

Oracle® Retail POS Suite with Mobile
Point-of-Service
Implementation Guide, Volume 5 - Mobile Point-of-Service

Release 13.4.1

September 2012

Oracle Retail POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile
Point-of-Service, Release 13.4.1

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Primary Author: Bernadette Goodman

Contributing Author: Tony Zgarba, John Yopp, Chuck Pilon

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Value-Added Reseller (VAR) Language

Oracle Retail VAR Applications

The following restrictions and provisions only apply to the programs referred to in this section and licensed
to you. You acknowledge that the programs may contain third party software (VAR applications) licensed to
Oracle. Depending upon your product and its version number, the VAR applications may include:

(i) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail Data
Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(ii) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of Kirkland,
Washington, to Oracle and imbedded in Oracle Retail Mobile Store Inventory Management.

(iii) the software component known as Access Via™ licensed by Access Via of Seattle, Washington, and
imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(iv) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of San Jose,
California, and imbedded in Oracle Retail Promotion Planning & Optimization application.

You acknowledge and confirm that Oracle grants you use of only the object code of the VAR Applications.
Oracle will not deliver source code to the VAR Applications to you. Notwithstanding any other term or
condition of the agreement and this ordering document, you shall not cause or permit alteration of any VAR
Applications. For purposes of this section, "alteration" refers to all alterations, translations, upgrades,
enhancements, customizations or modifications of all or any portion of the VAR Applications including all
reconfigurations, reassembly or reverse assembly, re-engineering or reverse engineering and recompilations
or reverse compilations of the VAR Applications or any derivatives of the VAR Applications. You
acknowledge that it shall be a breach of the agreement to utilize the relationship, and/or confidential
information of the VAR Applications for purposes of competitive discovery.

The VAR Applications contain trade secrets of Oracle and Oracle's licensors and Customer shall not attempt,
cause, or permit the alteration, decompilation, reverse engineering, disassembly or other reduction of the
VAR Applications to a human perceivable form. Oracle reserves the right to replace, with functional
equivalent software, any of the VAR Applications in future releases of the applicable program.

v

Contents

List of ExamplesList of Figures

Send Us Your Comments ... xi

Preface ... xiii

Audience... xiii
Documentation Accessibility ... xiii
Related Documents ... xiv
Customer Support ... xiv
Review Patch Documentation ... xiv
Oracle Retail Documentation on the Oracle Technology Network ... xiv
Conventions ... xv

1 Introduction

Contents of this Guide .. 1-1
Key Features of Mobile Point-of-Service... 1-1
Skills Needed for Implementation ... 1-2

Applications .. 1-2
Technical Concepts .. 1-2

2 Mobile POS User Interface Customization

Resources ... 2-1
Customization Files ... 2-1

CSS Customization File ... 2-2
JavaScript Customization File .. 2-2

iPod Touch Display .. 2-2
Changing the Application Name... 2-3
Changing the Application Icon .. 2-3
Changing the Splash Screen ... 2-3

Styling... 2-3
Changing the Color Scheme ... 2-4
Changing the Corporate Logo.. 2-4
Changing the Menu Button Color ... 2-4
Changing the Menu Button Size .. 2-5
Changing the Action Button Icons... 2-5
Hiding the Action Button Text ... 2-6

vi

Changing Text... 2-6
Business Flow.. 2-8

Changing the Menu ... 2-8
Removing a Menu Button.. 2-8
Adding a Menu Button .. 2-9
Updating a Menu Entry ... 2-9
Changing the Number of Columns.. 2-9

Workflows .. 2-10
Adding a New Page... 2-10
Adding a New Workflow ... 2-12
Inserting a Page into an Existing Workflow .. 2-12
Replacing a Page in an Existing Workflow .. 2-13

Inserting a Static Field on a Page .. 2-14
Inserting an API-Filled, Non-Input Field on a Screen ... 2-15
Inserting an Input Field on a Screen... 2-15
Changing Field Validation... 2-16
Changing the Business Logic Behind a Screen Event .. 2-17
Server API Calls... 2-17

Custom Service with Unaltered Method Signature.. 2-18
Custom Service with Modified Method Signature ... 2-18
Custom Service with Modified Data Returned from the POS Server 2-18

Configurable Settings ... 2-19
Changing the Security Mechanism... 2-19

New Hardware ... 2-20
Supporting New iOS Devices.. 2-20
Supporting Alternate Mobile OS Devices ... 2-20
Supporting Tablets.. 2-20

iPad .. 2-21
Non-iOS Tablet... 2-21

Supporting Alternate Sleds.. 2-21

3 Mobile POS Server Overview

Solution Components.. 3-1
REST Interfaces and Service Implementations .. 3-2
View Objects ... 3-2
Access to Tours... 3-2
Application State Management.. 3-3
Device Profiles .. 3-4
Authentication and Authorization .. 3-4

4 Mobile POS Frameworks

REST Service Layer .. 4-1
Tour Runner and Tour Access .. 4-2
Status and Tour Parameter Object Frameworks ... 4-4

vii

5 Mobile POS Extension Guidelines

Customize an Existing Service API... 5-1
Service Method Override .. 5-1
Customize the Tour Runner ... 5-2

Tour Runner Configuration... 5-2
InstructibleUIManager ... 5-3

Error Handling in the Mobile POS Server ... 5-4
Tour Runner Inputs and Outputs... 5-4

Customize Tour .. 5-4
Extend an Existing Service Area .. 5-5
Adding a New Service Area ... 5-7
Customizing Authentication.. 5-7
Working with Device Profiles.. 5-7

Device Mappings.. 5-7
Device Settings.. 5-8

Configuration Settings ... 5-8
POS Parameters... 5-8
Reason Codes... 5-9

6 Implementation Environment

Eclipse Project Creation .. 6-1
Mobile POS Server Deployment Model.. 6-2

7 Internationalization

Translation ... 7-1

A Appendix: API URLs

About API ... A-1
Auth API ... A-1
Item API .. A-2
Register API.. A-2
Transaction API.. A-3

B Appendix: API Result Formats

VersionStatus.. B-1
AuthStatus .. B-1
AuthStatusWithProfile ... B-2
ItemStatus ... B-4
InventoryStatus.. B-5
GiftCardStatus ... B-7
RegisterStatus .. B-8
RegisterProfileConfiguration ... B-8
TransactionStatus .. B-10
ReceiptStatus .. B-13

viii

C Appendix: Eclipse Screens

Extending Mobile POS... C-1
Setting Up an Implementation Environment .. C-2

ix

List of Examples

2–1 Changing the Color Scheme of Large Navigation Buttons... 2-2
2–2 Triggering an Event at Completion of Mobile POS UI Initialization 2-2
2–3 Changing the Application Name.. 2-3
2–4 Changing the Corporate Logo .. 2-4
2–5 Changing the Color of Menu Buttons.. 2-4
2–6 Changing the Background of Menu Buttons .. 2-5
2–7 Shrinking the Menu Buttons ... 2-5
2–8 Changing an Action Button Icon .. 2-6
2–9 Hiding Action Button Text .. 2-6
2–10 Hiding Button Text on the Basket Screen.. 2-6
2–11 Changing Displayed Text .. 2-7
2–12 Changing Displayed Text in Specific Locales... 2-7
2–13 Removing the Close Till Button.. 2-8
2–14 Adding a Settings Button to a Menu.. 2-9
2–15 Changing a Menu Entry... 2-9
2–16 Changing the Number of Columns.. 2-9
2–17 Defining a New Settings Page.. 2-10
2–18 Inserting a Page into an Existing Workflow .. 2-13
2–19 Replacing a Page in an Existing Workflow .. 2-13
2–20 Adding a Third Welcome Line on the Login Screen .. 2-14
2–21 Inserting an API-Filled Non-Input Field on a Screen ... 2-15
2–22 Inserting an Input Field on a Screen ... 2-16
2–23 Changing Field Validation ... 2-16
2–24 Changing the Business Logic Behind a Screen Event... 2-17
2–25 Hooking Up a Custom Authorization Service... 2-18
2–26 Modification to the Login Method .. 2-19
2–27 Changing the Minimum Battery Level ... 2-19
4–1 Tour Runner Configuration... 4-3
4–2 InstructibleUIManager Configuration... 4-3
5–1 Tour Runner Configuration... 5-2
5–2 Letters ... 5-3
5–3 Service Extension .. 5-6
5–4 New Service API ... 5-6
5–5 Device Mappings .. 5-7
5–6 Configuration Settings ... 5-8
5–7 POS Parameters... 5-8
5–8 Reason Codes... 5-9

x

List of Figures

3–1 Mobile POS Components... 3-1
3–2 Traditional POS Tour Map .. 3-2
3–3 Tour Access.. 3-3
3–4 Service Area Dependencies ... 3-4
4–1 Service Framework ... 4-1
4–2 Service Call Sequence ... 4-2
4–3 Tour Runner... 4-3
4–4 Status Object Hierarchy ... 4-4
4–5 Tour Parameter Object Hierarchy .. 4-5
5–1 Service Extension Model.. 5-5
6–1 Eclipse Project Structure .. 6-2
C–1 Eclipse New Java Class ... C-1
C–2 Eclipse Workspace Preferences.. C-2
C–3 Eclipse Runtime Environments.. C-3
C–4 Eclipse WAR Import Menu .. C-4
C–5 Eclipse WAR Import Wizard.. C-4
C–6 Eclipse WAR Import Dialog... C-5
C–7 Eclipse WAR Import: Web Libraries... C-5
C–8 Eclipse Mobile POS Workspace ... C-6
C–9 Eclipse Add Library... C-6
C–10 Eclipse Select WebLogic Shared Library .. C-7

xi

Send Us Your Comments

Oracle Retail POS Suite with Mobile Point-of-Service Implementation Guide, Volume
5 - Mobile Point-of-Service, Release 13.4.1

Oracle welcomes customers' comments and suggestions on the quality and usefulness
of this document.

Your feedback is important, and helps us to best meet your needs as a user of our
products. For example:

■ Are the implementation steps correct and complete?

■ Did you understand the context of the procedures?

■ Did you find any errors in the information?

■ Does the structure of the information help you with your tasks?

■ Do you need different information or graphics? If so, where, and in what format?

■ Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell
us your name, the name of the company who has licensed our products, the title and
part number of the documentation and the chapter, section, and page number (if
available).

Send your comments to us using the electronic mail address: retail-doc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number
(optional).

If you need assistance with Oracle software, then please contact your support
representative or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your
Oracle local office and inquire about our Oracle University offerings. A list of Oracle
offices is available on our Web site at http://www.oracle.com.

Note: Before sending us your comments, you might like to check
that you have the latest version of the document and if any concerns
are already addressed. To do this, access the Online Documentation
available on the Oracle Technology Network Web site. It contains the
most current Documentation Library plus all documents revised or
released recently.

xii

xiii

Preface

This Implementation Guide describes the requirements and procedures to extend and
customize this Oracle Retail Mobile Point-of-Service release.

Audience
This Implementation Guide is intended for Oracle Retail Mobile Point-of-Service
application integration and implementation staff.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

xiv

Related Documents
For more information, see the following documents in the Oracle Retail Mobile
Point-of-Service Release 13.4.1 documentation set:

■ Oracle Retail Mobile Point-of-Service Java API Reference

■ Oracle Retail Point-of-Service with Mobile Point-of-Service Installation Guide, Volume 1 -
Oracle Stack

■ Oracle Retail Point-of-Service with Mobile Point-of-Service Release Notes

■ Oracle Retail Point-of-Service with Mobile Point-of-Service User Guide

■ Oracle Retail POS Suite with Mobile Point-of-Service Configuration Guide

■ Oracle Retail POS Suite with Mobile Point-of-Service Licensing Information

■ Oracle Retail POS Suite with Mobile Point-of-Service Security Guide

Customer Support
To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com

When contacting Customer Support, please provide the following:

■ Product version and program/module name

■ Functional and technical description of the problem (include business impact)

■ Detailed step-by-step instructions to re-create

■ Exact error message received

■ Screen shots of each step you take

Review Patch Documentation
When you install the application for the first time, you install either a base release (for
example, 13.4) or a later patch release (for example, 13.4.1). If you are installing the
base release, additional patch, and bundled hot fix releases, read the documentation
for all releases that have occurred since the base release before you begin installation.
Documentation for patch and bundled hot fix releases can contain critical information
related to the base release, as well as information about code changes since the base
release.

Oracle Retail Documentation on the Oracle Technology Network
Documentation is packaged with each Oracle Retail product release. Oracle Retail
product documentation is also available on the following Web site:

http://www.oracle.com/technology/documentation/oracle_retail.html

(Data Model documents are not available through Oracle Technology Network. These
documents are packaged with released code, or you can obtain them through My
Oracle Support.)

Documentation should be available on this Web site within a month after a product
release.

xv

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xvi

1

Introduction 1-1

1 Introduction

Oracle Retail Mobile Point-of-Service is an extension of Oracle Retail Point-of-Service.
It provides the capability to use a mobile device for processing transactions. It
provides a subset of the capabilities that are available on a register for entering
transactions, tendering transactions, and looking up items.

Contents of this Guide
This implementation guide addresses the following topics:

■ Chapter 1, "Introduction": Overview of Mobile Point-of-Service and the skills
needed for implementation.

■ Chapter 2, "Mobile POS User Interface Customization": Guidelines for customizing
the Mobile POS User Interface.

■ Chapter 3, "Mobile POS Server Overview": Overview of the Mobile POS Server.

■ Chapter 4, "Mobile POS Frameworks": Description of the frameworks used for
Mobile Point-of-Service.

■ Chapter 5, "Mobile POS Extension Guidelines": Guidelines for extending and
customizing Mobile Point-of-Service.

■ Chapter 6, "Implementation Environment": Information on how to set up a
single-user development environment.

■ Chapter 7, "Internationalization": Translations provided for Mobile
Point-of-Service.

■ Appendix A, "Appendix: API URLs": Overview of the API URLs, including
parameter and return types.

■ Appendix B, "Appendix: API Result Formats": Messages returned by the APIs.

■ Appendix C, "Appendix: Eclipse Screens": Screenshots from Eclipse that illustrate
steps to create an implementation environment.

Key Features of Mobile Point-of-Service
Mobile Point-of-Service provides the following features:

■ Scan items or enter the item numbers manually. Scan or enter a serial number if
required for an item.

■ Sell and activate gift cards.

■ Look up item availability.

Skills Needed for Implementation

1-2 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

■ Apply discounts and price overrides to items. Apply discounts to transactions.

■ Tender transactions using a credit card, debit card, or gift card.

■ Print and email receipts.

■ Suspend a transaction in order to complete it at a register.

If Oracle Retail Mobile Point-of-Service is implemented with Oracle Retail Store
Inventory Management, the following Oracle Retail Store Inventory Management
functionality is supported:

■ Inventory lookup at the current store

■ Inventory lookup at buddy stores

■ Validation of serial numbers

Skills Needed for Implementation
The implementer needs an understanding of the following applications and technical
concepts.

Applications
The implementer should understand the interface requirements of the integrated
applications and data sources. The implementer needs this knowledge for the
following applications:

■ Oracle Retail Back Office

■ Oracle Retail Point-of-Service

■ Oracle Retail Store Inventory Management

Technical Concepts
The implementer should understand the following technical concepts:

■ UNIX system administration, shell scripts, and job scheduling

■ Eclipse

■ Technical architecture for Mobile Point-of-Service

■ Application servers, specifically servlet containers

■ Java coding, including REST Java coding concepts

■ XML manipulation

For customization of the user interface, the implementer should also understand the
following technical concepts:

■ JavaScript programming

■ HTML programming

■ CSS programming

■ Xcode development

■ Apple Enterprise Development setup and deployment

■ Certificate creation and deployment

Mobile POS User Interface Customization 2-1

2
Mobile POS User Interface Customization

This chapter provides information on how to customize the user interface (UI) for the
Mobile POS application. Examples of code changes are included.

See the Oracle Retail Point-of-Service with Mobile Point-of-Service Installation Guide -
Volume 1, Oracle Stack for the following information:

■ Setup for the Mobile POS Xcode project.

■ Configuration and deployment of the Mobile POS UI distribution certificate.

Resources
Consult the following Web sites for additional information.

Customization Files
Customization of Mobile POS should be limited, as much as possible, to the following
two files:

■ mobilepos/www/css/customize.css

■ mobilepos/www/js/customize.js

These two files are loaded by Mobile POS (in index.html), but are not provided by
Oracle. Therefore, any changes you put into these two files will not be overwritten
when a new release or patch is installed.

Web Site

CSS Gradients http://developer.apple.com/library/ios/#documentation/us
erexperience/conceptual/mobilehig/IconsImages/IconsImage
s.html

jQuery http://jquery.com/

jQuery Mobile http://jquerymobile.com/

PhoneGap http://phonegap.com

Note: The Mobile POS JavaScript code interacts with the iPod Touch
device using PhoneGap and several PhoneGap plug-ins. Modification
of the PhoneGap plug-ins and development of new PhoneGap
plug-ins are not covered in this document.

http://developer.apple.com/library/ios/#documentation/userexperience/conceptual/mobilehig/IconsImages/IconsImages.html
http://developer.apple.com/library/ios/#documentation/userexperience/conceptual/mobilehig/IconsImages/IconsImages.html

iPod Touch Display

2-2 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

CSS Customization File
The styling of Mobile POS is controlled through Cascading Style Sheets (CSS). The
style sheets used by Mobile POS are located in mobilepos/www/css.

To change the styling of Mobile POS, create a file named customize.css in
mobilepos/www/css and place the style changes in this file. Although it is not
provided in the Mobile POS distribution, customize.css is loaded after all other
CSS style sheets, so any styles put into customize.css will override the other styles.

To change the color scheme of the large navigation buttons, create customize.css
with the following:

Example 2–1 Changing the Color Scheme of Large Navigation Buttons

.large-navigation-button
{
 background-image: -webkit-linear-gradient(top, #FF170F, #EF5B5B);
}

JavaScript Customization File
Altering the business flow of or changing the text displayed by the Mobile POS UI
requires coding in JavaScript.

Some custom code, such as the modification of displayed text, should not be executed
until after the Mobile POS UI has successfully initialized. To handle this situation,
bind to the mpos-initialized event in customize.js and provide a function to
be executed once mpos-initialized is triggered. Mobile POS triggers this event
when it successfully completes initialization.

Example 2–2 Triggering an Event at Completion of Mobile POS UI Initialization

(function()
{
 // Wait until mpos-initialized is triggered, indicating that MPOS is
 // initialized.
 $(document).bind("mpos-initialized", myCustomInitializationFunction);
})();

function myCustomInitializationFunction()
{
 // Custom initialization goes here.
 console.log("myCustomInitializationFunction");
}

In the JavaScript examples that follow, any reference to
myCustomInitializationFunction assumes that it is called in response to the
mpos-initialized event shown in Example 2–2.

iPod Touch Display
This section describes how to customize the iPod Touch display.

Note: To write to the log file that is accessible from the About page,
call console.log with the information to be logged.

Styling

Mobile POS User Interface Customization 2-3

Changing the Application Name
To change the name that appears on the iPod Touch screen underneath the application
icon:

1. Open the project in Xcode.

2. Open the Project Navigator panel (Command-1).

3. Click mobilepos at the top of the project hierarchy.

4. In the right panel, click mobilepos under Targets, click the Info tab, and then
expand Custom iOS Target Properties.

5. Change the Bundle display name property to the desired application name and
then repackage.

Alternatively, you can do the following:

1. Edit mobilepos/mobilepos/mobilepos-Info.plist and search for
CFBundleDisplayName.

2. As shown in Example 2–3, change the line following the CFBundleDisplayName
line to <string>Application Name</string>. Set Application Name to the name you
want to use. Then repackage.

Example 2–3 Changing the Application Name

<key>CFBundleDisplayName</key>
<string>Gadgets POS</string>

Changing the Application Icon
To change the icon that appears on the iPod Touch screen, replace
/mobilepos/icon.png and /mobilepos/icon@2x.png and then repackage using
Xcode. The icon.png should be sized 57 pixels by 57 pixels, and icon@2x.png
should by sized 114 pixels by 114 pixels. For more information, see the following Web
site:

http://developer.apple.com/library/ios/#documentation/userexperience/co
nceptual/mobilehig/IconsImages/IconsImages.html

Changing the Splash Screen
The splash screen, also called the launch image, can be changed by replacing
/mobilepos/Default.png and /mobilepos/Default@2x.png and then
repackaging the application using Xcode. Default.png should be sized 320 pixels by
480 pixels, and Default@2x.png should by sized 640 pixels by 960 pixels. For more
information, see the following Web site:

http://developer.apple.com/library/ios/#documentation/userexperience/co
nceptual/mobilehig/IconsImages/IconsImages.html#//apple_
ref/doc/uid/TP40006556-CH14-SW5

Styling
This section describes changes that can be made to the style of the Mobile POS UI.

http://developer.apple.com/library/ios/#documentation/userexperience/conceptual/mobilehig/IconsImages/IconsImages.html
http://developer.apple.com/library/ios/#documentation/userexperience/conceptual/mobilehig/IconsImages/IconsImages.html
http://developer.apple.com/library/ios/#documentation/userexperience/conceptual/mobilehig/IconsImages/IconsImages.html#//apple_ref/doc/uid/TP40006556-CH14-SW5
http://developer.apple.com/library/ios/#documentation/userexperience/conceptual/mobilehig/IconsImages/IconsImages.html#//apple_ref/doc/uid/TP40006556-CH14-SW5
http://developer.apple.com/library/ios/#documentation/userexperience/conceptual/mobilehig/IconsImages/IconsImages.html#//apple_ref/doc/uid/TP40006556-CH14-SW5

Styling

2-4 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

Changing the Color Scheme
Mobile POS uses the jQuery Mobile JavaScript library to style the UI elements. The
styles are defined in mobilepos/www/css/mobilepos.theme.css, which is a
copy of one of the five predefined swatches provided by the default jQuery Mobile
theme.

To change the color scheme, copy mobilepos.theme.css into customize.css
and override the colors. The following properties need to be adjusted:

■ background

■ background-image

■ color

■ text-shadow

■ border

jQuery Mobile ThemeRoller is a tool written by the jQuery Mobile development team
that can be used to select color combinations that work with jQuery Mobile.

Changing the Corporate Logo
An Oracle logo is shown at the top of the login and menu pages. To change the logo,
copy a new image file into the mobilepos/www/images folder and then place the
following in mobilepos/www/css/customize.css:

Example 2–4 Changing the Corporate Logo

[data-header="banner"]
{
 background-image: url("../images/company-logo.png");
}

In Example 2–4, the new logo file is named company-logo.png.

The image is scaled to 29 pixels high. If this height is not appropriate, the values of the
height and background-size properties of the [data-header="banner"] CSS
selector need to be adjusted as well.

Changing the Menu Button Color
The CSS style definition for the menu buttons is named
large-navigation-button. The definition is found in
mobilepos/www/css/mobilepos.css.

To change the style of the menu buttons, override the large-navigation-button
class by putting in the new style attributes into
mobilepos/www/css/customize.css.

To change the color of the menu buttons from a blue gradient to a red gradient, put the
following into customize.css:

Example 2–5 Changing the Color of Menu Buttons

.large-navigation-button

Note: Plugging in the style sheet generated by ThemeRoller does not
work with this release of Mobile POS.

Styling

Mobile POS User Interface Customization 2-5

{
 background-image: -webkit-linear-gradient(top, #FF170F, #EF5B5B);
}

If you change the background of the menu buttons, you should give a visual
indication that the button is pressed by changing the background in the active
pseudo-class. One way to do this is to swap the endpoints, as shown in Example 2–6:

Example 2–6 Changing the Background of Menu Buttons

.large-navigation-button:active
{
 background-image: -webkit-linear-gradient(top, #EF5B5B, # FF170F);
}

Changing the Menu Button Size
The size of the menu buttons is controlled by the size of the image, size of the text font,
and padding around the text. Override the following properties in customize.css:

To shrink the menu buttons, put the following into customize.css:

Example 2–7 Shrinking the Menu Buttons

.large-navigation-button img
{
 height: 40px;
}

.large-navigation-button-text
{
 padding-left: 5px;
 padding-right: 5px;
 padding-bottom: 5px;
 font-size: 12px;
}

Changing the Action Button Icons
Action buttons appear on the bottom of the screen in the footers. For example, the Pay
button on the basket screen is an action button.

The icon displayed on an action button is controlled by the data-icon attribute,
which can be seen in the HTML for the page. For example, basket.html shows that
the data-icon attribute for the Pay button is mpos-pay.

To find the file that is used for the button icon, locate the class CSS class selector
named .ui-icon- plus the value of the data-icon attribute in mobilepos.css. For
example, the CSS class selector for the Pay button is .ui-icon-mpos-pay.

CSS Selector Property

.large-navigation-button img height

.large-navigation-button-text font-size

.large-navigation-button-text padding

Styling

2-6 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

The file that contains the icon is specified in the background property. To change the
icon, override the background property of the style in customize.css. Put the
following in customize.css to change the Pay button icon to a file named
my-pay-icon.png:

Example 2–8 Changing an Action Button Icon

.ui-icon-mpos-pay
{
 background: url("../images/my-pay-icon.png") 50% 50% no-repeat;
}

Action button icons should be 30 pixels wide by 30 pixels high.

Hiding the Action Button Text
To gain additional content space on the screens with action buttons, the action button
text can be hidden and the toolbar decreased in height. To do this, place the following
code in customize.css:

Example 2–9 Hiding Action Button Text

[data-footer="square-row"] .ui-btn-text
{
 display: none;
}

[data-footer="square-row"]
{
 height: 45px;
}

This can be applied on a page-by-page basis by pre-pending the page identifier to the
CSS selector. The page identifier is found in the HTML for the page. Look for the div
with data-role="page". The page identifier is the value of the id attribute. The
page identifier for the basket page is basket-page, which is specified by this line in
basket.html:

<div data-role="page" id="basket-page" data-theme="o">

Example 2–10 shows the code to place in customize.css to hide the button text only
on the basket screen:

Example 2–10 Hiding Button Text on the Basket Screen

#basket-page [data-footer="square-row"] .ui-btn-text
{
 display: none;
}

#basket-page [data-footer="square-row"]
{
 height: 45px;
}

Changing Text
The text displayed for field labels, button text, and error messages is read from the
resource bundles located in mobilepos/www/js/translations. The resource

Styling

Mobile POS User Interface Customization 2-7

bundles are named Resources_language-identifier_
region-identifier.js. For example, the resource bundle for United States
English is Resources_en_US.js.

The content of a resource file is structured as an object consisting of key-value pairs.
Mobile POS uses a key string to look up the translated value in the resource file that
corresponds to the locale currently configured on the mobile device.

To change the text that is displayed:

1. Inspect the JavaScript and resource bundles to determine the keys that are being
used to retrieve the text from the resource bundle. For example, to change the
"Welcome to Mobile POS" text, you can search the resource bundle for this text
and see from the following line that the message key is
%login-welcome-text-1:

"%login-welcome-text-1": "Welcome to Mobile POS.",

2. In a function called after Mobile POS is initialized (see "JavaScript Customization
File"), construct an object with the message keys found in Step 1 and the new
values.

3. Call Globalize.addCultureInfo to replace the default message key values
with the new values.

In Example 2–11, the login screen strings "Welcome to Mobile POS" and "Please Log
In" are replaced with "Welcome to Custom Mobile POS" and an empty string.

Example 2–11 Changing Displayed Text

function onCustomMPOSInitialized()
{
 // Load custom strings into the current locale.
 var customStrings =
 {
 "%login-welcome-text-1": "Welcome to Custom Mobile POS",
 "%login-welcome-text-2": "",
 };

var globalizeLocale = MobilePOSDevice.getGlobalizeLocale();
Globalize.addCultureInfo(globalizeLocale,
{
 messages: customStrings
});
}

If the implementation of Mobile POS is supporting more than one locale, different
values for the keys by language can be implemented by calling
Globalize.addCultureInfo and passing in the specific locale.

Example 2–12 shows how to override the welcome strings for both Greek-Greece and
German-Germany:

Example 2–12 Changing Displayed Text in Specific Locales

var customGreekStrings =
{
 "%login-welcome-text-1": " ",
 "%login-welcome-text-2": "",
};

Globalize.addCultureInfo("el-GR",

Business Flow

2-8 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

{
 messages: customGreekStrings
});

var customGermanStrings =
{
 "%login-welcome-text-1": " Willkommen bei Custom Mobile POS.",
 "%login-welcome-text-2": "",
};

Globalize.addCultureInfo("de-DE",
{
 messages: customGermanStrings
});

Business Flow
This section describes customizing business flows.

Changing the Menu
The menu entries are defined in the menuEntries table in menu.js. The JavaScript
in menu.js dynamically creates the HTML for the menu page based on the entries in
menuEntries.

Each entry in menuEntries has the following fields:

Removing a Menu Button
To remove an item from the menu, call menuController.removeMenuEntry in
customize.js after Mobile POS is initialized, passing in the ID of the button you
want removed.

Example 2–13 shows how to remove the Close Till button:

Example 2–13 Removing the Close Till Button

function myCustomInitializationFunction()
{
 // Custom initialization goes here.
 menuController.removeMenuEntry("menu-close-till");
}

Notes: Some values, such as reason code descriptions, are provided
to the UI by the POS Server and cannot be changed on the UI. They
must be changed on the server.

The resource file name uses an underscore to separate the language
and the region. However, the Globalize library uses a hyphen.

Field Description

id HTML ID of the menu button.

labelKey Message key used to look up the button text in the resource bundle.

permission POS access point used to enable or disable the button.

handler Function called when button is pressed.

img Path to image to display on the button.

Business Flow

Mobile POS User Interface Customization 2-9

Adding a Menu Button
To add an item to the menu, call menuController.addMenuEntry in
customize.js after Mobile POS is initialized, passing in the index where you want
the menu entry inserted, as well as the menu entry fields previously described.

Example 2–14 shows how to add a Settings button to the menu:

Example 2–14 Adding a Settings Button to a Menu

function myCustomInitializationFunction()
{
 // Custom initialization goes here.
 menuController.addMenuEntry(2, "menu-settings", "%settings-menu-button",
 Permission.administration, onMenuSettings, "images/settings.png");
}

For instructions on how to code screens in response to a button click, see "Workflows".

Updating a Menu Entry
To update an item in the menu, call menuController.updateMenuEntry in
customize.js after Mobile POS is initialized. Pass in the ID of the button you want
updated as well as the fields you want updated. Specify undefined to leave a field
unchanged.

The function signature for menuController.updateMenuEntry is:

function(id, labelKey, permission, handler, img)

The parameters are the same as the fields in the menuEntries table previously
described.

Example 2–15 shows how to change the Item Lookup button to show a different icon
and to call a different function when clicked:

Example 2–15 Changing a Menu Entry

function myCustomInitializationFunction()
{
 // Custom initialization goes here.
 menuController.updateMenuEntry("menu-item-lookup", undefined,
 undefined, onCustomItemLookup, "images/myCustomItemLookup.png")
}

Changing the Number of Columns
The number of columns of buttons shown on the menu defaults to 2. To change the
number of columns, call MobilePOSConfig.setMenuColumns and specify the new
number of columns. See Example 2–16.

Example 2–16 Changing the Number of Columns

function myCustomInitializationFunction()
{
 // Custom initialization goes here.
 MobilePOSConfig.setMenuColumns(3);
}

Business Flow

2-10 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

Workflows
The Navigator object defined in navigator.js provides a wrapper for page
navigation. This object works with the entries in the NavigationMap to move from
page to page.

Navigator uses jQuery Mobile's changePage method to navigate from page to page.
For detailed information on changePage, see the following Web site:

http://jquerymobile.com/test/docs/api/methods.html

Adding a New Page
To add a new page, code the following:

1. Call the addPage method of Navigator, passing in the following values:

■ page: string used as a key in NavigationMap.

■ file: name of the HTML file that defines the page structure.

■ options: object to pass to changePage.

■ authorization: POS permission to check before navigating to the page. If
the permission is not granted to the logged-in user, an exception is thrown.

■ initFunction: function to be called before navigating to the page.

2. Insert a new function into Navigator that calls gotoPage, specifying the newly
added page.

3. Develop the HTML for the new page.

4. Develop any required initialization in the function specified in initFunction.

5. Add functions to load the page fields and respond to events, such as button clicks.

Example 2–17 defines a settings page that is displayed when a custom Settings button
is clicked on the menu:

Example 2–17 Defining a New Settings Page

(function()
{
 // Wait until mpos-initialized is triggered, meaning MPOS is initialized.
 $(document).bind("mpos-initialized", onCustomMPOSInitialized);
})();

function onCustomMPOSInitialized()
{
 // Add the settings page as a new menu item
 menuController.addMenuEntry(2, "menu-settings", "%settings-menu-button",
 Permission.administration, onMenuSettings, "images/settings.png");

 // Add the settings page to the Navigator
 Navigator.addPage("settings", "settings.html", undefined,
 Permission.administration, initSettingsPage);

 Navigator.gotoSettings = function(options)
 {
 this.gotoPage("settings", options);
 };

 // Load custom translation strings.
 var customLanguageBundle =

Business Flow

Mobile POS User Interface Customization 2-11

 {
 "%settings-menu-button": "Settings",
 "%error-header-settings": "Settings Error",
 "%settings-header": "Settings",
 "%settings-1-label": "Setting 1",
 "%settings-2-label": "Setting 2",
 "%settings-cancel-button": "Cancel",
 "%settings-save-button": "Save",
 "%settings-error": "Settings Error"
 };

 Globalize.addCultureInfo(MobilePOSDevice.getGlobalizeLocale(),
 {
 messages: customLanguageBundle
 });
}

function onMenuSettings(event)
{
 try
 {
 Navigator.gotoSettings();
 }
 catch(e)
 {
 handleException(e, "%error-header-settings");
 throw e;
 }
}

function initSettingsPage(options)
{
 console.log("initSettingsPage");
 $("#settings-page").die("pageinit", loadSettingsPageFields);
 $("#settings-page").live("pageinit", options, loadSettingsPageFields);
}

function loadSettingsPageFields(event)
{
 var options = event ? event.data : {};

 try
 {
 $("#settings-header").text(translate("%settings-header"));
 $("#settings-1-label").text(translate("%settings-1-label"));
 $("#settings-2-label").text(translate("%settings-2-label"));

 $("#settings-cancel").buttonText(translate("%settings-cancel-button"));
 $("#settings-save").buttonText(translate("%settings-save-button"));

 $("#settings-cancel").unbind("click", onSettingsCancel);
 $("#settings-cancel").bind("click", onSettingsCancel);

 $("#settings-save").unbind("click", onSettingsSave);
 $("#settings-save").bind("click", onSettingsSave);

 // TODO: Load settings

 }
 catch (e)

Business Flow

2-12 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

 {
 handleException(e, "%settings-error", {});
 }
}

function onSettingsCancel(e)
{
 console.log("Cancel settings");
 Navigator.gotoMenu();
}

function onSettingsSave(e)
{
 console.log("Save settings");
 // TODO: Save settings
 Navigator.gotoMenu();
}

Adding a New Workflow
New workflows can be added to Mobile POS by adding one or more new pages for the
workflow (see "Adding a New Page") and then chaining the pages together through
action buttons in the footer. The first page in the workflow can be triggered by a new
menu button (see "Adding a Menu Button"), or it can be triggered in response to some
other event.

Suppose a new workflow is needed consisting of two new pages. Develop the
navigation of the new workflow:

1. Create the two new pages according to instructions in "Adding a New Page". In
this example, the names of the functions added to Navigator are gotoPage1
and gotoPage2.

2. On the first page, include back and next buttons:

a. In the back button handler, call Navigator.gotoMenu.

b. In the next button handler, call Navigator.gotoPage2.

3. On the second page, include back and done buttons:

a. In the back button handler, call Navigator.gotoPage1.

b. In the done button handler, perform the work of the workflow, then call
Navigator.gotoMenu.

Inserting a Page into an Existing Workflow
To insert a new page into an existing workflow:

1. Create the new page. See "Adding a New Page".

2. Determine which Navigator function is used to navigate to the next page in the
workflow by inspecting the JavaScript source that controls the page that displays
just before the new page.

3. Override the function found in Step 2 to navigate to the new page created in Step
1. If multiple workflows use the same Navigator function, use the value of
$.mobile.activePage[0].id to determine the active page and only override
if the active page is part of the workflow being altered.

4. Update the new page to call the Navigator function found in Step 2, effectively
resuming the original workflow.

Business Flow

Mobile POS User Interface Customization 2-13

For example, suppose after a successful tender, a page should be displayed with a
script to be read to the customer:

1. Create the new page. See "Adding a New Page".

2. Inspect receiptPage.js and ensure that Navigator.gotoMenuOrBasket is
called when the user is done with a transaction.

3. By searching through all of the code, ensure that
Navigator.gotoMenuOrBasket is called from multiple places (such as cancel
and suspend) and so $.mobile.activePage.id must be used to ensure that
the new page is shown only when the active page is the receipt page.

4. Override Navigator.gotoMenuOrBasket to call the new page if the active
page is "receipt-page", the page ID for the receipt page.

Example 2–18 Inserting a Page into an Existing Workflow

function onCustomMPOSInitialized()
{
 // Create new script page
 ...

 // Insert the script page after receipt before basket/menu
 Navigator._gotoMenuOrBasket = Navigator.gotoMenuOrBasket;
 Navigator.gotoMenuOrBasket = function(options)
 {
 var activePageId = $.mobile.activePage[0].id;

 if (activePageId === "receipt-page")
 Navigator.gotoScript();
 else
 Navigator._gotoMenuOrBasket();
}

5. In the handler for the Done or OK button on the new script page, call
Navigator.gotoMenuOrBasket to complete the workflow.

Replacing a Page in an Existing Workflow
The HTML for a page can be replaced by using Navigator.replacePage. The same
JavaScript is executed and styles are applied, provided the HTML elements retain the
appropriate IDs and classes. This can be useful for placing additional fields on a screen
or changing the look and feel without having to use JavaScript to dynamically add the
fields.

Example 2–19 shows replacing the HTML in the login screen, login.html, with
customlogin.html:

Example 2–19 Replacing a Page in an Existing Workflow

function onCustomMPOSInitialized()
{
 Navigator.replacePage("login", "customlogin.html", { transition: "fade" },
 undefined, initLoginPage);
}

Business Flow

2-14 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

Inserting a Static Field on a Page
To insert a static field on a page, use one of the DOM manipulation methods provided
by jQuery. The methods that allow insertion outside an existing element are found at
the following Web site:

http://api.jquery.com/category/manipulation/dom-insertion-outside/

The methods that allow insertion inside an existing element are documented at the
following Web site:

http://api.jquery.com/category/manipulation/dom-insertion-inside/

Manipulation of the fields in the DOM cannot take place at application startup or
initialization. It must take place after the page is loaded into memory. jQuery provides
triggers to communicate when a page is loaded (pageinit), about to be shown
(pagebeforeshow), or has just been shown (pageshow). These methods are
documented at the following Web site under page transition events:

http://jquerymobile.com/test/docs/api/events.html

In most cases, placing modification code in a function triggered by pagebeforeshow
is sufficient. However, in some cases, such as when working with elements marked up
by jQuery, modifications must be made in a function triggered by pageshow. When
possible, pagebeforeshow should be used because the user can see the field being
added when the insert is done in pageshow.

Example 2–20 shows adding a third welcome line on the login screen by using
$.after in a function triggered by pagebeforeshow:

Example 2–20 Adding a Third Welcome Line on the Login Screen

function onCustomMPOSInitialized()
{
 // Load custom translation strings into the current locale.
 var customLanguageBundle =
 {
 "%login-welcome-text-3": "Have a Nice Day",
 };

 Globalize.addCultureInfo(globalizeLocale,
 {
 messages: customLanguageBundle
 });

 // Add third welcome text line
 $("#login-page").live("pagebeforeshow",
 function()
 {
 $("#welcome-text-2").after("<div id='welcome-text-3'></div>");
 $("#welcome-text-3").text(translate("%login-welcome-text-3"));
 });
 }

jQuery provides helper methods that enable the developer to easily set the value of an
HTML element. However, the method to use is not always readily evident. Here are
rules to follow:

■ If the HTML element's value is between the beginning and ending tags, such as
with paragraphs and divs, use $.text.

Business Flow

Mobile POS User Interface Customization 2-15

■ If the HTML element's value is set in the value attribute, such as with input, use
$.val.

■ As a special case, if the HTML element is an input of type button or if it is an
anchor (link) styled by jQuery mobile, use $.buttonText.

Inserting an API-Filled, Non-Input Field on a Screen
Inserting an API-filled non-input field on a screen is very similar to inserting a static
field on a page. The only difference comes in setting the text of the field. Instead of
passing a static value to the jQuery method used to set the value ($.text, $.val, or
$.buttonText), pass in the value returned from the API call.

For example, to display the number of line items on the payment page, dynamically
insert a field on the payment page (see "Inserting a Static Field on a Page"), then
populate the field with the number of items in the transaction. The current transaction
is available as the Transaction object defined in transaction.js. See Example 2–21.

Example 2–21 Inserting an API-Filled Non-Input Field on a Screen

function onCustomMPOSInitialized()
{
 // Load custom translation strings into the current locale.
 var customLanguageBundle =
 {
 "%payment-lines-label": "Number of Items",
 };

 Globalize.addCultureInfo(globalizeLocale,
 {
 messages: customLanguageBundle
 });

 $("#payment-page").live("pagebeforeshow",
 function()
 {
 $("#tender-entry").after(
 "<div data-role='fieldcontain'>"
 + "<label for='payment-lines' "
 + "id='payment-lines-label'></label>"
 + "<p id='payment-lines'></p>"
 + "</div>");
 $("#payment-lines-label").text(translate("%payment-lines-label"));
 $("#payment-lines").text(Transaction.getTotalQuantity());
 });
}

Inserting an Input Field on a Screen
Inserting an input field on a screen follows the same pattern as inserting a non-input
field on a screen, but an extra step must be taken to ensure that the jQuery Mobile
styling is applied. To apply the jQuery Mobile styling, call trigger("create") on
the parent of the element inserted. When using the append method, the call to
trigger can just be chained to the returned object:

$("#parent").append(newHTML).trigger("create");

Example 2–22 shows inserting a third input field on the login page named Secret:

Business Flow

2-16 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

Example 2–22 Inserting an Input Field on a Screen

function onCustomMPOSInitialized()
{
 $("#login-page").live("pagebeforeshow",
 function()
 {
 var secret =
 "<div data-role='fieldcontain' id='secret-container'>"
 +"<label for='login-secret' "
 +"id='login-secret-label'>Secret</label>"
 +"<input id='login-secret'/>"
 +"</div>";
 $("#login-fields").append(secret).trigger("create");

 // Shrink top margin of login button to keep entire button on the
 // screen.
 $("#login-button").css("margin-top", "20px");
 });
}

Changing Field Validation
Field validation is performed by functions located in validation.js. Most fields are
validated using regular expressions that check both valid characters and overall
length, plus additional checks for minimum and maximum values. Some, such as
email address validation, are much more involved.

To change the validation of a field, there are two options:

■ Change the regular expression and other fields used to validate the field. The
values are defined in the Validation object defined in validation.js. To
change the values, override the current values with the new values.

Example 2–23 shows changing the minimum length of an serial number from 1 to
5:

Example 2–23 Changing Field Validation

function onCustomMPOSInitialized()
{
 Validation.serialNumber =
 { re: /^[0-9a-z]{5,25}$/i, minLength: 5, maxLength: 25 };
}

■ The second option is to override the validation function completely. To do this,
code the new function in customize.js, using the same function signature.
Since customize.js is loaded after validation.js, the customized version
will be used.

Note: Consider using Navigator to replace the entire HTML page
if there are more than a few fields dynamically added. See "Replacing
a Page in an Existing Workflow".

Note: The minLength value is not actually used in the validation
process. It exists so that custom error messages can be specific about
the minimum length of a valid serial number.

Business Flow

Mobile POS User Interface Customization 2-17

Changing the Business Logic Behind a Screen Event
Screen events, such as a button being clicked, are handled through jQuery event
handlers. Documentation on jQuery events is available at the following Web site:

http://api.jquery.com/category/events/

How to change the logic behind a screen event depends upon how the screen event is
currently handled:

■ If the event is bound to a named function, replace the named function.

The click event on the basket page action buttons are each bound to named
functions, as seen in basketPageActions.js. To replace the functionality of the
Reprint button, for example, code a new function for
onBasketReprintReceipt in customize.js.

■ If the event is bound to an anonymous function, use unbind to prevent execution
of the anonymous function, then use bind to allow execution of the custom code.

This unbinding and rebinding must take place after the original binding takes
place, so further inspection of the code is necessary to determine at what part of
the parent page's lifecycle the original binding is taking place. Then, a later stage
of the page lifecycle can be used to perform the rebinding. Put another way, if a
button click is bound to an anonymous function during a pageinit, the rebind
must be performed during pagebeforeshow or pageshow.

For example, suppose the functionality of print receipt is customized and a new
page is needed to collect additional information. To switch to this new page
instead of immediately printing the receipt, inspect ReceiptPage.js. The Print
Receipt button has an anonymous function bound to the click event during
pageinit.

To modify this behavior, rebind a new function during pagebeforeshow, as
shown in Example 2–24:

Example 2–24 Changing the Business Logic Behind a Screen Event

function onCustomMPOSInitialized()
{
 $("#receipt-page").live("pagebeforeshow",
 function(e)
 {
 $("#receipt-print").unbind("click");
 $("#receipt-print").click(myCustomPrintReceiptFunction);
 });
}

function myCustomPrintReceiptFunction()
{
 Navigator.gotoPrintReceiptPage();
}

Server API Calls
The JavaScript objects that make the service calls to the POS Server are accessible by
the window.serviceManager object. The objects are returned by calling
getService with the name of the service. The following table outlines the different
services:

Business Flow

2-18 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

Custom Service with Unaltered Method Signature
To use a custom service that uses methods with the same signature, use the
overrideService method to install a new service object. Example 2–25 shows how
to hook up a custom authorization service:

Example 2–25 Hooking Up a Custom Authorization Service

function MyCustomAuthService ()
{
 this.login = function(userID, password, hostport, version, deviceId, locale,
 timeoutSeconds, successCallback, errorCallback)
 {
 ...
 }

function onCustomMPOSInitialized()
{
 window.serviceManager.overrideService("auth", new MyCustomAuthService());
}

Custom Service with Modified Method Signature
If the method signature changes, ensure that all calls of the method are updated as
well. This may necessitate replacing functions in both UI pages and business objects.

For example, if another parameter named secret is needed for logging in, you need
to replace the following:

■ The function that handles the login button click, loginButtonClick, to get the
secret from the input field.

■ The function that calls MobilePOSUser.login, loginWithUserIDPassword,
to pass in the secret parameter.

■ MobilePOSUser.login, to accept the secret parameter and pass it into the
login method of the authorization service.

Custom Service with Modified Data Returned from the POS Server
Mobile POS is tolerant of extra information being returned from the server. The
difficulty in processing a customized response therefore lies in being able to access the
returned information.

Service Name Function

account Gift cards

auth Login, logoff

itemlookup Item lookup

lineitem Add line item, item discounts, item quantity

posversion Mobile POS Server version

receipt Email and print receipt

register Create session, close till

tenderline Tender

transaction Cancel, suspend, transaction discounts

Business Flow

Mobile POS User Interface Customization 2-19

With some services, such as transaction and lineitem, the entire transaction is
returned and a reference is kept in Transaction._transactionData. In this case,
accessing the custom information can be done by adding an access method to
Transaction for that field.

However, in cases such as login, the entire response from the POS Server is not
retained. In this case, a custom function that replaces the default needs to be written.
All of the original functionality of the replaced code must be duplicated for the Mobile
POS UI to function correctly.

For example, suppose a modification to the login API on the server returns the
employee ID in the reply back to the UI. Since the login method of MobilePOSUser is
the method that processes the login response, it needs to be replaced to save the
employee ID, as shown in Example 2–26:

Example 2–26 Modification to the Login Method

function myCustomUserLogin(userId, password, successCallback, failureCallback,
 errorCallback)
{
 // All of the code from MobilePOSUser.login
 ...
 this.employeeID = response.employeeID;
}

function onCustomMPOSInitialized()
{
 MobilePOSUser.login = myCustomUserLogin;
}

Configurable Settings
The defaults object defined in mobilepos.js contains the default settings for some of
the functionality of the Mobile POS UI. It does not have corresponding configuration
settings in the POS server, including things such as battery level checks and whether
to aggregate basket items with identical item numbers. To override these default
settings, use the MobilePOSConfig setters defined in config.js.

To change the minimum battery level allowed to start applying payments, call
setMinBatteryLevelPayment with the new value as shown in Example 2–27:

Example 2–27 Changing the Minimum Battery Level

function onCustomMPOSInitialized()
{
 MobilePOSConfig.setMinBatteryLevelPayment(0.02);
}

Changing the Security Mechanism
Generally, changing the security mechanism involves writing code in customize.js
to override the logic in the following:

■ loginPage.js: add or modify the input fields. See "Inserting an Input Field on a
Screen".

■ loginErrors.js: handle any additional errors that can be returned by the
security mechanism.

New Hardware

2-20 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

■ user.js: receive the new input fields from the UI layer and pass on to
AuthService.

■ authService.js: make the authorization service call. See "Server API Calls".

New Hardware
This section has information on adding new hardware.

Supporting New iOS Devices
Customizing Mobile POS to support a new iOS device would most likely involve only
style changes in customize.css, provided the following libraries support the new
iOS device:

■ PhoneGap

■ jQuery

■ jQuery Mobile

■ VeriFone Framework

However, if an upgrade to any of these libraries is required to support the new iOS
device, additional Objective C or JavaScript programming may be needed to account
for the differences between the library version used in the release and the updated
library.

Supporting Alternate Mobile OS Devices
Customizing Mobile POS to support a non-iOS device involves significant work. In
addition to styling changes to support different screen dimensions, the following
PhoneGap plug-ins need to be created on the new mobile OS.

Source code for the iPod Touch versions of these plug-ins is not available. The
methods to implement in each plug-in can be determined by inspecting the JavaScript
code that calls the plug-in.

Supporting Tablets
This section provides information on using tablets with the Mobile POS UI.

PhoneGap Plug-in Description

DeviceInfo Methods for getting information from the device, such as
battery level.

Internationalization Method for getting the device's configured language and locale.

Log Methods for writing to the application log file.

NetworkActivity Methods for turning the network activity indicator on and off.

Sled Methods for working with the sled attached to the device.

UserDefaults Methods for getting the login timeout and server setting.

New Hardware

Mobile POS User Interface Customization 2-21

iPad
The Mobile POS UI runs on an iPad out of the box. However, it does not make any
attempt to use the extra screen space in a meaningful manner. Instead, existing screen
elements are simply stretched or centered.

To truly make good use of the iPad, new screens need to be created that present
additional information on each screen, such as combining the item detail screen with
the basket screen.

Non-iOS Tablet
To customize the Mobile POS UI to run on a non-iOS tablet, see "Supporting Alternate
Mobile OS Devices".

Supporting Alternate Sleds
To support a sled other than the VeriFone VX600, the PhoneGap plug-in that handles
the communication between the JavaScript portion of the application and the sled
must be replaced. Guidance on how to write PhoneGap plug-ins is available on the
PhoneGap Web site.

The replacement plug-in must implement all of the methods implemented by the
VeriFone VX600 PhoneGap plug-in. The following table lists the methods:

Specifics on the inputs to and outputs from the plug-in methods can be deduced by
inspecting the JavaScript code that calls the plug-ins. Search the JavaScript code for
window.plugins.sled. plus the name of the method from the preceding table. For
example, search for window.plugins.sled.querySledInfo.

Method Description

activateScanner Turns the scanner on.

activateSwipeDetection Activates the magnetic strip reader.

assignPageCallback Specify JavaScript function to call in response to a barcode
scan.

assignSwipeCallback Specify JavaScript function to call in response to a
magnetic stripe read.

clearLogFile Clears (removes) the physical log file from the device.

deactivateScanner Deactivates the bar code scanner.

deactivateSwipeDetection Deactivates the magnetic stripe reader.

initializeScanner Activates the bar code scanner.

queryBatteryLevel Returns the sled battery level.

queryDeviceState Returns PGCommandStatus_OK if the device is initialized
and ready to scan barcodes, otherwise returns
PGCommandStatus_ERROR.

querySledInfo Returns sled information in JSON format:

{
"Serial Number": "value",
"Model Number": "value",
"Manufacturer": "value",
"Hardware Revision": "value",
"Firmware Revision": "value"
}

New Hardware

2-22 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

3

Mobile POS Server Overview 3-1

3 Mobile POS Server Overview

The Mobile POS server application provides a REST-based interface into the Oracle
Retail Point-of-Service application. The application is comprised of six high-level
component areas, as depicted in Figure 3–1.

Figure 3–1 Mobile POS Components

The components are deployed as a war file into a WebLogic application server that has
been configured to support REST through the Jersey libraries. The war file contains a
mobile POS tier that provides access to the tour engine and the tours used to support
the programming API.

Solution Components
This section describes the components shown in Figure 3–1.

Solution Components

3-2 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

REST Interfaces and Service Implementations
The API is exposed through a REST-like API, allowing HTTP clients to easily access
the services. These services are also available through a Java API that sits behind the
REST interface. The service interface and implementation classes can be found in the
oracle.retail.stores.mobilepos.web.service package and its
sub-packages. The services are organized into five service areas:

■ About for version information APIs

■ Auth for authentication APIs

■ Item for item lookup APIs

■ Register for register APIs

■ Transaction for retail transaction APIs

View Objects
The REST layer returns the results of each method call through a Status instance,
marshaled to either JSON or XML, depending on the MIME-TYPE requested by the
client. The view objects carry the data requested by the caller, as well as status
information, in the form of error codes and their associated messages. These classes
are in the oracle.retail.stores.mobilepos.status package and its
sub-packages.

Access to Tours
The services use a mobile POS tier and the TourRunnerIfc to access POS tour code. A
traditional POS tour map is a single connected graph of sites, organized into tours
connected by transfer stations. See Figure 3–2.

Figure 3–2 Traditional POS Tour Map

Once the POS client tier is loaded, the initial tour is started and the thread of execution
never leaves the tour engine. It transitions from site to site as letters are mailed and
waits at each site until the next letter is processed.

Solution Components

Mobile POS Server Overview 3-3

Unlike traditional POS tours, Mobile POS service calls run a single branch of a tour,
not the entire graph.

Figure 3–3 Tour Access

The following describes Figure 3–3:

1. The Tour Runner acts as an entry point into a tour script, mimicking a transfer
station to provide shuttle behavior for the tour.

2. Each service API method runs a configured tour script and retrieves the tour
results through configured shuttles. Input parameters for the service are packaged
up into Tour Parameters and passed into the Tour Runner.

3. The Tour Runner then loads the specified tour from the Tour Script and uses the
Launch Shuttle to convert the Tour Parameter into the cargo used by the Tour.

4. Once the tour completes its processing, the Return Shuttle is called with the
populated cargo. The Return Shuttle converts the cargo into the Tour Results
object. Those results are then returned to the calling service API.

The tours executed by the API are the same tours defined in a typical ORPOS client,
some with minor modifications to support head-less operation. As such, the tours
make use of existing Manager/Technician pairs and access the store server just like the
register-base POS client. The classes used to launch and return from these tours are
located in the oracle.retail.stores.mobilepos.tours package and its
sub-packages. The mobile tier classes needed to run these tours are found in the
oracle.retail.stores.mobilepos.manager.tier package.

Application State Management
This API is designed to keep the client application as thin as possible. To aid in that
goal, the Mobile POS server tracks the state of key objects within the servlet container.
Each authenticated user has a separate session space, and, within that space, the
following information is tracked:

■ Register status

■ Store status

■ Authenticated operator

■ Current retail transaction

■ Most recently completed retail transaction, if available

Solution Components

3-4 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

Unlike traditional REST APIs, this API does not require that the client pass object state
into the API. Instead, the API accepts parameters and returns the affected object's state
to the caller. Once a user's session is terminated, either by logging out or due to
inactivity, all objects in the session are discarded. When this happens, any active
transactions are cancelled.

Because the API is stateful, there is a dependency order to some of the API calls.

Figure 3–4 Service Area Dependencies

These dependencies follow the service area boundaries closely. The Login and About
service areas have no prerequisites. Their APIs can be called at any time. The Register
and Item service areas require that the login API be called before accessing their APIs.
And finally, the Transaction service APIs require that the open register API be called
before trying to work with transactions.

Device Profiles
The Mobile POS API uses the concept of a device profile. These profiles include the
mapping of a unique device ID to a store and register ID, store currency information,
relevant parameter values, and other needed configuration information. The profiles
are managed through Spring and can be found in the DeviceContext.xml file.

Authentication and Authorization
The Mobile POS API uses two levels of authentication due to its unique deployment
configuration. As a Web application, the servlet container authenticates the request
using the same custom plug-in the other POS Suite Web applications use. Once the
request is authenticated, the stateful services require that the user call the login API
before several other API calls. This second authentication uses the existing POS login
tour to establish the user in the session.

Authorization is handled by the tours, just as in the register-based POS client. In order
to provide the credentials to the POS tour, HTTP Basic Authentication must be used
when accessing the login API. All service APIs are protected resources, so
authenticated sessions are required for access, but the login API requires HTTP Basic
Authentication to succeed.

Note: The register IDs used in the DeviceContext.xml file are
assumed to be contiguous. When you are assigning IDs to the mobile
registers, do not intersperse fixed register IDs with mobile register
IDs.

Mobile POS Frameworks 4-1

4
Mobile POS Frameworks

There are several frameworks at work in the Mobile POS server application. These
include the service REST service layer, the tour runner framework, and the view object
hierarchy. Each is discussed in detail.

REST Service Layer
The REST service layer is composed of a REST-annotated shell class backed by a
service implementation class. Each service class follows the same pattern, as seen in
the AuthWebService example in Figure 4–1.

Figure 4–1 Service Framework

The WebService classes are tagged with REST annotations that the Jersey libraries use
to marshal messages in and out of the API. Since only concrete classes can be
annotated, the implementation of the services is delegated to a paired ServiceImpl
class. The two are kept in API synchronization by implementing the same
ServiceIfc. These pairings are defined in the ServiceContext.xml file to allow
for extension and customization. The out-of-the-box ServiceImpl classes all
implement the base AbstractRegisterWebService class that provides common
session management functionality, along with other shared behaviors. The
ContextAwareServiceIfc is used to pass the request context into the delegated
ServiceImpl instance since the Jersey libraries only inject the request context into
the annotated class. All out-of-the-box ServiceImpl classes implement this interface.

Tour Runner and Tour Access

4-2 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

Figure 4–2 shows the lifecycle of a Mobile POS service call.

Figure 4–2 Service Call Sequence

When the client application calls a service API, the Jersey library's registered servlet
intercepts the call and directs it to the API mapped to the URL requested, extracting
parameters where necessary. Once the class and method are identified, the Jersey
library instantiates the class and injects the request information into the new instance.
The constructors of the provided REST classes look up their paired implementation
class from the Spring container and inject the provided request context into them,
provided they implement the ContextAwareServiceIfc.

By default, the ServiceImpl classes are singletons, so they are only instantiated once
and simply retrieved on each subsequent call to the same service area. After Jersey has
successfully instantiated the target REST class, it executes the mapped method. The
REST class simply takes those parameters and passes them to the paired class'
matching method.

Tour Runner and Tour Access
Most of the methods in the ServiceImpl classes are backed by a POS tour. The only
four that are not are:

■ AboutServiceImpl.getVersion()

■ AuthServiceImpl.logout()

■ RegisterServiceImpl.getRegisterProfile()

■ SaleTransactionServiceImpl.getSaleTransaction()

Inside the remaining ServiceImpl method, the parameters are validated and then
used to populate the TourParameters instance appropriate for the tour to be
executed.

Tour Runner and Tour Access

Mobile POS Frameworks 4-3

Figure 4–3 Tour Runner

Once populated, the tour parameters instance is sent into the configured tour runner
instance and the mapped tour is executed. The tour runner configuration is done
through the ServiceContext.xml file, where you can configure what tour script to
execute and which launch and return shuttles to use. Example 4–1 is an example of the
Item Delete API configuration:

Example 4–1 Tour Runner Configuration

<bean id="service_ItemDeleteTourRunner"
 class="oracle.retail.stores.mobilepos.tours.TourRunner"
 lazy-init="true" singleton="false">
 <property name="tourScript"
 value="classpath://oracle/retail/stores/…/delete/itemdelete.xml"/>
 <property name="launchShuttleClass"
 value="oracle.retail.stores.….delete.ItemDeleteLaunchShuttle"/>
 <property name="returnShuttleClass"
 value="oracle.retail.stores.….delete.ItemDeleteReturnShuttle"/>
</bean>

For more information on POS tours and their development and extension model, see
Oracle Retail POS Suite Implementation Guide, Volume 2 - Extension Solutions.

Another aspect of the TourRunner that can be configured is the UI manager used
while the tour is being executed. The out-of-the-box Mobile POS uses a customized UI
manager called the InstructibleUIManager. This UI manager allows the tours to
run to completion without displaying any screens. Traditional POS tours have a
mixture of business logic and view logic. In order to reuse these tours, the Mobile POS
API needs a way to avoid showing screens, as this blocks the tour thread preventing
the tour from completing.

Example 4–2 InstructibleUIManager Configuration

<bean id="service_ItemModifySalesAssocTourRunner"
 class="oracle.retail.stores.mobilepos.tours.TourRunner"
 lazy-init="true" singleton="false">
 <property name="tourScript"
 value="classpath://oracle/retail/stores/…/modifyitem.xml"/>
 <property name="launchShuttleClass"
 value="oracle.retail.stores.….modify.ItemModifyLaunchShuttle"/>
 <property name="returnShuttleClass"
 value="oracle.retail.stores.….modify.ItemModifyReturnShuttle"/>
 <property name="managerData">
 <map>
 <entry key="UIManager" value-ref="service_ManagerData" />
 </map>

Status and Tour Parameter Object Frameworks

4-4 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

 </property>
 <property name="siteLetters">
 <map>
 <entry key="ModifyItemMenu" value="SalesAssociate" />
 <entry key="ModifyItemSalesAssociate" value="Next" />
 </map>
 </property>
</bean>

The InstructibleUIManager allows the tour runner to inject the letters that need
to be sent when a show screen event is fired for a particular site. In most cases, this is
simply a Yes or Continue type letter on a dialog. However, some situations require a
little more information. For those situations, an instruction can be configured that the
InstructibleUIManager will use to decide how to handle that particular screen.

Status and Tour Parameter Object Frameworks
The view objects are used to return information to the calling application. They are
collected into the Status object hierarchy.

Figure 4–4 Status Object Hierarchy

The Status base class provides an error collection that allows the API to return error
codes and messages to the calling application. Each Status sub-class represents the
state of a particular retail object: Register, Item, Transaction, and so on.

The Tour Parameter objects provide the inputs to the tours run by the service API.

Status and Tour Parameter Object Frameworks

Mobile POS Frameworks 4-5

Figure 4–5 Tour Parameter Object Hierarchy

The inputs to the service API are collected into various tour parameter objects and
passed into the tour associated with mapped tour runner. The API instantiates these
classes using the MobilePOSObjectFactoryIfc. This allows the objects to be
extended and customized in a manner similar to POS domain objects.

Status and Tour Parameter Object Frameworks

4-6 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

Mobile POS Extension Guidelines 5-1

5
Mobile POS Extension Guidelines

This chapter provides some examples of common extensions and customizations to
the Mobile POS server application. This includes how to override an existing service
call, add a new service call, configure the InstructibleUIManager, and add a new
service area. The screenshots for Eclipse are found in Appendix C.

Customize an Existing Service API
There are several points available for customizing an existing service call's behavior.
The following are described in this section:

■ Override a service method

■ Customize the Tour Runner

■ Customize the target Tour

Service Method Override
Replacing or extending the behavior of the base service method requires the
implementation of a new Java class and the update of a configuration file. For this
case, assume that you want to add some additional validation logic to the results of the
existing AuthWebService login API.

1. Create a new Eclipse project or update an existing one. For detailed instructions,
see "Eclipse Project Creation" in Chapter 6.

2. Create a new class by right-clicking on Java Resources under the mobilepos
project. The New Java Class dialog appears. Provide a Java package and class
name. Set the Superclass to the following:

oracle.retail.stores.mobilepos.web.service.auth.AuthServiceImpl

See Figure C–1.

3. Press Finish. The new class is generated similar to the following example:

package oracle.retail.stores.mobilepos.example;

import oracle.retail.stores.mobilepos.web.service.auth.AuthServiceImpl;

public class AuthServiceLoginExtension extends AuthServiceImpl
{

}

Customize an Existing Service API

5-2 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

4. Implement the extension by overriding the target method. See the following
example:

@Override
public AuthStatusWithProfile login(String hardwareID, String locale)
{
 AuthStatusWithProfile result = super.login(hardwareID, locale);

 // Do some additional validation here

 ContextError someError =
 new ContextError("NEW_ERROR_CODE", "Some error message.");

 result.addError(someError);
 return result;
}

5. Update the ServiceContext.xml file to set the custom class as the
implementation for the AuthWebService. See the following example:

<bean id="service_AuthService"
 class="oracle.retail.stores.mobilepos.example.AuthServiceLoginExtension"
 lazy-init="true"
 singleton="true"/>

6. Build and deploy the war file to test.

Customize the Tour Runner
You can also change an existing API's behavior by customizing the Tour Runner
configuration to execute a tour differently, execute a different tour, or handle
additional tour parameters by changing the launch and return shuttles.

Tour Runner Configuration
Start by examining the Tour Runner configuration script. The numbers in bold in
Example 5–1 refer to major elements of the configuration that are described following
the example.

Example 5–1 Tour Runner Configuration

<bean id="service_ItemInquiryTourRunner"
 class="oracle.retail.stores.mobilepos.tours.TourRunner"
 lazy-init="true" singleton="false">
 <property name="tourScript" (1)
 value="classpath://oracle/retail/stores/.../iteminquiry/ItemInquiry.xml"/>
 <property name="launchShuttleClass" (2)
 value="oracle.retail.stores.....inquiry.ItemInquiryLaunchShuttle"/>
 <property name="returnShuttleClass" (3)
 value="oracle.retail.stores.....inquiry.ItemInquiryReturnShuttle"/>
 <property name="managerData"> (4)
 <map>
 <entry key="UIManager" value-ref="service_ManagerData" />
 </map>
 </property>
 <property name="siteLetters"> (5)
 <map>
 <entry key="ShowItem" value="Next" />
 <entry key="ShowItemList" value="Next" />
 </map>

Customize an Existing Service API

Mobile POS Extension Guidelines 5-3

 </property>
</bean>

The following are the major elements of the Tour Runner configuration

1. Tour script: Fully qualified file name of the tour XML defining the script to run,
generally looked up on the CLASSPATH.

2. Launch shuttle class: Fully qualified class name of the shuttle to use when the
tour launches.

3. Return shuttle class: Fully qualified class name of the shuttle to use when the tour
exits.

4. Manager data (optional): Reference to the UI Manager to use while running the
tour.

5. Site letters (optional): Collection of letters to mail from a particular site keyed by
the situation that mails them.

The first three properties are required for a tour runner to execute successfully.
Properties four and five are optional and generally are used as a pair. If you configure
a UI Manager, you generally do so to enable letter manipulation.

InstructibleUIManager
As mentioned earlier, the InstructibleUIManager allows the tour runner to inject the
letters that need to be sent when a show screen event is fired for a particular site. This
behavior is needed since the Mobile POS server runs in a request-response mode
instead of an interactive mode like the traditional POS. This manager extends the
POSUIManager and overrides the showScreen behavior. When a POS tour site
requests a screen or dialog to be displayed, the InstructibleUIManager intercepts
the call and checks to see if any letters have been mapped for that particular site.

Example 5–2 Letters

<bean id="service_ItemInquiryTourRunner" …>
 ….
 <property name="siteLetters">
 <map>
 <entry key="ShowItem" value="Next" />
 <entry key="ShowItemList" value="Next" />
 </map>
 </property>
</bean>

If a letter has been mapped for the site making the request, the letter is mailed and the
tour continues forward. If no letter is mapped, the default implementation throws an
error by mailing the UnknownException letter, and the tour exits. In addition to
providing letters for sites, the InstructibleUIManager can also accept instructions
for a particular site. The default implementation supports two instructions:

■ Instruction.DoNotMail

■ Instruction.MailWithErrors:<Letter Name>

The first is used in cases where the POS tour will show a screen that merely shows
some status and moves on without a letter getting mailed. In those cases, the value
Instruction.DoNotMail should be provided. When the
InstructibleUIManager receives this mapping, the showScreen call is exited
without any letter being mailed.

Customize an Existing Service API

5-4 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

The second instruction is used when an error is encountered, but you want the tour to
continue on instead of exiting. The InstructibleUIManager will parse out the letter
name and mail it while logging the error into the cargo. This allows tours that
encounter recoverable errors to report the error back to the caller while continuing the
tour.

Error Handling in the Mobile POS Server Unlike the traditional POS, the Mobile POS server
is designed to handle multiple registers running in the same Java virtual machine. As
such, a site cannot assume a register for a particular action. The associated register
must be provided. This is particularly important for error handling. To assist with this
situation, the Mobile POS server provides an error code context to place errors into.
The MobileErrorCodes and ContextError classes provide APIs for recording the
errors into a specific error context.

MobileErrorCodes is a utility class that allows the implementer to simply provide
an error code to record an error. The error message is pulled from the resource bundle
based on a set naming standard (MobileApi.errorCode).

ContextError collects errors based on context and allows the service layer to retrieve
and return them to the caller. This context is generally the register number requesting
the action. Access to the context is provided by cargo classes that implement the
MappableContextIfc interface. If the cargo does not implement this interface, the
cargo class is reflectively scanned for no-argument methods that return a
RegisterIfc so it can glean the context from the cargo. Once the context is
established, the error code and any associated message are added to the
ContextError collection keys by the given context.

Tour Runner Inputs and Outputs
The Tour Runner framework also allows you to customize the parameters provided to
a tour and the results returned from a tour. The MobileTourInputParameters
hierarchy of objects provides the input data for all default tour runners. These objects
carry the data that is provided to each underlying tour as cargo attributes. The Status
hierarchy of objects provides the output data and errors for all default tour runners. As
discussed in the Status and Tour Parameter Object Frameworks section, these objects
can be customized by implementing a custom object factory that extends the
MobilePOSObjectFactory. For information on how these objects can be
customized, see the Oracle Retail POS Suite Implementation Guide, Volume 2 - Extension
Solutions.

Customize Tour
The tours executed by the tour runner are configured and extended just like existing
POS tours. They are organized in a tour map XML file and referenced by XML file
name. Any tour run by the Mobile POS server can be customized using the same
mechanisms used to customize POS tours. There are two things you must keep in
mind when reusing an existing POS tour in the Mobile POS server or implementing a
new tour for the Mobile POS server:

■ The tours must be thread safe. Sites loaded into the foundation layer are treated as
singletons. As such, each request thread can run through the site simultaneously,
so all tour code must be thread safe.

Note: Caution should be used when applying this instruction
because the tour could hang if the site in question really should mail a
letter and no letter is mailed.

Extend an Existing Service Area

Mobile POS Extension Guidelines 5-5

■ The tour will need to be headless. Any existing tour will need to be analyzed to
ensure all screen interactions are accounted for in the InstructibleUIManager
letter mappings and all error conditions are handled properly. Any new tours
should be written in such a way as to avoid the need for intermittent screen
interaction.

For information on extending POS tours, see the Oracle Retail POS Suite Implementation
Guide, Volume 2 - Extension Solutions.

Extend an Existing Service Area
When adding new functionality to an existing service area, you should follow the
patterns established for these services:

■ Extend the service framework classes

– Service interface

– REST shell

– Service implementation

■ Configure a new tour runner

■ Create tour input and output objects

Figure 5–1 Service Extension Model

The naming used here is an example. Follow your local naming conventions for the
extensions. The new APIs should be declared on the interface and implemented on the
two concrete classes. Be sure to annotate the WebServiceExt class and methods with
REST annotations.

Extend an Existing Service Area

5-6 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

Example 5–3 Service Extension

@Path("auth/1.1")
public class AuthWebServiceExt extends AuthWebService implements AuthServiceExtIfc
{
 @Path("/login/extension/{storeID}/{registerID}")
 @GET
 @Produces({MediaType.APPLICATION_JSON,MediaType.APPLICATION_XML})
 public AuthStatusExt loginExtension(@PathParam("storeID") String storeID,
 @PathParam("registerID") String registerID,
 @QueryParam("locale") String locale)
 {
 return ((AuthServiceImplExt)serviceImplementation)
 .loginExtension(storeID, registerID, locale);
 }
}

If the functionality of the new API requires a tour, identify an existing tour that
performs the action or write a new one. You then need to configure a tour runner to
execute that tour. For input into the tour, you may need a new Tour Parameters object.
Again, use the framework provided and extend where appropriate. The same applies
for the tour results. A new Status object may be required, and it too should take
advantage of the Status hierarchy and extend where appropriate. The body of the new
service API would look something like this:

Example 5–4 New Service API

// Validate the parameters
...

// Load the status object
YourStatus status = MobilePOSObjectFactory.getInstance().getYourStatus();

// Build tour parameters
YourTourParameters parms =
MobilePOSObjectFactory.getInstance().getYourTourParameters();

parms.setParameterValue1(parameter1);
parms.setParameterValue2(parameter2);

// launch tour
try
{
 MobileTourResultIfc result = runTour(parms);
 if (result.getTourResult() instanceof YourStatus)
 {
status = (YourStatus)result.getTourResult();
return status;
 }

 logger.warn("Invalid result from tour: " + result);
 return null;
}
catch (Exception e)
{
 return MobilePOSObjectFactory.getInstance().getYourStatus(toErrorCode(e));
}

Working with Device Profiles

Mobile POS Extension Guidelines 5-7

Once all of the classes are in place, update the ServiceContext.xml file as
described in the previous section to configure the new tour runner and update the
implementation class for the extended service.

Adding a New Service Area
Much like adding a new API to an existing service area, adding a new service area
involves following the frameworks available. Take advantage of the base classes
described in the previous sections to bootstrap your efforts. Be sure to distinguish your
services by placing them on REST paths that do not conflict with the shipped services.

Customizing Authentication
The default authentication scheme uses the store database to read employee
credentials. If you want to use a different repository for authentication, you need to
update both authentication mechanisms described in the overview. For the application
server plug-in, you need to provide a new implementation that uses the other
repository. If you have already developed such a plug-in for any of the other POS Suite
Web applications, you should be able to reuse it. The only additional requirement the
Mobile Server has over the other POS Suite Web applications is support for the
VersionableApplicationProvider interface. This interface is required to
support the import of the Jersey libraries into the Mobile Server application server
domain.

You also need a custom POS tour to access the alternate repository. Again, if POS has
been customized to use this repository, you should be able to reuse that custom tour
from the Mobile Server. You just need to update the login tour runner configuration
(service_LoginTourRunner in ServiceContext.xml) to point to this alternate tour.

Working with Device Profiles
Device profiles provide a way to configure the handheld devices as registers and
provide them with settings that are shared across the devices. The device profiles are
stored in the DeviceContext.xml file under the
device_MobileRegisterProfileConfiguration bean key. The profile
configuration consists of two main areas: device-to-register mappings and device
settings.

Device Mappings
The device mapping section allows you to map a unique hardware identifier to a
register in a store.

Example 5–5 Device Mappings

<property name="deviceMappings">
<map>
 <entry key="Hardware ID 1">
<bean class="oracle.…..RegisterProfileConfiguration.StoreRegisterPair">
 <property name="storeID" value="04241" />
 <property name="registerID" value="100" />
</bean>
 </entry>
 <entry key="Hardware ID 2">
<bean class="oracle….RegisterProfileConfiguration.StoreRegisterPair">
 <property name="storeID" value="04241" />

Working with Device Profiles

5-8 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

 <property name="registerID" value="101" />
</bean>
 </entry>
</map>
</property>

The default implementation uses the UDID for iOS devices, but any unique ID can be
configured. The installer allows for five devices to be configured, but there is no limit
to the number of devices that can be in this map.

Device Settings
The second set of information available in the device profile is configuration settings.
These settings apply to all devices using a device profile. There are three types of
setting supported: configuration settings, POS parameters, and reason codes.

Configuration Settings
This set of key/value pairs represents configuration information used by mobile
devices that fall outside the other two areas.

Example 5–6 Configuration Settings

<property name="configurationSettings">
 <map>
 <entry key="serviceCallTimeout" value="30"/>
 <entry key="serviceCallTenderTimeout" value="300"/>
 <entry key="inactiveWarningTimeout" value="840"/>
 <entry key="inactiveLogoutTimeout" value="900"/>
 </map>
</property>

The default settings deal with various timeout values, but any key/value pair can be
used. To add a new setting, edit the DeviceContext.xml file and insert the new
key/value pair. All mobile devices receive the new setting during login.

POS Parameters
This set of values represents the POS parameters returned to the mobile device.

Example 5–7 POS Parameters

<property name="parameterNames">
 <list>
 <value>CreditCardsAccepted</value>
 <value>GiftCardsAccepted</value>
 <value>TimeoutInactiveWithoutTransaction</value>
 <value>TimeoutInactiveWithTransaction</value>
 <value>IdentifyCashierEveryTransaction</value>
 </list>
</property>

Note: The register IDs are assumed to be a contiguous set, so it is
best to keep the mobile register IDs separate from the traditional POS
register IDs.

Working with Device Profiles

Mobile POS Extension Guidelines 5-9

The Mobile POS server resolves each parameter name to its configured value and
returns the name/value pair to the mobile device as part of the profile. Only
parameters that have a direct affect on the UI should be included in the list.
Parameters affecting the POS tours used by the server API need not be included.

Reason Codes
Much like the POS parameter list, this property lists the reason code sets that should
be returned to the mobile device as part of the profile.

Example 5–8 Reason Codes

<property name="reasonCodeSetNames">
 <list>
 <value>PriceOverrideReasonCodes</value>
 <value>ItemDiscountByAmount</value>
 <value>ItemDiscountByPercentage</value>
 <value>TransactionDiscountByAmount</value>
 <value>TransactionDiscountByPercentage</value>
 <value>TransactionSuspendReasonCodes</value>
 </list>
</property>

The Mobile POS server resolves each reason code name to its configured value set and
returns it to the mobile device as part of the profile. The default set reflects the reason
codes available in the POS sample data. If you customize the reason codes, be aware
that this list needs to be updated and the Mobile POS UI needs to reflect those
changes.

Working with Device Profiles

5-10 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

Implementation Environment 6-1

6
Implementation Environment

This chapter describes how to set up a single-user development environment for
Oracle Retail Mobile Point-of-Service extension and customization. The setup
enumerates the files, tools, and resources necessary to build and deploy the Mobile
POS server application. When you complete the steps in this chapter, you will have a
local development workspace with the ability to build and deploy the Mobile POS
application.

This chapter assumes that you are using WebLogic Application Server and the Oracle
database; together, they form the officially supported platform for the current release
of the Mobile POS server. Your development environment may use different tools, and
you may develop variations on this procedure. Specific property file settings, in
particular, may need to be modified in your environment. For more information about
product versions, see the Oracle Retail Point-of-Service with Mobile Point-of-Service
Installation Guide, Volume 1 - Oracle Stack.

Eclipse Project Creation
The Mobile POS server application uses the Eclipse platform for development. These
instructions and screenshots use Eclipse Indigo Java EE IDE. The Eclipse screenshots
are shown in Appendix C.

To create the Eclipse project:

1. Copy the mobilepos.war file to a temporary location, that is, do not use the
deployed war file.

2. Create a new workspace or update an existing workspace.

3. Go to the Workspace Preferences to ensure you have the WebLogic Runtime. See
Figure C–2.

4. This release of Mobile Point-of-Service was developed using Oracle WebLogic
10.3.5. Verify you have the correct WebLogic release. See Figure C–3.

5. Import the war file into Eclipse by selecting File and then Import. See Figure C–4.

6. Select WAR file under the Web folder. See Figure C–5.

7. Browse to the temporary location and select the WAR. See Figure C–6.

8. Set the target runtime as appropriate and select Next.

9. Select the oracle.stores.mobilepos-config.jar as a Web Library to allow
for updates to the various Mobile POS configuration files. Additionally, select any
language bundle JARs that may need updating. See Figure C–7.

10. Select Finish. Eclipse generates the projects. For an example, see Figure C–8.

Mobile POS Server Deployment Model

6-2 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

11. Update the mobilepos project to include the Jersey library dependencies by
selecting the project properties, Java Build Path, and then Add Library. See
Figure C–9.

12. Select Next.

13. Select Browse and then select jsr311.api. See Figure C–10.

14. Select OK. The project is ready to use.

Mobile POS Server Deployment Model
There are no build scripts provided for Mobile Point-of-Service. Extension projects
should use the Eclipse tools to build and deploy the application WAR to the WebLogic
server. If command-line build processes are required, use Eclipse's Ant build file
export capabilities to generate the necessary Ant scripts.

Once you have set up your Eclipse workspace, you should see a project that looks
something like Figure 6–1:

Figure 6–1 Eclipse Project Structure

The mobilepos project is where you develop your customizations, and the
oracle.stores.mobilepos-config project contains all of the configuration files
you generally find with the POS client.

When developing extensions to Mobile POS Server, keep in mind that the JARs
delivered with the Mobile Point-of-Service add-on are different from those delivered
with POS Suite release 13.4.1. There have been updates made to the POS application,

Mobile POS Server Deployment Model

Implementation Environment 6-3

foundation, and domain that the Mobile POS Server relies on. You cannot use base
13.4.1 POS JARs in place of those delivered with the Mobile POS Server. To take
advantage of any customizations you have made to the base POS application, you
need to provide those customizations in separate JARs and treat them as third-party
libraries to the Mobile POS Server.

Mobile POS Server Deployment Model

6-4 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

7

Internationalization 7-1

7 Internationalization

Internationalization is the process of creating software that can be translated more
easily. Changes to the code are not specific to any particular market.

Oracle Retail applications have been internationalized to support multiple languages.

For information on updating Mobile Point-of-Service text for different locales, see
"Changing Text" in Chapter 2.

Translation
Translation is the process of interpreting and adapting text from one language into
another. Although the code itself is not translated, components of the application that
are translated include the following:

■ Graphical user interface (GUI)

■ Error messages

The following components are not translated:

■ Documentation (online help, release notes, installation guide, user guide,
operations guide)

■ Batch programs and messages

■ Log files

■ Configuration tools

■ Reports

■ Demonstration data

■ Training materials

The user interface has been translated into the following languages:

■ Chinese (Simplified)

■ Chinese (Traditional)

■ Croatian

■ Dutch

■ French

■ German

■ Greek

■ Hungarian

Translation

7-2 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

■ Italian

■ Japanese

■ Korean

■ Polish

■ Portuguese (Brazilian)

■ Russian

■ Spanish

■ Swedish

■ Turkish

Appendix: API URLs A-1

A
Appendix: API URLs

This appendix provides an overview of the API URLs provided by the solution, along
with their parameters and return types. For complete details on these APIs, refer to the
Mobile Point-of-Service Javadoc.

About API
The following table describes the About API.

Auth API
The following table describes the Auth API.

URL HTTP Method Parameters Return Type

about/1.0/version

Retrieve POS version GET None VersionStatus

URL HTTP Method Parameters Return Type

auth/1.0/login

Login using
hardware ID

POST hardwareID

locale

AuthStatusWithProfi
le

auth/1.0/login/{storeID}/{registerID}?locale=

Login GET storeID

registerID

locale

AuthStatus

auth/1.0/logout/{storeID}/{registerID}

Logout GET storeID

registerID

AuthStatus

Item API

A-2 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

Item API
The following table describes the Item API.

Register API
The following table describes the Register API.

URL HTTP Method Parameters Return Type

item/1.0/{storeID}/{registerID}/{itemNumber}

Item lookup GET storeID

registerID

itemNumber

ItemStatus

item/1.0/{storeID}/{registerID}/{itemNumber}/inventory

Item inventory
inquiry, local store

GET storeID

registerID

itemNumber

InventoryStatus

item/1.0/{storeID}/{registerID}/{itemNumber}/inventory/{otherStore}/{minimumQuanti
ty}

Item inventory
inquiry, buddy store

GET storeID

registerID

itemNumber

otherStore

minimumQuantity

InventoryStatus

item/1.0/{storeID}/{registerID}

Gift card inquiry POST storeID

registerID

account

GiftCardStatus

URL HTTP Method Parameters Return Type

register/1.0/{storeID}/{registerID}

Open register GET storeID

registerID

RegisterStatus

register/1.0/{storeID}/{registerID}

Close till DELETE storeID

registerID

RegisterStatus

register/1.0/profile

Get profile GET hardwareID

locale

RegisterProfileConfi
guration

Transaction API

Appendix: API URLs A-3

Transaction API
The following table describes the Transaction API.

URL HTTP Method Parameters Return Type

saletxn/1.0/{storeID}/{registerID}/{txnID}/associate/{associateID}

Update sales
associate on the
transaction

GET storeID

registerID

txnID

associateID

TransactionStatus

saletxn/1.0/{storeID}/{registerID}/{txnID}

Cancel transaction DELETE storeID

registerID

txnID

TransactionStatus

saletxn/1.0/{storeID}/{registerID}/{txnID}/suspend/{reasonCode}

Suspend transaction POST storeID

registerID

txnID

reasonCode

TransactionStatus

saletxn/1.0/{storeID}/{registerID}/{txnID}/lineitem/{itemID}

Add line item GET storeID

registerID

txnID

itemID

TransactionStatus

saletxn/1.0/{storeID}/{registerID}/{txnID}/lineitem/{lineItemNumber}/quantity/{quantit
y}

Update item
quantity

GET storeID

registerID

txnID

lineItemNumber

quantity

TransactionStatus

saletxn/1.0/{storeID}/{registerID}/{txnID}/lineitem/{lineItemNumber}/associate/{associ
ateID}

Update line item
associate

GET storeID

registerID

txnID

lineItemNumber

associateID

TransactionStatus

saletxn/1.0/{storeID}/{registerID}/{txnID}/lineitem/{lineItemNumber}/serial/{serialNu
mber}

Transaction API

A-4 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

Update line item
serial number

GET storeID

registerID

txnID

lineItemNumber

serialNumber

TransactionStatus

saletxn/1.0/{storeID}/{registerID}/{txnID}/lineitem/{lineItemNumber}/priceoverride/{pr
ice}/reasoncode/{reasonCode}

Update line item
price

GET storeID

registerID

txnID

lineItemNumber

price

reasonCode

TransactionStatus

saletxn/1.0/{storeID}/{registerID}/{txnID}/lineitem/{itemID}/amount/{amount}

Add gift card POST storeID

registerID

txnID

lineItemNumber

amount

account

TransactionStatus

saletxn/1.0/{storeID}/{registerID}/{txnID}/lineitem/{lineItemNumber}/discount/percent
/{percentOff}/reasoncode/{reasonCode}

Update line item
discount - percent

GET storeID

registerID

txnID

lineItemNumber

percentOff

reasonCode

TransactionStatus

saletxn/1.0/{storeID}/{registerID}/{txnID}/lineitem/{lineItemNumber}/discount/amount
/{amountOff}/reasoncode/{reasonCode}

Update line item
discount - amount

GET storeID

registerID

txnID

lineItemNumber

amountOff

reasonCode

TransactionStatus

saletxn/1.0/{storeID}/{registerID}/{txnID}/lineitem/{lineItemNumber}/damagediscount
/percent/{percentOff}

Update line item
damage discount -
percent

GET storeID

registerID

txnID

lineItemNumber

percentOff

TransactionStatus

URL HTTP Method Parameters Return Type

Transaction API

Appendix: API URLs A-5

saletxn/1.0/{storeID}/{registerID}/{txnID}/lineitem/{lineItemNumber}/damagediscount
/amount/{amountOff}

Update line item
damage discount -
amount

GET storeID

registerID

txnID

lineItemNumber

amountOff

TransactionStatus

saletxn/1.0/{storeID}/{registerID}/{txnID}/lineitem/{lineItemNumber}

Delete line item DELETE storeID

registerID

txnID

lineItemNumber

TransactionStatus

saletxn/1.0/{storeID}/{registerID}/{txnID}/accountreentry

Update gift card
account

POST storeID

registerID

txnID

account

TransactionStatus

saletxn/1.0/{storeID}/{registerID}/{txnID}/discount/percent/{percentOff}/reasoncode/{r
easonCode}

Add transaction
discount - percent

GET storeID

registerID

txnID

percentOff

reasonCode

TransactionStatus

saletxn/1.0/{storeID}/{registerID}/{txnID}/discount/amount/{amountOff}/reasoncode/{
reasonCode}

Add transaction
discount - amount

GET storeID

registerID

txnID

amountOff

reasonCode

TransactionStatus

saletxn/1.0/{storeID}/{registerID}/{txnID}/tenderlineitem/{tenderAmount}

Add tender line item GET storeID

registerID

txnID

tenderAmount

TransactionStatus

saletxn/1.0/{storeID}/{registerID}/{txnID}/tenderlineitem/{tenderLineNumber}/idverifie
d/{idVerified}

URL HTTP Method Parameters Return Type

Transaction API

A-6 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

Update tender line
item - custom ID
verified

GET storeID

registerID

txnID

tenderLine Number

idVerified

TransactionStatus

saletxn/1.0/{storeID}/{registerID}/{txnID}/tenderlineitem/{tenderLineNumber}

Void tender line item DELETE storeID

registerID

txnID

tenderLine Number

TransactionStatus

saletxn/1.0/{storeID}/{registerID}/{txnID}/callreferral/{tenderAmount}/{approvalCode}

Add call referral
tender line item

GET storeID

registerID

txnID

tenderAmount

approvalCode

TransactionStatus

saletxn/1.0/{storeID}/{registerID}

Get current
transaction

GET storeID

registerID

TransactionStatus

saletxn/1.0/{storeID}/{registerID}/{txnID}/printreceipt

Print receipt GET storeID

registerID

txnID

ReceiptStatus

saletxn/1.0/{storeID}/{registerID}/{txnID}/emailreceipt/{emailAddress}

Email receipt GET storeID

registerID

txnID

emailAddress

ReceiptStatus

URL HTTP Method Parameters Return Type

Appendix: API Result Formats B-1

B
Appendix: API Result Formats

This appendix covers the messages returned from the various API methods, organized
by Status object and format.

VersionStatus
JSON:

{
 "buildNumber": "120723.0917",
 "versionNumber": "13.4.1"
}

XML:

<versionStatus>
 <buildNumber>120723.0917</buildNumber>
 <versionNumber>13.4.1</versionNumber>
</versionStatus>

AuthStatus
JSON:

{
 "roles": [
 {
 "roleId": "37",
 "roleTitle": "Administration"
 },
 {
 "roleId": "49",
 "roleTitle": "Bank Deposit"
 },
 {
 "roleId": "4",
 "roleTitle": "Void"
 }
],
 "userName": "someUser"
}

XML:

<authStatus>
 <roles>

AuthStatusWithProfile

B-2 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

 <roleId>37</roleId>
 <roleTitle>Administration</roleTitle>
 </roles>
 <roles>
 <roleId>49</roleId>
 <roleTitle>Bank Deposit</roleTitle>
 </roles>
 <roles>
 <roleId>4</roleId>
 <roleTitle>Void</roleTitle>
 </roles>
 <userName>boadmin</userName>
</authStatus>

AuthStatusWithProfile
JSON:

{
 "roles": [
 {"roleId": "37","roleTitle": "Administration"},
 {"roleId": "49","roleTitle": "Bank Deposit"},
 {"roleId": "4", "roleTitle": "Void"}
],
 "userName": "boadmin",
 "profile": {
 "configurationSettings": {"entry": [
 {"key": "serviceCallTimeout","value": "30"},
 {"key": "serviceCallTenderTimeout","value": "300"},
 {"key": "inactiveWarningTimeout","value": "840"},
 {"key": "inactiveLogoutTimeout","value": "900"}
]},
 "parameterSettings": {"entry": [
 {"key": "TimeoutInactiveWithTransaction","value": "15"},
 {"key": "IdentifyCashierEveryTransaction","value": "N"},
 {"key": "GiftCardsAccepted","value": "Y"},
 {"key": "CreditCardsAccepted","value": "Y"},
 {"key": "TimeoutInactiveWithoutTransaction","value": "15"}
]},
 "reasonCodeSets": {"entry": [
 {
 "key": "TransactionSuspendReasonCodes",
 "value": {"item": [
 {"code": "43","text": "Operator Request"},
 {"code": "42","text": "Customer Request"}
]}
 },
 {
 "key": "PriceOverrideReasonCodes",
 "value": {"item": [
 {"code": "3","text": "Defective"},
 {"code": "5","text": "Signage Error"},
 {"code": "2","text": "Competition Price"},
 {"code": "1","text": "Ad Price"},
 {"code": "4","text": "Manager's Special"}
]}
 },
]},
 "registerID": "227",
 "storeCurrency": {

AuthStatusWithProfile

Appendix: API Result Formats B-3

 "@isoCode": "USD",
 "@formattedValue": "0.00",
 "@decimalValue": "0.00",
 "@currencySymbol": "$"
 },
 "storeID": "04241"
 }
}

XML:

<authStatusWithProfile>
 <roles>
 <roleId>37</roleId>
 <roleTitle>Administration</roleTitle>
 </roles>
 <roles>
 <roleId>49</roleId>
 <roleTitle>Bank Deposit</roleTitle>
 </roles>
 <roleId>4</roleId>
 <roleTitle>Void</roleTitle>
 </roles>
 <userName>boadmin</userName>
 <profile>
 <configurationSettings>
 <entry>
 <key>serviceCallTimeout</key>
 <value>30</value>
 </entry>
 <entry>
 <key>serviceCallTenderTimeout</key>
 <value>300</value>
 </entry>
 <entry>
 <key>inactiveWarningTimeout</key>
 <value>840</value>
 </entry>
 <entry>
 <key>inactiveLogoutTimeout</key>
 <value>900</value>
 </entry>
 </configurationSettings>
 <parameterSettings>
 <entry>
 <key>TimeoutInactiveWithTransaction</key>
 <value>15</value>
 </entry>
 <entry>
 <key>IdentifyCashierEveryTransaction</key>
 <value>N</value>
 </entry>
 <entry>
 <key>GiftCardsAccepted</key>
 <value>Y</value>
 </entry>
 <entry>
 <key>CreditCardsAccepted</key>
 <value>Y</value>
 </entry>
 <entry>

ItemStatus

B-4 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

 <key>TimeoutInactiveWithoutTransaction</key>
 <value>15</value>
 </entry>
 </parameterSettings>
 <reasonCodeSets>
 <entry>
 <key>TransactionSuspendReasonCodes</key>
 <value>
 <item>
 <code>43</code>
 <text>Operator Request</text>
 </item>
 <item>
 <code>42</code>
 <text>Customer Request</text>
 </item>
 </value>
 </entry>
 <entry>
 <key>PriceOverrideReasonCodes</key>
 <value>
 <item>
 <code>3</code>
 <text>Defective</text>
 </item>
 <item>
 <code>5</code>
 <text>Signage Error</text>
 </item>
 <item>
 <code>2</code>
 <text>Competition Price</text>
 </item>
 <item>
 <code>1</code>
 <text>Ad Price</text>
 </item>
 <item>
 <code>4</code>
 <text>Manager's Special</text>
 </item>
 </value>
 </entry>
 </reasonCodeSets>
 <registerID>202</registerID>
 <storeCurrency isoCode="USD"
 formattedValue="0.00"
 decimalValue="0.00"
 currencySymbol="$"/>
 <storeID>04241</storeID>
 </profile>
</authStatusWithProfile>

ItemStatus
JSON:

{"itemStatus": {
 "currentPrice": {
 "@isoCode": "USD",

InventoryStatus

Appendix: API Result Formats B-5

 "@formattedValue": "49.99",
 "@decimalValue": "49.99",
 "@currencySymbol": "$"
 },
 "description": "Chess set",
 "itemID": "20020002",
 "screenSaleMessage": "",
 "url": "http://localhost:7009/mobilepos/image?item=20020002"
}}

XML:

<itemStatuses>
 <itemStatus>
 <currentPrice isoCode="USD"
 formattedValue="49.99"
 decimalValue="49.99"
 currencySymbol="$"/>
 <description>Chess set</description>
 <itemID>20020002</itemID>
 <screenSaleMessage/>
 <url>http://localhost:7009/mobilepos/image?item=20020002</url>
 </itemStatus>
</itemStatuses>

InventoryStatus
JSON:

{"inventoryStatus": [
 {"inventoryResults": {
 "@vendorReturnedQuantity": "3.00",
 "@unavailableQty": "8.00",
 "@transferReservedQuantity": "1.00",
 "@totalSOH": "10.00",
 "@storeID": "01211",
 "@onOrderQty": "0.00",
 "@itemID": "100160823",
 "@inTransitQty": "2.00",
 "@customerReservedQuantity": "0.00",
 "@availableQty": "2.00",
 "storeInfo": {
 "@storeID": "01211",
 "@geoCode": "",
 "address": {
 "@state": "",
 "@postalCodeExtension": "",
 "@postalCode": "",
 "@country": "",
 "@city": "",
 "@addressType": "-1"
 },
 "localizedLocationNames":
 {"defaultLocale": null,
 "textMap": {"item":
 [{"locale": {"@variant": "","@language": "zh","@country": ""},
 "string": ""},
 {"locale": {"@variant": "","@language": "en","@country": ""},
 "string": ""}

InventoryStatus

B-6 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

]}
 },
 "storeDistrict": {
 "@identifier": "",
 "localizedDescriptions":
 {"defaultLocale": null,
 "textMap": {"item":
 [{"locale": {"@variant": "","@language": "zh","@country": ""},
 "string": ""},
 {"locale": {"@variant": "","@language": "en","@country": ""},
 "string": ""}
]}
 }
 },
 "storeRegion": {
 "@identifier": "",
 "localizedDescriptions":
 {"defaultLocale": null,
 "textMap": {"item":
 [{"locale": {"@variant": "","@language": "zh","@country": ""},
 "string": ""},
 {"locale": {"@variant": "","@language": "en","@country": ""},
 "string": ""
 }
]}
 }
 }
 }
 }}
]}

XML:

<inventoryStatuses>
 <inventoryStatus>
 <inventoryResults vendorReturnedQuantity="3.00"
 unavailableQty="8.00"
 transferReservedQuantity="1.00"
 totalSOH="10.00"
 storeID="01211"
 onOrderQty="0.00"
 itemID="100160823"
 inTransitQty="2.00"
 customerReservedQuantity="0.00"
 availableQty="2.00">
 <storeInfo storeID="01211" geoCode="">
 <address state=""
 postalCodeExtension=""
 postalCode=""
 country=""
 city=""
 addressType="-1"/>
 <localizedLocationNames>
 <defaultLocale/>
 <textMap>
 <item>
 <locale variant="" language="zh" country=""/>
 <string/>
 </item>
 <item>
 <locale variant="" language="en" country=""/>

GiftCardStatus

Appendix: API Result Formats B-7

 <string/>
 </item>
 </textMap>
 </localizedLocationNames>
 <storeDistrict identifier="">
 <localizedDescriptions>
 <defaultLocale/>
 <textMap>
 <item>
 <locale variant="" language="zh" country=""/>
 <string/>
 </item>
 <item>
 <locale variant="" language="en" country=""/>
 <string/>
 </item>
 </textMap>
 </localizedDescriptions>
 </storeDistrict>
 <storeRegion identifier="">
 <localizedDescriptions>
 <defaultLocale/>
 <textMap>
 <item>
 <locale variant="" language="zh" country=""/>
 <string/>
 </item>
 <item>
 <locale variant="" language="en" country=""/>
 <string/>
 </item>
 </textMap>
 </localizedDescriptions>
 </storeRegion>
 </storeInfo>
 </inventoryResults>
 </inventoryStatus>
</inventoryStatuses>

GiftCardStatus
JSON:

{
 "currentBalance": {
 "@isoCode": "USD",
 "@formattedValue": "75.00",
 "@decimalValue": "75.00",
 "@currencySymbol": "$"
 },
 "giftcardStatusCode": "Active"
}

XML:

<giftcardStatus>
 <currentBalance isoCode="USD"
 formattedValue="75.00"
 decimalValue="75.00"
 currencySymbol="$"/>

RegisterStatus

B-8 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

 <giftcardStatusCode>Active</giftcardStatusCode>
</giftcardStatus>

RegisterStatus
JSON:

{
 "operatorId": "0",
 "registerId": "227",
 "registerStatus": "1",
 "storeId": "04241",
 "storeStatus": "1",
 "tillId": "22701",
 "tillStatus": "1"
}

XML:

<registerStatus>
 <operatorId>0</operatorId>
 <registerId>227</registerId>
 <registerStatus>1</registerStatus>
 <storeId>04241</storeId>
 <storeStatus>1</storeStatus>
 <tillId>22702</tillId>
 <tillStatus>1</tillStatus>
</registerStatus>

RegisterProfileConfiguration
JSON:

{
 "configurationSettings": {"entry": [
 {"key": "serviceCallTimeout","value": "30"},
 {"key": "serviceCallTenderTimeout","value": "300"},
 {"key": "inactiveWarningTimeout","value": "840"},
 {"key": "inactiveLogoutTimeout","value": "900"}
]},
 "parameterSettings": {"entry": [
 {"key": "TimeoutInactiveWithTransaction","value": "15"},
 {"key": "IdentifyCashierEveryTransaction","value": "N"},
 {"key": "GiftCardsAccepted","value": "Y"},
 {"key": "CreditCardsAccepted","value": "Y"},
 {"key": "TimeoutInactiveWithoutTransaction","value": "15"}
]},
 "reasonCodeSets": {"entry": [
 {"key": "TransactionSuspendReasonCodes",
 "value": {"item":
 [
 {"code": "43","text": "Operator Request"},
 {"code": "42","text": "Customer Request"}
]}
 },
 {"key": "PriceOverrideReasonCodes",
 "value": {"item":
 [
 {"code": "3","text": "Defective"},
 {"code": "5","text": "Signage Error"},

RegisterProfileConfiguration

Appendix: API Result Formats B-9

 {"code": "2","text": "Competition Price"},
 {"code": "1","text": "Ad Price"},
 {"code": "4","text": "Manager's Special"}
]}
 }
]},
 "registerID": "202",
 "storeCurrency": {
 "@isoCode": "USD",
 "@formattedValue": "0.00",
 "@decimalValue": "0.00",
 "@currencySymbol": "$"
 },
 "storeID": "04241"
}

XML:

<registerProfileConfiguration>
 <configurationSettings>
 <entry>
 <key>serviceCallTimeout</key>
 <value>30</value>
 </entry>
 <entry>
 <key>serviceCallTenderTimeout</key>
 <value>300</value>
 </entry>
 <entry>
 <key>inactiveWarningTimeout</key>
 <value>840</value>
 </entry>
 <entry>
 <key>inactiveLogoutTimeout</key>
 <value>900</value>
 </entry>
 </configurationSettings>
 <parameterSettings>
 <entry>
 <key>TimeoutInactiveWithTransaction</key>
 <value>15</value>
 </entry>
 <entry>
 <key>IdentifyCashierEveryTransaction</key>
 <value>N</value>
 </entry>
 <entry>
 <key>GiftCardsAccepted</key>
 <value>Y</value>
 </entry>
 <entry>
 <key>CreditCardsAccepted</key>
 <value>Y</value>
 </entry>
 <entry>
 <key>TimeoutInactiveWithoutTransaction</key>
 <value>15</value>
 </entry>
 </parameterSettings>
 <reasonCodeSets>
 <entry>

TransactionStatus

B-10 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

 <key>TransactionSuspendReasonCodes</key>
 <value>
 <item>
 <code>43</code>
 <text>Operator Request</text>
 </item>
 <item>
 <code>42</code>
 <text>Customer Request</text>
 </item>
 </value>
 </entry>
 <entry>
 <key>PriceOverrideReasonCodes</key>
 <value>
 <item>
 <code>3</code>
 <text>Defective</text>
 </item>
 <item>
 <code>5</code>
 <text>Signage Error</text>
 </item>
 <item>
 <code>2</code>
 <text>Competition Price</text>
 </item>
 <item>
 <code>1</code>
 <text>Ad Price</text>
 </item>
 <item>
 <code>4</code>
 <text>Manager's Special</text>
 </item>
 </value>
 </entry>
 </reasonCodeSets>
 <registerID>202</registerID>
 <storeCurrency isoCode="USD"
 formattedValue="0.00"
 decimalValue="0.00"
 currencySymbol="$"/>
 <storeID>04241</storeID>
</registerProfileConfiguration>

TransactionStatus
JSON:

{
 "amountDue": {
 "@isoCode": "USD",
 "@formattedValue": "0.00",
 "@decimalValue": "0.00",
 "@currencySymbol": "$"
 },
 "associateID": "boadmin",
 "associateName": "Application Administrator",
 "discountTotal": {

TransactionStatus

Appendix: API Result Formats B-11

 "@isoCode": "USD",
 "@formattedValue": "1.00",
 "@decimalValue": "1.00",
 "@currencySymbol": "$"
 },
 "grandTotal": {
 "@isoCode": "USD",
 "@formattedValue": "9.47",
 "@decimalValue": "9.47",
 "@currencySymbol": "$"
 },
 "lineItems": {
 "associateID": "boadmin",
 "associateName": "Application Administrator",
 "description": "CoolBox",
 "discounts": {
 "amount": {
 "@isoCode": "USD",
 "@formattedValue": "1.00",
 "@decimalValue": "1.00",
 "@currencySymbol": "$"
 },
 "method": "Amount",
 "name": "Senior Citizen",
 "reasonCode": "2311",
 "type": "Manual"
 },
 "extendedDiscountedPrice": {
 "@isoCode": "USD",
 "@formattedValue": "9.00",
 "@decimalValue": "9.00",
 "@currencySymbol": "$"
 },
 "extendedPrice": {
 "@isoCode": "USD",
 "@formattedValue": "10.00",
 "@decimalValue": "10.00",
 "@currencySymbol": "$"
 },
 "itemNumber": "1234",
 "lineNumber": "0",
 "price": {
 "@isoCode": "USD",
 "@formattedValue": "10.00",
 "@decimalValue": "10.00",
 "@currencySymbol": "$"
 },
 "priceModifiable": "true",
 "quantity": "1",
 "quantityModifiable": "true"
 },
 "subtotal": {
 "@isoCode": "USD",
 "@formattedValue": "10.00",
 "@decimalValue": "10.00",
 "@currencySymbol": "$"
 },
 "taxTotal": {
 "@isoCode": "USD",
 "@formattedValue": "0.47",

TransactionStatus

B-12 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

 "@decimalValue": "0.47",
 "@currencySymbol": "$"
 },
 "tenderLineItems": {
 "amount": {
 "@isoCode": "USD",
 "@formattedValue": "9.47",
 "@decimalValue": "9.47",
 "@currencySymbol": "$"
 },
 "description": "Credit",
 "tenderLineNumber": "0"
 },
 "totalQuantity": "1",
 "transactionId": "042412350011",
 "transactionStatus": "2"
}

XML:

<transactionStatus>
 <amountDue isoCode="USD" formattedValue="0.00" decimalValue="0.00"
 currencySymbol="$"/>
 <associateID>boadmin</associateID>
 <associateName>Application Administrator</associateName>
 <discountTotal isoCode="USD" formattedValue="1.00" decimalValue="1.00"
 currencySymbol="$"/>
 <grandTotal isoCode="USD" formattedValue="9.47" decimalValue="9.47"
 currencySymbol="$"/>
 <lineItems>
 <associateID>boadmin</associateID>
 <associateName>Application Administrator</associateName>
 <description>CoolBox</description>
 <discounts>
 <amount isoCode="USD" formattedValue="1.00" decimalValue="1.00"
 currencySymbol="$"/>
 <method>Amount</method>
 <name>Senior Citizen</name>
 <reasonCode>2311</reasonCode>
 <type>Manual</type>
 </discounts>
 <extendedDiscountedPrice isoCode="USD" formattedValue="9.00"
 decimalValue="9.00" currencySymbol="$"/>
 <extendedPrice isoCode="USD" formattedValue="10.00" decimalValue="10.00"
 currencySymbol="$"/>
 <itemNumber>1234</itemNumber>
 <lineNumber>0</lineNumber>
 <price isoCode="USD" formattedValue="10.00" decimalValue="10.00"
 currencySymbol="$"/>
 <priceModifiable>true</priceModifiable>
 <quantity>1</quantity>
 <quantityModifiable>true</quantityModifiable>
 </lineItems>
 <subtotal isoCode="USD" formattedValue="10.00" decimalValue="10.00"
 currencySymbol="$"/>
 <taxTotal isoCode="USD" formattedValue="0.47" decimalValue="0.47"
 currencySymbol="$"/>
 <tenderLineItems>
 <amount isoCode="USD" formattedValue="9.47" decimalValue="9.47"
 currencySymbol="$"/>
 <description>Credit</description>

ReceiptStatus

Appendix: API Result Formats B-13

 <tenderLineNumber>0</tenderLineNumber>
 </tenderLineItems>
 <totalQuantity>1</totalQuantity>
 <transactionId>042412350012</transactionId>
 <transactionStatus>2</transactionStatus>
</transactionStatus>

ReceiptStatus
JSON:

{
 "emailed": "true",
 "printed": "false",
 "signatureSlipPrinted": "false"
}

XML:

<receiptStatus>
 <emailed>true</emailed>
 <printed>false</printed>
 <signatureSlipPrinted>false</signatureSlipPrinted>
</receiptStatus>

ReceiptStatus

B-14 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

Appendix: Eclipse Screens C-1

C
Appendix: Eclipse Screens

This appendix contains the screenshots for using Eclipse when extending Mobile POS
and setting up an implementation environment.

Extending Mobile POS
This screen is referenced in Chapter 5.

Figure C–1 Eclipse New Java Class

Setting Up an Implementation Environment

C-2 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

Setting Up an Implementation Environment
These screens are referenced in Chapter 6.

Figure C–2 Eclipse Workspace Preferences

Setting Up an Implementation Environment

Appendix: Eclipse Screens C-3

Figure C–3 Eclipse Runtime Environments

Setting Up an Implementation Environment

C-4 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

Figure C–4 Eclipse WAR Import Menu

Figure C–5 Eclipse WAR Import Wizard

Setting Up an Implementation Environment

Appendix: Eclipse Screens C-5

Figure C–6 Eclipse WAR Import Dialog

Figure C–7 Eclipse WAR Import: Web Libraries

Setting Up an Implementation Environment

C-6 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

Figure C–8 Eclipse Mobile POS Workspace

Figure C–9 Eclipse Add Library

Setting Up an Implementation Environment

Appendix: Eclipse Screens C-7

Figure C–10 Eclipse Select WebLogic Shared Library

Setting Up an Implementation Environment

C-8 POS Suite with Mobile Point-of-Service Implementation Guide, Volume 5 - Mobile Point-of-Service

	Contents
	List of Examples
	List of Figures
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Customer Support
	Review Patch Documentation
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	1 Introduction
	Contents of this Guide
	Key Features of Mobile Point-of-Service
	Skills Needed for Implementation
	Applications
	Technical Concepts

	2 Mobile POS User Interface Customization
	Resources
	Customization Files
	CSS Customization File
	JavaScript Customization File

	iPod Touch Display
	Changing the Application Name
	Changing the Application Icon
	Changing the Splash Screen

	Styling
	Changing the Color Scheme
	Changing the Corporate Logo
	Changing the Menu Button Color
	Changing the Menu Button Size
	Changing the Action Button Icons
	Hiding the Action Button Text
	Changing Text

	Business Flow
	Changing the Menu
	Removing a Menu Button
	Adding a Menu Button
	Updating a Menu Entry
	Changing the Number of Columns

	Workflows
	Adding a New Page
	Adding a New Workflow
	Inserting a Page into an Existing Workflow
	Replacing a Page in an Existing Workflow

	Inserting a Static Field on a Page
	Inserting an API-Filled, Non-Input Field on a Screen
	Inserting an Input Field on a Screen
	Changing Field Validation
	Changing the Business Logic Behind a Screen Event
	Server API Calls
	Custom Service with Unaltered Method Signature
	Custom Service with Modified Method Signature
	Custom Service with Modified Data Returned from the POS Server

	Configurable Settings
	Changing the Security Mechanism

	New Hardware
	Supporting New iOS Devices
	Supporting Alternate Mobile OS Devices
	Supporting Tablets
	iPad
	Non-iOS Tablet

	Supporting Alternate Sleds

	3 Mobile POS Server Overview
	Solution Components
	REST Interfaces and Service Implementations
	View Objects
	Access to Tours
	Application State Management
	Device Profiles
	Authentication and Authorization

	4 Mobile POS Frameworks
	REST Service Layer
	Tour Runner and Tour Access
	Status and Tour Parameter Object Frameworks

	5 Mobile POS Extension Guidelines
	Customize an Existing Service API
	Service Method Override
	Customize the Tour Runner
	Tour Runner Configuration
	InstructibleUIManager
	Error Handling in the Mobile POS Server

	Tour Runner Inputs and Outputs

	Customize Tour

	Extend an Existing Service Area
	Adding a New Service Area
	Customizing Authentication
	Working with Device Profiles
	Device Mappings
	Device Settings
	Configuration Settings
	POS Parameters
	Reason Codes

	6 Implementation Environment
	Eclipse Project Creation
	Mobile POS Server Deployment Model

	7 Internationalization
	Translation

	A Appendix: API URLs
	About API
	Auth API
	Item API
	Register API
	Transaction API

	B Appendix: API Result Formats
	VersionStatus
	AuthStatus
	AuthStatusWithProfile
	ItemStatus
	InventoryStatus
	GiftCardStatus
	RegisterStatus
	RegisterProfileConfiguration
	TransactionStatus
	ReceiptStatus

	C Appendix: Eclipse Screens
	Extending Mobile POS
	Setting Up an Implementation Environment

