

Oracle® Retail POS Suite
Implementation Guide, Volume 1 – Implementation Solutions

Release 14.0.1.1

E54973-02

September 2015

Oracle Retail POS Suite Implementation Guide, Volume 1 - Implementation Solutions, Release 14.0.1.1

E54973-02

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Primary Author: Bernadette Goodman

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Value-Added Reseller (VAR) Language

Oracle Retail VAR Applications

The following restrictions and provisions only apply to the programs referred to in this section and licensed
to you. You acknowledge that the programs may contain third party software (VAR applications) licensed to
Oracle. Depending upon your product and its version number, the VAR applications may include:

(i) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail Data
Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(ii) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of Kirkland,
Washington, to Oracle and imbedded in Oracle Retail Mobile Store Inventory Management.

(iii) the software component known as Access Via™ licensed by Access Via of Seattle, Washington, and
imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(iv) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of San Jose,
California, and imbedded in Oracle Retail Promotion Planning & Optimization application.

You acknowledge and confirm that Oracle grants you use of only the object code of the VAR Applications.
Oracle will not deliver source code to the VAR Applications to you. Notwithstanding any other term or
condition of the agreement and this ordering document, you shall not cause or permit alteration of any VAR
Applications. For purposes of this section, "alteration" refers to all alterations, translations, upgrades,
enhancements, customizations or modifications of all or any portion of the VAR Applications including all

reconfigurations, reassembly or reverse assembly, re-engineering or reverse engineering and recompilations
or reverse compilations of the VAR Applications or any derivatives of the VAR Applications. You
acknowledge that it shall be a breach of the agreement to utilize the relationship, and/or confidential
information of the VAR Applications for purposes of competitive discovery.

The VAR Applications contain trade secrets of Oracle and Oracle's licensors and Customer shall not attempt,
cause, or permit the alteration, decompilation, reverse engineering, disassembly or other reduction of the
VAR Applications to a human perceivable form. Oracle reserves the right to replace, with functional
equivalent software, any of the VAR Applications in future releases of the applicable program.

v

Contents

List of ExamplesList of Figures

Send Us Your Comments ... xxi

Preface ... xxiii

Audience... xxiii
Documentation Accessibility ... xxiii
Related Documents ... xxiii
Customer Support ... xxiv
Review Patch Documentation ... xxiv
Improved Process for Oracle Retail Documentation Corrections .. xxiv
Oracle Retail Documentation on the Oracle Technology Network ... xxiv
Conventions ... xxv

1 Introduction

2 Oracle Retail POS Suite Technical Architecture

Back Office and Central Office Tier Organization .. 2-1
Client Tier.. 2-2
Middle Tier.. 2-2

Model .. 2-2
View .. 2-2
Controller ... 2-3

Struts Configuration.. 2-3
Application Services.. 2-4

Data Tier .. 2-5
Dependencies in Application and Commerce Services.. 2-5
Example of Operation.. 2-6

Point-of-Service Architecture... 2-8
Design Patterns .. 2-10

MVC Pattern .. 2-10
Factory Pattern... 2-11
Command Pattern ... 2-11
Singleton Pattern ... 2-12

 Returns Management Architecture... 2-12
General Technologies and Frameworks .. 2-12

vi

Architectural Styles and Patterns .. 2-12
Architectural Layers ... 2-12

Conceptual Modules... 2-14
Enabling Technologies ... 2-16

JEE .. 2-16
Struts .. 2-16
Axis .. 2-16

Web-Based User Interface.. 2-16
Physical Module View.. 2-17

User Interface Layer... 2-18
Consumer Adapter Layer ... 2-18
Service Layer... 2-19
Data Layer ... 2-20

Engine Data: Policies, Rules, And Return Activities ... 2-20
Configuration Data... 2-21
Historical Data... 2-22

Messaging... 2-22

3 Store Database

Point-of-Service Store Database ... 3-1
ARTS Compliance .. 3-1
Understanding Data Managers and Technicians .. 3-1
How Data Transactions Work.. 3-3
Creating or Updating Database Tables ... 3-5
Example of Saving Data: Storing Till Information .. 3-7

Research Table Requirements and Standards... 3-7
Saving Data from Site Code... 3-7
Locate Data Operation ... 3-8
Modify Data Operation... 3-13
Test Code... 3-14
Verify Data .. 3-14

Central Office and Back Office Store Database .. 3-14
Related Documentation.. 3-14
Database/System Interface.. 3-15
ARTS Compliance ... 3-16
Bean-Managed Persistence in the Database .. 3-16
DAO-Managed Persistence in the Database for Back Office .. 3-17

4 Backend System Administration and Configuration

Parameters.. 4-1
Parameters in Back Office and Central Office.. 4-1
Parameters in Point-of-Service ... 4-2

Parameter Hierarchy .. 4-2
Parameter Group... 4-2
Parameter Properties .. 4-3

Configuring Transaction Queue Monitor Intervals... 4-4
Running Back Office or Central Office ... 4-4

vii

Running Returns Management ... 4-4
Establishing a Store Hierarchy in Central Office or Returns Management 4-4
Importing Data in Returns Management .. 4-5
Point-of-Service Devices ... 4-5

Set Up the Device ... 4-5
Test the Device.. 4-5
Create a Session and ActionGroup.. 4-6
Simulate the Device ... 4-7

Scheduling Post Processors in Back Office ... 4-8
Scheduling Post Processors in Returns Management ... 4-8
Data Management in Central Office .. 4-8
Help Files in Point-of-Service.. 4-8

Modifying Help Files in Central Office, Back Office and Returns Management 4-9
Modifying Help Files in Point-of-Service ... 4-9

Reason Codes in Point-of-Service .. 4-10
Configuring Transaction ID Lengths... 4-10

Understanding Transaction IDs.. 4-10
Changing Transaction ID Format ... 4-11

Configuring the Purchase Date Field for Returns and Voids.. 4-12
Configuring RMI Timeout Intervals in Point-of-Service .. 4-12

Setting the RMI Timeout Interval for the JVM Under Linux.. 4-12
Modifying the TCP Connection Timeout on Linux .. 4-13

Setting the RMI Timeout Interval for All Manager and Technician Calls.............................. 4-13
Setting Application Timeout Values on Linux .. 4-13

Setting the RMI Timeout Interval for a Specific Technician ... 4-14
System Settings in Point-of-Service .. 4-14
Configuring Logging in Point-of-Service... 4-14
Returns Management Environment Entries in ejb-jar.xml .. 4-15

Return Ticket Formatting Entries ... 4-15
Auditing Entries .. 4-16

Defining Security with Roles ... 4-16
Secured Features ... 4-16
Security Implementation—Warnings and Advice ... 4-17

Configuring Security in Returns Management ... 4-18

5 Audit Logging

Configuring the Audit Log ... 5-3
Internationalize Static Text/Date/Time/Currency.. 5-3

Daily Operations Audit Log Events ... 5-6
Enter Business Date ... 5-6
Start of Day.. 5-7
End of Day... 5-8
Register Open .. 5-10
Register Close .. 5-10

Point-of-Service Transaction Events .. 5-11
Transaction Tendered with Credit Card.. 5-11
Transaction Tendered with Debit Card ... 5-12

viii

Employee Audit Log Events .. 5-13
Modify Employee Information ... 5-13
Modify Temporary Employee Information... 5-13
Add Employee... 5-14
Add Temporary Employee .. 5-15

Login, Logout, Lockout Audit Log Events.. 5-16
User Login .. 5-16
User Lock Out.. 5-16
User Logout.. 5-17

Password Audit Log Events... 5-17
Change Password.. 5-17
Reset Employee Password ... 5-18
Reset Temporary Employee Password .. 5-18

Role Audit Log Events.. 5-19
Edit Role ... 5-19
Add Role... 5-20

Till Audit Log Events.. 5-20
Till Open... 5-20
Till Suspend ... 5-22
Till Resume... 5-22
Till Close ... 5-23
Count Float at Reconcile... 5-23
Till Reconcile.. 5-25

Parameter Log Events ... 5-31
Modify Application Parameter ... 5-31

6 Intra Store Data Distribution Infrastructure

Spring Configuration .. 6-1
Application Configuration ... 6-9
Integration Considerations.. 6-10
DataSet Compressed File Structure .. 6-12

DataSet Compressed File Example... 6-12
Manifest File Structure... 6-12

Manifest File Example .. 6-12
DataSet Flat File Structure... 6-13

DataSet Flat File Example .. 6-13
Extensibility.. 6-13

Adding New Table To Existing DataSet.. 6-13
Adding More Tables To Existing DataSet Types .. 6-13
Adding a Table to an Existing Data Set Using the Stores Build Scripts........................... 6-14

Adding a New DataSet .. 6-14
Adding a New DataSet Using the Stores Build Scripts .. 6-15

Configuring Schedule for DataSet Producer and Consumer ... 6-15
Configure DataSet Producer .. 6-15
Configure DataSet Consumer .. 6-16

Adding New DataSet Type.. 6-17
Adding a New DataSet Type Using the Stores Build Scripts .. 6-22

ix

Changing Point-of-Service Client Database Vendor.. 6-22

7 Centralized Customer

8 Changing and Configuring Currencies

Alternate Currencies .. 8-1
Changing Currency .. 8-1
Configuring a New Base Currency ... 8-3

Currency SQL Configuration ... 8-3
Currency Table CO_CNY .. 8-3
Currency Denomination Table CO_CNY_DNM and I8 Table CO_CNY_DNM_I8 8-3
Exchange Rate Table CO_RT_EXC... 8-4
Store Safe Tender Table LE_TND_STR_SF ... 8-5

Parameter Configuration .. 8-6
Resource Bundle Configuration... 8-8

9 Returns Management

Overview .. 9-1
Concept of a Return in Returns Management .. 9-2
Context Model .. 9-3
Oracle Retail Returns Management Actors .. 9-4
Tax Responsibility in Oracle Retail Returns Management .. 9-5

Functional Overview ... 9-5
Conceptual Service Flow... 9-6
Conceptual Data Flow ... 9-7
Functional Assumptions ... 9-8
Functional Overviews.. 9-9

Return Tickets Functional Overview ... 9-9
Exception Files Functional Overview .. 9-9
Messages and Responses Functional Overview... 9-9
Policies and Rules Functional Overview.. 9-10
Analytic Engine Functional Overview.. 9-10

Configuration .. 9-10
Response Codes .. 9-11
Tender Determination.. 9-11
Collection of Customer Demographics ... 9-11
Determination of the Policy for Use on a Return Attempt ... 9-11
Customer Service Overrides ... 9-12

Integration Methods and Communication ... 9-12
Methods of Contact... 9-12
Returns Management Messages.. 9-12
Sample XML for Return Transaction Scenarios.. 9-13

Point-of-Return to Returns Management—Initial Return Request 9-13
Returns Management to Point-of-Return—Initial Return Response: Need Positive ID 9-18
Point-of-Return to Returns Management—Second Return Request................................ 9-20
Returns Management to Point-of-Return—Second Return Authorization Response ... 9-23

x

Point-of-Return to Returns Management—Return Result from Second Response 9-25
Point-of-Return to Returns Management—Void Return ... 9-26
Offline Return Result... 9-27

Implementation Decisions ... 9-29
Asynchronous Versus Synchronous Communication.. 9-29
XML Versus JavaBean Messages ... 9-29
Web Service Versus Enterprise JavaBeans and Remote Method Invocation Call.......... 9-30

Elements ... 9-30
Return Request ... 9-30
Return Response .. 9-31
Return Result .. 9-32

Web Service Interface ... 9-32
Relationship of Returns Management Data to ARTS Transaction Data 9-33

Returns Authorization.. 9-33
Exception Flow .. 9-34
Error Handling .. 9-34
Logging... 9-34

Exceptions File ... 9-34
Exception File and Count Calculation ... 9-34
Definition of Return, for Calculation.. 9-38
Exceptions .. 9-39

Customer Exceptions... 9-39
Cashier Exceptions... 9-39

Customer Data Import.. 9-40

10 Authorized Payment Foundation

 Authorized Payment Foundation Overview ... 10-1
APF Goals... 10-1
Point-of-Service Client Flow Overview ... 10-1
Implementing a New Authorization Service .. 10-2

APF Request/Response Modifications... 10-2
Database Modifications... 10-2
Point-of-Service Client Tour Modifications ... 10-2
COMMEXT Connectors/Formatters Implementation ... 10-3
COMMEXT Configuration Modifications.. 10-3

APF Request Types ... 10-3
APF Authorize Payment (Transfer) Request Classes ... 10-3
APF Reversal Request Classes ... 10-5
APF Instant Credit Request Classes .. 10-6
APF Call Referral Request Classes .. 10-7
APF Signature Capture Request .. 10-8
APF Customer Interaction Request... 10-8
APF Status Request.. 10-10
APF Get Card Token Request .. 10-11

APF Response Types .. 10-12
Calling PaymentManger from Point-of-Service Tours (Services) .. 10-12
CPOIPaymentUtility... 10-12

xi

PinComm Technician.. 10-12
Example Topology .. 10-12
PinComm Connectors... 10-13

PinCommConnector .. 10-13
PinComm CardAuthConnector ... 10-13
PinComm OnePassCardAuthConnector.. 10-16
PinComm AuthorizeCallReferralWithoutTokenConnector .. 10-16
PinComm StatusInquiryConnector ... 10-16
PinComm PinCommCPOIConnector ... 10-16
PinComm CardTokenInquiryConnector.. 10-16
PinComm ReentryAuthConnector .. 10-16

PinComm Formatters ... 10-16
PinComm CardAuthFormatters .. 10-16
PinComm Check Formatters .. 10-18

PinComm Configuration.. 10-19
PXP Solutions ANYpay POS ... 10-19

JAXBFormatter .. 10-19
ServebaseFormatter .. 10-21
ChainedConnector .. 10-21
ServebaseConnector.. 10-21
SocketConnector.. 10-21
SocketThread ... 10-21
Configuration... 10-22
Message Formats ... 10-24
Response Codes... 10-25

AJB Technician .. 10-25
AJB Topology... 10-25
AJB COMMEXT Connectors.. 10-26
AJB COMMEXT Formatters .. 10-26
AJB Codes... 10-27
AJB Utilities.. 10-27
Mapping of AJB Action Codes to Point-of-Service Authorization Responses..................... 10-27

Action Codes... 10-27
Mapping Tables.. 10-28
References ... 10-31

Training Mode.. 10-31

11 Point-of-Service

Bill Pay... 11-1
Automated E-Mail Messages .. 11-2
Register Cash Notification .. 11-2

Configuration... 11-2
application.xml... 11-2
application.properties ... 11-3
dialogText_en.properties .. 11-3
posText_en.properties ... 11-3

Scan Sheet ... 11-3

xii

Scan Sheet Data Configuration ... 11-3
Application.properties .. 11-4
Inserting and Configuring a Category.. 11-4
Inserting an Image ... 11-5

Inserting/ Configuring an Individual Item Belonging to a Category 11-5
Inserting/ Configuring an Individual Item that Does Not Belong to Any Category........
11-6

Item Images .. 11-9
Images for Mobile Point-of-Service .. 11-10

Serial Numbers .. 11-10
Configuration... 11-11

Enabling or Disabling Serialization Functionality .. 11-11
Enabling or Disabling IMEI Functionality ... 11-11

Currency Rounding... 11-11
Configuration for Currency Rounding .. 11-12

Cross-Border Returns ... 11-12
Configuration for Cross-Border Returns ... 11-12

Dual Display .. 11-13
Configuration for the Dual Display.. 11-13

application.properties Configuration File .. 11-13
Parameters... 11-13

Dashboard... 11-14
Configuration for the Dashboard ... 11-14

Fiscal Printer Support ... 11-14
Integration with Oracle Retail Store Inventory Management.. 11-15

Integration using a Web Service ... 11-15
Item Disposition ... 11-18
Error Handling ... 11-18
Logging.. 11-18

Integration using Batch Files ... 11-18
Integration Middleware for SIM Batch Files.. 11-19
System Flow Description .. 11-20
Integration Architecture.. 11-22

Integration with External Systems using SOAP Web Services .. 11-23
Configuration Option to Resolve the WSDL Location .. 11-24

12 Receipt Builder

Receipt Builder XML Blueprint Files .. 12-1
Example XML Blueprint File ... 12-2
Receipt Builder XSD.. 12-4

Configuration ... 12-9
Conduit Configuration ... 12-9
Manager Configuration.. 12-9
Spring Configuration.. 12-10

Receipt Messages... 12-10
Updating the Legal Statement of Liability on a Receipt.. 12-10
Item Level Receipt Messages... 12-11

xiii

Rebate Receipt ... 12-11

13 Back Office

Deploying Reports .. 13-1

A Appendix: Examples of Currency Rounding

Swedish Rounding.. A-1
Round Up .. A-3
Round Down .. A-5

B Appendix: Reconfiguring a JAXWSConnector

Glossary

Index

xiv

xv

List of Examples

3–1 CreateTableCreditDebitCardTenderLineItem.sql.. 3-5
3–2 String Constant in ARTSDatabaseIfc.java ... 3-6
3–3 UpdateStatusSite.java: Transaction Object.. 3-8
3–4 SaveRetailTransactionAisle.java: Save Transaction... 3-8
3–5 UtilityManager.java: Save Data Transaction.. 3-10
3–6 TransactionWriteDataTransaction.java: Save Transaction .. 3-10
3–7 DefaultDataTechnician.xml: Define Data Transaction Class .. 3-10
3–8 TransactionWriteDataTransaction: DataAction .. 3-10
3–9 UpdateTillStatus: Set Data Operation Name ... 3-12
3–10 DefaultDataTechnician.xml: Define Data Operation Class ... 3-12
3–11 JdbcUpdateTillStatus.java: SQL Factory Methods.. 3-13
3–12 ItemPriceDerivationBean.java: ejbStore Method... 3-16
3–13 PluItemDAO ... 3-17
4–1 Default Parameter Settings .. 4-2
4–2 Definition of Tender Group... 4-3
4–3 Parameter Definitions From application.xml ... 4-3
4–4 ActionGroup Configuration.. 4-6
4–5 Session Configuration .. 4-6
4–6 Example of Device Connection ... 4-7
4–7 ActionGroup in Tour code... 4-7
4–8 Normal Device Configuration... 4-8
4–9 Simulated Device Configuration .. 4-8
4–10 JavaHelp—helpscreens.properties .. 4-9
4–11 JavaHelp—toc.xml ... 4-10
4–12 Transaction ID Configuration in domain.properties.. 4-11
5–1 Audit Log Configuration Changes in the log4j.xml File ... 5-3
6–1 Adding Table Association To Employee DataSet ... 6-13
6–2 Adding New DataSet .. 6-17
6–3 Adding Table Association to New DataSet.. 6-18
6–4 DataSetProducer Code .. 6-18
6–5 DataSetConsumer Code.. 6-19
8–1 Add Krona as Base to Currency Table CO_CNY ... 8-3
8–2 Add Krona Denominations to Denomination Table CO_CNY_DNM 8-3
8–3 Add Krona Denominations to I8 Table CO_CNY_DNM_I8 .. 8-4
8–4 Add Alternate Currency Exchange Rates to Krona ... 8-4
8–5 Add Store Safe Tenders for Krona.. 8-5
8–6 Parameters to Support Krona as the Base and USD as the Alternate Currency................ 8-6
8–7 New commonText Resource Bundle Keys .. 8-8
8–8 New ejournalText Resource Bundle Keys ... 8-8
8–9 tillText Resource Bundle Keys .. 8-8
9–1 Initial Return Authorization Request.. 9-13
9–2 Return Authorization Response Requesting Positive ID... 9-18
9–3 Second Return Authorization Request ... 9-20
9–4 Second Return Authorization Response... 9-23
9–5 Return Result .. 9-25
9–6 Void Return Result .. 9-27
9–7 Offline Return Result... 9-27
9–8 RM-CustomerImport.xsd.. 9-40
9–9 RMCustomerImport.xml .. 9-41
10–1 PaymentManager in pos/config/conduit/ClientConduit.xml 10-22
10–2 Request Format .. 10-24
10–3 Response Format.. 10-24
11–1 InsertTableScanSheet.sql... 11-6
11–2 InsertTableScanSheetI18N.sql .. 11-9

xvi

11–3 ItemImport.xml Sample .. 11-9
12–1 Example.bpt .. 12-2
12–2 Receipt Builder XSD .. 12-4

xvii

List of Figures

2–1 High-Level Architecture .. 2-1
2–2 Tiles in a POS Suite Application ... 2-3
2–3 Application Manager as Facade for Commerce Services.. 2-5
2–4 Dependencies in Back Office ... 2-6
2–5 Operation of Back Office.. 2-7
2–6 Oracle Retail Architecture ... 2-8
2–7 Point-of-Service Architecture Layers ... 2-9
2–8 MVC Pattern ... 2-10
2–9 Factory Pattern ... 2-11
2–10 Command Pattern.. 2-11
2–11 Singleton Pattern.. 2-12
2–12 Oracle Retail Returns Management Architectural Layers ... 2-13
2–13 Oracle Retail Returns Management Conceptual Modules... 2-14
2–14 Oracle Retail Returns Management Web-based User Interface.. 2-16
2–15 Oracle Retail Returns Management Physical Module View ... 2-17
2–16 Oracle Retail Returns Management Consumer Adapter Layer .. 2-18
2–17 Oracle Retail Returns Management Service Layer.. 2-19
2–18 Oracle Retail Returns Management Data Layer.. 2-20
2–19 Oracle Retail Returns Management Policies and Rules ... 2-21
3–1 Data Managers and Data Technicians ... 3-2
3–2 Updating the Database: Simplified Runtime View.. 3-4
3–3 Diagram: Saving a Transaction ... 3-9
3–4 Commerce Services, Entity Beans, and Database Tables ... 3-15
5–1 Audit Log in Point-of-Service ... 5-2
7–1 Centralized Customer Object Model.. 7-2
9–1 Oracle Retail Returns Management Decisions Process ... 9-1
9–2 Oracle Retail Returns Management Context Model .. 9-4
9–3 Oracle Retail Returns Management Conceptual Service Flow .. 9-6
9–4 Oracle Retail Returns Management Conceptual Data Flow... 9-8
10–1 AuthorizeTransferRequest Class ... 10-4
10–2 ReversalRequest Class... 10-5
10–3 AuthorizeInstantCreditRequest Class .. 10-6
10–4 AuthorizeCallReferralRequest Class... 10-7
10–5 SignatureCaptureRequest Class .. 10-8
10–6 CustomerInteractionRequest Class ... 10-9
10–7 StatusRequest Class ... 10-10
10–8 CardTokenRequest Class .. 10-11
10–9 PinComm Topology .. 10-13
10–10 CardAuthConnector Request... 10-15
10–11 CardAuthFormatters ... 10-17
10–12 Check Formatters ... 10-18
10–13 JAXBFormatter ... 10-20
10–14 APF Flow Diagram .. 10-22
11–1 Point-of-Service Connector Framework Model... 11-17
11–2 Point-of-Service Integration with SIM using Batch Files ... 11-20

xviii

List of Tables

2–1 Oracle Retail Architecture Components.. 2-8
2–2 Point-of-Service Architecture Layers ... 2-10
3–1 Database Tables Used in Credit Card Tender Option.. 3-7
3–2 Related Documentation.. 3-15
4–1 Parameter Directories, Files, and Descriptions.. 4-2
4–2 Validator Types .. 4-4
4–3 Return Ticket Table... 4-15
4–4 Return Ticket Format <env-entry>... 4-15
4–5 Audit Target <env-entry>.. 4-16
4–6 Security Access Points .. 4-16
5–1 Enter Business Date Event Components .. 5-7
5–2 Start of Day Event Components .. 5-7
5–3 End of Day Event Components ... 5-9
5–4 Register Open Event Components ... 5-10
5–5 Register Close Event Components ... 5-11
5–6 Transaction Tendered with Credit Card Event Components .. 5-11
5–7 Transaction Tendered with Debit Card Event Components .. 5-12
5–8 Modify Employee Information Event Components .. 5-13
5–9 Modify Temporary Employee Information Event Components 5-14
5–10 Add Employee Event Components.. 5-14
5–11 Add Temporary Employee Event Components... 5-15
5–12 User Login Event Components... 5-16
5–13 User Lock Out Event Components... 5-16
5–14 User Logout Event Components .. 5-17
5–15 Change Password Event Components... 5-18
5–16 Reset Employee Password Event Components.. 5-18
5–17 Reset Temporary Employee Password Event Components ... 5-19
5–18 Edit Role Event Components .. 5-19
5–19 Add Role Event Components.. 5-20
5–20 Till Open Event Components.. 5-21
5–21 Till Suspend Event Component .. 5-22
5–22 Till Resume Event Component ... 5-22
5–23 Till Close Event Component ... 5-23
5–24 Count Float at Reconcile Event Components ... 5-24
5–25 Till Reconcile Event Components... 5-25
5–26 Modify Application Parameter Event Components .. 5-31
6–1 Spring Framework Configuration Options.. 6-2
6–2 Point-of-Service DataSet Table.. 6-11
9–1 Oracle Retail Returns Management Actors... 9-5
9–2 XSD Locations.. 9-13
9–3 Required Elements By Return Request.. 9-30
9–4 Required Elements By Return Response ... 9-31
9–5 Required Elements By Return Result Use Case.. 9-32
9–6 Web Service Methods ... 9-32
9–7 Overall Assumptions/Requirements.. 9-35
9–8 Customer-Related Assumptions/Requirements... 9-36
9–9 Exception Counting Examples.. 9-38
9–10 Customer Information Tables ... 9-42
10–1 AJB Action Codes.. 10-27
10–2 AJB Action Codes for Instant Credit .. 10-28
10–3 AJB SPDH Codes... 10-28
10–4 Credit/Debit Including Gift Card Tender Swiped at the PinPad.................................. 10-29
10–5 Check/E-Check ... 10-29

xix

10–6 Gift Card... 10-29
10–7 Credit Re-Entry Mode .. 10-30
10–8 House Account Payment ... 10-30
10–9 Instant Credit ... 10-31
10–10 Payment System Offline Indicator ... 10-31
11–1 E-Mail Message Status Values .. 11-2
11–2 Application Parameters.. 11-3
11–3 CO_CFG_SC_SHT... 11-4
11–4 CO_CFG_SC_SHT_I8 ... 11-4
A–1 Examples of Change Using Swedish Rounding... A-1
A–2 Examples of Refunds Using Swedish Rounding.. A-3
A–3 Examples of Change Using Round Up .. A-3
A–4 Examples of Refunds Using Round Up.. A-5
A–5 Examples of Change Using Round Down... A-5
A–6 Examples of Refunds Using Round Down ... A-6

xx

xxi

Send Us Your Comments

Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions,
Release 14.0.1.1

Oracle welcomes customers' comments and suggestions on the quality and usefulness
of this document.

Your feedback is important, and helps us to best meet your needs as a user of our
products. For example:

■ Are the implementation steps correct and complete?

■ Did you understand the context of the procedures?

■ Did you find any errors in the information?

■ Does the structure of the information help you with your tasks?

■ Do you need different information or graphics? If so, where, and in what format?

■ Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell
us your name, the name of the company who has licensed our products, the title and
part number of the documentation and the chapter, section, and page number (if
available).

Send your comments to us using the electronic mail address: retail-doc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number
(optional).

If you need assistance with Oracle software, then please contact your support
representative or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your
Oracle local office and inquire about our Oracle University offerings. A list of Oracle
offices is available on our web site at www.oracle.com.

Note: Before sending us your comments, you might like to check
that you have the latest version of the document and if any concerns
are already addressed. To do this, access the new Applications Release
Online Documentation CD available on My Oracle Support and
www.oracle.com. It contains the most current Documentation Library
plus all documents revised or released recently.

xxii

xxiii

Preface

This Implementation Guide provides information for configuring specific features for
the following applications:

■ Oracle Retail Back Office

■ Oracle Retail Central Office

■ Oracle Retail Point-of-Service

■ Oracle Retail Returns Management

Audience
The Implementation Guide is intended for the Oracle Retail Point-of-Service
integrators and implementation staff, as well as the retailer’s IT personnel.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For more information, see the following Release 14.0.1 documentation sets:

■ Oracle Retail Back Office documentation set

■ Oracle Retail Central Office documentation set

■ Oracle Retail Point-of-Service documentation set

■ Oracle Retail Returns Management documentation set

xxiv

Customer Support
To contact Oracle Customer Support, access My Oracle Support at the following URL:

■ https://support.oracle.com

When contacting Customer Support, please provide the following:

■ Product version and program/module name

■ Functional and technical description of the problem (include business impact)

■ Detailed step-by-step instructions to recreate

■ Exact error message received

■ Screen shots of each step you take

Review Patch Documentation
When you install the application for the first time, you install either a base release (for
example, 14.0) or a later patch release (for example, 14.0.1). If you are installing the
base release or additional patch releases, read the documentation for all releases that
have occurred since the base release before you begin installation. Documentation for
patch releases can contain critical information related to the base release, as well as
information about code changes since the base release.

Improved Process for Oracle Retail Documentation Corrections
To more quickly address critical corrections to Oracle Retail documentation content,
Oracle Retail documentation may be republished whenever a critical correction is
needed. For critical corrections, the republication of an Oracle Retail document may at
times not be attached to a numbered software release; instead, the Oracle Retail
document will simply be replaced on the Oracle Technology Network Web site, or, in
the case of Data Models, to the applicable My Oracle Support Documentation
container where they reside.

This process will prevent delays in making critical corrections available to customers.
For the customer, it means that before you begin installation, you must verify that you
have the most recent version of the Oracle Retail documentation set. Oracle Retail
documentation is available on the Oracle Technology Network at the following URL:

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.ht
ml

An updated version of the applicable Oracle Retail document is indicated by Oracle
part number, as well as print date (month and year). An updated version uses the
same part number, with a higher-numbered suffix. For example, part number
E123456-02 is an updated version of a document with part number E123456-01.

If a more recent version of a document is available, that version supersedes all
previous versions.

Oracle Retail Documentation on the Oracle Technology Network
Documentation is packaged with each Oracle Retail product release. Oracle Retail
product documentation is also available on the following web site:

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.ht
ml

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html
http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html
http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html
http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

xxv

(Data Model documents are not available through Oracle Technology Network. These
documents are packaged with released code, or you can obtain them through My
Oracle Support.)

Documentation should be available on this web site within a month after a product
release.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

http://www.oracle.com/technology/documentation/oracle_retail.html

xxvi

Introduction 1-1

1
Introduction

This guide includes information that is useful for configuring specific features in the
Oracle Retail POS Suite applications.

This implementation guide addresses the following topics:

■ Chapter 2, "Oracle Retail POS Suite Technical Architecture": Contains information
about the Back Office, Central Office, Point-of-Service, and Returns Management
architecture.

■ Chapter 3, "Store Database": Describes the database used with Point-of-Service and
how to interface with it. The chapter includes an example of writing code to store
new data in the database.

■ Chapter 4, "Backend System Administration and Configuration": Options for
configuring Back Office, Central Office, Returns Management, and
Point-of-Service normally carried out by an administrator before the system goes
into general use.

■ Chapter 5, "Audit Logging": Provides information about audit logging for POS
Suite.

■ Chapter 6, "Intra Store Data Distribution Infrastructure": Describes the Intra Store
Data Distribution infrastructure for POS Suite.

■ Chapter 7, "Centralized Customer": Describes the Centralized Customer feature
for POS Suite.

■ Chapter 8, "Changing and Configuring Currencies": Steps for changing an existing
base currency, or adding a new base currency.

■ Chapter 9, "Returns Management": Describes how to implement features of Oracle
Retail Returns Management.

■ Chapter 10, "Authorized Payment Foundation": Describes the Authorized
Payment Foundation utility that provides an interface to third-party payment
application providers.

■ Chapter 11, "Point-of-Service": Describes how to implement features of
Point-of-Service.

■ Chapter 12, "Receipt Builder": Describes the receipt builder tool for
Point-of-Service.

■ Chapter 13, "Back Office": Describes how to implement features of Back Office.

1-2 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Oracle Retail POS Suite Technical Architecture 2-1

2
Oracle Retail POS Suite Technical

Architecture

This chapter contains information about the Oracle Retail Back Office, Central Office,
Point-of-Service, and Returns Management architecture.

Back Office and Central Office Tier Organization
The architecture of Back Office and Central Office uses client, middle, and data tiers.
The client tier is a web browser; the middle tier is deployed on an application server;
and the data tier is a database deployed by the retailer.

The middle tier is organized in an MVC design pattern, also called a Model 2 pattern.
This chapter focuses on the middle tier and the model, view, and controller layers that
it is divided into.

Figure 2–1 High-Level Architecture

Back Office and Central Office Tier Organization

2-2 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Client Tier
The client system uses a web browser to display data and a GUI generated by the
application. Any browser which supports JavaScript, DHTML, CSS, and cookies can
be used. In practice, only a few browsers are tested.

Middle Tier
The middle tier of the application resides in a J2EE application server framework on a
server machine. The middle tier implements the MVC pattern to separate data
structure, data display, and user input.

Model
The model in an MVC pattern is responsible for storing the state of data and
responding to requests to change that state which come from the controller. In Back
Office and Central Office, this is handled by a set of Commerce Services, which
encapsulates all of the business logic of the application. The Commerce Services talk to
the database through a persistence layer of entity EJBs, using bean-managed
persistence, or data access objects (DAO).

Commerce Services are components that have as their primary interface one or more
session beans, possibly exposed as web services, which contain the shared retail
business logic. Commerce Services aggregate database tables into objects, combining
sets of data into logical groupings. Commerce Services are organized by business logic
categories rather than application functionality. These are services like Transaction,
Store Directory, or Parameter that would be usable in any retail-centric application.

These services in turn make use of a persistence layer made up of entity beans or
DAOs. Each Commerce Service talks to one or more entity beans or DAOs, which map
the ARTS standard database schema. A data access object (DAO) is an object that
provides an abstract interface to some type of database or persistence mechanism,
providing some specific operations without exposing details of the database. Using the
bean-managed persistence (BMP) pattern, each entity bean maps to a specific table in
the schema, and knows how to read from and write to that table. A DAO maps to one
or more tables that belong to the same logical unit. The DAO is responsible for reading
or writing data to and from these tables. The Commerce Services thus insulates the rest
of the application from changes to the database tables. Database changes can be
handled through changes to a few entity beans.

The Commerce Services architecture is designed to facilitate changes without changing
the product code. For example, you can:

■ Replace a specific component’s implementation. For example, the current Store
Hierarchy service persists store hierarchy information to the ARTS database. If a
customer site has that information in an LDAP server, the Store Hierarchy could
be replaced with one that connected to the LDAP. The interface to the service need
not change.

■ Create a new service that wraps an existing service (keeping the interface and
source code unchanged), but adds new fields. You might create My Customer
Service, which uses the existing Customer Service for most of its information, but
adds some specific data. All that you change is the links between the Application
Manager and Customer Service.

View
The view portion of the MVC pattern displays information to the user. In Back Office
this is performed by a web user interface organized using the Struts/Tiles framework

Back Office and Central Office Tier Organization

Oracle Retail POS Suite Technical Architecture 2-3

from the open-source Apache Foundation. Using Tiles for page layout enables greater
use of the user interface components to enhance the extensibility and customization of
the user interface.

To make the view aware of its place in the application, the Struts Actions call into the
Application Manager layer for all data updates, business logic, and data requests. Any
code in the Struts Actions should be limited to formatting data for the Java server
pages (JSPs) and organizing data for calls into the Application Manager layer.

JSPs deliver dynamic HTML content by combining HTML with Java language
constructs defined through special tags. Back Office pages are divided into Tiles which
provide navigation and page layout consistency.

Figure 2–2 Tiles in a POS Suite Application

Controller
The controller layer accepts user input and translates that input into calls to change
data in the model layer, or change the display in the view layer. Controller functions
are handled by Struts configuration files and Application Services.

Struts Configuration The application determines which modules to call, on an action
request, based on the struts-config.xml file.There are several advantages to this
approach:

■ The entire logical flow of the application is in a hierarchical text (xml) file. This
makes it easier to view and understand, especially with large applications.

■ The page designer does not need to read Java code to understand the flow of the
application.

Back Office and Central Office Tier Organization

2-4 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

■ The Java developer does not need to recompile code when making flow changes.

Struts reads the struts-config.xml once, at startup, and creates a mapping database (a
listing of the relationships between objects) that is stored in memory to speed up
performance.

Application Services The application services layer contains logical groupings of related
functionality specific to the Back Office application components, such as Store
Operations. Each grouping is called an application manager. These managers contain
primarily application logic. Retail domain logic should be kept out of these managers
and instead shared from the Commerce Services tier.

The application services use the Session Facade pattern; each Manager is a facade for
one or more Commerce Services. A typical method in the Application Services layer
aggregates several method calls from the Commerce Services layer, enabling the
individual Commerce Services to remain decoupled from each other. This also
strengthens the web user interface tier and keeps the transaction and network
overhead to a minimum.

For example, the logic for assembling and rendering a retail transaction into various
output formats are handled by separate Commerce Services functions. However, the
task of creating a PDF file is modeled in the EJournal Manager, which aggregates those
separate Commerce Service functions into a single user transaction, thus decreasing
network traffic and lowering maintenance costs.

Back Office and Central Office Tier Organization

Oracle Retail POS Suite Technical Architecture 2-5

Figure 2–3 Application Manager as Facade for Commerce Services

Data Tier
The Data Tier is represented by a database organized using the ARTS standard
schema. Customer requirements determine the specific database selected for a
deployment.

Dependencies in Application and Commerce Services
Figure 2–4 shows representative components Application Services and Commerce
Services. Arrows show the dependencies among various components.

Back Office and Central Office Tier Organization

2-6 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Figure 2–4 Dependencies in Back Office

Example of Operation
Figure 2–5 describes a trip through the Back Office architecture, starting from a user’s
request for specific information and following through until the system’s response is
returned to the user’s browser.

Back Office and Central Office Tier Organization

Oracle Retail POS Suite Technical Architecture 2-7

Figure 2–5 Operation of Back Office

Point-of-Service Architecture

2-8 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Point-of-Service Architecture
Retailers have an increasing demand for enterprise information and customer service
capabilities at a variety of points of service, including the Internet, kiosks and
handheld devices. The retail environment requires that new and existing applications
can be changed quickly in order to support rapidly changing business requirements.
Oracle Retail Platform and Retail Domain enable application developers to quickly
build modifiable, scalable, and flexible applications to collect and deliver enterprise
information to all points of service.

Figure 2–6 shows a high level view of the Oracle Retail architecture and components.

Figure 2–6 Oracle Retail Architecture

Table 2–1 describes the components in Figure 2–6.

Advantages of the Oracle Retail architecture include its object-oriented design and
scalability. The system is designed to support existing systems and customer

Table 2–1 Oracle Retail Architecture Components

Component Description

Oracle Retail Platform Oracle Retail Platform provides services to all Oracle Retail applications.
It contains the tour framework, UI framework, and
Manager/Technician frameworks. Oracle Retail Platform is not
retail-specific.

Retail Domain Retail Domain implement business logic. Retail Domain defines data
and behavior for retail applications.

Oracle Retail Applications All Oracle Retail applications leverage the frameworks and services
provided by Oracle Retail Platform and Commerce Services.

External Interfaces Using frameworks and services, the applications are able to interface to
other applications and resources.

Point-of-Service Architecture

Oracle Retail POS Suite Technical Architecture 2-9

extensions. Oracle Retail Platform frameworks support integration by adhering to
retail and technology standards. The multi-tier design of the architecture allows the
application to support numerous types of infrastructure.

Oracle Retail Platform contains reusable, highly customizable components for building
and integrating retail applications with user interfaces, devices, databases, legacy
systems, and third-party applications. Oracle Retail Platform also contains integration
points for communicating with external resources.

Figure 2–7 shows how the Tour engine controls the Point-of-Service system. This
diagram is a more detailed view of the components that form the Retail Domain and
Oracle Retail Platform tiers in Figure 2–6.

Figure 2–7 Point-of-Service Architecture Layers

Beginning with configuration of the UI and Managers/Technicians, events at the user
interface are handled by the tour engine, which interacts with tour code (Application
Services) and Managers/Technicians (foundation services that part of the oracle Retail
platform layer) as necessary, capturing and modifying the data stored in Retail
Domain objects. Any communication with an integration point is handled by the
Oracle Retail Platform container.

Table 2–2 describes the layers of the Point-of-Service architecture.

Design Patterns

2-10 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Design Patterns
Design patterns describe solutions to problems that occur repeatedly in object-oriented
software development. A pattern is a repeatable, documented method that can be
applied to a particular problem. This section describes four patterns used in the
architecture of Point-of-Service: MVC, Factory, Command, and Singleton.

MVC Pattern
The MVC Pattern divides the functionality of an application into three layers: model,
view, and controller. Different functionality is separated to manage the design of the
application. A model represents business objects and the rules of how they are
accessed and updated. The model informs views when data changes and contains
methods for the views to determine its current state. A view displays the contents of a
model to the user. It is responsible for how the data is presented. Views also forward
user actions to the controller. A controller directs the actions within the application.
The controller is responsible for interpreting user input and triggering the appropriate
model actions. Figure 2–8 illustrates the MVC Pattern.

Figure 2–8 MVC Pattern

Table 2–2 Point-of-Service Architecture Layers

Component Description

Configuration Application and system XML scripts configure the layers of the application.

User Interface This layer provides client presentation and device interaction.

Tour Engine This mechanism handles the workflow in the application. The tour engine is the
controller for Point-of-Service.

Application Services This layer provides application-specific business processes. A tour is an application service
for Point-of-Service.

Retail Domain Objects Pure retail-specific business objects that contain application data.

Oracle Retail Platform Container This is an execution platform and application environment. The Tier Loader is the Oracle
Retail Platform container for Point-of-Service. It contains the tour framework, UI
framework, and Manager/Technician frameworks.

Integration This layer provides an integration framework for building standard and custom interfaces
using standard integration protocols.

Design Patterns

Oracle Retail POS Suite Technical Architecture 2-11

Factory Pattern
Another design pattern used in Point-of-Service code is the Factory pattern. The intent
of the Factory pattern is to provide an interface for creating families of related or
dependent objects without specifying their concrete classes. The application requests
an object from the factory, and the factory keeps track of which object is used. Since the
application does not know which concrete classes are used, those classes can be
changed at the factory level without impacting the rest of the application. Figure 2–9
illustrates this pattern.

Figure 2–9 Factory Pattern

Command Pattern
Sometimes it is necessary to issue requests to objects without knowing anything about
the operation being requested or the receiver of the request. The Command pattern
encapsulates a request as an object. The design abstracts the receiver of the Command
from the invoker. The command is issued by the invoker and executed on the receiver.
Figure 2–10 illustrates the Command pattern. It is used in the design of the
Manager/Technician framework.

Figure 2–10 Command Pattern

Returns Management Architecture

2-12 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Singleton Pattern
The Singleton pattern ensures a class only has one instance and provides a single,
global point of access. It allows extensibility through subclassing. Singletons allow
retailers to access the subclass without changing application code. If a system only
needs one instance of a class across the system, and that instance needs to be accessible
in many different parts of a system, making that class a Singleton controls both
instantiation and access. Figure 2–11 illustrates the Singleton pattern:

Figure 2–11 Singleton Pattern

 Returns Management Architecture
This section presents a concise description of the system's architecture. The system is
considered a collection of run time behaviors, a set of software modules, and a
member of a larger group of external systems and actors.

General Technologies and Frameworks
This section describes technologies and frameworks that are used by Returns
Management. These assets are not unique to Returns Management but are key to its
implementation.

Architectural Styles and Patterns
The following information describes the architectural styles and patterns of Returns
Management and its component pieces.

Architectural Layers The architectural layers design style is not unique to Returns
Management. It is a shared architecture across all of Oracle Retail's web applications.

Returns Management Architecture

Oracle Retail POS Suite Technical Architecture 2-13

Figure 2–12 Oracle Retail Returns Management Architectural Layers

Figure 2–12 shows the break down of the user interface and business logic across the
application. The design uses both a model-view-controller pattern as well as a façade
pattern to hide the implementation of business logic. The façade not only applies to
the user interface, but to the other pieces of business logic as well.

As with all object construction, the goal is to reduce the dependency between the
objects so that code might be more freely modified without adversely affecting other
parts of the application.

Apache Struts is used at the graphical user interface layer to provide both a clear
separation of the controller, view, and model as well as providing a well known
technology for ease of extension. At the façade layer, an application manager is
implemented using J2EE session beans to provide a coarse-grained view of business
logic to the user interface. Each manager communicates directly with one or more
services located in the service layer that provide fine-grained business operations.
These service beans are also implemented using J2EE session beans. Each service bean
can then communicate with other services or down to persistent storage in the data
layer. By abstracting the storage away from the other layers, this not only enables the
design to leverage J2EE entity beans but also allows for disparate storage mediums for
integrating with third party data stores.

Returns Management Architecture

2-14 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Conceptual Modules
Figure 2–13 is a conceptual view of the modules that make up the Returns
Management service. Here, a module corresponds to code that provides a discrete
piece of functionality. For example, the Auditing module corresponds to the auditing
function.

For illustrative purposes, the code has been split into four broad types:

■ Interface modules

■ Service modules

■ Administrative modules

■ Data modules

Figure 2–13 Oracle Retail Returns Management Conceptual Modules

Returns Management Architecture

Oracle Retail POS Suite Technical Architecture 2-15

Interface modules
Functionality to interact with an outside actor, such as the user or the point-of-return.
These modules include:

■ Web Service Adapter

The point-of-return is expected to talk to Returns Management using a web
service. An adapter is provided to enable this functionality out-of-the-box.

■ JSP UI

The user interface is HTML-based, powered by JavaServer Pages (JSP) and Struts.

Service modules
Functionality that provides the core services offered by Returns Management. These
modules include:

■ Return Evaluation

This is where the initial "Is this item returnable?" question is asked.

■ Final Result Processing

This is where Returns Management consumes results to maintain historical data.

■ Analytic Engine

The decision engine that evaluates Returns Management rules.

Administrative modules
Functionality to administer, monitor, and examine Returns Management behavior and
data. These modules include:

■ Auditing

Provides the capability to examine the steps that went into a return decision.

■ Rules and Policy Maintenance

Enables the user to add, modify, or delete policies and the rules which comprise
them.

Data modules
Functionality tied to persistent storage. These modules include:

■ Audit Log

The steps recorded by the engine as it processes a policy.

■ Policies

Collections of rules that are bound to certain conditions, for example, some
policies apply only to receipted items.

■ Rules

Each rule evaluates a return-related question, for example, "How many returns has
this customer attempted in the past week?" Rules are responsible for indicating to
the point-of-return whether an item is returnable or not.

■ Return Tickets

Returns Management stores information about each return request for later
manipulation by Final Result Processing.

■ Exception File

Returns Management Architecture

2-16 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Records that store information about exceptional behavior, which are created
when a customer has exhibited behavior the retailer wants to track.

Enabling Technologies
The following are example of enabling technologies in Returns Management.

JEE
Returns Management is built using the technologies of the Java Enterprise Edition
stack.

Struts
Returns Management uses the Apache Struts project to present its Java Server Pages in
a J2EE compliant container. For more information, go to
http://struts.apache.org/

Axis
Returns Management uses Apache Axis to provide a container-neutral way of
presenting web services. For more information, go to
http://ws.apache.org/axis/

Web-Based User Interface
The user interface for Returns Management can be divided into two classes of
components:

■ JSPs and Action Classes

■ The Returns Manager

Figure 2–14 Oracle Retail Returns Management Web-based User Interface

Returns Management Architecture

Oracle Retail POS Suite Technical Architecture 2-17

Figure 2–14 shows the general web user interface diagram as it relates to Returns
Management in particular. The interface layer is composed of the JSPs attached to the
Returns Management as well as their backing action classes. These actions attempt to
provide user interface-level functionality such as flow control and rudimentary data
checking. The class at the façade layer, the Returns Manager, exposes numerous
coarse-grained methods to enable the Action classes to retrieve key performance
indicators (KPIs)—also known as return activities, search the exception file, and other
administrative tasks. The Returns Manager then communicates to whatever resources
it needs to provide the necessary information to the interface layer. Since all of this
work is hidden behind the façade, the Returns Manager has flexibility in deciding how
to perform a certain task with minimal impact to the client classes in the interface
layer.

Physical Module View
The conceptual module view divided the system into modules based off of the
functionality provided. The physical module view divides the modules along the
notion of module type. For instance, rather than showing policy maintenance as a
separate service, policy maintenance is included in the larger Returns Service.

Figure 2–15 Oracle Retail Returns Management Physical Module View

Figure 2–15 broadly divides the modules into four groups:

Returns Management Architecture

2-18 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

■ User Interface Layer: responsible for the web-based user interface.

■ Consumer Adapter Layer: responsible for communication with Returns
Management.

■ Service Layer: provides the heavy lifting of Returns Management functionality.

■ Data Layer: provides access to persistent storage.

User Interface Layer
As mentioned previously, the Returns Management user interface is a web-based
system implemented using Struts and Tiles. The presentation layer consists of a large
number of JSPs, forms, actions, and other artifacts of the Struts system. Behind this
presentation layer resides the Returns Manager façade, which provides the Struts
actions with access to the business logic of the application.

In the Model-View-Controller paradigm, Struts provides all three pieces:

■ Actions provide the model.

■ JSPs are the view.

■ Struts classes and configuration files provide the controller.

However, the action classes are not the model used by Returns Management. The
action classes exist primarily to marshall data from the presentation layer down to the
business logic, and to provide coarse-grained flow control over a business process. It is
important to realize that the real model of Returns Management has little to do with
the action classes. The real model is implemented behind the Manager façade in the
service and data layers.

JavaServer Pages (JSPs) are text files which correspond to the normal JavaServer Page
formatting restrictions. Actions and forms are normal Java classes while the Manager
is implemented as a stateless session bean.

Consumer Adapter Layer
The consumer adapter layer provides the different interfaces into the Returns
Management system. This layer is specifically split from the service layer in the design
to decouple the interface of communication from the implementation classes.
Therefore, regardless of underlying changes in how Returns Management is
implemented, the interface expected by clients can remain static. The separation
provides a well-defined contract with which service consumers can interact, and
enables future custom adapters to be integrated with minimal effort.

Figure 2–16 Oracle Retail Returns Management Consumer Adapter Layer

There are three ways to communicate with the Returns Management system:

Returns Management Architecture

Oracle Retail POS Suite Technical Architecture 2-19

■ Return Request and Return Response are exposed using a web Services interface.

■ Return Results are collected using a JMS queue.

■ The EJB remote interface, which enables arbitrary methods to be invoked on the
service bean.

For more information about communicating with Returns Management, see
"Integration Methods and Communication".

The first two interfaces mentioned enable flexible client implementations while
providing clear interfaces for interaction. The EJB remote interface is available when
some system needs to operate with Returns Management outside of the normal
API-type transactions, for example, the Returns Manager makes liberal use of the
remote interface for inquiring and maintaining Returns Management data.

Service Layer
The term service is used in two different ways when describing Returns Management.

■ The first way is the abilities provided by Returns Management in its role as a
service in a service-oriented architecture. These abilities are restricted to the two
interfaces of evaluation (return request) and exception tracking (return result).

■ The second way is used to describe the interoperable commerce services that form
the core of Returns Management functionality. These are the services that live in
the service layer. These services are generally not client accessible. They provide
discrete business functions available to other services and Application Managers
living in the façade layer.

Figure 2–17 Oracle Retail Returns Management Service Layer

When describing Returns Management in terms of service-oriented architecture, the
services provided by Returns Management are implemented primarily in one class, the
Return Service Bean. These services are exposed in the Consumer Adapter Layer for
access from client routines.

Returns Management Architecture

2-20 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

When describing Returns Management in terms of its commerce service modules, then
not only would the return service bean be included but also the modules which exist
to provide support to Returns Management, such as the KPI Service and the Returns
Post-Processor Service.

Data Layer
For purposes of discussion, this document splits the data used by Returns
Management into three types:

■ Engine data used to determine returnability.

■ Configuration data used to control behavior.

■ Historical data used to record information.

Figure 2–18 Oracle Retail Returns Management Data Layer

These types of data are generally stored in an RDBMS and accessed using an entity
bean layer. Each general type is covered briefly in the following sections.

Engine Data: Policies, Rules, And Return Activities Returns Management uses a decision
engine to codify and enforce returns policies. The decision engine operates on sets of
rules, which are collected into policies. The rules operate on a set of facts that the
engine supplies at run time. These facts are evaluated by the rules, which eventually
return an answer back from the engine. See "Determining Return Policies" in the Oracle
Retail Returns Management User Guide.

Returns Management Architecture

Oracle Retail POS Suite Technical Architecture 2-21

Figure 2–19 Oracle Retail Returns Management Policies and Rules

Figure 2–19 shows how policies, rules, and rule actions are conceptually related.

A policy is composed of one or more rules. Each policy has associated metadata that
enables the service layer to choose the most appropriate policy for the current item in
question.

A rule is configured to ask a certain question about the current item or customer in
question. Each rule references several possible rule actions.

A rule action has two distinct functions:

■ Identify an answer to a question. Each rule action corresponds to a value returned
from the rule's question.

■ Tell the analytic engine (for example, the service layer) what action to take in
response to this answer, for example, whether to continue or stop policy
evaluation and determine what response to return to the client.

Configuration Data Returns Management has a list of valid response codes that can be
returned to a client. This list is maintained in the data store and is accessed using
entity beans. Returns Management also maintains a list of receipt messages which are
accessed in a similar fashion.

Following an established pattern in Oracle Retail products, Returns Management uses
an XML parameter file to maintain a list of configuration options and choices that can
be modified for a particular customer deployment. These parameters control a variety
of behaviors as well as providing a place for some of the data used during processing
(for instance, the list of acceptable tenders).

Returns Management Architecture

2-22 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Historical Data Returns Management maintains a set of historical data. To record a
particular decision during the evaluation phase, Returns Management creates a return
ticket that records what item is being returned, who wants to return the item, and the
Returns Management decision about the returnability of an item. This return ticket is
later updated during the return result process to reflect what was actually returned at
the point-of-return.

An exception file that counts up the total number of times an instance of a tracked
behavior occurs, for example, a customer with a non-receipted return or a customer
with a tender override, is maintained by Returns Management during the return result
phase.

 The following are grouped in the exception file:

■ Customer exceptions, such as line items that reflect customer return activities
being violated.

■ Customer exception counts and freeze dates.

■ Customer Service Overrides, that is, a count of overrides, per day, per customer.

For more information, see the following:

■ Oracle Retail Returns Management User Guide.

■ "Exceptions File".

Messaging
This section describes the interface of the two main services provided by Returns
Management:

■ Evaluation of the return request

■ Processing of the return result

These services are expected to be invoked from an external source, usually the
point-of-return.

In order to provide language neutrality, these two services are accessed in a stateless
fashion using XML documents. Return request is a synchronous message, that is, the
invoker is expected to wait on a return response message. Return result is an
asynchronous message that can be invoked in a fire-and-forget fashion.

Although both services are exposed using a web service interface, a message-driven
bean exists to collect return result messages asynchronously as a best practice. More
details about messaging are provided in "Integration Methods and Communication".

Note: For more information on specific parameters, see the Oracle
Retail POS Suite Configuration Guide.

Store Database 3-1

3
Store Database

Point-of-Service Store Database
This chapter describes the database used with Point-of-Service and how to interface
with it, including:

■ Updating tables

■ Rebuilding the database

■ Creating new tables

■ Updating flat file configurations

The chapter includes an example of writing code to store new data in the database.

ARTS Compliance
The Point-of-Service system uses an Association of Retail Technology Standards
(ARTS)-compliant database to store transactions and settings. The ARTS standard (see
http://www.nrf-arts.org/) is a key element in maintaining compatibility with
other hardware and software systems.

Although the Point-of-Service system complies with the ARTS guidelines, it does not
implement the entire standard, and contains some tables which are not specified by
ARTS. For example, ARTS tables for store equipment and recipe are not included,
while tables for tender types and reporting have been added.

The ARTSDatabaseIfc.java file defines the mapping of ARTS names to constants in
application code.

Understanding Data Managers and Technicians
Figure 3–1 shows how Data Managers and Data Technicians handle communication
with the database in the Point-of-Service application.

http://www.nrf-arts.org/

Point-of-Service Store Database

3-2 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Figure 3–1 Data Managers and Data Technicians

The Point-of-Service system uses the following components to write to the database:

■ The Data Manager’s primary responsibilities are to provide an API to the
application code and to contact the Data Technician and pass it data store requests.

There is one Data Manager per client. The Data Manager manages connections to
multiple Data Technicians, for example, there is a Data Technician residing on the
client that retrieves data from the offline (Derby) database, and there is also a Data
Technician residing on the store server that manages access to the store database.
The Data Manager on the client is configured to determine which Data Technician
provides which data service.

■ The Data Manager Configuration Script is an XML file that specifies the properties
of the Data Manager.

■ The Data Technician handles the database connection. Configure the Data
Technician with an XML script. The Data Transaction class is the valet from the
manager to the technician. The Data Transaction class has the add, find, and
update methods to the database. Typically, there is one Data Technician that
communicates with the local database and one that communicates with offline
database.

■ The Data Technician configuration script is an XML file that specifies the
properties of the Data Technician.

■ The Transaction Queue collects data transactions and guarantees delivery.

Note: Most managers create valets when they need talk to
technicians. Data Manager works a little differently: the Data
Transaction class calls the Data Manager and passes itself as a valet.
The valet finds the data operation class, then the valet knows which
technician it is associated with and calls its execute method.

Point-of-Service Store Database

Store Database 3-3

■ Offline Database is the Derby database that is used when the register is offline.

■ The Local Database is the store database.

How Data Transactions Work
This section gives an overview of how Oracle Retail Platform, Data Manager, and Data
Technician components work together to store data in the database.

Oracle Retail Platform is responsible for configuring the system so that the Data
Manager, Data Technician, configuration scripts, and conduit scripts work together to
provide the mechanism to update, store, and retrieve data from a database.

1. The client conduit script defines the name and package for the Data Manager and
Data Manager configuration script, POSDataManager.xml.

2. The server conduit script defines the name and package for the Data Technician
and Data Technician configuration script, DefaultDataTechnician.xml.

3. At runtime, the tour code requests a data transaction object from the Data
Transaction Factory.

4. The Data Transaction Factory verifies that the transaction is defined in
POSDataManager.xml and the transaction object is returned to the tour code.

5. The tour code calls a method on the transaction object that creates a vector of data
actions. A data action corresponds to a set of SQL commands that are executed as
a unit. (Data actions are reused by different transactions.)

6. The method in the transaction object gets a handle to the Data Manager and calls
execute(), sending itself as a parameter. This instructs the Data Manager to send
the Transaction object (a valet) across the network to the Data Technician.

7. On the server side, the Data Technician configuration script,
DefaultDataTechnician.xml, lists all available transactions. It also defines an
operation class for each data action. Each data action is then processed by the
appropriate data operation class.

Note: The notation TXN refers to a data transaction, which can be
any guaranteed transmission of data, not necessarily a sales
transaction in the retail sense.

Note: Most Manager/Technician pairs work differently. The
standard pattern is for the tour code to get a handle to the Manager,
then call a method on the manager that creates the valet object and
sends it to the technician. For the Data Manager/Technician pair, the
transaction object (the valet class), gets the handle to the Data
Manager. The tour code is only responsible for getting a transaction
object from the factory and calling the appropriate method.

Point-of-Service Store Database

3-4 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Figure 3–2 Updating the Database: Simplified Runtime View

Point-of-Service Store Database

Store Database 3-5

Creating or Updating Database Tables
Use this procedure when creating a new database table or updating an existing one.
Refer to the ARTS standards when designing tables.

1. Edit the appropriate database script, or write a new one.

Database scripts can be found in the source directory <source_
directory>\modules\common\deploy\server\common\db\sql.

Start a new file (or edit the appropriate existing file) in the db/sql source directory
file to store SQL commands for creating the new table. Example 3–1 shows the
SQL commands for creating the table that stores the credit card data.

Example 3–1 CreateTableCreditDebitCardTenderLineItem.sql

DROP TABLE TR_LTM_CRDB_CRD_TN;

CREATE TABLE TR_LTM_CRDB_CRD_TN
(
 ID_STR_RT char(5) NOT NULL,
 ID_WS char(3) NOT NULL,
 DC_DY_BSN char(10) NOT NULL,
 AI_TRN integer NOT NULL,
 AI_LN_ITM smallint NOT NULL,
 TY_TND varchar(20),

Note:

■ The DataTechician can be configured to write an error file for each
failure that is not a connection error.

■ The DataManager can be configured to delete the head of the
queue when the failure is not a connection error.

See the DefaultDataTechnician.xml file. This file contains the
following element at the end of the file:

<EXCEPTIONHANDLER class="SQLExceptionHandler"
 package="oracle.retail.stores.domain.manager.data"/>

See the DataManager.xml file. This file contains the following element
at the end of the file:

 <QUEUE name="TransactionQueue"
 encryptBuffer="true"
 class="DataTransactionFileQueue"
 package="oracle.retail.stores.foundation.manager.data">
 <EXCEPTIONHANDLER
class="TransactionQueueSQLExceptionHandler"
package="oracle.retail.stores.domain.manager.data"/>
 </QUEUE>

The exception handling classes are implemented as plug points.

Note: When you add or change a table, you need to rebuild the
database for your local copy of Point-of-Service before you can test
your changes. See Step 6.

Point-of-Service Store Database

3-6 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

 ID_ISSR_TND_MD varchar(20),
 TY_CRD VARCHAR(40),
 ...additional column lines omitted here...
);

ALTER TABLE TR_LTM_CRDB_CRD_TN ADD PRIMARY KEY (ID_STR_RT, ID_WS, DC_DY_BSN, AI_
TRN,
AI_LN_ITM);

COMMENT ON TABLE TR_LTM_CRDB_CRD_TN IS 'Credit/Debit Card Tender Line Item';

COMMENT ON COLUMN TR_LTM_CRDB_CRD_TN.ID_STR_RT IS 'Retail Store ID';
COMMENT ON COLUMN TR_LTM_CRDB_CRD_TN.ID_WS IS 'Workstation ID';
COMMENT ON COLUMN TR_LTM_CRDB_CRD_TN.DC_DY_BSN IS 'Business Day Date';
COMMENT ON COLUMN TR_LTM_CRDB_CRD_TN.AI_TRN IS 'Transaction Sequence
Number';
COMMENT ON COLUMN TR_LTM_CRDB_CRD_TN.AI_LN_ITM IS 'Retail Transaction
Line Item
Sequence Number';
COMMENT ON COLUMN TR_LTM_CRDB_CRD_TN.ID_ISSR_TND_MD IS 'Tender Media Issuer
ID';
COMMENT ON COLUMN TR_LTM_CRDB_CRD_TN.TY_TND IS TenderTypeCode';
COMMENT ON COLUMN TR_LTM_CRDB_CRD_TN.TY_CRD IS 'Card Type';
...additional comment lines omitted...

2. Create or edit the insert files (also in the db/sql source directory) for inserting
initial data into the new database table.

This step is used only to insert data into the database table for purposes of initially
logging on, testing, and so on.

3. Make updates to foreign keys in CreateForeignKeys.sql.

4. If you are creating a new table, add a string constant to the <source_
directory>\modules\common\src\oracle\retail\stores\persistenc
e\utility\ARTSDatabaseIfc.java file. Use a string constant with a
meaningful name to store the official ARTS name of the database table.

Example 3–2 shows two examples of meaningful String constants found in
ARTSDatabaseIfc.java.

Example 3–2 String Constant in ARTSDatabaseIfc.java

public static final String TABLE_TENDER_LINE_ITEM = "tr_ltm_tnd";
public static final String TABLE_CREDIT_DEBIT_CARD_TENDER_LINE_ITEM = "tr_ltm_
crdb_crd_tn";

5. Check foreign key constraints.

For performance reasons, the database build scripts do not turn on foreign key
constraints until late. If you make inserts which break foreign key constraints, you
are not notified. To check this, test all inserts with foreign key constraints in place,
by editing the appropriate database build script.

6. Open a command prompt in the Point-of-Service installer directory and use the
following command-lines:

■ To reset the store database: install.cmd ant install-database

■ To reset the scratchpad database: install.cmd ant
install-scratchpad

Point-of-Service Store Database

Store Database 3-7

■ To reset both: install.cmd ant install-database
install-scratchpad

The install-database command uses the settings in the ant.install.properties file, so
the dataset specified by the input.install.database property is loaded. The values
can be:

■ no - no action taken

■ schema – only install the schema, no data

■ minimum – schema and minimum required data

■ sample – schema, minimum, and sample data

To reset the scratchpad database, the ant.install.properties file needs to have the
scratchpad database information as well as input.install.scratchpad.database set to
true.

7. After you verify that the table builds successfully and the code referencing the
table works, check your updates into source control.

Example of Saving Data: Storing Till Information
This section describes how to save data to the database, using till close information as
an example.

Research Table Requirements and Standards
To plan your database code, refer to functional requirements documents to determine
what data must be stored.

Next, review the ARTS database standards for tables and columns. Determine whether
you need to create a new table. If you need to create a table defined by ARTS but not
currently used in the Store database, follow the ARTS standard. For instructions on
creating a new table, see “Creating or Updating Database Tables”.

For the till transaction, there are several tables that need to be addressed: the tender
line item table and the credit/debit card transaction table.

Table 3–1 lists database tables used in a credit card tender option.

Saving Data from Site Code
To save data to the database from a site:

1. Create and populate the domain object to be saved.

2. Save the data to the cargo’s transaction.

Table 3–1 Database Tables Used in Credit Card Tender Option

ARTS Table Name Description

TR_TL_OPN_CL till open close transaction table

TR_CTL control transaction table

LE_HST_STR_SF_TND Store Safe Tender History table

AS_TL the Till table

LE_HST_TL till history

LE_HST_WS workstation history

LE_HST_STR store history

Point-of-Service Store Database

3-8 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

For the Till Close option, the TillCloseCargo contains the tillID of the till to close.

In Example 3–3, from <source_
directory>\applications\pos\src\oracle\retail\stores\pos\serv
ices\dailyoperations\till\tillclose\UpdateStatusSite.java, Till
is a domain object that stores the till data such as the expected amount and entered
amount, and so on. In the following code, the till object is retrieved from the
register object (stored in cargo) based on the till id updated and added to the
TillOpenCloseTransaction line item.

Example 3–3 UpdateStatusSite.java: Transaction Object

public void arrive(BusIfc bus)
{
TillCloseCargo cargo = (TillCloseCargo) bus.getCargo();

 // Local references to register and till.
 RegisterIfc register = cargo.getRegister();
 TillIfc till = register.getTillByID(cargo.getTillID());

// create close till transaction
 TillOpenCloseTransactionIfc transaction =
 DomainGateway.getFactory().getTillOpenCloseTransactionInstance();
//save current register accountability in the register
 till.setRegisterAccountability(register.getAccountability());

//add the till to the transaction
transaction.setTill(till);
 ...
 // Add the credit line item to the transaction
 trans.addTender(credit);
 ...
}

3. Call a method to save the transaction object.

After the till object is added to the TillOpenCloseTransactionIfc transaction, the
collected data is saved to the database. In Example 3–4, the <source_
directory>\applications\pos\src\oracle\retail\stores\pos\serv
ices\dailyoperations\till\tillclose\UpdateStatusSite.java file
uses the Utility Manager to call the saveTransaction() method.

Example 3–4 SaveRetailTransactionAisle.java: Save Transaction

 ...
 UtilityManagerIfc utility =(UtilityManagerIfc)
bus.getManager(UtilityManagerIfc.TYPE);
 ...

// save the till close transaction
 utility.saveTransaction(transaction);
 ...

Locate Data Operation
The Data Manager and Data Technician work together to provide access to the
database from the application. The developer rarely modifies these. Typically, the site
code and the JDBC code are updated. To identify which JDBC class should be used,
trace through the site code until the DataAction sets the operation name.

Point-of-Service Store Database

Store Database 3-9

Figure 3–3 Diagram: Saving a Transaction

The following descriptions explain the labels in the figure.

1. UpdateStatusSite uses the Utility Manager to call the saveTransaction() method as
shown in Example 3–4. The utility.saveTransaction() method uses the data
transaction class TransactionWriteDataTransaction to save the till transaction.

The following code samples show details for the previous figure.

Point-of-Service Store Database

3-10 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Example 3–5 UtilityManager.java: Save Data Transaction

TransactionWriteDataTransaction dbTrans = new
TransactionWriteDataTransaction(tranName);
dbTrans.saveTransaction(trans, totals, till, register);

Example 3–6 TransactionWriteDataTransaction.java: Save Transaction

public void saveTransaction(TransactionIfc transaction,
 FinancialTotalsIfc totals,
 TillIfc till,
 RegisterIfc register)
 throws DataException
{
 ...
 int transactionType = transaction.getTransactionType();
 ...
 switch(transactionType)
 { // begin add actions based on type
...
case TransactionIfc.TYPE_OPEN_TILL:
 addSaveTillOpenTransactionActions(transaction);
 break;
 case TransactionIfc.TYPE_CLOSE_TILL:
 addSaveTillCloseTransactionActions(transaction);
 break;
 ...
}

2. The <source_
directory>\applications\pos\deploy\server\config\technician\D
efaultDataTechnician.xml file is the configuration file for the Data
Technician and is used to configure the links between the application and the
JDBC class that performs the work. All Data Transaction classes must be defined in
this file, including TransactionWriteDataTransaction.

Example 3–7 DefaultDataTechnician.xml: Define Data Transaction Class

<DATATECHNICIAN
 package="oracle.retail.stores.domain.arts">
 ...
 <TRANSACTION name="TransactionWriteDataTransaction" command="jdbccommand"/>
 ...

3. The TransactionWriteDataTransaction class instantiates the DataAction object and
sets the data operation name to UpdateTillStatus and so on. Other data actions
occurred before these till data actions. Data Actions are added in the specific order
in which they should occur.

Example 3–8 TransactionWriteDataTransaction: DataAction

protected void addSaveTillCloseTransactionActions(TransactionIfc transaction)
// save the control transaction
 DataActionIfc dataAction = createDataAction(artsTransaction,
 "SaveControlTransaction");
 actionVector.addElement(dataAction);

 // this ensures that the change is backward compatible, because
 // only if till open-close transaction is used, will the new data
operations
 // be executed

Point-of-Service Store Database

Store Database 3-11

 if (transaction instanceof TillOpenCloseTransactionIfc)
 {
 TillOpenCloseTransactionIfc tocTransaction =
 (TillOpenCloseTransactionIfc) transaction;
 // save the till open/close transaction
 dataAction = createDataAction(transaction,
 "SaveTillOpenCloseTransaction");
 actionVector.addElement(dataAction);
 // build ARTS till for other operations
 TillIfc till =
 ((TillOpenCloseTransactionIfc) transaction).getTill();
 RegisterIfc register =
 ((TillOpenCloseTransactionIfc) transaction).getRegister();

 if (till.getStatus() == AbstractFinancialEntityIfc.STATUS_RECONCILED)
 {
 // update the safe as needed
 dataAction = createDataAction(transaction,

"UpdateSafeFromTillOpenCloseTransaction");
 actionVector.addElement(dataAction);

 // Get deep copies of the till and register so they can be loaded
 // with the till-close totals
 TillIfc aTill = (TillIfc) till.clone();
 RegisterIfc aRegister = (RegisterIfc) register.clone();

 // Combine the till and float totals objects
 FinancialTotalsIfc totals =
 DomainGateway.getFactory().getFinancialTotalsInstance();
 totals.addEndingFloatCount(tocTransaction.getEndingFloatCount());
 totals.getCombinedCount().setEntered
 (tocTransaction.getEndingCombinedEnteredCount());

 // Set the counted totals on the till and register.
 aTill.setTotals(totals);
 aRegister.setTotals(totals);
 ARTSTill artsTill = new ARTSTill(aTill, aRegister);

 // creates or updates the till as needed
 dataAction = createDataAction(artsTill,
 "UpdateTillStatus");
 actionVector.addElement(dataAction);

 // creates or updates the till totals as needed
 dataAction = createDataAction(artsTill,
 "UpdateTillTotals");
 actionVector.addElement(dataAction);
 // add to register totals
 dataAction = createDataAction(aRegister,
 "AddRegisterTotals");
 actionVector.addElement(dataAction);
 // add to store totals
 ARTSStore aStore = new
ARTSStore(register.getWorkstation().getStore(),
 register.getBusinessDate());
 aStore.setFinancialTotals(aRegister.getTotals());
 dataAction = createDataAction(aStore,
 "AddStoreTotals");
 actionVector.addElement(dataAction);

Point-of-Service Store Database

3-12 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

 }
 else
 {
 ARTSTill artsTill = new ARTSTill(till, register);

 // creates or updates the till as needed
 dataAction = createDataAction(artsTill,
 "UpdateTillStatus");
 actionVector.addElement(dataAction);
 }

 // update the register and drawer
 dataAction = createDataAction(register,
 "UpdateRegisterStatus");
 actionVector.addElement(dataAction);
 // update the drawer
 dataAction = createDataAction(register,
 "UpdateDrawerStatus");
 actionVector.addElement(dataAction);
 }

Example 3–9 UpdateTillStatus: Set Data Operation Name

protected static final String OPERATION_NAME = "UpdateTillStatus";

4. The DefaultDataTechnician uses the data command to list several data operation
names. The data operation name UpdateTillStatus points to the name of the JDBC
class, which is JdbcUpdateTillStatus.

Example 3–10 DefaultDataTechnician.xml: Define Data Operation Class

<DATATECHNICIAN
 package="oracle.retail.stores.domain.arts">
 ...
 <TRANSACTION name="TransactionWriteDataTransaction" command="jdbccommand"/>
 ...
 <COMMAND name="jdbccommand"
 class="DataCommand"
 package="oracle.retail.stores.foundation.manager.data"

 <COMMENT>
 This command contains all operations supported on a JDBC
 database connection.
 </COMMENT>
 <POOLREF pool="jdbcpool"/>
 ...
 <OPERATION class="JdbcUpdateTillStatus"
 package="oracle.retail.stores.domain.arts"
 name="UpdateTillStatus">
 <COMMENT>
 This operation updates the till status in the database.
 </COMMENT>
 </OPERATION>
...
</DATATECHNICIAN>

5. The JdbcUpdateTillStatus class is used to update the till status to the database
table. See the next section.

Point-of-Service Store Database

Store Database 3-13

Modify Data Operation
Use this procedure to modify the data operation class to access the database.

1. Add a save method to the data operation class.

2. Write an implementation for methods written for the data operation class.

Second, the credit data must be saved to the new database table using SQL factory
methods.

Example 3–11 JdbcUpdateTillStatus.java: SQL Factory Methods

 public boolean updateTill(JdbcDataConnection dataConnection,
 TillIfc till,
 RegisterIfc register)
 throws DataException
 {
 boolean returnCode = false;
 SQLUpdateStatement sql = new SQLUpdateStatement();
 isUpdateStatement = true;

 /*
 * Define the table
 */
 sql.setTable(TABLE_TILL);

 /*
 * Add columns and their values
 */
 sql.addColumn(FIELD_TILL_SIGNON_OPERATOR,
makeSafeString(till.getSignOnOperator().getEmployeeID()));
 if (till.getSignOffOperator() != null)
 {
 sql.addColumn(FIELD_TILL_SIGNOFF_OPERATOR,
makeSafeString(till.getSignOffOperator().getEmployeeID()));
 }
 sql.addColumn(FIELD_TILL_STATUS_CODE, getStatusCode(till));
 sql.addColumn(FIELD_TILL_STATUS_DATE_TIME_STAMP,
dateToSQLTimestampString(new Date()));
 sql.addColumn(FIELD_WORKSTATION_ID, getWorkstationID(register));
 sql.addColumn(FIELD_TILL_START_DATE_TIMESTAMP, getStartTimestamp(till));
 sql.addColumn(FIELD_BUSINESS_DAY_DATE,
getBusinessDay(till.getBusinessDate()));
 sql.addColumn(FIELD_WORKSTATION_ACCOUNTABILITY, "'" +
till.getRegisterAccountability() + "'");
 sql.addColumn(FIELD_TILL_TYPE, "'" + till.getTillType() + "'");
 /*
 * Add Qualifier(s)
 */
 sql.addQualifier(FIELD_RETAIL_STORE_ID + " = " + getStoreID(register));
 sql.addQualifier(FIELD_TENDER_REPOSITORY_ID + " = " + getTillID(till));

 try
 {
 dataConnection.execute(sql.getSQLString());
 }
 catch (SQLException se)
 {
 logger.error("" + se + "");
 throw new DataException(DataException.SQL_ERROR, "Update Till", se);
 }

Central Office and Back Office Store Database

3-14 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

 if (0 < dataConnection.getUpdateCount())
 {
 returnCode = true;
 }

 return(returnCode);
 }

Test Code
To test the new code:

1. Run Point-of-Service.

2. Select the path to the screen.

3. Enter the data.

4. Complete the till close.

Verify Data
To verify that the correct data exists in the database table, use a database access
program to view the table that should contain the new information. Verify that the
data in the database table matches the data entered. The following example shows a
sample SQL statement you can use to retrieve the data.

select * from AS_TL;

Central Office and Back Office Store Database
Point-of-Service uses an ARTS-compliant database. Data is stored and retrieved by
entity beans in a bean-managed persistence pattern, so the system makes database
calls from the entity bean code.

A single entity bean exists for each database table, and handles reads and writes for
that table. Each entity bean contains the necessary methods to create, load, store, and
remove its object type.

The Central Office application writes data to the enterprise database, which serves as a
repository for information about transactions across the whole enterprise.

The Back Office application writes data to the Store database, a repository for
transaction information for a single store.

A data access object (DAO) provides an abstract interface to the underlying database
tables. It accesses one or more tables that belong to the same logical unit to read and
write information to the database.

Related Documentation
Table 3–2 lists related sources that provide specific information about the database for
your use when developing code.

Central Office and Back Office Store Database

Store Database 3-15

Database/System Interface
As described in Chapter 2, "Oracle Retail POS Suite Technical Architecture" a
persistence layer of entity beans represents the database tables to the rest of the
system. One bean represents each table.

Figure 3–4 illustrates these relationships.

Figure 3–4 Commerce Services, Entity Beans, and Database Tables

Each commerce service communicates with one or more entity beans or DAOs, and
each entity bean communicates with one database table. A DAO typically

Table 3–2 Related Documentation

Source Description

ARTS Database Standard See http://www.nrf-arts.org/ for a description of the ARTS database
standard.

Data Dictionary Contains table and column definitions for the database used to store
Point-of-Service data. See the docs zip file provided with your Point-of-Service
documentation.

Database Diagrams Diagrams which show the relationships between various tables in the database
schema. See the docs zip file provided with your Point-of-Service
documentation.

http://www.nrf-arts.org/

Central Office and Back Office Store Database

3-16 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

communicates with one or more tables that belong to the same logical grouping.
Although there are exceptions, in general only one commerce service communicates
with an entity bean; other services request the information from the relevant service
rather than talking directly to the entity bean. For example, if the Customer Service
needs information provided by the Item Bean, it makes a request to the Item Service.

ARTS Compliance
When new code is added or features are added, modified, or extended, database plans
should be evaluated to ensure that new data items fit the ARTS schema. Complying
with the standards increases the likelihood that extensions can migrate into the
product codebase and improves code reuse and interoperability with other
applications.

Bean-Managed Persistence in the Database
In general, the system uses standard J2EE bean-managed persistence techniques to
persist data to the Oracle Retail database. Each of the entity beans that stores data
requires JDBC code in standard ejbLoad, ejbStore, ejbCreate, and ejbRemove classes.
However, there are some differences worth noting:

■ All SQL references are handled as constant fields in an interface.

■ Session and entity beans extend an EnterpriseBeanAdapter class. Special
extensions for session and entity beans exist. These contain common code for
logging and a reference to the Oracle Retail DBUtils class (which provides facilities
for opening and closing data source connections, among other resources).

Example 3–12 ItemPriceDerivationBean.java: ejbStore Method

public void ejbStore() throws EJBException
 {
 ItemPriceDerivationPK key = (ItemPriceDerivationPK)
getEntityContext().getPrimaryKey();
 getLogger().debug("store");
 PreparedStatement ps = null;
 Connection conn = null;
 if (isModified())
 {
 getLogger().debug("isModified");
 try
 {
 conn = getDBUtils().getConnection();
 ps = conn.prepareStatement(ItemPriceDerivationSQLIfc.STORE_SQL);
 int n = 1;
 ps.setBigDecimal(n++,getReductionAmount().toBigDecimal());
 ps.setBigDecimal(n++,getDiscountPricePoint().toBigDecimal());
 getDBUtils().preparedStatementSetDate(ps, n++,
getRecordCreationTimestamp());
 ps.setBigDecimal(n++,getReductionPercent().toBigDecimal());
 getDBUtils().preparedStatementSetDate(ps, n++,
getRecordLastModifiedTimestamp());
 ps.setInt(n++, key.getPriceDerivationRuleID());

Note: Because the ARTS standard continues to evolve, older code
may contain deviations from the standard or may be compliant only
with an earlier version of the standard. Oracle Retail continues to
evaluate ARTS compliance with each release of its software.

Central Office and Back Office Store Database

Store Database 3-17

 ps.setString(n++, key.getStoreID());
 if (ps.executeUpdate() != 1)
 {
 throw new EJBException("Error storing (" +
getEntityContext().getPrimaryKey() + ")");
 }
 setModified(false);
 }
 catch (SQLException ex)
 {
 getLogger().error(ex);
 throw new EJBException(ex);
 }
 catch (Exception ex)
 {
 getLogger().error(ex);
 throw new EJBException(ex);
 }
 finally
 {
 getDBUtils().close(conn, ps, null);
 }
 }
 }

DAO-Managed Persistence in the Database for Back Office
The system uses DAO persistence techniques to persist data to the database.

A DAO (data access object) provides an abstract interface to the underlying database
tables. It accesses one or more tables that belong to the same logical unit to read and
write information to database

The following is an example of a DAO:

Example 3–13 PluItemDAO

public PluItem getById(String storeId, String posItemId, String itemId, Locale
lcl) throws DataException
 {
 PluItem pluItem = null;

 Locale bestLocale = LocaleMap.getBestMatch(lcl);

 PreparedStatement ps = null;
 ResultSet rs = null;
 Connection conn = null;
 try
 {
 logger.debug("LOAD_PLU_ITEM_BY_ID_SQL " + LOAD_PLU_ITEM_BY_ID_SQL);

 conn = getDBConnectionManager().getConnection();
 ps = conn.prepareStatement(LOAD_PLU_ITEM_BY_ID_SQL);
 ps.setString(1, bestLocale.toString());
 ps.setString(2, bestLocale.toString());
 ps.setString(3, storeId);
 ps.setString(4, itemId);
 ps.setString(5, posItemId);

 rs = ps.executeQuery();

Central Office and Back Office Store Database

3-18 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

 if (rs.next())
 {
 pluItem = getPluItem(rs, true, bestLocale);
 }
 }
 catch (SQLException e)
 {
 logger.error(e);
 throw new DataException(DataException.SQL_ERROR, "failed to load item.
" + ", storeId = " + storeId
 + ", posItemId = " + posItemId + ", itemId = " + itemId + ",
locale = " + bestLocale.toString(), e);
 }
 finally
 {
 getDBConnectionManager().close(conn, ps, rs);
 }
 return pluItem;
 }

Backend System Administration and Configuration 4-1

4
Backend System Administration and

Configuration

This chapter covers options for configuring Back Office, Central Office, Returns
Management and Point-of-Service normally carried out by an administrator before the
system goes into general use. It covers the following topics:

■ Parameters

■ Configuring Transaction Queue Monitor Intervals

■ Running Back Office or Central Office

■ Establishing a Store Hierarchy in Central Office or Returns Management

■ Point-of-Service Devices

■ Scheduling Post Processors in Back Office

■ Data Management in Central Office

■ Help Files in Point-of-Service

■ Reason Codes in Point-of-Service

■ Configuring Transaction ID Lengths

■ Configuring RMI Timeout Intervals in Point-of-Service

■ System Settings in Point-of-Service

■ Configuring Logging in Point-of-Service

Parameters
The following information is about parameters in the Oracle Retail POS Suite
applications.

Parameters in Back Office and Central Office
For more information about importing an initial set of parameters, see the Oracle Retail
Back Office Installation Guide and the Oracle Retail Central Office Installation Guide.

For information on specific parameters, see the Oracle Retail POS Suite Configuration
Guide.

Note: The Oracle Retail POS Suite Security Guide describes specific
security features and implementation guidelines for the POS Suite
products.

Parameters

4-2 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Parameters in Point-of-Service
Parameters are used to control flow, set minimums and maximums for data, and allow
flexibility without recompiling code. A user can modify parameter values from the UI
without changing code. Parameter values can be modified by Point-of-Service, or the
changes can be distributed by other Oracle Retail applications. For example, the
maximum cash refund allowed and the credit card types accepted are parameters that
can be defined by Point-of-Service. To configure parameters, you need to understand
the parameter hierarchy, define the group that the parameter belongs to, and define
the parameter and its properties.

Parameter Hierarchy
Parameters are defined in XML files that are organized in a hierarchy. Different XML
files represent different levels in a retail setting at which parameters may be defined.
Understanding the parameter hierarchy helps you define parameters at the
appropriate level.

Table 4–1 lists the parameter directories, XML filenames, and file descriptions.

Higher-level parameters by default are overridden by lower-level parameter settings.
For example, store-level configuration parameters override application-level
parameters. The FINAL element in a parameter definition signifies whether the
parameter can be overridden. Example 4–1 is an excerpt from <source_
directory>\applications\pos\deploy\client\config\technician\PosP
arameterTechnican.xml, showing the order of precedence from highest level to
lowest level.

Example 4–1 Default Parameter Settings

<SELECTOR name="defaultParameters">
 <SOURCE categoryname="application" alternativename="application">
 <SOURCE categoryname="corporate" alternativename="corporate">
 <SOURCE categoryname="store" alternativename="store">
 <SOURCE categoryname="register" alternativename="workstation" >
 <SOURCE categoryname="userrole" alternativename="operator" >
 </SELECTOR

The categoryname specifies the directory name and the alternativename
specifies the name of the XML file. All parameter subdirectories reside in
config\parameter.

Parameter Group
Each parameter belongs to a group, which is a collection of related parameters. The
groups are used when modifying parameters within the UI. The user selects the group

Table 4–1 Parameter Directories, Files, and Descriptions

Directory Parameter-Related XML File Description

application application.xml Default parameter information provided by
the base product

corporate corporate.xml Company information

store store.xml Local store information

register workstation.xml Register-level information

user role operator.xml User-level information

Parameters

Backend System Administration and Configuration 4-3

first, then has the option to modify the related parameters that belong to that group.
Examples of groups are Browser, Customer, Discount, and Employee.

Adding a parameter requires adding it to the proper group. The following excerpt
from application.xml shows the Tender group and a parameter definition inside the
group. The hidden attribute indicates whether or not the group is displayed in the UI.

Example 4–2 Definition of Tender Group

<GROUP name="Tender"
 hidden="N">
 <PARAMETER name="MaximumCashChange"
 ...
 <PARAMETER>
...
<GROUP>

Parameter Properties
Each parameter file contains parameter definitions organized by group. The following
shows an example of two parameter definitions from
config/parameter/application/application.xml.

Example 4–3 Parameter Definitions From application.xml

<PARAMETER name="CashAccepted"
 type="LIST"
 default="USD"
 final="N"
 hidden="N">
 <VALIDATOR class="EnumeratedListValidator"
 package="oracle.retail.stores.foundation.manager.parameter">
 <!-- Use ISO 3 letter currency code -->
 <PROPERTY propname="member" propvalue="None" />
 <PROPERTY propname="member" propvalue="USD" />
 <PROPERTY propname="member" propvalue="CAD" />
 </VALIDATOR>
 <VALUE value="USD"/>
 <VALUE value="CAD"/>

<PARAMETER name="MaximumCashChange"
 type="CURRENCY"
 final="N"
 hidden="N">
 <VALIDATOR class="FloatRangeValidator"
 package="oracle.retail.stores.foundation.manager.parameter">
 <PROPERTY propname="minimum" propvalue="0.00" />
 <PROPERTY propname="maximum" propvalue="99999.99" />
 </VALIDATOR>
 <VALUE value="25.00"/>
 </PARAMETER>

The FINAL attribute indicates whether the property definition is final, meaning it
cannot be overridden by lower-level parameter file settings. The VALUE element is the
current setting of the parameter. If multiple values are set, that means the value of the
parameter is a list of values.

Table 4–2 lists the four types of VALIDATOR classes.

Configuring Transaction Queue Monitor Intervals

4-4 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Configuring Transaction Queue Monitor Intervals
Queue monitor intervals are set in the following file:

OracleRetailStores/Server/pos/config/technician/RetailTransactionTechnician.xml

The connector element named CSC_SavePaidOrderTxnToFileQueueConnector has a
property attribute named queueMonitorInterval. This interval is set to 10 seconds
instead of the 30 second interval used by most other queues in this file, such as
SaveTransactionsToFileConnector, which every transaction is also queued through
before being sent to CSC, SIM, Siebel, Bill Pay, and so on.

If Mobile Point-of-Service is implemented with Oracle ATG Web Commerce Assisted
Selling Application (ASA), ASA waits for CSC to be notified of a paid order before
proceeding. Retail transactions that pay for ASA orders go through two queues before
being sent to CSC.

Running Back Office or Central Office
Do the following to run Back Office or Central Office:

1. Verify that the application is running in the application server environment.

2. Access the following URL from a browser, specifying the application server
hostname and port number where indicated:

https://<app-server-hostname>:<port number>/<application>/

Where <application> is backoffice or centraloffice.

<port number> is 7002.

Running Returns Management
Do the following to run Returns Management:

1. Verify that the application is running in the application server environment.

2. Access the following URL from a browser, specifying the application server
hostname and port number where indicated:

https://<app-server-hostname>:<app-server-port number>/returnsmanagement/

Establishing a Store Hierarchy in Central Office or Returns Management
Use the Data Import module to import store hierarchy information.

The store hierarchy defines where stores fit in the retailer’s enterprise. The store
hierarchy is defined in an XML file. Whenever any changes are made to the store

Table 4–2 Validator Types

Validator Description

EnumeratedListValidator Determines whether a value supplied is one of an allowable set of values

FloatRangeValidator Ensures that the value lies within the specified minimum and maximum float
range

IntegerRangeValidator Ensures that the value of a parameter lies within the specified minimum and
maximum integer range

StringLengthValidator Ensures that the value's length lies within the specified minimum and
maximum lengths

Point-of-Service Devices

Backend System Administration and Configuration 4-5

hierarchy, the XML file is edited, and that file is then imported to Central Office or
Returns Management. The Data Import (DIMP) Subsystem enables the importing of
the store hierarchy. For information on using DIMP, see the Oracle Retail POS Suite
/Merchandising Operations Management Implementation Guide.

Importing Data in Returns Management
Within Returns Management, select Data Management to display a list of data import
options. You can import data immediately or schedule an import for later. See the
Oracle Retail Returns Management User Guide.

The following types of data can be imported:

■ RM Customer Data

■ Application Parameters

Application parameters are specific to Returns Management.

Point-of-Service Devices
Point-of-Service devices are configured with the PosDeviceTechnician.xml file,
device-specific property files, and other JavaPOS configuration files. The device
vendor typically provides a JavaPOS configuration file to support the JavaPOS
standards. If necessary, you can create your own configuration file to meet your device
requirements and replace the XML configuration file name for DeviceTechnician in
ClientConduit.xml. Interaction of the Point-of-Service application with devices is
managed by the Device Manager and Device Technician.

Set Up the Device
To configure a device to work with Point-of-Service, first consult the user manual for
that device for specific setup requirements. Set up the device drivers and configuration
file so the device is available to applications.

Test the Device
Use the POStest application at http://www.javapos.com to determine if a device
adheres to existing JavaPOS standards. POStest is a GUI-based utility for exercising
Point-of-Service devices using JavaPOS. Usually this requires adding the device to the
jpos.xml file that is in the Point-of-Service classpath. Currently it supports the
following devices: POSPrinter, MICR, MSR, Scanner, Cash Drawer, Line Display,
Signature Capture, and PIN Pad. Do the following to use POStest:

Note: After importing the store hierarchy into the database, the
admin user created with the installer needs to be linked to the correct
store group.

If a new store hierarchy is imported after the initial install, the admin
user needs to be linked to the correct store group.

Note: Application parameters are imported as part of the install
process. See the Oracle Retail Returns Management Installation Guide for
more information.

Point-of-Service Devices

4-6 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

1. Configure the classpath for JavaPOS. This means that the classpath should include
the location of POStest, jpos.jar, jcl.jar and the JavaPOS services for the devices.

2. To build POStest, compile the classes in <location of
POStest>/upos/com/jpos/POSTest.

3. To run POStest, enter the following at a command line:

java com.jpos.POStest.POStest

Sometimes, the hardware vendor provides test utilities that come with the JavaPOS
implementation. You should test with these tools as well.

Create a Session and ActionGroup
In Point-of-Service code, devices require a Session and an ActionGroup. If you need to
interact with a new JavaPOS device, you must create a new Session and ActionGroup.

Sessions capture input for the application. In UI scripts, device connections are defined
that allow the application code to receive input from a device by connecting the
Session with the screen specification. The Session listens to JavaPOS controls on the
device.

ActionGroups provide the actions that can be performed with the device.
ActionGroups are instantiated by Tour code. When a method on an ActionGroup is
called in Tour code, the DeviceTechnician talks to JavaPOS controls on the device.

To create or modify a Session and ActionGroup:.

1. Configure the Session and ActionGroup in
config\technician\PosDeviceTechnician.xml

To do this, enter the name of the Session and ActionGroup in
PosDeviceTechnician.xml. You must specify the name of the object, its class and its
package. In addition, you can set some attributes available in the corresponding
class in PosDeviceTechnician.xml. This file creates a hash table of ActionGroups
and Sessions, which are part of the DeviceTechnician. Below is a definition of an
ActionGroup and Session from posdevices.xml.

Example 4–4 ActionGroup Configuration

 <ACTIONGROUP name="LineDisplayActionGroupIfc"
 class="LineDisplayActionGroup"
 package="oracle.retail.stores.pos.device"/>

Example 4–5 Session Configuration

 <SESSION name="ScannerSession"
 devicename = "defaultScanner"
 class="ScannerSession"
 package="oracle.retail.stores.foundation.manager.device"
 defaultmode = "MODE_RELEASED"
 />

2. Define a Session class to get input that extends InputDeviceSession or
DeviceSession.

Each type of device has a Session class defined in <source_
directory>\applications\pos\src\oracle\retail\stores\pos\devi
ce. A device session like CashDrawerSession would extend DeviceSession,
whereas an input device session like a ScannerSession would extend
InputDeviceSession.

Point-of-Service Devices

Backend System Administration and Configuration 4-7

Sessions are not instantiated in Tour code but are accessed by UI scripts in device
connections.

3. Define an ActionGroupIfc interface that extends DeviceActionGroupIfc.

This class should also be located in <source_
directory>\applications\pos\src\oracle\retail\stores\pos\devi
ce. The following line of code shows the header of the
CashDrawerActionGroupIfc class.

public interface CashDrawerActionGroupIfc extends DeviceActionGroupIfc

4. Create the ActionGroup class. This class should be located in <source_
directory>\applications\pos\src\oracle\retail\stores\pos\devi
ce, and its purpose is to define specific device operations available to
Point-of-Service. The following line of code shows the header of the
CashDrawerActionGroup class.

public interface CashDrawerActionGroup extends CashDrawerActionGroupIfc

5. If one does not already exist, create a device connection in the UI Subsystem file.
Device connections in the UI Subsystem files allow the application to receive input
data from the Session.

The DeviceSession class is referenced in the device connections for the relevant
screen specifications. For example, the following code is an excerpt from
<source_
directory>\applications\pos\src\oracle\retail\stores\pos\serv
ices\tender\tenderuicfg.xml.

Example 4–6 Example of Device Connection

<DEVICECONNECTION
 deviceSessionName="ScannerSession"
 targetBeanSpecName="PromptAndResponsePanelSpec"
 listenerPackage="java.beans"
 listenerInterfaceName="PropertyChangeListener"
 adapterPackage="oracle.retail.stores.foundation.manager.gui"
 adapterClassName="InputDataAdapter"
 adapterParameter="setScannerData"
 activateMode="MODE_SINGLESCAN">

6. Access the device manager and input from the Session in the application code.

Using the bean model, data from the Session can be accessed with methods in the
device’s ActionGroupIfc.

Example 4–7 ActionGroup in Tour code

POSDeviceActions pda = new POSDeviceActions((SessionBusIfc) bus);
pda.clearText();
pda.displayTextAt(1,0,displayLine2);

Simulate the Device
It is often practical to simulate devices for development purposes until the hardware is
available or the software is testable. Switching to a simulated device is easily
accomplished by editing config\technician\PosDeviceTechnician.xml. In
fact, when you install Point-of-Service and choose the option to run in Simulated
mode, PosDeviceTechnician.xml is modified accordingly. By default, unselected

Scheduling Post Processors in Back Office

4-8 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

devices are set up as simulated. The following code samples show the difference
between a normal device configuration and a simulated device configuration. Note the
class name and device name are changed.

Example 4–8 Normal Device Configuration

<SESSION name="PrinterSession"
devicename = "defaultPrinter"
class="PrinterSession"
package="oracle.retail.stores.foundation.manager.device"
defaultmode

Example 4–9 Simulated Device Configuration

<SESSION name="SimulatedPrinterSession"
 devicename = "defaultPrinter"
 class="SimulatedPrinterSession"
 package="oracle.retail.stores.foundation.manager.device"
 defaultmode = "MODE_RELEASED"
 />

Scheduling Post Processors in Back Office
Schedule post processor jobs after installing Back Office. See the Oracle Retail Back
Office User Guide for more information.

Scheduling Post Processors in Returns Management
After installation, you must schedule postprocessor jobs as part of the configuration
process. Post processors create summary data for use in reporting. See the Oracle Retail
Returns Management User Guide for more information.

Data Management in Central Office
Within Central Office, select the Data Management tab to display a list of data import
and export options. You can import or export data immediately or schedule an import
or export for later. The following types of data can be imported or exported:

■ POSlog

■ EJournal

■ Store parameters and Central Office application parameters (see "Parameters in
Back Office and Central Office")

Help Files in Point-of-Service
The Point-of-Service application includes help files to provide information to assist the
end-user. When the user chooses F1 from the global navigation panel, a help browser
appears in Point-of-Service to describe the current screen. An index is provided on the
left so the user may choose additional topics to view. The help is implemented as
JavaHelp and includes these components:

■ One HTML help file for each screen. The product help files are Microsoft Word
files saved as HTML. They can be edited with Word, an HTML editor or a text
editor.

■ A Table of Contents file that defines the index that displays on the left.

Help Files in Point-of-Service

Backend System Administration and Configuration 4-9

■ A properties file that associates overlay screen names with the corresponding
HTML filenames.

For more information on JavaHelp, refer to: http://javahelp.java.net/.

Modifying Help Files in Central Office, Back Office and Returns Management
Online help is created using Oracle Online Help for the web. Information on this
technology is available at:
http://www.oracle.com/technetwork/topics/index-083946.html

The online help is generated from the application user guide. Each chapter in the user
guide is divided into sections. You can look at the Table of Contents for the user guide
to see how each chapter is structured. When the user guide is converted into online
help, each section is converted into an html help file.

Some help files contain specific information for a screen. Other help files have the
background or topic information that is contained in the user guide. For screen help,
the name of the file includes the name of the screen. For background help, the name of
the file is based on the section in the user guide. For example, the help file for the User
Details screen is named userdetailshelp.htm. The information in the Working with
Transactions section is in the workwithtransactionshelp.htm file.

For example, in Central Office, the centraloffice.ear file contains the
centraloffice-help.war. The war file contains the following:

helpsets folder
 co_olh folder
 dcommon folder (definitions for styles, gif files for buttons)
 img folder (any images included in the online help from the user guide)
 help files

To update a help file:

1. Locate the help file to be changed.

2. Edit the help file.

3. Replace the updated file in the helpset and in centraloffice.ear.

4. Redeploy centraloffice.ear or backoffice.ear.

Modifying Help Files in Point-of-Service
To modify Help Files in Point-of-Service, do the following:

1. Locate the name of the help file associated with the overlay screen name that
needs to be modified. The help file names are defined in helpscreens.properties
located in <source_
directory>\applications\pos\deploy\client\config\ui\help.

Example 4–10 JavaHelp—helpscreens.properties

REFUND_OPTIONS refundoptionshelp.htm

Note: If the base product help files are modified, upgrades for help
files are not available. You will not be able to take advantage of
updates provided with future maintenance releases of the application.

Reason Codes in Point-of-Service

4-10 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

2. Locate the help file in the config\ui\help directory. Open the file in Microsoft
Word or an HTML editor and edit the content. If you are using Word to edit, be
sure to save the file as HTML when the edits are complete.

3. If the index location or text descriptions needs to be modified, change toc.xml
located in <source_
directory>\applications\pos\locales\en\config\ui\help. The
order of the items in the index is also defined by this file.

Example 4–11 JavaHelp—toc.xml

 <tocitem target="REFUND_OPTIONS" text="Refund Options" />

Reason Codes in Point-of-Service
Reason codes are items offered to the end user as choices in lists, for example, the set
of possible reasons for a price override. These choices normally vary for each retailer,
and they must be configured to suit your local requirements and policies. The system
comes with a predetermined set of reason code groups; within each group, you can
add, remove, and modify the list of codes, all from within the Point-of-Service
interface. For information on working with reason codes, see the Oracle Retail
Point-of-Service User Guide.

Configuring Transaction ID Lengths
Point-of-Service allows for some configuration of the length of the Transaction ID.
These changes affect every aspect of the software and should not be undertaken
lightly. Changes should only be performed before Point-of-Service is installed.
Changes to these settings can require substantial custom code and testing to establish
that no problems result from the change.

Understanding Transaction IDs
A transaction ID is a composite key made from the store number, register number, and
sequence number. When combined, these attributes create a unique number for each
transaction. Transaction IDs can also include an eight-digit date to ensure that they are
unique. For example, if you restart your sequence numbers on a daily basis, the date
value prevents transaction ID repetition.

Key points about the transaction ID and related properties:

■ You can change the length of the store, register, and sequence numbers which
contribute to the transaction ID. You cannot directly configure the length of the
transaction ID itself.

■ System-generated unique layaway numbers, special order numbers, and web
order numbers are not affected by changes to the transaction ID rules.

■ A maximum of 20 digits of transaction ID can be printed on receipts using
Point-of-Service current barcode format.

Note: Only the default values for these parameters were tested in the
integration to Point-of-Service. Changing the values of the
Point-of-Service Transaction ID settings without changing the
supporting configuration for Central Office and Returns Management
could cause the integration to not work correctly.

Configuring Transaction ID Lengths

Backend System Administration and Configuration 4-11

■ If the value of a store, register, or sequence number has fewer than the specified
number of digits, Point-of-Service uses leading zeroes to pad the number to the
required number of digits; a four-digit sequence number whose value is 22 shows
up within the transaction ID as 0022.

■ Dates can be used in transaction IDs to help ensure unique IDs. If they are used,
they are expressed as an 8-digit number; this is set by the
TransactionIDBarcodeDateFormat property in the domain.properties
file. The only valid values for this property are no value and yyyyMMdd. The date
format does not vary from one locale to another.

■ You can set the transaction sequence start number in the database.

■ When you enter a transaction ID manually, the trailing date is optional.

Changing Transaction ID Format
Changing the format of the transaction ID requires many steps and requires additional
testing and possibly custom code to support the merchant’s desired format. The base
format is divided into three sections:

■ Store ID

■ Workstation ID

■ Sequence number

See "Understanding Transaction IDs" for more information about these sections.

Example 4–12 Transaction ID Configuration in domain.properties

Transaction ID
TransactionIDStoreIDLength=5
TransactionIDWorkstationIDLength=3
TransactionIDSequenceNumberLength=4
CustomerIDSequenceNumberLength=6
#TransactionIDBarcodeDateFormat=yyyyMMdd
TransactionIDBarcodeDateFormat=
TransactionIDSequenceNumberSkipZero=false
TransactionIDSequenceNumberMaximum=9999
CustomerIDSequenceNumberMaximum=999999

Do the following to change the default length of the sequence number:

1. Change the length in the domain.properties in the Point-of-Service server and
client:

■ TransactionIDSequenceNumberMaximum=99999

■ TransactionIDSequenceNumberLength=4

2. Update the parameters under group TransactionID in centraloffice.xml with the
required length.

3. Change the regular expression format in validation.properties for
TransactionNumber in Central Office. The file is in <source_
directory>\installer\templates:

Validator.TransactionNumber=^[a-zA-Z0-9]{5}[a-zA-Z0-9]{3}[0-9]{4}$

Do the following to change the default length of the store ID and workstation ID:

1. Update the table definitions for the columns ID_STR_RT and ID_WS to the
required length. By default, they are defined as:

Configuring RMI Timeout Intervals in Point-of-Service

4-12 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

■ store ID = 5 characters

■ workstation ID = 3 characters

2. Change the length in domain.properties in the Point-of-Service client and server:

■ TransactionIDStoreIDLength=5

■ TransactionIDWorkstationIDLength=3

3. Update the parameters under group TransactionID in centraloffice.xml with the
required length.

4. Change the format in validation.properties for TransactionNumber in Central
Office. The file is in <source_directory>\installer\templates.

Configuring the Purchase Date Field for Returns and Voids
You must configure Point-of-Service to display the Purchase Date field in the Receipt
Info screen when conducting a return or a void.

To do this, you must modify the domain.properties file in the config folder.
Uncomment the following field:

TransactionIDBarcodeDateFormat=yyyyMMdd

By default, this field in domain.properties contains no defined date format. This
prevents the Purchase Date field from being displayed in the Receipt Info screen.

Configuring RMI Timeout Intervals in Point-of-Service
You can configure remote method invocation (RMI) timeout intervals at two levels:

■ The JVM level (Linux installs only)

■ The level of managers and technicians

If you are performing a Linux installation, configure the JVM as described in "Setting
the RMI Timeout Interval for the JVM Under Linux". If you determine that RMI
connections are timing out, you can use one of the other procedures in this section,
"Setting the RMI Timeout Interval for All Manager and Technician Calls" or "Setting
the RMI Timeout Interval for a Specific Technician".

Setting the RMI Timeout Interval for the JVM Under Linux
Oracle Retail has found it useful to change the RMI timeout interval for the JVM under
Linux. To do this, change the command that launches the JVM, adding the JVM flag:
Dsun.rmi.transport.connectionTimeout=<X> where <X> represents the
time-out period in milliseconds.

This tells the JVM to time out socket connections used by RMI after X milliseconds of
inactivity. Linux quickly notifies the JVM when a socket connection cannot be
established. Linux is slow, however, to notify the JVM when an open socket connection
has been broken. By setting the connection time-out low, you can cause the sockets to
disconnect quickly after each RMI call, thereby requiring a connect for each
subsequent RMI call.

Note: Be sure to test the Point-of-Service, Central Office, or Returns
Management integration, and all screens where search by transaction
ID is found.

Configuring RMI Timeout Intervals in Point-of-Service

Backend System Administration and Configuration 4-13

Modifying the TCP Connection Timeout on Linux
Sometimes, Linux keeps the tcp connection active even after Point-of-Service
determines that the socket has timed out. There are three OS level settings that work
together to determine how long to keep the tcp connection open, which affects the
observed system performance. To modify these level settings, at a Linux command
line, enter:

sysctl –w net.ipv4.tcp_keepalive_time=<value>
sysctl –w net.ipv4.tcp_keepalive_intvl=<value>
sysctl –w net.ipv4.tcp_keepalive_probes=<value>

where <value> is an interval you specify.

Setting the RMI Timeout Interval for All Manager and Technician Calls
You can change the RMI timeout interval values for connections and reads in the
<source_directory>\applications\pos\deploy\<Client or
Server>\bin\comm.properties file. The value for the following properties apply
to all manager and technician calls, unless overridden by a communication scheme for
a specific call.

■ comm.socket.connectTimeout - Specifies how long to wait for a socket
connection to succeed. The value is in milliseconds.

■ comm.socket.readTimeout - Specifies how long to wait before a read times
out. The value is in milliseconds. This property causes the read to time out even if
the socket is alive and well and transmitting data.

Setting Application Timeout Values on Linux
Do the following when configuring the application timeout values for Point-of-Service
on Linux:

1. Set the socket timeout values in the comm.properties file:

comm.socket.readTimeout=25000
comm.socket.connectTimeout=25000

2. Set the RMI property values in the startup script, for example, in
ClientConduit.sh:

JAVA_OPTIONS=${JAVA_OPTIONS}"-Dsun.rmi.transport.tcp.responseTimeout=5000"

Other possible values include the following:

-Dsun.rmi.transport.tcp.logLevel=VERBOSE
-Dsun.rmi.transport.tcp.responseTimeout=5000
-Dsun.rmi.transport.logLevel=VERBOSE
-Dsun.rmi.transport.tcp.readTimeout=1500
-Dsun.rmi.transport.tcp.handshakeTimeout=5000
-Dsun.rmi.transport.proxy.connectTimeout=10000
-Dsun.rmi.transport.connectionTimeout=15000

3. Set the Linux tcp property values.

Note: These values control the application timeout when trying to
establish a socket connection or read from a socket.

System Settings in Point-of-Service

4-14 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

There are three operating system-level settings that work together to determine
how long to keep the tcp connection open, which affects the observed system
performance. At the Linux command line, type the following:

sysctl –w net.ipv4.tcp_keepalive_time=<value>
sysctl –w net.ipv4.tcp_keepalive_intvl=<value>
sysctl –w net.ipv4.tcp_keepalive_probes=<value>

Additional information can be found at

http://www.ibdeveloper.com/issue1/ibmag.pdf

Setting the RMI Timeout Interval for a Specific Technician
To set the time-out for a specific technician, edit the <source_
directory>\applications\pos\deploy\<Client or
Server>\bin\comm.properties file and the conduit script as follows:

1. Add a new communication scheme to the comm.properties file. The following
lines provide an example:

comm.rmi_longread.readTimeout=120000
comm.rmi_longread.connectTimeout=1000

These lines establish a new communication scheme called rmi_longread with a
read time-out of 120 seconds and a connect time-out of one second (since the
values are in milliseconds).

2. Add the following property to the appropriate technician definition in the conduit
script:

<PROPERTY propname="commScheme" propvalue="rmi_longread"/>

This sets the communication time-outs for all managers that connect to this
technician. A manager who is sending a valet to this technician times out if the
valet fails to complete within 120 seconds. It only attempts to connect to the
technician for 1 second before giving up.

System Settings in Point-of-Service
System settings are values set in the Oracle Retail database. Changes to these settings
must be made in the database by a database administrator or an application developer.

System settings can have significant effects on Point-of-Service system; do not make
changes unless you are confident that you understand the effects. For a description of
all available system settings, see the Oracle Retail POS Suite Configuration Guide.

Configuring Logging in Point-of-Service
Point-of-Service logging uses the Log4J tool. Configure Log4J by editing <source_
directory>\applications\pos\deploy\shared\config\log4j.xml. See the
Apache documentation for Log4J at http://logging.apache.org/log4j. For
more information, a Log4j XML Configuration Primer can be found at
http://wiki.apache.org/logging-log4j/Log4jXmlFormat.

http://logging.apache.org/log4j
http://wiki.apache.org/logging-log4j/Log4jXmlFormat

Returns Management Environment Entries in ejb-jar.xml

Backend System Administration and Configuration 4-15

Returns Management Environment Entries in ejb-jar.xml
This section describes the <env-entry> section in the Returns Management ejb-jar.xml
file. These entries enable manipulation of some aspects of the system.

Return Ticket Formatting Entries
The return ticket table is indexed using a composite key. This key is comprised of store
number, workstation, business date, and a sequence number. To make this key
end-user legible, it is formatted using the returnTicketIdPattern rather than passed as
discrete data elements. The default pattern is sssss-www-MMdd-yyyy-nnnnnnnnn.

This <env-entry> element must be in sync with the other <env-entry> elements as
follows:

■ ID divider: If you want to use a different divider, then the value
returnTicketIdDivider must be changed to reflect the new divider used.

■ Date format: If this format is changed, other than the divider character, the value
returnTicketIdDatePattern must be changed to reflect this.

■ Store pattern: If the store retrieved from the database is shorter than the value in
returnTicketStoreIdPersistPattern, it is padded on the left hand side with the value
in returnTicketPersistPad (default is 0).

■ Sequence pattern: If the sequence number is smaller than the length of
returnTicketSeqNumberPersistPattern, then it is padded with the value from
returnTicketIdPad (default is 0).

■ ReturnTicketMaxSequenceValue: No effect.

■ ReturnTicketBusinessDate: Ignore. This is used in an unused method in the
ReturnTicketKeyFormatter class and can be safely ignored.

Table 4–4 defines the return ticket format elements.

Table 4–3 Return Ticket Table

Data Element Description

sssss Marks the store ID.

www Marks the workstation ID.

nnnnnnnnn Marks the sequence number.

MMdd-yyyy Marks the business date.

Table 4–4 Return Ticket Format <env-entry>

Entry Default

returnTicketIdPattern sssss-www-MMdd-yyyy-nnnnnnnnn

returnTicketIdDivider NA

returnTicketIdDatePattern MMddyyyy

returnTicketStoreIdPersistPattern sssss

returnTicketWorkstationIdPattern www

returnTicketSeqNumberPersistPattern nnnnnnnnn

returnTicketIdPad 0

returnTicketPersistPad 0

Defining Security with Roles

4-16 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Auditing Entries
Table 4–5 identifies audit target format elements.

This integer value tells Returns Management where to send audit log messages. Valid
values are:

■ 0 – no audit log

■ 1 – send log messages to a JMS queue (found using JNDI lookup at
java:comp/env/jms/JournalingMessage)

■ 2 – send log messages directly to the EJB interface of the Journaling Service.

Any other value results in no audit log being created and an error message logged.

Defining Security with Roles
In Point-of-Service, you specify user access to the application by assigning a role to
each user. Each role contains a list of the security access points of the application,
specifying which access points that role is allowed to use. You can create as many roles
as you need.

Roles are typically named for job titles; by creating a manager role and a clerk role, for
example, you define two classes of employees with different access to Point-of-Service
functions. All clerks, however, would have the same access rights.

For information on how to modify and add roles, see the Oracle Retail Point-of-Service
User Guide. For a list of security access points, see "Secured Features".

Secured Features
The following table lists all of the functions within Point-of-Service for which security
access points exist. When a user attempts to use a function protected by one of these
security access points, the system checks whether the user’s role allows that function.

Table 4–6 identifies Point-of-Service security access points.

returnTicketMaxSequenceValue 999999999

returnTicketBusinessDate yyyy-MM-dd

Table 4–5 Audit Target <env-entry>

Entry Default

journalDataPath 1

Table 4–6 Security Access Points

Access Point Access Point Access Point Access Point

Accept Invalid DL Format Administration Override of Soft
Declined Check

Back Office

Bank Deposit Override Call Referral
Accept for check, credit, or
gift card

Override Call
Referrals

Cancel Transaction

Close Register Close Till Reprint Gift Receipt Customer - Add/Find

Table 4–4 (Cont.) Return Ticket Format <env-entry>

Entry Default

Defining Security with Roles

Backend System Administration and Configuration 4-17

Security Implementation—Warnings and Advice
Oracle Retail is committed to providing our customers software, that when combined
with overall system security, is capable of meeting or exceeding industry standards for
securing sensitive data. By maintaining solutions based on standards, Oracle Retail
provides the flexibility for retailers to choose the level and implementation of security
without being tied to any specific solution.

Each retailer should carefully review the standards that apply to them with special
emphasis on the Payment Card Industry (PCI) best practices. The Oracle Retail
applications represent one portion of the entire system that must be secured; therefore,
it is important to evaluate the entire system including operating system, network, and
physical access.

The following are required by Visa:

1. Do not use database or operating systems administrative accounts for application
accounts. Administrative accounts and any account that has access to sensitive
data should require complex passwords as described below. Always disable
default accounts before use in production.

2. Assign a unique account to each user. Never allow users to share accounts. Users
that have access to more than one customer record should use complex passwords.

3. Complex passwords should have a minimum length of seven characters, contain
both numeric and alphabetic characters, be changed at least every 90 days, and not
repeat for at least four cycles.

Customer Delete Daily Operations Reprint Receipt Discount Rule Add/Modify

Discount rule End Electronic Journal E-mail Employee - Add/Find

Employee Time Maintenance End of Day Training Mode -
Enter/Exit

Item Maintenance

Item/Transaction Discounts Item/Transaction Gift
Registry

Item/Transaction
Sales Associate

Item/Transaction Tax
Modifications

Job Queue Kit Maintenance Layaway Delete Modify Layaway Fees

Modify Markdowns No Sale Open Register Open Till

Orders Override Declined Check Override Declined
Credit

Override Restocking Fee

Override Tender Limits Parameters Add/Modify Launch Browser POS

Price Change Price Override Price Promotion Queue Management

Reason Codes Reentry On/Off Transaction Details Register Reports

Reset Hard Totals Return Role - Add/Find Schedule Jobs

Service Alert Start of Day Parameter Groups
Access

Start of Day

Till Pay-in Till Pay-out Till Pickup/Loan Reconcile Till

Redeem Void Web Store Add Temp Employee

Cancel Order Clock In Out Customer Discount Money Order

Override Denied Return Item Inventory Inquiry Price Adjust Print VAT Receipt

Reset Employee Password Override Refund Tender NA NA

Table 4–6 (Cont.) Security Access Points

Access Point Access Point Access Point Access Point

Configuring Security in Returns Management

4-18 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

4. Unused accounts should be disabled. Accounts should be temporarily disabled for
at least 15 minutes after six invalid authentication attempts.

5. If sensitive data is transmitted over a wireless network, the network must be
adequately secure, usually through use of WPA, 802.11i, or VPN.

6. Never store sensitive data on machines connected to the internet. Always limit
access using a DMZ and/or firewall.

7. For remote support, be sure to use secure access methods such as two-factor
authentication, SSH, SFTP, and so on. Use the security settings provided by
third-party remote access products.

8. When transmitting sensitive data, always use network encryption such as SSL.

Following these recommendations does not necessarily ensure a secure
implementation of the Oracle Retail products. Oracle recommends a periodic security
audit by a third-party. For additional information, review the PCI standards.

Configuring Security in Returns Management
Returns Management has many individual security access points. This enables you to
control the functionality to which any particular end user has access. You can also
control workflow through approval permissions, enabling some employees to
schedule tasks which others must approve.

For more information about security roles, see the Oracle Retail Returns Management
User Guide.

Audit Logging 5-1

5
Audit Logging

The audit log retains events that are logged to the file system. Audit Logs include
access, search, view (generate), print and export for the following functional areas in
Point-of-Service:

■ Daily Operations Audit Log Events

■ Employee Audit Log Events

■ Login, Logout, Lockout Audit Log Events

■ Password Audit Log Events

■ Point-of-Service Transaction Events

■ Role Audit Log Events

■ Till Audit Log Events

■ Parameter Log Events

Each event has a specific set of components that must be present in the Audit Log.
Each event is required to have an event name, event status, system date and system
time in which the event was completed. The status of an event can either be Success or
Failure. If an event was executed without interruption and the data of the event is
saved to persistent storage, the events status is Success. If a database exception occurs
after the operator or system has finished the event, the events status is Failure. If any
exception occurs before the activity is saved or if the operator selects to leave the
application, no event is logged.

The Audit Log is implemented using a log4j logging infrastructure.

Log4j is an Apache (www.apache.org) utility used to assist applications in
meaningful logging. These log statements are printed in a format that can be used for
further processing, such as reporting.

The log4j mechanism works on properties/XML configuration files where the
minimum logging level for the application is mentioned. Throughout the application,
where a statement must be logged, the Log4j API for a particular level is called. If the
application LOG4J is setup for a level that is equal to or lower in priority to the API
being invoked, then that statement is logged; if the application LOG4J is setup for a
level that is not equal to or lower in priority to the API being invoked, then that
statement is not logged. Therefore, if the configuration is for a WARN level, then
INFO, DEBUG and TRACE statements are not logged.

The following are the various logging levels available, in increasing order of priority:

■ TRACE

■ DEBUG

5-2 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

■ INFO

■ WARN

■ ERROR

■ FATAL

If the application logging level is set at WARN, and in the application the INFO API is
being called to log, that statement is not logged as WARN is a higher priority than
INFO. All log statements which are WARN level or higher only are logged.

The best practice is to have the application logging level set at INFO for production
systems.

The Audit Log uses the LOG4J system to log the audit statements. The audit log code
is written such that it invokes the INFO API to log the statements.

Therefore, if the log4j configuration for Audit Logging is set to INFO or DEBUG then
the application logs the audit statements. If set to anything higher than INFO, no audit
statements are logged.

Figure 5–1 is a Point-of-Service common configuration for the Audit Logging
subsystem:

Figure 5–1 Audit Log in Point-of-Service

Configuring the Audit Log

Audit Logging 5-3

Configuring the Audit Log

You can configure the Audit Log using configuration files. To update the logging
infrastructure, update the Spring ServiceContext.xml file to point the various
infrastructure bean IDs to any alternate implementation classes you want to provide.

Bean ID: service_AuditLogger
Class: oracle.retail.stores.commerceservices.audit.AuditLoggerService

Because the Audit Log is using Log4J as the underlying logging mechanism, you can
also control the logging layout, location, and content by updating the log4j.xml file.

■ All log events are logged at the INFO level, so to disable logging entirely, change
the log level to WARN or above for the event package path.

■ Additionally, each logging event is represented in the log4j.xml file through the
event’s package path, so to filter a specific event, just update that event’s level to
WARN or above.

■ As with all Log4J deployments, updating the layout of the log events or their
location is a matter of setting the layout in the configuration file and updating the
appender to point to a different file name. Another option is to use an entirely
different appender to write to a database or even a JMS queue.

Internationalize Static Text/Date/Time/Currency
Use AuditLoggerI18NHelper, which has the following methods:

■ getString(String key)

■ getFormattedDate(Date)

■ getFormattedTime(Date)

■ getFormattedCurrency(String)

All these methods return the data in the application’s default locale.

The following is an example of settings that might be used in a log4j.xml file:

Example 5–1 Audit Log Configuration Changes in the log4j.xml File

 <!-- AUDIT Logging -->

 <category name="oracle.retail.stores.commerceservices.audit.event">
 <!-- The following elements are commented to prevent duplicate logging
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 -->
 </category>

Note: The Oracle Retail POS Suite Security Guide describes specific
security features and implementation guidelines for the POS Suite
products.

Note: Before setting Auditlog event objects to log database data,
retrieve the database data in the client’s default locale by calling
get<FieldName>(Locale) method of domain classes.

Configuring the Audit Log

5-4 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

 <category
name="log4j.additivity.oracle.retail.stores.commerceservices.audit.event=false">
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 </category>
 <category name="oracle.retail.stores.commerceservices.audit.event.ENTER_
BUSINESS_DATE">
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 </category>
 <category name="oracle.retail.stores.commerceservices.audit.event.START_OF_
DAY">
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 </category>
 <category name="oracle.retail.stores.commerceservices.audit.event.END_OF_DAY">
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 </category>
 <category name="oracle.retail.stores.commerceservices.audit.event.BANK_
DEPOSIT">
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 </category>
 <category name="oracle.retail.stores.commerceservices.audit.event.BANK_
DEPOSIT_REPORT_EXPORTED">
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 </category>
 <category name="oracle.retail.stores.commerceservices.audit.event.REGISTER_
OPEN">
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 </category>
 <category name="oracle.retail.stores.commerceservices.audit.event.REGISTER_
CLOSE">
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 </category>
 <category name="oracle.retail.stores.commerceservices.audit.event.TILL_
RECONCILE">
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 </category>
 <category name="oracle.retail.stores.commerceservices.audit.event.TILL_OPEN">
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 </category>
 <category name="oracle.retail.stores.commerceservices.audit.event.TILL_CLOSE">
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 </category>
 <category name="oracle.retail.stores.commerceservices.audit.event.TILL_
SUSPEND">
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 </category>
 <category name="oracle.retail.stores.commerceservices.audit.event.TILL_
RETRIEVE">
 <priority value="INFO" />

Configuring the Audit Log

Audit Logging 5-5

 <appender-ref ref="AUDIT"/>
 </category>
 <category name="oracle.retail.stores.commerceservices.audit.event.COUNT_FLOAT_
AT_RECONCILE">
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 </category>
 <category name="oracle.retail.stores.commerceservices.audit.event.ADD_
EMPLOYEE">
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 </category>
 <category name="oracle.retail.stores.commerceservices.audit.event.MODIFY_
EMPLOYEE_INFORMATION">
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 </category>
 <category name="oracle.retail.stores.commerceservices.audit.event.ADD_
TEMPORARY_EMPLOYEE">
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 </category>
 <category name="oracle.retail.stores.commerceservices.audit.event.MODIFY_
TEMPORARY_EMPLOYEE_INFORMATION">
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 </category>
 <category name="oracle.retail.stores.commerceservices.audit.event.RESET_
EMPLOYEE_PASSWORD">
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 </category>
 <category name="oracle.retail.stores.commerceservices.audit.event.RESET_
TEMPORARY_EMPLOYEE_PASSWORD">
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 </category>
 <category name="oracle.retail.stores.commerceservices.audit.event.CHANGE_
PASSWORD">
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 </category>
 <category name="oracle.retail.stores.commerceservices.audit.event.USER_
LOGOUT">
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 </category>
 <category name="oracle.retail.stores.commerceservices.audit.event.USER_LOGIN">
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 </category>
 <category name="oracle.retail.stores.commerceservices.audit.event.USER_LOCK_
OUT">
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 </category>
 <category name="oracle.retail.stores.commerceservices.audit.event.ADD_ROLE">
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 </category>

Daily Operations Audit Log Events

5-6 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

 <category name="oracle.retail.stores.commerceservices.audit.event.ADD_USER">
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 </category>
 <category name="oracle.retail.stores.commerceservices.audit.event.EDIT_ROLE">
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 </category>
 <category name="oracle.retail.stores.commerceservices.audit.event.REMOVE_
ROLE">
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 </category>
 <category name="oracle.retail.stores.commerceservices.audit.event.MODIFY_
APPLICATION_PARAMETER">
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 </category>
 <category name="oracle.retail.stores.commerceservices.audit.event.MODIFY_
PARAMETER_IN_LIST">
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 </category>
 <category name="oracle.retail.stores.commerceservices.audit.event.ADD_
PARAMETER_LIST_FOR_DISTRIBUTION">
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 </category>
 <category name="oracle.retail.stores.commerceservices.audit.event.REMOVE_
PARAMETER_LIST">
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 </category>
 <category name="oracle.retail.stores.commerceservices.audit.event.DISTRIBUTE_
PARAMETER_LIST">
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 </category>
 <category name="oracle.retail.stores.commerceservices.audit.event.TRANSACTION_
TENDERED_WITH_CREDIT_CARD">
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 </category>
 <category name="oracle.retail.stores.commerceservices.audit.event.TRANSACTION_
TENDERED_WITH_DEBIT_CARD">
 <priority value="INFO" />
 <appender-ref ref="AUDIT"/>
 </category>

Daily Operations Audit Log Events
The following are daily operations audit log events.

Enter Business Date
This is a Back Office and Point-of-Service event.

This event is written to the audit log if the Settings For Audit Logging system setting
equals INFO and the Enter Business Date system setting equals INFO.

Daily Operations Audit Log Events

Audit Logging 5-7

■ Event data collection starts when the operator enters a business date.

■ Event data collection ends when the operator selects Next.

■ There is no failure condition to this event.

Start of Day
This is a Back Office and Point-of-Service event.

This event is written to the audit log if the Settings For Audit Logging system setting
equals INFO and the Start of Day system setting equals INFO.

■ Event data collection starts when the operator selects to execute Start of Day
functionality.

■ Event data collection ends when the system displays that the store is opened.

■ The format of this event is dependent on the Count Operating Fund at Start of Day
parameter setting.

■ Failure can happen only when there is some technical error.

Table 5–1 Enter Business Date Event Components

Event Components Notes

Event Name Enter Business Date.

Event Status Success.

Event Originator Class Name and Method Name (ClassName.methodName).

System Date System date of the event.

Business Date Entered Business date.

System Time Time of the event.

Store ID Store number at which the event transpired.

User ID User ID performing the event.

Register Number For Point-of-Service, the register number at which the event transpired.

Till ID Till ID at which the event transpired.

Table 5–2 Start of Day Event Components

Event Components Notes

Event Name Start of Day.

Event Status ■ Success.

■ Failure.

Event Originator Class Name and Method Name (ClassName.methodName).

System Date System date of the event.

Business Date Business date of the event.

System Time Time of the event.

Store ID Store number at which the event transpired.

User ID User ID performing the event.

Register Number For Point-of-Service, the register number at which the event transpired.

Daily Operations Audit Log Events

5-8 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

End of Day
This is a Back Office and Point-of-Service event.

This event is written to the audit log if the Settings For Audit Logging system setting
equals INFO and the End of Day system setting equals INFO.

■ Event data collection starts when the operator selects to begin end of day.

■ Event data collection ends when the system assigns a transaction number.

Operating Fund Amount ■ Entered cash amount for Count Operating Fund at Start of Day equals
Summary.

■ Total of entered cash amount for Count Operating Fund at Start of Day
equals Detail.

■ Equal to the Operating Fund Expected Amount when Count Operating
Fund at Start of Day equals No.

Pennies Entered currency denomination amount. Only recorded if a value is entered
and Count Operating Fund at Start of Day equals Detail.

Nickels Entered currency denomination amount. Only recorded if a value is entered
and Count Operating Fund at Start of Day equals Detail.

Dimes Entered currency denomination amount. Only recorded if a value is entered
and Count Operating Fund at Start of Day equals Detail.

Quarters Entered currency denomination amount. Only recorded if a value is entered
and Count Operating Fund at Start of Day equals Detail.

Half-Dollars Entered currency denomination amount. Only recorded if a value is entered
and Count Operating Fund at Start of Day equals Detail.

$1 Coins Entered currency denomination amount. Only recorded if a value is entered
and Count Operating Fund at Start of Day equals Detail.

$2 Coins Entered currency denomination amount. Only recorded if a value is entered,
Count Operating Fund at Start of Day equals Detail and Canadian currency is
the base currency.

$1 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Operating Fund at Start of Day equals Detail.

$2 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Operating Fund at Start of Day equals Detail.

$5 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Operating Fund at Start of Day equals Detail.

$10 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Operating Fund at Start of Day equals Detail.

$20 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Operating Fund at Start of Day equals Detail.

$50 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Operating Fund at Start of Day equals Detail.

$100 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Operating Fund at Start of Day equals Detail.

Store Status ■ Open.

■ Close.

Table 5–2 (Cont.) Start of Day Event Components

Event Components Notes

Daily Operations Audit Log Events

Audit Logging 5-9

■ The format of this event is dependent on the Count Operating Fund at End of Day
parameter setting.

■ Event failure can happen only due to technical reasons, for example, unable to get
next sequence number for transaction, transaction creation exception, EJB call
exception or if the financial totals are not found in the database.

Table 5–3 End of Day Event Components

Event Components Notes

Event Name End of Day.

Event Status ■ Success.

■ Failure.

Event Originator Class Name and Method Name (ClassName.methodName).

System Date System date of the event.

Business Date Business date of the event.

System Time Time of the event.

Store ID Store number at which the event transpired.

User ID User ID performing the event.

Register Number For Point-of-Service, the register number at which the event transpired.

Operating Fund Amount ■ Entered cash amount for Count Operating Fund at End of Day equals
Summary.

■ Total of entered cash amount for Count Operating Fund at End of Day
equals Detail.

■ Equal to the Operating Fund Expected Amount when Count Operating
Fund at End of Day equals No.

Pennies Entered currency denomination amount. Only recorded if a value is entered
and Count Operating Fund at End of Day equals Detail.

Nickels Entered currency denomination amount. Only recorded if a value is entered
and Count Operating Fund at End of Day equals Detail.

Dimes Entered currency denomination amount. Only recorded if a value is entered
and Count Operating Fund at End of Day equals Detail.

Quarters Entered currency denomination amount. Only recorded if a value is entered
and Count Operating Fund at End of Day equals Detail.

Half-Dollars Entered currency denomination amount. Only recorded if a value is entered
and Count Operating Fund at End of Day equals Detail.

$1 Coins Entered currency denomination amount. Only recorded if a value is entered
and Count Operating Fund at End of Day equals Detail.

$1 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Operating Fund at End of Day equals Detail.

$2 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Operating Fund at End of Day equals Detail.

$5 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Operating Fund at End of Day equals Detail.

$10 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Operating Fund at End of Day equals Detail.

$20 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Operating Fund at End of Day equals Detail.

Daily Operations Audit Log Events

5-10 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Register Open
This is a Back Office and Point-of-Service event.

This event is written to the audit log if the Settings For Audit Logging system setting
equals INFO and the Register Open system setting equals INFO.

■ Event data collection starts when the operator selects to open a register.

■ Event data collection ends when the system assigns a transaction number.

■ If more than one register is selected to open at one time, a separate independent
event is written to the audit log. Each opened register is assigned an individual
transaction number.

■ Event failure can happen only due to technical reasons, such as unable to get next
sequence number for transaction, transaction creation exception, EJB call exception
or if the financial totals are not found in the database.

Register Close
This is a Back Office and Point-of-Service event.

This event is written to the audit log if the Settings For Audit Logging system setting
equals INFO and the Register Close system setting equals INFO.

■ Event data collection starts when the operator selects to close a register.

■ Event data collection ends when the system assigns a transaction number.

$50 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Operating Fund at End of Day equals Detail.

$100 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Operating Fund at End of Day equals Detail.

Transaction Number Transaction number assigned by the system to the store close event.

Table 5–4 Register Open Event Components

Event Components Notes

Event Name Register Open.

Event Status ■ Success.

■ Failure.

Event Originator Class Name and Method Name (ClassName.methodName).

System Date System date of the event.

Business Date Business date of the event.

System Time Time of the event.

Store ID Store number at which the event transpired.

User ID User ID performing the event.

Register Number For Point-of-Service, the register number at which the event transpired.

Transaction Number Transaction number assigned by the system to the opened register.

Table 5–3 (Cont.) End of Day Event Components

Event Components Notes

Point-of-Service Transaction Events

Audit Logging 5-11

■ Event failure can happen only due to technical reasons, such as unable to get next
sequence number for transaction, transaction creation exception, EJB call exception
or if the financial totals are not found in the database.

Point-of-Service Transaction Events
The following are Point-of-Service transaction events.

Transaction Tendered with Credit Card
This is a Point-of-Service event.

This event is written to the audit log if the Settings For Audit Logging system setting
equals INFO and the Transaction Tendered with Credit Card system setting equals
INFO.

■ Event data collection starts when the operator selects Credit/Debit from Tender
Options menu and has entered the card number.

■ The operator has chosen Credit from the Tender Options menu and has entered
the card number.

■ Event data collection ends when a credit card tender has been added to the
transaction with the authorization status pending.

■ Failure Condition is logged only in case of technical failures such as Database is
down.

Table 5–5 Register Close Event Components

Event Components Notes

Event Name Register Close.

Event Status ■ Success.

■ Failure.

Event Originator Class Name and Method Name (ClassName.methodName).

System Date System date of the event.

Business Date Business date of the event.

System Time Time of the event.

Store ID Store number at which the event transpired.

User ID User ID performing the event.

Register Number For Point-of-Service, the register number at which the event transpired.

Transaction Number Transaction number assigned by the system to the closed register.

Table 5–6 Transaction Tendered with Credit Card Event Components

Event Components Notes

Event Name Transaction Tendered with Credit Card.

Event Status ■ Success.

■ Failure.

Event Originator Class Name and Method Name (ClassName.methodName).

System Date System date of the event.

System Time Time of the event.

Point-of-Service Transaction Events

5-12 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Transaction Tendered with Debit Card
This is a Point-of-Service event.

This event is written to the audit log if the Settings For Audit Logging system setting
equals INFO and the Transaction Tendered with Debit Card system setting equals
INFO.

■ Event data collection starts when the operator selects Credit/Debit from the
Tender Options menu.

■ The operator has chosen Debit from the Tender Options menu.

■ Event data collection ends when a debit card tender has been added to the
transaction with the authorization status pending.

■ Failure Condition is logged only in case of technical failures such as Database is
down.

Store ID Store number at which the event transpired.

User ID User ID performing the event.

Register Number The register number at which the event transpired.

Till ID The Till ID at which the event transpired.

Card type The card type presented at time of tender.

Card number ■ The card number presented at the time of tender.

■ Only display last 4 digits of card number. For example:

xxxx xxxx xxxx 1111

Amount The amount the card is being charged at the time of tender.

Entry method (manual/auto) The method used to enter the card. Operator input on keyboard is manual and
a scan, or swipe on the device or keyboard is auto.

MAG stripe (if swiped) An indicator if swiped on the MSR.

Authorization Status(Pending) The status of authorization is pending until a response is returned.

Table 5–7 Transaction Tendered with Debit Card Event Components

Event Components Notes

Event Name Sale Transaction Tendered with Debit Card.

Event Status ■ SUCCESS.

■ FAILURE.

Event Originator Class Name and Method Name (ClassName.methodName).

System Date System date of the event.

System Time Time of the event.

Store ID Store number at which the event transpired.

User ID User ID performing the event.

Register Number The register number at which the event transpired.

Till ID The Till ID at which the event transpired.

Debit type The card type presented at time of tender.

Table 5–6 (Cont.) Transaction Tendered with Credit Card Event Components

Event Components Notes

Employee Audit Log Events

Audit Logging 5-13

Employee Audit Log Events
The following are employee audit log events.

Modify Employee Information
This is a Back Office and Point-of-Service event.

This event is written to the audit log if the Settings For Audit Logging system setting
equals INFO and the Modify Employee Information system setting equals INFO.

■ Event data collection starts when the operator edits an employees information.

■ Event data collection ends when the operator selects Save.

■ If the operator selects Save but has not modified any employee information the
event name is Modify Employee Information

■ Employee getting modified is not found in the Database is the only failure
condition possible.

Modify Temporary Employee Information
This is a Back Office and Point-of-Service event.

Card number The card number presented at the time of tender.

Only display last 4 digits of card number. For example:

xxxx xxxx xxxx 1111

Amount The amount the card is being charged at the time of tender.

Entry method (manual/auto) The method used to enter the card. Operator input on keyboard is manual and
a scan, or swipe on the device or keyboard is auto.

MAG stripe (if swiped) An indicator if swiped on the MSR.

Authorization Status(Pending) The status of authorization is pending until a response is returned.

Table 5–8 Modify Employee Information Event Components

Event Components Notes

Event Name Modify Employee Information.

Event Status ■ Success.

■ Failure.

Event Originator Class Name and Method Name (ClassName.methodName).

System Date System date of the event.

System Time Time of the event.

Store ID Store number at which the event transpired.

User ID User ID performing the event.

Register Number For Point-of-Service, the register number at which the event transpired.

Employee ID Employee ID of the modified employee.

Table 5–7 (Cont.) Transaction Tendered with Debit Card Event Components

Event Components Notes

Employee Audit Log Events

5-14 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

This event is written to the audit log if the Settings For Audit Logging system setting
equals INFO and the Modify Temporary Employee Information system setting equals
INFO.

■ Event data collection starts when the operator edits a temporary employees
information.

■ Event data collection ends when the operator selects Save.

■ If the operator selects Save but has not modified any temporary employee
information the event name is Modify Employee Information

■ Employee getting modified is not found in the Database is the only failure
condition possible.

Add Employee
This is a Back Office and Point-of-Service event.

This event is written to the audit log if the Settings For Audit Logging system setting
equals INFO and the Add Employee system setting equals INFO.

■ Event data collection starts when the operator selects to add an employee.

■ Event data collection ends when the operator selects Save.

■ Failure Event is when the login ID provided is already in use.

Table 5–9 Modify Temporary Employee Information Event Components

Event Components Notes

Event Name Modify Temporary Employee Information.

Event Status ■ Success.

■ Failure.

Event Originator Class Name and Method Name (ClassName.methodName).

System Date System date of the event.

System Time Time of the event.

Store ID Store number at which the event transpired.

User ID User ID performing the event.

Register Number For Point-of-Service, the register number at which the event transpired.

Employee ID Employee ID of the modified temporary employee.

Table 5–10 Add Employee Event Components

Event Components Notes

Event Name Add Employee.

Event Status ■ Success.

■ Failure.

Event Originator Class Name and Method Name (ClassName.methodName).

System Date System date of the event.

System Time Time of the event.

Store ID Store number at which the event transpired.

User ID User ID performing the event.

Employee Audit Log Events

Audit Logging 5-15

Add Temporary Employee
This is a Back Office and Point-of-Service event.

This event is written to the audit log if the Settings For Audit Logging system setting
equals INFO and the Add Temporary Employee system setting equals INFO.

■ Event data collection starts when the operator selects to add a temporary
employee.

■ Event data collection ends when the operator selects Save.

■ Failure Event is when the login ID provided is already in use.

Register Number For Point-of-Service, the register number at which the event transpired.

Employee ID Employee ID.

First Name Entered first name.

Middle Name Entered middle name.

Last Name Entered last name.

Employee Login ID Entered login ID.

Role Name Selected role.

Employee Status Selected employee status.

Table 5–11 Add Temporary Employee Event Components

Event Components Notes

Event Name Add Temporary Employee.

Event Status ■ Success.

■ Failure.

Event Originator Class Name and Method Name (ClassName.methodName).

System Date System date of the event.

System Time Time of the event.

Store ID Store number at which the event transpired.

User ID User ID performing the event.

Register Number For Point-of-Service, the register number at which the event transpired.

Employee ID Employee ID.

First Name Entered first name.

Middle Name Entered middle name.

Last Name Entered last name.

Employee Login ID Entered login ID.

Role Name Selected role.

Store# Entered store number.

Days Valid Selected remaining days valid.

Employee Status Selected employee status.

Table 5–10 (Cont.) Add Employee Event Components

Event Components Notes

Login, Logout, Lockout Audit Log Events

5-16 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Login, Logout, Lockout Audit Log Events
The following are login, logout and lockout audit log events.

User Login
This is a Back Office, Point-of-Service and Central Office event.

This event is written to the audit log if the Settings For Audit Logging system setting
equals INFO and the User Login system setting equals INFO.

■ Event data collection starts when the operator enters their login information.

■ Event data collection ends when the operator selects to log in.

■ Even failure can happen only when there is a technical exception.

User Lock Out
This is a Back Office, Point-of-Service and Central Office event.

This event is written to the audit log if the Settings For Audit Logging system setting
equals INFO and the User Lock Out system setting equals INFO.

■ Event data collection starts and ends when the user attempts to log in and is
locked out due to unsuccessful login attempts or an expired password.

■ No failure condition.

Table 5–12 User Login Event Components

Event Components Notes

Event Name User Login.

Event Status ■ Success.

■ Failure.

Event Originator Class Name and Method Name (ClassName.methodName).

System Date System date of the event.

System Time Time of the event.

Store ID Store number the event transpired at. Only applicable for Back Office.

User ID User ID is recorded.

Register Number For Point-of-Service, the register number at which the event transpired.

Table 5–13 User Lock Out Event Components

Event Components Notes

Event Name User Lock Out.

Event Status Success.

Event Originator Class Name and Method Name (ClassName.methodName).

System Date System date of the event.

System Time Time of the event.

Store ID Store number the event transpired at. Only applicable for Back Office.

Password Audit Log Events

Audit Logging 5-17

User Logout
This is a Back Office, Point-of-Service and Central Office event.

This event is written to the audit log if the Settings For Audit Logging system setting
equals INFO and the User Logout system setting equals INFO.

■ Event data collection starts and ends when the user selects to log out.

■ No Failure Condition.

Password Audit Log Events
The following are password audit log events.

Change Password
This is a Back Office, Point-of-Service and Central Office event.

This event is written to the audit log if the Settings For Audit Logging system setting
equals INFO and the Change Password system setting equals INFO.

■ Event data collection starts when the operator selects or is prompted to change
their password.

■ Event data collection ends when the operator selects to save their new password.

■ Failure Condition occurs when the employee or user for whom the password is
being changed does not exist in the database. If the new password does not meet
the password criteria, a failure is also logged.

User ID User ID is recorded.

Register Number For Point-of-Service, the register number at which the event transpired.

Lockout Reason ■ <ARG> consecutive unsuccessful login attempts. (<ARG> equals Number
of login attempts).

■ Expired Password.

Table 5–14 User Logout Event Components

Event Components Notes

Event Name User Logout.

Event Status Success.

Event Originator Class Name and Method Name (ClassName.methodName).

System Date System date of the event.

System Time Time of the event.

Store ID Store number the event transpired at. Applicable only for Back Office.

User ID User ID is recorded.

Register Number For Point-of-Service, the register number at which the event transpired.

Table 5–13 (Cont.) User Lock Out Event Components

Event Components Notes

Password Audit Log Events

5-18 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Reset Employee Password
This is a Back Office and Point-of-Service event.

This event is written to the audit log if the Settings For Audit Logging system setting
equals INFO and the Reset Employee Password system setting equals INFO.

■ Event data collection starts when the operator selects to reset an employee’s
password.

■ Event data collection ends when the operator selects Yes.

■ Failure Condition is logged only in case of technical failures such as the database is
down.

Reset Temporary Employee Password
This is a Back Office and Point-of-Service event.

This event is written to the audit log if the Settings For Audit Logging system setting
equals INFO and the Reset Temporary Employee Password system setting equals
INFO.

■ Event data collection starts when the operator selects to reset an employees
password.

Table 5–15 Change Password Event Components

Event Components Notes

Event Name User Change Password.

Event Status ■ Success.

■ Failure.

Event Originator Class Name and Method Name (ClassName.methodName).

System Date System date of the event.

System Time Time of the event.

Store ID For Back Office, the store number at which the event transpired.

User ID User ID is recorded.

Register Number For Point-of-Service, the register number at which the event transpired.

Table 5–16 Reset Employee Password Event Components

Event Components Notes

Event Name Reset Employee Password.

Event Status ■ Success.

■ Failure.

Event Originator Class Name and Method Name (ClassName.methodName).

System Date System date of the event.

System Time Time of the event.

Store ID Store number at which the event transpired.

User ID User ID performing the event.

Register Number For Point-of-Service, the register number at which the event transpired.

Employee ID Employee ID whose password was reset.

Role Audit Log Events

Audit Logging 5-19

■ Event data collection ends when the operator selects Yes.

■ Failure Condition is logged only in the case of technical failures such as the
database is down.

Role Audit Log Events
The following are role audit log events.

Edit Role
This is a Back Office, Point-of-Service and Central Office event.

This event is written to the audit log if the Settings For Audit Logging system setting
equals INFO and the Edit Role system setting equals INFO.

■ Event data collection starts when the operator edits the role.

■ Event data collection ends when the operator selects Save.

■ Failure Condition only due to Technical exceptions.

Table 5–17 Reset Temporary Employee Password Event Components

Event Components Notes

Event Name Reset Temporary Employee Password.

Event Status ■ Success.

■ Failure.

Event Originator Class Name and Method Name (ClassName.methodName).

System Date System date of the event.

System Time Time of the event.

Store ID Store number at which the event transpired.

User ID User ID performing the event.

Register Number For Point-of-Service, the register number at which the event transpired.

Employee ID Employee ID whose password was reset.

Table 5–18 Edit Role Event Components

Event Components Notes

Event Name Edit Role.

Event Status ■ Success.

■ Failure.

Event Originator Class Name and Method Name (ClassName.methodName).

System Date System date of the event.

System Time Time of the event.

User ID User ID performing the event.

Register Number For Point-of-Service, the register number at which the event transpired.

Role Name Selected role name.

Till Audit Log Events

5-20 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Add Role
This is a Back Office, Point-of-Service, and Central Office event.

This event is written to the audit log if the Settings For Audit Logging system setting
equals INFO and the Add Role system setting equals INFO.

■ Event data collection starts when the operator selects Add.

■ Event data collection ends when the operator selects to save the role settings for
the role.

■ Failure Condition only due to technical exceptions.

Till Audit Log Events
The following are till audit log events.

Till Open
This is a Back Office and Point-of-Service event.

This event is written to the audit log if the Settings For Audit Logging system setting
equals INFO and the Till Open system setting equals INFO.

■ Event data collection starts when the operator selects to open a till.

■ Event data collection ends when the system assigns a transaction number.

■ The format of this event is dependent on the Count Float at Open parameter
setting.

■ Event failure can happen only due to technical reasons, such as unable to get next
sequence number for transaction, transaction creation exception, EJB call exception
or if the financial totals are not found in the database.

Table 5–19 Add Role Event Components

Event Components Notes

Event Name Add Role.

Event Status ■ Success.

■ Failure.

Event Originator Class Name and Method Name (ClassName.methodName).

System Date System date of the event.

System Time Time of the event.

User ID User ID performing the event.

Register Number For Point-of-Service, the register number at which the event transpired.

Role Name Entered role name.

Role Setting Selected role setting, includes application full name and feature.

Till Audit Log Events

Audit Logging 5-21

Table 5–20 Till Open Event Components

Event Components Notes

Event Name Till Open.

Event Status ■ Success.

■ Failure.

Event Originator Class Name and Method Name (ClassName.methodName).

System Date System date of the event.

Business Date Business date of the event.

System Time Time of the event.

Store ID Store number at which the event transpired.

User ID User ID performing the event.

Register ID Complete Register ID value is recorded.

Till ID Complete Till ID value is recorded.

Operator ID Operator ID is the user assigned to the till, not the logged-in user ID.

Float Amount ■ Entered amount when Count Float at Open equals Summary.

■ Total amount all denominations entered when Count Float at Open equals
Detail.

■ Equal to the Float Amount when Count Float at Open equals No.

Pennies Entered currency denomination amount. Only recorded if a value is entered
and Count Float at Open equals Detail.

Nickels Entered currency denomination amount. Only recorded if a value is entered
and Count Float at Open equals Detail.

Dimes Entered currency denomination amount. Only recorded if a value is entered
and Count Float at Open equals Detail.

Quarters Entered currency denomination amount. Only recorded if a value is entered
and Count Float at Open equals Detail.

Half-Dollars Entered currency denomination amount. Only recorded if a value is entered
and Count Float at Open equals Detail.

$1 Coins Entered currency denomination amount. Only recorded if a value is entered
and Count Float at Open equals Detail.

$1 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Float at Open equals Detail.

$2 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Float at Open equals Detail.

$5 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Float at Open equals Detail.

$10 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Float at Open equals Detail.

$20 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Float at Open equals Detail.

$50 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Float at Open equals Detail.

$100 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Float at Open equals Detail.

Transaction Number Transaction number assigned to closed register.

Till Audit Log Events

5-22 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Till Suspend
This is a Point-of-Service event.

This event is written to the audit log if the Settings For Audit Logging system setting
equals INFO and the Till Suspend system setting equals INFO.

■ Event data collection starts when the operator selects to suspend a till.

■ Event data collection ends when the system assigns a transaction number.

■ Event failure can happen only due to technical reasons, such as unable to get next
sequence number for transaction, transaction creation exception, EJB call exception
or if the financial totals are not found in the database.

Till Resume
This is a Point-of-Service event.

This event is written to the audit log if the Settings For Audit Logging system setting
equals INFO and the Till Resume system setting equals INFO.

■ Event data collection starts when the operator selects to retrieve a suspended till.

■ Event data collection ends when the system assigns a transaction number.

■ Event failure can happen only due to technical reasons, such as unable to get next
sequence number for transaction, transaction creation exception, EJB call exception
or if the financial totals are not found in the database.

Table 5–21 Till Suspend Event Component

Event Components Notes

Event Name Till Suspend.

Event Status ■ Success.

■ Failure.

Event Originator Class Name and Method Name (ClassName.methodName).

System Date System date of the event.

Business Date Business date of the event.

System Time Time of the event.

Store ID Store number at which the event transpired.

User ID User ID performing the event.

Register Number The register number at which the event transpired.

Till ID The Till ID at which the event transpired.

Operator ID Operator ID is user assigned to the till not the logged in user ID.

Table 5–22 Till Resume Event Component

Event Components Notes

Event Name Till Resume.

Event Status ■ Success.

■ Failure.

Event Originator Class Name and Method Name (ClassName.methodName).

System Date System date of the event.

Till Audit Log Events

Audit Logging 5-23

Till Close
This is a Point-of-Service event.

This event is written to the audit log if the Settings For Audit Logging system setting
equals INFO and the Till Close system setting equals INFO.

■ Event data collection starts when the operator selects to close a till.

■ Event data collection ends when the system assigns a transaction number.

■ Event failure can happen only due to technical reasons, for example, unable to get
next sequence number for transaction, transaction creation exception, EJB call
exception or if the financial totals are not found in the database.

Count Float at Reconcile
This is a Back Office and Point-of-Service event.

This event is written to the audit log if the Settings For Audit Logging system setting
equals INFO and the Count Float at Reconcile system setting equals INFO.

■ Event data collection starts when the system checks the Count Float at Reconcile
parameter.

Business Date Business date of the event.

System Time Time of the event.

Store ID Store number at which the event transpired.

User ID User ID performing the event.

Register Number The register number at which the event transpired.

Till ID The Till ID at which the event transpired.

Operator ID Operator ID is user assigned to the till not the logged in user ID.

Table 5–23 Till Close Event Component

Event Components Notes

Event Name Till Close.

Event Status ■ Success.

■ Failure.

Event Originator Class Name and Method Name (ClassName.methodName).

System Date System date of the event.

Business Date Business date of the event.

System Time Time of the event.

Store ID Store number at which the event transpired.

User ID User ID performing the event.

Register Number The register number at which the event transpired.

Till ID The Till ID at which the event transpired.

Operator ID Operator ID is the user assigned to the till, not the logged-in user ID.

Table 5–22 (Cont.) Till Resume Event Component

Event Components Notes

Till Audit Log Events

5-24 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

■ Event data collection ends when the count float amount has been entered or
accepted.

■ The format of this event is dependent on the Count Float at Reconcile parameter
setting.

■ Event failure can happen only due to technical reasons, such as unable to get next
sequence number for transaction, transaction creation exception, EJB call exception
or if the financial totals are not found in the database.

Table 5–24 Count Float at Reconcile Event Components

Event Components Notes

Event Name Count Float at Reconcile.

Event Status ■ Success.

■ Failure.

Event Originator Class Name and Method Name (ClassName.methodName).

System Date System date of the event.

Business Date Business date of the event.

System Time Time of the event.

Store ID Store number at which the event transpired.

User ID User ID performing the event.

Register ID Complete Register ID value is recorded.

Till ID Complete Till ID value is recorded.

Operator ID Operator ID is user assigned to the till not the logged in user ID.

Float Amount ■ Entered amount when Count Float at Reconcile equals Summary.

■ Total amount all denominations entered when Count Float at Reconcile
equals Detail.

■ Equal to the Float Amount when Count Float at Reconcile equals No.

Pennies Entered currency denomination amount. Only recorded if a value is entered
and Count Float at Reconcile equals Detail.

Nickels Entered currency denomination amount. Only recorded if a value is entered
and Count Float at Reconcile equals Detail.

Dimes Entered currency denomination amount. Only recorded if a value is entered
and Count Float at Reconcile equals Detail.

Quarters Entered currency denomination amount. Only recorded if a value is entered
and Count Float at Reconcile equals Detail.

Half-Dollars Entered currency denomination amount. Only recorded if a value is entered
and Count Float at Reconcile equals Detail.

$1 Coins Entered currency denomination amount. Only recorded if a value is entered
and Count Float at Reconcile equals Detail.

$1 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Float at Reconcile equals Detail.

$2 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Float at Reconcile equals Detail.

$5 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Float at Reconcile equals Detail.

$10 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Float at Reconcile equals Detail.

Till Audit Log Events

Audit Logging 5-25

Till Reconcile
This is a Back Office and Point-of-Service event.

This event is written to the audit log if the Settings For Audit Logging system setting
equals INFO and the Till Reconcile system setting equals INFO.

■ Event data collection starts when the system checks the Count Till at Reconcile
parameter.

■ If the Count Till at Reconcile equals No, event data collection ends when the
system assigns a transaction number.

■ If the Count Till at Reconcile equals Detail or Summary, event data ends when the
system displays the Reconcile Till Count Report.

■ The format of this event is dependent on the Count Till at Reconcile parameter
setting and Blind Close parameter setting.

■ Event failure can happen only due to technical reasons, such as unable to get next
sequence number for transaction, transaction creation exception, EJB call exception
or if the financial totals are not found in the database.

$20 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Float at Reconcile equals Detail.

$50 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Float at Reconcile equals Detail.

$100 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Float at Reconcile equals Detail.

Table 5–25 Till Reconcile Event Components

Event Components Notes

Event Name Till Reconcile.

Event Status ■ Success.

■ Failure.

Event Originator Class Name and Method Name (ClassName.methodName).

System Date System date of the event.

System Time Time of the event.

Business Date Business date of the event.

Store ID Store number at which the event transpired.

User ID User ID performing the event.

Register ID Complete Register ID value is recorded.

Till ID Complete Till ID value is recorded.

Operator ID Operator ID is user assigned to the till not the logged in user ID.

Cash Total ■ Entered tender amount if Count Till at Reconcile equals Summary. Only
recorded if this tender was received and this tender is included in the
Tenders To Count at Till Reconcile and if Blind Close equals No.

■ Total of all entered currencies Count Till at Reconcile equals Detail and the
currency was received.

Table 5–24 (Cont.) Count Float at Reconcile Event Components

Event Components Notes

Till Audit Log Events

5-26 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Pennies Entered currency denomination amount. Only recorded if a value is entered
and Count Till at Reconcile equals Detail.

Nickels Entered currency denomination amount. Only recorded if a value is entered
and Count Till at Reconcile equals Detail.

Dimes Entered currency denomination amount. Only recorded if a value is entered
and Count Till at Reconcile equals Detail.

Quarters Entered currency denomination amount. Only recorded if a value is entered
and Count Till at Reconcile equals Detail.

Half-Dollars Entered currency denomination amount. Only recorded if a value is entered
and Count Till at Reconcile equals Detail.

$1 Coins Entered currency denomination amount. Only recorded if a value is entered
and Count Till at Reconcile equals Detail.

$1 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Till at Reconcile equals Detail.

$2 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Till at Reconcile equals Detail.

$5 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Till at Reconcile equals Detail.

$10 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Till at Reconcile equals Detail.

$20 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Till at Reconcile equals Detail.

$50 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Till at Reconcile equals Detail.

$100 Bills Entered currency denomination amount. Only recorded if a value is entered
and Count Till at Reconcile equals Detail.

Check Total ■ Entered tender amount if Count Till at Reconcile equals Summary. Only
recorded if this tender was received and this tender is included in the
Tenders To Count at Till Reconcile and if Blind Close equals No.

■ Total amount all deposited checks entered when Count Till at Reconcile
equals Detail.

<ARG> Check ■ Check amount entered when Count Till at Reconcile equals Detail.

■ There is an audit log entry for each check entered.

■ <ARG> equals the number of the Check.

Credit Total ■ Entered tender amount if Count Till at Reconcile equals Summary. Only
recorded if this tender was received and this tender is included in the
Tenders To Count at Till Reconcile and if Blind Close equals No.

■ Total of all entered Credit when Count Till at Reconcile equals Detail and
the tender was received.

<ARG> Credit ■ Credit amount entered when Count Till at Reconcile equals Detail.

■ There is an audit log entry for each credit entered.

■ <ARG> equals the number of the Credit.

Debit Total ■ Entered tender amount if Count Till at Reconcile equals Summary. Only
recorded if this tender was received and this tender is included in the
Tenders To Count at Till Reconcile and if Blind Close equals No.

■ Total of all entered Debit when Count Till at Reconcile equals Detail and
the tender was received.

Table 5–25 (Cont.) Till Reconcile Event Components

Event Components Notes

Till Audit Log Events

Audit Logging 5-27

<ARG> Debit ■ Debit amount entered when Count Till at Reconcile equals Detail.

■ There is an audit log entry for each Debit entered.

■ <ARG> equals the number of the Debit.

Gift Card Total ■ Entered tender amount if Count Till at Reconcile equals Summary. Only
recorded if this tender was received and this tender is included in the
Tenders To Count at Till Reconcile and if Blind Close equals No.

■ Total of all entered Gift Card when Count Till at Reconcile equals Detail
and the tender was received.

<ARG> Gift Card ■ Gift Card amount entered when Count Till at Reconcile equals Detail.

■ There is an audit log entry for each Gift Card entered.

■ <ARG> equals the number of the Gift Card.

Gift Certificate Total ■ Entered tender amount if Count Till at Reconcile equals Summary. Only
recorded if this tender was received and this tender is included in the
Tenders To Count at Till Reconcile and if Blind Close equals No.

■ Total of all entered Gift Certificate when Count Till at Reconcile equals
Detail and the tender was received.

<ARG> Gift Certificate Gift Certificate amount entered when Count Till at Reconcile equals Detail.
There is an audit log entry for each Gift Certificate entered.

Travelers Check Total ■ Entered tender amount if Count Till at Reconcile equals Summary. Only
recorded if this tender was received and this tender is included in the
Tenders To Count at Till Reconcile and if Blind Close equals No.

■ Total of all entered Travelers Check when Count Till at Reconcile equals
Detail and the tender was received.

<ARG> Travelers Check ■ Travelers Check amount entered when Count Till at Reconcile equals
Detail.

■ There is an audit log entry for each Travelers Check entered.

■ <ARG> equals the number of the Travelers Check.

Coupon Total ■ Entered tender amount if Count Till at Reconcile equals Summary. Only
recorded if this tender was received and this tender is included in the
Tenders To Count at Till Reconcile and if Blind Close equals No.

■ Total of all entered Coupon when Count Till at Reconcile equals Detail and
the tender was received.

<ARG> Coupon ■ Coupon amount entered when Count Till at Reconcile equals Detail.

■ There is an audit log entry for each Coupon entered.

■ <ARG> equals the number of the Coupon.

Store Credit Total ■ Entered tender amount if Count Till at Reconcile equals Summary. Only
recorded if this tender was received and this tender is included in the
Tenders To Count at Till Reconcile and if Blind Close equals No.

■ Total of all entered Store Credit when Count Till at Reconcile equals Detail
and the tender was received.

<ARG> Store Credit ■ Store Credit amount entered when Count Till at Reconcile equals Detail.

■ There is an audit log entry for each Store Credit entered.

■ <ARG> equals the number of the Store Credit.

Table 5–25 (Cont.) Till Reconcile Event Components

Event Components Notes

Till Audit Log Events

5-28 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Mall Certificate Total ■ Entered tender amount if Count Till at Reconcile equals Summary. Only
recorded if this tender was received and this tender is included in the
Tenders To Count at Till Reconcile and if Blind Close equals No.

■ Total of all entered Mall Certificate when Count Till at Reconcile equals
Detail and the tender was received.

<ARG> Mall Certificate ■ Mall Certificate amount entered when Count Till at Reconcile equals
Detail.

■ There is an audit log entry for each Mall Certificate entered.

■ <ARG> equals the number of the Mall Certificate.

Purchase Order Total ■ Entered tender amount if Count Till at Reconcile equals Summary. Only
recorded if this tender was received and this tender is included in the
Tenders To Count at Till Reconcile and if Blind Close equals No.

■ Total of all entered Purchase Order when Count Till at Reconcile equals
Detail and the tender was received.

<ARG> Purchase Order ■ Purchase Order amount entered when Count Till at Reconcile equals
Detail.

■ There is an audit log entry for each Purchase Order entered.

■ <ARG> equals the number of the Purchase Order.

E-Check Total ■ Entered tender amount if Count Till at Reconcile equals Summary. Only
recorded if this tender was received and this tender is included in the
Tenders To Count at Till Reconcile and if Blind Close equals No.

■ Total of all entered E-Check when Count Till at Reconcile equals Detail
and the tender was received.

<ARG> E-Check ■ E-Check amount entered when Count Till at Reconcile equals Detail.

■ There is an audit log entry for each E-Check entered.

■ <ARG> equals the number of the E-check.

Canadian Cash Total ■ Entered tender amount if Count Till at Reconcile equals Summary. Only
recorded if this tender was received and this tender is included in the
Tenders To Count at Till Reconcile and if Blind Close equals No.

■ Total of all entered currencies when Count Till at Reconcile equals Detail
and the currency was received.

$2 Coins Entered currency denomination amount. Only recorded if a value is entered
and Count Till at Reconcile equals Detail.

Canadian Check Total ■ Entered tender amount if Count Till at Reconcile equals Summary. Only
recorded if this tender was received and this tender is included in the
Tenders To Count at Till Reconcile and if Blind Close equals No.

■ Total of all entered Canadian Check when Count Till at Reconcile equals
Detail and the tender was received.

<ARG> Canadian Check ■ Canadian Check amount entered when Count Till at Reconcile equals
Detail.

■ There is an audit log entry for each Canadian Check entered.

■ <ARG> equals the number of the Canadian Check.

Canadian Travelers Check Total ■ Entered tender amount if Count Till at Reconcile equals Summary. Only
recorded if this tender was received and this tender is included in the
Tenders To Count at Till Reconcile and if Blind Close equals No.

■ Total of all entered Canadian Travelers Check when Count Till at Reconcile
equals Detail and the tender was received.

Table 5–25 (Cont.) Till Reconcile Event Components

Event Components Notes

Till Audit Log Events

Audit Logging 5-29

<ARG> Canadian Travelers
Check

■ Canadian Travelers Check amount entered when Count Till at Reconcile
equals Detail.

■ There is an audit log entry for each Canadian Travelers Check entered.

■ <ARG> equals the number of the Canadian Travelers Check.

Canadian Gift Certificate Total ■ Entered tender amount if Count Till at Reconcile equals Summary. Only
recorded if this tender was received and this tender is included in the
Tenders To Count at Till Reconcile and if Blind Close equals No.

■ Total of all entered Canadian Gift Certificate when Count Till at Reconcile
equals Detail and the tender was received.

<ARG> Canadian Gift Certificate ■ Canadian Gift Certificate amount entered when Count Till at Reconcile
equals Detail.

■ There is an audit log entry for each Canadian Gift Certificate entered.

■ <ARG> equals the number of the Canadian Gift Certificate.

Canadian Store Credit Total ■ Entered tender amount if Count Till at Reconcile equals Summary. Only
recorded if this tender was received and this tender is included in the
Tenders To Count at Till Reconcile and if Blind Close equals No.

■ Total of all entered Canadian Store Credit when Count Till at Reconcile
equals Detail and the tender was received.

<ARG> Canadian Store Credit ■ Canadian Store Credit amount entered when Count Till at Reconcile
equals Detail.

■ There is an audit log entry for each Canadian Store Credit entered.

■ <ARG> equals the number of the Canadian Store Credit.

Mexican Gift Certificate Total ■ Entered tender amount if Count Till at Reconcile equals Summary. Only
recorded if this tender was received and this tender is included in the
Tenders To Count at Till Reconcile and if Blind Close equals No.

■ Total of all entered Mexican Gift Certificate when Count Till at Reconcile
equals Detail and the tender was received.

<ARG> Mexican Gift Certificate ■ Mexican Gift Certificate amount entered when Count Till at Reconcile
equals Detail.

■ There is an audit log entry for each Mexican Gift Certificate entered.

■ <ARG> equals the number of the Mexican Gift Certificate.

Mexican Store Credit Total ■ Entered tender amount if Count Till at Reconcile equals Summary. Only
recorded if this tender was received and this tender is included in the
Tenders To Count at Till Reconcile and if Blind Close equals No.

■ Total of all entered Mexican Store Credit when Count Till at Reconcile
equals Detail and the tender was received.

<ARG> Mexican Store Credit ■ Mexican Store Credit amount entered when Count Till at Reconcile equals
Detail.

■ There is an audit log entry for each Mexican Store Credit entered.

■ <ARG> equals the number of the Mexican Store Credit.

UK Gift Certificate Total ■ Entered tender amount if Count Till at Reconcile equals Summary. Only
recorded if this tender was received and this tender is included in the
Tenders To Count at Till Reconcile and if Blind Close equals No.

■ Total of all entered UK Gift Certificate when Count Till at Reconcile equals
Detail and the tender was received.

Table 5–25 (Cont.) Till Reconcile Event Components

Event Components Notes

Till Audit Log Events

5-30 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

<ARG> UK Gift Certificate ■ UK Gift Certificate amount entered when Count Till at Reconcile equals
Detail.

■ There is an audit log entry for each UK Gift Certificate entered.

■ <ARG> equals the number of the UK Gift Certificate.

UK Store Credit Total ■ Entered tender amount if Count Till at Reconcile equals Summary. Only
recorded if this tender was received and this tender is included in the
Tenders To Count at Till Reconcile and if Blind Close equals No.

■ Total of all entered UK Store Credit when Count Till at Reconcile equals
Detail and the tender was received.

<ARG> UK Store Credit ■ UK Store Credit amount entered when Count Till at Reconcile equals
Detail.

■ There is an audit log entry for each UK Store Credit entered.

■ <ARG> equals the number of the UK Store Credit.

European Gift Certificate Total ■ Entered tender amount if Count Till at Reconcile equals Summary. Only
recorded if this tender was received and this tender is included in the
Tenders To Count at Till Reconcile and if Blind Close equals No.

■ Total of all entered European Gift Certificate when Count Till at Reconcile
equals Detail and the tender was received.

<ARG> European Gift Certificate ■ European Gift Certificate amount entered when Count Till at Reconcile
equals Detail.

■ There is an audit log entry for each European Gift Certificate entered.

■ <ARG> equals the number of the European Gift Certificate.

European Store Credit Total ■ Entered tender amount if Count Till at Reconcile equals Summary. Only
recorded if this tender was received and this tender is included in the
Tenders To Count at Till Reconcile and if Blind Close equals No.

■ Total of all entered European Gift Certificate when Count Till at Reconcile
equals Detail and the tender was received.

<ARG> European Store Credit ■ European Store Credit amount entered when Count Till at Reconcile
equals Detail.

■ There is an audit log entry for each European Store Credit entered.

■ <ARG> equals the number of the European Store Credit.

Japanese Gift Certificate Total ■ Entered tender amount if Count Till at Reconcile equals Summary. Only
recorded if this tender was received and this tender is included in the
Tenders To Count at Till Reconcile and if Blind Close equals No.

■ Total of all entered Japanese Gift Certificate when Count Till at Reconcile
equals Detail and the tender was received.

<ARG> Japanese Gift Certificate ■ Japanese Gift Certificate amount entered when Count Till at Reconcile
equals Detail.

■ There is an audit log entry for each Japanese Gift Certificate entered.

■ <ARG> equals the number of the Japanese Gift Certificate.

Japanese Store Credit Total ■ Entered tender amount if Count Till at Reconcile equals Summary. Only
recorded if this tender was received and this tender is included in the
Tenders To Count at Till Reconcile and if Blind Close equals No.

■ Total of all entered Japanese Store Credit when Count Till at Reconcile
equals Detail and the tender was received.

Table 5–25 (Cont.) Till Reconcile Event Components

Event Components Notes

Parameter Log Events

Audit Logging 5-31

Parameter Log Events
The following are parameter log events.

Modify Application Parameter
This is a Back Office, Point-of-Service, and Central Office event.

This event is written to the audit log if the Settings For Audit Logging system setting
equals INFO and the Modify Application Parameter system setting equals INFO.

■ Event data collection starts when the operator selects a parameter to modify.

■ Event data collection ends when the operator selects to save.

<ARG> Japanese Store Credit ■ Japanese Store Credit amount entered when Count Till at Reconcile equals
Detail.

■ There is an audit log entry for each Japanese Store Credit entered.

■ <ARG> equals the number of the Japanese Store Credit.

Blind Close ■ True.

■ False.

Transaction Number Transaction number assigned to till reconcile.

Table 5–26 Modify Application Parameter Event Components

Event Components Notes

Event Name Modify Application Parameter.

Event Status ■ Success.

■ Failure.

Event Originator Class Name and Method Name (ClassName.methodName).

System Date System date of the event.

System Time Time of the event.

Store ID Store number the event transpired at. Only applicable for Back Office.

User ID User ID performing the event.

Parameter Group Parameter Group.

Parameter Name Name of the Parameter.

Table 5–25 (Cont.) Till Reconcile Event Components

Event Components Notes

Parameter Log Events

5-32 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Intra Store Data Distribution Infrastructure 6-1

6
Intra Store Data Distribution Infrastructure

The Oracle Retail Point-of-Service client needs the following producers and consumers
datasets to support offline functionality:

■ Employee

■ Item

■ Advanced Pricing

■ Tax

■ Currency

■ Store Info

■ Merchandise Hierarchy

■ Shipping Method

■ Reason Codes

■ Discount

■ ExportDB

Intra Store Data Distribution Infrastructure (IDDI) automates the following:

■ DataSet file generation at the Point-of-Service server

■ DataSet file transfer from Point-of-Service server to Point-of-Service client

■ Importing dataset files to Point-of-Service client database

Spring Configuration
The system has been designed to support a pluggable model. The following are all
designed to be configurable at deployment time:

■ DataSetProducerJob

■ ClientDataSetController

■ DataSetService

■ ClientDataSetService

■ DataSetProducers

– StoreInfoDataSetProducer

– AdvancedPricingDataSetProducer

– CurrencyDataSetProducer

Spring Configuration

6-2 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

– EmployeeDataSetProducer

– ItemDataSetProducer

– MerchandiseDataSetProducer

– OfflineDBProducer

– ReasonCodeDataSetProducer

– ShippingMethodDataSetProducer

– TaxDataSetProducer

– DiscountDataSetProducer

■ DataSetConsumers

– StroreInfoDataSetConsumer

– AdvancedPricingDataSetConsumer

– CurrencyDataSetConsumer

– EmployeeDataSetConsumer

– ItemDataSetConsumer

– MerchandiseDataSetConsumer

– OfflineDBConsumer

– ReasonCodeDataSetConsumer

– ShippingMethodDataSetConsumer

– TaxDataSetConsumer

– DiscountDataSetConsumer

■ DerbyDataFormatter

This configuration is accomplished through the use of the Spring Framework as a
configuration framework.

Table 6–1 includes the set of Spring bean IDs used for each of the pluggable
components.

Table 6–1 Spring Framework Configuration Options

Spring bean ID Purpose Provided implementation Configurable Options

service_DataSetService Configuration for
DataSetService.

Contains the list of all
the DataSetKeys.

oracle.retail.stores.

foundation.iddi.DataSetServi
ce

Generate at start up.

To add a new DataSet type,
add one more service_config_
<<DataSetType>_KEY

service_
ClientDataSetService

Configuration for
ClientDataSetService.

Contains the list of all
the DataSetKeys.

oracle.retail.stores.

foundation.iddi.ClientDataSet
Service

To add a new DataSet type,
add one more service_config_
<<DataSetType>_KEY

dataImportFilePath(service_
config_DataImportFilePath)

service_
FrequentProducerJob

Producer Job that runs
frequently.

Configured to run
once every 15 minutes
by default.

org.springframework.
scheduling.quartz.JobDetailB
eanservice_DataSetService

To add a new DataSet type,
add one more service_config_
<<DataSetType>_KEY

Spring Configuration

Intra Store Data Distribution Infrastructure 6-3

service_
InfrequentProducerJob

Producer Job
configured to run
once a day by default.

org.springframework.
scheduling.quartz.JobDetailB
eanservice_DataSetService

To add a new DataSet type,
add one more service_config_
<<DataSetType>_KEY

service_
OfflineDBProducerJob

Producer Job
configured to run
once a day by default.

org.springframework.
scheduling.quartz.JobDetailB
eanservice_DataSetService

To add a new DataSet type,
add one more service_config_
<<DataSetType>_KEY

service_
TriggerFrequentProducer

Cron Job Trigger class
that runs service_
FrequentProducerJob
configuration. Cron
Expression value can
be modified to
configure the job
frequency.Cron
Expression
format.value="0
0,15,30,45 * * * ?"

Value parameters
from left to right
separated by
spaceSecondsMinutes
HoursDaysWeeksYear
s

To configure more
than one value to any
of the value
parameter, configure
values separated by
commas (,)

* Indicates any value

org.springframework.
scheduling.quartz.CronTrigge
rBean

service_FrequentProducerJob

Cron Expression Value

service_
TriggerInfrequentProducer

Trigger class that runs
service_
InfrequentProducerJo
b configuration

org.springframework.
scheduling.quartz.CronTrigge
rBean

service_
InfrequentProducerJob Cron
Expression Value

service_
ProducerSchedulerFactory
Registers the services,
service_
TriggerFrequentProducerserv
ice_
TriggerInfrequentProducer
with the Quartz
SchedulerFactoryBean
org.springframework.
scheduling.quartz.SchedulerF
actoryBeanservice_
TriggerFrequentProducerserv
ice_
TriggerInfrequentProducer

service_
TriggerOfflineDBProducer

Trigger class that runs
service_
OfflineProducerJob
configuration

org.springframework.
scheduling.quartz.CronTrigge
rBean

service_
OfflineDBProducerJob Cron
Expression Value

Table 6–1 (Cont.) Spring Framework Configuration Options

Spring bean ID Purpose Provided implementation Configurable Options

Spring Configuration

6-4 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

service_CurrencyProducer DataSet Key
definition for
Currency
DataSetProducer

oracle.retail.stores.domain.id
di.CurrencyDataSetProducer

 dataSetKey (service_config_
CUR_
KEY)dataExportFilePath
(service_config_
DataExportFilePath)dataExpo
rtZipFilePath (service_config_
DataExportZipFilePath)fileWr
iter(service_FileWriter)

service_TaxProducer DataSet Key
definition for Tax
DataSetProducer

oracle.retail.stores.
domain.iddi.TaxDataSetProd
ucer

dataSetKey(service_config_
TAX_
KEY)dataExportFilePath
(service_config_
DataExportFilePath)dataExpo
rtZipFilePath (service_config_
DataExportZipFilePath)fileWr
iter(service_FileWriter)

service_
EmployeeProducer

DataSet Key
definition for
Employee Producer

oracle.retail.stores.
domain.iddi.EmployeeDataSe
tProducer

dataSetKey(service_config_
EMP_
KEY)dataExportFilePath
(service_config_
DataExportFilePath)dataExpo
rtZipFilePath (service_config_
DataExportZipFilePath)fileWr
iter(service_FileWriter)

service_
AdvancedPricingProducer

DataSet Key
definition for
Advanced Pricing
DataSetProducer

oracle.retail.stores.
domain.iddi.PricingDataSetPr
oducer

dataSetKey(service_config_
PRC_
KEY)dataExportFilePath
(service_config_
DataExportFilePath)dataExpo
rtZipFilePath (service_config_
DataExportZipFilePath)fileWr
iter(service_FileWriter)

service_ItemProducer DataSet Key
definition for Item
DataSetProducer

oracle.retail.stores.
domain.iddi.ItemDataSetProd
ucer

dataSetKey(service_config_
ITM_KEY)dataExportFilePath
(service_config_
DataExportFilePath)dataExpo
rtZipFilePath (service_config_
DataExportZipFilePath)fileWr
iter(service_FileWriter)

service_StoreInfoProducer DataSet Key
definition for Store
Info Producer

oracle.retail.stores.
domain.iddi.StroreInfoDataSe
tProducer

dataSetKey(service_config_
STORE_
KEY)dataExportFilePath
(service_config_
DataExportFilePath)dataExpo
rtZipFilePath (service_config_
DataExportZipFilePath)fileWr
iter(service_FileWriter)

service_
MerchandiseProducer

DataSet Key
definition for
Merchandise
Hierarchy Producer

oracle.retail.stores.
domain.iddi.MerchandiseHie
rarchyDataSetProducer

dataSetKey(service_config_
MER_
KEY)dataExportFilePath
(service_config_
DataExportFilePath)dataExpo
rtZipFilePath (service_config_
DataExportZipFilePath)fileWr
iter(service_FileWriter)

Table 6–1 (Cont.) Spring Framework Configuration Options

Spring bean ID Purpose Provided implementation Configurable Options

Spring Configuration

Intra Store Data Distribution Infrastructure 6-5

service_
ShippingMethodProducer

DataSet Key
definition for
Shipping Method
Producer

oracle.retail.stores.
domain.iddi.ShippingMethod
DataSetProducer

dataSetKey(service_config_
SHP_MTH_
KEY)dataExportFilePath
(service_config_
DataExportFilePath)dataExpo
rtZipFilePath (service_config_
DataExportZipFilePath)fileWr
iter(service_FileWriter)

service_
ReasonCodeProducer

DataSet Key
definition for Reason
Codes Producer

oracle.retail.stores.
domain.iddi.ReasonCodesDat
aSetProducer

dataSetKey(service_config_
RSN_CODE_
KEY)dataExportFilePath
(service_config_
DataExportFilePath)dataExpo
rtZipFilePath (service_config_
DataExportZipFilePath)fileWr
iter(service_FileWriter)

service_DiscountProducer DataSet Key
definition for
Discount Producer

oracle.retail.stores.
domain.iddi.DiscountDataSet
Producer

dataSetKey(service_config_
DISCOUNT_
KEY)dataExportFilePath
(service_config_
DataExportFilePath)dataExpo
rtZipFilePath (service_config_
DataExportZipFilePath)fileWr
iter(service_FileWriter)

service_
OfflineDBProducer

DataSet Key
definition for
OfflineDB Producer

oracle.retail.stores.
domain.iddi.OfflineDBDataSe
tProducer

dataSetKey(service_config_
OFFLINEDB_
KEY)dataExportFilePath
(service_config_
DataExportFilePath)dataExpo
rtZipFilePath (service_config_
DataExportZipFilePath)fileWr
iter(service_FileWriter)

service_
CurrencyConsumer

DataSet Key
definition for
Currency
DataSetConsumer

oracle.retail.stores.
domain.iddi.CurrencyDataSet
Consumer

dataSetKey(service_config_
CUR_
KEY)dataImportFilePath(serv
ice_config_
DataImportFilePath)importH
elper(service_
OfflineDBHelper)

service_TaxConsumer DataSet Key
definition for Tax
DataSetConsumer

oracle.retail.stores.
domain.iddi.TaxDataSetCons
umer

dataSetKey(service_config_
TAX_
KEY)dataImportFilePath(serv
ice_config_
DataImportFilePath)importH
elper(service_
OfflineDBHelper)

service_
EmployeeConsumer

DataSet Key
definition for
Employee
DataSetConsumer

oracle.retail.stores.
domain.iddi.EmployeeDataSe
tConsumer

dataSetKey(service_config_
EMP_
KEY)dataImportFilePath(serv
ice_config_
DataImportFilePath)importH
elper(service_
OfflineDBHelper)

Table 6–1 (Cont.) Spring Framework Configuration Options

Spring bean ID Purpose Provided implementation Configurable Options

Spring Configuration

6-6 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

service_
AdvancedPricingConsume
r

DataSet Key
definition for
Advanced Pricing
DataSetConsumer

oracle.retail.stores.
domain.iddi.AdvancedPricin
gDataSetConsumer

dataSetKey(service_config_
PRC_
KEY)dataImportFilePath(serv
ice_config_
DataImportFilePath)importH
elper(service_
OfflineDBHelper)

service_ItemConsumer DataSet Key
definition for Item
DataSetConsumer

oracle.retail.stores.
domain.iddi.ItemDataSetCon
sumer

dataSetKey(service_config_
ITM_
KEY)dataImportFilePath(serv
ice_config_
DataImportFilePath)importH
elper(service_
OfflineDBHelper)

service_
StoreInfoConsumer

DataSet Key
definition for Store
Info
DataSetConsumer

oracle.retail.stores.
domain.iddi.StoreInfoDataSet
Consumer

dataSetKey(service_config_
STORE_
KEY)dataImportFilePath(serv
ice_config_
DataImportFilePath)importH
elper(service_
OfflineDBHelper)

service_
MerchandiseConsumer

DataSet Key
definition for
Merchandise
Hierarchy
DataSetConsumer

oracle.retail.stores.
domain.iddi.MerchandiseHie
rarchyDataSetConsumer

dataSetKey(service_config_
MER_
KEY)dataImportFilePath(serv
ice_config_
DataImportFilePath)importH
elper(service_
OfflineDBHelper)

service_
ShippingMethodConsume
r

DataSet Key
definition for
Shipping Method
DataSetConsumer

oracle.retail.stores.
domain.iddi.ShippingMethod
DataSetConsumer

dataSetKey(service_config_
SHP_MTH_
KEY)dataImportFilePath(serv
ice_config_
DataImportFilePath)importH
elper(service_
OfflineDBHelper)

service_
ReasonCodesConsumer

DataSet Key
definition for Reason
Codes
DataSetConsumer

oracle.retail.stores.
domain.iddi.ReasonCodesDat
aSetConsumer

dataSetKey(service_config_
RSN_CODE_
KEY)dataImportFilePath(serv
ice_config_
DataImportFilePath)importH
elper(service_
OfflineDBHelper)

service_
DiscountConsumer

DataSet Key
definition for
Discount
DataSetConsumer

oracle.retail.stores.
domain.iddi.DiscountDataSet
Consumer

dataSetKey(service_config_
DISCOUNT_
KEY)dataImportFilePath(serv
ice_config_
DataImportFilePath)importH
elper(service_
OfflineDBHelper)

service_
OfflineDBConsumer

DataSet Key
definition for
OfflineDB
DataSetConsumer

oracle.retail.stores.
domain.iddi.OfflineDBDataSe
tConsumer

dataSetKey(service_config_
OFFLINEDB_
KEY)dataImportFilePath(serv
ice_config_
DataImportFilePath)importH
elper(service_
OfflineDBHelper)

Table 6–1 (Cont.) Spring Framework Configuration Options

Spring bean ID Purpose Provided implementation Configurable Options

Spring Configuration

Intra Store Data Distribution Infrastructure 6-7

service_
OfflineDBConsumerJob

Consumer Job that
runs frequently.
Configured to run
once a day by default

org.springframework.schedul
ing.quartz.JobDetailBean

dataSets

To add a new DataSet type,
add one more service_config_
<<DataSetType>_KEY

service_
FrequentConsumerJob

Consumer Job that
runs frequently.
Configured to run
every 15mins by
default

org.springframework.schedul
ing.quartz.JobDetailBean

dataSets

To add a new DataSet type,
add one more service_config_
<<DataSetType>_KEY

service_
InfrequentConsumerJob

Consumer Job
configured to run
once a day by default.

org.springframework.schedul
ing.quartz.JobDetailBean

dataSets

To add a new DataSet type,
add one more service_config_
<<DataSetType>_KEY

service_
TriggerOfflineDBConsume
r

Cron Job Trigger class
that runs service_
OfflineDBConsumer
configuration.

org.springframework.
scheduling.quartz.CronTrigge
rBean

service_
OfflineDBConsumerJob
CronExpression Value

service_
TriggerFrequentConsumer

Cron Job Trigger class
that runs service_
FrequentConsumer
configuration.

org.springframework.
scheduling.quartz.CronTrigge
rBean

service_
FrequentConsumerJob
CronExpression Value

service_
TriggerInfrequentConsum
er

Cron Job Trigger class
that runs service_
InfrequentConsumer
configuration.

org.springframework.schedul
ing.quartz.CronTriggerBean

service_
InfrequentConsumerJob
CronExpression Value

service_
clientSchedulerFactory

Registers the services,
service_
TriggerFrequentCons
umerservice_
TriggerInfrequentCon
sumer with the
Quartz
SchedulerFactoryBean

org.springframework.schedul
ing.quartz.SchedulerFactoryB
ean

service_
TriggerFrequentConsumer
service_
TriggerInfrequentConsumer

service_config_
DataExportFilePath

Configuration for
Data Export File Path.
This is the relative
path. Application
takes the application
running path and
appends the path
given in this
configuration.

java.lang.String value

Table 6–1 (Cont.) Spring Framework Configuration Options

Spring bean ID Purpose Provided implementation Configurable Options

Spring Configuration

6-8 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

service_config_
DataExportZipFilePath

Configuration for
Data Export Zip File
Path. This is the
relative path.
Application takes the
application running
path and appends the
path given in this
configuration.Note:
The service_config_
DataExportFilePath
should not contain
DataSetKey names
(eg: EMPLOYEE,
ITEM, CURRENCY,
ADVANCED_
PRICING,TAX)

java.lang.String value

service_config_
DataImportFilePath

Configuration for
Data Import File Path
where the dataset files
are downloaded from
Point-of-Service
server and cached.

java.lang.String value

service_config_
OfflineSchemaSQLFilePat
h

Folder configuration
where the Offline
database schema SQL
File.

java.lang.String value

service_config_
OfflineSchemaLogFilePath

Folder configuration
for storing the Offline
database schema SQL
File import log file.

java.lang.String value

service_OfflineDBHelper Point-of-Service client
offline Database
Helper Class
configuration

oracle.retail.stores.foundation
.iddi.OfflineDerbyHelper

dataImportFilePath

service_config_
OfflineSchemaSQLFilePath

service_config_
OfflineSchemaLogFilePath

service_
ApplicationVersion

Application Version
retreival class
configuration.

oracle.retail.stores.pos.PosVer
sion

None

service_DataFormatter Data Formatter
Helper to format
Point-of-Service
server data to Derby
data import format
specifications.

oracle.retail.stores.foundation
.iddi.DerbyDataFormatter

None

service_
DerbyDBFormatter

Data Formatter
Helper to format
Point-of-Service
server data to Derby
data import format
specifications.

oracle.retail.stores.iddi.Derby
DBFormatter

None

service_Filewriter Format Derby import
files.

oracle.retail.stores.foundation
.iddi.IDDIFileWriter

Formatter

Table 6–1 (Cont.) Spring Framework Configuration Options

Spring bean ID Purpose Provided implementation Configurable Options

Application Configuration

Intra Store Data Distribution Infrastructure 6-9

For Point-of-Service, the ServiceContext.xml is under <install
directory>\<client or server>\pos\config\context.

Application Configuration
The timeout interval to start data consumption is configured in the application.xml
file. The IDDITimeoutInterval parameter value is set to 15 minutes by default and is
configurable.

The IDDIOfflineSupport parameter has been renamed to
IDDIOfflineSupportRequired, and the values are reversed. Basically, this parameter
allows the end-user to decide if the client should come up without offline data. If
IDDIOfflineSupportRequired is Y, then the client does not start if no offline data is

service_DerbyWriter Bean used to insert
data read from store
server database into
server side offline
derby database.

oracle.retail.stores.iddi.IDDID
erbyWriter

■ Formatter.

service_
DerbyDBFormatter

■ Location of the schema
file for import.

service_config_
OfflineSchemaSQLFilePa
th

■ Location of the log file to
use during import.

service_config_
OfflineSchemaLogFilePat
h

service_config_EMP_KEY DataSet key
Configuration

java.lang.String None

service_config_CUR_KEY DataSet key
Configuration

java.lang.String None

service_config_TAX_KEY DataSet key
Configuration

java.lang.String None

service_config_ITM_KEY DataSet key
Configuration

java.lang.String None

service_config_PRC_KEY DataSet key
Configuration

java.lang.String None

service_config_MER_KEY DataSet key
Configuration

java.lang.String None

service_config_SHP_
MTH_KEY

DataSet key
Configuration

java.lang.String None

service_config_RSN_
CODE_KEY

DataSet key
Configuration

java.lang.String None

service_config_STORE_
KEY

DataSet key
Configuration

java.lang.String None

service_config_
DISCOUNT_KEY

DataSet key
Configuration

java.lang.String None

service_config_
OFFLINEDB_KEY

DataSet key
Configuration

java.lang.String None

Table 6–1 (Cont.) Spring Framework Configuration Options

Spring bean ID Purpose Provided implementation Configurable Options

Integration Considerations

6-10 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

available (offline data is required for the client to start). If
IDDIOfflineSupportRequired is N, then the client starts without offline data (offline
data is not required for the client to start).

The batch size of the records to write data to offline file is set in domain.properties
with the property IDDIBatchSize.

Integration Considerations
IDDI integrates with both the Point-of-Service server and the Point-of-Service client
application. IDDI integration with Point-of-Service server produces dataset files on a
scheduled basis. IDDI integration with Point-of-Service client downloads the dataset
files from Point-of-Service server on a scheduled basis, and the client can then
consume those files. IDDI server and client integration is pluggable and configurable.

Point-of-Service client should be online when it is run the first time to download the
data from Point-of-Service server. If there is no offline data available, Point-of-Service
client does not function in offline mode.

The client-side database schema must be in sync with server-side database schema.

Table 6–2 has been used in Derby database at the Point-of-Service client. The database
schema for the following tables must mach the Point-of-Service server database
schema.

Integration Considerations

Intra Store Data Distribution Infrastructure 6-11

Table 6–2 Point-of-Service DataSet Table

DataSet Name DataSet Tables

Items AS_ITM

AS_ITM_I8

ID_IDN_PS

PA_MF

PA_MF_I8

AS_POG

AS_ITM_ASCTN_POG

AS_ITM_STK

CO_UOM

CO_UOM_I8

ID_DPT_PS

ID_DPT_PS_I8

AS_ITM_RTL_STR

CO_ASC_RLTD_ITM

CO_CLN_ITM

AS_ITM_SRZ_LB

CO_EV

TR_CHN_TMP_PRC

CO_CLR

CO_CLR_I8

CO_SZ

CO_SZ_I8

CO_STYL

CO_STYL_I8

CO_EV_I8

CO_EV_MNT

CO_EV_MNT_I8

MA_PRC_ITM

MA_ITM_PRN_PRC_ITM

MA_ITM_TMP_PRC_CHN

TR_CHN_PRN_PRC

AS_ITM_SRZ_LB_I8

Employees PA_EM

CO_GP_WRK

CO_GP_WRK_I8

CO_ACS_GP_RS

CO_ACS_GP_RS_LS

CO_ACS_GP_RS_LS_I8

PA_RS

PA_RS_I8

Advanced Pricing RU_PRDV

RU_PRDV_I8

CO_PRDV_ITM

RU_PRDVC_MXMH

CO_PRCGP_I8

PA_GP_CT

PA_GP_CT_I8

TR_ITM_MXMH_PRDV

CO_EL_PRDV_ITM

CO_EL_PRDV_DPT

CO_EL_CTAF_PRDV

CO_EL_MRST_PRDV

CO_EL_TM_PRDV

CO_PRCGP

Tax RU_TX_GP

RU_TX_RT

PA_ATHY_TX

CO_TX_JUR_ATHY_LNK

CD_GEO

GEO_TX_JUR

CO_GP_TX_ITM

CO_GP_TX_ITM_I8

PA_TY_TX

Currency CO_CNY

CO_RT_EXC

CO_CNY_DNM

CO_CNY_DNM_I8

Store Info PA_STR_RTL

PA_STR_RTL_I8

LO_ADS

DataSet Compressed File Structure

6-12 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

DataSet Compressed File Structure
The dataset compressed file contains all the dataset flat files of the tables associated
with the dataset and metadata information (for example, the Manifest file).

Here is the structure of the dataset compressed file:

<DataSet Flat file>
<DataSet Flat file>
<DataSet Flat file>
META-INF\MANIFEST.MF

DataSet Compressed File Example
The server generates the compressed file to <install
directory>\Server\pos\bin\IDDI, and the client copies the compressed file to
<install directory>\Client\pos\bin\IDDI_CACHE.

The Currency DataSet compressed file (CURRENCY_<<BATCHID>>.ZIP) contains:

META-INF\MANIFEST.MF
CO_ACS_GP_RS.TXT
CO_GP_WRK.TXT
PA_RS.TXT

Manifest File Structure
The Manifest file compressed in the DataSet compressed files contains dataset
metadata information in the following format:

DataSetName: <<DataSetName>>
DataSetID: <<DataSetID>>
ApplicationVersion: <<Oracle Retail Point-of-Service Version>>
StoreID: <<StoreID>>
BatchID: <<DataSetBatchID>>

#Add all the Tables Names as shown in the format below
DataFile-<<TableName>>: <<Table File Name>>
TableSequence: <<Table Names separated by comma in the order of tables to be
imported to Derby>>

Manifest File Example
The following is the Manifest file example for Currency DataSet:

DataSetName: CURRENCY
DataSetID: 5

Merchandise Hierarchy ST_ASCTN_MRHRC

CO_MRHRC_FNC

CO_MRHRC_GP

CO_MRHRC_GP_I8

CO_MRHRC_LV

CO_MRHRC_LV_I8

AS_MRHRC_ITM_GP

Shipping Method CO_SHP_MTH CO_SHP_MTH_I8

Reason Codes ID_LU_CD

ID_LU_CD_I8

LO_DPT_POS_RTL_STR

Table 6–2 (Cont.) Point-of-Service DataSet Table

DataSet Name DataSet Tables

Extensibility

Intra Store Data Distribution Infrastructure 6-13

ApplicationVersion: pos
StoreID: 04241
BatchID: 20070606084600
DataFile-CO_CNY: CO_CNY.TXT
DataFile-CO_RT_EXC: CO_RT_EXC.TXT
DataFile-CO_CNY_DNM: CO_CNY_DNM.TXT
TableSequence: CO_CNY,CO_RT_EXC,CO_CNY_DNM

DataSet Flat File Structure
The following is the format of the DataSet flat file:

<<Table Row Data with the column information separated by comma (,) and enclosed
within double quotes (“) if the information is not of numeric data type. The table
row data is followed by New line character>>

DataSet Flat File Example
The following is the DataSet flat file example for CO_CNY table:

1,"US","USD","USD","US","1",2,0
2,"CA","CAD","CAD","CA","0",2,1
3,"MX","MXN","MXN","MX","0",2,3
4,"GB","GBP","GBP","GB","0",2,4
5,"EU","EUR","EUR","EU","0",2,5
6,"JP","JPY","JPY","JP","0",0,6

Extensibility
Extensibility is supported through the interface-based design and the use of the Spring
Framework. From an extensibility stand point, an alternate implementation of any of
the exposed interfaces could inherit from one of the out-of-the-box implementation
classes and be injected into the system through Spring.

Additionally, the schema has been designed to enable the addition of datasets and
dataset tables.

Adding New Table To Existing DataSet
Add a new row to the table CO_DT_ST_TB_IDDI and create a table script in
CreateSchema.sql to add a new dataset table to the data model.

Adding More Tables To Existing DataSet Types
The following example walks through the process of adding more tables to the existing
DataSet in IDDI.

1. Insert the tables to be associated with the existing DataSet by adding records to
CO_DT_ST_TB_IDDI using SQL.

Run the following queries to insert the table association to DataSet.

Example 6–1 Adding Table Association To Employee DataSet

insert into CO_DT_ST_TB_IDDI

Note: All the data type values except number type must be within
double quotes.

Extensibility

6-14 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

(ID_DT_ST, ID_STR_RT, NM_TB, NM_FL,AI_LD_SEQ)
values
(<<Employee DataSet ID>>, <<’Store ID’>>,<<’Table1’>>,<<’Table1.txt’>>,1);

TableName: CO_DT_ST_TB_IDDI

Column Description
ID_DT_ST : DataSet ID
ID_STR_RT: Store ID
NM_TB : Table Name
NM_FL : File Name of the Flat file to be generated
AI_LD_SEQ: Table Order in which the data to be exported and imported

eg: Get the Employee DataSet ID from CO_DT_ST_IDDI table

insert into CO_DT_ST_TB_IDDI
(ID_DT_ST, ID_STR_RT, NM_TB, NM_FL,AI_LD_SEQ)
values
(1,’04241’,’TABLE1’,’TABLE1.TXT’,1);

insert into CO_DT_ST_TB_IDDI
(ID_DT_ST, ID_STR_RT, NM_TB, NM_FL,AI_LD_SEQ)
values
(1,’04241’,’TABLE2’,’TABLE2.TXT’,2);

2. Add CREATE TABLE scripts in CreateSchema.sql.

CREATE TABLE "offlinedb"."TABLE1"
 ("COLUMN1” <<TYPE>> <<Constraint>>,
 "COLUMN2, <<TYPE>> <<Constraint>>)
CREATE TABLE "offlinedb"."TABLE2"
 ("COLUMN1” <<TYPE>> <<Constraint>>,
 "COLUMN2, <<TYPE>> <<Constraint>>)

Adding a Table to an Existing Data Set Using the Stores Build Scripts
To add a table using the build script:

1. Open <source_directory>\modules\utility\build.xml.

2. Find the target dataset's offline table list:

ordered.<data set name>.tables

3. Add the name of the SQL file that contains the create script.

The create scripts are located at <source_
directory>\modules\common\deploy\server\common\db\sql\Create.

Adding a New DataSet
To add a new DataSet:

1. Add DataSet information in CO_DT_ST_IDDI.

2. Add DataSet tables to CO_DT_ST_TB_IDDI.

3. Create <DataSetKey>Producer and <DataSetKey>Consumer classes
extending from AbstractDataSetProducer and AbstractDataSetConsumer
respectively.

4. Define service_config_<DataSetKey> in ServiceContext.xml.

Extensibility

Intra Store Data Distribution Infrastructure 6-15

5. Define service_<DataSetKey>Producer with
class=<DataSetKey>Producer and service_<DataSetKey>Consumer wit
h class=<DataSetKey>Consumer in ServiceContext.xml.

6. Add to service_<DataSetKey>Producer and service_
<DataSetKey>Consumer to service_DataSetService and service_
ClientDataSetService respectively in ServiceContext.xml.

7. Add DataSet key to service_FrequentProducerJob/service_
InfrequentProducerJob and service_FrequentConsumerJob/service_
InfrequentConsumerJob in ServiceContext.xml.

8. Add create table scripts and insert the script for the newly added DataSet in
CreateSchema.sql.

Adding a New DataSet Using the Stores Build Scripts
Do the following to add a new dataset using the build script:

1. Open <source_directory>\modules\utility\build.xml .

2. Find the section that defines the offline table lists (target assemble.iddi).

3. Create the ordered list of tables, following the pattern established in the file. All
create scripts are located at <source_
directory>\modules\common\deploy\server\common\db\sql\Create.

4. Add a call to concat.file for the new data set schema, following the other calls in
the file:

 <antcall target="concat.file">
 <param name="target.file" value="${raw.sql.file}"/> -- The path
and name of the file being generated
 <param name="file.comment" value="-- Employee DataSet Tables"/> --
Comment added to the file ahead of the create SQL
 <param name="src.dir" value="${sql.src.dir}"/> -- Path to the
create scripts listed in the "ordered.<data set name>.tables" list
 <param name="file.list" value="${ordered.employee.tables}"/> --
Variable holding the ordered list of create scripts
 <reference refid="comment.filter" torefid="filter"/>
 </antcall>

Configuring Schedule for DataSet Producer and Consumer
Any existing DataSet Producer and Consumer can be individually configured to run
on scheduled basis.

Configure DataSet Producer
To configure DataSet Producer:

1. Add JobDetailBean bean configuration service_<<DataSet>>ProducerJob.

 <bean id="service_<<DataSet>>ProducerJob"
class="org.springframework.scheduling.quartz.JobDetailBean">
 <property name="jobClass">

<value>oracle.retail.stores.foundation.iddi.DataSetProducerJob</value>
 </property>
 <property name="jobDataAsMap">
 <map>
 <entry key="producer" value-ref="service_DataSetService"/>
 <entry key="dataSets">

Extensibility

6-16 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

 <list>
 <ref local="service_config_<<DataSetKey>>"/>
 </list>
 </entry>
 </map>
 </property>
 </bean>

2. Add CronTriggerBean bean configuration service_Trigger<<DataSet>>Producer

 <bean id="service_Trigger<<DataSet>>Producer" class =
"org.springframework.scheduling.quartz.CronTriggerBean">
 <property name = "jobDetail">
 <ref local="service_<<DataSet>>ProducerJob"/>
 </property>
 <property name="cronExpression" value="0 0,15,30,45 0 * * ?"/>
 </bean>

The above DataSet is configured to run once every 15 minutes. For more
information about configuring using Quartz, see the following web site:

http://www.quartz-scheduler.org/documentation/quartz-2.1.x/tutorial
s/tutorial-lesson-10

3. Add service_Trigger<<DataSet>>Producer to the SchedulerFactoryBean
bean configuration:

 <bean id="service_ProducerSchedulerFactory"
class="org.springframework.scheduling.quartz.SchedulerFactoryBean">
 <property name="triggers">
 <list>
 <ref local="service_TriggerFrequentProducer"/>
 <ref local="service_TriggerInfrequentProducer"/>
 <ref local="service_Trigger<<DataSet>>Producer"/>
 </list>
 </property>
 </bean>

Configure DataSet Consumer
To configure DataSet Consumer:

1. Add JobDetailBean bean configuration service_<<DataSet>>ConsumerJob:

 <bean id="service_<<DataSet>>ConsumerJob"
class="org.springframework.scheduling.quartz.JobDetailBean">
 <property name="jobClass">

<value>oracle.retail.stores.foundation.iddi.ClientDataSetController</value>
 </property>
 <property name="jobDataAsMap">
 <map>
 <entry key="dataSets">
 <list>
 <ref local="service_config_<< DataSetKey>>"/>
 </list>
 </entry>

Note: service_config_<<DataSetKey>> should have been configured
with the DataSetKey

http://www.quartz-scheduler.org/documentation/quartz-2.1.x/tutorials/tutorial-lesson-10
http://www.quartz-scheduler.org/documentation/quartz-2.1.x/tutorials/tutorial-lesson-10

Extensibility

Intra Store Data Distribution Infrastructure 6-17

 </map>
 </property>
 </bean>

2. Add CronTriggerBean bean configuration service_
Trigger<<DataSet>>Consumer:

 <bean id="service_Trigger<<DataSet>>Consumer" class =
"org.springframework.scheduling.quartz.CronTriggerBean">
 <property name = "jobDetail">
 <ref local="service_<<DataSet>>ConsumerJob"/>
 </property>
 <property name="cronExpression" value="0 0,15,30,45 0 * * ?"/>
 </bean>

The DataSet is configured to run once every 15 minutes.

3. Add service_Trigger<<DataSet>>Consumer to the SchedulerFactoryBean
bean configuration:

 <bean id=" service_clientSchedulerFactory"
class="org.springframework.scheduling.quartz.SchedulerFactoryBean">
 <property name="triggers">
 <list>
 <ref local="service_TriggerFrequentConsumer"></ref>
 <ref local="service_TriggerInfrequentConsumer"></ref>
 <ref local="service_Trigger<<DataSet>>Consumer"/>
 </list>
 </property>
 </bean>

Adding New DataSet Type
The following example walks through the process of adding a new DataSet to the
existing IDDI.

■ Insert the new DataSet information in into the databaset table CO_DT_ST_IDDI
using SQL.

■ Insert the tables associated with the DataSet added to CO_DT_ST_TB_IDDI using
SQL.

1. Run the following queries to insert new DataSet information and table association
to DataSet.

Example 6–2 Adding New DataSet

insert into CO_DT_ST_IDDI
(ID_DT_ST, ID_STR_RT, NM_DT_ST)
values
(maxid+1,<<’StoreID’>> ,<<’DataSetName’>>);

TableName: CO_DT_ST_IDDI

Column Description
ID_DT_ST : DataSet ID
ID_STR_RT: Store ID

Note: service_config_<<DataSetKey>> should have been
configured with the DataSetKey.

Extensibility

6-18 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

NM_DT_ST : DataSet Name

eg:
insert into CO_DT_ST_IDDI
(ID_DT_ST, ID_STR_RT, NM_DT_ST)
values
(6,’04241’,’NEW’);

Example 6–3 Adding Table Association to New DataSet

insert into CO_DT_ST_TB_IDDI
(ID_DT_ST, ID_STR_RT, NM_TB, NM_FL,AI_LD_SEQ)
values
(<<New DataSet ID>>, <<’Store ID’>>,<<’Table1’>>,<<’Table1.txt’>>,1);

eg:
insert into CO_DT_ST_TB_IDDI
(ID_DT_ST, ID_STR_RT, NM_TB, NM_FL,AI_LD_SEQ)
values
(6,’04241’,’TABLE1’,’TABLE1.TXT’,1);

insert into CO_DT_ST_TB_IDDI
(ID_DT_ST, ID_STR_RT, NM_TB, NM_FL,AI_LD_SEQ)
values
(6,’04241’,’TABLE2’,’TABLE2.TXT’,2);

2. Create <DataSetKey>Producer and <DataSetKey>Consumer classes
extending from AbstractDataSetProducer and AbstractDataSetConsumer
respectively.

Example 6–4 DataSetProducer Code

package oracle.retail.stores.domain.iddi;

import oracle.retail.stores.foundation.iddi.AbstractDataSetProducer;
import oracle.retail.stores.foundation.iddi.DataSetMetaData;
import oracle.retail.stores.foundation.iddi.TableQueryInfo;
import oracle.retail.stores.foundation.iddi.ifc.DataSetMetaDataIfc;

public class NewDataSetProducer extends AbstractDataSetProducer
{

private final String[] TABLE_FIELDS={"*"};

/**

 * NewDataSetProducer constructor
 */

public NewDataSetProducer ()
{

}
/**
* Get DataSetMetatIfc reference
*
*/
public DataSetMetaDataIfc getDataSetMetaData()
{
// Get the table names for the Key

Extensibility

Intra Store Data Distribution Infrastructure 6-19

return dataSetMetaData;
}
/**
* Initialize the MetaData for the DataSetProducer
*/
public void initializeDataSet()
{
dataSetMetaData = new DataSetMetaData(dataSetKey);
}
/**
* Create TableQueryInfo object with the column names to fetch
* @param TableName
* @return TableQueryInfo Object
*/
public TableQueryInfo getTableQueryInfo(String tableName)
{
TableQueryInfo tableQueryInfo = new TableQueryInfo(tableName);
tableQueryInfo.setTableFields(TABLE_FIELDS);
return tableQueryInfo;
}
/**
 * Finalize DataSet Method
 *
 */
public void finalizeDataSet()
{

}
}

Example 6–5 DataSetConsumer Code

package oracle.retail.stores.domain.iddi;

import oracle.retail.stores.foundation.iddi.AbstractDataSetConsumer;

//--
/**
 The NewDataSetConsumer defines methods that the
 application calls to import Employee dataset files into
 offline database.
 @version $Revision: $
**/
//--

public class NewDataSetConsumer extends AbstractDataSetConsumer
{ /** DataSet key name for currency dataset.

 */ private String dataSetKey = null;

 // --
 /**
 @return Returns the dataSetKey
 **/
 //--

 public String getDataSetKey()
 {

return dataSetKey;

Extensibility

6-20 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

 }

 // --
 /**
 @param dataSetKey The DataSetKey to set
 **/
 //--

 public void setDataSetKey(String dataSetKey)
 {

this.dataSetKey = dataSetKey;

 }
}

3. Define service_config_<<DataSetKey>> in ServiceContext.xml:

 <bean id="service_config_<<datasetKey>> " class="java.lang.String">
 <constructor-arg type="java.lang.String" value="<<DataSetKey>>"/>
 </bean>eg: <bean id="service_config_NEW_KEY" class="java.lang.String">
 <constructor-arg type="java.lang.String" value="NEW"/>
 </bean>

4. Define service_<<DataSetKey>>Producer with
class=<DataSetKey>Producer and service_<<DataSetKey>>Consumer
with class=<DataSetKey>Consumer in ServiceContext.xml:

<bean id="service_NewProducer"
class="oracle.retail.stores.domain.iddi.NewDataSetProducer" lazy-init="true"
singleton=”true”>
 <property name="dataSetKey" ref="service_config_NEW_KEY"/>
 <property name="dataExportFilePath" ref="service_config_
DataExportFilePath"/>
 <property name="dataExportZipFilePath" ref="service_config_
DataExportZipFilePath"/>
 </bean>
 <bean id="service_NewConsumer"
 class="oracle.retail.stores.domain.iddi.NewDataSetConsumer"
 lazy-init="true"
 singleton="true">
 <property name="dataSetKey" ref="service_config_NEW_KEY"/>
 <property name="dataImportFilePath" ref="service_config_
DataImportFilePath"/>
 </bean>

5. Add to service_<<DataSetKey>>Producer and service_
<<DataSetKey>>Consumer to service_DataSetService and service_
ClientDataSetService respectively in ServiceContext.xml

 <bean id="service_DataSetService"
class="oracle.retail.stores.foundation.iddi.DataSetService" singleton="true">
 <property name="producers">
 <map>
 <entry key-ref="service_config_EMP_KEY" value-ref="service_
EmployeeProducer"/>
 <entry key-ref="service_config_ITM_KEY" value-ref="service_
ItemProducer"/>
 <entry key-ref="service_config_PRC_KEY" value-ref="service_
AdvancedPricingProducer"/>
 <entry key-ref="service_config_TAX_KEY" value-ref="service_

Extensibility

Intra Store Data Distribution Infrastructure 6-21

TaxProducer"/>
 <entry key-ref="service_config_CUR_KEY" value-ref="service_
CurrencyProducer"/>
 <entry key-ref="service_config_NEW_KEY" value-ref="service_
NewProducer"/>
 </map>
 </property>
 </bean>
 <bean id="service_ClientDataSetService"
 class="oracle.retail.stores.foundation.iddi.ClientDataSetService"
singleton="true">
 <property name="consumers">
 <map>
 <entry key-ref="service_config_EMP_KEY" value-ref="service_
EmployeeConsumer"/>
 <entry key-ref="service_config_CUR_KEY" value-ref="service_
CurrencyConsumer"/>
 <entry key-ref="service_config_TAX_KEY" value-ref="service_
TaxConsumer"/>
 <entry key-ref="service_config_ITM_KEY" value-ref="service_
ItemConsumer"/>
 <entry key-ref="service_config_PRC_KEY" value-ref="service_
AdvancedPricingConsumer"/>
 <entry key-ref="service_config_NEW_KEY" value-ref="service_
NewConsumer"/>
 </map>
 </property>
 <property name="dataImportFilePath" ref="service_config_
DataImportFilePath"/>
 </bean>

6. Add DataSet key to service_FrequentProducerJob/service_
InfrequentProducerJob and service_FrequentConsumerJob/service_
InfrequentConsumerJob in ServiceContext.xml

 <bean id="service_FrequentProducerJob"
class="org.springframework.scheduling.quartz.JobDetailBean">
 <property name="jobClass">

<value>oracle.retail.stores.foundation.iddi.DataSetProducerJob</value>
 </property>
 <property name="jobDataAsMap">
 <map>
 <entry key="producer" value-ref="service_DataSetService"/>
 <entry key="dataSets">
 <list>
 <ref local="service_config_EMP_KEY"/>
 <ref local="service_config_PRC_KEY"/>
 <ref local="service_config_TAX_KEY"/>
 <ref local="service_config_NEW_KEY"/>
 </list>
 </entry>
 </map>
 </property>
 </bean>

<bean id="service_FrequentConsumerJob"
class="org.springframework.scheduling.quartz.JobDetailBean">
 <property name="jobClass">

Extensibility

6-22 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

<value>oracle.retail.stores.foundation.iddi.ClientDataSetController</value>
 </property>
 <property name="jobDataAsMap">
 <map>
 <entry key="dataSets">
 <list>
 <ref local="service_config_EMP_KEY"/>
 <ref local="service_config_PRC_KEY"/>
 <ref local="service_config_TAX_KEY"/>
 <ref local="service_config_NEW_KEY"/>
 </list>
 </entry>
 </map>
 </property>
 </bean>

7. Add CREATE TABLE scripts and insert scripts to newly added DataSet in
CreateSchema.sql.

CREATE TABLE "offlinedb"."TABLE1"
 ("COLUMN1” <<TYPE>> <<Constraint>>,
 "COLUMN2, <<TYPE>> <<Constraint>>)
CREATE TABLE "offlinedb"."TABLE2"
 ("COLUMN1” <<TYPE>> <<Constraint>>,
 "COLUMN2, <<TYPE>> <<Constraint>>)
insert into CO_DT_ST_IDDI(ID_DT_ST, ID_STR_RT, NM_DT_ST)
values(6,’04241’,’NEW’);

Adding a New DataSet Type Using the Stores Build Scripts
Do the following to add a new dataset type using the build script:

1. Open <source_directory>\modules\utility\build.xml .

2. Find the section that defines the offline table lists (target assemble.iddi).

3. Create the ordered list of tables, following the pattern established in the file. All
create scripts are located at <source_
directory>\modules\common\deploy\server\common\db\sql\Create.

4. Add a call to concat.file for the new data set schema, following the other calls in
the file:

 <antcall target="concat.file">
 <param name="target.file" value="${raw.sql.file}"/> -- The path
and name of the file being generated
 <param name="file.comment" value="-- Employee DataSet Tables"/> --
Comment added to the file ahead of the create SQL
 <param name="src.dir" value="${sql.src.dir}"/> -- Path to the
create scripts listed in the "ordered.<data set name>.tables" list
 <param name="file.list" value="${ordered.employee.tables}"/> --
Variable holding the ordered list of create scripts
 <reference refid="comment.filter" torefid="filter"/>
 </antcall>

Changing Point-of-Service Client Database Vendor
The Point-of-Service client uses the Derby database. However, the modifications to the
code are minimal for replacing the Point-of-Service client database from Derby to
another database. Do the following to change the Point-of-Service client database:

Extensibility

Intra Store Data Distribution Infrastructure 6-23

1. Add Offline<<DBName>>Helper class which implements
offlineDBHelperIfc.

2. Change the installer to have new database driver jar file paths.

3. Update the "<POOL name="jdbcpool class="DataConnectionPool"
package="oracle.retail.stores.foundation.manager.data">"
section of PosLFFDataTechnician.xml file with the driver, databaseUrl, userid,
password.

Extensibility

6-24 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Centralized Customer 7-1

7
Centralized Customer

Centralized Customer enables a Central Office user to enter and manage customer
data. Centralized Customer also provides Point-of-Service the ability to retrieve
customer information from a central database. This functionality enables
Point-of-Service to support customer-specific pricing. It is also useful for other features
such as assisting in pickup and delivery orders, and obtaining tax ID numbers for
customers required to manage specific tax forms. Retail stores and cashiers also benefit
from this functionality. Since customer information can be retrieved from a central
database, customer information does not have to be reentered at different stores.

The Centralized Customer functionality enables the user to manage existing customer
information and add new customers to the central database. The user has the ability to
search for a customer, modify existing customer information, or mark a customer’s
record for deletion from the database. The user can also assign a pricing group to the
customer. This provides the ability to offer customer specific pricing. Pricing groups
can be assigned to a price promotion or discount rule.

There are two types of customers: individual and business. Business customers require
slightly different data than individual customers, such as tax certificate numbers.

7-2 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Figure 7–1 Centralized Customer Object Model

Changing and Configuring Currencies 8-1

8
Changing and Configuring Currencies

This chapter describes how to change currencies as well as configure new currencies.

Alternate Currencies
Point-of-Service is configured to support 50 alternate currency tenders. If more
currencies need to be supported, make the following updates:

1. Update the maxAlternateCurrencies property in the application.properties file.

2. Add the buttons for the additional currencies in the foreigncurrency.xml file. The
number of defined buttons must equal the total number of supported currencies.

Changing Currency
To switch to another base and alternate currency, perform the following steps:

1. Set the base currency flag in the primary currency of the currency table. For
example, if EUR is the base currency:

update co_cny set FL_CNY_BASE='1' where DE_CNY='EUR'

2. Remove the base currency flag from any other currencies in that table, for
example:

update co_cny set FL_CNY_BASE = '0' where DE_CNY <> 'EUR'

3. Enforce ordering so that the primary currency is first and the alternate currency is
second for the AI_CNY_PRI column in the currency table. Other rows should be
ordered, but the specific order is not important. For example, if EUR is base
currency and GBP is the alternate:

update co_cny set AI_CNY_PRI=0 where DE_CNY='EUR'
update co_cny set AI_CNY_PRI=1 where DE_CNY='GBP'
update co_cny set AI_CNY_PRI=2 where DE_CNY='USD'
update co_cny set AI_CNY_PRI=3 where DE_CNY='CAD'
update co_cny set AI_CNY_PRI=4 where DE_CNY='MXN'
update co_cny set AI_CNY_PRI=5 where DE_CNY='JPY'

4. Add the store safe tenders supported for the new base and alternate currencies.
For example, if EUR is the new base currency, add money order tender support for
EUR:

insert into le_tnd_str_sf
(ID_RPSTY_TND, TY_TND, TY_SB_TND, LU_CNY_ISSG_CY, TS_CRT_RCRD, TS_MDF_RCRD, ID_
CNY_ICD)
VALUES ('1','MNYO', ' ', 'EU', CURRENT_TIMESTAMP, CURRENT_TIMESTAMP, 5);

Changing Currency

8-2 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Remove the store safe tenders that are no longer supported for the old
base/alternate currency. For example, if USD if the old base currency, remove
money order tender support for USD:

delete from le_tnd_str_sf where LU_CNY_ISSG_CY = 'US' and TY_TND = 'MNYO';

5. Add exchange rate records for alternate and base currencies into the CO_RT_EXC
table based on the new base currency. Delete all exchange rate records based on
any previous base currency.

There are some application parameters that must be changed as well:

■ Tender Group:

– CashAccepted: For example, if EUR is base and GBP is alternate, make sure
that the CashAccepted parameter is changed so that EUR and GBP are
selected.

– TravelersChecksAccepted: For EUR as base and GBP as alternate, the
values for the TravelersChecksAccepted parameter should be EURCHK
and GBPCHK.

– ChecksAccepted: For EUR as base and GBP as alternate, the values for the
ChecksAccepted parameter should be EURCHK and GBPCHK.

– GiftCertificateAccepted: Change the values to reflect all the currencies
accepted (base and alternate). For example the values may be EUR and GBP,
or EUR, GBP and USD.

– StoreCreditAccepted: Change the values to reflect all the currencies
accepted (base and alternate). For example the values may be EUR and GBP,
or EUR, GBP and USD.

■ Reconciliation Group:

– TendersToCountAtTillReconcile: For EUR as base and GBP as alternate,
the values for the TendersToCountAtTillReconcile parameter should
be:

* Cash

* Check

* Credit

* Debit

* TravelCheck

* GiftCert

* Coupon

* GiftCard

* StoreCredit

* MallCert

* PurchaseOrder

* MoneyOrder

* GBPCash

* GBPTravelCheck

Configuring a New Base Currency

Changing and Configuring Currencies 8-3

* GBPCheck

* GBPGiftCert

* GBPStoreCredit

Configuring a New Base Currency
Throughout this section, Krona is used as the example new base currency that is being
configured. The Krona currency code is SEK, and the issuing country code is SE.

Currency SQL Configuration
The following SQL configurations for currency are available.

Currency Table CO_CNY
A new record describing the new currency information such as its currency code,
issuing country code and so on, must be inserted into this table.

In the base currency flag column FL_CNY_BASE, the new currency must be set to 1
indicating that it is the base. The flag for other currencies must be set to 0, indicating
that they are alternate currencies.

Example 8–1 Add Krona as Base to Currency Table CO_CNY

INSERT INTO CO_CNY
(ID_CNY_ICD, LU_CNY_ISSG_CY, CD_CNY_ISO, DE_CNY, DE_CNY_ISSG_NAT, FL_CNY_BASE, QU_
CNY_SCLE, AI_CNY_PRI)
VALUES (7,'SE', 'SEK', 'SEK', 'Sweden', '1', 2, 0);

UPDATE CO_CNY
SET FL_CNY_BASE = '0'
WHERE CD_CNY_ISO <> 'SEK';

UPDATE CO_CNY
SET AI_CNY_PRI = AI_CNY_PRI + 1
WHERE CD_CNY_ISO <> 'SEK';

Currency Denomination Table CO_CNY_DNM and I8 Table CO_CNY_DNM_I8
Denominations for the new base currency must be added to the CO_CNY_DNM and
CO_CNY_DNM_I8 tables. For example:

Example 8–2 Add Krona Denominations to Denomination Table CO_CNY_DNM

INSERT INTO CO_CNY_DNM
(ID_CNY_ICD, ID_CNY_DNM, NM_DNM, VL_DNM, CD_DNM_DPLY_PRI)
VALUES (7, 1, 'SE_50Ores', '0.50', 1);

INSERT INTO CO_CNY_DNM
(ID_CNY_ICD, ID_CNY_DNM, NM_DNM, VL_DNM, CD_DNM_DPLY_PRI)
VALUES (7, 2, 'SE_1Kronas', '1.00', 2);

Note: Point-of-Service supports base-plus-one alternate currency.
The priority column AI_CNY_PRI must be set to 0 for the new base
currency. It must be set to 1 for the supported alternate currency. For
other alternate currencies, they must be ordered and greater than 1,
but the specific order is not important.

Configuring a New Base Currency

8-4 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

INSERT INTO CO_CNY_DNM
(ID_CNY_ICD, ID_CNY_DNM, NM_DNM, VL_DNM, CD_DNM_DPLY_PRI)
VALUES (7, 3, 'SE_5Kronas', '5.00', 3);

INSERT INTO CO_CNY_DNM
(ID_CNY_ICD, ID_CNY_DNM, NM_DNM, VL_DNM, CD_DNM_DPLY_PRI)
VALUES (7, 4, 'SE_10Kronas', '10.00', 4);

INSERT INTO CO_CNY_DNM
(ID_CNY_ICD, ID_CNY_DNM, NM_DNM, VL_DNM, CD_DNM_DPLY_PRI)
VALUES (7, 5, 'SE_20Kronas', '20.00', 5);

INSERT INTO CO_CNY_DNM
(ID_CNY_ICD, ID_CNY_DNM, NM_DNM, VL_DNM, CD_DNM_DPLY_PRI)
VALUES (7, 6, 'SE_50Kronas', '50.00', 6);

INSERT INTO CO_CNY_DNM
(ID_CNY_ICD, ID_CNY_DNM, NM_DNM, VL_DNM, CD_DNM_DPLY_PRI)
VALUES (7, 7, 'SE_100Kronas', '100.00', 7);

INSERT INTO CO_CNY_DNM
(ID_CNY_ICD, ID_CNY_DNM, NM_DNM, VL_DNM, CD_DNM_DPLY_PRI)
VALUES (7, 8, 'SE_1000Kronas', '1000.00', 8);

Example 8–3 Add Krona Denominations to I8 Table CO_CNY_DNM_I8

INSERT INTO CO_CNY_DNM_I8
(ID_CNY_ICD, ID_CNY_DNM, LCL, NM_DNM)
VALUES (7, 2,'en','1 Kronas');

INSERT INTO CO_CNY_DNM_I8
(ID_CNY_ICD, ID_CNY_DNM, LCL, NM_DNM)
VALUES (7, 2,'fr','1 couronne');

Exchange Rate Table CO_RT_EXC
Add exchange rate records for alternate and base currencies into the CO_RT_EXC
table based on the new base currency. Delete all exchange rate records based on any
previous base currency. For example:

Example 8–4 Add Alternate Currency Exchange Rates to Krona

-- Delete all the existing records
Delete from CO_RT_EXC;

INSERT INTO CO_RT_EXC
(LL_CNY_EXC, DC_RT_EXC_EF, DC_RT_EXC_EP, ID_CNY_ICD, MO_RT_TO_BUY, MO_RT_TO_SL,
MO_FE_SV_EXC)
VALUES(0.00, TO_DATE('1990-01-01', 'YYYY-MM-DD'), TO_DATE('2099-12-31',
'YYYY-MM-DD'), 1, 6.3337, 6.3362, 0.00);

INSERT INTO CO_RT_EXC
(LL_CNY_EXC, DC_RT_EXC_EF, DC_RT_EXC_EP, ID_CNY_ICD, MO_RT_TO_BUY, MO_RT_TO_SL,
MO_FE_SV_EXC)

Note: For each denomination record in the CON_CNY_DNM table,
there are I8 records in the CO_CNY_DNM_I8 table, one for each
supported language.

Configuring a New Base Currency

Changing and Configuring Currencies 8-5

VALUES(0.00, TO_DATE('1990-01-01', 'YYYY-MM-DD'), TO_DATE('2099-12-31',
'YYYY-MM-DD'), 2, 6.2849, 6.2898, 0.00);

INSERT INTO CO_RT_EXC
(LL_CNY_EXC, DC_RT_EXC_EF, DC_RT_EXC_EP, ID_CNY_ICD, MO_RT_TO_BUY, MO_RT_TO_SL,
MO_FE_SV_EXC)
VALUES(0.00, TO_DATE('1990-01-01', 'YYYY-MM-DD'), TO_DATE('2099-12-31',
'YYYY-MM-DD'), 3, 0.5799, 0.5816, 0.00);

INSERT INTO CO_RT_EXC
(LL_CNY_EXC, DC_RT_EXC_EF, DC_RT_EXC_EP, ID_CNY_ICD, MO_RT_TO_BUY, MO_RT_TO_SL,
MO_FE_SV_EXC)
VALUES(0.00, TO_DATE('1990-01-01', 'YYYY-MM-DD'), TO_DATE('2099-12-31',
'YYYY-MM-DD'), 4, 12.434, 12.441, 0.00);

INSERT INTO CO_RT_EXC
(LL_CNY_EXC, DC_RT_EXC_EF, DC_RT_EXC_EP, ID_CNY_ICD, MO_RT_TO_BUY, MO_RT_TO_SL,
MO_FE_SV_EXC)
VALUES(0.00, TO_DATE('1990-01-01', 'YYYY-MM-DD'), TO_DATE('2099-12-31',
'YYYY-MM-DD'), 5, 9.3739, 9.3796, 0.00);

INSERT INTO CO_RT_EXC
(LL_CNY_EXC, DC_RT_EXC_EF, DC_RT_EXC_EP, ID_CNY_ICD, MO_RT_TO_BUY, MO_RT_TO_SL,
MO_FE_SV_EXC)
VALUES(0.00, TO_DATE('1990-01-01', 'YYYY-MM-DD'), TO_DATE('2099-12-31',
'YYYY-MM-DD'), 6, 0.05782, 0.05786, 0.00);

INSERT INTO CO_RT_EXC
(LL_CNY_EXC, DC_RT_EXC_EF, DC_RT_EXC_EP, ID_CNY_ICD, MO_RT_TO_BUY, MO_RT_TO_SL,
MO_FE_SV_EXC)
VALUES(0.00, TO_DATE('1990-01-01', 'YYYY-MM-DD'), TO_DATE('2099-12-31',
'YYYY-MM-DD'), 7, 1.0, 1.0, 0.00);

Store Safe Tender Table LE_TND_STR_SF
Add the store safe tenders supported for the new base currency. For example:

Example 8–5 Add Store Safe Tenders for Krona

INSERT INTO LE_TND_STR_SF
 (ID_RPSTY_TND, TY_TND, TY_SB_TND, LU_CNY_ISSG_CY, TS_CRT_RCRD, TS_MDF_RCRD,
ID_CNY_ICD)
 VALUES('1','CASH', ' ', 'SE', CURRENT_TIMESTAMP, CURRENT_TIMESTAMP, 7);
INSERT INTO LE_TND_STR_SF
 (ID_RPSTY_TND, TY_TND, TY_SB_TND, LU_CNY_ISSG_CY, TS_CRT_RCRD, TS_MDF_RCRD,
ID_CNY_ICD)
 VALUES('1','CHCK', ' ', 'SE', CURRENT_TIMESTAMP, CURRENT_TIMESTAMP, 7);
INSERT INTO LE_TND_STR_SF
 (ID_RPSTY_TND, TY_TND, TY_SB_TND, LU_CNY_ISSG_CY, TS_CRT_RCRD, TS_MDF_RCRD,
ID_CNY_ICD)
 VALUES('1','TRAV', ' ', 'SE', CURRENT_TIMESTAMP, CURRENT_TIMESTAMP, 7);

-- MoneyOrderSafeTender

INSERT INTO LE_TND_STR_SF
(ID_RPSTY_TND, TY_TND, TY_SB_TND, LU_CNY_ISSG_CY, TS_CRT_RCRD, TS_MDF_RCRD, ID_
CNY_ICD)
VALUES ('1','MNYO', ' ', 'SE', CURRENT_TIMESTAMP, CURRENT_TIMESTAMP, 7);

Configuring a New Base Currency

8-6 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Money Order Tenders are only accepted for base currency, therefore before inserting
records for the new base currency, delete any money order tenders for the other
currencies:

DELETE * from LE_TND_STR_SF where ty_tnd='MNYO'

Parameter Configuration
The following tender parameters must be updated to include the new base currency:

■ StoreCreditsAccepted

■ ChecksAccepted

■ CashAccepted

■ GiftCertificatesAccepted

■ TravelersChecksAccepted

The reconciliation parameter TendersToCountAtTillReconcile parameter must
include all the tenders to count for both base and alternate currencies during till
reconciliation. For example:

Example 8–6 Parameters to Support Krona as the Base and USD as the Alternate
Currency

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE SOURCE PUBLIC "SOURCE"
"classpath://com/extendyourstore/foundation/tour/dtd/paramsourcescript.dtd">
<SOURCE name="register">
<GROUP hidden="N" name="Tender">
<PARAMETER final="N" hidden="N" name="StoreCreditsAccepted" type="LIST">
<VALIDATOR class="EnumeratedListValidator"
package="oracle.retail.stores.foundation.manager.parameter">
<PROPERTY propname="member" propvalue="None"/>
<PROPERTY propname="member" propvalue="USD"/>
<PROPERTY PROPNAME="MEMBER" PROPVALUE="SEK"/>
<PROPERTY PROPNAME="MEMBER" PROPVALUE="EUR"/>
</VALIDATOR>
<VALUE value="SEK"/>
<VALUE value="USD"/>
<VALUE value="EUR"/>
</PARAMETER>
<PARAMETER final="N" hidden="N" name="ChecksAccepted" type="LIST">
<VALIDATOR class="EnumeratedListValidator"
package="oracle.retail.stores.foundation.manager.parameter">
<PROPERTY propname="member" propvalue="None"/>
<PROPERTY propname="member" propvalue="USDCHK"/>
<PROPERTY propname="member" propvalue="SEKCHK"/>
<PROPERTY propname="member" propvalue="EURCHK"/>
</VALIDATOR>
<VALUE value="SEKCHK"/>
<VALUE value="USDCHK"/>
</PARAMETER>
<PARAMETER final="N" hidden="N" name="CashAccepted" type="LIST">
<VALIDATOR class="EnumeratedListValidator"
package="oracle.retail.stores.foundation.manager.parameter">
<PROPERTY propname="member" propvalue="None"/>
<PROPERTY propname="member" propvalue="USD"/>
<PROPERTY propname="member" propvalue="SEK"/>
<PROPERTY propname="member" propvalue="EUR"/>

Configuring a New Base Currency

Changing and Configuring Currencies 8-7

</VALIDATOR>
<VALUE value="SEK"/>
<VALUE value="USD"/>
</PARAMETER>
<PARAMETER final="N" hidden="N" name="GiftCertificatesAccepted" type="LIST">
<VALIDATOR class="EnumeratedListValidator"
package="oracle.retail.stores.foundation.manager.parameter">
<PROPERTY propname="member" propvalue="None"/>
<PROPERTY propname="member" propvalue="USD"/>
<PROPERTY propname="member" propvalue="SEK"/>
<PROPERTY propname="member" propvalue="EUR"/>
</VALIDATOR>
<VALUE value="SEK"/>
</PARAMETER>
<PARAMETER final="N" hidden="N" name="TravelersChecksAccepted" type="LIST">
<VALIDATOR class="EnumeratedListValidator"
package="oracle.retail.stores.foundation.manager.parameter">
<PROPERTY propname="member" propvalue="None"/>
<PROPERTY propname="member" propvalue="USDCHK"/>
<PROPERTY propname="member" propvalue="SEKCHK"/>
<PROPERTY propname="member" propvalue="EURCHK"/>
</VALIDATOR>
<VALUE value="SEKCHK"/>
<VALUE value="USDCHK"/>
Configuring a New Base Currency
Appendix: Changing and Configuring a New Base Currency D-7
</PARAMETER>
</GROUP>
<GROUP hidden="N" name="Reconciliation">
<PARAMETER final="N" hidden="N" name="TendersToCountAtTillReconcile" type="LIST">
<VALIDATOR class="EnumeratedListValidator"
package="oracle.retail.stores.foundation.manager.parameter">
<PROPERTY propname="member" propvalue="Cash"/>
<PROPERTY propname="member" propvalue="Check"/>
<PROPERTY propname="member" propvalue="ECheck"/>
<PROPERTY propname="member" propvalue="Credit"/>
<PROPERTY propname="member" propvalue="Debit"/>
<PROPERTY propname="member" propvalue="TravelCheck"/>
<PROPERTY propname="member" propvalue="GiftCert"/>
<PROPERTY propname="member" propvalue="Coupon"/>
<PROPERTY propname="member" propvalue="GiftCard"/>
<PROPERTY propname="member" propvalue="StoreCredit"/>
<PROPERTY propname="member" propvalue="MallCert"/>
<PROPERTY propname="member" propvalue="PurchaseOrder"/>
<PROPERTY propname="member" propvalue="MoneyOrder"/>
<PROPERTY propname="member" propvalue="USDCash"/>
<PROPERTY propname="member" propvalue="USDTravelCheck"/>
<PROPERTY propname="member" propvalue="USDCheck"/>
<PROPERTY propname="member" propvalue="USDGiftCert"/>
<PROPERTY propname="member" propvalue="USDStoreCredit"/>
</VALIDATOR>
<VALUE value="Cash"/>
<VALUE value="Check"/>
<VALUE value="ECheck"/>
<VALUE value="Credit"/>
<VALUE value="Debit"/>
<VALUE value="TravelCheck"/>
<VALUE value="GiftCert"/>
<VALUE value="Coupon"/>
<VALUE value="GiftCard"/>

Configuring a New Base Currency

8-8 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

<VALUE value="StoreCredit"/>
<VALUE value="MallCert"/>
<VALUE value="PurchaseOrder"/>
<VALUE value="MoneyOrder"/>
<VALUE value="USDCash"/>
<VALUE value="USDTravelCheck"/>
<VALUE value="USDCheck"/>
<VALUE value="USDGiftCert"/>
<VALUE value="USDStoreCredit"/>
</PARAMETER>
</GROUP>
</SOURCE>

Resource Bundle Configuration
New resource bundle keys that describe the new currency, including its issuing
country, must be added to the following Point-of-Service resource bundles:

■ commonText

■ ejournalText

■ tillText

■ dailyOperationsText

■ parameterText

Example 8–7 New commonText Resource Bundle Keys

#
Supported Nationalities
Common.SE_Nationality=Swedish

#
Supported Currencies
Common.SEK=Swedish Krona

#
Supported Checks
Common.SEKCHK=Swedish Krona

#
Tender Types
#
Common.SEKCash=SEK Cash
Common.SEKCheck=SEK Check
Common.SEKTravCheck=SEK Trav. Check

Example 8–8 New ejournalText Resource Bundle Keys

JournalEntry.SEK=SEK

Example 8–9 tillText Resource Bundle Keys

SelectTenderSpec.SelectSEK=SEK

Add example for dailyOperations Resource Bundle Keys:

FinancialTotalsSummaryEntrySpec.CURRCODE_SE=SEK

Add example for parameterText Resource Bundle Keys:

Configuring a New Base Currency

Changing and Configuring Currencies 8-9

Common.SEKCash=SEK Cash
Common.SEK TravelCheck=SEK Traveler's Check
Common.SEK Check=SEK Check
Common.SEK GiftCert=SEK Gift Certificate
Common.SEK StoreCredit=SEK Store Credit
Common.SEKGiftCard=SEK Gift Card

Configuring a New Base Currency

8-10 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Returns Management 9-1

9
Returns Management

This chapter provides information on implementing Returns Management. It covers
the following topics:

■ Overview

■ Functional Overview

■ Integration Methods and Communication

■ Returns Authorization

■ Exceptions File

■ Customer Data Import

Overview
Oracle Retail Returns Management is a centralized system designed to monitor and
control the return of retail merchandise. Control is provided through a flexible set of
rules that determine if a particular item is returnable. Monitoring is provided through
pattern watches, enabling a retailer to uncover unusual return patterns indicative of
fraud, poor product quality, and so on.

At its most basic, Returns Management enables you to centralize the knowledge and
decision making of what is and what is not returnable.

Figure 9–1 Oracle Retail Returns Management Decisions Process

Returns Management is packaged as a standalone product.

Returns Management provides:

■ A flexible and configurable set of rules

■ The ability to collect differing rules into multiple policies

Overview

9-2 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

■ The ability to assign different policies to different situations (for instance, one
policy might apply to receipted items, another policy might apply to non-receipted
items)

■ A decision engine to initiate the policies

■ A defined application-program interface (API) for evaluation of returnability

■ A defined API for post-return information gathering

■ A web-based user interface for administration

Concept of a Return in Returns Management
Occasionally, a customer might buy an item from a retailer and then decide that they
no longer want the item. This could be for any number of reasons:

■ Dissatisfaction with quality

■ Finding a better price somewhere else

■ Buying the wrong size

Most retailers allow customers to return items they have purchased under certain
conditions. Conditions might include that the item was bought within the last 90 days,
that the item is in an unopened state, or that the customer has a receipt. Additionally, a
retailer might decide to charge a restocking fee, issue a return merchandise
authorization (RMA) and a call tag, provide a discount on the customer's next
purchase (in case of a quality problem), or other actions based around the return.
Finally, returns can happen at different places in a retailer, such as at a point-of-sale, a
separate returns desk, or at a remote call center.

With the act of returning, there are several steps that a retailer must go through.

■ A retailer must determine what merchandise is being returned.

■ A retailer must decide if the merchandise is returnable.

■ A retailer must record that the item was returned, which affects financial and
inventory calculations.

■ Once the retailer accepts a return, the retailer must physically move the item to
some place (such as placing it in a returns cage, or issuing pickup instructions to a
carrier in the case of a remote call center). Afterwards, the item might undergo
further actions, such as being returned to the vendor or destroyed.

Of these many aspects of the return process, Returns Management focuses mainly on
the conditions for return, sometimes referred to in this document as returnability.
Returnability is determined by the rules and policies configured in Returns
Management. Returns Management can associate metadata with return policies so
Returns Management can decide to use different policies in different situations. Each
policy has its own set of rules which define returnability for that situation, for
example, non-receipted returns might be more restrictive than receipted returns.

A policy is composed of one or more rules. Each policy has associated metadata that
enables the service layer to choose the most appropriate policy for the current item in
question.

Returns Management does not prescribe for the point-of-return, what happens before
or after a customer initiates a return, or the financial and inventory ramifications of the
returns process. Furthermore, Returns Management isolates itself from the majority of
data found in the retail enterprise and restricts itself to knowing a prescribed set of

Overview

Returns Management 9-3

facts. It is this set of facts that Returns Management uses when evaluating a policy and
determining if a product is returnable.

Returns Management has been isolated to this degree in order to make Returns
Management applicable to a wide variety of situations. As long as a point-of-return
can communicate with Returns Management, it is immaterial where that
point-of-return is located and what kind of point-of-return it is (register, returns desk,
and so forth). The point-of-return provides the majority of the data that Returns
Management needs to make its decision, so Returns Management is shielded from the
format of transaction data in a retail enterprise.

By configuring the rules and policies in Returns Management, the retailer can enforce
the same return policies across the enterprise. The return policies can be centrally
administered. Since the policies are not compiled code, they can be quickly updated.
Finally, Returns Management records the steps it makes for each decision, allowing a
customer to ask exactly why a return was accepted or declined.

As stated previously, Returns Management focuses mainly on the conditions for
return. The other main focus of Returns Management is that it keeps a record of what
was actually returned to the enterprise. This information is rolled up in both the return
ticket data (there is a ticket for each return, each ticket having one or more line items
corresponding to items on the return) as well as a list of exception activity. The
exception file records unusual activity that might be fraudulent. Using these records,
Returns Management provides decision support to the enterprise. The retail enterprise
can monitor these records to determine the volume of returns, the type of items being
returned, and patterns of fraudulent behavior.

Context Model
Figure 9–2 identifies how Returns Management exists with other existing Oracle Retail
products. Also included in the context are the actors mentioned in Table 9–1.

Overview

9-4 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Figure 9–2 Oracle Retail Returns Management Context Model

Oracle Retail Returns Management Actors
Table 9–1 lists the actors that Returns Management expects to interact with, and their
interactions. Although most of the actors are users, some items, such as the
point-of-return, are expected to interact with Returns Management without direct
human intervention.

Functional Overview

Returns Management 9-5

Tax Responsibility in Oracle Retail Returns Management
Returns Management evaluates data provided from the point-of-return as well as
centrally stored historical data and provides a recommendation to the point-of-return
for the handling of a potential return. Because Returns Management is not
transactional in nature, Returns Management has no tax responsibility. All of the tax
responsibility belongs to the point-of-return when the return transaction is created and
processed.

Functional Overview
This chapter addresses the functional aspects of Returns Management and provides
the following:

■ Conceptual Service Flow

■ Conceptual Service Flow

■ Functional Assumptions

■ Functional Overviews

Table 9–1 Oracle Retail Returns Management Actors

STORE CORPORATE

Sales
Associate

Point-of-
return

Store
Manager

Business
analyst

Customer
Service
Rep

Loss
Prevention
Specialist

Software
Developer

Request
return

X NA NA NA NA X NA NA

Update
return
information

NA X NA NA NA NA NA NA

Develop
return
policies

NA NA NA NA X NA NA X

Monitor
exception
behaviors

NA NA X NA NA NA X NA

Monitor
what is
being
returned

NA NA X NA X NA X NA

Audit a
specific
returns
decision

NA NA NA NA X X NA NA

Note: Returns Management operates using a single default currency.
If operations require using multiple currencies, it is the responsibility
of the point-of-return to convert from any other currencies to the
single default currency being used by the system. Returns
Management does not provide services for the conversion of currency
from one form to another.

Functional Overview

9-6 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Conceptual Service Flow
Figure 9–3 illustrates the steps in a typical Returns Management session, including
which steps are initiated by Returns Management and which steps are initiated by the
point-of-return (the point at which a return is initiated, for example, a cashier at a
retailer).

Figure 9–3 Oracle Retail Returns Management Conceptual Service Flow

The following sequence is a typical Returns Management round-trip session:

1. A point-of-return initiates a merchandise return.

2. A message is sent from the point-of-return to the Returns Management system
indicating the item to be returned, if the customer has a receipt, and possibly other
data. See "Point-of-Return to Returns Management—Initial Return Request".

3. Returns Management chooses which policy to initiate. A policy is comprised of
one or more rules, and each policy has associated metadata that enables the
service layer to choose the most appropriate policy for the current item in
question. See the Oracle Retail Returns Management User Guide.

Note: This flowchart is a simplified representation of the service flow
and does not attempt to explain the technologies used to implement
Returns Management.

Functional Overview

Returns Management 9-7

4. Returns Management gathers together relevant server-side historical information,
such as entries related to the customer in the exception file.

5. The policy might require additional data from the point-of-return, such as a
positive ID from the customer. In this case, a message is sent back to the
point-of-return asking for the additional data. See "Returns Management to
Point-of-Return—Initial Return Response: Need Positive ID".

6. The policy decides if the item is returnable or not. Returns Management informs
the point-of-return of its decision, and provides a tender recommendation.

The point-of-return ultimately decides to accept the return or not. For example,
Returns Management might say that an item is non-returnable, but a local
manager might override that decision. A local manager can also ignore a tender
recommendation.

7. The point-of-return informs Returns Management of its decision. See
"Point-of-Return to Returns Management—Return Result from Second Response".

8. Returns Management uses information from the point-of-return to update its
historical records such as the exception file. The exception file acts as a constantly
evolving knowledge base that can help the analytic engine decide which
customers, items, cashiers, or stores are at higher risk for return fraud.

Conceptual Data Flow
To understand how the various modules relate to each other at run time, imagine the
flow of data through the system.

■ The four main processes (return request, return results, policy administration, and
auditing) operate on an intersecting set of data.

■ Return requests are sent to Returns Management and cause return tickets to be
created and rules to be read.

■ Rule initiation creates entries in the audit log.

■ Return responses are sent back to the point-of-return.

■ Return results update existing return tickets, and create entries in the exception
file.

Policy administration enables the creation and maintenance of policies. See the Oracle
Retail Returns Management User Guide.

 Auditing applications read the audit entries created during the evaluation phase.

Figure 9–4 shows the four main processes and the flow of the data that they create and
consume.

Note: The Rules and Policy Maintenance interface is shown as
directly updating the policy rules using Create, Read, Update, Delete
(CRUD).

Functional Overview

9-8 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Figure 9–4 Oracle Retail Returns Management Conceptual Data Flow

Functional Assumptions
■ Though Returns Management needs to be informed of returns performed, it is not

a requirement that the point-of-return itself informs Returns Management. This
means that this information can be conveyed by a separate process, such as a
scheduled transaction parsing routine. This also means that the point-of-return
does not need to have direct access to the process final result API of Returns
Management.

■ The historical data read by Returns Management at the beginning of a return
request is the data that is updated by the return information delivered after a
successful return.

■ The historical data recorded by Returns Management is not the same as purely
transactional data, for example, POSLog. The historical data is data that reflects
inferred customer behavior, such as too many returns over a specified amount of
time.

■ The retail transaction data is read by the point-of-return, not by Returns
Management.

Functional Overview

Returns Management 9-9

Functional Overviews
The following are different functional overviews.

Return Tickets Functional Overview
Return tickets enable an operator to inquire about the particulars of a specific return
approval or denial. A return ticket is any attempt by a customer to return one or more
items, from one or more originating transactions or from no identifiable transaction.
The return ticket carries a unique identifier that can consist of the store number and
workstation ID from which the return attempt occurs, an eight-digit date in
MMDD-YYYY format, and sequence number. The operator can search for a return
ticket by the unique identifier or other information, such as cashier, customer, or item
information.

The operator can be a loss prevention operator researching potentially fraudulent
return activity, or a customer service person researching why a particular customer’s
return was denied.

Exception Files Functional Overview
The Returns Management exception file is created and maintained by Returns
Management for use in detecting and preventing fraud at the point-of-return. The
exception file acts as a constantly evolving knowledge base that can help the
authorization engine decide which customers or cashiers are at higher risk for return
fraud.

Exceptions are instances of a behavior that a retailer has selected to track for a
customer or cashier. The exception file holds an exception counter for a customer; the
exception counter is incremented based on suspicious return activity. If a return
activity is selected for inclusion in the exception counter, the system increments the
exception count for each suspicious shopping activity. Likewise, return activities can
be configured for cashiers.

When an exception occurs, a record is written to the exception file and the activity is
available for research on that customer or cashier using the exception inquiry search
and display screens. All exceptions are based on return ticket data.

Exception counts are based on real-time refund attempt activities occurring at the
point-of-return, using the return result message that is sent by the point-of-return to
Returns Management at the conclusion of a transaction with an attempted refund.
Return activities include activities that increment counters such as a return transaction
by the customer without a receipt and with no retrieval of the original transaction, five
same-day returns as purchases within the last three days, and three returns today. In
turn, normal activity levels might be exceeded and counting generated based on those
counters.

Messages and Responses Functional Overview
The message and response component of Returns Management includes the messages
sent from the point-of-return that might trigger action in Returns Management and an
appropriate response message. Returns Management communicates with brick and
mortar, e-commerce, and call center point-of-return environments using a messaging
interface to receive return authorization requests, use retailer-defined return policies to
determine authorization or denial of items and valid return tenders, and respond with
the applicable approval or denial code.

Functional Overview

9-10 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Policies and Rules Functional Overview
A return policy consists of multiple rules that ask a question about an attempted
return. The retailer sets the order in which the rules are evaluated upon a return. The
retailer determines the action to take based on the answer to the question. The action
taken based on the answer to the question is:

■ Continue

■ Continue At Rule Number

■ Stop Processing

Analytic Engine Functional Overview
The following is an overview of the analytic engine.

Configuration A return policy consists of multiple rules that ask a question about an
attempted return, such as some of the following:

■ Does the customer have a receipt?

■ Is the item serialized?

■ Does the serial number on the item being returned match the serial number of the
item as originally purchased?

■ What is the customer’s cumulative exception count?

■ What is the condition of the item?

The retailer sets the order in which the rules are evaluated upon a return.

The retailer determines through the front end the action to take based on the answers
to the questions.

The answer can be Yes or No (Boolean), a certain numeric or currency number
(Range), or one possible response from a valid list of responses (Discrete), based on the
type of question being asked. For example, "Does the customer have a receipt?" has a
Yes or No response. "What is the customer’s cumulative exception count?" has a
numeric response that would fall within a range configured by the retailer. "What is
the condition of the item?" maps to a response chosen by the point-of-return operator,
such as one of the following:

■ Excellent

■ Good

■ Fair

■ Poor

■ Open Box

■ Damaged

■ Used

The analytic engine uses one of these items to decide returnability.

The action taken based on the answer to the question is one of the following:

■ Continue—Check the next rule within the policy.

■ Continue At Rule Number—Check a particular rule within the policy and then
continue.

■ Stop Processing—Do not continue checking rules. Processing complete.

Functional Overview

Returns Management 9-11

Response Codes The retailer can set a configurable response code to be returned with
every action. Response codes consist of a required positive numeric code, response
type, response priority within that type, short description, and an optional long
description that can be used for scripting customer service responses to customer
inquiries. The response type for each response code is selected from the following,
which are listed in priority order:

■ Denial.

■ Manager Overridden Denial—The engine has denied the item but the denial can
be overridden at the point-of-return by a properly authorized user.

■ Contingent Authorization—The engine has approved the item contingent upon
capture of an override at the point-of-return by a properly authorized user.

■ Authorization.

Response codes are prioritized within response types. No two response codes of the
same response type can have the same priority. As the analytic engine evaluates policy
rules, the system holds the highest priority response code within that response type as
the response, until a rule resulting in a higher response type, with a higher priority,
supersedes it, thus the retailer can control whether the most favorable or least
favorable response is returned to the point-of-return.

Tender Determination The retailer also determines the tenders that are enabled for a
return. When the response is Continue or Continue At Rule Number, the tenders set
for the rule carry forward until they are superseded by the response to a following
rule. If there is no following rule that must be evaluated, then the tenders collected as a
response to that rule are the available tenders that are returned to the point-of-return
in the response message.

Collection of Customer Demographics An indicator can be set on a policy rule response
that indicates positive ID is required in order to check this rule, and the policy cannot
be evaluated unless the positive ID is obtained and the exception file checked. In this
case, an additional call to Returns Management is made, for another evaluation once
customer positive ID is obtained.

Determination of the Policy for Use on a Return Attempt The collection of rules (policy) is
assigned to a combination of location (node of the store reporting hierarchy, ad hoc
store groups, or individual stores) and items, which can be designated by item or
merchandise hierarchy. When a return is attempted at a point-of-return, the system
determines the appropriate policy to apply based on the item being returned and the
store where the return is being performed. The item designation supersedes the store
designation in the case where two policies might otherwise be equivalent.

Two default policies must be defined for the analytic engine to use:

■ Receipted items

■ Non-receipted items

Exception policies can then be set to cover specific items, such as serialized items that
include warranties, or articles of clothing that cannot be returned under any condition.
When the system does not find a policy applying specifically to the line item being
returned, the system falls back to the appropriate default receipted or non-receipted
policy to evaluate returnability.

When the returnability has been determined based on the appropriate policy, the
system checks for any other items that the customer is attempting to return at that
time. When the responses have been determined for all items in the attempted return,

Integration Methods and Communication

9-12 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

the system sends the return response message with the evaluation results for the
attempted return. The response for an attempted line item return includes a response
code and description that are determined by the retailer.

The point-of-return can then use the response information to control flow to complete
the return, such as prompting for a manager override, presenting the enabled tenders,
or displaying information for why a return is not allowed.

Customer Service Overrides Customer service overrides are granted to a customer using
the Customer Exception Details screen. The presence of a customer service override for
a particular positive ID is checked at the end of return engine evaluation if any line
item evaluates to a Manager Overridden Denial, or Denial. Customer service overrides
are associated and used with a return ticket. If the return ticket is subsequently voided,
the customer service override is considered unused and might be used with a
subsequent return authorization. If more than one customer service override exists, the
system applies them to the return in order from oldest to newest, by date.

Customer service overrides can consist of more than one allowed return within an
override. The Max Customer Service Overrides parameter limits the number of
allowed returns within the override and the total number of overrides granted to a
customer.

Integration Methods and Communication
The main integration point of Returns Management is with an external point-of-return.
To communicate between the systems, Returns Management provides methods which
accept and return messages in a predefined format. This chapter discusses the
methods and the messages. This chapter also discusses some of the implications of the
chosen implementations.

Methods of Contact
Returns Management has two primary methods of contact with the point-of-return:

■ The point-of-return requests return authorization from Returns Management
(evaluation).

■ The point-of-return notifies Returns Management of what was actually returned
(exception tracking).

Both of these methods use XML messages. The call to evaluation is a synchronous call
that returns a separate XML message. The call to scoring is an asynchronous call.

Returns Management Messages
The three messages defined by Returns Management are:

■ Return Authorization Request

■ Return Authorization Response

■ Return Result

The return authorization request is passed from the point-of-return to Returns
Management when evaluation is invoked. The return authorization response is
returned by Returns Management to show the result of evaluation. The return result is
passed by the point-of-return to Returns Management to initiate scoring.

Integration Methods and Communication

Returns Management 9-13

This section describes the integration of Returns Management with an external
point-of-return, using an example transaction and sample XML messages that are sent
between the point-of-return and Returns Management.

To more clearly illustrate the XML messages, this chapter provides a scenario of a
customer returning items under different situations. Each situation has a sample of the
XML message with details around each element in the XML. There is a sample XML
file for each of the three basic messages:

■ Return Authorization Request

■ Return Authorization Response

■ Return Result

Each of these messages has a corresponding XSD that defines the valid XML for each
message.

Sample XML for Return Transaction Scenarios
John Smith wants to return some sporting equipment he has purchased. This example
examines the message sent from the point-of-return to Returns Management when he
first wants to return the items. Returns Management responds by asking for the
positive ID. A second return request is made from the point-of-return to Returns
Management with the additional ID information. Returns Management then responds
with its decision.

The customer decides he wants to return the items. Then, for whatever reason, the
return is voided. Finally, the customer decides to re-return the items when Returns
Management is offline.

All XSDs referenced are provided in the Returns Management installation material.
Table 9–2 identifies XSD file locations within the install package.

Point-of-Return to Returns Management—Initial Return Request
In this scenario, John Smith has decided he wants to return some baseballs. He goes to
the point-of-return which emits the following message:

Example 9–1 Initial Return Authorization Request

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<RetAuthDesc
 xmlns:ns2="http://www.oracle.com/retail/integration/base/bo/TransIdDesc/v1"
 xmlns="http://www.oracle.com/retail/integration/base/bo/RetAuthDesc/v1"
 xmlns:ns4="http://www.oracle.com/retail/integration/base/bo/RetMsgExtDesc/v1"
 xmlns:ns3="http://www.oracle.com/retail/integration/base/bo/RetTendTypeDesc/v1"
 xmlns:ns5="http://www.oracle.com/retail/integration/base/bo/RetItemIdentDesc/v1"
 xmlns:ns6="http://www.oracle.com/retail/integration/base/bo/RetStoreLangDesc/v1"
 xmlns:ns7="http://www.oracle.com/retail/integration/base/bo/RetAuthResDesc/v1"

Table 9–2 XSD Locations

Document Name Location

Return Authorization
Request

Retail-public-payload-java-beans.jar/META-INF/xsd/retail/integr
ation/base/bo/RetAuthDesc/v1/RetAuthDesc.xsd

Return Authorization
Response

Retail-public-payload-java-beans.jar/META-INF/xsd/retail/integr
ation/base/bo/RetAuthResDesc/v1/RetAuthResDesc.xsd

Return Result Retail-public-payload-java-beans.jar/META-INF/xsd/retail/integr
ation/base/bo/RetResultDesc/v1/RetResultDesc.xsd

Integration Methods and Communication

9-14 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

 xmlns:ns8="http://www.oracle.com/retail/integration/base/bo/RetResultDesc/v1">
 <ReturnRequest>
 <ItemReturnInfo>
 <ItemTransactionInfo>
<receipted>false</receipted>
<TransactionId>
 <ns2:TransIdDesc>
 <ns2:store_id> 12345 <ns2:store_id>
<ns2:workstation_id> 124 <ns2:workstation_id>
<ns2:sequence_number> 2 <ns2:sequence_number>
<ns2:business_date>2005-12-31</ns2:business_date>
</ns2:TransIdDesc>
 </TransactionId>
 <found>true</found>
 <valid_at_point_of_return>true</valid_at_point_of_return>
 <gift_receipt>false</gift_receipt>
 <purchase_date>2005-12-3100</ purchase_date>
 <delivery_date>2006-01-01</delivery_date>
 <validation_amount>40.00</validation_amount>
 <OriginalTender>
 <ns3:RetTendTypeDesc>
 <ns3:type>CASH</ns3:type>
 <ns3:amount>12.00</ns3:amount>
 </ns3:RetTendTypeDesc>
 <ns3:RetTendTypeDesc>
 <ns3:type>CRDT</ns3:type>
 <ns3:amount>38.00</ns3:amount>
 <ns3:card_number>2642</ns3:card_number>
 </ns3:RetTendTypeDesc>
 <OriginalTender>
 <sale_quantity>10</sale_quantity>
 </ItemTransactionInfo>
 <ns5:RetItemIdentDesc>
 <ns5:item_id>40020002</ns5:item_id>
 <ns5:item_type>Stock</ns5:item_type>
 <ns5:item_description>MLB Baseball</ns5:item_description>
 </ns5:RetItemIdentDesc>
 <return_reason> Customer Satisfaction </return_reason>
 <quantity>10.00</quantity>
 <amount_paid_per_unit>4.00</amount_paid_per_unit>
 <item_condition>Damaged</item_condition>
 <requested_adjusted_price>4.00</requested_adjusted_price>
 <manually_entered>false</manually_entered>
</ItemReturnInfo>
<return_store_id>04241</return_store_id>
<return_workstation_id>123</return_workstation_id>
<return_business_date>2013-03-04T00:00:00-06:00</return_business_date>
<return_date>2013-03-14T05:49:30.700-06:00</return_date>
<employee_id>20051</employee_id>
<currency_iso_code>USD</currency_iso_code>
 <ns6:RetStoreLangDesc>
<ns6:store_locale>en</ns6:store_locale>
<ns6:operator_locale>en</ns6:operator_locale>
<ns6:receipt_locale>en</ns6:receipt_locale>
 </ns6:RetStoreLangDesc>
 <RetCustomerInfo>
 <customer_id>80012</customer_id>
 <RetCustomerInfo>
 <transaction_type>Return</transaction_type>
 </ReturnRequest>

Integration Methods and Communication

Returns Management 9-15

</RetAuthDesc>

The entire request has a root element of <RetAuthDesc>.

The following sub- elements, unless specified otherwise, are of type String and are
required.

<ItemReturnInfo> complex type
Each return request is based around returning a discrete number of items. Each unique
type of item has a corresponding itemReturnInfo element. This means that if a
customer is returning ten baseballs and two bats, then there are two itemReturnInfo
elements, not twelve.

<ItemTransactionInfo> complex type, sub-element of <ItemReturnInfo>
This complex type describes the transaction during which the item was originally
purchased.

<receipted> Boolean, sub-element of <ItemTransactionInfo>
This Boolean element tells Returns Management whether the customer has a receipt
for this item. Non-receipted returns are allowed, but can trigger a different return
policy.

<TransactionID>, optional, complex type, sub-element of <ItemTransactionInfo>
This complex type identifies the ARTS-compliant transaction of the original purchase,
if any.

<store_Id>, <workstation_Id>, <sequence_number>, <business_date>, sub-elements
of <TransactionIdDesc>
These elements correspond to the parts of the ARTS-compliant transaction ID.

<found> Boolean, sub-element of <ItemTransactionInfo>
This Boolean element tells Returns Management if the transaction ID from the
<transactionID> element was found. This element exists because it is possible to have
a transaction number, for example, from a receipt, that is not found by the
point-of-return when it queries existing transaction data. This element is required, but
is only relevant if there is a transaction ID. If there is no <transactionID> element, this
value should be set to false.

<valid_at_point_of_return> Boolean, sub-element of <ItemTransactionInfo>
This Boolean element tells Returns Management if the transaction ID from the
<transactionID> element is considered valid by the point-of-return. Any transaction ID
that is found should set this value to true. If the ID is not found, the point-of-return
should decide if the transaction ID appears to be legitimate and set this value
accordingly.

<gift_receipt> optional, Boolean, sub-element of <ItemTransactionInfo>
This Boolean element tells Returns Management if the receipt presented at the
point-of-return is a gift receipt. This element should not be included in the message if
the <receipted> element is false.

Note:

The sequence number is a positive integer and the business date is a date.

The store ID and workstation ID of these elements do not need to match the
store ID and workstation ID of <returnStoreID> and <returnWorkstationID>.
Therefore, the item can be purchased at one store and returned at another.

Integration Methods and Communication

9-16 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

<purchase_date>, <delivery_date>, optional, date, sub-element of
<ItemTransactionInfo>
These date elements refer to the purchase and delivery dates of the item being
returned, respectively. If this data cannot be determined at the point-of-return, these
elements should be omitted.

<purchase_date>, <delivery_date>, optional, date, sub-element of
<ItemTransactionInfo>
This optional element represents the dollar amount of the items being returned. This is
only included when there is no found transaction but there is a valid transaction ID.
This could happen if, for example, a customer has a receipt with a transaction number
and amount on it, but the point-of-return cannot find the transaction in storage.

<OriginalTender >, complex type, sub-element of <ItemTransactionInfo>
This complex type represents the original tenders used to purchase these items.
Though this type is required, the list of original tenders can be empty, for example, for
a non-receipted, non-transaction ID return.

<RetTendTypeDesc >, optional, complex type, sub-element of <OriginalTender>
For each original tender that the point-of-return knows about, there is a tender type
entry.

<type>, <amount>, <card_number>, sub-elements of < RetTendTypeDesc >
These three elements describe the tender used. The <type> element is the only
required element and is expected to match the standard four letter Oracle Retail tender
types, for example, CASH. The <amount> element is an optional decimal value. The
<cardNumber> element is listed as optional, but should be filled in with the
appropriate card number if the tender type is CRDT.

<sale_quantity>, optional, decimal, sub-element of <ItemTransactionInfo>
This element represents the original quantity of items sold to the customer. A customer
might want to return only one out of ten items they have bought. This original sale
quantity is compared to previous returns Returns Management knows about. If the
sum of items from previous returns plus the items from this return is greater than the
sale quantity, Returns Management can flag and deny this return attempt.

<itemIdentifier> sub-element of <ItemReturnInfo>
This complex type identifies which item is being returned.

<item_id>, <item_description> sub-elements of <RetItemIdentDesc>
Returns Management relies on the <itemID> when referring to an item that it can look
up in the AS_ITM table of the Oracle Retail data model. Though the XSD enables
<itemDescription> to be included, it is unused by the code.

<item_type> optional, sub-element of <RetItemIdentDesc >
The <itemType> element describes the type of the item as evaluated by
ItemTypeEvaluator. The user interface uses the ItemTypes parameter. The
point-of-return and Returns Management must agree on valid values for this element.

Note: There might be no tender type entries (for example, for
non-receipted returns), one entry, or many entries (for a split-tender
scenario, such as an item that was bought partially with a gift card
and partially with cash).

Integration Methods and Communication

Returns Management 9-17

<return_reason>, sub-element of <ItemReturnInfo>
The reason for which the item is being returned. This required element is used by the
class ReturnReasonEvaluator. Based on the text provided here, the evaluator can
choose various responses during policy initiation. The user interface uses the
ReturnReasons parameter. The point-of-return and Returns Management must agree
on valid values for this element.

<quantity>, decimal, sub-element of <ItemReturnInfo>
This is the quantity being returned. Non-unitary units of measure, for example, feet,
should be expressed in a decimal format, such as 1.5 feet for 18 inches.

<amount_paid_per_unit>, decimal, optional, sub-element of <ItemReturnInfo>
The amount paid per item on this return.

<serial_number>, optional, sub-element of <ItemReturnInfo>
This element is currently unused by Returns Management.

<requested_adjusted_price>, optional, decimal, sub-element of <ItemReturnInfo>
This element is set to the price at which the point-of-return wants to return the item.
For instance, the point-of-return might request to return the item for less than the
original sales price. This value is compared to the original price in
PriceAdjustmentAmountEvaluator class. That rule initiates different actions
depending on the ratio of the adjusted price to the original price per unit.

<item_condition>, optional, sub-element of <itemReturnInfo>
This element reflects the condition of the item. This value is used by the
ItemConditionEvaluator class. Like the <returnReason> element, the legal values for
this element need to be agreed upon by the point-of-return and Returns Management.
The user interface uses the ItemConditions parameter. The point-of-return and Returns
Management must agree on valid values for this element.

<manually_entered>, Boolean, sub-element of <itemReturnInfo>
This required Boolean element denotes if the information in the <transactionID>
element was manually entered at the point-of-return. This element should be false if
there is no transaction ID.

<return_store_id>, <return_workstation_id>, <employee_id>
These are the IDs of the store, workstation, and employee that are initiating the return,
respectively. The employee ID is used for tracking cashier exceptions and is expected
to correspond to an entry into the Oracle Retail employee table.

<customer_type>, optional
This element type is optional for loyalty. This value is used by the
CustomerTypeEvaluator class.

<CustomerInfo>, <MoreCustomerInfo>
These complex element types represent information about the customer returning the
items.

<customer_id>, sub-element of <CustomerInfo>
The <customer_id> element corresponds to the Oracle Retail customer ID.

Note: Only one of these info types can be present in the return
request.

Integration Methods and Communication

9-18 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

<transaction_type>
The <transaction_type> element corresponds to the type of return requested by the
point-of-return. Valid values are defined by the parameter RefundTypes. The
point-of-return and Returns Management must agree on valid values for this element.
This parameter is defined in returnsmgmt.xml. Default values are:

■ Return

■ Layaway_Cancellation

■ Order_Cancellation

■ Price_Adjustment

Returns Management to Point-of-Return—Initial Return Response: Need Positive ID
After the initial return request has been submitted, Returns Management determines
that it needs a positive ID from the customer. Returns Management responds,
indicating that the point-of-return should obtain the ID from Mr. Smith.

Example 9–2 Return Authorization Response Requesting Positive ID

<ns7:RetAuthResDesc
xmlns:ns2="http://www.oracle.com/retail/integration/base/bo/TransIdDesc/v1"
xmlns="http://www.oracle.com/retail/integration/base/bo/RetAuthDesc/v1"
xmlns:ns4="http://www.oracle.com/retail/integration/base/bo/RetMsgExtDesc/v1"
xmlns:ns3="http://www.oracle.com/retail/integration/base/bo/RetTendTypeDesc/v1"
xmlns:ns5="http://www.oracle.com/retail/integration/base/bo/RetItemIdentDesc/v1"
xmlns:ns6="http://www.oracle.com/retail/integration/base/bo/RetStoreLangDesc/v1"
xmlns:ns7="http://www.oracle.com/retail/integration/base/bo/RetAuthResDesc/v1"
xmlns:ns8="http://www.oracle.com/retail/integration/base/bo/RetResultDesc/v1">
<ns7:ReturnResponse>
<ns7:return_ticket_id>04241-123-1025-2006-005021791</ns7:return_ticket_id>
<ns7:response_approve_deny_code>Denial</ns7:response_approve_deny_code>
<ns7:ItemReturnResponse>
 <ns5:RetItemIdentDesc>
 <ns5:item_id>40020002 <ns5:item_id>

Note: This element is different from the Returns Customer ID in the
Returns Management customer table, which is keyed off of positive
ID.

Note: The following positive ID types are supported in the base
integration between the point-of-return and Returns Management:

■ Driver's License

■ Passport

■ Military ID

■ State/Region ID

■ Student ID

■ Resident Alien ID

Any other positive ID types set up in the point-of-return are not
supported in the base integration between the point-of-return and
Returns Management.

Integration Methods and Communication

Returns Management 9-19

 </ns5:RetItemIdentDesc>
 <ns7:response_code>10</ns7:response_code>
<ns7:approve_deny_code>Denial</ns7:approve_deny_code>
<ns7:ResponseDescription>
<ns7:ShortResponseDesc>
 <ns6:RetStoreLangDesc>
 <ns6:store_locale>Denied</ns6:store_locale>
 <ns6:operator_locale>Denied</ns6:operator_locale>
 <ns6:receipt_locale>Denied</ns6:receipt_locale>
 </ns6:RetStoreLangDesc>
 </ns7:ShortResponseDesc>
 <ns7:LongResponseDesc>
 <ns6:RetStoreLangDesc>
 <ns6:store_locale>Insufficient Quantity</ns6:store_locale>
 <ns6:operator_locale>Insufficient Quantity</ns6:operator_locale>
 <ns6:receipt_locale>Insufficient Quantity</ns6:receipt_locale>
 </ns6:RetStoreLangDesc>
 </ns7:LongResponseDesc>
</ns7:ResponseDescription>
 <ns7:RefundTenders>
 </ns7:RefundTenders>
</ns7:ItemReturnResponse>
</ns7:ReturnResponse>
</ns7:RetAuthResDesc>

The entire request has a root element of <RetAuthResDesc>.

The following sub- elements, unless specified otherwise, are of type String and are
required.

<return_ticket_id>
This element refers to the return ticket created by Returns Management. The
point-of-return needs to use this element in future communications with Returns
Management about this return (for example, in response to a request for positive ID or
when sending a final result).

<response_approve_deny_code>
If there are multiple item responses, then the most cautious <approve_deny_code>
value is used.

There are exceptions to the behavior of this element. If a current entry is found in the
customer service override table (RM_CT_SV_ORD) that matches this Returns
Management customer and is active for the same date as the return, and the response
would be a denial, then this value is set to Approved and the optional
<availableCustomerServiceOverride> element is set.

<RetStoreLangDesc>
This element informs the client in which language the <ShortResponseDesc>,
<LongResponseDesc>, <ReceiptMessageDesc>, and other elements are sent. Currently,
this is always en_US for English.

<ItemReturnResponse>, complex type
This element contains the detailed information about each of the items to which
Returns Management is responding. There can be many of these elements in a
transaction.

<itemIdentifier>, complex type, sub-element of <ItemReturnResponse>
This complex type identifies which item is being returned.

Integration Methods and Communication

9-20 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

<response_code>, <approve_deny_code>, <ResponseDescription> sub-elements of
<ItemReturnResponse>
Returns Management has a response associated with each item. These response codes
are configured by the rule actions of the policy that Returns Management chose to
execute. The codes are contained in the table RM_RSPS_RC.

The three values here correspond to the ID_RPSS_RC, TY_RSPS, and DE_RSPS
respectively. The <response_code> element itself is an integer that corresponds to an
ID of a response code. The <approve_deny_dode> is one of Denial, Mgr Overridable
Denial, Contingent Authorization, or Authorization. The <ShortResponseDesc> is
the short description of the response. Though these fields are required, in the message
they can be ignored by the point-of-return since the <customer_info_required>
element is true.

<customer_info_required>, optional, Boolean, sub-element of
<ItemReturnResponse>
If this value is set to true, Returns Management is asking the point-of-return to prompt
for Encrypted Positive ID. If this value is not present the point-of-return should
assume that it is false.

Point-of-Return to Returns Management—Second Return Request
Once the point-of-return has gotten a positive ID for Mr. Smith, it returns that
information to Returns Management along with the data from the original return
request.

Example 9–3 Second Return Authorization Request

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
RetAuthDesc
xmlns:ns2="http://www.oracle.com/retail/integration/base/bo/TransIdDesc/v1"
xmlns="http://www.oracle.com/retail/integration/base/bo/RetAuthDesc/v1"
xmlns:ns4="http://www.oracle.com/retail/integration/base/bo/RetMsgExtDesc/v1"
xmlns:ns3="http://www.oracle.com/retail/integration/base/bo/RetTendTypeDesc/v1"
xmlns:ns5="http://www.oracle.com/retail/integration/base/bo/RetItemIdentDesc/v1"
xmlns:ns6="http://www.oracle.com/retail/integration/base/bo/RetStoreLangDesc/v1"
xmlns:ns7="http://www.oracle.com/retail/integration/base/bo/RetAuthResDesc/v1"
 xmlns:ns8="http://www.oracle.com/retail/integration/base/bo/RetResultDesc/v1">
<ReturnRequest>
 <ItemReturnInfo>
 ...
 </ItemReturnInfo>
 <return_store_id>04241</return_store_id>
 <return_workstation_id>123</return_workstation_id>
 <employee_id>20051</employee_id>
 <MoreCustomerInfo>
 <last_name>Smith</last_name>
 <first_name>Carlos</first_name>
 <middle_name>Juan</middle_name>
 <gender>Male</gender>
 <birth_date>1972-06-25</birth_date>

Note: Returns Management sets the <item_id> sub-element only.

Note: The <itemreturnInfo> content is the same as in Example 9–3
and has been left out for brevity.

Integration Methods and Communication

Returns Management 9-21

 <address1>1234 Example Blvd</address1>
 <address2/>
 <city>Miami</city>
 <state>FL</state>
 <postal_code>33056</postal_code>
 <country>US</country>
 <telephone_local_number>5551212</telephone_local_number>
 </MoreCustomerInfo>
 <PositiveId>
 <id>12345678</id>
 <type>DriversLicense</type>
 <issuer_country>US</issuer_country>
 <issuer_state>US</issuer_state>
 <issued>2004-01-01</issued>
 <expiration>2007-01-01</expiration>
 </PositiveId>
 <transaction_type>Return</transaction_type>
 <returnTicketID>04241-123-1025-2006-005021791</returnTicketID>
</ReturnRequest>
</RetAuthDesc>

The entire request has a root element of <RetAuthDesc>.

Returns Management works with two different customer data stores. The first data
store is the Returns Management customer data store, which is keyed off of positive
IDs. This is the set of customers used for exception tracking. The second data store is
the standard Oracle Retail customer data store. Returns Management attempts to link
customers for which it has a positive ID to customers in the Oracle Retail customer
data store, creating customers if necessary.

For purposes of the Returns Management customer, only the <PositiveId> element is
relevant. Returns Management either looks up or creates the customer corresponding
to the positive ID. For the Oracle Retail customer, there are two elements which matter:
<customer_id> (underneath <CustomerInfo>) and <MoreCustomerInfo>. If the
<customer_id> is passed in, Returns Management assumes that this is the Oracle
Retail customer relevant to the message. If the <customer_id> element is absent, and
both the <PositiveId> and the <MoreCustomerInfo> elements are present, then
Returns Management not only looks up or creates the Returns Management customer,
but it also creates a new Oracle Retail customer and associates it with the Returns
Management customer.

These examples are contrived to display the <CustomerInfo> and
<MoreCustomerInfo> elements. In the first message, the point-of-return had a valid
customer ID. In this message, the XML is constructed to imply that Returns
Management should create a new customer matching the positive ID. In a real usage
scenario, if the point-of-return knew the Oracle Retail customer but just needed to
collect positive ID, the point-of-return would send the <CustomerInfo> element again
rather than the <MoreCustomerInfo> element.

<MoreCustomerInfo>, optional, complex type
This element contains the information necessary to create an Oracle Retail customer.

<last_name>, <first_name>, sub-elements of <MoreCustomerInfo>
These elements contain the last and first names (respectively) of the new Oracle Retail
customer.

Integration Methods and Communication

9-22 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

<middle_name>, <gender>, <birth_date>, optional, sub-elements of
<MoreCustomerInfo>
These optional elements contain the middle name, the gender, and the birth date of the
new Oracle Retail customer. Notice that these elements are all strings, including birth
date. Also notice that the gender element is constrained to either male or female.

<address1>, <address2> sub-elements of <MoreCustomerInfo>
These elements correspond to the usual two address lines of a customer. In this
example, though <address2> is present, it is blank.

<city>, <state>, <postal_code>, sub-elements of <MoreCustomerInfo>
These elements are further parts of the customer address. In the US, the state and
postal code would correspond to the state and zip code. In Canada, they would
correspond to the province and postal code.

<country>, optional, sub-element of <MoreCustomerInfo>
This element corresponds to the country in which the customer resides.

<telephone_area_code>, <telephone_local_number>, optional, sub-elements of
<MoreCustomerInfo>
These two optional elements reflect the telephone number and area code. For a
number such as 888-555-1212, the 888 would be in the <telephone_area_code> element
while the 5551212 would be in the <telephone_local_number> element.

<PositiveID>, complex type
Positive ID refers to a customer presenting credentials (such as a driver’s license) to
authenticate their identity. The positive ID is used to reference the Returns
Management customer. This element encodes information about the type of positive
ID gathered by the point-of-return. See above for a discussion of the Returns
Management customer versus the Oracle Retail customer.

<id>, sub-element of <PositiveID>
The unique identifier on the positive ID which should be an encrypted value.

<type>, sub-element of <positiveID>
The type of identification presented. Valid types are DriversLicense, MilitaryID,
Passport, and StateCard.

<issuer>, sub-element of <positiveID>
This is the issuing authority of the identification. For StateCard, this is the state which
issued the card. For Passport, this is the country which issued the passport.

<issued>, <expiration>, optional, date, sub-elements of <positiveID>
These two optional date elements reflect the date of issue and the date of expiration,
respectively, of the positive ID.

<transaction_type>
This element is the same as the element in the initial return request.

<return_ticket_id>, optional
By setting the <return_ticket_id> element, the point-of-return lets Returns
Management know that it is responding to a request for more information. The
element should be set to the ticket ID sent from Returns Management in the previous
return response. In this case, the element has been set to
04241-123-1025-2006-005021791 to match our previous message.

Integration Methods and Communication

Returns Management 9-23

Returns Management to Point-of-Return—Second Return Authorization Response
Now that Returns Management has obtained a positive ID, it can tell the
point-of-return about its decision of whether to allow the return of the items.

In this scenario, Mr. Smith has been returning a lot of items lately and has had an entry
put into the exception file. This would normally result in a denial. However, Mr.
Smith’s agent has called the customer service center and asked them to accept the
return. They have entered an entry into the customer service override table for Mr.
Smith. Returns Management checks for these entries while it creates the final response.
In this case, since it has found one, Returns Management authorizes the return but
marks it as using a customer override.

Example 9–4 Second Return Authorization Response

<ns7:RetAuthResDesc
xmlns:ns2="http://www.oracle.com/retail/integration/base/bo/TransIdDesc/v1"
xmlns="http://www.oracle.com/retail/integration/base/bo/RetAuthDesc/v1"
xmlns:ns4="http://www.oracle.com/retail/integration/base/bo/RetMsgExtDesc/v1"
xmlns:ns3="http://www.oracle.com/retail/integration/base/bo/RetTendTypeDesc/v1"
xmlns:ns5="http://www.oracle.com/retail/integration/base/bo/RetItemIdentDesc/v1"
xmlns:ns6="http://www.oracle.com/retail/integration/base/bo/RetStoreLangDesc/v1"
xmlns:ns7="http://www.oracle.com/retail/integration/base/bo/RetAuthResDesc/v1"
xmlns:ns8="http://www.oracle.com/retail/integration/base/bo/RetResultDesc/v1">
 <ns7:ReturnResponse>
 <ns7:return_ticket_id>04241-123-1025-2006-016085229</ns7:return_ticket_id>
 <ns7:response_approve_deny_code>Authorization </ns7:response_approve_deny_
code>
 <ns7:avail_cust_service_override >true</ns7:avail_cust_service_override >
 <ns7:receipt_message_number >1</ns7:receipt_message_number>
 <ns7:ReceiptMessageDesc>
 <ns6:RetStoreLangDesc>
 <ns6:store_locale> Thank You for Shopping </ns6:store_locale>
 <ns6:operator_locale> Thank You for Shopping </ns6:operator_locale>
 <ns6:receipt_locale> Thank You for Shopping </ns6:receipt_locale>
 </ns6:RetStoreLangDesc>
 </ns7:ReceiptMessageDesc>
 <ns7:ItemReturnResponse>
 <ns5:RetItemIdentDesc>
 <ns5:item_id>11111</ns5:item_id>
 </ns5:RetItemIdentDesc>
 <ns7:response_code>150</response_code>
 <ns7:approve_deny_code>Mgr Overridable Denial</ns7:approve_deny_code>
 <ns7:ResponseDescription>
 <ns7:ShortResponseDesc>
 <ns6:RetStoreLangDesc>
 <ns6:store_locale> Mgr Overridable Denial </ns6:store_locale>
 <ns6:operator_locale> Mgr Overridable Denial </ns6:operator_locale>
 <ns6:receipt_locale> Mgr Overridable Denial </ns6:receipt_locale>
 </ns6:RetStoreLangDesc>
 </ns7:ShortResponseDesc>
 <ns7:LongResponseDesc>
 <ns6:RetStoreLangDesc>
 <ns6:store_locale>Insufficient Quantity</ns6:store_locale>
 <ns6:operator_locale>Insufficient Quantity</ns6:operator_locale>
 <ns6:receipt_locale>Insufficient Quantity</ns6:receipt_locale>
 </ns6:RetStoreLangDesc>
 </ns7:LongResponseDesc>
</ns7:ResponseDescription>
<receipt_message_number>1</receiptMessageNumber>
<receiptMessageDescription>

Integration Methods and Communication

9-24 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

 <ns6:RetStoreLangDesc>
 <ns6:store_locale> Thank You for Shopping </ns6:store_locale>
 <ns6:operator_locale> Thank You for Shopping </ns6:operator_locale>
 <ns6:receipt_locale> Thank You for Shopping </ns6:receipt_locale>
 </ns6:RetStoreLangDesc>
</receiptMessageDescription>
 <refundTenders/>
 </itemReturnResponse>
</ReturnResponse>
</RetAuthResDesc>

<available_customer_service_override>, optional, Boolean
This optional Boolean element is only set when:

■ The overall approve or denial code is a denial.

■ This Returns Management customer has an active entry in the customer service
override table.

When this item is present, it is always true. For details about the approve and deny
code process, see "<response_approve_deny_code>".

<receipt_message_number>, positive integer
Returns Management has a number of receipt messages that it can send back to the
point-of-return. These messages are intended to be printed on the receipt, but
obviously the point-of-return can do what it would like with them. Each message has
both a number and a description. The number is provided for internationalization
purposes and the message is provided to make the XML more human readable.

Note that there is both a receipt message associated with both the overall return
response as well as with each item on the response. The overall message is determined
in the same manner as the overall response code. That is, the most cautious individual
response code determines both the overall response as well as the overall receipt
message.

<ReceiptMessageDesc>
This is the text associated with the receipt message number. This text is in the language
of the <RetStoreLangDesc> element.

<RetStoreLangDesc>
This is the same element as detailed in the initial return response.

<ItemReturnResponse>, complex type
This is the same element as returned in the first return response. In this case, the
sub-elements of this complex type contain detailed information about the decision of
Returns Management regarding the returnability of this item.

<approved_quantity>, decimal, optional sub-element of <ItemReturnResponse>
This element is currently unused.

<receipt_message_number>, sub-element of <ItemReturnResponse>
This is the receipt message number associated with the individual item. See "<receipt_
message_number>, positive integer".

Note: The return ticket ID in this response is different from the one
sent in the first response. Each new return request generates a new
return ticket ID.

Integration Methods and Communication

Returns Management 9-25

<item_disposition_code>, optional, sub-element of <ItemReturnResponse>
This element corresponds to the disposition of the item after it has been returned, for
example, “keep frozen”. It corresponds to the table in ID_DPSN_CD in the ARTS
schema. However, this element is currently not set.

<ReceiptMessageDesc>, sub-element of <ItemReturnResponse>
This is the receipt message text associated with the individual item. See
"<ReceiptMessageDesc>".

<restocking_fee>, optional, decimal, sub-element of <ItemReturnResponse>
This element is currently unused.

Point-of-Return to Returns Management—Return Result from Second Response
Once the positive ID has been collected and Returns Management has told the
point-of-return about the returnability of the item, the point-of-return processes the
return as necessary. Once the return has been completed, the point-of-return sends
Returns Management a return result message.

Example 9–5 Return Result

<ns8:RetResultDesc
xmlns:ns2="http://www.oracle.com/retail/integration/base/bo/TransIdDesc/v1’
xmlns="http://www.oracle.com/retail/integration/base/bo/RetAuthDesc/v1"
xmlns:ns4="http://www.oracle.com/retail/integration/base/bo/RetMsgExtDesc/v1"
xmlns:ns3="http://www.oracle.com/retail/integration/base/bo/RetTendTypeDesc/v1"
xmlns:ns5="http://www.oracle.com/retail/integration/base/bo/RetItemIdentDesc/v1"
xmlns:ns6="http://www.oracle.com/retail/integration/base/bo/RetStoreLangDesc/v1"
xmlns:ns7="http://www.oracle.com/retail/integration/base/bo/RetAuthResDesc/v1"
xmlns:ns8="http://www.oracle.com/retail/integration/base/bo/RetResultDesc/v1">
<ReturnResult>
 <return_ticket_id>04241-123-1025-2006-016085229</return_ticket_id>
 <ReturnTransactionID >
<TransIdDesc>
 <store_id>04241</store_id>
 <workstation_id>123</workstation_id>
 <sequence_number>250</sequence_number>
 <business_date>2006-10-25</business_date>
</TransIdDesc>
 </ReturnTransactionID>
 <ItemReturnResult>
 <RetItemIdentDesc>
 <item_id>40020002</item_id>
 </RetItemIdentDesc>
 <quantity_returned>10</quantity_returned>
 <final_result_code>Authorized</final_result_code>
 <OverrideInfo>
 <manager_id>20008</manager_id>
 <override_obtained>true</override_obtained>
 <tender_override>false</tender_override>
 </OverrideInfo>
 <OriginalTransactionID>
 <TransIdDesc>
 <storeID>12345</storeID>
 <workstationID>124</workstationID>
 <sequenceNumber>2</sequenceNumber>
 <businessDate>2005-12-31</businessDate>
 <TransIdDesc>
 </OriginalTransactionID>
 <ReturnTender>

Integration Methods and Communication

9-26 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

 <<RetTendTypeDesc>
 <type>CASH</type>
 <amount>40.00</amount>
 </RetTendTypeDesc>
 </ReturnTender>
 </ItemReturnResult>
</ReturnResult>
</RetResultDesc>

Once again, note the return ticket ID. It is the ticket ID referring to the second return
response.

<ReturnTransactionID>, optional, complex type
This element refers to the ARTS-compliant return transaction generated by the
point-of-return. It has the same format as the <TransactionID> element of the return
request.

<ItemReturnResult>, complex type
This complex element represents detailed information about each item returned.

<quantity_returned>, sub-element of <ItemReturnResult>
This number reflects the quantity actually returned by the point-of-return.

<final_result_code>, sub-element of <ItemReturnResult>
This element has one of two values, Authorized or Denial. For items that are returned,
the value is set to Authorized.

<OverrrideInfo>, optional, complex type, sub-element of <ItemReturnResult>
This complex type is included in the result if the point-of-return decided to override a
return decision rendered either by Returns Management or locally.

<manager_id>, sub-element of <OverrideInfo>
The ID (from the ARTS-compliant table PA_EM) that corresponds to the employee ID
of the manager who overrode the return decision.

<override_obtained>, Boolean, sub-element of <OverrideInfo>
This element is set to true if the override was about the returnability of the item.

<TenderOverride>, Boolean, sub-element of <OverrideInfo>
This element is set to true if the override was about which tenders to return money on.

<OriginalTransactionID>, optional, complex type, sub-element of <ItemReturnResult>
This element refers to the ARTS-compliant transaction associated with the original
sale. This element has the same format as the <transactionID> element of the return
request. This element is currently unused by Returns Management.

<ReturnTender>, complex type
This element is a list of tenders. It describes the number of tenders, and the amount of
each one, used by the point-of-return to return money to the client. It has the same
format as the <OriginalTender> element of the return request.

Point-of-Return to Returns Management—Void Return
Mr. Smith has proven to be indecisive and decides that he wants to have his baseballs
after all. He wants to void the return and receive the items back. To accommodate this,
the point-of-return voids the previous return and informs Returns Management of the
fact.

Integration Methods and Communication

Returns Management 9-27

Example 9–6 Void Return Result

<ReturnResult>
 <return_ticket_id>04241-123-1025-2006-016085229</return_ticket_id>
 <ReturnTransactionID>
<TransIdDesc>
 <store_id>04241</store_id>
 <workstation_id>123</workstation_id>
 <sequence_number>250</sequence_number>
 <business_date>2006-10-25</business_date>
</TransIdDesc>
 </ReturnTransactionID>
 <return_voided>true</return_voided>
</ReturnResult>

In this message, you see the same return ticket ID and the same return transaction ID
of the preceding return result. This is used to let Returns Management know which
return is being voided. The only new element is the <return_voided> element.

<return_voided>, optional, Boolean
This element shows that the return referenced by the <return_ticket_id> element has
been voided. Though this element is optional, exactly one of either <return_voided> or
<ItemReturnResult> must appear in the return result. Thus, when this element is
present, it must always be true.

Offline Return Result
Finally, Mr. Smith decides that he does, in fact, want to return the baseballs. When he
returns to do so, the point-of-return is offline from Returns Management. The
point-of-return makes it own decisions about the returnability of the items. For the
sake of illustration, the point-of-return makes exactly the same decisions that Returns
Management did previously, though there is no requirement for this.

Example 9–7 Offline Return Result

<ns8:RetResultDesc
xmlns:ns2="http://www.oracle.com/retail/integration/base/bo/TransIdDesc/v1"
xmlns="http://www.oracle.com/retail/integration/base/bo/RetAuthDesc/v1"
xmlns:ns4="http://www.oracle.com/retail/integration/base/bo/RetMsgExtDesc/v1"
xmlns:ns3="http://www.oracle.com/retail/integration/base/bo/RetTendTypeDesc/v1"
xmlns:ns5="http://www.oracle.com/retail/integration/base/bo/RetItemIdentDesc/v1"
xmlns:ns6="http://www.oracle.com/retail/integration/base/bo/RetStoreLangDesc/v1"
xmlns:ns7="http://www.oracle.com/retail/integration/base/bo/RetAuthResDesc/v1"
xmlns:ns8="http://www.oracle.com/retail/integration/base/bo/RetResultDesc/v1">
<ReturnResult>
 <offline_date>2006-05-16</offline_date>
 <OfflineRequest>
 <RetAuthDesc>
 <ReturnRequest>
 <ItemReturnInfo>
 ...
 </ItemReturnInfo>
 <return_store_id>04241</return_store_id>
 <return_workstation_id>123</return_workstation_id>
 <employee_id>20051</employee_id>
 <CustomerInfo>

Note: The <iItemReturnInfo> content is the same as in Example 5-1
and has been left out for brevity.

Integration Methods and Communication

9-28 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

 <customer_id>8885551212</customer_id>
 </CustomerInfo>
 <PositiveID>
 <id>12345678</id>
 <type>DriversLicense</type>
 <issuer_country>US</issuer_country>
 <issuer_state>TX</issuer_state>
 <issued>2004-01-01</issued>
 <expiration>2007-01-01</expiration>
 </PositiveID>
 <transaction_type>Return</transaction_type>
 </ReturnRequest>
 </RetAuthDesc>
 </OfflineRequest>
 <ReturnTransactionID>
 <TransIdDesc>
 <store_id>04241</store_id>
 <workstation_id>123</workstation_id>
 <sequence_number>263</sequence_number>
 <business_date>2006-10-25</business_date>
 </TransIdDesc>
 </ReturnTransactionID>
 <ItemReturnResult>
 <<RetItemIdentDesc>>
 <item_id>40020002</item_id>
 </<RetItemIdentDesc>>
 <quantity_returned>10</quantity_returned>
 <final_result_code>Authorized</final_result_code>
 <OverrideInfo>
 <manager_id>20008</manager_id>
 <override_obtained>true</override_obtained>
 <tender_override>false</tender_override>
 </overrideInfo>
 <OriginalTransactionID>
 <TransIdDesc>
 <store_id>12345</store_id>
 <workstation_id>124</workstation_id>
 <sequence_number>2</sequence_number>
 <business_date>2005-12-31</business_date>
 <TransIdDesc>
 </OriginalTransactionID>
 <ReturnTender>
 <RetTendTypeDesc>
 <type>CASH</type>
 <amount>40.00</amount>
 </RetTendTypeDesc>
 </ReturnTender>
 </ItemReturnResult>
</ReturnResult>
</RetResultDesc>

The offline result is effectively a return result with two additional elements. The first
element is the date of the offline return. The second element is a return request
message encapsulated in the <offlineRequest> element.

<offline_date>, optional, date
This element is the original date of the offline return. Though this element is optional
in the XSD, it is required when processing an offline return.

Integration Methods and Communication

Returns Management 9-29

 <OfflineRequest>, complex type
The <OfflineRequest> element is an embedded return request. It has the exact same
format as a normal return request message except that the root <ReturnRequest>
element is replaced by the <OfflineRequest> element.

<ReturnTransactionID>, optional, complex type
This element refers to the ARTS-compliant return transaction generated by the
point-of-return. It has the same format as the <TransactionID> element of the return
request.

<ItemReturnResult>, complex type
This element contains the detailed data about the items returned in this offline request.
It has the same format as the original return result previously described.

Implementation Decisions
The following are types of implementation decisions.

Asynchronous Versus Synchronous Communication
Synchronous communication involves a client sending a message to a server and then
pausing while it waits for a response. Asynchronous communication enables a client to
send a message to the server and then immediately resume operations. Synchronous
communication is usually more straightforward than asynchronous communication,
but increases binding between a client and a server and can degrade concurrency.
Asynchronous communication has the opposite problems: it is usually more
complicated, but encourages decoupling and throughput.

Additionally, synchronous communication is necessary when a client needs a
time-sensitive response to a message.

Returns Management prefers to use asynchronous communication. This is mainly due
to concurrency. When communication is asynchronous, it can be off-loaded onto a
lightly loaded machine or scheduled to run at a time when there is relatively little
system activity. Also, the communication can be more easily chained, for example, by
inserting an arbitrary number of message forwarders between the client and server, or
by inserting a message broadcaster. This enables greater flexibility in future system
growth. However, asynchronous messaging is poorly suited for real time responses to
messages.

Because asynchronous messaging provides greater latitude at installation and higher
concurrency, the result message is implemented as an asynchronous call. Evaluation,
however, has a strong requirement for a rapid response, for example, a customer is
physically waiting at the point-of-return for a return approval. This evaluation is
implemented as a synchronous call.

XML Versus JavaBean Messages
Extensible markup language (XML) is a text format that is language independent and
human legible. It has wide support in a variety of programming languages and a
robust description language, XML Schema Definition (XSD). Being a text format, XML
is capable only of encoding data.

Note: The XSD specifies that the result message has either an
<OfflineRequest> element or a <return_ticket_id> element, but not
both.

Integration Methods and Communication

9-30 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

JavaBeans are Java language constructs that mainly encapsulate data in an object class.
Being objects, however, JavaBeans can optionally contain behavior as well as data.
Also because they are objects, both the originator and the receiver of a JavaBean must
have access to compatible versions of the class file.

JavaBeans are a well known Java idiom and have a great deal of support in the Java
Development Kit (JDK). However, they are a Java-specific solution. Furthermore, XML
is more accessible to a non-technical audience than either Java source or Java runtime
debugging environments. Also, XML is the standard of web service communication.
Therefore, the messages that Returns Management passes are XML based rather than
JavaBean (or Java Object) based. The XML is eventually transformed into JavaBeans.
This transformation to and from JavaBeans is facilitated by Java XML Binding (JAXB)
code.

Web Service Versus Enterprise JavaBeans and Remote Method Invocation Call
Web services are language neutral, similar to XML. Web services also provide a
well-defined publishing and discovery mechanism: Universal Description, Discovery
and Integration (UDDI).

Elements
The previous sections have discussed details of the XML messages. This section
provides more information about important elements.

Return Request
In Table 9–3, the mark (x) indicates that the element is required and needs to have an
appropriate value for that scenario. A value true or false indicates that this element
should be set to this explicit value.

The Element column represents the various elements; the other columns represent the
different scenarios. The XPath expressions clarify where the elements are in
relationship to the entire message.

Note: All POS Suite web services are deployed on an JAX-WS
framework. JAX-WS handlers security module is used for
authentication.

Note: In subsequent Positive ID messages, all original scenario
elements should be sent.

Table 9–3 Required Elements By Return Request

Receipted

Element Non-receipted

No
transaction
data

Has data, no
transaction
found

Has data,
transaction
found Positive ID

/ReturnRequest/ItemReturnInfo/ItemTransactionInfo

receipted false true true true NA

TransactionID NA NA X X NA

found false false false true NA

valid_at_point_of_return false false X true NA

Integration Methods and Communication

Returns Management 9-31

Return Response
In Table 9–4, the Element column refers to the elements in the return response. The
remaining columns describe the various use cases. A mark (x) means that the
point-of-return should be concerned with this data point when encountering it. A true
or false value means that the point-of-return examines this data point for this value to
determine the use case. The XPath expressions help the reader orient themselves with
the elements.

This is the minimum amount of data a point-of-return needs to implement.
Additionally, the point-of-return must decide how to interpret the approval or denial
of the <response_approve_deny_code> element.

Keep in mind that some items might be approved while others are denied.

validation_amount NA NA X NA NA

OriginalTender X X X X NA

/ReturnRequest/ItemReturninfo

RetItemIdentDesc X X X X NA

return_reason X X X X NA

quantity X X X X NA

manually_entered false false X false NA

/ReturnRequest

return_store_id X X X X NA

return_workStation_id X X X X NA

employee_id X X X X NA

CustomerInfo or
MoreCustomerInfo

X X X X NA

id NA NA NA NA X

transaction_type X X X X NA

return_Ticket_id NA NA NA NA X

Table 9–4 Required Elements By Return Response

Element Approval or Denial
Positive ID
Required CS Override

/ReturnResponse

return_ticket_id X X X

response_approve_deny_code X NA X

available_customer_service_override NA NA true

/ReturnResponse/ItemReturnResponse

RetItemIdentDesc X X X

Table 9–3 (Cont.) Required Elements By Return Request

Receipted

Element Non-receipted

No
transaction
data

Has data, no
transaction
found

Has data,
transaction
found Positive ID

Integration Methods and Communication

9-32 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Return Result
In Table 9–5, the Element column is the list of elements the point-of-return needs to
send in the ReturnResult message. A mark (x) indicates that this element should be
present when sending this type of response to Returns Management. A true or false
value indicates that this element should be set explicitly to this value when sending
this type of message. The XPath expressions help orient the reader.

Web Service Interface
The web service exposes two methods. Table 9–6 describes these methods, with their
parameters.

Note that though the web services expect to produce and consume XML, the XML is
passed and returned as a simple string rather than a DOM object.

By default, the web service is accessed at the following URL:

http://hostname:port/ReturnsMgmtBean/ReturnsMgmtService

approve_deny_code X NA NA

RefundTenders X NA X

customer_info_required NA true NA

Table 9–5 Required Elements By Return Result Use Case

Element Standard Result Offline Return Voided Return

/ReturnResult

returnticket_id X NA X

offline_date NA X NA

OfflineRequest NA X NA

return_transaction_id X X X

return_voided NA NA true

/ReturnResult/ItemReturnResult

RetItemIdentDesc X X NA

quantity_returned X X NA

final_result_code X X NA

OverrideInfo1

1 The <OverrideInfo> element should be included only if there was an override.

X X NA

ReturnTender X X NA

Table 9–6 Web Service Methods

Method Name Input Output

evaluateReturnRequest String (RetAuthDesc) String (RetAuthResDesc)

processFinalResult String (RetResultDesc) None

Table 9–4 (Cont.) Required Elements By Return Response

Element Approval or Denial
Positive ID
Required CS Override

Returns Authorization

Returns Management 9-33

To access WSDL file:

http://hostname:port/ReturnsMgmtBean/ReturnsMgmtService?WSDL

Where hostname:port is replaced with the host and port to which the web service .ear
file is deployed.

Relationship of Returns Management Data to ARTS Transaction Data
The Association for Retail Technology Standards (ARTS) is an international
membership organization dedicated to reducing the costs of technology through
standards. ARTS has four standards:

■ The Standard Relational Data Model

■ UnifiedPOS

■ IXRetail

■ Standard RFPs

For more information about ARTS, go to:

http://www.nrf-arts.org/

One of the goals of Returns Management is to reduce its dependency on external
systems. At the same time, customers need traceability of Returns Management data
back to original transaction data.

To account for this, the return request and return result messages sent to Returns
Management contain the ARTS-compliant transaction IDs for the relevant transactions.
Therefore, when a return request is made, Returns Management is told of the
transaction ID, if any, of the original sale. When a return result is sent, Returns
Management is told of the transaction ID of the return transaction. This ID is stored
with the return ticket.

Returns Authorization
When Returns Management and Point-of-Service are integrated, Point-of-Service can
collect positive IDs during return transactions in order to provide the following
functionality:

■ Form and send Return Request messages to Returns Management

■ Interpret and present Returns Management Return Response messages

■ Form and send Final Result messages to Returns Management right before the
return transaction is completed

Point-of-Service supports all Returns Management Return Response types. It accepts
and manages Returns Management recommended tenders.

Returns Management can deliver an accept/deny response for attempted refunds on
line items of return transactions as well as non-receipted return attempts through
standard XML messages. The retailer can configure enterprise-wide, down to
store-specific and item-specific, receipted and non-receipted policies that are applied
to line items in transactions occurring at a point-of-sale or point-of-return. The policy
definition, as well as accept/deny logic, is contained within the enterprise and
therefore is abstracted from the point-of-sale or return such that Returns Management
can work with any point-of-sale or return application, including web or phone order
systems. Returns Management can count instances of behavior for customers and
cashiers based on negativity activity and deny returns based on frequent suspicious

Exceptions File

9-34 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

activity. There are inquiry screens that can be used to research an attempted refund or
a particular score and its history.

Exception Flow
Communication with Returns Management is available only when the Point-of-Service
server is online. If the Point-of-Service server goes offline at any time during
authorization or when sending the final result, the authorization request and final
result information are saved in Point-of-Service as offline return information, the
message in EJournal is logged, and the offline return information is sent to Returns
Management when it is available.

Error Handling
Error handling is limited to logging errors during the return authorization. The
exceptions such as IOException and invalidItem that occur during WSService
communication are re-thrown as WSException, as well as logged for error tracking and
resolution.

Logging
For information on logging, see Chapter 5.

Exceptions File
The Oracle Retail Returns Management exception file is created and maintained by
Returns Management for use in detecting and preventing fraud at the point-of-return.
The exception file acts as a constantly evolving knowledge base that can help the
Authorization Engine decide which customers, items, cashiers, or stores are at higher
risk for return fraud.

The exception file holds an exception counter for a customer that is incremented based
on suspicious return activity. If an activity is selected for inclusion in the exception
counter, the system adds 1 to the exception count for each suspicious shopping
activity. Likewise, activities can be configured for cashiers.

Exceptions and counting are based on real-time refund attempt activities occurring at
the point-of-sale or return using the return result message that is sent by the
point-of-sale or return to Returns Management at the conclusion of a transaction with
an attempted refund. Return activities include activities that increment counters such
as a return transaction by the customer without a receipt and with no retrieval of the
original transaction, five same day returns as purchases within the last three days, and
three returns today. In turn, activity thresholds might be breached and counting
generated based on those thresholds.

The exception file holds an entry for each factor that triggers a count addition.

Exception File and Count Calculation
This section describes exception file count calculation for the following:

Customer
■ Customer positive ID consisting of ID type, number, and issuer

■ Exception count

Exceptions File

Returns Management 9-35

Cashier
■ Cashier ID

■ Exception count

Exceptions Triggered
■ Exception (the return activity that was breached)

■ Target of the return activity (the customer ID, cashier ID)

■ Date/Time of the exception

Table 9–7 Overall Assumptions/Requirements

Reference Description Priority Order

EFA_AS_CAPTURE1 Every return transaction that takes place captures:

1. The cashier facilitating the return.

2. The store or channel the return came from.

3. The item being returned.

If customer positive ID is captured then accumulated exceptions
can be checked to determine returnability.

0

EFA_AS_CAPTURE2 Every type of sale transaction captures the cashier performing the
transaction, the store or channel where the purchase occurred, and
the items being purchased.

0

EFA_AS_KPI_DEF2 Key Performance Indicators might be based on calculations on a
cashier or customer.

0

EFA_AS_KPI_DEF3 A number of configurable KPIs are delivered in the product. 0

EFA_AS_KPI_DEF4 Addition of a new KPI requires development work, since data
calculation might be required.

0

EFA_AS_CALC_REUSE Calculations are reused where possible. Parameters set for tracking
exceptions and rules within policies are set independently and do
not have to match each other.

0

EFA_AS_RPRICE_DEF Item return price refers to the amount refunded to the customer
upon return. If a restocking fee was applied, the item return price is
the net of the original selling price minus the restocking fee.

0

EFA_AS_FIRST_WRITE ■ Any customer or cashier that is new to the exception file is
written to the file upon its first alert or cumulative exception
count calculation or return attempt. exception file is not
prepopulated with all customers, cashiers, items, and stores,
waiting for an exception to occur.

■ Any customer written to the exception file on its first alert that
is not recognized by Oracle Retail Returns Management notes
as first name Unknown, last name Customer.

■ Any cashier written to the exception file on its first alert that is
not recognized by Oracle Retail Returns Management notes as
first name Unknown, last name Cashier.

0

Exceptions File

9-36 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Table 9–8 Customer-Related Assumptions/Requirements

Reference Description Priority Order

EFA_AS_CUST_SCORE The effectiveness of customer scoring is greatly increased if the
retailer also captures a customer with every sale and return
transaction or has other means to link a customer to the transaction
after the fact.

0

EFA_AS_CUST_UNIQ For the exception file, a customer is uniquely identified by a
Positive ID such as a Driver’s License, Military ID, State ID, or
Passport. The uniqueness is created by the ID Type, the ID Number,
and the Issuer. Issue Date and Expiration Date are additional
optional fields.

0

EFA_RQ_CUST_START_
SCORE

The retailer can set a parameter designating the starting customer
count.

1

EFA_RQ_CUST_SKIP_
SCORE

The retailer can set an individual customer to skip count
recalculation, through the UI, for example, freeze count until count
recalculation is re-enabled for that customer.

■ Freeze until a certain date.

■ Turn count calculation off completely for that customer (freeze
count indefinitely.)

While the count is frozen, exceptions and penalty box entries are
still created, but are not counted in the score.

3

EFA_RQ_CUST_CALC The retailer can set an individual customer to count based on KPIs.
This would normally be done after a freeze has expired or the
operator has selected the calculate based on KPIs selection. This
enables the system to count based on customer activity.

EFA_RQ_CUST_SKIP_
SCORE_RESET

The score is reset to the starting count after the date arrives, or the
operator selects to calculate again. For example, today is May 12.
Operator chooses to Freeze count for 5 days. Score is frozen for the
12th, 13th, 14th, 15th, and 16th. The first time that the count
calculation job runs on the 17th, that customer’s count is again
calculated.

3

EFA_RQ_CUST_
OVERIDE_SCORE

The retailer can manually override a customer’s count through the
UI.

4

(Introduced from
Customer Service
Override Change Request)

The retailer can issue a customer service override to grant the next
return attempt, at the return ticket level, to the customer.

Business situation:

■ Customer has been denied a return.

■ Register prints a denial receipt, containing the return ticket ID.

■ Customer calls the customer service center in order to inquire
or complain regarding the denial.

■ Customer service center needs the ability to override that
return ticket’s denial such that the customer can perform the
return.

Since the data is already committed at that point, and is needed for
historical purposes, backing out or deleting the attempted return is
not an option. Also, the cause for the denial is most likely a
cumulative history of exceptions, thus it would be difficult for the
customer service operator to delineate exactly which returns to
back out. Therefore, the customer service override enables the
retailer to grant the customer the ability to perform the return.

1 – S

(INTRODUCED from
Customer Service
Override Change Request)

A relationship exists between the particular customer positive ID to
which the override is being granted, and the number of remaining
return ticket-level customer service overrides.

1 – S

Exceptions File

Returns Management 9-37

(Introduced from
Customer Service
Override Change Request)

For each override granted, the Type of Override, Date/Time it
occurred, User ID of the customer service operator or manager
granting the override, and required comment.

1 – S

(Introduced from
Customer Service
Override Change Request)

A Customer Service Overrides Limit parameter sets the maximum
number of overrides that can be granted to a particular positive ID.

1 – S

(Introduced from
Customer Service
Override Change Request)

The system prevents the operator from issuing a customer service
override if this override would exceed the maximum set by
parameter, with a red error message upon save of the override.

1 – S

(Introduced from
Customer Service
Override Change Request)

Customer Service overrides are removed after the number of days
set by parameter.

1 – S

(Introduced from
Customer Service
Override Change Request)

System decrements the remaining overrides as they are used on a
return ticket. Overrides are used in date order from oldest to
newest.

1 – S

(Introduced from
Customer Service
Override Change Request)

The ability to enter an override is secured. If the operator does not
have access, this area of the screen is hidden.

1 – S

(Introduced – from
Item/Merchandise
Hierarchy Pattern Watch)

A table contains:

■ Merchandise hierarchy node

■ Date range in which a return occurs

■ Date range in which the purchase was made

The Merchandise Hierarchy drop down dynamically pulls from the
database based on the client hierarchy. The number of drop down
boxes is directly related to the number of nodes in the client
hierarchy. As each level of the hierarchy is selected, it returns to the
database and only pulls the children of that parent node. At any
point, the operator can select all in the drop down list to indicate
that all children of that parent are to be included in the Pattern
Watch. Drop down boxes for the merchandise hierarchy defaults to
all. The label of each drop down is pulled dynamically from the
database by client hierarchy.

When a customer, as identified by their positive ID, performs a
receipted or non-receipted return of an item whose merchandise
hierarchy is included in that file, the return occurs within the return
date range for that merchandise hierarchy, or the item was
purchased within a date range matching the purchase date range
for the merchandise hierarchy, then the customer earns an
exception for Return Pattern Watch.

Examples are TVs after Super Bowl Weekend across multiple years,
and prom dresses after prom season is over.

The difference between this and existing functionality is that the
customer earns the exception for any occurrence that is included in
the file, not just one merchandise hierarchy return at a time.

1 – S

(Introduced – from
Item/Merchandise
Hierarchy Pattern Watch)

In order to make this feature useful, the retailer retains the
exception data over a period of years.

Positive ID Encryption Positive ID is encrypted in the database. The ability to view positive
ID is based on the user’s security.

Table 9–8 Customer-Related Assumptions/Requirements

Reference Description Priority Order

Exceptions File

9-38 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Definition of Return, for Calculation
A return, for purposes of calculation, refers to an attempted return of a line item
quantity.

Counting unique exceptions at the transaction level is conducted so that the customer
is not penalized twice for the same situation within one transaction. If an exception
occurs multiple times in a single transaction, that is counted as a single exception. For
example, if a customer returns three different items without a receipt in a single return
transaction, only one exception is generated.

Table 9–9 offers exception counting examples.

Note: Returns Management requires the use of a unique cashier ID
for exception tracking.

Note: Returns count by type at the transaction level (unique line
item level). This accommodates variations between points of sale that
allow mixed situations or inherently disallow mixed situations.
Counting at the quantity level could abnormally inflate exceptions, for
example, returning a quantity of 8 china plates. Counting at the
transaction level could exclude appropriate return or non-return
counts due to the ability to mix returns from multiple original
receipted transactions, or no receipt, within one Returns Management
point-of-sale transaction.

Table 9–9 Exception Counting Examples

Scenario Exceptions Counted

Return attempt for 5 different items:

■ 1111 quantity 1 without receipt (no original transaction retrieved)

■ 2222 quantity 1 without receipt

■ 3333 quantity 1 without receipt

■ 4444 quantity 1 without receipt

■ 5555 quantity 1 with receipt (original transaction retrieved)

1 count for without a receipt

1 count for with a receipt

Return attempt for 4 different items, total quantity 5:

■ 1111 quantity 1 without receipt

■ 2222 quantity 2 without receipt

■ 3333 quantity 1 without receipt

■ 5555 quantity 1 with receipt

1 count for without a receipt

1 count for with a receipt

Exceptions File

Returns Management 9-39

Exceptions
The following are types of returns exceptions.

Customer Exceptions
Customer Exceptions can be flagged as behaviors that are tracked in the application,
for use in Return Policies, using the Customer Exceptions to Track screen.

An exception is any activity that can be discerned from Return Ticket data, such as a
non-receipted return, a return of an item contained in the Return Pattern Watch file, or
a particular type of refund transaction such as a Price Adjustment.

When a customer exception occurs, a record is written to the exception file and the
activity is available for research on that customer using the Customer Exception Search
and Customer Exception Search Results screens.

The total number of exceptions that have occurred can be checked using a rule that can
be included in return policies.

All of the exceptions are based on return ticket data.

Cashier Exceptions
Cashier Exceptions can be flagged as behaviors that are tracked in the application, for
use in Return Policies, using the Cashier Exceptions to Track screen.

When a cashier exception occurs, a record is written to the exception file and the
activity is available for research on that cashier using the Cashier Exception Search and
Cashier Exception Search Results screens.

Return attempt for 2 different items:

■ 1234 attempted return quantity of total 4 with two different receipts.
Quantity 2 comes from original transaction 042419999999 and another
quantity 2 comes from 042418888888. Split as two separate lines in Returns
Management’s point-of-sale because they would be selected from two
different original transactions.

■ 5555 quantity 1 without a receipt

1 count for without a receipt

1 count for with a receipt

Two renter line items and one non-renter line item on the same receipted return
attempt:

■ One item from the renter file is returned in the renter time frame, resulting
in potential authorization, override, or denial.

■ A second item from the renter file is returned in the renter tomfooleries,
resulting in potential authorization, override, or denial.

■ Another item, not listed in the renter file, is being returned and is sent to
Returns Management for evaluation, resulting in authorization, override,
or denial.

The receipt is older than a parameterized number of days old (hence an expired
receipt).

1 renter return

1 expired receipted return

Can mix returns both with and without receipts in the same transaction, as well
as returns received from multiple transactions.

In one return transaction, six line items could consist of:

■ Two returns without receipt—sample: resolve this one to authorized

■ Two receipted—quantity available—sample: resolve this one to authorized

1 count for without a receipt

1 count for with a receipt

Table 9–9 (Cont.) Exception Counting Examples

Scenario Exceptions Counted

Customer Data Import

9-40 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

The total number of exceptions that have occurred can be checked using a rule that can
be included in return policies.

All of the exceptions are based on return ticket data.

Cashier in this case is considered to be anyone captured as the employee on the return
ticket, regardless of whether they have a cashier, associate manager, manager, or other
store role.

Customer Data Import
The Returns Management customer import feature is a way for a retailer to import a
large amount of pre-existing customer data into the data-store accessed by Returns
Management. Besides the usual customer information, such as Name, Address and
Phone, this feature also enables the retailer to assign an exception count to a customer,
based on third-party information about an individual (for example, information from
credit bureaus, information about criminal records and so on). In Returns
Management, higher exception counts are indicative of customers whose past
behavior is of concern from a returns standpoint.

Most of the customer information imported is the same as the customer information
sent in the Returns Management Return Request XML message. The XML schema
definition of this information was contained in the RM-CustomerImport.xsd file:

The Customer Import XML is defined by the following schema file:

RM-CustomerImport.xsd

The xsd files can be found in the
<Install_DIR>/returnsmgmt/api/returnsSchemas.zip archive.

The following is a listing of the RM-CustomerImport.xsd file:

Example 9–8 RM-CustomerImport.xsd

 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="ReturnsCustomers" type="ReturnsCustomersType"/>
 <xsd:complexType name="ReturnsCustomersType">
 <xsd:sequence>
 <xsd:element name="ReturnsCustomer" type="ReturnsCustomerType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="ReturnsCustomerType">
 <xsd:sequence>
 <xsd:element name="positiveID" type="PositiveIDInfo" />
 <xsd:element name="customerInfo" type="MoreCustInformation" />
 <xsd:element name="exceptionCount" type="xsd:integer" />
 <xsd:element name="customerType" type="xsd:string" minOccurs="0"
 maxOccurs="1" />
 <xsd:element name="notes" type="xsd:string" />
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="PositiveIDInfo">
 <xsd:sequence>
 <xsd:element name="number" type="xsd:string" minOccurs="1"
 maxOccurs="1" />
 <xsd:element name="type" type="xsd:string" minOccurs="1"
 maxOccurs="1" />

Customer Data Import

Returns Management 9-41

 <xsd:element name="issuerCountry" type="xsd:string"
 minOccurs="1" maxOccurs="1" />
 <xsd:element name="issuerState" type="xsd:string"
 minOccurs="1" maxOccurs="1" />
 <xsd:element name="issued" type="xsd:date" minOccurs="0"
 maxOccurs="1" />
 <xsd:element name="expiration" type="xsd:date" minOccurs="0"
 maxOccurs="1" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="MoreCustInformation">
 <xsd:sequence>
 <xsd:element name="lastName" type="xsd:string" minOccurs="1"
 maxOccurs="1" />
 <xsd:element name="firstName" type="xsd:string"
 minOccurs="1" maxOccurs="1" />
 <xsd:element name="middleName" type="xsd:string"
 minOccurs="0" maxOccurs="1" />
 <xsd:element name="gender" minOccurs="0" maxOccurs="1">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Male" />
 <xsd:enumeration value="Female" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element><!-- format of yyyyMMdd -->
 <xsd:element name="birthDate" type="xsd:string"
 minOccurs="0" maxOccurs="1" />
 <xsd:element name="address1" type="xsd:string" minOccurs="1"
 maxOccurs="1" />
 <xsd:element name="address2" type="xsd:string" minOccurs="0"
 maxOccurs="1" />
 <xsd:element name="city" type="xsd:string" minOccurs="1"
 maxOccurs="1" />
 <xsd:element name="state" type="xsd:string" minOccurs="1"
 maxOccurs="1" /><!-- zip code-->
 <xsd:element name="postalCode" type="xsd:string"
 minOccurs="1" maxOccurs="1" />
 <xsd:element name="country" type="xsd:string" minOccurs="1"
 maxOccurs="1" />
 <xsd:element name="telephoneLocalNumber" type="xsd:string"
 minOccurs="0" maxOccurs="1" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

The following is an example of the Returns Management Customer Import XML file.

Example 9–9 RMCustomerImport.xml

<?xml version="1.0" encoding="UTF-8"?>
<ReturnsCustomers>
 <ReturnsCustomer>
 <positiveID>
 <number>MDAxMGbGwbmQ1Xj6usAD03MY8pQ=</number>
 <type>DriversLicense</type>
 <issuerCountry>US</issuerCountry>
 <issuerState>TX</issuerState>
 <issued>2005-01-01</issued>
 <expiration>2030-01-01</expiration>

Customer Data Import

9-42 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

 </positiveID>
 <customerInfo>
 <lastName>TX1000000</lastName>
 <firstName>Oracle1000000</firstName>
 <address1>Some address1</address1>
 <address2>Some address2</address2>
 <city>Austin</city>
 <state>TX</state>
 <postalCode>78759</postalCode>
 <country>US</country>
 <telephoneLocalNumber>5126715100</telephoneLocalNumber>
 </customerInfo>
 <exceptionCount>100</exceptionCount>
 <customerType>Gold</customerType>
 <notes>by ReturnsCustomerImport</notes>
 </ReturnsCustomer>
</ReturnsCustomers>

The following parameter is used for the customer import feature:

ReturnsCustomerImportDuplicateRecordAction

Customer data imported through this feature is stored in one or more of the tables
identified in Table 9–10.

Table 9–10 Customer Information Tables

Table name Information held in table

RM_CT Returns Customer ID and Positive ID

RM_CT_ID Returns Customer ID to Customer ID mapping

RM_CT_SCR Customer exception count

RM_CT_SV_OVRD Comments (notes) when exception count is changed

PA_CT Customer ID

PA_PRTY Customer ID to Party ID mapping

PA_CNCT Customer last and first name

LO_ADS Customer address

PA_PHN Customer phone number

Authorized Payment Foundation 10-1

10
Authorized Payment Foundation

This chapter describes the Authorized Payment Foundation.

 Authorized Payment Foundation Overview
The Authorized Payment Foundation (APF) provides a well-defined interface to
third-party authorization services and the internal training mode's simulated
authorization service by taking advantage of the established Manager/Technician
framework and the new Communication Extension (COMMEXT) framework for
integrations.

The Point-of-Service client tour sites and aisles populate APF request objects and pass
the objects to the PaymentManager. The PaymentManager sends the request to the
appropriate connectors and formatters using calls to the Communication Extension
(COMMEXT) framework.

The base implementation of APF includes COMMEXT configurations for ACI
PinComm and PXP Solutions ANYpay POS authorization services. Base
implementation also includes a simulated authorization service for training mode.

APF Goals
The APF removes the handling of sensitive card account numbers from
Point-of-Service, removes the direct integration between Point-of-Service and the
CPOI device, and improves and isolates the interface between Point-of-Service and the
authorization service.

Sensitive credit and debit card account numbers are not handled or persisted by
Point-of-Service. The authorization service provides an account number token which is
persisted and used in a variety of situations. The masked card number continues to be
persisted and is also used.

Point-of-Service Client Flow Overview
Each tender is authorized as it is tendered. When a transaction is canceled, or when the
tender option screen is left before the tendering is complete, all authorized tenders are
reversed.

All CPOI interaction is performed using the authorization service. The granularity of
CPOI control is defined by the third-party authorization service.

Authorized Payment Foundation Overview

10-2 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Implementing a New Authorization Service
If the new authorization service requires or returns information different from the
information defined in the base APF request or response classes, changes might be
required for:

■ The APF request/response classes

■ Intermediate Point-of-Service client authorization classses

■ Database tables

■ Data persistence classes/SQL

If the new authorization service supports additional features, then Point-of-Service
client tours can be extended or modified. For more information, see the Oracle Retail
POS Suite Implementation Guide – Volume 2, Extension Solutions.

If the base APF request/response classes are adequate, then you might need to
implement new COMMEXT connectors and formatters and modify the COMMEXT
configuration only.

APF Request/Response Modifications
The APF classes are described in detail in APF Request Types. These classes might
need to be modified to accommodate the new authorization service.

Database Modifications
The authorizable tender tables might require modification if information different
from the authorization service response must be persisted.

Values returned from PinComm for credit or debit authorizations are stored in the TR_
LTM_CRDB_CRD_TN table. Additional information for ANYpay POS is stored in the
TR_LTM_CRD_ICC table.

Point-of-Service Client Tour Modifications
If the new authorization service does not require additional information collection
during the Point-of-Service client tour, then tour modifications might not be required.

The authorization service can support different features or require different
information. If so, Point-of-Service client tours must be modified to collect the
additional information and set the values in the APF request objects. For more
information, see the Oracle Retail POS Suite Implementation Guide – Volume 2, Extension
Solutions.

Many features in the base product are supported by PinComm but not supported by
ANYpay POS (such as House Accounts, Signature Capture, Gift Cards, Scrolling
Receipts and Swipe-Ahead). These features are controlled by properties such as
SignatureCaptureEnabled, ReturnByAccountNumberToken and
POSGFCardTenderEntryRequired located in <source_
directory>\applications\pos\deploy\shared\config\application.properties, and
parameters such as GiftCardsAccepted and HouseAccountPayment located in <source_
directory>\applications\pos\deploy\shared\config\parameter\application\applicati
on.xml. Some features, such as Scrolling Receipts, are enabled or disabled using
COMMEXT filters. In many cases, tour modification can be avoided by changing these
configurations.

Authorized Payment Foundation Overview

Authorized Payment Foundation 10-3

COMMEXT Connectors/Formatters Implementation
New COMMEXT connectors and formatters must be implemented to enable the APF
requests and responses to communicate with the requests and responses used by the
new authorization service, and to send requests to the new service.

Connectors can also be used to handle more than just sending requests to the auth
service. See PinComm Connectors for more information.

The PinComm connector calls an API to send requests to the authorization service. The
PinComm implementation has unique formatters for each type of request that is sent
to PinComm. The PinComm implementation also uses several connectors to handle
special cases.

The ANYpay POS connector opens a socket, through which the connector sends its
request. The ANYpay POS implementation uses a single formatter to format all types
of requests sent to its authorization service.

COMMEXT Configuration Modifications
The COMMEXT configuration file must be modified to use the new connectors and
formatters.

The implementer must be familiar with COMMEXT configuration. For more
information, see the Oracle Retail POS Suite Implementation Guide – Volume 2, Extension
Solutions.

The following files contain the PinComm and ANYpay POS configurations:

■ PaymentManager.xml

■ PaymentTechnician.xml

APF Request Types
APF request classes are object oriented and are organized to accommodate the
different information required for the variety of requests and responses. Note that not
all types are supported by the ANYpay POS authorization service.

APF Authorize Payment (Transfer) Request Classes
This request is used to authorize payments.

Note: The implementer must determine which design to use for the
new authorization service.

Authorized Payment Foundation Overview

10-4 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Figure 10–1 AuthorizeTransferRequest Class

Authorized Payment Foundation Overview

Authorized Payment Foundation 10-5

APF Reversal Request Classes
ReversalRequest inherits from some of the classes used by the authorize payment
request. Those classes are excluded here to simplify the diagram. See Figure 10–1,
"AuthorizeTransferRequest Class" for more detail. This request reverses previous
authorizations. Reversals occur when a sale is canceled before the tendering is
completed, and when the operator leaves the tendering screen before tendering is
complete.

Figure 10–2 ReversalRequest Class

Authorized Payment Foundation Overview

10-6 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

APF Instant Credit Request Classes
AuthorizeInstantCreditRequest inherits from some of the classes used by the authorize
sale request. Those classes are excluded here to simplify the diagram. See Figure 10–1,
"AuthorizeTransferRequest Class" for more detail. This request is used to apply for
instant credit (house account) approval.

Figure 10–3 AuthorizeInstantCreditRequest Class

Authorized Payment Foundation Overview

Authorized Payment Foundation 10-7

APF Call Referral Request Classes
CallRefferalRequest inherits from some of the classes used by the authorize sale
request. Those classes are excluded here to simplify the diagram. See Figure 10–1,
"AuthorizeTransferRequest Class" for more detail. This request is used when a call
referral is required for authorization.

Figure 10–4 AuthorizeCallReferralRequest Class

Authorized Payment Foundation Overview

10-8 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

APF Signature Capture Request
This request acquires a signature from the CPOI device.

Figure 10–5 SignatureCaptureRequest Class

APF Customer Interaction Request
This request is used to display information such as purchased items and tenders on the
CPOI device. This request also controls activation and detection of swipe-ahead
capability.

Authorized Payment Foundation Overview

Authorized Payment Foundation 10-9

Figure 10–6 CustomerInteractionRequest Class

Authorized Payment Foundation Overview

10-10 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

APF Status Request
This request gets the status (online or offline) of the authorization service.

Figure 10–7 StatusRequest Class

Authorized Payment Foundation Overview

Authorized Payment Foundation 10-11

APF Get Card Token Request
This request gets a card token from the authorization service. Under some
circumstances a card token or masked card number is required without the need to
perform any authorization with the bank.

Figure 10–8 CardTokenRequest Class

PinComm Technician

10-12 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

APF Response Types
The APF response types follow a parallel hierarchy with their request counterparts.

Calling PaymentManger from Point-of-Service Tours (Services)
PaymentManagerIfc is the API used to send all requests to the authorization service
(PinComm, ANYpay POS, or training mode auth simulator).

PaymentManger uses COMMEXT to route requests to the appropriate technician.

PaymentManager accepts the request objects defined earlier.

The following tours (services) call PaymentManager:

■ instantcredit – paymentMgr.authorize(AuthorizeInstantCreditRequestIfc)

■ main – paymentManager.clearSwipeAheadData()

■ manager – paymentManager.getStatus()

■ returns.returnoptions – paymentManager.getCardToken(CardTokenRequestIfc)

■ sale – paymentManager.clearSwipeAheadData()

■ signaturecapture – paymentManager.getSignature(SignatureCaptureRequestIfc)

■ tender – paymentManager.isSwipeAhead()

■ tender.activation – paymentManager.authorize(AuthorizeTransferRequestIfc)

■ tender.authorization

– paymentManager.authorize(AuthorizeTransferRequestIfc)

– paymentManager.authorize(AuthorizeCallReferralRequestIfc)

■ tender.reversal - paymentManager.reversal(ReversalRequestIfc)

CPOIPaymentUtility
The CPOIPaymentUtility is a wrapper used primarily to send scrolling receipt
requests to the PaymentManager. This utility translates information from
Point-of-Service objects into CustomerInteractionRequestIfc objects that are passed to
paymentManager.show(). The CPOIPaymentUtility is called from any tour (service)
that clears, adds or updates line item or tender information on the CPOI device.

If the new authorization service does not support scrolling receipts, the COMMEXT
configuration can be modified to filter these types of requests.

PinComm Technician
This section describes the APF implementation for the PinComm authorization
service.

As required by the APF, the PinComm technician uses COMMEXT to route messages
to a variety of connectors and formatters which send requests to and receive requests
from PinComm.

Example Topology
This configuration is an example of an authorization service that has a single central
service for a store.

PinComm Technician

Authorized Payment Foundation 10-13

The base COMMEXT configuration for PinComm routes requests from the
Point-of-Service client to the Point-of-Service server, which then sends requests to a
PinComm server.

Figure 10–9 PinComm Topology

PinComm Connectors
The PinComm implementation has several formatters that perform the operations
required by the various types of requests.

PinCommConnector
This connector formats, sends and translates. This is the simplest connector and is
used when no special processing or routing is required by a request.

PinComm CardAuthConnector
This connector is used primarily for credit, debit and gift card authorizations. A
special connector is required because this request is performed in two stages. Stage 1
prompts the customer for the card type, cash back amount (when appropriate), and
the amount approval. Stage 2 performs the authorization request. This connector also
performs extra processing for the swipe-ahead feature.

The following sequence diagram describes the flow for the CardAuth request. This is
the most complex request sequence.

This diagram illustrates the following:

Note: Check with your authorization service vendor for the
recommended topology. You might want to configure APF so that
requests are not sent to the Point-of-Service server. By decoupling the
authorization function from the Point-of-Service server, transaction
authorizations can continue if the Point-of-Service server is not
available to the client.

PinComm Technician

10-14 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

■ The ability to dispatch COMMEXT messages from within a connector.

■ The ability to extend COMMEXT with a custom connector to handle flows that the
COMMEXT configuration settings cannot handle.

PinComm Technician

Authorized Payment Foundation 10-15

Figure 10–10 CardAuthConnector Request

PinComm Technician

10-16 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

PinComm OnePassCardAuthConnector
This connector performs the format, send and translate operations for the
OnePassCardAuth request . This connector also performs extra processing for the
swipe-ahead feature. This connector is used when an authorization is performed
without the need to prompt the customer for additional information.

PinComm AuthorizeCallReferralWithoutTokenConnector
This connector performs the format, send and translate operations for the
AuthorizeCallReferralWithoutToken request. It also performs extra processing for the
swipe-ahead feature.

PinComm StatusInquiryConnector
This connector does not communicate with the PinComm server. It checks the internal
online and offline flags and returns the appropriate response.

PinComm PinCommCPOIConnector
This connector includes extra processing required for scrolling receipts.

PinComm CardTokenInquiryConnector
This connector performs the format, send and translate operations for the
GetCardToken request. This connector also performs extra processing for the
swipe-ahead feature.

PinComm ReentryAuthConnector
This connector does not communicate with the PinComm server. This connector
creates a response based on the provided request for gift cards and checks.

PinComm Formatters
PinComm has several formatters that perform the operations required by the various
types of requests. These formatters translate the APF request objects into a format used
by PinComm and translates the PinComm responses into the APF response objects.

Each type of request has its own formatter.

All formatters inherit from the AbstractPinCommFormatter class. The following
formatters have more than one level of inheritence.

PinComm CardAuthFormatters
The following formatters translate the various types of card authorization requests.

PinComm Technician

Authorized Payment Foundation 10-17

Figure 10–11 CardAuthFormatters

PinComm Technician

10-18 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

PinComm Check Formatters
The following classes translate check-related requests.

Figure 10–12 Check Formatters

PXP Solutions ANYpay POS

Authorized Payment Foundation 10-19

PinComm Configuration
Many values are configurable in both the APF PinComm technician and the ACI
PinComm software. Configurable values for the APF PinComm technician are defined
in <source_
directory>/applications/pos/deploy/shared/config/PinCommCodes.properties.
Many of the values in PinCommCodes.properties must match with values configured
in the ACI PinComm installation. The ACI PinComm vendor documentation for
configuration details.

PXP Solutions ANYpay POS
The integration between Point-of-Service and PXP Solutions ANYpay POS is
accomplished using the Communication Extension (COMMEXT) framework. For PXP
Solutions integration, there is only a Manager, with no Technician. The Manager is a
COMMEXT variety that knows how to route messages to the PXP Solutions
formatter/connector pair. The formatters and connectors split the responsibilities for
formatting messages to external systems. The formatters and connectors also split the
responsibilities for connecting to those systems.

JAXBFormatter
Abstract base class that is used for formatters that generate and parse XML using
JAXB. The class caches JAXB contexts for subsequent use.

PXP Solutions ANYpay POS

10-20 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Figure 10–13 JAXBFormatter

PXP Solutions ANYpay POS

Authorized Payment Foundation 10-21

ServebaseFormatter
Extends the JAXBFormatter class and is responsible for converting to or from PXP
Solutions XML. Superclass routines are used to convert the XML into Java objects
generated from JAXB. This is the most likely class to extend to provide custom
behavior. The methods formatConnectorMessage(MessageIfc) and
translateConnectorResponse(Serializable) are the two points of interaction
with an instance of this class and the dispatcher.

ChainedConnector
Abstract connector class that performs some bit of logic, then delegates its message to
another connector. In this integration, the chained-to connector is a SocketConnector.

ServebaseConnector
Extends the abstract ChainedConnector and delegates its message to the
SocketConnector. ServebaseConnector provides some simple logic to ignore requests
from Point-of-Service for device status updates and signature captures, neither of
which is supported by PXP Solutions ANYpay POS. Extending this class was not
intended.

SocketConnector
Given a host name and port number, this connector does the leg work of opening a
socket and reading and writing strings to and from ANYpay POS. Default
configuration for this connector is to connect to a localhost at port 5000. Extending this
class should not be required.

SocketThread
Inner class of SocketConnector that monitors the socket connection for a response.

PXP Solutions ANYpay POS

10-22 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Figure 10–14 APF Flow Diagram

Figure 10–14 shows how tour sites and aisles of the Point-of-Service application
communicates to ANYpay POS. The tour code communicates through a Manager
interface as normal. That Manager uses a COMMEXT Dispatcher to route the
messages through routes configured for it. The routes are defined for the actions that
the tour is trying to perform, for example, authorize an amount for tender or show
some information about the sale on the CPOI. The COMMEXT routing also uses filters
in this case to redirect these messages while in training mode to separate connectors
along the same route.

Configuration
The COMMEXT framework is used to provide a pluggable and fully configurable
integration between Point-of-Service and PXP Solutions ANYpay POS. Only the
Point-of-Service client integrates with ANYpay POS. The PaymentManager is defined
in the <source_directory>/applications/pos/deploy/client/config/conduit file:

Example 10–1 PaymentManager in pos/config/conduit/ClientConduit.xml

 <MANAGER name="PaymentManager"
 class="PaymentManager"
 package="oracle.retail.stores.domain.manager.payment"
 export="N" saveValets="N" singleton="N">
 <PROPERTY propname="configScript"
 propvalue="classpath://config/manager/PaymentManager.xml"/>
 </MANAGER>

The PaymentManager is a COMMEXT BaseManager with its own configuration file,
PaymentManager.xml, found in the <source_
directory>/applications/pos/deploy/client/config/manager directory. In the
PaymentManager.xml file, the message routing components are defined and
configured to communicate to ANYpay POS. To generate a custom behavior, extend
the ServebaseFormatter and replace it in this configuration.

PXP Solutions ANYpay POS

Authorized Payment Foundation 10-23

■ FILTERS – In the group of filters, there are special filters for handling messages
differently in training mode and re-entry mode, and filters for handling gift card
requests.

■ FORMATTERS

– PassThruFormatter – The most common formatter, PassThruFormatter is
defined and used for training mode. PassThruFormatter does not change the
contents of the message before it arrives at a Connector.

– ConnectorValetFormatter – This formatter is not used for PXP Solutions
integration.

– ServebaseFormatter – This is a subclass of a JAXBFormatter.
ServebaseFormatter performs the primary work of converting ANYpay POS
XML messages into response objects and vice versa. ServebaseFormatter must
also be configured with the correct merchantId, customerCode, site, username
and password to communicate with ANYpay POS correctly.

■ RULES

– RetryRule – The number of retries can be configured.

– StopOnErrorRule – Stops sending the message to connectors upon an error.

– DefaultActionRule – The routing rule with a default action (Continue) that
occurs upon error.

■ CONNECTORS

– SimulatedAuthConnector and the other simulated connectors are used to
generated responses while in training mode.

– ServebaseSocketConnector – This connector does the actual work of opening a
socket to ANYpay POS and sending or receiving the XML strings.
ServebaseSocketConnector should have the hostName and port configuration
set to point to where PXP Solutions ANYpay POS is installed. The base
product expects ANYpay POS to be in the localhost. The connector should be
configured to expect a response from ANYpay POS:

expectResponse = true

– ServebaseConnector – This connector is where most messages are routed.
ServebaseConnector provides some logic for ignoring some device status
requests and rejecting unsupported requests, such as GiftCard and
HouseAccount. This connector forwards valid requests to the
ServebaseSocketConnector.

– ReversalConnector – A file-based queue connector for forwarding the reversal
requests to ANYpay POS in a non-synchronous fashion. The interval
configurations are in milliseconds.

■ MSGROUTERS

– DEFAULTROUTER – This is the default route that all messages sent from
Point-of-Service flow through when a match MSGROUTER type is not found
for the message being dispatched. Requests made in training mode are filtered
off and handled by the simulated connectors.

– Reversals are ignored in training mode and go to the store-and-forward
connector, ReversalConnector, in normal mode.

PXP Solutions ANYpay POS

10-24 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Message Formats
ANYpay POS expects communication in XML format. Refer to the PXP Solutions
ANYpay POS (FIXED PED) XML Integration Guide for details about the format of the
communication between Point-of-Service and ANYpay POS.

Example 10–2 Request Format

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<IccTransactionRequest xmlns="http://servebase.com/2009/06/pedframework">
 <TransactionConfig>
 <CustomerCode>ORA</CustomerCode>
 <Site>ORA000000001</Site>
 <Culture>en</Culture>
 <Workstation>001</Workstation>
 <MerchantId>21249872</MerchantId>
 <Username>ORA-001</Username>
 <Password>_F4Rvcf-G</Password>
 <IpAddress>127.0.0.1</IpAddress>
 </TransactionConfig>
 <AuthorizationConnectionType>OnlineAuthorization</AuthorizationConnectionType>
 <TransactionAmount currency="GBP">10.00</TransactionAmount>
 <TransactionReference>042411290016</TransactionReference>
 <TransactionDateTime>2010-11-10T10:10:10.000-06:00</TransactionDateTime>
 <TransactionType>Sale</TransactionType>
</IccTransactionRequest>

Although the above example is formatted for readability, the actual XML produced is
not formatted.

Example 10–3 Response Format

<?xml version="1.0" encoding="utf-16"?>
<IccTransactionResponse xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://servebase.com/2009/06/pedframework">
 <ResponseCode>Approved</ResponseCode>
 <ResponseMessage>Transaction Approved</ResponseMessage>
 <ReceiptInfo xsi:type="IccReceiptInfo">
 <CardNumber>541333******0020</CardNumber>
 <ExpiryDate year="14" month="12" />
 <StartDate year="4" month="1" />
 <TransactionAmount currency="GBP">20.00</TransactionAmount>
 <TransactionReference>042411290016</TransactionReference>
 <MerchantId>21249872</MerchantId>
 <TerminalId>27519414</TerminalId>
 <CardScheme code="MSC"
creditDebitIndicator="CreditCard">Mastercard</CardScheme>
 <CaptureMethod>Icc</CaptureMethod>
 <Dcc xsi:nil="true" />
 <ApplicationId>A0000000041010</ApplicationId>
 <ApplicationLabel>MasterCard</ApplicationLabel>
 <PreferredName>MasterCard</PreferredName>
 <PanSequenceNumber>00</PanSequenceNumber>
 <CvmResults>410302</CvmResults>
 <TransactionType>Sale</TransactionType>
 <IccAccreditationInfo>

<AuthorisationRequestCryptogram>CB4732891FAF9FEF</AuthorisationRequestCryptogram>
 <ApplicationInterchangeProfile>5800</ApplicationInterchangeProfile>

AJB Technician

Authorized Payment Foundation 10-25

 <ApplicationTransactionCounter>0008</ApplicationTransactionCounter>
 <UnpredictableNumber>7220921C</UnpredictableNumber>
 <TerminalVerificationResult>0000008000</TerminalVerificationResult>
 <CryptogramTransactionType>00</CryptogramTransactionType>
 <CryptogramInformationData>40</CryptogramInformationData>

<ApplicationResponseCryptogram>DC7AF2C53204A954</ApplicationResponseCryptogram>
 <POSEntryMode1>3</POSEntryMode1>
 <POSEntryMode2>2</POSEntryMode2>
 <ApplicationUsageControl>FF00</ApplicationUsageControl>
 <ApplicationVersionNumber>0002</ApplicationVersionNumber>
 <TerminalApplicationVersionNumber>0002</TerminalApplicationVersionNumber>
 <TransactionStatusInformation>E800</TransactionStatusInformation>
 <TerminalType>22</TerminalType>
 <TerminalCapabilities>E0B8C8</TerminalCapabilities>
 <IssuerActionCodesOnline>F870A49800</IssuerActionCodesOnline>
 <IssuerActionCodesDenial>0000000000</IssuerActionCodesDenial>
 <IssuerActionCodesDefault>FC50A00000</IssuerActionCodesDefault>

<IssuerApplicationData>021265100F040000DAC000000000000000FF</IssuerApplicationData
>
 <AuthorisationResponseCode>00</AuthorisationResponseCode>
 <TerminalCountryCode>0826</TerminalCountryCode>
 <TerminalCurrencyNumber>826</TerminalCurrencyNumber>
 </IccAccreditationInfo>
 </ReceiptInfo>
 <Token>7a0351bf-277f-4340-a811-0ab026e886b8</Token>
 <AuthorityCode>006375</AuthorityCode>
 <IssuerAuthenticationData>DC7AF2C53204A9540012</IssuerAuthenticationData>
</IccTransactionResponse>

Response Codes
The following are some notes about the translation of response code for PXP Solutions:

■ If ANYpay POS responds with an ERROR or DECLINED response code, and the
message Failed to communicate, then Point-of-Service treats that as a
Referral response and follows the appropriate flow.

■ If ANYpay POS responds with a CANCELLED response code, and the message
did not response in the configured time span, then Point-of-Service
treats that as a Timeout and follows the appropriate flow.

■ The ANYpay POS CaptureMethod KEYED is translated as the Point-of-Service
EntryMethod Swiped.

AJB Technician
This section describes the APF implementation for the AJB authorization service.

As required by the APF, the AJB technician uses COMMEXT to route messages to a
variety of connectors and formatters which send requests to and receive responses
from AJB.

AJB Topology
An AJB server (FIPAYEPS) can service a single register (associated with the
Point-of-Service client) or multiple registers (associated with the Point-of-Service store
server).

AJB Technician

10-26 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

FIPAYEPS does not need to be installed on the register or the store server.
Point-of-Service and FIPAYEPS communicate using TCP/IP. Therefore, FIPAYEPS only
needs to be accessible somewhere on the network.

For Mobile Point-of-Service, an AJB server can be associated with all Mobile
Point-of-Service registers (serviced by the Mobile Point-of-Service server) or the
Mobile Point-of-Service server can be configured to use an AJB server associated with
the Point-of-Service store server.

For the recommended topology for a specific retailer's needs, consult with AJB.

AJB COMMEXT Connectors
The following AJB connectors send and receive messages to and from FIPAYEPS:

■ AJBCardAuthCallReferralConnector

■ AJBCardAuthConnector

■ AJBCardAuthRefundReentryConnector

■ AJBCardRefundConnector

■ AJBCardReversalConnector

■ AJBCheckCallReferralConnector

■ AJBCheckConnector

■ AJBConnector

■ AJBCPOIConnector

■ AJBReentryAuthConnector

AJBConnector is the simple case where a message is sent and the response is returned.

All other connectors examine the response's values to determine if more actions are
required. For example, AJBCardAuthConnector checks the authorization response for
a bank down condition. If the bank is down and the authorization amount is lower
than the floor limit defined for Point-of-Service, a forced-auth store-and-forward
request is sent to the AJB server for later transmission to the bank.

AJB COMMEXT Formatters
The following formatters translate the various Point-of-Service requests
(AuthorizeTransferRequestIfc) into AJB-specific request messages. Formatters also
translate AJB-specific response messages into the various Point-of-Service responses
(AuthorizeTransferResponseIfc):

■ AJBAcceptECheckFormatter

■ AJBCardAuthCallReferralFormatter

■ AJBCardAuthFormatter

■ AJBCardAuthFormatterManualEntry

■ AJBCardAuthFormatterSAF

■ AJBCardAuthFormatterUS

■ AJBCardAuthReentryFormatter

■ AJBCardAuthRefundReentryFormatter

■ AJBCardRefundFormatter

AJB Technician

Authorized Payment Foundation 10-27

■ AJBCardRefundFormatterSAF

■ AJBCardReversalFormatter

■ AJBCheckFormatter

■ AJBGiftCardFormatter

■ AJBHouseAccountAuthFormatter

■ AJBHouseAccountAuthRefundFormatter

■ AJBHouseAccountPaymentFormatter

■ AJBInstantCreditFormatter

■ AJBScrollingReceiptFormatter

■ AJBSignatureCaptureFormatter

AJB Codes
AJB uses many internal code values that are used by the AJB Technician. These codes
are defined as a Java enum type in the AJBCodes class. The values associated with
each enum value are defined in AJBCodes.properties. In some cases, the behavior of
the AJB Technician can be customized by modifying the code values in
AJBCodes.properties.

AJB Utilities
The following classes contain helper utility functions that support the connectors and
formatters:

■ AJBFormatUtilsIfc

■ AJBFormatUtils

Mapping of AJB Action Codes to Point-of-Service Authorization Responses
This section provides a reference on how action codes are mapped to Point-of-Service
authorization responses.

Action Codes
The following tables define the AJB action codes and SPDH codes.

Table 10–1 AJB Action Codes

Action Code Definition

0 Authorized/Approved/Successful

1 Declined

2 Call Referral

3 Bank Down

5 Comm Issue

6 Report Error (Formatting problem; treat like a hard decline)

8 Try later

10 Timed Out

12 Approved Administration

AJB Technician

10-28 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Mapping Tables
The following tables summarize how Point-of-Service determines the response codes,
gift card status codes, and financial network status codes based on the AJB action
codes and AJB SPDH codes:

■ The tables contain evaluation rules which are evaluated from top to bottom.

■ An asterisk (*) indicates a wildcard where any value is considered a match. For
example, with Credit/Debit, the AJB action code is not considered when
evaluating device timeouts and cancellations by the customer.

■ When no matches occur, the last rule in the table is used. The last rule has
wildcards for both the AJB action code and AJB SPDH code.

14 MAC Failure

Table 10–2 AJB Action Codes for Instant Credit

Action Code Definition

0 Approved

1 Declined

2 Call for Authorization

3 Bank Link Down

4 Pending

5 Message Format Error

6 Duplicate

7 Complete Offer

Table 10–3 AJB SPDH Codes

Action Code Definition

708 TRANSACTION_CANCELLED_BY_PIN_DEVICE

722 CARD_ERROR_READER

730 CHECK_PIN_PAD_CABLE

742 NO_RESPONSE_BY_CLIENT

746 TIMEOUT_ON_SWIPE

Table 10–1 (Cont.) AJB Action Codes

Action Code Definition

AJB Technician

Authorized Payment Foundation 10-29

Table 10–4 Credit/Debit Including Gift Card Tender Swiped at the PinPad

AJB Action Code AJB SPDH Code
ORPOS Response
Code

ORPOS Gift
Card Status

ORPOS Financial
Network Status

* ■ NO_RESPONSE_BY_
CLIENT

■ CARD_ERROR_
READER

■ CHECK_PIN_PAD_
CABLE

■ TIMEOUT_ON_
SWIPE

DeviceTimeout Unknown ONLINE

* TRANSACTION_
CANCELLED_BY_PIN_
DEVICE

InquiryForTenderCancel
edByCustomer

Unknown ONLINE

AUTHORIZED * ■ Approved

■ ApprovedZeroAmount

Active ONLINE

DECLINED * Declined Inactive ONLINE

CALL_REFERRAL * Referral Timeout ONLINE

BANK_DOWN * Offline Timeout BANK_OFFLINE

■ COMM_ISSUE

■ TIME_OUT

■ TRY_LATER

* Offline Timeout ONLINE

* * Declined Inactive PAYMENT_
APPLICATION_
OFFLINE

Table 10–5 Check/E-Check

AJB Action Code ORPOS Response Code
ORPOS Financial Network
Status

AUTHORIZED Approved ONLINE

DECLINED Declined ONLINE

CALL_REFERRAL Referral ONLINE

BANK_DOWN Offline BANK_OFFLINE

■ COMM_ISSUE

■ TIME_OUT

■ TRY_LATER

Offline ONLINE

* Declined PAYMENT_APPLICATION_
OFFLINE

Table 10–6 Gift Card

AJB Action Code
ORPOS Response
Code

ORPOS Gift Card
Status

ORPOS Financial
Network Status

AUTHORIZED ■ Approved

■ ApprovedZeroAmount

Active ONLINE

DECLINED Declined Inactive ONLINE

AJB Technician

10-30 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

CALL_REFERRAL Referral Timeout ONLINE

BANK_DOWN Offline Timeout BANK_OFFLINE

■ COMM_ISSUE

■ TIME_OUT

■ TRY_LATER

Offline Timeout ONLINE

* Declined Inactive PAYMENT_
APPLICATION_
OFFLINE

Table 10–7 Credit Re-Entry Mode

AJB Action Code AJB SPDH Code
ORPOS Response
Code

ORPOS Gift
Card Status

ORPOS Financial
Network Status

* ■ NO_RESPONSE_BY_
CLIENT

■ CARD_ERROR_
READER

■ CHECK_PIN_PAD_
CABLE

■ TIMEOUT_ON_
SWIPE

DeviceTimeout Active ONLINE

* TRANSACTION_
CANCELLED_BY_PIN_
DEVICE

InquiryForTenderCancel
edByCustomer

Active ONLINE

BANK_DOWN * Offline Timeout BANK_OFFLINE

■ COMM_ISSUE

■ TIME_OUT

■ TRY_LATER

* Offline Timeout ONLINE

* * Approved Active PAYMENT_
APPLICATION_
OFFLINE

Table 10–8 House Account Payment

AJB Action Code ORPOS Response Code
ORPOS Financial Network
Status

AUTHORIZED Approved ONLINE

DECLINED Declined ONLINE

CALL_REFERRAL Referral ONLINE

BANK_DOWN Offline BANK_OFFLINE

■ COMM_ISSUE

■ TIME_OUT

■ TRY_LATER

Offline ONLINE

* Declined PAYMENT_APPLICATION_
OFFLINE

Table 10–6 (Cont.) Gift Card

AJB Action Code
ORPOS Response
Code

ORPOS Gift Card
Status

ORPOS Financial
Network Status

Training Mode

Authorized Payment Foundation 10-31

References
For more information, see the following AJB software documentation:

■ FiPay Record Buffer RTS V4 Quick Credit (210/211)

■ FiPay V4 Check Record Buffer

■ FiPay V4 Credit and Private Label Record Buffer

■ FiPay V4 Gift Card Record Buffer

■ FiPayPIN 700 Error Codes

Training Mode
In training mode, authorization request messages from Point-of-Service are
intercepted by filters in the COMMEXT configuration. The requests are redirected to
code that provides simulated responses. Depending on the digit in the ones column
authorization amount request, the system provides a different response (for reference,
$12.34 has a 2 in the ones column).

Table 10–9 Instant Credit

AJB Action Code ORPOS Response Code
ORPOS Financial Network
Status

AUTHORIZED Approved ONLINE

DECLINED Declined ONLINE

CALL_REFERRAL Referral ONLINE

PENDING Unknown ONLINE

FORMAT_ERROR Unknown ONLINE

DUPLICATE Duplicate ONLINE

COMPLETE_OFFER Unknown ONLINE

* Unknown PAYMENT_APPLICATION_
OFFLINE

Table 10–10 Payment System Offline Indicator

AJB Action Code ORPOS Financial Network Status

AUTHORIZED ONLINE

DECLINED ONLINE

CALL_REFERRAL ONLINE

REPORT_ERROR ONLINE

APPROVED_ADMIN ONLINE

MAC_FAILURE ONLINE

■ COMM_ISSUE

■ TIME_OUT

■ TRY_LATER

ONLINE

BANK_DOWN BANK_OFFLINE

* PAYMENT_APPLICATION_OFFLINE

Training Mode

10-32 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Point-of-Service 11-1

11
Point-of-Service

This chapter provides information on implementing the following features:

■ Bill Pay

■ Automated E-Mail Messages

■ Register Cash Notification

■ Scan Sheet

■ Item Images

■ Serial Numbers

■ Currency Rounding

■ Cross-Border Returns

■ Dual Display

■ Dashboard

■ Fiscal Printer Support

■ Integration with Oracle Retail Store Inventory Management

■ Integration with External Systems using SOAP Web Services

Bill Pay
The bill pay feature in Point-of-Service enables retailers to accept bill payments from
their customers and interface with their billing system to record the payments. This
feature is primarily intended for telecom service providers who run their outlet stores
primarily in developing markets.

Bill Pay provides an ability for a cashier at the store to accept bill payments and
provides an integration of Point-of-Service with different billing systems, such as
Oracle Billing and Revenue Management (BRM), Amdoc and so on.

Bill Pay provides the retailer with the following capabilities:

■ Bill Search and Pay: The operator can scan the bill number to get the bill
information and options to pay the bill using different tender types. The operator
can also look up the bill details on a third-party billing system by providing
customer information.

■ Offline Bill Pay: When the third-party billing system is offline, Point-of-Service can
take the payment by capturing the minimum information required for that bill
payment and later sending this detail to the billing system when the system is
online.

Automated E-Mail Messages

11-2 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

■ Integration Framework: Enables the service implementers (SI) to integrate
Point-of-Service with different third-party billing systems.

Automated E-Mail Messages
Fulfillment automatically creates e-mail messages for customers when certain
conditions are met. Each transaction has a status associated with it. As each step in the
order process is completed, the status is automatically updated to reflect these
changes.

Whenever the order status changes to Filled, Partial, Completed, or Cancelled, an
automatic e-mail message is created. The order information is inserted into an e-mail
file and sent to the server.

The created e-mail messages are stored in the database. Point-of-Service does not send
the e-mail messages to customers. The retailer is responsible for sending the e-mail
messages.

The stored messages can be found in the table DO_EMSG.

The following table lists the status values for each e-mail message as found in the
column ST_EMSG.

For more information about Automated E-Mail Messages and Fulfillment, see the
Oracle Retail Point-of-Service User Guide.

Register Cash Notification
Register Cash Notification gives retailers added security and enables stores to manage
cash by register and till. Register Cash Notification informs Point-of-Service users
when the amount of cash in the register or till is above or below a configurable amount
as defined by a set of parameters. Register Cash Notification notifies the
Point-of-Service user of the cash discrepancy through a modal message for cash
warning over and a non-modal message for cash warning under.

For more information about Register Cash Notification, see the Oracle Retail
Point-of-Service User Guide.

Configuration
Edit the following configuration files to enable Register Cash Notification.

application.xml
Set the parameters shown in Table 11–2:

Table 11–1 E-Mail Message Status Values

Value E-Mail Message Status

0 public static final int MESSAGE_STATUS_NEW

1 public static final int MESSAGE_STATUS_REPLIED

2 public static final int MESSAGE_STATUS_OUTBOX

3 public static final int MESSAGE_STATUS_SENT

4 public static final int MESSAGE_STATUS_READ

Scan Sheet

Point-of-Service 11-3

application.properties
Set the following timing properties for Cash Warning UNDER:

■ CashDrawerWarning.AnimationDelay=7

■ CashDrawerWarning.Lifetime=6000

■ CashDrawerWarning.Waittime=500

dialogText_en.properties
Set the following properties for the OVER Dialog Warning:

■ DialogSpec.OverCashDrawerWarning.title=Cash Drawer Maintenance

■ DialogSpec.OverCashDrawerWarning.description=Cash Drawer Warning

■ DialogSpec.OverCashDrawerWarning.line3=Notify a manager

■ DialogSpec.OverCashDrawerWarning.line8=Press Enter to continue

posText_en.properties
Set the following property for warning message when UNDER:

StatusPanelSpec.CashDrawerUnderWarningMessage=Contact the Manager

Scan Sheet
The scan sheet can be used to provide cashiers with a list of barcodes for items that are
too small to have a label or sticker with a barcode, or for a service that carries a charge
to the customer but is not tangible and therefore does not contain a sticker or label
with a barcode. This functionality is an on-screen scan sheet. The scan sheet is accessed
from the Sell item screen.

The scan sheet is represented as a grid. The retailer can configure each square of the
grid to their specific needs. For example, one square might contain an icon
representing alterations. Once selected, the next step is to go to the alternations detail
screen so the user can capture the details needed to complete the alteration for the
customer. If the user selects a square that contains an icon for an item, the user is
returned to the Sell Item screen, and the item is added to the transaction.

Scan Sheet Data Configuration
To use a scan sheet, you must set up the following properties.

Table 11–2 Application Parameters

Parameter Description

CashAmountOverWarningFloat If the total cash amount in the cash drawer is greater than
or equal to the value of this parameter, a modal warning
message is displayed.

CashAmountUnderWarningFloat If the total cash amount in the cash drawer is less than or
equal to the value of this parameter, a non-modal warning
message is displayed.

Scan Sheet

11-4 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Application.properties
Edit the following in the <source_
directory>\applications\pos\deploy\shared\config\application.pro
perties file:

■ enableScanSheet – The valid values for this property are true and false. If the value
is set to true, the scan sheet button is displayed. If the value is false, the scan sheet
button is not displayed on the Sell Item screen.

■ maxGridSize – The valid value for this property is any number. If it is set to 2, then
a grid of 2 by 2 is displayed. If set to 4, a grid of 4 by 4 is displayed.

The following database tables are used to configure a scan sheet configuration:

■ Table 11–3, CO_CFG_SC_SHT

■ Table 11–4, CO_CFG_SC_SHT_I8

Inserting and Configuring a Category
A category of items called Grips can be configured in the scan sheet by running the
following insert statements. This creates a scan sheet component without an image.

Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM, ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT)
values (1,null,'grips',1,'C',null);

Note: The suggested maximum grid size is 4 by 4. Any parameter
value greater than 4 can lead to the display being distorted.

Table 11–3 CO_CFG_SC_SHT

COLUMN TYPE NULLABLE COMMENT

ID_SC_SHT_COM NUMBER(38,0) No Scan Sheet Component ID

ID_ITM VARCHAR2(14 BYTE) Yes Item ID

ID_CTGY VARCHAR2(14 BYTE) Yes Category ID

AI_ORD NUMBER(38,0) Yes Scan Sheet component order

TY_COM VARCHAR2(1 BYTE) Yes Component type Item(I) or
Category(C)

ID_CTGY_PRNT VARCHAR2(14 BYTE) Yes Parent Category ID

Table 11–4 CO_CFG_SC_SHT_I8

COLUMN TYPE NULLABLE COMMENT

ID_SC_SHT_COM NUMBER(38,0) No Scan Sheet Component ID

LCL VARCHAR2(10 BYTE) No @Locale

NM_CTGY VARCHAR2(120 BYTE) Yes @Translatable=Category Name

DO_SC_COM_IMG BLOB Yes Component image

COM_IMG_LOC VARCHAR2(200 BYTE) Yes Component image location URL

Note: The Grips category is used as an example in this section.

Scan Sheet

Point-of-Service 11-5

where:

■ ID_SC_SHT_COM = 1. This is the unique component ID given to a scan sheet
component.

■ ID_ITM = null. This is applicable in case of an individual item, for example, when
TY_COM = ’I’. The value is null as a category is being inserted.

■ ID_CTGY = ’grips’. This is the ID of the category, applicable in cases when TY_
COM = ’C’.

■ AI_ORD = 1. The order of the component. This determines the position of the
component in the scan sheet grid.

■ TY_COM = ’C’. C indicates a category item. I indicates an individual item.

■ ID_CTGY_PRNT = null. This is the parent category of the category or individual
item being configured.

Insert into CO_CFG_SC_SHT_I8 (ID_SC_SHT_COM, LCL, NM_CTGY)
 values (1,'en','Grips');

where:

■ ID_SC_SHT_COM = 1. This is the unique component ID given to a scan sheet
component.

■ LCL = ’en’. This is the locale.

■ NM_CTGY = ’Grips’. This is applicable only when TY_COM = C. It contains the
locale-specific name of the category that is displayed. For individual items, the
AS_ITM_I8 short description is shown.

Inserting an Image
The table CO_CFG_SC_SHT_I8 has two columns for configuring images for a
particular scan sheet component: DO_SC_COM_IMG and COM_IMG_LOC.

The image can be stored directly as a blob in the DO_SC_COM_IMG column. There is
no generic way of inserting blob data into different types of databases. For the Oracle
database, blob data can be inserted using tools such as SQLDeveloper, or writing using
a PL/SQL block.

If the item image is not stored in DO_SC_COM_IMG, the image is fetched from the
URL specified in the COM_IMG_LOC column. The URL can be a web URL or a file
URL pointing to an image stored on the server.

For individual items, if DO_SC_COM_IMG and COM_IMG_LOC are not set, the
image configured in AS_ITM_IMG is displayed.

Inserting/ Configuring an Individual Item Belonging to a Category An item that belongs to the
Grips category can be configured in the scan sheet by running the following insert
statement:

Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT)
values (13,'1544',null,1,'I','grips');

where:

■ ID_SC_SHT_COM = 1. This is the unique component ID given to a scan sheet
component.

■ ID_ITM = 1544. This is the item ID.

Scan Sheet

11-6 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

■ ID_CTGY = null. This is the ID of the category, applicable in cases when TY_COM
= C. The value is null as a single item is being configured.

■ AI_ORD = 1. The order of the component. This determines the position of the
component in the scan sheet grid.

■ TY_COM = ’I’. I indicates an individual item.

■ ID_CTGY_PRNT = ‘grips’. The parent for this item is grips.

In case of an individual item, no data is required for the CO_CFG_SC_SHT_I8 table
unless the user wants to specify an image other than the image configured in the AS_
ITM_IMG table.

Inserting/ Configuring an Individual Item that Does Not Belong to Any Category An individual
item that does not belong to any category can be configured in the scan sheet by
running the following insert statements:

Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT)
values (12,'27604',null,12,'I',null);

■ ID_SC_SHT_COM = 12. This is the unique component ID given to a scan sheet
component.

■ ID_ITM = 27604. This is the item ID.

■ ID_CTGY = null. This is the ID of the category, applicable in cases when TY_COM
= ’C’.

■ AI_ORD = 12. The order of the component. This determines the position of the
component in the scan sheet grid. All components with values less than this value
are displayed before this item, and components with a value greater than this
come after.

■ TY_COM = ‘I’. I indicates an individual item.

■ ID_CTGY_PRNT = null. The item does not belong to any category. This item is
displayed on the home page.

In case of an individual item, no data is required for the CO_CFG_SC_SHT_I8 table
unless the user wants to specify an image other than the image configured in the AS_
ITM_IMG table.

The following are sample scripts for reference:

Example 11–1 InsertTableScanSheet.sql

-- ===
--
-- Categories --
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (1,null,'grips',1,'C',null);
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (2,null,'handlebars',2,'C',null);
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (3,null,'brakes',3,'C',null);
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (4,null,'seats',4,'C',null);
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (5,null,'locks',5,'C',null);
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (6,null,'jerseys',6,'C',null);

Scan Sheet

Point-of-Service 11-7

Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (7,null,'accessories',7,'C',null);
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (8,null,'tires',8,'C',null);
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (9,null,'hrms',9,'C',null);

-- Individual items those do not belong to any category
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (10,'30020002',null,10,'I',null);
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (11,'30060006',null,11,'I',null);
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (12,'27604',null,12,'I',null);

-- Items those belong to a category
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (13,'1544',null,1,'I','grips');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (14,'1547',null,2,'I','grips');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (15,'1565',null,3,'I','grips');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (16,'3628',null,4,'I','grips');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (17,'1409',null,1,'I','handlebars');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (18,'1411',null,2,'I','handlebars');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (19,'1422',null,3,'I','handlebars');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (20,'1437',null,4,'I','handlebars');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (21,'1449',null,5,'I','handlebars');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (22,'1476',null,6,'I','handlebars');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (23,'1477',null,7,'I','handlebars');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (24,'185',null,1,'I','brakes');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (25,'198',null,2,'I','brakes');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (26,'194',null,3,'I','brakes');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (27,'225',null,4,'I','brakes');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (28,'231',null,5,'I','brakes');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (29,'2430',null,1,'I','seats');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (30,'2433',null,2,'I','seats');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (31,'2435',null,3,'I','seats');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (32,'3634',null,4,'I','seats');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (33,'3635',null,5,'I','seats');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_

Scan Sheet

11-8 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

PRNT) values (34,'4527',null,6,'I','seats');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (35,'3603',null,1,'I','locks');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (36,'3604',null,2,'I','locks');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (37,'3606',null,3,'I','locks');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (38,'3608',null,4,'I','locks');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (39,'4197',null,1,'I','jerseys');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (40,'4284',null,2,'I','jerseys');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (41,'4285',null,3,'I','jerseys');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (42,'4286',null,4,'I','jerseys');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (43,'4278',null,5,'I','jerseys');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (44,'6110',null,6,'I','jerseys');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (45,'6111',null,7,'I','jerseys');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (46,'6806',null,8,'I','jerseys');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (47,'3614',null,1,'I','accessories');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (48,'3641',null,2,'I','accessories');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (49,'3214567',null,3,'I','accessories');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (50,'3889',null,4,'I','accessories');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (51,'3903',null,5,'I','accessories');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (52,'4521',null,6,'I','accessories');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (53,'60080008',null,7,'I','accessories');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (54,'6299',null,8,'I','accessories');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (55,'6350',null,9,'I','accessories');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (56,'3646',null,1,'I','tires');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (57,'5384',null,2,'I','tires');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (58,'806',null,3,'I','tires');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (59,'810',null,4,'I','tires');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (60,'869',null,5,'I','tires');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (61,'6202',null,1,'I','hrms');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (62,'6207',null,2,'I','hrms');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (63,'6229',null,3,'I','hrms');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_

Item Images

Point-of-Service 11-9

PRNT) values (64,'6211',null,4,'I','hrms');
Insert into CO_CFG_SC_SHT (ID_SC_SHT_COM,ID_ITM,ID_CTGY,AI_ORD,TY_COM,ID_CTGY_
PRNT) values (65,'6220',null,5,'I','hrms');

Example 11–2 InsertTableScanSheetI18N.sql

-- ===

--

Insert into CO_CFG_SC_SHT_I8 (ID_SC_SHT_COM,LCL,NM_CTGY) values (1,'en','Grips');

Insert into CO_CFG_SC_SHT_I8 (ID_SC_SHT_COM,LCL,NM_CTGY) values
(2,'en','Handlebars');

Insert into CO_CFG_SC_SHT_I8 (ID_SC_SHT_COM,LCL,NM_CTGY) values (3,'en','Brakes');

Insert into CO_CFG_SC_SHT_I8 (ID_SC_SHT_COM,LCL,NM_CTGY) values (4,'en','Seats');

Insert into CO_CFG_SC_SHT_I8 (ID_SC_SHT_COM,LCL,NM_CTGY) values (5,'en','Locks');

Insert into CO_CFG_SC_SHT_I8 (ID_SC_SHT_COM,LCL,NM_CTGY) values
(6,'en','Jerseys');

Insert into CO_CFG_SC_SHT_I8 (ID_SC_SHT_COM,LCL,NM_CTGY) values
(7,'en','Accessories');

Insert into CO_CFG_SC_SHT_I8 (ID_SC_SHT_COM,LCL,NM_CTGY) values (8,'en','Tires');

Insert into CO_CFG_SC_SHT_I8 (ID_SC_SHT_COM,LCL,NM_CTGY) values (9,'en','Heart
Rate Monitors');

Insert into CO_CFG_SC_SHT_I8 (ID_SC_SHT_COM,LCL,NM_CTGY) values (10,'en',null);

Insert into CO_CFG_SC_SHT_I8 (ID_SC_SHT_COM,LCL,NM_CTGY) values (11,'en',null);

Insert into CO_CFG_SC_SHT_I8 (ID_SC_SHT_COM,LCL,NM_CTGY) values (12,'en',null);

Item Images
Item images are maintained in the AS_ITM_IMG table. The table can save the actual
image as well as the location of the image:

■ AS_ITM_IMG.ITEM_IMG_LOC – location of the image.

■ AS_ITM_IMG.ITM_DET_IMG – image blob.

The images can be loaded through DIMP. The DIMP import jar should contain the
image file, if it is to be stored in the database. Otherwise, the location of the image
should be mentioned in the DIMP import XML file. The DIMP item import xml file
should contain data in the following format:

Example 11–3 ItemImport.xml Sample

<?xml version="1.0" encoding="UTF-8"?>
<ItemImport
 Priority="0"

Note: Items in bold in the example need to be updated.

Serial Numbers

11-10 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

 FillType="FullIncremental"
 Version="1.0"
 Batch="1"
 CreationDate="2001-12-17T09:30:47.0Z"
 ExpirationDate="2027-12-17T09:30:47.0Z"
 xsi:noNamespaceSchemaLocation="ItemImport.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Item
 ChangeType="UPS"
 ID="1234"
 ImageFileName="name of the image file if the file is part of the JAR"
 ImageLocation="URL of the image">
 </Item>
</ItemImport>

Images for Mobile Point-of-Service
Mobile Point-of-Service does not support the file:\\\ type of URL. The item location
needs to be in the following format:

http://<host>:<port>/<path to image>/<image file>

The images can be hosted on a Mobile Point-of-Service server by adding the images to
the WAR directory within the Oracle WebLogic domain that hosts the Mobile
Point-of-Service application. Following is an example of the path to the image file
location:

http://<host>:<port>/mobilepos/image/<image file>

Serial Numbers
Serial numbering is a system used by manufacturers to be able to trace the history of
any finished good that reaches the customers. When customers complain of defective
goods, knowing the serial number enables the manufacturer to find out where the raw
materials were purchased, who was involved in each production step, as well as which
distributors the goods were channeled by.

Retailers that sell such high-valued or high-risk items have to track unique numbers or
attributes for a single item or a group of items. This enables the retailer to have a tight
control over every unit of every item in the inventory. The sale/return process needs to
capture the serial number of the items, reserve/reverse status of item in Store
Inventory Management and transmit the serial number to mark the item as sold to
Store Inventory Management. The serial number of the sold item also needs to be
transmitted with the transaction data to all the downstream applications that require
Point-of-Service transaction data.

Point-of-Service supports the sale of serial controlled items. The overall processing of a
serial controlled item is broken into the following two parts:

■ Serial Number Validation: When an item is scanned, if the UIN-required flag is set
to Yes, the user is prompted for the serial number. If the UIN capture time is set to
StoreReceiving, then the serial number is validated from Store Inventory
Management.

■ Serial Number Status Update: Serial number status is updated in Store Inventory
Management based on the stock movement. All the transactions listed in the
validation step are sent to Store Inventory Management for update.

Currency Rounding

Point-of-Service 11-11

Configuration
The following functionality can be configured to enable the serial numbers
functionality.

Enabling or Disabling Serialization Functionality
The property SerializationEnabled=false in application.properties file
controls enabling or disabling of the feature. The Point-of-Service client installer sets
the value true or false based on whether the user selects the serialization functionality.

Enabling or Disabling IMEI Functionality
The property IMEIEnabled=false in application.properties file controls
enabling or disabling of the feature. This feature is not set by the installer and needs to
be configured post-installation.

Currency Rounding
Currency rounding enables retailers to round the amount given in cash for change and
refunds to a chosen denomination. The amount can be rounded up or down to a
specific denomination.

For example, several countries are moving towards eliminating the penny, or one cent
coin, as an accepted denomination. Retailers can continue accepting the penny from
customers as a part of their payment. When giving change or a refund, the retailer
does not use pennies, but instead the change or refund amount is rounded based on
the rounding method and denomination they have chosen.

When currency rounding is used, the following information is provided:

■ A line on receipts shows the amount of rounding adjustment that was made in the
transaction.

■ The Statistical Summary section of the summary reports includes a Cash
Rounding Adjustment field which contains the total amount of rounding
adjustments made for transactions involving cash given for change and refunds.
For more information, see the Oracle Retail Point-of-Service User Guide.

The following rounding methods are supported:

■ Swedish Rounding–round the change or refund amount to the nearest amount in
the selected denomination.

■ Round Up–round the change or refund amount up to the higher amount in the
selected denomination.

Notes:

■ The item scan process in the transaction listed for the serial number
validation process prompts the user for the serial number if the item is a
serial controlled item. The serial number is validated and upon the
completion of the transaction, the inventory is reserved in Store Inventory
Management.

■ On completing the transactions listed in serial number update process,
the serial number is transmitted as part of the transaction information to
all downstream applications such as to Central Office, a sales audit
application, Store Inventory Management, and so on.

■ Point-of-Service handles the scenarios when Store Inventory Management
is offline.

Cross-Border Returns

11-12 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

■ Round Down–round the change or refund amount down to the lower amount in
the selected denomination.

For examples of these currency rounding methods, see Appendix A.

Configuration for Currency Rounding
To use currency rounding, select the method and denomination:

1. Select the rounding method in the Change Rounding Type parameter. The
following values are available:

■ Swedish Rounding

■ Round Up

■ Round Down

2. Select the denomination in the Cash Rounding Denomination parameter. The
following values are available:

■ 0.05

■ 0.10

■ 0.50

■ 1.00

For more information on these parameters and how to set the values, see the Oracle
Retail POS Suite Configuration Guide.

Cross-Border Returns
Cross-border returns enables the processing of the return of items in a different
country than where the items were originally purchased. The system processes the
return in the local country's currency and uses the local store's pricing and tax. The
original transaction is updated with the return information in order to maintain the
correct status of the original transaction and prevent multiple returns against the same
item.

Configuration for Cross-Border Returns
To enable cross-border returns:

1. Set the Allow Cross Border Return parameter value to Yes.

2. Select the method for determining if a return is a cross-border return in the
Determine Cross Border Return Based On parameter. The following values are
available:

■ Country

If the country code of the returning store and country code of the store at
which the original sale transaction occurred differ, the return is identified as a
cross-border return.

■ Currency

If the currency code of the returning store and currency code of the store at
which the original sale transaction occurred differ, the return is identified as a
cross-border return.

Dual Display

Point-of-Service 11-13

3. Select the method for determining the selling price for the return item in the
Return Price for CBR parameter. The following values are available:

■ Current_Selling_Price

The current selling price of the item is applied to the return item.

■ Lowest_in_X_days

The lowest price in the X number of days, based on the Return Price Days
parameter, is applied to the return item.

For more information on these parameters and how to set the values, see the Oracle
Retail POS Suite Configuration Guide.

Dual Display
The customer display is a separate display from the associate-facing Point-of-Service
display. It provides a view for the customer of the transaction as the cashier is
scanning items and completing the transaction. The following information can be
displayed in the transaction panel of the dashboard:

■ Scrolling receipt with item information including images, description, and price

■ Transaction summary including subtotal, discounts, quantity purchased, tax, and
total

The image and message panels are configurable for the retailer's brand and messaging.
The images and messages have start and end dates and times to enable displaying
date and time specific promotional material as appropriate.

Configuration for the Dual Display

application.properties Configuration File
The dualDisplayEnabled property in this file controls whether Dual Display is
enabled. This feature is not set by the installer and needs to be configured
post-installation:

■ To enable Dual Display, set dualDisplayEnabled=true.

■ To disable Dual Display, set dualDisplayEnabled=false.

Parameters
To configure the content for the dual display, set up the following parameters:

1. Set the messages shown on the display in the Dual Display Marketing Messages
parameter. For multiple messages, a carriage return can be used to separate the
messages.

2. If more than one message is defined, set the time used to cycle through multiple
marketing messages in the Dual Display Messages Interval parameter. This
parameter is only used if more than one message is defined.

For more information on these parameters and how to set the values, see the Oracle
Retail POS Suite Configuration Guide.

Note: The retailer is responsible for configuring the environment to
use dual display.

Dashboard

11-14 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Dashboard
Point-of-Service has a configurable dashboard that can be displayed on the Main
Options screen. The following are displayed in the dashboard:

■ Graphical reports

The reports are selected from a list of available Point-of-Service reports. The report
data is updated in real time.

■ Messages

The text for the messages is configurable.

Configuration for the Dashboard
To configure the dashboard, set up the following parameters:

1. To enable the dashboard, set the Enable Dashboard parameter to Yes.

2. Set up the messages text in the Dashboard Messages parameter.

3. Select the reports in the Dashboard Reports parameter. This following values are
available:

■ Associate Productivity

■ Department Sales

■ Hourly Sales

For more information on these parameters and how to set the values, see the Oracle
Retail POS Suite Configuration Guide.

Fiscal Printer Support
Point-of-Service can be integrated with JavaPOS-compliant fiscal printers. Fiscal
printers are receipt printers with sealed fiscal memory. Fiscal printers do not simply
print text similar to standard printers; they are used to monitor and memorize all fiscal
information about transactions performed at Point-of-Service. A fiscal printer has to
accumulate totals, discounts, number of canceled receipts, taxes, and so on and store
this information in different totalizers, counters, and the fiscal memory.

Countries such as Brazil, Bulgaria, Greece, Hungary, Italy, Poland, Romania, Russia,
Turkey, Czech Republic, Ukraine, and Sweden mandate the integration of
Point-of-Service with fiscal printers. Each country has its own requirements on fiscal
receipts. Since fiscal rules differ between countries, Point-of-Service uses the JavaPOS
Fiscal Printer interface for printing fiscal receipts. The JavaPOS Fiscal Printer interface
tries to generalize the common fiscal printing requirements at the maximum extent
specifications.

Note: Fiscal rules are different among countries. Java POS Fiscal
Printer API tries to generalize these requirements by summarizing the
common requirements. The retailer is responsible for ensuring all
fiscal printing requirements are met for the country when integrating
with fiscal printers.

Integration with Oracle Retail Store Inventory Management

Point-of-Service 11-15

For information about installing the JPOS driver and setting the receipt logo and
header lines, see the printer manufacturer's installation and configuration guide.

For Release 14.0, Point-of-Service is tested with an EPSON FP90II fiscal printer for
Italy and uses direct IO commands for barcode printing. The barcode direct IO
command is configured in DeviceContext.xml and needs to be changed for other
printers. For more information, see the Oracle Retail Point-of-Service Installation Guide.

Integration with Oracle Retail Store Inventory Management
The Point-of-Service to Store Inventory Management integration provides integration
for Point-of-Service to interact with Store Inventory Management for inventory
information. The following features are supported for integration with an inventory
management system:

■ Inventory Inquiry: This feature is provided to enable Point-of-Service to check the
item inventory in Home Store, Buddy Store, Specific Store and Transfer zone. The
Item Inventory feature is available to Point-of-Service client only when the
Point-of-Service client is in the Online mode.

■ Item Basket: This feature is provided for line busting using the Store Inventory
Management handheld. The items in a customer basket are scanned using the
Store Inventory Management handheld and staged in the Store Inventory
Management database. Point-of-Service can then look up the basket details and
add the line items to the sell item screen.

■ Serial Number Validation and Update: Point-of-Service supports serialized items.
The operator is prompted to enter/scan the serial number of the serialized item on
the Point-of-Service client. The serial number that is entered is then validated by
interfacing with Store Inventory Management. Once the transaction is tendered,
the serialized items along with the captured serial number are sent to Store
Inventory Management for updating the status of the particular serial number.

■ Inventory Reservation: Point-of-Service interfaces with Store Inventory
Management to send the order transactions so that the items can be marked as
reserved in Store Inventory Management. Also, once the items are picked up or
delivered to the customer, the status needs to be updated in Store Inventory
Management.

■ Real Time Inventory Status Update: This interface sends Point-of-Service
transactions to Store Inventory Management to update the inventory status based
on the transactions.

Integration is supported by the following two ways:

■ Integration using a Web Service

■ Integration using Batch Files

Integration using a Web Service
The following steps outline the Point-of-Service-to-Store Inventory Management
integration approach:

Note: The JavaPOS Fiscal Printer interface does not support barcode
printing. The JavaPOS direct IO API can be used as a workaround if
the printer supports direct IO commands for barcodes.

Integration with Oracle Retail Store Inventory Management

11-16 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

1. Expose the inventory features from Store Inventory Management in the form of a
web service.

2. Provide pluggable inventory web service interface to integrate
Point-of-Service-to-Store Inventory Management.

3. Point-of-Service client interacts with Point-of-Service server over RMI as in the
existing Point-of-Service architecture. Point-of-Service server interacts with
inventory web service interface to interact with Store Inventory Management.

4. Point-of-Service uses the connector framework to achieve a pluggable and
extendable integration with Store Inventory Management.

The Point-of-Service to Store Inventory Management integration system is broken into
five main sub-systems:

■ Point-of-Service Client

■ Point-of-Service Server

■ Point-of-Service COMMEXT (Communication Extension Module)

■ Store Inventory Management Server

■ Store Inventory Management DB

Point-of-Service Client
The various functionalities are incorporated in Point-of-Service client by having new
tours and new components, namely the ConnectorManager for interaction with the
ConnectorTechnician.

Point-of-Service Server
The Point-of-Service server contains the connector framework which embeds the
integration details. The connector framework is exposed through the
ConnectorManager and RetailTransactionTechnician. The connector framework
consists of pluggable Formatters (request-response formatting) and Connectors
(ORSIMWebServiceConnector) to abstract the connection-specific logic.

The ORSIMWebServiceConnector is in the Point-of-Service server. PSITechnician
interacts with PSIInventoryWS_Stub to call InventoryWS over intranet using
HTTP/SOAP protocol.

Point-of-Service COMMEXT (Communication Extension Module)
The COMMEXT (Communication Extension Module) is an out-of-the-box integration
framework. It provides a very extendable approach to the integrations both online and
offline. The Point-of-Service COMMEXT model is as shown in Figure 11–1. The
separation of concerns between data structure manipulation or transformation, and
handling connectivity to a service is separated between the two components–the
formatter and the connector.

Integration with Oracle Retail Store Inventory Management

Point-of-Service 11-17

Figure 11–1 Point-of-Service Connector Framework Model

The MessageDispatcher is the core of the communication framework. Its primary
function is to dispatch messages to mapped routers. In addition, MessageDispatcher
performs administrative and control operations on the associated connectors. When
invoked, the MessageDispatcher delegates the message handling to a specific
MessageRouter.

The MessageRouter coordinates the processing of a message using the associated
routing rule and the RouterConnectors.

A RouterConnector provides an association between a message type, connector, and
formatter. This decouples the formatting of the message from the chosen connector.

ConnectorIfc handles the communication between the application and the external
service. It is responsible for locating the service, establishing a connection, and
interacting with the service using appropriate protocols.

FormatterIfc translates the raw data from the message into the format expected by the
external service. It also translates the response from the remote service into the format
expected by the application.

Once a message has been sent with a request type to the MessageDispatcher it gets the
instance of MessageRouter that is configured for that request type from the
instantiated list. The processing is then delegated to the MessageRouter. The
MessageRouter routes the request message to the list of connectors that are configured
for that request. There can be multiple connectors that can be defined to process the
same request message.

The connector framework provides all the building blocks to realize any integration
requirement with a combination of connectors, formatters, ChainedConnectors,

Integration with Oracle Retail Store Inventory Management

11-18 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

RoutingRules and JMX notifications. The XML configuration ties up the various blocks
to implement any integration requirement.

Store Inventory Management Server
Inventory web service component deployed in Store Inventory Management server
provides the entry point into the application for the various functions.

Store Inventory Management DB
Store Inventory Management inventory database.

Item Disposition
The retailer can map the SIM inventory adjustment reason codes with the
Point-of-Service reason codes and send it to SIM in the web service call.

SIM uses these reason codes to identify the item disposition against the reason code
and updates the inventory buckets appropriately. SIM processes the web service call
and increments the SOH, performing the inventory adjustment based on the
disposition.

The following item dispositions are the valid mapped dispositions:

■ Available to Sell (ATS) to TRBL -- This disposition moves the inventory from
Available to Unavailable. For the retailer, this means the stock is taken in and
made unavailable to sell.

■ ATS to Distributed (DIST) -- This disposition moves the inventory from Available
to Out of inventory. End result the SOH is incremented and then again
decremented. For the store person, this means the return is accepted and the item
which was returned is not in a condition to keep it back on the rack and it is
destroyed.

Error Handling
Error handling is limited to logging errors during the inventory lookup. The
exceptions such as IOException and invalidItem that occur during WSService
communication are re-thrown as WSException, as well as logged for error tracking and
resolution.

Logging
Point-of-Service to Store Inventory Management uses Log4J for logging. The following
logging levels can be used:

■ Info: For logging information messages.

■ Debug: For logging all the debug messages.

■ Error: For logging application errors.

The logging level can be configured with log4J.xml. See Configuring Logging in
Point-of-Service for more information.

Integration using Batch Files
The batch files (SIMTlogs) are generated by configuring three XML files, in a manner
very similar to the RTLogs:

■ Entity mapper - SIMTLogExtractConfig.xml

The entity mapper defines the relationships between the various transaction tables
in Point-of-Service from which the records are generated. The tables and columns

Integration with Oracle Retail Store Inventory Management

Point-of-Service 11-19

in the transaction tables are joined and fetched per the existing relationships
between the entities.

■ Format configuration file - SIMTLogFormat.xml

The format configuration file defines the format of the SIM transaction logs. The
definition is in terms of records and fields.

■ Entity-mapper file - SIMTLogMappingConfig.xml

The entity mapper configuration file defines the mapping between the tables and
columns in the tables defined in the entity mapper file to the records and fields in
the SIM transaction logs. Mapper and Accessor classes defined in this file are used
to transform the column values and the record structure, respectively.

Following are some differences between the RTLog and SIMTlog:

■ The file avoids empty spaces by having a pipe ('|') delimiter between each field in
the records.

■ The batch file generation is scheduled by a cron expression, instead of an
interval-based timer.

Integration Middleware for SIM Batch Files
The integration middleware is a component that is responsible for polling the batch
file produced by the Oracle Retail POS Suite applications. This component has the
following responsibilities:

■ Polling the physical file system at a specified directory.

■ Writing the SIMTLog file to a location that SIM expects.

■ Consuming the batch files in the same order in which they are produced.

■ Cleaning and archiving the SIMTLog batch file once SIM has consumed the batch
file.

■ Issuing errors occur if the batch file cannot be extracted successfully from a
physical directory.

The following figure depicts the three domains that are involved when integrating
transaction data within the Oracle Retail suite using SIM batch files for integration:

Note: The integration middleware is provided by the system
integrator.

Integration with Oracle Retail Store Inventory Management

11-20 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Figure 11–2 Point-of-Service Integration with SIM using Batch Files

Preconditions
The following preconditions must be met for the system flow to function correctly
when using batch files for integration between Point-of-Service and SIM:

■ Transport middleware requires read and write access to the physical file system to
which SIM writes the batch file.

■ Transport middleware requires read and write access to the physical file system
from which SIM reads the batch files.

■ Oracle Retail POS Suite requires access to a physical file system to produce the
SIMTLog file.

System Flow Description
The Point-of-Service client generates transaction data and sends the transaction object
structure to the Point-of-Service store server. The Point-of-Service store server

Integration with Oracle Retail Store Inventory Management

Point-of-Service 11-21

populates the JDBC statement type and commits the transaction data to the store
database. The Point-of-Service store server also populates the RTLog structure with the
appropriate data extracted from the transaction object tree. The time increment at
which data is sent to ReSA is dictated by the retailer. If the RTLog is not successfully
created due to unsupported mappings, the transaction identifier and exceptional
condition is logged in detail on the Point-of-Service store server.

The overall flow is summarized in the following sequence:

RTLog
1. POS Suite creates the RTLog files.

2. Transport middleware scans the directory where Oracle Retail POS Suite writes
the RTLog file and reads the unprocessed RTLog files.

3. Transport middleware moves the RTLog file from the physical directory written to
by POS Suite to a physical directory on an enterprise server defined by ReSA.

4. ReSA consumes the RTLog file written to a predefined directory by the transport
middleware and executes data cleansing operations to produce audited
transaction data.

5. ReSA outputs audited RTLog-formatted transaction batch files and places the files
into directories.

SIMTLog Option for Integration between Point-of-Service and SIM
1. POS Suite creates the SIMTLog files.

2. Transport middleware scans the directory where Oracle Retail POS Suite writes
the SIMTLog file and reads the unprocessed SIMTLog files.

3. Transport middleware moves the SIMTLog file from the physical directory written
to by POS Suite to a physical directory on an enterprise server defined by SIM.

4. SIM consumes the SIMTLog file written to a predefined directory by the transport
middleware and works with the SIMTLog delta files, if any, and decides on
updating the inventory details appropriately.

Filter Configuration
The kind of transactions that are eligible to be exported to SIM from Point-of-Service
can be defined in the Server\pos\config\PSITransactionFilterConfig.xml file. This file
is common for both the web service option and flat files.

Reason Code Mapping
Point-of-Service and SIM use different reason codes. The mapping between the two is
configured in the Server\pos\config\POSToSIMItemDispositionMap.xml file. This file
is common for both the web service option and flat files.

RTLog Framework
The RTLog framework uses a cron expression rather than an interval-based timer
configuration.

The interval-based timer configuration shown in the following example:

<PROPERTY propname="sleepInterval" propvalue="600"/>

can be replaced with the following cron expression:

<PROPERTY propname="cronExpression" propvalue="0 0/10 * * * ?"/>

Integration with Oracle Retail Store Inventory Management

11-22 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Integration Architecture
The Point-of-Service terminal is the platform that the Point-of-Service client
application resides on. The cashier and the store manager interact with the
Point-of-Service client application, which generates transaction data. The
Point-of-Service client application sends a serialized object structure representing the
sales transaction to the Point-of-Service store server residing on the In-Store-Processor
(ISP). The ISP is responsible for logging the raw transaction data to the store database.
Following are the major components of the integration:

SIMTLog Export Daemon Technician
Processes configuration settings from the Store Sever Conduit XML file. Settings
include cronExpression, maximum number of transactions per batch, export directory
name, object factory class names, and export configuration files names. Starts the
SIMTLogExport Daemon Thread.

SIMTLog Export Daemon Job
Starts the export process on a periodic basis based on the configured cron expression.
Calls SIMTLogExportBatchGenerator.

SIMTLog Batch Generator
Creates a list of transactions ready for export and calls the Export File Generator.

Export File Generator
Reads the transactions in the list and formats the export data based on the export
configuration files. In this integration, the Point-of-Service store server also maps the
transaction object structure to SIMTLog format and places the SIMTLog-formatted
transaction into a file.

Following are the individual components that comprise the SIMTLog generation:

SIMTLog Batch Generator
This is an extension of the RTLogBatchGenerator.

Cron Expression
The SIMTLog batch generator runs in a daemon mode, called from the quartz threads,
which periodically output SIMTLog files created by pulling transactions from the
SIMTLog. In this configuration, ReSA processes one or more RTLog files from any
given store.

Maximum Transactions
The Maximum Transactions setting puts a limiton the number of SIMTLog
transactions read from the SIMTLog queue during a processing cycle. If the SIMTLog
queue depth is less than the maximum transactions setting, the SIMTLog Batch
Generator reads the number of transactions equal to the SIMTLog queue depth. If
Maximum Transactions is set to -1, there is no limit to the number of SIMTLog
transactions.

Adding Data Elements to the SIMTLog Batch File
If data elements need to be added to the TransactionDetail section in the SIMTLog
format:

1. Define the format of the new data in the SIMTLogFormat.xml file:

<RECORD_FORMAT name="TransactionDetail">

Integration with External Systems using SOAP Web Services

Point-of-Service 11-23

<FIELD_FORMAT name="NewDetail" type="char" length="512"/>

2. Define how the columns in any of the transaction line item level tables, such as
OR_LTM, TR_LTM_SLS_RTN_ORD, or TR_LTM_SLS_RTN, will map to the
format defined in Step 1. Make the changes in the SIMTLogMappingConfig.xml
file:

<TABLE table="TR_LTM_SLS_RTN">
<MAP column="NewDetail " record="TransactionDetail" field=" NewDetail"
 fieldMapper="oracle.retail.stores.exportfile.simtlog.fieldmappers.
NewDetailMapper"/>

3. Write a FieldMapper class named, for example, NewDetailMapper.java to perform
the mapping. Note that this may not be needed if the data is to be sent unchanged
from what is fetched from the database.

Transaction Codes in the SIMTLog Format
■ TransactionCode - The type of sale represented by this line item. Valid values are

SALE, RETURN, VOID_SALE, VOID_RETURN, ORDER_NEW, ORDER_
FULFILL, ORDER_CANCEL, and ORDER_CANCEL_FULFILL.

■ Reservation Type - Reservation type if a Point-of-Service transaction is a customer
order. Valid values are SPECIAL_ORDER, WEB_ORDER, PICKUP_AND
DELIVERY, and LAYAWAY.

Integration with External Systems using SOAP Web Services
The COMMEXT framework is the generic API used by Point-of-Service to
communicate with external systems. For integrations that rely on SOAP-based
communication such as Commerce Anywhere, Siebel, Central Office, Returns
Management, and Store Inventory Management, several common components are
leveraged. Many of these components have been designed specifically for use with the
Java API for XML web services (JAX-WS).

oracle.retail.stores.commext.connector.webservice.JAXWSWebServiceConnector is the
COMMEXT connector for synchronous web service communication with a web service
provider using SOAP messages. This COMMEXT connector uses an Adapter Pattern
to delegate behavior to a Spring-configured bean. All of the SOAP web service
consumers in the release configuration use the generic JAXWSConnector bean.

oracle.retail.stores.common.jaxws.connector.JAXWSConnector is a generic connector
bean for synchronous web service communication with a web service provider using
SOAP messages. This bean can be configured to provide the implementation to the
JAXWSWebServiceConnector for communicating with a specific endpoint. Configured
beans of this type are defined in ServiceContext.xml. The JAXWSConnector bean also
uses the Adapter Pattern to delegate to a JAX-WS client. The configuration of a
JAXWSConnector in ServiceContext.xml includes the following:

■ How to locate a copy of the WSDL. For more information, see "Configuration
Option to Resolve the WSDL Location".

■ Service name and namespace.

■ Name of the JAX-WS Service class.

■ Name of the service class method used to obtain the port. The port is the local
object that acts as a proxy for the remote service.

■ Any JAX-WS handlers to be executed during handling of outbound and inbound
messages.

Integration with External Systems using SOAP Web Services

11-24 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

oracle.retail.stores.common.jaxws.JAXWSWebServiceRequest contains all of the
request information needed by JAXWSWebServiceConnector to send an outbound
message and handle the response. An instance of this class is typically populated in a
COMMEXT formatter configured to the JAXWSWebServiceConnector.

oracle.retail.stores.common.jaxws.JAXWSWebServiceResponse is the object returned
by the JAXWSWebServiceConnector containing the response data so it can be
formatted by the COMMEXT formatter configured to the
JAXWSWebServiceConnector.

oracle.retail.stores.common.jaxws.handler.JAXWSHandlerIfc is an interface for a
JAX-WS handler. Handlers provide a hook to perform an action before an outbound
SOAP message is sent, and before an inbound SOAP response is converted into a Java
object. Handlers can be used for many purposes including logging message data,
adding security details to outbound messages, and manipulating payload content.

oracle.retail.stores.common.jaxws.handler.BaseHandler is an abstract class that can
serve as a parent class for a custom JAX-WS handler. Handler beans are configured in
ServiceContext.xml and referenced by the configuration of a
JAXWSWebServiceConnector bean.

Configuration Option to Resolve the WSDL Location
Initialization of the JAXWSConnector includes obtaining a copy of the WSDL. The
JAXWSConnector can be configured to obtain the WSDL directly from the endpoint or
it can be obtained locally from a jar on the classpath. Both methods are used in the
ServiceContext.xml shipped with Point-of-Service. Advantages to using a local WSDL
copy include faster startup times and the ability to initialize the connector when the
endpoint is offline:

■ To obtain the WSDL directly from the endpoint, a URL for the WSDL must be
defined for the wsdlLocation property in the bean's XML configuration. The bean's
XML configuration must not define an endpointURL property.

■ To obtain the WSDL from a local copy, the URL for the endpoint must be provided
in an endpointURL property in the bean's XML configuration. The bean's XML
configuration must define a wsdlLocation using the Spring classpath notation
enabling the file to be loaded from a jar on the classpath.

For an example of how to reconfigure a Commerce Anywhere JAXWSConnector to
load the WSDL from a local copy, see Appendix B.

Receipt Builder 12-1

12
Receipt Builder

Receipt Builder is a tool that is used to maintain receipt formatting and content.
Instead of the construction of receipt output existing in Java code, which requires Java
programming knowledge to change, the construction of the receipt output is defined
within easily edited XML files. The XML files can be displayed graphically and edited
within the Receipt Builder editor or edited as plain text in any other editor. This
externalizes the receipts in a way that is easily configurable and that does not require
layers of code extensions. The XML contains a combination of static receipt elements
that always print the same and other receipt elements that are dynamic. The dynamic
elements print values obtained from Java objects that exist in memory at runtime. The
XML also allows for a wide range of formatting of the obtained values in order to
make them suitable for printing.

The Receipt Builder editor requires serialized (that is, persisted) sample data objects
for the construction of new receipts. The data objects allow a developer to choose
which Java methods are executed in order to obtain the data to print for a particular
element. At Point-of-Service runtime, the object resides in memory and the new receipt
printing framework executes the specified methods against the printing framework
based upon the XML instructions. These serialized object files can be generated at
Point-of-Service runtime.

Instructions on how to format the information into the fixed-width receipt printers is
kept in XML blueprint files (also known as templates). These XML files are read at
runtime and combined with the runtime in-memory objects to produce printable
output. The Point-of-Service client caches the XML once it is read. Only if the client
detects that the blueprint file has a newer timestamp or if a new blueprint is sent from
Central Office does the client reread the XML.

Receipt Builder XML Blueprint Files
The XML blueprints are installed at <source_
directory>\applications\pos\deploy\client\receipts.

Note: For more information, see the Oracle Retail Point-of-Service
Receipt Builder Tool User Guide.

This document is available through My Oracle Support. Access My
Oracle Support at the following URL:

https://support.oracle.com

Oracle Retail Point-of-Service Receipt Builder Tool User Guide (Doc
ID: 1595733.1)

Receipt Builder XML Blueprint Files

12-2 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

The Point-of-Service client caches all blueprints once read. Upon further printing, if
the blueprint file’s timestamp has changed to a newer timestamp, the XML is reread.
Additionally, if the client receives new blueprints using FileTransfer then the cache is
also cleared.

Example XML Blueprint File
The following file is an example of an XML blueprint file that uses data from an object
called "com.demo.Person". Various lines are printed to the receipt such as "Name:" and
"Birth Date:"

Example 12–1 Example.bpt

<?xml version="1.0" encoding="UTF-8"?>
<blueprint id="receipt.bpt" copies="1">
 <report name="Report" id="1">
 <group id="99401936">
 <line id="32962587">
 <imageElement fileName="ReceiptLogo.jpg"
idePath="/demo/bin/ReceiptLogo.jpg" id="25483246" justified="1" />
 </line>
 <line id="15081425">
 <dateTimeElement formatter="Date.SHORT" prefix="(" suffix=")"
id="4536570" />
 <element text=" " id="24559530" stretch="true" />
 <dateTimeElement formatter="Time.SHORT" id="6253254" />
 </line>
 </group>
 <group id="1">
 <line id="24595355">
 <element text="Idæ‰‹:" id="25255986" />
 <methodElement id="10602994">
 <method returns="String" name="getId" class="com.demo.Person"
/>
 </methodElement>
 <element text="Name:" id="1" justified="2" stretch="true" />
 <methodElement id="26482774">
 <method returns="String" name="getName"
class="com.demo.Person" />
 </methodElement>
 </line>
 <line id="17089909">
 <element text="Height:" id="18455598" />
 <methodElement id="6311384">
 <method returns="double" name="getHeight"
class="com.demo.Person" />
 </methodElement>
 <methodElement id="13946325">
 <method returns="String" name="getLocalizedSalutation"
class="com.demo.Person" param="Locale" />
 </methodElement>
 </line>
 <line id="4171180">
 <element text="Age:" id="19840829" />
 <methodElement
formatter="0#New|1#Printed|2#Partial|3#Filled|4#Canceled|5#Completed|6#Voided"
id="32596007" escapeSequence="\|bC\|iC">
 <method returns="int" name="getAge" class="com.demo.Person" />
 </methodElement>
 <methodElement formatter="#0;(#0)" id="16747213">

Receipt Builder XML Blueprint Files

Receipt Builder 12-3

 <method returns="BigDecimal" name="getBigNumber"
class="com.demo.Person" />
 </methodElement>
 </line>
 <line id="9818046">
 <element text="Sex:" id="14253732" fillChar="." stretch="true" />
 <methodElement valuePrintedWhenFalse="female"
valuePrintedWhenTrue="male" id="6446153" stretch="true">
 <method returns="boolean" name="isSex" class="com.demo.Person"
/>
 </methodElement>
 </line>
 <line id="24763620">
 <element text="Salary:" id="15358832" />
 <methodElement id="25586725">
 <method returns="CurrencyDecimal" name="getSalary"
class="com.demo.Person" />
 </methodElement>
 </line>
 <line id="26542488">
 <element text="Nick name:" id="19086511" />
 <methodElement prefix=""" suffix=""" id="27541747">
 <method returns="String" name="getNickname"
class="com.demo.Person" />
 </methodElement>
 </line>
 <line id="26980954">
 <element text="Birth Date:" id="26154958" />
 <methodElement formatter="Date.MEDIUM" id="12290792">
 <method returns="Date" name="getBirthDate"
class="com.demo.Person" />
 </methodElement>
 </line>
 <line id="14314484">
 <element text="Spouse:" id="16920240" />
 <methodElement fixedWidth="20" id="15369072" fillChar="%"
justified="2">
 <method returns="Person" name="getSpouse"
class="com.demo.Person">
 <method returns="String" name="getName"
class="com.demo.Person" />
 </method>
 </methodElement>
 </line>
 <line id="31820984">
 <element text="" id="5367480" fillChar="_" stretch="true" />
 </line>
 <line id="24744797" />
 <line id="12182618">
 <element text="Relatives" id="4387753" />
 </line>
 <line id="4126736">
 <element text="" id="19625657" fillChar="-" stretch="true" />
 </line>
 </group>
 <group id="18541827">
 <line id="21925102" dependsOnPresenceOf="28217713">
 <element text=" Name:" id="8930268" />
 <methodElement id="28217713">
 <method returns="List<Person>" name="getRelatives"

Receipt Builder XML Blueprint Files

12-4 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

class="com.demo.Person">
 <method returns="java.lang.Object[]" name="toArray"
class="java.util.List">
 <method returns="String" name="getName"
class="com.demo.Person" />
 </method>
 </method>
 </methodElement>
 </line>
 <line id="421988">
 <element text=" Age:" id="20121217"
dependsOnPresenceOf="28007313" />
 <methodElement fixedWidth="4" formatter="##0.##E0"
printedWhenValueZero="false" id="28007313">
 <method returns="List<Person>" name="getRelatives"
class="com.demo.Person">
 <method returns="java.lang.Object[]" name="toArray"
class="java.util.List">
 <method returns="int" name="getAge"
class="com.demo.Person" />
 </method>
 </method>
 </methodElement>
 </line>
 </group>
 <group id="3818530">
 <line id="9949215">
 <element text=" " id="4513709" />
 </line>
 <line id="14721926">
 <element text="Should not print on the third copy" id="19625657"
dependsOnPresenceOf="23450220" />
 </line>
 <line id="1043272">
 <methodElement fixedWidth="42" id="19570995"
printedAsBarcode="true" justified="1">
 <method returns="int" name="hashCode" class="java.lang.Object"
/>
 </methodElement>
 </line>
 </group>
 <dependsOn returns="boolean" name="isSex" class="com.demo.Person" />
 </report>
 <linkReport documentType="footer" idePath="/demo/receipts/footer.bpt"
id="12856042" />
</blueprint>

Receipt Builder XSD
The following XSD defines the structure of the XML blueprints:

Example 12–2 Receipt Builder XSD

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.example.org/receipt"
xmlns:tns="http://www.example.org/receipt"
elementFormDefault="qualified">

 <element name="blueprint" type="tns:blueprintType" />

Receipt Builder XML Blueprint Files

Receipt Builder 12-5

 <complexType name="blueprintType">
 <annotation><documentation>
 This element represents the a single receipt blueprint. A blueprint
 is the instructions for single transactional interaction with the
 Point-of-Service printer. A blueprint can consist of one to many
reports.
 </documentation></annotation>
 <choice>
 <element name="report" type="tns:reportType" minOccurs="0"
maxOccurs="unbounded" />
 <element name="linkReport" type="tns:linkReportType" minOccurs="0"
maxOccurs="unbounded" />
 </choice>
 <attribute name="id" type="string" use="required" />
 </complexType>

 <complexType name="abstractReportType">
 <annotation><documentation>
 This is a super type for generic reports or linkReports. There can
 be one or many reports for a single receipt blueprint. The receipt
 paper is cut after the report depending on the attribute cutPaper.
 A report can be repeated for multiple copies depending on the
 attribute copies. It is possible for an entire report to not be
 printed based upon if the results of the dependsOn element are null
 or false.
 </documentation></annotation>
 <sequence>
 <element name="dependsOn" type="tns:methodType" minOccurs="1"
maxOccurs="1"/>
 </sequence>
 <attribute name="id" type="string" use="required" />
 <attribute name="copies" type="int" default="1" />
 <attribute name="cutPaper" type="boolean" default="true" />
 </complexType>

 <complexType name="reportType">
 <annotation><documentation>
 A report is a collection of receipt groups where usually the receipt
 paper is cut after the report. The name of the report is currently
 only for informational purposes.
 </documentation></annotation>
 <complexContent>
 <extension base="tns:abstractReportType">
 <sequence>
 <element name="group" type="tns:groupType" minOccurs="1"
maxOccurs="unbounded" />
 </sequence>
 <attribute name="name" type="string" />
 </extension>
 </complexContent>
 </complexType>

 <complexType name="linkReportType">
 <annotation><documentation>
 A "link report" is meant as a signal to print an external blueprint
 that can be identified by the documentType. It does not contain
 groups.
 </documentation></annotation>
 <complexContent>

Receipt Builder XML Blueprint Files

12-6 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

 <extension base="tns:abstractReportType">
 <attribute name="documentType" type="string" use="required" />
 </extension>
 </complexContent>
 </complexType>

 <complexType name="groupType">
 <annotation><documentation>
 A group is a logical collection of receipt lines that can be
 repeated if they contain an iteration or array. The group contains
 lines that are printed in order. If one of the lines contains a
 method stack from a methodElement and that method stack has a method
 call which executes on an array or collection then the entire group
 of lines will be repeated for the length or size of the iteration.

 NOTE: including method stacks which contain different arrays does
 not make sense and will not work as expected. MethodElements within
 the group should reference the same array or collection.

 Sub-iterations, i.e. arrays within arrays can be handled, but only
 the line that contains the sub-array will be repeated for the length
 of that array. The the entire group will repeat for the outer array.
 </documentation></annotation>
 <choice>
 <element name="line" type="tns:lineType" />
 </choice>
 <attribute name="id" type="string" use="required" />
 </complexType>

 <complexType name="lineType">
 <annotation><documentation>
 A line is a collection of elements that ends with a carriage return.
 Lines will be repeated (even within a repeating group) if they
 contain a methodElement which executes on an array within an array.

 It is possible for an entire line including the carriage return to
 not be printed based upon if the results of the dependsOnPresenceof
 methodElement are null or false. The value is the id of a
 methodElement in this group.
 </documentation></annotation>
 <choice>
 <element name="element" type="tns:elementType" />
 <element name="copyElement" type="tns:copyElementType" />
 <element name="imageElement" type="tns:imageElementType" />
 <element name="methodElement" type="tns:methodElementType" />
 <element name="dateTimeElement" type="tns:dateTimeElementType" />
 </choice>
 <attribute name="id" type="string" use="required" />
 <attribute name="dependsOnPresenceof" type="string" />
 </complexType>

<!-- Parent type for all elements. -->
 <complexType name="abstractElementType">
 <annotation><documentation>
 Provides a super type for attributes that are the same between all
 elements. An element's output can be affected by the JPOS
 escapeSequence attribute. An element can be printed as a bar code
 for scanning depending on the printedAsBarCode attribute. The
 attribute justify controls whether the text in the element is
 justified left "0", center "1", or right "2" in its space.

Receipt Builder XML Blueprint Files

Receipt Builder 12-7

 It is possible for an element to not be printed based upon if the
 results of the dependsOnPresenceof attribute are true or false. The
 value is the id of a methodElement in this group.
 </documentation></annotation>
 <attribute name="id" type="string" use="required" />
 <attribute name="dependsOnPresenceof" type="string" />
 <attribute name="escapeSequence" type="string" />
 <attribute name="printedAsBarCode" type="boolean" default="false" />
 <attribute name="justified" type="int" />
 </complexType>

<!-- Type for static text elements. -->
 <complexType name="elementType">
 <annotation><documentation>
 Represents an element in the receipt report that can display static
 text and its width can be stretched to take up extra space.
 </documentation></annotation>
 <complexContent>
 <extension base="tns:abstractElementType">
 <attribute name="text" type="string" use="required" />
 <attribute name="stretch" type="boolean" default="false" />
 </extension>
 </complexContent>
 </complexType>

<!-- Type for text elements that change for each copy of a report. -->
 <complexType name="copyElementType">
 <annotation><documentation>
 Represents an element in the receipt report that can display text
 that changes based upon the index of the current report being
 printed and its width can be stretched to take up extra space.
 </documentation></annotation>
 <complexContent>
 <extension base="tns:abstractElementType">
 <sequence>
 <element name="copyText" type="string" minOccurs="1" maxOccurs="unbounded" />
 </sequence>
 <attribute name="stretch" type="boolean" default="false" />
 </extension>
 </complexContent>
 </complexType>

<!-- A static element that displays an image. -->
 <complexType name="imageElementType">
 <annotation><documentation>
 Represents an element in the receipt report that can display an
 image. The image file is expected to be in the present working
 directory of the application, e.g. bin/. The image will be centered
 in its line and will be the only element in its line. The idePath
 specified is only useful to the Receipt Builder plug-in for finding
 the file in Eclipse.
 </documentation></annotation>
 <complexContent>
 <extension base="tns:abstractElementType">
 <attribute name="fileName" type="string" use="required" />
 <attribute name="idePath" type="string"/>
 </extension>
 </complexContent>
 </complexType>

Receipt Builder XML Blueprint Files

12-8 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

<!-- Parent type for object and method elements. -->
 <complexType name="javaElementType">
 <annotation><documentation>
 Represents an element in the receipt report that displays text based
 upon the value of a Java object. The output can be formatted with a
 space, prefix and suffix, given a fixed width padded by spaces or
 given a format pattern string that conforms to Java types:
 java.text.SimpleDateFormat, java.text.DecimalFormat,
 java.swing.text.MaskFormatter, or java.text.ChoiceFormat.
 </documentation></annotation>
 <complexContent>
 <extension base="tns:abstractElementType">
 <attribute name="precededBySpace" type="boolean" default="true" />
 <attribute name="fixedWidth" type="int" />
 <attribute name="formatter" type="string" />
 <attribute name="prefix" type="string" />
 <attribute name="suffix" type="string" />
 </extension>
 </complexContent>
 </complexType>

<!-- An element that specifies the printing of the current date/time. -->
 <complexType name="dateTimeElementType">
 <annotation><documentation>
 Represents an element in the receipt report that displays the
 current date or time. The output can be formatted by
 java.text.SimpleDateFormat.
 </documentation></annotation>
 <complexContent>
 <extension base="tns:javaElementType"/>
 </complexContent>
 </complexType>

<!-- An element that contains the execution of of a stack of methods. -->
 <complexType name="methodElementType">
 <annotation><documentation>
 Represents an element in the receipt report that displays the
 value of a method call. If the method returns a boolean, then
 specific values can be printed instead of "true" or "false". If the
 element should not be printed when the output is null or empty
 string, then printedWhenLengthZero should be false. If the output is
 a number that should not be printed when it is zero, then
 printedWhenValueZero should be false.
 </documentation></annotation>
 <complexContent>
 <extension base="tns:javaElementType">
 <sequence>
 <element name="method" type="tns:methodType" minOccurs="1" maxOccurs="1"/>
 </sequence>
 <attribute name="valuePrintedWhenFalse" type="string" default="false" />
 <attribute name="valuePrintedWhenTrue" type="string" default="true" />
 <attribute name="printedWhenValueZero" type="boolean" default="true" />
 <attribute name="printedWhenLengthZero" type="boolean" default="false" />
 </extension>
 </complexContent>
 </complexType>

<!-- Information of a method call. -->
 <complexType name="methodType">

Configuration

Receipt Builder 12-9

 <annotation><documentation>
 This is a method in a method call stack. It can have a child method.
 </documentation></annotation>
 <sequence>
 <element name="method" type="tns:methodType" minOccurs="1"
maxOccurs="1"/>
 </sequence>
 <attribute name="returns" type="string" use="required" />
 <attribute name="name" type="string" use="required" />
 <attribute name="param" type="string" use="optional" />
 <attribute name="class" type="string" use="required" />
 </complexType>

</schema>

Configuration
The following information aids in configuring the receipt builder application.

Conduit Configuration
In <source_
directory>\applications\pos\deploy\client\config\conduit\ClientC
onduit.xml, the manager for PrintableDocumentManager should be set to
BlueprintedDocumentManager.

<MANAGER name="PrintableDocumentManager"
 package="oracle.retail.stores.pos.receipt.blueprint"
 class="BlueprintedDocumentManager">
<PROPERTY propname="configScript"
propvalue="classpath://config/manager/BlueprintedDocumentManager.xml" />
</MANAGER>

Manager Configuration
The BlueprintedDocumentManager takes a configuration file location as a property
value. The default value is specified above. This configuration file can specify the flag
of whether the beans are persisted at print time. The other property is the directory the
receipt blueprints can be found in. This is the same directory in which the persisted
beans are placed.

In this configuration file, the base blueprint file name is mapped to the document type,
enabling a different blueprint file to be printed for the specified document type. For
example, if a different sale receipt is to be printed other than the released version, a
different file name such as MySaleReceipt.bpt can be specified. Note that the
locale-specific naming convention still takes place. This means that on an American
English Point-of-Service client, the file SaleReceipt_en.bpt is searched first, followed by
SaleReceipt_en.bpt, and then SaleReceipt.bpt.

 <RECEIPT type="OrderReceipt" fileName="OrderReceipt.bpt" />
 <RECEIPT type="RedeemReceipt" fileName="RedeemReceipt.bpt" />
 <RECEIPT type="SaleReceipt" fileName="SaleReceipt.bpt" />
 <RECEIPT type="SendGiftReceipt" fileName="SendGiftReceipt.bpt" />

Note: Ensure <source_
directory>\applications\pos\deploy\client\config\man
ager\BlueprintedDocumentManager.xml is present and
configured.

Receipt Messages

12-10 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Spring Configuration
The implementation of BlueprintedReceipt is set by Spring. Changing this class can
change how the blueprint instructions are used to create printer output.

This setting can be found in the ApplicationContext.xml file found in the
pos/config/context directory.

 <!-- Blueprint receipt printing. Class must extend
oracle.retail.stores.pos.receipt.blueprint.BlueprintedReceipt -->
 <bean id="application_BlueprintedReceipt" class=
"oracle.retail.stores.pos.receipt.blueprint.BlueprintedReceipt"
 lazy-init="true"/>

Receipt Messages
The following information describes updating messages on receipts.

Updating the Legal Statement of Liability on a Receipt
There are two ways to update the legal statement of liability. One is to simply change
the text "Legal statement of liability" to that which is desired. However, if the text is
changed to "New legal statement of liability" the results would be as follows:

For a Sale:
Sale New legal statement of liability

For a Return:
Return New legal statement of liability

For a Layaway:
Layaway New legal statement of liability

For an Exchange:
Exchange New legal statement of liability

Note how Sale, Return, Layaway and Exchange seem to be hard-coded. Plus, they all
share the same text. Below is a snippet of how CreditSignatureSlipReceipt_en.bpt
would look for the above:

 <line id="12894866">
 <methodElement formatter="1#Sale|2#Return|5#Exchange|18#House
Account Payment|19#Layaway" id="31782456">
 <method returns="int" name="getTransactionType"
class="oracle.retail.stores.pos.receipt.ReceiptParameterBeanIfc" />
 </methodElement>
 <element text=" New legal statement of liability" id="29789630" />
 </line>

The second way to change the text is to add the new text in place of Sale, Return,
Layaway, Exchange, and so forth, as shown in the following example:

 <line id="12894866">
 <methodElement formatter="1#Sale Sig Slip Legal Statement|2#Return
Sig Slip Legal Statement|5#Exchange Sig Slip Legal Statement|18#House Account Sig
Slip Legal Statement|19#Layaway Sig Slip Legal Statement" id="31782456">
 <method returns="int" name="getTransactionType"
class="oracle.retail.stores.pos.receipt.ReceiptParameterBeanIfc" />
 </methodElement>
 <element text="" id="29789630" />

Receipt Messages

Receipt Builder 12-11

 </line>

Note that the original element text in this example has been replaced by just "" (this
element can be removed entirely). The advantage to this method is that the user can
specify custom text for each transaction type, as well as eliminate the words Sale,
Return, Exchange, and so forth, in the statement if they so desire.

Item Level Receipt Messages
Item Level Receipt Messages (ILRM) informs the cashier or the customer about the
item in the Sell Item screen. This utility facilitates Item level messages on the screen,
providing information to the cashier and the customer about the product or about
certain attributes associated with the item. It also provides a facility to print the Item
messages on the receipt either below the item or at the footer. Different messages can
be configured for different types of receipts, or depending on whether the item is
being sold or returned.

Rebate Receipt
A rebate receipt is printed only if a rebate message exists for a given item. The
blueprint is called RebateReceipt.bpt. If the item message exists, the XML Receipt
Framework invokes the getItemMessage() method from PLUItem object and displays
the rebate message. The item related information invokes the same methods as
invoked by the item information Group in SaleReceipt.bpt.

Receipt Messages

12-12 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

Back Office 13-1

13
Back Office

This chapter provides information on implementing Back Office.

Deploying Reports
Each Back Office report is defined with a Layout template (rtf) and a Data Template
(xml). In addition, there are configuration files that control the report menu items in
the Back Office user interface, associate the templates to user interface menu items,
and define the parameters required by each report.

Language translations of the reports shipped with Back Office are translated using
XLIFF (XML Localization Interchange File Format) files. XLIFF is an XML-based
format that contains only the text that needs to be translated. All of these translation
and configuration items are stored in the store database in tables named with an
XMLP_ prefix.

In the source tree, all of the Back Office report templates and configurations are located
in the following directory:

<source directory>\applications\backoffice\reports

After installation, the files are located in the following directory:

<install folder>\backoffice\configured-output\db\reports

Selecting either the sample or minimum dataset when installing Back Office deploys
all of the report configuration artifacts into the database. In addition, reports can be
loaded independently by executing the ant target load_reports. This ant target is
helpful for customizing Layout or Data Templates as it provides a way to test report
changes without reinstalling Back Office or rebuilding the entire database. For more
information, see the Oracle Retail Back Office Installation Guide.

For extensive customization, such as the creation of a new report, it may also be
necessary to modify language bundles deployed on the application server as part of
the Back Office application. Specifically, the report titles are externalized in the report_
<lang>_properties file (for example, report_en_properties), which is bundled inside
the report-ejb.jar file, included in the Back Office EAR file.

Deploying Reports

13-2 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

A

Appendix: Examples of Currency Rounding A-1

A Appendix: Examples of Currency Rounding

The tables in this appendix show examples of the available currency rounding
methods using each available denomination:

■ Swedish Rounding

■ Round Up

■ Round Down

For information on implementing currency rounding, see "Currency Rounding" in
Chapter 11.

Swedish Rounding
The following tables show examples of rounding for change and refunds using the
Swedish Rounding method:

Table A–1 Examples of Change Using Swedish Rounding

Rounding
Denomination

Transaction
Total

Amount from
Customer

Change Due
without
Rounding

Change Due
with Swedish
Rounding

nearest $0.05 $10.00 $11.00 $1.00 $1.00

nearest $0.05 $10.99 $11.00 $0.01 $0.00

nearest $0.05 $10.98 $11.00 $0.02 $0.00

nearest $0.05 $10.97 $11.00 $0.03 $0.05

nearest $0.05 $10.96 $11.00 $0.04 $0.05

nearest $0.05 $10.95 $11.00 $0.05 $0.05

nearest $0.05 $10.94 $11.00 $0.06 $0.05

nearest $0.05 $10.93 $11.00 $0.07 $0.05

nearest $0.05 $10.92 $11.00 $0.08 $0.10

nearest $0.05 $10.91 $11.00 $0.09 $0.10

nearest $0.10 $10.00 $11.00 $1.00 $1.00

nearest $0.10 $10.99 $11.00 $0.01 $0.00

nearest $0.10 $10.98 $11.00 $0.02 $0.00

nearest $0.10 $10.97 $11.00 $0.03 $0.00

Swedish Rounding

A-2 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

nearest $0.10 $10.96 $11.00 $0.04 $0.00

nearest $0.10 $10.95 $11.00 $0.05 $0.00

nearest $0.10 $10.94 $11.00 $0.06 $0.10

nearest $0.10 $10.93 $11.00 $0.07 $0.10

nearest $0.10 $10.92 $11.00 $0.08 $0.10

nearest $0.10 $10.91 $11.00 $0.09 $0.10

nearest $0.50 $10.00 $11.00 $1.00 $1.00

nearest $0.50 $10.99 $11.00 $0.01 $0.00

nearest $0.50 $10.98 $11.00 $0.02 $0.00

nearest $0.50 $10.97 $11.00 $0.03 $0.00

nearest $0.50 $10.96 $11.00 $0.04 $0.00

nearest $0.50 $10.95 $11.00 $0.05 $0.00

nearest $0.50 $10.94 $11.00 $0.06 $0.00

nearest $0.50 $10.93 $11.00 $0.07 $0.00

nearest $0.50 $10.92 $11.00 $0.08 $0.00

nearest $0.50 $10.91 $11.00 $0.09 $0.00

nearest $0.50 $10.79 $11.00 $0.21 $0.00

nearest $0.50 $10.63 $11.00 $0.37 $0.00

nearest $0.50 $10.75 $11.00 $0.25 $0.00

nearest $0.50 $10.74 $11.00 $0.26 $0.50

nearest $0.50 $10.55 $11.00 $0.45 $0.50

nearest $0.50 $10.42 $11.00 $0.58 $0.50

nearest $0.50 $10.37 $11.00 $0.63 $0.50

nearest $0.50 $10.25 $11.00 $0.75 $0.50

nearest $0.50 $10.20 $11.00 $0.80 $1.00

nearest $0.50 $10.05 $11.00 $0.95 $1.00

nearest $1.00 $10.00 $11.00 $1.00 $1.00

nearest $1.00 $10.99 $11.00 $0.01 $0.00

nearest $1.00 $10.98 $11.00 $0.02 $0.00

nearest $1.00 $10.97 $11.00 $0.03 $0.00

nearest $1.00 $10.96 $11.00 $0.04 $0.00

nearest $1.00 $10.95 $11.00 $0.05 $0.00

nearest $1.00 $10.94 $11.00 $0.06 $0.00

nearest $1.00 $10.93 $11.00 $0.07 $0.00

Table A–1 (Cont.) Examples of Change Using Swedish Rounding

Rounding
Denomination

Transaction
Total

Amount from
Customer

Change Due
without
Rounding

Change Due
with Swedish
Rounding

Round Up

Appendix: Examples of Currency Rounding A-3

Round Up
The following tables show examples of rounding for change and refunds using the
Round Up method:

nearest $1.00 $10.92 $11.00 $0.08 $0.00

nearest $1.00 $10.91 $11.00 $0.09 $0.00

nearest $1.00 $10.79 $11.00 $0.21 $0.00

nearest $1.00 $10.63 $11.00 $0.37 $0.00

nearest $1.00 $10.75 $11.00 $0.25 $0.00

nearest $1.00 $10.74 $11.00 $0.26 $0.00

nearest $1.00 $10.50 $11.00 $0.50 $0.00

nearest $1.00 $10.42 $11.00 $0.58 $1.00

nearest $1.00 $10.37 $11.00 $0.63 $1.00

nearest $1.00 $10.25 $11.00 $0.75 $1.00

nearest $1.00 $10.20 $11.00 $0.80 $1.00

nearest $1.00 $10.05 $11.00 $0.95 $1.00

Table A–2 Examples of Refunds Using Swedish Rounding

Rounding Denomination Refund without Rounding
Refund with Swedish
Rounding

nearest $0.05 $10.01 $10.00

nearest $0.05 $10.02 $10.00

nearest $0.05 $10.03 $10.05

nearest $0.05 $10.04 $10.05

nearest $0.05 $10.05 $10.05

nearest $0.05 $10.06 $10.05

nearest $0.05 $10.07 $10.10

nearest $0.05 $10.08 $10.10

nearest $0.05 $10.09 $10.10

nearest $0.05 $10.10 $10.10

Table A–3 Examples of Change Using Round Up

Rounding
Denomination

Transaction
Total

Amount from
Customer

Change Due
without
Rounding

Change Due
with Round Up

nearest $0.05 $10.00 $11.00 $1.00 $1.00

nearest $.0.05 $10.99 $11.00 $0.01 $0.05

nearest $0.05 $10.98 $11.00 $0.02 $0.05

Table A–1 (Cont.) Examples of Change Using Swedish Rounding

Rounding
Denomination

Transaction
Total

Amount from
Customer

Change Due
without
Rounding

Change Due
with Swedish
Rounding

Round Up

A-4 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

nearest $0.05 $10.97 $11.00 $0.03 $0.05

nearest $0.05 $10.96 $11.00 $0.04 $0.05

nearest $0.05 $10.95 $11.00 $0.05 $0.05

nearest $0.05 $10.94 $11.00 $0.06 $0.10

nearest $0.05 $10.93 $11.00 $0.07 $0.10

nearest $0.05 $10.92 $11.00 $0.08 $0.10

nearest $0.05 $10.91 $11.00 $0.09 $0.10

nearest $0.10 $10.00 $11.00 $1.00 $1.00

nearest $0.10 $10.99 $11.00 $0.01 $0.10

nearest $0.10 $10.98 $11.00 $0.02 $0.10

nearest $0.10 $10.97 $11.00 $0.03 $0.10

nearest $0.10 $10.96 $11.00 $0.04 $0.10

nearest $0.10 $10.95 $11.00 $0.05 $0.10

nearest $0.10 $10.94 $11.00 $0.06 $0.10

nearest $0.10 $10.93 $11.00 $0.07 $0.10

nearest $0.10 $10.92 $11.00 $0.08 $0.10

nearest $0.10 $10.91 $11.00 $0.09 $0.10

nearest $0.50 $10.00 $11.00 $1.00 $1.00

nearest $0.50 $10.99 $11.00 $0.01 $0.50

nearest $0.50 $10.98 $11.00 $0.02 $0.50

nearest $0.50 $10.97 $11.00 $0.03 $0.50

nearest $0.50 $10.96 $11.00 $0.04 $0.50

nearest $0.50 $10.95 $11.00 $0.05 $0.50

nearest $0.50 $10.94 $11.00 $0.06 $0.50

nearest $0.50 $10.93 $11.00 $0.07 $0.50

nearest $0.50 $10.92 $11.00 $0.08 $0.50

nearest $0.50 $10.91 $11.00 $0.09 $0.50

nearest $1.00 $10.00 $11.00 $1.00 $1.00

nearest $1.00 $10.99 $11.00 $0.01 $1.00

nearest $1.00 $10.98 $11.00 $0.02 $1.00

nearest $1.00 $10.97 $11.00 $0.03 $1.00

nearest $1.00 $10.96 $11.00 $0.04 $1.00

nearest $1.00 $10.95 $11.00 $0.05 $1.00

Table A–3 (Cont.) Examples of Change Using Round Up

Rounding
Denomination

Transaction
Total

Amount from
Customer

Change Due
without
Rounding

Change Due
with Round Up

Round Down

Appendix: Examples of Currency Rounding A-5

Round Down
The following tables show examples of rounding for change and refunds using the
Round Down method:

nearest $1.00 $10.94 $11.00 $0.06 $1.00

nearest $1.00 $10.93 $11.00 $0.07 $1.00

nearest $1.00 $10.92 $11.00 $0.08 $1.00

nearest $1.00 $10.91 $11.00 $0.09 $1.00

Table A–4 Examples of Refunds Using Round Up

Rounding Denomination Refund without Rounding Refund with Round Up

nearest $0.05 $10.01 $10.05

nearest $0.05 $10.02 $10.05

nearest $0.05 $10.03 $10.05

nearest $0.05 $10.04 $10.05

nearest $0.05 $10.05 $10.05

nearest $0.05 $10.06 $10.10

nearest $0.05 $10.07 $10.10

nearest $0.05 $10.08 $10.10

nearest $0.05 $10.09 $10.10

nearest $0.05 $10.10 $10.10

Table A–5 Examples of Change Using Round Down

Rounding
Denomination

Transaction
Total

Amount from
Customer

Change Due
without
Rounding

Change Due
with Round
Down

nearest $0.05 $10.00 $11.00 $1.00 $1.00

nearest $.0.05 $10.99 $11.00 $0.01 $0.00

nearest $0.05 $10.98 $11.00 $0.02 $0.00

nearest $0.05 $10.97 $11.00 $0.03 $0.00

nearest $0.05 $10.96 $11.00 $0.04 $0.00

nearest $0.05 $10.95 $11.00 $0.05 $0.05

nearest $0.05 $10.94 $11.00 $0.06 $0.05

nearest $0.05 $10.93 $11.00 $0.07 $0.05

nearest $0.05 $10.92 $11.00 $0.08 $0.05

nearest $0.05 $10.91 $11.00 $0.09 $0.05

Table A–3 (Cont.) Examples of Change Using Round Up

Rounding
Denomination

Transaction
Total

Amount from
Customer

Change Due
without
Rounding

Change Due
with Round Up

Round Down

A-6 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

nearest $0.10 $10.00 $11.00 $1.00 $1.00

nearest $0.10 $10.99 $11.00 $0.01 $0.00

nearest $0.10 $10.98 $11.00 $0.02 $0.00

nearest $0.10 $10.97 $11.00 $0.03 $0.00

nearest $0.10 $10.96 $11.00 $0.04 $0.00

nearest $0.10 $10.95 $11.00 $0.05 $0.00

nearest $0.10 $10.94 $11.00 $0.06 $0.00

nearest $0.10 $10.93 $11.00 $0.07 $0.00

nearest $0.10 $10.92 $11.00 $0.08 $0.00

nearest $0.10 $10.91 $11.00 $0.09 $0.00

nearest $0.50 $10.00 $11.00 $1.00 $1.00

nearest $0.50 $10.99 $11.00 $0.01 $0.00

nearest $0.50 $10.98 $11.00 $0.02 $0.00

nearest $0.50 $10.97 $11.00 $0.03 $0.00

nearest $0.50 $10.96 $11.00 $0.04 $0.00

nearest $0.50 $10.95 $11.00 $0.05 $0.00

nearest $0.50 $10.94 $11.00 $0.06 $0.00

nearest $0.50 $10.93 $11.00 $0.07 $0.00

nearest $0.50 $10.92 $11.00 $0.08 $0.00

nearest $0.50 $10.91 $11.00 $0.09 $0.00

nearest $1.00 $10.00 $11.00 $1.00 $1.00

nearest $1.00 $10.99 $11.00 $0.01 $0.00

nearest $1.00 $10.98 $11.00 $0.02 $0.00

nearest $1.00 $10.97 $11.00 $0.03 $0.00

nearest $1.00 $10.96 $11.00 $0.04 $0.00

nearest $1.00 $10.95 $11.00 $0.05 $0.00

nearest $1.00 $10.94 $11.00 $0.06 $0.00

nearest $1.00 $10.93 $11.00 $0.07 $0.00

nearest $1.00 $10.92 $11.00 $0.08 $0.00

nearest $1.00 $10.91 $11.00 $0.09 $0.00

Table A–6 Examples of Refunds Using Round Down

Rounding Denomination Refund without Rounding Refund with Round Down

nearest $0.05 $10.01 $10.00

Table A–5 (Cont.) Examples of Change Using Round Down

Rounding
Denomination

Transaction
Total

Amount from
Customer

Change Due
without
Rounding

Change Due
with Round
Down

Round Down

Appendix: Examples of Currency Rounding A-7

nearest $0.05 $10.02 $10.00

nearest $0.05 $10.03 $10.00

nearest $0.05 $10.04 $10.00

nearest $0.05 $10.05 $10.05

nearest $0.05 $10.06 $10.05

nearest $0.05 $10.07 $10.05

nearest $0.05 $10.08 $10.05

nearest $0.05 $10.09 $10.05

nearest $0.05 $10.10 $10.05

Table A–6 (Cont.) Examples of Refunds Using Round Down

Rounding Denomination Refund without Rounding Refund with Round Down

Round Down

A-8 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

B

Appendix: Reconfiguring a JAXWSConnector B-1

B Appendix: Reconfiguring a
JAXWSConnector

This appendix describes how to reconfigure a JAXWSConnector to use a local copy of
a web service's WSDL.

The Commerce Anywhere JAXWSConnector used to communicate with the Order
Management System (OMS) is configured in ServiceContext.xml as the
service_CustomerOrder bean ID. The release configuration for this bean looks similar
to the following example:

<bean id="service_CustomerOrder"
class="oracle.retail.stores.common.jaxws.connector.JAXWSConnector">
 <property name="wsdlLocation">
<value>https://<HOST>:<PORT>/CustomerOrderBean/CustomerOrderService?WSDL</value>
 </property>
 <property name="serviceNamespaceURI">
<value>http://www.oracle.com/retail/oms/integration/services/CustomerOrderService/
v1</value>
 </property>
 <property name="serviceName">
 <value>CustomerOrderService</value>
 </property>
 <property name="clientServiceClassname">
<value>com.oracle.retail.oms.integration.services.customerorderservice.v1.Customer
OrderService</value>
 </property>
 <property name="sevicePortAccessorMethodName">
 <value>getCustomerOrderPort</value>
 </property>
 <property name="jaxwsHandlers">
 <list>
 <ref local="service_XC_CustomerOrder_WSSecurity_Handler"/>
 </list>
 </property>
</bean>

To reconfigure the bean to access a local copy of the WSDL:

1. Obtain a copy of the endpoint's WSDL file. One technique to do this:

a. Point a browser at the WSDL URL to capture the WSDL, for example:

https://<HOST>:<PORT>/CustomerOrderBean/CustomerOrderService?WSDL)

b. Save the source to a file, for example, CustomerOrderService.wsdl.

B-2 Oracle Retail POS Suite Implementation Guide, Volume 1 – Implementation Solutions

2. Add the WSDL to a jar file such as
OracleRetailStore\Server\common\lib\ext\rtg-service-wsdl.jar.

3. Add an endpointURL property element to the bean's XML configuration in
ServiceContext.xml:

<property name="endpointURL">
 <value>https://<HOST>:<PORT>/CustomerOrderBean/CustomerOrderService</value>
</property>

4. Replace the wsdlLocation value in the bean's XML configuration with the name of
the WSDL added to the jar file, prefaced with the Spring notation for a classpath
entry:

<property name="wsdlLocation">
 <value>classpath:CustomerOrderService.wsdl</value>
</property>

The service_CustomerOrder bean's new configuration should look similar to the
following example:

<bean id="service_CustomerOrder"
class="oracle.retail.stores.common.jaxws.connector.JAXWSConnector">
 <property name="endpointURL">
 <value>https://<HOST>:<PORT>/CustomerOrderBean/CustomerOrderService</value>
 </property>
 <property name="wsdlLocation">
 <value>classpath:CustomerOrderService.wsdl</value>
 </property>
 <property name="serviceNamespaceURI">
<value>http://www.oracle.com/retail/oms/integration/services/CustomerOrderServi
ce/v1</value>
 </property>
 <property name="serviceName">
 <value>CustomerOrderService</value>
 </property>
 <property name="clientServiceClassname">
<value>com.oracle.retail.oms.integration.services.customerorderservice.v1.Custo
merOrderService</value>
 </property>
 <property name="sevicePortAccessorMethodName">
 <value>getCustomerOrderPort</value>
 </property>
 <property name="jaxwsHandlers">
 <list>
 <ref local="service_XC_CustomerOrder_WSSecurity_Handler"/>
 </list>
 </property>
</bean>

Glossary-1

Glossary

Batch

A collection of data operations that are processed during import at one time. The size
is determined by a configurable parameter. Upon failure, an entire batch of data
operations is rolled back.

Bundle

A collection of import files, one file per data type, stored as a compressed archive
containing a manifest. It is expected that the retailer or implementation team is
responsible for delivering to the store the bundle along with manifest for all data feeds
to the store. MOM applications can package the bundle but do not provide delivery
functions.

Corporate

Used interchangeably with enterprise. The enterprise environment of the retailer where
enterprise applications are deployed. Central Office is deployed in the enterprise.

Data Access Object (DAO)

A Java class that can retrieve and persist data to and from a data source. DAO is
well-known JEE development pattern.

Data Distribution Infrastructure (DDI)

The infrastructure and application components that are responsible for distributing
seed data from enterprise applications to Store applications, ODS at Corporate (or
enterprise), and Store Database at the stores.

Data Transfer Object (DTO)

A class that contains data records from a received payload. The DTO’s attributes are
populated with the parsed data.

DIMP

Data Import. Specifically, the background data import mechanism supported by Back
Office, Central Office and Returns Management.

Incremental

There are two types of update operation, full incremental and delta incremental. Full
incremental assumes that all the fields for a data type are supplied in the XML. A delta
incremental import contains only the fields that are being changed.

ISP

In-Store-Processor

JEE/J2EE

Glossary-2

JEE/J2EE

Java Enterprise Edition is a set of APIs designed to support tier 1 type business
models.

Java Database Connectivity (JDBC)

An API used to communicate with relational databases.

Kill And Fill

Kill And Fill refers to a data operation where all the existing data in a table is deleted
(kill) and then replaced with new data (fill).

Limit (discount rule)

The maximum price allowed for a source or target to be part of a deal. Used most often
when the source or target is a classification or department where many different priced
items exist.

Manifest

A file within a bundle that lists the data files in the bundle and their
interdependencies.

Minimum Data

Minimum data is defined as the minimum set of data necessary to support the
deployment of Stores applications.

If the user attempts to select any function or log in, an error may occur in the
application without sample data loaded. See Sample Data.

Operational Data Store (ODS)

The corporate data repository that services Central Office.

POS Suite

The Oracle Retail business unit that assumes responsibility for applications running in
the Store environment.

Sample Data

A set of data used to demonstrate application features.

Store Applications

Oracle Retail applications that run in the store environment include the following:

■ Oracle Retail Back Office

■ Oracle Retail Point-of-Service

■ Oracle Retail Store Inventory Management

■ Oracle Retail Central Office

■ Oracle Retail Returns Management

Even though Central Office and Returns Management run in the corporate
environment, they are classified as store applications.

Store Database (SDB)

The data repository for store applications.

Threshold (discount rule)

Glossary-3

Threshold (discount rule)

The minimum price allowed for a source or target to be part of a deal. Used most often
when the source or target is a classification or department where many different priced
items exist.

Threshold (discount rule)

Glossary-4

Index-1

Index

A
application configuration, 6-9
ARTS compliance, 3-1, 3-16
audit log

change password, 5-17
daily operations, 5-6

end of day, 5-8
enter business date, 5-6
register close, 5-10
register open, 5-10
start of day, 5-7

employee, 5-13
add employee, 5-14
add temporary employee, 5-15
modify employee information, 5-13
modify temporary employee information, 5-13

login, logout, lockout, 5-16
user lock out, 5-16
user login, 5-16
user logout, 5-17

parameter, 5-31
modify application parameter, 5-31

password, 5-17
reset employee password, 5-18
reset temporary employee password, 5-18
role, 5-19

add role, 5-20
edit role, 5-19

till, 5-20
count float at reconcile, 5-23
till open, 5-20
till reconcile, 5-25

authorized payment foundation, 10-1

B
Back Office reports, 13-1
backend system administration and

configuration, 4-1
bean-managed persistence in the database, 3-16

C
changing currency, 8-1
client tier, 2-2

configuring logging, 4-14
configuring RMI timeout intervals, 4-12

setting the RMI timeout interval for a specific
technician, 4-14

setting the RMI timeout interval for all manager
and technician calls, 4-13

setting the RMI timeout interval for the JVM under
Linux, 4-12

configuring transaction ID lengths, 4-10
changing transaction ID lengths, 4-11
understanding transaction IDs, 4-10

creating or updating database tables, 3-5
currency rounding, 11-11

D
dashboard, 11-14
data management, 4-8
data tier, 2-5
dataset compressed file structure, 6-12

example, 6-12
dataset flat file structure, 6-13

example, 6-13
defining security with roles, 4-16

secured features, 4-16
security implementation -- warnings and

advice, 4-17
dependencies in application and commerce

services, 2-5
design patterns, 2-10

command pattern, 2-11
factory pattern, 2-11
MVC, 2-10
singleton pattern, 2-12

devices, 4-5
create a Session and ActionGroup, 4-6
set up the device, 4-5
simulate the device, 4-7
test the device, 4-5

dual display, 11-13

E
enterprise database

database/system interface, 3-15
related documentation, 3-14

Index-2

extensibility, 6-13
adding a new dataset, 6-14
adding new dataset type, 6-17
adding new table to existing dataset, 6-13

adding more tables to existing dataset
types, 6-13

changing Oracle Retail Point-of-Service client
database vendor, 6-22

configuring schedule for dataset producer and
consumer, 6-15

configure dataset consumer, 6-16
configure dataset producer, 6-15

H
help files, 4-8

modifying help files, 4-9
how data transactions work, 3-3

I
integration considerations, 6-10

M
manifest file structure, 6-12

example, 6-12
middle tier, 2-2

controller, 2-3
application services, 2-4
struts configuration, 2-3

model, 2-2
view, 2-2

modifying help files, 4-9

O
Oracle Retail Returns Management, 9-1

P
parameters, 4-1

parameter group, 4-2
parameter hierarchy, 4-2
parameter properties, 4-3

Point-of-Service architecture, 2-8

R
reason codes, 4-10
running Central Office, 4-4

S
saving data -- storing tender information, 3-7

locate data operation, 3-8
modify data operation, 3-13
research table requirements and standards, 3-7
saving data from site code, 3-7
test code, 3-14
verify data, 3-14

scheduling post-processors, 4-8
Spring configuration, 6-1
store database, 3-1
store hierarchy, 4-4
system settings, 4-14

T
technical architecture, 2-1
tier organization, 2-1

U
understanding data managers and technicians, 3-1

	Contents
	List of Examples
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Customer Support
	Review Patch Documentation
	Improved Process for Oracle Retail Documentation Corrections
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	1 Introduction
	2 Oracle Retail POS Suite Technical Architecture
	Back Office and Central Office Tier Organization
	Client Tier
	Middle Tier
	Model
	View
	Controller
	Struts Configuration
	Application Services

	Data Tier
	Dependencies in Application and Commerce Services
	Example of Operation

	Point-of-Service Architecture
	Design Patterns
	MVC Pattern
	Factory Pattern
	Command Pattern
	Singleton Pattern

	Returns Management Architecture
	General Technologies and Frameworks
	Architectural Styles and Patterns
	Architectural Layers

	Conceptual Modules
	Enabling Technologies
	JEE
	Struts
	Axis

	Web-Based User Interface
	Physical Module View
	User Interface Layer
	Consumer Adapter Layer
	Service Layer
	Data Layer
	Engine Data: Policies, Rules, And Return Activities
	Configuration Data
	Historical Data

	Messaging

	3 Store Database
	Point-of-Service Store Database
	ARTS Compliance
	Understanding Data Managers and Technicians
	How Data Transactions Work
	Creating or Updating Database Tables
	Example of Saving Data: Storing Till Information
	Research Table Requirements and Standards
	Saving Data from Site Code
	Locate Data Operation
	Modify Data Operation
	Test Code
	Verify Data

	Central Office and Back Office Store Database
	Related Documentation
	Database/System Interface
	ARTS Compliance
	Bean-Managed Persistence in the Database
	DAO-Managed Persistence in the Database for Back Office

	4 Backend System Administration and Configuration
	Parameters
	Parameters in Back Office and Central Office
	Parameters in Point-of-Service
	Parameter Hierarchy
	Parameter Group
	Parameter Properties

	Configuring Transaction Queue Monitor Intervals
	Running Back Office or Central Office
	Running Returns Management
	Establishing a Store Hierarchy in Central Office or Returns Management
	Importing Data in Returns Management
	Point-of-Service Devices
	Set Up the Device
	Test the Device
	Create a Session and ActionGroup
	Simulate the Device

	Scheduling Post Processors in Back Office
	Scheduling Post Processors in Returns Management
	Data Management in Central Office
	Help Files in Point-of-Service
	Modifying Help Files in Central Office, Back Office and Returns Management
	Modifying Help Files in Point-of-Service

	Reason Codes in Point-of-Service
	Configuring Transaction ID Lengths
	Understanding Transaction IDs
	Changing Transaction ID Format
	Configuring the Purchase Date Field for Returns and Voids

	Configuring RMI Timeout Intervals in Point-of-Service
	Setting the RMI Timeout Interval for the JVM Under Linux
	Modifying the TCP Connection Timeout on Linux

	Setting the RMI Timeout Interval for All Manager and Technician Calls
	Setting Application Timeout Values on Linux

	Setting the RMI Timeout Interval for a Specific Technician

	System Settings in Point-of-Service
	Configuring Logging in Point-of-Service
	Returns Management Environment Entries in ejb-jar.xml
	Return Ticket Formatting Entries
	Auditing Entries

	Defining Security with Roles
	Secured Features
	Security Implementation—Warnings and Advice

	Configuring Security in Returns Management

	5 Audit Logging
	Configuring the Audit Log
	Internationalize Static Text/Date/Time/Currency

	Daily Operations Audit Log Events
	Enter Business Date
	Start of Day
	End of Day
	Register Open
	Register Close

	Point-of-Service Transaction Events
	Transaction Tendered with Credit Card
	Transaction Tendered with Debit Card

	Employee Audit Log Events
	Modify Employee Information
	Modify Temporary Employee Information
	Add Employee
	Add Temporary Employee

	Login, Logout, Lockout Audit Log Events
	User Login
	User Lock Out
	User Logout

	Password Audit Log Events
	Change Password
	Reset Employee Password
	Reset Temporary Employee Password

	Role Audit Log Events
	Edit Role
	Add Role

	Till Audit Log Events
	Till Open
	Till Suspend
	Till Resume
	Till Close
	Count Float at Reconcile
	Till Reconcile

	Parameter Log Events
	Modify Application Parameter

	6 Intra Store Data Distribution Infrastructure
	Spring Configuration
	Application Configuration
	Integration Considerations
	DataSet Compressed File Structure
	DataSet Compressed File Example

	Manifest File Structure
	Manifest File Example

	DataSet Flat File Structure
	DataSet Flat File Example

	Extensibility
	Adding New Table To Existing DataSet
	Adding More Tables To Existing DataSet Types
	Adding a Table to an Existing Data Set Using the Stores Build Scripts

	Adding a New DataSet
	Adding a New DataSet Using the Stores Build Scripts

	Configuring Schedule for DataSet Producer and Consumer
	Configure DataSet Producer
	Configure DataSet Consumer

	Adding New DataSet Type
	Adding a New DataSet Type Using the Stores Build Scripts

	Changing Point-of-Service Client Database Vendor

	7 Centralized Customer
	8 Changing and Configuring Currencies
	Alternate Currencies
	Changing Currency
	Configuring a New Base Currency
	Currency SQL Configuration
	Currency Table CO_CNY
	Currency Denomination Table CO_CNY_DNM and I8 Table CO_CNY_DNM_I8
	Exchange Rate Table CO_RT_EXC
	Store Safe Tender Table LE_TND_STR_SF

	Parameter Configuration
	Resource Bundle Configuration

	9 Returns Management
	Overview
	Concept of a Return in Returns Management
	Context Model
	Oracle Retail Returns Management Actors
	Tax Responsibility in Oracle Retail Returns Management

	Functional Overview
	Conceptual Service Flow
	Conceptual Data Flow
	Functional Assumptions
	Functional Overviews
	Return Tickets Functional Overview
	Exception Files Functional Overview
	Messages and Responses Functional Overview
	Policies and Rules Functional Overview
	Analytic Engine Functional Overview
	Configuration
	Response Codes
	Tender Determination
	Collection of Customer Demographics
	Determination of the Policy for Use on a Return Attempt
	Customer Service Overrides

	Integration Methods and Communication
	Methods of Contact
	Returns Management Messages
	Sample XML for Return Transaction Scenarios
	Point-of-Return to Returns Management—Initial Return Request
	Returns Management to Point-of-Return—Initial Return Response: Need Positive ID
	Point-of-Return to Returns Management—Second Return Request
	Returns Management to Point-of-Return—Second Return Authorization Response
	Point-of-Return to Returns Management—Return Result from Second Response
	Point-of-Return to Returns Management—Void Return
	Offline Return Result

	Implementation Decisions
	Asynchronous Versus Synchronous Communication
	XML Versus JavaBean Messages
	Web Service Versus Enterprise JavaBeans and Remote Method Invocation Call

	Elements
	Return Request
	Return Response
	Return Result

	Web Service Interface
	Relationship of Returns Management Data to ARTS Transaction Data

	Returns Authorization
	Exception Flow
	Error Handling
	Logging

	Exceptions File
	Exception File and Count Calculation
	Definition of Return, for Calculation
	Exceptions
	Customer Exceptions
	Cashier Exceptions

	Customer Data Import

	10 Authorized Payment Foundation
	Authorized Payment Foundation Overview
	APF Goals
	Point-of-Service Client Flow Overview
	Implementing a New Authorization Service
	APF Request/Response Modifications
	Database Modifications
	Point-of-Service Client Tour Modifications
	COMMEXT Connectors/Formatters Implementation
	COMMEXT Configuration Modifications

	APF Request Types
	APF Authorize Payment (Transfer) Request Classes
	APF Reversal Request Classes
	APF Instant Credit Request Classes
	APF Call Referral Request Classes
	APF Signature Capture Request
	APF Customer Interaction Request
	APF Status Request
	APF Get Card Token Request

	APF Response Types
	Calling PaymentManger from Point-of-Service Tours (Services)
	CPOIPaymentUtility

	PinComm Technician
	Example Topology
	PinComm Connectors
	PinCommConnector
	PinComm CardAuthConnector
	PinComm OnePassCardAuthConnector
	PinComm AuthorizeCallReferralWithoutTokenConnector
	PinComm StatusInquiryConnector
	PinComm PinCommCPOIConnector
	PinComm CardTokenInquiryConnector
	PinComm ReentryAuthConnector

	PinComm Formatters
	PinComm CardAuthFormatters
	PinComm Check Formatters

	PinComm Configuration

	PXP Solutions ANYpay POS
	JAXBFormatter
	ServebaseFormatter
	ChainedConnector
	ServebaseConnector
	SocketConnector
	SocketThread
	Configuration
	Message Formats
	Response Codes

	AJB Technician
	AJB Topology
	AJB COMMEXT Connectors
	AJB COMMEXT Formatters
	AJB Codes
	AJB Utilities
	Mapping of AJB Action Codes to Point-of-Service Authorization Responses
	Action Codes
	Mapping Tables
	References

	Training Mode

	11 Point-of-Service
	Bill Pay
	Automated E-Mail Messages
	Register Cash Notification
	Configuration
	application.xml
	application.properties
	dialogText_en.properties
	posText_en.properties

	Scan Sheet
	Scan Sheet Data Configuration
	Application.properties
	Inserting and Configuring a Category
	Inserting an Image
	Inserting/ Configuring an Individual Item Belonging to a Category
	Inserting/ Configuring an Individual Item that Does Not Belong to Any Category

	Item Images
	Images for Mobile Point-of-Service

	Serial Numbers
	Configuration
	Enabling or Disabling Serialization Functionality
	Enabling or Disabling IMEI Functionality

	Currency Rounding
	Configuration for Currency Rounding

	Cross-Border Returns
	Configuration for Cross-Border Returns

	Dual Display
	Configuration for the Dual Display
	application.properties Configuration File
	Parameters

	Dashboard
	Configuration for the Dashboard

	Fiscal Printer Support
	Integration with Oracle Retail Store Inventory Management
	Integration using a Web Service
	Item Disposition
	Error Handling
	Logging

	Integration using Batch Files
	Integration Middleware for SIM Batch Files
	System Flow Description
	Integration Architecture

	Integration with External Systems using SOAP Web Services
	Configuration Option to Resolve the WSDL Location

	12 Receipt Builder
	Receipt Builder XML Blueprint Files
	Example XML Blueprint File
	Receipt Builder XSD

	Configuration
	Conduit Configuration
	Manager Configuration
	Spring Configuration

	Receipt Messages
	Updating the Legal Statement of Liability on a Receipt
	Item Level Receipt Messages
	Rebate Receipt

	13 Back Office
	Deploying Reports

	A Appendix: Examples of Currency Rounding
	Swedish Rounding
	Round Up
	Round Down

	B Appendix: Reconfiguring a JAXWSConnector
	Glossary
	Index
	A
	B
	C
	D
	E
	H
	I
	M
	O
	P
	R
	S
	T
	U

