and each dictionary can have multiple versions. A rule-enabled program
accesses a dictionary with the Oracle Business Rules SDK.

As shipped, Rule Author supports a WebDAV (Web Distributed Authoring and
Versioning) repository and a file repository.

Note 1: It is not safe for multiple users to edit the same dictionary.

Note 2: For file repositories, only one user may edit the repository at
any given time, regardless of the number of dictionaries stored in the
repository. For WebDAV repositories, a single user may edit multiple
dictionaries simultaneously.

1.2.2 Introducing Oracle Business Rules Rules SDK

Oracle Business Rules SDK (Rules SDK) is a Java library that provides business rule
management features that a developer can use to write customized rules programs.
Rule Author uses Rules SDK to create, modify, and access rules and the data model
using well-defined interfaces. Customer applications can use Rules SDK to display;,
create, and modify collections of rules and the data model.

You can use the Rules SDK APIs in a rule-enabled application to access rules, or to
create and modify rules. The rules and the associated data model could be initially
created in a custom application or using Rule Author (Rule Author uses the Rules SDK
dictionary storage plug-in to store rules).

By using Rules SDK and the dictionary storage plug-in portion of the Rules SDK, you
can also support custom repositories.

1.2.3 Introducing Oracle Business Rules RL Language

Oracle Business Rules supports a high-level Java-like language called Oracle Business
Rules RL Language (RL Language). RL Language defines the valid syntax for Oracle
Business Rules programs. RL Language includes an intuitive Java-like syntax for
defining rules that supports the power of Java semantics, providing an easy-to-use
syntax for application developers. RL Language consists of a collection of text
statements that can be generated dynamically or stored in a file.

Using RL Language, application programs can assert Java objects as facts, and rules
can reference object properties and invoke methods. Likewise, application programs
can use XML documents or portions of XML documents as facts.

Programmers can use RL Language as a full-featured rules programming language.
Business analysts can use Rule Author to work with rules. In this case, the business
analyst does not need to directly view or write RL Language programs.

See Also: Oracle Business Rules Language Reference Guide for detailed
information about RL Language

Overview of Oracle Business Rules 1-5

Oracle Business Rules Rule Author Terms and Concepts

1.2.4 Introducing Oracle Business Rules Rules Engine

Oracle Business Rules Rules Engine (Rules Engine) is a Java library that efficiently
applies rules to facts and defines and processes rules. Rules Engine defines a
declarative rule language, provides a language processing engine (inference engine),
and provides tools to support debugging.

Rules Engine has the following features:

= High performance: Rules Engine implements specialized matching algorithms for
facts that are defined in the system.

= Thread-safe execution suitable for a parallel processing architecture: Rules Engine
provides one thread that can assert facts while another is evaluating the network.

= Agility: Rules Engine allows rules to change without stopping business processes.

A rule-enabled Java application can load and run rules programs. The rule-enabled
application passes facts and rules to the Rules Engine (facts are asserted in the form of
Java objects or XML documents). The Rules Engine runs in the rule-enabled Java
application and uses the Rete algorithm to efficiently fire rules that match the facts.

Rules Engine supports an interactive command-line interface for developing, testing,
and debugging RL Language programs.

1.3 Oracle Business Rules Rule Author Terms and Concepts

This section provides information about Rule Author terms and concepts and covers
the following topics:

= Working with Rules

= Working with Rule Sets

= Working with Repositories and Dictionaries
= Working with Facts

= Working with Functions Variables and Constraints

1.3.1 Working with Rules

A rule consists of a condition, or If part, and a list of actions, or a Then part. Rules
follow a simple if-then structure. This section covers the components of a rule.

1.3.1.1 Rule Conditions

The rule If part is composed of conditional expressions, rule conditions, that refer to
facts. For example:

If the age of a driver is younger than 21.

The conditional expression refers to a fact (driver), followed by a test that the fact's
data member (age) is less than 21.

The rule condition activates the rule whenever a combination of facts makes the
conditional expression true. In some respects, the rule condition is like a query over
the available facts in the Rules Engine, and for every row returned from the query, the
rule is activated.

1-6 Oracle Business Rules User's Guide

Oracle Business Rules Rule Author Terms and Concepts

1.3.1.2 Rule Actions

The rule Then part contains the actions that are executed if all of the rule conditions
are satisfied. The actions are executed, or fired, when all of the conditions in the If part
are met. A rule might perform several kinds of actions. An action can add new facts or
remove facts. An action can execute a Java method or perform an RL Language
function, which may modify the status of facts or create new facts.

Rules fire sequentially, not in parallel. Note that rule actions often change the set of
rule activations and thus change the next rule to fire.

See Also: "Working with Rule Sets" on page 1-7

1.3.2 Working with Rule Sets

A rule set groups a set of rules. A rule set is a collection of rules that are all intended to
be evaluated together.

See Also: "Working with Rules" on page 1-6

1.3.3 Working with Repositories and Dictionaries

In Oracle Business Rules, a repository stores dictionaries. A dictionary usually
corresponds to a rules application and typically stores the rules and definitions for a
rule-enabled application. A dictionary is a set of XML files that stores the rules and the
data model. You store a dictionary in a repository using a supplied dictionary storage
plug-in or a custom dictionary storage plug-in. The dictionary storage plug-in APl is
part of Rules SDK. Dictionaries may have different versions. Dictionaries and
dictionary versions can be created, deleted, exported, and imported into a repository.

As shipped, Rule Author supports a WebDAV (Web Distributed Authoring and
Versioning) repository and a file repository.

1.3.4 Working with Facts

In Oracle Business Rules, facts that you can run against the rules are data objects that
have been asserted. Each object instance corresponds to a single fact. If an object is
re-asserted (whether it has been changed or not), the Rules Engine is updated to reflect
the new state of the object. Re-asserting the object does not create a new fact. In order
to have multiple facts of a particular fact type, separate object instances must be
asserted.

In Rule Author, you make business objects and their methods known to Oracle
Business Rules using fact definitions that are part of a data model.

This section covers the three types of Oracle Business Rules fact definitions:
= Java Fact Type Definitions

= XML Fact Type Definitions

= Oracle Business Rules RL Language Fact Type Definitions

You typically use Java fact types and XML fact types to create rules that examine the
business objects in a rule-enabled application, or to return results to the application.
You use RL Language Fact Type definitions to create intermediate facts that can trigger
other rules in the Rules Engine.

Overview of Oracle Business Rules 1-7

Oracle Business Rules Rule Author Terms and Concepts

1.3.4.1 Java Fact Type Definitions

A Java fact type allows selected properties and methods of a Java class to be declared
to Rules Engine so that rules can access, create, modify, and delete instances of the Java
class. Declaring a Java fact type allows Rules Engine to access and use public
attributes, public methods, and bean properties defined in a Java class (bean properties
are preferable for some applications because Rules Engine can detect that a Java object
supports Pr oper t yChangeLi st ener ; in this case it uses that mechanism to be
notified when the object changes).

1.3.4.2 XML Fact Type Definitions

An XML fact type allows selected attributes and subelements of an XML element or
conpl exType to be declared to Rules Engine so that instances of it can be accessed,
created, modified, and deleted by rules.

See Also: "Overview of Using XML Documents and Schemas with
Rule Author" on page 4-2

1.3.4.3 Oracle Business Rules RL Language Fact Type Definitions

An RL Language fact type is similar to a relational database row or a JavaBean without
methods. An RL Language fact type contains a list of members of either RL Language
fact type, Java fact type, or primitive type. RL Language fact types can be used to
extend a Java application object model by providing virtual dynamic types.

For example:
If customer spent $500 within past 3 months
then customer is a Gold Customer

This rule might use a Java fact type to specify the customer data and also use an action
that creates an RL Language fact type, Gold Customer. A rule might be defined to use
a Gold Customer fact, as follows:

If customer is a Gold customer
then offer 10% discount

This rule uses the RL Language fact type named Gold Customer. This rule then infers,
using the Gold Customer fact, that if a customer spent $500 within the past 3 months,
then the customer is eligible for a 10% discount. In addition rules could specify other
ways that a customer becomes a Gold Customer.

1.3.5 Working with Functions Variables and Constraints

This section covers the following definitions:
« Function Definitions
= Variable Definitions

« Constraint Definitions

1.3.5.1 Function Definitions

In Oracle Business Rules you define a function in a manner similar to a Java method,
but a RL function does not belong to a class. You can use RL functions to extend a Java
application object model so that users can perform operations in rules without
modifying the original Java application code.

1-8 Oracle Business Rules User's Guide

Steps for Rule-Enabling a Java Application

You can also use an RL function definition to share the same or a similar expression
among several rules, and to return results to the application.

1.3.5.2 Variable Definitions

You can use variable definitions to share information among several rules and
functions. For example, if a 10% discount is used in several rules, you can create and
use a variable Gold Discount, so that the appropriate discount is applied to all the
rules using the variable.

Using variable definitions can make programs modular and easier to maintain.

1.3.5.3 Constraint Definitions

Constraint definitions let you mark portions of rules as customizable. For example, the
discount to offer to a Gold customer could be constrained to be within a specified
range, such as 5 to 25 percent. In Rule Author, by defining a constraint, you can select
a value from within the specified range using a special interface that does not allow
you to modify the entire rule.

Note: Use of constraints is a Rule Author feature that supports rule
customization (using the Rule Author rule customization tab).

1.4 Steps for Rule-Enabling a Java Application

Programmers and business analysts work together to rule-enable a Java application.
For many applications, after the application is rule-enabled, the programmer role
diminishes over time, leaving ongoing rule maintenance to the business analyst.

The tasks required to rule-enable a Java application include:

= Identify Application Areas to Rule-Enable

= Provide Rule Author Definitions for the Data Model

= Develop a Business Vocabulary for the Data Model

= Write and Customize Rules

= Modify or Create Application Logic That Uses Oracle Rules Engine
= Test the Rule-Enabled Application

These tasks require cooperation between the programmer and the business analyst.
Programmers understand application code and are comfortable with Java
development, Web services, and XML (if the business objects are represented in XML).
Business analysts understand the business objects at a higher level, and the business
analysts should understand rules as if...then statements concerning business objects.
The business analysts also must determine the parts of rules that are likely to require
frequent change.

1.4.1 Identify Application Areas to Rule-Enable

The business analyst and programmer collaborate to expose business objects as facts
suitable for use in business rules. The business analyst and the programmer together
working determine the business facts required for use with the business rules. These
could be the business objects that represent policies that require frequent change, or
other policies that might change due to agile business processes.

Overview of Oracle Business Rules 1-9

Steps for Rule-Enabling a Java Application

The business analyst should determine what functionality should be rule-driven. For
example, in an online shopping application, perhaps the tax and promotion functions
should be rule-based, but not the shopping cart or product catalog.

1.4.2 Provide Rule Author Definitions for the Data Model

The programmer uses definitions in Rule Author to specify the data model. Working
with the business analyst, the programmer also defines helpful functions, intermediate
facts, variables, and constraints.

1.4.3 Develop a Business Vocabulary for the Data Model

The programmer and the business analyst use Rule Author or another tool to define a
business-friendly vocabulary for the Rule Author definitions, so that the rules are
more understandable. While determining what business facts, functions, and other
definitions to capture, the business analyst has been developing a business vocabulary.

1.4.4 Write and Customize Rules

At this point, the business analyst should be able to use Rule Author to write and
customize rules using the defined business vocabulary. Alternatively, the programmer
may use Rules SDK to create or modify rules, or the data model from within the
administrative portion of a rule-enabled application.

1.4.5 Modify or Create Application Logic That Uses Oracle Rules Engine

The programmer determines how to replace procedural functionality with new
rule-driven functionality. If the application is written in Java, then the application code
can directly invoke Rules Engine. Otherwise, the programmer may need to invoke
Rules Engine using a Web service or other remote API. The programmer must either
create a new application or modify an existing application to interact with Rules
Engine.

Note: Procedural code that is being rule-enabled may need to be
"mined" to extract existing rules from the code.

See Also: Chapter 2, "Getting Started with Rule Author" for details
on working with Rule Author and on the steps a programmer takes to
rule-enable a Java application

1.4.6 Test the Rule-Enabled Application

The programmer and the business analyst test the application. The programmer must
provide a set of tests and must in the debugging for a complex set of rules. The
programmer can enable Rules Engine tracing to provide information about facts, rule
activations, and rule firings. The programmer should develop an automated
mechanism for loading test facts that validates a set of the business analyst rules.

1-10 Oracle Business Rules User's Guide

2

Getting Started with Rule Author

This chapter provides a tutorial introducing Oracle Business Rules Rule Author (Rule
Author). This chapter shows you how to start Rule Author, create a data model, and
create and save rules and shows you how to create a sample Java application that runs
with the Rules Engine.

In this guide we use a car rental sample to illustrate how to work with Rule Author. In
the car rental sample, driver data specifies driver information and the business rules
determine if a rental company service representative should decline to rent a vehicle
due to driver age restrictions. Using this example you create one rule, the UnderAge
rule (the rule is specified according to rental company business rules).

This chapter includes the following sections:

« Creating a Rule Author User

« Starting Rule Author

= Rule Author Home Page

= Creating and Saving a Dictionary for the Car Rental Sample
= Defining a Data Model for the Car Rental Sample

= Defining the Business Vocabulary for the Car Rental Sample
= Defining a Rule for the Car Rental Sample

= Customizing Rules for the Car Rental Sample

= Creating a Java Application Using Oracle Business Rules

= Running the Car Rental Sample Using the Test Program

Note: We call the sample application that we build in this chapter the
Java How-To. This sample application is available in the Oracle
Business Rules area, under the Viewlets and Tutorials heading, on the
Oracle Technology Web site,

http://ww. oracl e. com t echnol ogy/ product s/i as/ busi ne
ss rules/files/howto-rules-java.zip

Getting Started with Rule Author 2-1

Creating a Rule Author User

2.1 Creating a Rule Author User

If you are using Oracle Application Server, you must first create a user with
appropriate privileges before you can start and use Rule Author. To do this:

Note: These instructions assume that the container is configured
with the JAZN XML provider. If it is not, you should refer to the
appropriate security documentation for information about creating
users.

1. Using Application Server Control, go to the OC4] instance where Rule Author was
deployed.

2. Click the Administration tab.

3. Inthe "Task Name" column, find the "Security Providers" task and click the "Go to
Task" icon in the corresponding row.

4. Click Instance Level Security.
5. Click the Realms tab.

6. In the table in the "Results" section, click the number in the "Users" column to add
a user.

7. Click the Create button.

In the "Name" field, enter the name you want to use to login to Rule Author (for
example, r ul eadm n). Enter and confirm the password for this user. In the
"Assign Roles" section, double-click or use the arrows to assign the

rul e- adm ni strat or s role to this user. When you are finished, click OK.

Note: In order for Rule Author authentication to work, the Rule
Author user must belong to the r ul e- admi ni strat or s role.

8. Restart the Rule Author application.

2.2 Starting Rule Author

Start Rule Author by entering the URL for the home page. The URL for the home page
typically includes the name of the host computer and the port number assigned to the
application server during the installation, plus the path of the Rule Author home page.
For example:

http://myhost 1. nyconmpany. com 8888/ r ul eaut hor/

Note: The port number assigned to Oracle Application Server can be
found in the r eadne. t xt file located in the $ORACLE _
HOVE/ i nst al | directory.

Figure 2-1 shows the Rule Author login page. Specify the user name and password
you supplied when you created the Rule Author user (Section 2.1, "Creating a Rule
Author User").

2-2 Oracle Business Rules User's Guide

Starting Rule Author

Figure 2-1

Figure 2-2

Rule Author Single Sign-on Login Page

Enter your single sign-on usermname and password.

Username: | |

Pasgword: | |

After logging in, click the Repository tab to see the Rule Author Repository Connect
page (see Figure 2-2). You must connect to a repository before you can perform any
operations. See Section 2.4.1, "Connecting to a Rule Author Repository" for more

information.

Initial Rule Author Repository Connect Page

ORACLE Logout Help sbout
Rule Author Home SEEGEEGI Definitions Rulesets Custamization RL
Connect | | | | | | | |
Status Connect
Please connect to a repository to load or create a dictionary before performing
Name Value any other operations. You have to reload the dictionary if your session expires
Repositary Type: due to inactivity.
Status disconnected
Rgp?sitory Location: Repositary Type | File 7
Dictionary loaded: none I I
: = File Locatian |[(Browse.]
“ersion: none
Description: y \
| Create)| Caonnect)

Each Rule Author page provides the Logout, Help and About links. You can use these

links as follows:

« Click Logout to go to the Logout Confirmation page. On this page, click either
Logout to log out of Rule Author, or Save and Logout to save your changes and

log out of Rule Author. After doing so, you must log back in to Rule Author (see

Figure 2-1).
= Click Help to access online help for the Rule Author.

« Click About to view Rule Author version and build information (Figure 2-3).

Click OK to dismiss this window.

Figure 2-3 About Rule Author

ORACLE Rule Author

(oK)

Oracle Business Rules Rule Authar 10g (10.1.3.1.0)
Build:20050320.0022
Copyright @ 2005, 2006, Oracle. All rights reserved.

Getting Started with Rule Author

2-3

Rule Author Home Page

2.3 Rule Author Home Page

Click the Home tab to access the Rule Author home page (Figure 2—4). The home page
contains two panes: the top pane shows the tabs and the bottom pane contains content
for the currently selected tab.

Figure 2-4 Rule Author Home Page

ORACLE Logout Help About

m Repository Definitions Rulesets Customization RL

(Copyright © 2005, 2006, Oracle. Al vights reserved.

Welcome to Oracle Rule Author!
Oracle Rule Authaor is the rule authoring and editing component of Oracle Business Rules.

Using Oracle Rule Authar you can:

o create and modify rules
o create and modify data models, including :

o suppaort for Java classes as facts
o suppart for AML elements as facts
o support for RL classes as facts

o easily customize rules

Home | Repository | Definitions | Rulesets | Customization | EL

2.4 Creating and Saving a Dictionary for the Car Rental Sample

To work with Rule Author you must start with a dictionary. Rule Author stores rules
and their associated definitions in a dictionary. To create or save a dictionary, you must
first connect to a repository that stores the dictionary. As shipped, Rule Author
supports two types of repositories: WebDAV (Web Distributed Authoring and
Versioning) repository and file repository. In this section you create and save a
dictionary for the Java How-To.

The example in this chapter saves the dictionary to a WebDAV repository.

Note: To create the dictionary shown in this chapter, you can either
create a new dictionary, using either a WebDAV repository or a file
repository, or you can load the completed dictionary from the

Car Reposi t ory file repository in the / di ct directory supplied with
the Java How-To.

See Section 2.4.2, "Creating a Rule Author Dictionary" for instructions
on how to do this.

2.4.1 Connecting to a Rule Author Repository

2-4

In Oracle Business Rules, you store rules and the data model associated with the rules
in a dictionary. You create and save dictionaries in a repository.

Note: If you choose to use a WebDAV repository, the repository must
exist before you can connect to it. See Appendix B, "Using Rule
Author and Rules SDK with Repositories" for more information.

Oracle Business Rules User's Guide

Creating and Saving a Dictionary for the Car Rental Sample

To connect to a repository, do the following;:

1. Click the Repository tab.

2. Click the Connect secondary tab.

3. Select the WebDAV repository type in the Repository Type field.
4

Enter the URL to the WebDAV repository (see Figure 2-5). The URL must be in the
form:

http://ww. fully_qualified_host_nane.com port/repository_name

Note: In order for authentication to work, you must use a fully
qualified host name in the URL.

Figure 2-5 Rule Author WebDAV Repository Connect Page

ORACLE Locout Heln About
Rule Author Home MEEELETGTTE Definitions Rulesets Customization RL
Connect | | | | | | | |
Status Connect
Please connect to a repository to load or create a dictionary before perfarming
Name Value any other operations. You have to reload the dictionary if your session expires
Repository Type: due to inactivity.
Status disconnected

Repository Location:

Dictionary loaded: none
“ersion: none
Description: Uszer Name |1vru|es |

Repositary Type | WebDAY v

= LJRL :.us.oracle.com:??BDIruIe_repositnry|

Pasgword |esssssss |

[Connect)

See Section B.1, "Working with a WebDAV Repository" for information on how to
setup a WebDAV repository.

5. If there is a proxy between the system where Rule Author runs and the WebDAV
server, then Rule Author also shows the Proxy User and Proxy Password fields.

6. Click Connect. After you click connect, Rule Author shows a confirmation
message (see Figure 2-6).

Note: For file repositories, only one user may edit the repository at
any given time, regardless of the number of dictionaries stored in the
repository. For WebDAV repositories, a single user may edit multiple
dictionaries simultaneously.

Getting Started with Rule Author 2-5

Creating and Saving a Dictionary for the Car Rental Sample

Figure 2-6 Rule Author Repository Connect Page with Confirmation

ORACLE Logout Help Abot

Rule Author

R Repository Definitions Rulesets Customization RL

Disconnect | Create | Load | | Import | Export | Delete
Status Confirmation
Connection has been made to repository Chttp:ifvanraal-
Name Value pc.us.oracle.com:7780/rule_repository”). You can now create or load a dictionary.
Repositary Type: WebDAV
Status connected

Repository Location: httpz/tvanraal-pc.u
s.oracle.com:7780/ru
le_repository

Dictionary loaded: none

“ersion: none

Description:

See Also: "Connecting to a WebDav Repository Using a Proxy" on
page B-3

2.4.2 Creating a Rule Author Dictionary

A Rule Author dictionary is the top-level container and the starting point for working
with Rule Author. A dictionary usually corresponds to the rules portion of an
application.

Note: It is not safe for multiple users to edit the same dictionary at
the same time.

To create a dictionary, do the following:
1. Connect to a repository from the Repository tab.
2. Click Create.

3. Enter the dictionary name in the New Dictionary Name field. For this example
enter Car Rent al (see Figure 2-7).

4. Click Create. After you click Create, Rule Author shows a confirmation message.

2-6 Oracle Business Rules User's Guide

Creating and Saving a Dictionary for the Car Rental Sample

Figure 2—-7 Rule Author Create Dictionary Page

DRACI_E Save Dictionary Logout Help About
Rule Author Home SEEGEEGT Definitions Rulesets Customization RL
Disconnect | Create | Load | Save | Sa . | Properties | Import | Export | Delete
Status Confirmation
Dictionary 'CarRental' has been created. Use the Definitions tab and the RuleSets tab to
Name Value define a Data Model and Rules.
Repositary Type: WebDAV
Status connected Create Dictionary
Repasitory Lacation: http:/‘tvanraal-pe.u Create a dictionary in the repasitory.
s.oracle.com:777%/ru
le_repository
Dictionary loaded: CarRental * Mew Dictionary Name |
“Yersion: INITIAL Only letter, digit and underscore are allovwed
Description:

[Create)
Existing Dictionaries

Name
CarRental

Note: In addition to creating your own dictionary, you can also use
the completed car rental dictionary that is supplied with the Java
How-To. This dictionary is located in the Car Reposi t ory file
repository in the / di ¢t directory. To use this dictionary, do the
following:

1. Click the Repository tab.

2. Click the Connect secondary tab.

3. Select File in the Repository Type box.

4

Enter the complete path to the file repository in the File Location field.
For example, enter C: / deno/ di ct/ Car Reposi t ory.

5. Click Connect.

2.4.3 Saving a Rule Author Dictionary with a Version

To save to a different dictionary name or to specify a version for the current dictionary,
use Save As as follows:

1. Click the Repository tab.

2. Click the Save As secondary tab.

3. Enter a dictionary name in the Dictionary field, for example, enter Car Rent al .
4

To specify a version, enter a version in the Version field, for example, HOWTo (see
Figure 2-8).

5. Click Save As. After clicking Save As, Rule Author shows a confirmation
message.

Getting Started with Rule Author 2-7

Defining a Data Model for the Car Rental Sample

Figure 2-8 Rule Author Save As Page

OoORACLE Save Dictionary Logout Help Sbout
Rule Author Home #GETE G Definitions | Rulesets | Customization | RL
Disconnect | Create | Load | Save | Sawve As | Properties | Import | Expaort | Delete
Status Save As
Save contents to different dictionary or version
Name Value
Repositary Type: WebDAV o
Status EEGEE = Dictionary |CarRental
Repository Location: http://tvanraal-pe.u) ulviietepitianduneseoclarealoved
s.oracle.com:7779/ru *Wergion |HowTo
le_repository Description | Car rental sample dictionary
Dictionary loaded: CarRental Overwite [
Yersion: INITIAL
Description:

| Save As)

Note: Rule Author allows you to use Save As to overwrite a
dictionary with the same name and version. Select the Overwrite
check box to save a dictionary with the same name and version.

2.4.4 Saving a Rule Author Dictionary

To prevent data loss, you should periodically save the dictionary. To save a dictionary,
do one of the following:

= Click the Repository tab, then click the Save secondary tab.
= Click the Save Dictionary link at the top of the page.

After performing either of the preceding actions, click Save on the Save Dictionary
page. After clicking Save, you should see a confirmation message in the status area.
For example:

Di ctionary ' CarRental (HowTo)' has been saved

Note: You should save the dictionary periodically as you work
because Rule Author sessions time out after a period of inactivity.

See Also: "Rule Author Session Timeout" on page A-2 for details on
configuring the Rule Author session timeout and for details on how
Rule Author automatically saves the current work to a dictionary
version when a timeout occurs

2.5 Defining a Data Model for the Car Rental Sample

Before working with rules, you must define a data model. A data model contains
business data definitions for facts or data objects used in rules, including: Java class
fact types, XML fact types, and RL Language fact types. To simplify the discussion in
this section, we refer to Java fact types as Java facts. In this section you only work with
Java facts.

2-8 Oracle Business Rules User's Guide

Defining a Data Model for the Car Rental Sample

This section covers the following topics:

Using Java Objects as Facts in the Car Rental Sample
Adding Java Classes and Packages to Rule Author
Importing Java Classes to a Data Model

Saving the Current State of Definitions

See Also:

"Importing XML Schema Elements to a Data Model" on page 4-10

2.5.1 Using Java Objects as Facts in the Car Rental Sample

The Java How-To includes the car - obj s. j ar file in the $HowToDir/ | i b directory.
This jar file includes the Dr i ver class for the car rental sample. The Java source for the
Dri ver object is available in the directory $HowToDir/ sr ¢/ carr ent al , where
$HowToDir is the directory where you installed the Java How-To.

2.5.2 Adding Java Classes and Packages to Rule Author

Before you can import Java facts into a data model you must make the classes and
packages that contain the Java facts available to Rule Author. To do this, use Rule
Author to specify the classpath that contains the Java classes. For example, to add the
classpath for the Java class Dri ver, do the following:

1.
2.

Click the Repository tab.

Skip to Step 3 if you just created the dictionary as shown in Section 2.4.3. On the
Load page, select the Car Rent al dictionary and HowTo version, then and click
Load.

Click the Definitions tab. The navigation tree shows the Definitions folder that
contains the available definitions. Nothing is shown in the main pane.

Note: In Rule Author, the bottom pane usually contains a navigation
tree and a content area (the main pane). When you select the
Definitions tab, the Definitions folder appears at the top of the tree.

The Definitions folder in the tree contains the Fact folder, which includes the
available fact types: JavaFact, XMLFact, and RLFact.

Click JavaFact to view the JavaFact Summary page (see Figure 2-9).

Getting Started with Rule Author 2-9

Defining a Data Model for the Car Rental Sample

Figure 2-9 Rule Author Definitions Java Fact Summary Page

(_Delete) | (_Create)

Dictionary loaded:
Select All | Select MNone

DRACI_EI Save Dictionary Logout Help About

Rule Author Home Repository Rulesets Customization RL
JavaFact Summary

Definitions

CarRental s
g Definitions SelectMame Edit

Fact [0 java.lang. Object &

XML act i0)

RLFact [}

Constraint [}
Wariable [0}
ELFunction ()

5. Click Create. This shows the Class Selector page.

6. On the Class Selector page, the User Classpath field lets you add a classpath. For
example, for the Java How-To enter the following in the User Classpath field.
$HowToDirl | i b/ car - obj s. j ar
Replace $HowToDir with the directory where you installed the Java How-To.

7. Click Add. This updates the Current Classpaths field and adds the car r ent al

package to the Classes box (see Figure 2—

Figure 2-10 Rule Author JavaFact Class Selector Page

10).

DRACI_EI Save Dictionary Logout Help About
Rule Author Home Repository Rulesets Customization RL
JavaFact Summary =
Definitions
Class Selector
Dictionary loaded: o)
CarRental User . _
ZHO Definitions Classpath |'ﬂ)
Fact
Current |[c:/dernoflib/car-objs jar |~ o0
Classpaths ==
HMLFact (0]
BLFact Classes
Constraint (07 o0
=
ariahle = carrental
Wariable () & .
ELFunction (2} J-a\ta
0 [javax
&0 [arg
(Import)

See Also:
classes and packages to Rule Author

2-10 Oracle Business Rules User’'s Guide

Section 2.5.3 for more information about adding Java

Defining a Data Model for the Car Rental Sample

2.5.3 Importing Java Classes to a Data Model

Next, you must select the Java classes that you want to import into the data model
from the Class Selector page. To add the Dri ver class to the data model, do the
following:

1. Click the Definitions tab to view the Definitions page.

2. Inthe navigation tree, click the JavaFact folder.

3. On the JavaFact Summary page, click Create. This shows the Class Selector page.
4

In the Classes box on the Class Selector page, expand the carrental node and select
the Driver check box (see Figure 2-11).

5. Click Import. After you click import Rule Author shows a confirmation message:

1 class or package has been inported.

Note: After a class is imported, the class selector page shows the
imported class in bold.

Figure 2-11 Rule Author JavaFact Class Selector Page

DQAC LE Save Dictionary Logout Help About

Rule Author Hame | Repasitory Rulesets | Customization | RL

JavaFact Summary =

Definitions
Class Selector
Dictionary loaded: Import |
CarRental Jeer \
GH_J Definitions Classpath S
Fact
lavaFact (1) Current ||c:/demo/lib/car-ohjs jar \
Classpaths \LClear)
AMLF act
RLFact [0)
Constraint {0}
. carrental
Variable (0} [
-
ELFunction (2}

Irmiport)

Notes for specifying the user classpath and importing Java classes to Rule Author:

= In Rule Author, importing a Java fact means the same thing as a Java import
statement. That is, the classes and their methods become visible to Rule Author.
Rule Author does not copy the Java code into the data model or into the
dictionary.

= The Class Selector page includes the Classes box, which shows the Java classes
available from the current classpaths.

« The default Rule Author classpath includes three packages, j ava, j avax, and
or g. These packages contain classes that Rule Author lets you import from the
Java runtime library (rtjar). Rule Author does not let you remove these classes

Getting Started with Rule Author 2-11

Defining a Data Model for the Car Rental Sample

from the Classes area (and the associated classpaths are not shown in the Current
Classpaths field).

= To assign or compare two objects that are not of the same type but are related by
inheritance, you must import both classes to be compared and all classes between
them in the inheritance hierarchy. For example, if you want to assign an
ArraylLi st to a variable of type Obj ect, you must import ArrayLi st,
Abst ract Li st,and Abst ract Col | ect i on into the data model. Otherwise,
type-checking does not work correctly and expressions do not validate.

= On Windows systems, you can use a backslash (\) or a slash (/) to specify the User
Classpath. Rule Author accepts either path separator. For example, you can use
the following: $HowToDir\ | i b\ car - obj s. j ar , where $HowToDir is the
directory where you installed the Java How-To.

« Toimprove performance the classes box navigation tree. Thus, a child node is
rendered only if its parent node is expanded. It is a good practice to keep only the
nodes of interest expanded.

= Classes and interfaces that you use in Rule Author must adhere to the following
rules:

a. If you are using a class or interface and its superclass, you must declare the
superclass first.

b. If you are using a class or interface, only its superclass or one of its
implemented interfaces may be mentioned.

For more information, see Section D.6, "Preserving Class Order and Hierarchies in
the Data Model".

= In the User Classpath you can specify a jar file, a zip file, or a full path for a
directory.

= When you specify a directory name for the User Classpath, the directory specifies
the classpath that ends with the directory that contains the "root" package (the first
package in the full package name). Thus, if the User Classpath specifies a
directory, Rule Author looks in that tree for directory names matching the package
name structure.

For example, to import a class cool . exanpl e. Test 1 located in
c:\nyprj\cool\exanpl e\ Test 1. cl ass to the data model, specify the User
Classpath value, c: \ nyprj .

= Do not use RL Language reserved words in Java package names. For more
information, see Section D.8, "Using RL Reserved Words as Part of a Java Package
Name".

2.5.4 Saving the Current State of Definitions

While you are working on the data model from the Definitions tab and when you
complete your work, you should save the dictionary.

To save your definitions to the dictionary, do the following:
1. Click the Save Dictionary link.
2. Click Save on the Save Dictionary page.

3. Click the Definitions tab to return to the definitions page.

2-12 Oracle Business Rules User's Guide

Defining the Business Vocabulary for the Car Rental Sample

2.6 Defining the Business Vocabulary for the Car Rental Sample

The business vocabulary allows business analysts working with Rule Author to create
rules using familiar names rather than using a Java package name, class name, method
name, or member variable name. Rule Author provides an alias feature to allow you to
refer to business objects, or facts, in rules using a vocabulary that is intended for
business people. In this step, you only need to define the business vocabulary for the
business objects that you expect to use in rules. In addition, you can use the Rule
Author Visible box to specify the properties and methods that appear in Rule Author
lists when you create rules from the Rulesets tab.

This section covers the following topics:

Specifying the Business Vocabulary for Java Fact Definitions
Specifying the Business Vocabulary for Functions

Specifying the Visibility for Properties and Methods

2.6.1 Specifying the Business Vocabulary for Java Fact Definitions

To specify the business vocabulary for Java fact definitions, do the following:

1.
2.

Click the Definitions tab to view the Definitions page.

In the navigation tree, click the JavaFact node to display the JavaFact Summary
page. For the car rental sample, this shows a table that includes the imported class
carrental . Driver.

Click the edit icon to view the JavaFact Properties and Methods table for the
carrental . Driver class.

At the top of the page, under the Name field, in the Alias box, enter the alias
Dri ver Dat a in the Alias field for the class carrental . Dri ver.

For the age entry in the Properties table, specify the desired alias. For example,
enter Dr i ver Age in the Alias field.

For the name entry in the Properties table, specify the desired alias. For example,
enter Dr i ver Name in the Alias field.

Click OK to save your changes and return to the JavaFact Summary page.

Note: Be sure to click either OK or Apply after making changes. If
you do not click OK or Apply, Rule Author does not save your
changes.

See Also: "Viewing Java Objects in a Data Model" on page 3-9

2.6.2 Specifying the Business Vocabulary for Functions

To specify the business vocabulary for an RL Language function, do the following:

1.
2.

Click the Definitions tab to view the Definitions page.

In the navigation tree, click RLFunct i on in the Definitions folder to display the
RLFunction Summary page. For the car rental sample, this shows a table that
includes the functions DM assert XPat h and DM pri nt | n.

For the DM pri nt | n function, click the edit icon to view details.

Getting Started with Rule Author 2-13

Defining a Rule for the Car Rental Sample

4. In the Alias field, under the Name field, enter an alias. For example, enter
Pri nt Qut put in the Alias field.

Note: There is also an Alias field in the Function Arguments table.
For this example, do not change the alias field in the Function
Arguments Area.

5. Click OK to save your changes and return to the RLFunction Summary page.

6. Save the dictionary.

2.6.3 Specifying the Visibility for Properties and Methods

To specify whether properties or methods are visible in Rule Author lists, do the
following:

1. Click the Definitions tab to view the Definitions page.

2. Inthe navigation tree, click the JavaFact node to display the JavaFact Summary
page. For the car rental sample this shows a table that includes the imported class
carrental . Driver.

3. Click the edit icon to view the JavaFact Properties and Methods table for
carrental . Driver.

4. For each entry in the Properties table, specify the desired visibility using the
Visible check box. For this example, only the member variables age and nare
must be visible.

5. Click OK to save your changes and return to the JavaFact Summary page.

6. Save the dictionary.

Note: Modifying the visibility indicators for a particular property or
method may cause dependent definitions or rules to display
incorrectly. If this occurs, you must mark as visible any non-visible
properties or methods causing the problem.

2.7 Defining a Rule for the Car Rental Sample

In this section, you define a rule for the car rental sample and see the basic steps for
creating rules with Rule Author.

This section covers the following topics:
= Creating a Rule Set for the Car Rental Sample
= Creating a Rule for the Car Rental Sample

2.7.1 Creating a Rule Set for the Car Rental Sample

Before you can create a rule using Rule Author, you must create a rule set. A rule set is
a container for rules.

To create a rule set, do the following:
1. Click the Rulesets tab.
2. Click the RuleSet node in the navigation tree.

2-14 Oracle Business Rules User's Guide

Defining a Rule for the Car Rental Sample

3. On the Ruleset Summary page, click Create. This displays the Ruleset page.
4. Enter text in the Name field. For example, enter vehi cl eRent in the Name field.
5. Optionally enter a description for the rule set in the Description field (see

Figure 2-12).

Figure 2-12 Rule Author Ruleset Page

ORACLE Save Dictionary Logout Help About

Rule Author Home | Repository | Definitions m Customization || RL
EuleSet Summary =

Rulesets
Ruleset

Dictionary loaded: 0K) Cancel) Apply)

CarRental = Mame |vehicleRent

F)—Q EuleSet

Cnly letter, digit and underscore are allovwed
Description |%ehicle rent rule set

0K) Cancel) Apply)

6. Click OK to create the vehi cl eRent rule set. After you click OK, the new rule set
appears in the navigation tree under RuleSet.

7. Save the dictionary.

Note: To remove a rule set, do the following;:

1. Select the RuleSet folder in the navigation pane.

2. Select the appropriate RuleSet in the RuleSet area by selecting the check
box in the Select field.

3. Select Delete.

2.7.2 Creating a Rule for the Car Rental Sample

After creating a rule set, you can create rules within the rule set. In this section, you
create a rule called UnderAge. This rule tests for the following:

If the age of a driver is younger than 21, then decline to rent

The UnderAge rule contains a single pattern for the Rules Engine to match, and a test
that is applied to the pattern.

The following actions are associated with the UnderAge rule:

= Print the text, "Rental declined", the name of the driver matched and the message,
"Under Age, age is: ", and the age of the driver.

= Retract the matched driver object. You might want to retract a fact for a number of
reasons, including: If you are done with the fact, and you want to remove it from
the Rules Engine or if the action associated with the rule changes the state, so that
the fact must be retracted to represent the current state of the Rules Engine.

2.7.2.1 Adding the UnderAge Rule for the Car Rental Sample
To use Rule Author to add the UnderAge rule, do the following:

Getting Started with Rule Author 2-15

Defining a Rule for the Car Rental Sample

Click the Rulesets tab. The navigation pane displays the RuleSet folder that
contains the vehi cl eRent rule set that you created in the section, "Creating a

Rule Set for the Car Rental Sample" on page 2-14.

Click the vehicleRent folder in the tree. This displays the Ruleset page, with a table

listing rules (see Figure 2-13).

Note:
table is empty.

If you have not previously created other rules, then the Rules

Figure 2-13 Rule Author Ruleset Page Showing the Table of Rules

OoORrRACLE Save Dictionary Logout Help About
Rule Author Home Repositary Definitions m Custamization RL
BuleSet Summary =
Rulesets
Ruleset
Dictionary loaded: [TOK) cancel) Apply)
CarRental N hicleRent
RulaSet ame [veniclesen
ef}@ Cnly letter, digit and underscore are allowed
Description |%ehicle rent rule set
Rules
| Create |
Select Name
(0K) Cancel) Apply)
3. Click Create. This displays the Rule page.
4. Enter Under Age in the Name field.
5. Do not change the default value, 0, in the Priority field.
Note: The Priority field determines the rule priority. Rule priority
specifies which rule to act upon, and in what order, if more than one
rule applies within a rule set. Often in applications that use rules, the
rules in a rule set are applied in any order until a decision is reached,
and setting the rule priority is not required.
6. Enter Under age driver rul e inthe Description field (see Figure 2-14).

2-16 Oracle Business Rules User’'s Guide

Defining a Rule for the Car Rental Sample

Figure 2-14 Rule Author Rule Page

Save Dictionary Logout Help About

(0K) Cancel) Apply)

ORACLE
Rule Author Home | Repository |/ Definitions m Customization | RL
EuleSet Summary > Ruleset =
Rulesets
Rule
Dictionary loaded:
CarRental
*Mame |Underfge
@7 RuleSet = L
é}D Description |Under age driver rule
Priority |0
If
[Mew Pattern)
Then
[Mew Action)

(0K) Cancel)| Apply)

See Also: Oracle Business Rules Language Reference Guide for more
information about working with rule priority

2.7.2.2 Adding a Pattern to the UnderAge Rule

When the Rules Engine runs, it checks the facts against rule patterns to find matching
patterns. Do the following to add a pattern for the UnderAge rule:

1. Inthe If box on the Rule page, click New Pattern. This displays the Pattern
Definition page, which contains two areas: Choose Pattern and Define Test for

Pattern (see Figure 2-15).

Note: If the Pattern Definition page does not appear, you may have
popup blocking enabled on your browser. Popup blocking must be

disabled in order to use Rule Author.

Figure 2-15 Rule Author Pattern Definition Page

Pattern Definition

Choose Pattern

v

Define Test for Pattern
@ Standard Test O Advanced Test

sa | <make a choicex D

0K) Cancel) Apply)

Create |
Dper (ch Ope|m"d field)
peran choose value or fie
Operat
Select Field R Value Field
(Mo test)

0K) Cancel) Apply)

Getting Started with Rule Author 2-17

Defining a Rule for the Car Rental Sample

2. Under Choose Pattern, in the first box select the first choice (this shows no value
in the selection box).

This box specifies that the rule should fire each time there is a match (for all
matching drivers). One alternate value, There is at least one case, selects one
firing of the rule if there is at least one match (one such driver). The value There is
no case specifies that the rule fires once if there are no such matches (no matching
drivers).

3. The next text area under Choose Pattern lets you enter a temporary name for the
matched fact. Enter dri ver in this field (this defines the "pattern bind variable
name").

This value lets you test multiple instances of the same type in a single rule. For
example, the pattern bind variable lets you compare a match for a driver with
other drivers, using the specified name, in a comparison such as dri ver 1. age >
driver2. age.

4. The third box contains the text <make a choi ce>. This box shows the available
fact types from the data model. In this box, select Dr i ver Dat a (if you did not
define an alias for this in the data model, then thisis carrental . Dri ver).

5. Click OK or to save the pattern definition and return to the Rule page.
6. Click OK on the Rule page to save the rule.

Note: Changes made to the pattern are not added to the rule until
you click OK or Apply on the Rule page. If you navigate to a different
rule set or select a different tab before you click OK or Apply, Rule
Author discards the pattern definition.

7. Save the dictionary.

Without any tests defined on the pattern, the action that you define would apply to all
drivers. To define tests for patterns, continue on the Pattern Definition page, as shown
in Section 2.7.2.3.

See Also: "Adding Actions for the UnderAge Rule" on page 2-20

2.7.2.3 Defining Tests for Patterns with the UnderAge Rule
To add a test for a pattern, do the following;:

1. From the Rulesets tab, in the navigation pane click the rule that you want to add a
test for. For this example, click the node in the navigation pane for the UnderAge
rule. This displays the Rule page.

2. In the If box on the Rule page, click the pencil icon to display the Pattern
Definition page. The Pattern Definition page contains two areas: Choose Pattern
and Define Test for Pattern.

&

3. On the Pattern Definition page, select the Standard Test button, then click Create
(see Figure 2-16). For more information, see Section 3.8.1, "Using the Advanced
Test Expression Option".

2-18 Oracle Business Rules User’'s Guide

Defining a Rule for the Car Rental Sample

Figure 2-16 Rule Author Rule Pattern Definition Page with Define Tests for Pattern Fields

Pattern Definition
0K) cancel) Apply)
Choose Pattern
L | driver is a | DriverData
Define Test for Pattern
@ Standard Test O Advanced Test
Delete | | (_GCreate)
Select All | Select Mone
Operand
Operand {choose value or field)
0 t
Select Field e Woe Field
[1 | =<make a choice> [v] == Fixed <make a choice> Fixed
0K) Cancel) Apply)

In the Operand column, from the first Field box, select dri ver . Dri ver Age (if
you did not define an alias for this member variable in the data model, then this is
driver. age).

In the Operator column, select < (less than).

In the Operand column, in the Value box enter 21. Do not enter a value in the
Field box.

Next to the Value and Field boxes is a drop-down list containing the values Any
and Fi xed (see Figure 2-17). These values are called constraints, and they enable
or disable customization. Use Fi xed to make the field read-only, which specifies
no customization for the field. Select Any to specify that Rule Author allows
changes to the value (this allows nontechnical users to make modifications to the
field from the Customization tab).

Select Any as the constraint for the Value field.

Figure 2-17 Rule Author Pattern Definition Page with Values for the UnderAge Rule

Pattern Definition
0K)| Cancel) Apply)
Choose Pattern
L | driver isa | DriverData
Define Test for Pattern
@ Standard Test O Advanced Test
Delete | | (_Create)
Select All | Select Mone
Operand
Operand (choose value or field)
0 t
Select Field . ae Field
[| driver.Driverige < B 21 Any <make a choice> Fixed
0K) Cancel) Apply

8.
9.

Click OK or save your changes and return to the Rule page.

Click OK on the Rule page.

Getting Started with Rule Author 2-19

Defining a Rule for the Car Rental Sample

Note: Changes made to the pattern are not added to the rule until
you click OK or Apply on the Rule page. If you navigate to a rule set
or select a different tab before you click OK or Apply, Rule Author
discards the pattern definition.

10. Save the dictionary.
Note the following when you define a test for a pattern:

« In Standard Test expressions, the tests only evaluate to true when all of the tests
that you define match. Additionally, in standard tests, no grouping is allowed, and
functions with parameters are not allowed. However, with standard tests you can
define constraints for customization.

« In Advanced Test expressions, the tests do not have the restrictions of standard
tests, but they do not allow the use of constraints. Advanced test expressions are
not directly saved using RL Language because Rule Author incorporates aliases in
the expressions; aliases are not supported in RL Language (Rule Author maps
aliases to variable names).

See Also:
= "Customizing Rules for the Car Rental Sample" on page 2-23

= "Working with Constraints" on page 3-2

2.7.2.4 Adding Actions for the UnderAge Rule

Actions are associated with pattern matches. When the "If" portion of a rule matches,
Rules Engine activates the "Then" portion and prepares to run the actions associated
with a rule.

In this section, you add two actions for the UnderAge rule. The first action prints the
result. The second action retracts the driver fact from Rules Engine. You might want to
retract a fact for a number of reasons, including;:

= If you are done with the fact, and you want to remove it from Rules Engine.

= If the action associated with the rule changes the state, so that the fact must be
retracted to represent the current state of Rules Engine.

To add the action that prints the result for a match of the UnderAge rule, do the
following:

1. Click the Rulesets tab.
2. In the tree, under the vehicleRent folder, click the node for the UnderAge rule.

3. On the Rule page in the Then section, click New Action. This displays the Add
Action page (see Figure 2-18).

2-20 Oracle Business Rules User’'s Guide

Defining a Rule for the Car Rental Sample

Figure 2-18 Rule Author Add Action Page

Add Action
0K) Cancel) Apply)
Choose an action.
Action Type | <make a choice=> |
Action Parameters
Define parameters associated with the chosen action.
0K) Cancel) Apply)

4. From the Action Type box, select the Cal | item. This shows the Action
Parameters box.

5. From the Function list, choose Pri nt Qut put (if you did not define an alias for
this function, then this is DM pri nt | n). This expands the Function Arguments
box.

6. In the Function Arguments box, in the Argument Value field, in the Expression
column, enter a value (see Figure 2-19). For example:

"Rental declined " + driver.DriverName + " Underage, age is:" + driver.DriverAge

Note 1: Rule Author uses a Java-like syntax for expressions. RL
Language defines the complete expression syntax.

Note 2: If you do not know the variable names to use in the
expression, use the edit icon in the Wizard field to display the
expression Wizard. This presents the Wizard page, which provides
more space to write expressions. This also provides an easier and
more accurate way to enter variables, because the Wizard presents a
variable selection box.

Getting Started with Rule Author 2-21

Defining a Rule for the Car Rental Sample

Figure 2-19 Rule Author Add Action Page for the UnderAge Rule

Add Action
0K) Cancel) Apply)
Choose an action.
Action Type | Call
Action Parameters
Define parameters associated with the chosen action.
Function | PrintOutput
-
Function Arguments
Define arguments associated with function selected.
Argument Value
Enter an expression or use the wizard
Argument Name Argument Type : { - ! i >
Expression Wizard
message String Marme + " Under age,age is:" + driver. Driverdge f
0K) Cancel) Apply)

7. Click OK to save your changes and return to the Rule page.
8. On the Rule page, click OK.
9. Save the dictionary.

Next, add the retract action for the UnderAge rule. Perform the following steps to add
this second action for the rule:

1. Click the Rulesets tab.
2. Under the vehicleRent folder, click node for the UnderAge rule.

3. On the Rule page, from the Then box, click New Action. This displays the Add
Action page.

4. From the Action Type box, select Ret r act . This shows the Action Parameters
box.

5. From the Action Parameters area, in the Fact Instance list, select dri ver . The
pattern name dr i ver refers to the single instance that was matched by the
pattern.

6. Click OK to save your changes and return to the Rule page.
7. Click OK on the Rule page (see Figure 2-20).

Note: Changes made to the action are not added to the rule until you
click OK or Apply on the Rule page. If you navigate to a rule set or
select a different tab before you click OK or Apply, Rule Author
discards the action definition.

8. Save the dictionary.

2-22 Oracle Business Rules User’'s Guide

Customizing Rules for the Car Rental Sample

Figure 2-20 Rule Author UnderAge Rule with Pattern and Actions

Home Fepository Definitions m Customization RL

Save Dictionary Looout Help About

0K) Cancel) Apply)

O f driver is a DriverData and
driver. Driverdge < 21

Then
Mew Action

Df Retract driver

Copyright @ 2005, 2006, Oracle. All rights reserved.

ORACLE
Rule Author
EuleSet Summary > Ruleset =
Rulesets
Rule

Dictionary loaded:

CarRer;z:eSet *Mame |UnderAge
vehiclaRent Description |Under age driver rule
UnderAge Priarity |0

If
Mew Pattern)

0O f Call PrintOutput("Rental declined” + driver. DriverMarme + " Under age age
s+

Home | Repository | Definitions | Rulesets | Customization | EL

Note: When you add actions to rules, you can only add new actions
sequentially. If an action depends on the results of a previous action,
then the order in which you add the actions is significant. See

Table 3-2 for more information on Action Types.

See Also:

Oracle Business Rules Language Reference Guide

2.8 Customizing Rules for the Car Rental Sample

The Rule Author Customization tab is designed for business users. Rule developers
use the Allowed Values field on the Pattern Definition page, which is available from
the Rulesets tab, to specify if customization is allowed. When customization is
allowed, you can specify a range of valid values for the customizable field. Then,
business users may change values using the Customization tab.

In this example, the UnderAge rule can be modified on the Customization tab to
change the age of an underage driver (for this sample we do not limit values, and

specify that any value is valid).

To change the UnderAge rule, use the Customization tab as follows:

1. Click the Customization tab. The navigation pane displays the vehicleRent folder
with the node for the UnderAge rule followed by an asterisk (*), which indicates

that the rule is customizable.

2. In the tree, click the node for the UnderAge rule (see Figure 2-21).

Getting Started with Rule Author 2-23

Creating a Java Application Using Oracle Business Rules

Figure 2-21 Rule Author Rule Customization Page for the UnderAge Rule

ORAC I_el Save Dictionary Logout Help About
Rule Author Home Repositon Definitions Rulesets JEMTEGINTFGTT RL

Rule Customization

Customization \
| Apply)
Dictionary loaded:
CarRental Mame: UnderAge
ZHD RuleSet Priority: 0 i
) Description: Under age driver rule
vehicleRent
L
Customize Patterns
driver is a DriverData and
driver Driverage < 21
[Apply)

Home | Repository | Definitions | Bulesets | Customization | BL
(Copyright & 2005, 2006, Cracle. All rights reserved.

3. On the Rule Customization page, the Customize Patterns box contains an editable
text entry field for the testdri ver. Dri ver Age < 21.

In this field, change the value 21 to 19.
4. Click Apply.
5. Save the dictionary.

After you save the dictionary, you are done creating the data model and the rules for
the Java How-To.

See Also: "Defining Tests for Patterns with the UnderAge Rule" on
page 2-18 for information about the Allowed Values field

2.9 Creating a Java Application Using Oracle Business Rules

After you create and save a dictionary that contains a data model and a rule set with
rules, you can use the dictionary in a rule-enabled Java application. This section shows
you the steps for creating a rule-enabled Java application.

Note: Make sure your Java calls are wrapped in a try/catch block.

This section covers the following topics:

= Importing the Rules SDK and Rules RL Language Classes

= Initializing the Repository with Rules SDK

= Loading a Dictionary with Rules SDK

= Specifying a Rule Set and Generating RL Language with Rules SDK
» Initializing and Executing a Rule Session

= Asserting Business Objects Within a Rule Session

2-24 Oracle Business Rules User's Guide

Creating a Java Application Using Oracle Business Rules

= Using the Run Function with a Rule Session

For the complete code for this sample application, see Test Mai n. j ava in the
$HowToDir/ src/ carrent al directory, where $HowToDir is the directory where you
installed the Java How-To.

Note: The instructions in the preceding sections of this chapter
enabled you to create and save a WebDAV repository and dictionary
named Car Rent al . The car rental example supplied in the How-To
sample code uses a file repository with a dictionary also named

Car Rent al . The dictionary contents in the WebDAV repository you
created in this chapter and the file repository in the How-To sample
should be identical.

The How-To sample code contains code for both WebDAYV and file
repositories, but only the file repository is described in detail. The
How-To sample uses a file repository for portability, but this sample
can be modified to use the WebDAYV repository you created in the
proceeding sections.

2.9.1 Importing the Rules SDK and Rules RL Language Classes

The first step when you write a rule-enabled program is to import the required classes.
Example 2-1 shows the imports from the Test Mai n. j ava application for the car
rental sample.

Example 2-1 Required Imports for Car Rental Sample with Rules SDK

i nport

i nport
i nport
i nport
i nport
i nport
i nport
i nport
i nport

i nport

i nport

java.util.Date;

oracl e.rul es. sdk. rul eset. Rul eSet;

oracle.rul es. sdk. repository. Rul eRepository;
oracl e.rul es. sdk. repository. Reposi t or yManager ;
oracle.rul es. sdk. reposi tory. Reposi toryType;
oracl e.rul es. sdk. repository. Reposi t oryCont ext ;
oracle.rules.sdk. dictionary. Rul eDi ctionary;
oracl e.rul es. sdk. excepti on. Reposi t or yExcepti on;
oracle.rules.sdk.store.jar. Keys;

oracle.rul es.rl.Rul eSessi on;

carrental . Driver;

2.9.2 Initializing the Repository with Rules SDK

When building a rule-enabled Java application, perform the following steps to access a
dictionary and specify a rule set (as shown in Example 2-2):

1. Create a St ri ng that contains the path to the repository.

2. Use a Rules SDK Rul eType object to hold the repository that you obtain from the
Reposi t or yManager . get Regi st er edReposi t or yType method.
Example 2-2 shows a file type repository.

3. Create a repository instance using the
Reposi t or yManager . cr eat eRul eReposi t or yl nst ance method.

Getting Started with Rule Author 2-25

Creating a Java Application Using Oracle Business Rules

4. Define a Reposi t or yCont ext and set appropriate properties. For a file
repository, this step specifies the path to the repository, as shown with the
r epoPat h parameter in Example 2-2.

5. Use thei ni t method in the Rul eReposi t ory object r epo to initialize the
repository instance.

Example 2-2 Loading a Dictionary with Rules SDK

String fs ="/";
String repoPath = "dict" + fs + "CarRepository";

RepositoryType jar Type =
Reposi t or yManager . get Regi st er edReposi t or yType(Keys. CONNECTI ON) ;

Rul eRepository repo = RepositoryManager. creat eRul eReposi toryl nstance(jarType);

[Ifill ininitialization property values
RepositoryContext jarCtx = new RepositoryContext();
jarCx. setProperty(oracle.rules.sdk.store.jar.Keys. PATH repoPath);

[linitialize the repository instance.
repo.init(jartx);

To load a WebDAV repository instead of a file repository as shown in Example 2-2,
you should use the get WebDAVReposi t or y method. The comments include a
sample using this method in the program Test Mai n. j ava in the

$HowToDirl src/ carrent al directory, where $HowToDir is the directory where you
installed the Java How-To.

2.9.3 Loading a Dictionary with Rules SDK

When you build a Java application that uses rules you must load a dictionary with a
specified version. Use a Rul eDi ct i onary object to load a dictionary, as shown in
Example 2-3, which loads the Car Rent al dictionary with the HowTo version, into the
object named di ct . The Car Rent al dictionary must be available in the repository.
The Car Rent al dictionary with the version name HowTo was created earlier using
Rule Author.

Example 2-3 Loading a Dictionary with Rules SDK
Rul eDi ctionary dict = repo.loadDictionary("CarRental", "HowTo");

2.9.4 Specifying a Rule Set and Generating RL Language with Rules SDK

After loading a dictionary, you need to specify a rule set and use Rules SDK to
generate an RL Language program. This step is required, because a dictionary stores a
data model and rules using an intermediate XML format. Rules SDK provides
methods to access rules and the associated data model. Rules SDK performs the
mapping from the intermediate XML format to produce the RL Language program
that runs in Rules Engine.

In Rule Author, a rule set includes two components, a data model, which is global and
applies to all the rule sets in a dictionary, and the set of rules associated with a rule set.
Example 2—4 shows the code that generates RL Language for these two components.

2-26 Oracle Business Rules User’'s Guide

Creating a Java Application Using Oracle Business Rules

Example 2-4 Generating Oracle Business Rules Rule Language with Rules SDK

[linit a rule session

String rsname = "vehicleRent";

String dnrl di ct. dat aMbdel RL();
String rsrl = dict.rul eSetRL(rsnane);

2.9.5 Initializing and Executing a Rule Session

After you generate an RL Language program that includes rules and a data model,
you are ready to work with a rule session. A rule session initializes Rules Engine and
maintains the state of Rules Engine across a number of rule executions. A

Rul eSessi on object is the interface between the application and Rules Engine.

Example 2-5 shows the code that creates a Rul eSessi on object and executes an RL
Language program.

The execut eRul eset () method executes an RL Language program passed as a
String. This method tells Rules Engine to interpret the specified RL Language
program.

Note: The order of the execut eRul eset () calls is important. You
must execute the data model RL Language program before the rule set
RL Language program. The data model contains global information
that is required when the associated rule set executes.

Example 2-5 Initializing and Executing a Rule Session with Rules SDK

Rul eSessi on session = new Rul eSession();
sessi on. execut eRul eset (dnrl);
sessi on. execut eRul eset (rsrl);

session. cal | Function("reset");
session. cal | Function("cl ear Rul eset St ack");
session. cal | Functi onWt hArgunment ("pushRul eset™, rsname);

After the data model and the rule set are loaded, the rule session is ready to run the
specified rule set against the facts that you assert for the rule session.

2.9.6 Asserting Business Objects Within a Rule Session

Before running a rule session, you normally assert some facts. When you execute a
data model in a rule session, you prepare the rule session for new facts to be asserted.
To assert facts, you use the sessi on. cal | Funct i onW t hAr gunent () method and
the assert function supplying a fact as an argument.

Example 2-6 shows sample code that prepares Dr i ver objects for the car rental
sample and asserts three facts.

Example 2-6 Preparing Driver and Accident Records for the Car Rental Sample

/1 Date Function
static public Date getDate(String dateStr) {
Date result = null;
try {
java.text.Sinpl eDat eFormat sdf =
new j ava. text. Si npl eDat eFor mat (" MM DD/ YYYY");
result = sdf.parse(dateStr);

}

Getting Started with Rule Author 2-27

Running the Car Rental Sample Using the Test Program

catch(Throwable t) { t.printStackTrace(); }
return result;

}

/1 Driver dl record

Date dlLiclssueDate = getDate("10/1/1969");

Driver d1 = new Driver("d111", "Dave", 50, "sports", "full",
diLicl ssueDate, 0, 1, true);

/1 Driver d2 record

Date d2LiclssueDate = getDate("8/ 1/2004");

Driver d2 = new Driver("d222", "Qn", 15, "truck", "provisional",
d2Li cl ssueDate, 0, 0, true);

/IDriver d3 record

Date d3LiclssueDate = getDate("6/1/2004");

Driver d3 = new Driver("d333", "Lance", 44, "motorcycle", "full",
d3Licl ssueDate, 0, 1, true);

session. cal | Functi onWt hArgunment ("assert”, dl);
session. cal | Functi onWt hArgunment ("assert™, d2);
session. cal | Functi onWt hArgunent ("assert", d3);

2.9.7 Using the Run Function with a Rule Session

Example 2-7 shows the code that runs a rule session.

Example 2-7 Running a Rule Session with the Run Function
session. cal | Function("run");

2.10 Running the Car Rental Sample Using the Test Program

The $HowToDir/ | i b directory includes Test Mai n. j ar, a ready-to-run Oracle
Business Rules Java application that uses the Car Rent al dictionary. If you change the
dictionary name, then you must modify Test Mai n. j ava (the source is available in
the directory $HowToDir/ st ¢, where HowToDir is the directory where you installed
the Java How-To).

Example 2-8 shows output from running Test Mai n using the facts asserted within
Test Mai n.

Note: The Readne. ht nl file in the $HowToDir/ docs directory
includes instructions for setting the environment variables required to
run the test program.

Example 2-8 Sample Run of the Car Rental Program

java carrental . Test Main
Rental declined Qun Under age: age is: 15

Note that not all the facts match the rules and produce output. The example shows the
output for the driver, an asserted fact that matches the UnderAge rule.

2-28 Oracle Business Rules User’'s Guide

3

Working with Rule Author Features

This chapter describes how to use some of the more advanced Rule Author features.

The chapter includes the following sections:

Working with Variables

Working with Constraints

Working with RLFacts

Working with Functions

Working with Rules

Viewing Java Objects in a Data Model
Generating Oracle Business Rules RL Language Text
Configuring Rule Author Dictionary Properties
Deleting a Rule Author Dictionary

Importing and Exporting a Dictionary
Working with Test Rulesets

Invoking Rules and Obtaining Rules Engine Results

3.1 Working with Variables

In this section, you use Rule Author to add a variable that replaces a portion of the
message that you print out in the Java How-To you built in Chapter 2. In Oracle
Business Rules, a variable is similar to a public static variable in Java. You can specify
that a variable is a constant or modifiable.

Perform the following steps to add a variable:

1.
2.
3.

Click the Repository tab and load the CarRental dictionary.
Click the Definitions tab.

In the navigation tree, click the Variable node. The Variable Summary page shows
a table with a row that includes the text, (No it ens found), this indicates no
variables are defined.

Click Create. This shows the Variable page.

In the Name field, enter Decl i neMessage.

Working with Rule Author Features 3-1

Working with Constraints

In the Alias field, enter Decl i ne Message.
Select the Final check box (by default this box is selected).
In the Type box, select St r i ng.

© © N o

In the Expression box, enter " Rent al decl i ned

To use the Wizard to assist you with creating an expression, click the edit icon to
display the Wizard.

10. Click Apply. Rule Author shows a confirmation message (see Figure 3-1).

Note: When Rule Author creates a variable, it adds a "DM " to the
name you enter in the Name field (DMstands for Data Model).

Figure 3-1 Rule Author Variable Definition Page

ORACLE Save Dictionary Logout Help About
Rule Author Hame | Repasitory Rulesets | Customization | RL
Wariahle Summary >
Definitions
Confirmation
Dictionary loaded: Thig entity has been updated successfully.
CarRental
-0 Definitions Variable
Fact 0K J_Cancel)(_Apply
JavaFact (2] = Mame |DM.DeclineMessage
AMLFact Alias |Decline Message
RLFa.ct (N} izl
Constraint (01 Type | String v
Wariable (1 "Rental declined "
RLFunction (2] .
Expression /
oK) Cancel) Apply)

Notes for creating Rule Author variables:

=« When you deselect the Final check box, this specifies that the variable is
modifiable, for instance, in an assign action.

= You can use only variables specified as final variables in the test for a rule
(nonfinals are not allowed).

See Also: "Defining Tests for Patterns with the UnderAge Rule" on
page 2-18 for an example of a test for a rule

3.2 Working with Constraints

When you want to constrain the allowed values for a field to only a specific set of
values in a customizable rule, (for example to specify a range of values) you can use a
Rule Author constraint definition.

Rule Author supports three types of constraint definitions, as shown in Table 3-1.

3-2 Oracle Business Rules User's Guide

Working with Constraints

Table 3-1 Rule Author Constraint Types

Constraint Type Description

Range Specifies a numeric interval.

Enumeration Specifies a list of possible values.

Regular expression Specifies a regular expression to which the string value conforms.

The syntax for the regular expression in these constraints follows the
regular expression definition in Java.

Note: The regular expression constraint requires quotation marks
around strings.

For the example in this section, you define a constraint and then add the constraint to
the UnderAge rule in the CarRental dictionary.

Perform the following steps to define a range constraint:
1. Click the Repository tab and load the CarRental dictionary.
2. Click the Definitions tab.

3. In the navigation tree, click the Constraint node. The Constraint Summary page
shows a table that indicates that no constraints are defined.

4. Click Create. This shows the Constraint page.
5. Inthe Name field, enter val i dAgeRange.

6. From the Type list, select Range. This updates the Constraint page display to
show two new fields: Start Value and End Value.

7. Enter 15 in the Start Value field.
8. Enter 99 in the End Value field.
9. Click Apply. Rule Author shows a confirmation message (see Figure 3-2).

Figure 3-2 Rule Author Constraint Definition Page

ORrRACLE Save Dictionary Logout Help Sbaut
Rule Author Home | Repository Rulesets | Customization | RL
Caonstraint Surnmary =
Definitions
Confirmation
Dictionary loaded: This entity has been updated successfully.
CarRental
©H Definitions Constraint
Fact OK) Cancel) Apply)
JavaFact () Mame |validdgeRange
AhALFact Type |Range v
BLFact () Start Walue (numeric) |15.0
Lonstraint (1 End “alue (numeric) |959.0
“ariable (1
RLFunction (2]
0K) Cancel) Apply)

Working with Rule Author Features 3-3

Working with RLFacts

Next, use this constraint by adding val i dAgeRange to the UnderAge rule.

To use the constraint in the UnderAge rule, do the following:

1.
2
3
4.
5

6.
7.
8.

Click the Repository tab and load the CarRental dictionary.

Select the Rulesets tab.

In the tree, select the node to show the UnderAge rule.

In the If box, select the edit icon. This displays the Pattern Definition page.

On the Pattern Definition page, in the constraint field, select val i dAgeRange
(this is the second box in the Value column).

Click OK. This closes the Pattern Definition page.
Click OK on the Rule page.

Save the dictionary.

Use the Customization tab to verify that Rule Author only lets you enter values from
the specified range and rejects invalid entries.

Note: If you change a constraint that is used in a ruleset, you can still
save the ruleset even though it may not adhere to all the constraints.

See Also: "Defining Tests for Patterns with the UnderAge Rule" on
page 2-18 for information about using the Allowed Values field to use
constraints

3.3 Working with RLFacts

This example creates an RLFact named Decision that extends the CarRental rules. The
RLFact has three members of St ri ng type: dri ver Nane, t ype, and message.
Perform the following steps to create the Decision RLFact:

1.
2.

Click the Repository tab and load the CarRental dictionary.

Click the Definitions tab. In the navigation tree under Facts, click the RLFact
node. This displays the RLFact Summary page that shows that no RLFacts are
defined.

Click Create. This shows the RLFact page.
Enter Deci si on in the Name field.

Enter Car rental deci sion in the Alias field. See Figure 3-3.

3-4 Oracle Business Rules User's Guide

Working with RLFacts

Figure 3-3 Rule Author Definitions Tab with RLFact Page

ORACLE Save Dicfionary Logouwt Help About
Rule Author Home | Repository Rulesets | Customization | RL
ELFact Summary =
Definitions
RLFact
Dictionary loaded: (oK) cancel) Apply |
Carftental = Name |Decisi0n
SHT] Definitions
Fact Alias |Car rental decision
2 Support XPath
Javafact Asserion o
£MLFact Properties
|_Create |
Constraint (1 Select Expand Name Type Alias
Wariable (1 (Mo iterns found)
BLFunction (2]
(0K) Cancel)| Apply)
6. In the properties table click Create. This shows a new row in the Properties table.
7. Enter dri ver Nane in the Name field.
8. Select St ri ng from the box in the Type field.
9. Enterdriver nane in the Alias field.

10. Click Create. This adds another new row to the Properties table.
11. Entert ype in the Name field.

12. Select St ri ng from the box in the Type field.

13. Enter deci si on t ype in the Alias field.

14. Click Create. This adds another new row to the Properties table.
15. Enter message in the Name field.

16. Select St ri ng from the box in the Type field.

17. Enter message for deci si on in the Alias field.

18. Click Apply. Rule Author displays a confirmation message (see Figure 3—4).

Working with Rule Author Features 3-5

Working with Functions

Figure 3-4 Rule Author Definitions Tab with RLFact Properties

Save Dictionary Logout Help About

Horme Repositary Rulesets Customization RL

Dictionary loaded:

CarRental

EH_O Definitions
Fact
JavaFact (2]

AL Fact (01
BELFact {1

Canstraint (1
“ariable (1

ELFunction (2]

ORACLE
Rule Author
ELFact Surnmary =
Definitions

Confirmation

This entity has been updated successfully.

RLFact
(0K) Cancel) Apply)
= Mame |DM.Decision
Alias |Car rental decision
Support XPath Assertion []
Properties
(_Delete) | (_Create)
Select All | Select Mone
Select Expand Name Type Alias
O driverMame String « || driver name
O type String + || decision type
O message String « |message for decision
(0K) Cancel) Apply)

19. Click RLFact in the navigation tree. This displays the RLFact Summary page, and

the new RLFact, DM Deci si on.

Note: When Rule Author creates an RLFact, it adds a "DM " to the
name you enter in the Name field (the DMstands for Data Model).

See Also: "Specifying Visibility and Object Chaining for Rule Author
Lists" on page 3-10 for information about the Expand field shown in
Figure 34

3.4 Working with Functions

Oracle Business Rules lets you use built-in or user-defined functions in rule conditions
and actions. In this section, you use Rule Author to define a function named
showDeci si on. You can use this function to print the results for the Java How-To.

Note 1: The example in this section uses the CarRental dictionary
and the RLFact you defined in Section 3.3.

Note 2: For RL Language generated from the Rules SDK, for
example, using Rule Author to create rules, global variables may not
be referred to directly in an RL Language function. For more
information, see Section D.2, "Global Variables may not be Used in RL
Functions".

3-6 Oracle Business Rules User's Guide

Working with Functions

Do the following to define the showDeci si on function:

1.
2.
3.

10.
11.

12.

13.
14.

15.

Click the Repository tab and load the CarRental dictionary.
Select the Definitions tab.

In the navigation tree, select RLFunction. This shows the RLFunction Summary
page.

Click Create.

Enter showDeci si on in the Name field.

Enter Show Deci si on in the Alias field.

Note: If you are defining a function in Rule Author, you must
specify a valid alias in the Alias field, even though the actual function
name (not the alias) must be used in the function body.

Select voi d in the box in the Return Type field (this is the default value).
Click Create in the Function Arguments table.

Enter deci si on in the Name field.

Enter Deci si on nmade for driver in the Alias field.

Select Car rental deci sion, the alias for the Decision RLFact, in the box in the
Type field.

In the Function Body box, enter the following:

DMprintIn("Rental decisionis " + decision.type + " for driver " +
decision.driverName + " for reason " + decision. message);

Click Apply. This shows a confirmation message.

In the left navigation pane, click the RLFunction node. You should see the RL
function DM showDeci si on in the summary table.

Click Edit to view the function (see Figure 3-5).

Working with Rule Author Features 3-7

Working with Rules

Figure 3-5 Rule Author RLFunction Page

Save Dictionary Logout Help About

Home Repository Rulesets Customization RL

Dictionary loaded:
CarRental

ZH_O Definitions
Fact
JavaFact (2]
MMLFact (00
RELFact {1

Canstraint {1
Wariahle (1

ORACLE
Rule Author
ELFunction Summary =
Definitions

RLFunction

* Mame |DM.showDecision
Alias | Show Decision

Return Type | void v

Function Arguments

Delete) | (_Create)
Select All | Select None
Select Name Alias

O |decisi0n decision made for driver

Function Body

DM.printin("Rental decision is " + decision.type + " for driver " +
decision.driverMame + " for reason " + decision.message];

0K) Cancel) Apply)

Type

Car rental decision %

0K | Cancel)| Apply

After creating the new RLFact Deci si on as specified in Section 3.3 and the new
RLFunction DM showDeci si on, you can update the UnderAge rule to provide an
action that creates a new Decision fact. To use the Decision fact with the

showDeci si on function, you must create a new rule that checks for Decision facts
and provides an action, using the showDeci si on function, to show the results.

3.5 Working with Rules

When you add actions to a rule, the actions are associated with pattern matches. When
the "If" portion of a rule matches, the rules engine activates the "Then" portion and
prepares to run the actions associated with a rule. Table 3-2 shows the types of actions
that you can use when you create a rule.

Table 3-2 Action Types

Action Type Description

Assert

Assert New

Asserts a fact used in a pattern. If a fact matched in a pattern is changed,
that fact must be asserted again to notify the rules engine that the fact

has changed

creates a new fact type instance and asserts that instance to the rules

engine.

3-8 Oracle Business Rules User's Guide

Viewing Java Objects in a Data Model

Table 3-2 (Cont.) Action Types

Action Type

Description

Assign

Call

Retract

RL

assign a value to a variable or fact property. If a new value is assigned to
a fact property, the fact must be asserted again in order for the rules to be
re-evaluated with the new value.

Allows you to call a function to perform some action.

You might want to retract a fact for a number of reasons, including: If
you are done with the fact, and you want to remove it from Rules
Engine. If the action associated with the rule changes the state, so that
the fact must be retracted to represent the current state of Rules Engine.

Create free form RL text that will be executed directly. The syntax of this
RL is not validated by the SDK, so creating RL actions may result in the
generation of invalid RL code from the ruleset.

3.6 Viewing Java Objects in a Data Model

To view the objects in a data model, including any classes or packages that you import,

do the following:

1. Click the Repository tab and load the appropriate dictionary. For example, load
the CarRental dictionary.

2. Click the Definitions tab to view the Definitions page.

3. Inthe navigation tree, expand the Facts folder and click the JavaFact node to
display the JavaFact Summary page.

For the car rental sample, this shows a table that includes the imported class
carrental . Driver.

4. Click the edit icon to view the JavaFact Properties and Methods table.

7

Table 3-3 and Table 3—4 describe the fields in the JavaFact Properties and Methods

tables.

Table 3-3 JavaFact Summary Fields

Field Description

Name The name of the Java Object.

Alias The specified alias name for the Java Object that is shown in
Rule Author lists.

Visible This box specifies if the Java Object is shown in Rule Author
lists.

Support XPath Assertion This box implies that you can use the class in XPath expressions

to assert XML data into a rule session.

Working with Rule Author Features 3-9

Viewing Java Objects in a Data Model

Table 3-4 JavaFact Properties and Methods Fields

Field Description

Visible ?pecifies that the property or method appear in Rule Author
ists.

Expand Specifies that the superclass for a property or method that has a
superclass appear in Rule Author lists.

Member Variable Name This is shown for Properties. Specifies the property name.

Type Specifies the type for a property

Alias This is a text field that you can modify to specify the business

vocabulary for the property or object. The specified name is used
when the object is shown in Rule Author lists.

Method Name This is shown for methods.
Argument Type This is shown for methods.
Return Type This is shown for methods.

Note: Importing a Java class causes its superclass and classes
associated through fields and methods to be imported into the data
model. The JavaFact Summary page table shows you the superclass
and the associated classes for any classes that you import.

3.6.1 Specifying Visibility and Object Chaining for Rule Author Lists

You can specify that properties, classes, or methods are visible or not visible in Rule
Author selection boxes (the selection boxes that contain classes, properties, and
methods are shown when you create rules on the Rulesets Tab).

Note: For the Java How-To, you do not need to change the object
chaining.

To remove the visibility of a Java object, do the following:

1. At the top of the Java Fact page, use the Visible box to specify whether an object is
visible (by default, objects are visible).

2. Deselect the Visible box to remove the object from Rule Author selection boxes.
3. Click OK on the Java Fact page.
To remove visibility of a Java property or method, do the following;:

1. In the Properties area or the Methods area on the Java Fact page, deselect the
property or method to remove it from Rule Author selection boxes.

2. Click OK on the Java Fact page.

You can specify that Rule Author selection boxes show the methods or properties one
level above a specified method or property, in superclass chain, by selecting the
Expand box for the method or property on the Java Fact page. The Expand box is
shown in the Expand field of the Properties and Methods area. The Expand box is only
shown when a method or property includes a superclass (Rule Author does not show
the Expand box for primitive types).

3-10 Oracle Business Rules User’'s Guide

Configuring Rule Author Dictionary Properties

3.7 Generating Oracle Business Rules RL Language Text

Use the Rule Author RL tab to view the RL Language text that represents the data
model and the rule sets associated with the dictionary data.

3.7.1 Generating Viewing and Checking RL Language Text

To generate, view, and check the RL Language text, do the following:

1.

a M 0D

Click the Repository tab and load a dictionary. For example, load the CarRental
dictionary.

Select the RL tab.

Select the rule set of interest in the navigation tree.

Click Generate RL. This shows you the RL Language text for the specified rule set.
Click Check RL Syntax to validate the RL Language text.

Note: When you use the Check RL Syntax feature in Rule Author, if
the data model includes any Java classes then the Java classes must be
included in the OC4J classpath to perform validation. Also, if the data
model includes any XML schema, the generated JAXB class files must
be included in the OC4]J classpath to perform validation.

Thus, to perform validation you must assure that the OC4J classpath
contains the jar files or class for the Java objects, or for the java classes
generated from the XML schema.

For Java classes in a JAR file, you can copy the JAR files to the
following directory, then restart OC4]J:

$ORACLE_HOVE/ j 2ee/ hone/ appl i cati ons/ rul eauthor/lib

You can also include the Java classes as a shared library. This allows
Rule Author to share the classes with other applications.

See Also: "Working with Test Rulesets" on page 3-16 for details on
using Enterprise Manager to add Java classes as a shared library

3.8 Configuring Rule Author Dictionary Properties

In Rule Author, you can use dictionary properties to specify the default expression
type to use in expressions, and to specify logging options.

This section covers the following topics:

Using the Advanced Test Expression Option
Using the Logging Option

To configure dictionary properties, perform the following steps:

1.
2.
3.

Make sure you are connected to a repository and a dictionary is loaded.
Click the Repository tab.
Click the Properties secondary tab (see Figure 3-6).

Working with Rule Author Features 3-11

Configuring Rule Author Dictionary Properties

Figure 3-6 Rule Author Dictionary Properties Page

ORACLE Save Dictionary Logout Help About
Rule Author Home JGEE 0N Defintions | Rulesets | Customization | RL
Disconnect | Create | Load | Sawe | Save As | Properties | Import | Export | Delete
Status Dictionary Properties
Name Value _
Repositary Type: WebDAV Advanced Test Express?on N
Status connected Logging [
Repositary Location: http://staco34.us.or
acle.com:777%tv
Dictionary loaded: CarRental
YWersion: HowTo .
Description: Car rental sample di Wpdats
ctionary

Note: Rule Author stores dictionary properties per user. If you
change your preferences, and then log out, and then log in as a
different user, your dictionary properties reflect the properties for the
newly logged in user.

If Rule Author does not use authentication, which is possible if the
user configures web. xm to disable security, then this also disables
saving user level dictionary properties.

3.8.1 Using the Advanced Test Expression Option

The Advanced Test Expression check box changes the Rule Author expression mode
to advanced for test expressions that are displayed when you edit a pattern for a rule
(see Figure 3-7). Tests in a the condition of a rule can involve mathematical operations
and conjunctions. Rule Author includes the advanced expression mode to support
defining such complex expressions.

When a pattern is first created, its test expression mode depends on the Advanced Test
Expression property set on the Properties page. When you select the Advanced Test
Expression check box, the advanced test expression mode is applied to all new
patterns. This setting persists when the dictionary is saved. In this case, when the
dictionary is loaded, all patterns are created with Advanced Test Expression mode.
After a pattern is created, with or without a test, it is permanently associated with the
test expression mode. Thus, the test expression mode associated with a pattern cannot
be changed.

In a single rule, you can use patterns created with both basic expression mode and
advanced expression mode.

3-12 Oracle Business Rules User’'s Guide

Deleting a Rule Author Dictionary

Figure 3—7 Pattern Definition Advanced Test Expression Page

Pattern Definition
OK | Cancel) Apply |
Choose Pattern
isa |<make a choices
Define Test for Pattern
O Standard Test @ Advanced Test
Validate)
Operator
Wariable | <make a choices [(Insert)
Function | =<make a choicex | (Insert)
0K) Cancel) Apply)

3.8.2 Using the Logging Option

The Logging box specifies the logging options. This option is useful when you need to
report a problem with Rule Author. To specify logging, select the Logging check box
and then select the following log file properties:

Log Level: Error, the lowest log level generates the least amount of output. Status
is the medium log level. Trace is the highest log level, generating the most output.

Use the Log Directory box to specify the directory for the log. Specifying the log
directory in the Log Directory box is optional (if the directory is not specified, the
log is displayed on the console).

When the Log file name is specified, the log is saved in a file with the name

<l og_file_nanme>. <l ast _8_sessi on_i d>. For example, if you specified
RALog as the name of your log file, and the last eight digits of your session ID are
11223344, the file RALog. 11223344 would be created. If no log file is specified,
the log is saved in a file named Rul eAut hor. <l ast _8_sessi on_i d>.

Click Update when you are finished specifying your logging options.

3.9 Deleting a Rule Author Dictionary

This section shows you how to delete a version in a dictionary or delete an entire
dictionary.

To delete an individual dictionary version, do the following;:

1.
2.

Click the Repository tab.
Click the Delete secondary tab.

To delete a specific dictionary version, select a dictionary and version in the "Select
dictionary version" section, then click Delete Version.

Working with Rule Author Features 3-13

Importing and Exporting a Dictionary

To delete an entire dictionary (and all of its versions), select the dictionary in the
"Select entire dictionary" section, then click Delete.

3.10 Importing and Exporting a Dictionary

You can import a specific version of a dictionary or an entire dictionary into Rule
Author. To do so:

1.
2.

3.

Click the Repository tab.
Click the Import secondary tab.

If the dictionary resides locally, use the section in the first bullet to specify its
location. You can manually enter the path to the dictionary or click the Browse
button to select the dictionary.

If the dictionary resides on a different machine (where the Rule Author is not
running), you must specify the full path to the dictionary on that server.

Click Import.

To export an entire dictionary:

1.
2.
3.

Click the Repository tab.

Click the Export secondary tab.

In the "Select entire dictionary" section:

a. In the Dictionary field, select the dictionary you want to export.

b. In the File Location field, specify the location and filename (absolute file path
on the server) to which you want to export the dictionary.

Click Export.

You can also select the dictionary and click Download, which creates a link to the
exported archive on the Export Dictionary page. You can then click the link and
use your browser to download the archive to a location of your choice (see
Figure 3-8).

3-14 Oracle Business Rules User’'s Guide

Importing and Exporting a Dictionary

Figure 3-8 Rule Author Export Dictionary Page

DRACI—E Save Dictionary Logout Help About
Rule Author Home @GCHLEIGT Definitions Rulesets Customization RL

Disconnect | te | Load | s | Import | Export | Delete
Status Confirmation
Dictionary CarRental’ has been exported to 'CarRental.abr'. You can click on the icon to
Name Value download the file.
Repositary Type: WebDAV
Status connected Export Dictionary
Repository Location: http://staco34.us.or Export & version of a dictionary or an entire dictionary into a file.
acle.com:777%tv
Dictionary loaded: |CarRental
\arsion: HowTo * Select entire dictionary
Description: Car rental sample di
ctionary * Dictionary | CarRental w || Download)
File Location | Expart
Abzolute file path on server
Exported Archive Download Delete
export/CarRental.obr €2 i

-]
* Select dictionary version
* Dictionary | <make a choice> +
*“ersion | || Download
File Location | Export)
Abzolute file path on server

To export a specific dictionary version:
1. Click the Repository tab.
2. Click the Export secondary tab.
3. In the "Select dictionary version" section:
a. In the Dictionary field, select the dictionary you want to export.
b. In the Version field, select the dictionary version you want to export.

c. In the File Location field, specify the location and filename (absolute file path
on the server) to which you want to export the dictionary.

4. Click Export.

You can also select the dictionary and version and click Download. This creates a
link to the exported archive on the Export Dictionary page. You can then use your
browser to download the archive to a location of your choice (see Figure 3-8).

Note: Exporting a dictionary is an incremental operation. Thus,
when you export a dictionary version, and you subsequently export
another version of the same dictionary to the same jar file, after the
export operation, the jar file includes both versions of the dictionary.

For example, if dictionary "dictl" has two versions "v1" and "v2",
when the version ("dictl", "v1") is exported to myExport . j ar, then
the jar file contains "v1" content only. If you perform another export of
("dict1", "v2") to the same file myExpor t . j ar, after the second export
completes the file contains both exported versions of "dictl", "v1" and
"v2".

Working with Rule Author Features 3-15

Working with Test Rulesets

3.11 Working with Test Rulesets

In Rule Author, the Test Rulesets feature allows you to use RL functions to test rule
sets. The selected rule sets and their associated data model are executed in a Rule
Session and then a user-defined function is called that exercises the rules.

To use the Test Rulesets feature perform the following steps:

1. Create the rule set that you want to test. If the data model includes any Java
classes or XML schema, the Java classes or the generated JAXB classes must be
included in the OC4J classpath.

For Java classes, you can put the JAR files in the following directory, and then
restart OC4J to add the classes to the classpath:

$ORACLE_HOVE/ j 2ee/ hone/ appl i cations/rul eauthor/lib

You can also include the Java classes as a shared library. This allows Rule Author
to share the classes with other applications. To do this, login to Enterprise
Manager and perform the following steps:

a. Navigate to the OC4] home page.
b. Click the Administration tab.

c. Find Shared Libraries under the Properties node and click the icon in the Go
to Task column.

d. Click Create and enter the library name and version number, and then click
Next.

e. Click Add, and then navigate to the location of the JAR file, then click
Continue.

f. Click Finish to return to the Shared Libraries page.

g. Find and click the link to the library you just created. Copy the absolute path
to the archive.

h. Return to the OC4J home page.
i. Click the Applications tab.

j. Click the link to the Rule Author application (this was defined when you first
deployed the Rule Author application).

k. Click the ruleauthor module link.
I. Click the Administration tab.
m. Find the Configuration Properties node and click the Go to Task icon.

n. In the Classpath field, paste the absolute path to the archive which you copied
in Step g, then click OK.

0. In the resulting confirmation message, click the Restart link to restart Rule
Author.

2. Create a test function, as follows:
a. Click the Definitions tab.
b. Click the RLFunction node in the navigation tree.

c. Entert est in the Name and Alias Fields.

3-16 Oracle Business Rules User’'s Guide

Working with Test Rulesets

d. Leavevoi d as the return type.
e. Enter the following in the Function Body field:
java.text.Sinpl eDat eFormat sdf =
new j ava. t ext. Si npl eDat eFormat (" MM dd/ yyyy");
assert (new carrental.Driver("d111", "Dave", 50, "sports", "full",
sdf . parse ("10/1/1969"), 0, 1, true));
assert (new carrental.Driver("d222", "Abe", 15, "truck", "provisional",
sdf . parse ("8/1/2004"), 0, 0, true));
assert (new carrental.Driver("d333", "Lance", 44, "motorcycle", "full",
sdf . parse ("6/1/2004"), 0, 1, true));
pushRul eset ("vehicleRent");
run();
This function asserts several facts, pushes the vehi cl eRent rule set onto the
rule set stack, and callsrun() .
Note: All rule sets you want to have executed must be pushed onto
the stack. They are not automatically pushed simply by selecting
them.
To enable logging, you can call the wat chFact s() or the
wat chActi vati ons() functions.
f. Click OK. This saves the RLfunction named DM t est .
g. Save the dictionary.
Click the RL tab.

In the navigation tree, click the Test Rulesets node. This displays the Test Rulesets
page.

Figure 3-9 Rule Author Test Rulesets Page

ORACLE

Rule Author

RL Operations

Dictionary loaded:
CarRental
GHJ Operations

Generate RL
Code

Dbt
vehicleRent

Save Dictionary Logout Help About
Home Repository Definitions Rulesets Customization ﬂ
Test Rulesets
[Test)
Test Function | <make a choice> v
Available Rulesets Selected Rulesets
wehicleRent >
Move
- A
Move All A
< v
Eernove ¥
<
Remave All
[Test)

Working with Rule Author Features 3-17

Invoking Rules and Obtaining Rules Engine Results

You can see the vehi cl eRent rule set is available. This rule set was created in

Chapter 2.

5. Select the vehi cl eRent rule set and move it to the Selected Rulesets column.

6. Select the DM.test function from the Test Function list.

7. Click Test.

This generates RL Language code for the selected rule set(s), which is then
inserted into a Rule Session. Then, the selected test function is called. Output from
the function is printed on the screen (see Figure 3-10).

Figure 3-10 Rule Author Test Rulesets Page with Output

ORACLE Sawe Dictionary Logout Help About
Rule Author Hame Repositary Definitions Rulesets Customization n
Test Rulesets
RL Operations N
Test)
. Test Function | Dk test b4
Dictionary loaded:
Carfental Available Rulesets Selected Rulesets
EHJ Operations R R
Generate RL vehicleRent S
Code Mave
Dtd =
2 A
vehicleRent Move All A
< 7
Rermove ¥
L
Remove All
Test
Qutput
Rental declined Abe Under age,age is:15

3.12 Invoking Rules and Obtaining Rules Engine Results

A rule-enabled program usually invokes rules with the following steps:

1. DPass objects to the rule engine to be asserted as facts.

2. Run rules.

3. Obtain results produced from rules that fired.

This section describes the best practices for using an RL function to encapsulate

invoking rules. This section covers three techniques for invoking rules; the techniques
differ primarily in the details required to obtain results. This section uses a sample RL
function named get Subscri ber s. Using this routine, each approach for invoking
rules looks identical from the point of view of the rule-enabled program that calls the
get Subscri ber s method.

This section covers the following topics:
» Opverview of Results Examples

= Using a Global Variable to Obtain Results

3-18 Oracle Business Rules User’'s Guide

Invoking Rules and Obtaining Rules Engine Results

= Using Container Objects to Obtain Results
= Using Reasoned On Objects to Obtain Results

3.12.1 Overview of Results Examples

The examples in this section show a highway incident notification system. These
examples show the different approaches to access the results of rule engine evaluation.
The examples use two Java classes: traf fi c. Traf fi cl nci dent and
traffic.IncidentSubscription.

Note: Thetraffic.* sample classes are not included in the Oracle
Business Rules distribution.

The Traf fi cl nci dent class represents information about an incident affecting
traffic and contains the following properties:

= Which highway

= Which direction

= Type of incident

= Time when incident occurred
= Estimated delay in minutes

The I nci dent Subscri pti on class describes a subscription to notifications for
incidents on a particular highway and contains the following properties:

=« Subscriber: the name of the subscriber
« The highway
=« The direction

In the example using these classes, when an incident occurs that affects traffic on a
highway, a Tr af fi cl nci dent object is asserted and rule evaluation determines to
whom notifications are sent.

In the examples, sess is a Rul eSessi on object and a number of incident
subscriptions are asserted. As a simplification, it is assumed that the

Trafficlnci dent objects are short lived. They represent an event that is asserted
and only those subscribers registered at that time are notified.

3.12.2 Using a Global Variable to Obtain Results

Using a global variable to accumulate results is a best practice. This approach yields
simpler rule conditions than those shown in Section 3.12.3 and Section 3.12.4.

Example 3-1 shows the get Subscri ber s function that asserts a Tr af f i cl nci dent
object, initializes a global variable with a Map object, invokes the Rules Engine, and
then returns the result Map object.

Example 3-1 Obtaining Results with an RLFunction That Accesses a Global Variable

Map alerts = null;
function get Subscribers(Trafficlncident ti) returns Map {

try {
alerts = new HashMap();

Working with Rule Author Features 3-19

Invoking Rules and Obtaining Rules Engine Results

assert(ti);
run();
return alerts;
} finally {
retract(ti);
alerts = null;
}
}
rule incidentAlert {
if (fact Trafficlncident ti &&
fact IncidentSubscription s &&
s. highway == ti.hi ghway &&
s.direction == ti.direction) {
al erts. put(s.subscriber, ti);
}
}
}

Example 3-2 shows Java code that invokes the get Subscr i ber s function and prints
out the results.

Example 3-2 Sample Showing Results with Global Variable

/1 An accident has happened

Trafficlncident ti = new Trafficlncident();

ti.setH ghway("15");

ti.setDirection("south");

ti.setlncident("accident");

ti.setWen(new G egorianCal endar (2005, 1, 25, 5, 4));
ti.setDelay(45);

Map alerts = (Map)sess. cal | Functi onWt hAr gunent (" get Subscri bers”, ti);
Iterator iter = alerts.keySet().iterator();
while(iter.hasNext()) {
String s = (String)iter.next();
Systemout.printin("Alert " + s +

+ alerts.get(s));

3.12.3 Using Container Objects to Obtain Results

In the container objects approach, one or more objects are asserted into working
memory to act as a container for results. The RL Language code that asserts the objects
keeps the references handy. As rules fire, they can add results to the containers. A
container object could be one of the Java Collection classes or it could be some
application-specific container object. When rule evaluation is complete, the container
objects can be inspected to access the results.

Example 3-3 shows the get Subscri ber s function that usesaj ava. util. Map
object and adds the subscriber (key) and the incident (val ue) are to the Map object.
The get Subscri ber s function asserts the Map objectand a Tr af fi cl nci dent
object, then invokes the Rules Engine and returns the result in a Map object.

Note: The Map object is not reasserted even though it has been
updated. In general, when an object that is being reasoned on is
updated, it should be reasserted. This use case represents an exception
to that rule. The map, al ert s, is just a container for results and its
contents are not involved in the reasoning. Thus, it is OK not to
reassert it.

3-20 Oracle Business Rules User’'s Guide

Invoking Rules and Obtaining Rules Engine Results

Example 3-3 Obtaining Results with a Container Object

function get Subscribers(Trafficlncident ti) returns Map {
Map al erts = new HashMap();

try {
assert(alerts);

assert(ti);
run();
return alerts;

} finally {
retract(alerts);
retract (ti);

}
}

rule incidentAert {
if (fact Trafficlncident ti &&
fact IncidentSubscription s &&
s. highway == ti.hi ghway &&
s.direction == ti.direction &&
fact Map alerts) {
al erts. put(s.subscriber, ti);

}
}

Example 3-2 shows Java code that invokes the get Subscr i ber s function and prints
out the results.

3.12.4 Using Reasoned On Objects to Obtain Results

In the reasoned on objects approach, one or more objects are asserted into the rules
engine working memory and the object references are retained in RL Language (in the
get Subscri ber s function). The rule evaluation process updates one or more of these
objects. These objects are inspected after rule evaluation to determine the results.

In Example 3—4 the Tr af f i cl nci dent class is modified to keep an updated
java.util. Set object containing a list of subscribers that need to be notified.
Because the Tr af fi cl nci dent object is being reasoned on, it is reasserted. To avoid
an infinite loop of rule firings for the same subscription, use the subscri bed method
to test for matched incidents; this method prevents looping. The subscr i bed method
returns t r ue if a subscriber has already been added to the matched

Trafficlnci dent object. This is a common idiom in rules programming; a rule
action updates a fact that is being reasoned on and, to avoid unwanted additional
firings, you add a test to the condition that checks for the absence of that update.

Example 3—4 shows the code that uses the get Subscr i ber s function to assert a
Trafficlnci dent object, invoke Rules Engine, and create and return the result Map
object.

Example 3-4 Obtaining Results with a Reasoned on Object

function get Subscribers(Trafficlncident ti) returns Map {
try {
assert(ti);
run();
Map alerts = new HashMap();
for (lterator iter = ti.subscribers(); iter.hasNext();) {
alerts.put(iter.next(), ti);

}

return alerts;

Working with Rule Author Features 3-21

Invoking Rules and Obtaining Rules Engine Results

} finally {
retract(ti);
}

}
rule incidentAert {
if (fact Trafficlncident ti &&
fact IncidentSubscription s &&
s. highway == ti.hi ghway &&
s.direction == ti.direction &&
I'ti.subscribed(s.subscriber)) {
ti.addSubscri ber(s.subscriber);
assert(ti);

}

Example 3-2 shows Java code that invokes the get Subscri ber s function and prints
out the results.

3-22 Oracle Business Rules User’'s Guide

A

This chapter provides a tutorial for working with Oracle Business Rules using XML

Using XML Facts with Rule Author

documents (facts that are supplied in an XML document). This chapter also shows you
how to create a rule-enabled Java application that uses XML.

In the rules XML How-To, driver data is supplied in an XML document that specifies

driver information, and the business rules we develop in this chapter determine if a
rental company service representative should decline to rent a vehicle due to driver

age restrictions (according to rental company business policies that we define).

This chapter includes the following sections:

Overview of Using XML Documents and Schemas with Rule Author
Creating a Rule Author User and Starting Rule Author

Creating and Saving a Dictionary for the XML Car Rental Sample
Defining a Data Model for the XML Car Rental Sample

Defining the Business Vocabulary for the XML Car Rental Sample
Defining a Rule for the XML Car Rental Sample

Customizing Rules for the XML Car Rental Sample

Creating a Java Application with a Rule Session Using XML Facts
Running the XML Car Rental Sample Using the Test Program

Note: We call the sample application in this chapter the rules XML
How-To. This sample application is available in the Oracle Business
Rules area, under the Viewlets and Tutorials heading on the Oracle
Technology Web site:

http://ww. oracl e. com t echnol ogy/ product s/i as/ busi ne
ss rules/files/howto-rules-xm.zip

Using XML Facts with Rule Author

4-1

Overview of Using XML Documents and Schemas with Rule Author

4.1 Overview of Using XML Documents and Schemas with Rule Author

Rule Author lets you import XML elements into a data model and lets you write rules
using the XML elements in conditional expressions. For example, if you have an XML
document that contains data associated with your application, and you have the
schema associated with the XML document, then you can use Rule Author to define
rules based on elements that you specify from the XML schema.

When you start with an XML schema, using XML documents with Rule Author
involves the following steps:

1. Rule Author generates Java classes from the XML schema by running the supplied
Java Architecture for XML Binding (JAXB) compiler to generate JAXB packages,
classes, and interfaces for the XML schema.

2. Youimport XML elements into the data model in a dictionary.

3. You define rules that specify business policies based on the XML elements from an
XML document. The process of writing rules for XML documents is very similar to
writing rules for Java objects.

After you finish using Rule Author to create the rules, you can write an application
that uses the rules with XML documents. To accomplish XML document processing,
you assert elements of an XML document into a Rules Engine session.

Note: To use a JAXB binding compiler that is different from the
implementation supplied with Rule Author, you can manually
perform the XML schema processing using your JAXB binding
compiler and then import the generated Java packages and classes
into the data model.

For more information about JAXB, see
http://java. sun. com webservi ces/j axb/

See Also: "Using Java Objects as Facts in the Car Rental Sample" on
page 2-9

4.2 Creating a Rule Author User and Starting Rule Author

Start Rule Author by entering the URL for the home page. The URL for the home page
typically includes the name of the host computer and the port number assigned to the
application server during the installation, plus the path of the Rule Author home page.

See Also: "Creating a Rule Author User" on page 2-2 for more
information

4.3 Creating and Saving a Dictionary for the XML Car Rental Sample

To work with Rule Author, you must start with a dictionary. Rule Author stores rules
and their associated definitions in a dictionary. To create or save a dictionary, you must
connect to a repository that stores the dictionary. As shipped, Rule Author supports
two types of repositories: WebDAV (Web Distributed Authoring and Versioning) and
file repository.

In this section, you create and save a dictionary for the XML How-To using a WebDAV
repository.

4-2 Oracle Business Rules User’'s Guide

Creating and Saving a Dictionary for the XML Car Rental Sample

Note: To create the dictionary shown in this chapter, you can either
create a new dictionary (using either a WebDAV repository or a file
repository) or you can load the completed dictionary from the
$HowToDir/ di ct directory supplied with the How-To, where
$HowToDir is the directory where you installed the XML How-To.

This section covers the following topics:

Connecting to a Rule Author Repository
Creating a Rule Author Dictionary
Saving a Rule Author Dictionary with a Version

Saving a Rule Author Dictionary

4.3.1 Connecting to a Rule Author Repository

In Oracle Business Rules, a dictionary stores rules and the data model associated with
the rules.

Note: Regardless of whether you choose to use a WebDAV or file
repository, the repository must exist before you can connect to it. See
Appendix B, "Using Rule Author and Rules SDK with Repositories"
for more information.

To connect to a repository, do the following:

1.

2
3.
4

Click the Repository tab.
Click the Connect secondary tab.
In the Repository Type field select the WebDAV repository type.

Enter the URL to the WebDAV repository (see Figure 4-1). The URL must be in the
form:

http://ww. fully_qualified_host_nane.com 7777/ repository_name

Note: In order for authentication to work, you must use a fully
qualified host name in the URL.

Using XML Facts with Rule Author 4-3

Creating and Saving a Dictionary for the XML Car Rental Sample

Figure 4-1 Rule Author Repository Connect Page

Repository Location:
Dictionary loaded:
Wersion:

Description:

ORACLE Locout Help About
Rule Author Home SEENVEIG Definitions Rulesets Customization RL
Connect | | | | | | | |
Status Connect
Please connect to a repository to load or create a dictionary before performing
Name Value any other operations. You have to reload the dictionary if your session expires
Repositary Type: due ta inactivity.
Status disconnected

Repositary Type | WehDAY

*URL |.us.oracle.com:7780/rule_repository

none
none
Uszer Name |tvrules

Pasgword |essssses

[Gonnect)

4.3.2 Creating a

See Section B.1, "Working with a WebDAV Repository" for information about how
to setup a WebDAV repository.

If you have a proxy server between the server on which Rule Author is running
and the WebDAV server, specify values in the Proxy User Name, and Proxy
Password fields (as required for the Proxy server).

Click Connect. After you connect, Rule Author displays a confirmation message.

Note: For file repositories, only one user may edit the repository at
any given time, regardless of the number of dictionaries stored in the
repository. For WebDAV repositories, a single user may edit multiple
dictionaries simultaneously.

Rule Author Dictionary

A dictionary is the top-level container and the starting point for working with Rule
Author. A dictionary usually corresponds to the rules portion of an application.

To create a dictionary, do the following:

1.
2.
3.

4-4 Oracle Business

Connect to a repository from the Repository tab.
Click the Create secondary tab.

Enter the dictionary name in the New Dictionary Name field. For this example,
enter Car Rent al xm .

Click Create. After you click Create, Rule Author shows a status message (see
Figure 4-2).

Rules User's Guide

Creating and Saving a Dictionary for the XML Car Rental Sample

Figure 4-2 Rule Author Create Dictionary (XML)

Repository Location: http://stace34.us.or
acle.com:7779/tv
CarRentalxml

INITIAL

Dictionary loaded:
“ersion:
Description:

= MNew Dict

Existing Dicti

Name
CarRental
CarRentalxml
OrderBooking

Hore | Repository | Definitions
Copryright & 2005, 2006, Oracle. All rights reserved.

OoORrRACLE Save Dictionary Logout Help About
Rule Author Horne JGEGEESTN Definitions |/ Rulesets | Customization | RL

Disconnect | C g | Load | | Import |
Status Confirmation

Dictionary 'CarRentalxrl’ has been created. Use the Definitions tab and the

Name Value RuleSets tab to define a Data Model and Rules.
Repository Type: WebDAW
Status connected Create Dictionary

Create a dictionary in the repository.

ionary Mame | |
Cnly letter, digit and underzcore are allowed

[Create)

oharies

| Rulesets | Customization | EL

4.3.3 Saving a Rule Author Dictionary with

a Version

To save to a different dictionary name or specify a version for the current dictionary,

use the Save As area as follows:

Enter a dictionary name in the Dictionary field, for example, Car Rent al xni .

ociated with the dictionary, enter text in the Version

1. Click the Repository tab.

2. Click the Save As secondary tab.

3.

4. To specify a version that is ass
field, for example, HowToxmi .

5.

(see Figure 4-3).

Click Save As. After clicking Save As, Rule Author shows a confirmation message

Using XML Facts with Rule Author 4-5

Creating and Saving a Dictionary for the XML Car Rental Sample

Figure 4-3 Rule Author Save Dictionary (XML)

DRACI_E Save Dictionary Logout Help About
Rule Author Home @GEHGEIGTE Definitions Rulesets Customization RL

Disconnect | Create | Load | | Prope | lmport | E
Status Confirmation
Dictionary CarRentalxml (HowToxml)' has been saved.
Name Value
Repository Type: WehDAV Save As
Status connected Save contents to different dictionary or version

Repository Location: http://stace34.us.or
acle.com:7779/tv

Dictionary loaded: CarRentalxml = Dictianary |CarRentaI){mI |
“arsion: HowToxml Qnby letter, digit and underscore are allovwed
Description: *Yersion |H0wT0me
Description | |
Overwrite []

[Save As)

Hore | Repository | Definitions | Bulesets | Custorization | BL
Copyright @ 2005, 2006, Oracle. All rights reserved.

4.3.4 Saving a Rule Author Dictionary

To prevent data loss, you should periodically save the dictionary. To save a dictionary,
do one of the following:

= Click the Repository tab, then click the Save secondary tab.
« Click the Save Dictionary link at the top of the page.

After performing either of the preceding actions, click Save on the Save Dictionary
page. After clicking Save, you should see a confirmation message in the status area.
For example:

Di ctionary ' CarRental xn (HowToxm)’ has been saved

See Also: "Rule Author Session Timeout" on page A-2 for details on
configuring the Rule Author session timeout and for details on how
Rule Author automatically saves the current work to a dictionary
version when a timeout occurs

4-6 Oracle Business Rules User’'s Guide

Defining a Data Model for the XML Car Rental Sample

4.4 Defining a Data Model for the XML Car Rental Sample

Before working with rules you must define a data model. A data model contains
business data definitions for facts or data objects used in rules, including: Java class
fact types, XML fact types, and RL Language fact types. In this section, you work with
a data model that includes XML fact types.

This section covers the following topics:

= Using XML Schema as Facts in the XML Car Rental Sample

= Adding XML Facts for the Car Rental Sample (XML Schema Processing)
= Importing XML Schema Elements to a Data Model

= Viewing XML Facts in a Data Model

= Saving the Current State of XML Fact Definitions

See Also: "Adding Java Classes and Packages to Rule Author" on
page 2-9

4.4.1 Using XML Schema as Facts in the XML Car Rental Sample

The XML sample includes the car r ent al . xsd file in the $HowToDir/ dat a directory.
This file specifies the schema for the XML car rental sample that uses XML documents
to assert facts. The access the schema definition, replace $HowToDir with the directory
where you installed the XML How-To.

4.4.2 Adding XML Facts for the Car Rental Sample (XML Schema Processing)

Before you can use XML elements in a data model, Rule Author must generate the
JAXB classes representing the XML elements. This step generates the JAXB classes and
makes the generated classes and packages associated with the XML schema visible to
Rule Author.

To use Rule Author to prepare the sample XML car rental schema, do the following:

1. Go to Step 2 if you just created the Car Rent al xm dictionary. Click the
Repository tab and load the Car Rent al xim dictionary.

2. Click the Definitions tab. The navigation tree shows the Definitions folder that
contains the available definitions.

3. The Definitions folder in the tree contains the Facts folder, which includes the
available fact types: JavaFact, XMLFact, and RLFact.

Click XMLFact to view the XMLFact Summary page (see Figure 4-4).

Using XML Facts with Rule Author 4-7

Defining a Data Model for the XML Car Rental Sample

Figure 4-4 Rule Author Definitions XMLFact Summary Page

DQACLE Save Dictionary Logout Help Akbout
Rule Author Home Repository Rulesets Customization RL

XMLFact Summary

Definitions

Create |

Select Name Edit
(Mo items found)

Dictionary loaded:
CarRentalxml
ZH_O Definitions
Fact
JavaFact (1
XMLFact (0]
RELFact {0}
Canstraint (0]
Wariable (0]
ELFunction (23

4. Click Create. This shows the XML Schema Selector page.

5. On the XML Schema Selector page, in the XML Schema field, enter either the path
or HTTP URL to the schema. For example:

= $HowToDir/ dat a/ carrent al . xsd, where $HowToDir is the directory where
you installed the XML How-To.

« http://ww. nyConpany. com xsd/ product . xsd

Note: If you choose to access the schema with a URL, and a proxy
server is involved, then you must set the following system properties:

proxyHost = $Your ProxyHost
proxyPort = $Your ProxyPort
proxySet = true

For example:
- Dpr oxyHost =ww+ pr oxy. myConpany. com - Dpr oxyPor t =80 - Dpr oxySet =t r ue
For more information about setting system properties in an OC4J

instance, see Oracle Containers for [2EE Configuration and Administration
Guide.

6. In the JAXB Class Directory field, enter the directory where you want Rule
Author to store the JAXB-generated classes. The directory that you specify must be
writable. For example, enter ¢: / t enp/ xmi .

7. Enter a value for the Target Package Name field. If you leave this field empty, the
JAXB classes package name is generated from the XML target namespace of the
XML schema using the default JAXB XML-to-Java mapping rule. For example, the
namespace rules.oracle.com is mapped to com.oracle.rules.

The value you enter specifies the generated classes package name. For example,
use the name gener at ed (see Figure 4-5). Although this example uses the name
gener at ed, there is nothing special about this name. This name specifies the
package for the generated classes.

4-8 Oracle Business Rules User’'s Guide

Defining a Data Model for the XML Car Rental Sample

Figure 4-5 Rule Author XML Schema Selection Page

ORACLE

HMLFact Summary >
Definitions

XML Schema Selector
Dictionary loaded:

Rule Author Home | Repository Deﬂnitinns Rulesets |/ Customization | RL

Save Dictionary Logout Help About

(Impart)

CarRentalxml
ZH] Definitions

¥ML Schema |c:fdem0fdatafcarrenta|.xsd

Fact

JAXE Clags Directory |c:ftempfxm|

JavaFact (11

Target Package Mame |generated

Add Schema)

XML Fact)

“ariable 0]

ELFunction (2} Generated JAXB Classes

Only letter, digit and underscare are allowed

BlFact @ Current AL Claar)
Constraint (0} Schemas (e

8. C(lick Add Schema.

This step requires a period of time for Rule Author to process the schema and
compile the JAXB, so depending on the size of the schema, you may need to wait
for this step to complete. When this step completes the page shows the cleared
Add Schema text entry fields, and Rule Author updates the Current XML
Schemas field and shows the Generated JAXB Classes area (see Figure 4-6).

Figure 4-6 Rule Author Definitions XML Schema Selector After Adding XML Schema

ORACLE

HMLFact Summary =
Definitions

XML Schema Selector
Dictionary loaded:

Rule Author Home | Repository Deﬂnitinns Rulesets | Customization | RL

Save Dictionary Logout Help About

(Import)

CarRentalxml

Add Schema)

Only letter, digit and underscare are allowed

file:/c:/demo/data‘carrental. xsd

[Clear)

®ML Schema
EHJ Definitions |
E JAXE Clags Directory |
act
JawaFact (1 Target Package Mame |
XMLFact (0]
ELFact () Current XML
Constraint (0] Schemas
Wariable (0]
RLFunction (2} Generated JAXB Classes

®3 [generated

Using XML Facts with Rule Author 4-9

Defining a Data Model for the XML Car Rental Sample

Note: JAXB sometimes maps XML construct names to different Java
identifier names. For example, in JAXB-generated classes, the XML
name ny- el ement - nane becomes nyEl emrent Nane. Rule Author
presents XML construct names so that you do not have to understand
the JAXB-generated XML-to-Java name mapping.

See Also: "Creating and Saving a Dictionary for the XML Car Rental
Sample" on page 4-2

4.4.3 Importing XML Schema Elements to a Data Model

This step brings the JAXB-generated classes representing the XML schema elements
into the data model (from the sample schema car r ent al . xsd). Select the XML
elements to import into the data model using the XML Schema Selector page from the
Definitions tab.

To add Dri ver Type from the schema to the data model, do the following:
1. Click the Definitions tab to view the Definitions page.
2. Click the XMLFact folder in the navigation tree.

3. Click Create on the XMLFact Summary page. This shows the XML Schema
Selector page.

4. In the Generated JAXB Classes box on the XML Schema Selector page, expand the
navigation tree until you see DriverType.

5. Select the generated folder check box.
6. Click Import.

Rule Author shows a confirmation message: "1 class or package has been
imported".

7. Expand the Generated node in the Generated JAXB Classes area to see the
imported classes (see Figure 4.7).

Note: After an element is imported, the element is shown in bold.

4-10 Oracle Business Rules User’s Guide

Defining a Data Model for the XML Car Rental Sample

Figure 4-7 Rule Author XML Schema Selector with Confirmation Message

ORACLE Save Dictionary Locout Help About
Rule Author Home | Repository Rulesets | Customization | RL
AhLFact Summary =
Definitions
Confirmation
Dictionary loaded: 1 class or package has been impaned.
CarRentalxml
©1 Definitions XML Schema Selector
Fact Import)
JavaFact (7] ML Schema
AMLFact (4 JAXE Class Directary
—@RLFQ_Ct Target Package Mame Add Schema)
Constraint {0} Only letter, digit and underscore are allowed
Wariable (0]
RLFunction (2] Current =ML |[filefc:/demofdata‘carrental xsd \
Schernas \Clear)
Generated JAXB Classes
20 [generated
[RepositoryType (.//xs:complexType[@name="repositoryType’)
[Repaository (.//xs:element[@name="repository7)
[DriverType (.//xs:complexType[@name="driverTypeT])
[0 ObjectFactory
Irpart)
Notes for adding XML schema to Rule Author:

In Rule Author, importing an XML fact means the same thing as a Java import
statement. That is, the JAXB classes and their methods become visible to Rule
Author. Rule Author does not copy the classes into the data model or into the
dictionary.

The Classes navigation tree is rendered on demand (to improve performance).
Thus, a child node is rendered only if its parent node is expanded. It is a good
practice to keep only the nodes of interest expanded.

On Windows systems, you can use a backslash (\) or a slash (/) as a path
separator. Rule Author accepts either path separator.

A corresponding XML construct name is displayed next to each Java class so that
you know where the Java class is generated from (using the XML schema names).
To import the whole package into the data model, check the package name and
click Import.

Do not use RL Language reserved words in Java package names. For more
information, see Section D.8, "Using RL Reserved Words as Part of a Java Package
Name"

Oracle Business Rules binds an XML schema to Java classes using the JAXB
binding. In most cases, the default bindings generated by the Oracle JAXB binding
compiler should be sufficient to meet your needs. There are cases, however, when
you may want to modify the default bindings. For example:

- In cases where the default binding generates a name collision.

Using XML Facts with Rule Author 4-11

Defining the Business Vocabulary for the XML Car Rental Sample

- In cases where the default binding generates invalid Java identifiers (it is
possible to generate invalid Java identifiers from non-English tag names).

See Also: Java Architecture for XML Binding (JAXB) Specification
for details on using custom binding declarations

http://java. sun. conl xm / downl oads/ j axb. ht m

4.4.4 Viewing XML Facts in a Data Model

To view the XML facts in a data model, including any JAXB-generated classes or
packages that you import, do the following;:

1. Click the Definitions tab to view the Definitions page.

2. Inthe navigation tree, expand the Facts folder and click the XMLFact node to
display the XMLFact Summary page.

For the XML car rental sample, this shows the XML fact table that includes the
imported classes DriverType, RepositoryType, Repository, and ObjectFactory.

3. Click the edit icon to view the XML Fact Properties and Methods table.

i

Note: Importing a Java class does not cause all of its superclasses
and classes associated through fields and methods to be imported into
the data model. In order to access these correctly, they must be
explicitly imported into the data model.

See Also: See "Specifying Visibility and Object Chaining for Rule
Author Lists" on page 3-10 for details on the Visible and Expand
fields in the XML Fact Properties and Methods table

4.4.5 Saving the Current State of XML Fact Definitions

While you are working on a data model from the Definitions tab and when you
complete your work, you should save the dictionary.

To save the dictionary do the following:
1. Click the Save Dictionary link at the top of the page.
2. Click Save on the Save Dictionary page.

4.5 Defining the Business Vocabulary for the XML Car Rental Sample

The business vocabulary allows business analysts to create rules using familiar names
rather than using an XML name or a Java package name, class name, method name, or
member variable name. Rule Author provides an alias feature to allow you to refer to
business objects, or facts, in rules using a vocabulary that is intended for business
people. In this step, you only need to define the business vocabulary for the business
objects that you expect to use in rules. In addition, you can use the Rule Author
Visible box to specify the properties and methods that appear in Rule Author lists
when you create rules from the Rulesets tab.

4-12 Oracle Business Rules User’s Guide

Defining the Business Vocabulary for the XML Car Rental Sample

This section covers the following topics:

Specifying the Business Vocabulary for XML Fact Definitions
Specifying the Business Vocabulary for Functions

Specifying the Visibility for Properties and Methods for XML Facts

4.5.1 Specifying the Business Vocabulary for XML Fact Definitions

To specify the business vocabulary for XML fact definitions, do the following:

1.
2.

Click the Definitions tab to view the Definitions page.

In the navigation tree, expand the Fact folder and click the XMLFact node to
display the XMLFact Summary page. For the XML car rental sample, this shows a
table that includes the class gener at ed. Dri ver Type (if you specify a package
name other than generated, then the package name is different than gener at ed).

Click the edit icon for Dr i ver Type. This shows the XMLFact page.
At the top of the XMLFact page, in the Alias field, enter Dr i ver Dat a.

For the age entry in the Properties table, specify the desired alias. For example,
enter Dri ver Age in the Alias field.

For the name entry in the Properties table, specify the desired alias. For example,
in the Alias field, enter Dri ver Nane.

Click OK or Apply.

Save the dictionary.

Note: Be sure to click OK or Apply after making changes.
Otherwise, Rule Author does not save your changes.

Notes for specifying the business vocabulary for XML fact definitions:

The XMLFact page includes the XML Name and Generated From fields that show
the Java class was generated from an XML schema.

For example, / / conpl exType[@ane="dri ver Type'] XML Name shows that
the class is generated from an XML complex type named dri ver Type. The
Generated From field shows the name of the XML schema that generated the
JAXB classes for the XML fact.

On the XMLFact page, you can specify that Rule Author shows methods or
properties one level above a specified method or property, in superclass chain, by
selecting the Expand box for the method or property on the XMLFact page. The
Expand box is shown in the Expand field of the Properties and Methods area. The
check box is only shown for methods or properties that include a superclass (Rule
Author does not show the Expand box for primitive types).

On the XMLFact page you can specify that properties or classes are not visible in
Rule Author lists. Deselect the Visible check box to specify that an object is not
visible in Rule Author lists (by default objects are visible in lists).

Make sure the Support XPath Assertion box is checked for all XML fact types. For
more information, see Section D.10, "XML Facts not Asserted at Runtime".

Using XML Facts with Rule Author 4-13

Defining a Rule for the XML Car Rental Sample

4.5.2 Specifying the Business Vocabulary for Functions

To specify the business vocabulary for an RL Language function, do the following:

1.
2.

Click the Definitions tab to view the Definitions page.

In the navigation tree, click RLFunct i on in the Definitions folder to display the
RLFunction Summary page. For the XML car rental sample, this shows a table that
includes the functions DM assert XPat h and DM pri nt | n.

For the DM pri nt | n function, click the edit icon in the Edit field to view details.

In the Alias field, under the Name field, enter an alias. For example, enter
Pri nt Qut put in the Alias field.

Note: There is also an Alias field in the Function Arguments table.
For this example do not change the function arguments alias.

Click OK or Apply.

Save the dictionary.

4.5.3 Specifying the Visibility for Properties and Methods for XML Facts

To specify whether properties or methods are visible in Rule Author lists, do the

following:

1. Click the Definitions tab to view the Definitions page.

2. Inthe navigation tree, click the XMLFact node to display the XMLFact Summary
page.

3. Click the edit icon to view the XML fact Properties and Methods for Dri ver Type
(in the table this entry has the value Dri ver Dat a in the Alias column). This
shows the XMLFact page.

4. For each entry in the Properties table and in the Methods table, specify the desired
visibility using the Visible check box. For this example, only the member variables
age and name need to be visible.

5. Click OK or Apply to save the changes.

6. Save the dictionary.

Note: Modifying the visibility indicators for a particular property or
method may cause dependent definitions or rules to display
incorrectly. If this occurs, mark any non-visible properties or methods
causing the problem as visible.

4.6 Defining a Rule for the XML Car Rental Sample

In this section, you define a rule for the XML car rental sample.

This section covers the following topics:

Creating a Rule Set for the XML Car Rental Sample
Creating a Rule for the XML Car Rental Sample

4-14 Oracle Business Rules User’s Guide

Defining a Rule for the XML Car Rental Sample

4.6.1 Creating a Rule Set for the XML Car Rental Sample

Before you can create a rule you must create a rule set. A rule set is a container for
rules.

To create a rule set, do the following:

1.

2
3
4.
5

Click the Rulesets tab.

Click the RuleSet node in the navigation tree.

On the Ruleset Summary page, click Create. This displays the Ruleset page.
Enter a name in the Name field. For example, enter vehi cl eRent .

Optionally enter text in the Description field. For example, enter vehi cl e rent
rule set.

Click OK. This creates the vehi cl eRent rule set. After you create the rule set, the
tree shows the new entry, as shown in Figure 4-8.

Save the dictionary.

Figure 4-8 Rule Author RuleSet Summary Page

Rule Author

ORACLE

Save Dictionary Logout Help About

Home Repository Deﬂnitionsm Customization RL

Rulesets

CarRentalxml

SHO RuleSet

Dictionary loaded:

vehicleRent

RuleSet Summary

Delete) | | Create
Select All | Select MNone
Select Name Edit

[0 wehicleRent f

4.6.2 Creating a Rule for the XML Car Rental Sample

After creating a rule set, you can create rules within the rule set. In this section, you
create the UnderAge rule. The UnderAge rule tests the following:

If the age of the driver is younger than 21, then decline to rent

The UnderAge rule contains a single pattern for Rules Engine to match, and the rule
includes a test that is applied to the pattern.

The following actions are associated with the UnderAge rule:

Print "Rental declined", the name of the driver matched, and the message, "Under
Age, age is: ", and the age of the driver.

Retract the matched driver fact from the rule session. You might want to retract a
fact for a number of reasons, including: If you are done with the fact, and you
want to remove it from the Rules Engine or if the action associated with the rule
changes the state, so that the fact must be retracted to represent the current state of
the Rules Engine

Using XML Facts with Rule Author 4-15

Defining a Rule for the XML Car Rental Sample

4.6.2.1 Adding the UnderAge Rule for the XML Car Rental Sample
To use Rule Author to add the UnderAge rule, do the following:

1. Click the Rulesets tab. The navigation pane displays the RuleSet folder that
contains the vehicleRent rule set that you created in Section 4.6.1.

2. Click the vehicleRent node in the navigation tree. This displays the Ruleset page,
with a table listing rules (see Figure 4-9).

Note: If there are no rules, the Rules table is empty.

Figure 4-9 Rule Author RuleSet Page Showing the Create Button

ORACLE Save Dictionary Logout Help About
Rule Author Home | Repository | Definitions m Customization | RL
RuleSet Summary =
Rulesets
Ruleset
Dictionary loaded: (0K) Cancel) Apply)
CarRentalxml -
RuleSet * Mame |vehicleRent
blEoel Cnly letter, digit and underscore are allowed
Description |wvehicle rent rule set
Rules
[Create)
Select Name
(0K) cancel)| Apply)

3. Click Create. This displays the Rule page.
4. On the Rule page, in the Name field, enter Under Age .
5. On the Rule page, in the Priority field, enter 0.

Note: The Priority field determines which rule to act upon, and in
what order, if more than one rule applies. Often in applications that
use rules, the rules in a rule set are applied in any order until a
decision is reached, and setting a priority is not required.

6. Optionally enter a description in the Description field (see Figure 4-10).

4-16 Oracle Business Rules User’s Guide

Defining a Rule for the XML Car Rental Sample

Figure 4-10 Rule Author Rule Page

ORACLE

Save Dictionary Logout Help About
Rule Author Home | Repository | Definitions m Customization | RL
EuleSet Summary > Ruleset =
Rulesets
Rule
Dictionary loaded: (oK) cancel) Apply |
CarRentalxml *Name [Underage
ZH_] RuleSet -
é}D Description |Under age rule
Priority |0
If
[Mew Pattern)
Then
[Mew Action)

0K) Cancel) Apply)

4.6.2.2 Adding a Pattern to the UnderAge Rule (XML)

When Rules Engine runs, it uses the rules to check the available facts for matching
patterns. To add a pattern for the UnderAge rule, do the following;:

1. On the Rule page, click New Pattern in the If box. This displays the Pattern

Definition page.

The Pattern Definition page contains two areas: Choose Pattern and Define Test for
Pattern (see Figure 4-11).

Note: If the Pattern Definition page does not appear, you may have
popup blocking enabled on your browser. Popup blocking must be
disabled in order to use Rule Author.

Figure 4-11 Rule Author Pattern Definition Page

Pattern Definition

Choose Pattern

Define Test for Pattern

0K) Cancel)| Apply)

¥

isa | <make a choice> D

@ Standard Test O Advanced Test
Create |
Operand
Operand (choose value or field)
(0] t
Select Field b Value Field
(Mo test)
0K | Cancel)| Apply)
2.

Under Choose Pattern, in the first box select the first entry, which is blank.

Using XML Facts with Rule Author 4-17

Defining a Rule for the XML Car Rental Sample

This box specifies that the rule should fire each time there is a match (for all
matching drivers). One alternative value, There is at | east one case,
selects one firing of the rule if there is at least one match (one such driver). The
alternate value, There i s no case, specifies the rule fires once if there are no
such matches (no matching drivers).

3. The next text area under Choose Pattern lets you enter a temporary name for the
matched fact.

Enter dri ver in this field (this defines the "pattern bind variable name").

This field lets you test multiple instances of the same type in a single rule. For
example, this lets you compare a driver with other drivers, using the specified
name, in a comparison such asdri ver 1. age >dri ver 2. age.

4. The third box contains the text <make a choi ce>. This box shows the available
fact types. In this box, select Dr i ver Dat a.

5. Click OK to save the pattern definition and close the Pattern Definition page.
6. On the Rule page, click OK or Apply to save the rule.

Note: Changes made to the pattern are not added to the rule until
you click OK or Apply on the Rule page. If you navigate to a different
rule set or select a different tab before you click OK or Apply, Rule
Author discards your pattern definition changes.

7. Save the dictionary.
Without any tests defined on the pattern, the action that you define would apply to all

drivers. To define tests for patterns, continue, as shown in Section 4.6.2.3.

See Also: "Adding Actions for the UnderAge Rule (XML)" on
page 4-20

4.6.2.3 Defining Tests for Patterns with the Under Age Rule (XML)
To add a test for a pattern, do the following;:

1. From the Rulesets tab, in the navigation tree click the rule where you want to add
a test. For this example, click the node for the UnderAge rule.

2. In the If table on the rule page, select the pencil icon to display the Pattern
Definition page for this rule.

3. On the Pattern Definition page, select the Standard Test button, then click Create
(see Figure 4-12). For more information, see Section 3.8.1, "Using the Advanced
Test Expression Option".

4-18 Oracle Business Rules User’s Guide

Defining a Rule for the XML Car Rental Sample

Figure 4-12 Rule Author Rule Pattern Definition Page with New Test Fields

Pattern Definition
0K) Cancel) Apply)
Choose Pattern
| | driver is a | DriverData
Define Test for Pattern
® Standard Test O Advanced Test
Delete) | (_Create)
Select All | Select None
Operand
Operand {choose value or field)
o] t
Select Field b e Field
[| =<make a choice>] == Fixed [<make a choice> ||| Fixed
0K | Cancel)| Apply)

4. Inthe Operand column, from the Field box, select dri ver. Dri ver Age.
5. In the Operator column, select < (less than).

6. In the next Operand column, in the Value box enter 21. Do not enter a value in the
Field box.

7. Next to each Value and Field box is a list containing the values Fi xed and Any
(see Figure 4-13).

Select Any as the constraint for the Value field.

These values are called constraints. Use constraint values to enable or disable
customization. Use the value Fi xed to make the field read-only, which specifies
that no customization is allowed for this value. Select the value Any to specify that
Rule Author should allow changes to the value. Setting a value of Any allows for
rule customization (which supports modifications by nontechnical users). You can
also define constraints that allow you to limit the allowed values.

Using XML Facts with Rule Author 4-19

Defining a Rule for the XML Car Rental Sample

Figure 4-13 Rule Author Pattern Definition Page with Values for the UnderAge Rule

Pattern Definition
OK | Cancel)| Apply)
Choose Pattern
] |driver isa |DriverData
Define Test for Pattern
@ Standard Test O Advanced Test
Delete) | (_Create)
Select All | Select Nane
Operand
Operand 6 {choose value or field)
Select Field g Value Field
[| driver.DriverAge V] < 21 Any | <make a chaice> [| Fixed
0K) Cancel) Apply)

8. Click OK to save your changes and close the Pattern Definition page.
9. On the Rule page, click OK or Apply.

Note: Changes made to the pattern are not added to the rule until
you click OK or Apply on the Rule page. If you do not click OK or
Apply, Rule Author does not save your work on the rule.

10. Save the dictionary.
Note the following when you define a test for a pattern:

= In Standard Test expressions, the tests only evaluate to true when all of the tests

that you define match. Additionally, in standard tests, no grouping is allowed, and

functions with parameters are not allowed. However, with standard tests you can
define constraints for customization.

= In Advanced Test expressions, the tests do not have the restrictions of standard
tests, but they do not allow the use of constraints. Advanced test expressions are

not directly saved using RL Language because Rule Author incorporates aliases in

the expressions; aliases are not supported in RL Language (Rule Author maps
aliases to variable names).

See Also: "Customizing Rules for the XML Car Rental Sample” on
page 4-23

4.6.2.4 Adding Actions for the UnderAge Rule (XML)

Actions are associated with pattern matches. At runtime, when the "If" portion of a
rule matches, Rules Engine executes the "Then" portion to run the action or actions
associated with the rule.

4-20 Oracle Business Rules User’s Guide

Defining a Rule for the XML Car Rental Sample

In this section, you add two actions for the UnderAge rule. The first action prints the
result. The second action retracts the driver fact from the Rules Engine. You might
want to retract a fact for a number of reasons, including:

= If you are done with the fact, and you want to remove it from Rules Engine.

= The action associated with the rule changes the state, so that the fact must be
retracted to represent the current state of Rules Engine.

To add the action that prints the result for a match of the UnderAge rule, do the
following:

1. Click the Rulesets tab.
2. In the tree, under the vehicleRent folder, click the node for the UnderAge rule.

3. On the Rule page in the Then box, Click New Action. This displays the Add
Action page (see Figure 4-14).

Figure 4-14 Rule Author Add Action Page

Add Action
0K) Cancel) Apply)
Choose an action.
Action Type | <make a choices |
Action Parameters
Define parameters associated with the chosen action.
0K) Cancel) Apply)

4. From the Action Type box, select the Cal | item. This shows the Action
Parameters box.

5. From the Function box, choose Pr i nt Qut put (if you did not define an alias for
printl n, then this is DM pri nt | n). This shows the Function Arguments box.

6. Inthe Argument Value field, enter the argument value (see Figure 4-15):

"Rental declined" + driver.DriverName + " Under age,age is:" + driver.DriverAge

Note 1: Rule Author uses a Java-like syntax for expressions. RL
Language defines the complete expression syntax.

Note 2: You can also select the edit icon in the Wizard field to use the
Wizard to enter the expression. This provides you with more space to
write expressions. This also provides an easier and more accurate way
to enter variables, because the Wizard presents a list showing the
available variables.

Using XML Facts with Rule Author 4-21

Defining a Rule for the XML Car Rental Sample

Figure 4-15 Rule Author Add Action Page for the UnderAge Rule

Add Action
ok) Cancel)| Apply)
Choose an action.
Action Type | Call
Action Parameters
Define parameters associated with the chosen action.
Function | PrintCOutput
-
Function Arguments
Define arguments associated with function selected.
Argument Value
(Enter an expression or use the wizard)
Argument Name Argument Type :
: : s oL Expression Wizard
message String Mame + " Under age,age is:" + driver. Driverfge f
0K) cancel) Apply)

7. Click OK to save your changes and close the Add Action page.
8. On the Rule page, click OK or Apply.
9. Save the dictionary to save your work.

Next, add the retract action for the UnderAge rule. Perform the following steps to add
this second action for the rule:

1. Click the Rulesets tab.
2. Under the vehicleRent folder, click the node for the UnderAge rule.

3. On the Rule page, from the Then box, click New Action. This displays the Add
Action page.

4. From the Action Type box, select Ret r act . This shows the Action Parameters
box.

5. From the Fact Instance box, select dri ver . The pattern name (dr i ver) when
used in the action, refers to a single instance that was matched by the pattern.

6. Click OK to save your changes and close the Add Action page.
7. On the Rule page, click Ok or Apply to save the changes (see Figure 4-16).

8. Save the dictionary.

4-22 Oracle Business Rules User’s Guide

Customizing Rules for the XML Car Rental Sample

Figure 4-16 Rule Author Under Age Rule with Pattern and Actions

Save Dictionary Logout Help About

Home Repositony Definitions m Customization RL

Dictionary loaded:
CarRentalxml

ZH] RuleSet

|— Underdyge

vehicleRent

ORACLE
Rule Author
EuleSet Surnmary > Ruleset =
Rulesets

Confirmation
This entity has been updated successfully.

Rule

0Ok) Cancel) Apply)
*Mame |UnderAge

Description |Under age rule

Priority |0

hew Pattern

Df driver is a DriverData and
driver. Driverige < 21

Then

New Action)
Call PrintOutput{ "Rental declined" + driver. DriverfName + " Under age age is:"
ns =

Df Retract driver

0K || Cancel)| Apply)

When you add actions to rules, you can only add new actions

sequentially. If an action depends on the results of a previous action,
then the order in which you add the actions is significant.

See Also: Oracle Business Rules Language Reference Guide

4.7 Customizing Rules for the XML Car Rental Sample

The Rule Author Customization tab is designed for business users. Rule developers
use the Allowed Values field on the Pattern Definition page, which is available from

the Rulesets tab, to specify if customization is allowed. When customization is

allowed, you can specify a range of values for the customizable value. Then, business

users can change values using the Customization tab.

In this example, the UnderAge rule can be modified on the Customization tab to

change the age of an underage driver (for this sample we do not limit values, and

specify that any value is valid).

To change the UnderAge rule, use the Customization tab as follows:

1. Click the Customization tab. The navigation pane displays the vehicleRent folder
with node for the UnderAge rule followed by an asterisk (*), which indicates that

the rule is customizable.

2. Click the node for the UnderAge rule (see Figure 4-17).

Using XML Facts with Rule Author

4-23

Creating a Java Application with a Rule Session Using XML Facts

Figure 4-17 Rule Author Rule Customization Page for the UnderAge Rule

ORACLE Save Dictionary Logout Help About
Rule Author Home | Repository |/ Definitions | Rulesets eI Gl irc ol RL
Rule Customization
Customization \
| Apply)
Dictionary loaded:
CarRentalxml Name: UnderAge
50 RuleSet Priority: 0
. Description: Under age rule
vehicleRent
L
Customize Patterns
driver is a DriverData and
driver. DriverAge < |21
(_Apply)
3. On the Rule Customization page, the Customize Patterns box contains an editable

4.
5.

text entry field for the testdri ver. Dri ver Age < 21.
Enter 19 in this field (change the value from 21 to 19).
Click Apply.

Save the dictionary.

After you save the dictionary, you are done creating the data model and the rules for
the XML car rental sample.

See Also: Defining Tests for Patterns with the Under Age Rule
(XML) on page 4-18

4.8 Creating a Java Application with a Rule Session Using XML Facts

After you create and save a Rule Author dictionary that contains a data model and a
rule set with rules, you can rule-enable an existing Java application or create a new
rule-enabled Java application. This section shows you the steps for creating a rule-
enabled application.

This section covers the following topics:

Importing the Rules SDK and Rules RL Classes

Creating a JAXB Context and Unmarshalling the XML Document

Initialize the Repository with Rules SDK

Loading A Dictionary with Rules SDK

Loading a RuleSet and Generating RL Language for a Data Model and Rule Set
Initializing and Executing a Rule Session

Asserting XML Data from Within a Rule Session

Using the Run Function with a Rule Session

4-24 Oracle Business Rules User’s Guide

Creating a Java Application with a Rule Session Using XML Facts

For the complete code for this sample application, see Test XM_. j ava in the
$HowToDir/ src/ carrent al directory, where $HowToDir is the directory where you
installed the XML How-To.

Note 1: If you have completed the Java car rental example from
Chapter 2, the differences in this example are that you must create a
JAXB context, and that you must use the asser t XPat h function to
add facts to a rule session.

Note 2: The instructions in the preceding sections of this chapter
enabled you to create and save a WebDAV repository and dictionary
named Car Rent al xm . The car rental example supplied in the
How-To sample code uses a file repository with a dictionary also
named Car Rent al xm . The dictionary contents in the WebDAV
repository you created in this chapter and the file repository in the
How-To sample are identical.

The How-To sample code contains code for both WebDAYV and file
repositories, but only the file repository is described in detail. The
How-To sample uses a file repository for portability, but this sample
can be modified to use the WebDAV repository you created in the
proceeding sections.

4.8.1 Importing the Rules SDK and Rules RL Classes

The first step when you write a rule-enabled program is to import certain required
classes. Example 4-1 shows the imports from the Test XM.. j ava application for the
XML car rental sample.

Example 4-1 Required Imports for XML Car Rental Sample with Rules SDK

package carrental ;

i nport
i nport
i nport
i nport

i nport

i nport
i nport
i nport
i nport
i nport
i nport
i nport
i nport

i nport

java.io.File;
java.util.List;
java.util.ArraylList;
java.util.Properties;

javax.xm . bind. *;

oracl e.rul es. sdk. rul eset. Rul eSet;

oracle.rul es. sdk. repository. Rul eRepository;
oracl e. rul es. sdk. reposi tory. Reposi t or yManager ;
oracl e.rul es. sdk. reposi tory. Reposi toryType;
oracl e.rul es. sdk. repository. Reposi t oryCont ext ;
oracle.rul es.sdk. dictionary. Rul eDi ctionary;
oracl e.rul es. sdk. excepti on. Reposi t or yExcepti on;
oracle.rul es.sdk.store.jar. Keys;

oracle.rul es.rl.Rul eSessi on;

Using XML Facts with Rule Author 4-25

Creating a Java Application with a Rule Session Using XML Facts

4.8.2 Creating a JAXB Context and Unmarshalling the XML Document

Using the JAXB-generated classes, you first must specify a JAXB context and then
unmarshall an XML document that conforms to the schema. Example 4-2 shows this
code from Test XML. j ava.

Example 4-2 Unmarshalling an XML Document

JAXBCont ext jc¢ = JAXBCont ext.new nstance("generated");
Unmar shal | er um = jc. createUnmarshal l er();

String fs = System get Property("file.separator");
String xmpath = "data" + fs + "carrental .xm" ;

hj ect root = um unnarshal (new Fil e(xn path));

4.8.3 Initialize the Repository with Rules SDK

When building a rule-enabled Java application, do the following to access a dictionary
and specify a rule set (see Example 4-3):

1. Create a St ri ng that contains the path to the repository.

2. Use a Rules SDK Rul eType object to hold the repository that you obtain from the
Reposi t or yManager . get Regi st er edReposi t or yType method.

3. Create a repository instance using the repository manager method
cr eat eRul eReposi t oryl nst ance.

4. Define a Reposi t or yCont ext and set appropriate properties. For a file
repository, this step specifies the path to the repository, as shown with the
r epoPat h parameter.

5. Use thei ni t method in the Rul eReposi t ory object r epo to initialize the
repository instance.

Example 4-3 Loading a Dictionary with Rules SDK (XML)

String repoPath = "dict" + fs + "Carxnl Repository";
RepositoryType jarType =
Reposi t or yManager . get Regi st er edReposi t oryType(Keys. CONNECTI ON) ;
Rul eRepository repo = RepositoryManager. creat eRul eReposi toryl nstance(jarType);
RepositoryContext jarCtx = new RepositoryContext();
jarCix.setProperty(oracle.rules.sdk.store.jar.Keys. PATH repoPath);
repo.init(jarCtx);

To load a WebDAV repository instead of a file repository as shown in Example 4-3,
you should use get WebDAVReposi t or y. An example of this is shown in
Test XM_. j ava in the $HowToDir/ sr ¢/ carrent al directory.

4.8.4 Loading A Dictionary with Rules SDK

When you build a rule-enabled Java application you must load a dictionary, with a
specified version. Use a Rul eDi ct i onary object to load a dictionary, as shown in
Example 4-4, which loads the Car Rent al dictionary, with the HowTo version, into the
object named di ct . The Car Rent al dictionary must be available in the repository
(the Car Rent al dictionary with the version name HowTo was created earlier using
Rule Author).

Example 4-4 Loading a Dictionary With Rules SDK
Rul eDi ctionary dict = repo.loadDictionary("CarRental xm", "HowToxm");

4-26 Oracle Business Rules User’s Guide

Creating a Java Application with a Rule Session Using XML Facts

4.8.5 Loading a RuleSet and Generating RL Language for a Data Model and Rule Set

After loading a dictionary, you can use Rules SDK to generate an RL Language
program. This step is required, because a dictionary stores a data model and rule sets
using an intermediate XML format. The Rul eDi ct i onar y object provides methods to
access a data model and a rule set and perform the mapping from the intermediate
XML format. This mapping produces the RL Language data program.

When you generate rules using Rule Author, each rule set specifies two components, a
data model, which is global and applies to all the rule sets in a dictionary, and the set
of rules associated with a rule set.

Example 4-5 shows the code that generates the RL Language code for a rule set and
for the associated data model.

Example 4-5 Generating Oracle Business Rules RL Language

String rsname = "vehicleRent";
String dnrl = dict.datavbdel RL();
String rsrl = dict.rul eSetRL(rsnane);

4.8.6 Initializing and Executing a Rule Session

After you generate an RL Language program that include rules and a data model, you
are ready to work with a rule session. A rule session initializes Rules Engine and
maintains the state of Rules Engine across a number of rule executions.

Example 4-6 shows the code that creates a Rul eSessi on object and executes an RL
Language program.

The execut eRul eset () method tells Rules Engine to interpret the specified RL
Language program.

Note: The order of the execut eRul eset () calls is important. You
must execute the data model RL Language program before the rule set
RL Language program. The data model contains global information
that is required when the associated rule set executes.

Example 4-6 Initializing and Executing a Rule Session with Rules SDK (XML)

Rul eSessi on session = new Rul eSession();
sessi on. execut eRul eset (dnrl);
sessi on. execut eRul eset (rsrl);

session. cal | Function("reset");
session. cal | Function("cl earRul eset Stack");
session. cal | Functi onWt hArgument ("pushRul eset™, rsname);

After the data model and the rule set are loaded, the rule session is ready to run the
rule set against the facts that you assert for the rule session.

Using XML Facts with Rule Author 4-27

Running the XML Car Rental Sample Using the Test Program

4.8.7 Asserting XML Data from Within a Rule Session

Before running a rule session, you first must unmarshall the XML document
containing the XML data and then assert the facts from the XML document.
Section 4.8.2 shows you how to unmarshall the XML document.

To assert facts from an XML document, use the
sessi on. cal | Functi onW t hAr gunment () method with the assert XPat h
function as an argument.

Example 4-7 shows sample code that uses asser t XPat h to assert XML facts into a
rule session.

The cal | Functi onW t hAr gunment Li st method requires a function name argument
and a List argument. The List argument ar gLi st includes the following three
arguments:

1. The first argument for asser t XPat h is the JAXB-generated package name, for
this example, gener at ed.

2. The second argument for asser t XPat h is the root object for the unmarshalled
XML document. For this example, the unmarshalled object reference is the r oot
object.

3. The third argument for asser t XPat h is the XPath expression to assert. For this
example, the "//*" asserts the entire XML tree into the rule session named
sessi on.

Example 4-7 Asserting an XML Document

Li st argList = new ArrayList(3);

argLi st.add("generated");

argLi st.add(root);

argList.add("“//*");

session. cal | Functi onWt hArgunent Li st ("assertXPath", argList);

See Also: "Creating a JAXB Context and Unmarshalling the XML
Document" on page 4-26

4.8.8 Using the Run Function with a Rule Session

Example 4-8 shows the code that runs a rule session.

Example 4-8 Running an Oracle Rules Engine Session

session. cal | Function("run");

4.9 Running the XML Car Rental Sample Using the Test Program

The $HowToDir/ | i b directory includes Test XML. j ar , a ready-to-run Oracle Business
Rules Java application that uses the Car Rent al xml dictionary. If you change the
dictionary name and you must modify Test XM_. j ava, the source is available in the
directory $HowToDir/ sr c. The Readne. t xt file in this directory includes instructions
for setting the environment variables required to run the test program, where
$HowToDir is the directory where you installed the XML How-To.

Example 4-9 shows output from running Test XM_.

4-28 Oracle Business Rules User’s Guide

Running the XML Car Rental Sample Using the Test Program

Example 4-9 Sample Run of Car Rental Program (XML)

java carrental . Test XM
Rental declined Qun Under age, age is: 15

Note that not all facts produce output or fire a rule. The example shows output only
for the asserted fact that matches the UnderAge rule.

Using XML Facts with Rule Author 4-29

Running the XML Car Rental Sample Using the Test Program

4-30 Oracle Business Rules User’s Guide

D

Using JSR-94

This chapter includes the following sections:

Oracle Business Rules with JSR-94 Rule Execution Sets
Using the JSR-94 Interface with Oracle Business Rules

5.1 Oracle Business Rules with JSR-94 Rule Execution Sets

To use JSR-94 with rules created either with Rule Author or in RL Language text, you
must map the rules to a JSR-94 rule execution set. A JSR-94 rule execution set (rule
execution set) is a collection of rules that are intended to be executed together. You also
must register a rule execution set before running it. A registration associates a rule
execution set with a URI; using the URI, you can create a JSR-94 rule session.

This section includes the following topics:

Creating a JSR-94 Rule Execution Set from Rule Sets in a File Repository
Creating a JSR-94 Rule Execution Set from a WebDAV Repository

Creating a Rule Execution Set from Oracle Business Rules RL Language Text
Creating a Rule Execution Set from RL Language Text Specified in a URL

Creating Rule Execution Sets with Rule Sets from Multiple Sources

Note: In Oracle Business Rules, a JSR-94 rule execution set
registration is not persistent. Thus, you must register a rule execution
set programmatically using a JSR-94 Rul eExecut i onSet Pr ovi der
interface.

5.1.1 Creating a JSR-94 Rule Execution Set from Rule Sets in a File Repository

You can save rules created with Rule Author in a dictionary using the dictionary
storage plug-in. To use JSR-94 with rules created with Rule Author, you must map a
Rule Author dictionary and its contents to a JSR-94 rule execution set.

Perform the following steps to use a Rule Author dictionary with JSR-94:

1.

Specify Rule Author dictionary mapping information in an XML document.
Table 5-1 shows the mapping elements required to construct a rule execution set.
Example 5-1 shows a sample XML mapping file.

You then use the XML document with the JSR-94 administration APIs to create a
rule execution set. The resulting rule execution set is registered with a JSR-94
runtime (using a Rul eAdmi ni st r at i on instance).

Using JSR-94 5-1

Oracle Business Rules with JSR-94 Rule Execution Sets

Table 5-1 File Repository XML Mapping Elements for JSR-94

Element Description

<repository-location> The file repository path — the path may be absolute or relative to
the current directory at the time of execution.

<di cti onary- nane> The dictionary name.
<di ctionary-version> The dictionary version.

<rul eset-list> A list of Rule Author rule sets to extract from the dictionary in
the order in which they should be interpreted so that any
interdependencies are resolved.

Note: the rule set associated with data model is not included in
the <rul eset - | i st > element. The JSR-94 implementation
loads the data model rule set into the Rules Engine before any
rule sets listed in this element.

<rul eset - st ack> Specifies a list of rule sets that make up the initial rule set stack.
The order specified for the of rule sets in the list is from the top
of the stack to the bottom of the stack.

Example 5-1 JSR-94 XML Mapping File for a File Repository

<rul e-execution-set xm ns="http://xm ns.oracl e.confrul es/jsr94/configuration”
xm ns: xsi="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance" versi on="1.0">
<nane>Car Rent al Deno</ name>
<description>The Car Rental Demp</description>
<rul e-sour ce>
<file-repository>
<repository-|ocation>dict/CarRepository</repository-location>
<di cti onary- name>Car Rent al </ di cti onary- nanme>
<di cti onary- ver si on>HowTo</ di cti onary- ver si on>
<rul eset-|ist>
<rul eset - nane>vehi cl eRent </ r ul eset - nane>
</ruleset-list>
</file-repository>
</rul e-sour ce>
<rul eset - stack>
<rul eset - nanme>vehi cl eRent </ r ul eset - nane>
</rul eset - stack>
</rul e-execution-set>

See Also: The XSD file in $ORACLE_HOVE/ rul es/ | i b/ j sr94_
obr.jar at

oracl e/ rul es/jsr94/adm n/jsr94-runti me-configuration
-1.0. xsd.

5.1.2 Creating a JSR-94 Rule Execution Set from a WebDAV Repository

You can save rules created with Rule Author in a WebDAV repository using the
dictionary storage plug-in. To use JSR-94 with rules stored in a WebDAYV repository,
you must map one or more rule sets from a WebDAV repository to a JSR-94 rule
execution set.

Perform the following steps to use rules stored in a file repository with J[SR-94:

1. Specify WebDAV repository mapping information in an XML document. Table 5-2
shows the mapping elements required to construct a rule execution set.
Example 5-2 shows a sample XML mapping file.

5-2 Oracle Business Rules User's Guide

Oracle Business Rules with JSR-94 Rule Execution Sets

2. You then use the XML document with the JSR-94 administration APIs to create a
rule execution set. The resulting rule execution set is registered with a JSR-94
runtime (using a RuleAdministration instance).

Table 5-2 WebDAV Repository XML Mapping Elements for JSR-94

Element Description

<repository-url> The URL for the WebDAV repository.

<pr oxy- host > The name of the proxy host if a proxy is present. This is an
optional element.

<proxy-port> The proxy port if a proxy is present. This is an optional element.

<di cti onary- nane> The dictionary name.

<di ctionary-version> The dictionary version.

<rul eset-list> A list of Rule Author rule sets to extract from the dictionary in
the order in which they should be interpreted so that any
interdependencies are resolved.

Note: the rule set associated with data model is not included in
the <rul eset - | i st > element. The JSR-94 implementation
loads the data model rule set into the Rules Engine before any
rule sets listed in this element.

<rul eset - st ack> Specifies a list of rule sets that make up the initial rule set stack.
The order specified for the of rule sets in the list is from the top
of the stack to the bottom of the stack.

Example 5-2 JSR-94 Mapping File for a WebDAV Repository

<rul e-execution-set xm ns="http://xm ns.oracl e.confrul es/jsr94/configuration”
xm ns: xsi="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance" versi on="1.0">
<nanme>Car Rent al Deno</ name>
<description>The Car Rental Denp</description>
<rul e- sour ce>
<webdav- r eposi t ory>
<repository-url>
http://ww. some_server.conlrul es_repository
</repository-url>
<di cti onary-name>Car Rent al </ di cti onary- nane>
<di cti onary-versi on>HowTo</ di cti onary-versi on>
<ruleset-list>
<rul eset - name>vehi cl eRent </ rul eset - name>
</ruleset-list>
</ webdav-r eposi t ory>
</rul e-source>
<rul eset - st ack>
<rul eset - name>vehi cl eRent </ r ul eset - name>
</rul eset - st ack>
</rul e-execution-set>

5.1.3 Creating a Rule Execution Set from Oracle Business Rules RL Language Text

You can use JSR-94 with RL Language rule sets saved as text, where the RL Language
text is directly included in the rule execution set.

Perform the following steps to use RL Language specified rules with JSR-94:

1. Specify the RL Language mapping information in an XML document. Table 5-3
shows the mapping elements required to construct a rule execution set.

Using JSSR-94 5-3

Oracle Business Rules with JSR-94 Rule Execution Sets

Example 5-3 shows a sample XML document for mapping RL Language text to a
JSR-94 rule execution set.

2. You then use the XML document with the JSR-94 administration APIs to create a
rule execution set. The resulting rule execution set is registered with a JSR-94
runtime (using a Rul eAdm ni st r at i on instance).

Table 5-3 Oracle Business Rules RL Language Text XML Mapping Elements for JSR-94

Element Description

<rul e- source> Includes an <r | - t ext > tag containing explicit RL Language
text containing an Oracle Business Rules rule set. Multiple
<r ul e- sour ce> tags can be used to specify multiple rule sets
(specified in the order in which they are interpreted).

<rul eset-stack> Specifies a list of rule sets that make up the initial rule set stack.
The order of the rule sets in the list is from the top of the stack to
the bottom of the stack.

Note: Inthe <rl -t ext > element the contents must escape XML
predefined entities. This includes the characters '&’, >, '<’, ", and '\".

Example 5-3 XML Mapping File for Rule Sets Defined in an RL Program

<rul e-execution-set xm ns="http://xm ns.oracle.confrul es/jsr94/configuration”
xm ns: xsi="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance" version="1.0">
<nane>Car Rent al Deno</ name>
<description>The Car Rental Demo</description>
<rul e- source>
<rl-text>
rul eset DM {
fact class carrental.Driver {
hi de property abl eToDrive, driverLicNum liclssueDate, |icenceType,
[liclssueDate, nunPreAccidents, nunPreConvictions,
numear sSi nceli cl ssued, vehicl eType;

¥
final String DeclineMessage = " Rental declined ";

public class Decision supports xpath {
public String driverNane;
public String type;
public String nessage;

}

function assert XPath(String package,
java.lang. Cbject element, String xpath) {
//RL literal statenent
mai n. assert XPat h(package, el enent, xpath);

}

function printIn(String message) {
/IRL literal statenent
mai n. println(message);

function showDeci si on(DM Deci si on deci sion) {
/I/RL literal statenent

5-4 Oracle Business Rules User's Guide

Oracle Business Rules with JSR-94 Rule Execution Sets

DM println("Rental decision is &yuot; + decision.type +
" for driver &gquot; + decision.driverNane +
" for reason " + decision. nessage);
}
}

</rl-text>
</rul e-source>
<rul e-sour ce>
<rl-text>
rul eset vehicleRent {
rul e Under Age {
priority = 0;
if ((fact carrental.Driver vO_Driver &anp;&anp;
(vO_Driver.age &t; 19))) {
DM println("Rental declined: " + vO_Driver.name +
" Under age, age is: " + vO_Driver.age);
retract(v0_Driver);

}
}

</rl-text>
</ rul e-source>
<rul eset -stack>
<rul eset - name>vehi cl eRent </ r ul eset - nane>
</rul eset - stack>
</rul e-execution-set >

See Also: "Using the Extended createRuleExecutionSet to Create a
Rule Execution Set" on page 5-8 for information about JSR-94
extensions that assist you in including RL Language text

5.1.4 Creating a Rule Execution Set from RL Language Text Specified in a URL
You can use JSR-94 with RL Language rule sets specified using a URL.

To use RL Language specified rules with JSR-94, do the following;:

1. Specify the RL Language mapping information in an XML document. Table 5-4
shows the mapping elements required to construct a rule execution set.
Example 5-4 shows a sample XML document for mapping RL Language text to a
JSR-94 rule execution set.

2. You then use the XML document with the JSR-94 administration APIs to create a
rule execution set. The resulting rule execution set is registered with a JSR-94
runtime (using a Rul eAdmi ni st r at i on instance).

Table 5-4 Oracle Business Rules RL Language URL XML Mapping Elements for JSR-94

Element Description

<rul e- source> Includes an <r | - ur | > tag containing a URL that specifies the
location of RL Language text. Multiple <r ul e- sour ce> tags
can be used to specify multiple rule sets (in the order in which
they are interpreted).

<rul eset - st ack> Specifies a list of rule sets that make up the initial rule set stack.
The order of the rule sets in the list is from the top of the stack to
the bottom of the stack.

Using JSR-94 5-5

Using the JSR-94 Interface with Oracle Business Rules

Example 5-4 XMP Mapping File for Rule Sets Defined in a URL

<?xm version="1.0" encodi ng="UTF-8"?>
<rul e-execution-set xmns="http://xm ns. oracl e.conl rul es/jsr94/configuration"
xm ns: xsi="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance" versi on="1.0">
<nane>Car Rent al Deno</ nane>
<description>The Car Rental Deno</description>
<rul e-source>
<rl-url>
filerrl/DMr1
<[rl-url>
</rul e-source>
<rul e-source>
<rl-url>
file:rl/ VehicleRent.rl
<[rl-url>
</rul e-source>
<rul eset - st ack>
<rul eset - name>vehi cl eRent </ rul eset - nane>
</rul eset - stack>
</rul e-execution-set>

See Also: "Using the Extended createRuleExecutionSet to Create a
Rule Execution Set" on page 5-8 for information about JSR-94
extensions that assist you in specifying a URL

5.1.5 Creating Rule Execution Sets with Rule Sets from Multiple Sources

A rule execution set may contain rules that are derived from multiple sources and the
sources may be a mix of Rule Author defined rule sets and RL Language rule sets. In
this case, the XML element <r ul e- execut i on- set > set contains multiple

<r ul e- sour ce> elements, one for each source of rules. You must list each

<r ul e- sour ce> in the order in which they are to be interpreted in Rules Engine.

Note: For this Oracle Business Rules release, a J[SR-94 rule execution
set can only reference one Rule Author dictionary.

5.2 Using the JSR-94 Interface with Oracle Business Rules

This section describes some Oracle Business Rules specific details for JSR-94 interfaces.
This section includes the following topics:

= Creating a Rule Execution Set with CreateRuleExecutionSet
= Creating a Rule Session with createRuleSession
= Working with JSR-94 Metadata

= Using Oracle Business Rules JSR-94 Extensions

5.2.1 Creating a Rule Execution Set with CreateRuleExecutionSet

The Rul eExecut i onSet Provi der and Local Rul eExecuti onSet Provi der
interfaces in j avax. r ul es. adm n include the cr eat eRul eExecuti onSet to
create a Rul eExecut i onSet object.

For the remaining cr eat eRul eExecut i onSet methods, the first argument is
interpreted as shown in Table 5-5.

5-6 Oracle Business Rules User's Guide

Using the JSR-94 Interface with Oracle Business Rules

Table 5-5 First Argument Types for createRuleExecutionSet Method

Argument Description

or g. w3c. dom El enent Specifies an instance of the <r ul e- execut i on- set > element
from the configuration schema.

java.lang. String Specifies a URL that specifies the location of an XML document
that is an instance of the <r ul e- execut i on- set > element from
the configuration schema.

java.io. | nput Stream Specifies an input stream that is used to read an XML document
that is an instance of the <r ul e- execut i on- set > element from
the configuration schema.

java.io. Reader Specifies a character reader that is used to read an XML document
that is an instance of the <r ul e- execut i on- set > element from
the configuration schema.

Note: JSR-94 also includes cr eat eRul eExecut i onSet methods
that take aj ava. | ang. Obj ect argument, which is intended to be an
abstract syntax tree for the rule execution set. In this release of Oracle
Business Rules, using the method with this argument is not
supported. Invoking these methods with aj ava. | ang. Qbj ect
argument gives a Rul eExecut i onSet Cr eat eExcepti on
exception.

The second argument to the cr eat eRul eExecut i onSet methods is a
java. util . Map of vendor-specific properties. The properties in Table 5-6 are valid
for the Oracle JSR-94 implementation.

Table 5-6 createRuleExceptionSet Oracle Specific Properties

Property Key

Property Value

oracl e.rul es.jsr94. sensitiveDataCal | back This property is set when authentication is required by the

selected repository such as a WebDAV server that is
configured to require authentication. The property value
must be an implementation of the

oracl e.rul es. sdk. reposi tory. Sensi ti veDat aCa
| I back interface.

5.2.2 Creating a Rule Session with createRuleSession

Clients create a JSR-94 rule session using the cr eat eRul eSessi on method in the
Rul eRunt i me class. This method takes aj ava. uti | . Map argument of
vendor-specific properties. This argument can be used to pass in any of the properties
defined for the Oracle Business Rules or acl e. rul es. r| . Rul eSessi on. If a rule
execution set contains URL or repository rule sources, the rules from those sources are
fetched on the creation of each new Rul eSessi on.

5.2.3 Working with JSR-94 Metadata

JSR-94 allows for metadata for rule execution sets and rules within a rule execution set.
The Oracle Business Rules implementation does not add any additional metadata
beyond what is in the JSR-94 specification. The rule execution set description is an
optional item and thus may not be present. If it is not present, the empty string is
returned. For rules, only the rule name is available and the description is initialized
with an empty string.

Using JSR-94 5-7

Using the JSR-94 Interface with Oracle Business Rules

5.2.4 Using Oracle Business Rules JSR-94 Extensions

This section covers the following extensions provided in the JSR-94 implementation
classes.

= Using the Extended createRuleExecutionSet to Create a Rule Execution Set

= Invoking an RL Language Function in JSR-94

5.2.4.1 Using the Extended createRuleExecutionSet to Create a Rule Execution Set

Oracle Business Rules provides a helper function to facilitate creating the XML control
file required as input to create a Rul eExecuti onSet .

The helper method cr eat eRul eExecut i onSet is available in the
RLLocal Rul eExecuti onSet Pr ovi der class. The cr eat eRul eExecut i onSet
method has the following signature:

Rul eExecutionSet creat eRul eExecutionSet (String name,
String description,
Rul eSour ce[] sources,
String[] rul eset Stack,
Map properties)

Table 5-7 describes the cr eat eRul eExecut i onSet arguments.

Table 5-7 createRuleExecutionSet Arguments

Argument Description

namne Specifies the name of the rule execution set.

description Specifies the description of the rule execution set.

sour ces Specifies an array of specifications for the sources of rules. In this release,

four types of sources are supported: RL Language text, a URL to RL
Language text, a file repository (jar file), and a WebDAV repository.

Rul eSour ce is an interface that the classes RLText Sour ce (RL Language
text), RLUr | Sour ce (RL Language URL), Jar Reposi t or ySour ce (file
repository), and WebDAVReposi t or ySour ce (WebDAYV repository)
implement.

For more information, see the or acl e. rul es. j sr 94. adni n package in
Oracle Business Rules Java API Reference.

rul esetstack Specifies the initial contents of the RL Language rule set stack to be set
prior to each time the rules are executed. The contents of the array should
be ordered from the top of stack (0th element) to the bottom of stack (last
element).

properties Oracle specific properties. See Table 5-6.

5.2.4.2 Invoking an RL Language Function in JSR-94

In a stateful interaction with a JSR-94 rule session, a user may want the ability to
invoke an arbitrary RL Language function. The class that implements the JSR-94

St at ef ul Rul eSessi on interface provides access to the cal | Funct i on methods in
theoracle.rules.rl.Rul eSessi on class.

Example 5-5 shows how you can to invoke an RL Language function with no
arguments in a JSR-94 St at ef ul Rul eSessi on.

Example 5-5 Using CallFunction with a StatefulRuleSession

inport javax.rules.*;

5-8 Oracle Business Rules User's Guide

Using the JSR-94 Interface with Oracle Business Rules

St at ef ul Rul eSessi on sessi on;

((oracle.rul es.jsr94. RLSt at ef ul Rul eSessi on) session). cal | Function("myFunction");

Using JSSR-94 5-9

Using the JSR-94 Interface with Oracle Business Rules

5-10 Oracle Business Rules User’'s Guide

6

Using Oracle Business Rules SDK

Oracle Business Rules SDK (Rules SDK) provides APIs that a developer can use to
write customized applications that access, create, or modify rules and data models
(and all the information stored in an Oracle Business Rules dictionary). Using Rules
SDK APIs, you can create, modify, and access dictionary data using well-defined
interfaces, and you can use the APIs to build customized rule-enabled applications.

You can use the Rules SDK APIs in a rule-enabled application to access existing rules
and then run Rules Engine, or in an application that you write to access, create, or edit
rules and data model information.

This chapter introduces the Oracle Business Rules SDK APIs.
This chapter includes the following sections:

= Rules SDK Building Blocks

« Working with a Repository and a Dictionary

« Working with a Data Model

= Using Rule Sets and Creating and Modifying Rules

6.1 Rules SDK Building Blocks

The top level Rules SDK package, or acl e. rul es. sdk, includes the following
packages:

« oracle.rules.sdk.repository

« oracle.rules.sdk.dictionary

« oracle.rul es. sdk. edi t or. dat anodel
« oracle.rules.sdk.editor.rul eset

« oracle.rul es. sdk. exception

The Rules SDK interface follows the JavaBeans model and includes getters and setters
for each bean property. For example, set Name(" soneval ue") sets the nanme
property of the individual instance.

In addition to bean interfaces, the Rules SDK provides a hash get and put style
interface. The bean interfaces are generally useful, but the HashMap style is necessary
for at least one GUI framework.

Using Oracle Business Rules SDK 6-1

Working with a Repository and a Dictionary

6.2 Working with a Repository and a Dictionary

Oracle Business Rules dictionaries are stored in a repository. Prior to accessing a
dictionary, access to its repository must be established. This requires specifying the
type of repository to access and the initialization parameters required by that specific
repository type. As shipped, Rule Author supports a WebDAV (Web Distributed
Authoring and Versioning) repository and a file repository.

Table 6-1 shows the initialization parameter keys for a WebDAYV repository. The
repository type key is or acl e. rul es. sdk. st or e. webdav.

Table 6-1 WebDAV Repository Type Parameter Initialization Keys

Parameter Key Description
URL oracl e. rul es. sdk. st ore. webdav. ur| The URL for the desired WebDAV rule
repository. This parameter is required.
Proxy Host oracl e. rul es. sdk. st ore. webdav. proxy The host name of the proxy server. This is only
Host required if you have a proxy server between the
server on which Rule Author is running and the
WebDAV server.
Proxy Port oracl e. rul es. sdk. st ore. webdav. proxy The port to use for the proxy server. This is only
Por t required if you have a proxy server between the
server on which Rule Author is running and the
WebDAV server.

Table 6-2 shows the initialization parameter keys for a file repository. The repository
type keyis oracl e. rul es. sdk. store.jar.

Table 6-2 File Repository Type Parameter Initialization Key

Parameter Key Description

File Path oracl e. rul es. sdk. st ore. webdav. path The path to the file that contains the rule
repository. This parameter is required.

6.2.1 Establishing Contact with a WebDAV Repository

Example 6-1 shows how to establish access to a WebDAV repository.

Example 6-1 Establishing Access to a WebDAV Repository

String url; /] the URL for the WebDAV repository
Locale locale; // the desired Local e

/1 The follow ng code assumes that the url and |ocal e have been set appropriately
RepositoryType rt =

Reposi t or yManager . get Regi st er edReposi t oryType("oracl e. rul es. sdk. st ore. webdav") ;
Rul eReposi tory repos = RepositoryManager. creat eRul eRepositoryl nstance(rt);
RepositoryContext rc = new RepositoryContext();
rc.setLocal e(l ocal e);
rc.setProperty("oracle.rul es.sdk.store.webdav. url™, url);
repos.init(rc);

If the WebDAV repository has been configured to require authentication, then the
following must be performed:
« Configure a wallet with the required user name(s) and password(s).

« Create an instance of the or acl e. rul es. sdk. cal | backs. Wal | et Cal | back
class and set it in the Reposi t or yCont ext prior to calling the i ni t method.

6-2 Oracle Business Rules User's Guide

Working with a Data Model

In Example 6-2,/ wal | et s/ rul es_wal | et is the path to the wallet configured with
the credentials for WebDAV authentication:

Example 6-2 Configuring a Wallet for Authentication

Wl | et Cal | back cal | back = new Wl | et Cal | back("/wal l ets/rules_wallet", null);
rc. set SensitiveDat aCal | back(cal | back);

6.2.2 Establishing Contact with a File Repository

Example 6-3 shows how to establish access to a file repository.

Example 6-3 Establishing Access to a File Repository

String path; /] the path to the file repository
Locale locale; // the desired Local e

/1 The followi ng code assumes that the path and | ocal e have been set appropriately
RepositoryType rt =
Reposi t or yManager . get Regi st er edReposi t oryType("oracl e. rul es. sdk. store.jar");
Rul eRepository repos = RepositoryManager. creat eRul eRepositoryl nstance(rt);
RepositoryContext rc = new RepositoryContext();
rc.setLocal e(local e);
rc.setProperty("oracle.rules.sdk.store.jar.path", path);
repos.init(rc);

6.2.3 Loading a Dictionary

Now, a dictionary may be loaded either by specifying the dictionary name, in which
case, the default version of the dictionary is loaded with:

Rul eDi ctionary dictionary = repos.|oadDictionary(dictionaryNane);

or by specifying both the dictionary name and version with:

Rul eDi ctionary dictionary = repos.|oadDictionary(dictionaryNane,
di ctionaryVersion);

These examples are applicable to both file and WebDAV repositories.

6.3 Working with a Data Model

The Rules SDK data model contains the fact types, internal variables, constraints, and
functions that you use to create rules. The fact types from the data model can be
reasoned on in corresponding rules. Oracle Business Rules variables contain
information that rules share. Oracle Business Rules functions provide for logic reuse
for rules. Constraints limit the set of valid values for rule customization.

Note: To import existing Java classes or XML schemas, the Rule
Author application must be used. After the classes or schemas are
imported with Rule Author, the repository may be used by the SDK.
Future versions of the SDK will have extensions to allow for Java
classes and XML schemas to be imported directly.

After you use a repository to create or open a Rul eDi cti onary object, you can use
the Rules SDK to create a data model in the dictionary. A Rul eDi ct i onary object can
access the internal data structures necessary to create a Dat aMbdel instance.

Using Oracle Business Rules SDK 6-3

Working with a Data Model

The data model shown in the examples is this chapter includes the Java FactTypes that
are imported from a sample package named emai | . The emai | package was
imported using Rule Author. The classes and properties shown in Table 6-3 were
populated by importing emai | . j ar.

Table 6-3 Sample enmai | Package Classes

Name Description Type

emai | . El ectroni cMessage Represents the occurrence of a message Java FactType
emai | . Emai | Addr ess Represents an e-mail address Java FactType
emai | . Emai | Addr essLi st Represents a list of e-mail addresses Java FactType

In the data model for the spam processing example, using the emai | package, the data
model supports inferencing by creating an RLFact object named SpanfFound. To
contain a global count, we create a variable named spanmCount er , and the constant

St ri ng variable indicates spam. A function named ki | | Spamprovides an action
when the rules detect that an e-mail message is spam. Table 6—4 shows these data
model components.

Table 6-4 Sample Data Model Types for Handling the E-mail Package

Name Description Type
Spanfound Asserted when an e-mail message is determined to be spam RL FactType
spanCount er Accumulates count of spam messages variable

Speci al O f er _CONST Constant containing the St r i ng "Special Offer" constant variable
fKi Il Spam Called when spam found to delete spam RL function

6.3.1 Creating a Data Model

After you create and open a Rul eDi cti onary object, you can use Rules SDK to
create an edi t or . Dat aMbdel instance. The Rul eDi ct i onary object can access the
internal data structures necessary to create a Dat aMbdel instance.

For example,

eDM = new oracl e. rul es. sdk. edi t or. dat anodel . Dat avbdel (m di ct);

The basis of the Dat aMbdel type system is the Fact Type object. A Fact Type object
is defined as a primitive, Java, XML, or RL FactType. A Primitive FactType is fixed,
and includes Java primitives (for example: St ri ng, i nt, or doubl e). Rules SDK
automatically creates primitive types when you create a Rul eDi cti onary. You create
Java and XML FactTypes when you import classes from jar file, a class, or a schema
file. You can create RL FactTypes directly using the Rules SDK. The Java, XML, and RL
FactTypes define classes and may have associated properties, which represent the
JavaBeans defined properties, and methods.

6.3.2 Creating Data Model Components

You create each part of the data model using the appropriate Model Conponent Tabl e
object. The sequence required to create a new instance (Funct i on, Fact Type,
Vari abl e, or Const r ai nt) is the same:

= Instantiate the appropriate table in the data model.
» Invoke the table instance add() method.

Example 64 shows how you create a Function instance:

6-4 Oracle Business Rules User's Guide

Working with a Data Model

Example 6-4 Creating a Function Instance

FunctionTabl e ft = eDM get Functi onTabl e();
Function fKillSpam= ft.add();

To import existing Java classes or XML schemas, the Rule Author application must be
used. After the classes or schemas are imported with Rule Author, the repository may
be used by the SDK. Future versions of the SDK will have extensions to allow for Java
classes and XML schemas to be imported directly.

6.3.3 Creating a Function Argument List

In Rules SDK you create argument lists for functions using a

For mal Par anet er Tabl e object. Each For mal Par anmet er entry represents a
parameter. The first parameter is the first (zero) entry in the

For mal Par anet er Tabl e, the second parameter is the second entry, and so on.
Variables may be constants, which may not be assigned a value after the original
initialization. The set Fi nal () method controls the constant behavior. Each

For mal Par anet er object has a type and a name. The type of a FormalParameter is
selected from the available FactTypes.

The code in Example 6-5 creates a For mal Par anet er Tabl e object for the emai |
sample.

Example 6-5 Creating a FormalParameterTable

/] define the parms of the function

/] basically just an instance of El ectroni cMessage

/] and a String to explain what triggered this

For mal Par anet er Tabl e fKi |l SpanPar nTabl e = fKi || Spam get For mal Par anet er Tabl e() ;
For mal Parameter fpl = fKill SpanParnifabl e. add();

For mal Parameter fp2 = fKill SpanParnifabl e. add() ;

fpl. set Nane("emsg");

fpl.setAlias("Email Message");

/1 use the alias for the email.El ectronicMessage fact type
Il will be in the getType Options |ist

fpl. set Type("email . El ectroni cMessage");

f p2. set Nane("reason");

fp2.setAlias("reason");

/1 use the primtive type for String
/1 will be in the getType _Options |ist
fp2.set Type("String");

6.3.4 Creating an Initializing Expression

In Rules SDK, variables contain state internal to a RuleSet. Each variable must have a
type and an initializing Expression. The variable type of is chosen from the list of
possible FactTypes (all FactIypes defined in the DataModel).

There are two types of expressions:
« Expression
This type of expression must follow the form:

operand operator operand

Using Oracle Business Rules SDK 6-5

Using Rule Sets and Creating and Modifying Rules

The operands and operators available for an Expr essi on are more limited than
than those for an AdvancedExpr essi on. For example, an Expr essi on does not
allow an operand to be a function requiring parameters.

« AdvancedExpression
This type of expression allows for the full range of operands and operators.

It is recommended that you use an AdvancedExpr essi on to initialize an expression.
Example 6-6 shows how to set a variable’s initial value.

Example 6-6 Setting a Variable’s Initial Value

Initial Value iv = var.getVal ue();
AdvancedExpression adv = iv. get AdvancedExpression();
adv.insert (0, "\"FIXEDVALUE\"");

6.3.5 Creating RL Function Bodies

RL Function bodies are composed of strings of RL Language. They may refer to any of
the Function parameters, or any global Variable. Enter function bodies as a String that
must be syntactically correct RL Language (see Example 6-7).

Example 6-7 Creating a Function Body

/Iset the body of the function

[l in this case just pretty print a nessage

fKi |l Spam setBody(" printin(\" email from \" + ensg.getSender() +\" because \"
+ reason)");

6.4 Using Rule Sets and Creating and Modifying Rules

In Rules SDK, a rule is a conditional expression (referred to as a condition) and a set of
actions that execute if the condition evaluates to true. A rule condition is composed of
a set of patterns. A pattern delineates the match type and includes tests against that
type and other types that appear in preceding patterns (order has meaning). Rule
actions can be calls, assignments, retractions, and assertions.

Figure 6-1 shows the general container hierarchy for a RuleSet.

Figure 6-1 Rules SDK RuleSet Container Hierarchy

Ruleset &
I
Rule [
R
Pattern & Action =
|
Test © One or more objects are required
E Any number of objects

Rules SDK provides classes that represent each of these objects; all classes descend
from Rul eConponent . For collections, for example rules in a rule set, patterns in a
rule, or actions in a rule, Rules SDK provides a class that is descended from the

6-6 Oracle Business Rules User's Guide

Using Rule Sets and Creating and Modifying Rules

Rul eConponent Tabl e to manage a specific collection (see Figure 6-2). The
Rul eConponent Tabl e subclass provides a specialized add() method for the
particular subclass that the table represents.

Figure 6-2 Rules SDK RuleComponents

FuleComponentTabla

ActionTable SimpleTestTable ExpressionTable PatternTable RuleTable

The Rules SDK components describing the XML schemas, Java classes, RL Global
variables, and RL Functions are located in the data model (stored in the dictionary).
Typically, Rul eConponent instances refer to data model entities.

6.4.1 Creating a Rule Set

Generally, the sequence you use to create a Rul eConponent object is:
1. Create a Rul eSet instance by use of a Rul eSet constructor.

2. Create any children of the Rul eSet by add() methods on the appropriate table
(Patt ernTabl e, Acti onTabl e, Expr essi onTabl e, Si npl eTest Tabl e).

The Rules SDK API provides classes that represent collections in a Rul eSet . Each of
these objects descend from Rul eConponent . For collections, for example rules in a
ruleset, or patterns in a rule or actions in a rule, the Rules SDK provides classes that
are descended from Rul eConponent Tabl e class to manage a specific collection. The
Rul eConponent Tabl e subclass provides a specialized add() method for the
particular subclass represented by the table.

The code in Example 6-8 creates a Rul eSet for the e-mail sample.

Example 6-8 Creating a RuleSet

oracle.rules.sdk.editor.rul eset.RuleSet rs = null;
try
{

rs = new oracle.rules.sdk.editor.rul eset. Rul eSet (mdict);
m cur Bean = rs;
rs.set Nane(" SpanRul eSet");

}
catch (Exception e)

{
Systemout.printin(" create Rul eSet FAILED');

addException(e);
return;

}

6.4.2 Adding a Rule to a Rule Set

Rules SDK provides classes that represent the objects in a Rul eSet . Each of these
objects descend from Rul eConponent object. For collections, for example rules in a
ruleset, or patterns in a rule or actions in a rule, Rules SDK provides classes that are
descended from Rul eConponent Tabl e class to manage a specific collection. The

Using Oracle Business Rules SDK 6-7

Using Rule Sets and Creating and Modifying Rules

Rul eConponent Tabl e subclass provides a specialized add() method for the
particular subclass represented by the table.

Several classes are not parts of collections. To access these classes, use the parent bean
with the getter interface. For example, acquire the AdvancedExpr essi on by
invoking get AdvancedExpr essi on() on the correct Pat t er n instance.

The code in Example 6-9 shows how to add a rule to a table in Rule Set.

Example 6-9 Adding a Rule to a Table in a Rule Set

/ladd rule to the table
oracle.rules.sdk.editor.ruleset. Rule r = rs.getRul eTabl e(). add();
r.set Name(" Det ect SpanRul ") ;

6.4.3 Adding a Pattern to a Rule

The Rules SDK API provides the Pat t er n class that represents a pattern. The
get Pat t er nTabl e subclass provides a specialized add() method for adding a
pattern object, as shown in Example 6-10.

Example 6-10 Adding a Pattern to a Rule

/ladd pattern to the rule
oracle.rules.sdk.editor.ruleset.Pattern p = r.getPatternTabl e().add();

/lset pattern

p. setVariabl e("xx");

p. set Fact Type("email . El ectroni cMessage");
p. set Test For n(" Advanced");

The Test For mproperty defines the type of test associated with the pattern.

6.4.4 Adding a Test to a Pattern

Every Pat t er n may have tests associated with the Pat t er n. Tests may take the form
of Si npl eTest objects or AdvancedExpr essi on objects A Pat t er n may have an
unlimited number of tests.

The Rules SDK "ANDs" tests together when generating RL Language. For example, the
test used for the e-mail example requires a function with parameters. This requires an
AdvancedExpr essi on object (see Example 6-11).

Example 6-11 Adding a Test to a Pattern
AdvancedExpressi on adv = (AdvancedExpressi on) p. get (" AdvancedExpressi on");

/1 FUNCTION and Vari abl e conpl ex expression
adv. put ("Function", "containsString");
adv.insert (0, adv.getFunctionDescription());

/ISystemout.println(" function is: <<" + adv.getFunctionDescription() + ">>");
//set the function parns

/1 normally the cursor position is set by user input actions

adv. set Vari abl e("SPECI AL OFFER") ;

adv.repl ace(17, 57, adv.getVariable());

adv.insert(((String)adv.getValue()).length() , ",");

adv. set Vari abl e("message. subj ect");

adv.insert(((String)adv.getValue()).length() + 1,

adv. getVariable());

6-8 Oracle Business Rules User's Guide

Using Rule Sets and Creating and Modifying Rules

adv.insert(((String)adv.getValue()).length() , ")");
/Isince boolean, this is a single operator no need for anything el se

If the test is of the form:
operand operator operand
where neither operand is a function requiring parameters, then a Si npl eTest may be

used. For example, if the pattern variable name is "emsg" and the test is "emsg.sender
== david@fun.com,"” a simple test would look like Example 6-12:

Example 6-12 A Simple Test

Il use the sinple formof tests
pl. put (" Test Fornt', Pattern. TEST_FORM SI MPLE);

LEVEEETEEEE i i nr i i nr i ri il
/] add a SinpleTest to the Pattern
/'l ensg.sender == "davi d@ un. conf
LEEEEEEEEE Ry

[lcreate a sinple test
Si mpl eTest sinple = pl.get Sinpl eTest Tabl e() . add();

11
/'l enmsg. sender == "davi d@ un. conf

/1 set the left side
Expression I hs = sinple.getLeft();
I hs. set For m(Expr essi on. FORM Sl NGLE_TERV) ;

| hs. set Si ngl eTer nVal ue(" ensg. sender");

/1 set the operator
sinpl e. set Qperator ("==");

Il set the right hand side
Expression rhs = sinple. getRight();
rhs. set For m(Expr essi on. FORM_ADVANCED) ;

AdvancedExpression radv = rhs. get AdvancedExpressi on();
radv.insert(0, "\"david@un.com"");

6.4.5 Adding an Action to a Rule
The Rules SDK supports the following types of Act i ons:

« Assert New

« Assert
= Assign
« Call

= Retract
« RL

The setting in the set For mproperty of an action defines the type of action. Add an
action using the add() method of the get Act i onTabl e instance associated with a
particular rule (see Example 6-13).

Using Oracle Business Rules SDK 6-9

Using Rule Sets and Creating and Modifying Rules

Example 6-13 Defining an Action Type

FHEEEEEEEEEEE i i r e e e o
/1 Add a action to retract the instance of Spanfound

PEEEEEEEEEEE b i i e r i e r i
act = spanRul e. get ActionTabl e(). add();

act . set For n{ Act i on. FORM RETRACT) ;

act.setTarget ("spanMessage"); // see above setVariable

FHEEEEEEEEEEE b n i r b e e
/1 Add a action to call the kill spam function

PEOEEEEEEEEE b i i e r i e i
act = spanRul e. get ActionTabl e(). add();

act . set For n{ Acti on. FORM CALL);

act.setTarget ("kill spant);

//see the datanodel fn definitions, alias for fnKillSpam

Expressi on expl = act. get Expression(0);
Expressi on exp2 = act. get Expression(1);

expl. set For n{ Expr essi on. FORM _ADVANCED) ;
exp2. set For m Expr essi on. FORM_ADVANCED) ;
AdvancedExpressi on advl = expl. get AdvancedExpression();
AdvancedExpressi on adv2 = exp2. get AdvancedExpr essi on()

advl. set Vari abl e(" spamvessage. Spam Emai | ") ;
advl.insert(0, advl.getVariable());

adv2. set Vari abl e(" spamvessage. Wy is this spant');
adv2.insert(0, adv2.getVariable());

6.4.6 Notes for Adding RuleSets and Rules

The order in which you add components to a Rul eSet is important. Use the parent
object to create a required child object. For example, after you create a Rul eSet
instance, you can add rules the Rul eTabl e instance for the Rul eSet . After you create
the Rul eSet , then you can add a Rule to the Rul eSet using the add() method for
the Rul eTabl e. In turn, then add a rule pattern to the rule using the

Patt er nTabl e. add() method. Finally, to create a test in the Pat t er n access the
AdvancedExpr essi on using get AdvancedExpr essi on(), or for standard mode
tests, use Si npl eTest Tabl e. add() .

6-10 Oracle Business Rules User’'s Guide

A

Oracle Business Rules Files and Limitations

This appendix lists known naming constraints for Rule Author files and names, and
certain Rules SDK limitations.

This appendix includes the following sections:
= Rule Author Naming Conventions
« Rule Author Session Timeout

= Rules SDK and Rule Author Temporary Files

A.1 Rule Author Naming Conventions

This section covers Rule Author naming conventions.

A.1.1 Rule Set Naming

Rule Author enforces a limitation for rule set names; a rule set name can contain only
the characters (a to z and A to Z) and numbers (0 to 9), or an underscore character (_).

A.1.2 Dictionary Naming

Rule Author dictionary names can contain only the following characters, upper and
lowercase letters (a to z and A to Z), numbers (0 to 9), the period (.) the underscore
character (_), and hyphens (-). Special characters are not valid in a dictionary name.

Rule Author dictionary names are case preserving but case-insensitive. This means
that the dictionary names Di ct i onary and DI CT are both valid. This also means that
if you create a dictionary named Test, then you can create another dictionary named
TEST only if you first delete the dictionary named Test .

Additionally, dictionary names must contain at least one letter. For example, the
dictionary named 1. 1 is not valid, but Ver si on1. 1 is valid.

A.1.3 Version Naming

Rule Author enforces a limitation for the name of a version; a version name can
contain only the characters (a to z and A to Z), numbers (0 to 9), or an underscore
character (_). Special characters are not valid in a version name.

Rule Author version names are case preserving but case-insensitive. This means that
the version names Ver si on and VERS are both valid. This also means that if you
create a version named Test , then you can create another version named TEST only if
you first delete the version named Test .

Oracle Business Rules Files and Limitations A-1

Rule Author Session Timeout

A.1.4 Alias Naming

A Rule Author alias names can contain any characters, including a single space. When
you use an alias in an expression, if the alias begins with a letter, a dollar sign ($), or an
underscore (_) and contains only these characters, it does not have to be enclosed in
quotation marks.

When you use an alias containing special characters or embedded spaces in an
advanced expression, the alias must be enclosed with backquote (*) characters. For
example, the alias Dri ver @must be specified as:

‘Driver@

A.1.5 XML Schema Target Package Naming

The Target Package Name that you specify for an XMLFact on the XML Schema
Selector page is limited to ASCII characters, digits, and the underscore character.

A.2 Rule Author Session Timeout

You should save the dictionary periodically as you work because Rule Author sessions
timeout after a period of inactivity. You specify the timeout period in the Rule Author
application web. xm file using the <sessi on-t i meout > element.

When Rule Author times out, it automatically saves the current work for the loaded
dictionary to a version named SCRATCH_<login user name> in the repository, where
login user name is the name of the logged in Rule Author user.

Rule Author only saves one SCRATCH _ file per user. Thus, if Rule Author times out
once, the SCTATCH_ version is saved to the repository with the log in user name.
When the same user logs in again, and connects to the same repository, Rule Author
shows a warning message indicating that the SCRATCH version should be saved to a
new version name. If Rule Author times out again, and you do not save the SCRATCH
version to a different version, the second and any subsequent timeouts overwrite any
existing SCRATCH version (on a per Rule Author user basis).

When Rule Author times out, you are redirected to the Oracle Single Sign-On login
page. When Oracle Single Sign-On is not enabled, after a timeout you are redirected to
the Rule Author default authentication page.

See Also: Section C.9, "How Do I Modify the Single Sign-On
Timeout for Oracle Application Server?"

A.3 Rules SDK and Rule Author Temporary Files

When you update a file repository, the Rules SDK creates and uses temporary files.
Under normal operating conditions, the Rules SDK removes these files from the
system when an operation that uses the temporary file completes. However, it is
possible that due to certain abnormal termination conditions, these temporary files can
be left on the system.

See Section B.3, "Working with a File Repository" for more information about file
repositories and temporary files.

A-2 Oracle Business Rules User’'s Guide

B

Using Rule Author and Rules SDK with
Repositories

This appendix contains information about using Rule Author and Rules SDK with
repositories.

This appendix includes the following sections:
= Working with a WebDAV Repository

= WebDAV Repository Security

= Working with a File Repository

= High Availability for your Repository

Using Rule Author and Rules SDK with Repositories B-1

Working with a WebDAV Repository

B.1 Working with a WebDAV Repository

This section contains information about setting up and configuring a WebDAV
repository.

B.1.1 Setting up a WebDAV Repository

Oracle Business Rules supports using a WebDAYV repository as the persistent storage
for rule sets, the data model, and rules. This section describes how to set up a WebDAV
repository and presents basic instructions for setting up a file system based WebDAV
repository in Oracle HTTP Server. Oracle HTTP Server supports WebDAV with the
nod_or adav module.

The WebDAV protocol is an extension to the HTTP protocol that enables remote users
to write content to the Web server. Using this configuration, it is important that the
Web server is properly configured to prevent undesirable consequences and to ensure
the that a secure system is maintained.

It is strongly recommended that you employ some or all of the following security
features on the Web server:

= Require authentication for access to WebDAV enabled areas

= Use of SSL, at least during authentication (for the entire session if Basic
Authentication is used)

= Use of the For ceType directive to prevent execution for URLs that reference
content in WebDAYV enabled areas

The following example demonstrates the steps you can use to establish a WebDAV
based repository where the content is stored in the file system. All file system paths in
this example are relative to the ORACLE_HOVE in which the Oracle HTTP Server is
installed. This example also assumes that the user is logged in as the user who
installed Oracle Application Server, and that Oracle HTTP Server can be accessed with
the URL ht t p: / / www. nyser ver. com port.

Note: Only use this example configuration for the WebDAV
repository for internal testing and not for an actual production
environment. This configuration does not include access control, and
therefore allows anyone to access or modify the WebDAV repository.
Please refer to Section B.2 for information about configuring a
WebDAV repository with security.

1. Navigate to the Apache/ Apache/ ht docs directory (folder).
2. Create a directory named r ul e_r eposi tory.

3. Ensure that Oracle HTTP Server can read and write to the r ul e_r eposi tory
directory.

4. Navigate to the Apache/ or adav/ conf directory.
5. Edit the noddav. conf file and add the following lines:

<Location /rul e_repository>
DAV on
ForceType text/plain

</ Locat i on>

6. Restart Oracle HTTP Server.

B-2 Oracle Business Rules User’s Guide

Working with a WebDAV Repository

These instructions establish a WebDAV repository accessible with the following URL:

http://ww. fully_qualified_host_nanme.comport/rul e_repository/

Note: In order for authentication to work, you must use a fully
qualified host name in the URL.

See Also: Oracle HTTP Server Administrator’s Guide for information
about configuring and using nod_or adav. In particular, see the
section titled "WebDAV Security Considerations" in Chapter 9

B.1.2 Connecting to a WebDAV Repository

When you select the WebDAYV repository type Rule Author presents the configuration
parameters shown in Table B-1.

Table B—1 Configuration Parameters for Connecting to a WebDAV Repository

Parameter Description

URL

User

The URL for the desired WebDAV rule repository. This is a required
parameter. The host name must be a fully qualified host name.

Narre Specifies the user authorized for WebDAV access.

Passwor d Specifies the password for the WebDAV user associated with the

specified User Name.

Note: In Rule Author when you supply both the user name and
password and other required properties, and also specify an Oracle
Wallet, the properties that you specify in the dialog take precedence
over the Oracle Wallet information.

B.1.3 Connecting to a WebDav Repository Using a Proxy

Rule Author looks for the ht t p. pr oxyHost system property. If this property is set,
then the Rule Author picks up the http proxy system properties and uses them for the
WebDAV connection. There are three properties you can set to specify that the http
protocol handler uses a proxy:

ht t p. pr oxyHost : the host name of the proxy server
ht t p. pr oxyPor t : the port number, the default value being 80
ht t p. nonPr oxyHost s: a list of hosts that should be reached directly, bypassing

the proxy. This is a list of regular expressions separated by '|'. Any host matching
one of these regular expressions will be reached through a direct connection
instead of through a proxy.

When a proxy is required to access the WebDAYV repository, Rule Author displays the
parameters shown in Table B-2, as well as those shown in Table B-1.

Table B—2 Configuration Parameters for Connecting to WebDAV Repository with Proxy

Parameter Description

Proxy User Nane Specifies the proxy user name. This is required if the proxy server is

configured with security.

Using Rule Author and Rules SDK with Repositories B-3

WebDAV Repository Security

Table B—2 (Cont.) Configuration Parameters for Connecting to WebDAV Repository with

Parameter Description

Proxy Password Specifies the proxy password. This is required if the proxy server is
configured with security.

B.2 WebDAV Repository Security

WebDAV allows read and write access to a WebDAV enabled Web server. It is highly
recommended that you take the appropriate steps to secure the WebDAV Web server.
To this end, you should encrypt, using SSL, connections to a WebDAV Web Server and
you should also require authentication.

This section covers the following topics:

« Communicating with a WebDAV Repository Over SSL from Rule Author
= Setting the Location of Your Oracle Wallet

= Configuring Rule Author for WebDAV Repository Authentication

= Storing Data in an Oracle Wallet for WebDAV Repository Authentication

B.2.1 Communicating with a WebDAV Repository Over SSL from Rule Author

Basic SSL connections to a WebDAV repository are supported in Rule Author when
Rule Author has been deployed in an Oracle Application Server environment. All that
is required is that the WebDAV URL entered specify ht t ps.

If Rule Author is deployed in a standalone OC4] environment, or is deployed in a
non-Oracle container that supports only HTTP, then SSL connections to a WebDAV
repository are not supported.

Oracle Application Server comes with a test SSL certificate that is self-signed. This
certificate should be replaced with your own certificate because it is not secure to use
this test certificate in a production environment. If you use a certificate from a trusted
authority, WebDAV access is available from both within and outside of the OC4]
container. If you choose to use a self-signed certificate of your own, access from within
the container is available but from outside the container, your default JSSE trust store
must be modified in order to gain access. Refer to the [SSE Reference Guide included in
the JDK for details.

Additionally, the Oracle SSL implementation must not be present in the classpath of
the J2SE application.

B.2.2 Setting the Location of Your Oracle Wallet

To customize the location of your Oracle wallet for Rule Author:
1. Login to Enterprise Manager and go to the OC4J home page.
2. Click the Applications tab.

3. Click the link to your Rule Author application (the name of this link was defined
when you first deployed the Rule Author application).

4. Click the ruleauthor link in the "Modules" table.
5. Click the Administration tab.

6. Inthe "Mappings" task, find row labeled "Environment Entry Mappings," then
click the corresponding icon in the "Go to Task" column.

B-4 Oracle Business Rules User’s Guide

WebDAV Repository Security

7. Specify your desired wallet location in the "Deployed Value" column for
wal | et St or ePat h entry.

8. Restart Rule Author.

You can also set your wallet location at the time you deploy Rule Author by clicking
on "Edit Deployment Plan" and then expanding the navigation tree on the left until
"env-entry" is visible. Expand "env-entry" and then select wal | et St or ePat h. Be sure
to restart Rule Author after you specify your desired wallet location.

B.2.3 Configuring Rule Author for WebDAV Repository Authentication

When Rule Author attempts to connect to a WebDAV repository that has been
configured to require authentication, Rule Author must be able to respond to the
authentication request. Configuring Rule Author for repository authentication consists
of the following steps:

1. Store the appropriate WebDAYV repository user name and password in an Oracle
Wallet.

2. If a proxy server is present and it also requires authentication, store the proxy
server user name and password in the Oracle Wallet.

3. Configure the Rule Author environment entry to point to the Oracle Wallet (see
Section B.2.2, "Setting the Location of Your Oracle Wallet").

4. Restart the Rule Author application.

B.2.4 Storing Data in an Oracle Wallet for WebDAV Repository Authentication

When a request for authentication from a WebDAV repository is received, the
following information is provided:

= The host name of the server requesting authentication.

= The port on the server.

= The realm (or Aut hName in Oracle HTTP Server configuration).

= Anindication of whether or not this is proxy server authentication.

This information is used to construct keys for retrieving the user name and password
for authentication. If there is a proxy server present and it requires authentication,
multiple authentication requests may be processed: one for the proxy server and one
for the WebDAV server.

If the request is for proxy authentication, the keys begins with "proxy-". This is
followed by the host name, port, and realm (in that order) with a "-" separating each
field. Finally, "-u" is appended to the key for the user name and "-p" is appended for
the password. For example, given the following:

« Hostisnyserver. nyco.com

= DPort 443

= Realm is "Authorized WebDAV Users Only"

= A proxy server is present: WWA\PI OXY. MyCO. com
= Proxy portis 80

= Proxy realm is "Authorized Proxy Users Only"

The keys for proxy authentication would be:

Using Rule Author and Rules SDK with Repositories B-5

Working with a File Repository

= For the user: "proxy-wwwproxy.myco.com-80-Authorized Proxy Users Only-u"

= For the password: "proxy-wwwproxy.myco.com-80-Authorized Proxy Users
Only-p"

The keys for WebDAV authentication would be:
= For the user: "myserver.myco.com-443-Authorized WebDAV Users Only-u"
= For the password: "myserver.myco.com-443-Authorized WebDAV Users Only-p"

The user name and password are entered into an Oracle wallet with the nkst or e
command which is in the bi n directory of the $ORACLE_HOME. Creating and
modifying the Oracle wallet requires a password which is specified when the wallet is
created. However, the wallet is constructed such that a password is not required at
runtime to lookup the user name and password. Therefore, in order to protect this
sensitive data, file system permissions must be used to restrict access. Access should
be granted to only the user that must access the wallet at run time. The nkst or e
command creates the wallet with restricted permissions by default.

The following commands create a wallet in a the / wal | et s directory and store the
user names and passwords, where the user names and passwords are pr oxyUser,
pr oxyPasswor d, webdavUser , and webdavPasswor d:

nkstore -wl /wallets/rules_wallet -create

nkstore -wl /wallets/rules_wallet -createEntry

" proxy- wwapr oxy. myco. com 80- Aut hori zed Proxy Users Only-u" proxyUser

nkstore -wl /wallets/rules_wallet -createEntry

" pr oxy- wwapr oxy. nyco. com 80- Aut hori zed Proxy Users Only-p" proxyPassword

nkstore -wrl /wallets/rules_wallet -createEntry "ww. nyco. com 80- Aut hori zed WebDAV
Users Only-u" webdavUser

nkstore -wrl /wallets/rules_wallet -createEntry "ww. nyco. com 80- Aut hori zed WebDAV
Users Only-p" webdavPassword

Each command prompts you for the wallet password and, if needed, creates the
directory for the wallet (r ul es_wal | et is a directory).

The following command prints a usage message listing various capabilities of the
nkst or e command:

nkstore -help

B.3 Working with a File Repository

This section contains information about setting up and working with file repositories.

B.3.1 Setting up a File Repository

Oracle Business Rules supplies a blank file repository that does not contain a
dictionary. This file repository is named enpt yFi | eReposi t or y and is located in the
$ORACLE_HOME/ r ul es/ | i b directory.

To setup a new file repository, copy and rename the enpt yFi | eReposi t ory file.
Then, provide this file name and location in the Repository Connect page (see
Section 2.4.1, "Connecting to a Rule Author Repository").

After you create a new file repository, you can connect to the new file repository and
then create and save dictionaries in the repository.

You can also create a new file repository by clicking Create on the repository connect
page, when the Repository type selected is File. If you enter an existing repository path

B-6 Oracle Business Rules User’s Guide

High Availability for your Repository

and click Create, the create behaves as if you clicked Connect, and connects you to the
existing repository.

B.3.2 File Repository Updates and Temporary Files

When the SDK invokes the Reposi t or yConnect i on interface to update repository
content, the following occurs:

1. A temporary file is created that contains the updated content. This temporary file
is required as the process of rewriting the JAR file may involve reading unread
entries from the current repository. It also provides a measure of safety should
something go wrong writing the new content. The temporary file is created using
the Fi | e. creat eTenpFi | e method. If the name of the repository is less than
three characters long, "_tmp_" is appended. The Fi | e. cr eat eTenpFi | e method
requires that the name be at least three characters long. The Sun JDK appends a
number to the name; the behavior of other JVMs may differ. The file name
extension is ".tmp" and the file is created in the same directory as the existing
repository. In summary, the temporary file name of a repository called
nmyReposi t or y would be myReposi t or y65146. t np, and the temporary file
name of a repository called rr would berr _t np_65147. t np.

2. The content is written to the temporary file.

3. The existing repository is renamed as the name of the existing repository
appended with "_o_r_i g " and the current time (UTC) in milliseconds.

4. The temporary file is renamed as the name of repository (for example,
nyReposi tory).

5. The renamed repository (containing the previous content) is removed.

If an error occurs in this process, cleanup is attempted. If the temporary file was
created and still exists, an attempt is made to delete it. If the existing repository was
renamed, an attempt is made to restore its original name.

In the event that the temporary file is left behind, the file repository prior to the update
attempt should still exist. The temporary file should be deleted as the state of its
contents is unknown.

In the event that the renamed repository file is left and the repository file is no longer
exists, the renamed repository file contains the content prior to the update and a
manual step is required to restore it (namely, renaming or copying the renamed file
back to the correct name).

B.4 High Availability for your Repository

After configuring your WebDAV repository, you should add the repository to the
OracleAS Recovery Manager configuration so that the repository is included in the
backup and recovery process.

For more information about OracleAS Recovery Manager, see Oracle Application
Server Administrator’s Guide.

See Also: Oracle Application Server High Availability Guide for
information on Oracle Business Rules and high availability

Using Rule Author and Rules SDK with Repositories B-7

High Availability for your Repository

B-8 Oracle Business Rules User’s Guide

C

Oracle Business Rules Frequently Asked
Questions

This appendix contains frequently asked questions about Oracle Business Rules.
Answers to each question are provided in each of the following categories:

= Frequently Asked Questions About Rules Operations

= What JAR Files are Required for Working with Oracle Business Rules?

= How do I Deploy Rule Author on Non-Oracle Containers?

= How Does a RuleSession Handle Concurrency and Synchronization?

= How Do I Improve Oracle Business Rules Runtime Performance?

= How Do I Correctly Use an RL Language Cross Product?

« How Do I Access a Rule in a Dictionary Using a URL?

= How Do I Use a Property Change Listener in Oracle Business Rules?

= How Do I Modify the Single Sign-On Timeout for Oracle Application Server?
= Does Oracle Business Rules Provide High Availability?

C.1 Frequently Asked Questions About Rules Operations

This section addresses frequently asked questions relating to the semantics of Rules
operations in Oracle Business Rules.

C.1.1 Why is the State of a Fact in a Rule Action Inconsistent with the Rule Condition?

The object was modified between the time the rule was activated and the time the rule
was fired (executed), and the object was not re-asserted in the Rules Engine.

Objects (Java or RL) must be asserted as facts in the Rules Engine before they are used
in rule evaluations. When an object that has been asserted as a fact is modified, either
in the action of a rule or by something external to the Rules Engine (presumably by the
application), the object must be re-asserted in the Rules Engine in order for the current
object state to be reflected in the Rules Engine and thus in the rule evaluation. If this is
not done, the application and Rules Engine are in an inconsistent state which can lead
to unexpected behavior.

A Java bean may be written to support Pr oper t yChangeLi st ener so that the Rules
Engine can automatically maintain a consistent state when a bean property us update.
For more information, see Section 1.3.4.1, "Java Fact Type Definitions".

Oracle Business Rules Frequently Asked Questions C-1

What JAR Files are Required for Working with Oracle Business Rules?

The one exception to this rule is for an object whose content is not being evaluated;
that is, the Rules Engine does not contain a rule that tests or accesses any method or
property of that object. One example of such a case is an object used to accumulate
results from rule evaluations.

Note: Suppose you have a rule that produces a sum from a collection
of facts. Re-asserting the facts whose values are being summed yields
an incorrect result in the fact containing the sum. Make sure you also
re-assert the rule that produces the sum.

C.1.2 A Changed Java Object was Asserted as a Fact, but no Rules Fired. Why?

The object must be re-asserted in the Rules Engine. Therefore, the Rules Engine did not
re-evaluate any rule conditions and did not activate any rules. For more information,
refer to Section C.1.1.

C.1.3 What are the Differences Between Oracle Business Rules RL Language and
Java?
See Appendix A in Oracle Business Rules Language Reference Guide.

C.1.4 How Do | Use Rules SDK to Include a null in an Expression

The Rules SDK automatically adds quotes for String values. To include a value
without quotes, for example a null value without quotes in an expression, specify an
advanced expression. The expression type FORM LI TERAL always surrounds string
values with quotes. When you use the expression type FORM _ADVANCED, this does not
surround the expression with quotes.

For example, the following Rules SDK code includes a null:

Sinpl eTest test = pattern.getSinpl eTest Tabl e(). add();
test.getLeft().setForm Expression. FORM SI NGLE_TERM ;
test.getLeft().setSingleTernVal ue(attr);
test.setOperator(Util. TESTOP_NE);

test.getRight (). setForn(Expressi on. FORM ADVANCED) ;
test.getRight (). get AdvancedExpression().append("null");

If you did not use the FORM_ADVANCED, you might see the following errors:

SEVERE: RUL-01815: Null val ues not allowed for key or value put (Literal Val ue,
null)

java.lang. Nul | Poi nt er Exception: RUL-01815: Null values not allowed for key or
value put (Literal Value, null)

C.2 What JAR Files are Required for Working with Oracle Business
Rules?

Oracle Business Rules support requires the JAR files listed in Table C-1. All paths are
relative to $ORACLE_HOVE.

C-2 Oracle Business Rules User's Guide

How do | Deploy Rule Author on Non-Oracle Containers?

Table C-1 Oracle Business Rules Required JAR Files

JAR File Description

rules/lib/rl.jar The Oracle Business Rules Rules Engine library. This is the Java API used
to instantiate and interact with the Rules Engine.

rules/lib/rl_dns.jar Rules Engine Dynamic Monitoring Service (DMS) support. This file is

- required if DMS is enabled for a Rul eSessi on.

rul es/lib/rul esdk.j ar The Oracle Business Rules SDK. This is the Java API used to
programatically author rules.

rul es/ i b/ webdavrec.jar The Oracle Business Rules SDK library for support of WebDAV
repositories. This file is required when using the SDK with a WebDAV
repository.

rules/lib/jr_dav.jar The WebDAV client library. This file is required when using the SDK with

- a WebDAYV repository.

jlib/oracl epki.jar This file is required to support authentication with a repository such as a
WebDAV repository.

jliblojpse.jar This file is required to support authentication with a repository such as a
WebDAV repository.

rules/lib/jsr94.jar The standard JSR-94 library.

rules/lib/jsr94 obr.jar The Oracle Business Rules JSR-94 implementation.

lib/xn .jar This file is required by the Rules SDK.

I'i b/ xn parserv2.jar This file is required by the Rules SDK.

j2ee/hone/lib/ http_client.jar Thisfileisrequired when using a WebDAV repository.

C.3 How do | Deploy Rule Author on Non-Oracle Containers?

This section includes instructions for deploying Rule Author and the online help for
Rule Author on non-Oracle containers.

This section covers the following:

= Deploying Rule Author on WebSphere V6.1 (WAS V6.1)
= Deploying Rule Author on WebLogic Server

= Deploying Rule Author on JBoss 4.0

C.3.1 Deploying Rule Author on WebSphere V6.1 (WAS V6.1)

To deploy Rule Author on WebSphere V6.1, first locate the OracleAS Companion CD
installation disk supplied with Oracle Application Server. The OracleAS Companion
CD Disk 2 includes two .ear files for each supported non-Oracle container. The .ear
files for WebSphere should be located in the directory:

Di sk2/ rul es/ webapps/ webspher e/

Note: Under WebSphere, Rule Author online help is not available.

It is recommended that your installation of WebSphere have administrative security
configured. Please consult the WebSphere documentation on setting up administrative
security.

Oracle Business Rules Frequently Asked Questions C-3

How do | Deploy Rule Author on Non-Oracle Containers?

As part of the installation of Rule Author, you must configure the appropriate user
and group name for authentication and authorization. The following steps provide
only an example of how to setup the user and password for WebSphere WAS V6.1
using the standalone custom registry. Production uses of Rule Author should have
security configured by an expert. To see examples of more advanced approaches, such
as database or LDAP, consult the appropriate IBM documentation.

Perform the following steps to deploy Oracle Business Rules Rule Author on
WebSphere V6.1:

1. Start the WebSphere server:

% cd <websphere hone>/ profiles/ AppSvr01/bin
% ./startServer.sh serverl

2. Login to WebSphere administrative console using the URL,
https://<host nane>:9043/ibn consol e/l ogon. j sp

Note: If you enable global security, you have to log in to the admin
console with the user name that belongs to the admin group.

a. Click to expand the "Security" node on the navigation tree.
b. Click the "Secure administration, applications, and infrastructure” node.

c. Inthe "User account repository” group box, select "Standalone custom
registry” from "Available realm definitions" and click "Set as current".

d. Click Apply.
e. Click the Save link in the "messages" box at the top of the page.

f. On the server's file system, choose a directory that is only accessible by the
operating system user that WebSphere is running as, and create a group file
and user file within that directory. This creates two users, adminUser who
belongs to the AdminGroup group with special privilege to log in to the
admin console, and ruleUserl who will be given permission to access the Rule
Author application.

The following shows an example of the contents of the group file groups.prop

adm nG oup: 987: admi nUser : Adm nG oup
rul eAdni nG oup: 567: rul eUser 1: Rul eAdmi nG oup

Each line of the group file should contain the following:

<group name>:<group id>:<user nane 1>, .. , <user nane N>:<display name>

The following shows sample contents of user file users.prop:

adm nUser: wel conel: 123: 987: WebSpher eAdni n
rul eUser 1: wel comel: 456: 567: Rul eAdmi n

Each line of user file should contain the following:

<nane>: <passwor d>: <uni que user id>:<group name 1>,...,<group nane
N>: <di spl ay nane>

This sets the passwords for both adminUser and ruleUser] to welcomel.

C-4 Oracle Business Rules User's Guide

How do | Deploy Rule Author on Non-Oracle Containers?

g. Inthe "User account repository” group box, select "Standalone custom
registry” from "Available realm definitions" and click "Configure".

h. Click the "Custom properties" link to set up two properties that specifies the
location of the files:

Nane Val ue

groupsFil e <your path>/<group file name>
usersFile <your path>/<user file name>

i. When you finish configuring these 2 properties, click the "Standalone custom
registry" link at the top to return to the previous page.

j.- Set the "Primary administrative user name" to "adminUser".

k. Select the "Server identity that is stored in the repository" radio button.

I. Type in the Server user ID ("adminUser") and server password ("welcomel")
that were previously defined in the users.prop file into fields of the same
name. Note that the user name and server password must be included in the
user file and group file that you provided earlier (see Step d).

m. Enter "com.ibm.websphere.security.FileRegistrySample" into "Custom registry
class name" field (this should be the default value).

n. Click "OK".
0. Check the "Enable application security” box.

p. Uncheck the "Use Java 2 security" box if it is checked. Under some
circumstances, this box is checked automatically when checking the box in the
previous step and must be unchecked.

q. Click the "Apply" button.
r. Click "Save" in the "messages" box at the top of the page.

Click to expand the "Servers" node in the left column, then click "Application
servers". Click the server you wish to deploy the Rule Author to.

Stop and restart the server from the command line with the st opSer ver and
start Server commands.

Click Applications->Install New Application Node on the left navigation panel.
You have to specify the path to the ruleauthor_websphere.ear and click "Next".

Change the field "ApplicationName" from "Rule Author" (with a space) to
"RuleAuthor" (with no space). Click "Next", and then "Next" for the next two
screens. Finally, click "Finish".

« Click on Environment in the left panel.

= Click on Shared Libraries

= Select the desired scope from the Scope menu.
» Click "new"

« Enter "Oracle XDK" for the name

= Under Classpath, enter the absolute path to the files "xml jar" and
"xmlparserv2jar", which are in the location of the deployed RuleAuthor.ear
application. (find using find or search). Enter the paths one per line with no

"o

separator (for example, ":") between them.

« Click the "OK" button

Oracle Business Rules Frequently Asked Questions C-5

How do | Deploy Rule Author on Non-Oracle Containers?

« Click "Save"

6. Inthe "Applications" area, click on "Enterpirse Applications", then click the
RuleAuthor link.

= Under the References heading, click on "Shared library references".

= Select the checkbox for the "RuleAuthor" entry and click the "Reference shared
libraries" button.

= Select the "Oracle XDK" entry in the "Available" list and move it to the
"Selected" list.

= Click "OK".
= Click "OK" on the next page.
7. Click "Security role to user/group mapping".

8. On the "Security role to user/group mapping" screen, check the checkbox in the
"Select" column and then click the "Look up groups" button.

9. Click the "Search" button to display the available groups, then move the user
"groupl" from the "Available" box to the "Selected" box. Click "OK".

10. On the returned page, click "Save".

11. Logout of the WebSphere console.

12. Stop and then restart the WebSphere instance from the command line.

13. Point your browser to the following URL (the default port is 9080):
http://<host nane>: <port>/rul eaut hor

If you have mapped the RuleAdministrator role in Step 2, you see the Rule Author
login page when you attempt to click on any link on the page. If you have not correctly
mapped the RuleAdministrator role, the application will go directly to the Repository
Connection page.

Password-protected WebDAV Repository access using Oracle Wallet is currently
non-functional on WebSphere. Password-protected access to a WebDAYV repository
only works using a directly-specified username and password.

Note: To import an XML schema, first add the files xml.jar and
xmlparserv2.jar (located in the installed Rule Author application
directory) to the Java Fact classpath. The Java class files generated by
the JAXB compiler from the XML schema depend on several classes
provided by these JAR files. In non-Oracle containers, these classes are
not on the Java Fact Classpath by default, so they must be added
manually.

C.3.2 Deploying Rule Author on WebLogic Server

To deploy Oracle Business Rules Rule Author and the online help for Rule Author on
WebLogic Server 9.1, you first need to locate the OracleAS Companion CD installation
disk supplied with Oracle Application Server. The OracleAS Companion CD Disk 2
includes two .ear files for each supported non-Oracle container.

Perform the following steps to use the exploded ear file approach to deploy Oracle
Business Rules Rule Author on WebLogic Server 9.1.

C-6 Oracle Business Rules User's Guide

How do | Deploy Rule Author on Non-Oracle Containers?

©® N o o

10.
11.
12.
13.
14.
15.
16.
17.

18.
19.
20.
21.

Note: Locate the weblogic .ear files, r ul eaut hor _webl ogi c. ear
and r ul ehel p_webl ogi c. ear on the OracleAS Companion CD
Disk 2, in the directory,

Di sk2/ rul es/ webapps/ webl ogi ¢/

Make a directory named r ul eaut hor somewhere in <bea home>, where bea home
is the WebLogic Server 9.1 home directory.

Go to this directory and expand r ul eaut hor _webl ogi c. ear, located on the
OracleAS Companion CD Disk 2, in the directory, as follows:

% cd rul eaut hor
% jar xvf path/Disk2/rul es/ webapps/ webl ogi ¢/ rul eaut hor _webl ogi c. ear

Start WebLogic Server, as follows:

% cd <bea home>/ webl ogi c91/ sanpl es/ domai ns/wW _server/bin
% startWebLogi c. cnd (for Wndows)
% . /startWbLogi c. sh (for Unix)

Point your browser to WebLogic Server Administration Console and log in. For
example

http://<host name>: 7001/ consol e/ | ogi n/ Logi nForm j sp

On the left panel, click "Deployments".

On the left panel, click the "Lock & Edit" button.

Click the "Install" button.

Navigate the file browser until your find webapp directory. Select the radio button
for this directory. Follow the instruction to deploy the application.

On the left panel, click the "Activate Changes" button.

On the left panel, click the "Lock & Edit" button.

On the left panel, click "Security Realms".

Click "myrealm".

Click the "Users and Groups" tab.

Click the "Groups" subtab

Click the "New" button. Create a new group "rule-administrators".
Click the "Users" subtab.

Click the "New" button. Create a new user. Enter your choice of name. For
example, enter r ul eadni n and enter a password of the new user and then click
"Save". Click the "Groups" tab. Using the shuttle, assignr ul e- adm ni strators
group to this user. Click "Save" when complete.

Click the "Release Configuration" button.

Go to the "Deployments" page and start the application.
Log out of the console and close the browser.

To test the application, open the browser and go to the URL
http://<l ocal host>: 7001/ rul eaut hor/

Oracle Business Rules Frequently Asked Questions C-7

How do | Deploy Rule Author on Non-Oracle Containers?

To deploy the help for Rule Author, follow Steps (1-7) to deploy r ul ehel p_
webl ogi c. ear . To test the help page, click the help link on the Rule Author page.

Note: To enable XML Fact Import and the use of WebDAV repository
access, add the Oracle XDK classes to the container classpath. To do
this, update st ar t WebLogi c. sh for the domain you are running by
adding xm . j ar and xm par serv2. j ar to the CLASSPATH
environment variable path (on Windows, the name of the file you
need to update is st ar t WebLogi c. cnd).

C.3.3 Deploying Rule Author on JBoss 4.0

To deploy Rule Author and the online help for Rule Author on JBoss, you first need to
locate the OracleAS Companion CD installation disk supplied with Oracle Application
Server. The OracleAS Companion CD Disk 2 includes two .ear files for each supported
non-Oracle container.

Note 1. If you wish to use the Rule Author XML Schema Import
capability, you must add the locations of the files xml.jar and
xmlparserv2 jar to the environment variable JBOSS_CLASSPATH in
the environment from which you execute JBoss. These classes are
available in ORACLE_HOME/lib.

Note 2: Under JBoss, you cannot access WebDAYV repositories due to
XML parser incompatibilities.

Perform the following steps to deploy Rule Author on JBoss 4.0.

Note: Locate the JBoss .ear files, r ul eaut hor _j boss. ear and
rul ehel p_j boss. ear on the OracleAS Companion CD Disk 2, in
the directory,

Di sk2/ rul es/ webapps/j boss/

1. Make sure you have JDK 1.5 installed in your environment. JBoss does not run
well with JDK 1.4.

2. Putrul eaut hor _j boss. ear in the <jboss home>/server/default/deploy
directory.

3. Put the following jars in the <jboss home>/server/default/lib directory. They can
be obtained by expanding the r ul eaut hor _j boss. ear file in a temporary
directory.

commons-el . jar
jr_dav.jar
jsp-el-api.jar
oracle-el.jar
regexp.jar

rul esnvc. j ar
rul esdk. j ar
rl.jar
share.jar

C-8 Oracle Business Rules User's Guide

How do | Deploy Rule Author on Non-Oracle Containers?

ui x2.jar
webdavrc. j ar
xm parserv2.jar
xm . jar
http_client.jar
oracl epki.jar
servlet.jar

4. Edit <jboss home>/server /default/conf/login-config.xml to add the following
section:

<appl i cation-policy name = "rul eaut hor">
<aut henti cation>
<l ogi n-modul e code="org.j boss. security. auth. spi.UsersRol esLogi nMbdul e"
flag = "required">
<modul e- option name= "usersProperties">
props/ rul eaut hor-users. properties
</ modul e- opt i on>
<nmodul e- option name="rol esProperties">
props/ rul eaut hor-rol es. properties
</ modul e- opt i on>
</1ogi n- nodul e>
</ aut henti cati on>
</ application-policy>

5. Add the users (r ul eaut hor - users. properti es) and roles
(rul eaut hor -rol es. properti es) files to the following directory:
<j boss hone>/server/default/conf/props
Example of contents of r ul eaut hor - users. properti es file:
ra=oracl erul e
Example of contents of r ul eaut hor-rol es. properti es file:
ra=Rul eAdmi ni strat or

In this example, we create a user name r a that has a password or acl er ul e and
belongs to role Rul eAdmi ni strat or.

6. Start JBoss using the following commands,

%d <jboss hone>/bin
% un. bat

If successfully deployed, you should see output similar to the following:

14:28: 21,718 | NFO [Tontat Depl oyer] depl oy, ct xPat h=/rul eaut hor, warUl=.../tnp/
depl oy/ t np20477r ul eaut hor _j boss. ear - cont ent s/ rul eaut hor - exp. war/

4:28:21,906 | NFO [EARDepl oyer] Started J2EE application:
file:/C/jboss-4.0.3SP1/server/defaul t/deploy/rul eaut hor_j boss. ear

7. Point your browser to the site,
http:/ / <host>:8080/ruleauthor

If you have mapped the Rul eAdmi ni st at or role as instructed in Steps 2 and 3,
you see the Rule Author login page.

To deploy the help for Rule Author, drop the r ul ehel p_j boss. ear to the deploy
directory. To test the help page, click the help link on the Rule Author page.

Oracle Business Rules Frequently Asked Questions C-9

How Does a RuleSession Handle Concurrency and Synchronization?

C.4 How Does a RuleSession Handle Concurrency and Synchronization?

Method calls on an Oracle Business Rules RuleSession object are thread-safe such that
calls by multiple threads do not cause exceptions at the RuleSession level. However,
there are no exclusivity or transactional guarantees on the execution of methods. The
lowest-level r un method in the Rules Engine is synchronized, so two threads with a
shared Rul eSessi on cannot both simultaneously execute r un. One call to run must
wait for the other to finish.

RL Functions are not synchronized by default. Like Java methods, RL functions can
execute concurrently and it is the programmer's responsibility to use synchronized
blocks to protect access to shared data (for instance, a HashMap containing results
data).

Any set of actions that a user wishes to be executed as in a transaction-like form must
synchronize around the shared object. Users should not synchronize around a

Rul eSessi on object because exceptions thrown when calling Rul eSessi on
methods may require the Rul eSessi on object to be discarded.

For most uses of a Rul eSessi on object in Oracle Business Rules, each thread or
servlet instance should create and use a local Rul eSessi on object. This usage pattern
is roughly analogous to using a JDBC connection in this manner.

The following examples demonstrate how to use a shared Rul eSessi on object.
For the case where Thread-1 includes the following:

rul eSessi on. cal | Functi onWt hAr gunent ("assert", singleFactl);
rul eSessi on. cal | Functi onWt hAr gunent ("assert", singleFact2);

and Thread-2 includes the following:

rul eSessi on. cal | Function("run");
rul eSessi on. cal | Function("clear");

In this case, the execution of the two threads might proceed as shown in Example C-1.

Example C-1 Using a Shared RuleSession Object in Oracle Business Rules

Thread-1: rul eSession.call FunctionWthArgument ("assert”, singleFactl);
Thread-2: rul eSession.callFunction("run");

Thread-2: rul eSession. cal | Function("clear");

Thread-1: rul eSession.call FunctionWthArgument ("assert", singleFact?2);

In Example C-1, the two facts Thread-1 asserted are never both in the Rul eSessi on
during a call to r un. Notice also that only one thread calls the r un method. We do not
recommend a design where multiple threads can call r un on a shared Rul eSessi on.
This usage pattern can create extremely hard to find bugs and there is no gain in
performance.

All accesses to a shared Rul eSessi on object must be synchronized to ensure the
intended behavior. However, a Rul eSessi on instance may throw an exception and
not be recoverable, so do not use this object as the synchronization object. Instead, use
another shared object as the synchronization point.

One can envision a shared server process producer-consumer model for

Rul eSessi on use. In this model, multiple threads assert facts to a shared

Rul eSessi on and one thread periodically calls r un, reads any results, and outputs
them. This ensures that thread conflicts cannot occur, because the two code segments
must be executed serially and cannot be intermingled. For example, the code with

C-10 Oracle Business Rules User's Guide

How Do I Improve Oracle Business Rules Runtime Performance?

shared objects, producer code, and consumer code in Example C-2, Example C-3, and
Example C—4.

Example C-2 RuleSession Shared Objects

Rul eSessi on rul eSessi on;
bj ect rul eSessi onLock = new Chject();

Example C-3 RuleSession Producer Code

public String addFacts(Fact TypeA fa, FactTypeB fb, FactTypeC fc){
String status = "";
synchroni zed(rul eSessi onLock) {
try {
rul eSessi on. cal | Functi onWt hAr gunent ("assert", fa);
rul eSessi on. cal | Functi onWt hAr gunent ("assert", fb);
status = "success";
} catch (Exception e) {
/1 a nmethod that creates a new Rul eSession |oads it with rules
initializeRul eSession();
status = "failure";

}

return status;

Example C-4 RuleSession Consumer Code

public List exec()({
synchroni zed(rul eSessi onLock) {

try {
rul eSession. cal | Function("run");
List results = (List)ruleSession.callFunction("getResults");
rul eSessi on. cal | Function("cl earResul ts");
return results;

} catch (Exception e) {
/1 a method that creates a new Rul eSession loads it with rules
initializeRul eSession();
return null;

Note: When multiple threads are sharing a Rul eSessi on object, it
is not recommended that more than one of the threads calls the r un
method.

C.5 How Do I Improve Oracle Business Rules Runtime Performance?

When trying to increase the performance of an application that uses a Rul eSessi on

object, you should try to minimize the number of times that you open the Repository

and generate the RL code. Thus, you should avoid opening and reading a Repository
for each Rul eSessi on instance you create; this practice should allow the program to
perform well in most cases.

Oracle Business Rules Frequently Asked Questions C-11

How Do | Correctly Use an RL Language Cross Product?

You can share the St r i ng object containing generated RL code, so that all application
instances can use it for loading the rules into a private Rul eSessi on object.

If your application requires additional performance tuning, you can use a pooling
mechanism to share a set of Rul eSessi on objects. In this case, a common pool would
hold Rul eSessi on objects and a thread could obtain an object from the pool, use the
object for a series of operations, and then return the object to the pool. Rul eSessi on
objects which throw an exception should not be reused. If an exception was thrown by
the Rul eSessi on, the pool would need to discard this instance and replace it with a
new Rul eSessi on instance.

Note the following issues when using pooled Rul eSessi on objects:

= If the rule actions do not perform input or output, including calls to external
resources, the size of the pool does not need to be larger than the number of CPUs
in the machine.

» The Rul eSessi on state must be restored prior to reuse. Use of the RL r eset ()
function may be helpful. Pay particular attention to the fact thatr eset ()
re-executes initializers for non-final global variables in the Rul eSessi on. This
can be used as a hook to re-assert initial facts.

= Do notreuse a Rul eSessi on that throws an exception, because it is difficult to be
sure that the state is restored for Rul eSessi on instances that throw an exception.

Depending on the computation requirements of your application, the performance
improvements from pooling may be very small. The computational cost of creating a
new Rul eSessi on object and loading RL code is unlikely to be a performance
bottleneck. You should monitor performance to see if it is within the acceptable range
before attempting to increase performance using Rul eSessi on object pooling.

The Oracle Java Object Cache provides a mechanism for very simple pooling.
However, you will need to add an extra layer that can call r eset () and check for
exceptions that require Rul eSessi on objects to be discarded and re-created.

See Also: Java Object Cache in the Oracle Containers for J2EE Services
Guide

C.6 How Do I Correctly Use an RL Language Cross Product?

When working with cross products of facts, there are cases where the runtime
behavior of RL Language may produce surprising results.

Consider the RL Language code in Example C-5.

Example C-5 Cross Product Using Fact F

class F {int i; };
rule rl {
if (fact F F1 && fact F F2) {
printIn("Results: " + FLi +", " + F2.i);
1}

assert(new F(i:1));
assert(new F(i:2));
run();

How many lines print in the Example C-5 output? The answer is 4 lines because fact
F1 and fact F2 can be the same instance and are compared in each operand.

C-12 Oracle Business Rules User's Guide

How Do | Correctly Use an RL Language Cross Product?

Thus, Example C-5 gives the following output:

Results: 2, 2
Results: 2, 1
Results: 1, 2
Results: 1, 1
Using the same example with a third F, for example (assert (new F(i:3));)then

nine lines are printed and if, at the same time, a third term && fact F F3is added
then 27 lines are printed.

If you are attempting to find all combinations and orders of distinct facts, you need an
additional term to in the test, as shown in Example C-6.

Example C—6 Find All Combinations of Fact F

rule rl {
if (fact F F1 & fact F F2 && F1 = F2) {
printIn("Results: " + FL.i + ", " + F2.i);
1

The code in Example C—6 gives the following output:

Results: 2, 1
Results: 1, 2

The simplest, although not the fastest way to find all combinations of facts, regardless
of their order, is to use the code shown in Example C-7.

Example C-7 Finding Combinations of Fact F

rule rl {
if (fact F F1 & fact F F2 & id(F1) < id(F2)) {
printIn("Results: " + FL.i + ", " + F2.i);
}
}

Because the function i d() shown in Example C-7 takes longer to execute in a test
pattern than a direct comparison, the fastest method is to test on a unique value in
each object. For example, you could add an integer value property "oid" to your class
that is assigned a unique value for each instance of the class.

Example C-8 shows the same rule using the oid value.

Example C-8 Fast Complete Comparison

rule rl {
if (fact F F1 & fact F F2 & Fl.oid < F2.0id) {
printIn("Results: " + FL.i + ", " + F2.i);
}
}

This problem may also arise if you attempt to remove all duplicate facts from the
Oracle Rules Engine, using a function as shown Example C-9.

Example C-9 Retracting Duplicate Facts Incorrect Sample

rul e rRenoveDups {
if (fact F F1 & fact F F2 && F1.i == F2.i) {
retract (F2);

Oracle Business Rules Frequently Asked Questions C-13

How Do | Access a Rule in a Dictionary Using a URL?

}
}

However, this rule removes all facts of type F, not just the duplicates because F1 and
F2 may be the same fact instance. Example C-10 shows the correct version of this rule.

Example C-10 Retracting Duplicate Facts Corrected Sample

rul e rRenmoveDups {
if (fact F F1 & fact F F2 & F1 != F2 && F1.i == F2.i) {
retract (F2);
}
}

C.7 How Do | Access a Rule in a Dictionary Using a URL?

Rule Author can take a dictionary and a rule name in a URL and access a rule directly
from the URL. After a user logs in to Rule Author either through the Rule Author
login page using Oracle Single Sign-On, Rule Author allows the user to display a
ruleset or rule page with a URL.

The format of the URL is as follows, with parameter descriptions in Table C-2.

http://<host _name>: <port _nunber >/ rul eaut hor/ event =dl Connect &
<repos_prop 1>=<repos_val ue val> &

Di ct =<di ct _name>&Ver si on=<versi on> &

Rul eSet =<rul eset _name> &

rul e=<rul e_name>

For example, the following URL allows you to view a rule, checkCr edi t in ruleset
r s2 with a single URL:

http://1ocal host: 8888/ rul eaut hor/ Connect Repos. ui x?event =dl Connect &ReposType=Fi | e&o
racle.rul es. sdk.store.jar.path=C:\jartest\testl.]ar& ct=c233&Ver si on=v1&Rul eSet =r
s2&r ul e=checkCr edi t

Table C-2 URL Parameters for Accessing a Rule Using a URL

URL Component

Description

host_name

port_number

repos_prop i

repos_value val
dict_version

ruleset_name

rule_name

Specifies the host where the Rule Author application is running.
Specifies the port number where the Rule Author application is running.

Denotes the repository connection property i defined by the Oracle Business Rules SDK. Consult the
Javadoc for additional details.

For file type repository, see oracle.rules.sdk.store jar.Constants.java.

For WebDAV, see oracle.rules.sdk.store.webdav.Constants.java.
Denotes repository connection value val for property i
Specifies the dictionary name

Optional - specifies the ruleset name. If you do not provide either a <ruleset_name> or a <rule_name>, the
ruleset summary page is shown.

Optional - specifies the rule name. If a <ruleset_name> is set, but <rule_name> is not given, the ruleset page
is shown.

C-14 Oracle Business Rules User's Guide

How Do | Use a Property Change Listener in Oracle Business Rules?

C.8 How Do | Use a Property Change Listener in Oracle Business Rules?

The Oracle Rules Engine supports the Java PropertyChangeListener design pattern.
This allows an instance of a Java fact that uses the PropertyChangeSupport class to
automatically notify the Oracle Rules Engine when property values have changed.
Java facts are not required to implement this pattern to be used by Oracle Rules
Engine.

Normally, changes made to values of a property of a Java object that has previously
been asserted to the Oracle Rules Engine requires that the object be re-asserted in order
for rules to be reevaluated with the new property value. For properties that fire
PropertyChangeEvents, changing the value of those properties both changes the value
and re-asserts the fact to the Oracle Rules Engine.

To implement the PropertyChangeListener design pattern in a class, do the following:
1. Import this package in the class:
i nport java. beans. PropertyChangeSupport;

2. Add a private member variable to the class:

private PropertyChangeSupport mpcs = nul l;

3. In the constructor, create a new Property Change Support object:

m pcs = new PropertyChangeSupport(this);

4. Then for each setter, add the call to firePropertyChange:

public void setName(String nanme){
String oldval = mnane;
m nane = nane;
m pcs. firePropertyChange("nane", oldval, mnane);

}

5. Implement addPropertyChangeListener method (delegate to m_pcs):

public voi d addPropertyChangeli st ener (PropertyChangeli stener pcl){
m pcs. addPr oper t yChangeLi st ener (pcl);

}

6. Implement removePropertyChangeListener method (delegate to m_pcs):

public renmovePropertyChangeli st ener (PropertyChangeli stener pcl){
m pcs. renovePr oper t yChangelLi stener (pcl);

}

When deciding whether to design your application to always explicitly re-assert
modified objects or implement the PropertyChangeListener design pattern, consider
the following items:

« Explicitly re-asserting modified objects allows a user to group several property
changes and making them visible to the rules all at once. This is most useful when
a concurrent thread is executing rules, and the rules should see only a complete
group of property changes.

= Explicit assert reduces the computational cost of rule re-evaluation when multiple
properties are changed. If multiple properties are changed at the same time, this
will result in multiple re-evaluations of rule conditions that reference the fact type.
This occurs because each property change event results in a re-assertion of the

Oracle Business Rules Frequently Asked Questions C-15

How Do | Modify the Single Sign-On Timeout for Oracle Application Server?

object. Using an explicit assert instead of the PropertyChangeListener pattern will
eliminate this extra computational cost.

Explicit assert is required when a rule modifies a fact that is also tested in its
condition, but the automatic reassert triggered by the PropertyChangeListener
before a guard condition property is set would cause the rule to refire itself
endlessly

Explicit assert must be used when modifying RL facts and XML facts, since these
cannot be defined to support the PropertyChangeListener design pattern.

PropertyChangeListener-enabled facts allow a Java application to communicate
property changes to the rule engine without having to change the application to
perform explicit asserts. This also means that code that modifies a property of an
object does not need to have a reference to the RuleSession object in scope

PropertyChangeListener support prevents the common error of neglecting to
re-assert a fact after changing its properties.

C.9 How Do | Modify the Single Sign-On Timeout for Oracle Application

Server?

If you find that the default Oracle Single Sign-On timeout specified for your
applications, including Rule Author is too low for your installation, you can change
the value specified for this timeout.

Perform the following steps to change the Single Sign-On timeout:

1.
2.
3.

In Application Server Control, go to the Cluster Topology page.
In the Administration area, click Java SSO Configuration.

In the Properties area, change the value in the Session Timeout (secs) text box to
the desired timeout value.

Click Apply.

See Also: Section A.2, "Rule Author Session Timeout"

C.10 Does Oracle Business Rules Provide High Availability?

If you need to run a rules application as a highly available application, you should
refer to the Oracle Application Server High Availability Guide for information on
Oracle Business Rules and high availability.

C-16 Oracle Business Rules User's Guide

D

Oracle Business Rules Troubleshooting

This appendix contains workarounds and solutions for issues you may encounter
when using Oracle Business Rules. The following topics are covered:

= Public Fact Variables are not Accessible with Rule Author

= Global Variables may not be Used in RL Functions

« Importing JDK 1.4.2 Classes

« Managing Popup Windows on Firefox

= Using the String Data Type with Methods

= Preserving Class Order and Hierarchies in the Data Model
= Validating and Checking Generated RL from Rule Author
= Using RL Reserved Words as Part of a Java Package Name
= Getter and Setter Methods are not Visible

= XML Facts not Asserted at Runtime

« Changing Language When Using Rule Author

=« Why Do I Get a File Error When Simultaneously Editing and Executing a Ruleset
Under Microsoft Windows?

= Why are Ancestor Methods not Visible from Sub-Classes
« Adding an XML Schema Results in Error RUL-01627

= Choice List with Client and Server Using Different Locale Generates Invalid RL
Language

= Invalid RL Language Generated When Inherited Classes are Used

D.1 Public Fact Variables are not Accessible with Rule Author

Public fact variables are not accessible with Rule Author. For example, the variables in
the following class would be accessible with Oracle Business Rules RL Language but
not with Rule Author:

public class Test {

public int i = 0;

public String s = "string";
}

No variable can be accessed in the Rule Author for facts of type Test. In order to access
these variables, methods like the following need to be added:

Oracle Business Rules Troubleshooting D-1

Global Variables may not be Used in RL Functions

public void setl(int i) { this.i =1i; }
public int getl() { returni; }

public setB(boolean b) { this.b =bh; }
public boolean isB() { return b; }

Note that no variable i is required forset | (int i) andgetl () towork properly.
For more information, please refer to the Sun Microsystems Java Bean specification.

D.2 Global Variables may not be Used in RL Functions

For RL generated from the SDK (for example, Rule Author), global variables may not
be referred to directly in an RL function.

To work around this issue, if an RL function needs to access a global variable, the
global variable should be passed as a parameter to the RL function. The parameter
name allows access to the global variables inside the RL function body.

D.3 Importing JDK 1.4.2 Classes

If you choose to run Rule Author using JDK 1.4.2, be aware that Java classes compiled
using JDK 1.5 do not import properly. If you try to import Java classes compiled using
JDK 1.5 into Rule Author using JDK 1.4.2, an error message like the following appears:

Cannot perform operation. 'RUL-01527: Received exception for |oadd ass.
RUL- 01016: Cannot |oad Java class exanpl e7. Exanpl e7. Pl ease make sure
the class and all its dependent classes are either in the class path,
or user specified path. Root Cause: exanple7/Exanpl e7 (Unsupported

maj or. minor version 49.0) '

To work around this issue, run Rule Author using JDK 1.5 or recompile the classes
using JDK 1.4.2.

D.4 Managing Popup Windows on Firefox

If you are running Rule Author on Firefox browser, you may encounter a problem if
you close many popup windows using the X button in the upper corner of the
window instead of the OK, Cancel, or Apply buttons.

The easiest way to avoid this problem is to use the OK, Cancel, or Apply buttons
instead of the window controls to close the popup windows. You can also change
value of the dom popup_maxi mumparameter to allow for many more popup
windows. To do this:

1. Type about: confi g as the URL and locate the dom popup_maxi mumparameter.

2. Set the value to 10000 or higher.

D.5 Using the String Data Type with Methods

The built-in data type St ri ng does not contain any methods. Thus, if x is a String,
X. substring(1l) would be invalid in an advanced expression.

To work around this issue:
1. Importj ava. | ang. String into the data model as a Java fact type.

2. Give this fact type an alias. The default alias is j ava_l| ang_St ri ng.

D-2 Oracle Business Rules User’s Guide

Getter and Setter Methods are not Visible

3. Use this new fact type instead of St r i ng when you are defining RL fact types or
variables in the data model.

D.6 Preserving Class Order and Hierarchies in the Data Model
Classes and interfaces used in Rule Author must follow the following rules:

1. If you are using a class or interface and its superclass, the superclass must be
declared first. Otherwise, the generated RL program throws an exception like the
following:

"Fact O assException: fact class for 'pkg.Parent' should be declared earlier
inrule session".

2. If you are using a class or interface, only its superclass or one of its implemented
interfaces may be mentioned. If multiple interfaces are mentioned, the generated
RL Language program throws an exception like the following:

Mul tipl el nheritanceException: fact class 'pkg.Child cannot extend both
" pkg. ParentInterface' and ' pkg.Parentd ass'

To work around these issues:

1. Identify the hierarchy of classes and interfaces in the data model you want to use
in your rule sets.

2. For each class or interface in the hierarchy, check the Support Xpath Assertion
box. This causes fact class statements to be generated in the correct order as part of
the data model RL.

D.7 Validating and Checking Generated RL from Rule Author

In order to validate generated RL from Rule Author, make sure that the Java classes in
the Data Model are in the OC4J classpath. Likewise, when using XML schema, the
generated JAXB classes need to be in the classpath. For more information about setting
the OC4]J classpath, see Section 3.11, "Working with Test Rulesets".

D.8 Using RL Reserved Words as Part of a Java Package Name

Invalid RL Language is generated if an RL Language reserved word (for example, the
word r ul e innypkg. rul e. con) is part of the Java package name. If an RL Language
reserved word is used in a Java package name, an error message like the following
appears:

Oacle RL 1.0: syntax error PareseException: encountered 'rule' when expecting
one of: <XM__IDENTIFIER> ... <IDENTIFIER> ... "*" at line 11 colum 19 in main

There is no workaround for this issue; do not use RL Language reserved words in Java
package names.

D.9 Getter and Setter Methods are not Visible

Rule Author does not list the methods supporting a Java bean property in choice lists;
only the bean properties are visible. For example, a Java bean with a property named
"Y" must have at least a getter method (get Y()) and may also have a setter method
(set Y(y-type-parm). All of properties and methods (including getter and setter
that compose the properties) are displayed when viewing the Java FactType. Only the
properties of Java Classes (not the getter and setter methods) are displayed in choice

Oracle Business Rules Troubleshooting D-3

XML Facts not Asserted at Runtime

lists. When attempting to control the visibility of the property it is best to use the
properties visibility flag. Marking a getter or a setter method as not visible may not
remove the properties from choice lists.

There is no current workaround for this issue.

D.10 XML Facts not Asserted at Runtime

The XML Fact page for an XML Schema generated class shows the Support XPath
Assertion box. This box is checked by default. Un-checking this box and saving your
changes marks the XML Fact as not supporting XML style assertion, which in turn
means that any instance of this type and any of its children are not asserted by a call to
assertXPath for an XML document.

There is no workaround for this issue; you should make sure the Support XPath
Assertion box is checked for all XML FactTypes.

D.11 Changing Language When Using Rule Author

To change the Rule Author display language, you need to log out, change the
language, and then log back in to Rule Author.

If you do not log out, you may see aj ava. | ang. Nul | Poi nt er Except i on error.
The procedure required to change the language is:

1. Log out of Rule Author.

2. Change the language in the browser.

3. Logback in to Rule Author

D.12 Why Do | Get a File Error When Simultaneously Editing and
Executing a Ruleset Under Microsoft Windows?

On Microsoft Windows operating systems, a file in use by one application may not be
used by another application. This means it is possible for an error to occur when Rule
Author attempts to write to a local file repository while an application is attempting to
read from the same repository. This should be a rare occurrence because of the small
time windows involved.

The signature for this type of failure looks similar to the following;:

oracle.rul es. sdk. store. StoreException: Unable to rename
"<your-repository-file-name> so that it can be replaced.

at oracle.rules.sdk.store.jar.JarStore.witedar(JarStore.java: 752)

at oracle.rules.sdk.store.jar.JarStore. flush(JarStore.java: 211)

at oracle.rules.sdk.repository.inpl.Rul eRepositorylnpl._

fl ushChanges(Rul eReposi toryl npl . java: 381)

at oracle.rules.sdk.repository.inpl.Rul eRepositorylnpl._

save(Rul eReposi toryl npl . j ava: 367)

at

oracle.rul es. sdk.repository.inpl.Rul eRepositorylnpl.save(Rul eRepositorylnpl.java:2

65)

at

oracle.tip.tools.ide.rules.ide.jdevel oper.JDevRul esProject.saveDi ctionary(JDevRul e

sProj ect. java: 83)

D-4 Oracle Business Rules User’s Guide

Choice List with Client and Server Using Different Locale Generates Invalid RL Language

This can be caused by another rules based application reading the repository at the
same time as this attempt to update it. The operation may be retried. If this error
persists, then some other application is keeping the repository open.

To workaround this issue, simply retry the operation.

D.13 Why are Ancestor Methods not Visible from Sub-Classes

The properties of a superclass are visible in the appropriate choice lists, but the
methods of the ancestor classes are not visible.

There is no workaround for this issue.

D.14 Adding an XML Schema Results in Error RUL-01627

Sometimes when you attempt to add a schema Rule Author reports the following
error:

Cannot perform operation. 'RUL-01627
The schema X has been inported.
Pl ease delete it if you want to reinport the same schema

When you add the schema is not displayed in the schema path box, so it appears that
either the list is incorrect or the error is incorrect. The workaround for this problem is
to reload the XMLFact page, then add the schema again.

D.15 Choice List with Client and Server Using Different Locale Generates
Invalid RL Language

The choice list entry that denotes "nothing selected" is translated. The translated value
is controlled by the locale set in the RuleDictionary. There are two usage cases in which
this can trigger incorrect behavior in the Rules SDK.

« TheRul eDici tonary has aset Local e method. In a client/server usage if the
client and server are not using the same locale and the server locale is not English,
then failure to use setLocale to set the locale in the client can result in the
generation of invalid RL Language.

= If the server locale is not English and the application never invokes a set X (where
Xis the property name for the list, then the Rules SDK does not correctly set the
unselected entry back to the canonical form (which is English). This results in
generated that does not compile correctly (usually due to missing values)

To work around these issues:

When an application may be running in an environment where the client and server
may be using different locales or the server may not be an English locale, the
application should use the Rul eDi cti onary set Local e to set the locale to that of
the client, if lists are being displayed, and all lists should be set. For example, this
problem might occur when a Expression Form property is not set explicitly by the
application.

Oracle Business Rules Troubleshooting D-5

Invalid RL Language Generated When Inherited Classes are Used

D.16 Invalid RL Language Generated When Inherited Classes are Used

In some cases invalid RL Language is generated for a rule set. The following error is
reported when you attempt to execute this code:

A syntax error is found.
Error:fact class should be declared earlier at line X colum Y in rulesetZ

This error occurs when two Java classes that have an inheritance relationship are used
in a ruleset and the child class is used before the parent class. This use can be in a rule
condition, an assert,aretract, oranassert XPat h. If a subclass or interface is
referenced in one of these contexts before the super class is, then a reference to the
super class in one of these contexts results in a Fact Cl assExcept i on when the RL
Language is interpreted.

Rule Author does not generate the correct RL Language, a f act cl ass statement, to
resolve this issue when the support s xpat h attribute for each Java class involved is
set to f al se in the datamodel (this is the default).

To workaround this issue, the supports xpat h attribute for each Java class involved
should be set to t r ue in the datamodel. In Rule Author, this is accomplished using a
checkbox when viewing the Java class. For some classes, this workaround may not
generate correct RL Language because the f act cl ass statements are not generated
in the correct order. In this case, there is no workaround.

Some inheritance hierarchies are not allowed in RL Language, specifically ones that
require multiple inheritance. For instance, if | nt er f ace2 extends | nt er f acel, and
C ass1 directly implements both interfaces, then a single inheritance tree cannot be
determined. If Cl ass1 only implemented | nt er f ace2, then a single inheritance tree
can be determined and the classes used in RL Language.

See Also: "Viewing Java Objects in a Data Model" on page 3-9

D-6 Oracle Business Rules User’s Guide

A

accessing Fact variables, D-1
advanced test expression

rule author

advanced test expression, 3-12

advanced test expression option, 3-11
alias

naming, A-2
asserting

XPath, 4-28
asserting facts with SDK, 2-27
assertXPath function, 4-28
author

see Rule Author

B

business rules
definition, 1-2
business vocabulary
defining in data model, 2-13

C

check RL syntax

with Java classes, 3-11

with XML schema, 3-11
classpath

adding, 2-9
concurrency, C-10
connecting to a repository, 2-4,4-3
constraint

definition, 1-9,3-2

enumeration, 3-2

range, 3-2

regular expression, 3-2
creating a file repository, B-6
cross products, C-12
customization rule, 2-18, 2-23, 3-2

D

data model
definition, 1-3,2-8
definition XML, 4-7
generating, 3-11

definitions
constraint, 3-2
JavaFact, 3-9
RL function, 3-6
RLFact, 3-4
variable, 3-1
XMLFact, 4-7,4-12
dictionary
creating, 2-4,4-2
deleting, 3-13
description of, 1-7
Dictionary Directory field, 2-6, 4-4
Dictionary Name field, 2-6,4-4
exporting, 3-14
importing, 3-14
loading, 2-25, 2-26, 4-26, 6-3
naming, A-1
saving, 2-7,2-8,4-5,4-6
SCRATCH version, A-2

E

Index

EmptyFileRepository, B-6
expressions
with quotes, C-2

F

fact type
Java, 2-9
RLFact, 3-4
XML, 1-8
file repository, 1-5
creating, 2-4,4-3
establishing access to, 6-3
initialization parameters, 6-2
repository type key, 6-2
temporary files, B-7
updating content, B-7
FORM_ADVANCED
rules SDK, C-2
FORM_LITERAL
rules SDK, C-2
forward-chaining system, 1-4
frequently asked questions, C-1

Index-1

G

O

generate RL, 3-11

H

high availability, B-7, C-16
high availability for your repository, B-7

importing

Java classes, 2-11
importing JDK 1.4.2 classes, D-2
inference cycle, 1-4
initialization parameters

for file repository, 6-2

for WebDAYV repository, 6-2

J

Java classes
importing into data model, 2-11
Java fact type, 1-8,2-9
Java facts
using a Property Change Listener with, C-15
JAXB-generated classes, 4-7
JBoss
deploying to, C-8
JDK 1.4.2 classes
importing, D-2
JSR-94
extensions, 5-8
rule execution set, 5-1
with RL Language text, 5-3
with Rule Author rules, 5-1
with URL, 5-5

L

language change

using browser, D-4
loading a dictionary, 6-3
logging option, 3-11

M

method object chaining, 3-10
nod_or adav module, B-2

N

naming conventions

alias, A-2

dictionary, A-1

Rule Author, A-1

ruleset, A-1

version, A-1

XML schema target package name, A-2
null values

including in rules expressions, C-2

Index-2

object chaining
expand box, 3-10
object visibility, 3-10
options
advanced test expression, 3-11
logging, 3-11
use alias, 3-11
Oracle Business Rules
high availability, B-7,C-16
required JAR files, C-2
RL language, 1-5
Oracle wallet
setting the wallet location, B-4

P

pattern defintion page
popup blocking, 2-17
performance
runtime, C-11
popup blocking
disabled, 2-17
Property Change Listener
with Java facts, C-15
property object chaining, 3-10
property visibility
object, 3-10

Q

quotes in expressions, C-2

R

remove
ruleset, 2-15
repository
backup and recovery, B-7
connecting, 2-4,4-3
creating file repository, B-6
description of, 1-7
emptyFileRepository, B-6
file, 1-5
WebDAV, 1-5
repository type key
for file repository, 6-2
for WebDAV repository, 6-2
required JAR files for Oracle Business Rules,
results
using container objects, 3-20
using global variables, 3-19
using reasoned on objects, 3-21
Rete algorithm, 1-3
RL language
checking, 3-11
generating, 3-11
syntax checking, 3-11
viewing, 3-11
RL language cross product, C-12

C-2

RL tab, 3-11
Rule Author
Home page, 2-4
how to start, 2-2,4-2
introduction, 1-4
Login page, 2-2
rules, 1-6
session-timeout, A-2
starting, 2-2
working with Test Rulesets, 3-16
rule author
popup blocking, 2-17
rule session
asserting facts, 2-27
executing, 2-27
using run function, 2-28
rule-enabled Java application, 1-9,2-24
rules
adding a pattern to, 2-17
adding actions, 2-20
customization, 2-18, 2-23, 3-2
data driven, 1-4
defining, 2-15
defining tests for patterns, 2-18
engine, 1-6
expressions
including null values, C-2
firing, 1-4
forward-chaining, 1-4
name field, 2-15
priority field, 2-15
rule actions, 1-6
rule conditions, 1-6
SDK, 6-1
SDK importing, 2-25
SDK introduction, 1-5
URL access, C-14
RuleSession
concurrency, C-10
synchronization, C-10
ruleset
defining, 2-14
naming, A-1
removing, 2-15
URL access, C-14
run function, 2-28
runtime performance, C-11

S

SCRATCH dictionary version, A-2
SDK
classes, 6-1
executing a rule session, 2-27
generating RL, 2-26
introduction, 1-5, 6-1
pattern, 6-8
rules, 6-6
rulesets, 6-6
working with data model, 6-3

session-timeout, A-2

setting your Oracle wallet location, B-4
single sign-on timeout, C-16

starting Rule Author, 2-2,4-2
synchronization, C-10

T

temporary files, A-2
Test Rulesets feature, 3-16
timeout

single sign-on, C-16
timeouts

SCRATCH version, A-2
troubleshooting, D-1

U

URL
accessing a ruleset or arule, C-14
use alias option, 3-11

Vv

versions naming, 2-7, A-1
visible field
method visibility, 3-10

w

WebDAV repository, 1-5
establishing access to, 6-2
how to connect, B-3
how to setup, B-2
how to set up security, B-4
initialization parameters, 6-2
repository type key, 6-2

WebLogic
deploying to, C-6

web.xml file
session-timeout, A-2

X

XML document
unmarshalling, 4-26
XMLPFact
adding, 4-7
asserting, 4-28
importing schema, 4-10
importing with SDK, 4-25
JAXB class directory, 4-8
JAXB unmarshalling, 4-26
JAXB-generated classes, 4-7
target package name field, 4-8
types, 1-8
XML Schema field, 4-8

Index-3

Index-4

