Oracle® Retail POS Suite

Implementation Guide — Volume 2, Extension Solutions
Release 13.4

E26955-03

September 2015

ORACLE

Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions, Release 13.4
E26955-03

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Primary Author: Bernadette Goodman

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Value-Added Reseller (VAR) Language
Oracle Retail VAR Applications

The following restrictions and provisions only apply to the programs referred to in this section and licensed
to you. You acknowledge that the programs may contain third party software (VAR applications) licensed to
Oracle. Depending upon your product and its version number, the VAR applications may include:

(i) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail Data
Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(ii) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of Kirkland,
Washington, to Oracle and imbedded in Oracle Retail Mobile Store Inventory Management.

(iii) the software component known as Access Via™ licensed by Access Via of Seattle, Washington, and
imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(iv) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of San Jose,
California, and imbedded in Oracle Retail Promotion Planning & Optimization application.

You acknowledge and confirm that Oracle grants you use of only the object code of the VAR Applications.
Oracle will not deliver source code to the VAR Applications to you. Notwithstanding any other term or
condition of the agreement and this ordering document, you shall not cause or permit alteration of any VAR
Applications. For purposes of this section, "alteration" refers to all alterations, translations, upgrades,
enhancements, customizations or modifications of all or any portion of the VAR Applications including all

reconfigurations, reassembly or reverse assembly, re-engineering or reverse engineering and recompilations
or reverse compilations of the VAR Applications or any derivatives of the VAR Applications. You
acknowledge that it shall be a breach of the agreement to utilize the relationship, and/or confidential
information of the VAR Applications for purposes of competitive discovery.

The VAR Applications contain trade secrets of Oracle and Oracle's licensors and Customer shall not attempt,
cause, or permit the alteration, decompilation, reverse engineering, disassembly or other reduction of the
VAR Applications to a human perceivable form. Oracle reserves the right to replace, with functional
equivalent software, any of the VAR Applications in future releases of the applicable program.

Contents

Send Us YOUr COMMENES. ... Xix
Preface s XX
AUAIEINICE ... XXi
Documentation AcCesSIDILityccooiiiiiiiiiiiiiiii e XXi
Related DOCUIMENESc.cuiuiiiiiiiiiiiiciciieee e XXi
CUSTOMET SUPPOTIt...viiiiiiiiiiiiiiiiice s XXii
Review Patch DoCUmMENtationco.cceviviiiiiiriniiccicceeeeee ettt nene XXii
Improved Process for Oracle Retail Documentation Corrections..........c.ccccceueueueueueeeieecerveeeeecnenenn. XXii
Oracle Retail Documentation on the Oracle Technology Networkccooooeiiiiiiiiiiiiiine, XXii
CONVEINEIONS ...ttt sttt ettt st XXiii

1 Extracting Source Code

2 Development Environments

Back Office and Central Office Development Environment................ccccccocoiiiiiiinninnnnn. 2-1
Using the Apache Ant Build TOOL.........ccccoiiiiiiinir e 2-1
Prerequisites for the Development Environment...........ccccooooiiiiiiiiiiiiiccece 2-2
Install WebLogic Application SEIVETcccciuiiiiiiiiiiiiiiieiiiiciciecee e 2-2
Build the Back Office or Central Office Application.........ccccccueueieiiiininniceneieeeeeceeeeees 2-2

Point-of-Service Development Environmentccccccoooiiiiiiiiini 2-3
Preparation ... e 2-3
SEEUP ..o e 2-3

Install POINt-0f-S€Trvice ... 2-3
Build the Databasecccovueueuiiririeiciiieciircicte ettt 2-4
Create @ SANADOX.......coovviiiiiiiiiii s 2-4
Configure the Version Control System.........cccooiriiiiiiiiiiic 2-4
RUN POINE-Of-SEIVICE ...ttt 2-4

3 General Development Standards

BaSICS... it iitieeie ettt ettt et e et e et e et e e bee st e et e e tbe et e eaate e baeerbeanbeeabaeabeebeeantaesaeenteaseeensennres 3-1
Java ReCOMMENAATIONSccuieviiiiieieieieteeteiee ettt ettt ettt teste s tesbessesbesaessessesseseasensansenes 3-1
Avoiding Common Java Bugs........c.ccouiiiiiii 3-2
FOrmMattingc.ooviiiiiiiiii e 3-2

JAVAAOC ettt ettt a et a bbbt b e bbbttt a et sae b b ae 3-3

Naming CONVENtIONS.cociiiiiiiiiiicieicte s 3-4
SQL GUIAEIINESveveeeveriereete ettt ettt ettt ettt et te et e ebeetaeebeenseetsersebeenseeseenseseensesseeneas 3-4
DIB2 s 3-5
OFaCle ..o 3-5
UNit T@SHING ..o 3-6
Architecture and Design Guidelines..............cccocovviiiiiiiiiii 3-6
ANHPAEEINS ..ot 3-6
Designing fOr EXEENSIONc.c.ceuiiiiiiiiiiiiiieeicceeeeceeee e 3-8
Common FrameWOTKS ... s 3-8
InternatioNaliZation...........ccoiiiiiiiiiii s 3-8
TrANSIATION «.eovvtet s 3-9
LOZZING ...ttt 3-9
GUATAING COde.....uimiiiiii s 3-10
WREN 10 L0t 3-10
WIiting LOg MESSAZEScuvviviviviiiiiiiiiiiiiitiiiiiit s 3-11
EXCEPHioN MeSSaZESc.cuiviiiiiiiieiiiciittt s 3-11
Heartbeat or Life Cycle MESSAZEScccevuruiuimrururiiiiiciririreeieieersisieeeseees s eeenes 3-12
DEDUZ MESSAZES.......cocvviiieiiieiiiiicie ettt 3-12
Exception Handling ... 3-12
TyPes Of EXCEPHIONSc.cuuiiiiiiiiiiiiiciicicccceecee et 3-13
Avoid java.lang. EXCePHion ... 3-13
Avoid Custom EXCEPHONScooouiiiiicici s 3-13
Catching EXCEPHONSc.cucuiuiiiiiiiiiiiiciicicccccecce e 3-13
Keep the Try Block ShOTt ... 3-13

Avoid Throwing New EXCeptions. ..ottt 3-14
Catching Specific EXCEPHIONSc.cucueuiiiuiiiiiiiiciiiciciciciccccciec s 3-15

Favor a Switch over Code Duplication..........cccceveveviiininiiiiiiii 3-15

4 Point-of-Service Development Standards

Screen Design and User Interface Guidelines..............c.cccocooiiiiiiinniinnii 4-1
TOUT FLAMEWOTK......coiiiiiiiiieceee ettt ettt ettt e b e beets e beeabesteeaseeseensesasesesssensesseens 4-1
Tour Architectural GUIAEIINESc.ccvecieiririieirieieieieteteeee et e e sttt esaeseesaesessessessessassesessens 4-1
General TOUT GUIAEIINES........ccvieieriieieiictee ettt ste st steeae e esaesseessesseessessesssessesssessesses 4-2
FOUNAATION ...ttt ettt ettt ettt te et e e ebeeta e beesa e beessenseesseseesseseensesseeneas 4-3
TOUIS ANA SEIVICES ...cvveniieiieiieiieieete sttt e sttt te st et e st e aesstesseeseesessaeseessenseensensesssensesnsensennees 4-3
S 1<t TR 4-4
Managers and TeChNICIANScccccceuiiiiiiiiiriiiiiic s 4-4
ROAAS ...t ititeieieietet ettt ettt ettt ettt e st et e et e s e e s e b e s b e s s esbesbesbe st e st eseese et e et eebeesesbenbestereeseesenreaneas 4-5
N 1] L USRS 4-5
SIGNALS .. 4-5
Choosing Among Sites, Aisles, and SIgNals.........c.ccccociiiiiiiiiiiicceeeceeeeeeeeees 4-6
Renaming Lettersc.cooiiiiiiiiiiiiii s 4-6
SRULELES ..ttt ettt et e b e e beeab e be e b e ebe et e ebaesseeasebeesaenbeess e beessenseesseseeasateennenreeneas 4-7
CATZO0 it 4-7
Log ENtry FOIMatcococviiiiiiiiiii e 4-7
Log Entry Descriptioncccviiiiiiiiiiiiiiiiiccccc e 4-7

vi

5

6

Fixed Length Header ... 4-7
Additional Logging INformation ... 4-8
Example LOG ENEIY ..o 4-9

Point-of-Service Extension Guidelines

CONVENEIONS. ..ot 5-1
TOITIIS vt 5-1
Filename CONVENTIONS.........c.ccioiiiiiiiiiii i 5-1
IMOAULES ... 5-2
Directory Paths ... 5-2

POS PacCKage.........coouiiiiiiiiiiiiiiii bbb s 5-3
TOUT e 5-3

TOUL VAP ..ot 5-3
TOUT SCIIPES .ovvitiii s 5-4
SHEE o 5-4
Lane—Road OF AISle........ccouiuiiiiiiiiiiii s 5-4
SRULLLE ..o 5-5
SIGNAL .. 5-5
CATZ0. ittt 5-6

UL FIAMEWOTK ...ttt 5-7
Default UL CONLIG......cceuiiiiiiiiiiiiciciiceicece e 5-7
ULSCIIPE oottt 5-7
Bean Model and Bean............ccioiiiiiiiiiiiiic s 5-8
OHRET <.t 5-9
InternationalizZation ... 5-9
CoNAUIt SCIIPS ..ottt e 5-9
PLAF .o 5-10
REPOTES ..ttt 5-10
Creating new receipts (BPT and SER)........cccoooiiiiiiiiii 5-10
Alternate Bean Creation (SER)........ccociviriirierienieieieieeeeeee et sreste e ssesessesessessesnssensens 5-11

Using Person.java to Create a Receipt ... 5-12

Domain Package ..o s 5-14

Retail DOMAINcoviiiiiiiiiiicicceceec et 5-14
DomainObjectFaCtOry........ociviiiieiiiiicie s 5-14
Retail Domain Object (RDO)cccceiiiiiiiiiiiiiiiiiciiiiiiic s 5-14

DAtabaSsEvviiiiiiiicce s 5-15
Data Manager and Technician Scriptsccoooioiiiiiiiiiii 5-15
Data Actions and Operations............ccccccuceiciiiiiiiiiiiiiiceeee s 5-15
Data Transactions. ... 5-16

Back Office, Central Office and Labels and Tags Extension Guidelines

ATUAIEIICE ...ttt ettt e et et et e e st e e st essesseessesaeessesseesseassesseessenseaneenseensesseensesseensenneensenseens 6-1
APPLCAtion Layersccccoviviiiiiiiiiiiiii s 6-2
USET INEEITACE ...ttt ettt ettt ettt e e te e ateebeeaeebeesaebeeabesseesseeseessenseessenseeneas 6-2
APPLCAION MANAZEToviuimiiiiieieieieieicteeiee ettt et 6-2
COIMIMETCE SEIVICE....ecuieiieiieeteetierieete st eteseetesteesbesteesesteesseeseessesseessesssessesssassasssenseessensenssensesssassensees 6-3

vii

viii

EIEIEY o 6-3
Data ACCeSS ODJECESc.ciiiiiiiiiiiiiiiic s 6-3
|21 o V=TSRRI 6-3
Extension and Customization SCENATIOS............ccoecviiiiiiiitiiiiicieteeeee et ae e 6-3
Style and Appearance Changescccccvueuririiieiriririeiceeeeeeereeeeee e 6-3
Additional Information Presented t0 USETccccveviirieriieieniieieieeeeste ettt vesseesesse s ees 6-4
Changes to Application FIOWcccoiiiiiiiiiiiiiiiiii s 6-4
Access Data From a Different Database..........ccocevveieieieieieinenesisiesiesiesteeeeseseeseesessessessessessesses 6-5
Access Data From External System ..o, 6-6
Change an Algorithm Used By @ Service...........ooorueioiiiiiiniiicccc 6-7
Extension Strategies ... 6-8
Extension With INNETItANCEccceeieviiriieiececceeee ettt sttt et se s e ereeaesaeesaeseeas 6-11
Replacement of Implementation ... 6-13
Service Extension with COMPOSIHIONcccciuiuimimiiiiiiiiiiciccccceee s 6-13
Data Extension Through CompOSItion ... 6-16

Returns Management Extension Guidelines

Element Location and Schema Definition.........c..coooviiiiiiiiiiiiiiieicceeeeeee et 7-1
Element Usage and Retrieval ... 7-2

Coding Your First Back Office or Central Office Feature

Before You Begin ... 8-1
Extending Transaction Search............cccococooiiiiiiii 8-1
Item Quantity Example in Central Office.........ccoooouemiiiiiiiiiiii e, 8-1
Search by Login ID in Back Office ..o 8-2
Web UI Framework in Central OffiCecocovrirriiiiiinniiin e 8-2
Create @ NEW JSP £l . ..ottt sttt sttt 8-2
Add Strings to Properties Files ... 8-3
Configure the sideINav Tile ... 8-3
Web Ul Framework in Back Office.........cccooiviiiiiiiiiine 8-5
Modify the JSP Flec.couiiiiiiiiiiiiiiiiiiic e 8-5
Externalize SErNESccccoviiiiiiiiccceece e 8-7
ACHON MAPPING «vevvetiiiiieteice ettt s 8-7
ACHON FOTTN .. e 8-7
Action MOIfiCatiON......c.ccuiuiuiuiiiiiiiiiccieicie e 8-8
Configure Action Mapping in Central Officecccoooouiiiiiiiii e, 8-9
Add Code to Handle New Fields to Search Transaction Form...........cccccccceciiiiiiiinnnnns 8-9
Create a Struts ACtion Classc.ccoiiiiiiiiiiiciccecceee e enenees 8-11
Add Method to Base Class..........cccoueeiiiiiiiiiniiiiiiiic s 8-11
Application Services in Back Office.........ccccccciiiiiiiiiiiiiiiicces 8-12
Verify Application Manager Implementation in Central Office...........cccccoeeueciiciciincnnnnne. 8-12
Commerce Services in Back Office ..o 8-13
Add Business Logic to Commerce Service in Central Office...........cccccovviinireiiniiiiiinincnan, 8-13
Create a Class to Create the Criteria ODJect ... 8-13
Add New Criteria to the Service........ccooviiiiiiiiiiiiiic 8-13
Handle SQL Code Changes in the Service Beanccooevviiiiiniiinincce 8-14

9 Frameworks

FIAMEWOTKSoceoiiiiiiiiiecceeceee ettt ettt sttt s et e s e e aeebe e beess e b e essebeessasseessesseessesrsensesssensanseans 9-1
Manager/ TEChINICIANc.ccuiiiiiiiiiccccceee ettt 9-1
USET INEEITACEteeevetieieteeteeteee sttt ettt ete e s esa e b e esa e beesaesbeessessaesseseessensanseensesssessenneas 9-2
BUSINESS ODJECLviiiiiiiiiiiii s 9-3
DAt PerSISTEIICE. ... euvieeieiieeieie ettt ettt ettt este et e st estesreesse s s eesessaessesssenseaseenseessensennnensennsas 9-4
TOUT ettt ettt st et e st e et e e s et e e be e abe s st e e sbesas e e stessseensaesabe e seensseenstenaseensaesnsaensaenns 9-5

TOUINAP ..ottt 9-6

10 Manager/Technician Framework

11

New Manager/Techniciancccocoviiviiiiiiii s 10-3
MaANAGET CLASScviviiiiniiiiiiii s 10-3
Manager Configuration.............ouiiieiiiiiiic e 10-4
Technician Classcccuiiiiiiiiiiiiiii s 10-4
Technician CONfIGUIAIONc.cuiuiuiuiuiiiiiiiiieiicceee e 10-5
Valet CLass ..o s 10-6
SAMPLE COAE ... 10-6

CONFIGUIATION ..ottt es 10-6
TOUL COAE ..o 10-6
IMANAZET ...ttt s 10-7
VAlet oo s 10-8
TeChNICIAN ..o 10-8

Manager/Technician Reference ... 10-9
Parameter Manager/TeChnicCiancccccccceueiririiiirniniiiirrcccrre s 10-9
UI Manager/Technician.........cccooiieiiiiiiiiiiii s 10-10
Journal Manager/Techniciancccccoviiiiiniiiiini e 10-12
Internationalizing EJournal MESSAZESccccururiiimiiiiiiiiiiccciceciccieeeceeeenene e enenes 10-12

Internationalizing Static TeXts..........coovieieiiiiiiiicc 10-13
Internationalizing Transaction Dataccoceuoiieiiiiiiic 10-13
Database Data...........coooouiiiiiiiiiiii e 10-13
Data Retrieved from Java CONStANTS........ccceeirieirieririeieieeeieeeieteeeteieeeeeeeeeseeeseeeens 10-13
Concatenated SErINGS.........cccvuviviiiiiiiiiiiiiiii e 10-13
DateTime and Currency Data.........cooovvrveiiiininnniiiccccccccccceceeenenes 10-13
Internationalization of Data Modification Event Messagesccocoevvvviniiiiiiinnnnns 10-14
Persisting EJournal in UTE8 formatcccccocoeiiiiiiiiiiiiiiiicicccciccececeenes 10-14
Retrieve EJournal from Point-0f-SEIVICecoeeieeiririiniiiniiriesieieieeeeseeeresesesaessesesnens 10-15
Display EJournal from Central Office........cccoooueiiiiiiiiiniiiiiicccc 10-15
User Interface Framework

SCI@EIIS ...c..ciiiiiiii e 11-2

BeANS ...t 11-4
PromptANdRESPONSEBEANc.oiuiiiiiiiiiiccccce s 11-4

Bean Properties and Text Bundle ..o 11-4
TOUL COE ..ttt 11-6
DataInputBean.........ccccoiiiiiiiiiiiii s 11-7
Bean Properties and Text Bundle ... 11-7

12

13

B U o @e Yo <IN 11-8

NavigationButtonBean ... 11-9
Bean Properties and Text Bundle ... 11-9
LocalNavigationPanel.............cooiiiiiiiiiii e 11-9
GlobalNavigationPanel...........c.ccouoiiiiiiiii s 11-10

TOUT COAE ..t 11-11
DialogBeaN ..o 11-12
Bean Properties and Text Bundle ..o 11-12

TOUT COAE ..t 11-12

FAELA TYPES oottt 11-14
Multi-byte Support For Input Fieldscoooioiiii 11-15

Ul Framework Architecture for Input Fields........cccccccoeviiiiiiiiiiccceee 11-15
Updating MaxLength and Size of Multi-byte Fields ..o 11-16
Allowing or Disallowing Ul Fields to Accept UTF8 Characters..........cccccoovereueieinnnne. 11-18
CONNECHONS ...ttt a et a s r s a e nreais 11-19
Clear ActioNLIStENeTccoviiiiiiiiiiiiciii 11-19
DocumeNtLIStENeTc.ciiiiiiiiec e 11-20
Validate ACtiONLIStENETcoiviiiiiiiiiicic e 11-20
Text BUNALES ... 11-20
PATAMELEITOXE . .ceieieeiie e 11-21

Oracle Retail Tour Framework

Tour COMPONENESc.coiiiiiiitcc st s e 12-1
TOUL METAPROT. ...t 12-1
Service and Service ReZION ..ot 12-3
BUS ettt et a et b e st s h e et b e et b et e bt et e sbeebesaeeaeshean 12-3
CATZO0 it 12-3
SHEES ettt ettt ettt h bbbt b e b bbbt e e et et et e bt eb e e bt ebeebeebenbententen 12-4
SYSEEIM SIS, s 12-4
OIS, ettt bbbttt b e bbb bbb e aen 12-5
ROGAS .ttt et s h bbbt ettt st a et e b e bbbt naen 12-5
COMIMON ROAAS ...ttt ettt st et et et e e esaeseeseeseeseesessessensan 12-6
AATSIES .ttt b e e bt a et st h e bttt be b et be e be e ene 12-6
Stations and ShULIES.c..couiiiiiii e sttt 12-7
SIGNALS ... s 12-8
EXCeption ReGION........c.ociiiiiiiiiiiiiiiii s 12-9

ROIE Of JAVA CLASSESc.coveiiuiiiiiiiiiieiinteerieerteertetrt ettt sttt et re st s b e sa e e ae st naenen 12-9

TOUT CAIM ...ttt ettt ettt et e e et e s bt et e s st et e sbeenbe s st e beebeente s tenteeaeenteestensesatensesnean 12-10
ATETIDULES ..ttt st bbbttt b e 12-11
Letter PrOCESSINGc.cveviviiiieiiiii st 12-14
Cargo ResStOration.........cccvviiiiiiiiiiiiiicc e 12-14

Tender TOUr REfETENCe.........ccooiiiiiiiiiiiriiece ettt sttt ettt et sbe e be e 12-14

Point-of-Service COMMEXT Framework

Point-of-Service Connector FrameWOTIK...........cocoovooviiioriiieeee et 13-1
BaseManager/BaseTechnicianccceeiiiiiiiiiiininiiiiiiii s 13-2
ServiceManager /ServiceTechnician..........ccciiiiiiiiiiiiiiicc s 13-2

MessageDiSpatCher ..o 13-2

MeSSAZEROULET ...t 13-2
ROUtErCONNECLOT ...t s 13-2
CONNECEOTIEC ...ttt s 13-2
FOrmatterIfc... ..o 13-2
ROUHNGRUIEIEC. ...t 13-2
MESSAGEILCeeeiee 13-3
MessageReSPONSEILC ... 13-3
Message ROULNEcooiiiiiiiiiiiiiii s 13-3
COMNECLOTSooviiniiiiii ettt ne 13-4
COMMEXT Patterns to Support Interaction Behavior ..., 13-5
Store and FOrWardc.cccciiiiiiiiiiccreee e 13-5
Attempt, Store and Forward on Failure...........cccoooiiiiiiiiicc 13-6

14 Oracle Retail Returns Management Extensibility Framework

Adding a New Rule........cooiiiiiiiiiiiii s 14-1
Adding a New KPI Calculatorccccooviviiiiiiiiiiiiniiiiii s 14-6
The Calculator Classccveveieieieieieiiresesestestete ettt e ete s eresseesesbessessessessessessesseseassesessessessenses 14-7
Database Configurationccceiiiiiiiiinii e 14-10
Creating the JSP ... 14-13

15 Retail Domain

New Domain ODbjJect ... 15-2
Domain Object in Tour Code ... 15-3
Domain Object Reference............cccccoeiiiiiiiiiiiiiiiiiiiiiiicccc s 15-4
COAELISIIMAP .ottt 15-4
CUITEIICY vttt n s 15-7
TTANSACHION ..ottt s 15-8

16 Extending Intra Store Data Distribution

Intra Store Data Distribution Extensibility............ccooooiiiiiiii, 16-1
Adding New Table To Existing DataSet..........c.cccccovvivviiiiniiiiiiinnccnninces 16-1
Adding More Tables To Existing DataSet TYPescccovvvurrrrrirrrrrrrrrreceeeceees 16-1
Adding a Table to an Existing Data Set Using the Stores Build Scripts..........c.cccocuen 16-2
Adding a New DataSetcccccciiiiiiiiiiiiiiiiiic s 16-2
Adding a New DataSet Using the Stores Build Scripts.........cccocoeeucicicccciicciniccennes 16-3
Configuring Schedule for DataSet Producer and Consumer ..., 16-3
Configure DataSet ProdUCETcccccceiiiiiiiiiiiiiiiiiicccs 16-3
Configure DataSet CONSUITIETccocuiuiuiiiiiiiieiiiiieiecieeeieeeie et seeees 16-4
Adding New DataSet TYPe.........cooviiiiiiiiiiiiiiiic s 16-5
Adding a New DataSet Type Using the Stores Build Scripts..........ccocoeeveiniiiieiiicnnnnn 16-10
Changing Oracle Retail Point-of-Service Client Database Vendor............cccccoeeeveiiinnccncae. 16-10

A Appendix: Third-Party Jars
PABP/PCI Compliance Warning.............ccccocoeiviviiiiiiiiniiiiniiccsessneeessssssessssesenens A-1

xi

Set Up the BUuild TIEe.......c.coveiiiiiriiiiciricirctrcctctetete ettt sttt sa e A-1

Set Up the Build ENvironment...............cccocoooiiiiiiiiiiiiiccceseeneeenenennen A-30

Set Up the Build Environment for LinUX...........ccccoeoiiiiiiiiiniiieceeceeeeneeenecneeenenees A-30

Understanding the Environment Files ..o A-30

Perform the Build ... s A-31

Deploy in Application Server ... A-31

Extend the Build with NeW Projects..........cccoooiiiiiiiiiiiiiiccccc e A-31
Index

Xii

List of Examples

3-1
3-2
3-3
34
3-5
3-6
3—7

LLLL UL L L L LEELELL

ONOOOTA~WN-—=O

© 00 00 00 00 00 0O 00 00 0O 00 OO 00 0O O 0o

Header Sample ... e 3-2
Wrapping Code in a Code Guard............cccovviiiiiiniiiiiiiis 3-10
Switching Graphics Contexts via a Logging Level Test ..., 3-10
JUIUE ettt ettt et et ettt e teeteeteeteete et et et et et et et easeaserseaeeteeteeteeteetaerenes 3-12
INEEWOTK TOSE ittt ettt et ettt e e vt e ae et e eaveeteeeteeebeeeteseareeneeenssenssenseeenras 3-13
Network Test with Shortened Try Blockcooiiiiiiiiii 3-14
Wrapped EXCEPLIONcccciiiiiiiiiiiiiiiic s 3-14
Declaring an EXCEPHIONcouiviiiieiiccie s 3-14
Clean Up First, then Rethrow EXception..........cccccceuviiniiiiniiiiiniiiccccccens 3-15
Using a Switch to Execute Code Specific to an Exception ..., 3-15
Using Multiple Catch Blocks Causes Duplicate Code..........cccccovuiiiiiiiiiniiiiiiiiiiiiinnen, 3-15
posfoundation.properties: Adding new Tour Maps ..o 5-3
MBStourmap.xml: Replacing one tour SCript ... 5-4
MBStourmap.xml: Replacing a siteactioncccccveiuiiiiiiiiiiiiiiiies 5-4
MBStourmap.xml: Replacing a laneaction ... 5-5
MBStourmap.xml: Replacing or Extending a shuttle ... 5-5
MBStender.xml: Tender tour script with customized signal...........cccccoeviiiiinninnn. 5-6
tourmap_CA.xml: Replacing @ Cargo........cccoeueueiiurieiiiiicicie e 5-6
ClientConduit.xml: Conduit script modified to use custom Ul configuration file............ 5-7
MBSdefaultuicfg.xml: Customized Default UI Configuration Filec.cccccooviiniii 5-8
MBStenderuicfg. xml: Tender Ul Configuration with Customized Bean Reference.......... 5-8
MBSDefaultDataTechnician.xml: Customizing a Data Operationccccccooereinne. 5-15
ClientConduit.xml: Customizing the Data Techniciancccococovvviinnnnnnnnnn, 5-15
MBSDataTransactionKeys.java: Adding Strings ... 5-16
domain.properties: Sample Modified and New Data Transactions.............cccccevueueiennnnn. 5-16
Message EXLENSION ..ot s 7-1
XML Message Using The MessageEXtensioncccocecrieiicniciciciccecceeie 7-2
Searching The MessageExtension Elementscccccccovviiiiinninnin, 7-2
transaction_tracker.xml: SideNav Option List and Roles..........ccccccceovviiiiiiiniiinninnns 8-4
Example Definition Tags for tiles-transaction_tracker.xml............ccccoceviiiniiinnnnnns 8-4
EmployeeSearch.jsp Modifications ... 8-5
Action Definition from struts-employee_actions.xmlcccccoviiiiiiiiniiiiiiic 8-7
Action Form Definition from struts-employee_forms.xml.......c.c.cccoooiiiiinnn 8-7
Modifications to SearchEmployeeAction.java........cccceeeeurueiiicicieeiiccieeece e 8-8
Struts Action Configuration for Item Quantity ... 8-9
INEW INSANCE FHELAS.ocuviiviicieeeeece ettt ettt e ete e e e eeteeeraeeetesenaeeseennes e 8-9
Getter and Setter Methods for New Instance FieldS.......cccccoevevievieieniciiieceecieeeeeee, 8-10
Code to Add to Validate Methodcouiiouiiiiiieiiieeeeeee ettt 8-10
New Validation Methodccviovioiiieeeeeieeeee ettt ettt et aeereeens 8-11
Call a New Method to Get Item Quantity Criteriacocoeeievveiiniiiiciiiceeccei 8-11
getLineltemQuantityCriteria Method Implementationccccccccceiiiiiiiciinicicnnee. 8-11
EmployeeManagerIfc.java ... 8-12
SearchCIiteria javacocociiiiiiiiiiiiiiiciciicc s 8-13
addToFromClause() Methodc.coeviueriiiiniriinininieeiice ettt 8-15
addToWhereClause() Method..........ccoueireirieireniniiinieerteeretsee ettt 8-15
setBindVariables() Methodcccoeireiriiiniiiicncc e 8-16
SamMPle TOUIINAP ..ot 9-6
CollapsedConduitFF.xml: Data Manager Configuration...........c.cccecevvvvvnnnnninnenennnes 10-4
CollapsedConduitFF.xml: Tax Technician Configuration...........c.cccccecevviiiiivniinnnnnnes 10-5
Sample Manager and Technician Configurationcccceeieiiiiiciiiieiicenen, 10-6
Sample Manager in Tour Code.........cccooiiiiiiiiniiiiiiic s 10-6
Sample Manager Class ... s 10-7
Sample Valet CLass........cccciiiiiiiiiicc s 10-8
Sample Technician Class..........ccccceiuiiiiiiiiiiiiiiiii s 10-8

xiii

Xiv

10-8
10-9
10-10
10-11
10-12
10-13
10-14
10-15
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
11-10
11-11
11-12
11-13
11-14
11-15

11-16
11-17
11-18
11-19
11-20
11-21
11-22
11-23
11-24
11-25
11-26
11-27
11-28
11-29
121

12-2

12-3

12-4

12-5

12-6

127

12-8

12-9

12-10
12—-11
1212
12-13
12-14
12-15
12-16
12-17

ClientConduit.xml: Code to Configure Parameter Managercceoueeeueueiiiinicieinnns 10-9

ClientConduit.xml: Code to Configure Parameter Technician...........cccccocoovviiiinnnnnnes 10-10
BrowserControlSite.java: Tour Code Using ParameterManagerlfccccccooeeenee 10-10
ClientConduit.xml: Code to Configure UL Managercccocevvuvvivininininniinnninnnns 10-10
ClientConduit.xml: Code to Configure Ul Technician...........c.cccoooeveininirciiiiincicnnne 10-11
GetCheckInfoSite.java: Tour Code Using POSUIManagerlfcc.coooeveiiririiiinnnnen 10-12
ClientConduit.xml: Code to Configure Journal Manager...........c.cococoeueueiiriciiiniinciennnns 10-12
ClientConduit.xml: Code to Configure Journal Techniciancccooeiiiiiiininn. 10-12
alterationsuicfg.xml: Overlay Screen Definitionccoeueviiieiiiiiiii 11-4
defaultuicfg.xml: Bean Specification Using PromptAndResponseBean 11-5
tenderuicfg.xml: PromptAndResponseBean Property Definition..........ccccceeevivivnennen. 11-5
tenderText_en.properties: PromptAndResponseBean Text Bundle Example................. 11-6
ModifyltemQuantitySite java: Creating and Displaying PromptAndResponseModel 11-6
ItemQuantityModified Aisle java: Retrieving Data From PromptAndResponseModel 11-7
manageruicfg.xml: Bean Specification Using DatalnputBean...........c.ccccccoviiiiiinninn 11-7
managerText_en.properties: DataInputBean Text Bundle Example..........c.ccccccevevennennn. 11-8
SelectParamStoreSite. java: Creating and Displaying DatalnputBeanModel.................. 11-8
StoreParamGroupAisle.java: Retrieving Data from DatalnputBeanModel.................... 11-9
customeruicfg.xml: Bean Specification Using NavigationButtonBean 11-9
customerText_en.properties: NavigationButtonBean Text Bundle Example 11-10
defaultuicfg.xml: Bean Specification Using GlobalNavigationButtonBean 11-10
tenderuicfg.xml: GlobalNavigationButtonBean Property Definitions............cc.cccco....... 11-10

CustomerSearchOptionsSite. java: Creating and Displaying NavigationButtonBeanModel...
11-11

commonuicfg.xml: Bean Specification Using DialogBeanccccccooevvviniiiiiiniinnns 11-12
InquirySlipPrintAisle.java: DialogBean Label Definition ..o 11-12
dialogText_en.properties: DialogBean Text Bundle Example..........ccccccccevvviiiininnnnne. 11-12
LookupStoreCreditSite java: Creating and Displaying DialogBeanModel................... 11-13
DatalnputBean.java Classcccoviiiiiiiiiiiiiiiciiiiiec s 11-15
CUSOMETUICEE XML ... 11-16
tender.xml: ClearActionListener XML tagcccccocoeeueiiiniiiiiiieiecc e 11-19
tender.xml: DocumentListener XML tag...........ccocoeeuiiiiiiiiiiniiiieeicccc 11-20
tender.xml: ValidateActionListener XML tag.........ccccoooveiiiniiriiiiiiiccc 11-20
tenderuicfg.xml: ValidateActionListener Required Fieldsc.cccooooeeiiiiiiiinnn, 11-20
parameteruicfg.xml: Overlay Specification Using parameterTextccccccevrvnnrnee 11-21
GiftCardUtility java: Tour Code to Retrieve Parameter..........ccooovviiiiiiiiiiiicinnna 11-21
parameterText_en.properties: Text Bundle............ccccoouvviviinniine, 11-21
application.xml: Definition of Parametercccooveiiiiiiieiiiniiie 11-21
tender.xml: Definition of Service and Service Regionccccoeeiiniiniiiiiiiics 12-3
tender.xml: Definition of Cargocooeeueviicieiiiiic 12-3
tourmap.xml: Example of Overriding Cargo Classcccoeeuviirieiniiniciciicccnc 12-4
tender.xml: Definition of Site Class.........cccceceeiiiiiiiiiiiiiiiiiccc 12-4
tender.xml: Mapping of Site to SiteACHONcccoevivivieiiiiiiiecccc 12-4
tourmap.xml: Overriding Siteaction With Tourmap........c.ccccecevviiiiiinniiiiiiinn 12-4
tender.xml: Definition of System Sites..........c.cocoiiiiiiiiiniiiicic 12-4
tender.xml: Definition of Letter ... 12-5
tender.xml: Definition of Road Classccccecvviiininiiiiniiiiicnis 12-5
tourmap.xml: Example of Overriding Site Laneaction...........c.ccccceeeeiiniiiiicinenennnn, 12-6
Example of Common Road.........ccoiiiiiiiiiiiiiiiiii s 12-6
tender.xml: Definition of Aisle Classcccccuviiiiiiiniiiiiiies 12-6
tender.xml: Mapping of Aisle to Site ... 12-7
tourmap.xml: Example of Overriding Aisle Laneaction..........ccccccvivvviiininiincinnnns 12-7
tender.xml: Definition of Shuttle Class..........cccccoiiiiniiiiiiiiiies 12-7
tender.xml: Mapping of Station to Service and Shuttle Classes.............cccooovvviiiniinninnns 12-7
tourmap.xml: Example of Mapping Servicenameococovieviviiinininininniniinennnns 12-8

12-18
12-19
12-20
12-21
12-22
12-23
12-24
15-1
15-2
15-3
154
15-5
15-6
15—7
15-8
15-9
16-1
16-2
16-3
16-4
16-5

tourmap.xml: Example of Overriding Shuttle Name.ccccccooeveiiiiiiiiiiinn, 12-8

tender.xml: Definition of Traffic Signal.........cccoooiiiii 12-8
tender.xml: Signal Processing With Negate Tagcccccooeviiiriniiciiiiie, 12-8
tender.xml: Definition of toUICamcccoeveviiiiiiiiii 12-11
tender.xml: Definition of Road With TourCam Attributes............cccccoovvvnnnnnnnnnnne 12-11
GiftReceiptCargo.java: TourCamlfc Implementation...........cccocooviiiiiiiiniiiiiinnnns 12-14
Sample Backupshuttle Definition..........cccocovviiiiiiiiicn 12-14
TenderPurchaseOrderlfcjava: Class Header ..., 15-2
TenderPurchaseOrder.java: Class Header ..o 15-2
DomainObjectFactorylfc.java: Method For Instantiating TenderPurchaseOrder 15-3
DomainObjectFactory.java: Method For Instantiating TenderPurchaseOrder............... 15-3
GetCheckInfoSite.java: Instantiating Check from DomainObjectFactory 15-4
TenderCheckADO java: Setting Attributes of Checkcccoovvvviiiiiiiiiiii 15-4
ItemInfoEnteredAisle java: CodeListlfc in Tour Code.........ccccouvviviinininiiiiiiiiinns 15-6
AmountEnteredAisle.java: Currencylfc in Tour Code........ccccovviniiiiiiinnniiniiiinnns 15-8
JdbcSaveTenderLineltems.java: SaleReturnTransactionIfc in Tour Code....................... 15-9
Adding Table Association To Employee DataSetccccocoevvvviiiiiiiiiiiiiinn, 16-1
Adding New DataSet ..o 16-5
Adding Table association to New DataSet...........cccccccovviviiiiiiniiiiiic 16-5
DataSetProducer Code..........ooiiiiiiiiiiiiiiiiiiii s 16-6
DataSetConsumer COde..........ooviiiiiiiiiiiiiiiee s 16-7

XV

XVi

List of Figures

6-1
6-2
6-3
6-4
6-5
6-6
6—7

APPLication Layers........couieuiiiiiici e 6-2
Managing Additional Information.............ccccoeiiiiiiiiii 6-4
Changing Application FIOW ... 6-5
Accessing Data from a Different Database...........ccccccooiiiiniiinniniii, 6-6
Accessing Data from an External System...........c.ooooiiiiiiiiiiiicc 6-7
APPLCAtioN Layers......ccccovviiiiiiiiiiiiiiiiiiiii s 6-8
Sample Classes for Extension—Entity Bean ... 6-9
Sample Classes for Extension—DAO ... 6-10
Extension with Inheritance: Class Diagram—Entity Bean ..o 6-11
Extension with Inheritance: Class Diagram—DAO..........ccccoooiiiiiiiiii 6-12
Replacement of Implementation.............cccccviiiiiiiiiiiiiniii 6-13
Extension with Composition: Class Diagram—Entity Bean ... 6-14
Extension with Composition: Class Diagram—DAO..........ccccccvviivnniiinnniiinne, 6-15
Extension COMPOSItIONceoiviiiiiiuiiiiticcee s 6-16
Data Extension through CompoSition ..o, 6-17
Data Extension Through Composition: Class Diagram—Entity Bean............................. 6-18
Data Extension Through Composition: Class Diagram—DAO..........ccccceviiiiiinnnen. 6-19
Item Quantity Criteria JSP Page MOCK-UPcccccevvviiinininiiiiiiicicccns 8-3
Employee Search SCreen ... 8-5
Modified Employee Search Screem............oooooiiiiiiiiiiiicc e 8-6
Manager/Technician Framework ... 9-1
UL FLAMEWOTK ..ottt ettt ettt et e e eve et e e veeeaeeeaaeeeteeetaeentesesseeseeesseeseenseeans 9-2
Business Object Framework ... 9-4
Data Persistence FIrameWOTKo.iiiuiiiiiiiiieeieccie ettt ettt eeteeeveeeveeeaseeensenseeens 9-5
Manager, Technician and Valet ... 10-1
Workflow Example: Tender with Credit Card Option.........cccccevvivviinninnnniinnnne 12-16
COMMEXT OVEIVIEW ...eeeuveiieeeeee et et et eee et eetteeeveeeteeeveeeaseeseesteseseeesessaseeesseesesessenseeennas 13-1
Message Routing Details............cooouiiiiiiiii 13-3
Message Routing SEqUENCEcccueveieiiiiiiiiiiii 13-4
Connector Hierarchy Example..........ccccccoviiiiiiiiiiiiiiicees 13-5
Store and Forward Operations in COMMEXT ..o 13-6
Attempt, Store and Forward on Failure in COMMEXTccccccocoiiiinniiiiiiiinen, 13-7
Example Rule Configuration SCreencccccvvieiiiiiiiiiiiiiiiiccceeees 14-5
Example Customer KPI SCIeencccovviviiiiiiiiiiniiiiiiiiiiccc e 14-13
Example Customer KPI Screen, continuedcccccevviiininiicneinicceeccecces 14-14
Example Customer KPI Screen, continuedccccocvivivivnnninnnnnincinccae 14-15
Example Customer KPI Screen, continuedccccoeviviiinininnnnninncnccaes 14-18
Loading CodeList / CodeText on Demandccccccccceuiuiiiiiiiniiiiiiiiicicecceeees 15-6
Currency Class DIagram..........ccccciuiiiiiiiiiiiiiiiiiiiiee s 15-7

xvii

List of Tables

xviii

21
3-1
3-2
3-3
3-4
3-5
4-1
4-2
4-3
4-4
5-1
7-1
91
9-2
9-3
10-1
10-2
10-3
10-4
10-5
10-6
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
11-10
11-11
11-12
11-13
11-14
11-15
121
12-2
12-3
12-4
12-5
12-6
12-7
141
14-2
14-3
14-4
151
15-2
15-3

Point-of-Service Installation Options..........cccceeveiiiiiniiiniiiiiiiic 2-3
Common Java Bugs.......c.ooeeuiiiic 3-2
Naming CONVENTIONSccveiiiiiiieieieiiecie et 3-4
DB2 SQL COdE PrODIEIMNSccuvieeiiiieiieiieieieeteie ettt ete et teeeesessaessesseesesssessessaessesssessenseans 3-5
Oracle SQL COde ProDIEIMIScccuieieiiiieieeieeieeiesieeeereetteteseeseeaessesseessesssessessaessesssessesssans 3-6
Common ANtiPatterns ... 3-7
Tour Naming CONVENtioNS.ccocuiuiiiieiiiiiitcie et 4-2
SRULELES ..ot s 4-7
Log Message Level......... 4-8
Time Stamp FIeldsoooiiiiiiiii s 4-8
Required Modules in Dependency Order ... 5-2
MessageExtension Locations..........ccceeiiiiiieiiiiiiiiiii 7-1
UI Framework COMPONENtS.........ccovveviiiiiiiiiiiiiiiiiiicns s 9-3
Business Object Framework Components............cocoovviviniiiiiniiiiiicccccccnnn 9-4
Data Persistence Framework Components...........cccceeeeieieiiiiiinicnis 9-5
Manager/Technician Type Examples..........cccooeiiiiiiiiiinii e, 10-2
Manager Names and Descriptions...........cc.ciieieiiiiiieiiiiciciec e 10-2
ManagerIfc Methods...........ccoouoiiiiii 10-3
TechnicianIfc Methods ..o 10-5
Valetlfc Method........ciiiiiiiiiiiiii e 10-6
Important POSUIManagerlfc Methods ..o 10-11
UL Framework FEAtUuresccovviiiiiiiiiiiiiccccccc 11-1
UI Framework COMPONENtS.........cccovveviiiiiiiiiiiiiiiiiic e 11-2
DiSPIAY TYPES .evviieit s 11-2
Template TYPESccviviiiiiiiiiiicicccc s 11-3
Default SCreen TYPeS.........cvveuiiiiiieic 11-3
PromptAndResponseBean Property Names and Values...........cccccoovviinninnne. 11-5
PromptAndResponseModel Important Methodscccoeeeeiiiiiiniiie, 11-6
DatalnputBean Property Names and Values...........ccccocovvvninnnnnne, 11-7
DatalnputBeanModel Important Methods ..., 11-8
GlobalNavigationButtonBean Property Names and Values............cccccooriiiinnnnan. 11-10
NavigationButtonBeanModel Important Methods...........ccccooriiiiiiii 11-11
DialogBeanModel Important Methods...........c.ccoiiiiiiiiiiic 11-13
DHAlog TYPES ...cuiviieecite e 11-13
BUttON TYPES...oviiiii s 11-14
Field Types and Descriptions.........cccceeueviiiiiiiiiiiiiiniiiiicccn, 11-14
Metaphor COMPONENLSc.ceviiiiiiiiiiiiiiiiic s 12-2
Component Identification Strategies ... 12-2
System-called Methods ... 12-10
Road Tag Element Attributes..........cooviiuiioiiiiiiec e, 12-12
Forward TourCam Settingscccoeviiieiiiiiiciec e 12-13
Backup Tour Cam Settingscouoeeieiiiiicieiicc s 12-13
Tender Package COMPONENLS..........cc.oviuiuiiiiiiiiciiec it 12-15
RIVI_RU COIUMIIS .ttt ettt et eee e et s seaae s senaeesenaesssnaasssnnessenneessenneessnseeans 14-4
RIVL_KPT COIUINIIS . vttt et e e e e et e s enta e s saaeesnaeesentessenanessnnees 14-10
KPITYPE FIags......cooviiiiiiieiei ettt 14-11
RM_KPI_PRMR COIUINNS. ...viiiiiiieieiieieceeee ettt et eeteeeeeaveeeeneesssaaesseseeesanesssaveessnneesnnnes 14-12
CodeListMap Object Classes and Interfaces............c.cccoceevviieiiiniiiiininne, 15-5
Currency Object Classes and Interfaces............cccouoerieiiiiiciciiii e, 15-7
Transaction Object Classes ... 15-8

Send Us Your Comments

Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions,
Release 13.4

Oracle welcomes customers' comments and suggestions on the quality and usefulness
of this document.

Your feedback is important, and helps us to best meet your needs as a user of our
products. For example:

= Are the implementation steps correct and complete?

= Did you understand the context of the procedures?

= Did you find any errors in the information?

= Does the structure of the information help you with your tasks?

= Do you need different information or graphics? If so, where, and in what format?
= Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell
us your name, the name of the company who has licensed our products, the title and
part number of the documentation and the chapter, section, and page number (if
available).

Note: Before sending us your comments, you might like to check
that you have the latest version of the document and if any concerns
are already addressed. To do this, access the new Applications Release
Online Documentation CD available on My Oracle Support and
www.oracle.com. It contains the most current Documentation Library
plus all documents revised or released recently.

Send your comments to us using the electronic mail address: retail-doc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number
(optional).

If you need assistance with Oracle software, then please contact your support
representative or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your
Oracle local office and inquire about our Oracle University offerings. A list of Oracle
offices is available on our Web site at www . oracle.com.

Xix

XX

Audience

Preface

Oracle Retail POS Suite Extension Solutions contain the requirements and procedures
that are necessary for the retailer to extend Back Office, Central Office, Labels and
Tags, Returns Management, and Point-of-Service.

The audience for this document is developers who develop code for Oracle Retail Back
Office, Central Office, Labels and Tags, Returns Management, and Point-of-Service.
Knowledge of the following techniques is required:

= Java Programming Language
= Object-Oriented Design Methodology (OOD)
= Extensible Markup Language (XML)

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents

For more information, see the following Release 13.4 documentation sets or Oracle
Retail Returns Management Release 2.4 documentation set:

» Oracle Retail Back Office documentation set

» Oracle Retail Central Office documentation set

» Oracle Retail Point-of-Service documentation set
» Oracle Retail POS Suite documentation set

s Oracle Retail Returns Management documentation set

XXi

Customer Support

To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com

When contacting Customer Support, please provide the following:

= Product version and program/module name

= Functional and technical description of the problem (include business impact)
= Detailed step-by-step instructions to re-create

= Exact error message received

» Screen shots of each step you take

Review Patch Documentation

When you install the application for the first time, you install either a base release (for
example, 13.4) or a later patch release (for example, 13.4.1). If you are installing the
base release or additional patches, read the documentation for all releases that have
occurred since the base release before you begin installation. Documentation for patch
releases can contain critical information related to the base release, as well as
information about code changes since the base release.

Improved Process for Oracle Retail Documentation Corrections

To more quickly address critical corrections to Oracle Retail documentation content,
Oracle Retail documentation may be republished whenever a critical correction is
needed. For critical corrections, the republication of an Oracle Retail document may at
times not be attached to a numbered software release; instead, the Oracle Retail
document will simply be replaced on the Oracle Technology Network Web site, or, in
the case of Data Models, to the applicable My Oracle Support Documentation
container where they reside.

This process will prevent delays in making critical corrections available to customers.
For the customer, it means that before you begin installation, you must verify that you
have the most recent version of the Oracle Retail documentation set. Oracle Retail
documentation is available on the Oracle Technology Network at the following URL:

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.ht
ml

An updated version of the applicable Oracle Retail document is indicated by Oracle
part number, as well as print date (month and year). An updated version uses the
same part number, with a higher-numbered suffix. For example, part number
E123456-02 is an updated version of a document with part number E123456-01.

If a more recent version of a document is available, that version supersedes all
previous versions.

Oracle Retail Documentation on the Oracle Technology Network

XXii

Documentation is packaged with each Oracle Retail product release. Oracle Retail
product documentation is also available on the following web site:

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.ht
ml

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html
http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html
http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html
http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

(Data Model documents are not available through Oracle Technology Network. These
documents are packaged with released code, or you can obtain them through My
Oracle Support.)

Documentation should be available on this web site within a month after a product
release.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xXiii

XXiv

1

Extracting Source Code

Much of this guide deals with the structure and function of Oracle Retail Back Office
code, and how you can modify and extend it to serve the needs of your organization.

The source code is downloadable in a .zip file.

This .zip files contain the following:

File Name

Comments

cmnotes.txt

Configuration Management notes. Describe how to set up
and build the source.

<application>-<release_number>_source.zip The application source, where <application> is:

= ORBO (Back Office)

= ORCO (Central Office)

= ORPOS (Point-of-Service)

= ORLAT (Labels and Tags)

= ORRM (Returns Management)

ORSSS-<release_number>_data_model.zip Data Model (database schema) documentation.

README html

Release Notes.

Using pkzip, WinZip or similar utilities, you can extract <application>-<release_
number> onto your local hard disk. Choose the option to preserve the directory
structure when you extract. All the source files are placed into the following directory:

<Path to disk root>/<application>-<release_number>_source

From this point on, this directory is referred to as:

<BO_SRC_ROOT> for Back Office.
<CO_SRC_ROOT> for Central Office.
<POS_SRC_ROOT> for Point-of-Service.
<LAT_SRC_ROOT> for Labels and Tags.

<RM_SRC_ROOT> for Returns Management.

The following is the first-level directory structure under the directory:

Directory Comments
applications Contains application-specific code for applications.
build Files used to compile, assemble and run functional tests.

Extracting Source Code 1-1

Directory Comments

clientinterfaces Interface definitions, between different code modules.

commerceservices Commerce Services code.

DIMP Includes XSD and XML files used to map data import.

installer Files used by the installer.

modules A collection of various code modules some of which are
the foundation for Commerce Services. The utility module
contains SQL files used for database creation and
pre-loading.

thirdparty Executable (mostly jar files) from third-party providers.

webapp Web-based user interface code. Also contains the

Application Managers.

In subsequent chapters, all pathnames of a code file are made relative to one of these
directories. You must prepend the directory name (for example, <source_directory>) to
the file path,to get its actual location on disk.

1-2 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

2

Development Environments

Back Office and Central Office Development Environment

This chapter describes how to set up a single-user development environment for
Oracle Retail Back Office or Central Office. The setup enumerates the files, tools, and
resources necessary to build and run the Back Office or Central Office application.

When you complete the steps in this chapter, you will have a local development
workspace with the ability to build the application, and an application server
installation to which you can deploy the Back Office or Central Office application.

This chapter assumes that you are using WebLogic Application Server and the Oracle
database; together, they form the officially supported platform for the current release
of Back Office or Central Office.

Your development environment may use different tools, and you may develop
variations on this procedure. Specific property file settings, in particular, may need to
be modified in your environment.

For more information about product versions, see the Oracle Retail Back Office
Installation Guide or Oracle Retail Central Office Installation Guide.

Using the Apache Ant Build Tool

Oracle Retail uses the Apache Ant build tool to compile and build executable products
from source. Ant uses build information defined in various build.xml files, which in
turn read from properties files. Each top-level directory in the product’s source
contains a build.xml file that specifies a variety of targets, or build tasks, for use by
Ant.

Since each code module depends on other modules, the top-level build directory has a
build.xml file which contains targets designed to build the entire system. You can
build modules individually if you built them in the correct dependency order.

Properties files (such as build.properties) contain values that are used by Ant when it
processes tasks. Individual properties can exist in multiple files. The first setting
processed by Ant is the one that is used; properties are like constants which cannot be
changed once set.

If your system does not already have Ant, you can use the version shipped with Back
Office or Central Office located at:

<source_directory>\thirdparty\apache\ant\1.8.0

Development Environments 2-1

Back Office and Central Office Development Environment

Note: Make sure that the Ant bin directory is included in your
workstation’s PATH.

Prerequisites for the Development Environment

The following software resources must be installed and configured before you set up
the Back Office or Central Office development environment as described in the next
section. Where a software version is specified, use only the specified version.

The Back Office or Central Office source code, on a local (or network) hard disk.
See Chapter 1, "Extracting Source Code" for details on how to extract the code.

A database server and database. You should have access to the database server;
you need its connection URL, user name and password. Depending on your
organization’s preferences, you may need to install the database server yourself,
get a qualified database administrator to install it for you, or you may access a
database server installed on another machine. The instructions in this chapter
work for a local or remote database.

JDK 1.6 Update 23 or later.

Downloads and instructions are available at
http://www.oracle.com/technetwork/java/javase/downloads/index
.html.

The JAVA_HOME environment variable needs to be set in your operating system
and the $JAVA_HOME%\bin directory needs to be added to the path.

Install WebLogic Application Server

Install WebLogic Application Server (WL) under any directory you choose. Follow the
instructions that come with the Application Server product. This chapter refers to this
directory as <WL_ROOT>.

Build the Back Office or Central Office Application
Do the following to build the Back Office or Central Office application:

1.
2.

CD to the Back Office or Central Office build directory.

Edit setenv.sh (or setenv.bat on Windows). Make sure that ANT_HOME is set
correctly for your system.

Execute setenv.sh (or setenv.bat).

Run the following;:

ant -Denv=centraloffice clean.build.assemble

This command will take several minutes to execute. If successful, it puts the
J2EE-compatible .ear file in
applications/<application>/assemble/assemble.working.dir/<app

lication>.ear, where <application> is either backoffice or
centraloffice.

Obtain the installer in install/dist/<application>-<release_number>.zip,
where <application> is either ORBO or ORCO.

Run the installer. See the Oracle Retail Back Office Installation Guide or the Oracle
Retail Central Office Installation Guide for more information.

2-2 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Point-of-Service Development Environment

Point-of-Service Development Environment

Preparation

Setup

A development environment for Point-of-Service includes all files, tools and resources
necessary to build and run the Point-of-Service application. While development
environments may vary depending on the choice of IDE, database, and version control
system, configuration of the development environment involves some common steps.
This document addresses components that various development environments have in
common.

The following software resources must be installed and configured before the
Point-of-Service development environment can be set up. Ensure that the following are
in place:

Version control system
The Point-of-Service source code must be available from a source control system.

OracleRetailStore database
The OracleRetailStore database should be installed.

Eclipse version 3.0 or another IDE
If installing Eclipse, downloads and instructions are available from
http://www.eclipse.org/downloads/.

JDK 1.6 Update 23 or later

Downloads and instructions are available at
http://www.oracle.com/technetwork/java/javase/downloads/index.ht
ml.

Setting up the development environment requires installing the Point-of-Service
application, populating the database, creating a sandbox, configuring the IDE, and
configuring the version control system.

Install Point-of-Service

Install Point-of-Service using the installation script. While running the Point-of-Service
installation script, accept the default options even when nothing is selected, except for
the options discussed in the following table.

Table 2-1 lists some Point-of-Service installation options.

Table 2-1 Point-of-Service Installation Options

Option

Instruction

Tier Type

Choose the Tier Type from the following options.

Client and Store Server—Choose both of these options to run client and server
components on the same machine in separate JVMs.

Database Information Specify the database type and its location. The default on the Oracle stack is Oracle

Database 11gR2 Enterprise Edition 11.2.0.2 (64-bit). The default on the IBM stack is
IBM DB2 9.7 (64-bit) from WRS 7.1 Standard Edition.

JRE Location

Location where the JRE is installed.

Development Environments 2-3

http://www.eclipse.org/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Point-of-Service Development Environment

Build the Database

Open a command prompt in the Point-of-Service installer directory and use the
following command-lines:

» Toreset the store database: install.cmd ant install-database
» To reset the scratchpad database: install.cmd ant install-scratchpad

s Toresetboth: install.cmd ant install-database
install-scratchpad

The install-database command uses the settings in the ant.install.properties file, so the
dataset specified by the input.install.database property is loaded. The values can be:

= no -no action taken
= schema - only install the schema, no data
= minimum - schema and minimum required data

= sample — schema, minimum, and sample data

Note: If the same installer directory is used for installing the
Point-of-Service client, the ant.install.properties file is overwritten
with the new settings. Then the ant.install.properties file cannot be
used for building the database.

To reset the scratchpad database, the ant.install.properties file needs to have the
scratchpad database information as well as input.install.scratchpad.database set to
true.

Create a Sandbox

If you plan to retrieve all the source code with the version control system, create a local
sandbox with only one directory such as the following;:

C:\mySandbox\

Configure the Version Control System

Each file from the source code repository should be retrieved to the proper location in
your sandbox. To do this, set the workfile location of the root of each of the product
components displayed in the version control system. Each workfile location should be
set to the local sandbox. For example, if your sandbox is named C:\mySandbox, the
root of the product components should point to C:\mySandbox.

Run Point-of-Service

To verify the setup, run the Point-of-Service application using the following steps:
1. Start the OracleRetailStore database.

2, Build the project.

3. Run Point-of-Service from the IDE.

2-4 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

3

General Development Standards

The following standards have been adopted by Oracle Retail product and service
development teams. These standards are intended to reduce bugs and increase the
quality of the code. The chapter covers basic standards, architectural issues, and
common frameworks. These guidelines apply to all Oracle Retail applications.

Basics

Note: See the Oracle Retail POS Suite Security Guide for more
information about specific security features and implementation
guidelines for the POS Suite products.

The guidelines in this section cover common coding issues and standards.

Java Recommendations

The following are guidelines for what to avoid when writing Java code.

Do use polymorphism.

Do have only one return statement per function or method; make it the last
statement.

Do use constants instead of literal values when possible.
Do import only the classes necessary instead of using wildcards.
Do define constants at the top of the class instead of inside a method.

Do keep methods small, so that they can be viewed on a single screen without
scrolling.

Do not have an empty catch block. This destroys an exception from further down
the line that might include information necessary for debugging.

Do not concatenate strings. Oracle Retail products tend to be string-intensive and
string concatenation is an expensive operation. Use StringBuilder instead.

Do not use function calls inside looping conditionals (for example, while (i
<=name.len())). This calls the function with each iteration of the loop and can
affect performance.

Do not use a static array of strings.
Do not use public attributes.

Do not use a switch to make a call based on the object type.

General Development Standards 3-1

Basics

Avoiding Common Java Bugs

The following fatal Java bugs are not found at compile time and are not easily found at
runtime. These bugs can be avoided by following the recommendations in the
following table.

Table 3-1 lists some fatal Java bugs and their preventative measures.

Table 3-1 Common Java Bugs

Bug Preventative Measure
null pointer exception Check for null before using an object returned by another method.
boundary checking Check the validity of values returned by other methods before using them.

array index out of bounds When using a value as a subscript to access an array element directly, first verify that

the value is within the bounds of the array.

incorrect cast

When casting an object, use instanceof to ensure that the object is of that type before
attempting the cast.

Formatting

3-2 Oracle Retail

Follow these formatting standards to ensure consistency with existing code.

» Indenting/braces—Indent all code blocks with four spaces (not tabs). Put the
opening brace on its own line following the control statement and in the same
column. Statements within the block are indented. Closing brace is on its own line
and in same column as the opening brace. Follow control statements (if, while, and
so on) with a code block with braces, even when the code block is only one line
long.

s Line wrapping—If line breaks are in a parameter list, line up the beginning of the
second line with the first parameter on the first line. Lines should not exceed 120
characters.

= Spacing—Include a space on both sides of binary operators. Do not use a space
with unary operators. Do not use spaces around parenthesis. Include a blank line
before a code block.

s Deprecation—Whenever you deprecate a method or class from an existing release
is deprecated, mark it as deprecated, noting the release in which it was deprecated,
and what methods or classes should be used in place of the deprecated items;
these records facilitate later code cleanup.

» Header—The file header should include the tag for revision and log history.

Example 3—1 Header Sample

* Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.

* SHeader:$

* el el ey
* NOTES

* <other useful comments, qualifications, etc.>

*

* MODIFIED (MM/DD/YY)

*

username 01/04/10 - update header date

package oracle.retail.stores.samples;

POS Suite Implementation Guide — Volume 2, Extension Solutions

Basics

Javadoc

// Import only what is used and organize from lowest layer to highest.
import com.ibm.math.BigDecimal;
import oracle.retail.stores.common.utility.Util;

/**

This class is a sample class. Its purpose is to illustrate proper
formatting.
@version S$Revision$

public class Sample extends AbstractSample
implements Samplelfc

{

// revision number supplied by configuration management tool
public static String revisionNumber = "$Revision$";

// This is a sample data member.

// Use protected access since someone may need to extend your code.
// Initializing the data is encouraged.

protected String sampleData = "";

/**
Constructs Sample object.
Include the name of the parameter and its type in the javadoc.
@param initialData String used to initialize the Sample.

*'k/
[=
public Sample(String initialData)
{
sampleData = initialData;
// Declare variables outside the loop
int length = sampleData.length();
BigDecimal[] numberList = new BigDecimal[length];
// Precede code blocks with blank line and pertinent comment
for (int i = 0; 1 < length; i++)
{
// Sample wrapping line.
numberList[i] = someInheritedMethodWithALongName (Util.I_BIG_DECIMAL_
ONE,
sampleData,
length - 1);
}
}

Make code comments conform to Javadoc standards.

Include a comment for every code block.

Document every method’s parameters and return codes, and include a brief

statement as to the method’s purpose.

General Development Standards 3-3

Basics

Naming Conventions

Names should not use abbreviations except when they are widely accepted within the
domain (such as the customer abbreviation, which is used extensively to distinguish

customized code from product code).

Table 3-2 lists some additional naming conventions.

Table 3-2 Naming Conventions

Element

Description

Example

Package Names

Package names are entirely lower
case and should conform to the

documented packaging standards.

oracle.retail.stores.packagename

com.mbs.packagname

Class Names

Mixed case, starting with a capital
letter.

Exception classes end in
Exception; interface classes end in
Ifc; unit tests append Test to the
name of the tested class.

DatabaseException
DatabaseExceptionTest

FoundationScreenlfc

File Names File names are the same as the DatabaseException.java
name of the class.
Method Names Method names are mixed case, isEmpty()
starting with a lowercase letter. .
Method names are an action verb, hasChildren()
where possible. Boolean-valued getAttempt()
methods should read like a setName()
question, with the verb first.
Accessor functions use the
prefixes get or set.
Attribute Names Attribute names are mixed case, lineltemCount
starting with a lowercase letter.
Constants Constants (static final variables) final static int NORMAL_SIZE = 400
are named using all uppercase
letters and underscores.
EJBs—entity Use these conventions for entity =~ TransactionBean
beans, where “Transaction’ is a Transactionlfc
name that describes the entity.
TransactionLocal
TransactionLocalHome
TransactionRemote
TransactionHome
EJBs—session Use these conventions for session TransactionService
beans, where “Transaction’ is a TransactionAdapter
name that describes the session. p
TransactionManager

SQL Guidelines

The following general guidelines apply when creating SQL code:

= Keep SQL code out of client/UI modules. Such components should not interact
with the database directly.

= Table and column names must be no longer than 18 characters.

3-4 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Basics

s Comply with ARTS specifications for new tables and columns. If you are creating
something not currently specified by ARTS, strive to follow the ARTS naming
conventions and guidelines.

s Document and describe every object, providing both descriptions and default
values so that we can maintain an up-to-date data model.

s Consult your data architect when designing new tables and columns.

s Whenever possible, avoid vendor-specific extensions and strive for SQL-92
compliance with your SQL.

= While database-specific extensions are common in the code base, do not introduce
currently unused extensions, because they must be ported to the DataFilters and
JdbcHelpers for other databases.

= All SQL commands should be uppercase because the DataFilters currently only
handle uppercase.

» If database-specific code is used in the source, move it into the JdbcHelpers.
= AllJDBC operations classes must be thread-safe.

Do the following to avoid errors:

= Pay close attention when cutting and pasting SQL.

= Always place a carriage return at the end of the file.

s Test your SQL before committing.

The subsections that follow describe guidelines for specific database environments.

DB2
Table 3-3 shows examples of potential problems in DB2 SQL code.

Table 3-3 DB2 SQL Code Problems

Problem

Problem Code

Corrected Code

Do not use quoted integers or

unquoted char and varchar values;
these cause DB2 to produce errors.

CREATE TABLE BLAH
(
FIELD1 INTEGER,
FIELD2 CHAR(4)
)i
INSERT INTO BLAH (FIELDI1,
FIELD2) VALUES ('5', 1020);

CREATE TABLE BLAH
(
FIELD1 INTEGER,
FIELD2 CHAR(4)
)
INSERT INTO BLAH (FIELDI,
VALUES (5, '1020');

FIELD2)

Do not try to declare a field default

as NULL.

CREATE TABLE BLAH
(
FIELD1 INTEGER NULL,
FIELD2 CHAR(4) NOT NULL
)i

CREATE TABLE BLAH

(

FIELD1 INTEGER,

FIELD2 CHAR(4) NOT NULL
)i

Oracle

Table 3-4 provides some examples of common syntax problems which cause Oracle
to produce errors.

General Development Standards 3-5

Architecture and Design Guidelines

Table 3—-4 Oracle SQL Code Problems

Problem

Problem Code

Corrected Code

Blank line in code block

causes error.

CREATE TABLE BLAH

(
FIELDl INTEGER,
FIELD2 VARCHAR(20)

)i

CREATE TABLE BLAH

(

FIELDl1 INTEGER,
FIELD2 VARCHAR(20)
)i

When using NOT NULL ~ CREATE TABLE BLAH CREATE TABLE BLAH
with a default value, NOT (
NULL must follow the FIELD] INTEGER NOT NULL DEFAULT FIELDl INTEGER DEFAULT 0 NOT NULL,
DEFAULT statement. 0, FIELD2 VARCHAR (20)
FIELD2 VARCHAR(20))
)i
In a CREATE or INSERT, CREATE TABLE BLAH CREATE TABLE BLAH

do not place a comma after (

the last item.

FIELDl INTEGER,
FIELD2 VARCHAR(20),
)i

(

FIELDl1 INTEGER,
FIELD2 VARCHAR(20)
)i

Unit Testing

For details on how to implement unit testing, see separate guidelines on the topic.

Some general notes apply:

= DBreak large methods into smaller, testable units.

= Although unit testing may be difficult for tour scripts, apply it for Java
components within Point-of-Service code.

s If you add a new item to the codebase, make sure your unit tests prove that the

new item can be extended.

= In unit tests, directly create the data/preconditions necessary for the test (in a
setup() method) and remove them afterwards (in a teardown() method). JUnit
expects to use these standard methods in running tests.

Architecture and Design Guidelines

This section provides guidelines for making design decisions which are intended to

AntiPatterns

promote a robust architecture.

An AntiPattern is a common solution to a problem which results in negative
consequences. The name contrasts with the concept of a pattern, a successful solution

to a common problem.

Table 3-5 identifies AntiPatterns which introduce bugs and reduce the quality of code.

3-6 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Architecture and Design Guidelines

Table 3-5 Common AntiPatterns

Pattern

Description

Solution

Reinvent the Wheel

Sometimes code is developed in
an unnecessarily unique way
that leads to errors, prolonged
debugging time and more
difficult maintenance.

The analysis process for new features
provides awareness of existing solutions
for similar functionality so that you can
determine the best solution.

There must be a compelling reason to
choose a new design when a proven design
exists. During development, a similar
pattern should be followed in which
existing, proven solutions are implemented
before new solutions.

Copy-and-paste Programming,
classes

When code needs to be reused, it
is sometimes copied and pasted
instead of using a better method.
For example, when a whole class
is copied to a new class when the
new class could have extended
the original class. Another
example is when a method is
being overridden and the code
from the super class is copied
and pasted instead of calling the
method in the super class.

Use object-oriented techniques when
available instead of copying code.

Copy-and-paste Programming,
XML

A new element (such as a Site
class or an Overlay XML tag) can
be started by copying and
pasting a similar existing
element. Bugs are created when
one or more pieces are not
updated for the new element.
For example, a new screen might
have the screen name or prompt
text for the old screen.

If you copy an existing element to create a
new element, manually verify each piece of
the element to ensure that it is correct for
the new element.

Project Mismanagement/
Common Understanding

A lack of common
understanding between
managers, Business Analysts,
Quality Assurance and
developers can lead to missed
functionality, incorrect
functionality and a
larger-than-necessary number of
defects. An example of this is
when code does not match
requirements, including details
like maximum length of fields
and dialog message text.

Read the requirement before you code. If
there is disagreement with content, raise an
issue with the Product Manager. Before you
consider code for the requirement finished,
all issues must be resolved and the code
must match the requirements.

Stovepipe

Multiple systems within an
enterprise are designed
independently. The lack of
commonality prevents reuse and
inhibits interoperability between
systems. For example, a change
to till reconcile in Back Office
may not consider the impact on
Point-of-Service. Another
example is a making change to a
field in the Oracle Retail
database for a Back Office
feature without handling
Point-of-Service effects.

Coordinate technologies across
applications at several levels. Define basic
standards in infrastructures for the suite of
products. Only mission-specific functions
should be created independently of the
other applications within the suite.

General Development Standards 3-7

Common Frameworks

Designing for Extension

This section defines how to code product features so that they may be easily extended.

Note: See the Oracle Retail POS Suite Security Guide for more
information about specific security features and implementation
guidelines for the POS Suite products.

= Separate external constants such as database table and column names, JMS queue
names, port numbers from the rest of the code. Store them in (in order of
preference):

- Configuration files
- Deployment descriptors
— Constant classes/interfaces

= Make sure the SQL code included in a component does not touch tables not
directly owned by that component.

= Make sure there is some separation from DTO and ViewBean type classes so we
have abstraction between the service and the presentation.

= Consider designing so that any fine grained operation within the larger context of
a coarse grain operation can be factored out in a separate “algorithm” class, so that
it can be replaced without reworking the entire activity flow of the larger
operation.

Common Frameworks

This section provides guidelines which are common to the Oracle Retail POS Suite
applications.

Internationalization

Internationalization is the process of creating software that can be translated easily.
Changes to the code are not specific to any particular market. Oracle Retail POS Suite
has been internationalized to support multiple languages. This section describes
configuration settings and features of the software that ensure that the base
application can handle multiple languages.

Note: For Oracle Retail Returns Management, the only language
currently supported is United States English.

Returns Management supports date/time formats for US, UK and
Canada.

Note: For Oracle Retail Returns Management, all dates and times
stored and retrieved reflect the server time and timezone (not the
browser time or Point-of-Return client time).

3-8 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Common Frameworks

Logging

Translation
Translation is the process of interpreting and adapting text from one language into
another. Although the code itself is not translated, components of the application that
are translated may include the following, among others:

Graphical user interface (GUI)

Error messages

The following components are not usually translated:

Documentation (for example, Online Help, Release Notes, Installation Guide, User

Guide, Operations Guide)

Batch programs and messages

Log files
Configuration Tools
Reports

Demo data

Training Materials

The user interface for Oracle Retail POS Suite has been translated into:

Chinese (Simplified)
Chinese (Traditional)
Croatian

Dutch

French

German

Greek

Hungarian

Italian

Japanese

Korean

Polish

Portuguese (Brazilian)
Russian

Spanish

Swedish

Turkish

Oracle Retail POS Suite applications use Log4] for logging. When writing log

commands, use the following guidelines:

General Development Standards 3-9

Common Frameworks

s Use calls to Log4] rather than System.out from the beginning of your
development. Unlike System.out, Log4] calls are naturally written to a file, and can
be suppressed when desired.

= Log exceptions where you catch them, unless you are going to rethrow them. This
is preserves the context of the exceptions and helps reduce duplicate exception
reporting.

= Use the correct logging level:
- FATAL—<crashing exceptions
- ERROR-—nonfatal, unhandled exceptions (there should be few of these)
- INFO—life cycle/heartbeat information
- DEBUG—information for debugging purposes

The following sections provide additional information on guarding code, when to log,
and how to write log messages.

Guarding Code

Testing shows that logging takes up very little of a system’s CPU resources. However,
if a single call to your formatter is abnormally expensive (stack traces, database access,
network IO, large data manipulations, and so forth), you can use Boolean methods
provided in the Logger class for each level to determine whether you have that level
(or better) currently enabled; Jakarta calls this a code guard:

Example 3-2 Wrapping Code in a Code Guard

if (log.isDebugEnabled()) {
log.debug (MassiveSlowStringGenerator () .message());
}

An interesting use of code guards, however, is to enable debug-only code, instead of
using a DEBUG flag. Using Log4] to maintain this functionality lets you adjust it at
runtime by manipulating Log4] configurations.

For instance, you can use code guards to simply switch graphics contexts in your
custom swing component:

Example 3-3 Switching Graphics Contexts via a Logging Level Test

protected void paintComponent (Graphics g) {

if (log.isDebugEnabled()) {
g = new DebugGraphics(g, this);
}

g.drawString("foo", 0, 0);

When to Log

There are three main cases for logging:
= Exceptions—Should be logged at an error or fatal level.

= Heartbeat/Life cycle—For monitoring the application; helps to make unseen
events clear. Use the info level for these events.

3-10 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Common Frameworks

s Debug—Code is usually littered with these when you are first trying to get a class
to run. If you use System.out, you have to go back later and remove them to keep.
With Log4], you can simply raise the log level. Furthermore, if problems pop up in
the field, you can lower the logging level and access them.

Writing Log Messages

When Log4] is being used, any log message might be seen by a user, so the messages
should be written with users in mind. Cute, cryptic, or rude messages are
inappropriate. The following sections provide additional guidelines for specific types
of log messages.

Exception Messages

A log message should have enough information to give the user a good shot at
understanding and fixing the problem. Poor logging messages say something opaque
like “load failed.”

Take this piece of code:

try {
File file = new File(fileName);
Document doc = builder.parse(file);

NodeList nl = doc.getElementsByTagName ("molecule");
for (int i = 0; i < nl.getLength(); i++) {

Node node = nl.item(1i);

// something here

}

} catch {
// see below

}

and these two ways of logging exceptions:

} catch (Exception e){
log.debug ("Could not load XML");
}

} catch (IOException e){

log.error ("Problem reading file " + fileName, e);
} catch (DOMException e){

log.error ("Error parsing XML in file " + fileName, e);
} catch (SAXException e){

log.error ("Error parsing XML in file " + fileName, e);

}

In the first case, you'll get an error that just tells you something went wrong. In the
second case, you're given slightly more context around the error, in that you know if
you can't find it, load it, or parse it, and you're given that key piece of data: the file
name.

The log lets you augment the message in the exception itself. Ideally, with the
messages, the stack trace, and type of exception, you'll have enough to be able to
reproduce the problem at debug time. Given that, the message can be reasonably
verbose.

General Development Standards 3-11

Common Frameworks

For instance, the fail() method in JUnit really just throws an exception, and whatever
message you pass to it is in effect logging. It’s useful to construct messages that
contain a great deal of information about what you are looking for:

Example 3—4 JUnit
if (! list.contains(testObj)) {

StringBuffer buf = new StringBuffer();
buf.append("Could not find object " + testObj + " in list.\n");
buf.append("List contains: ");
for (int i = 0; 1 < list.size(); i++) {

if (1 > 0) {

buf.append(",");
}
buf.append(list.get(i));

}
fail (buf.toString());

Heartbeat or Life Cycle Messages

The log message here should succinctly display what portion of the life cycle is
occurring (login, request, loading, etc.) and what apparatus is doing it (is it a particular
EJB are there multiple servers running, etc.)

These message should be fairly terse, since you expect them to be running all the time.

Debug Messages

Debug statements are going to be your first insight into a problem with the running
code, so having enough, of the right kind, is important.

These statements are usually either of an intra-method-life cycle variety:

log.debug ("Loading file");

File file = new File(fileName);
log.debug("loaded. Parsing...");
Document doc = builder.parse(file);
log.debug("Creating objects");

for (int i ...

or of the variable-inspection variety:

log.debug("File name is " + fileName);

log.debug("root is null: " + (root == null));
log.debug("object is at index " + list.indexOf (obj));

Exception Handling

The key guidelines for exception handling are:
» Handle the exceptions that you can (File Not Found, etc.)
» Fail fast if you can’t handle an exception

= Log every exception with Log4], even when first writing the class, unless you are
rethrowing the exception

s Include enough information in the log message to give the user or developer a
fighting chance at knowing what went wrong

3-12 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Common Frameworks

= Nest the original exception if you rethrow one

Types of Exceptions
The EJB specification divides exceptions into the following categories:

JVM Exceptions

You cannot recover from these; when one is thrown, it’s because the JVM has entered a
kernel panic state that the application cannot be expected to recover from. A common
example is an Out of Memory error.

System Exceptions

Similar to JVM exceptions, these are generally, though not always, “non-recoverable”
exceptions. In the commons-logging parlance, these are “unexpected” exceptions. The
canonical example here is NullPointerException. The idea is that if a value is null,
often you don't know what you should do. If you can simply report back to your
calling method that you got a null value, do that. If you cannot gracefully recover, say
from an IndexOutOfBoundsException, treat as a system exception and fail fast.

Application Exceptions

These are the expected exceptions, usually defined by specific application domains. It
is useful to think of these in terms of recoverability. A FileNotFoundException is
sometimes easy to rectify by simply asking the user for another file name. But
something that's application specific, like [JDOMException, may still not be
recoverable. The application can recognize that the XML it is receiving is malformed,
but it may still not be able to do anything about it.

Avoid java.lang.Exception

Avoid throwing the generic Exception; choose a more specific (but standard)
exception.

Avoid Custom Exceptions

Custom exceptions are rarely needed. The specific type of exception thrown is rarely
important; do not create a custom exception if there is a problem with the formatting
of a string (ApplicationFormattingException) instead of reusing

Illegal ArgumentException.

The best case for writing a custom exception is if you can provide additional
information to the caller which is useful for recovering from the exception or fixing the
problem. For example, the JPOSExceptions can report problems with the physical
device. An XML exception could have line number information embedded in it,
allowing the user to easily detect where the problem is. Or, you could subclass
NullPointer with a little debugging magic to tell the user what method of variable is
null.

Catching Exceptions
The following sections provide guidelines on catching exceptions.

Keep the Try Block Short The following example, from a networking testing application,
shows a loop that was expected to require approximately 30 seconds to execute (since
it calls sleep(3000) ten times):

Example 3-5 Network Test
for (int 1 = 0; 1 < 10; i++) {

try {

General Development Standards 3-13

Common Frameworks

System.out.println("Thread " + Thread.currentThread().getName() + "
requesting number " + 1);

URLConnection con = myUrl.openConnection();
con.getContent () ;
Thread.sleep(3000);

} catch (Exception e) {
log.error ("Error getting connection or content", e);

}

}

The initial expectation was for this loop to take approximately 30 seconds, since the
sleep(3000) would be called ten times. Suppose, however, that con.getContent() throws
an IOException. The loop then skips the sleep() call entirely, finishing in 6 seconds. A
better way to write this is to move the sleep() call outside of the try block, ensuring
that it is executed:

Example 3-6 Network Test with Shortened Try Block

for (int 1 = 0; 1 < 10; i++) {

try {
System.out.println("Thread " + Thread.currentThread().getName() + "
requesting number " + 1i);
URLConnection con = myUrl.openConnection();
con.getContent () ;
} catch (Exception e) {
log.error ("Error getting connection or content", e);
}
Thread.sleep(3000);
}

Avoid Throwing New Exceptions When you catch an exception, then throw a new one in
its place, you replace the context of where it was thrown with the context of where it
was caught.

A slightly better way is to throw a wrapped exception:

Example 3—7 Wrapped Exception

1 try {

2 Class k1l = Class.forName(firstClass);
3 Class k2 = Class.forName (secondClass) ;
4: Object ol = kl.newInstance();

5: Object 02 = k2.newInstance();

6

7 } catch (Exception e) {

8 throw new MyApplicationException(e);

9 }

However, the onus is still on the user to call getCause() to see what the real cause was.
This makes most sense in an RMI type environment, where you need to tunnel an
exception back to the calling methods.

The better way than throwing a wrapped exception is to simply declare that your
method throws the exception, and let the caller figure it out:

Example 3-8 Declaring an Exception

public void buildClasses(String firstName, String secondName)

3-14 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Common Frameworks

throws InstantiationException, ... {

Class k1l = Class.forName(firstClass);
Class k2 = Class.forName (secondClass) ;
Object ol = kl.newInstance();
Object 02 = k2.newInstance();

}

However, there may be times when you want to deal with some cleanup code and
then rethrow an exception:

Example 3-9 Clean Up First, then Rethrow Exception

try {
someOperation () ;
} catch (Exception e) {
someCleanUp () ;
throw e;

}

Catching Specific Exceptions There are various exceptions for a reason: so you can
precisely identify what happened by the type of exception thrown. If you just catch
Exception (rather than, say, ClassCastException), you hide information from the user.
On the other hand, methods should not generally try to catch every type of exception.
The rule of thumb is the related to the fail-fast/recover rule: catch as many different
exceptions as you are going to handle.

Favor a Switch over Code Duplication The syntax of try and catch makes code reuse
difficult, especially if you try to catch at a granular level. If you want to execute some
code specific to a certain exception, and some code in common, you're left with either
duplicating the code in two catch blocks, or using a switch-like procedure. The
switch-like procedure, shown below, is preferred because it avoids code duplication:

Example 3—-10 Using a Switch to Execute Code Specific to an Exception

try{
// some code here that throws Exceptions...
} catch (Exception e) {
if (e instanceof LegalException) {
callPolice((LegalException) e);
} else if (e instanceof ReactorException) {
shutdownReactor () ;
}
logException(e) ;
mailException(e);
haltPlant (e);
}

This example is preferred, in these relatively rare cases, to using multiple catch blocks:

Example 3—-11 Using Multiple Catch Blocks Causes Duplicate Code

try{
// some code here that throws Exceptions...
} catch (LegalException e) {
callPolice(e);
logException(e);
mailException(e);
haltPlant (e);

General Development Standards 3-15

Common Frameworks

} catch (ReactorException e) {
shutdownReactor () ;
logException(e);
mailException(e);
haltPlant (e);

}

Exceptions tend to be the backwater of the code; requiring a maintenance developer,
even yourself, to remember to update the duplicate sections of separate catch blocks is

a recipe for future errors.

3-16 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

4

Point-of-Service Development Standards

The following standards specific to the Point-of-Service architecture have been
adopted by Oracle Retail product and service development teams. These standards are
intended to reduce bugs and increase the quality of the code.

Note: See the Oracle Retail POS Suite Security Guide for more
information about specific security features and implementation
guidelines for the POS Suite products.

Screen Design and User Interface Guidelines

Avoid creating new screen beans and screen models for every new screen. Look for
ways to reuse existing or generic beans, such as the Data Input Bean, to avoid
complicating the code base.

Tour Framework

This section includes general guidelines as well as subsections on specific tour
components.

For more information, see Chapter 12, "Oracle Retail Tour Framework".

Tour Architectural Guidelines

Consult these guidelines when making architecture decisions in tour framework
designs.

= Services—When designing services, consider their size and reusability. Services
that are overlarge create additional work when a portion must be extended.

s Utility Manager—Put methods used by multiple services in this manager so they
can be easily extended.

» If the reusable behavior contains flow-dependent behavior, then it is best
implemented as a Site and the Site action can be reused within a Service or across
Services.

s Large bodies of reusable behavior can be implemented as Managers and
Technicians. This pattern is especially useful if the user might offload the
processing to a separate CPU.

Point-of-Service Development Standards 4-1

Tour Framework

General Tour Guidelines

Code that uses bus resources must reside in a Site action, Lane action, Signal or
Shuttle.

Never mail a letter from a Road. This causes unpredictable results.

Never define local data in a Site, Aisle, Road or Signal. Local data is not
guaranteed when processing across multiple tiers. Sites and Lanes must be
stateless. This is the purpose of Cargo.

Traffic Signals should not modify Cargo. Signals should only be used to evaluate a
condition as true or false. Anything else is a side effect, reducing the
maintainability of the system.

Never implement just one Signal. Always implement Signals when there is more
than one Road that responds to the same letter, or when there is an Aisle and a
Road that respond to the same letter. See Signals.

Send letters at the end of methods. If the choice of which letter to send depends on
conditions which occur during the method, store the method name and mail it at
the end of the method.

Do not mail letters from depart() and undo() in Sites, backup() and traverse() in
Roads, roadClear() in Signals, and load() and unload() in Shuttles. Letters can be
mailed from traverse() in Aisles.

Define Shuttles in the calling Service package. If they are reusable Shuttles, define
them in a common package.

Table 4-1 provides naming conventions for Tour components.

Table 4-1 Tour Naming Conventions

Element

Description Example

Service

description of the related functionality Login

Site element

VerbNoun—indicating the action taking place EnterID
at the Site

Site class

The same as the Site name, with Site as a suffix EnterIDSite.java

Road element

NounVerb—indicating the event that caused IDEntered
the Road to be taken

Road class

The same as the Road name, with Road as a IDEnteredRoad.java
suffix

Aisle element

NounVerb- indicating the event that caused PasswordEntered
the Aisle to be taken

Aisle class The same as the Aisle name, with Aisle as a PasswordEntered Aisle.java
suffix
Cargo ServiceNameCargo LoginCargo.java

4-2 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Tour Framework

Table 4-1 (Cont.) Tour Naming Conventions

Element Description Example
Letter One word action name indicating the event; = Success
see list defined in commonLetterIfc.java . Failure
= Continue
= Next
= Cancel
= OK
= Retry
s Invalid
= Add
= Yes
= No
= Undo
s Done
Transfer Station element NestedServiceNameStation FindCustomerStation
Shuttle class NestedServiceNameLaunchShuttle FindCustomerLaunchShuttle java
NestedServiceNameReturnShuttle FindCustomerReturnShuttle java
Traffic Signal class IsCondition.java-indicating the condition IsAuthRequiredSignal.java

being tested

Foundation

The best reuse in the Foundation engine takes place at the Service level. Sites
require extra thought because they can affect flow. Lane actions can be reused
without flow implications. Signals and Shuttles are very well suited to reuse
especially when interfaces are developed for accessing Cargo.

If validation and database lookup are coded in Aisles, they may be good
candidates for reuse in several Sites as well as in multiple Services.

All component pieces need to be designed with care for reuse: they must be
context insensitive or must do a lot of checking to make sure that the managers
they access exist for the bus that is active, the Cargo contains the data they need,
etc.

Trying to maximize reuse can result in confusing code with too many discrete
parts. If the reusable unit consists of one or two lines of code, consider whether
there is sufficient payoff in reusing the unit of code. If the code contains a complex
calculation that is subject to change over time, then isolating this logic in one place
may be well worth the effort.

Tours and Services

There is often a one-to-one mapping between a Use Case and a Service. The
Service should provide the best opportunity for reuse. If you design for reuse, it
should be focused at the Service level. This is where you get your best return on
investment.

Maintenance is a matter of choosing a style and implementing it consistently
within a Service and sometimes within an entire application. When you are
comfortable with how TourCam works, maintaining TourCam Services is easy.

Point-of-Service Development Standards 4-3

Tour Framework

Sites

Aisles help reduce the total number of Sites in a Service, but they may be harder to
see because they are contained within a Site.

When making choices, give making an application as consistent and easy to
maintain as possible the top priority.

Consider the performance costs of using TourCam or creating additional Sites
when designing a Service.

A Service can often be simplified by reducing the number of individual Sites. You
can do this by using Aisles to replace Sites; Sites with one exit Road can be good
candidates, and Aisles are good candidates for reuse. However, Aisles are less
visible than Roads.

Reusing a Site has flow implications. Site classes can be reused whenever the exit
conditions are identical. Reusable Sites should be packaged in a common package
as opposed to one of the packages that use them. A reusable Site must refer to a
reusable Cargo or a common Cargo interface.

Treat the sending of a letter like a return code: put it at the end of your arrive() or
traverse() method. Sending letters in the middle of the arrive() method may cause
duplicate letters (with unpredictable results), or no letters (with no results).

Do not try to store state information in instance variables. Pass in state information
through arguments.

Do not put a lot of functionality in arrive(), traverse() methods. Decompose them
into logical methods that each have one job. For methods not called from outside
the package, protect the methods.

Managers and Technicians

There is a high degree of reuse of Managers and Technicians across the
applications. For example, the DataTransactions and DataActions are reusable. By
design, it is the DataOperations that change with different database
implementations. The UIManager and UlTechnician expect a lot of reuse of beans,
adapters, and specification objects. In fact, the UISubsystem looks in the UI Script
for most of the configuration information that effects changes in screen layout,
bean interactions and even bean composition.

Utility methods can be useful for capturing behavior that is used by many
Services, but does not lend itself to Site or Aisle behavior. Put Utility methods in a
UtilityManager so they can be easily extended. The Point-of-Service application
contains an example of this called the POSUtilityManager. Service developers can
access these methods through the POSUtilityManagerlfc. The UtilityManager and
UtilityManagerlfc classes can be extended and the new class is specified through
the Conduit Script. For general-purpose behavior that can be called from a Site,
Lane, or even from a Signal, use utility methods to capture the common reusable
behavior rather than extending a common Site.

Large bodies of reusable behavior can be implemented as Managers and
Technicians. This pattern is especially useful if the user might off-load the
processing to a separate CPU.

4-4 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Tour Framework

Roads

Aisles

Signals

It is sometimes useful to define multiple Roads from an origin Site to the same
destination if they capture different Road traversal conditions.

Do not trap and change the name of a letter just to reduce the number of Roads in a
Service. This is a poor use of system resources and also hides useful information from
the reader of the Tour Script. Do not rename letters except as noted in Renaming
Letters..

For example, the Return Transaction Service has two Roads with the same origin
(LookuplItem) and the same destination (EnterReturnltemInformation), but the letters
that invoke these two Roads are different.

The use of Road actions is dependent on a number of factors: use of TourCam,
developer conventions for an application, number of classes generated, and
maintainability.

Use Road actions for outcome-specific behavior. If you need to store some data in
Cargo on the sending of a specific letter, do the Cargo storage in the traverse() method
of the Road that is associated with that letter. If the data must be stored in Cargo
before leaving a Site, put the logic in the Site’s depart() method. Code in a Site or
Aisle’s depart() method should not check to see what letter was sent before taking an
action; use a Road in that case.

Aisles are used to implement behavior that occurs within a Site. When there is
interaction with an external source (e.g. user, database) use a Site. When you are doing
business validation which may keep you in the same screen, use an Aisle.

While it makes sense to create Roads without corresponding Road actions, Aisles are
useless without an Aisle action. The important thing about an Aisle is that it is not part
of a transition from one Site to another, so the only code that gets executed in an Aisle
is the traverse() method. The arrive() and depart() methods are never executed on a
Site when an Aisle is processed. The Aisle can initiate an action that causes a transition
to another Site, but it cannot transition itself.

Aisle actions can be used to validate data, compute values, provide looping behavior,
and do database lookups. Aisle actions are useful for capturing repeatable behavior
that can occur while the bus is still in a Site.

For example, suppose you define a Site that gathers data from the user. The data
validation is implemented as an Aisle. Because it is an Aisle, the user can repeat the
process of entering data, validating, and re-entering until the data is correct, with little
system overhead. The Aisle behavior can be triggered over and over without calling
the arrive() method on the Site (a Road back to the Site calls the arrive() method).

Aisles are also useful for looping through a list of items when each item may require
error handling. This is done by placing the loop index in the Cargo.

You cannot use a signal alone; they must be used in groups of two or more. If there is
more than one Lane that responds to the same letter, each Lane must implement a
Signal. The logic in the Signals must be mutually exclusive; there should be only one
valid Road that can be traversed at any time; otherwise, unexpected (and difficult to
debug) behavior could occur.

Point-of-Service Development Standards 4-5

Tour Framework

When there are more than two Signals, each of the Signals should evaluate in such a
way that only one Signal is green at any given time. But the presence of more than two
Signals should raise a red flag. Track down the source of the following issues;
determine if the Ul or other letter generator needs to be sending more unique letters.

= Why are there so many Signals?
= What are they checking?
= Is the same letter being sent for many different conditions?

Use a Signal only to decide which road to take when you could go to two different
places (such as Sites) with the same Letter, based on Cargo information. It should not
be used to update cargo. The road you take after making a decision at the Signal
should do the updating.

Choosing Among Sites, Aisles, and Signals

There are many times when an Aisle can do the same work as a Site. Sometimes a
Signal can contain behavior that could be implemented in an Aisle. Sometimes a
separate Service does the work that was once a Site if the Site needs to be reused or
becomes too complicated. Consult the guidelines for your application development
team in order to be consistent with the rest of your team.

If you have the following customer requirement:

= Display a Ul screen that gathers search criteria to be used in a database lookup (for
example, customer lookup). After the user enters the data, validate the data. Once
the data has been validated, do the database lookup.

you have the following design choices:

= Implement as separate Sites and take advantage of TourCam to back up when the
data is invalid or database lookup results are not correct.

= Implement as one Site with Aisles that do the validation and lookup.

The database lookup may result in a success or failure letter whether it is coded as a
Site or an Aisle. When using an Aisle for database lookup, the failure letter triggers
another Aisle that could display an error message but allow the user to re-enter the
data and retry the lookup. This can occur without exiting the original Site. When using
a Site, the failure condition can trigger a flow change to back up through the lookup
Site back to the data entry Site.

If the validation and database lookup are coded in Aisles, they may be good
candidates for reuse in several Sites as well as in multiple Services. Reusing the Site is
also possible, especially if the TourCam's ability to back up to the last indexed Site is
used. But there may be more considerations involving flow when trying to reuse a Site.

Renaming Letters

Use the following guidelines when deciding whether to rename letters:

= Do rename Letters when the application developer does not have power over the
Letter that is mailed and there is more than one event associated with a single
Letter.

For example: a single Letter is sent from a button on the Ul (such as dialog box
OK)), but the content of the retrieved data associated with the Ul signals a different
event notification (such as error message notification).

s Do rename Letters when a common exit Letter from a nested Service is needed.

4-6 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Log Entry Format

Do not rename Letters to reduce the number of Roads in a Service.

Shuttles
If you are creating a sub-tour (that is, a tour called from other tours using a Station)
from scratch, use only the following final letters:
= Success
» Failure
s Cancel
] Undo
If you need to provide a reason for a Failure or need to return data to the calling
service on a Success, use the Return Shuttle to update the calling service's cargo. Do
not use letters to reflect sub-tour results.
Table 4-2 Shuttles
Shuttle Type Launch Shuttle Return Shuttle
Description Used to send parameter data to a Used to return data to the parent service.
sub-service
Methods load()—can only see the parent load()—can only see the sub-service's Cargo

Service's Cargo unload()—can only see the parent service's

unload()—can only see the Cargo
sub-service's Cargo

Cargo

Within the Tour Framework, Shuttles are used to transfer data in and out of Services.
Shuttles are good candidates for reuse given a common Cargo interface.

All Cargo classes should implement the Cargolfc interface.

Log Entry Format

This section describes the format and layout of log entries for the Point-of-Service
application.

Log Entry Description

Log entries adhere to the following format:

LLLLL yyyyy-mm-dd hh:mm:ss,ttt bbbbbbb (<classname>) :

[<classname>.<methodname> (<filename>:<linenumber>)]
<Log entry content>

Fixed Length Header

The entry begins with a fixed length record header (38 bytes) that adheres to the
following layout:

LLLLL yyyyy-mm-dd hh:mm:ss, ttt bbbbbbb
12345678901234567890123456789012345678

Point-of-Service Development Standards 4-7

Log Entry Format

LLLLL is the log message level and consists of one of the substrings in the following
table.

Table 4-3 provides log message levels and their descriptions.

Table 4-3 Log Message Level

Log Message Level Description

ERROR

Highest severity entry; critical

WARN Application warning; serious

INFO For information only

DEBUG For developer use (not displayed by default application configuration
yyyy-mm-dd is the date.
hh:mm:ss, ttt bbbbbbb is the time stamp of the entry, comprised of the sub-fields
described in the following table.
Table 4—4 provides time stamp fields and their descriptions.
Table 4-4 Time Stamp Fields

Field Description

hh Time of entry in hours, in 24-hour format

mm Minutes past the full hour

ss Seconds past the last full minute

ttt Milliseconds past the last full second

bbbbbbb Milliseconds since the application was started. Left justified and blank filled on the

right, out to 7 places

Additional Logging Information

The fixed length record header is followed by a blank space followed by the
parenthesized, fully qualified class name of the logging entity followed by a colon
followed by a carriage return/line feed pair.

(<classname>) :<cr><1f>

The next line in a log entry begins with 6 blank spaces and a square-bracketed
sequence containing the following information:

<classname>.<methodname> (<filename>:<linenumber>)

Parentheses are included in the sequence. This sequence reflects the fully qualified

name of the method invoking the logging action and the source line number in the file
where the logging call was made.

The next line(s) in a log entry are the log entry content. The content is comprised of
freeform text supplied by the calling routine. The content reflected in the freeform text
may be multiple lines in length.

The next log entry is delineated with another 38 byte fixed length header beginning in
column one of the text log file.

4-8 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Log Entry Format

Example Log Entry

INFO 2004-09-02 11:12:41,253 23697
(main:oracle.retail.stores.foundation.manager.gui.DefaultBeanConfigurator) :

[oracle.retail.stores.foundation.manager.gui.DefaultBeanConfigurator.applyProperti
es (DefaultBeanConfigurator.java:198)]

Applying property cachingScheme to Class: DialogBean (Revision 1.9)
@12076742

Point-of-Service Development Standards 4-9

Log Entry Format

4-10 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

O

Point-of-Service Extension Guidelines

Customers who purchase Point-of-Service extend the product to meet their particular
needs. These guidelines speed implementation and simplify the upgrade path for
future work.

Developers on customer projects should also refer to the Development Standards. The
Development Standards address how to code product features to make them less
error-prone and more easily maintained. They are especially important if code from
the customer implementation may be rolled back into the base product.

Conventions

Note: See the Oracle Retail POS Suite Security Guide for more
information about specific security features and implementation
guidelines for the POS Suite products.

This section describes conventions used throughout this chapter.

Terms

The following definitions are used throughout the chapter:

Product source tree — A directory tree that contains the Oracle Retail product
code. The contents of this tree do not change, with the exception of product
patches. In production code, these files are accessed as external jar files.

Customer source tree — A directory tree separate from the product code that
contains customer-specific files. Some of these files are new files for
customer-specific features; others are extensions or replacements of files from the
product source tree. The customer tree should not contain packages from the
product tree.

Customer abbreviation — A short name that represents the customer. For example,
a company named My Bike Store might use MBS as their customer abbreviation.
The MBS example is used throughout this chapter; replace MBS with the customer
abbreviation for your own project when writing code. The customer abbreviation
is added to filenames to clarify that the file is part of the customized code, and is
used as part of the package name in the customer source tree.

Filename Conventions

Filenames in the customer source tree usually include the customer abbreviation.
Name files according to the following rules:

Point-of-Service Extension Guidelines 5-1

Conventions

s If aclass in the customer source tree extends or replaces a class in the product
source tree, use the customer abbreviation followed by the original filename as the
new filename (for example, SaleReceipt.java becomes MBSSaleReceipt.java).

= New Java classes should also begin with the customer abbreviation.

» Script or properties file names that are hard-coded in Foundation classes must use
the same filename in the customer source tree as was used in the product source
tree (for example, posfoundation.properties).

Modules

The Point-of-Service system is divided into a number of different modules, and each

module corresponds to a project in an integrated development environment (IDE).

When setting up a development environment for modifying code, building

Point-of-Service, and testing changes, you must configure your system to make

MBSpos dependent on all the other modules.

Do the following to set up your development environment:

1. Check out each of the required customer modules as shown in the following table.

2. Reference each of the standard modules as external jar files.

3. Add the required modules to your CLASSPATH environment variable in the order
shown in the following table, with all of the customer modules preceding the set
of standard modules.

Table 5-1 identifies required customer and standard modules in their respective

dependency orders.

Table 5-1 Required Modules in Dependency Order

Customer Modules Standard Modules

MBS pos (root, src, locales and other pos (root, src, locales and other language directories)
language directories) domain (root and src)

MBS domain (root and src) common

MBS commerceservices commerceservices

MBS common foundation

MBS 3rd-party 3rd party

MBS utlhty ut111ty

MBS exportfile exportfile

! Directory names in parentheses must be specified individually in the classpath.

Directory Paths

Paths given in this chapter are relative, starting either with the module or with the
source code, as follows:

s Paths beginning with a module name start from the module location. pos\config
refers to the config directory within the pos module, wherever that module is
located on your system.

= Paths beginning with com refer to source code. Source code paths are nested
within modules, in \src directories. Multiple \src\com file hierarchies are built
together into one file structure during compilation. For example, a reference to
oracle\retail\stores\pos\services\tender can be found in the pos

5-2 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

POS Package

module’s src directory. If your pos module is in
c:\workspace\OracleRetailStore, then the full path is:

C:\workspace\OracleRetailStore\applications\pos\src\oracle\retail\stores\pos\se
rvices\tender

POS Package

Tour

This section addresses extension of files in the POS package.

Note: The POS module might be nested within an OracleRetailStore
directory in the source code control system.

You extend tours mainly by editing proprietary XML scripts developed by Oracle
Retail. This section describes how to customize tours, beginning with replacing the
Tour Map, and continuing with customization of individual tours or parts of tours.

Tour Map

The product code references tours at transfer stations by logical names, so that you can
change a single tour without having to update references to that tour in various tour
scripts. Tour maps tell the system the specific tour files to use for each logical name.

The tour map also enables overlays of tour classes. If a tour script does not need to be
customized, but some of the Java classes do, the tour map can specify individual
classes to customize. Note that any class files must still use their own unique names
(such as MBScashSelected Aisle.java for a new Aisle used in place of
CashSelectedAisle.java).

Typically, the base product Tour Map file, tourmap.xml, does not change. Instead, you
create a custom Tour Map for your project. This Tour Map file contains only the
differences it adds to the base Tour Map.

Do the following to add new Tour Map files:

1. Create one custom Tour Map file in the pos\config directory of the customer
source tree. Initially, this Tour Map file may be empty; as you customize tour
components, you can add tags.

2. Copy the pos\config\posfoundation.properties file to the customer source tree.
Modify the tourmap. files property in this file, adding the names of the new Tour
Map files. Do not rename the posfoundation.properties file, since this filename is
referenced by Foundation classes. It is important to keep the customized tour map
files after the product tour map file in the list, since the files listed later override
earlier files.

Example 5-1 posfoundation.properties: Adding new Tour Maps

comma delimited list of tourmap files to overlay
tourmap.files=tourmap.xml, MBStourmap.xml

3. Refer to the procedures that follow to modify tour scripts and Java components of
a tour.

Point-of-Service Extension Guidelines 5-3

POS Package

Tour Scripts

If you need to change the workflow of a tour, you must replace the tour script; you
cannot extend a tour script. To replace a tour script, follow these steps:

1. Create a new XML tour script in the customer source tree.

2. Modify the tour map in the customer source tree to specify the correct package
and filename for the new tour script. The logical tour name must stay the same.

Example 5-2 MBStourmap.xml: Replacing one tour script

<tour name="tender">
<file>classpath://com/mbs/pos/services/tender/tender.xml</file>
</tour>

3. Copy and modify sites, roads, aisles, shuttles and signals.

Site

Extending siteactions in the traditional object-oriented sense is not recommended;
letters mailed in the original arrive method would conflict with the arrive method in
the extended class. Since siteactions represent relatively small units of code, they
should be replaced instead of extended. Perform these steps:

1. Create a new siteaction class in the customer source tree, such as
MBScashSelectedSite.java.

2. If you are overlaying a siteaction class, but not modifying the tour script, then all
letters that were mailed from the product version of the siteaction class should also
be mailed from the new version. Do not mail new letters that are not handled by
the product code, unless the tour script and related Java classes are also modified.

3. Edit the appropriate Tour Map, using the replacewith property in the
<SITEACTION> tag to define the new package and filename for the siteaction
class.

Example 5-3 MBStourmap.xml: Replacing a siteaction

<tour name="tender">

<file>classpath://com/mbs/pos/services/tender</file>

<SITE
name="cashSelected"
useaction="oracle.retail.stores.pos.services.tender.cashSelectedSite"/>

<SITEACTION
class="cashSelectedSite"
replacewith="com.mbs.pos.services.tender.MBScashSelectedSite" />

</tour>

Lane—Road or Aisle

As with siteactions, extending laneactions in the traditional object-oriented sense is not
recommended, as letters from the original and extended classes could conflict. Do the
following to replace laneactions instead of extending them:

1. Create a new laneaction class in the customer source tree, such as
MBSOpenCashDrawerAisle java.

2. If you are overlaying a siteaction class, but not modifying the tour script, then all
letters that were mailed from the product version of the laneaction class should
also be mailed from the new version. Do not mail new letters that are not handled

5-4 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

POS Package

by the product code, unless the tour script and related Java classes are also
modified.

3. Edit the appropriate Tour Map using the replacewith property in the
<LANEACTION> tag to define the new package and filename for the laneaction.

Example 5-4 MBStourmap.xml: Replacing a laneaction

<tour name="tender”>

<file>classpath://com/mbs/pos/services/tender</file>

<SITE
name="RefundDueUI"
useaction="com.mbs.pos.services.tender.refundDueUISite">"/>

<LANEACTION
class="OpenCashDrawerAisle"
replacewith="com.mbs.pos.services.tender.MBSOpenCashDrawerAisle" />

</tour>

Shuttle

Since shuttles do not mail letters, they may be extended or replaced; however
extending them is recommended. Do the following to either extend or replace shuttles:

1. Modify the shuttle class.

Create a new class in the customer source tree. If it extends or replaces the product
bean class, add the customer abbreviation to the filename. For example,
TenderAuthorizationLaunchShuttle java becomes
MBSTenderAuthorizationLaunchShuttle java.

2. Edit the appropriate Tour Map using the replacewith property in the <SHUTTLE>
tag to define the new package and filename for the shuttle.

Example 5-5 MBStourmap.xml: Replacing or Extending a shuttle

<tour name="tender”>
<file>classpath://com/mbs/pos/services/tender</file>
<SITE
name="RefundDueUI"
useaction="com.mbs.pos.services.tender.refundDueUISite">"/>
<SHUTTLE
class="TenderAuthorizationLaunchShuttle"
replacewith="com.mbs.pos.services.tender.MBSTenderAuthorizationLaunchShuttle"/>
</tour>

3. Modify the calling and nested tour scripts as necessary to adjust to the change.

Signal

Extending signals in the traditional object-oriented sense is not recommended. This is
because signals are typically so small that extending an original signal class makes
them overly complex.

The REPLACEWITH tag of the TourMap does not work for Signals. The tour script
must be customized to refer to the package and filename of the new signal. Perform
these steps:

1. Create a new signal class in the customer source tree. For example, create a
replacement for IsAuthorizationRequiredSignal.java in the Tender service by
creating a class file
com\mbs\pos\services\tender \MBSIsAuthorizationRequiredSignal.java.

Point-of-Service Extension Guidelines 5-5

POS Package

2. Customize the appropriate tour script.

Example 5-6 MBStender.xml: Tender tour script with customized signal

<SERVICECODE>
. non-signal declarations omitted...
<SIGNAL class="IsReturnTransactionSignal" />
<SIGNAL class="IsSaleTransactionSignal" />
<SIGNAL class="IsNotVoidTransactionSignal" />
<SIGNAL class="IsAuthNotRequiredSignal" />
<SIGNAL class="MBSIsAuthorizationRequiredSignal"
package="com.mbs.pos.services.tender" />
<SIGNAL class="IsRemoveTenderSignal" />
<SIGNAL class="IsNoRemoveTenderSignal" />
<SIGNAL class="IsValidDriverLicenseSignal" />
<SIGNAL class="IsInvalidDriverLicenseSignal" />
. more declarations omitted...
</SERVICECODE>
code omitted. ..
<ROAD name="AuthorizationRequested"
letter="Next"
destination="AuthorizationStation"
tape="ADVANCE"
record="0FF"
index="OFF">
<LIGHT signal="MBSIsAuthorizationRequiredSignal"/>

Cargo
Since cargos do not mail letters, they may be extended or replaced. Cargo classes are
typically part of a hierarchy of classes. Perform these steps:

1. Modify the cargo class by doing one of the following:

= To extend the cargo, create a new class in the customer source tree that extends
the cargo in the product source tree. Be sure to extend from the lowest-level
subclass. Add the customer abbreviation to the beginning of the filename.

= Toreplace the cargo, create a new cargo class in the customer source tree.

2. Edit the appropriate Tour Map for the locale, using the replacewith property in the
<CARGO> tag to define the new package and filename for the cargo.

Example 5-7 tourmap_CA.xml: Replacing a Cargo

<tour name="tender”>
<file>classpath://com/mbs/pos/services/tender</file>
<SITE
name="RefundDueUI"
useaction="com.mbs.pos.services.tender.refundDueUISite">"/>
<CARGO
class="TenderCargo"
replacewith="com.mbs.pos.services.tender.MBSTenderCargo" />

</tour>

3. Modify the tour map and/or tour scripts and shuttles of the calling and nested
tours to adapt to the cargo modifications. Be sure to address:

s Classes in the same tour as the modified cargo

m All tours for which this tour is a nested tour

5-6 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

POS Package

= All tours which are called by this tour

Ul Framework

The UIManager and UlTechnician classes are provided by Foundation. They are
configurable through the Conduit Script and should not be modified directly. This
section describes customization to the default UI configuration and individual screens.

Default Ul Config

The product file <source_
directory>\applications\pos\src\oracle\retail\stores\pos\config\
defaults\defaultuicfg.xml contains the building blocks for the UI (displays,
templates and specs) and references to all tour-specific uicfg.xml files. If you change
any Ul script in the customer implementation, the defaultuicfg.xml file must be
replaced. It also needs to be replaced if the displays, templates, and basic bean specs
need to be replaced. Perform these steps to replace the file:

1. Copy the file defaultuicfg.xml to the pos\config\defaults directory in the
customer source tree, and rename it (for example, to MBSdefaultuicfg.xml).

2. Modify the displays, templates, default screens, and specs as necessary to
represent the customer’s user interface.

3. Verify that the conduit script for the client tier has been customized and is located
in the customer source tree.

4. Modify the client conduit script to include the new filename and package name for
the MBSdefaultuicfg.xml file, in the configFilename property value in the
UISubsystem section of the UlTechnician tag.

Example 5-8 ClientConduit.xml: Conduit script modified to use custom Ul configuration
file
<TECHNICIAN

name="UITechnician"

class="UITechnician"

package="oracle.retail.stores.foundation.manager.gui" export="Y">

<CLASS
name="UISubsystem"
package="oracle.retail.stores.pos.ui"
class="POSJFCUISubsystem">

<CLASSPROPERTY
propname="configFilename"

propvalue="classpath://com/mbs/pos/config/defaults/MBSdefaultuicfg.xml"
proptype="STRING" />

...additional class properties omitted. ..

</CLASS>

</TECHNICIAN>

Ul Script

A Ul script changes if the overlays or unique bean specifications of one or more
screens in a tour need to be modified. Perform these steps:

1. Create a new Ul script in the customer source tree. For example, copy the
tenderuicfg.xml file from the product source tree to the customer source tree and
rename it MBStenderuicfg.xml.

Point-of-Service Extension Guidelines 5-7

POS Package

2. Modify the MBSdefaultuicfg.xml file in the customer source tree to refer to the
new filename and package for the Ul script.

Example 5-9 MBSdefaultuicfg.xml: Customized Default Ul Configuration File

. other include statements omitted...
<INCLUDE
filename="classpath://oracle/retail/stores/pos/services/sale/saleuicfg.xml"/>
<INCLUDE
filename="classpath://com/mbs/pos/services/tender/MBStenderuicfg.xml" />
<INCLUDE
filename="classpath://oracle/retail/stores/pos/services/tender/capturecustomerinfo
/capturecustomerinfouicfg.xml" />
<INCLUDE
filename="classpath://com/extendyourstore/pos/services/inquiry/inquiryoptionsuicfg
.xml"/>
. other include statements omitted...

Bean Model and Bean

The Point-of-Service product code provides generalized beans that are designed to be
reused as-is, such as GlobalNavigationButtonBean.java for the global navigation
button bar and DatalnputBean.java for the work area of form layout screens. These
classes are not intended to be extended for a specific implementation, though they
may be extended if the general behavior or data must change in all cases.

The classes can be used for different screens within the application without changing
to Java code by modifying parameter values and calling methods on the bean. Use the
generalized beans whenever possible and avoid beans specialized for only one screen.
However, bean and bean model classes in the product code that are specific to an
individual screen, such as CheckEntryBean java and CheckEntryBeanModel java, may
be customized. Perform these steps to modify a bean model:

1. Create a new bean model class.

Create a new class in the customer source tree, and add the customer abbreviation
to the filename.

2. Copy tour files that need to reference the new bean model into the customer
source tree. Modify them to create and manipulate data for the new bean model.

Perform these steps to modify the bean:
1. Create a new bean class.

Create a new class in the customer source tree, and add the customer abbreviation
to the filename.

2. Modify the Ul config scripts that reference the bean class in the customer source
tree to refer to the new bean class filename and package.

Example 5-10 MBStenderuicfg.xml: Tender Ul Configuration with Customized Bean
Reference

<UICFG>

<BEAN
specName="TenderOptionsButtonSpec"
configuratorPackage="oracle.retail.stores.pos.ui"
configuratorClassName="POSBeanConfigurator"
beanPackage="com.mbs.pos.ui.beans"
beanClassName="MBSNavigationButtonBean">

5-8 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

POS Package

Other

<BUTTON
actionName="Cash"
enabled="true"
keyName="F2"
labelTag="Cash" />
...other buttons omitted...
</BEAN>
...other UI objects omitted...
</UICFG>

This section covers customization of components other than the tour and the Ul
framework, including internationalization and localization changes as well as conduit
scripts, PLAF, receipts, and reports.

Internationalization

For more information about Internationalization of Point-of-Service, see
Internationalization.

Note: For internationalization, Point-of-Service can use multiple
languages at any given time: either default language, user language or
customer preferred language. Point-of-Service looks up resource
bundles based on the selected language (store default language, user
language or preferred customer language) plus the region from its
default locale. If Point-of-Service cannot find this combination, it
reverts back to the selected language only.

For additional internationalization support of Oracle Retail Point-of-Service, please
contact Oracle Retail Services.

Conduit Scripts

The conduit scripts provided with Oracle Retail applications define a typical tier
configuration and are usually replaced with customer conduit scripts for a given
implementation. Conduit scripts include an XML file and a .bat and .sh file to execute
the XML; both .bat and .sh versions of the batch file are provided to support Windows
and Linux.

Perform these steps to set up customer conduit scripts:
1. Copy the conduit scripts (client and server) to the customer source tree.

Copy the XML and .bat and .sh files for each type of conduit script. Rename the
scripts using the customer abbreviation (ClientConduit.xml becomes
MBSClientConduit.xml).

2. Edit each XML file to include only the managers and technicians that should be
loaded on the given tier.

3. Modify the class and package names for any managers, technicians and
configuration scripts that have been customized.

MBSClientConduit.xml: Customized with New Data Manager
<MANAGER name="DataManager" class="MBSDataManager"
package="com.mbs. foundation.manager.data">
<PROPERTY propname="configScript"

Point-of-Service Extension Guidelines 5-9

POS Package

propvalue="classpath://config/manager/PosDataManager.xml" />
</MANAGER>

4. Modify your development environment to pass in the new conduit XML file as a
parameter to the TierLoader.

5. Edit the .bat and .sh files to pass the correct conduit XML files to the Java
environment.

PLAF

Point-of-Service implements a pluggable look-and-feel (PLAF) so that customers may
modify the look of the application including screen colors and images. To modify the
PLAF, follow these steps:

1. Create a new properties file that is a copy of one of the following files. Place the
file in the com\mbs\pos\config directory in the customer source tree.

= swanplaf.properties — yellow-and-purple, text-based LAF
» imagePlaf.properties — blue and gold image-based LAF

Note: Each supported language has its own version of
swanplaf.properties and imagePlaf.properties:

swanplaf_fr.properties

imagePlaf_fr.properties

2. Update the conduit scripts in the customer source tree to specify the package and
filename for the new LAF file in the UI Technician tag.

3. Have new Ul beans call uiFactory.configureUIComponent(this, UL_PREFIX) in the
initialize() method to set the look-and-feel.

Reports

Point-of-Service has a set of reports that print on the slip printer. The report document
names are specified in the tour code.

To modify existing Point-of-Service reports and receipts, the report Java files can be
extended. Perform these steps:

1. For each report or receipt, do one of the following;:

» To modify an existing report or receipt, copy existing BPT and change file
name in BlueprintedDocumentManager.xml.

2. Create, modify or override data and methods as necessary to modify the report or
receipt.

Creating new receipts (BPT and SER)

When it is necessary to have the Point-of-Service client print a new receipt, develop a
blueprint (BPT) file for the receipt. However, it is extremely difficult to do this without
a serialized instance of the object being printed prior, to aid in editing the blueprint.
Since the BlueprintedDocumentManager has an option to serialize the parameter
beans, you can use the Point-of-Service client to serialize what is printed for you. You
will then have the serialized object file and then can use it to drag and drop method
calls onto your new blueprint.

5-10 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

POS Package

Ensure /pos/config/manager/Blueprinted DocumentManager.xml has the
persistBeansAsDataObject value set to true.

Edit /pos/config/manager/BlueprintedDocumentManager.xml to contain a
<RECEIPT> element for your new receipt.

Enter code in a Point-of-Service site to print your receipt. For example:

PrintableDocumentManagerIfc pdm =

(PrintableDocumentManagerIfc)bus.getManager (PrintableDocumentManagerIfc.TYPE) ;
ReceiptParameterBeanIfc bean = getMyParameterBean()*;

bean.setDocumentType ("MyNewReceipt") ;

pdm.printReceipt ((SessionBusIfc)bus, bean);

Note: There are many ways to construct a
PrintableDocumentParameterBeanlfc for printing. You can potentially
use a method from PrintableDocumentManagerlfc or you can
instantiate or use a subclass of PrintableDocumentParameterBean to
create one of your own.

Run the code and navigate through the Point-of-Service site.

A MyNewReceipt.ser file will appear in the /pos/receipts dir.

Caution: It is likely the Point-of-Service will crash here because the
desired receipt bpt will not exist.

In Eclipse, go to File > New > Other > type. Select Receipt.
You can also go to Oracle-Retail > Receipt Blueprint.
Name your file MyNewReceipt.bpt.

Attach MyNewReceipt.ser to the Receipt Data Object view.

Note: For more informtaion, see the Oracle Retail Point-of-Service
Receipt Builder Tool User Guide.

This document is available through My Oracle Support (formerly
MetaLink). Access My Oracle Support at the following URL:

https://support.oracle.com

Oracle Retail Point-of-Service Receipt Builder Tool User Guide (Doc
ID: 1277454.1)

Alternate Bean Creation (SER) As an alternative to using Point-of-Service to create the
serialized file, it is possible to use the Object Inspector plugin to create an instance of
your receipt parameter bean if it has a zero-arg constructor. This may be more
convenient than running Point-of-Service, but the resulting serialized object does not
contain any values to use when printing. You can use Object Inspector to execute
simple set methods on your bean instance. Be sure your class implements
PrintableDocumentParameterBeanlfc.

In Eclipse, go to File > New > Other > type and select Object.

You can also go to Java > Serialized Object.

Point-of-Service Extension Guidelines 5-11

POS Package

o o k~ w

Name your file MyNewReceipt.ser or a name that matches the name of the .bpt
this file is used with.

Pick the class that implements PrintableDocumentParameterBeanlfc.
Click Finish.

Edit the value of this object as desired.

Open the Receipt Builder editor and attach your new file.

Note: For more informtaion, see the Oracle Retail Point-of-Service
Receipt Builder Tool User Guide.

This document is available through My Oracle Support (formerly
MetaLink). Access My Oracle Support at the following URL:

https://support.oracle.com

Oracle Retail Point-of-Service Receipt Builder Tool User Guide (Doc
ID: 1277454.1)

Using Person.java to Create a Receipt If you are using the sample class provided in Step 3.
to create a receipt, the following steps create a serialized file and blueprint with which
to print. In Eclipse, do the following to create a data object and blueprint using the
Person.java downloaded from the link in Step 3.

1.

N o g » 0 Db

10.

11.
12.
13.
14.
15.

16.
17.

If no Java Project exists, create one. Go to File > New > Java Project.

Name your project , such as receiptbuilder. The default settings will be fine.
Click Finish.

Access the project and select the src folder.

Go to File > New > Package and create a package named com.demo.
Right-click on the com.demo package and select Properties.

Using Windows Explorer, go to the com.demo package directory and Paste
Person.java into the package.

Right-click on the com.demo package and select Refresh to make Person.java
appear in Eclipse.

Right-click the com.demo package and go to New > Folder and create a folder
called objects.

Right-click on the objects folder and go to New > Other > Java > Serialized
Object.

Click Next.

Click Browse.

Type Person. Click OK to select com.demo.Person class.
Click Finish.

In a new editor window, go to com.demo.Person > Person > init(). This will
provide some values.

Go to setBirthDate(Date). Specify a date and click OK.
Go to getBirthDate() to see your value.

5-12 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

POS Package

18.
19.

20.

21.
22,
23.

24.
25.

26.
27.
28.
29.

30.
31.
32.

Click Save.

Right-click on the project and go to New > Folder and create a folder called
receipts.

Right-click on receipts folder and go to New > Other... > Oracle-Retail > Receipt
Blueprint.

Click Next.
Click Finish.

Attach the serialized Person.java to the Receipt Data Object view. Do this by
clicking Attach RDO button or drop-down menu option.

Type object.ser. Select OK to attach the object.
Rename the element with the word text in it to Name:

= Do this by double-clicking the element and editing directly, or select the
element and in the Properties view, edit th on the General tab.

Drag Person.getName() from the RDO view to the right of Name:.
Go to com.demo.Person > Person > getName(). Select this item.
Drag this tree item to the right of the Name: element and drop it.
Click Print. The output should look like this:

Name: John Smith

Click Save.
Continue to edit the receipt with the palette on the right side of the editor.
Create a receipt with output that looks like the following;:

(8/13/08) 11:35 AM
Id: 1234 Name: John Smith
Height: 0.0

Age: Voided 12,346

Sex: male

Salary: 80,000.00

Nick name: "Johnny"

Birth Date: Jul 18, 2008

Spouse: Sara Smith

Relatives
Name: Joe Smith
Age: 84E0Q
Name: Sally Smith
Name: Sandy Smith

Point-of-Service Extension Guidelines 5-13

Domain Package

Domain Package

This section addresses customization of files in the domain package. The domain
package can be found in the \OracleRetailStore\domain directory in your
source control system.

Retail Domain

The Retail Domain provides a retail-specific implementation of business objects. These
objects are easily extended to meet customer’s requirements.

DomainObjectFactory

If any Retail Domain Objects (RDOs) are added or extended, the DomainObject
Factory must be extended. This needs to be done only one time for the application. The
extended class must include getXinstance() methods for all new and extended RDOs,
where X is the name of the RDO. Perform these steps:

1. Create a new Java class that extends DomainObjectFactoryjava. It should be
named with the customer abbreviation in the filename
MBSDomainObjectFactory;java and be located in the customer source tree.

2. Copy the domain.properties file to the domain\config directory of the customer
source tree. Modify the setting for the DomainObjectFactory to refer to the new
package and class name created in the previous step.

DomainObjectFactory=com.acmebrick.domain. factory.MBSDomainObjectFactory;

3. Add getXInstance() methods as necessary for new Retail Domain Objects.

Retail Domain Object (RDO)

Perform these steps to create or extend an RDO:
1. Complete one of the following steps:

s To create a new RDO, create a Java class in the customer source tree in the
appropriate subdirectory of domain\src\com\mbs\domain. Extend an
appropriate superclass from the product code. At a minimum, the new class
must extend EYSDomainlfc java.

s To modify an existing RDO, create a Java class in the customer source tree that
extends an RDO in the product code.

Include the customer abbreviation in the filename; for example, you might name
your class file MBSCustomer.java.

2. Add data attributes and methods required by the customer-specific functionality.

3. Create setCloneAttributes(), equals() and toString() methods to address the new
data attributes and then reference the corresponding superclass method.

4. Complete one of the following steps:

s For anew RDO, add a new getXInstance() method to
MBSDomainObjectFactoryjava for the new RDO.

= For an extended RDO, override the existing getXInstance() method in
MBSDomainObjectFactory;java to return an object of the new class type.

5. Access the new RDO data and methods from tours located in the customer source
tree. If product tours need to access the new RDO data and methods, the tours
must be modified.

5-14 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Domain Package

Database

6. If the RDO data is represented on a screen, modify the Ul script, bean and bean
model classes to reflect the change.

7. If the RDO is saved to the database, modify the data operation to save the new
data attributes.

This section details how to extend database behavior through changes to the data
operations. The architecture of the Data Technician simplifies this somewhat, because
changes to data operations can be implemented without changes to the
Point-of-Service application code.

Data Manager and Technician Scripts

The Data Manager and Data Technician Scripts, PosDataManager.xml and
DefaultDataTechnician.xml, are routinely customized when transactions, data actions,
and data operations are customized. See the next section for details.

Data Actions and Operations

When a new or modified RDO contains data that need to be saved to the database, a
data operation class must be created or extended. A Data Action must be modified if a
unit of database work is changed.

1. Create class files.

Create new class files for each new or modified item in the customer source tree. If
an item extends a product class, add the customer abbreviation to the filename.

2, If a customized version of PosDataManager.xml does not already exist, copy it to
the customer source tree and give it a new name, such as
MBSPosDataManager.xml.

3. For customized transactions with new filenames, modify the transaction name.

4, If a customized version of DefaultDataTechnician.xml does not already exist, copy
it to the customer source tree and give it a new name, such as
MBSDefaultDataTechnician.xml.

5. Edit the customized MBSDefaultDataTechnician.xml file, updating package and
class names for data actions and data operations that have been modified.

Example 5-11 MBSDefaultDataTechnician.xml: Customizing a Data Operation

<OPERATION class="JdbcSaveTenderLineltems"

package="com.mbs.domain.arts"

name="MBSSaveTenderLineltems">

<COMMENT>
This operation saves all tender line items associated
with the transaction.

</COMMENT>

</OPERATION>

6. Modify the conduit scripts to reference the new package and/or filename of the
technician script.

Example 5-12 ClientConduit.xml: Customizing the Data Technician

<TECHNICIAN name="LocalDT" class="DataTechnician"
package="com.mbs. foundation.manager.data"

Point-of-Service Extension Guidelines 5-15

Domain Package

export="Y">
<PROPERTY
propname="dataScript"
propvalue="classpath://config/manager/MBSDefautlDataTechnician.xml"
/>
</TECHNICIAN>

Data Transactions

Data transactions are the valet classes that carry requests from the client to the server.
A data transaction factory implements the factory pattern for data transaction classes.
The application code asks the factory for a transaction object and the factory
determines which Java class is used to create the object. To create or extend a data
transaction class, follow these steps:

1. Create new or modified data transactions.

Create a Java class in the customer source tree and prepend the customer
abbreviation to the filename. If you are modifying an existing transaction, have the
class extend the transaction class in the product code, and overwrite the methods
you are modifying.

Copy POSDataManager.xml to the customer source tree.
For customized transactions with new filenames, modify the transaction name.

Copy DefaultDataTechnician.xml to the customer source tree.

o ©Dbd

Modify package and class names for data actions and data operations that have
been modified.

6. If not already done, modify the conduit scripts to reference the new package
and/or filename of the technician script.

7. Extend DataTransactionKeys.java as MBSDataTransactionKeys.java in the
customer source tree to add or modify the static final String for each transaction
(the file serves as a list of string constants).

Example 5-13 MBSDataTransactionKeys.java: Adding Strings

public static final String DATA_MAINTENANCE_TRANSACTION="data.transaction.DATA_
MAINTENANCE_TRANSACTION

public static final String PLU_RETURN_TRANSACTION” =data.transaction.PLU_RETURN_
TRANSACTION”

8. Update domain.properties in the customer source tree to add or modify the
name/value pairs for each transaction.

Example 5-14 domain.properties: Sample Modified and New Data Transactions

Registry of DataTransactionIfc implementations
(try to keep in alphabetical order)
#

data.transaction.ADVANCED_ PRICING_DATA_
TRANSACTION=oracle.retail.stores.domain.arts.AdvancedPricingDataTransaction
...code omitted here...

data.transaction.REGISTER_STATUS_
TRANSACTION=com.MBS.domain.data.transactions.RegisterStatusTransaction
data.transaction.REGISTRY_DATA
TRANSACTION=oracle.retail.stores.domain.arts.RegistryDataTransaction
data.transaction.STORE_LOOKUP_DATA_

5-16 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Domain Package

TRANSACTION=com.MBS

MBSdata.transaction
TRANSACTION=com.MBS
MBSdata.transaction
TRANSACTION=com.MBS

.domain.data.transactions.StoreLookupDataTransaction

.DATA_MAINTENANCE_
.domain.data.transactions.DataMaintenanceTransaction
.PLU_RETURN_
.domain.data.transactions.ReturnPluTransaction

Point-of-Service Extension Guidelines 5-17

Domain Package

5-18 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

6

Back Office, Central Office and Labels and

Audience

Tags Extension Guidelines

This chapter describes the various extension mechanisms available in the Commerce
Services framework. There are multiple forces driving each extension that determine
the correct strategy in each case.

The product has four distinct layers of logic:

Ul layer
Struts/Tiles implementation utilizing Actions for processing Ul requests and JSP
pages with Tiles providing layout.

Application Manager

Session facade for the UI (or external system) that models application business
methods. May or may not be reusable between applications. Provides for remote
accessibility.

Commerce Service
Session facade for the service that models coarse-grained business logic that should be
reusable between applications.

Persistence
Entity beans that are fine-grained, and data access objects (DAO), consumed by the
service. The entities are local to the service that controls them.

Note: See the Oracle Retail POS Suite Security Guide for more
information about specific security features and implementation
guidelines for the POS Suite products.

This section provides guidelines for extending the Oracle Retail Enterprise
applications. The guidelines are designed for three audiences:

s Members of customer architecture and design groups can use this chapter as the
basis for their analysis of the overall extension of the systems.

s Members of Oracle Retail’s Technology and Architecture Group can use this
chapter as the basis for analyzing the viability of the overall extension strategy for
enterprise applications.

= Developers on the project teams can use this chapter as a reference for code-level
design and extension of the product for the solution that is released.

Back Office, Central Office and Labels and Tags Extension Guidelines 6-1

Application Layers

Application Layers

Figure 6-1 describes the general composition of the enterprise applications. The
following sections describe the purpose and responsibility of each layer.

Figure 6—1 Application Layers

User

.

User
Interface

v

Application
Manager

v | Entity

Commerce

. Database
Service

+ -p{ DAOs

Algorithm

User Interface

The user interface (UI) framework consists of Struts Actions, Forms, and Tiles, along
with Java server pages (JSPs).

Struts configuration

Tiles definition

Cascading style sheets (CSS)
JSP pages

Resource bundles for internationalization (I18N)

Application Manager

The Application Manager components are coarse-grained business objects that define
the behavior of related Commerce Services based on the application context.

6-2 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Extension and Customization Scenarios

m Session beans

s View beans for the Ul

Commerce Service

A commerce service is a fine grained component of reusable business logic.
= Session beans

= Data transfer objects (DTO)

Algorithm
An SPI-like interface defined to enable more fine-grained pieces of business
functionality to be replaced without impacting overall application logic.

Entity
Fine-grained entity beans owned by the commerce service. The current strategy for
creating entity beans in the commerce service layer is BMP.

Data Access Objects
Provides an abstract interface to the database, providing specific operations without
exposing details of the database.

Database

The Oracle Retail enterprise applications support the ARTS standard database schema.
The same tables referenced by Central Office and Back Office are a superset of the
tables that support Point-of-Service.

Extension and Customization Scenarios

The following are extension and customization scenarios.

Style and Appearance Changes

This should only present minor changes to the Ul layer of the application. These types
of changes, while extremely common, should represent minimal impact to the
operation of the product. Typical changes could be altering the style of the application
(fonts/colors/formatting) or the types of messages that are displayed.

Application impact:

= Struts configuration (flow)

» Tile definition

» Style sheet

= Minor JSP changes, such as moving fields

s Changing static text through resource bundles

Back Office, Central Office and Labels and Tags Extension Guidelines 6-3

Extension and Customization Scenarios

Additional Information Presented to User

This is one of the more common extensions to the base product: enabling the full life
cycle management of information required by a particular customer that is not
represented in the base product.

If the information is simply presented and persisted then we can choose a strategy that

simply updates the Ul and persistence layers and passes the additional information
through the service layer.

However, if the application must use the additional information to alter the business
logic of a service, then each layer of the application must be modified accordingly.

This scenario generally causes the most pervasive changes to the system; it should be

handled in a manner that can preserve an upgrade path.

Figure 6—-2 Managing Additional Information

Customer
Information

Product

Name

View

User

Application impact for this change:

JSP pages

View beans

Struts configuration
Ul actions

Ul forms
Application manager
Commerce service
Entity or DAO

Database schema

Changes to Application Flow

Sometimes a multi-step application flow can be rearranged or customized without
altering the layers of the application outside of the UL These changes can be
accomplished by changing the flow of screens with the struts configuration.

Custom
View

Customer Information

Custom
I Name
I Address

6-4 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Extension and Customization Scenarios

Figure 6-3 Changing Application Flow

' Step 1
—> —»

User 1

Step 2

Step 3

User 2

Application impact for this change:

= Struts configuration

Access Data From a Different Database

' Step 1a
—» —>

Step 3a

Step 2a

This customization describes accessing the same business data from a different
database schema. No new fields are added or joined unless for deriving existing
interface values. This scenario would most likely not be found isolated from the other

scenarios.

Back Office, Central Office and Labels and Tags Extension Guidelines 6-5

Extension and Customization Scenarios

Figure 6—4 Accessing Data from a Different Database

User

'

User
Interface

v

Application
Manager

<product>
Database

v »| Entity

Commerce <custom>
Service Database

-»| DAOs

Application impact for this change:
= Entity beans and DAO

s Database schema

Access Data From External System

This customization involves replacing an entire Commerce Service with a completely
new implementation that accesses an external system.

6-6 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Extension and Customization Scenarios

Figure 6-5 Accessing Data from an External System

TransactionServicelfc CustomerServicelfe
' TransactionService AcmeCustomerservicelmpl Sl I E ey I

Actor 1

AcmeCrm
TransactionDTO Systemadapter

getTransaction(ld)

—

getCustomer({ld)

Application impact for this change:

= Deployment Configuration — replacing Commerce Service implementation with
custom implementation.

Change an Algorithm Used By a Service

Assuming the Ul is held constant, but values such as net totals or other attributes are
derived with different calculations, it is advantageous to replace simply the algorithm
in question, as the logic flow through the current service does not change.

Back Office, Central Office and Labels and Tags Extension Guidelines 6-7

Extension Strategies

Figure 6—6 Application Layers

User

'

User
Interface

v

Application
Manager

v »| Entity

Commerce

. Database
Service

-»| DAOs

<custom> <product>
Algorithm Algorithm

Application impact for this change:
= Algorithm

= Application configuration

Extension Strategies

Refer to Figure 6-7 as a subset of classes for comparison purposes.

6-8 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Extension Strategies

Figure 6—-7 Sample Classes for Extension—Entity Bean

einterfaces
customer::CustomerManagerlfc

£

customer::
CustomerViewBean

-id: int

customer::CustomerManager

+ getCustomer(int) :
CustomerViewBean

+ getld() : int
+ setld(int) : void

ginterfaces»
customer::CustomerServicelfc

customer::CustomerEntity

+ getCustomer(int) : CustomerDTO

+ findByPrimaryKey(int) : void
+ toDTO() : CustomerDTO

I

customer::CustomerService

customer::
CustomerDTO

-id: int

+ getCustomer(int) : CustomerDTO

+ CustomerDTO() : int
+ getld() : int
+ setld(int) : void

Back Office, Central Office and Labels and Tags Extension Guidelines 6-9

Extension Strategies

Figure 6—-8 Sample Classes for Extension—DAO

<iterface>
item::ItemManagerifc

+ Qﬂﬂtﬂm{LGﬂalﬁ |¢|, s‘h’lﬁg EtQMID, item::ltemViewBean

String poslID, String itemNumber) :
ltemViewBean

- storelD: String

- poslD: String
f - itemNumber: String
item::ItemManager + getStorelD() : String
+ setStorelD(String) : void
+ getltem(Locale lcl, String storelD, + getPosliD(} : String
String poslID, String itemNumber) : + setPosID(String) : void
ltemViewBean + getitemNumber() : String

+ setltemMNumber{String) : void

<interface>
item::ltemServicelfc

+ getAlllteminfo(Locale lcl, String I
storelD, String positemID, String e
itemID):lteminfoDTO

-plultem:Plultem

T + getPlultem() : Plultem
+ setPlultem(Plultem) : void

item::ltemService

+ getAlllteminfo(Locale Icl, String
storelD, String posltemID, String item::Plultem
itemID):lteminfoDTO

<iterface>
item:: PlultemFacadelfc

+ getByld{String storeld, String
posltemid, String itemld, Locale Icl) :
Plultem

T

itermn:: PlultemDAD

+ getByld(String storeld, String
positemld, String itemld, Locale lcl) :
Plultem

6-10 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Extension Strategies

Extension with Inheritance

This strategy involves changing the interfaces of the service itself, perhaps to include a
new finder strategy or data items unique to a particular implementation. For instance,
if the customer information contained in base product does not contain data relevant
to the implementation, call it CustomField1.

All of the product code would be extended (the service interface, the implementation,
the DTO and view beans utilized by the service, the Ul layers and the application
manager interface and implementation) to handle access to the new field.

Figure 6-9 Extension with Inheritance: Class Diagram—Entity Bean

«interface» Custztr::?:;:::ﬂean «interface» .
customer::CustomerManagerlfc customer::CustomerServicelfc
-id: int
T - + getCustomer(int) :
* ﬂe“.d“ . '"t_ CustomerDTO
) + setld(int) : void
interface»
|customer::AcmeCustomerManagerlfc T
customer::
* AcmeCustomerViewBean
customer::AcmeCustomerManager - customField: String «interface»
- id: int customer::AcmeCustomerServicelfc
+ getCustomer(int) :
AcmeCustomerViewBean + getld() : int

+ setld(int) : void
+ getCustomField() : String
+ setCustomField(String) : void

customer::AcmeCustomerService

customer::
CustomerDTO
| + getCustomer(int) :
- id: int AcmeCustomerDTO

+ CustomerDTO() : int
+ getld() : int
+ setld(int) : void

T customer::AcmeCustomerEntity

customer::
AcmeCustomerDTO

+ findByPrimaryKey(int) : void
+toDTO() : AcmeCustomerDTO

- customField: String e

+ getCustomField|) : String
+ setCustomField(String) : void

Back Office, Central Office and Labels and Tags Extension Guidelines 6-11

Extension Strategies

Figure 6-10 Extension with Inheritance: Class Diagram—DAO

cterface> ftem-temViewBean o oo
item::ltemManagerlfc - storelD: String ftem:: RemServicelfc
- poslD: String

+ getitem{Locale Icl, String storelD, String
pos|D, String itemNumber) : ItemViewBean

= itemNumber: String

T

<iterface>
item::AcmeltemManagerifc

+ getitem{Locale lcl, String storelD,
String poslD, String itemNumber) :

AcmeltemViewBean

+ getStorelDy) : String
+ setStorelD{String) : void
+ getPosIDy) @ String
+ setPosID{String) : void
+ getitemNumber() : String
+ setitermNumber(String) : void

+ getAlllteminfo{Locale |cl,
String storelD, String
posltem|D, String
item| D):IteminfoDTO

I

T

!

item: AcmeltemViewBean

<interface>
item::AcmeltemServicelfc

- customField: String

+

newFinderMethod(...):Item
InfaDTO

item::AcmeltemManager

+ getitem{Locale Icl, String storelD,
String poslD, String itemNumber) :

AcmeltemViewBean

+ getCustomField() : String
+ setCustomField(String) : void

item:lteminfoDTO

T

item:: AcmeltemService

+ getAlllteminfo{Locale lcl, String

-plultem:Plultem

+ getPlultem() : Plultem
+ setPlultem({Plultem) : void

Note: During run time, the APls
get or set object of
AcmePlultem class, which
extends Plultem class.

item:: Plultem

l

gtorelD, String positemlD, String
itemID):lteminfeDTO
+ newFinderMethodi...):teminfoDTO

<iterface>
item:: PlultemFacadelfc

+ getByld(Siring storeld, String
positemld, String itemid, Locale Icl)
: Plultem

1

item:PlultemDAQ

+goetByld({String storelD, String
posiD, String itemlD, Locale Icl) :

Plultem
item: :AcmePlultem T
- customField item:AcmePlultemDAD
+ getCustomerField():String

+ setCustomerField|{String):void

| I

+getByld{String storelD, String
poslD, String itemlD, Locale lel) :
Plultam

+newFinderMethodi...):Plultem

Note that the runtime return type is
actually AcmePlultem, which
extends Plultam.

6-12 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Extension Strategies

Replacement of Implementation

This strategy involves keeping the existing product interfaces to the service intact, but
utilizing a new implementation. This strategy is suggested for when the entire
persistence layer for a particular service is changed or delegated to an existing system.

Figure 6-11 demonstrates the replacement of the product Customer Service
implementation with an adapter that delegates to an existing CRM solution (the
system of record for customer information for the retailer).

This provides access to the data from the existing services that depend on the service
interface.

Figure 6—-11 Replacement of Implementation

TransactionServicelfc CustomerServicelfc AcmeCrm
['] TransactionService Wt LEL L AcmeCustomerservicelmpl | | Systemadapter GrmCustomer
Actor 1
getTransaction(ld)

getCustomen{id)

Service Extension with Composition

This method is preferred adding features and data to the base product configuration.
This is done with composition instead of inheritance.

For specific instances when you need more information from a service that the base
product provides, and you wish to control application behavior in the service layer, it
is suggested to use this extension strategy. The composition approach to code reuse
provides stronger encapsulation than inheritance. Using this method keeps explicit
reference to the extended data/operations in the code that needs this information.
Also, the new service contains rather than extends the base product. This allows for
less coupling of the custom extension to the implementation of the base product.

Back Office, Central Office and Labels and Tags Extension Guidelines 6-13

Extension Strategies

Figure 6-12 Extension with Composition: Class Diagram—Entity Bean

«interfaces
customer::AcmeCustomerManagerlfc

1

customer::AcmeCustomerManager

+ getCustomer(int) :
AcmeCustomerViewBean

customer::
AcmeCustomerViewBean

- customField: String
- id: int

+ getld() : int
+ setld(int) : void
+ getCustomField() : String
+ setCustomField(String) : void

winterface»

«interfaces
customer::CustomerServicelfc

+ getCustomerint) : CustomerDTO

customer::CustomerService

customer::
customer::AcmeCustomer AcmeCustomerEntity
Servicelfc
f + findByPrimaryKey(int) : void

+toDTO() : AcmeCustomerDTO

+ getCustomer(int) : CustomerDTO

customer:: AcmeCustomerService

+ setld{int) : void

+ getCustomer(int) :
AcmeCustomerDTO
customer:: customer::CustomerEntity
CustomerDTO
= id: int + findByPrimaryKey(int) : void
+ toDTO() : CustomerDTO
+ CustomerDTO() : int
+ getld() : int

customer::
AcmeCustomerDTO

- customField: String

+ getCustomField() : String
+ setCustomField(String) : void

6-14 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Extension Strategies

Figure 6-13 Extension with Composition: Class Diagram—DAO

<jterface> .)
item:: AcmeltemManagerifc item: AcmeltemViewBean
+ getitem{Locale Icl, String storelD, String posiD, - customField: String

String itemMumber) ; AcmeltemViewBean + gotCustomFiela(] - String

T + gatCustomField{String) : void

item::AcmeltemManager

+ getitem(Locale lel, String storelD, String poslD,
String itemMNumber) : AcmeltemViewBean

<interface>
item:; AcmeltemServicelfc
<interface>
item::ltemServicelfc + newFinderMethod(...):teminfaDTO
+ getAlliteminfolLocale lcl, String storelD, String
positem|D, String item|D): teminfoDTO
T item: AcmeltemServiceBean
item:: ltemServiceBean I + newFinderMethod|...): Acmeltem|nfeDTO

+ getAlliteminfo(Locale lel, String storelD, String
posltemlD, String item|D): teminfaDTO

item: :AcemliteminfoDTO

- AcmePlultem

+ getPlultem() : AcmeaPlultem
+ setPlulterm{AcmePlultemn) : void

item: teminfoDTO

plu -Plu item: AcmePlultemDAD

+newFinderMethod|...): AcmePlultem

+ getPlultem() : Plultem
+ gatPlultemi{Plultem) : void

item: PlultemDAO

+getByld(String storelD, String posID,
String itemlD, Locale lcl) : Plultem

Back Office, Central Office and Labels and Tags Extension Guidelines 6-15

Extension Strategies

POS
<<antity>>

ACME
Customer
Manager

—

Figure 6—-14 Extension Composition

AcmeCustomer Customer Customer AcmeCustomer AcmeCustomer AcmeCustomer
ViewBean Service Entity Service Entity bDTO

: findByPrimary

Key(id)

CustomerDTO:=
taDTO[

Customer

— o0

findByPrimary
Key(id)

cmeCustomerDTO:=

taDTOf)
-

Data Extension Through Composition

This strategy describes having the entity layer or DAO layer take responsibility for
mapping extra fields to the database by aggregating the custom information and
passing it through the service layer. This approach assumes that the extra data is
presented to the user of the system and persisted to the database, but is not involved
in any service layer business logic.

This scenario alters the Ul layer (JSP/Action/ViewBean) and adds a new
ApplicationManager method to call assemble the ViewBean from the extensible DTO
provided by the replaced Entity bean or DAO.

Slight modifications to the Service session bean might be necessary to support the
toDTO() and fromDTO (ExtensibleDTOlfc dto) methods on the Entity bean, depending
on base product support of extensions on the particular entity bean.

1. Create the new ApplicationManager session facade.
2. Create the new ViewBeans required of the UL

3. Create a new Entity bean or DAO that references the original data to construct a
base product DTO that additionally contains the custom data using the extensible
DTO pattern.

4. Create a new DTO based on the extensible DTO pattern.

o

Create new JSP pages to reference the additional data.

6. Change the deployment descriptors that describe which implementation to use for
a particular Entity bean. In the case of DAQO, specify the new DAO class in
PersistenceContext.xml.

7. Change the new Struts configuration and Action classes that reference the
customized Application Manager Session facade.

6-16 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Extension Strategies

8. If necessary, change the Commerce Service Session facade to give control of the
toDTO and fromDTO methods to the Entity bean and do not assemble or
disassemble the DTO in this layer, as it does not give a good plug point for the
Extensible DTOs.

Figure 615 describes the lifecycle of the data throughout the request.

Figure 6-15 Data Extension through Composition

ul

initla|
AerneCusiomer
Managar

e »

geiCustameaning:
AcneCusiomeryisaBean

Static

Static Entity
Serviceloesror || AemeCustomerEntiy

Sorvion
CLglferSands

CugtomerDTo

ther=petCusamerid) Ll

erilily:=locate():
AcmaCiuismerErmity

getExiensians|:

oGy Primarykeay(id):
veid

wOTO):
Cueamer0TO

gl

€] 4]

Cus=omerDTO

salCustomFikdi String
ikl

U

setExtensions|iMap):

wiid D

AcmeCusiomerDTO

bean
AemalustamarewBaan

Magp
i
getkd{ it ’D
el dto.geld()):
ol
getCustamFiek():
Fnng

»[]

Figure 6-16 describes the various classes created.

Back Office, Central Office and Labels and Tags Extension Guidelines 6-17

Extension Strategies

Figure 6-16 Data Extension Through Composition: Class Diagram—Entity Bean

«interface» customer::AcmeCustomerManager
shared::ExtensibleDTOlfc

. + getCustomer(int) :
+ getExtensions() : Map AcmeCustomerViewBean

1

shared::ExtensibleDTO

winterfacen

- i 2 customer::CustomerService
L R customer::CustomerServicelfc

+ getExtensions() : Map + getCustomer(int) : CustomerDTO

+ weAE Kt R (Map] = veid + getCustomer(int) : CustomerDTO

i

customer::
CustomerDTO customer::CustomerEntity
-id: int + findByPrimaryKey(int) : void
+toDTO() : CustomerDTO
+ CustomerDTO() : int + fromDTO() : void
+ getld(} : int
+ setld(int) : void
customer::
customer:: .
AcmeCustomerDTO AcmeCustomerEntity
i e + findByPrimaryKey(int) : void
B AR T +toDTO() : AcmeCustomerDTO
+ getCustomField() : String + fromDTO({AcmeCustomerDTO) : void
+ setCustomField(String) : void

6-18 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Extension Strategies

Figure 6-17 Data Extension Through Composition: Class Diagram—DAO

Ttem: - Plultem itemn: :AcmealtemManager

+ getitem(Locale lcl, String
storelD, String posiD, String
itemlD) : AcmeltemViewBean

item: AcmePlultem

- customField;String
item:ltemService <interface=>
+ getCustomField() : String item: temServicelfe
+ getCustomerField{String) : + gatAllilteminfo{Locale lel, i
vioid String storelD, String posiD, + getAliiteminfo{Locale lcl, String storelD,
String itemlD): lteminfoDTO String poslD, String itemlD): lteminfoDTO

item: PlultemDAO

+getByld(String storelD, String posiD,
String itemlD, Locale lcl) : Plultem

A

item:: PlultemFacadelfc

+getByld{String storelD,
String poslD, String itemlD,
Locale lcl) : Plultem

item:AcmePlultemDAD

+getByld(String storelD, String
poslD, String itemlD, Locale lel) :
Plultem

Mote: The runtime return type is
actually AcmePlultem, which
extends Plultem.

Back Office, Central Office and Labels and Tags Extension Guidelines 6-19

Extension Strategies

6-20 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

7

Returns Management Extension Guidelines

In order to pass arbitrary data, the schemas used for return request and return result
contain an optional element called MessageExtension. This optional element contains
zero or more sub elements known as ExtensionElements that are simple name/value

pairs of string data.

Element Location and Schema Definition

The MessageExtension element is attached to multiple parent elements in the two
schemas. Table 7-1 summarizes the MessageExtension elements.

Table 7-1 MessageExtension Locations

Schema Type

RM-ReturnRequest.xsd ReturnRequestType
ItemReturnInfo
ItemTransactionInfo

RM-ReturnResult.xsd ReturnResultType
[temReturnResult

The following example is a schema definition for the MessageExtension and
ExtensionElement. For reference, we can also see the relevant section of the
ReturnRequestType schema.

Note: The names and values are strings.

Example 7-1 Message Extension

<xsd:complexType name="MessageExtension">
<xsd:sequence>
<xsd:element name="extensionEntry" type="ExtensionEntry"
minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="ExtensionEntry">
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="value" type="xsd:string"/>

</xsd:complexType>

<xsd:complexType name="ReturnRequestType">

Returns Management Extension Guidelines

7-1

Element Usage and Retrieval

<xsd: sequence>
.. lines omitted ..
<xsd:element name="messageExtension" type="MessageExtension" minOccurs="0"
maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>

Element Usage and Retrieval

To use this optional element, the message sent to Oracle Retail Returns Management
needs to include a MessageExtension with as many ExtensionEntry elements as
necessary. For example, an XML message using the extension to pass custom data
might look similar to the following example:

Example 7-2 XML Message Using The MessageExtension

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ReturnRequest>

.. lines omitted ..
<transactionType>Return</transactionType>
<messageExtension>
<extensionEntry name="LegacyID" value="sun"/>
<extensionEntry name="LegacyTransaction" value="moon"/>
</messageExtension>

</ReturnRequest>

Here we see that the message contains two values for "LegacyID" and
"LegacyTransaction."

Once the values have been added to the message, the message is then sent to Oracle
Retail Returns Management using the desired transport (such as through a web service
or a direct API call). The XML is placed by JAXB into a list accessible through the
appropriate element. In this case, the element is the ReturnRequest object. The user can
then search through this list to find the values the user wants. The following example
demonstrates searching the MessageExtension elements.

Example 7-3 Searching The MessageExtension Elements
MessageExtension ext = returnRequest.getMessageExtension();
if (ext != null) {

for (Iterator it = ext.getExtensionEntry().iterator(); it.hasNext();) {
ExtensionEntry entry = (ExtensionEntry) it.next();

if (entry.getName().equals(“LegacyID”)) {
// do something

Note: If the MessageExtension element is not included with the
ReturnRequest or ReturnResult, the getMessageExtension() method
returns a null. If the element exists but does not have any child
elements, then the list returned by getExtensionEntry() is zero length.

7-2 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

8

Coding Your First Back Office or Central
Office Feature

This chapter describes how to add a feature to Back Office or Central Office using a
specific example based on extending a search page within the application’s Web-based
UL The example is a simple extension of an existing search criteria page to allow it to
search on additional criteria.

Note: See the Oracle Retail POS Suite Security Guide for more
information about specific security features and implementation
guidelines for the POS Suite products.

Before You Begin

Before you attempt to develop new Back Office or Central Office code, set up your
development environment as described in Chapter 3, "General Development
Standards". Verify that you can successfully build and deploy an .ear file.

Extending Transaction Search

This section explores the extension of transaction search features through the creation
of a new criteria page. The changes required to implement this functionality interact
with the user interface and the internals of the Central Office system. This example
takes you through the process of implementing a new search criteria page, under the
assumption that you have been asked to develop a page that enables a user to screen
transactions according to new criteria.

Note: Paths in this chapter are assumed to start from your local
source code tree, checked out from the source code control system.

Item Quantity Example in Central Office

As an example of how to extend Central Office, this chapter refers to a new search
criteria page called Item Quantity. This new page is an addition to the Transaction
Tracker tab. The existing interface offers a side navigation bar with options to search
by Item, Transaction, Sales Associate, Customer, and others. Item Quantity is a new
option on this side navigation bar; it looks much like the Item page but enables the
user to set a quantity value and search for transactions whose quantity of any item
compares appropriately to a chosen quantity (for example, greater than, greater than
or equal to, less than, and so forth).

Coding Your First Back Office or Central Office Feature 8-1

Extending Transaction Search

This example shows how:

= A new user interface can be created.

» Search criteria is collected from the end user.

= Datais handed off from one layer of the interface to another.
= SQL queries are handled and modified.

The following procedures offer general steps followed by specific examples.

Search by Login ID in Back Office

The existing employee search page allows the operator to search for employees by
their employee ID, or by first and last name, or by role. This example will add the
ability to search for employees by their login ID.

This example shows how:

= A user interface can be modified

» Search criteria is collected from the end user

= Datais handed off from one layer of the interface to another
s SQL queries are handled and modified

The following procedures offer general steps followed by specific examples.

Web Ul Framework in Central Office

To add a new search criteria page, you must create a new JSP file for the page, edit
workflow and Struts/Tiles configuration files to register the page, and add
appropriate classes to handle the page.

Create a New JSP file

Create a new JSP file and edit the file content. You can start with a copy of an existing
criteria page and add input fields for the new data you intend to factor into your
search. Plan your string usage to reference property files for internationalization
purposes.

To create ItemQuantityCriteria.jsp, make a copy of <source_
directory>\webapp\transaction-webapp\web\centralizedElectronicJo
urnal\ItemCriteria. jsp. Establish input fields to collect store numbers, item
numbers, item quantity, and the item quantity limit operator (the operator that
determines how to compare a transaction’s item quantities with the item quantity
criteria).

8-2 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Extending Transaction Search

Figure 8—-1 Item Quantity Criteria JSP Page Mock-up

ORACLE Central Office

ut Logaut

Home | Data Management | Transaction Tracker | Admin

Search
Userlll pos
[zt B/6/07 Search By ltem Search = Resuls > Detals
IE::rarn Sc'lelv:t I:E_'let:f‘_lec_kbox lll:l-il-'lﬂl-.!dl'.'-ﬂ'rat area's information in the search, | Zearch | l Clear Search J
enter oriteria, and press Search,
Traresction
Sges Associate
Custarmes N R
5 - Hierarchy Information
Caplured + Use Hierarchy to search
Blectroric
Journals & Or search by store number:
From Store To Store
Mumbers - Mumber: -
= Item Information
Serial Mumber:
Teem Mumber: | UPC: |
. Price Override
Style: Applied:)
Item Cleared: [
O Transaction Information
Results
Show per page: |30 *
* = Hequired field
Search | [Clear Search |

Copyright () 2003, 2007, Cracle. All Rights Resersad

Add Strings to Properties Files

Add references to any new strings to appropriate properties files.

For example, to add Item Quantity Information and Item Quantity column labels, edit
the <source_

directory>\webapp\il8n-webapp\src\uiloracle\retail\stores\webmod
ules\il8n\en\transaction.properties file to add the following entries:

= transaction.centej.itemquantitycrit.header=Item Quantity Information

» transaction.centej.itemquantitycrit.label.itemquantity=Item Quantity

Configure the sideNav Tile

To add the new JSP page to the side navigation bar in the Transaction Tracker tab, you
configure the sideNav tile. Using Struts/Tiles conventions, edit the <source_
directory>\webapp\transaction-webapp\WEB-INF\360\tiles-transacti
on_tracker.xml file, making the following edits:

= Add an entry to the <putList name="sideNav"> tag to add your new page name to
the list of options on the side navigation bar.

» Set the security role for this new option by adding an element tag in the
appropriate location in the <putList name="sideNavRoles"> tag. You can use the
element <add value="BLANK"/> if no role has yet been defined.

Coding Your First Back Office or Central Office Feature 8-3

Extending Transaction Search

= Add a destination URL to be activated when your new page name is clicked.

The following code sample shows where to add tags:

Example 8—1 transaction_tracker.xml: SideNav Option List and Roles

<putList name="sideNav">
<add value="By"/>
<add value="Item"/> ...add your new tag here...
<add value="Transaction"/>
<add value="Sales Associate"/>
<add value="Customer"/>
</putList>
<putList name="sideNavRoles">
<add value="BLANK"/>
<add value="search_by item"/> ...add your new tag here...
<add value="search_by_trans"/>
<add value="search_by_assoc"/>
<add value="search_by_cust"/>
</putList>
<putList name="sideNavURLs">
<add value="BLANK"/>
<add value="centralizedElectronicJournal/ejItemSearch.do"/> ...add your new
tag here... <add value="centralizedElectronicJournal/ejTransactionSearch.do"/>
<add value="centralizedElectronicJournal/ejSalesAssociateSearch.do"/>
<add value="centralizedElectronicJournal/ejCustomerSearch.do"/>
</putList>

Finally, add a set of definition tags to define your JSP page’s title, help URL, and body
layout. The following code sample offers an example:

Example 8-2 Example Definition Tags for tiles-transaction_tracker.xml

<definition name="centralizedElectronicJournal.ejItemQuantitySearch"
extends="ejournal">

<put name="sideNavIndex" value="Item Quantity"/>

<put name="title" value="Search By Item Quantity"/>

<put name="helpURL"
value="centralizedElectronicJournal /help.do#searchbyitem"/>

<put name="body"
value="centralizedElectronicJournal.ejItemQuantitySearch.layout"/>

</definition>

<!-- the following definition defines the layout for the JSP’'s body, as called out
above --!>

<definition name="centralizedElectronicJournal.ejItemQuantitySearch.layout"
extends="ejournal.search.layout">

<put name="resetSearchURL"
value="/centralizedElectronicJournal/ejItemQuantitySearch.do"/>

<put name="searchTitle" value="Search By Item Quantity"/>

<put name="searchAction"
value="/centralizedElectronicJournal/searchTransactionByItemQuantity.do"/>

<put name="expandSections" value="itemQuantityCriteria"/>

<put name="searchCriterial"
value="/centralizedElectronicJournal/ItemQuantityCriteria.jsp"/>

<put name="searchCriteria2"
value="/centralizedElectronicJournal/transactionCriteria.jsp"/>

<put name="searchCriteria3"
value="/centralizedElectronicJournal/resultsCriteria.jsp"/>

</definition>

8-4 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Extending Transaction Search

Web Ul Framework in Back Office

The user interface changes require that you update the JSP page to add the additional
search criteria. You also need to ensure any strings you use are properly externalized
for future localization. Depending on what kind of form is used you may have
additional work to perform. A review of the Struts action mapping used for employee
searches will reveal what changes are required to any action form in use. Finally, the
action used to search will also need to be modified.

Modify the JSP File

Modification of the JSP file is fairly straightforward. Taking the existing JSP structure
into consideration, insert the new search criteria between the Employee ID field and
the First and Last Name fields.

Figure 8-2 Employee Search Screen

DRACLE Back Office

Dake: 5808 Employes Saarch

add Enter employee search oriteria.

Adding the search criteria requires that you insert the appropriate HTML and JSP tags
to the <source_
directory>\webapp\employee-webapp\web\employee\employeeSearch. js
p file. You can identify where the changes need to be placed by looking for the
message tag that displays the

employee.employeeForm. employeeFirstName. label message. The code in the
following example presents the required changes to the employee search page.

Example 8-3 EmployeeSearch.jsp Modifications

<tr>
<td align="right" class="fieldname">--<bean:message
key="prompt.or"/>--</td>
<td align="right"> </td>
</tr>
<tr>
<td align="right" class="fieldname"><bean:message
key="employee.employeeForm.employeeLoginId.label"/>: </td>

Coding Your First Back Office or Central Office Feature 8-5

Extending Transaction Search

<td align="left">
<html:text styleClass="data"
property="searchEmployeeLoginId"
size="20" maxlength="10" tabindex="2"/>
</td>
</tr>
<tr>
<td align="right" class="fieldname">--<bean:message
key="prompt.or"/>--</td>
<td align="right"> </td>
</tr>
<tr>
<td align="right" class="fieldname"><bean:message
key="employee.employeeForm.employeeFirstName.label"/>: </td>
<td align="left">
<html:text styleClass="data"
property="searchEmployeeFirstName" size="20"
maxlength="16" tabindex="3"/></td>
</tr>

The text in bold in this example is the new text that was added to the
employeeSearch.jsp page. It introduces a new label and new text box to collect the new
search criteria.

Note: The tab index values were incremented for all of the remaining
input fields.

The modified screen is presented in Figure 8-3.

Figure 8-3 Modified Employee Search Screen

ORALCLE Back office

Rale: [None |

8-6 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Extending Transaction Search

Externalize Strings

It is very important that all user-visible strings be externalized for localization. Check
to see if the label text is already defined or if you need to create it. If it exists, it is likely
already in the <source_
directory>\webapp\il8n-webapp\src\uiloracle\retail\stores\webmod
ules\il8n\en\employee.properties file. A quick examination of this file
reveals that the label text already exists and there is nothing to add.

Action Mapping

The Struts action mapping defines the important details you need to know about the
code that executes the employee search when the search screen submits its data. The
following example contains the XML fragment that defines the action. It comes from
the struts-employee_actions.xml file that is included in the application’s
struts-config.xml file.

Example 8-4 Action Definition from struts-employee_actions.xml

<action path="/employee/searchEmployee"
type="oracle.retail.stores.webmodules.employee.ui.SearchEmployeeAction"
name="employeeForm"
scope="request"
input="/employee/searchEmployeeView.do"
validate="true">
<forward name="success" path="employee.searchEmployeeViewDetails"/>
<forward name="showEmployeeList" path="employee.searchEmployeeView"/>
<forward name="failure" path="employee.searchEmployeeView"/>

</action>

You may need to modify the action form this action uses to transfer the data from the
modified JSP to the action class. The XML fragment indicates that the form is valid for
a single request and is named employeeForm.

Action Form

The definition of the action form is contained in another XML file,
struts-employee_forms.xml. It is presented in the following example.

Example 8-5 Action Form Definition from struts-employee_forms.xml

<form-bean name="employeeForm"
type="org.apache.struts.validator.DynaValidatorForm">

<form-property
<form-property
<form-property
<form-property
<form-property
<form-property
<form-property
<form-property
<form-property
<form-property
<form-property
<form-property
<form-property
<form-property
<form-property
<form-property
<form-property

name="searchEmployeeId" type="java.lang.String"/>
name="searchEmployeeLoginId" type="java.lang.String"/>
name="searchEmployeeFirstName" type="java.lang.String"/>
name="searchEmployeeLastName" type="java.lang.String"/>
name="employeeName" type="java.lang.String"/>
name="employeeFormattedName" type="java.lang.String"/>
name="employeeFirstName" type="java.lang.String"/>
name="employeeMiddleName" type="java.lang.String"/>
name="employeeLastName" type="java.lang.String"/>
name="employeeId" type="java.lang.String"/>
name="employeeAlternateId" type="java.lang.String"/>
name="employeeLoginId" type="java.lang.String"/>
name="employeeRole" type="java.lang.String"/>
name="employeeStatus" type="java.lang.String"/>
name="socialSecurityNumber" type="java.lang.String"/>
name="employeeStatusCode" type="java.lang.String"/>
name="workGroupId" type="java.lang.String"/>

Coding Your First Back Office or Central Office Feature 8-7

Extending Transaction Search

<form-property name="employeeLocale" type="java.lang.String"/>
<form-property name="groupID" type="java.lang.String"/>
<form-property name="employeeValidity" type="java.lang.String"/>
<form-property name="employeeType" type="java.lang.String"/>
<form-property name="employeeActualStatusCode" type="java.lang.String"/>
<form-property name="errorMessage" type="java.lang.String"/>
<form-property name="employeeStoreId" type="java.lang.String"/>
<form-property name="employeeRoleName" type="java.lang.String"/>
</form-bean>

The definition reveals that the employee search screen is using a DynaValidatorForm
provided by Struts. All of the form properties are defined here in the XML. The line in
bold was added to introduce our new search criteria. Validation of the entered data
should be addressed by proper configuration of the Struts validator. Examples of how
to validate form data using the Struts DynaValidatorForm can be found in the
struts-employee_validator.xml file provided with the source code and the
Struts documentation.

Action Modification

With the new search criteria added to the action form, we can now turn our attention
to modifying the action class that actually performs the search from the user interface.
The action class used is located at <source_
directory>\webapp\employee-webapp\src\uiloracle\retail\stores\we
bmodules\employee\ui\SearchEmployeeAction. java. The action class
execute () method is broken into three sections using an if-then-else statement. The
following example provides a portion of the updates required to enable the action to
search for employees based on their login ID.

Example 8-6 Modifications to SearchEmployeeAction.java

public class SearchEmployeeAction extends Action

{

public ActionForward execute(...) throws Exception

String employeeLoginId = "";

try

employeelLoginId = dynaActionForm
.get ("searchEmployeeLoginId") .toString() ;

if (!employeeId.equals(""))...
else if (!employeeLoginId.equals(""))
{
EmployeeDTO employeeDTO = employeeManager
.getEmployeeByLoginID (employeelLoginId) ;
-- similar code to the first if condition to prepare
-- the necessary data for display to the user since
-- this type of search will match only a one employee
}
else if (employeelId.equals("")
&& ! (employeeFirstName.equals("")
&& employeelLastName.equals("")))...
else...

8-8 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Extending Transaction Search

}

As the only differences between the search by employee ID and search by employee
login ID are how the employee is found, the code in the first two if blocks are almost
identical and could be refactored to share implementations. For the purposes of this
example that repeated code and possible refactoring has been omitted. The important
difference is the call to the employeeManager .getEmployeeByLoginID ()
method.

Configure Action Mapping in Central Office

Configure action mapping in one of the struts configuration files so that Struts knows
how to handle your new JSP page.

The following example shows how the Item Quantity page could be configured. The
file is <source_
directory>\webapp\transaction-webapp\WEB-INF\360\struts-transact
ion_tracker_actions.xml. The code sets up the system to request an item
quantity search and forwards results to standard result routines, automatically
displaying the transaction details (through showDetails.do) if only one result is
returned, and otherwise displaying a standard transaction list.

Example 8-7 Struts Action Configuration for Item Quantity

<action path="/centralizedElectronicJournal/ejItemQuantitySearch"
type="oracle.retail.stores.webmodules.transaction.ui.StartSearchAction">

<forward name="success" path="centralizedElectronicJournal.ejItemQuantitySearch"/>
</action>

<action path="/centralizedElectronicJournal/searchTransactionByItemQuantity"
type="oracle.retail.stores.webmodules.transaction.ui.SearchTransactionByItemQuanti
tyAction"
name="searchTransactionForm"
scope="request"
input="/centralizedElectronicJournal/ejItemQuantitySearch.do">

<forward name="oneResult"
path="/centralizedElectronicJournal/showDetails.do"/>

<forward name="multipleResults"
path="centralizedElectronicJournal.ejTransactionSearchResults"/>
</action>

Add Code to Handle New Fields to Search Transaction Form

Since you have added new search fields for the Item Quantity and Item Quantity
Operator, you must add code for handling these fields and their validation to the
<source_
directory>\webapp\transaction-webapp\src\uiloracle\retail\stores
\webmodules\transaction\ui\SearchTransactionForm. java file.

1. Add the instance fields for any fields you have added to the criteria page, and use
the same names as the input field names you defined in your JSP page, so that the
fields can be automatically populated via retrospection. Note an additional static
constant for the search based on line item quantity.

Example 8-8 New Instance Fields

private String itemQuantityLimitOperator;
private int itemQuantityLimit;

Coding Your First Back Office or Central Office Feature 8-9

Extending Transaction Search

public static final String ITEM_QUANTITY_LIMIT OPERATOR =
"itemQuantityLimitOperator";

public static final String ITEM_QUANTITY_ LIMIT =
"itemQuantityLimit";

public static final String SEARCH_BY ITEM QUANTITY CRITERIA =
"searchByItemQuantityCriteria";

private Boolean searchByItemQuantityCriteria;

2. Define corresponding getter and setter methods for the instance fields.

Example 8-9 Getter and Setter Methods for New Instance Fields

public Boolean getSearchByItemQuantityCriteria()
{

return searchByItemQuantityCriteria;

public void setSearchByItemQuantityCriteria(Boolean
searchByItemQuantityCriteria)

{
this.searchByItemQuantityCriteria =
searchByItemQuantityCriteria;

public String getItemQuantityLimitOperator ()
{

return itemQuantityLimitOperator;

public void setItemQuantityLimitOperator (String
itemQuantityLimitOperator)

this.itemQuantityLimitOperator = itemQuantityLimitOperator;

public int getItemQuantityLimit ()
{

return itemQuantityLimit;

public void setItemQuantityLimit(int itemQuantityLimit)

{

this.itemQuantityLimit = itemQuantityLimit;

3. Add the validation for the item quantity limit value to check that the input was a
valid number and was greater than zero. To do this add the following code in the
validate method and then provide the method implementation. The method
implementation uses an error message key to look up the actual error message
description.

Example 8-10 Code to Add to Validate Method

if (getSearchByItemQuantityCriteria().booleanvValue())

{
validateSearchByItemQuantityCriteria(errors);

8-10 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Extending Transaction Search

Example 8-11 New Validation Method

private void validateSearchByItemQuantityCriteria(ActionErrors
errors)
{
if (getItemQuantityLimit() <= 0)
{
errors.add("searchItemQuantityLimit",
new ActionError ("error.ejournal.search.itemquantity.
itemquantitylimitvalue"));

}

4. Store any error messages for validation in the <source_
directory>\webapp\il8n-webapp\src\uiloracle\retail\stores\web
modules\il8n\transaction.properties file.

In the item quantity example, you might store an error message description as
follows:

error.ejournal .search.itemquantity.itemquantitylimitvalue=Item quantity limit
value must be a valid number and greater than zero.

Create a Struts Action Class
Create a Struts action class to act as a controller for the JSP you created.

For Item Quantity, create an action class using the filename
SearchTransactionByltemQuantity Action java, in the directory <source_
directory>\webapp\transaction-webapp\src\uiloracle\retail\stores
\webmodules\transaction\ui\.

You can start by copying and modifying SearchTransactionByltemAction.java.

Add Method to Base Class

Add code to the base search class, SearchTransactionAction.java, to establish a get
method for the new criteria:

1. Add aline to call a new method.

Example 8-12 Call a New Method to Get Item Quantity Criteria
searchCriteria = new SearchCriteria(getTransactionCriteria(searchTransactionForm,
request.getParameterValues (

"transactionType")),

getTenderCriteria(searchTransactionForm),
getSalesAssociateCriteria(searchTransactionForm),
getLineItemCriteria(searchTransactionForm),getLineltemQuantityCriteria (searchTrans
actionForm),getCustomerCriteria (searchTransactionForm),
getSignatureCaptureCriteria (searchTransactionForm)) ;

2. Add the method implementation.

Example 8-13 getLineltemQuantityCriteria Method Implementation

/**

* Returns a LineItemQuantityCriteria object based on values
* from a SearchTransactionForm.

*

*/

Coding Your First Back Office or Central Office Feature 8-11

Extending Transaction Search

protected LineltemQuantityCriteria
getLineltemQuantityCriteria(SearchTransactionForm form)
{
if (form.getSearchByItemQuantityCriteria() .booleanvValue())
{

criteria = new LineltemQuantityCriteriaf();
if (StringUtils.isNotEmpty (form.getItemNumber()))

criteria.setItemNumber (form.getItemNumber ());

if (StringUtils.isNotEmpty (form.getItemQuantityLimitOperator()))

criteria.setItemQuantityLimitOperator (form.getItemQuantityLimitOperator());

}

if (form.getItemQuantityLimit() > 0)
{

criteria.setItemQuantityLimit (form.getItemQuantityLimit());

return criteria;

Application Services in Back Office

The Employee Manager session bean already contained the required method to search
for employees by their login ID. The business interface for the employee manager is
located in the file <source_
directory>\webapp\employee-webapp\src\app\oracle\retail\stores\w
ebmodules\employee\app\EmployeeManagerIfc. java. It contains the
declarations of the methods available to the user interface. The method to find an
employee by their login ID is presented in Example 8-14.

Example 8-14 EmployeeManagerifc.java

/ * %
* Finds the employee with the specified Login ID.
* @param loginID the ID of the employee to find.
* @return A DTO containing the employee data.
* @throws EmployeeNotFoundException if the employee cannot be
* found

*/

EmployeeDTO getEmployeeByLoginID(String loginID)

throws EmployeeNotFoundException, RemoteException;

The bean implementation is located in <source_
directory>\webapp\employee-webapp\src\app\oracle\retail\stores\w
ebmodules\employee\app\ejb\EmployeeManagerBean. java As a facade it
simply delegates the call to the Employee Service bean in the Commerce Services layer.

Verify Application Manager Implementation in Central Office

Verify that the application manager appropriately calls for information from
Commerce Services. In the Item Quantity search criteria example, the <source_

8-12 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Extending Transaction Search

directory>\webapp\transaction-webapp\src\app\oracle\retail\store
s\webmodules\transaction\app\ejb\EJournalManagerBean.java class
is used. This class already contains the necessary method implementation for a
getTransactions() method.

Commerce Services in Back Office

The Employee Service bean in the Commerce Services layer is another facade that
prevents direct access to the entity beans. The implementation obtains an instance of
the EmployeeLocalHome and invokes the findByLoginID() method. Examination of
the Employee entity bean will reveal that it is directly querying the database to find
the user with the corresponding login ID.

Add Business Logic to Commerce Service in Central Office

Use the following to add business logic to commerce services.

Create a Class to Create the Criteria Object

You must create a new class in the Commerce Services layer to handle the creation of
the new ItemQuantityCriteria object type, adding instance fields for the fields you
added. The class should provide the following:

= Variables for required criteria fields

= Boolean flags to indicate (to the data layer) whether a given attribute should be
included in a query

m Getter and setter methods for the new fields

s Use() and reset() methods

Add New Criteria to the Service

The new criteria you have added must be included in the class that processes search
criteria. For transactions, this class is <source_
directory>\commerceservices\transaction\src\oracle\retail\stores
\commerceservices\transaction\SearchCriteria.java.

To make LineltemQuantityCriteria work, add it to the variable declarations and the
constructors and add new getter and setter methods, as shown in the highlighted
portions of Example 8-15:

Example 8-15 SearchCriteria.java

public class SearchCriteria implements Serializable
{

private TransactionCriteria transactionCriteria;

private TenderCriteria tenderCriteria;

private SalesAssociateCriteria salesAssociateCriteria;

private LineltemCriteria lineItemCriteria;

private LineItemQuantityCriteria lineItemQuantityCriteria; private
CustomerCriteria customerCriteria;

private SignatureCaptureCriteria signatureCaptureCriteria;

public SearchCriteriaf()

{
this(null, null, null, null, null,null);

}

Coding Your First Back Office or Central Office Feature 8-13

Extending Transaction Search

public SearchCriteria(TransactionCriteria transactionCriteria,
TenderCriteria tenderCriteria,
SalesAssociateCriteria
salesAssociateCriteria,
LineItemCriteria lineItemCriteria,
LineItemQuantityCriteria linelItemQuantityCriteria,
CustomerCriteria customerCriteria)

this (transactionCriteria,
tenderCriteria,
salesAssociateCriteria,
lineItemCriteria,
lineItemQuantityCriteria,
customerCriteria,
null);

public SearchCriteria(TransactionCriteria transactionCriteria,
TenderCriteria tenderCriteria,
SalesAssociateCriteria
salesAssociateCriteria,
LineItemCriteria lineItemCriteria,
LineItemQuantityCriteria
lineItemQuantityCriteria,
CustomerCriteria customerCriteria,
SignatureCaptureCriteria
signatureCaptureCriteria)

setTransactionCriteria(transactionCriteria);
setTenderCriteria(tenderCriteria);
setSalesAssociateCriteria(salesAssociateCriteria);
setLineltemCriteria(lineltemCriteria);
setLineltemQuantityCriteria(lineltemQuantityCriteria);
setCustomerCriteria(customerCriteria);
setSignatureCaptureCriteria(signatureCaptureCriteria);

public LineIltemQuantityCriteria getLineIltemQuantityCriteria()

{

return lineltemQuantityCriteria;

public void
setLineltemQuantityCriteria(LineltemQuantityCriteria
lineItemQuantityCriteria)

this.lineltemQuantityCriteria = lineItemQuantityCriteria;

Handle SQL Code Changes in the Service Bean

The service bean creates the SQL code that pulls data from the database. Add code to
the appropriate ServiceBean java file to append new criteria to the From clause and the
Where clause.

8-14 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Extending Transaction Search

To make the Line Item Quantity Criteria work, edit the <source_
directory>\commerceservices\transaction\src\com\oracle\retail\st
ores\commerceservices\transaction\ejb\TransactionServiceBean.jav
a file as follows:

1. Add a method call to append to the From clause.

query .append (addToFromClause (searchCriteria.getLineItemQuantityCriteria()));

2. Add the method implementation for the addToFromClause() method.

Example 8-16 addToFromClause() Method

/** LineItemQuantityCriteria Criteria
*
*/
private String addToFromClause (LineItemQuantityCriteria
criteria)

StringBuffer buffer = new StringBuffer();
if (criteria != null && criteria.use())
{

buffer.append (" JOIN TR_LTM_RTL_TRN ON TR_LTM_RTL_TRN.ID STR_RT = TR_
TRN.ID_STR_RT AND TR_LTM RTL_TRN.ID WS = TR_TRN.ID WS AND TR_LTM_RTL_TRN.DC_DY_ BSN
= TR_TRN.DC_DY_BSN AND TR_LTM_RTIL_TRN.AI_TRN = TR_TRN.AI_TRN ");

buffer.append(" JOIN TR_LTM_SLS_RTN ON TR_TRN.ID_STR_RT = TR_LTM_SLS_
RIN.ID_STR_RT AND TR_TRN.ID_WS = TR_LTM SLS_RTN.ID_WS AND TR_TRN.DC_DY BSN = TR_
LTM_SLS_RTN.DC_DY_BSN AND TR_TRN.AI_TRN = TR_LTM_ SLS_RTN.AI_TRN ");

buffer.append(" JOIN AS_ITM ON TR_LTM_SLS_RTN.ID_ITM = AS_ITM.ID_ITM

buffer.append (" JOIN AS_ITM STK ON AS_ITM.ID_ITM = AS_ITM STK.ID_ITM

buffer.append (" JOIN ID _IDN_PS ON AS_ITM.ID_ITM = ID IDN_PS.ID_ITM ");
}

return buffer.toString();

3. Add a method call to append to the Where clause.

query.append (addToWhereClause (searchCriteria.getLineItemQuantityCriteria()));

4. Add the method implementation for the addToWhereClause() method.

Example 8—17 addToWhereClause() Method

addToWhereClause (searchCriteria.getLineltemQuantityCriteria())
as below.

/**

*

*/

private String addToWhereClause(LineItemQuantityCriteria
criteria)

StringBuffer query = new StringBuffer("");
if (criteria != null && criteria.use())

{
if ((criteria.getItemNumber () != null &&
criteria.getItemNumber () .length() > 0))

Coding Your First Back Office or Central Office Feature 8-15

Extending Transaction Search

query.append (" AND TR_LTM_SLS_RTN.ID_ITM
POS="+criteria.getItemNumber ());
}

if (criteria.isSearchByItemQuantity())

query.append (" AND TR_LTM_SLS_RTN.QU_ITM_ LM RTN_
SLS"+criteria.getItemQuantityLimitOperator()+"?");
}
}
return query.toString();

5. Add a call to a method to bind the variables in the SQL query.

n = setBindVariables(ps, n, searchCriteria.getLineItemQuantityCriteria());

6. Add the method implementation for the setBindVariables() method.

Example 8-18 setBindVariables() method

setBindVariables(ps, n,
searchCriteria.getLineltemQuantityCriteria()) as below.

/'k*
*
*/
private int setBindVariables(PreparedStatement statement,
int index,
LineItemQuantityCriteria criteria)
throws SQLException

if (criteria != null && criteria.use())

if (criteria.isSearchByItemQuantity())
{
if (getLogger () .isDebugEnabled())
bindVariables.add(criteria.getItemQuantityLimit ()+"");
statement.setInt (index++,
criteria.getItemQuantityLimit());

}

return index;

8-16 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

9

Frameworks

Frameworks

The Oracle Retail architecture uses a combination of technologies that make it flexible
and extensible, and allow it to communicate with other hardware and software
systems. The frameworks that drive the application are implemented by the Java
programming language, distributed objects, and XML scripting. Described below, the
User Interface, Business Object, Manager/Technician, Data Persistence, and
Navigation frameworks interact to provide a powerful, flexible application
framework.

Manager/Technician

The Manager/Technician framework is the component of Oracle Retail Platform that
implements the distribution of data across a network. A Manager provides an API for
the application and communicates with its Technician, which implements the interface
to the external resource. The Manager is always on the same tier, or machine, as the
application, while the Technician is usually on the same tier as the external resource.

Figure 9-1 shows an example of the Manager/Technician framework distributed on
two different tiers.

Figure 9—-1 Manager/Technician Framework

Application Tier Resource Tier
Application f=--1 Manager BMIIWE Technician p==-=-=- FE::E:::IE
Database
Valet

Frameworks 9-1

Frameworks

User Interface
The UI framework includes all the classes and interfaces in Oracle Retail Platform to

support the rapid development of Ul screens. In the application code, the developer
creates a model that is handled by the UI Manager in the application code. The Ul
Manager communicates with the UI Technician, which accesses the Ul Subsystem.

Figure 9-2 illustrates components of the UI framework.

Figure 9-2 Ul Framework

Ul Technician
Ul Manager -
API »|c Swing
Ul Subsystem 2la
2|3 JavaPOS
Model @ |@
Configurator
|]
Catalog | |
Beans Res_o urce
Files
Specification
Loader
Specs

Table 9-1 describes the components of the UI framework.

9-2 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Frameworks

Table 9—1 Ul Framework Components

Component Description

Resource Files Resource files are text bundles that provide the labels for a screen. They are
implemented as properties files. Text bundles are used for localizing the application.

Bean Beans are reusable Java program building blocks that can be combined with other
components to form an application. They typically provide the screen components
and data for the workpanel area of the screen.

Specs Specifications define the components of a screen. Display specifications define the
width, height, and title of a window. Template specifications divide displays into
areas. Bean specifications define classes and configurators and additional screen
elements for a component. Default screen specifications map beans to the commonly
used areas and define listeners to the beans. Overlay screen specifications define
additional mappings of beans and listeners to default screens.

Specification Loader Loaders find external specifications and interpret them. The loader instantiates screen
specifications such as overlays, templates, and displays, and places the objects into a
spec catalog.

Catalog A Catalog provides the bean specifications by name. The UI Technician requests the
catalog from the loader to simplify configurations.

Configurator The UI framework interfaces with beans through bean configurator classes, which
control interactions with beans. A configurator is instantiated for each bean
specification. They apply properties from the specifications to the bean, configure a
bean when initialized, reset the text on a bean when the locale changes, set the bean
component data from a model, update a model from the bean component data, and
set the filename of the resource bundle.

Model The business logic communicates with beans through screen models. Each bean
configurator contains a screen model, and the configurator must determine if any
action is to be taken on the model. Classes exist for each model.

UI Manager The UI Manager provides the API for application code to access and manipulate user
interface components. The Ul Manager uses different methods to call the Ul
Technician.

UI Technician The UI Technician controls the main application window or display. The Ul

Technician receives calls from Point-of-Service tours, locates the appropriate screen,
and handles the setup of the screens through the UI Subsystem.

UI Subsystem The UI Subsystem provides UI components for displaying and editing
Point-of-Service screens. The Ul subsystem enables application logic to be completely
isolated from the UI components. This component is specific to the technology used,
such as Swing or JSP.

Adapters Adapters are used to provide a specialized response to bean events. Adapters can
handle the events, or the event can cause the adapter to manipulate a target bean.

Adapters implement listener interfaces to handle events on the Ul Adapters come
from the Swing API of controls and support JavaPOS-compliant devices.

Listeners Listeners provide a mechanism for reacting to user interface events. Listeners come
from the Swing API of controls and support JavaPOS-compliant devices.

Business Object

The Commerce Services layer of the architecture contains the Business Object
framework that implements the instantiation of business objects. The Business Object
framework is used to create new business objects for use by Mobile Point-of-Service.
The business objects contain data and logic that determine the path or option used by
an application.

Frameworks 9-3

Frameworks

Figure 9-3 Business Object Framework

Properties
L Configures
Interface
Domain
Request Object
Request Retum h":z;'ii“ Factory
factory interface
Interface
Return
interface
o Business
Application Object
Uses >

Table 9-2 describes the components in the Business Object framework.

Table 9-2 Business Object Framework Components

Component Description

DomainGateway The DomainGateway class provides a common access point for all business object
classes.

Domain Object Factory The Domain Object Factory returns instances of business object classes. The

application requests a Factory from the DomainGateway.

Business Object Business objects define the attributes for application data. New instances are created
using the Domain Object Factory.

Data Persistence

A specific Manager /Technician pair is the Data Manager and Data Technician used for
data persistence. Figure 9—4 illustrates how data gets saved to a persistent resource.

9-4 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Frameworks

Figure 9-4 Data Persistence Framework

Data Data Derb
Manager Technician D teb y
Configuration Configuration atabase

Script Script

Data Technician |
L. Data
Application [Manager
g Data Technician |
¢ g
. Local
Transaction Database

Queue

Table 9-3 describes the components in the Data Persistence framework.

Table 9-3 Data Persistence Framework Components

Component

Description

Data Manager

The Data Manager defines the application entry point into the Data Persistence
Framework. Its primary responsibility is to contact the Data Technician and transport
any requests to the Data Technician.

Data Manager
Configuration Script

The Data Manager processes data actions from the application based on the
configuration information set in the Data Manager Configuration Script. The
Configuration Script defines transactions available to the application.

Data Technician

The Data Technician provides the interface to the database or flat file. This class is
part of the Oracle Retail Platform framework. It provides entry points for application
transactions sent by the Data Manager and caches the set of supported data store
operations. It also contains a pool of physical data connections used by the supported
data operations.

Data Technician
Configuration Script

The Data Technician Configuration Script specifies the types of connections to be
pooled, the set of operations available to the application, and the mapping of an
application data action to a specific data operation.

Transaction Queue

Tour

The Transaction Queue holds data transactions and offers asynchronous data
persistence and offline processing for Point-of-Service. When the database is offline,
the data is held in the queue and posted to the database when it comes back online.
When the application is online, the Data Manager gets the information from the
Transaction Queue to send to the database.

The Tour framework establishes the workflow for the application. It models
application behavior as states, events and transitions. The Oracle Retail Platform
engine is modeled on finite state machine behavior. A finite state machine has a
limited number of possible states. A state machine stores the status of something at a
given time and, based on input, changes the status or causes an action or output to

Frameworks 9-5

Frameworks

occur. The Tour framework provides a formal method for defining these nested state
machines as a traceable way to handle flow through an application.

Tourmap

One problem of tour scripts is that they can be difficult to customize for a particular
retailer’s installation. The tourmap feature allows customizations to be made more
easily on existing tour scripts. Tour components and tour scripts can be referenced by
logical names in the tour script and mapped to physical names in a tourmap file,
making it easier to use the product tour and just change the pieces that need to be
changed for a customer implementation. In addition, with tourmaps, components and
scripts can be overridden based on a country, so files specific to a locale are
implemented when appropriate.

The tourmap does not allow you to modify the structure of the tour, specifically the
following:

= Does not allow you to add or remove sites
= Does not allow you to add or remove roads and aisles

= Does not allow you to specify a tour spanning multiple files (for example, “tour
inheritance”)

Of particular note is the last bullet: the tourmap does not allow you to assemble
fragments of xml into one cohesive tour script. After the application is loaded, there is
only be one tour script that maps to any logical name.

The functionality of tourmapping is implemented using one or more tourmap files.
Multiple tourmap files can be specified using the config\tourmap.files properties.
tourmap.files is a comma delimited list of tourmap files. As each file is loaded, the
application checks the country property of the tourmap file. The order of files is
significant because later files override any values specified in previous files. A file that
overrides a similarly-named file is called an overlay.

Each tourmap file begins with a root element, tourmap, which has an optional country
attribute. The tourmap elements contains multiple tour elements, each one of which
describes a tour's logical name, its physical file, and any overlays to apply. For
instance, a simple tourmap might look like the following:

Example 9-1 Sample Tourmap

<?xml version="1.0" encoding="UTF-8"?>

<tourmap
country="CA"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xs1 :noNamespaceSchemaLocation="com/extendyourstore/foundation/tour/dtd/tourmap.xsd
.
<tour name="testService">

<file>classpath://com/extendyourstore/foundation/tour/engine/tourmap.testservice.x
ml</file>
<SITE
name="siteWithoutAction"

useaction="oracle.retail.stores.foundation.tour.engine.actions.overlay.OverlaySite
Action"/>
<SITEACTION
class="SampleSiteAction"

9-6 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Frameworks

replacewith="oracle.retail.stores.foundation.tour.engine.actions.overlay.OverlaySi
teAction"/>

</tour>
</tourmap>

In this instance, the tour with the logical name testService references the file
com\extendyourstore \foundation\tour\engine \ tourmap.testservice.xml.
Additionally, the values for SITE and SITEACTION are replaced.

Note: Because of the country in the tourmap element, this only
happens when the default locale of the application is a Canadian
locale.

Tourmaps are used not only to override XML attributes, but they are used also when
the workflow needs to be changed.

Frameworks 9-7

Frameworks

9-8 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

10

Manager/Technician Framework

This chapter describes the Manager/Technician pair relationship and how it is used to
provide business and system services to the application. It also describes how to build
a Manager and Technician and provides sample implementation and sample code.

Oracle Retail POS Suite provides the technology for distributing business and system
processes across the enterprise through plug-in modules called Managers and
Technicians. Manager and Technician classes come in pairs. A Manager is responsible
for communicating with its paired Technician on the same or different tiers. The
Technician is responsible for performing the work on its tier. By design, Managers
know how to communicate with Technicians through a pass-through remote interface
called a valet. The valet is the component that handles data transfer. The valet can
travel across networks. It receives the instructions from the Manager and delivers
them to the Technician. A valet follows the Command design pattern described in
"Oracle Retail POS Suite Technical Architecture" in the Oracle Retail POS Suite
Implementation Guide — Volume 1, Implementation Solutions.

Figure 10-1 Manager, Technician and Valet

Application Tier Resource Tier
RMI/JM
Application p=={ Manager S Technician pa=a= :::EL':EL
Database
Valet

There is a M:N relationship between instances of Managers and Technicians. Multiple
Managers may communicate with a Technician, or one Manager may communicate
with multiple Technicians. While most Managers have a corresponding Technician,
there are cases such as the Utility Manager where no corresponding Technician exists.

There are three Manager/Technician categories. These types have different usages and
are started differently. The three types are:

s Global—These Managers and Technicians are shared by all tours. They provide
global services to applications.

= Session—These Managers and Technicians perform services for a single tour. They
are started by each tour and exist for the length of the tour.

Manager/Technician Framework 10-1

s Embedded—Thread Manager is embedded inside the Oracle Retail POS Suite
engine. It is essential to the operation of the engine. This is currently the only
embedded Manager.

Table 10-1 lists each of the three Manager /Technician categories, along with examples.

Table 10-1 Manager/Technician Type Examples

Manager/Technician Type Examples
Global s Data

= Journal

= Log

= Resource

s Timer

s Tier

= XML
Session s Device

s Parameter

= Ul
= FinancialNetworkManager
Embedded Thread

Session Managers are started up by the tour bus when a tour is invoked and can only
be accessed by the bus in the tour code. Global Managers, on the other hand, can be
used at any time and are not specific to any tour. Each type of Manager has a specific
responsibility.

Table 10-2 lists the functions of some of the Managers.

Table 10-2 Manager Names and Descriptions

Manager Name Description

Data The Data Manager is the system-wide resource through which the application can
obtain access to persistent resources. The Data Manager tracks all data stores for the
system, and is the mechanism by which application threads obtain logical connections
to those resources for persistence operations.

Device The Device Manager defines the Java interfaces that are available to an application or
class for accessing hardware devices, like printers and scanners.

Journal The Journal Manager is the interface that is used to write audit trail information, such
as start transaction, end transaction, and other interesting register events.

Log The Log Manager is the interface that places diagnostic output in a common location
on one tier for an application, regardless of where the actual tours run.

Parameter The Parameter Manager is the interface that provides access to parameters used for
customization and runtime configuration of applications.

Thread The Thread Manager is a subsystem that provides system threads as a pooled
resource to the system.

Tier The Tier Manager interface starts a tour session and mails letters to existing tour
sessions. The Tier Manager enables the engine to start a tour on any tier specified in a
transfer station, regardless of where that tier runs. In addition, the Tier Manager
enables a bus to mail a letter to any other existing Bus in the system on any tier.

10-2 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

New Manager/Technician

Table 10-2 (Cont.) Manager Names and Descriptions

Manager Name Description

Timer The Timer Manager provides timer resources to applications that require them. It
does not have a Technician because all timers are local on the tier where they are
used.

User Interface The UI Manager is a mechanism for accessing and manipulating user interface

components. The user interface subsystem within a state machine application must
also maintain a parallel state of screens, so the appropriate screens can be matched
with the application state at all times. The user interface subsystem within a
distributed environment must enable application logic to be completely isolated from
the user interface components.

XML The XML Manager locates a specified XML file, parses the file, and returns an XML
parse tree.

New Manager/Technician

When creating a new Manager and Technician pair, you must create a Manager and
Technician class, a Valet class, and interfaces for each class. Managers are the
application client to a Technician service, Technicians do the work, and the valet tells
the Technicians what work to do. Managers can be considered proxies for the services
provided by the Technicians. Technicians can serve as the interfaces to resources.
Managers communicate with Technicians indirectly using valets. Valets can be thought
of as commands to be executed remotely by the Technician. Samples for the new
classes that need to be created are organized together in the next section.

Requesting services from the Managers only requires familiarity with the interface
provided by Managers. However, building a new Manager/Technician pair requires
implementing the interfaces for both the new Manager and Technician, as well as
creating a Valet class.

Manager Class

A Manager merely provides an API to tour code. It behaves like any other method
except that the work it performs may be completed remotely. The input to a Manager
is usually passed on to the valet that in turn, passes it on to the Technician, which
actually performs the work.

The Manager class provides methods for sending valets to the Technician. The

send Valet() method makes a single attempt to send a valet to the Manager’s
Technician. The sendValetWithRetry() method attempts to send the valet to the
Manager’s Technician, and if there is an error, reset the connection to the Technician
and then try again.

Managers must implement the Managerlfc, which requires the methods in Table 10-3.

Table 10-3 lists Managerlfc methods.

Table 10-3 Managerlfc Methods

Method Description

MailboxAddress Gets address of Manager
getAddress()

Boolean getExport() Returns if this Manager is exportable
String getName() Gets name of Manager

void setExport(Boolean) Sets whether the Manager is exportable

Manager/Technician Framework 10-3

New Manager/Technician

Table 10-3 (Cont) Managerifc Methods

Method Description

void setName(String) Sets name of Manager
void shutdown() Shuts this Manager down
void startUp() Starts this Manager

Often, a subclass of Manager can use these methods exactly as written. Unlike the
Technicians, Managers seldom require special startup and shutdown methods, because
most Managers have no special resources associated with them.

Manager Configuration

You can provide runtime configuration settings for each Manager using a conduit
script. The Dispatcher that loads Point-of-Service configures the Managers by reading
properties from the conduit script and calling the corresponding set() method using
the Java reflection utility. All properties are set by the Dispatcher before the Dispatcher
calls startUp() on the Manager.

Every Manager should have the following:

s Name—Tour code typically locates a Manager using its name. Often this name is
the same as the name of the class and may be defined as a constant within the
Manager. This is what the getName() method returns.

» Class—This is the name of the class, minus its package.
» Package—This is the Java package where the class resides.

Managers may have an additional property file defined that specifies additional
information such as the definition of transaction mappings. If a separate configuration
script is defined, the startup() method must read and interpret the configuration script.
The following sample from <source_
directory>\applications\pos\deploy\client\config\conduit\ClientC
onduit.xml shows this.

Example 10-1 CollapsedConduitFF.xml: Data Manager Configuration

<MANAGER name="DataManager" class="DataManager"
package="oracle.retail.stores.foundation.manager.data">
<PROPERTY propname="configScript"
propvalue="classpath://config/manager/PosDataManager.xml" />
</MANAGER>

Technician Class

Technicians implement functions needed by Point-of-Service to communicate with
external or internal resources, such as the Ul or the store database. Technicians must
implement the Technicianlfc, which requires the following methods:

Table 104 lists TechnicianIfc methods.

10-4 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

New Manager/Technician

Table 10-4 Technicianlfc Methods

Method Description

MailboxAddress Gets address of Technician
getAddress()

Boolean getExport() Checks if this Technician is exportable
String getName() Gets name of Technician

void shutdown()

Shuts this Technician down

void startUp()

Starts up Technician process

Often, a subclass of Technician can use these methods exactly as written. The most
likely methods to require additional implementation are startUp() and shutdowny(),
which needs to handle connections with external systems.

Technician Configuration

The Technician is configured within the conduit script. Each Technician should have
the following:

Name

A Manager typically locates its Technician using its name. Often this name is the same
as the name of the class and may be defined as a constant within the Technician. This
is what Technician.getName() returns.

Class
The name of the class, minus its package.

Package
The Java package where the class resides.

Export

This should be Y if the Technician may be accessed by an external Java process; N
otherwise. The value returned by Technician.getExport() is based on this. In
Technicians, it indicates whether the Technician can be remotely accessed from another
tier.

Some Technicians may require complex configuration. In cases like this, it may be
preferable to define an XML configuration script specific to the Technician, rather than
to rely on the generic property mechanism. Therefore, Technicians may have an
additional property defined that specifies additional information such as log formats
or parameter validators. If a separate configuration script is defined, the startup()
method must read and interpret the configuration script. The following sample from
<source_
directory>\applications\pos\deploy\server\config\conduit\StoreSe
rverConduit.xml shows an additional script defined in the configuration of the
Data Technician.

Example 10-2 CollapsedConduitFF.xml: Tax Technician Configuration

<TECHNICIAN name="RemoteDT" class = "DataTechnician"
package = "oracle.retail.stores.foundation.manager.data"
export = "Y" >
<PROPERTY propname="dataScript"
propvalue="classpath://config/DefaultDataTechnician.xml"/>
</TECHNICIAN>

Manager/Technician Framework 10-5

New Manager/Technician

Valet Class
The valet is the intermediary between the Manager and Technician. Valets act as
commands and transport information back and forth between the Manager and
Technician. Valets must implement Valetlfc, which contains a single method.
Table 10-5 lists the ValetIfc method.
Table 10-5 Valetlfc Method

Method Description

Serializable Executes the valet-specific processing on the object

execute(Object)
The execute method is called by the Technician after the valet arrives at its destination
as a result of the Manager’s send Valet() or send ValetWithRetry() methods.

Sample Code

Example 10-3 illustrates the primary changes that need to be made to create a
Manager/Technician pair. Note that interfaces also need to be created for the new
Manager, Technician, and Valet classes.

Configuration

The conduit script needs to define the location of the Manager and Technician. This
code would be found in a conduit script such as
config\conduit\ClientConduit.xml. These code samples would typically be in
different files on separate machines. It would include snippets like the following.

Example 10-3 Sample Manager and Technician Configuration

<MANAGER name="MyNewManager"
class="MyNewManager"
package="oracle.retail.stores.foundation.manager.mynew">
</MANAGER>

<TECHNICIAN name="MyNewTechnician"
class="MyNewTechnician"
package="oracle.retail.stores.foundation.manager.mynew"
export="Y" >
<PROPERTY propname="techField" propvalue="importantVal"/>
<PROPERTY propname="configScript"

propvalue="classpath://com/extendyourstore/pos/config/myconfigscript.xml"/>
</TECHNICIAN>

Tour Code

Tour code might include a snippet like the following, which might be located in
<source_
directory>\applications\pos\src\oracle\retail\stores\pos\service
s.

Example 10-4 Sample Manager in Tour Code

try
{

MyNewManagerIfc myManager =

10-6 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

New Manager/Technician

(MyNewManagerIfc)bus.getManager ("MyNewManager") ;
myManager .doSomeClientWork ("From site code ");
catch (Exception e)

{

logger.info (bus.getServiceName(), e.toString());

Manager

This is a minimal Manager class to illustrate how to create a new Manager. A new
Manager interface also needs to be created for this class. Note that this class references
the sample MyNewTechnician class shown in a later code sample.

Example 10-5 Sample Manager Class

package oracle.retail.stores.foundation.manager.mynew;

import oracle.retail.stores.foundation.manager.log.LogMessageConstants;
import oracle.retail.stores.foundation.tour.manager.Manager;
import oracle.retail.stores.foundation.tour.manager.ValetIfc;

public class MyNewManager extends Manager implements MyNewManagerIfc

{

/’k*
Constructs MyNewManager object, establishes the manager's address, and
identifies the associated technician.

*/

public MyNewManager ()

{
getAddressDispatcherOptional () ;
setTechnicianName ("MyNewTechnician") ;
}
[mm e
/**
This method processes the input argument (via its technician).
@param input a String to illustrate argument passing.
@return a transformed String
**/
[mm e

public String doSomeClientWork (String input)
{
String result = null;
ValetIfc valet = new MyNewValet (input) ;
try
{
result = (String)sendValetWithRetry(valet);
}
catch (Exception e) // usually ValetException or CommException
{
logger.error (LogMessageConstants.SCOPE_SYSTEM,
"MyNewManager .doSomeClientWork, " +
"could not sendValetWithRetry: Exception = {0}", e);
}
logger .debug (LogMessageConstants.SCOPE_SYSTEM,
"MyNewManager .doSomeClientWork, returns {0}", result);

Manager/Technician Framework 10-7

New Manager/Technician

return result;

Valet
The following code defines a valet to send input to MyNewTechnician.

Example 10-6 Sample Valet Class

package oracle.retail.stores.foundation.manager.mynew;

import oracle.retail.stores.foundation.tour.manager.ValetIfc;
import java.io.Serializable;

public class MyNewValet implements ValetIfc
{

/** An input used by the Technician. **/
protected String input = null;

[=
/**
The constructor stores the input for later use by the Technician.
@param input the input to be stored.
**/
[=

public MyNewValet (String input)
{

this.input = input;

/**
This method causes the MyNewTechnician to "doSomething" with the input
and returns the results.
@param techIn the technician that will do the work
@return the results of "MyNewTechnician.doSomething"

public Serializable execute(Object techIn) throws Exception

{
if (! (techIn instanceof MyNewTechnician))
{
throw new Exception("MyNewTechnician must passed into execute.");
}
MyNewTechnician tech = (MyNewTechnician)techIn;
String result = tech.doSomething (input) ;
return result;
}
}
Technician

The following code provides an example of a minimal Technician class. A new
Technician interface also needs to be created for this class.

Example 10-7 Sample Technician Class

package oracle.retail.stores.foundation.manager.mynew;

10-8 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Manager/Technician Reference

import oracle.retail.stores.foundation.manager.log.LogMessageConstants;
import oracle.retail.stores.foundation.tour.manager.Technician;
import oracle.retail.stores.foundation.tour.manager.ValetIfc;

public class MyNewTechnician extends Technician implements MyNewTechnicianIfc
{

/** A value obtained from the config script. **/

protected String techField = null;

public void setTechField(String value)
{

techField = value;

public void setConfigScript (String value)
{

// Complicated configuration could go here

/*‘k
This method processes the input argument (via its Technician) .
@param input a String to illustrate argument passing.
@return a transformed String

public String doSomething(String input)
{
String result = null;
result = "MyNewTechnician processed " + input + " using " + techField;
logger.debug (LogMessageConstants.SCOPE_SYSTEM,
"MyNewTechnician.doSomething, returns {0}", result);
return result;

Manager/Technician Reference

The following sections describe a Manager/Technician pair, important methods on the
Manager, and an example of using the Manager in the application code.

Parameter Manager/Technician

The Parameter Manager is the interface that allows parameters to be used for
customization and runtime configuration of applications. The following code from
<source_
directory>\applications\pos\deploy\client\config\conduit\ClientC
onduit.xml specifies the location and properties of the Parameter Manager and
Technician. Note that the Parameter Manager is a Session Manager because it is
defined with a PROPERTY element inside the APPLICATION tag. This means it can
only be accessed using a tour bus.

Example 10-8 ClientConduit.xml: Code to Configure Parameter Manager

<APPLICATION name="APPLICATION"
class="TierTechnician"
package="oracle.retail.stores.foundation.manager.tier"

Manager/Technician Framework 10-9

Manager/Technician Reference

startservice="classpath://com/extendyourstore/pos/services/main/main.xml">
<PROPERTY propname="managerData"
propvalue="name=ParameterManager,managerpropname=className, managerpropvalue=oracle
.retail.stores.foundation.manager.parameter.ParameterManager" />

<PROPERTY propname="managerData"

propvalue="name=ParameterManager,managerpropname=useDefaults, managerpropvalue=Y"/>

</APPLICATION>

Example 10-9 ClientConduit.xml: Code to Configure Parameter Technician

<TECHNICIAN name="ParameterTechnician" class = "ParameterTechnician"
package = "oracle.retail.stores.foundation.manager.parameter"
export = "Y" >

<PROPERTY propname="paramScript"

propvalue="classpath://config/manager/PosParameterTechnician.xml"/>
</TECHNICIAN>

The Parameter Manager classes contain methods to retrieve parameter values. The
Customization chapter describes details about where and how parameters are defined.
A list of parameters can be found in the Parameter Names and Values Addendum.

The following code sample from <source_
directory>\applications\pos\src\oracle\retail\stores\pos\service
s\inquiry\itemingquiry\AdvanceSearchSite. java illustrates the use of the
Parameter Manager to retrieve parameter values.

Example 10-10 BrowserControlSite.java: Tour Code Using ParameterManagerlfc

ParameterManagerIfc pm =
(ParameterManagerIfc)bus.getManager (ParameterManagerIfc.TYPE) ;
Serializable[] values = pm.getParameterValues (ITEM_SEARCH_FIELDS) ;

Ul Manager/Technician

The UI Manager/Technician is used to abstract the Ul implementation. User events
captured by the screen are sent to the Ul Manager. The Ul Manager communicates
with a UI Technician, which updates the screen for a client running the UL The Ul
Technician provides access to the application UI Subsystem. There is one UlTechnician
per application.

The model is an object that is used to transport information between the screen and the
UI Manager using the UI Technician. Models and screens have a one-to-one
relationship. The UI Manager allows you to set the model for a screen and retrieve a
model for a screen; it knows which screen to show and which model is associated with
the screen. The model has data members that map to the entry fields on the given
screen. It can also contain data that dictates screen behavior, such as the field that has
the starting focus or the state of a specific field.

The following code samples from <source_
directory>\applications\pos\deploy\client\config\conduit\ClientC
onduit.xml specify the Ul Manager and Technician properties. Like the Parameter
Manager, the Ul Manager can only be accessed using a tour bus.

Example 10-11 ClientConduit.xml: Code to Configure Ul Manager

<APPLICATION name="APPLICATION"
class="TierTechnician"

10-10 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Manager/Technician Reference

package="oracle.retail.stores.foundation.manager.tier"

startservice="classpath://com/extendyourstore/pos/services/main/main.xml">
<PROPERTY propname="managerData"
propvalue="name=UIManager,managerpropname=className, managerpropvalue=oracle.retail
.stores.pos.ui.POSUIManager" />

...configuration of other Managers...

</APPLICATION>

Example 10-12 ClientConduit.xml: Code to Configure Ul Technician
<TECHNICIAN
name="UITechnician"
class="UITechnician"
package="oracle.retail.stores.foundation.manager.gui" export="Y">

<CLASS
name="UISubsystem"
package="oracle.retail.stores.pos.ui"
class="POSJFCUISubsystem">

<CLASSPROPERTY
propname="configFilename"

propvalue="classpath://com/extendyourstore/pos/config/defaults/defaultuicfg.xml"
proptype="STRING" />

</TECHNICIAN>

The Ul is configured in XML scripts. Each tour has its own uicfg file in which screen
specifications are defined. The screen constants that bind to screen specification names
are defined in <source__
directory>\applications\pos\src\oracle\retail\stores\pos\ui\POSU
IManagerIfc.java. The Ul Framework chapter discusses screen configuration in
more detail.

POSUIManager is the Ul Manager for the Point-of-Service application. One is started
for each tour that is created.

Table 10-6 lists important POSUIManagerlfc methods, implemented in <source_
directory>\applications\pos\src\oracle\retail\stores\pos\ui\POSU
IManager. java.

Table 10-6 Important POSUIManagerifc Methods

Method Description

void showScreen(String Displays the specified screen using the specified model
screenld, UIModellfc

beanModel)

UIModellfc Gets the model from the specified screen

getModel(String screenld)

String getInput() Gets the contents of the most recent Response area as a string
void setModel(String Sets the model for the specified screen

screenld, UIModellfc

beanModel)

These methods are used in tour code to display a screen, as in the following code from
<source_

Manager/Technician Framework 10-11

Manager/Technician Reference

directory>\applications\pos\src\oracle\retail\stores\pos\service
s\tender\check\GetCheckIDTypeSite. java.

Example 10-13 GetCheckinfoSite.java: Tour Code Using POSUIManagerifc

POSUIManagerIfc ui = (POSUIManagerIfc) bus.getManager (UIManagerIfc.TYPE);
CheckEntryBeanModel model = new CheckEntryBeanModel () ;
Locale 1lcl = LocaleMap.getLocale(LocaleConstantsIfc.USER_INTERFACE) ;

if (personalIDTypes != null)

{
model . setIDTypes (personal IDTypes.getTextEntries (1cl));

}
...set additional attributes..
ui.showScreen (POSUIManagerIfc.ENTER_ID, model) ;

Journal Manager/Technician

The Journal Manager provides location abstraction for journal facilities by
implementing the JournalManagerlfc interface. By communicating with a
JournalTechnicianlfc, the Journal Manager removes your need to know the location of
resources. The Journal Technician is responsible for providing journal facilities to other
tiers. The Journal Manager must be started on each tier that uses it. There must be a
LocalJournalTechnician running on the local tier or an exported JournalTechnician
running on a remote tier, or both. Transactions should be written to EJournal only
when completed.

The following code samples from <source
directory>\applications\pos\deploy\client\config\conduit\ClientC
onduit.xml specify the Journal Manager and Technician properties. Note that this
Manager is a Session Manager; it is defined outside of the APPLICATION element in
which the Ul Manager and Parameter Manager were defined. This allows the Journal
Manager to be accessed outside of the bus, meaning it is more accessible and flexible.

Example 10-14 ClientConduit.xml: Code to Configure Journal Manager

<MANAGER name="JournalManager"
class="JournalManager"
package="oracle.retail.stores.foundation.manager.journal"
export="N">

</MANAGER>

Example 10-15 ClientConduit.xml: Code to Configure Journal Technician

<TECHNICIAN name="LocalJournalTechnician"
class="JournalTechnician"
package="oracle.retail.stores.foundation.manager.journal"
export="Y">

</TECHNICIAN>

The Journal Manager must be started on each tier that uses it. The Journal Manager
sends journal entries in the following order: (1) Console if consolePrintable is set, (2)
LocalJournalTechnician if defined, (3) JournalTechnician if defined.

Internationalizing EJournal Messages

To internationalize static texts, the hardcoded messages in Point-of-Service must be
externalized to locale-specific resource bundle files and applications to use the
resource bundle based on the configured Journal locale for EJournal. These

10-12 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Manager/Technician Reference

modifications can be made either in-house or with the assistance of third-party system
integrators.

If the modification efforts are not done correctly, the deployed product may not
operate correctly. This situation causes serious issues for the retailer, Oracle Retail, and
any system integrators involved. This section aims to mitigate that risk by providing
guidance on how to safely and effectively make modifications to internationalize
EJournal.

Internationalizing Static Texts

To internationalize static texts, the hardcoded messages in Point-of-Service will be
externalized to locale-specific resource bundle files and applications to use the
resource bundle based on the configured Journal locale for EJournal. Extend the
existing resource bundle ejournalText_<language code>.properties for EJournal static
texts.

Internationalizing Transaction Data
Transaction EJ contains following type of information:

Database Data Transaction information such as Item Description, Reason code, Role
Name, and so on, is retrieved from database for Journaling. This information must be
in the Journal locale.

In the classes where Journal strings are hard-coded, use APIs provided by domain
objects to get the data in Journal locale and use it for Journaling. Use Journal Locale
configured in the Point-of-Service Client as argument to get the journal locale-specific
data from domain objects.

Deprecate the existing toJournalString() method of domain classes and create new
method toJournalString(locale) for preparing locale specific Journal String. Pass the
Journal locale configured in the Point-of-Service Client application.properties file to
toJournalString(locale) method of domain objects for Journal message.

Data Retrieved from Java Constants The information such as Tender type is defined as
constant in Java file. Use resource bundle equivalent data for journaling instead of
constant values.

For example, TenderTypeEnum has all the tender type constants defined. Get the
journal locale equivalent data from EJournalText ResourceBundle for the value
obtained from TenderTypeEnum. For Cash tender, define JournalEntry. Cash as key in
EJournalText Resource bundle and get the value associated with it for journaling in
formatter/domain classes.

Concatenated Strings Avoid journaling the messages, which need to be formed by
concatenating two or more messages. However, if concatenated strings need to be
logged, use argument-based messages in resource bundle and MessageFormat class to
replace the arguments with the actual data before journaling.

For example, for the message Buy 2 items and get a 25% discount, we can prepare
message such as Buy {0} items and get {1} discount. The arguments 0 and 1 can be
replaced with the actual data.

DateTime and Currency Data The DateTime and Currency Data to be Journaled must be
in the Journal locale format. Use the following:
= DateTimeServicelfc.formatDate() to get the Journal locale format date

s DateTimeServicelfc.formatTime() to get the Journal locale format time

Manager/Technician Framework 10-13

Manager/Technician Reference

s CurrencyServicelfc.formatCurrency() to get the Journal locale format currency

Internationalization of Data Modification Event Messages

For Journaling the events such as Parameter value addition/modification, the EJournal
message is prepared by concatenating one or more messages with actual data.

For example, the message <<Parameter Name>> is modified is formed by
concatenating the Parameter Name and the constant string is modified. The approach
to internationalize this data is same as internationalizing transaction data for
concatenated Strings.

Persisting EJournal in UTF8 format
Do the following to persist the EJournal in the UTFS format:

1. Modify the JL_TPE column type of the JL_ENR table from BLOB to CLOB.
2. Modify the existing EJournal text:

a. Retrieve the data from the eJournalText bundle for the key in the class where it
needs to be saved in EJournal.

b. Convert the date, time, and currency data to the store locale format.

c. Prepare the EJournal text using locale-specific journal static text, date, time
and currency format.

3. Write the modified EJournal to the database and JMS using the existing
framework.

4. Do the following to write the EJournal to a file:

a. Modify the startUp method of the JournalTechnician to generate the EJournal
text file name and create a JournalDisk object with the generated EJournal file
name. The EJournal text file is generated by concatenating the
JournalFileName and SequenceNumber values retrieved from
JournalConfig.properties.

b. Modify the store method of a JournalDisk class to write the EJournal string in
UTF format instead of writing the EjournalEntry object in binary format.

c. Modify the indexEntry method of the JournalTechnician to get the current
EJournal file name.

d. Modify the indexEntry method to append the journal file name to the index
entry. The modified index entry looks like the following:

0000000 0008 042411290119 09/02/2008 11:59 pos pos 129 journal_ 1.txt

5. If the current journal file size exceeds the configured limit:

a. Generate the next sequence number and update the SequenceNumber
property of the JournalConfig.properties file.

b. Modify the indexEntry method of the JournalTechnician to generate the
journal file name from the JournalFileName (containing the initial journal file
name, such as journal.txt) and the SequenceNumber configured in
JournalConfig.properties. The generated journal file name is of the format
JournalFileName_SequenceNumber (for example, journal_1.txt).

c. Close the currently open journal file and create a new journal file with the
generated journal file name.

6. Modify the JdbcSaveJournalEntry class to contain updateClob method.

10-14 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Manager/Technician Reference

7.

Create new classes DatabaseClobHelper, OracleDatabaseClobHelper and
DB2DatabaseClobHelper to update data to CLOB field.

Retrieve EJournal from Point-of-Service
Do the following to retrieve EJournal from Point-of-Service:

1.

Modify classes DatabaseClobHelper, DB2DatabaseClobHelper and
OracleDatabaseClobHelper to read EJournal text from CLOB field.

Do the following to read EJournal from a file:

a. Modify the searchJournal method of JournalTechnician to read the journal file
name from index entry.

b. Modify the getEntry method of the JournalDisk to get the journal file name as
an argument.

c. Modify the getEntry method of the JournalDisk class method to read the
EJournal string from the given journal file in UTF format.

Modify the readJournalEntry method of JdbcReadJournalEntry class to read CLOB
data instead of BLOB using OracleDatabaseClobHelper/DB2DatabaseClobHelper
depending on the database used.

Display EJournal from Central Office
Do the following to display EJournal from Central Office:

1.
2.

Modify the JL_TPE column type of the JL_ENR table from BLOB to CLOB.

Add a new method readTapeClob to the class EJournalBean to read CLOB data
and call this method from ejbLoad for setting tape data.

Add a new method updateTapeClob to the class EJournalBean to update CLOB
data to the database and call this method from ejbCreate for setting tape data.

Manager/Technician Framework 10-15

Manager/Technician Reference

10-16 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

11

User Interface Framework

This chapter describes the User Interface (UI) Framework that is part of the Oracle
Retail POS Suite architecture. The Ul Framework encompasses all classes and
interfaces included in Oracle Retail POS Suite to support rapid development of Ul
screens. It enables the building of custom screens using existing components.

For ease of development, the Ul Framework hides many of the implementation details
of Java Ul classes and containment hierarchies by moving some of the Ul specification
from Java code into XML. This eases screen manipulation and layout changes affecting
the look and feel of the entire screen, subsets of screens, and portions of a screen.

Table 11-1 provides a general description of features of the UI Framework.

Table 11-1 Ul Framework Features

Feature

Description

Common Design

All UT implementations share code and extend or implement base Ul classes that are
provided as part of Oracle Retail POS Suite. The UI Framework provides basic
functionality that does not need to be duplicated within each application.

Reuse The UI Framework allows bean classes to be independent, thereby supporting their
reuse. A Ul Technician can be used with multiple applications and UI Framework
components can be used across multiple features in an application.

Externally Configurable The UI Framework enables you to configure screens outside the code to accommodate

Screens applications that change frequently. The external screen configurations can be
updated to use new Oracle Retail POS Suite or application-specific components as
they are developed.

Support for The UI Framework provides hooks for implementing internationalization, including

Internationalization language and locale independence.

Extensibility and Additional formats for specifications can be defined without affecting the internal Ul

Flexibility Framework classes. Portability is achieved through the use of the Java language and

flexible layout managers.

The Ul Framework is the set of classes and interfaces that define the elements and
behavior of a window-based UI Subsystem. It defines a structure for defining user
interfaces.

Table 11-2 briefly describes the components of the framework. This chapter discusses
these components in more detail.

User Interface Framework 11-1

Screens

Table 11-2 Ul Framework Components

Name

Description

Display

A display is the root container for the Ul application window. Displays are any
subclass of java.awt.Container that implement EYSRootPaneContainer.

Screen

A screen is a user-level snapshot of a Ul window as it relates to an application. The
screen is composed of displays, template areas, assignment beans, and listeners. Each
of these parts can be individually configured and reassembled to compose the screen.

Template

A template divides the display into areas that contain the layout information used to
place the information on the display. Templates can be interchanged to define screen
layouts within an application. Each screen specifies the template that is associated
with the screen.

Area

An area is a layout placeholder for UI components that operate together to perform a
function. Each area contains a layout constraint that dictates how the area is placed on
the display.

Bean

A bean is a user interface component or group of components that operate together to
provide some useful functionality. For example, a bean could be an input form or
group of navigation buttons.

Connection

A connection captures relationships between beans, or between devices and beans.
When a bean or device generates an event, another bean responds with a change in
behavior or visual display.

Listener

A listener provides a mechanism for reacting to user interface events.

Screens

Generally, for each package in an application, one Ul script in the form of an XML file
is created to define the screens for the given package. However, because many screens
share basic components, certain components are defined in a default UI script. These
basic screen components, including displays, templates, and default screens, are
defined in <source_
directory>\applications\pos\src\oracle\retail\stores\pos\config\
defaults\defaultuicfg.xml. Overlay screens are then defined in the Ul script for
the given package. This section describes the components that are used to build
Point-of-Service screens, except for beans which are described in the next section.

Displays define window properties. They are basic containers with dimensions and a
title defined. In Point-of-Service, only two types of windows can be displayed at the
same time—the main application window and a window displaying the Help browser.

Table 11-3 describes the two types of displays.

Table 11-3 Display Types

Name

Description

EYSPOSDisplaySpec A 600x800 container for all application screens

HelpDialogDisplaySpec A 600x800 container for Point-of-Service Help screens

Templates divide displays into geographical areas. The GridBagLayout is used to
define the attributes of each area.

Table 11-4 describes the typical use of each template.

11-2 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Screens

Table 11-4 Template Types

Name Typical Use
BrowserTemplateSpec Back Office screens within Point-of-Service application
EYSPOSTemplateSpec Point-of-Service screens without required fields
HelpBrowserTemplateSpec Point-of-Service help screens
Validating TemplateSpec Point-of-Service screens with required fields that display an information panel
below the work area
Default screens are partially-defined screens that represent elements common to
multiple screens. Default screens are based on one display and one template. Default
screens map beans to the commonly used areas of the template and define listeners for
the bean. These screens are used by overlay specifications that define more specific
screen components. For example, almost all screens in the Point-of-Service application
display a status area region. The text displayed in the status region changes, but the
StatusPanelSpec bean is the same from screen to screen, so a default screen would
assign this bean to the StatusPanel area defined by a template.
Table 11-5 lists the areas of the template to which beans are assigned, and the display
and template used by each of the six types of default screens.
Table 11-5 Default Screen Types
Name Typical Use Display Template
BrowserDefaultSpec Back Office screens EYSPOSDisplaySpec BrowserTemplateSpec
within Point-of-Service
application
DefaultHelpSpec Point-of-Service help HelpDialogDisplaySpec = HelpBrowserTemplateSpec
screens
DefaultValidatingSpec Point-of-Service screens EYSPOSDisplaySpec Validating TemplateSpec
with required fields that
display an information
panel below the work
area
EYSPOSDefaultSpec Point-of-Service screens EYSPOSDisplaySpec EYSPOSTemplateSpec
without required fields
ResponseEntryScreenSpec Point-of-Service screens ~ EYSPOSDisplaySpec EYSPOSTemplateSpec

with information
captured in the response
area at the top of the
screen

Each screen in Point-of-Service has an overlay screen defined in a Ul script in the
package to which it belongs or in a package higher in the hierarchy. For example, the
Authorization tour script is found in <source_
directory>\applications\pos\src\oracle\retail\stores\pos\service
s\tender\authorization but the Ul script is located in <source_
directory>\applications\pos\src\oracle\retail\stores\pos\service
s\tender. This overlay screen is based on a default screen and defines additional
properties for the beans on the areas of the screen. The overlay screen may also specify
connections, which are described in "Connections" in next chapter (XREF). The
following code sample shows the definition of the ALTERATION_TYPE screen
defined in <source_
directory>\applications\pos\src\oracle\retail\stores\pos\service
s\alterations\alterationsuicfg.xml.

User Interface Framework 11-3

Beans

Example 11-1 alterationsuicfg.xml: Overlay Screen Definition
<OVERLAYSCREEN
defaultScreenSpecName="EYSPOSDefaultSpec"
resourceBundleFilename="alterationsText"
specName="ALTERATION_TYPE">

<ASSIGNMENT
areaName="StatusPanel"
beanSpecName="StatusPanelSpec">
<BEANPROPERTY
propName="gscreenNameTag" propValue="AlterationTypeScreenName"/>
</ASSIGNMENT>

<ASSIGNMENT
areaName="PromptAndResponsePanel"
beanSpecName="PromptAndResponsePanelSpec">
<BEANPROPERTY
propName="promptTextTag" propValue="AlterationTypePrompt"/>
</ASSIGNMENT>

<ASSIGNMENT
areaName="LocalNavigationPanel"
beanSpecName="AlterationsOptionsButtonSpec">
</ASSIGNMENT>

</OVERLAYSCREEN>

Beans

A screen is composed of beans mapped to specific areas on the screen. All beans are
defined in <source_
directory>\applications\pos\src\oracle\retail\stores\pos\ui\bean
s. The beans described in this section are commonly used in screen definitions. Bean
properties that can be defined in assignments of beans to areas. Through Java
reflection, properties defined in XML files invoke set() or create() methods in the bean
class that accept a single string parameter or multiple string parameters.

The following section covers the PromptAndResponseBean, DatalnputBean,
NavigationButtonBean, and DialogBean.

PromptAndResponseBean

The PromptAndResponseBean configures and displays the text in the top areas of a
Point-of-Service screen called the prompt region and the response region. This bean is
implemented by <source_
directory>\applications\pos\src\oracle\retail\stores\pos\ui\bean
s\PromptAndResponseBean. java and its corresponding model
PromptAndResponseModel . java.

Bean Properties and Text Bundle

PromptAndResponsePanelSpec is the name of a bean specification that defines the
implementation of the PromptAndResponseBean class. The following code sample
shows the bean specification available to all screens, defined in <source_
directory>\applications\pos\src\oracle\retail\stores\pos\config\
defaults\defaultuicfg.xml.

11-4 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Beans

Example 11-2 defaultuicfg.xml: Bean Specification Using PromptAndResponseBean

<BEAN

specName="PromptAndResponsePanelSpec"
beanClassName="PromptAndResponseBean"
beanPackage="oracle.retail.stores.pos.ui.beans"
configuratorPackage="oracle.retail.stores.pos.ui"
configuratorClassName="P0OSBeanConfigurator"
cachingScheme="0ONE">

</BEAN>

Table 11-6 lists property names and values that can be defined in overlay
specifications when specifying attributes of a PromptAndResponseBean.

Table 11-6 PromptAndResponseBean Property Names and Values

Item Description Example
enterData Indicates whether data can be entered in the response true
area
promptTextTag The label tag that corresponds to the text bundle GiftCardPrompt
responseField The type of field expected in the response area (see oracle.retail.stores.pos.ui.b
Field Type section for available types) eans.AlphaNumericTextFi
eld
maxLength Maximum length of response area input 15
minLength Minimum length of response area input 2
zeroAllowed Indicates whether a zero value is allowed in the true
response area
negativeAllowed Indicates whether a negative value is allowed in the false
response area
grabFocus Indicates whether focus should be grabbed when the true

screen is first displayed

These properties can be defined in Ul scripts. The following code sample defines an
overlay specification that assigns the PromptAndResponsePanelSpec defined above to
the PromptAndResponsePanel. This example from <source_
directory>\applications\pos\src\oracle\retail\stores\pos\service
s\tender\tenderuicfg.xml defines the COUPON_AMOUNT overlay screen for
the Tender service. The property that retrieves text from a text bundle is highlighted.

Example 11-3 tenderuicfg.xml: PromptAndResponseBean Property Definition

<OVERLAYSCREEN>
defaultScreenSpecName="ResponseEntryScreenSpec"
resourceBundleFilename="tenderText"
specName="COUPON_AMOUNT" >
<ASSIGNMENT
areaName="PromptAndResponsePanel"
beanSpecName="PromptAndResponsePanelSpec">
<BEANPROPERTY
propName="promptTextTag" propValue="CouponAmountPrompt"/>
<BEANPROPERTY
propName="responseField"
propValue="oracle.retail.stores.pos.ui.beans.CurrencyTextField"/>
<BEANPROPERTY
propName="maxLength" propValue="9"/>
</ASSIGNMENT>

User Interface Framework 11-5

Beans

</OVERLAYSCREEN>

The string that should be displayed as the prompt text is defined in a resource bundle.
In the resource bundle for the Tender service, which for en locale is defined in
<source_
directory>\applications\pos\locales\en\config\uil\bundles\tenderT
ext_en.properties, the following includes a line that defines the
CouponAmountPrompt.

Example 11-4 tenderText_en.properties: PromptAndResponseBean Text Bundle
Example

PromptAndResponsePanel Spec.CouponAmountPrompt=Enter coupon amount and press Next.

Tour Code
In the Tour code, bean models are created to hold the data on the bean components.

Table 11-7 lists some of the important methods in the PromptAndResponseModel
class.

Table 11-7 PromptAndResponseModel Important Methods

Method Description

boolean isSwiped() Returns the flag indicating whether a card is swiped

void setsScanned(boolean) Sets the flag indicating whether a code is scanned

boolean isResponseEditable() Returns the flag indicating whether the response area is editable

void setGrabFocus(boolean) Sets the flag indicating whether focus should stay on the response field

Example 11-5 is a sample from <source_
directory>\applications\pos\src\oracle\retail\stores\pos\service
s\modifyitem\ModifyItemQuantitySite.java that shows creation of a
PromptAndResponseModel, prefilling of data in the model, and display of the model
on which the PromptAndResponseModel is set.

Example 11-5 ModifyltemQuantitySite.java: Creating and Displaying
PromptAndResponseModel

POSBaseBeanModel baseModel = new POSBaseBeanModel () ;
PromptAndResponseModel beanModel = new PromptAndResponseModel () ;
UtilityManagerIfc utility =
(UtilityManagerIfc) bus.getManager (UtilityManagerIfc.TYPE);
Locale locale = LocaleMap.getLocale(LocaleConstantsIfc.USER_INTERFACE) ;
String unitId = UNITID_TEXT;
if ((uom == null) || (unitId.equals(uom.getUnitID()))
{

beanModel . setResponseText (Integer.toString(lineltem.getItemQuantityDecimal () .intVa
lue()));
}
else
{
beanModel . setArguments (uom.getName (locale)) ;
String responseText =
LocaleUtilities.formatNumber (lineItem.getItemQuantityDecimal (),LocaleMap.getLocale
(LocaleConstantsIfc.USER_INTERFACE)) ;
beanModel . setResponseText (responseText) ;
screenID = POSUIManagerIfc.ITEM_QUANTITY_ UOM;

11-6 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Beans

DatalnputBean

}

baseModel . setPromptAndResponseModel (beanModel) ;
uil.showScreen (screenID, baseModel) ;

The screen constant, ITEM_QUANTITY_UOM, is mapped to an overlay screen name
found in the Ul script for the package. The screen constants are defined in <source_
directory>\applications\pos\src\oracle\retail\stores\pos\ui\POSU
IManagerIfc.java.

Example 11-6 is a sample from ItemQuantityModifiedAisle.java in the same directory
that shows how to retrieve data from the PromptAndResponseModel in a previous
screen. To arrive at this code, a new quantity for an item is entered and the user
presses Next. This line of code gets the new quantity from the previous screen.

Example 11-6 ItemQuantityModifiedAisle.java: Retrieving Data From
PromptAndResponsellodel

POSUIManagerIfc ui=(POSUIManagerIfc)bus.getManager (UIManagerIfc.TYPE) ;
String quantity = ui.getInput();

The DatalnputBean is a standard bean that displays a form layout containing data
input components and labels. This bean is implemented by <source_
directory>\applications\pos\src\oracle\retail\stores\pos\ui\bean
s\DataInputBean. java and its corresponding model DatalnputBeanModel java.
Field components are commonly defined with the FIELD element when defining a
bean with the DatalnputBean, as shown in the code sample.

Bean Properties and Text Bundle

The DatalnputBean has two properties that can be defined in Ul scripts, which
override the settings in the field specifications.

Table 11-8 lists DatalnputBean property names and values.

Table 11-8 DatalnputBean Property Names and Values

Item Description Example

labelTags Sets the property bundle tags for the NamelLabel, AddressLabel,StateLabel
component labels

labelTexts Sets the text on the component labels Name,Address,State

The label tag is used for internationalization purposes, so the application can look for
the correct text bundle in each language. The label tag overrides the value of the
labelText field. Example 11-7 is code from manageruicfg.xml that shows a field
specification defined in a DatalnputBean bean specification.

Example 11-7 manageruicfg.xml: Bean Specification Using DatalnputBean

<BEAN
specName="RegisterStatusPanelSpec"
configuratorPackage="oracle.retail.stores.pos.ui"
configuratorClassName="POSBeanConfigurator"
beanPackage="oracle.retail.stores.pos.ui.beans"
beanClassName="DataInputBean">

<FIELD fieldName="storeID"

User Interface Framework 11-7

Beans

fieldType="displayField"
labelText="Store ID:"
labelTag="StoreIDLabel"
paramList="storeNumberField"/>

</BEAN>

The strings that should be displayed as labels on the screen are defined in a resource
bundle. In the resource bundle for the Manager service, which for the en locale is
defined in <source__

directory>\applications\pos\locales\en\config\ui\bundles\manager
Text_en.properties, Example 11-8 is a line of code that defines the StoreIDLabel.

Example 11-8 managerText_en.properties: DatalnputBean Text Bundle Example

RegisterStatusPanelSpec.StoreIDLabel=Store ID:

Fields do not have to be defined in the Ul script. They can be defined in the beans and
models instead. In the overlay screen specification, two bean properties that can be set
are OptionalValidatingFields and RequiredValidatingFields. If the fields are optional
and the user enters information in them, then they are validated. If the user does not
enter any information, the fields are not validated. On the other hand, required fields
are always validated.

Tour Code

Bean models are created to hold the data managed by the bean. This protects the bean
from being changed. A bean can only be accessed by a model in the Tour code.

Table 11-9 lists some of the important methods in the DatalnputBeanModel class.

Table 11-9 DatalnputBeanModel Important Methods

Method Description

String getValueAsString(String) Returns the value of the specified field as a string

int getValueAsInt(String) Returns the value of the specified field as an integer

void setSelectionValue(String, Object) Sets the value of the specified field in a vector to the specified
value

void setSelectionChoices(String, Vector) Sets the value of the specified field to the specified vector of
choices

void clearAllValues() Clears the values of all the fields

Example 11-9 is a sample from <source_
directory>\applications\pos\src\oracle\retail\stores\pos\service
s\admin\parametermanager\SelectParamStoreSite.java that shows
creation of a DatalnputBeanModel and prefilling of data in the model.

Example 11-9 SelectParamStoreSite.java: Creating and Displaying DatalnputBeanModel

DataInputBeanModel beanModel = new DatalInputBeanModel () ;
beanModel .setSelectionChoices ("choiceList", vChoices);
beanModel.setSelectionValue ("choiceList", (String)vChoices.firstElement());

Example 11-10 is a sample from Tour code that shows how to retrieve data from the
DatalnputBeanModel. In this example from <source_
directory>\applications\pos\src\oracle\retail\stores\pos\service
s\admin\parametermanager\StoreParamGroupAisle. java, after the model is

11-8 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Beans

created and displayed by the code from the previous code sample, the model is
retrieved from the UI Manager, and data is retrieved from the model.

Example 11-10 StoreParamGroupAisle.java: Retrieving Data from DatalnputBeanModel

DataInputBeanModel model =

(DataInputBeanModel)ui.getModel (POSUIManagerIfc.PARAM SELECT_GROUP) ;
ParameterCargo cargo = (ParameterCargo)bus.getCargo();

String val = (String)model.getSelectionValue("choiceList");
cargo.setParameterGroup (val) ;

NavigationButtonBean

The NavigationButtonBean represents a collection of push buttons and associated key
stroke equivalents. This bean is implemented by <source_
directory>\applications\pos\src\oracle\retail\stores\pos\ui\bean
s\NavigationButtonBean. java and its corresponding model
NavigationButtonBeanModel.java. The global navigation area and the local navigation
area both use the NavigationButtonBean.

Bean Properties and Text Bundle

The LocalNavigationPanel and GlobalNavigationPanel bean specifications both use
the NavigationButtonBean. Bean properties are described only for the
GlobalNavigationPanelSpec because the LocalNavigationPanelSpec typically sets its
properties in the bean specification and not the overlay specification.

LocalNavigationPanel The only property available to the NavigationButtonBean in XML
is used to enable and disable buttons. When setting the states of buttons on a
LocalNavigationPanel, the buttons are usually defined with the BUTTON element in
the bean specification as in the following code sample. In fact, any bean that extends
NavigationButtonBean, such as ValidateNavigationButtonBean, can define its buttons
in the bean specification.

Example 11-11 from <source_
directory>\applications\pos\src\oracle\retail\stores\pos\service
s\customer\customeruicfg.xml, defining the CustomerOptionsButtonSpec bean
specification for the Customer service, shows how button text on a
NavigationButtonBean is defined in a Ul script.

Example 11-11 customeruicfg.xml: Bean Specification Using NavigationButtonBean

<BEAN
specName="CustomerOptionsButtonSpec"
configuratorPackage="oracle.retail.stores.pos.ui"
configuratorClassName="POSBeanConfigurator"
beanPackage="oracle.retail.stores.pos.ui.beans"
beanClassName="NavigationButtonBean">

<BUTTON
actionName="AddBusiness"
enabled="true"
keyName="F4"
labelTag="AddBusiness" />

</BEAN>

User Interface Framework 11-9

Beans

The string that should be displayed on the buttons on the GlobalNavigationPanel is
defined in a resource bundle. In the resource bundle customerText_en.properties, the
following entry defines the label for the AddBusiness button.

Example 11-12 customerText_en.properties: NavigationButtonBean Text Bundle
Example

CustomerOptionsButtonSpec.AddBusiness= Add Business

GlobalNavigationPanel The GlobalNavigationButtonBean extends the
NavigationButtonBean. The following code sample shows the GlobalNavigationPanel
bean specification defined in <source_
directory>\applications\pos\src\oracle\retail\stores\pos\config\
defaults\defaultuicfg.xml. The bean class is a subclass of
NavigationButtonBean.

Example 11-13 defaultuicfg.xml: Bean Specification Using GlobalNavigationButtonBean

<BEAN
specName="GlobalNavigationPanelSpec"
configuratorPackage="oracle.retail.stores.pos.ui"
configuratorClassName="P0SBeanConfigurator"
beanPackage="oracle.retail.stores.pos.ui.beans"
beanClassName="GlobalNavigationButtonBean"
cachingScheme="ONE">

;}éEAN>
Table 11-10 lists property names and values that can be defined in Ul scripts when

specifying attributes of a GlobalNavigationButtonBean.

Table 11-10 GlobalNavigationButtonBean Property Names and Values

ltem Description Example
manageNextButton Indicates whether the bean should manage the true

enable property of the Next button
buttonStates Sets the buttons with the action names listed ~ Help[true],Clear[false],Ca

to the specified state ncel[false],Undo[true],Nex
t[false]

These properties can be defined in overlay specifications, as in the following code
sample from tenderuicfg.xml.

Example 11-14 tenderuicfg.xml: GlobalNavigationButtonBean Property Definitions
<OVERLAYSCREEN>

defaultScreenSpecName="EYSPOSDefaultSpec"
resourceBundleFilename="tenderText"
specName="TENDER_OPTIONS">
<ASSIGNMENT
areaName="GlobalNavigationPanel"
beanSpecName="GlobalNavigationPanelSpec">
<BEANPROPERTY
propName="manageNextButton"
propValue="false"/>
<BEANPROPERTY
propName="buttonStates"

11-10 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Beans

propValue="Help[true],Clear[false],Cancel[false],Undo[true],Next[false]"/>
</ASSIGNMENT>

</OVERLAYSCREEN>

Tour Code
In the Tour code, bean models are created to hold the data on the bean components.

Table 11-11 lists some of the important methods in the NavigationButtonBeanModel
class.

Table 11-11 NavigationButtonBeanModel Important Methods

Method Description

ButtonSpec[] getNewButtons() Returns an array of new buttons

void setButtonEnabled(String, Sets the state of the specified action name of the button (the name of the
boolean) letter the button mails)

void setButtonLabel(String, String) Sets the label of the button using the specified action name of the button

(the name of the letter the button mails)

The following sample from <source_
directory>\applications\pos\src\oracle\retail\stores\pos\service
s\customer\lookup\CustomerSearchOptionsSite.java shows creation of a
NavigationButtonBeanModel, prefilling of data in the model, and display of the model
on which the NavigationButtonBeanModel is set.

Example 11-15 CustomerSearchOptionsSite.java: Creating and Displaying
NavigationButtonBeanModel

NavigationButtonBeanModel nModel = new NavigationButtonBeanModel () ;

if (cargo.isAddCustomerEnabled())

{
nModel .setButtonEnabled (CustomerCargo.EMPID, true);
nModel . setButtonEnabled (CustomerCargo.CUSTINFO, true);

}

else

{
nModel . setButtonEnabled (CustomerCargo.EMPID, false);
nModel . setButtonEnabled (CustomerCargo.CUSTINFO, false);

if (cargo.isAddBusinessEnabled())
{
nModel . setButtonEnabled (CustomerCargo.BUSINFO, true);

}

else

{

nModel . setButtonEnabled (CustomerCargo.BUSINFO, false);
model . setLocalButtonBeanModel (nModel) ;
ui.showScreen (POSUIManagerIfc.CUSTOMER_SEARCH_OPTIONS, model);

The screen constant, CUSTOMER_SEARCH_OPTIONS, is mapped to an overlay
screen name found in the Ul script for the package. The screen constants are defined in
<source_

User Interface Framework 11-11

Beans

DialogBean

directory>\applications\pos\src\oracle\retail\stores\pos\ui\POSU
IManagerIfc.java.

The DialogBean provides dynamic creation of dialog screens. This bean is
implemented by <source_
directory>\applications\pos\src\oracle\retail\stores\pos\uil\bean
s\DialogBean.java and its corresponding model DialogBeanModel java.

Bean Properties and Text Bundle

DialogSpec is the name of a bean specification that defines an implementation of the
DialogBean class. The following code sample shows the bean specification defined in
<source_
directory>\applications\pos\src\oracle\retail\stores\pos\service
s\ common\commonuicfg.xml.

Example 11-16 commonuicfg.xml: Bean Specification Using DialogBean

<BEAN

specName="DialogSpec"
configuratorPackage="oracle.retail.stores.pos.ui"
configuratorClassName="P0SBeanConfigurator"
beanPackage="oracle.retail.stores.pos.ui.beans"
beanClassName="DialogBean">

<BEANPROPERTY propName="cachingScheme" propValue="none"/>
</BEAN>

The DialogBean does not have any properties that can be defined in Ul scripts.
Therefore, all its properties are defined in Tour code discussed in the next section. The
following code sample defines the message displayed in the dialog. This example from
<source_
directory>\applications\pos\src\oracle\retail\stores\pos\service
s\inquiry\giftcardinquiry\InquirySlipPrintAisle. java showshow text
on a DialogBean is defined in Java code.

Example 11-17 InquirySlipPrintAisle.java: DialogBean Label Definition

DialogBeanModel model = new DialogBeanModel () ;
model . setResourceID (RETRY_CONTINUE_TAG) ;
model . setType (DialogScreensIfc.RETRY_CONTINUE) ;
model .setButtonLetter (DialogScreensIfc.BUTTON_CONTINUE, "ExitPrint");
model.setArgs (msg) ;

The resourcelD corresponds to the name of the text bundle. For all dialog screens in
the en locale, dialogText_en.properties contains the bundles that define the text on the
screen, as shown in the following code.

Example 11-18 dialogText_en.properties: DialogBean Text Bundle Example

DialogSpec.Retry.title=Device is offline

DialogSpec.Retry.description=Device offline

DialogSpec.Retry.line2=<ARG>

DialogSpec.Retry.lineb=Press the Retry button to attempt to use the device again.

Tour Code
In the Tour code, bean models are created to hold the data on the bean components.

11-12 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Beans

Table 11-12 lists some of the important methods in the DialogBeanModel class.

Table 11-12 DialogBeanModel Important Methods

Method

Description

setResourcelD(String) Used to locate screen text in the text bundle

setArgs(String [])

Sets a string of arguments to replace <ARG> tags in the text bundle

setButtonLetter(int, String) Sets the specified letter to be sent when the specified button is pressed

setType(int)

Sets the flag indicating whether focus should stay on the response field

The following sample from <source_
directory>\applications\pos\src\oracle\retail\stores\pos\service
s\dailyoperations\register\registeropen\AcknowledgeRegisterOpenS
ite.java shows creation of a DialogBeanModel, prefilling of data in the model, and
display of the model on which the DialogBeanModel is set.

Example 11-19 LookupStoreCreditSite.java: Creating and Displaying DialogBeanModel

DialogBeanModel dialogModel = new DialogBeanModel () ;
DialogModel.setResourcelID (“RegisterOpenPromptConfirmation”) ;
String args[] = new String[l];
args[0] =
String.valueOf (cargo.getRegister () .getWorkstation () .getWorkstationID());
model .setArgs (args) ;
dialogModel.setType (DialogScreensIfc.ACKNOWLEDGEMENT) ;
ui.showScreen (POSUIManagerIfc.DIALOG_TEMPLATE, dialogModel);

The screen constant, DIALOG_TEMPLATE, is mapped to an overlay screen name
found in the Ul script for the package. The screen constants are defined in <source
directory>\applications\pos\src\oracle\retail\stores\pos\ui\POSU
IManagerIfc.java.

When setting the dialog type, refer to the following table. For each dialog type, the
buttons on the dialog are specified. In most cases, the letter sent by the button has the
same name as the button, except for the two types noted.

Table 11-13 lists some of the available dialog types as defined by constants in
<source_
directory>\applications\pos\src\oracle\retail\stores\pos\uil\Dial
ogScreensIfc.java.

Table 11-13 Dialog Types

Dialog Type

Button(s) Details

ACKNOWLEDGEMENT Enter Button sends OK letter

CONFIRMATION

Yes, No NA

CONTINUE_CANCEL Continue, Cancel NA

ERROR

Enter Button sends OK letter, Screen displays red
in the title bar

RETRY

Retry NA

RETRY_CANCEL

Retry, Cancel NA

RETRY_CONTINUE Retry, Continue NA

SIGNATURE

NA Places a signature panel to capture the
customer’s signature

User Interface Framework 11-13

Beans

When setting a letter to a button, refer to the following table that lists the available
button types also defined in DialogScreenslfc.java. These constants are used as
arguments to DialogBean methods that modify button behavior.

Table 11-14 lists some of the available button types also defined in
DialogScreenslfc.java.

Table 11-14 Button Types

Button ButtonID

Enter, OK BUTTON_OK

Yes BUTTON_YES

No BUTTON_NO
Continue BUTTON_CONTINUE
Retry BUTTON_RETRY
Cancel BUTTON_CANCEL
Field Types

This section defines field types available to all beans. The following field types may be
used by all the beans, but DatalnputBean is the only bean that understands the FIELD
element. In other words, DatalnputBean is the only bean that defines fields in bean
specifications.

These field types correspond to create() methods in UIFactory.java, such as
createCurrencyField() and createDisplayField(). The application framework uses
reflection to create the fields. Therefore, the field names in the following table can be
set as the fieldType attribute in an XML bean specification using the DatalnputBean
class. The corresponding parameter list is a list of strings that can be set as the

paramList attribute.

Table 11-15 lists field types and their descriptions.

Table 11-15 Field Types and Descriptions

Name

Description

Parameter List Strings (no
spaces allowed)

alphaNumericField

Allows letters and /or numbers,
no spaces or characters

name,minLength maxLength

constrainedPasswordField

Text where the view indicates
something was typed, but does
not show the original characters

name,minLength,maxLength

constrained TextAreaField

Multi-line area that allows plain
text, with restrictions on length

name,minLength,maxLength,colum
ns,wrapStyle lineWrap

constrainedField Allows letters, numbers, special name,minLength,maxLength
characters, and punctuation,
with restrictions on length

currencyField Displays Currency objectsina name,zeroAllowed,negativeAllowe
localized format d,emptyAllowed

decimalField Allows decimal numbers only name,maxLength,negativeAllowed,

emptyAllowed

displayField Display area that allows a short name
text string or an image, or both

driversLicenseField Allows alphanumeric text that ~ name

i

can contain “*’ or

11-14 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Beans

Table 11-15 (Cont.) Field Types and Descriptions

Parameter List Strings (no

Name Description spaces allowed)
EYSDateField Displays a date object in a name
localized format
EYSTimeField Displays a time object in a name
localized format
nonZeroDecimalField Allows non-zero decimal name,maxLength
numbers only
numericField Allows integers only, no special name,maxLength,minLength
characters or letters
nonZeroNumericField Allows non-zero integers only name,maxLength,minLength
textField Allows letters, numbers, special name

characters, and punctuation

validatingTextField Line of text that can be validated name
by length requirements

Multi-byte Support For Input Fields

The current Ul framework allows the display and entering of multi-byte characters
and the proper display and handling of the UI elements.

Multi-byte characters occupy up to four times more space than single-byte characters.
In order to support these bigger sizes, the database columns need to be updated, the
number of digits entered in the Ul can be updated and the size of the fields in the Ul
needs to be adjusted.

The following are the extensions added to the UI framework subsystem:
1. Enable the configuration of maxLength for all input elements.

2. Enable the configuration of size (the width of the display field) for all input
elements.

3. Enable Ul fields to accept multi-byte characters.

4. Enable the Ul text fields to be populated with data that is greater, up to the value
of maxLength.

Ul Framework Architecture for Input Fields

The main component of the Ul framework subsystem is UIFactory;java. This class
contains methods to create and configure all the UI Elements. It is used by the
DatalnputBean java file and by all the custom beans that define the Ul elements of a
specific screen.

The following classes represent the Ul input fields for alphanumeric characters:

» ConstrainedTextField — It is a base class and it allows input fields to accept all
characters.

s AlphaNumericTextField — Allows fields to accept only alphanumeric characters.

The DatalnputBean.java class implements a wide variety of Ul elements. It is
configured by using a *uicfg.xml file. For further information see DatalnputBean.

Example 11-20 DatalnputBean.java Class

<BEAN
specName="PurchaseOrderAgencyNameSpec"

User Interface Framework 11-15

Beans

configuratorPackage="oracle.retail.stores.pos.ui"
configuratorClassName="POSBeanConfigurator"
beanPackage="oracle.retail.stores.pos.ui.beans"
beanClassName="DataInputBean">

<FIELD fieldName="businessNameField"
fieldType="ConstrainedField"
labelText="Agency/Business Name:"
labelTag="AgencyBusinessName"
paramList="businessNameField, 2,30 />
</BEAN>

The following are definitions for the <FIELD> excerpt:

FieldName
The logical name of the field.

FieldType
The type of the field. When reading the configuration file, by using reflexion, the
UIFactory.createConstrainedField is invoked.

LabelText
The default label in case there is no resource bundle defined for this label.

LabelTag
The resource bundle property name.

ParamList

Name of the field, minimum length and maximum length. When reading the
configuration file, by using reflexion, the UTFactory.createConstrainedField
(String fieldName, String minLength, String maxLength)isinvoked.

Custom Beans are java classes in which all Ul elements can be defined.They ares not as
configurable as the DatalnputBean.java class, but they are widely used in Oracle
Retail Point-of-Service.

These beans are referenced in the *uicfg.xml files but the definition of the Ul elements
are done in java.

Example 11-21 is an example of a custom bean java class:

Example 11-21 customeruicfg.xml

<BEAN
specName="CustomerAddSpec"
configuratorPackage="oracle.retail.stores.pos.ui"
configuratorClassName="POSBeanConfigurator"
beanPackage="oracle.retail.stores.pos.ui.beans"
beanClassName="CustomerAddBean">

</BEAN>

Updating MaxLength and Size of Multi-byte Fields

Do the following to update the maxLength and size of those fields that can support
multi-byte characters:

1. Identify the field to be updated in the UL

If the field is created inside a Custom Bean, open the class and look for the
initializeField method. This method creates and initializes all screen Ul
elements.

11-16 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Beans

Use the overloaded constructors from the UlFactory to create the field with the
new maxLength:

UIFactory.createConstrainedField(String name, String minLength, String
maxLength, String columns)

UIFactory.AlphaNumericTextField createAlphaConstrainedField(String name, String
minLength, String maxLength, String columns)

UIFactory.ValidatingComboBox createValidatingComboBox (String name, String
emptyAllowed, String columns)

Identify the size of the equivalent database column. The new field maxLength is
the database column size divided by four.

The current maxLength will be the new size/columns. The new field maxLength
will be the DB Column size divided by 4.

Note: If the size isn’t passed as an input parameter, then internally,
size = maxLength.

For dropdown boxes, no maxLength or size is specified.

To make it a standard when defining the new size of the field, use the size of the
longest element displayed in the input box. For example, suppose the database
column FirstName in the database was updated from 16 to 80.

Update from:

firstNameField = uiFactory.createConstrainedField("firstNameField", "2", "16");
to:

firstNameField = uiFactory.createConstrainedField("firstNameField", "2", “80”,
n 16 n) B

Identify where this field is being created. Look into the *uicfg.xml which
represents the current Ul screen.

If the field is created inside a DatalnputBean, the entire configuration is done in
the *uicfg.xml.

From:
<FIELD fieldName="firstNameField"
fieldType="ConstrainedField"
labelText="First Name:"
labelTag="firstName"
paramList="firstNameField,2,16 />
to:

<FIELD fieldName="firstNameField"
fieldType="ConstrainedField"
labelText="First Name:"
labelTag="firstName"
paramList="firstNameField,2,80,16 />

UIFactory.createConstrainedField(String name, String
minLength, String maxLength, String columns) is called.

Determine if the field to be updated is being created in a Custom Bean or through
the DatalnputBean. In the *uicfg.xml file, look for the <BEAN> that contains the

User Interface Framework 11-17

Beans

screenSpec. Look into the beanClassName attribute. It has the name of the bean

class that creates the Ul elements for the screen.

Allowing or Disallowing Ul Fields to Accept UTF8 Characters
Do the following to allow or disallow Ul fields to accept UTF8 characters:

1.

Identify the field to be updated in the UL

If the field is created inside a Custom Bean, open the class and look for the
initializeField method. This method creates and initializes all screen Ul
elements.

Use the overloaded constructors from the UlFactory to set the
doubleByteCharsAllowed flag to false. By default the flag is set to true.

UIFactory.createConstrainedField(String name, String minLength, String
maxLength, String columns, false)

Use this constructor if you also want to change the maxLength and size.

UIFactory.createConstrainedField(String name, String minLength, String
maxLength, false)

Use this constructor if you want to keep the same maxLength and size.

UIFactory.AlphaNumericTextField createAlphaConstrainedField(String name, String

minLength, String maxLength, String columns, false)

Use this constructor if you also want to change the maxLength and size.

UIFactory.AlphaNumericTextField createAlphaConstrainedField(String name, String

minLength, String maxLength, false)

Use this constructor if you do not want to change the maxLength and size.

UIFactory.DriversLicenseTextField createDriversLicenseField(String name, String

minLength, String maxLength, String columns, false)

Use this constructor if you also want to change the maxLength and size.

UIFactory.DriversLicenseTextField createDriversLicenseField(String name, String

minLength, String maxLength, false)

Use this constructor if you do not want to change the maxLength and size.

Identify where this field is being created. Look into the *uicfg.xml which
represents the current Ul screen.

If the field is created inside a DatalnputBean, the entire configuration is done in
the *uicfg.xml.

From:
<FIELD fieldName="firstNameField"
fieldType="ConstrainedField"
labelText="First Name:"
labelTag="firstName"
paramList="firstNameField, 2,16 />
to:

<FIELD fieldName="firstNameField"
fieldType="ConstrainedField"
labelText="First Name:"
labelTag="firstName"

11-18 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Connections

paramList="firstNameField,2,80,16, false />

when you want to change the maxLength and size.
Or:

<FIELD fieldName="firstNameField"
fieldType="ConstrainedField"
labelText="First Name:"
labelTag="firstName"
paramList="firstNameField, 2,16, false />

when you do not want to change the maxLength and size.
One of the following is called:

s UIFactory.createConstrainedField(String name, String
minLength, String maxLength, String columns, false)

s UIFactory.createConstrainedField(String name, String
minLength, String maxLength, false)

3. Determine if the field to be updated is being created in a Custom Bean or through
the DatalnputBean. In the *uicfg.xml file, look for the <BEAN> that contains the
screenSpec. Look into the beanClassName attribute. It has the name of the bean
class that creates the Ul elements for the screen.

Connections

Connections configure the handling of an event in the Ul Framework. They are used to
define inter-bean dependencies and behavior and to tie the bean event responses back
to the business logic. When one bean generates an event, another bean can be notified
of the event. Connections have a source bean, a Listener Type for the target, and a
target bean.

Connections attach a source bean to a target bean, which receives event notifications
from the source bean. The Listener Type specifies which type of events can be received.
The XML in the following sections is found in <source_
directory>\applications\pos\src\oracle\retail\stores\pos\service
s\tender\tenderuicfg.xml. Other listeners used in Point-of-Service include
ConfirmCancelAction, HelpAction, and CloseDialogAction.

ClearActionListener

ClearActionListener is an interface that extends ActionListener in Swing to make it
unique for its use in Point-of-Service. The following code shows how this listener is
used in an overlay specification. Adding the ClearActionListener allows Clear to erase
the text in the selected field in the work area when Clear on the
GlobalNavigationPanelSpec is clicked.

Example 11-22 tender.xml: ClearActionListener XML tag

<CONNECTION
listenerInterfaceName="ClearActionListener"
listenerPackage="oracle.retail.stores.pos.ui.behavior"
sourceBeanSpecName="GlobalNavigationPanelSpec"
targetBeanSpecName="CreditCardSpec" />

User Interface Framework 11-19

Text Bundles

DocumentListener

DocumentListener is an interface defined in Swing. The following code shows how
this listener is used in an overlay specification. Adding the DocumentListener allows
the Clear button on the GlobalNavigationPanelSpec to be disabled until input is
entered in the selected field on the work area.

Example 11-23 tender.xml: DocumentListener XML tag

<CONNECTION
sourceBeanSpecName="CreditCardSpec"
targetBeanSpecName="GlobalNavigationPanelSpec"
listenerPackage="javax.swing.event"
listenerInterfaceName="DocumentListener"/>

ValidateActionListener

ValidateActionListener is an interface that extends ActionListener in Swing to make it
unique for its use in Point-of-Service. The following code shows how this listener is
defined in an overlay specification. Adding the ValidateActionListener allows the
CreditCardSpec to recognize when the Next button on the GlobalNavigationPanelSpec
is clicked, resulting in the validation of the required fields on the work area. If the
required fields are empty, an error dialog appears stating that the required field(s)
must have data.

Example 11-24 tender.xml: ValidateActionListener XML tag

<CONNECTION
listenerInterfaceName="ValidateActionListener"
listenerPackage="oracle.retail.stores.pos.ui.behavior"
sourceBeanSpecName="GlobalNavigationPanelSpec"
targetBeanSpecName="CreditCardSpec" />

The fields that are required must be specified for this listener in the overlay
specification for the target bean, as in the following XML from tenderuicfg.xml.

Example 11-25 tenderuicfg.xml: ValidateActionListener Required Fields

<ASSIGNMENT
areaName="WorkPanel"
beanSpecName="CreditCardSpec">
<BEANPROPERTY
propName="RequiredValidatingFields"
propValue="CreditCardField, ExpirationDateField" />
</ASSIGNMENT>

Text Bundles

Currently, over forty text bundles exist for the Point-of-Service application. Many of
these bundles are service-specific. A properties file with the same name exists for
every language, located in <source_
directory>\applications\pos\locales\<locale
name>\config\ui\bundles with the language name appended to the filename.
For example, the Customer service would have its text defined in the customerText_
en.properties file in English.

A similarly named properties file would exist for each locale. Because they are
discussed earlier in the chapter, service-specific bundles and the dialogText bundle are
not described in this section.

11-20 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Text Bundles

parameterText

In overlay specifications, the parameterText bundle is specified to define the text for
particular screens. For example, the following code from <source_
directory>\applications\pos\src\oracle\retail\stores\pos\service
s\admin\parametermanager\parameteruicfg.xml defines text for the
PARAM_SELECT_PARAMETER overlay screen. On this screen, the names of the
parameters found in the parameterText properties file are displayed.

Example 11-26 parameteruicfg.xml: Overlay Specification Using parameterText

<OVERLAYSCREEN
defaultScreenSpecName="EYSPOSDefaultSpec"
resourceBundleFilename="parameterText"
specName="PARAM_SELECT_PARAMETER">

In the utility package, the ParameterManager is used to retrieve parameter values. The
following code from <source_
directory>\applications\pos\src\oracle\retail\stores\pos\utility
\GiftCardUtility.java shows how a parameter is retrieved from the
ParameterManager. The handle to the ParameterManager, pm, is passed into the
method but originally retrieved by the code ParameterManagerlfc pm =
(ParameterManagerlfc)bus.getManager(ParameterManagerlfc. TYPE);

Example 11-27 GiftCardUtility.java: Tour Code to Retrieve Parameter

public static final String DAYS_TO_EXPIRATION_PARAMETER =
"GiftCardDaysToExpiration";
daysToExpiration = pm.getIntegerValue (DAYS_TO_EXPIRATION_PARAMETER) ;

In the parameterText_<language>.properties file, the corresponding text is defined.
This text is displayed on the Parameter List screen when viewing Security options and
choosing the Tender parameter group.

Example 11-28 parameterText_en.properties: Text Bundle

Common.GiftCardDaysToExpiration=Days To Giftcard Expiration

The value of the parameter is defined in <source_
directory>\applications\pos\deploy\shared\config\parameter\appli
cation\application.xml by the code sample below. Each parameters belongs to a
group, a collection of related parameters.

Example 11-29 application.xml: Definition of Parameter

<PARAMETER name="GiftCardDaysToExpiration"
type="INTEGER"
final="N"
hidden="N">
<VALIDATOR class="IntegerRangeValidator"
package="oracle.retail.stores.foundation.manager.parameter">
<PROPERTY propname="minimum" propvalue="1" />
<PROPERTY propname="maximum" propvalue="9999" />
</VALIDATOR>
<VALUE value="365"/>
</PARAMETER>

User Interface Framework 11-21

Text Bundles

11-22 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

12

Oracle Retail Tour Framework

The Tour framework is a component of the Oracle Retail Platform layer of the
Point-of-Service architecture. The Tour framework implements a state engine that
controls the workflow of the application. Tour scripts are a part of this framework;
they define the states and transitions that provide instructions for the state engine that
controls the workflow. Java classes are also part of this framework; they implement the
behavior that is accessed by the tour engine, based on instructions in the tour scripts.

Tour Components

The tour metaphor helps the user visualize how the Oracle Retail Platform engine
interacts with application code. In the following description of the metaphor, the
words in italics are part of a simple tour script language that Oracle Retail Platform
uses to represent the application elements.

Tour Metaphor

For a moment, imagine that you are a traveler about to embark on a journey. You have
the itinerary of a business traveler (changeable at any time), your luggage, and
transportation. In addition, you have a video camera (TourCam) to record your tour so
you can remember it later.

You leave on your journey with a specific goal to achieve. Your itinerary shows a list of
tours that you can choose from to help you accomplish your task. Each tour provides a
tour bus with a cargo compartment and a driver. Each driver has a map that shows the
various service regions that you can visit. These regions are made up of sites (like
cities) and transfer stations (bus stations, airports, and so forth). The maps show a
finite number of lanes, which are either roads joining one site to another or aisles
within one site. To notify the driver to start the bus and drive, you must send a letter to
the driver. The driver reads the name on the letter and looks for a lane that matches
the letter.

When a matching letter is found, the driver looks for a traffic signal on the road. If
there is no signal, the driver can traverse the road. If there is a signal, the driver can
traverse the road only if the signal is green. If the signal is red, the driver attempts to
traverse the next alternative road that matches the letter. If the driver cannot find any
passable road, he or she returns to the garage. When you arrive at a site or traverse a
lane, you may perform an action to achieve your goal, like take a picture of the
countryside.

Upon arriving at a transfer station, you immediately transfer to another service, and
you load a portion of your cargo onto a shuttle and board the shuttle. The shuttle takes
you and your cargo to the bus that runs in the map of the other tour. Upon arrival at
the new bus, you unload the shuttle and load the new bus. Then the new driver starts

Oracle Retail Tour Framework 12-1

Tour Components

the bus and your journey begins in the new tour. When the transfer tour itinerary is
complete, you load whatever cargo you want to keep onto a shuttle and return to the
original tour bus. At that time, you unload the shuttle and continue your tour.

These tour script components map to terms in the metaphor. The tour metaphor
provides labels and descriptions of these components that improve understanding of
the system as a whole.

Table 12-1 includes a metaphor description and a technical description for the basic
metaphor components.

Table 12-1 Metaphor Components

Name Metaphor Description Technical Description

Service A group of related cities, for An implementation of workflow and

example “A Mediterranean Tour” behavior for a set of functionality

Bus The vehicle that provides The entity that follows the workflow

transportation from city to city between the sites

Cargo The baggage that the traveler The data that follows the workflow,

takes with him/her from city to modified as necessary
city

Site A city A function point in the workflow

Road A path the bus takes to get from A transition that takes place based on an

one city to another event that changes the state

Aisle A path the traveler takes while An action that takes place based on an

staying on the same bus in the event, without leaving the current state
same city

Letter A message the bus driver receives A message that causes a road or aisle to

instructing him/her to perform an be taken

action
When given a use case, create a tour script by identifying components for the tour
metaphor. Strategies for identifying components are listed in the table below. The
following sections describe each component in more detail.
Table 12-2 includes strategies for identifying components.
Table 12-2 Component Identification Strategies

Component How to Identify

Service A service generally corresponds to a set of related functionality.

Site Sites generally correspond to points in the workflow that need input from outside the
tour. Outside input sources include the user interface, the database, and devices
among others.

Road At a site, look at the ways control can be moved to another site. There is one road for
each of these cases.

Aisle At a site, there might be a task that you want to handle in a separate module and then
return to the site when the task is complete. There is one aisle for each of these cases.

Letter Letters generally correspond to buttons on a Ul screen and responses from the

database and devices. Look for the events that move control from one site to another
or prompt additional behavior within a site to help identify letters.

Follow the naming conventions in the Development Standards when deciding the
names for the components. It is important to understand that the tour metaphor is not
only used to describe the interaction of the components, but the component’s names

12-2 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Tour Components

are used in the code. By convention, a site named GetTender has a Java class in the
package named GetTenderSite.java that performs the work done at the site.

Service and Service Region

Bus

Cargo

Tours provide a way of grouping related functionality to minimize maintenance and
increase reusability. All tours provide a bus to maintain state and cargo for data
storage. All sites, lanes, and stations contained within a tour have access to these
resources. Furthermore, in the Point-of-Service source code, the tours are found in the
<source_
directory>\applications\pos\src\oracle\retail\stores\pos\service
s directory. Generally, this chapter uses the word tour to refer to a tour. The word
service and phrase service region are used in this section because they are elements in
the XML code.

The service region contains all functionality related to running the application when
no exceptions are encountered. The following code sample from <source_
directory>\applications\pos\src\oracle\retail\stores\pos\service
s\tender\tender .xml shows the definition of a service and service region in a tour
script.

Example 12-1 tender.xml: Definition of Service and Service Region

<SERVICE name="Tender" package="oracle.retail.stores.pos.services.tender"
tourcam="ON">

<SERVICECODE>

...definition of letters, siteaction classes, and laneaction classes...
</SERVICECODE>

<MAP>

<REGION region="SERVICE" startsite="GetTender">

...definition of sites, stations, and lanes...

</REGION>

</MAP>

</SERVICE>

As shown in the code sample, there are two main sections of a tour script. The
SERVICECODE element defines the Java classes in the tour and the letters that may be
sent in the tour code or by the user. The MAP element links the classes and letters to
the sites and lanes. In the following sections, code samples are shown from both
sections of the tour script.

The bus object is passed as a parameter to all tour methods called by the tour engine.
Methods can be called on the bus to get access to the cargo, managers and other state
information.

Cargo is data that exists for the length of the tour in which it is used. Any data that
needs to be used at different tour components such as sites and aisles needs to be
stored on the cargo. Cargo always has a Java class. The following code sample from
tender.xml defines the Tender cargo.

Example 12-2 tender.xml: Definition of Cargo

<CARGO class="TenderCargo">
</CARGO>

Oracle Retail Tour Framework 12-3

Tour Components

Sites

System Sites

With the concept of a tourmap, a cargo class can be overridden with another class. This
allows you to override the class name for a customer implementation yet still keep the
same workflow for the customer as in the product. The following tourmap definition
specifies the class to override and the new class to use in place of the original class.

Note that replacewith is a fully qualified classname, with both package and classname
specified, unlike the class attribute.

Example 12-3 tourmap.xml: Example of Overriding Cargo Class

<CARGO class="TenderCargo"
replacewith="oracle.retail.stores.cargo.SomeCargo" />

Sites correspond to nodes in a finite state machine and cities in the tour metaphor. Sites
are usually used as stopping places within the workflow. Arrival at a site usually
triggers access to an external interface, such as a graphical user interface, a database,
or a device. Sites always have a corresponding siteaction class.

The tender.xml code sample below contains the site information from the two main
parts of a tour script: the XML elements SERVICECODE and MAP, respectively.

Example 12-4 tender.xml: Definition of Site Class

<SITEACTION class="GetTenderSite"/>

Example 12-5 tender.xml: Mapping of Site to SiteAction
<SITE name="GetTender" siteaction="GetTenderSite">

. definition of lanes ...
</SITE>

With the concept of Tourmap, a site’s siteaction can be overridden with another class.
This allows you to override the class name for a customer implementation yet still
keep the same workflow for the customer as in the product. The following tourmap
definition specifies the class to override and the new class to use in place of the
original class. Note that replacewith is a fully qualified classname, with both package
and classname specified, unlike the class attribute.

Example 12-6 tourmap.xml: Overriding Siteaction With Tourmap

<SITEACTION
class="GetTenderSite"replacewith="oracle.retail.stores.actions.SomeOtherSiteAction
n />

System sites are defined by the Oracle Retail Platform engine but can be referenced
within a tour script. For example, a road defined by a tour script can have a system site
as its destination. Each system site must have a unique name in the tour script file. The
following code from tender.xml shows the definition of two system sites. The Final
system site stops a bus and returns it to the parent bus, and LastIndexed resumes the
normal bus operation after an exception.

Example 12-7 tender.xml: Definition of System Sites
<REGION>

12-4 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Tour Components

Letters

Roads

<MAP>

...definition of sites, lanes, and stations...
<SYSTEMSITE name="Final" action="RETURN" />
<SYSTEMSITE name="LastIndexed" action="BACKUP" />
</MAP>

</REGION>

Letters are messages that get sent from the application code or the user interface to the
tour engine. Letters indicate that some event has occurred. Typically, letters are sent by
the external interfaces, such as the graphical user interface, database, or device to
indicate completion of a task.

Lanes are defined as roads and aisles. When the system receives a letter, it checks all
lanes defined within the current site or station to see if the letter matches the letter for
a lane. If no matching lane is found, the letter is ignored. Letters do not have a Java
class associated with them.

Standard letter names are used in the application, such as Success, Failure, Undo, and
Cancel. The following code sample shows tender.xml code that defines letters. The
definition is added to the SERVICECODE XML element.

Example 12-8 tender.xml: Definition of Letter
<LETTER name="Credit"/>

Roads provide a way for the bus to move between sites and stations. Each road has a
name, destination, and letter that activates the road. A road may have a laneaction
class, depending on whether the road has behavior; only roads that have behavior
require a class. Roads are defined within site definitions because they handle letters
received at the site.

Following is tender.xml code that shows the definition of a road. The definition is
added to the SERVICECODE XML element. After the first code sample is another
sample that maps the road to a site and letter, which is contained in the MAP section of
the tour script.

Example 12-9 tender.xml: Definition of Road Class

<LANEACTION class="ValidCreditInfoEnteredRoad"/>
tender.xml: Mapping of Road to Site
<SITE name="GetCreditInfo" siteaction="GetCreditInfoSite">
<ROAD
name="ValidCreditInfoEntered"
letter="valid"
laneaction="ValidCreditInfoEnteredRoad"
destination="GetTender"
tape="ADVANCE"
record="OFF"
index="0FF">
</ROAD>
...other lanes defined...
</SITE>

With the concept of Tourmap, a road’s laneaction can be overridden with another
class. This allows you to override the class name for a customer implementation yet

Oracle Retail Tour Framework 12-5

Tour Components

still keep the same workflow for the customer as in the product. The following
tourmap definition specifies the class to override and the new class to use in place of
the original class. Note that replacewith is a fully qualified classname, with both
package and classname specified, unlike the class attribute.

Example 12-10 tourmap.xmli: Example of Overriding Site Laneaction

<LANEACTION class="ValidCreditInfoEnteredRoad"
replacewith="oracle.retail.stores.actions.SomeOtherLaneAction"/>

Common Roads

Aisles

The COMMON element is defined in the REGION element of the tour script. The
COMMON element can contain roads that are available to all sites and stations in a
tour. Common roads have the same attributes as roads defined within a site, but they
are defined outside of a site so they can be accessed by all sites. If a common road and
a tour road are both activated by the same letter, the site road is taken. The following is
an example that differentiates common roads from tour roads.

Example 12-11 Example of Common Road

<MAP>
<REGION region="SERVICE" startsite="Example">
<COMMON>
<ROAD name="QuitSelected" letter="exit"
destination="NamedIndex"
tape="REWIND" />
<COMMENT>
</COMMENT>
</ROAD>
</COMMON>
<SITE name="RequestExample" siteaction="RequestExampleSite">
<ROAD name="ExampleSelected" letter="next"
laneaction="ExampleSelectedRoad"
destination="ShowExample"
tape="ADVANCE"
record="OFF"
index="ON"/>
<COMMENT>
</COMMENT>
</ROAD>
</REGION>
</MAP>

Aisles provide a means for moving within a site and executing code. Aisles are used
when a change is required but there is no reason to leave the current site or station.
Each aisle contains a name, a letter, and a laneaction. Aisles always require a Java class
because they must have behavior since they do not lead to a different site or station
like roads.

Following is the tender.xml code that shows the definition of an aisle. The definition is
added to the SERVICECODE XML element. The second code sample from the same
tour script maps an aisle to the site and letter, which is contained in the MAP section.

Example 12-12 tender.xml: Definition of Aisle Class
<LANEACTION class="CardInfoEnteredAisle"/>

12-6 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Tour Components

Example 12-13 tender.xml: Mapping of Aisle to Site
<SITE name="GetCreditInfo" siteaction="GetCreditInfoSite">
<AISLE
name="CardInfoEntered"
letter="Next"
laneaction="CardInfoEnteredAisle">
</AISLE>
...other lanes defined...
</SITE>

With the concept of Tourmap, an aisle’s laneaction can be overridden with another
class. This allows you to override the class name for a customer implementation yet
still keep the same workflow for the customer as in the product. The following
tourmap definition specifies the class to override and the new class to use in place of
the original class. Note that replacewith is a fully qualified classname, with both
package and classname specified, unlike the class attribute.

Example 12-14 tourmap.xml: Example of Overriding Aisle Laneaction

<LANEACTION class="CardInfoEnteredAisle"
replacewith="oracle.retail.stores.actions.SomeOtherLaneAction"/>

Stations and Shuttles

Transfer stations are used to transfer workflow to another tour and return once the
tour workflow has completed. A transfer station describes a location where another
tour is started and the passenger exits one bus and enters the bus for another tour.

Transfer stations specify the name of the nested tour and define data transport
mechanisms called shuttles. Shuttles are used to transfer cargo to and from the nested
tour. These shuttles are either launch shuttles or return shuttles. Launch shuttles
transfer cargo to the nested tour and the return shuttles transfer newly acquired cargo
from the nested tour to the calling tour. Shuttles have Java classes associated with
them, but stations do not.

The following code samples from <source_
directory>\applications\pos\src\oracle\retail\stores\pos\service
s\tender\tender.xml contain the station and shuttle information from the
SERVICECODE and MAP elements in the tour script, respectively.

Example 12-15 tender.xml: Definition of Shuttle Class
<SHUTTLE class="TenderAuthorizationLaunchShuttle"/>

Example 12-16 tender.xmli: Mapping of Station to Service and Shuttle Classes

<STATION
name="AuthorizationStation"

servicename="classpath://com/extendyourstore/pos/services/tender/authorization/Aut
horization.xml"
targettier="APPLICATIONTIER"
launchshuttle="TenderAuthorizationLaunchShuttle"
returnshuttle="TenderAuthorizationReturnShuttle">
...lane definitions to handle exit letter from nested service..
</STATION>

The servicename can be defined as a logical name like “authorizationService” and
mapped to a filename is the tourmap file. The shuttle names can also be overridden in

Oracle Retail Tour Framework 12-7

Tour Components

Signals

the tourmap file. This allows you to override the class name for a customer
implementation yet still keep the same workflow for the customer as in the product.
The code samples below illustrate this.

Example 12-17 tourmap.xmli: Example of Mapping Servicename

<tour name="authorizationService”>
<file>classpath://com/extendyourstore/pos/services/tender/authorization/Authorizat
ion.xml</file>

</tour>

Example 12-18 tourmap.xml: Example of Overriding Shuttle Name

<SHUTTLE class="TenderAuthorizationLaunchShuttle"
replacewith="oracle.retail.stores.shuttles.NewShuttle"/>

Nested tours operate independently, with their own XML script and Java classes.
Stations and shuttles simply provide the functionality to transfer control and data
between two independent tours.

Signals direct the tour to the correct lane when two or more lanes from the same site or
station are activated by the same letter. The lane that has a signal that evaluates to true
is the one that is traversed. Each signal has an associated Java class. Signal classes
evaluate the contents of the cargo and do not modify data.

The following code sample lists the tender.xml code that relates to the definition of
two roads with Light signals defined. The definition is added to the SERVICECODE
XML element, whereas the road description is added to the MAP XML element. The
negate tag negates the Boolean value returned by the specified signal class.

Example 12-19 tender.xml: Definition of Traffic Signal
<SIGNAL class="IsAuthRequiredSignal"/>

Example 12-20 tender.xml: Signal Processing With Negate Tag

<STATION>
name="AuthorizationStation”
<ROAD
name="AuthorizationRequested"
letter="Next"
destination="AuthorizationStation"
tape="ADVANCE"
record="0FF"
index="OFF">
<LIGHT signal="IsAuthRequiredSignal"/>
</ROAD>
<ROAD
name="BalancePaid"
letter="Next"
destination="CompleteTender"
tape="ADVANCE"
record="OFF"
index="QFF">
<LIGHT signal="IsAuthRequiredSignal" negate="Y"/>
</ROAD>
...additional lane definitions...
</STATION>

12-8 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Role of Java Classes

Exception Region

Continuing the tour metaphor, the bus could break down at any time. If the bus driver
detects that the bus has broken down, the bus driver takes the bus to the nearest
Garage system site. Once the bus is in the garage, the mechanic assumes control of and
diagnoses the breakdown.

s If the mechanic is able to restore the cargo to a valid state, the mechanic informs
the bus driver by traversing to the Resume system site. The bus driver
subsequently resumes driving by resetting the bus at the site where the
breakdown occurred.

s If the mechanic is not successful in repairing the bus, the mechanic stops the bus,
and mails the parent tour a letter informing it of the breakdown.

n If there is no mechanic within the tour, the bus driver stops the bus, and mails the
parent tour a letter informing it of the breakdown. The bus completes its tour
when it arrives at the final site.

The exception region includes the functionality for handling exceptions. It can contain
sites, roads, and stations just like the service region. There are two ways to exit the
exception region: at the Return system site or the Resume system site. Return shuts
down the application, and Resume starts the application at the last visited site or
station in the service region.

The mechanic operates within the exception region of the tour. Any exception that
occurs within the tour region where the bus driver operates is converted to an
Exception letter and is passed to the mechanic. When the exception is being processed,
the mechanic assumes control of the bus and processes all incoming letters. If the
application developer has created an exception region for the mechanic, the Exception
letter is processed using application-specific actions and traffic lights. However, if the
exception region does not exist, the mechanic stops the bus and informs the parent bus
of the problem.

Depending on the application definition, recovery from exceptions can result in a
rollback, resumption, or a restart of the bus.

Role of Java Classes

All the code samples in this chapter have been from tour scripts. Tour scripts exist in
the form of one XML file per tour. The tour script refers to Java classes that implement
specific behavior, such as the siteaction and laneaction attributes. A tour has the
following Java classes, one for:

s The cargo

= Eachsite

= Eachaisle

s Each road that implements behavior
= Each shuttle

s Each signal

Table 12-3 lists methods that the tour engine looks for when it arrives at a specified
place in the tour.

Oracle Retail Tour Framework 12-9

Tour Cam

Table 12-3 System-called Methods

Class Method(s)

Site arrive(), depart()
Road (if behavior) traverse()

Aisle traverse()
Shuttle load(), unload()
Signal roadClear()
Cargo <none>

Tour Cam

TourCam allows you to navigate backward through your application in a controlled
manner while requiring minimal programming to accomplish the navigation. It
provides the ability to back up from a tour or process by tracking the state of the cargo
and the location of the tours. TourCam is turned on or off at the tour level. If there is
no reason to back up, TourCam should not be turned on.

The ability to backup or restore data to a previous state is accomplished using
TourCam. TourCam is used to record the bus path through the map, as well as the
associated cargo changes. TourCam is described using the TourCam metaphor. The
words in italics in the following paragraphs are the TourCam-specific terms.

A bus driver records the progress along the bus route using TourCam. The bus driver
records snapshots of the passenger cargo immediately before traversing a road. Each
snapshot is mounted in a frame within the current tape. The frame is stamped with the
current road. Using this method, the bus driver can retrace steps through the map. If
the frame is indexed, the driver stops at that index when retracing his steps.

The bus driver may adjust the TourCam tape while the bus traverses a road between
sites.

» The bus driver can advance the current TourCam tape, and add the next road and
snapshot of the cargo as a frame in the tape.

» The bus driver can discard the current TourCam tape, and replace it with a blank
tape.

s The bus driver can rewind the current tape to restore the cargo to be consistent
with a previously visited site.

» The bus driver can splice the current TourCam tape by removing all frames that
were recorded since a previously visited site.

When the passenger wants to back up, they instruct the bus driver to traverse a road
whose destination is the Backup system site. The backup road can inform the bus
driver to rewind or splice the TourCam tape while retracing its path along the last
recorded road. Similarly, the passenger can instruct the bus driver to traverse a road to
a specific, previously visited site. That road effectively backs up the bus when it
instructs the bus driver to rewind or splice the TourCam tape.

When the passenger wants to end the trip, they instruct the bus driver to travel down
a road whose destination is the Return system site. The final road may advance or
discard the TourCam tape. A passenger may return to the tour if they back into the
parent transfer station. If the TourCam tape is advanced, a return visit retraces the path
through the map in reverse order. If the TourCam tape is discarded, all return visits
start at the start site, as if the passenger were visiting the tour for the first time.

12-10 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Tour Cam

Attributes

The TourCam processing model places all undo actions on roads and treats sites and
stations as black boxes. The tour attribute that turns TourCam on or off is tourcam. The
following code from tender.xml shows the location in the tour script where the
tourcam is set. The default value is OFF.

Example 12-21 tender.xml: Definition of tourcam

<SERVICE
name="Tender"
package="oracle.retail.stores.pos.services.tender"
tourcam="0ON">

The rest of the TourCam attributes are set on the road element in the MAP section of
the tour script. The following code from tender.xml shows a road definition with these
attributes set.

Example 12-22 tender.xml: Definition of Road With TourCam Attributes

<SITE name="GetGiftCertificateInfo" siteaction="GetGiftCertificateInfoSite">
<ROAD name="GiftCertificateInfoEntered"

letter="Next"
laneaction="GiftCertificateInfoEnteredRoad"
destination="GetTender"
tape="ADVANCE"
record="OFF"
index="0FF">

...definitions of lanes...

</SITE>

Table 12—4 lists TourCam attributes and their values.

Oracle Retail Tour Framework 12-11

Tour Cam

Table 12-4 Road Tag Element Attributes
Tag Description Values Default
tape Indicates what tour ADVANCE - Adds a ADVANCE
action to take when frame representing this
traversing the road. road to the tourcam
tape
DISCARD - Discards
the entire tour cam tape
REWIND - Back up to
the site specified by the
‘destination” while
calling the backup
method on all roads
SPLICE - Back up to
the site specified by the
‘destination” without
calling the backup
method on any roads
record Indicates that a snapshot ON — Record a ON
of the cargo should be snapshot
recorded and saved on OFF — Do not record a
the tourcam tape
snapshot
index Indicates that an index ON - Place an index on ON
should be placed on the the tape
tourcam tape when this OFF - Do not place an
road is traversed .
index on the tape
namedIndex Indicates that a named Any string value is None
index should be placed allowed
on the tourcam tape
when this road is
traversed
destination Used when the tape hasa <SITENAME> - The None
value of REWIND or name of a site to back

SPLICE to indicate where
the tourcam should back
the bus up to

up to. The site must be
in the current tour.

LastIndexed — The
backup should end at
the site that is the origin
of the first road found
with an unnamed
index.

NamedIndex — The
backup should end at
the at the site that is the
origin of the first road
found with the named
index specified by the

named Index.

Each of the following combinations describes a combination of settings and how it is
useful in different situations. The following tables describe the forward and backward

TourCam settings:

Table 12-5 describes the forward TourCam settings.

12-12 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Tour Cam

Table 12-5 Forward TourCam Settings

Settings Behavior
ADVANCE This combination permits you to return to the site without specifying it as a
index=ON destination and storing the state of the cargo. Use this combination if you are entering
B data and making decisions. The UI provides a method for backing up to the previous
record=ON step.
tape=ADVANCE This combination allows you to track visited sites, and allows you to attach undo
index=OFF behavior. However, you cannot back up to this site. A common scenario for use
B would be for performing external lookups and the user must backup to the site that
record=ON started the lookup. This combination is used, rather than the following combination,

when changes made to the cargo that must be reversible.

tape=ADVANCE

This combination is useful for sites that require external setup from another site, but
do not result in a significant change in cargo. You cannot back up to a site that uses

index=OFF these settings and you cannot restore cargo at this site. As with the previous
record=OFF combination, these settings are used for sites that perform external lookups.
tape=ADVANCE This combination is used when a site does not do anything of significance to cargo.
. You would use this setting if a site prompts to choose an option from a list and there
index=ON . .

is a default, or to respond to a yes/no dialog and you want to ensure the data
record=OFF collected at the site is reset.

tape=ADVANCE

namedIndex=LOGIN

This combination is used when you want the application to be able to return to a
specific index, even if the backup begins in a child tour.

tape=DISCARD

This combination is used when you want the application flow only to go forward
from this site. For example, after a user tenders a credit card for a sale, the user cannot
backup to enter, delete or modify items. This setting does not permit you to backup or
restore cargo to a previously recorded site.

Table 12-6 describes the backup TourCam settings.

Table 12-6 Backup Tour Cam Settings

Settings Behavior

destination=BACKUP
tape=REWIND

This combination returns the application to the previously marked site and makes the
snapshot available for undo. This is the preferred method of performing a full backup
with restore.

destination=site
tape=REWIND

This combination backs up the application until it reaches the specified site. It is only
used if the site to which you want to backup does not directly precede the current site
or you know that you always want to backup to the specified site. These settings
could produce unpredictable results if new sites are later inserted in the map between
the current site and the target backup site.

destination=LastIndexed =~ This combination returns the application to the previously marked site without
tape=SPLICE restoring the cargo. These settings are used in scenarios when the cargo is
inconsequential.

destination=site
tape=SPLICE

This combination backs up the application to the specified site without restoring the
cargo. It is used when the cargo is inconsequential, or when you want to loop back to
a base site in a tour without permitting backup or undoing cargo after returning to
the base site.

For example, the application starts from a menu and permits the user to back up until
a series of steps are complete, but not afterward. In this case, the final road from the
last site returns to the menu. The need to use this combination might indicate a design
flaw in the tour. The developer should question whether the series of sites that branch
from the menu should be a separate tour. If the answer is no, this combination is the
solution.

destination=NamedIndex This combination backs up the application to the origin of the road with the specified
namedIndex=LOGIN named index. This is used to back up to a specific index, even if it was set in a parent
- tour.

Oracle Retail Tour Framework 12-13

Tender Tour Reference

Letter Processing

In the absence of TourCam, processing of letters is straightforward. If the letter triggers
a lane, the bus simply traverses the lane. With TourCam enabled, the processing of
letters must consider the actions required to retrace the path of the bus. If the letter
triggers an aisle, the bus traverses the aisle. There is no backup over an aisle. If the
letter triggers a road, tape=advance or tape=discard indicate a forward direction, and
tape=rewind or tape=splice indicate a backward direction. The destination of the road
element is used to indicate the backup destination when tape=rewind or tape=splice. It
can be one of the following values: “LastIndexed”, “NamedIndex”, or <sitename>.

Cargo Restoration

One of the primary strengths of TourCam is the ability to restore the bus’ cargo to a
previous state. TourCamlfc provides a mechanism for the bus driver to make and
subsequently restore a copy of the cargo when specified by road attributes. Classes
that implement TourCamlIfc must implement the makeSnapshot() and
restoreSnapshot() methods. An example of this is <source_
directory>\applications\pos\src\oracle\retail\stores\pos\service
s\inquiry\giftreceipt\GiftReceiptCargo.java.

Example 12-23 GiftReceiptCargo.java: TourCamlfc Implementation

public class GiftReceiptCargo implements CargoIlfc, TourCamIfc
{
...body of GiftReceiptCargo class...
public SnapshotIfc makeSnapshot ()
{

return new TourCamSnapshot (this);

}
public void restoreSnapshot (SnapshotIfc snapshot) throws ObjectRestoreException
{
GiftReceiptCargo savedCargo = (GiftReceiptCargo) snapshot.restoreObject();
this.setPriceCode (savedCargo.getPriceCode());
this.setPrice(savedCargo.getPrice());

}
}

Snapshotlfc provides a mechanism to create a copy of the cargo. The class that
implements Snapshotlfc is responsible for storing information about the cargo and
restoring it later, by calling restoreObject().

A shuttle allows the optional transfer of cargo from the calling tour to the nested tour
during backups. If defined, this shuttle is used during rewind and splice backup
procedures. The classname for the shuttle is specified in the tour script using the
backupshuttle attribute of the station element.

Example 12-24 Sample Backupshuttle Definition

<STATION servicename="foo.xml"
launchshuttle="MyLaunchShuttle"
backupshuttle="MyBackupShuttle"\/>

Tender Tour Reference

The files in the Tender package can be found in <source_
directory>\applications\pos\src\oracle\retail\stores\pos\service
s\tender.

12-14 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Tender Tour Reference

Table 12-7 describes resources in the Tender package that are common to all tours.

Table 12-7 Tender Package Components

Resource Filename Description

Tour script tender.xml This file defines the components (sites,
letters, roads, and so on) of the Tender tour
and the map of the Tender tour.

Tour screens tenderuicfg.xml This configuration file contains bean
specifications and overlay screen
specifications for the Tender tour.

Starting site GetTenderSite.java Tender types are displayed from this site. If
the selected tender requires input, it is
entered using another site, which then
returns control to this site. When the
balance due is paid, control is returned to
the calling service.

Cargo TenderCargo.java This class represents the cargo for the
Tender tour.
Stations Names (stations do not have These stations provide access to other
classes): tours. Each of these stations define one or

more shuttle classes which are part of the

AuthorizationStation Tender package. The workflows are
PINPadStation defined in other packages, but can be called
AddCustomer from the Tender tour. For example,
AuthFailedRoad is defined in the Tender
AddBusinessCustomer tour because it handles the exit letter from
. the Authorization tour. However,
FindCustomer

Authorization.xml, the workflow for the
SecurityOverrideStation Authorization tour, is located in <source_
directory>\applications\pos\src\
oracle\retail\stores\pos\service
s\tender\authorization.

LinkCustomerStation

The Tender package is unique in that the workflow is generally similar for all the
tender type options available from the main site. For example, if the user chooses to
pay by check or credit card, the workflow is similar. When the user cancels the form of
payment, the Oracle Retail Platform engine is directed to the
ReverseAuthorizedTenders site. When the user decides to undo the operation, the
engine is directed back to the GetTender site. The workflow for the credit card tender
option is shown in Figure 12-1.

Oracle Retail Tour Framework 12-15

Tender Tour Reference

Figure 12-1 Workflow Example: Tender with Credit Card Option

Start
Paint

CreditSelect[Credit)

v

ValidCreditinfoEntered[Valid] GetCreditinfo
GetTender
InvalidCreditinfoEntered[Invalid] CardinfoEntered
UndoCreditSelected[Unda] |

(ReversehuthorizedTenders)(

CancelCreditSelected[Cancel]

- >(CompleteTender
BalancePaid[Next]

Final
Point

12-16 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

13

Point-of-Service COMMEXT Framework

The Communication Extension framework (COMMEXT) provides a useful structure
for separation of concerns between connectivity to a protocol and the formatting of

domain object to message content.

Point-of-Service Connector Framework

The component model shown in Figure 13-1 depicts the Point-of-Service
Communication Extension Framework. Data structure manipulation or
transformation, and handling connectivity to a service, are divided between the
Formatter and the Connector. More detailed descriptions of each of the components
shown in the following model are contained in this section.

Figure 13-1 COMMEXT Overview

=<interface=> <<interface== <<gxception== xinterfaca=> «—
Managerifc Messenger MessageException | | MessageResponse 1
f f '
<<implements== | ; .]
| T p———- -] =<interface=x |
| Connectorlfc |
Manager 1 formatters |
——| MessageDispatcher e e |
T -routingRiles |
instantiates
BaseManager <<interface==~ |
d RoutingRulelic
-connector |
T ~formatter |
hMes Route:
AL -routingRule 1..*
-routingConnectors
ServiceManager Q.I 9
s ! RouterConnactor ——

1. *

Point-of-Service COMMEXT Framework 13-1

0" 0,.°
0. h J
<<interface=>
1 Formatterlic

|

Point-of-Service Connector Framework

BaseManager/BaseTechnician

This is the integration point between the Point-of-Service tier and the communication
framework. This abstract class creates and configures the MessageDispatcher based on
the configuration script. Access to the MessageDispatcher is through the sendMessage
method. A BaseTechnician class provides integration with the Point-of-Service tier for
utilizing the framework within a technician role. This class was omitted from

Figure 13-1 for clarity.

ServiceManager/ServiceTechnician

Extension of the BaseManager class provides the application-level API for accessing
the service. The ServiceManager prepares messages and performs post-response
processing of responses from the external service. The ServiceTechnician is not shown
in Figure 13-1, but provides the application level APIs in a similar manner to the
ServiceManager class.

MessageDispatcher

MessageDispatcher is the core of the communication framework. Its primary function
is to dispatch messages to mapped routers. Also, MessageDispatcher performs
administrative and control operations on the associated connectors.

MessageRouter

MessageRouter coordinates the processing of a message using the associated routing
rule and the RouterConnectors. The MessageRouter attempts to send the message to a
RouterConnector. The results of the attempt are sent to the routing rule and a control
action is returned to the MessageRouter. The MessageRouter responds to the control
action and can exit as a completed request, throw an exception, retry the current
RouterConnector, or try an alternate RouterConnector to process the request.

RouterConnector

RouterConnector provides an association between a message type, connector, and
formatter. This decouples the formatting of the message from the chosen connector.

Connectorlfc
Connectorlfc handles the communication between the application and the external
service. It is responsible for locating the service, establishing a connection, and
interacting with the service using appropriate protocols.

Formatterlfc

Formatterlfc translates the raw data from the message into the format expected by the
external service. It also translates the response from the remote service into the format
expected by the application.

RoutingRulelfc

RoutingRulelfc determines the action to be taken by the MessageRouter after sending
a message to a connector. The available actions are continue processing, retry the
current formatter/connector, successfully completed and return to caller, or throw an
exception.

13-2 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Point-of-Service Connector Framework

Messagelfc

Messagelfc defines the interface for a container with the message type and the raw

data for the message.

MessageResponselfc

MessageResponselfc defines an interface for a container with the translated response

to the request.

Message Routing

The core functionality of the communication framework is provided by the
MessageDispatcher and MessageRouter. The BaseManager delegates the message call
to the MessageDispatcher which in turn delegates the message handling to a specific
MessageRouter. See Figure 13-2 for a view of the MessageRouter and related

components.

Figure 13-2 Message Routing Details

=<interfaces=
RoutingRulelfc
1
0..* | -routingRule
MessageRouter
1 -routingConnectors
1.°
ReuterConnector
0.*
-connector -formatter
0.+
1
==interface>> ==interface==
Connectorife FormatterHc

The MessageRouter has a collection of potential routes to send the message. Having
multiple routings available provides options for distributing the message to multiple
connectors or alternative sources in case of a failure. Specification of the mapping
between message types with routing rules, formatters, and connectors is done with a

Point-of-Service COMMEXT Framework 13-3

Connectors

configuration file supported by the BaseManager class. Figure 13-3 shows the
sequence diagram for how messages are processed within the MessageRouter.

Figure 13-3 Message Routing Sequence

MessageDispatcher | | MessageRouter || RoutingRulelfe | |RouterConnector || Formatterlfc || Connectoriic

:?gelﬂuuter

—

I
I
I
I
sendhessage .-1
1
I

O
¥
-y]

I
|
|
|
| processhessage i [
I | | en
: : : IInrmﬁequest I
]
| | | | I
sendhessag
| | I [endiepsage——)
| |d&1&rmineﬁ.minn | |
| IIranslateHesponse
]
|
|

Connectors

The Connector is a base class implementation of the Connectorlfc. It is recommended
that new Connectorlfc implementations extend Connector or a subclass of Connector.
The Connector class provides basic JMX instrumentation for connector operations and
coordinates the administrative operations. The extending class must provide an
implementation of three abstract protected methods.

13-4 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

COMMEXT Patterns to Support Interaction Behavior

Figure 13-4 Connector Hierarchy Example

Connectorlfc
1 Connector

-chainedConnector

ChainedConnactor

) TechnicianConnecior WebServiceConnactor
ChainedConnectorlfc

o* 1 |
-technician
1
\ 4
=zinterface=>
Techniclan|fc

ForwardOnFailConnector | | QuevedConnector

1
-quels
1

FileQueaye

The Chained Connectors provide opportunities to link connectors head-to-tail. The
framework uses this structure to provide store and forward operations implemented
in QueuedConnector. Other possible uses might be for encryption/decryption or
statistics collection.

The QueuedConnector class provides an implementation of ChainedConnectorlfc
utilizing a local file to queue requests. The requests are forwarded to the associated
Connectorlfc chainedConnector and removed from the queue if the sendMessage() on
the downstream connector is successful.

The ForwardOnFailConnector is a component to provide request/response operations
if successful, with the option to forward the message to an alternate routing on failure.

The TechnicianConnector provides a connector implementation to communicate with
Point-of-Service technicians. The message data must be translated by the formatter
into an appropriate Valetlfc implementation for use with the associated technician.

The WebServiceConnector represents connector implementations for interacting with
web services exposed by target systems.

COMMEXT Patterns to Support Interaction Behavior

The following are COMMEXT patterns supporting interaction behavior.

Store and Forward

Figure 13-5 shows the COMMEXT pattern for providing Store and Forward message
processing.

Point-of-Service COMMEXT Framework 13-5

COMMEXT Patterns to Support Interaction Behavior

Figure 13-5 Store and Forward Operations in COMMEXT

MessageDispatcher

MessageRouter

RouterConnector Foamatter

CQueuedConnecior

Connecior

Figure 13-5 depicts how the framework is configured to provide Store and Forward
message processing. Store and Forward message handling uses a QueuedConnector
instance, which is a subtype of a ChainedConnector to provide the buffering for the
message. The Client sends a message which is delegated to the MessageRouter by the
MessageDispatcher. The MessageRouter uses the RouterConnector to link a formatter
and connector. The Formatter class shown is an implementation of the Formatterlfc.
After formatting the message, the message is sent to the QueuedConnector where it is
persisted and the submittal of the message from the client ends. A background thread
in the QueuedConnector checks to see if messages are present in the queue. If a
message is available, the message is read from the head of the queue and passed to the
chained connector. If the message is successfully handled by the associated connector,
the message is removed from the head of the queue. If the message is not successfully
processed by the downstream connector, the message is left on the queue for a later
retry.

Attempt, Store and Forward on Failure

Figure 13-6 depicts how the framework is configured to provide a request/response
operation on successful processing, with store and forward handling of the message
when immediate process is not successful. The client will be aware that the message
has failed on the immediate attempt.

13-6 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

COMMEXT Patterns to Support Interaction Behavior

Figure 13-6 Attempt, Store and Forward on Failure in COMMEXT

MessageDispatcher i ——— e— -1

* 1*]

MessageRouter MessageRouter I

fwdMsg orighsg I

RouterConnactor PassThruFormatter I
MessageFormatier RouterConneactor

CueuedConnactor ForwardOnFaillConnecton e

Connector

The client sends a message which the MessageDispatcher directs to the appropriate
MessageRouter. The MessageRouter delegates the original message to the
RouterConnector to apply the necessary formatting and connector, in this case the
ForwardOnFailConnector. The ForwardOnFailConnector first sends the message to the
Connector. If the message processing succeeds, the process is complete and control
returns to the client. If the message processing in the Connector fails, the
ForwardOnFailConnector catches the exception, repackages the payload into the a
new message, fwdMsg, and uses the message forwarding capabilities of the
COMMEXT framework to send the new message to the MessageDispatcher. Handling
of the fwdMsg is the same as the Store and Forward pattern described in the previous
section.

Point-of-Service COMMEXT Framework 13-7

COMMEXT Patterns to Support Interaction Behavior

13-8 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

14

Oracle Retail Returns Management
Extensibility Framework

The purpose of the extensibility framework is to simplify the creation and deployment
of new rules and calculators. The framework uses Apache Ant to automate library
extraction, code compilation, and packaging of the extensions.

The framework is packaged in the returnsExtensibility.zip file thatis
contained within the EPD application archive under returnsmgmt/api. To use the
framework simply unzip the archive to a working directory. In most cases, you can
simply update the input and output directory properties in the
extensibility.properties file. If you want to compile and package the samples
that are provided in the framework, all you need to do is run the build target.

Adding a New Rule

Rules get executed during the evaluateReturnRequest() method call. This section
demonstrates how to create a rule that is based off of the item’s technical check
condition. This section also demonstrates how to make use of the MessageExtension
elements.

First, make a new Evaluator class. For ease of implementation, subclass the
DiscreteRuleEvaluator class. This enables you to reuse the getMatchingAction()
method, which looks through the rule actions for the discrete value desired. This class
figures out that discrete value.

There are only two methods to be implemented:
= evaluate()
= getDiscreteRuleValues()

The evaluate() method is the method that provides the meat of the Evaluator
implementation. The getDiscreteRuleValues() method returns a list of string values.
These strings constitute the list of valid values for this particular class. Start with a
skeleton class:

package com.yourcompany.returns.rules;

import oracle.retail.stores.commerceservices.returns.ejb.ReturnServiceRemote;
import
oracle.retail.stores.commerceservices.returns.journal.ItemAuthorizationJournalEntr
yi

import oracle.retail.stores.commerceservices.returns.policy.PolicyRuleDTO;

import oracle.retail.stores.commerceservices.returns.rule.RuleActionIfc;

import oracle.retail.stores.commerceservices.returns.rule.RuleProcessingException;
import oracle.retail.stores.commerceservices.returns.xml.ReturnRequestType;

Oracle Retail Returns Management Extensibility Framework 14-1

Adding a New Rule

import java.util.List;

/**
* A discrete rule evaluator that checks the value of the
* techCheckCondition extensible attribute.
*/
public class TechCheckConditionEvaluator extends DiscreteRuleEvaluator

{

public RuleActionIfc evaluate(ReturnServiceRemote returnService,
PolicyRuleDTO rule, ReturnRequestType returnRequest,
int itemIndex, Integer rmCustomerID,
String evaluationBusinessDate,
ItemAuthorizationJournalEntry journalEntry)
throws RuleProcessingException

return null;

public List getDiscreteRuleValues()
{

return null;

Determine what the technical check condition is. This is the discrete value used to find
a rule action.

In this case, parse through the returnRequest object to find the extensible value
associated with this item in the request. Here is the new class, with the changes in
bold:

public class TechCheckConditionEvaluator extends DiscreteRuleEvaluator
{
public RuleActionIfc evaluate(ReturnServiceRemote returnService,

PolicyRuleDTO rule, ReturnRequestType returnRequest,
int itemIndex, Integer rmCustomerID,
String evaluationBusinessDate,
ItemAuthorizationJournalEntry journalEntry)
throws RuleProcessingException

String techCheckReason = null;

// £ind the item in the request

ItemReturnInfo item = (ItemReturnInfo)
returnRequest.getItemReturnInfo() .get (itemIndex);

// get the extensible attributes for the item

MessageExtension ext = item.getMessageExtension();

// find the techCheckCondition attribute

if (ext != null) {
for (Iterator it = ext.getExtensionEntry().iterator();

it.hasNext();)

{
ExtensionEntry entry = (ExtensionEntry) it.next();
if (entry.getName().equals("techCheckCondition")) {
techCheckReason = entry.getValue();
}
}

}
// return the action for this value

14-2 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Adding a New Rule

return super.getMatchingAction(rule.getActions(),

techCheckReason) ;

public List getDiscreteRuleValues() {
return null;

Next, ensure that this class records its actions into the journal entry, like other
Evaluators do. Add a call to the journal entry. Now the class looks like the following,
again with the changed portions in bold:

public class TechCheckConditionEvaluator extends DiscreteRuleEvaluator

{

public RuleActionIfc evaluate(ReturnServiceRemote returnService,

PolicyRuleDTO rule, ReturnRequestType returnRequest,
int itemIndex, Integer rmCustomerID,

String evaluationBusinessDate,
ItemAuthorizationJournalEntry journalEntry)

throws RuleProcessingException

String techCheckCondition = null;
// find the item in the request
ItemReturnInfo item = (ItemReturnInfo)

returnRequest.getItemReturnInfo () .get (itemIndex) ;

// get the extensible attributes for the item
MessageExtension ext = item.getMessageExtension();
// find the techCheckCondition attribute

if

}

(ext !'= null) {
for (Iterator it = ext.getExtensionEntry().iterator();
it.hasNext () ;)

ExtensionEntry entry = (ExtensionEntry) it.next();

if (entry.getName().equals ("techCheckCondition")) {
techCheckCondition = entry.getValue();

// log the rule and result value
journalEntry.addRuleResult (rule.getName(),

techCheckCondition == null ? "No condition found."
: techCheckCondition);

// return the action for this value
return super.getMatchingAction(rule.getActions(),

techCheckCondition) ;

public List getDiscreteRuleValues() {
return null;

Finally, fill the list of allowed values. This list is used to fill in the menu box in the
Returns Management U], for configuring the allowed values for this rule.

public class TechCheckConditionEvaluator extends DiscreteRuleEvaluator

{

public RuleActionIfc evaluate(ReturnServiceRemote returnService,

PolicyRuleDTO rule, ReturnRequestType returnRequest,

Oracle Retail Returns Management Extensibility Framework 14-3

Adding a New Rule

int itemIndex, Integer rmCustomerID,
String evaluationBusinessDate,
ItemAuthorizationJournalEntry journalEntry)
throws RuleProcessingException
{
// .. lines removed ..

}

public List getDiscreteRuleValues()
{
String[] values = new String[] {
"All Tests Passed",
"Partial Test Failure",
"Complete Test Failure"
}i

return Arrays.asList(values);
}

A static set of strings is not the ideal implementation. The rules that are shipped with
Oracle Retail Returns Management rely on parameters to define their valid values and
make use of the ParameterDiscreteRuleEvaluator. This solution allows for the values
to be changed independently of the class at runtime. However, this is not the only
possible implementation. Since the evaluator only needs to implement the
getDiscreteRuleValues() method, the implementer has a great deal of latitude in
deciding how the list of strings is generated.

Now that the class is written, you need to do two things:

1. Compile and deploy the new class in the application server. Using the
extensibility framework simplifies this task.

2. Configure the database so that we can see the new evaluator in action.
For a rule, there is only one database table to configure, the rule table (RM_RU).
Table 14-1 identifies the columns in the RM_RU table.

Table 14-1 RM_RU Columns

Column Name Data Type Description Notes
ID_RU Integer Primary Key Must be unique.
RU_TY_EVAL VARCHAR Type of Rule One of:

= BOOLEAN

= DISCRETE

= RANGE
NM_RU VARCHAR Display Name NA
LU_RU_CLS VARCHAR Class Name Fully qualified classname.
ID_KPI Integer KPI Reference ID of associated KPI.

Otherwise null.

Create a new discrete rule for the class. It does not have a KPI reference. The following
SQL creates this new discrete rule:

INSERT INTO rm_ru

(id_ru, ru_ty_eval, nm_ru, lu_ru cls, id_kpi, fl_pnty bx)

VALUES

(100, 'DISCRETE',

'What is the item technical check condition?',
'com.yourcompany.returns.rules.TechCheckConditionEvaluator', null, '0');

14-4 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Adding a New Rule

Ensure that the rule ID is unique, and that the class name is both fully qualified and

correct.

Once you have updated the database, navigate to the desired policy in the Returns
Management Ul Then click the change rules/order button next to Policy Rules. You
can see the new rule at the bottom of the list.

Once you click the Done button, you can click on the rule name and add actions and
response codes for the various conditions you want to configure.

Figure 14-1 Example Rule Configuration Screen

Wehat is the item technical check

condition? (discrate)

Al Teeis CONTINUE Author

Paszzed

Partial Test Caontin

Failure CERTIRLE Author

Default CONTINUE Mgr O
Denial

Be sure to save the policy after configuring the rule.

The following is the complete source for the TechCheckConditionEvaluator:

package com.yourcompany.returns.rules;

import
import

oracle.

Yi

import
import
import
import

oracle.

import
import
import
import

import
import
import
/**

oracle.

retail.

oracle.
oracle.
oracle.

retail.

oracle.
oracle.
oracle.
oracle.

retail.

stores.

retail
retail.
retail.

stores

retail.
retail.
retail.
retail.

stores.commerceservices.returns.ejb.ReturnServiceRemote;

commerceservices.returns.journal.ItemAuthorizationJournalEntr

.stores.commerceservices.returns.policy.PolicyRuleDTO;

stores.commerceservices.returns.rule.RuleActionIfc;
stores.commerceservices.returns.rule.RuleProcessingException;

stores

stores.
stores.
stores.

java.util.List;
java.util.Iterator;
java.util.Arrays;

.commerceservices.
commerceservices.
commerceservices.
commerceservices.

* A discrete rule evaluator that checks the
* techCheckCondition extensible attribute.

*/

returns.
returns.
returns.
.xml .ExtensionEntry;

returns

xml .ReturnRequestType;
xml.ItemReturnInfo;
xml .MessageExtension;

value of the

public class TechCheckConditionEvaluator extends DiscreteRuleEvaluator

{

public RuleActionIfc evaluate (ReturnServiceRemote returnService,
PolicyRuleDTO rule, ReturnRequestType returnRequest,

int itemIndex, Integer rmCustomerID,
String evaluationBusinessDate,

.commerceservices.returns.rule.evaluator.DiscreteRuleEvaluator

Oracle Retail Returns Management Extensibility Framework 14-5

Adding a New KPI Calculator

TtemAuthorizationJournalEntry journalEntry)
throws RuleProcessingException

String techCheckCondition = null;

// find the item in the request

ItemReturnInfo item = (ItemReturnInfo)
returnRequest.getItemReturnInfo () .get (itemIndex) ;

// get the extensible attributes for the item

MessageExtension ext = item.getMessageExtension();

// find the techCheckCondition attribute

if (ext !'= null) {
for (Iterator it = ext.getExtensionEntry().iterator();

it.hasNext();)

ExtensionEntry entry = (ExtensionEntry) it.next();

if (entry.getName().equals("techCheckCondition")) ({
techCheckCondition = entry.getValue();

}
// log the rule and result value
journalEntry.addRuleResult (rule.getName(),
techCheckCondition == null ? "No condition found."
techCheckCondition) ;
// return the action for this value
return super.getMatchingAction(rule.getActions(),
techCheckCondition) ;

public List getDiscreteRuleValues ()
{
String[] values = new String[] {
"All Tests Passed",
"Partial Test Failure",
"Complete Test Failure"
Y
return Arrays.asList (values);

Adding a New KPI Calculator

Now that you have added a new rule evaluator, explore a new KPI Calculator. One of
the things that a KPI can do is add to the cumulative exception count. Exceptions are
triggered during the processFinalResult() method. Consider a trivial exception that
simply counts up the number of times a certain item has been returned. Each time this
item is returned, a row is added into the exception count.

To create a new KP]I, do the following;:
1. Create the new class.
2. Configure the database.

3. Create some JSP fragments to manipulate the parameters for the new KPIL

14-6 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Adding a New KPI Calculator

The Calculator Class

First of all, you need to make a new instance of the KPICalculatorlIfc interface, or more
specifically a new subclass of the class BaseKPICalculator.

Because you are using the abstract class, there are three methods to implement:

initialize() — Called on each KPI Calculator to set up an initial state. In practice, this
usually means parsing KPI instance parameters or getting a reference to the
KPIService from the E]B Handle passed in. The abstract base class has a method to
achieve the latter called initializeServiceFromHandle().

hasMatchingBehavior() — This method enables the KPIValueDTO to indicate,
ex-post-facto, if the KPI was fired for a particular return ticket. Does this return
match the behavior that I'm looking for? This method must not rely on any values
computed by the calculate method because that method might not be called
depending on the calculator type.

calculate() — This is the workhorse method of the class. Calculate is sent in a set of
facts, using the Map object, with which it can make a decision or use to perform
some kind of count of historical data. This decision or count is then returned as a
BigDecimal.

For this simple class, first make a skeletal stub class:

package com.yourcompany.returns.kpis;

import oracle.retail.stores.commerceservices.returns.kpi.CalculatorException;
import oracle.retail.stores.commerceservices.returns.kpi.KPIInstanceIfc;

import oracle.retail.stores.commerceservices.returns.kpi.impl.BaseKPICalculator;
import oracle.retail.stores.commerceservices.returns.ticket.ReturnTicketDTO;

import javax.ejb.Handle;
import java.math.BigDecimal;
import java.util.Map;

/**
* A KPI Calculator used for exception tracking purposes.
*/
public class SpecificItemCalculator extends BaseKPICalculator

{

public void initialize(Handle handle, KPIInstanceIfc kpiInstance)
throws CalculatorException

public BigDecimal calculate(Map params)
{

return null;

public boolean hasMatchingBehavior (ReturnTicketDTO returnTicket)
throws CalculatorException

return false;

Oracle Retail Returns Management Extensibility Framework 14-7

Adding a New KPI Calculator

Now we need to fill in some blanks. Tackle the calculate() method first. In most cases
the calculator accesses the database to answer this question. For this example KPI that
only counts exceptions, this method returns a default zero value.

The map passed in contains the return information. It is somewhat awkward to
withdraw data from the non-type-safe map. The map is populated with default values
depending on the context in which the KPI is called. Generally, two values are
populated:

mapIDs.put (KPIParameterIfc.CUSTOMER_ID, rmCustomerID);
mapIDs.put (KPIParameterIfc.RETURN_TICKET, returnTicket);

However, when the KPI is called from the KPIRangeEvaluator or the
KPICashierRangeEvaluator, then only the customer or cashier, respectively, is
populated.

Each KPI also might have instance parameters that correspond to this particular KPIL. In
this case, the instance parameters can be withdrawn during the initialization phase.
The parameters are part of the kpilnstance class and can be accessed by the method
getInstanceParameters(). This method returns a TreeSet rather than a map, though
order is not important here. The set contains a group of KPlInstanceParameterDTO
classes. Using the getName() method, a KPI can determine which of these parameters
satisfy which criteria.

In this case, determine if a certain item is in a return ticket. First, pull the item from the
KPI instance parameters. To do this, define a new constant for the parameter name and
get it out of the parameters passed in to the initialize function.

protected String itemID = null;
public static final String PARAM ITEM_ID = "itemID";

public void initialize(Handle handle, KPIInstancelIfc kpiInstance)
throws CalculatorException
{
if (! isInitialized()) {
TreeSet kpiParams = kpiInstance.getInstanceParameters();
Iterator iter = kpiParams.iterator();
while (iter.hasNext())
{
KPIInstanceParameterDTO param =
(KPIInstanceParameterDTO) iter.next();
String paramName = param.getName () ;
if (paramName.equals (PARAM_ITEM_ID))
{
itemID = param.getInstanceValue();
break;

}

setInitialized(true);
} else {
throw new IllegalStateException("Initializing a " +
"calculator which is already initialized");

}

Notice that two variables are added: a constant to indicate the parameter (used later to
update the SQL, and in the JSP) and an instance variable to hold the value being
sought.

Add in the simplified calculate() method. In this case, return a default value of zero.

14-8 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Adding a New KPI Calculator

public BigDecimal calculate(Map params)

{

return BigDecimalConstants.ZERO;

Because we are only interested in exception counting, the significant part of the code
goes in the hasMatchingBehavior() method.

public boolean hasMatchingBehavior (ReturnTicketDTO returnTicket)
throws CalculatorException

for (Iterator it =
.lterator(); it.hasNext();)

returnTicket.getReturnTicketItems ()

ReturnTicketItemDTO item = (ReturnTicketItemDTO) it.next();
if (item.getItemID().equals(itemID))

{

}

return false;

return true;

Now the class is ready. Compile and deploy the new class.

The following is the complete source for the SimpleltemCalculator:

package com.yourcompany.returns.kpis;

import
import
import
import
import
import
import

import
import
import
import
import
/**

oracle.
oracle.
oracle.
oracle.
oracle.
oracle.
oracle.

retail.
retail.
retail.
retail.

retail

stores.
stores.
stores.
stores.
.stores
retail.
retail.

stores

stores.

javax.ejb.Handle;
java.math.BigDecimal;

java.util.Map;

java.util.TreeSet;
java.util.Iterator;

commerceservices.returns.kpi.CalculatorException;
commerceservices.returns.kpi.KPIInstanceIfc;
commerceservices.returns.kpi.KPIInstanceParameterDTO;
commerceservices.returns.kpi.impl.BaseKPICalculator;
.commerceservices.returns.ticket.ReturnTicketDTO;
.commerceservices.returns.ticket.ReturnTicketItemDTO;
common.utility.BigDecimalConstants;

* A KPI Calculator used for exception tracking purposes.

*/

public class SpecificItemCalculator extends BaseKPICalculator

{

protected String itemID
public static final String PARAM ITEM_ID = "itemID";

= null;

public void initialize(Handle handle, KPIInstancelIfc kpiInstance)
throws CalculatorException {

isInitialized()) {

TreeSet kpiParams = kpilInstance.getInstanceParameters();
Iterator iter =

if (!

while

{

kpiParams.iterator () ;

(iter.hasNext ())

KPIInstanceParameterDTO param =
(KPIInstanceParameterDTO) iter.next();
String paramName = param.getName () ;

if (paramName.equals (PARAM_ITEM_ID))

Oracle Retail Returns Management Extensibility Framework 14-9

Adding a New KPI Calculator

itemID = param.getInstanceValue();

break;

}

setInitialized(true);
} else {

throw new IllegalStateException("Initializing a " +
"calculator which is already initialized");

}

public BigDecimal calculate(Map params)

{
// exception counting only KPI
return BigDecimalConstants.ZERO;

}

public boolean hasMatchingBehavior (ReturnTicketDTO returnTicket)

throws CalculatorException

{

for (Iterator it = returnTicket.getReturnTicketItems ()

.iterator(); it.hasNext();)

ReturnTicketItemDTO item = (ReturnTicketItemDTO) it.next();

if (item.getItemID().equals(itemID))

{

return true;
}
}

return false;

Database Configuration

The next step is to update the database. In this case, update two tables. These tables
are the KPI table (RM_KPI) and the KPI parameter table (RM_KPI_PRMR).

Table 14-2 identifies the six columns to update in the KPI table.

Table 14-2 RM_KPI Columns

Column Name Data Type Description Notes

ID_KPI Integer Primary Key Must be unique

NM_KPI VARCHAR Logical Name Displayed in exception lists
DE_DISP_NM VARCHAR Display Name Name displayed in the UI during

user configuration

14-10 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Adding a New KPI Calculator

Table 14-2 (Cont.) RM_KPI Columns

Column Name Data Type Description Notes
NM_KPI_CLS VARCHAR Class Name Fully qualified name
CAT_KPI Integer KPI Category One of:
s Customer
» Cashier
= Store
s [tem
= A combination of the above
TY_KPI Integer KPI Type NA
The KPI type column is an integer value in the database. The value of this column,
however, is interpreted as a series of bit flags. That is, a value of 7 in one of these fields
means that the first three flags are set while the others are all blank (for example, DEC
7 = BIN 0111).
Table 14-3 identifies the three possible KPI type values.
Table 14-3 KPI Type Flags
Flag Value Flag Type
1 Rule Evaluation
4 Cumulative Exception Count
8 Alert

Types determine when a KPI is evaluated. A rule needs to have the rule evaluation
type flag set.

Categories affect when a KPI is executed during the scoring phase, if it’s executed at
all. Customer and Cashier KPIs, for example, are executed in two different routines.

Note that the numeric values for both the categories and the types are defined in the
interface KPIIfc.

For this class, create a new customer KPI that is used during cumulative exception
counting. The SQL to do this looks like the following:

INSERT INTO rm_kpi

(id_kpi, nm_kpi, de_disp_nm, nm_kpi_cls, cat_kpi, ty kpi)
VALUES

(100, 'Specific Item KPI', 'When a specific item is returned',
'oracle.retail.stores.commerceservices.returns.kpi.impl.SpecificItemCalculator"',
1, 4);

Make sure that the ID is unique and that the class name is both fully qualified and
correct.

The next table to update is the RM_KPI_PRMR table. In this case, add in a parameter
for the specific item being searched for.

Table 144 identifies the columns in the RM_KPI_PRMR table.

Oracle Retail Returns Management Extensibility Framework 14-11

Adding a New KPI Calculator

Table 14-4 RM_KPI_PRMR Columns

Column Name Data Type Description Notes
ID_KPI_PRMR Integer Primary Key Must be unique
ID_KPI Integer Foreign Key Non-null
NM_PRMR VARCHAR Parameter Name Used to identify parameters from the
getInstanceParameters() method
TY_PRMR_VAL Integer Data Type = Integer
s String
= Boolean
= Date
n List
DE_DFLT_VAL VARCHAR Default Value NA
FL_CFG_PRMR CHAR Configurability Flag = 0 - configurable
= 1-not configurable
TY_PRMR Integer Usage Type Bit flag with same scheme as TY_KPI

Most of these are obvious. One important note is that the NM_PRMR value here is
what is used in the KPI method to extract the parameter. So the name in the database
must match the name that you have coded. In this case, that name is itemID.

The last two values also bear discussion. The configurable flag, though set in the
database, has no effect on where the KPI appears in the exceptions to track screen. The
UI determines if a return activity KPI is configurable by counting the number of
parameters associated with it. If there are one or more, then the KPI is configurable. If
zero, then the KPI is not configurable. If the KPI is used for rules corresponding to a
rule, this flag controls if the parameter should be displayed on the Edit Return Policy
Rule page. If the parameter is not already in use by other KPIs, additional
customization in ruleKPICfg.jsp might be necessary to have the parameter appear in
the rule editor.

Finally, the TY_PRMR method is another bit field. The idea is that the same KPI can
use different parameters in different situations. This field allows the developer to set at
which times which parameters will be used.

The following SQL creates an exception tracking only KPI:

INSERT INTO rm_kpi_prmr

(id_kpi_prmr, id_kpi, nm_prmr, ty prmr_val, de_dflt_val, fl_cfg prmr, ty_prmr)
VALUES

(1000, 100, 'itemID', 2, '1234', '1', 4);

Now start the app server and see the new KPI in action by going to Returns -->
Configuration --> Exceptions to Track --> Customer.

14-12 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Adding a New KPI Calculator

Figure 14-2 Example Customer KPI Screen

Creating the JSP

Configurable Return Activities

Track Exceptions

(] Returns without receipt greater than or egual to (500,00

L] Returns with receipt greater than or equal to |S00.00

(] Returns greater than or equal to (S00.00

(] Merchandise returns from Sales Reporting=Root > Multi-Media greater th:

Expired receipts (older than |30 days)

Refunds with a refund type of | Price_adijustrment A

Refunds with a refund type of | Return v

[] Engire response code tracking | 300 Authorized v

O] Monreceipted returns from Sales Reporting =Root > Multi-Media
Merchandise returns frorm Sales Reporting=Root = Multi-Media purchased

- 1/1/04 el and |1/2/04 i

I [] ‘When a specific item is returned

To display something here, the application does one of the following;:

The JSP tag class BaseKPITag tries to find a JSP along the path of
/returns/kpi/classname. jsp, where classname is the non-qualified name of
the class. In this case, the JSP is named SpecificltemCalculator.jsp.

If the JSP tag class BaseKPITag cannot find a file of this name it then checks for
/returns/kpi/extensions/classname. jsp.

If the JSP tag class BaseKPITag cannot find the JSP there, the JSP tag class
BaseKPITag defaults to using the display name value from the KPI and displays it
using the JSP /returns/kpi/displayName. jsp. That is what is occurring
here.

To remedy this, create and deploy a new SpecificltemCalculator.jsp. When creating this
JSP, consider the following:

The JSP is responsible for formatting the remaining table cells for the row.
The JSP itself is responsible for enabling and disabling the KPL
The JSP needs to create an Add button if necessary.

The JSP needs to create a Remove button if necessary.

Note: Add and Remove buttons are used only in the case of
cloneable KPIs.

The JSP is required to provide role-based security.

First, make a simple skeletal file. The first thing to know is that the enclosing JSP
expects the JSP in the configurable section to contain three table cells (for example,
<TD> elements). Create a new file that looks like the following;:

Oracle Retail Returns Management Extensibility Framework 14-13

Adding a New KPI Calculator

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<%@ taglib uri="/WEB-INF/struts-nested.tld" prefix="nested" %>

<td width="83%" height="20" class="normal">
New content here!

</td>

<td width="5%" height="20" class="normal">
<!-- place holder for an add button -->

</td>

<td width="5%" height="20" class="normal">
<!-- place holder for a delete button-->

</td>

Save this as /returns/kpi/extensions/SpecificItemCalculator.jsp,
redeploy, and now see something a little better looking;:

Figure 14-3 Example Customer KPI Screen, continued

Merchandise returns from Sales Reparting=Root = Multi-Media purchased
1104 |CEland 1204 |

O Mew content here!

[l

Now that the page is ready, add in some editable value to it. In this case, that value is
the item ID to track.

The JSP makes use of the nested functionality of the Struts framework. By the time you
are in this JSP, you are already nested inside the specific parameter. By continuing to
use this idiom, the parameter updates painlessly.

The JSP now looks like the following, with changes in bold:

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<%@ taglib uri="/WEB-INF/struts-nested.tld" prefix="nested" %>

<%@ page
import="oracle.retail.stores.commerceservices.returns.kpi.impl.SpecificItemCalcula
tor" %>

<td width="83%" height="20" class="normal">
<nested:iterate property="allParams"
id="viewKpiParam"

type="oracle.retail.stores.webmodules.returns.app.kpi.ViewKpiParameterBean">
<nested:nest property="kpiParam">
<nested:equal property="name"
value="<%= SpecificItemCalculator.PARAM_ ITEM ID %>">

<!-- include I18N message -->
Enter the item ID here:
<!-- include enabled stuff -->

<nested:text property="value"
value="<%=viewKpiParam.getValue()%>"/>
</nested:equal>
</nested:nest>

14-14 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Adding a New KPI Calculator

</nested:iterate>
</td>
<td width="5%" height="20" class="normal">
<!-- place holder for an add button -->

</td>

<td width="5%" height="20" class="normal">
<!-- place holder for a delete button-->

</td>

Notice the default item ID is displayed here in an editable text box. Notice that you can
update the item ID and it now gets saved into the database.

Figure 14-4 Example Customer KPI Screen, continued

] Merchandise returns from Sales Reparting=Root = Multi-Media purchased
1104 |Celand 1/2/04 |
O Enter the item 1D here: {1234

The code is updating properly due to the use of the nested tags. The section for the KPI
looks something like this:

<input type="text"
name="kpiCfgColl[6] .kpiBean2.allParams[0].kpiParam.value”
value="1234">

The long name, kpiCfgColl[6] .kpiBean2.allParams[0] .kpiParam.value,is
used by Struts on the server side. It lets Struts determine which KPI bean is being
talked about and update the bean accordingly.

Now that the KPI is displayed in a reasonable fashion, address security. Returns
Management has a weak notion of security at the Ul level. In this case, only check to
see if the current user has the role necessary to modify KPIs. Check if this is a customer
or cashier KPI and set the Boolean flag accordingly. Later, use this to enable or disable
the input.

The following is what the JSP now looks like with the security code, with changes in
bold:

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<%@ taglib uri="/WEB-INF/struts-nested.tld" prefix="nested" %>

<%@ page import="oracle.retail.stores.commerceservices.returns.kpi.KPIIfc,

oracle.retail.stores.commerceservices.returns.kpi.impl.SpecificItemCalculator,
oracle.retail.stores.webmodules.returns.ui.ReturnsConstantIfc,
oracle.retail.stores.webmodules.returns.ui.kpi.EditKpiForm"
%>

EditKpiForm form = (EditKpiForm)
request.getSession() .getAttribute (ReturnsConstantIfc.EDIT KPI_TAG FORM);
boolean disabledIfNoPrivilege =
! (request.isUserInRole (ReturnsConstantIfc.EDIT KPI_CUSTOMER PRIVILEGE));
if (form.getCategory() == KPIIfc.CATEGORY_ CASHIER)
{

Oracle Retail Returns Management Extensibility Framework 14-15

Adding a New KPI Calculator

disabledIfNoPrivilege = ! (request.isUserInRole(ReturnsConstantIfc.EDIT
KPI_CASHIER PRIVILEGE));
}

o)

5>

<td width="83%" height="20" class="normal">
<nested:iterate property="allParams"
id="viewKpiParam"

type="oracle.retail.stores.webmodules.returns.app.kpi.ViewKpiParameterBean">
<nested:nest property="kpiParam">
<nested:equal property="name"
value="<%= SpecificItemCalculator.PARAM_ITEM ID %>">
<!-- include I18N message -->
Enter the item ID here:
<nested:text
disabled="<%=disabledIfNoPrivilege%>"
property="value"
value="<%=viewKpiParam.getValue()%>"/>
</nested:equal>
</nested:nest>
</nested:iterate>
</td>

<td width="5%" height="20" class="normal">
<!-- place holder for an add button -->

</td>

<td width="5%" height="20" class="normal">
<!-- place holder for a delete button-->

</td>

Finally, this KPI is a candidate for being cloneable. That is, being able to track returns
on multiple item IDs.

In order to add in the cloning functionality, call one of two javascript functions on the
page. The first is selAddSubmit(). The second is selDelSubmit(). These two methods
submit the page back to the EditKpiAction class with the appropriate values to either
create a clone of the selected KPI or to delete the currently selected clone.

The JSP encoding is currently a bit awkward for this functionality. The following is
what the page looks like in final form when the cloneable code is added:

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<%@ taglib uri="/WEB-INF/struts-nested.tld" prefix="nested" %>

<%@ page import="oracle.retail.stores.commerceservices.returns.kpi.KPIIfc,

oracle.retail.stores.commerceservices.returns.kpi.impl.SpecificItemCalculator,
oracle.retail.stores.webmodules.returns.ui.ReturnsConstantIfc,
oracle.retail.stores.webmodules.returns.ui.kpi.EditKpiForm"

EditKpiForm form = (EditKpiForm)
request.getSession() .getAttribute (ReturnsConstantIfc.EDIT_KPI_TAG_FORM) ;
boolean disabledIfNoPrivilege =
! (request.isUserInRole (ReturnsConstantIfc.EDIT_KPI_CUSTOMER_PRIVILEGE)) ;
if (form.getCategory() == KPIIfc.CATEGORY_CASHIER)

14-16 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Adding a New KPI Calculator

{
disabledIfNoPrivilege = ! (request.isUserInRole(ReturnsConstantIfc.EDIT
KPI_CASHIER_PRIVILEGE)) ;
}

// please be careful with the quotation...

// This is a funky work around the problem of JspC not translating the
parameter inside of

// a substitution.

// It is a one pass, and we really need it to be a two pass like compiler.

// Because the kpi.jsp page itself could contain more than one kpi with
merchandise hierarchy, and the user

// could edit any one of those, we need a way to distinguish which kpi
parameter is being edited.

String endString = new String("');

String comma = new String("', '");

String callingAddCloneFunction = new String("selAddSubmit('");

String callingDeleteCloneFunction = new String("selDelSubmit('");

")

oe
\

<td width="83%" height="20" class="normal">
<nested:define id="templateKpiId" property="templateId"/>
<nested:define id="instanceKpiId" property="instanceId"/>

<nested:iterate property="allParams"
id="viewKpiParam"

type="oracle.retail.stores.webmodules.returns.app.kpi.ViewKpiParameterBean">
<nested:nest property="kpiParam">
<nested:equal property="name"
value="<%= SpecificItemCalculator.PARAM_ITEM ID %>">
<!-- include I18N message -->
Enter the item ID here:
<nested:text
disabled="<%=disabledIfNoPrivilege%>"
property="value"
value="<%=viewKpiParam.getValue()%>"/>
</nested:equal>
</nested:nest>
</nested:iterate>

</td>

<td width="5%" height="20" class="normal">
<nested:submit disabled="<%$=disabledIfNoPrivilege%>"
onclick="<%=callingAddCloneFunction + templateKpiId +
endString%>">
<nested:message key="button.add"/>
</nested:submit>
</td>

<!-- allow removal of clone if we have more than one of the same template type -->
<nested:equal property="allowedRemovalClone" value="true">
<td width="5%" height="20" class="normal">
<nested:submit disabled="<%=disabledIfNoPrivilege%>"
onclick="<%=callingDeleteCloneFunction + templateKpiId +
comma + instanceKpiId + endString%>">
<nested:message key="button.remove"/>

Oracle Retail Returns Management Extensibility Framework 14-17

Adding a New KPI Calculator

</nested:submit>
</td>
</nested:equal>
<nested:equal property="allowedRemovalClone" value="false">
<td width="5%" class="normal"> </td>
</nested:equal>

And, finally, see the Add and Remove buttons:

Figure 14-5 Example Customer KPI Screen, continued

O] Enter the itern ID here: (1234
(] Enter the itern ID here: 5001
0 Enter the item ID here: |1600

14-18 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

15

Retail Domain

This chapter contains an overview of the Oracle Retail business objects, including
steps to create, extend, and use them. The Retail Domain is the set of classes that
represent the business objects used by Point-of-Service. Typical domain classes are
Customer, Transaction, and Tender.

The Retail Domain is a set of business logic components that implement retail-oriented
business functionality in Point-of-Service. The Retail Domain provides a common
vocabulary that enables the expression of retail functionality as processes that can be
executed by the Oracle Retail Platform engine.

The Retail Domain is a set of retail-oriented objects that have a set of attributes. They
do not implement work flow or a user interface. The Tour scripts executed by Oracle
Retail Platform provide the work flow, and the UI subsystem provides the user
interface. The Retail Domain objects simply define the attributes and logic for
application data.

A significant advantage of Retail Domain objects is that they can be easily used as-is or
can be extended to include attributes and logic that are specific to a retailer’s business
requirements. The Domain objects could be used as a basis for many different types of
retail applications. The objects serve as containers for the transient data used by the
applications. Domain objects do not persist themselves, but they are persisted via the
Oracle Retail Store Data Manager interface.

Retail Domain is packaged as domain360.jar and domainconfig.jar, which are installed
with the Point-of-Service application. The Data Transactions and Data Operations are
also packaged within the Retail Domain jars.

All Retail Domain classes extend EYSDomainlfc. This interface ensures the following
interfaces are implemented:

Serializable
This communicates Java's ability to flatten an object to a data stream and, conversely,
reconstruct the object from a data stream, when using RMI.

Cloneable
This communicates that it is legal to make a field-for-field copy of instances of this
class.

The EYSDomainlfc interface also requires that the following methods be implemented:

equals()
This method accepts an object as a parameter. If the object passed has data attributes
equal to this object, the method returns true, otherwise it returns false.

Retail Domain 15-1

New Domain Object

clone()
This method creates a new instance of the class of this object and initializes all its fields
with exactly the contents of the corresponding fields of this object.

toString()
This method returns a String version of the object contents for debugging and logging
purposes.

New Domain Object

When an existing Retail Domain object contains attributes and methods that are a
subset of those required, a new Retail Domain object can extend the existing object. For
example, if a new Domain object is necessary for the Tender service, the
AbstractTenderLineltem class can be extended. This class implements
TenderLineltemlfc, which extends the generic EYSDomainlfc interface. If no similar
Domain object exists in the application, create a new Domain object. The usual coding
standards apply; reference the Development Standards document.

1. Create a new interface extending EYSDomainlfc. All Retail Domain objects extend
EYSDomainlfc, but existing Services have an interface available for Domain
objects related to that Service. For example, TenderLineltemlIfc, which extends
EYSDomainlfc, is the interface implemented by each Retail Domain object
interface in the Tender service. The following code sample shows the header of
TenderPurchaseOrderlfc, found in <source_
directory>\modules\domain\src\oracle\retail\stores\domain\ten
der\TenderPurchaseOrderIfc.java.

Example 15-1 TenderPurchaseOrderlfc.java: Class Header

public interface TenderPurchaseOrderIfc extends
TenderLineItemIfc, ReversibleTenderIfc

{

}

2. Create a new Java class that implements the interface created in the previous step.
The class of a brand new object that does not fit an existing pattern should extend
AbstractRoutable, which defines a luggage tag for EYS domain classes; otherwise,
the class should extend the existing class that represents a similar type of object.

The following code sample shows the header for the TenderPurchaseOrder
Domain object from <source_
directory>\modules\domain\src\oracle\retail\stores\domain\ten
der\TenderPurchaseOrder. java.

Example 15-2 TenderPurchaseOrder.java: Class Header

public class TenderPurchaseOrder extends AbstractTenderLineltem implements
TenderPurchaseOrderIfc

{

}

In the implementation of the class, make sure to do the following;:
= Define attributes for the class.

Check the superclass to see if an attribute has already been defined. For
example, the AbstractTenderLineltem class defines the amountTender
attribute, so amountTender should not be redefined in a new Tender Domain
object.

15-2 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Domain Object in Tour Code

If the new domain object has numerous constants, you might consider
defining ObjectNameConstantslfc.java

= Define get and set methods for the attributes as necessary.

= Implement methods required by EYSDomainlfc: equals(), clone(), toString().
Reference the superclass as appropriate. toString() should indicate the class
name and revision number.

3. To return a new instance of the Domain object, add a method to <source_
directory>\modules\domain\src\oracle\retail\stores\domain\fac
tory\DomainObjectFactoryIfc.java called getObjectNamelnstance().

Domain objects should always be instantiated by the factory. The following code
sample shows the method interface to return an instance of the
TenderPurchaseOrder object.

Example 15-3 DomainObjectFactoryifc.java: Method For Instantiating
TenderPurchaseOrder

public TenderPurchaseOrderIfc getTenderPurchaseOrderInstance();

4. To return a new instance of the Domain object, implement the method <source_
directory>\modules\domain\src\oracle\retail\stores\domain\fac
tory\DomainObjectFactory.java called getObjectNamelnstance().

The following code sample shows the method definition to return an instance of
the TenderPurchaseOrder object.

Example 15-4 DomainObjectFactory.java: Method For Instantiating
TenderPurchaseOrder

public TenderPurchaseOrderIfc getTenderPurchaseOrderInstance ()

{

return (new TenderPurchaseOrder());

}

Domain Object in Tour Code

Once a Retail Domain class is identified for use, the Java code needs to be written to
instantiate the object and call the object’s methods. This code is typically located in
site, road and aisle classes of application tours. There are two very important things to
keep in mind when using Domain objects in Tour code:

= Retail Domain objects cannot be instantiated directly. They must be generated by
the factory.

= Allinteraction with Domain objects take place through the object’s interface, even
interaction between objects.

Do the following to use the object:

1. Get an instance of the DomainObjectFactory and request the instance of the object
from the factory.

The factory class is instantiated once for the application and returns instances of
Retail Domain objects. Since different implementations use different classes to
implement the objects, the factory keeps track of which class implements the
requested object.

Retail Domain 15-3

Domain Object Reference

The following line of code from <source_
directory>\applications\pos\src\oracle\retail\stores\pos\ado\
tender\TenderCheckADO. java gets an instance of a Check object.

Example 15-5 GetCheckinfoSite.java: Instantiating Check from DomainObjectFactory
tenderRDO = DomainGateway.getFactory () .getTenderCheckInstance();

2. Call methods on the object.

Now that an instance of the object exists, methods of the class can be called. The
following lines of code from TenderCheckADO java sets attributes on the Check
object.

Example 15-6 TenderCheckADO.java: Setting Attributes of Check

if (eCheckAuthRequired())
{
((TenderCheckIfc)
tenderRDO) . setTypeCode (TenderLineIltemConstantsIfc.TENDER_TYPE_E_CHECK) ;
}

Domain Object Reference

CodeListMap

The Domain Objects discussed below include a description of the purpose of the
object, classes and interfaces involved in its construction, a class diagram, and
examples in Tour code.

To implement Point-of-Service metadata such as reasons for return, shipping methods,
and departments, the CodeList objects are used. This data is referred to as reason
codes from the Ul Codes are read in from the database.

The reason codes are managed in multiple languages/locales simultaneously by
loading the ReasonCodes (CodeList) or ReasonCode(CodeEntry) on demand. The
reason codes are externalized in the database: table ID_LU_CD _I8. The
CodeListManager is used as the single point of access to retrieve the code lists from
the database. For performance reasons, code list manager retrieves code lists from local
derby database.

The sites and aisles call the following function to retrieve a code list. The code list
contains localized text of all supported locales. The function in turn calls getCodeList
API in CodeListManagerIfc:

CodeListIfc UtilityManager.getReasonCodes (String storeld, String codeListType);

Table 15-1 lists files are involved in the formation of CodeLists.

15-4 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Domain Object Reference

Table 15-1 CodeListMap Object Classes and Interfaces

Class or Interface Description Important Methods
CodeEntry This class handles the functions void setText (String)
associated with an entry in a list of codes. void setCode (int)
void setEnabled(boolean)
LocalizedTextIfc getLocalizedText () ;
String getText (Locale 1lcl);
void setLocalizedText (LocalizedTextIfc
localizedText) ;
void setText (Locale 1lcl, String value);
CodelList This class is used for handling lists of Vector<String> getTextEntries(Locale lcl)
codes which map to strings, such as String[] getTextStrings(Locale lcl);
reason codes. CodeEntryIfc[] getEntries();
CodeEntryIfc findListEntry(String str,
boolean useDefault,Locale 1lcl);
addEntry (CodeEntryIfc value);
addEntry (LocalizedTextIfc text,
String code,
int index,
boolean enable,
String ref);
CodeConstantslfc This class defines constants used for the This class does not contain methods.
implementation of CodeList and
CodeEntry. It includes the constants for
the lists currently defined, such as
TimekeepingManagerEditReasonCodes
and TillPayOutReasonCodes.
LocalizedCode This class contains the localized void setCode (String code);

code/text. All the Domain Objects, which
contain a reason code, will use this class.

String getCode ();
void putText (Locale 1cl,
String text);
String getText (Locale 1lcl);
LocalizedTextIfc getText ();
setText (LocalizedTextIfc text);

Figure 15-1 illustrates loading CodeList / CodeText on Demand.

Retail Domain 15-5

Domain Object Reference

Figure 15-1 Loading CodeList/ CodeText on Demand

TF;::::}:;“ CodeListManager | | CodeListTransaction || DataManager DataTechnician JDBC Class

o
SearchCodallstCriterlalic
Maps the ListlD with OperationMame
getCodelist (SearchCodelistCriterialfc)
axecyute (Data Transaction)
Codalistifc IMJWM
Codalistifc
Codelistifc
CadeListife = — ——] |
— —

getCodeText (SearchCadeCriteriathc)
——

getCodeText (SrarchCodeCriteriatic)

b Maps LIsti0iOparationhame

gelCodaTaxt (SaarchCodaCriterialte)

expcite]
exedibe (Data Transaclion)

LocalizedTextifc

P— LocalizedTaxtic

LealizedTextife

LocalizedTextlfc
|

To get the CodeListlfc, the Utility Manager provides two methods:
» CodeListlfc getReasonCodes(String storeld, String codeListType)
= String getReasonCodeText(CodeListlfc list, int reasonCode)

Tour code that requires a code entry would retrieve it as in the following code from
<source_
directory>\applications\pos\src\oracle\retail\stores\pos\service
s\returns\returnitem\ItemInfoEnteredAisle.java.

Example 15-7 IteminfoEnteredAisle.java: CodeListlfc in Tour Code

UtilityManagerIfc utility =
(UtilityManagerIfc) bus.getManager (UtilityManagerIfc.TYPE);
Locale locale = LocaleMap.getLocale(LocaleConstantsIfc.USER_INTERFACE) ;
if (model.getDepartmentName () !=null)
{

item.setDepartmentID

(((utility.getReasonCodes (cargo.getStoreID(), CodeConstantsIfc.CODE_
LIST DEPARTMENT)) .

findListEntry (model.getDepartmentName (), false, locale)).getCode());

15-6 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Domain Object Reference

Currency
All currency representation and behavior is abstracted, so any currency can be
implemented. Currency is a Domain Object that handles the behaviors and attributes
of money used as a medium of exchange. It is important to use Currency objects and
methods to compare and manipulate numbers instead of primitive types.
Table 15-2 lists Currency Object Classes and Interfaces.
Table 15-2 Currency Object Classes and Interfaces
Class or Interface Description Important Methods
Currencylfc This interface defines a common CurrencyIfc add(CurrencyIfc)
interface for currency objects. CurrencyIfc negate()
String getCountryCode ()
AbstractCurrency This abstract class contains the BigDecimal getBaseConversionRate ()
behaviors and attributes common to void setNationality(String)
all currency. String getNationality()
CurrencyDecimal This class contains the behaviors CurrencyIfc add(CurrencylIfc)
and attributes common to all CurrencyIfc negate()
decimal-based currency. String getCountryCode ()

Figure 15-2 Currency Class Diagram

<interface> 1_.. <interface> . <interface>
Currencylfc CurrencyTypelfc CurrencyTypeListlfc
3 3 '
AbstractCurrency H 1 CurrencyType 1— CurrencyTypeList
T 1

<interface>

CurrencyDecimal Denominationifc

&

Denomination

Example 15-8 is an example of the Currency object used in <source_
directory>\applications\pos\src\oracle\retail\stores\pos\service
s\modifytransaction\discount\AmountEnteredAisle.java.

Retail Domain 15-7

Domain Object Reference

Example 15-8 AmountEnteredAisle.java: Currencylfc in Tour Code

POSUIManagerIfc uiManager = (POSUIManagerIfc)bus.getManager (UIManagerIfc.TYPE);
DecimalWithReasonBeanModel beanModel =
(DecimalWithReasonBeanModel) uiManager
.getModel (POSUIManagerIfc.TRANS_DISC_AMT) ;
BigDecimal discountAmount = beanModel.getValue();
CurrencyIfc amount =
DomainGateway.getBaseCurrencyInstance (String.valueOf (discountAmount)) ;

Transaction

A Transaction is a record of business activity that involves a financial and/or
merchandise unit exchange or the granting of access to conduct business with an
external device. There are various types of Transactions found in <source_
directory>\modules\domain\src\oracle\retail\stores\domain\transa
ction such as LayawayTransaction, StoreOpenCloseTransaction, and
BankDepositTransaction. SaleReturnTransaction is a commonly used Domain Object
that extends AbstractTenderableTransaction. The classes involved in the
implementation of a SaleReturnTransaction and its behaviors are described in the
following table.

Table 15-3 lists classes involved in the implementation of a SaleReturnTransaction and
its behaviors.

Table 15-3 Transaction Object Classes

Class or Interface Description Important Methods
SaleReturnTransaction This class is a sale or return void SaleReturnLineItemIfc
transaction. addPLUItem (PLUItemIfc pItem,
BigDecimal qgty);
void

addLineItem(AbstractTransactionLinelt
emIfc linelItem)

void linkCustomer (CustomerIfc value)
TransactionTotalsIfc
getTenderTransactionTotals ()

void
addLineItem(SaleReturnLinelItemIfc);
addLineItem(AbstractTransactionLineIt
emIfc)

AbstractTenderableTransaction This class contains the behavior

associated with a transaction that void

involves the tendering of money. addTenderLineItem(TenderLineItemIfc
item) ;
CustomerIfc getCustomer();
CustomerIfc getCustomer ()
void
addTender (TenderLineItemIfc item);

Transaction This class represents a record of CustomerInfoIfc getCustomerInfo()
business activity that involves a String getTillID()
financial and/or merchandise unit yoid setCashier (EmployeeIfc)
exchange or the granting of access
to conduct business at a specific
device, at a specific point in time for
a specific employee.

Example 15-9 is a code sample from <source_
directory>\modules\domain\src\oracle\retail\stores\domain\arts\J

15-8 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Domain Object Reference

dbcSaveTenderLineItems.java that shows how SaleReturnTransaction is used in
Tour code.

Example 15-9 JdbcSaveTenderLineltems.java: SaleReturnTransactionlfc in Tour Code

public void saveTenderLineItems (JdbcDataConnection dataConnection,
TenderableTransactionIfc transaction) throws
DataException

{

if (transaction instanceof SaleReturnTransactionIfc)

{

SaleReturnTransactionIfc srt = (SaleReturnTransactionIfc)
transaction;

int numDiscounts = 0;

if (srt.getTransactionDiscounts() != null)

{

numDiscounts = srt.getTransactionDiscounts().length;

}

lineItemSequenceNumber = srt.getLineltems().length + 1 +
numDiscounts;

}
...code to handle different transaction types...

}

Retail Domain 15-9

Domain Object Reference

15-10 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

16

Extending Intra Store Data Distribution

This chapter describes how to extend the Intra Store Data Distribution.

Intra Store Data Distribution Extensibility

Extensibility is supported through the interface-based design and the use of the Spring
Framework. From an extensibility stand point, an alternate implementation of any of
the exposed interfaces could inherit from one of the out-of-the-box implementation
classes and be injected into the system through Spring.

Additionally, the schema has been designed to enable the addition of datasets and
dataset tables.

Adding New Table To Existing DataSet

Adding a new dataset table to the data model is as simple as adding a new row to the
table CO_DT_ST_TB_IDDI and creating table script in CreateSchema.sql.

Adding More Tables To Existing DataSet Types

The following example walks through the process of adding more tables to the existing
DataSet in IDDL

1. Insert the tables to be associated with the existing DataSet by adding records to
CO_DT_ST_TB_IDDI using SQL.

Run the following queries to insert the table association to DataSet.

Example 16-1 Adding Table Association To Employee DataSet

insert into CO_DT_ST_TB_IDDI

(ID_DT_ST, ID_STR_RT, NM_TB, NM_FL,AI_LD_SEQ)

values

(<<Employee DataSet ID>>, <<’Store ID’>>,<<’'Tablel’>>,<<’'Tablel.txt’>>,1);

TableName: CO_DT_ST_TB_IDDI

Column Description

ID DT ST : DataSet ID

ID_STR_RT: Store ID

NM_TB : Table Name

NM_FL : File Name of the Flat file to be generated

AI_LD_SEQ: Table Order in which the data to be exported and imported

eg: Get the Employee DataSet ID from CO_DT_ST_IDDI table

Extending Intra Store Data Distribution 16-1

Intra Store Data Distribution Extensibility

insert into CO_DT_ST_TB_IDDI

(ID_DT_ST, ID_STR_RT, NM_TB, NM_FL,AI_LD_SEQ)
values

(1,704241", "TABLE1l’, 'TABLEL.TXT',1);

insert into CO_DT_ST_TB_IDDI

(ID_DT_ST, ID_STR_RT, NM_TB, NM_FL,AI_LD_SEQ)

values

(1,'04241", "TABLE2', 'TABLE2.TXT',2);

2. Add CREATE TABLE scripts in CreateSchema.sql.

CREATE TABLE "offlinedb"."TABLEL"
("COLUMNL1” <<TYPE>> <<Constraint>>,
"COLUMN2, <<TYPE>> <<Constraint>>)

CREATE TABLE "offlinedb"."TABLE2"
("COLUMN1” <<TYPE>> <<Constraint>>,
"COLUMN2, <<TYPE>> <<Constraint>>)

Adding a Table to an Existing Data Set Using the Stores Build Scripts
Do the following to add a table using the build script:

1. Open <source_directory>\modules\utility\build.xml.
2. Find the target dataset's offline table list:

ordered.<data set name>.tables

3. Add the name of the SQL file that contains the create script.

The create scripts are located at <source_
directory>\modules\common\deploy\server\common\db\sgl\Create.

Adding a New DataSet
Do the following to add new DataSet:
1. Add DataSet information in CO_DT_ST IDDI.
2. Add DataSet tables to CO_DT_ST _TB_IDDI.

3. Create <DataSetKey>Producer and <DataSetKey>Consumer classes
extending from AbstractDataSetProducer and AbstractDataSetConsumer
respectively.

4. Define service_config_<<DataSetKey>> in ServiceContext.xml

5. Define service_<<DataSetKey>>Producer with
class=<DataSetKey>Producer and service_<<DataSetKey>>Consumer
wit h class=<DataSetKey>Consumer in ServiceContext.xml

6. Addto service_<<DataSetKey>>Producer and service_
<<DataSetKey>>Consumer to service_DataSetService and service_
ClientDataSetService respectively in ServiceContext.xml

7. Add DataSet key to service_FrequentProducerJob/service_
InfrequentProducerJob and service_FrequentConsumerJob/service_
InfrequentConsumerJob in ServiceContext.xml

8. Add create table scripts and insert script for newly added DataSet in
CreateSchema.sql.

16-2 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Intra Store Data Distribution Extensibility

Adding a New DataSet Using the Stores Build Scripts
Do the following to add a new dataset using the build script:

1. Open <source_directory>\modules\utility\build.xml.
2. Find the section that defines the offline table lists (target assemble.iddi).

3. Create the ordered list of tables, following the pattern established in the file. All
create scripts are located at <source_
directory>\modules\common\deploy\server\common\db\sgl\Create.

4. Add a call to concat.file for the new data set schema, following the other calls in

the file:
<antcall target="concat.file">
<param name="target.file" value="S${raw.sql.file}"/> =-- The path
and name of the file being generated
<param name="file.comment" value="-- Employee DataSet Tables"/> --
Comment added to the file ahead of the create SQL
<param name="src.dir" value="${sqgl.src.dir}"/> -- Path to the

create scripts listed in the "ordered.<data set name>.tables" list
<param name="file.list" value="S${ordered.employee.tables}"/> --
Variable holding the ordered list of create scripts
<reference refid="comment.filter" torefid="filter"/>
</antcall>

Configuring Schedule for DataSet Producer and Consumer

Any existing DataSet Producer and Consumer can be individually configured to run
on scheduled basis.

Configure DataSet Producer
Do the following to configure DataSet Producer:

1. Add JobDetailBean bean configuration service_<<DataSet>>ProducerJob.

<bean id="service_<<DataSet>>ProducerJob"
class="org.springframework.scheduling.quartz.JobDetailBean">
<property name="jobClass">

<value>oracle.retail.stores.foundation.iddi.DataSetProducerdob</value>
</property>
<property name="jobDataAsMap">
<map>
<entry key="producer" value-ref="service_DataSetService"/>
<entry key="dataSets">
<list>
<ref local="service_config_<<DataSetKey>>"/>
</list>
</entry>
</map>
</property>
</bean>

Note: service_config_<<DataSetKey>> should have been configured
with the DataSetKey

2. Add CronTriggerBean bean configuration service_Trigger<<DataSet>>Producer

<bean id="service_Trigger<<DataSet>>Producer" class =

Extending Intra Store Data Distribution 16-3

Intra Store Data Distribution Extensibility

16-4

"org.springframework.scheduling.quartz.CronTriggerBean">
<property name = "jobDetail">
<ref local="service_<<DataSet>>ProducerJob"/>
</property>
<property name="cronExpression" value="0 0,15,30,45 0 * * ?"/>
</bean>

The above DataSet is configured to run once every 15 minutes.

Note: For more information about configuring using Quartz, go to
http://www.opensymphony.com/quartz/wikidocs/CronTrig
gers%20Tutorial .html.

3. Add service_Trigger<<DataSet>>Producer to the SchedulerFactoryBean
bean configuration:

<bean id="service_ProducerSchedulerFactory"
class="org.springframework.scheduling.quartz.SchedulerFactoryBean">
<property name="triggers">
<list>
<ref local="service_TriggerFrequentProducer" />
<ref local="service_TriggerInfrequentProducer"/>
<ref local="service_ Trigger<<DataSet>>Producer"/>
</list>
</property>
</bean>

Configure DataSet Consumer
Do the following to configure DataSet Consumer:

1. Add JobDetailBean bean configuration service_<<DataSet>>ConsumerJob:

<bean id="service_<<DataSet>>ConsumerJob"
class="org.springframework.scheduling.quartz.JobDetailBean">
<property name="jobClass">

<value>oracle.retail.stores.foundation.iddi.ClientDataSetController</value>
</property>
<property name="jobDataAsMap">

<map>
<entry key="dataSets">
<list>
<ref local="service_config_<< DataSetKey>>"/>
</list>
</entry>
</map>
</property>

</bean>

Note: service_config_<<DataSetKey>> should have been
configured with the DataSetKey.

2. Add CronTriggerBean bean configuration service_
Trigger<<DataSet>>Consumer:

<bean id="service_Trigger<<DataSet>>Consumer" class =
"org.springframework.scheduling.quartz.CronTriggerBean">

Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Intra Store Data Distribution Extensibility

<property name = "jobDetail">
<ref local="service_ <<DataSet>>ConsumerJob"/>
</property>
<property name="cronExpression" value="0 0,15,30,45 0 * * ?"/>
</bean>

The DataSet is configured to run once every 15 minutes.

Add service_Trigger<<DataSet>>Consumer to the SchedulerFactoryBean
bean configuration:

<bean id=" service_clientSchedulerFactory"
class="org.springframework.scheduling.quartz.SchedulerFactoryBean">
<property name="triggers">
<list>
<ref local="service_TriggerFrequentConsumer"></ref>
<ref local="service_TriggerInfrequentConsumer"></ref>
<ref local="service_Trigger<<DataSet>>Consumer"/>
</list>
</property>
</bean>

Adding New DataSet Type

The following example walks through the process of adding a new DataSet to the
existing IDDIL.

Insert the new DataSet information in into the databaset table CO_DT_ST_IDDI
using SQL:

Insert the tables associated with the DataSet added to CO_DT_ST_TB_IDDI using
SQL.

Run the following queries to insert new DataSet information and table association
to DataSet.

Example 16-2 Adding New DataSet

insert into CO_DT ST IDDI

(ID_DT_ST, ID_STR_RT, NM_DT_ST)

values

(maxid+1,<<’StoreID’>> ,<<’DataSetName’>>);

TableName: CO_DT_ST IDDI

Column Description
ID_DT_ST : DataSet ID
ID_STR_RT: Store ID
NM_DT ST : DataSet Name

eg:

insert into CO_DT_ST_IDDI
(ID_DT_ST, ID_STR_RT, NM_DT_ST)
values

(6,'04241", 'NEW') ;

Example 16-3 Adding Table association to New DataSet

insert into CO_DT ST TB_IDDI

(ID_DT_ST, ID_STR_RT, NM_TB, NM_FL,AI LD _SEQ)

values

(<<New DataSet ID>>, <<’'Store ID’>>,<<'Tablel’>>,<<’'Tablel.txt’>>,1);

Extending Intra Store Data Distribution 16-5

Intra Store Data Distribution Extensibility

eg:
insert into CO_DT ST TB_IDDI

(ID_DT_ST, ID_STR_RT, NM_TB, NM_FL,AI_LD_SEQ)
values

(6,'04241'", "TABLE1l’, 'TABLE1.TXT',1);

insert into CO_DT_ST TB_IDDI

(ID_DT_ST, ID_STR_RT, NM_TB, NM_FL,AI_LD_SEQ)
values

(6,'04241", "TABLE2’, 'TABLE2.TXT',2);

2. Create <DataSetKey>Producer and <DataSetKey>Consumer classes
extending from AbstractDataSetProducer and AbstractDataSetConsumer
respectively.

Example 16-4 DataSetProducer Code

package oracle.retail.stores.domain.iddi;

import oracle.retail.stores.foundation.iddi.AbstractDataSetProducer;
import oracle.retail.stores.foundation.iddi.DataSetMetaData;
import oracle.retail.stores.foundation.iddi.TableQueryInfo;
import oracle.retail.stores.foundation.iddi.ifc.DataSetMetaDatalIfc;

public class NewDataSetProducer extends AbstractDataSetProducer

{

private final String[] TABLE_FIELDS={"*"};

/**

* NewDataSetProducer constructor
*/

public NewDataSetProducer ()
{

}

/**

* Get DataSetMetatIfc reference

*

*/

public DataSetMetaDatalfc getDataSetMetaData ()

{

// Get the table names for the Key

return dataSetMetaData;

}

/**

* Initialize the MetaData for the DataSetProducer
*/

public void initializeDataSet ()

{

dataSetMetaData = new DataSetMetaData (dataSetKey) ;
}

/**

* Create TableQueryInfo object with the column names to fetch
* @param TableName

* @return TableQueryInfo Object

*/

16-6 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Intra Store Data Distribution Extensibility

public TableQueryInfo getTableQueryInfo(String tableName)
{
TableQueryInfo tableQueryInfo = new TableQueryInfo (tableName) ;
tableQueryInfo.setTableFields (TABLE_FIELDS) ;
return tableQueryInfo;
}
/**
* Finalize DataSet Method
*
*/
public void finalizeDataSet ()

{

Example 16-5 DataSetConsumer Code

package oracle.retail.stores.domain.iddi;

import oracle.retail.stores.foundation.iddi.AbstractDataSetConsumer;

/== e
/*'k

The NewDataSetConsumer defines methods that the

application calls to import Employee dataset files into

offline database.

@version $Revision: §

**/
[=

public class NewDataSetConsumer extends AbstractDataSetConsumer
{ /** DataSet key name for currency dataset.

*/ private String dataSetKey = null;

public String getDataSetKey ()
{

return dataSetKey;
}

e arnn TR R
/**

@param dataSetKey The DataSetKey to set

**/

public void setDataSetKey(String dataSetKey)
{

this.dataSetKey = dataSetKey;

Extending Intra Store Data Distribution 16-7

Intra Store Data Distribution Extensibility

16-8

Define service_config <<DataSetKey>> in ServiceContext.xml:

<bean id="service_config_<<datasetKey>> " class="java.lang.String">
<constructor-arg type="java.lang.String" value="<<DataSetKey>>"/>

</bean>eg: <bean id="service_config NEW_KEY" class="java.lang.String">
<constructor-arg type="java.lang.String" value="NEW"/>
</bean>

Define service_<<DataSetKey>>Producer with
class=<DataSetKey>Producer and service_<<DataSetKey>>Consumer
with class=<DataSetKey>Consumer in ServiceContext.xml:

<bean id="service_NewProducer"
class="oracle.retail.stores.domain.iddi.NewDataSetProducer" lazy-init="true"
singleton="true”>
<property name="dataSetKey" ref="service_config NEW_KEY"/>
<property name="dataExportFilePath" ref="service_config_
DataExportFilePath"/>
<property name="dataExportZipFilePath" ref="service_config_
DataExportZipFilePath"/>
</bean>
<bean id="service_NewConsumer"
class="oracle.retail.stores.domain.iddi.NewDataSetConsumer"
lazy-init="true"
singleton="true">
<property name="dataSetKey" ref="service_config_ NEW_KEY"/>
<property name="dataImportFilePath" ref="service_config_
DataImportFilePath"/>
</bean>

Add to service_<<DataSetKey>>Producer and service_
<<DataSetKey>>Consumer to service_DataSetService and service_
ClientDataSetService respectively in ServiceContext.xml

<bean id="service_DataSetService"
class="oracle.retail.stores.foundation.iddi.DataSetService" singleton="true">
<property name="producers">
<map>
<entry key-ref="service_config_EMP_KEY" value-ref="service_
EmployeeProducer" />
<entry key-ref="service_config_ ITM KEY" value-ref="service_
ItemProducer"/>
<entry key-ref="service_config_ PRC_KEY" value-ref="service_
AdvancedPricingProducer" />
<entry key-ref="service_config_TAX_KEY" value-ref="service_
TaxProducer"/>
<entry key-ref="service_config_CUR_KEY" value-ref="service_
CurrencyProducer" />
<entry key-ref="service_config NEW_KEY" value-ref="service_
NewProducer" />
</map>
</property>
</bean>
<bean id="service_ClientDataSetService"
class="oracle.retail.stores.foundation.iddi.ClientDataSetService"
singleton="true">
<property name="consumers">
<map>
<entry key-ref="service_config_EMP_KEY" value-ref="service_

Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

Intra Store Data Distribution Extensibility

EmployeeConsumer" />
<entry key-ref="service_config_CUR_KEY" value-ref="service_
CurrencyConsumer" />
<entry key-ref="service_config TAX_KEY" value-ref="service_
TaxConsumer" />
<entry key-ref="service_config_ ITM_KEY" value-ref="service_
ItemConsumer" />
<entry key-ref="service_config_PRC_KEY" value-ref="service_
AdvancedPricingConsumer" />
<entry key-ref="service_config NEW_KEY" value-ref="service_
NewConsumer" />
</map>
</property>
<property name="dataImportFilePath" ref="service_config_
DataImportFilePath"/>
</bean>

Add DataSet key to service_FrequentProducerJob/service_
InfrequentProducerJob and service_FrequentConsumerJob/service_
InfrequentConsumerJob in ServiceContext.xml

<bean id="service_FrequentProducerJob"
class="org.springframework.scheduling.quartz.JobDetailBean">
<property name="jobClass">

<value>oracle.retail.stores.foundation.iddi.DataSetProducerdob</value>
</property>
<property name="jobDataAsMap">
<map>
<entry key="producer" value-ref="service_DataSetService"/>
<entry key="dataSets">
<list>
<ref local="service_config EMP_KEY"/>
<ref local="service_config PRC_KEY"/>
<ref local="service_config TAX_KEY"/>
<ref local="service_config NEW_KEY"/>
</list>
</entry>
</map>
</property>
</bean>

<bean id="service_FrequentConsumerJob"
class="org.springframework.scheduling.quartz.JobDetailBean">

<property name="jobClass">

<value>oracle.retail.stores.foundation.iddi.ClientDataSetController</value>

</property>
<property name="jobDataAsMap">
<map>
<entry key="dataSets">
<list>
<ref local="service_config_ EMP_KEY"/>
<ref local="service_config_ PRC_KEY"/>
<ref local="service_config_ TAX_KEY"/>
<ref local="service_config NEW_KEY"/>
</list>
</entry>
</map>
</property>

Extending Intra Store Data Distribution 16-9

Intra Store Data Distribution Extensibility

</bean>

Add CREATE TABLE scripts and insert scripts to newly added DataSet in
CreateSchema.sql.

CREATE TABLE "offlinedb"."TABLEL"
("COLUMNL1” <<TYPE>> <<Constraint>>,
"COLUMN2, <<TYPE>> <<Constraint>>)
CREATE TABLE "offlinedb"."TABLE2"
("COLUMNL1” <<TYPE>> <<Constraint>>,
"COLUMN2, <<TYPE>> <<Constraint>>)
insert into CO_DT_ST IDDI(ID DT ST, ID_STR RT, NM DT ST)
values (6, 04241, 'NEW’) ;

Adding a New DataSet Type Using the Stores Build Scripts
Do the following to add a new dataset type using the build script:

1.
2.
3.

Open <source_directory>\modules\utility\build.xml.
Find the section that defines the offline table lists (target assemble.iddi).

Create the ordered list of tables, following the pattern established in the file. All
create scripts are located at <source_
directory>\modules\common\deploy\server\common\db\sgl\Create.

Add a call to concat.file for the new data set schema, following the other calls in
the file:

<antcall target="concat.file">

<param name="target.file" value="${raw.sqgl.file}"/> -- The path
and name of the file being generated

<param name="file.comment" value="-- Employee DataSet Tables"/> --
Comment added to the file ahead of the create SQL

<param name="src.dir" value="${sqgl.src.dir}"/> -- Path to the

create scripts listed in the "ordered.<data set name>.tables" list
<param name="file.list" value="${ordered.employee.tables}"/> --
Variable holding the ordered list of create scripts
<reference refid="comment.filter" torefid="filter"/>
</antcall>

Changing Oracle Retail Point-of-Service Client Database Vendor

Currently the Oracle Retail Point-of-Service client uses Derby Database. However, the
modifications to the code are minimal for replacing the Oracle Retail Point-of-Service
client database from Derby to another database. Do the following to change the Oracle
Retail Point-of-Service client database:

1.

Add offline<<DBName>>Helper class which implements
offlineDBHelperIfc.

Change the installer to have new database driver jar file paths.

Update the "<POOL name="jdbcpool class="DataConnectionPool"
package="oracle.retail.stores.foundation.manager.data">"
section of PosLFFDataTechnician.xml file with the driver, databaseUrl, userid,
password.

16-10 Oracle Retail POS Suite Implementation Guide — Volume 2, Extension Solutions

A

Appendix: Third-Party Jars

According to Oracle policies, some third-party libraries and jars were removed from
the build tree. This appendix explains how to obtain the third-party libraries and jars
and then complete a build. This appendix covers the following topics:

PABP/PCI Compliance Warning

Set Up the Build Tree

Set Up the Build Environment

Set Up the Build Environment for Linux
Understanding the Environment Files
Perform the Build

Deploy in Application Server

Extend the Build with New Projects

PABP/PCI Compliance Warning

The simulated encryption key management package, bundled with Oracle Retail
applications, is not compliant with the Payment Application Best Practices (PABP) or
Payment Card Industry (PCI) standards. It is made available as a convenience for
Oracle Retail consultants, integrators, and customers. Hence, the simulated key
manager should be replaced with a compliant key manager.

The simulated key manager facility consists of simkeystore.jar and
keystoreconnector jar.

Set Up the Build Tree

To set up the build tree:

1.

Unzip the <product-version>_source.zip (located inside <product-version>_ARU.zip)
to a clean build local work area.

Unzip the EPD <product-version>.zip to a clean local work area. For the web
applications, also unzip the EAR file located in the product directory and the
product WARs located within the EAR and centralofficeDBInstall jar located in the
db folder.

For example, for Central Office, extract the files in the exact directories as shown in
the following example:

<EPD extract dir>\centraloffice\ear\centraloffice.ear
<EPD extract dir>\centraloffice\ear\co-ear

Appendix: Third-Party Jars A-1

Set Up the Build Tree

<EPD
<EPD
<EPD
<EPD
<EPD
<EPD
<EPD
<EPD

extract
extract
extract
extract
extract
extract
extract
extract

dir>\centraloffice\ear\co-ear\centraloffice.war
dir>\centraloffice\ear\co-war
dir>\centraloffice\ear\co-ear\centraloffice-help.war
dir>\centraloffice\ear\cohelp-war
dir>\centraloffice\ear\co-ear\webservices-webapp.war
dir>\centraloffice\ear\cowebservices-war
dir>\centraloffice\db\centralofficeDBInstall.jar
dir>\centraloffice\db\centralofficeDBInstall

For Returns Management, extract the following war files as well:

<EPD extract dir>\centraloffice\ear\co-ear\returns-webapp-test-client.war
<EPD extract dir>\centraloffice\ear\rm-webapp-test-client

3. For Point-of-Service, copy the following files from the EPD extract location to the

ARU extract location:

Copy from this EPD Extract Location

To this ARU Extract Location

product\server\common\db\lib\ant-contrib-1.0b3 jar

thirdparty \apache\ant\1.8.2\lib\ant-contrib-1.0b3 jar

product\shared\common\lib\ext\axiom-api-1.2.10.jar

thirdparty\apache\axis2\1.5.4\lib\axiom-api-1.2.10.jar

product\server\common\lib\ext\axiom-dom-1.2.10.ja
r

thirdparty\apache\axis2\1.5.4\lib\axiom-dom-1.2.10j
ar

product\server\common\lib\ext\axiom-impl-1.2.10.ja
r

thirdparty \apache\axis2\1.5.4\lib\axiom-impl-1.2.10j
ar

product\server\common\lib\ext\axis2-adb-1.5.4.jar

thirdparty\apache\axis2\1.5.4\lib\axis2-adb-1.5.4.jar

product\server\common\lib\ext\axis2-adb-codegen-1
.5.4jar

thirdparty\apache\axis2\1.5.4\lib\axis2-adb-codegen-
1.5.4jar

product\server\common\lib\ext\axis2-codegen-1.5.4j
ar

thirdparty \apache\axis2\1.5.4\lib\axis2-codegen-1.5.4
jar

product\server\common\lib\ext\axis2-corba-1.5.4 jar

thirdparty\apache\axis2\1.5.4\lib\axis2-corba-1.5.4.jar

product\server\common\lib\ext\axis2-fastinfoset-1.5.
4 jar

thirdparty\apache\axis2\1.5.4\lib\axis2-fastinfoset-1.5
4 jar

product\server\common\lib\ext\axis2-jaxbri-1.5.4.jar

thirdparty \apache\axis2\1.5.4\lib\axis2-jaxbri-1.5.4.jar

product\server\common\lib\ext\axis2-jaxws-1.5.4.jar

thirdparty\apache\axis2\1.5.4\lib\axis2-jaxws-1.5.4.jar

product\server\common\lib\ext\axis2-jibx-1.5.4.jar

thirdparty\apache\axis2\1.5.4\lib\axis2-jibx-1.5.4 jar

product\server\common\lib\ext\axis2-json-1.5.4.jar

thirdparty\apache\axis2\1.5.4\lib\axis2-json-1.5.4.jar

product\shared \common\lib\ext\axis2-kernel-1.5.4.ja
r

thirdparty \apache\axis2\1.5.4\lib\axis2-kernel-1.5.4.ja
r

product\server\common\lib\ext\axis2-mex-1.2 jar

thirdparty\apache\axis2\1.5.4\lib\axis2-mex-1.2 jar

product\server\common\lib\ext\axis2-transport-http-
1.5.4 jar

thirdparty\apache\axis2\1.5.4\lib\axis2-transport-htt
p-1.5.4jar

product\server\common\lib\ext\axis2-transport-local
-1.5.4.jar

thirdparty \apache\axis2\1.5.4\lib\axis2-transport-loca
1-1.5.4 jar

product\server\common\lib\ext\axis2-xmlbeans-1.5.4

Jar

thirdparty\apache\axis2\1.5.4\lib\axis2-xmlbeans-1.5.
4 jar

product\client\common\lib\ext\commons-io-1.4 jar

thirdparty \apache\axis2\1.5.4\1ib\commons-io-1.4.jar

product\server\common\lib\ext\geronimo-stax-api_
1.0_spec-1.0.1 jar

thirdparty\apache\axis2\1.5.4\1lib\ geronimo-stax-api_
1.0_spec-1.0.1 jar

product\server\common\lib\ext\httpcore-4.0.jar

thirdparty\apache\axis2\1.5.4\lib\httpcore-4.0.jar

A-2

Implementation Guide — Volume 2, Extension Solutions

Set Up the Build Tree

Copy from this EPD Extract Location

To this ARU Extract Location

product\server\common\lib\ext\jaxen-1.1.1jar

thirdparty \apache\axis2\1.5.4\lib\jaxen-1.1.1 jar

product\server\common\lib\ext\mex-1.5.4-impl.jar

thirdparty\apache\axis2\1.5.4\lib\mex-1.5.4-impl jar

product\server\common\lib\ext\neethi-2.0.4 jar

thirdparty\apache\axis2\1.5.4\lib\neethi-2.0.4 jar

product\server\common\lib\ext\regexp-1.2.jar

thirdparty\apache\axis2\1.5.4\lib\regexp-1.2 jar

product\server\common\lib\ext\woden-api-1.0M8 jar

thirdparty\apache\axis2\1.5.4\lib\woden-api-1.0M8 ja
r

product\server\common\lib\ext\woden-impl-dom-1.
OM8 jar

thirdparty\apache\axis2\1.5.4\lib\woden-impl-dom-1
.OM8 jar

product\server\common\lib\ext\wstx-asl-3.2.9 jar

thirdparty\apache\axis2\1.5.4\lib\wstx-asl-3.2.9.jar

product\shared\common\lib\ext\xalan-2.7.0.jar

thirdparty \apache\axis2\1.5.4\lib\xalan-2.7.0 jar

product\server\common\lib\ext\xml-resolver-1.2 jar

thirdparty \apache\axis2\1.5.4\lib\xml-resolver-1.2 jar

product\server\common\lib\ext\xmlbeans-2.3.0.jar

thirdparty \apache\axis2\1.5.4\1lib\xmlbeans-2.3.0 jar

product\server\common\lib\ext\XmlSchema-1.4.3 jar

thirdparty\apache\axis2\1.5.4\1ib\ XmlISchema-1.4.3.ja
r

product\client\common\lib\ext\barcode4j-fop-ext-co
mplete.jar

thirdparty \apache\barcode4j\2.1\barcode4j-fop-ext-co
mplete.jar

product\shared \common\lib\ext\commons-codec-1.3.
jar

thirdparty\apache\commons-codec\1.3\commons-cod
ec-1.3jar

product\shared \common\lib\ext\commons-collection
s.jar

thirdparty \apache\commons-collections\3.2\common
s-collections.jar

product\shared \common\lib\ext\commons-httpclient
-3.1jar

thirdparty \apache\commons-httpclient\3.1\commons
-httpclient-3.1.jar

product\client\common\lib\ext\commons-io-1.4 jar

thirdparty \apache\commons-io\1.4\commons-io-1.4.j
ar

product\shared \common\lib\ext\commons-lang-2.0.j
ar

thirdparty\apache\commons-lang\2.0\commons-lang-
2.0jar

product\shared \common\lib\ext\commons-logging-1
1.1 jar

thirdparty \apache\commons-logging\1.1.1\commons-
logging-1.1.1jar

product\client\common\lib\ext\avalon-framework-4.
2.0jar

thirdparty\apache\fop\1.0\avalon-framework-4.2.0 jar

product\client\common\lib\ext\batik-all-1.7 jar

thirdparty \apache\fop\1.0\batik-all-1.7 jar

product\client\common\lib\ext\fop.jar

thirdparty \apache\fop\1.0\fop.jar

product\shared\common\lib\ext\serializer-2.7.0.jar

thirdparty\apache\fop\1.0\serializer-2.7.0 jar

product\client\common\lib\ext\xmlgraphics-commo
ns-1.4.jar

thirdparty\apache\fop\1.0\xmlgraphics-commons-1.4.

jar

product\shared\common\lib\ext\log4j-1.2.16 jar

thirdparty \apache\log4j\1.2.16\1og4j-1.2.16 jar

product\server\common\lib\ext\opensaml-2.2.3 jar

thirdparty \apache\rampart\1.5.1\lib\opensaml-2.2.3 j
ar

product\server\common\lib\ext\rampart-core-1.5.1.ja
r

thirdparty\apache\rampart\1.5.1\lib\rampart-core-1.5
1jar

product\server\common\lib\ext\rampart-policy-1.5.1.
jar

thirdparty \apache\rampart\1.5.1\lib\rampart-policy-
1.5.1jar

product\server\common\lib\ext\rampart-trust-1.5.1
ar

thirdparty\apache\rampart\1.5.1\lib\rampart-trust-1.
5.1jar

Appendix: Third-Party Jars A-3

Set Up the Build Tree

Copy from this EPD Extract Location

To this ARU Extract Location

product\server\common\lib\ext\wss4j-1.5.10.jar

thirdparty \apache\rampart\1.5.1\lib\wss4j-1.5.10.jar

product\server\common\lib\ext\xmlsec-1.4.2 jar

thirdparty \apache\rampart\1.5.1\lib\xmlsec-1.4.2 jar

product\server\common\lib\ext\xmltooling-1.2.0.jar

thirdparty\apache\rampart\1.5.1\lib\xmltooling-1.2.0.

jar

product\client\common\lib\ext\velocity-dep-1.4.jar

thirdparty \apache\velocity\1.4\velocity-dep-1.4.jar

product\shared \common\lib\ext\xercesImpl.jar

thirdparty \apache\xerces\2.11.0\xercesImpl.jar

product\client\common\lib\ext\xml-apis-ext.jar

thirdparty \apache\xml-commons\1.4.01 \xml-apis-ext.
jar

product\shared \common\lib\ext\xml-apis.jar

thirdparty\apache\xml-commons\1.4.01\xml-apis.jar

product\client\common\lib\ext\jdom jar

thirdparty \jdom.org\jdom\1.1.1\jdom jar

product\shared\common\lib\ext\quartz.jar

thirdparty \opensymphony\quartz\1.7.3\quartz jar

product\shared\common\lib\ext\derby.jar

thirdparty\oracle\javadb\10.5.3.0\derby.jar

product\shared \common\lib\ext\derbytools.jar

thirdparty\oracle\javadb\10.5.3.0\derbytools.jar

product\server\common\db\lib\ojdbc5.jar

thirdparty\oracle\jdbc\11.2.0.1.0\ ojdbc5.jar

product\shared \common\lib\ext\oc4jclient.jar

thirdparty\oracle\oas\10.1.3\ oc4jclient.jar

product\shared\common\lib\ext\identitystore.jar

thirdparty\oracle\retail-public-security-api\1.8\lib\id
entitystore.jar

product\shared \common\lib\ext\jacc-api.jar

thirdparty\oracle\retail-public-security-api\1.8\lib\jac
c-apijar

product\shared\common\lib\ext\jacc-spi.jar

thirdparty \ oracle\retail-public-security-api\1.8\lib\jac
c-spijar

product\shared \common\lib\ext\jps-api.jar

thirdparty\oracle\retail-public-security-api\1.8\lib\jps
-apijar

product\shared\common\lib\ext\jps-common. jar

thirdparty\oracle\retail-public-security-api\1.8\1lib\jps
-common.jar

product\shared\common\lib\ext\jps-ee.jar

thirdparty\oracle\retail-public-security-api\ 1.8 \lib\jps
-ee.jar

product\shared\common\lib\ext\jps-internal jar

thirdparty\oracle\retail-public-security-api\1.8\1lib\jps
-internal.jar

product\shared\common\lib\ext\jps-manifest.jar

thirdparty\oracle\retail-public-security-api\ 1.8 \lib\jps
-manifest.jar

product\shared\common\lib\ext\jps-mbeans.jar

thirdparty \ oracle \retail-public-security-api\1.8\lib\jps
-mbeans.jar

product\shared\common\lib\ext\jps-unsupported-ap
ijar

thirdparty\oracle\retail-public-security-api\ 1.8 \lib\jps
-unsupported-api.jar

product\shared\common\lib\ext\jps-upgrade jar

thirdparty \ oracle\retail-public-security-api\1.8\lib\jps
-upgrade.jar

product\shared \common\lib\ext\jps-wls.jar

thirdparty\oracle\retail-public-security-api\1.8\lib\jps
-wls.jar

product\shared\common\lib\ext\jsr173_1.0_api.jar

thirdparty\oracle\retail-public-security-api\ 1.8 \lib\jsr
173_1.0_api.jar

product\shared\common\lib\ext\oraclepki.jar

thirdparty \oracle\retail-public-security-api\1.8\lib\or
aclepki.jar

product\shared\common\lib\ext\osdt_cert.jar

thirdparty\oracle\retail-public-security-api\1.8\lib\os
dt_certjar

A4

Implementation Guide — Volume 2, Extension Solutions

Set Up the Build Tree

Copy from this EPD Extract Location

To this ARU Extract Location

product\shared\common\lib\ext\osdt_core jar

thirdparty\ oracle\retail-public-security-api\1.8\lib\os
dt_core.jar

product\shared \common\lib\ext\retail-public-securit
y-api.jar

thirdparty\oracle\retail-public-security-api\1.8\lib\ret
ail-public-security-api.jar

product\shared\common\lib\ext\sjsxp.jar

thirdparty\oracle\retail-public-security-api\ 1.8 \lib\sjs
Xp.jar

product\server\common\lib\ext\sim-ws-secure jar

thirdparty\oracle\sim\13.2\sim-ws-secure.jar

product\server\common\lib\ext\sim-ws.jar

thirdparty\oracle\sim\13.2\sim-ws.jar

product\server\common\lib\ext\sim-ws-secure jar

thirdparty\oracle\sim\13.2.1\sim-ws-secure jar

product\server\common\lib\ext\sim-ws.jar

thirdparty \oracle\sim\13.2.1\sim-ws.jar

product\server\common\lib\ext\com.oracle.ws.oraws
dl_1.1.0.0jar

thirdparty\oracle\weblogic\10.0\modules\com.oracle.
ws.orawsdl_1.1.0.0.jar

product\shared\common\lib\ext\wlcipherjar

thirdparty\oracle\weblogic\10.0\wlserver_
10.0\server\lib\wlcipherjar

product\shared\common\lib\ext\wlthint3client.jar

thirdparty\oracle\weblogic\10.0\wlserver_
10.0\server\lib\wlthint3client.jar

product\shared\common\lib\ext\xercesImpl.jar

thirdparty \sourceforge\antinstaller\0.8.0\shell\ant\li
b\xercesImpl jar

product\shared\common\lib\ext\xml-apis.jar

thirdparty \sourceforge\antinstaller\0.8.0\shell\ant\li
b\xml-apis.jar

product\shared \common\lib\ext\com.springsource.o
rg.aopalliance-1.0.0.jar

thirdparty \springsource\springframework\3.0.5\com.
springsource.org.aopalliance-1.0.0.jar

product\shared \common\lib\ext\org.springframewor
k.aop-3.0.5.RELEASE jar

thirdparty \springsource \springframework\3.0.5\org.s
pringframework.aop-3.0.5.RELEASE jar

product\shared \common\lib\ext\org.springframewor
k.asm-3.0.5.RELEASE jar

thirdparty \springsource \springframework\3.0.5\org.s
pringframework.asm-3.0.5.RELEASE jar

product\shared \common\lib\ext\org.springframewor
k.beans-3.0.5.RELEASE jar

thirdparty \springsource \springframework\3.0.5\org.s
pringframework.beans-3.0.5.RELEASE jar

product\shared \common\lib\ext\org.springframewor
k.context-3.0.5.RELEASE jar

thirdparty \springsource\springframework\3.0.5\org.s
pringframework.context-3.0.5.RELEASE jar

product\shared \common\lib\ext\org.springframewor
k.context.support-3.0.5.RELEASE jar

thirdparty \springsource \springframework\3.0.5\org.s
pringframework.context.support-3.0.5.RELEASE jar

product\shared \common\lib\ext\org.springframewor
k.core-3.0.5.RELEASE jar

thirdparty \springsource\springframework\3.0.5\org.s
pringframework.core-3.0.5.RELEASE jar

product\shared \common\lib\ext\org.springframewor
k.expression-3.0.5.RELEASE jar

thirdparty \springsource \springframework\3.0.5\org.s
pringframework.expression-3.0.5.RELEASE jar

product\shared \common\lib\ext\org.springframewor
k.jdbc-3.0.5.RELEASE jar

thirdparty \springsource\springframework\3.0.5\org.s
pringframework.jdbc-3.0.5.RELEASE jar

product\shared \common\lib\ext\org.springframewor
k.transaction-3.0.5.RELEASE jar

thirdparty \springsource \springframework\3.0.5\org.s
pringframework.transaction-3.0.5.RELEASE jar

product\shared \common\lib\ext\org.springframewor
k.web-3.0.5.RELEASE jar

thirdparty \springsource \springframework\3.0.5\org.s
pringframework.web-3.0.5.RELEASE jar

product\shared \common\lib\ext\activation.jar

thirdparty \Sun\activation\1.1.1\activation.jar

product\client\common\lib\ext\jh jar

thirdparty \Sun\help\1.1.3\jh.jar

product\shared\common\lib\ext\jai_codec.jar

thirdparty\Sun\jai\1.1.3\jai_codec jar

product\shared\common\lib\ext\jai_core jar

thirdparty\Sun\jai\1.1.3\jai_core jar

Appendix: Third-Party Jars A-5

Set Up the Build Tree

Copy from this EPD Extract Location

To this ARU Extract Location

product\shared\common\lib\javax.ejb jar

thirdparty \Sun\jee\1.6\javax.ejb.jar

product\shared\common\lib\javax.jms.jar

thirdparty \Sun\jee\1.6\javax.jms.jar

product\shared \common\lib\javax.resource.jar

thirdparty\Sun\jee\1.6\javax.resource.jar

product\shared\common\lib\javax.servlet.jar

thirdparty \Sun\jee\1.6\javax.servlet.jar

product\shared\common\lib\javax.servlet.jsp.jar

thirdparty \Sun\jee\1.6\javax.servlet.jsp.jar

product\shared\common\lib\ext\jaxb-api.jar

thirdparty \Sun\jwsdp\2.0\jaxb\lib\jaxb-api.jar

product\server\common\lib\ext\jaxb-impl jar

thirdparty \Sun\jwsdp\2.0\jaxb\lib\jaxb-impl jar

product\server\common\lib\ext\jaxb-xjc.jar

thirdparty \Sun\jwsdp\2.0\jaxb\lib\jaxb-xjc.jar

product\server\common\lib\ext\xsdlib.jar

thirdparty \Sun\jwsdp\2.0\jwsdp-shared\lib\xsdlib ja
r

product\shared\common\lib\ext\sjsxp.jar

thirdparty \Sun\jwsdp\2.0\sjsxp \lib\sjsxp.jar

product\shared\common\lib\ext\mail jar

thirdparty \Sun\mail\1.4.3\mail jar

antinstall\lib\ant-installer.jar

thirdparty \sourceforge\antinstaller\0.8.0\shell\antinst
all\lib\ant-installer.jar

antinstall\lib\jgoodies-edited-1_2_2 jar

thirdparty \sourceforge\antinstaller\0.8.0\shell\antinst
all\lib\jgoodies-edited-1_2_2.jar

antinstall\lib\sysout.jar

thirdparty \sourceforge\antinstaller\0.8.0\shell\antinst
all\lib\sysout.jar

ant* thirdparty \sourceforge\antinstaller\0.8.0\shell\ant*

ant-ext* thirdparty \sourceforge\antinstaller\0.8.0\shell\ant-ex
t*

antinstall\lib* thirdparty \sourceforge\antinstaller\0.8.0\shell\antinst

all\lib*

installer-resources*

thirdparty \sourceforge\antinstaller\0.8.0\shell\install
er-resources*

install.cmd

thirdparty \sourceforge\antinstaller\0.8.0\shell\install.
cmd

install.sh

thirdparty \sourceforge\antinstaller\0.8.0\shell\install.
sh

prepare.xml

thirdparty \sourceforge\antinstaller\0.8.0\shell\ prepar
e.xml

4. For Central Office, copy the following files from the EPD extract location to the

ARU extract location:

Copy from this EPD Extract Location

To this ARU Extract Location

centraloffice\appservers\weblogic\ant-contrib-1.0b3 ja
r

thirdparty \apache\ant\1.8.2\lib\ant-contrib-1.0b3 jar

centraloffice\ ear\cowebservices-war \WEB-INF\lib\ax
iom-api-1.2.10 jar

thirdparty\apache\axis2\1.5.4\lib\axiom-api-1.2.10.jar

centraloffice \ear\cowebservices-war \WEB-INF\lib\ax
iom-dom-1.2.10 jar

thirdparty \apache\axis2\1.5.4\lib\axiom-dom-1.2.10,j
ar

centraloffice\ ear\cowebservices-war \WEB-INF\lib\ax
iom-impl-1.2.10.jar

thirdparty\apache\axis2\1.5.4\lib\axiom-impl-1.2.10j
ar

A-6

Implementation Guide — Volume 2, Extension Solutions

Set Up the Build Tree

Copy from this EPD Extract Location

To this ARU Extract Location

centraloffice\ear\cowebservices-war \WEB-INF\lib\ ax
is2-adb-1.5.4.jar

thirdparty\apache\axis2\1.5.4\lib\axis2-adb-1.5.4.jar

centraloffice\ ear\cowebservices-war \WEB-INF\lib\ax
is2-codegen-1.5.4.jar

thirdparty\apache\axis2\1.5.4\lib\axis2-codegen-1.5.4
jar

centraloffice\ear\cowebservices-war \WEB-INF\lib\ ax
is2-java2wsdl-1.5.4 jar

thirdparty\apache\axis2\1.5.4\1lib\axis2-java2wsdl-1.5
4 jar

centraloffice\ear\cowebservices-war \WEB-INF\lib\ax
is2-jaxws-1.5.4 jar

thirdparty\apache\axis2\1.5.4\lib\axis2-jaxws-1.5.4.jar

centraloffice \ear\cowebservices-war \WEB-INF\lib\ ax
is2-kernel-1.5.4.jar

thirdparty \apache\axis2\1.5.4\lib\axis2-kernel-1.5.4.ja
r

centraloffice\ear\cowebservices-war \WEB-INF\lib\ax
is2-mex-1.2 jar

thirdparty\apache\axis2\1.5.4\lib\axis2-mex-1.2 jar

centraloffice \ear\cowebservices-war \WEB-INF\lib\ ax
is2-transport-http-1.5.4.jar

thirdparty \apache\axis2\1.5.4\lib\axis2-transport-htt
p-1.5.4jar

centraloffice\ear\cowebservices-war \WEB-INF\lib\ax
is2-transport-local-1.5.4 jar

thirdparty\apache\axis2\1.5.4\lib\axis2-transport-loca
1-1.5.4 jar

centraloffice \ear\cowebservices-war \WEB-INF\lib\ba
ckport-util-concurrent-3.1 jar

thirdparty \apache\axis2\1.5.4\lib\backport-util-concu
rrent-3.1jar

centraloffice\ear\co-ear\commons-io-1.4.jar

thirdparty \apache\axis2\1.5.4\1lib\commons-io-1.4.jar

centraloffice\ear\cowebservices-war \WEB-INF\lib\ ge
ronimo-jaxws_2.1_spec-1.0.jar

thirdparty\apache\axis2\1.5.4\lib\ geronimo-jaxws_
2.1_spec-1.0jar

centraloffice\ear\cowebservices-war \WEB-INF\lib\ ge
ronimo-saaj_1.3_spec-1.0.1.jar

thirdparty\apache\axis2\1.5.4\1lib\ geronimo-saaj_1.3_
spec-1.0.1jar

centraloffice\ear\cowebservices-war \WEB-INF\lib\ ge
ronimo-stax-api_1.0_spec-1.0.1jar

thirdparty\apache\axis2\1.5.4\lib\ geronimo-stax-api_
1.0_spec-1.0.1 jar

centraloffice\ear\cowebservices-war \WEB-INF\lib\ ge
ronimo-ws-metadata_2.0_spec-1.1.2 jar

thirdparty\apache\axis2\1.5.4\1lib\ geronimo-ws-meta
data_2.0_spec-1.1.2 jar

centraloffice\ ear\cowebservices-war \WEB-INF\1lib\ ht
tpcore-4.0.jar

thirdparty\apache\axis2\1.5.4\lib\httpcore-4.0.jar

centraloffice\ear\cowebservices-war \WEB-INF\lib\ja
xen-1.1.1jar

thirdparty\apache\axis2\1.5.4\1lib\jaxen-1.1.1 jar

centraloffice\ ear\cowebservices-war\WEB-INF\lib\ne
ethi-2.0.4.jar

thirdparty\apache\axis2\1.5.4\lib\neethi-2.0.4 jar

centraloffice\ear\cowebservices-war \WEB-INF\lib\w
oden-api-1.0M8 jar

thirdparty\apache\axis2\1.5.4\lib\woden-api-1.0M8 ja
r

centraloffice\ ear\cowebservices-war\WEB-INF\lib\w
oden-impl-dom-1.0M8 jar

thirdparty\apache\axis2\1.5.4\lib\woden-impl-dom-1
.0M8 jar

centraloffice\ear\cowebservices-war \WEB-INF\lib\w
stx-asl-3.2.9 jar

thirdparty\apache\axis2\1.5.4\1lib\wstx-asl-3.2.9 jar

centraloffice\ ear\cowebservices-war \WEB-INF\lib\xa
lan-2.7.0.jar

thirdparty\apache\axis2\1.5.4\lib\xalan-2.7.0.jar

centraloffice\ear\cowebservices-war \WEB-INF\1ib\ X
mlSchema-1.4.3 jar

thirdparty\apache\axis2\1.5.4\lib\ XmlISchema-1.4.3.ja
r

centraloffice\ear\co-ear\commons-beanutils.jar

thirdparty\apache\commons-beanutils\1.6\commons-
beanutils.jar

ocm-integration\lib\ groovy\1.5.8\lib\ commons-cli-1.0
jar

thirdparty\apache\commons-cli\1.0\commons-cli-1.0.j
ar

Appendix: Third-Party Jars A-7

Set Up the Build Tree

Copy from this EPD Extract Location

To this ARU Extract Location

centraloffice\lib\thirdparty \commons-codec-1.3.jar

thirdparty\apache\commons-codec\1.3\commons-cod
ec-1.3 jar

centraloffice\ear\co-ear\commons-collections.jar

thirdparty\apache\commons-collections\3.2\common
s-collections.jar

centraloffice\ear\co-ear\commons-dbcp jar

thirdparty\apache\commons-dbcp\1.0\commons-dbc
pjar

centraloffice\ear\co-ear\commons-digester.jar

thirdparty\apache\commons-digester\1.6\commons-d
igester.jar

centraloffice\ear\co-ear\commons-digester.jar

thirdparty \apache\commons-digester\1.8\commons-d
igester.jar

centraloffice\ear\co-ear\commons-fileupload-1.2.1.jar

thirdparty\apache\commons-fileupload\1.2.1\commo
ns-fileupload-1.2.1 jar

centraloffice \ear\cowebservices-war \WEB-INF\lib\ co
mmons-httpclient-3.1.jar

thirdparty \apache\commons-httpclient\3.1\commons
-httpclient-3.1.jar

centraloffice\ear\co-ear\commons-io-1.4 jar

thirdparty \apache\commons-io\1.4\commons-io-1.4j
ar

centraloffice\ear\ co-ear\commons-lang-2.0.jar

thirdparty \apache\commons-lang\2.0\commons-lang-
2.0jar

centraloffice\ear\cowebservices-war\WEB-INF\lib\ co
mmons-logging-1.1.1jar

thirdparty\apache\commons-logging\1.1.1\commons-
logging-1.1.1jar

centraloffice\ear\ co-ear\commons-validator.jar

thirdparty \apache\commons-validator\1.3.1\common
s-validator.jar

centraloffice\ear\co-ear\avalon-framework-4.2.0 jar

thirdparty\apache\fop\1.0\avalon-framework-4.2.0 jar

centraloffice\ear\co-ear\batik-all-1.7 jar

thirdparty\apache\fop\1.0\batik-all-1.7 jar

centraloffice\ear\ co-ear \fop jar

thirdparty \apache\fop\1.0\fop jar

centraloffice\ear\co-ear\xml-apis-ext-1.3.04.jar

thirdparty \apache\fop\1.0\xml-apis-ext-1.3.04.jar

centraloffice\ear\ co-ear \xmlgraphics-commons-1.4.jar

thirdparty \apache\fop\1.0\xmlgraphics-commons-1.4.
jar

centraloffice\ear\co-ear\jakarta-oro-2.0.8 jar

thirdparty\apache\jakarta-oro\2.0.8\jakarta-oro-2.0.8.j
ar

centraloffice\ear\co-ear\standard jar

thirdparty\apache\jstI\1.0.5\standard.jar

centraloffice\lib\thirdparty\log4j-1.2.16.jar

thirdparty\apache\log4j\1.2.16\1og4j-1.2.16.jar

centraloffice\ear\cowebservices-war \WEB-INF\lib\op
ensaml-2.2.3 jar

thirdparty\apache\rampart\1.5.1\lib\opensaml-2.2.3 j
ar

centraloffice\ear\cowebservices-war \WEB-INF\lib\ra
mpart-core-1.5.1.jar

thirdparty \apache\rampart\1.5.1\lib\rampart-core-1.5
1jar

centraloffice\ear\cowebservices-war \WEB-INF\lib\ra
mpart-policy-1.5.1jar

thirdparty\apache\rampart\1.5.1\lib\rampart-policy-
1.5.1jar

centraloffice\ear\cowebservices-war \WEB-INF\lib\ra
mpart-trust-1.5.1jar

thirdparty \apache\rampart\1.5.1\lib\rampart-trust-1.
5.1jar

centraloffice\ ear\cowebservices-war \WEB-INF\lib\w
ss4j-1.5.10 jar

thirdparty\apache\rampart\1.5.1\1ib\wss4j-1.5.10.jar

centraloffice \ear\cowebservices-war \WEB-INF\1lib\x
mlsec-1.4.2 jar

thirdparty \apache\rampart\1.5.1\lib\xmlsec-1.4.2 jar

centraloffice\ ear\cowebservices-war \WEB-INF\1ib\ x
mltooling-1.2.0.jar

thirdparty\apache\rampart\1.5.1\lib\xmltooling-1.2.0.

jar

A-8

Implementation Guide — Volume 2, Extension Solutions

Set Up the Build Tree

Copy from this EPD Extract Location

To this ARU Extract Location

centraloffice\ear\co-ear\commons-beanutils jar

thirdparty\apache\struts\1.2.9\lib\commons-beanutil
s.jar

centraloffice\ear\ co-ear\commons-digester.jar

thirdparty\apache\struts\1.2.9\1lib\commons-digester.
jar

centraloffice\ear\ co-ear\commons-validator.jar

thirdparty\apache\struts\1.2.9\lib\commons-validato
rjar

centraloffice\ear\co-war\WEB-INF\lib\antlr-2.7.2 jar

thirdparty\apache\struts\1.3.10\lib\antlr-2.7.2 jar

centraloffice\ear\co-war\WEB-INF\lib\bsf-2.3.0.jar

thirdparty\apache\struts\1.3.10\1ib\bsf-2.3.0.jar

centraloffice\ear\co-war \WEB-INF\lib\commons-bea
nutils-1.8.0 jar

thirdparty \apache\struts\1.3.10\lib\commons-beanuti
Is-1.8.0.jar

centraloffice \ ear\ co-war \WEB-INF\1lib\ commons-chai
n-1.2jar

thirdparty\apache\struts\1.3.10\lib\commons-chain-1
2 jar

centraloffice\ear\ co-war\WEB-INF\lib\commons-dig
ester-1.8.jar

thirdparty \apache\struts\1.3.10\lib\commons-digeste
r-1.8 jar

centraloffice\ ear\co-war \WEB-INF\lib\commons-file
upload-1.1.1jar

thirdparty\apache\struts\1.3.10\lib\commons-fileupl
oad-1.1.1jar

centraloffice\ear\co-war \WEB-INF\lib\commons-io-1.

1jar

thirdparty \apache\struts\1.3.10\lib\commons-io-1.1
ar

centraloffice\ear\co-war\WEB-INF\lib\commons-log
ging-1.0.4.jar

thirdparty\apache\struts\1.3.10\lib\commons-logging
-1.0.4jar

centraloffice\ ear\co-war \WEB-INF\lib\commons-vali
dator-1.3.1jar

thirdparty \apache\struts\1.3.10\lib\commons-validat
or-1.3.1jar

centraloffice\ear\co-war\WEB-INF\lib\jstl-1.0.2 jar

thirdparty\apache\struts\1.3.10\lib\jstl-1.0.2 jar

centraloffice\ear\co-war\WEB-INF\lib\oro-2.0.8.jar

thirdparty\apache\struts\1.3.10\lib\oro-2.0.8 jar

centraloffice\ ear\co-war \WEB-INF\lib\standard-1.0.6.
jar

thirdparty\apache\struts\1.3.10\lib\standard-1.0.6.jar

centraloffice\ear\co-war\WEB-INF\Ilib\struts-core-1.3.
10jar

thirdparty\apache\struts\1.3.10\lib\struts-core-1.3.10
ar

centraloffice\ ear\co-war\WEB-INF\lib\struts-el-1.3.10
jar

thirdparty\apache\struts\1.3.10\lib\struts-el-1.3.10.jar

centraloffice\ear\co-war\WEB-INF\Ilib\struts-extras-1.

3.10jar

thirdparty\apache\struts\1.3.10\lib \struts-extras-1.3.1
0.jar

centraloffice\ ear\co-war \WEB-INF\lib\struts-faces-1.
3.10jar

thirdparty\apache\struts\1.3.10\lib\struts-faces-1.3.10
jar

centraloffice\ear\co-war \WEB-INF\lib\struts-mailrea
der-dao-1.3.10.jar

thirdparty\apache\struts\1.3.10\lib\struts-mailreader-
dao-1.3.10jar

centraloffice\ear\co-war\WEB-INF\lib\struts-scriptin
g-1.3.10 jar

thirdparty\apache\struts\1.3.10\lib\struts-scripting-1.
3.10.jar

centraloffice\ear\co-war\WEB-INF\lib\struts-taglib-1.
3.10jar

thirdparty\apache\struts\1.3.10\lib\struts-taglib-1.3.1
0.jar

centraloffice\ ear\co-war \WEB-INF\lib\struts-tiles-1.3.
10jar

thirdparty\apache\struts\1.3.10\lib \struts-tiles-1.3.10.j
ar

centraloffice\ear\ co-ear\xercesImpl jar

thirdparty \apache\xerces\2.11.0\xercesImpl.jar

centraloffice\ear\ co-ear\xml-apis.jar

thirdparty \apache\xml-commons\1.4.01\xml-apis.jar

centraloffice\ear\co-ear\jdom jar

thirdparty\jdom.org\jdom\1.1.1\jdom. jar

centraloffice\ear\co-ear\quartz.jar

thirdparty \opensymphony\ quartz\1.7.3\quartz.jar

Appendix: Third-Party Jars A-9

Set Up the Build Tree

Copy from this EPD Extract Location

To this ARU Extract Location

centraloffice\ear\cohelp-war\WEB-INF\lib\share jar

thirdparty\oracle\bip\11.1.1.6\share jar

centraloffice\ear\cohelp-war\WEB-INF\lib\xmlparser
v2jar

thirdparty\oracle\bip\11.1.1.6\xmlparserv2 jar

centraloffice\ear\cohelp-war\WEB-INF\lib\commons
-eljar

thirdparty\oracle\help\5.0\WEB-INF\lib\commons-e
Ljar

centraloffice\ear\ cohelp-war\WEB-INF\lib\help-shar
ejar

thirdparty\oracle\help\5.0\WEB-INF\lib\ help-share.j

ar

centraloffice\ear\cohelp-war\WEB-INF\lib\jsp-el-api
ar

thirdparty\oracle\help\5.0\WEB-INF\lib\jsp-el-api.ja
r

centraloffice\ear\ cohelp-war\WEB-INF\lib\ohw-shar
ejar

thirdparty\oracle\help\5.0\WEB-INF\lib\ohw-share j

ar

centraloffice\ear\cohelp-war\WEB-INF\lib\ohw-uix.j
ar

thirdparty\oracle\help\5.0\WEB-INF\lib\ ohw-uix.jar

centraloffice\ear\cohelp-war\WEB-INF\lib\oracle-el j
ar

thirdparty\oracle\help\5.0\WEB-INF\lib\ oracle-el jar

centraloffice\ear\cohelp-war\WEB-INF\lib\share.jar

thirdparty \oracle\help\5.0\WEB-INF\lib\share jar

centraloffice\ear\cohelp-war\WEB-INF\lib\uix2 jar

thirdparty \oracle\help\5.0\WEB-INF\lib\ uix2 jar

centraloffice\ear\cohelp-war\WEB-INF\lib\xmlparser
v2jar

thirdparty\oracle\help\5.0\WEB-INF\lib\xmlparserv
2 jar

centraloffice\ear\cohelp-war\WEB-INF\lib\xmlparser
v2.jar

thirdparty\oracle\oas\10.1.3\xmlparserv2.jar

ant-ext\ossa\identitystore jar

thirdparty\oracle\retail-public-security-api\1.8\1lib\id
entitystore.jar

ant-ext\ossa\jacc-api.jar

thirdparty\oracle\retail-public-security-api\1.8\lib\jac
c-apijar

ant-ext\ossa\jacc-spi.jar

thirdparty \ oracle\retail-public-security-api\1.8\lib\jac
c-spi.jar

ant-ext\ossa\jps-api.jar

thirdparty\oracle\retail-public-security-api\1.8\lib\jps
-apijar

ant-ext\ossa\jps-common.jar

thirdparty \oracle \retail-public-security-api\1.8\lib\jps
-common.jar

ant-ext\ossa\jps-ee.jar

thirdparty\oracle\retail-public-security-api\1.8\lib\jps
-ee.jar

ant-ext\ossa\jps-internal jar

thirdparty \ oracle\retail-public-security-api\1.8\lib\jps
-internal jar

ant-ext\ossa\jps-manifest.jar

thirdparty\oracle\retail-public-security-api\1.8\lib\jps
-manifest.jar

ant-ext\ossa\jps-mbeans.jar

thirdparty \ oracle\retail-public-security-api\1.8\lib\jps
-mbeans.jar

ant-ext\ossa\jps-unsupported-api.jar

thirdparty\oracle\retail-public-security-api\1.8\lib\jps
-unsupported-api.jar

ant-ext\ossa\jps-upgrade.jar

thirdparty \ oracle \retail-public-security-api\1.8\lib\jps
-upgrade jar

ant-ext\ossa\jps-wls.jar

thirdparty\oracle\retail-public-security-api\ 1.8 \lib\jps
-wls.jar

ant-ext\ossa\jsr173_1.0_api.jar

thirdparty \ oracle\retail-public-security-api\1.8\lib\jsr
173_1.0_apijar

A-10

Implementation Guide — Volume 2, Extension Solutions

Set Up the Build Tree

Copy from this EPD Extract Location

To this ARU Extract Location

ant-ext\ossa\oraclepki.jar

thirdparty \ oracle\retail-public-security-api\1.8\lib\or
aclepki.jar

ant-ext\ossa\osdt_cert.jar

thirdparty\oracle\retail-public-security-api\1.8\lib\os
dt_cert.jar

ant-ext\ossa\osdt_core jar

thirdparty \ oracle\retail-public-security-api\1.8\lib\os
dt_core.jar

ant-ext\ossa\retail-public-security-api.jar

thirdparty\oracle\retail-public-security-api\1.8\lib\ret
ail-public-security-api.jar

ant-ext\ossa\sjsxp.jar

thirdparty \oracle\retail-public-security-api\1.8\1ib\sjs
Xp.jar

centraloffice\ ear\cowebservices-war \WEB-INF\lib\ co
m.oracle.ws.orawsdl_1.1.0.0jar

thirdparty\oracle\weblogic\10.0\modules\com.oracle.
ws.orawsdl_1.1.0.0.jar

centraloffice\ear\ co-ear\antisamy-1.4 jar

thirdparty \owasp \esapi\2.0\antisamy-1.4.jar

centraloffice\lib\thirdparty\esapi-2.0_rc10.jar

thirdparty \owasp\esapi\2.0\esapi-2.0_rc10.jar

ocm-integration\lib\groovy\1.6.5\lib\servlet-api-2.4.ja
T

thirdparty \owasp\esapi\2.0\servlet-api-2.4.jar

centraloffice\ear\ co-ear\xercesImpl jar

thirdparty \sourceforge\antinstaller\0.8.0\shell\ant\1i
b\xercesImpl jar

centraloffice\ear\co-ear\xml-apis.jar

thirdparty \sourceforge\antinstaller\0.8.0\shell\ant\li
b\xml-apis.jar

centraloffice\ear\co-war\WEB-INF\lib\displaytag-1.0-
b3 jar

thirdparty \sourceforge\displaytag\1.0-b3\displaytag-
1.0-b3 jar

centraloffice\ear\co-ear\com.springsource.org.aopallia
nce-1.0.0jar

thirdparty \springsource \springframework\3.0.5\com.
springsource.org.aopalliance-1.0.0.jar

centraloffice\ear\co-ear\org.springframework.aop-3.0.
5.RELEASE jar

thirdparty \springsource\springframework\3.0.5\org.s
pringframework.aop-3.0.5.RELEASE jar

centraloffice\ear\ co-ear\org.springframework.asm-3.0.
5.RELEASE jar

thirdparty \springsource \springframework\3.0.5\org.s
pringframework.asm-3.0.5.RELEASE jar

centraloffice\ear\co-ear\org.springframework.beans-3.
0.5.RELEASE jar

thirdparty \springsource\springframework\3.0.5\org.s
pringframework.beans-3.0.5.RELEASE jar

centraloffice\ear\ co-ear\org.springframework.context-
3.0.5.RELEASE jar

thirdparty \springsource \springframework\3.0.5\org.s
pringframework.context-3.0.5.RELEASE jar

centraloffice\ear\co-ear\org.springframework.context.
support-3.0.5.RELEASE jar

thirdparty \springsource\springframework\3.0.5\org.s
pringframework.context.support-3.0.5.RELEASE jar

centraloffice\ear\co-ear\org.springframework.core-3.0.
5.RELEASE jar

thirdparty \springsource \springframework\3.0.5\org.s
pringframework.core-3.0.5.RELEASE jar

centraloffice\ear\co-ear\org.springframework.expressi
on-3.0.5.RELEASE jar

thirdparty \springsource\springframework\3.0.5\org.s
pringframework.expression-3.0.5.RELEASE jar

centraloffice\ear\co-ear\org.springframework.jdbc-3.0.
5.RELEASE jar

thirdparty \springsource \springframework\3.0.5\org.s
pringframework.jdbc-3.0.5.RELEASE jar

centraloffice\ear\co-ear\org.springframework.transacti
on-3.0.5.RELEASE jar

thirdparty \springsource\springframework\3.0.5\org.s
pringframework.transaction-3.0.5.RELEASE jar

centraloffice\ear\ co-ear\org.springframework.web-3.0.
5.RELEASE jar

thirdparty \springsource \springframework\3.0.5\org.s
pringframework.web-3.0.5.RELEASE jar

centraloffice\ear\co-ear\jstl.jar

thirdparty \Sun\jstI\1.0.5\jstl.jar

centraloffice\ear\co-ear\jaxb-api.jar

thirdparty \Sun\jwsdp\2.0\jaxb\lib\jaxb-api.jar

Appendix: Third-Party Jars A-11

Set Up the Build Tree

Copy from this EPD Extract Location

To this ARU Extract Location

centraloffice\ear\co-ear\jaxb-impl jar

thirdparty \Sun\jwsdp\2.0\jaxb\lib\jaxb-impl.jar

centraloffice\ear\ co-ear\jaxb-xjc.jar

thirdparty \Sun\jwsdp\2.0\jaxb\lib\jaxb-xjc.jar

centraloffice\ear\co-ear\relaxngDatatype.jar

thirdparty \Sun\jwsdp\2.0\jwsdp-shared\lib\relaxng
Datatype jar

centraloffice\ear\co-ear\xsdlib jar

thirdparty \Sun\jwsdp\2.0\jwsdp-shared \lib\xsdlib.ja
r

ant-ext\ossa\sjsxp.jar

thirdparty \Sun\jwsdp\2.0\sjsxp\lib\sjsxp.jar

centraloffice\db\centralofficeDBInstall\lib\ojdbc5.jar

thirdparty\oracle\jdbc\11.2.0.1.0\ ojdbc5.jar

centraloffice\ear\co-war\common\jquery-1.6.2.js

thirdparty \jQueryProject\jQuery\1.6.2\jquery-1.6.2.js

centraloffice\ear\co-war\common\jquery-imask.js

thirdparty \jQueryProject\jQuery-iMask\0.7.0\jquery-i
mask.js

centraloffice\ear\co-war\common\jquery-ui-1.8.16.cus
tom.min.js

thirdparty \jQueryProject\jQueryUI\1.8.16\jquery-ui-1.
8.16.custom.min.js

centraloffice\ear\co-war\common\jquery-ui-i18n.js

thirdparty \jQueryProject\jQueryUI\1.8.16\jquery-ui-i
18njs

centraloffice\ear\co-war\common\jquery.ui.datepicke
r-de js

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-de.js

centraloffice\ear\co-war\common\jquery.ui.datepicke
r-eljs

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-el js

centraloffice\ear\co-war\common\jquery.ui.datepicke
r-es.js

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-es.js

centraloffice\ear\co-war\common\jquery.ui.datepicke
r-frjs

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-fr.js

centraloffice\ear\co-war\common\jquery.ui.datepicke
r-hrjs

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-hr.js

centraloffice\ear\co-war\common\jquery.ui.datepicke
r-hu.js

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-hu.js

centraloffice\ear\co-war\common\jquery.ui.datepicke
r-it.js

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-it.js

centraloffice\ear\co-war\common\jquery.ui.datepicke
r-ja.js

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-ja.js

centraloffice\ear\co-war\common\jquery.ui.datepicke
r-kojs

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-ko.js

centraloffice\ear\co-war\common\jquery.ui.datepicke
r-mock.js

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-mock js

centraloffice\ear\co-war\common\jquery.ui.datepicke
r-nljs

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-nl.js

centraloffice\ear\co-war\common\jquery.ui.datepicke
r-pljs

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-pljs

centraloffice\ear\co-war\common\jquery.ui.datepicke
r-ptjs

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-pt.js

centraloffice\ear\co-war\common\jquery.ui.datepicke
r-Tu.js

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-ru.js

centraloffice\ear\co-war\common\jquery.ui.datepicke
1-sv.js

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-sv.js

A-12

Implementation Guide — Volume 2, Extension Solutions

Set Up the Build Tree

Copy from this EPD Extract Location

To this ARU Extract Location

centraloffice\ear\ co-war\common\jquery.ui.datepicke
r-trjs

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-tr.js

centraloffice\ear\co-war\common\jquery.ui.datepickd
atepicker-zh-TW,js

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-zh-TW.js

centraloffice\ear\ co-war\common\jquery.ui.datepicke
r-zh.js

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-zh.js

centraloffice\ear\co-war\images\ui-bg_glass_75_
79¢9%ec_1x400.png

thirdparty \jQueryProject\jQueryUI\1.8.16\images \ui-
bg_glass_75_79c9ec_1x400.png

centraloffice\ear\co-war\images\ui-bg_gloss-wave_
75_2e558¢_500x100.png

thirdparty \jQueryProject\jQueryUI\1.8.16\images\ui-
bg_gloss-wave_75_2e558c_500x100.png

centraloffice\ear\co-war\images\ui-icons_056b93_
256x240.png

thirdparty \jQueryProject\jQueryUI\1.8.16\images \ui-
icons_056b93_256x240.png

centraloffice\ear\co-war\images\ ui-icons_a3c2df_
256x240.png

thirdparty \jQueryProject\jQueryUI\1.8.16\images \ ui-
icons_a3c2df_256x240.png

centraloffice\ear\cohelp-war*

thirdparty\oracle\help\5.0*

ant* thirdparty \sourceforge\antinstaller\0.8.0\shell\ant*

ant-ext* thirdparty \sourceforge\antinstaller\0.8.0\shell\ant-ex
t*

antinstall\lib* thirdparty \sourceforge\antinstaller\0.8.0\shell\antinst

all\lib*

installer-resources*

thirdparty \sourceforge\antinstaller\0.8.0\shell\install
er-resources*

ocm-integration*

thirdparty \sourceforge\antinstaller\0.8.0\j2ee\ocm-int
egration*

.postinstall.cmd

thirdparty \sourceforge \antinstaller\0.8.0\j2ee\.postin
stall.cmd

.postinstall.sh

thirdparty \sourceforge\antinstaller\0.8.0\j2ee\.postin
stall.sh

.preinstall.cmd

thirdparty \sourceforge\antinstaller\0.8.0\j2ee\ .preinst
all.emd

.preinstall.sh

thirdparty \sourceforge\antinstaller\0.8.0\j2ee\ .preinst
all.sh

install.cmd

thirdparty \sourceforge\antinstaller\0.8.0\shell\install.
cmd

install.sh

thirdparty \sourceforge\antinstaller\0.8.0\shell\install.
sh

prepare.xml

thirdparty \sourceforge\antinstaller\0.8.0\shell\ prepar
e.xml

.preinstall-oas.cmd

thirdparty \sourceforge\antinstaller\0.8.0\j2ee\ .preinst
all-oas.cmd

.preinstall-oas.sh

thirdparty \sourceforge\antinstaller\0.8.0\j2ee\ .preinst
all-oas.sh

.preinstall-was.cmd

thirdparty \sourceforge\antinstaller\0.8.0\j2ee\ .preinst
all-was.cmd

.preinstall-was.sh

thirdparty \sourceforge\antinstaller\0.8.0\j2ee\ .preinst
all-was.sh

Appendix: Third-Party Jars A-13

Set Up the Build Tree

Copy from this EPD Extract Location

To this ARU Extract Location

.preinstall-wl.cmd

thirdparty \sourceforge\antinstaller\0.8.0\j2ee\ .preinst
all-wl.emd

.preinstall-wl.sh

thirdparty \sourceforge\antinstaller\0.8.0\j2ee\ .preinst
all-wl.sh

retail-OCM-stores.zip

thirdparty\oracle\ocm\10.3.1.0.0\oracle-retail \retail-O
CM-stores.zip

5. For Back Office, copy following files from the EPD extract location to the ARU

extract location:

Copy from this EPD Extract Location

To this ARU Extract Location

backoffice\ear\bo-war\common\jquery-1.6.2.js

thirdparty \jQueryProject\jQuery\1.6.2\jquery-1.6.2.js

backoffice\ear\bo-war\common\jquery-imask.js

thirdparty \jQueryProject\jQuery-iMask\0.7.0\jquery-i
mask.js

backoffice\ear\bo-war\common\jquery-ui-1.8.16.custo
m.min.js

thirdparty \jQueryProject\jQueryUI\1.8.16\jquery-ui-1.
8.16.custom.min.js

backoffice\ear\bo-war\common\jquery-ui-i18n.js

thirdparty \jQueryProject\jQueryUI\1.8.16\jquery-ui-i
18njs

backoffice\ear\bo-war\common\jquery.ui.datepicker-
dejs

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-de.js

backoffice\ear\bo-war\common\jquery.ui.datepicker-
eljs

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-el js

backoffice\ear\bo-war\common\jquery.ui.datepicker-

es.js

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-es.js

backoffice\ear\bo-war\common\jquery.ui.datepicker-f
rjs

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-fr.js

backoffice\ear\bo-war\common\jquery.ui.datepicker-
hrjs

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-hr.js

backoffice\ear\bo-war\common\jquery.ui.datepicker-
hujs

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-hu.js

backoffice\ear\bo-war\common\jquery.ui.datepicker-i
tjs

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-it.js

backoffice\ear\bo-war\common\jquery.ui.datepicker-j
ajs

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-ja.js

backoffice\ear\bo-war\common\jquery.ui.datepicker-
ko js

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-ko.js

backoffice\ear\bo-war\common\jquery.ui.datepicker-
mock js

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-mock js

backoffice\ear\bo-war\common\jquery.ui.datepicker-
nljs

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-nl.js

backoffice\ear\bo-war\common\jquery.ui.datepicker-
pljs

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-pljs

backoffice\ear\bo-war\common\jquery.ui.datepicker-

ptjs

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-pt.js

backoffice\ear\bo-war\common\jquery.ui.datepicker-r
uwjs

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-ru.js

A-14

Implementation Guide — Volume 2, Extension Solutions

Set Up the Build Tree

Copy from this EPD Extract Location

To this ARU Extract Location

backoffice\ear\bo-war\common\jquery.ui.datepicker-s
vjs

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-sv.js

backoffice\ear\bo-war\common\jquery.ui.datepicker-t
rjs

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-tr.js

backoffice\ear\bo-war\common\jquery.ui.datepickdat
epicker-zh-TW.js

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-zh-TW.js

backoffice\ear\bo-war\common\jquery.ui.datepicker-
zhjs

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-zh.js

backoffice\ear\bo-war\images\ui-bg_glass_75_
79c9ec_1x400.png

thirdparty \jQueryProject\jQueryUI\1.8.16\images \ ui-
bg_glass_75_79c%c_1x400.png

backoffice\ear\bo-war\images\ui-bg_gloss-wave_75_
2e558¢_500x100.png

thirdparty \jQueryProject\jQueryUI\1.8.16\images \ui-
bg_gloss-wave_75_2e558c_500x100.png

backoffice\ear\bo-war\images\ui-icons_056b93_
256x240.png

thirdparty \jQueryProject\jQueryUI\1.8.16\images \ ui-
icons_056b93_256x240.png

backoffice\ear\bo-war\images\ui-icons_a3c2df_
256x240.png

thirdparty \jQueryProject\jQueryUI\1.8.16\images\ui-
icons_a3c2df_256x240.png

backoffice\appservers\weblogic\ant-contrib-1.0b3 jar

thirdparty \apache\ant\1.8.2\lib\ant-contrib-1.0b3 jar

backoffice\ear\bo-ear\commons-io-1.4 jar

thirdparty\apache\axis2\1.5.4\lib\commons-io-1.4.jar

backoffice\ear\bo-ear\commons-beanutils.jar

thirdparty\apache\commons-beanutils\1.6\commons-
beanutils.jar

ocm-integration\lib\groovy\1.5.8\1lib\commons-cli-1.0
jar

thirdparty \apache\commons-cli\1.0\commons-cli-1.0.j
ar

backoffice\ear\bo-ear\commons-codec-1.3.jar

thirdparty\apache\commons-codec\1.3\commons-cod
ec-1.3jar

backoffice\ear\bo-ear\commons-collections.jar

thirdparty \apache\commons-collections\3.2\common
s-collections.jar

backoffice\ear\bo-ear\commons-dbcp.jar

thirdparty\apache\commons-dbcp\1.0\commons-dbc

pjar

backoffice\ear\bo-ear\commons-digester.jar

thirdparty \apache\commons-digester\1.6\commons-d
igesterjar

backoffice\ear\bo-ear\commons-digester.jar

thirdparty\apache\commons-digester\1.8\commons-d
igesterjar

backoffice\ear\bo-ear\commons-fileupload-1.2.1 jar

thirdparty \apache\commons-fileupload\1.2.1\commo
ns-fileupload-1.2.1.jar

backoffice\ear\bo-ear\commons-httpclient-3.1.jar

thirdparty\apache\commons-httpclient\3.1\commons
-httpclient-3.1.jar

backoffice\ear\bo-ear\commons-io-1.4 jar

thirdparty \apache\commons-io\1.4\commons-io-1.4.j
ar

backoffice\ear\bo-ear\commons-lang-2.0.jar

thirdparty\apache\commons-lang\2.0\commons-lang-
2.0jar

backoffice\ear\bo-ear\commons-logging-1.1.1jar

thirdparty \apache\commons-logging\1.1.1\commons-
logging-1.1.1jar

backoffice\ear\bo-ear\commons-validator.jar

thirdparty\apache\commons-validator\1.3.1\common
s-validator.jar

backoffice\ear\bo-ear\batik-all-1.7 jar

thirdparty\apache\fop\1.0\batik-all-1.7 jar

backoffice\ear\bo-ear\fop.jar

thirdparty\apache\fop\1.0\fop jar

Appendix: Third-Party Jars A-15

Set Up the Build Tree

Copy from this EPD Extract Location

To this ARU Extract Location

backoffice\ear\bo-ear\jakarta-oro-2.0.8 jar

thirdparty \apache\jakarta-oro\2.0.8\jakarta-oro-2.0.8
ar

backoffice\ear\bo-ear\standard jar

thirdparty\apache\jstI\1.0.5\standard jar

backoffice\lib\thirdparty\log4j-1.2.16.jar

thirdparty\apache\log4j\1.2.16\log4j-1.2.16.jar

backoffice\ear\bo-ear\commons-beanutils jar

thirdparty \apache\struts\1.2.9\lib\commons-beanutil
s.jar

backoffice\ear\bo-ear\commons-digester.jar

thirdparty\apache\struts\1.2.9\1ib\commons-digester.

jar

backoffice\ear\bo-ear\commons-validator.jar

thirdparty \apache\struts\1.2.9\lib\commons-validato
rjar

backoffice\ear\bo-war\WEB-INF\lib\antlr-2.7.2 jar

thirdparty\apache\struts\1.3.10\lib\antlr-2.7.2 jar

backoffice\ear\bo-war\WEB-INF\lib\bsf-2.3.0.jar

thirdparty\apache\struts\1.3.10\1ib\bsf-2.3.0.jar

backoffice\ear\bo-war\WEB-INF\lib\ commons-beanu
tils-1.8.0.jar

thirdparty\apache\struts\1.3.10\1ib\commons-beanuti
1s-1.8.0.jar

backoffice\ear\bo-war\WEB-INF\lib\ commons-chain-
1.2 jar

thirdparty\apache\struts\1.3.10\lib\commons-chain-1
2 jar

backoffice\ear\bo-war\WEB-INF\lib\commons-digest
er-1.8 jar

thirdparty\apache\struts\1.3.10\lib\commons-digeste
r-1.8jar

backoffice\ear\bo-war\WEB-INF\lib\commons-fileup
load-1.1.1jar

thirdparty\apache\struts\1.3.10\1ib\commons-fileupl
oad-1.1.1jar

backoffice\ear\bo-war\WEB-INF\lib\commons-io-1.1.
jar

thirdparty\apache\struts\1.3.10\lib\commons-io-1.1]
ar

backoffice\ear\bo-war\WEB-INF\lib\commons-loggi
ng-1.0.4jar

thirdparty\apache\struts\1.3.10\lib\commons-logging
-1.0.4jar

backoffice\ear\bo-war\WEB-INF\lib\commons-valida
tor-1.3.1jar

thirdparty\apache\struts\1.3.10\lib\commons-validat
or-1.3.1jar

backoffice\ear\bo-war\WEB-INF\lib\jstl-1.0.2.jar

thirdparty\apache\struts\1.3.10\1lib\jstl-1.0.2 jar

backoffice\ear\bo-war\WEB-INF\lib\oro-2.0.8.jar

thirdparty\apache\struts\1.3.10\lib\oro-2.0.8 jar

backoffice\ear\bo-war\WEB-INF\lib\standard-1.0.6.ja
r

thirdparty\apache\struts\1.3.10\lib\standard-1.0.6.jar

backoffice\ear\bo-war\WEB-INF\lib \ struts-core-1.3.1
0.jar

thirdparty \apache\struts\1.3.10\lib\struts-core-1.3.10.j
ar

backoffice\ear\bo-war\WEB-INF\lib\struts-el-1.3.10.ja
r

thirdparty\apache\struts\1.3.10\lib\struts-el-1.3.10.jar

backoffice\ear\bo-war\WEB-INF\lib\struts-extras-1.3.
10jar

thirdparty \apache\struts\1.3.10\lib \struts-extras-1.3.1
0.jar

backoffice\ear\bo-war\WEB-INF\lib\struts-faces-1.3.1
0jar

thirdparty\apache\struts\1.3.10\lib\struts-faces-1.3.10
jar

backoffice\ear\bo-war\WEB-INF\lib\struts-mailreade
r-dao-1.3.10jar

thirdparty\apache\struts\1.3.10\lib \struts-mailreader-
dao-1.3.10jar

backoffice\ear\bo-war\WEB-INF\lib\struts-scripting-
1.3.10jar

thirdparty\apache\struts\1.3.10\lib\struts-scripting-1.
3.10jar

backoffice\ear\bo-war\WEB-INF\lib\struts-taglib-1.3.
10 jar

thirdparty \apache\struts\1.3.10\lib\struts-taglib-1.3.1
0.jar

backoffice\ear\bo-war\WEB-INF\lib\struts-tiles-1.3.1
0jar

thirdparty\apache\struts\1.3.10\lib\struts-tiles-1.3.10.j
ar

A-16

Implementation Guide — Volume 2, Extension Solutions

Set Up the Build Tree

Copy from this EPD Extract Location

To this ARU Extract Location

backoffice\ear\bo-ear\xercesImpl jar

thirdparty \apache\xerces\2.11.0\xercesImpl.jar

backoffice\ear\bo-ear\xml-apis-ext.jar

thirdparty \apache\xml-commons\1.4.01\xml-apis-ext.

jar

backoffice\ear\bo-ear\xml-apis.jar

thirdparty\apache\xml-commons\1.4.01\xml-apis.jar

backoffice\ear\bo-ear\jdom jar

thirdparty \jdom.org\jdom\1.1.1\jdom jar

backoffice\ear\bo-ear\quartz.jar

thirdparty \opensymphony\quartz\1.7.3\quartz.jar

backoffice\ear\bo-ear\collections.jar

thirdparty\oracle\bip\11.1.1.6\collections.jar

backoffice\ear\bo-ear\il8nAPI_v3.jar

thirdparty\oracle\bip\11.1.1.6\i18nAPI_v3.jar

backoffice\ear\bo-ear\jewt4.jar

thirdparty\oracle\bip\11.1.1.6\jewt4.jar

backoffice\ear\bo-ear\share.jar

thirdparty\oracle\bip\11.1.1.6\share.jar

backoffice\ear\bo-ear\versioninfo.jar

thirdparty\oracle\bip\11.1.1.6\versioninfo.jar

backoffice\ear\bo-ear\xdocore.jar

thirdparty\oracle\bip\11.1.1.6\xdocore jar

backoffice\ear\bo-ear\xdoparser.jar

thirdparty\oracle\bip\11.1.1.6\xdoparser.jar

backoffice\ear\bo-ear\xmlparserv2.jar

thirdparty\oracle\bip\11.1.1.6\xmlparserv2.jar

backoffice\ear\bo-ear\xmlparserv2.jar

thirdparty\oracle\oas\10.1.3\xmlparserv2.jar

ant-ext\ossa\identitystore jar

thirdparty\oracle\retail-public-security-api\1.8\lib\id
entitystore.jar

ant-ext\ossa\jacc-api.jar

thirdparty\ oracle\retail-public-security-api\1.8\lib\jac
c-apijar

ant-ext\ossa\jacc-spi.jar

thirdparty\oracle\retail-public-security-api\1.8\lib\jac
c-spijar

ant-ext\ossa\jps-api.jar

thirdparty\oracle\retail-public-security-api\ 1.8 \lib\jps
-apijar

ant-ext\ossa\jps-common jar

thirdparty\oracle\retail-public-security-api\1.8\lib\jps
-common.jar

ant-ext\ossa\jps-ee.jar

thirdparty \oracle\retail-public-security-api\1.8\lib\jps

-ee.jar

ant-ext\ossa\jps-internal jar

thirdparty\oracle\retail-public-security-api\1.8\lib\jps
-internal jar

ant-ext\ossa\jps-manifest.jar

thirdparty\oracle\retail-public-security-api\ 1.8 \lib\jps

-manifest.jar

ant-ext\ossa\jps-mbeans.jar

thirdparty\oracle\retail-public-security-api\1.8\lib\jps
-mbeans.jar

ant-ext\ossa\jps-unsupported-api.jar

thirdparty\oracle\retail-public-security-api\ 1.8 \lib\jps
-unsupported-api.jar

ant-ext\ossa\jps-upgrade.jar

thirdparty\oracle\retail-public-security-api\1.8\lib\jps
-upgrade.jar

ant-ext\ossa\jps-wls.jar

thirdparty\oracle\retail-public-security-api\1.8\lib\jps
-wls.jar

ant-ext\ossa\jsr173_1.0_api.jar

thirdparty\oracle\retail-public-security-api\1.8\lib\jsr
173_1.0_api jar

ant-ext\ossa\oraclepki jar

thirdparty \oracle\retail-public-security-api\1.8\lib\or
aclepki.jar

Appendix: Third-Party Jars A-17

Set Up the Build Tree

Copy from this EPD Extract Location

To this ARU Extract Location

ant-ext\ossa\osdt_cert.jar

thirdparty\oracle\retail-public-security-api\1.8\lib\os
dt_certjar

ant-ext\ossa\osdt_core.jar

thirdparty\oracle\retail-public-security-api\1.8\lib\os
dt_core.jar

retail-public-security-api\lib\retail-public-security-api.j
ar

thirdparty\oracle\retail-public-security-api\1.8\lib\ret
ail-public-security-api.jar

ant-ext\ossa\sjsxp.jar

thirdparty\oracle\retail-public-security-api\ 1.8 \lib\sjs
Xp.jar

backoffice\ear\bo-ear\antisamy-1.4.jar

thirdparty \owasp\esapi\2.0\antisamy-1.4.jar

backoffice\lib\thirdparty\esapi-2.0_rc10.jar

thirdparty \owasp\esapi\2.0\esapi-2.0_rc10.jar

ocm-integration\lib\groovy\1.6.5\lib\servlet-api-2.4.ja
r

thirdparty\owasp\esapi\2.0\servlet-api-2.4 jar

backoffice\ear\bo-ear\xercesImpl.jar

thirdparty \sourceforge\antinstaller\0.8.0\shell\ant\1i
b\xercesImpl jar

backoffice\ear\bo-ear\xml-apis.jar

thirdparty\sourceforge\antinstaller\0.8.0\shell\ant\li
b\xml-apis.jar

backoffice\ear\bo-ear \WEB-INF\lib\displaytag-1.0-b3
jar

thirdparty \sourceforge\displaytag\1.0-b3\displaytag-
1.0-b3.jar

backoffice\ear\bo-ear\com.springsource.org.aopallianc
e-1.0.0jar

thirdparty \springsource\springframework\3.0.5\com.
springsource.org.aopalliance-1.0.0.jar

backoffice\ear\bo-ear\org.springframework.aop-3.0.5.
RELEASE jar

thirdparty \springsource\springframework\3.0.5\org.s
pringframework.aop-3.0.5.RELEASE jar

backoffice\ear\bo-ear\org.springframework.asm-3.0.5.
RELEASE jar

thirdparty \springsource\springframework\3.0.5\org.s
pringframework.asm-3.0.5.RELEASE jar

backoffice\ear\bo-ear\org.springframework.beans-3.0.
5.RELEASE jar

thirdparty \springsource\springframework\3.0.5\org.s
pringframework.beans-3.0.5.RELEASE jar

backoffice\ear\bo-ear\org.springframework.context-3.
0.5.RELEASE jar

thirdparty \springsource\springframework\3.0.5\org.s
pringframework.context-3.0.5.RELEASE jar

backoffice\ear\bo-ear\org.springframework.context.su
pport-3.0.5.RELEASE jar

thirdparty \springsource\springframework\3.0.5\org.s
pringframework.context.support-3.0.5.RELEASE jar

backoffice\ear\bo-ear\org.springframework.core-3.0.5.
RELEASE jar

thirdparty \springsource\springframework\3.0.5\org.s
pringframework.core-3.0.5.RELEASE jar

backoffice\ear\bo-ear\org.springframework.expressio
n-3.0.5.RELEASE jar

thirdparty \springsource\springframework\3.0.5\org.s
pringframework.expression-3.0.5.RELEASE jar

backoffice\ear\bo-ear\org.springframework.jdbc-3.0.5.
RELEASE jar

thirdparty \springsource \springframework\3.0.5\org.s
pringframework.jdbc-3.0.5.RELEASE jar

backoffice\ear\bo-ear\org.springframework.transactio
n-3.0.5.RELEASE jar

thirdparty \springsource\springframework\3.0.5\org.s
pringframework.transaction-3.0.5.RELEASE jar

backoffice\ear\bo-ear\org.springframework.web-3.0.5.
RELEASE jar

thirdparty \springsource \springframework\3.0.5\org.s
pringframework.web-3.0.5.RELEASE jar

backoffice\ear\bo-ear\jstl.jar

thirdparty \Sun\;jstI\1.0.5\jstl.jar

backoffice\ear\bo-ear\jaxb-api.jar

thirdparty \Sun\jwsdp\2.0\jaxb\lib\jaxb-api.jar

backoffice\ear\bo-ear\jaxb-impl jar

thirdparty \Sun\jwsdp\2.0\jaxb\lib\jaxb-impl.jar

backoffice\ear\bo-ear\jaxb-xjc.jar

thirdparty \Sun\jwsdp\2.0\jaxb\lib\jaxb-xjc.jar

backoffice\ear\bo-ear\relaxngDatatype jar

thirdparty \Sun\jwsdp\2.0\jwsdp-shared\lib\relaxng
Datatype jar

A-18

Implementation Guide — Volume 2, Extension Solutions

Set Up the Build Tree

Copy from this EPD Extract Location

To this ARU Extract Location

backoffice\ear\bo-ear\xsdlib.jar

thirdparty \Sun\jwsdp\2.0\jwsdp-shared \lib\xsdlib.ja
r

ant-ext\ossa\sjsxp.jar

thirdparty \Sun\jwsdp\2.0\sjsxp\lib\sjsxp.jar

ant* thirdparty \sourceforge\antinstaller\0.8.0\shell\ant*

ant-ext* thirdparty \sourceforge\antinstaller\0.8.0\shell\ant-ex
t*

antinstall\lib* thirdparty \sourceforge\antinstaller\0.8.0\shell\antinst

all\lib*

installer-resources*

thirdparty \sourceforge\antinstaller\0.8.0\shell\install
er-resources*

ocm-integration*

thirdparty \sourceforge\antinstaller\0.8.0\j2ee\ocm-int
egration*

.postinstall.cmd

thirdparty \sourceforge \antinstaller\0.8.0\j2ee\.postin
stall.cmd

.postinstall.sh

thirdparty \sourceforge\antinstaller\0.8.0\j2ee\.postin
stall.sh

.preinstall.cmd

thirdparty \sourceforge\antinstaller\0.8.0\j2ee\ .preinst
all.emd

.preinstall.sh

thirdparty \sourceforge\antinstaller\0.8.0\j2ee\ .preinst
all.sh

.preinstall-oas.cmmd

thirdparty \sourceforge\antinstaller\0.8.0\j2ee\ .preinst
all-oas.cmd

.preinstall-oas.sh

thirdparty \sourceforge\antinstaller\0.8.0\j2ee\.preinst
all-oas.sh

.preinstall-was.cmmd

thirdparty \sourceforge\antinstaller\0.8.0\j2ee\ .preinst
all-was.cmmd

.preinstall-was.sh

thirdparty \sourceforge\antinstaller\0.8.0\j2ee\.preinst
all-was.sh

.preinstall-wl.cnd

thirdparty \sourceforge\antinstaller\0.8.0\j2ee\ .preinst
all-wl.emd

.preinstall-wl.sh

thirdparty\sourceforge\antinstaller\0.8.0\j2ee\ .preinst
all-wl.sh

install.cmd

thirdparty \sourceforge\antinstaller\0.8.0\shell\install.
cmd

install.sh

thirdparty \sourceforge\antinstaller\0.8.0\shell\install.
sh

prepare.xml

thirdparty \sourceforge\antinstaller\0.8.0\shell\ prepar
e.xml

retail-OCM-stores.zip

thirdparty\oracle\ocm\10.3.1.0.0\oracle-retail \retail-O
CM-stores.zip

backoffice\ear\bohelp-war*

thirdparty \oracle\help\5.0*

backoffice\db\backofficeDBInstall\lib\ojdbc5.jar

thirdparty\oracle\jdbc\11.2.0.1.0\ojdbc5.jar

6. For Returns Management, copy the following files from the EPD extract location to

the ARU extract location:

Appendix: Third-Party Jars A-19

Set Up the Build Tree

Copy from this EPD Extract Location

To this ARU Extract Location

ant\lib\ant-swing.jar

thirdparty\apache\ant\1.8.2\lib\ant-swing.jar

ant-ext\ossa\identitystore jar

thirdparty\oracle\retail-public-security-api\1.8\lib\id
entitystore.jar

ant-ext\ossa\jacc-api.jar

thirdparty\oracle\retail-public-security-api\ 1.8 \lib\jac
c-apijar

ant-ext\ossa\jacc-spi.jar

thirdparty\oracle\retail-public-security-api\1.8\lib\jac
c-spijar

ant-ext\ossa\jps-api.jar

thirdparty\oracle\retail-public-security-api\ 1.8 \1lib\jps
-apijar

ant-ext\ossa\jps-common.jar

thirdparty\oracle\retail-public-security-api\1.8\lib\jps
-common.jar

ant-ext\ossa\jps-ee.jar

thirdparty \ oracle\retail-public-security-api\1.8\lib\jps
-ee.jar

ant-ext\ossa\jps-internal jar

thirdparty\oracle\retail-public-security-api\1.8\lib\jps
-internal jar

ant-ext\ossa\jps-manifest.jar

thirdparty \ oracle\retail-public-security-api\1.8\lib\jps
-manifest.jar

ant-ext\ossa\jps-mbeans.jar

thirdparty\oracle\retail-public-security-api\1.8\lib\jps
-mbeans.jar

ant-ext\ossa\jps-unsupported-api.jar

thirdparty \ oracle\retail-public-security-api\1.8\lib\jps
-unsupported-api.jar

ant-ext\ossa\jps-upgrade.jar

thirdparty\oracle\retail-public-security-api\1.8\lib\jps
-upgrade.jar

ant-ext\ossa\jps-wls.jar

thirdparty\oracle\retail-public-security-api\ 1.8 \1lib\jps
-wls jar

ant-ext\ossa\oraclepki.jar

thirdparty\oracle\retail-public-security-api\1.8\lib\or
aclepki.jar

ant-ext\ossa\osdt_cert.jar

thirdparty \ oracle\retail-public-security-api\1.8\lib\os
dt_certjar

ant-ext\ossa\osdt_core.jar

thirdparty\oracle\retail-public-security-api\1.8\lib\os
dt_core jar

ant-ext\ossa\retail-public-security-api.jar

thirdparty \ oracle \retail-public-security-api\1.8\lib\ret
ail-public-security-api.jar

ant-ext\ossa\sjsxp.jar

thirdparty\oracle\retail-public-security-api\ 1.8 \lib\sjs
Xp.jar

ant-ext\ossa\sjsxp.jar

thirdparty \Sun\jwsdp\2.0\sjsxp\lib\sjsxp.jar

returnsmgmt\db\returnsmgmtDBInstall\lib\ant-contri
b-1.0b3 jar

thirdparty\apache\ant\1.8.2\lib\ant-contrib-1.0b3.jar

returnsmgmt\db\returnsmgmtDBInstall\lib\ojdbc5.jar

thirdparty\oracle\jdbc\11.2.0.1.0\ojdbc5 jar

returnsmgmt\db \returnsmgmtDBInstall \returns-data\
lib\activation jar

thirdparty \Sun\activation\1.1.1\activation. jar

returnsmgmt\db\returnsmgmtDBInstall \returns-data\
lib\commons-cli-1.0.jar

thirdparty\apache\commons-cli\1.0\commons-cli-1.0.j
ar

returnsmgmt\db\returnsmgmtDBInstall\returns-data\
lib\commons-cli-1.0 jar

thirdparty \sourceforge\antinstaller\0.8.0\j2ee\ ocm-int
egration\lib\groovy\1.5.8\lib\commons-cli-1.0 jar

returnsmgmt\db\returnsmgmtDBInstall \returns-data\
lib\javax.jms.jar

thirdparty \Sun\jee\1.6\javax.jms.jar

A-20

Implementation Guide — Volume 2, Extension Solutions

Set Up the Build Tree

Copy from this EPD Extract Location

To this ARU Extract Location

returnsmgmt\db\returnsmgmtDBInstall \returns-data\
lib\mail jar

thirdparty \Sun\mail\1.4.3\mail jar

returnsmgmt\db\returnsmgmtDBInstall\returns-data\
lib\rampart-1.5.1.mar

thirdparty\apache\rampart\1.5.1\modules\rampart-1.
5.1.mar

returnsmgmt\ear\rm-ear\antisamy-1.4.jar

thirdparty \owasp\esapi\2.0\antisamy-1.4 jar

returnsmgmt\ear\rm-ear\avalon-framework-4.2.0 jar

thirdparty\apache\fop\1.0\avalon-framework-4.2.0 jar

returnsmgmt\ear\rm-ear\batik-all-1.7 jar

thirdparty\apache\fop\1.0\batik-all-1.7 jar

returnsmgmt\ear \rm-ear \com.springsource.org.aopalli
ance-1.0.0.jar

thirdparty \springsource \springframework\3.0.5\com.
springsource.org.aopalliance-1.0.0.jar

returnsmgmt\ear \rm-ear \commons-beanutils.jar

thirdparty \apache\commons-beanutils\1.6\commons-
beanutils.jar

returnsmgmt\ear \rm-ear \commons-beanutils.jar

thirdparty\apache\struts\1.2.9\lib\commons-beanutil
s.jar

returnsmgmt\ear \rm-ear \commons-collections.jar

thirdparty \apache\commons-collections\3.2\common
s-collections.jar

returnsmgmt\ear\rm-ear \commons-dbcp jar

thirdparty\apache\commons-dbcp\1.0\commons-dbc
p.jar

returnsmgmt\ear \rm-ear \commons-digester.jar

thirdparty \apache\commons-digester\1.6\commons-d
igester.jar

returnsmgmt\ear\rm-ear\commons-digester.jar

thirdparty\apache\commons-digester\1.8\commons-d
igester.jar

returnsmgmt\ear\rm-ear\commons-digester.jar

thirdparty \apache\struts\1.2.9\1ib\commons-digester.
jar

returnsmgmt\ear \rm-ear\commons-fileupload-1.2.1 ja
r

thirdparty \apache\commons-fileupload\1.2.1\commo
ns-fileupload-1.2.1 jar

returnsmgmt\ear\rm-ear\commons-io-1.4.jar

thirdparty \apache\axis2\1.5.4\lib\commons-io-1.4.jar

returnsmgmt\ear \rm-ear \commons-io-1.4.jar

thirdparty\apache\commons-io\1.4\commons-io-1.4.j
ar

returnsmgmt\ear\rm-ear \commons-lang-2.0.jar

thirdparty \apache\commons-lang\2.0\commons-lang-
2.0.jar

returnsmgmt\ear \rm-ear \commons-validator.jar

thirdparty\apache\commons-validator\1.3.1\common
s-validator.jar

returnsmgmt\ear\rm-ear\commons-validator.jar

thirdparty\apache\struts\1.2.9\lib\commons-validato
rjar

returnsmgmt\ear\rm-ear \fop jar

thirdparty\apache\fop\1.0\fop jar

returnsmgmt\ear\rm-ear \jakarta-oro-2.0.8 jar

thirdparty\apache\jakarta-oro\2.0.8\jakarta-oro-2.0.8.j
ar

returnsmgmt\ear\rm-ear\jaxb-api.jar

thirdparty \Sun\jwsdp\2.0\jaxb\lib\jaxb-api.jar

returnsmgmt\ear\rm-ear\jaxb-impl jar

thirdparty \Sun\jwsdp\2.0\jaxb\lib\jaxb-impl jar

returnsmgmt\ear \rm-ear \jaxb-xjc.jar

thirdparty \Sun\jwsdp\2.0\jaxb\lib\jaxb-xjc.jar

returnsmgmt\ear\rm-ear \jdom. jar

thirdparty \jdom.org\jdom\1.1.1\jdom jar

returnsmgmt\ear\rm-ear\jsr173_1.0_api.jar

thirdparty\oracle\retail-public-security-api\ 1.8 \lib\jsr
173_1.0_api jar

returnsmgmt\ear\rm-ear\jstl.jar

thirdparty \Sun\;jstI\1.0.5\jstl.jar

Appendix: Third-Party Jars A-21

Set Up the Build Tree

Copy from this EPD Extract Location

To this ARU Extract Location

returnsmgmt\ear \rm-ear\org.springframework.aop-3.
0.5.RELEASE jar

thirdparty \springsource \springframework\3.0.5\org.s
pringframework.aop-3.0.5.RELEASE jar

returnsmgmt\ear\rm-ear\org.springframework.asm-3.
0.5.RELEASE jar

thirdparty \springsource \springframework\3.0.5\org.s
pringframework.asm-3.0.5.RELEASE jar

returnsmgmt\ear\rm-ear\org.springframework.beans-
3.0.5.RELEASE jar

thirdparty \springsource \springframework\3.0.5\org.s
pringframework.beans-3.0.5.RELEASE jar

returnsmgmt\ear \rm-ear\org.springframework.contex
t.support-3.0.5.RELEASE jar

thirdparty \springsource\springframework\3.0.5\org.s
pringframework.context.support-3.0.5.RELEASE jar

returnsmgmt\ear\rm-ear\org.springframework.contex
t-3.0.5.RELEASE jar

thirdparty \springsource\springframework\3.0.5\org.s
pringframework.context-3.0.5.RELEASE jar

returnsmgmt\ear\rm-ear\org.springframework.core-3.
0.5.RELEASE jar

thirdparty \springsource\springframework\3.0.5\org.s
pringframework.core-3.0.5.RELEASE jar

returnsmgmt\ear\rm-ear\org.springframework.expres
sion-3.0.5.RELEASE jar

thirdparty \springsource\springframework\3.0.5\org.s
pringframework.expression-3.0.5.RELEASE jar

returnsmgmt\ear\rm-ear\org.springframework.jdbc-3.
0.5.RELEASE jar

thirdparty \springsource \springframework\3.0.5\org.s
pringframework.jdbc-3.0.5.RELEASE jar

returnsmgmt\ear\rm-ear\org.springframework.transa
ction-3.0.5.RELEASE jar

thirdparty \springsource\springframework\3.0.5\org.s
pringframework.transaction-3.0.5.RELEASE jar

returnsmgmt\ear\rm-ear\org.springframework.web-3.
0.5.RELEASE jar

thirdparty \springsource \springframework\3.0.5\org.s
pringframework.web-3.0.5.RELEASE jar

returnsmgmt\ear\rm-ear\quartz.jar

thirdparty \opensymphony\quartz\1.7.3\quartz jar

returnsmgmt\ear \rm-ear \relaxngDatatype jar

thirdparty \Sun\jwsdp\2.0\jwsdp-shared\lib\relaxng
Datatype jar

returnsmgmt\ear\rm-ear\standard.jar

thirdparty\apache\jstI\1.0.5\standard jar

returnsmgmt\ear\rm-ear\xercesImpl.jar

thirdparty \apache\xerces\2.11.0\xercesImpl jar

returnsmgmt\ear\rm-ear \xercesImpl.jar

thirdparty \sourceforge\antinstaller\0.8.0\shell\ant\1i
b\xercesImpl jar

returnsmgmt\ear \rm-ear \xml-apis jar

thirdparty \apache\xml-commons\1.4.01\xml-apis.jar

returnsmgmt\ear\rm-ear \xml-apis.jar

thirdparty \sourceforge\antinstaller\0.8.0\shell\ant\li
b\xml-apis.jar

returnsmgmt\ear \rm-ear \xmlgraphics-commons-1.4.ja
r

thirdparty\apache\fop\1.0\xmlgraphics-commons-1.4.
jar

returnsmgmt\ear\rm-ear\xsdlib.jar

thirdparty \Sun\jwsdp\2.0\jwsdp-shared \lib\xsdlib.ja
r

returnsmgmt\ear\rmhelp-war\WEB-INF\lib\share jar

thirdparty\oracle\bip\11.1.1.6\share jar

returnsmgmt\ear\rmhelp-war\WEB-INF\lib\xmlpars
erv2.jar

thirdparty\oracle\bip\11.1.1.6\xmlparserv2.jar

returnsmgmt\ear\rmhelp-war\WEB-INF\lib\xmlpars
erv2jar

thirdparty\oracle\oas\10.1.3\xmlparserv2.jar

returnsmgmt\ear\rm-war\WEB-INF\lib\antlr-2.7.2 jar

thirdparty\apache\struts\1.3.10\lib\antlr-2.7.2 jar

returnsmgmt\ear\rm-war\WEB-INF\lib\bsf-2.3.0.jar

thirdparty\apache\struts\1.3.10\1ib\bsf-2.3.0.jar

returnsmgmt\ear\rm-war\WEB-INF\lib\commons-be
anutils-1.8.0.jar

thirdparty\apache\struts\1.3.10\1ib\commons-beanuti
1s-1.8.0.jar

returnsmgmt\ear\rm-war\WEB-INF\lib\commons-ch
ain-1.2jar

thirdparty\apache\struts\1.3.10\lib\commons-chain-1
2 jar

A-22

Implementation Guide — Volume 2, Extension Solutions

Set Up the Build Tree

Copy from this EPD Extract Location

To this ARU Extract Location

returnsmgmt\ear \rm-war\WEB-INF\lib\commons-di
gester-1.8 jar

thirdparty\apache\struts\1.3.10\lib\commons-digeste
r-1.8 jar

returnsmgmt\ear\rm-war\WEB-INF\lib\commons-fil
eupload-1.1.1.jar

thirdparty\apache\struts\1.3.10\lib\commons-fileupl
oad-1.1.1jar

returnsmgmt\ear\rm-war\WEB-INF\lib\commons-io-
1.1jar

thirdparty\apache\struts\1.3.10\lib\commons-io-1.1,]
ar

returnsmgmt\ear\rm-war\WEB-INF\lib\commons-lo
gging-1.0.4.jar

thirdparty\apache\struts\1.3.10\lib\commons-logging
-1.0.4.jar

returnsmgmt\ear\rm-war\WEB-INF\lib\commons-va
lidator-1.3.1 jar

thirdparty \apache\struts\1.3.10\lib\commons-validat
or-1.3.1jar

returnsmgmt\ear\rm-war\WEB-INF\lib\displaytag-1.
0-b3.jar

thirdparty \sourceforge\displaytag\1.0-b3\displaytag-
1.0-b3.jar

returnsmgmt\ear\rm-war\WEB-INF\lib\jstl-1.0.2 jar

thirdparty \apache\struts\1.3.10\1ib\jstl-1.0.2.jar

returnsmgmt\ear\rm-war\WEB-INF\lib\oro-2.0.8 jar

thirdparty\apache\struts\1.3.10\lib\oro-2.0.8 jar

returnsmgmt\ear\rm-war\WEB-INF\lib\standard-1.0.
6.jar

thirdparty\apache\struts\1.3.10\lib\standard-1.0.6.jar

returnsmgmt\ear\rm-war\WEB-INF\lib\struts-core-1.
3.10jar

thirdparty \apache\struts\1.3.10\lib\struts-core-1.3.10.j
ar

returnsmgmt\ear\rm-war\WEB-INF\lib\struts-el-1.3.
10jar

thirdparty\apache\struts\1.3.10\lib\struts-el-1.3.10.jar

returnsmgmt\ear\rm-war\WEB-INF\lib \struts-extras-
1.3.10jar

thirdparty \apache\struts\1.3.10\lib \struts-extras-1.3.1
0.jar

returnsmgmt\ear\rm-war\WEB-INF\lib\struts-faces-1
.3.10 jar

thirdparty\apache\struts\1.3.10\lib\struts-faces-1.3.10
jar

returnsmgmt\ear\rm-war \WEB-INF\lib\struts-mailre
ader-dao-1.3.10.jar

thirdparty\apache\struts\1.3.10\1lib \struts-mailreader-
dao-1.3.10jar

returnsmgmt\ear \rm-war \WEB-INF\lib\struts-scripti
ng-1.3.10 jar

thirdparty\apache\struts\1.3.10\lib\struts-scripting-1.
3.10jar

returnsmgmt\ear\rm-war\WEB-INF\lib\struts-taglib-
1.3.10jar

thirdparty \apache\struts\1.3.10\lib\struts-taglib-1.3.1
0.jar

returnsmgmt\ear\rm-war\WEB-INF\lib\struts-tiles-1.
3.10jar

thirdparty\apache\struts\1.3.10\lib\struts-tiles-1.3.10.j
ar

returnsmgmt\ear \rmwebservices-war\WEB-INF\lib\a
xiom-api-1.2.10.jar

thirdparty \apache\axis2\1.5.4\lib\axiom-api-1.2.10.jar

returnsmgmt\ear \rmwebservices-war\WEB-INF\lib\a
xiom-dom-1.2.10.jar

thirdparty\apache\axis2\1.5.4\lib\axiom-dom-1.2.10j
ar

returnsmgmt\ear\rmwebservices-war\WEB-INF\lib\a
xiom-impl-1.2.10.jar

thirdparty \apache\axis2\1.5.4\lib\axiom-impl-1.2.10j
ar

returnsmgmt\ear \rmwebservices-war\WEB-INF\lib\a
xis2-adb-1.5.4 jar

thirdparty\apache\axis2\1.5.4\lib\axis2-adb-1.5.4.jar

returnsmgmt\ear\rmwebservices-war\WEB-INF\lib\a
xis2-codegen-1.5.4.jar

thirdparty\apache\axis2\1.5.4\1lib\axis2-codegen-1.5.4
jar

returnsmgmt\ear \rmwebservices-war \WEB-INF\lib\a
xis2-java2wsdl-1.5.4 jar

thirdparty\apache\axis2\1.5.4\1lib\axis2-java2wsdl-1.5
A4 jar

returnsmgmt\ear\rmwebservices-war \WEB-INF\lib\a
xis2-jaxws-1.5.4.jar

thirdparty\apache\axis2\1.5.4\lib\axis2-jaxws-1.5.4.jar

Appendix: Third-Party Jars A-23

Set Up the Build Tree

Copy from this EPD Extract Location

To this ARU Extract Location

returnsmgmt\ear \rmwebservices-war \WEB-INF\lib\a
xis2-kernel-1.5.4.jar

thirdparty\apache\axis2\1.5.4\lib\axis2-kernel-1.5.4.ja
r

returnsmgmt\ear\rmwebservices-war \WEB-INF\lib\a
xis2-mex-1.2 jar

thirdparty\apache\axis2\1.5.4\lib\axis2-mex-1.2 jar

returnsmgmt\ear \rmwebservices-war \WEB-INF\lib\a
xis2-transport-http-1.5.4.jar

thirdparty\apache\axis2\1.5.4\lib\axis2-transport-htt
p-1.5.4jar

returnsmgmt\ear \rmwebservices-war\WEB-INF\lib\a
xis2-transport-local-1.5.4 jar

thirdparty\apache\axis2\1.5.4\lib\axis2-transport-loca
1-1.5.4 jar

returnsmgmt\ear \rmwebservices-war\WEB-INF\1ib\
backport-util-concurrent-3.1.jar

thirdparty \apache\axis2\1.5.4\lib\backport-util-concu
rrent-3.1jar

returnsmgmt\ear \rmwebservices-war\WEB-INF\lib\c
om.oracle.ws.orawsdl_1.1.0.0.jar

thirdparty\oracle\weblogic\10.0\modules\com.oracle.
ws.orawsdl_1.1.0.0.jar

returnsmgmt\ear\rmwebservices-war\WEB-INF\lib\c
ommons-httpclient-3.1.jar

thirdparty \apache\commons-httpclient\3.1\commons
-httpclient-3.1.jar

returnsmgmt\ear\rmwebservices-war\WEB-INF\lib\c
ommons-logging-1.1.1 jar

thirdparty\apache\commons-logging\1.1.1\commons-
logging-1.1.1jar

returnsmgmt\ear \rmwebservices-war\WEB-INF\1ib\
geronimo-jaxws_2.1_spec-1.0jar

thirdparty \apache\axis2\1.5.4\lib\geronimo-jaxws_
2.1_spec-1.0jar

returnsmgmt\ear \rmwebservices-war\WEB-INF\lib\
geronimo-saaj_1.3_spec-1.0.1jar

thirdparty\apache\axis2\1.5.4\lib\ geronimo-saaj_1.3_
spec-1.0.1jar

returnsmgmt\ear \rmwebservices-war\WEB-INF\1ib\
geronimo-stax-api_1.0_spec-1.0.1 jar

thirdparty \apache\axis2\1.5.4\1lib\ geronimo-stax-api_
1.0_spec-1.0.1 jar

returnsmgmt\ear \rmwebservices-war\WEB-INF\lib\
geronimo-ws-metadata_2.0_spec-1.1.2 jar

thirdparty\apache\axis2\1.5.4\1lib\ geronimo-ws-meta
data_2.0_spec-1.1.2jar

returnsmgmt\ear\rmwebservices-war\WEB-INF\1ib\
httpcore-4.0.jar

thirdparty \apache\axis2\1.5.4\1ib\httpcore-4.0 jar

returnsmgmt\ear \rmwebservices-war\WEB-INF\lib\j
axen-1.1.1jar

thirdparty\apache\axis2\1.5.4\lib\jaxen-1.1.1jar

returnsmgmt\ear \rmwebservices-war\WEB-INF\1ib\
neethi-2.0.4.jar

thirdparty \apache\axis2\1.5.4\1lib\neethi-2.0.4.jar

returnsmgmt\ear \rmwebservices-war\WEB-INF\lib\
opensaml-2.2.3 jar

thirdparty\apache\rampart\1.5.1\lib\opensaml-2.2.3j
ar

returnsmgmt\ear \rmwebservices-war \WEB-INF\lib\r
ampart-core-1.5.1 jar

thirdparty \apache\rampart\1.5.1\lib\rampart-core-1.5
1jar

returnsmgmt\ear \rmwebservices-war\WEB-INF\lib\r
ampart-policy-1.5.1jar

thirdparty\apache\rampart\1.5.1\lib\rampart-policy-
1.5.1jar

returnsmgmt\ear\rmwebservices-war \WEB-INF\lib\r
ampart-trust-1.5.1.jar

thirdparty \apache\rampart\1.5.1\lib\rampart-trust-1.
5.1jar

returnsmgmt\ear \rmwebservices-war\WEB-INF\lib\
woden-api-1.0M8 jar

thirdparty\apache\axis2\1.5.4\lib\woden-api-1.0M8 ja
r

returnsmgmt\ear \rmwebservices-war\WEB-INF\1ib\
woden-impl-dom-1.0M8 jar

thirdparty \apache\axis2\1.5.4\lib\woden-impl-dom-1
.0M8 jar

returnsmgmt\ear \rmwebservices-war\WEB-INF\lib\
wss4j-1.5.10 jar

thirdparty\apache\rampart\1.5.1\1ib\wss4j-1.5.10.jar

returnsmgmt\ear \rmwebservices-war\WEB-INF\1ib\
wstx-asl-3.2.9 jar

thirdparty \apache\axis2\1.5.4\lib\wstx-asl-3.2.9 jar

returnsmgmt\ear \rmwebservices-war\WEB-INF\lib\
xalan-2.7.0.jar

thirdparty\apache\axis2\1.5.4\lib\xalan-2.7.0.jar

A-24

Implementation Guide — Volume 2, Extension Solutions

Set Up the Build Tree

Copy from this EPD Extract Location

To this ARU Extract Location

returnsmgmt\ear \rmwebservices-war\WEB-INF\lib\
XmlSchema-1.4.3 jar

thirdparty\apache\axis2\1.5.4\lib\ XmlISchema-1.4.3.ja
r

returnsmgmt\ear\rmwebservices-war \WEB-INF\lib\
xmlsec-1.4.2 jar

thirdparty\apache\rampart\1.5.1\lib\xmlsec-1.4.2 jar

returnsmgmt\ear \rmwebservices-war\WEB-INF\lib\
xmltooling-1.2.0.jar

thirdparty\apache\rampart\1.5.1\1ib\xmltooling-1.2.0.
jar

returnsmgmt\lib\oracle\wlthint3client.jar

thirdparty\oracle\weblogic\10.0\wlserver_
10.0\server\lib\wlthint3client.jar

returnsmgmt\lib\ thirdparty \commons-codec-1.3 jar

thirdparty \apache\commons-codec\1.3\commons-cod
ec-1.3 jar

returnsmgmt\lib\thirdparty\esapi-2.0_rc10.jar

thirdparty\owasp\esapi\2.0\esapi-2.0_rc10.jar

returnsmgmt\lib\thirdparty\log4j-1.2.16.jar

thirdparty\apache\log4j\1.2.16\log4j-1.2.16.jar

returnsmgmt\lib\ thirdparty\servlet-api-2.4.jar

thirdparty \owasp\esapi\2.0\servlet-api-2.4.jar

returnsmgmt\lib\ thirdparty\servlet-api-2.4.jar

thirdparty \sourceforge\antinstaller\0.8.0\j2ee\ ocm-int
egration\lib\groovy\1.5.8\lib\servlet-api-2.4.jar

returnsmgmt\lib\thirdparty\servlet-api-2.4.jar

thirdparty \sourceforge\antinstaller\0.8.0\j2ee\ocm-int
egration\lib\groovy\1.6.5\lib\servlet-api-2.4.jar

returnsmgmt\ear\rm-war\common\jquery-1.6.2.js

thirdparty \jQueryProject\jQuery\1.6.2\jquery-1.6.2.js

returnsmgmt\ear\rm-war\common\jquery-imask.js

thirdparty \jQueryProject\jQuery-iMask\0.7.0\jquery-i
mask.js

returnsmgmt\ear\rm-war\common\jquery-ui-1.8.16.c
ustom.min.js

thirdparty \jQueryProject\jQueryUI\1.8.16\jquery-ui-1.
8.16.custom.min.js

returnsmgmt\ear\rm-war\common \jquery-ui-i18n.js

thirdparty \jQueryProject\jQueryUI\1.8.16\jquery-ui-i
18n.js

returnsmgmt\ear\rm-war\common\jquery.ui.datepick
er-dejs

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-de.js

returnsmgmt\ear\rm-war\common\jquery.ui.datepick
er-eljs

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-el.js

returnsmgmt\ear\rm-war\common\jquery.ui.datepick
er-es.js

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-es.js

returnsmgmt\ear\rm-war\common\jquery.ui.datepick
er-frjs

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-fr.js

returnsmgmt\ear\rm-war\common\jquery.ui.datepick
er-hr.js

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-hr.js

returnsmgmt\ear\rm-war\common\jquery.ui.datepick
er-hu.js

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-hu.js

returnsmgmt\ear\rm-war\common\jquery.ui.datepick
er-it.js

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-it.js

returnsmgmt\ear\rm-war\common\jquery.ui.datepick
er-ja.js

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-ja.js

returnsmgmt\ear\rm-war\common\jquery.ui.datepick
er-kojs

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-ko.js

returnsmgmt\ear\rm-war\common\jquery.ui.datepick
er-mock.js

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-mock.js

returnsmgmt\ear\rm-war\common\jquery.ui.datepick
er-nljs

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-nljs

Appendix: Third-Party Jars A-25

Set Up the Build Tree

Copy from this EPD Extract Location

To this ARU Extract Location

returnsmgmt\ear\rm-war\common\jquery.ui.datepick
er-pljs

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-pl.js

returnsmgmt\ear\rm-war\common\jquery.ui.datepick
er-pt.js

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-pt.js

returnsmgmt\ear\rm-war\common\jquery.ui.datepick
er-ru.js

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-ru.js

returnsmgmt\ear \rm-war\common\jquery.ui.datepick
er-sv.js

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-sv.js

returnsmgmt\ear\rm-war\common\jquery.ui.datepick
er-tr.js

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-tr.js

returnsmgmt\ear \rm-war\common\jquery.ui.datepick
datepicker-zh-TW.js

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-zh-TW.,js

returnsmgmt\ear\rm-war\common\jquery.ui.datepick
er-zh.js

thirdparty \jQueryProject\jQueryUI\1.8.16\datepicker
\jquery.ui.datepicker-zh.js

returnsmgmt\ear\rm-war\images\ui-bg_glass_75_
79¢9%ec_1x400.png

thirdparty \jQueryProject\jQueryUI\1.8.16\images \ui-
bg_glass_75_79c%ec_1x400.png

returnsmgmt\ear\rm-war\images\ui-bg_gloss-wave_
75_2e558¢_500x100.png

thirdparty \jQueryProject\jQueryUI\1.8.16\images\ui-
bg_gloss-wave_75_2e558c_500x100.png

returnsmgmt\ear\rm-war\images \ui-icons_056b93_
256x240.png

thirdparty \jQueryProject\jQueryUI\1.8.16\images \ui-
icons_056b93_256x240.png

returnsmgmt\ear\rm-war\images\ui-icons_a3c2df_
256x240.png

thirdparty \jQueryProject\jQueryUI\1.8.16\images \ ui-
icons_a3c2df_256x240.png

returnsmgmt\ear \rm-webapp-test-client \WEB-INF\lib
\qaf.jar

thirdparty\oracle\qaf\0.1\qaf jar

returnsmgmt\ear\rmhelp-war*

thirdparty\oracle\help\5.0*

ant* thirdparty \sourceforge\antinstaller\0.8.0\shell\ant*

ant-ext* thirdparty \sourceforge\antinstaller\0.8.0\shell\ant-ex
t*

antinstall\lib* thirdparty \sourceforge\antinstaller\0.8.0\shell\antinst

all\lib*

installer-resources*

thirdparty \sourceforge\antinstaller\0.8.0\shell\install
er-resources *

ocm-integration*

thirdparty \sourceforge\antinstaller\0.8.0\j2ee\ ocm-int
egration*

.postinstall.cmd

thirdparty \sourceforge\antinstaller\0.8.0\j2ee\ .postin
stall.ecmd

.postinstall.sh

thirdparty \sourceforge \antinstaller\0.8.0\j2ee\.postin
stall.sh

.preinstall.cmd

thirdparty \sourceforge\antinstaller\0.8.0\j2ee\ .preinst
all.cmd

.preinstall.sh

thirdparty \sourceforge\antinstaller\0.8.0\j2ee\ .preinst
all.sh

install.cnd

thirdparty \sourceforge\antinstaller\0.8.0\shell\install.
cmd

install.sh thirdparty \sourceforge\antinstaller\0.8.0\shell\install.
sh
A-26 Implementation Guide — Volume 2, Extension Solutions

Set Up the Build Tree

Copy from this EPD Extract Location To this ARU Extract Location

prepare.xml

thirdparty \sourceforge\antinstaller\0.8.0\shell\ prepar
e.xml

.preinstall-oas.cmmd

thirdparty\sourceforge\antinstaller\0.8.0\j2ee\ .preinst
all-oas.cmd

.preinstall-oas.sh

thirdparty \sourceforge\antinstaller\0.8.0\j2ee\ .preinst
all-oas.sh

.preinstall-was.cmd

thirdparty\sourceforge\antinstaller\0.8.0\j2ee\ .preinst
all-was.cmd

.preinstall-was.sh

thirdparty \sourceforge\antinstaller\0.8.0\j2ee\ .preinst
all-was.sh

.preinstall-wl.cmd

thirdparty \sourceforge\antinstaller\0.8.0\j2ee\.preinst
all-wl.cmd

.preinstall-wl.sh

thirdparty \sourceforge\antinstaller\0.8.0\j2ee\ .preinst
all-wl.sh

retail-OCM-stores.zip

thirdparty\oracle\ocm\10.3.1.0.0\oracle-retail \retail-O
CM-stores.zip

7.
8.

Create a thirdparty directory at the root of the build tree if it does not already exist.

Download the following files:

Files Source Web Site

dbunit-2.1.zip http://sourceforge.net/projects/dbunit/files

derbyijar, http://db.apache.org/derby/releases/release-10.5.3.0
derbytools.jar .html

wsdl4j-1.6.2 jar http://axis.apache.org/axis2/java/core/download.cgi

Download the 1.6.1 bundle to get the jar.

10.

11.

12.

Download Apache Ant 1.8.2 from the following web site and copy the entire
library to thirdparty\apache\ant\1.8.2:

http://archive.apache.org/dist/ant/binaries/

Unzip dbunit-2.1.zip in a temporary area. Copy dbunit-2.1 jar to
thirdparty \sourceforge\dbunit\2.1.

Note: Create the path directories if they do not exist.

Copy the two derby jars to thirdparty\apache\derby\10.5.3.

Note: Create the path directories if they do not exist.

Copy the wsd14;j jar to thirdparty\apache\axis2\1.5.4\lib.

Note: Create the path directories if they do not exist.

Appendix: Third-Party Jars A-27

http://sourceforge.net/projects/dbunit/files
http://db.apache.org/derby/releases/release-10.5.3.0.html
http://db.apache.org/derby/releases/release-10.5.3.0.html
http://axis.apache.org/axis2/java/core/download.cgi
http://archive.apache.org/dist/ant/binaries/

Set Up the Build Tree

13. Download and install Java Webservices Developer Pack 2.0 from the following
web site:

http://www.oracle.com/technetwork/java/webservicespack-jsp-140788.h
tml

14. Copy jaxrpc-api.jar from the installed location, for example,
C:\Sun\jwsdp-2.0\jaxrpc\lib, to
thirdparty \Sun\jwsdp\2.0\jaxrpc\lib\jaxrpc-api.jar.

15. Acquire jposl13.jar from your device vendors and copy it to
thirdparty \ibm\jpos\1.13.0\jpos113 jar.

16. Acquire the IBM DB2 jdbc driver and license jar files, db2jcc.jar and db2jcc_
license_cu.jar. Place them in thirdparty\ibm\db2\9.7.

Note: Create the path directories if they do not exist.

17. Acquire the IBM Websphere 5.1 jars, sas.jar and wssec.jar. Place them in
thirdparty \ibm\websphere\5.1\was51.

Note: Create the path directories if they do not exist.

18. Acquire the IBM MQ jars, com.ibm.mgq jar and com.ibm.mqjms.jar. Place them in
thirdparty /ibm/mq/7.0.1.3.

Note: Create the path directories if they do not exist.

19. Acquire the IBM Websphere 5.1 jars, sas.jar and wssec.jar. Place them in
thirdparty /ibm/websphere/5.1/was51.

Note: Create the path directories if they do not exist.

20. If you are compiling the rsakeystore on the IBM stack, acquire the RSA 3.1 jars,
kmsclient jar, sslj.jar, and cryptoj.jar. Contact your RSA representative to acquire
them. Place them in thirdparty\rsa\ksmclient\3.1.

If you are compiling the rsakeystore in the Oracle stack, acquire the RSA 3.5 jars,
kmsclient jar, certj.jar, cryptojce.jar, cryptojcommon jar, jem.jar, and sslj.jar. Contact
your RSA representative. Place them in thirdparty\rsa\ksmclient\3.5.

Note: Create the path directories if they do not exist.

21. If you are importing the rsakeystore into Eclipse, the classpath of rsakeystore
project (.classpath file) must be edited to point to the correct location of the
kmsclient jar file.

22, For Point-of-Service builds, you need to acquire the jars,
IMSRTRIBSpecSDK-305 jar, isdcrypt-6.3.0.008 jar, and MSPCommAP]I jar, from
your ACI representative (formerly ISD) and place them in thirdparty\isd \itk\305.

A-28 Implementation Guide — Volume 2, Extension Solutions

http://www.oracle.com/technetwork/java/webservicespack-jsp-140788.html
http://www.oracle.com/technetwork/java/webservicespack-jsp-140788.html

Set Up the Build Tree

Note:

Create the path directories if they do not exist.

23. For web application builds, a few jars are not available in web app binaries. They
can be copied from the Point-of-Service third-party folders once the
Point-of-Service third-party folder is ready. Copy <POS Source>\Sun\jee and
Sun\mail folders to <CO Source>\thirdparty\Sun.

24.

For web application builds, edit the package.version in sparsetree.properties for

the correct product version in the installer if required, for example,

package.version=13.4.6.

25,
from the WebLogic installation:

For Oracle stack builds, collect the WebLogic jars that are needed by the build

In WebLogic Installation

In thirdparty Library

<Weblogic>\Middleware\wlserver_
10.3\server\lib\weblogic jar

thirdparty \oracle\weblogic\10.0\wlserver_
10.0\server\lib\weblogic jar

<Weblogic>\Middleware\wlserver_
10.3\server\lib\wlcipher.jar

thirdparty\oracle\weblogic\10.0\wlserver_
10.0\server\lib\wlcipher.jar

<Weblogic>\Middleware\wlserver_
10.3\server\lib\wlthint3client.jar

thirdparty \oracle\weblogic\10.0\wlserver_
10.0\server\lib\wlthint3client.jar

<Weblogic>\Middleware\wlserver_
10.3\server\lib\mbeantypes\wlManagement
ImplSource jar

thirdparty\oracle\weblogic\10.0\wlserver_
10.0\server\lib\mbeantypes\commo.dtd

<Weblogic>\Middleware\wlserver_
10.3\server\lib\mbeantypes\wlManagement
ImplSource jar

thirdparty\oracle\weblogic\10.0\wlserver_
10.0\server\lib\mbeantypes\wiManagement
ImplSource jar

<Weblogic>\Middleware\wlserver_
10.3\server\lib\mbeantypes\wlManagement
MBean jar

thirdparty \oracle\weblogic\10.0\wlserver_
10.0\server\lib\mbeantypes\wiManagement
MBean jar

<Weblogic>\Middleware\wlserver_
10.3\server\lib\schema\weblogic-domain-bi
nding jar

thirdparty \oracle\weblogic\10.0\wlserver_
10.0\server\lib\schema\weblogic-domain-bi
nding jar

<Weblogic>\Middleware\modules\features\
weblogic.server.modules_10.3.6.0.jar

thirdparty\oracle\weblogic\10.0\modules\f
eatures\weblogic.server.modules_10.3.6.0.jar

<Weblogic>\Middleware\modules\ (jars are
directly under this folder)

thirdparty \oracle\weblogic\10.0\modules\

26. Building security modules only for specific deployment stack is possible by
commenting out relevant portions in <Source>\modules\security \build.xml,
<Source>\applications\centraloffice\assemble\assemble-common.xml, and
<Source>\applications\backoffice\assemble\build.xml. For example, the Oracle
stack only needs the WebLogic security module. Oracle OAS / WAS modules can

be commented out.

27.
following web site:

For Returns Management, download Apache Axis2, axis2-1.5.4-bin.zip, from the

http://archive.apache.org/dist/axis/axis2/java/core/1.5.4/

Copy axis2-adb-codegen-1.5.4 jar to the following location:

thirdparty\apache\axis2\1.5.4\lib\axis2-adb-codegen-1.5.4 jar

Appendix: Third-Party Jars A-29

http://archive.apache.org/dist/axis/axis2/java/core/1.5.4/

Set Up the Build Environment

Set Up the Build Environment

The build requires only one external resource: JDK 1.6. After verifying that JDK 1.6 is
installed, edit setenv.bat or setenv.sh in the root of the code base to point to the correct
JAVA_HOME. Then, run setenv.bat in a new command shell.

In setenv.bat or setenv.sh, set the following environment variables:

ANT_OPTS=-Xmx256m
ANT_HOME=%PROJECT_DIR%\thirdparty\apache\ant\1.8.2
PATH=%$ANT HOME%\bin; $JAVA_HOME$\bin;%PATH%

The ANT_OPTS parameter prevents memory errors during the build. The ANT_
HOME parameter points to the Ant located within the code base. The JAVA_HOME
paramater is your external JDK location.

Alternatively, set these as system variables or create your own setenv.bat or setenv.sh.

Set Up the Build Environment for Linux
On Linux (and Unix) environments, you also need to do the following:

1. The setenv.sh script is written for the Linux bash shell. If you are not running this
shell, the script is unlikely to work for you.

2. Set executable permissions on setenv.sh. You can do this with the following;:
chmod 755 setenv.sh.

3. Navigate to ANT_HOME/bin and find the ant executable. Set executable
permissions on this file:

chmod 755 ant

Understanding the Environment Files

Inside the build directory in the codebase root are one or more environment files that
end in .env. These are properties files that configure what is built and how. To run a
build, you need to select an environment file or create your own.

A .env file to build this product is included following the naming convention of
<product>.env, such as, pos.env or backoffice.env. You can also have your own
environment file that follows the format <username>.env.

The environment file lists all the sub-projects that make up your build. The following
example shows the pos.env file:

pos
common . enabled
utility.enabled
domain.enabled
pos.enabled

#assemble
assemble=pos

#functional tests
dont.run. ftest

You can create your own environment file that contains a list of build sub-projects.
However, you have to make sure your dependencies are built for your sub-projects.

A-30 Implementation Guide — Volume 2, Extension Solutions

Extend the Build with New Projects

For example, you should not have an environment file that only has pos.enabled in the
file; Point-of-Service also requires common, domain, and so on, to build properly.

The environment file can also define a property called translation. This controls which
translation properties files are packaged with the installer zip file. The default for the
translation property is basic, but it can also be set to a comma-delimited list of desired
languages as shown in the following example:

translated properties files to include in installer
Can be set to all 10 languages of the basic set or
some subset of them. The basic set includes:

es,fr,it,de,ja,ko,pt,ru, zh, zh_ TW
translation=basic

Perform the Build

Verify that setenv.bat (or setenv.sh) is configured as described in Set Up the Build
Environment. Then, be sure to run setenv.bat once prior to running the build. To
perform the build, run the following:

ant -Denv={environment} [targets]

To perform a full POS build, run one of the following:
= ant -Denv=pos clean.build.assemble

= ant -Denv=pos clean build assemble

Targets include clean, build, unittest, junitreport, javadoc, and so on. There are also
targets that group targets for you such as clean.build.test or clean.build.assemble.For a
complete list, run ant -projecthelp.

Installers created by the target assemble are located in the install/dist directory. For
information on running the installers, see the product Installation Guide..

To perform a build on an individual build sub-project, change to the sub-project’s
directory and run ant build or any other target, such as javadoc or unittest.

Deploy in Application Server

Some of the Oracle Retail products, such as Back Office and Central Office are]2EE
applications. Building any of them generates a .ear file (for example, backoffice.ear).
This file must be deployed in a J2EE application server.

The simulated encryption key management software (keystoreconnector) must be
deployed in the application server, as a J2EE Connector, before deploying the
application's .ear file. After the product is built, this JCA (Java Connection
Architecture) compliant connector is found in the following location:

<installation root>\modules\keystoreconnector\dist\keystoreconnector-rar.rar

Extend the Build with New Projects

There are 3 steps to creating a new project. The following example adds a new series of
E]JBs to Back Office:

1. Create the project folders and build.xml file:

a. Create the folder structure to hold your new EJBs, code, unit tests, and so on.
The easiest way to accomplish this is to take an existing project that is similar
to yours and copy the structure.

Appendix: Third-Party Jars A-31

Extend the Build with New Projects

A-32

For a straight-forward series of E]Bs for Back Office, create a new folder under
commerceservices. Then, create a src directory.

If you have unit tests, create a test/src directory.

Since this is an EJB project, you need a META-INF directory to hold the
descriptors and MANIFEST.MF file. For an example of this, see another
project.

b. Copy abuild.xml from another project and alter it accordingly. If you copy it
from another commerceservices project, alter the projectname and
libraries.patternset to set the dependencies. Only add what you need to
libraries.patternset. Do not use wildcarding.

c. At the top, in between the <project>node and <import>, there is a series of
properties. In this case, use contains.ejbs and, if you have unit tests,
contains.unit.tests.

d. For your <build> dependencies, add the following targets: java.compile,
java-test.compile (if appropriate), and ejb.compile.

The ejb.compile target does note compile the code; it bundles the compiled
classes, descriptors, and so on, in a jar such as projectname-ejb jar.

e. Test your project build, by running the following in your project directory:
ant clean build
Once the build runs correctly, move on to the next step.
2. Add the new project to the root build.xml and your .env file:

a. Once your project is building individually, get it building as part of the larger
product build. To do that, enable your project in build /build.xml and the
appropriate env files. For Back Office, that is default.env, official-devbuild.env,
and backoffice.env. This may include others that your specific project uses,
such as _customername_-backoffice.env and so on.

In build /build.xml, there is a target called projects.target.invoke. This target is
the engine of the build and determines the order of build and invokes the
specific target needed on the appropriate project. Your new project should
probably be added toward the end of the target.

<condition property="projectname.invoke.internal">
<and>
<isset property="projectname.enabled"/>
</and>
</condition>
<antcall target="project.target.invoke">
<param name="project.name" value="projectname"/>
<param name="parent.name" value="commerceservices"/>
</antcall>

The property parent.name is the top-level folder where the new project is
located. It does not have to be commerceservices or an existing folder; you can
create a new folder called, for example, customername or mynewcode.

b. Once you have added your changes to build /build.xml, update the
appropriate env files with projectname.enabled where projectname is your
project name.

c. Test your build by running the following:

ant -Denv=backoffice clean.build.test

Implementation Guide — Volume 2, Extension Solutions

Extend the Build with New Projects

The new project should be compiled andthe code in a jar file in project/dist.

3. The final step is to get the new E]Bs into backoffice.ear. Add the new project to the
application assemble/build.xml file:

a.

At the top of applications/backoffice /assemble/build.xml file, is a property
named ejb.commerceservices.list. This lists all the projects that have E]Bs that
go into backoffice.ear. Add your new project to this list.

The other option is to add a new task before the <ear> target that copies your
new EJBs to assemble.working.dir/backoffice.ear.dir.

Test your changes by running ant -Denv=backoffice clean.build.test.assemble
from the root or ant assemble.clean assemble from
applications/backoffice/assemble.

Appendix: Third-Party Jars A-33

Extend the Build with New Projects

A-34 Implementation Guide — Volume 2, Extension Solutions

A

Apache Ant build tool, 2-1
application layers, 6-2
algorithm, 6-3
application manager, 6-2
commerce service, 6-3
DAOs, 6-3
database, 6-3
entity, 6-3
user interface, 6-2
architecture and design guidelines, 3-6
AntiPatterns, 3-6
designing for extension, 3-8

Cc

Central Office application
build, 2-2

coding your first feature, 8-1
before you begin, 8-1

common frameworks, 3-8
exception handling, 3-12
logging, 3-9

D

development environment, 2-1
preparation, 2-3
prerequisites, 2-2
setup, 2-3

build the database, 2-4

configure the version control system, 2-4
create a sandbox, 2-4

install Point-of-Service, 2-3

domain package, 5-14
database, 5-15
retail domain, 5-14

E

extending transaction search, 8-1
add business logic to commerce service, 8-13
add new criteria to the service, 8-13
create a class to create the criteria object, 8-13
handle SQL code changes in the service
bean, 8-14

Index

configure action mapping, 8-9
add code to handle new fields to search
transaction form, 8-9
add method to base class, 8-11
create a Struts action class, 8-11
item quantity example, 8-1
verify application manager implementation, 8-12
web Ul framework, 8-2
add strings to properties files, 8-3
configure the sideNav tile, 8-3
create a new JSP file, 8-2

extensibility, 16-1

adding a new dataset, 16-2
adding new dataset type, 16-5
adding new table to existing dataset, 16-1
adding more tables to existing dataset
types, 16-1
changing Oracle Retail Point-of-Service client
database vendor, 16-10
configuring schedule for dataset producer and
consumer, 16-3
configure dataset consumer, 16-4
configure dataset producer, 16-3

extension and customization scenarios, 6-3

access data from a different database, 6-5
access data from external system, 6-6
additional information presented to user, 6-4
change an algorithm used by a service, 6-7
changes to application flow, 6-4

style and appearance changes, 6-3

extension guidelines, 5-1, 6-1

audience, 6-1
conventions, 5-1
directory paths, 5-2
filename conventions, 5-1
modules, 5-2
terms, 5-1
internationalization, 5-9
pos package, 5-3
other, 5-9
tour, 5-3
Ul framework, 5-7

extension strategies, 6-8

data extension through composition, 6-16
extension with inheritance, 6-11
replacement of implementation, 6-13

Index-1

service extension with composition, 6-13
extracting source code, 1-1

F

role of Java classes, 12-9
run Point-of-Service, 2-4

S

frameworks, 9-1
business object, 9-3
data persistence, 9-4
manager/technician, 9-1
tour, 9-5
user interface, 9-2

G

general development standards, 3-1
basics, 3-1
avoiding common Java bugs, 3-2
formatting, 3-2
Java recommendations, 3-1
Javadoc, 3-3
naming conventions, 3-4
SQL guidelines, 3-4
DB2, 35
Oracle, 3-5
unit testing, 3-6

internationalization, 3-8

L

log entry format, 4-7
additional logging info, 4-8
example log entry, 4-9
fixed length header, 4-7
log entry description, 4-7

manager/technician framework, 10-1
new manager/technician, 10-3
manager class, 10-3
manager/technician reference, 10-9
journal manager/technician, 10-12
parameter manager/technician, 10-9
Ul manager/technician, 10-10

P

Point-of-Service development standards, 4-1

R

retail domain, 15-1
domain object in tour code, 15-3
domain object reference, 15-4
code list map, 15-4
currency, 15-7
transaction, 15-8
new domain object, 15-2

Index-2

screen design and user interface guidelines, 4-1

T

tender tour reference, 12-14
tour cam, 12-10
attributes, 12-11
cargo restoration, 12-14
letter processing, 12-14
tour framework, 4-1,12-1
aisles, 4-5
cargo, 4-7
choosing among sites, aisles, and signals, 4-6
foundation, 4-3
general tour guidelines, 4-2
managers and technicians, 4-4
renaming letters, 4-6
roads, 4-5
shuttles, 4-7
signals, 4-5
sites, 4-4
tour architectural guidelines, 4-1
tour components, 12-1
aisles, 12-6
bus, 12-3
cargo, 12-3
common roads, 12-6
exception region, 12-9
letters, 12-5
roads, 12-5
service and service region, 12-3
signals, 12-8
sites, 12-4
stations and shuttles, 12-7
system sites, 12-4
tour metaphor, 12-1
tourmap, 9-6
tours and services, 4-3

U

UI framework, 11-1

beans, 11-4
DatalnputBean, 11-7
DialogBean, 11-12
field types, 11-14
NavigationButtonBean, 11-9
PromptAndResponseBean, 11-4

connections, 11-19
ClearActionListener, 11-19
DocumentListener, 11-20
ValidateActionListener, 11-20

screens, 11-2

text bundles, 11-20
parameterText, 11-21

w

WeblogicApplication Server
install and configure, 2-2

Index-3

Index-4

	Contents
	List of Examples
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Customer Support
	Review Patch Documentation
	Improved Process for Oracle Retail Documentation Corrections
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	1 Extracting Source Code
	2 Development Environments
	Back Office and Central Office Development Environment
	Using the Apache Ant Build Tool
	Prerequisites for the Development Environment
	Install WebLogic Application Server
	Build the Back Office or Central Office Application

	Point-of-Service Development Environment
	Preparation
	Setup
	Install Point-of-Service
	Build the Database
	Create a Sandbox
	Configure the Version Control System

	Run Point-of-Service

	3 General Development Standards
	Basics
	Java Recommendations
	Avoiding Common Java Bugs
	Formatting
	Javadoc
	Naming Conventions
	SQL Guidelines
	DB2
	Oracle

	Unit Testing

	Architecture and Design Guidelines
	AntiPatterns
	Designing for Extension

	Common Frameworks
	Internationalization
	Translation

	Logging
	Guarding Code
	When to Log
	Writing Log Messages
	Exception Messages
	Heartbeat or Life Cycle Messages
	Debug Messages

	Exception Handling
	Types of Exceptions
	Avoid java.lang.Exception
	Avoid Custom Exceptions
	Catching Exceptions
	Keep the Try Block Short
	Avoid Throwing New Exceptions
	Catching Specific Exceptions
	Favor a Switch over Code Duplication

	4 Point-of-Service Development Standards
	Screen Design and User Interface Guidelines
	Tour Framework
	Tour Architectural Guidelines
	General Tour Guidelines
	Foundation
	Tours and Services
	Sites
	Managers and Technicians
	Roads
	Aisles
	Signals
	Choosing Among Sites, Aisles, and Signals
	Renaming Letters
	Shuttles
	Cargo

	Log Entry Format
	Log Entry Description
	Fixed Length Header
	Additional Logging Information
	Example Log Entry

	5 Point-of-Service Extension Guidelines
	Conventions
	Terms
	Filename Conventions
	Modules
	Directory Paths

	POS Package
	Tour
	Tour Map
	Tour Scripts
	Site
	Lane—Road or Aisle
	Shuttle
	Signal
	Cargo

	UI Framework
	Default UI Config
	UI Script
	Bean Model and Bean

	Other
	Internationalization
	Conduit Scripts
	PLAF
	Reports
	Creating new receipts (BPT and SER)
	Alternate Bean Creation (SER)
	Using Person.java to Create a Receipt

	Domain Package
	Retail Domain
	DomainObjectFactory
	Retail Domain Object (RDO)

	Database
	Data Manager and Technician Scripts
	Data Actions and Operations
	Data Transactions

	6 Back Office, Central Office and Labels and Tags Extension Guidelines
	Audience
	Application Layers
	User Interface
	Application Manager
	Commerce Service
	Algorithm
	Entity
	Data Access Objects
	Database

	Extension and Customization Scenarios
	Style and Appearance Changes
	Additional Information Presented to User
	Changes to Application Flow
	Access Data From a Different Database
	Access Data From External System
	Change an Algorithm Used By a Service

	Extension Strategies
	Extension with Inheritance
	Replacement of Implementation
	Service Extension with Composition
	Data Extension Through Composition

	7 Returns Management Extension Guidelines
	Element Location and Schema Definition
	Element Usage and Retrieval

	8 Coding Your First Back Office or Central Office Feature
	Before You Begin
	Extending Transaction Search
	Item Quantity Example in Central Office
	Search by Login ID in Back Office
	Web UI Framework in Central Office
	Create a New JSP file
	Add Strings to Properties Files
	Configure the sideNav Tile

	Web UI Framework in Back Office
	Modify the JSP File
	Externalize Strings
	Action Mapping
	Action Form
	Action Modification

	Configure Action Mapping in Central Office
	Add Code to Handle New Fields to Search Transaction Form
	Create a Struts Action Class
	Add Method to Base Class

	Application Services in Back Office
	Verify Application Manager Implementation in Central Office
	Commerce Services in Back Office
	Add Business Logic to Commerce Service in Central Office
	Create a Class to Create the Criteria Object
	Add New Criteria to the Service
	Handle SQL Code Changes in the Service Bean

	9 Frameworks
	Frameworks
	Manager/Technician
	User Interface
	Business Object
	Data Persistence
	Tour
	Tourmap

	10 Manager/Technician Framework
	New Manager/Technician
	Manager Class
	Manager Configuration
	Technician Class
	Technician Configuration
	Valet Class
	Sample Code
	Configuration
	Tour Code
	Manager
	Valet
	Technician

	Manager/Technician Reference
	Parameter Manager/Technician
	UI Manager/Technician
	Journal Manager/Technician
	Internationalizing EJournal Messages
	Internationalizing Static Texts
	Internationalizing Transaction Data
	Database Data
	Data Retrieved from Java Constants
	Concatenated Strings
	DateTime and Currency Data

	Internationalization of Data Modification Event Messages
	Persisting EJournal in UTF8 format
	Retrieve EJournal from Point-of-Service
	Display EJournal from Central Office

	11 User Interface Framework
	Screens
	Beans
	PromptAndResponseBean
	Bean Properties and Text Bundle
	Tour Code

	DataInputBean
	Bean Properties and Text Bundle
	Tour Code

	NavigationButtonBean
	Bean Properties and Text Bundle
	LocalNavigationPanel
	GlobalNavigationPanel

	Tour Code

	DialogBean
	Bean Properties and Text Bundle
	Tour Code

	Field Types
	Multi-byte Support For Input Fields
	UI Framework Architecture for Input Fields
	Updating MaxLength and Size of Multi-byte Fields
	Allowing or Disallowing UI Fields to Accept UTF8 Characters

	Connections
	ClearActionListener
	DocumentListener
	ValidateActionListener

	Text Bundles
	parameterText

	12 Oracle Retail Tour Framework
	Tour Components
	Tour Metaphor
	Service and Service Region
	Bus
	Cargo
	Sites
	System Sites
	Letters
	Roads
	Common Roads
	Aisles
	Stations and Shuttles
	Signals
	Exception Region

	Role of Java Classes
	Tour Cam
	Attributes
	Letter Processing
	Cargo Restoration

	Tender Tour Reference

	13 13 Point-of-Service COMMEXT Framework
	Point-of-Service Connector Framework
	BaseManager/BaseTechnician
	ServiceManager/ServiceTechnician
	MessageDispatcher
	MessageRouter
	RouterConnector
	ConnectorIfc
	FormatterIfc
	RoutingRuleIfc
	MessageIfc
	MessageResponseIfc
	Message Routing

	Connectors
	COMMEXT Patterns to Support Interaction Behavior
	Store and Forward
	Attempt, Store and Forward on Failure

	14 Oracle Retail Returns Management Extensibility Framework
	Adding a New Rule
	Adding a New KPI Calculator
	The Calculator Class
	Database Configuration
	Creating the JSP

	15 Retail Domain
	New Domain Object
	Domain Object in Tour Code
	Domain Object Reference
	CodeListMap
	Currency
	Transaction

	16 Extending Intra Store Data Distribution
	Intra Store Data Distribution Extensibility
	Adding New Table To Existing DataSet
	Adding More Tables To Existing DataSet Types
	Adding a Table to an Existing Data Set Using the Stores Build Scripts

	Adding a New DataSet
	Adding a New DataSet Using the Stores Build Scripts

	Configuring Schedule for DataSet Producer and Consumer
	Configure DataSet Producer
	Configure DataSet Consumer

	Adding New DataSet Type
	Adding a New DataSet Type Using the Stores Build Scripts

	Changing Oracle Retail Point-of-Service Client Database Vendor

	A Appendix: Third-Party Jars
	PABP/PCI Compliance Warning
	Set Up the Build Tree
	Set Up the Build Environment
	Set Up the Build Environment for Linux
	Understanding the Environment Files
	Perform the Build
	Deploy in Application Server
	Extend the Build with New Projects

	Index
	A
	C
	D
	E
	F
	G
	I
	L
	M
	P
	R
	S
	T
	U
	W

