Contents

Preface .. ix
 Audience ... ix
 Documentation Accessibility .. x
 Related Documents ... x
 Conventions .. x

1 Introduction
OracleAS CDC adapter for Adabas Overview .. 1-1
OracleAS CDC Adapter for Adabas Architecture ... 1-2
 The Staging Area ... 1-4

2 Installing Oracle Connect and Oracle Studio
Preinstallation Tasks .. 2-1
 z/OS Hardware and Software Requirements .. 2-1
 Hardware Requirements ... 2-1
 Software Requirements ... 2-2
 Windows Hardware and Software Requirements .. 2-2
 Hardware Requirements ... 2-2
 Software Requirements .. 2-3
 UNIX Requirements ... 2-3
Installing Oracle Connect on a z/OS Series Platform .. 2-3
 Installation Worksheet .. 2-3
 Preinstallation Tasks ... 2-5
 Importing the Installation Kit .. 2-5
 Transferring the Kit to the Dataset .. 2-5
 Installation Instructions ... 2-6
 Data Source Configuration Instructions .. 2-9
 Post-Installation Instructions ... 2-9
 Copy and Install Programs into CICS .. 2-9
 Post-Installation Procedures .. 2-10
 Starting the Daemon ... 2-11
 Setting Up Oracle Connect for Reentrancy ... 2-12
Updating an Existing Oracle Connect Installation with Adabas .. 2-12
Installing Oracle Connect on UNIX .. 2-13
 Installing Oracle Connect on a UNIX Platform ... 2-13
Preinstallation Tasks ... 2-14
Installing Oracle Connect ... 2-14
Installation Tasks .. 2-14
Post-Installation Tasks ... 2-15
Installing Oracle Connect on Windows ... 2-17
Installing Oracle Connect on a Windows Platform 2-17
Installing Oracle Studio ... 2-17
Oracle Studio Requirements ... 2-18
Installing Oracle Studio on Windows .. 2-18
Installing Oracle Studio on Linux .. 2-18
Installing Oracle Studio with the Wizard (SH installation) 2-18
Installing with a Silent Installation (RPM) 2-18
Setting Up the IBM z/OS Platform in Oracle Studio 3-1
Securing Access to Oracle Connect .. 3-2
Setting Password Access to Oracle Studio 3-2
Specifying Users with Administrative Rights 3-3
Setting Up Run-Time User Access to the IBM z/OS Platform 3-5
Setting up Metadata for the OracleAS Adabas Data Source 3-6
Setting Up the Adabas Data Source (ADD Data only) 3-6
Configuring the Data Source Driver ... 3-7
Adabas (ADD) Properties .. 3-8
Configuring the Data Source Driver Advanced Properties 3-10
Importing Metadata for the Adabas Data Source 3-12
Importing Metadata from DDM Files ... 3-12
Verifying the Metadata Definition ... 3-13
Adding Adabas Data Tracing to the Log 3-13
Setting Up a Change Data Capture with the OracleAS CDC Adapter for Adabas .. 3-13
Setting up the ATTSRVR Started Task .. 3-14
Setting up a Change Data Capture in Oracle Studio 3-14
Create a CDC Project .. 3-14
Set up the CDC Server .. 3-17
Set up the Staging Area Server ... 3-24
Setting up the Tracking File ... 3-33
Create the Tracking File .. 3-33
Registering the Archived PLOG Files ... 3-34
Registering the PLOG Files using a Generation Data Group (GDG) ... 3-34
Deploying a Change Data Capture ... 3-35
Activating and Deactivating Solution Workspaces 3-38

4 Oracle BPEL Process Manager Deployment and Integration

Overview of Oracle BPEL Process Manager Integration 4-1
Configuring the Adabas CDC Adapter In the Application Server 4-1
CDC Stream Positions Table Definition 4-2
Configuring the Adabas CDC Adapter Connection Factory 4-3
Configuring the Oracle BPEL Process Manager 4-4
5 Runtime Tasks and Troubleshooting

Adding and Removing Tables ... 5-1
Handling Metadata Changes ... 5-2
Staging Area Maintenance .. 5-3
Monitoring the Change Data Capture ... 5-4
 Service Context Table .. 5-4
 Monitoring the Status ... 5-5
Daemon Life-Cycle Tasks ... 5-6
 Starting the Daemon .. 5-7
 Task: Starting the Daemon .. 5-7
 Shutting Down the Daemon .. 5-7
 Monitoring the Daemon During Runtime 5-7
 Daemon (Computer) Options .. 5-8
 Workspace Options ... 5-8
 Server Options ... 5-9
 Daemon Logs .. 5-9
 The Log Monitor .. 5-10
Resolving Communication Errors .. 5-11
Resolving Specific Errors ... 5-11

6 Advanced Features of OracleAS CDC Adapter for Adabas

Configuring the Daemon for High Availability 6-1
 Adding a New Daemon Workspace Configuration 6-1
 Editing the Workspace .. 6-2
 Configuring the Server Mode ... 6-2
Configuring a Binding Environment ... 6-6
 Debug .. 6-7
 General .. 6-8
 Language .. 6-8
 Modeling ... 6-9
 ODBC .. 6-9
 OLEDB ... 6-9
 Optimizer .. 6-9
 Parallel Processing .. 6-10
 Query Processor ... 6-10
 Transactions .. 6-13
 Tuning .. 6-13
 XML ... 6-14
Migration Considerations ... 6-15
Security Considerations ... 6-15
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Advanced Tuning of the Metadata</td>
<td></td>
</tr>
<tr>
<td>Metadata for the Adabas Data Source</td>
<td>A-1</td>
</tr>
<tr>
<td>General Tab</td>
<td>A-2</td>
</tr>
<tr>
<td>Columns Tab</td>
<td>A-3</td>
</tr>
<tr>
<td>Column Definition Section</td>
<td>A-4</td>
</tr>
<tr>
<td>Column Properties</td>
<td>A-5</td>
</tr>
<tr>
<td>Indexes Tab</td>
<td>A-7</td>
</tr>
<tr>
<td>Table Information</td>
<td>A-7</td>
</tr>
<tr>
<td>Properties</td>
<td>A-8</td>
</tr>
<tr>
<td>Statistics Tab</td>
<td>A-8</td>
</tr>
<tr>
<td>Generating Statistics</td>
<td>A-10</td>
</tr>
<tr>
<td>Advanced Tab</td>
<td>A-11</td>
</tr>
<tr>
<td>Adapter Metadata</td>
<td>A-13</td>
</tr>
<tr>
<td>Adapter Metadata General Properties</td>
<td>A-13</td>
</tr>
<tr>
<td>Adapter Metadata Interactions</td>
<td>A-15</td>
</tr>
<tr>
<td>Interaction Advanced Tab</td>
<td>A-16</td>
</tr>
<tr>
<td>Adapter Metadata Schema Records</td>
<td>A-18</td>
</tr>
<tr>
<td>Adapter Metadata XML</td>
<td>A-20</td>
</tr>
<tr>
<td>B Advanced Tuning of the Daemon</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>B-1</td>
</tr>
<tr>
<td>Logging</td>
<td>B-3</td>
</tr>
<tr>
<td>Security</td>
<td>B-5</td>
</tr>
<tr>
<td>Workspaces</td>
<td>B-7</td>
</tr>
<tr>
<td>General</td>
<td>B-7</td>
</tr>
<tr>
<td>Server Mode</td>
<td>B-11</td>
</tr>
<tr>
<td>Security</td>
<td>B-16</td>
</tr>
<tr>
<td>C Editing Properties for the OracleAS CDC Adapter for Adabas</td>
<td></td>
</tr>
<tr>
<td>Editing Properties in Oracle Studio</td>
<td>C-1</td>
</tr>
<tr>
<td>Editing the OracleAS CDC Adapter Properties</td>
<td>C-1</td>
</tr>
<tr>
<td>Configuration Properties</td>
<td>C-2</td>
</tr>
<tr>
<td>Data Source Properties</td>
<td>C-2</td>
</tr>
<tr>
<td>CDC Logger Properties</td>
<td>C-2</td>
</tr>
<tr>
<td>The Tracking File</td>
<td>C-2</td>
</tr>
<tr>
<td>OracleAS CDC Adapter Configuration Properties</td>
<td>C-3</td>
</tr>
<tr>
<td>CDC Queue Adapter Properties</td>
<td>C-3</td>
</tr>
<tr>
<td>Common CDC Adapter Properties</td>
<td>C-3</td>
</tr>
<tr>
<td>Change Router Properties</td>
<td>C-5</td>
</tr>
<tr>
<td>Referential Integrity Considerations</td>
<td>C-7</td>
</tr>
<tr>
<td>Access to Change Events</td>
<td>C-9</td>
</tr>
<tr>
<td>Transaction Support</td>
<td>C-11</td>
</tr>
</tbody>
</table>
Security

D **Back-end Adapter Data Type Support**

Data Type Mapping

E **Globalization Settings**

Defining the Language and Codepage

F **Editing XML Files in Oracle Studio**

Preparing to Edit XML Files in Oracle Studio

Making Changes to the XML File

Add DTD Information

Edit Namespaces

Add Elements and Attributes

Replace an Element

Index
This guide is the primary source of user and reference information on the OracleAS CDC adapter for Adabas, which enables Oracle users to use change data capture in their integration architecture, working with the Oracle Application Server.

This document describes the features of the OracleAS CDC adapter for Adabas.

This preface covers the following topics:

- Audience
- Documentation Accessibility
- Related Documents
- Conventions

Audience

This manual is intended for Oracle integration administrators and developers who perform the following tasks:

- Installing and configuring OracleAS CDC Adapters for Adabas
- Using OracleAS for developing integration solutions using change data capture

Note: You should understand the fundamentals of OracleAS, OC4J, the UNIX and Microsoft Windows operating system before using this guide to install or administer OracleAS Adapters for Adabas.

- Diagnosing errors

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/.
Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
To reach AT&T Customer Assistants, dial 711 or 1.800.855.2880. An AT&T Customer Assistant will relay information between the customer and Oracle Support Services at 1.800.223.1711. Complete instructions for using the AT&T relay services are available at http://www.consumer.att.com/relay/tty/standard2.html. After the AT&T Customer Assistant contacts Oracle Support Services, an Oracle Support Services engineer will handle technical issues and provide customer support according to the Oracle service request process.

Related Documents
For more information, see the following documents in the Oracle Other Product One Release 10.0 documentation set or in the Oracle Other Product Two Release 6.1 documentation set:

- Oracle Application Server Adapter Concepts Guide
- Oracle Application Server Adapter Installation Guide
- Oracle Application Server Adapter Concepts Guide
- Oracle Application Server Containers for J2EE User’s Guide
- Oracle Application Server Containers for J2EE Services Guide
- Oracle Application Server Containers for J2EE Security Guide

Conventions
The following text conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td>monospace</td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>
Change data capture (CDC) is an integration technology that enables efficient near real-time integration by capturing changes made to enterprise data sources and providing them for processing in integration middleware, such as Oracle Fusion Middleware. The CDC Adapter can be used by Oracle SOA Suite (BPEL, ESB) and Oracle Data Integrator (ODI).

The OracleAS CDC Adapter for Adabas captures changes made to the Adabas files that are written to archive files using the User Exit 2 (UE2) procedure. The UE2 procedure is activated by Adabas when the current PLOG file is full.

The OracleAS CDC Adapter for Adabas CDC solution works with Adabas data sources that use either ADD or Predict data.

This section provides an overview of the features and architecture of the OracleAS CDC adapter for Adabas. It includes the following topics:

- OracleAS CDC adapter for Adabas Overview
- OracleAS CDC Adapter for Adabas Architecture

OracleAS CDC adapter for Adabas Overview

The OracleAS CDC Adapter for Adabas captures and delivers changes (such as insert, update, and delete operations) made to data in Adabas data sources. By using the CDC Adapter, you can build efficient data integration solutions that use Adabas data, synchronize systems to ensure data integrity, update data warehouses and operational data stores in near real-time, and enable event-driven business activity monitoring and processing.

The OracleAS CDC adapter for Adabas has the following capabilities:

- **Non-intrusive change capture**: The OracleAS CDC Adapter for Adabas is a log-based CDC technology. The CDC agent accesses a logstream that is polled to access the changes. The agent begins polling from a specific point called the stream position (or agent context). The last position read is saved as the stream position. This next time the agent polls the logstream for information, it starts at the saved stream position.

- **Real-time data capture**: The OracleAS CDC Adapter for Adabas captures changes to data in near-real-time for applications that demand zero latency and require the most up-to-date data. Unlike scheduled CDC solutions, near real-time data capture guarantees that a change event is can be made available in a matter of seconds at the consumer. The term near-real-time data capture is used because after a period of inactivity changes may be available after a few seconds.
- **Change storage**: The Oracle CDC Adapter for Adabas provides a staging area that stores the captured changes in a format that is easy to access and process. The staging area ensures that changes are persisted until they are processed, and provides facilities to clean up old change records.

- **Change access and delivery**: The Oracle CDC Adapter for Adabas includes a JCA Resource Adapter that can be configured in BPEL and ESB as an inbound endpoint, delivering changes in XML format.

- **Filtering**: The Oracle AS CDC Adapter for Adabas enables you to filter captured data based on the type of operation (INSERT, UPDATE, DELETE), based on column selection and even based on specific column values.

- **Reliable delivery and recovery**: The Oracle CDC Adapter for Adabas stores changes in a reliable persistent storage and uses the concept of a ‘stream position’ that indicates the location in the change stream that was successfully moved and processed. By storing stream positions, the CDC Adapter can always restart after failure, recover, and continue moving and delivering changes from wherever it was stopped.

- **Ease of use**: The Oracle AS CDC Adapter for Adabas provides an easy and intuitive way to configure CDC solutions using Oracle Studio.

Using the Oracle AS CDC Adapter for Adabas makes ETL (extract, transform, and load) processes more efficient and less disruptive to the operation of the source database systems, eliminating the need for the traditional ETL downtime window.

Oracle AS CDC Adapter for Adabas Architecture

The following figure illustrates the system components used for change data capture using the Oracle AS CDC adapter for Adabas.

Figure 1–1 Component Architecture used with the Adabas CDC adapter

The Oracle AS CDC adapter for Adabas component architecture includes the following components:
- **Database Platform**: The database platform is the data source that contains the data to be captured.

- **Database Log**: The database log is a log stream that contains the raw change data.

- **Oracle Connect**: Oracle Connect runs on the backend system and handles from the special J2CA adapter that runs on the Oracle Application Server.

- **CDC agent**: This is an OracleAS CDC Adapter for Adabas component that runs under the control of the daemon (a listener process) on the computer where the backend data is located. The capture agent provides access to change events in the transaction log for the change router. The agent is located on the same computer as the changes to be captured. It maintains the last position read in the journal (the stream position or context) and starts at this point the next time it polls the journal. The context is stored in the repository where the adapter definition is stored. The adapter definition includes a single primary interaction which is used to access the appropriate journal and includes the list of tables to monitor for changes.

- **BPEL/ESB**: This is where the change events are consumed by means of a JCA provider that sends change records to an end point configured in either ESB or BPEL.

- **JC2A Resource Adapter**: A special version of the J2CA 1.5 Adabas adapter that can read change records from the staging area. It implements inbound endpoints for BPEL and ESB that pulls change events from the staging area and deliver them as XML change documents. Each endpoint handles change records for a single captured table at the source database. The JC2A adapter uses multiple connections to the staging area to be able to process changes from multiple tables in parallel.

- **JDBC Driver**: Enables access to changes in the staging area using SQL queries.

- **OC4J / BPEL Components**: Any OracleAS component that hosts and gets messages from the JC2A adapter.

- **Staging Area**: This is a set of change tables where change records are stored before being sent to BPEL/ESB. Old records from the Staging Area are deleted based upon the specified aging policy. The Staging Area contains a DISAM data source for SQL access and a Database Events adapter for the XML access.

 See [The Staging Area](#) for more information.

The staging area includes the following components:

- **Change Router**: This is an OracleAS CDC Adapter for Adabas service that runs under the control of the daemon (a listener process) on the Oracle platform. The change router reads the change stream from the CDC agent, sorts them in transaction/commit order eliminating rolled-back changes, and distributes the changes into the various change tables. Only one instance of the change router is active at a time against a captured database. The change router also deletes old changes from the change tables according to a configurable aging policy. policy (48 hours is the default, which means that records that have been in the staging area for more than 48 hours will be deleted).

- **Change Tables**: The staging area is made of change tables, each containing changes to one captured table in the source database. These change tables
maintain change events in transaction order and in occurrence order within a transaction for each captured table. The change tables are DISAM files that are indexed to support fast access to the change data, that can be accessed directly using the stream position.

- **Change Access Service.** This is an instance Oracle Connect that is installed on a separate computer or the same computer as BPEL/ESB that allows access to the change tables. This instance of Oracle Connect is configure as the staging area.

- **Oracle Studio:** Provides the developer or administrator with a graphical user interface for setting up the CDC Agent and Staging Area, using intuitive wizards. Oracle Studio can be installed on Linux, UNIX, or Windows.

The Staging Area

The staging area is an area used by Oracle Connect to store captured data from a journal. The journal is scanned once and changes for every required table read during that scan are passed to the staging area, where they are stored. This means that the journal is scanned once each time it is polled. After the changes are written to the staging area, processing of these changes is carried out independently of the journal.

The staging area is a benefit when transactions are used. The changed data is not written to the change queue until the transaction is committed. Thus, if the transaction fails, there is no overhead of having to back out any processing done with the steps in the failed transaction.

The staging area can be on any computer with a Windows, Linux, or UNIX operating system that is running the Oracle Application Server and does not need to be run on the same server as the Adabas CDC adapter. Once the information is extracted from the journal and written to the staging area, processing of changes is carried out on the staging area only. Thus, the staging area should be setup to consider the network configuration and where the consumer application runs.

The staging area maintains the last position read by the consumer application (the staging area context) and starts at this point the next time a request from the consumer application is received. The context is stored in the repository where the staging area is maintained.

The staging area is indexed so that access to the staging area for a specific stream is quick.

The staging area is cleared by default every 48 hours. All events that have been in the staging area for more than 48 hours are deleted.
This section describes how to install Oracle Connect and Oracle Studio.

Note: In addition to the installation procedures described in this section, the J2CA 1.5 Adabas adapter must be installed with Oracle Application Server. Installing the J2CA 1.5 Adabas adapter is described in *Oracle Application Server Adapter Installation Guide*.

This section includes the following topics:

- Preinstallation Tasks
- Installing Oracle Connect on a z/OS Series Platform
- Updating an Existing Oracle Connect Installation with Adabas
- Installing Oracle Connect on UNIX
- Installing Oracle Connect on Windows
- Installing Oracle Studio

Preinstallation Tasks

Before installing OracleAS Adapter for Adabas, ensure that your computer meets the following requirements:

- z/OS Hardware and Software Requirements
- Windows Hardware and Software Requirements
- UNIX Requirements

z/OS Hardware and Software Requirements

This section describes the following requirements for installing Oracle Connect on a z/OS platform:

- Hardware Requirements
- Software Requirements

Hardware Requirements

The following table summarizes the hardware requirements for Oracle Connect.
Software Requirements
The following table summarizes the software requirements for Oracle Connect:

<table>
<thead>
<tr>
<th>Software Component</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System</td>
<td>IBM z/OS</td>
</tr>
<tr>
<td>CICS TP Monitor (if accessing Adabas data under CICS)</td>
<td>V4R1 or higher (recommended to use CICS V6R1 or higher)</td>
</tr>
<tr>
<td></td>
<td>CICS EXCI support must be installed and IRCSTRT=YES must be specified in the CICS initialization parameters, so that the IRC (Inter Region Communication) starts. You can also set the IRC to open by issuing the following command: CEMT SET IRC OPEN. Also the IBM group DFH$EXCI (or an equivalent user-defined group) must be installed in the CICS region: using the CEDA RDO facility.</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>The operating system must support the TCP/IP protocol for using the Internet.</td>
</tr>
<tr>
<td>C Runtime Library</td>
<td>The C runtime library has all the standard C runtime programs.</td>
</tr>
<tr>
<td>Oracle Application Server</td>
<td>Oracle Application Server 10g (10.1.3.4).</td>
</tr>
</tbody>
</table>

Windows Hardware and Software Requirements
This section describes the following requirements for installing Oracle Connect:

- **Hardware Requirements**
- **Software Requirements**

Hardware Requirements
The following table summarizes the hardware requirements for Oracle Connect.

<table>
<thead>
<tr>
<th>Hardware Component</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>An Intel or 100% compatible computer, based on a Pentium processor</td>
</tr>
<tr>
<td>Memory</td>
<td>256 MB of RAM</td>
</tr>
<tr>
<td>Disk Space</td>
<td>40 MB of free disk space</td>
</tr>
</tbody>
</table>
Software Requirements
The following table summarizes the software requirements for Oracle Connect.

<table>
<thead>
<tr>
<th>Software Component</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System</td>
<td>Microsoft 2000 with service pack 2 or higher, Microsoft Windows XP, or Microsoft Windows Server 2003.</td>
</tr>
<tr>
<td>Microsoft</td>
<td>Network transport protocol software, TCP/IP, included with Microsoft Windows.</td>
</tr>
</tbody>
</table>

UNIX Requirements
The following UNIX operating systems are supported:
- Red Hat Linux
- Linux SUSE
- HP-UX
- IBM AIX
- Sun Solaris
For all of the operating systems, the required disk space is 48MB.

Installing Oracle Connect on a z/OS Series Platform
This section explains how to install Oracle Connect. This section includes the following:
- Installation Worksheet
- Preinstallation Tasks
- Importing the Installation Kit
- Installation Instructions
- Data Source Configuration Instructions
- Post-Installation Instructions

Note: If you have an Oracle Connect back-end adapter already installed on the IBM z/OS platform, follow the instructions described in "Updating an Existing Oracle Connect Installation with Adabas".

Installation Worksheet
Verify that you have all the information detailed in the following installation worksheets, so you can refer to it during the configuration process.
Table 2–5 Preinstallation Information

<table>
<thead>
<tr>
<th>Topic</th>
<th>Required Information</th>
<th>Default</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Operating system</td>
<td>-</td>
<td>z/OS</td>
</tr>
<tr>
<td>-</td>
<td>Disk space</td>
<td>-</td>
<td>150 cylinders.</td>
</tr>
<tr>
<td>-</td>
<td>Memory</td>
<td>-</td>
<td>The minimum requirement is 4MB for each connection. A connection is defined as a connection to a server process or daemon. The actual memory requirement depends on such things as the size of the database and the number of databases accessed.</td>
</tr>
<tr>
<td>-</td>
<td>Installation high-level qualifier</td>
<td>OCL10134</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>Volume</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>Unit</td>
<td>3390</td>
<td>SMS only: unit where SMS resides.</td>
</tr>
<tr>
<td>-</td>
<td>Output class</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>JCL job card</td>
<td>-</td>
<td>An optional card (up to 6 lines) to replace the prefix job (entered as it will appear in the job).</td>
</tr>
<tr>
<td>-</td>
<td>ISPF load library name</td>
<td>ISP:SISPLOAD</td>
<td>-</td>
</tr>
<tr>
<td>CICS</td>
<td>CICS EXCI load library name</td>
<td>CICS.CICS.SDFHEXCL</td>
<td>To access Adabas data under CICS.</td>
</tr>
</tbody>
</table>

Table 2–6 Required Permissions

Permission

- Permission to define an APF-authorized library
- Permission to write to an active proclib, such as user.proclib
- Permission to read the CICS EXCI library (when accessing Adabas data under CICS)
- Permission to update the security manager, such as RACF
- Optionally, permission to specify an output class for Oracle Connect output

Table 2–7 Installation Checklist

<table>
<thead>
<tr>
<th>Step</th>
<th>Comment/Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>tso profile prefix</td>
<td>Ensures that the user name is not used as part of the dataset name allocated in the next steps.</td>
</tr>
<tr>
<td>Allocate dataset: [HLQ].TRANSMIT.KIT</td>
<td>130 tracks (3390), format=FB, record length=80, block size=3120</td>
</tr>
<tr>
<td>Allocate dataset: [HLQ].TRANSMIT.LOAD</td>
<td>500 tracks (3390), format=FB, record length=80, block size=3120</td>
</tr>
<tr>
<td>FTP files to z/OS</td>
<td>FTP using binary mode.</td>
</tr>
<tr>
<td>RECEIVE INDSNAME('{HLQ}.TRANSMIT.KIT')</td>
<td>-</td>
</tr>
<tr>
<td>da('{HLQ}.TRANSMIT.LIB') UNIT(unit) VOLUME(volume)</td>
<td>-</td>
</tr>
<tr>
<td>EX {HLQ}.TRANSMIT.LIB(PREPARE)</td>
<td>Successful MAXCC is 0, 4 or 8 BUILDKIT.SRC and BUILDKIT.LOAD created.</td>
</tr>
<tr>
<td>EX {HLQ}.BUILDKIT.SRC(NAVINST)</td>
<td>Successful MAXCC is 0 or 4.</td>
</tr>
</tbody>
</table>
Preinstallation Tasks

Before starting the installation, ensure that you have the following information available:

- The output class for the installation output if you do not want to use the default value, which is A
- The unit where SMS resides if you use SMS to manage all datasets. If you use SMS to manage all datasets, you cannot provide unit and volume information.

Before starting the installation, ensure that you have the following permissions:

- Permission to define an APF-authorized library.
- Permission to write to an active proclib, such as user.proclib.
- Permission to read the CICS EXCI library, when accessing Adabas data under CICS.
- Permission to update the security manager, such as RACF.

Note: If necessary, ensure that you have permission to specify an output class for Oracle Connect output. Assigning a device which is set on HOLD prevents the loss of log information when Oracle Connect started tasks finish.

Oracle Connect for the IBM z/OS platform is contained in the following datasets:

- OCL10134.TRANSMIT.KIT
- OCL10134.TRANSMIT.LOAD

Importing the Installation Kit

Perform the following steps on the mainframe to import Oracle Connect installation kit to the mainframe:

1. Run the following command:

 tso profile noprefix

 The user name will not be used as part of the dataset name. On some systems this is the default.

2. Allocate datasets with the following space for each of these files:

 - OCL10134.TRANSMIT.KIT = 130 tracks (3380 and 3390 disks)
 - OCL10134.TRANSMIT.LOAD = 420 tracks (3380 and 3390 disks)

 For each dataset: RECFM=FB and LRECL=80. The block size is 3120.

Transferring the Kit to the Dataset

You need to move the contents of the kit to the mainframe computer in the dataset that you allocated. When you copy the contents of the kit, you will see that the contents are now utilized.

Perform the following steps to copy the Oracle Connect installation kit contents to the mainframe:

1. Extract the compressed file to a folder on a computer running Microsoft Windows.
2. Open the Command console on the Windows computer.

3. Type FTP and the name of the mainframe computer where you want to connect. This creates an FTP connection to the mainframe machine. You may have to enter a user name and password to use the machine.

4. Type bin to transfer binary data.

5. Enter the following command to transfer the data from the .KIT file to the mainframe computer:

   ```plaintext
   put OCL10134.transmit.kit '[HLQ].transmit.kit' [replace]
   ```

 where:

 - OCL10134.transmit.kit is the name of your installation file.
 - (replace ensures that any data on the volume where the kit is installed is overwritten.

6. Enter the following command to transfer the data from the .LOAD file to the mainframe computer:

   ```plaintext
   put OCL10134.transmit.load '[HLQ].transmit.load' [replace]
   ```

7. Close the FTP connection.

Installation Instructions

Perform the following steps to install Oracle Connect:

1. Run the following command at the TSO prompt:

   ```plaintext
   RECEIVE INDSNAME('nnn.TRANSMIT.KIT')
   ```

 Where nnn represents the high-level qualifier you want to assign for the Oracle Connect installation. Assign the high-level qualifier you specified in step 7 of the preinstallation tasks. The default value is OCL10134.

 Note: You can use more than one high-level qualifier (such as ACME.DEV.OCL10134) with the following conditions:

 - The total length must be less than or equal to twenty characters.
 - The words transmit and buildkit cannot be used as high-level qualifiers.

2. Enter the following command when prompted for the restore parameters:

   ```plaintext
   da('nnn.TRANSMIT.LIB') [UNIT(unit) VOLUME(volume)]
   ```

 This extracts the nnn.TRANSMIT.LIB library from the nnn.TRANSMIT.KIT kit to the specified unit and volume. If a unit and volume are not specified the library is extracted to the current unit and volume.

3. In the Data Set List Utility screen, type the name of the high-level qualifier on the Dsname Level line. This will return a list of the files. Verify that the <nnn>.TRANSMIT.LIB file was created.

4. In the Command column next to the <nnn>.TRANSMITLIB, type M.

5. Execute the PREPARE member of the nnn.TRANSMIT.LIB library:

   ```plaintext
   ex PREPARE
   ```
Follow the instructions in the Response column in Table 2–8 for each entry in the Screen column.

Table 2–8 Installation Prepare Job Prompts and Responses

<table>
<thead>
<tr>
<th>Screen</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO YOU WANT TO USE SMS MANAGED STORAGE FOR THIS INSTALLATION Y/N [N]</td>
<td>If you want to manage the storage using SMS, then answer Y, otherwise answer N.</td>
</tr>
<tr>
<td>ENTER THE STORCLASS FOR INSTALLATION TEMP DATASETS []</td>
<td>This prompt is displayed only if SMS is used to manage the installation (you answered Y to the first prompt). Enter the storage class.</td>
</tr>
<tr>
<td>ENTER THE UNIT NAME FOR INSTALLATION TEMP DATASETS []</td>
<td>If a storage class is not specified, then enter the unit name for temporary datasets used during the installation procedure.</td>
</tr>
<tr>
<td>ENTER THE VOLUME NAME FOR INSTALLATION TEMP DATASETS</td>
<td>This prompt is displayed only if SMS is not used to manage the installation (you answered N to the first prompt). The volume name for temporary datasets used during the installation procedure.</td>
</tr>
<tr>
<td>ENTER THE OUTPUT CLASS FOR INSTALLATION OUTPUT [A]</td>
<td>Enter the output class only if you do not want the default class used (the default is A).</td>
</tr>
<tr>
<td>DO YOU WANT TO USE THE DEFAULT JOB CARD Y/N [Y]</td>
<td>A job card is displayed. If you want to use a replacement card, then it must be entered as it will appear in the job. You can enter up to six lines. Enter a blank card to end input. If you do not enter a card, then the Oracle Connect default card is used.</td>
</tr>
<tr>
<td>DO YOU WANT TO PERFORM A MANUAL (M) OR AUTOMATIC (A) INSTALLATION [A]</td>
<td>If you want to review the JCL used to install Oracle Connect, before it is submitted, then respond M for a manual installation.</td>
</tr>
<tr>
<td>PLEASE REVIEW AND SUBMIT FOR EXECUTION THE HLQ.TRANSMIT.LIB(INSTJO)</td>
<td>This prompt is displayed only if a manual installation is requested (you answered M to the previous prompt).</td>
</tr>
</tbody>
</table>

The following libraries are generated:

- `nnn.BUILDKIT.LOAD`
- `nnn.BUILDKIT.SRC`
- `nnn.BUILDKIT.GENDEMO`

Where `nnn` is the high-level qualifiers you assigned in step 1.

Note: This command always finishes successfully. To make sure that no errors occurred, check the `instjo` JCL.

6. In the `nnn.BUILDKIT.SRC` library, execute the `NAVINST` member:

```
ex NAVINST
```

Follow the instructions in the Response column in the following table for each entry in the Screen column.
The installation is completed. All JCL jobs and REXX procedures are written to the

INSTROOT.USERLIB library. **INSTROOT** is the high-level qualifier for the installation.
Data Source Configuration Instructions

In the $nnn.BUILDKIT.SRC$ library, execute the ADABAS member:

```
ex ADABAS
```

Follow the instructions in the Response column for each entry in the Screen column.

<table>
<thead>
<tr>
<th>Screen</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTER THE ADABAS SVC NUMBER</td>
<td>Enter the Adabas SVC number for your Adabas system</td>
</tr>
<tr>
<td>ENTER THE ADABAS DATABASE NUMBER</td>
<td>Enter the Adabas database number for your Adabas system</td>
</tr>
<tr>
<td>ENTER THE ADABAS LOAD LIBRARY NAME</td>
<td>Enter the Adabas Load Library name for your Adabas system</td>
</tr>
<tr>
<td>ENTER THE UNIT FOR ADABAS LOAD LIBRARY</td>
<td>Enter the Adabas Load Library unity for your Adabas system</td>
</tr>
<tr>
<td>YOUR ADABAS SVC IS:</td>
<td>This is a summary of the Adabas questions. Check the summary to be sure all is correct. You can select:</td>
</tr>
<tr>
<td>THE DATABASE NUMBER IS:</td>
<td>■ Yes, to use the Adabas database as configured</td>
</tr>
<tr>
<td>THE ADABAS LOAD LIBRARY NAME IS:</td>
<td>■ No, to not use the Adabas database</td>
</tr>
<tr>
<td>THE ADABAS LOAD LIBRARY UNIT IS:</td>
<td>■ Quit, to leave the ADABAS process</td>
</tr>
<tr>
<td>PLEASE CONFIRM (YES/NO/QUIT):YES:</td>
<td></td>
</tr>
</tbody>
</table>

Post-Installation Instructions

The following post-installation tasks must be done to work with Oracle Connect:

- Copy and Install Programs into CICS
- Post-Installation Procedures
- Starting the Daemon
- Setting Up Oracle Connect for Reentrancy

Copy and Install Programs into CICS

You must copy and install some supporting programs when you use a CICS session. The following describes the steps necessary to copy and install these programs under CICS.

1. In the Data Set List Utility screen, type the name of the $<HLQ>$ on the Dsname Level line. This will return a list of the files.

2. In the Command column next to the $<HLQ> . LOAD$, type M.

3. Type C next to following programs you are using. The available programs are listed below:

- ATTHRDPL: Use this program when working under CICS. This is the CICS queue.
- ATTICSD: Use this program when working under CICS.
- ATTHRDPL: Use this program when working under CICS if you are using connection pooling.
- ATTCALL: Use this program when working under CICS if you are using connection pooling.
ATTCNTRL: Use this program when working under CICS if you are using connection pooling.

ATYDBCTL: Use this program for the OracleAS CDC Adapter for Adabas.

TRANS2GL: Use this program if you are using the 3GL interface. This is an example program.

4. Exit the session, then start a new session.

5. Enter a new CICS session.

6. At the code line, run the following:

 `CEDA INS PROG(<PROG NAME>) G(ATY)`

 The `<PROG NAME>` is on one of the programs listed in step 3. Run this for each of the programs you are using.

Post-Installation Procedures

Perform the following procedures after completing the installation to configure Oracle Connect.

- Allocate a dataset for `INSTROOT.DEF.BRANDBIN`, using 1 track and with `RECFM=VB` and `LRECL=256`. The block size is 6233.

 `INSTROOT` is the high-level qualifier where Oracle Connect is installed.

 Using FTP, copy the `BRANDBIN` file, in binary mode, from the Oracle Connect\Adabas Legacy Adapter directory to the mainframe, to `INSTROOT.DEF.BRANDBIN`.

- Define the `LOADAUT` library as an APF-authorized library

Note: To define a DSN as APF-authorized, in the SDSF screen enter the command:

```
*/setprog apf,add,dsn=INSTROOT.loadaut,volume=vol002*
```

where `vol002` is the volume where you installed Oracle Connect and `INSTROOT` is the high-level qualifier where Oracle Connect is installed.

If the site uses SMS, then when defining APF-authorization in the SDSF screen, enter the following command:

```
*/setprog apf,add,dsn=INSTROOT.loadaut,SMS*
```

Ensure that the library is APF-authorized, even after an IPL (reboot) of the computer.

- Move the `INSTROOT.USERLIB(ATTDANEIN)` and `INSTROOT.USERLIB(ATTSRVR)` members to any active proclib, such as `user.proclib`, `ATTDANEIN` and `ATTSRVR` are run as started tasks.

If you decide to change the name of the `ATTSRVR` member when you move it to a general high-level qualifier, then change the name specified in the `StartupScript` parameter in the daemon configuration to the new name:

- Run `INSTROOT.USERLIB(NAVCMD)` and enter `EDIT DAEMON IRPCDINI` at the prompt.
■ Change the `startupScript` parameter from `ATTSRVR` to the new name for the server:

```
<Workspace name="Navigator"
    startupScript="NEW_NAME"
    serverMode="reusable"
    ...
/>
```

■ Exit and save the change.

■ Change the following line in the `ATTDAEMN` script to include the IP address and port of the z/OS platform.

For example, before:

```
// PARM='-B START IRPCDINI'
```

After:

```
// PARM='-B -L ip_address:2551 START IRPCDINI'
```

Where `ip_address` specifies the IP address of the computer, `2551` is the default port for starting the daemon and `IRPCDINI` is the default daemon configuration.

■ The `ATTDAEMN` and `ATTSRVR` started tasks need permission to use an Open Edition TCP/IP stack. The owner must be a user with OMVS segment defined and OMVS UID=0000000000.

■ In the security manager, such as RACF, define `ATTDAEMN` and `ATTSRVR` with a started task class and a general profile that enables the following:
 ■ Permission to issue master console commands.
 ■ `START` authority for the `ATTSRVR` job.
 ■ Access to an Open z/OS segment (that defines access to TCP/IP OA sockets).
 ■ `ALTER` authority on datasets under `INSTROOT` (to access to read, write, allocate and delete datasets under `INSTROOT`).

■ The installation includes a PS, `INSTROOT.DEF.GBLPARMS`, that contains global environment information. This PS is read at startup and the correct software version is used, based on the details provided in the startup task.

If you change the location of this member, you must also change the relevant cards in the following jobs to the new locations:

■ `ATTSRVR`: located in an active proclib, such as `user.proclib`

■ `ATTDAEMN`: located in an active proclib, such as `user.proclib`

■ `NAVSQL`: located in `INSTROOT.USERLIB`

■ The input during the installation procedure is written to `nnn.BUILDKIT.SRC(PARS)`. You can use this file to provide the same inputs if you rerun the installation, where `nnn` is the high-level qualifier you assign for the installation.

■ For information about specifying Oracle Connect as the service using port 2551 in the TCP/IP network services file, consult TCP/IP documentation.

Starting the Daemon

Activate `INSTROOT.USERLIB(ATTDAEMN)` as a started task to invoke the daemon. For example, in the SDSF screen enter the following:
Updating an Existing Oracle Connect Installation with Adabas

Where **INSTROOT** is the high-level qualifier where Oracle Connect is installed.

To submit the daemon as a job, uncomment the first two lines of the **ATTDAEMN** JCL, change the PARM line as described earlier, and run the job using the subcommand. The **ATTDAEMN** JCL is similar to the following:

```sql
//*ATTDAEMN JOB 'RR', 'TTT', MSGLEVEL=(1,1), CLASS=A,
//* MSGCLASS=A, NOTIFY=&SYSUID, REGION=8M 
//STEP1 EXEC PGM=IRPCD, 
//* PARM='"-B START IRPCDINI'
//* PARM='"-B -L :8883 START'
//STEPLIB DD DSN=INSTROOT.LOADAUT,DISP=SHR 
//SYSPRINT DD SYSOUT=A 
//GBLPARMS DD DSN=INSTROOT.DEF.GBLPARMS,DISP=SHR 
// EXEC PGM=IRPCD,COND=((1,EQ,STEP1),(2,EQ,STEP1)),
//* PARM='"-KATTDAEMN START "INSTROOT.DEF.IRPCDINI"'
//STEPLIB DD DSN=INSTROOT.LOADAUT,DISP=SHR 
//SYSPRINT DD SYSOUT=A 
//GBLPARMS DD DSN=INSTROOT.DEF.GBLPARMS,DISP=SHR 
//SYSDUMP DD DUMMY 
```

Setting Up Oracle Connect for Reentrancy

All Oracle Connect load modules are reentrant to enable sub-tasking. Therefore, move **INSTROOT.LOAD** to the Link Pack Area (LPA).

Where **INSTROOT** is the high-level qualifier where Oracle Connect is installed.

Using the LPA reduces real storage usage (because everyone shares the LPA copy) and fetch time.

Note: If you intend on using impersonation, so that you can run in a security context that is different than the context of the process that owns the server, then do the following:

- Place the **INSTROOT.LOAD (ATYSVCW)** member in an APF-authorized library outside the LPA.
- Change the **ATTSRVR** member (located in the active proclib), by adding the following to the STEPLIB list:

```sql
// DD DSN=apf_library,DISP=SHR 
```

Where **apf_library** is the APF-authorized library outside the LPA where the **ATYSCVW** member was moved.

Updating an Existing Oracle Connect Installation with Adabas

Verify that you have all the information detailed in the following installation worksheets, so you can refer to it during the configuration process.

Table 2–11 Preinstallation Information

<table>
<thead>
<tr>
<th>Topic</th>
<th>Required Information</th>
<th>Default</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICS</td>
<td>CICS EXCI load library name</td>
<td>CICS.CICS.SDFHEXCL</td>
<td>-</td>
</tr>
</tbody>
</table>

In the `nnn.BUILDKIT.SRC` library, execute the `ADABAS` member:

```
ex ADABAS
```

Follow the instructions in the Response column for each entry in the Screen column.

<table>
<thead>
<tr>
<th>Screen</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTER THE ADABAS SVC NUMBER</td>
<td>Enter the Adabas SVC number for your Adabas system</td>
</tr>
<tr>
<td>ENTER THE ADABAS DATABASE NUMBER</td>
<td>Enter the Adabas database number for your Adabas system</td>
</tr>
<tr>
<td>ENTER THE ADABAS LOAD LIBRARY NAME</td>
<td>Enter the Adabas Load Library name for your Adabas system</td>
</tr>
<tr>
<td>ENTER THE UNIT FOR ADABAS LOAD LIBRARY</td>
<td>Enter the Adabas Load Library unity for your Adabas system</td>
</tr>
<tr>
<td>YOUR ADABAS SVC IS:</td>
<td>This is a summary of the Adabas questions. Check the summary to be sure all is correct. You can select:</td>
</tr>
<tr>
<td>THE DATABASE NUMBER IS:</td>
<td>- Yes, to use the Adabas database as configured</td>
</tr>
<tr>
<td>THE ADABAS LOAD LIBRARY NAME IS:</td>
<td>- No, to not use the Adabas database</td>
</tr>
<tr>
<td>THE ADABAS LOAD LIBRARY UNIT IS:</td>
<td>- Quit, to leave the ADABAS process</td>
</tr>
<tr>
<td>PLEASE CONFIRM (YES/NO/QUIT) :YES:</td>
<td></td>
</tr>
</tbody>
</table>

The installation is completed. All JCL jobs and REXX procedures are written to the `INSTROOT.USERLIB` library. `INSTROOT` is the high-level qualifier for the installation.

After completing the installation, perform post-installation tasks, as described in "Post-Installation Instructions" on page 2-9, as required.

Installing Oracle Connect on UNIX

You must install Oracle connect on any UNIX machine that you are using for a staging area for the CDC adapter. The following sections explain how to install Oracle Connect on a UNIX machine.

- Installing Oracle Connect on a UNIX Platform

Installing Oracle Connect on a UNIX Platform

This section explains how to install Oracle Connect on a UNIX platform. This section includes the following:

- Preinstallation Tasks
- Installing Oracle Connect
- Installation Tasks
- Post-Installation Tasks
Preinstallation Tasks

Before starting the installation procedure, ensure that you have the following information available:

- The root directory where you want to install Oracle Connect.
- The account name where Oracle Connect will run.
- Whether the installation source media is removable media or a disk archive file.

 If you are installing from the removable media that is not a default device in the system, you need to know the media device name (such as /dev/rmt/0m). See the operating system manuals or ask the system administrator to find out the device name for the site.

 If you are installing from the disk archive file, you need to know the name of the Oracle Connect disk archive file (such as /tmp/nav.2.0.tar).
- The shell being used: C-shell Korn-shell, or Bourne-shell. The installation creates a startup file according to the indicated shell.

When running the installation below, use the following as the <filename>:

- For RedHat Linux: OCL10134-linuxrh.tar.Z
- For Linux Suse: OCL10134-linuxsuse.tar.Z
- For HP-UX: OCL10134-hpux.tar.Z
- For IBM AIX: OCL10134-ibmaix.tar.Z
- For Solaris Operating System (SPARC): OCL10134-sunsol2.8.tar.Z

Installing Oracle Connect

Perform the following steps to install Oracle Connect:

1. Transfer the tar.Z file to the system.
2. Decompress the file using the following command:

 uncompressed <filename>

3. Run the tar command, as shown in the following example:

 tar xvf <filename> nav_install

 The following message is displayed:

 x nav_install, nnnn bytes, mmmm tape blocks

 Note: Ensure that the directory used to run the installation files has WRITE privileges.

Installation Tasks

Perform the following steps to install Oracle Connect:

1. Run the following command:
./nav_install

This command initiates the installation procedure. The installation procedure is displayed in a series of screen prompts and responses.

2. Enter the full path of the disk archive (.tar) file, and press Enter.

3. Enter the root directory name for the installation, and press Enter. You must have a WRITE permission for this directory. The default directory is the users home directory.

Notes:

- The root directory cannot be a system root directory or /var or /tmp directory.
- Oracle Connect is installed into a fixed directory named navroot.

4. Confirm the directory name in which Oracle Connect will be installed, and press Enter.

5. Enter the account name where you want Oracle Connect to run, and press Enter. This account name will be used for anonymous access to the server by clients. It can be changed after the installation is complete.

6. Confirm the account name, and press Enter.

7. Specify the required shell, under which Oracle Connect should run, and press Enter. The following options are displayed:
 - C-shell (/bin/csh).
 - Korn-shell (/bin/ksh)
 - Bourne-shell (/bin/sh)

8. Enter the account name for a user with administrative authorization. Optionally, press Enter to enable any user to administer Oracle Connect.

Post-Installation Tasks

After installing Oracle Connect, perform the following post-installation tasks:

- Configuring the Oracle Connect Environment
- Configuring the Oracle Connect Script
- Starting the Oracle Connect Daemon

Configuring the Oracle Connect Environment

When Oracle Connect is installed on a UNIX platform, using FTP, copy the brand.bin file to the Oracle Connect computer, to NAVROOT/bin.

Where NAVROOT is the directory where Oracle Connect is installed.

Configuring the Oracle Connect Script

The program that manages Oracle Connect server processes (nav_server) is accessed by a symbolic link to a file for the C-shell, Bourne and Korn shells.

To set up nav_server, perform the following steps:
1. In the bin directory, under the directory where Oracle Connect is installed, delete the existing link to nav_server using the following command:
   ```
   rm nav_server
   ```

2. In the bin directory, under the directory where Oracle Connect is installed, link to the required version of nav_server as follows:
 - C-shell: `ln -s nav_server.csh nav_server`
 - Bourne: `ln -s nav_server.sh nav_server`
 - Korn: `ln -s nav_server.ksh nav_server`

Note: Instead of renaming files, use a symbolic link.

The Oracle Connect `nav_login` procedure defines the default environment when Oracle Connect runs. If you want site-dependent variables to be included in the environment, create a file called `site_nav_login` and save this file in the bin directory under the Oracle Connect root directory. `nav_login` runs `site_nav_login` automatically.

`nav_login` must be invoked to run Oracle Connect. It can be invoked from the user login script.

The command line for invoking `nav_login` varies according to the shell the user is running. The following table lists the different options for invoking the command line:

<table>
<thead>
<tr>
<th>Shell</th>
<th>nav_login Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSH</td>
<td><code>source root/bin/nav_login</code></td>
</tr>
<tr>
<td>Bourne</td>
<td><code>root/bin/nav_login.sh</code></td>
</tr>
<tr>
<td>Korn</td>
<td><code>root/bin/nav_login.sh</code></td>
</tr>
</tbody>
</table>

In the `nav_login` command, `root` represents the root directory of the Oracle Connect installation. After running the login procedure, the environment variable `NAVROOT` points to this root directory.

Ensure that users have READ and EXECUTE permissions on the Server files. Use the `chmod` command to change the permissions.

Starting the Oracle Connect Daemon

The Oracle Connect daemon must run on a server for client/server access to Oracle Connect. To start the daemon with the system startup, add the following command invoking the daemon to the end of the `/etc/inittab` file:

```
nv:3:once:navroot/bin/irpcd -l ip:2551 start >/dev/console 2>&1
```

In this command, the symbol `navroot` should be replaced with the directory where Oracle Connect is installed and `ip` replaced by the ip address of the computer.

Note: To allow automatic client/server access to Oracle Connect, start the daemon at system startup time from a super user account.
Installing Oracle Connect on Windows

You must install Oracle Connect on any Windows machine that you are using for a staging area for the CDC adapter. This following sections explain how to install Oracle Connect on a Windows machine.

- Installing Oracle Connect on a Windows Platform

Installing Oracle Connect on a Windows Platform

This section explains how to install Oracle Connect. Do the following to install Oracle Connect.

1. Copy the following installation files into a folder on the Windows computer where you are installing Oracle Connect.
 - OCL_10134_windows.exe
 - brand.bin
2. Open the Windows command line interface.
3. Change to the directory where you installed the installation files.
4. Type the following at the command prompt to install Oracle Connect.
 "OCL_10134_windows.exe" -a -bBRAND=\brand.bin" -bSERVER
 The install wizard opens. Follow the directions in the installation wizard to complete the installation.

Note: If you are upgrading from version 10.1.3.3, you must use the upgrade option in the installation wizard. Do not uninstall Version 10.1.3.3 and then install the newer version. If you do this, you will lose all data in the Def directory.

Note: If you are installing Oracle Connect on a Windows XP computer, you cannot use a logical drive as the destination folder for the installation.

Installing Oracle Studio

This following sections explain how to install Oracle Studio.

- Oracle Studio Requirements
- Installing Oracle Studio on Windows
- Installing Oracle Studio on Linux

Note: If you have Oracle Studio version 10.1.3.4 or higher installed on your computer because you are using an OracleAS legacy adapter or OracleAS CDC adapter, you do not need to reinstall it. If you have an older version of Oracle Studio, you must install the newest version.
Oracle Studio Requirements

The following are the hardware requirements for Oracle Studio:

■ Processor: Intel or 100% compatible computer, based on a Pentium processor
■ Memory: 256 MB
■ Disk space: 120 MB of free disk space

You can install Oracle Studio on the following operating systems:

■ Windows XP with Service Pack 2 or higher
 Windows 2003
 Windows Vista
■ Linux OS with GTK

Installing Oracle Studio on Windows

Oracle Studio is installed with a standard install wizard. Do the following to install Oracle Studio.

■ Run the installation file, either using the Run option in the Windows Start menu or through Windows Explorer. Follow the instructions on the wizard screen.

Installing Oracle Studio on Linux

The Oracle Studio installation on Linux can be carried out by one of the following:

■ Installing Oracle Studio with the Wizard (SH installation)
■ Installing with a Silent Installation (RPM)

Installing Oracle Studio with the Wizard (SH installation)

You can install Oracle Studio by using the installation wizard. This allows you to easily carry out any standard or custom installation. Do the following for the Linux SH installation.

1. Install into a directory where you have permission.
2. Change the mode to execute mode. Type in:

 `Chmod +x <file name>`
3. Enter the following:

 `./ <file name>`

 If you are not installing to the current directory, enter the full path.

Installing with a Silent Installation (RPM)

You can use the Linux RPM method to install Oracle Studio. Do the following to carry out a silent installation on Linux.

■ Enter the following:

 `rpm -i <file name>`

 You can use RPM parameters to create a custom installation.
This section describes how to configure a change data capture using the OracleAS CDC Adapter for Adabas.

Most of the configurations are done using Oracle Studio. To use Oracle Studio, you first configure it to enable access to the z/OS computer where the Adabas data resides. If you are using Adabas with ADD data, you set up an Adabas data source and then create the change data capture solution. If you are using Adabas with Predict data, you only need to set up the CDC solution.

This section contains the following topics:

- Setting Up the IBM z/OS Platform in Oracle Studio
- Securing Access to Oracle Connect
- Setting up Metadata for the OracleAS Adabas Data Source
- Setting Up a Change Data Capture with the OracleAS CDC Adapter for Adabas

Note: These tasks assume you have permission to access the IBM z/OS platform and that the Oracle Connect daemon is running on this computer.

Check with the system administrator to ensure these requirements are fulfilled.

Setting Up the IBM z/OS Platform in Oracle Studio

Using Oracle Studio, perform the following steps to configure the IBM z/OS platform:

1. From the **Start** menu, select **Programs, Oracle**, and then select **Studio**. Oracle Studio opens.

2. Right-click **Machines** in the Configuration Explorer and select **Add Machine**. The Add Machine screen is displayed.
3. Enter the name of the computer you want to connect to, or click **Browse** to select the computer from the list of computers that is displayed and which use the default port 2551.

4. Specify the username and password of the user who was specified as the administrator when Oracle Connect was installed.

 Note: Selecting **Anonymous connection** enables anyone having access to the computer to be an administrator, if this was defined for the computer.

5. Click **Finish**.

 The computer is displayed in the Configuration Explorer.

Securing Access to Oracle Connect

Oracle Studio includes mechanisms to secure access to Oracle Connect both during modeling and runtime.

During modeling the following security mechanisms can be applied:

- Setting Password Access to Oracle Studio
- Specifying Users with Administrative Rights

During runtime client access to Oracle Connect is provided by the user profile:

- Setting Up Run-Time User Access to the IBM z/OS Platform

Setting Password Access to Oracle Studio

Initially, any operation performed using Oracle Studio does not require a password. You can set a password so that the first operation that involves accessing the server from Oracle Studio requires a password to be entered.

Perform the following steps to set the password:
1. From the Start menu, select Programs, Oracle, and then select Studio.

2. Select Window from the menu bar and then select Preferences. The Preferences screen is displayed.

3. Select the Studio node, as shown in the following figure:

 Figure 3–2 The Preferences screen

 ![Preferences screen](image)

 4. Click Change master password. The Change Master Password screen is displayed as shown in the following figure:

 Figure 3–3 The Change Master Password Screen

 ![Change Master Password screen](image)

 5. Leave the Enter current master password field blank and type a new master password in the Enter new master password field.

 6. Enter the new password again in the Confirm new master password field.

 7. Click OK.

 Specifying Users with Administrative Rights

 By default, only the user who was specified during the installation as an administrator has the authorization to modify settings on that computer from Oracle Studio. This
user can then authorize other users to make changes or to view the definitions for a selected computer. Adding a computer to Oracle Studio is described in "Setting Up the IBM z/OS Platform in Oracle Studio".

Note: The default during installation is to enable all users to be administrators.

1. From the **Start** menu, select **Programs, Oracle**, and then select **Studio**.
2. In the Design perspective Configuration view, Right-click the computer and select **Administration Authorization**.

The Administration Authorization screen is displayed as shown in the following figure.

Figure 3–4 The Administration Authorization Identities tab

The screen has the following sections:

- **Administrators:** Administrators can view and modify all the definitions in Oracle Studio for the selected computer. On initial entry to Oracle Studio, every user is defined as a system administrator.

- **Designers:** Designers can view all the definitions for the computer in Oracle Studio and can modify any of the definitions under the **Bindings** and **Users** nodes for the selected computer. For example, Oracle Studio database administrator can add new data sources and adapters and can change metadata definitions for a table in a data source.

- **Users:** Users can view all the definitions for the computer in Oracle Studio for the selected computer. Regular users cannot modify any of the definitions.

3. Add users or groups of users by clicking **Add User** or **Add Group** for the relevant sections.
The user or group that is added must be recognized as a valid user or group for the computer. Once a name has been added to a section, only the user or group who logs on with that user name has the relevant authorization.

Setting Up Run-Time User Access to the IBM z/OS Platform

During run time, client access to Oracle Connect is provided by the user profile. A user profile contains name and password pairs that are used to access a computer, data source or application at run time, when anonymous access is not allowed.

1. From the **Start** menu, select, **Programs, Oracle**, and then select **Studio**. Oracle Studio opens.

2. From the Design perspective, Configuration view, expand the **Machines** folder, then expand the machine where you want to set the user name and password.

3. Expand **Users**.

4. Right-click **NAV** and select **Open** The NAV user profile editor is displayed.

Figure 3–5 The User Editor

5. In the User editor, click **Add**. The Add Authenticator screen is displayed:
7. Enter the name of the IBM z/OS computer defined in Oracle Studio.
8. Enter the name and password used to access the computer and confirm the password.
9. Click OK.

Setting up Metadata for the OracleAS Adabas Data Source

Setting up a change data capture with the OracleAS CDC adapter for Adabas is done using Oracle Studio. If you are using Adabas with ADD data, you must first define the an Adabas data source and import the metadata. The definitions are created on a z/OS machine.

If you are using Predict data, you do not need to set up the metadata in the data source, you should go directly to Setting Up a Change Data Capture with the OracleAS CDC Adapter for Adabas.

This section contains the following:
- Setting Up the Adabas Data Source (ADD Data only)
- Configuring the Data Source Driver
- Importing Metadata for the Adabas Data Source
- Verifying the Metadata Definition

Setting Up the Adabas Data Source (ADD Data only)

You should configure an Adabas data source as the first step in setting up the CDC adapter.

Perform the following steps to setup the Adabas data source:
1. From the Start menu, select Programs, Oracle and then select Studio.
2. In the Design perspective, Configuration view expand the Machines folder.
3. Expand the machine defined in Setting Up the IBM z/OS Platform in Oracle Studio.
4. Expand the **Bindings** folder. The binding configurations available on this computer are listed.

5. Expand the **NAV** binding. The NAV binding configuration includes branches for data sources and adapters that are located on the computer.

6. Right-click **Data sources** and select **New Data source**. The New Data Source wizard is displayed.

![Figure 3–7 The New Data Source screen](image)

7. Enter a name for the Adabas data source. The name can contain letters and numbers and the underscore character only.

8. In the **Type** field, select **Adabas (ADD)**.

9. Click **Next**. The **Data Source Connect String** screen is displayed.

10. Enter the parameters for the Data source connect string.
 - **Database number**: Type the number for the Adabas database that you are using.

11. Click **Finish**. The new data source is displayed in the Configuration Explorer.

Configuring the Data Source Driver

After setting up the Adabas (ADD) data source, you can set its driver properties according to specific requirements. To edit the properties, right-click the Adabas data source you created in the Oracle Studio Configuration view, and select **Open**. The properties listed below are listed in the editor.

You can set the following:

- **Adabas (ADD) Properties**
- **Configuring the Data Source Driver Advanced Properties**
Adabas (ADD) Properties

The following properties can be configured for the Adabas (ADD) data source. You set the properties in Oracle Studio, Design perspective. For information on how to set data source properties in Oracle Studio.

1. In the Configuration view, right-click the Adabas data source that you created and select Open.

2. Click the Configuration tab.

The Adabas (ADD) data source configuration is displayed in the editor. This editor has two sections.

The Connection section shows the connections you defined when Setting Up the Adabas Data Source (ADD Data only).

The Properties section displays the following properties, which can be configured for the Adabas (ADD) data source:

- **svcNumber**: The installation on MVS places the SVC number of Adabas in the GBLPARMS file. Alternatively, you can specify the SVC number using this attribute. This simplifies configuration in sites where several Adabas installations on different SVC numbers need to be accessed from a single installation. Each SVC will still require a different workspace, but the same GBLPARAMS and the same RACF profile can be used for the different workspaces.

- **addMuInPeCounter**: Until version 4.6 Oracle Connect did not support counters for MUs inside of PEs. In version 4.6 this support was added, but since it changes behavior for existing users, this attribute was added to allow existing users to turn off this new feature to preserve compatibility. Default: addMuInPeCounter='true'.

- **disableExplicitSelect**: This attribute indicates whether or not the Explicit Select option is disabled. If disables, a select * query on an Adabas table will return all fields in the table, including ISN and subfields which are normally suppressed unless explicitly requested in the query (e.g. select ISN, *...). Default: disableExplicitSelect='false'.

- **disregardNonselectable**: (Predict, ADD) This attribute enables you to configure the data source to ignore descriptors defined on a multiple value (MU) field, a periodic group (PE) field or phonetic/hyper descriptors. The special ACSEARCH fields which are normally created for a table are referred to as 'non-selectable' because you cannot specify them in the select list of a query. Setting the disregardNonselectable attribute to 'true' will prevent these fields from being created. Default: disregardNonselectable='false'.

- **fileList**: This attribute is passed as the record buffer to the OP command. Adabas allows a list of file numbers to be provided in the record buffer of the OP command, along with the operations allowed on each file. By using this attribute a user can restrict access to the database, allowing only specific operations on specific files. See the Software AG documentation of the OP command for more information on the syntax allowed. Note that the value provided in this attribute is passed 'as-is' to Adabas - no validation is performed. Default: fileList='.' (i.e., unrestricted access to all files in the database).

- **lockWait**: This attribute specifies whether the data source waits for a locked record to become unlocked or returns a message that the record is locked. In Adabas terms, if this attribute is set to true a space is passed in command
option 1 of the HI/L4 commands. Otherwise an 'R' is passed in command option 1. Default: lockWait='false'.

- **multiDatabasePredict**: Turn this flag on if your Predict file includes metadata for several different databases. This has two effects on the way that the Predict information is read:
 - Only tables that belong to the current database are returned in the table list.
 - The file number for a table is read separate from the metadata as different databases may include the same table using a different file number.

- **multifetch**: This parameter controls the number of records to be retrieved in a single read command (L2, L3, S1-L1). The value provided in this attribute controls the value passed in the ISN lower limit control block field. By default no multifetch is used. The multifetch buffer size can be controlled as follows:
 - multifetch='0': Lets the driver decide the number of records to retrieve. The driver will generally retrieve rows to fill a 10k buffer. No more than 15 rows are fetch at once.
 - multifetch='n': Causes n rows to be read at a time, where n is a number from 2 to 15.
 - multifetch='−n': Defines a read-ahead buffer with a fixed size, where n is less than or equal to 10000 bytes.
 - multifetch='1': Disables the read-ahead feature. (default)

- **nullSuppressionMode**: This attribute controls the behavior of the Adabas driver with regard to Null Suppression Handling. This attributes allows a user to change this default NULL suppression policy. Note that changing this setting improperly may result in incomplete query results. The following values can be selected:
 - full: (default) NULL suppressed fields are exposed as NULLABLE and must be qualified for the Oracle optimizer to consider using a descriptor based on a NULL suppressed field.
 - disabled: NULL suppressed fields are handled like any other field. Use this setting only if you completely understand the potential implications as incomplete query results may returned.
 - indexesOnly: Only NULL suppressed fields that are part of a descriptor/super-descriptor are exposed as NULLABLE. Other NULL suppressed fields are handled normally. This setting is as safe as the 'full' setting and does not include the risk of incomplete results as the 'disabled' option does.

- **scanUsingL1**: A scan strategy on a table is normally implemented by an L2 command. It is possible, however, to turn on this attribute in order to scan using the L1 command. This has the advantage of providing better data consistency at some performance penalty. Default: scanUsingL1='false'.

- **supportL3Range**: Older versions of Adabas did not allow for a range specification on an L3 command (e.g., AA,S,AA in the search buffer). Only the lower limit could be provided. If your version of Adabas supports a range in the L3 command you can turn on this attribute to enjoy better performance in some queries. Default: supportL3Range='false'.

- **traceValueBuffer**: This is a debugging tool to be used in conjunction with driverTrace='true' in the environment. Turning on driverTrace will record
the Adabas commands executed in the server log file. If you also want a binary dump of the value buffer and record buffer, set this attribute to true. Default: `traceValueBuffer='false'`.

- **userInfo**: This attribute specifies the value passed as a null-terminated string to Adabas as the seventh parameter on the adabas call. The value provided is then available in Adabas user exits. This has no affect at all on Oracle Connect, but some users have taken advantage of this feature to implement specific types of auditing. Note that it is possible to control the value of the `userInfo` attribute dynamically at runtime using the `nav_proc:sp_setprop` stored procedure. Default: `userInfo=''.

- **useUnderscore**: This attribute indicates whether or not to convert hyphens (-) in table and column names into underscores (_). The inclusion of hyphens in Adabas table names and field names poses an inconvenience when accessing these tables from SQL because names that include a dash need to be surrounded with double quotes. To avoid this inconvenience, the data source can translate all hyphens into underscores. Default: `useUnderscore='true'`.

- **verifyMetadata**: This attribute indicates whether or not to cross-check the Predict or ADD metadata against the LF command. Resulting discrepancies are written to the log and removed from the metadata at runtime. It is usually unnecessary to use this attribute. Default: `verifyMetadata='false'`.

3. Click **Save** to save the changes you made to the configuration properties.

Configuring the Data Source Driver Advanced Properties

You configure the advanced properties for a data source in the **Advanced** tab of the data source editor. The advanced settings are the same for every data source. Advanced settings let you do the following:

- Define the transaction type
- Edit the syntax name
- Provide a table owner
- Determine if a data source is updateable or readable
- Provide repository information
- Set the virtual view policy

Use the following procedure to configure the data source advanced features.

1. Open Oracle Studio.
2. In the Design Perspective Configuration View, expand the **Machine** folder and then expand the machine where you want to configure the data source.
3. Expand the **Data sources** folder, right click the data source you are configuring, then select **Open**.
4. Click the **Advanced** tab and make the changes that you want. The table below describes the available fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties</td>
<td></td>
</tr>
</tbody>
</table>
Setting up Metadata for the OracleAS Adabas Data Source

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transaction type</td>
<td>The transaction level (0PC, 1PC or 2PC) that is applied to this data source, no matter what level the data source supports. The default is the data source’s default level.</td>
</tr>
<tr>
<td>Syntax name</td>
<td>A section name in the NAV.SYN file that describes SQL syntax variations. The default syntax file contains the following predefined sections:</td>
</tr>
<tr>
<td></td>
<td>■ OLESQL driver and the SQL Server 7 OLE DB provider (SQLOLEDB): syntaxName="OLESQL_SQLOLEDB"</td>
</tr>
<tr>
<td></td>
<td>■ OLESQL driver and JOLT: syntaxName="OLESQL_JOLT"</td>
</tr>
<tr>
<td></td>
<td>■ Rdb driver and Rdb version: syntaxName="RDBS_SYNTAX"</td>
</tr>
<tr>
<td></td>
<td>■ ODBC driver and EXCEL data: syntaxNames="excel_data"</td>
</tr>
<tr>
<td></td>
<td>■ ODBC driver and SQL/MX data: syntaxName="SQLMX_SYNTAX"</td>
</tr>
<tr>
<td></td>
<td>■ ODBC driver and SYBASE SQL AnyWhere data: syntaxName="SQLANYSYNTAX"</td>
</tr>
<tr>
<td></td>
<td>■ Oracle driver and Oracle case sensitive data: syntaxName="ORACLE8_SYNTAX" or, syntaxName="ORACLE_SYNTAX"</td>
</tr>
<tr>
<td></td>
<td>For case sensitive table and column names in Oracle, use quotes (") to delimit the names. Specify the case sensitivity precisely.</td>
</tr>
<tr>
<td>Default table owner</td>
<td>The name of the table owner that is used if an owner is not indicated in the SQL.</td>
</tr>
<tr>
<td>Read/Write information</td>
<td>Select one of the following:</td>
</tr>
<tr>
<td></td>
<td>■ Updateable data: Select this if you want to be able to update the data on the data source.</td>
</tr>
<tr>
<td></td>
<td>■ Read only data: Select this to allow users to only view the data on the data source.</td>
</tr>
<tr>
<td>Repository Directory</td>
<td></td>
</tr>
<tr>
<td>Repository directory</td>
<td>Enter the location for the data source repository.</td>
</tr>
<tr>
<td>Repository name</td>
<td>Enter the name of a repository for a data source. The name is defined as a data source in the binding configuration. It is defined as the type Virtual and is used to store Oracle Connect views and stored procedures for the data source, if required instead of using the default SYS data.</td>
</tr>
<tr>
<td>Virtual View Policy</td>
<td></td>
</tr>
<tr>
<td>Generate sequential view</td>
<td>Select this to map a non-relation file to a single table. This parameter is valid only if you are using virtual array views. You configure virtual array views in the Modeling section of the when Configuring a Binding Environment.</td>
</tr>
</tbody>
</table>
Importing Metadata for the Adabas Data Source

Oracle Connect requires metadata describing the Adabas (ADD) data source records and the fields in these records. Use the Import Metadata procedure in Oracle Studio to import metadata for the Adabas data source from DDM declaration files, which describe the data.

The metadata import procedure is has the following steps:

- Importing Metadata from DDM Files

Importing Metadata from DDM Files

If the metadata exists in DDM files, you can use the DDM_ADL import utility to import this metadata to Oracle metadata. This utility is available on Windows and UNIX, from the platform’s command line interface. This utility is not available on z/OS platforms. You must perform the import on a Windows or UNIX computer and then move the generated metadata to the z/OS computer with Oracle Connect.

The metadata is not imported using Oracle Studio.

To display online help for this utility, run the command `DDM_ADL HELP`.

To generate the ADD metadata, use the appropriate command according to the platform type.

The following table lists the MDD file list format according to platform type.

<table>
<thead>
<tr>
<th>Platform Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIX</td>
<td>This parameter is at the end of the command. Separate the files in this list with spaces.</td>
</tr>
<tr>
<td>Windows</td>
<td>The name of the file containing the list and the names of the files in the list must be less than or equal to eight characters (with a suffix of three characters). Separate the files in this list with commas.</td>
</tr>
</tbody>
</table>
Verifying the Metadata Definition

After you finish Importing Metadata for the Adabas Data Source, you need to verify that the metadata is correct. Do the following to verify that the metadata was imported correctly.

1. From the Start menu, select Programs, Oracle and then select Studio.
2. In the Design perspective, Configuration view expand the Machines folder.
3. Expand the machine defined in Setting Up the IBM z/OS Platform in Oracle Studio.
4. Expand the Bindings folder. The binding configurations available on this computer are listed.
5. Expand the NAV binding. The NAV binding configuration includes branches for data sources and adapters that are located on the computer.
6. Expand the Data Sources folder.
7. Right-click the data source that you set up when Setting Up the Adabas Data Source (ADD Data only), and select Show Metadata View. The Metadata view opens with the data source you selected expanded.
8. Expand the Tables folder.
9. Right-click the table or tables where you carried out the metadata import and select Test. The Test wizard opens.
10. Click Next to view the metadata. The tables are displayed from the metadata. Check to see that the correct information is displayed.

Adding Adabas Data Tracing to the Log

Select the General Trace environment parameter in the Debug section to generate entries in the standard log tracing the access to Adabas data.

Setting Up a Change Data Capture with the OracleAS CDC Adapter for Adabas

You must set up the Oracle Connect CDC adapter for Adabas on the z/OS platform to handle capture changes to the Adabas data.

To work with the Adabas CDC adapter, you must set up the ATTSRVR started task, set up the tracking file, and register archived PLOG files. After you finish making the required configurations on the z/OS machine, configure the change data capture using the Oracle Studio CDC Solution perspective. Oracle Studio must be installed on a Windows or UNIX computer.

Do the following to set up the change data capture and configure the OracleAS CDC Adapter for Adabas:

- Setting up the ATTSRVR Started Task
- Setting up a Change Data Capture in Oracle Studio
- Setting up the Tracking File
- Deploying a Change Data Capture
Setting up the ATTSRVR Started Task

In the ATTSRVR started task STEPLIB, check that there is a DD card that defines the used Adabas load library.

Setting up a Change Data Capture in Oracle Studio

You set up the change data capture in Oracle Studio. Oracle Studio can be installed on Windows XP or Vista operating systems, or on UNIX. For more information, see Installing Oracle Studio.

A change data capture is defined in the CDC Solution perspective, which contains a series of links to guide you through the CDC set up process. The CDC solution perspective guides display the following symbols in front of a link to show you what tasks should be done, and what tasks were completed.

- Triangle: This indicates that there are subtasks associated with this link. When you click the link, the list expands to display the subtasks.
- Asterisk (*): This indicates that you should click that link and carry out the tasks and any subtasks presented. If more than one link has an asterisk, you can carry out the marked tasks in any order.
- Check mark (✓): This indicates that the tasks for this link and any sublink are complete. You can double click the link to edit the configuration at any time.
- Exclamation mark (!): This indicates a potential validation error.

Carry out the Following to set up a change data capture:

- Create a CDC Project
- Set up the CDC Server
- Set up the Staging Area Server

Create a CDC Project

Do the following to create a CDC Project

1. From the Start menu, select Programs, Oracle, and then select Studio.
2. Open the CDC Solution perspective, click the Perspective button on the perspective toolbar and select CDC Solution from the list.
 The CDC Solution perspective opens with the Getting Started guide in the left pane of the workbench.
3. Click Create new project.
 The Create new project screen opens.
4. In the Project name field, enter a name for your project.
 The types of projects available are listed in the left pane just below.
5. Select Change Data Capture.
 From the the right pane, select ADD Adabas (Mainframe) if you are using ADD data or Adabas (Mainframe) if you are using Predict data.
6. Click Finish. The Project Overview guide is displayed in the left pane.

7. Click Design. The Design wizard opens. Use this wizard to enter the basic settings for your project.

Note: The wizard screens are divided into sections. Some sections provide information only and other sections let you to enter information about the project. If you do not see any information or fields for entering information, click the triangle next to the section name to expand the section.
8. In the Client Type you can select Oracle SOA/ODI only. The Use staging area is selected and cannot be changed, you must use a staging area with the OracleAS CDC adapter for Adabas.

9. Click Next.

The Design Wizard’s second screen is displayed. In this step you configure the machines used in your solution. Enter the following information:

- **Server Machine Details**: Information about the machine where Oracle Connect is installed. The selection here is always **Server Machine** and **Mainframe**.

- **Staging Area Details**: Information about the machine platform where the staging area is located.

 For the server machine **Name**, select one of the following:
 - **CDC Stream Service**: Select this if the Staging Area is on a staging area computer. This is the default selection.
 - **Server Machine**: Select this if the staging area is on the same machine where Oracle Connect is installed.
 - **Client Machine**: Select this if the Staging area is on the local computer.

 In the Platform list, select the operating system for the staging area. This can be Windows, Linux or UNIX. The available options are:
 - Microsoft Windows
 - HP-UX
 - IBM AIX
 - Sun Solaris
- Linux (Red Hat)
- Suse (Linux)

Figure 3–10 Design Wizard (Configure Solution Machines)

10. Click **Finish**. The wizard closes.

Set up the CDC Server

Click **Implement** in the **Getting Started** guide to open the Implementation guide. In the Implementation guide, do the following to set up the CDC server:

- **Set up the Machine**
- **Configure the Adabas Data Source**
- **Copy the Metadata**
- **Set up the CDC Service**

Set up the Machine

You do the following to define the IP Address/host name and Port for the CDC server machine.

1. Click **Machine**.

 The machine definition screen is displayed:
2. In the **IP address/host name** field, do one of the following:
 - Enter the server machine’s numeric IP address.
 - Click the **Browse** button and select the host machine from the ones presented, then click **Finish**.

3. Enter the port number.
 The default port number is **2551**.

4. If you want to connect with user authentication, enter a user name and password, with confirmation, in the Authentication Information area.

Note: The machine you enter must be compatible with the platform designated in the Design Wizard (Configure Solution Machines) screen.
5. Select the Connect via NAT with a fixed IP address checkbox if you are using Network Access Translation and want to always use a fixed IP address for this machine.

6. Click OK.

Continue setting up the CDC Server on the z/OS computer.

Configure the Adabas Data Source

In this step, configure the Adabas data source that is part of the Adabas ADD or Adabas Predict solution. Do the following procedure to configure the data source.

1. In the CDC Solution perspective, click Implement.

2. In the Server Configuration section, click Data Source. The Data Source Configuration window is displayed. The following figure shows the Data Source Configuration window.

3. Define the parameters for your data source in the Data Source Configuration window.
 - Database number: The Adabas database number.
 - PREDICT file number: The Predict file number. (For Adabas with Predict data only).
 - PREDICT database number: When the Predict file resides in a different database than the data indicate the database number in which the Predict file resides. If the Predict file resides in the same database, enter -1. (For Adabas with Predict data only).

4. Click Finish.

Continue setting up the CDC Server on the z/OS computer.

Copy the Metadata

Use this step for Adabas with ADD data only. If you are using Predict data, go to the Set up the CDC Service step. In this step, copy the metadata that you imported when Importing Metadata for the Adabas Data Source. Do the following to copy the metadata.

1. Click Metadata.

 The Create metadata definitions view is displayed.

 Note: The Select Metadata Source link has an asterisk (*) next to it to indicate that you must carry out this operation first.

2. Click the Select Metadata Source link.

3. Select Copy from existing metadata.

5. Click Copy from existing metadata source.

 The Copy Existing Metadata Source screen is displayed showing your local machine and with metadata compatible with the data source selected.
6. From the sources in the left pane, expand the list until you see the tables from the data source you configured when Importing Metadata for the Adabas Data Source.

7. Using the arrow buttons, select the required tables and move them into the right pane.

8. Once you have selected all the desired tables, click **Finish**.

9. Click **Customize Metadata**.

 The customize metadata screen is displayed.

Note: If you do not want to make any customizations to the metadata, click **Finish** to close this screen. A check mark (✓) will appear next to **Customize Metadata** indicating that this step is complete.

Continue with another step in the design wizard.
10. To change a table name, right-click in the any field under **Customize Metadata**, and select **Add**.

11. Enter the table name in the field presented, and click **OK**.

Note: You may have validation errors in the tables created, which you can correct by the end of the procedure.

12. To make changes to any field in a table, right-click the table created and select **Fields Manipulation**.

The Field Manipulation screen is displayed.
Figure 3–15 Field Manipulation

13. Right-click in the upper pane and select Field | Add | Field.

14. Enter the name of the field in the screen provided, and click OK.

15. Default values are entered for the table. To manipulate table information or the fields in the table, right-click the table and choose the option you want. The following options are available:
 - **Add table**: Add a table.
 - **Field manipulation**: Access the field manipulation window to customize the field definitions.
 - **Rename**: Rename a table name. This option is used especially when more than one table is generated from the COBOL with the same name.
 - **Set data location**: Set the physical location of the data file for the table.
 - **Set table attributes**: Set table attributes.
 - **XSL manipulation**: You specify an XSL transformation or JDOM document that is used to transform the table definition.

The **Validation** tab in the bottom half of the window displays information about what you must do to validate the tables and fields generated from the COBOL. The **Log** tab displays a log of what has been performed (such as renaming a table or specifying a data location).

16. Correct any remaining validation errors.

17. Click **Finish** to generate the metadata.

Continue setting up the CDC Server on the z/OS computer.

Set up the CDC Service

In this step you define the starting point or event for the change capture and then indicate the name of the change logger. Do the following to set up the CDC service.

1. In the CDC Solution perspective, click **Implement**.
2. In the Server Configuration section, click **CDC Service**. The CDC Service wizard is displayed.

3. In the first screen select *one* of the following to determine the Change Capture starting point:
 - **All changes recorded to the journal**
 - **On first access to the CDC (immediately when a staging area is used, otherwise, when a client first requests changes**
 - **Changes recorded in the journal after a specific date and time.**
 When you select this option, click **Set time**, and select the time and date from the dialog box that is displayed.

 Note: For the OracleAS Adapter for Adabas the time stamp is defined per block. The timestamp of a block is defined as the last event in a block. When you configure Set Stream Position by Timestamp, it is possible to get events that occurred before the requested event and reside in the same block as the event requested by the timestamp.

 If you want to capture all changes, this will return all the changes from all Adabas archive files registered in the Oracle tracking file.

 When capturing changes from a specific time stamp, you can select a time that is later than the creation time of the last archive file created.

4. Click **Next** to define the logger. The following is displayed.

 Figure 3–16 CDC Logger Definition Window

5. In the **Tracking file** name field, enter the name of the tracking file used in the UE2 procedure. For more information, see the following:
 - **The Tracking File**
 - **Setting up the Tracking File**
 - **Registering the Archived PLOG Files**
6. In the **Adabas version** field, select the Adabas version you are working with from the list. If you are using a version earlier than version 7.4, then select V62; if you are using version 7.4, select V74.

7. Click **Next** to go to the next step where you set the CDC Service Logging. Select the log level to use from the **Logging level** list.

![Figure 3-17 Logging Level](image)

Select one of the following from the list:
- None
- API
- Debug
- Info
- Internal Calls

8. Click **Finish**.

Continue setting up the CDC Server on the z/OS computer.

Set up the Staging Area Server

Click **Implement** in the **Getting Started** guide to open the Implementation guide.

In the Implementation guide, do the following under the **Stream Service Configuration** section, to set up the staging area server:
- **Set Up the Staging Area Machine**
- **Set up the Stream Service**
- **Configure the Access Service Manager**

Set Up the Staging Area Machine

To set up the machine for the staging area, do the following.

1. Under the Stream Service Configuration section, click **Machine**.
2. Use the same configurations used to **Set up the Machine** for the CDC server.
Continue setting up the staging area Server.

Set up the Stream Service
In this step you set up the stream service. The Stream Service configures the following:
- Staging area
- Filtering of changed columns
- Auditing

Note: Null filtering is currently unsupported. Filtering empty values is supported. Space values are truncated and are handled as empty values.

1. Click **Stream Service**. The Stream Service wizard opens.

Figure 3–18 Staging Area

Note: This screen will only appear if you selected the inclusion of a staging area in your solution.

2. You can configure the following parameters in this screen:
 - Select **Eliminate uncommitted changes** to eliminate uncommitted changes from your CDC project.
 - Select the **Use secured connection** check box to configure the staging area to have a secured connection to the server. This is available only if you logged into the server using user name and password authentication.
 - Set the event expiration time in hours.
Under File Locations, click the **Browse** buttons to select the location of the changed files, and temporary staging files, if necessary.

3. Click **Next** to select the tables to include in the filtering process.

Figure 3–19 Select Tables

![Stream Service](image)

4. Click the required tables in the left pane and move them to the right pane using the arrow keys.

 Note: You can remove the tables and add new ones to be captured after you have already added the tables to the right pane. For more information, see Adding and Removing Tables.

5. Click **Next**. From the tables selected above, select the columns that receive changes. Select the check box next to the table to use all columns in the table.
Any data changes in the columns selected will be recorded.

6. Click Next. The Filter selection screen is displayed. The types of changes you want to receive in the tables and which columns to display.

Note: Table headers will appear grouped together in a separate table at the beginning of the list. You can also request the receipt of changes in the headers’ columns.
7. You can do the following in this screen:
 Select the actions from which you want to receive change information:
 - Update
 - Insert
 - Delete

 Note: These items are all selected by default.

 Under the Changed Columns Filter column, select the columns for which you want to receive notification of changes.

 Notes:
 - If you do not select a column, you will receive notification of all changes.
 - If you select only one, you will receive change information only if the field selected undergoes a change.
 - If you select more than one, but not all, then you will receive change information only if any or all of the selected fields undergo a change

8. In the **Content Filter** column of the Filter screen, double-click a table column and then click the **Browse** button to filter content from the selected column.
 The Content Filter screen is displayed.

 Figure 3–22 Content Filter

 ![Content Filter](image)

9. Select a filter type:
 - Select **In** for events to be returned where the relevant column value equals the values you specify (if a column is NULL, it is not captured).
 - Select **Not In** for events to be returned where the column value is not in the values you specify (if the column is NULL, it is captured).
 - Select **Between** for when the column value is between the two values you specify (if a column is NULL, it is not captured).
10. Click Add in the lower-left corner of the Content Filter screen.

Note: If you select more than one condition, you will receive the change information as long as one of the conditions is true.

11. Depending on your selection, do one of the following:
 - If you selected In/Not In, continue with step 12.
 - If you selected Between, continue with step 14.

12. Click Add in the Add items to the list screen. Enter a value for events to be returned where the column value appears (or does not appear) in that value. To filter empty values ("") for the Not In filter type, leave this field blank in the dialog box that is displayed.

![Figure 3–23 Add Items (In or Not In)](image)

13. Repeat steps 12 as many times as necessary, and then proceed to step 16.

14. Click Add in the Add items to list screen.

 The Add between values screen is displayed.

![Figure 3–24 Add Items (Between)](image)

15. Enter values for events to be returned where the column value is between the two values you specify.

16. In the content filter screen, click Next.
17. Select the required auditing level when receiving changes. Your options are:
 - **None**: For no changes.
 - **Summary**: For an audit that includes the total number of recorded delivered, as well as system and error messages.
 - **Headers**: For an audit that includes the total number of records delivered, system and error messages, and the record headers for each captured record.
 - **Detailed**: For an audit that includes the total number of records delivered, system and error messages, the record headers for each captured record, and the content of the records.

18. Click **Finish**.
Continue setting up the staging area Server.

Configure the Access Service Manager
In this step you set up a daemon workspace for the CDC adapter. Do the following to configure the access service manager.

1. Click **Access Service Manager**.
 The Setup Workspace wizard opens.
2. Select the scenario that best meets your site requirements:
 - Application Server using connection pooling
 - Stand-alone applications that connect and disconnect frequently
 - Applications that require long connections, such as reporting programs and bulk extractors

3. Click Next.

 The next screen that is used to create a workspace server pool. The parameters available depend on the selection you made in the first screen. The following are the available parameters:
 - If you selected Application Server using connection pooling:
 - What is the average number of expected concurrent connections? Enter the number of expected connections, which cannot be greater than the number of actual available connections.
 - What is the maximum number of connections you want to open? Enter the number of connections you want opened.
 - If you selected Stand-alone applications that connect and disconnect frequently, in addition to the choices listed in the item above, you can also set the following:
 - What is the minimum number of server instances you want available at any time? Enter the number of instances, which cannot be greater than the number of actual available instances.
 - What is the maximum number of server instances you want available at any time? Enter the number of instances you want to be available.
 - If you selected Stand-alone applications that connect and disconnect frequently:
 - How many connections do you want to run concurrently? Enter the number of concurrent connections that you want to run.
4. Click Next. In the next screen you set time out parameters. These parameters should be changed if the system is slow or overloaded. The parameters are:

- **How long do you want to wait for a new connection to be established?** Enter the amount of time you want to wait for a new connection to be established (in seconds).

- **How long do you want to wait for a response that is usually quick?** Change this parameter if you have a fast connection. Enter the amount of time to wait for a response (in seconds).

5. Click Next. In the next screen you set security parameters. You should consult with the site security manager before changing these parameters.

 Edit the following parameters in this screen:

 - Enter the operating system account (user name) used to start server instances.

 - Select **Allow anonymous users to connect via this workspace**, if you want to allow this option.

 - Enter the permissions for the workspace. You can allow **All users** to access the workspace, or select **Selected users only** to allow only the users/groups that you want to have exclusive access.

 - Select **Do you want to access server instances via specific ports**, if you want to allow this options. If this option is cleared, the defaults are used.

 If you select this option, indicate the **From port** and **To port** and make sure that you reserve these ports in the TCP/IP system settings.

6. Click Next.

 The summary screen opens.
7. Click **Save** and then click **Finish**.

When you complete all the Implementation operations, a check mark (✓) is displayed next to every link. Click **Done** to return so you can begin **Deploying a Change Data Capture**.

Continue setting up the staging area Server.

Setting up the Tracking File

To enable Adabas CDC, you must do the following:

- **Create the Tracking File**

After creating the tracking file, you should do one of the following procedures:

- **Registering the Archived PLOG Files**
- **Registering the PLOG Files using a Generation Data Group (GDG)**

Create the Tracking File

You do the following to create the tracking file:

To create the tracking file

- **Edit and submit the JOB from the BADATRF member of NAVROOT.USERLIB.**

The BADATRF member is shown below:

```plaintext
//BADATRF JOB 'RR','TTT',MSGLEVEL=(1,1),CLASS=A,
// MSGCLASS=A,NOTIFY=&SYSUID,REGION=8M
//DEFTRF EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DEFINE CLUSTER -
(NAME(navroot.DEF.ASADATRF.DBXXX) -
INDEXED -
UNIQUE -
VOL(DEV001) -
```

Confusing Step: 5. Click **Save** and then click **Finish**.

When you complete all the Implementation operations, a check mark (✓) is displayed next to every link. Click **Done** to return so you can begin **Deploying a Change Data Capture**.

Continue setting up the staging area Server.

Setting up the Tracking File

To enable Adabas CDC, you must do the following:

- **Create the Tracking File**

After creating the tracking file, you should do one of the following procedures:

- **Registering the Archived PLOG Files**
- **Registering the PLOG Files using a Generation Data Group (GDG)**

Create the Tracking File

You do the following to create the tracking file:

To create the tracking file

- **Edit and submit the JOB from the BADATRF member of NAVROOT.USERLIB.**

The BADATRF member is shown below:

```plaintext
//BADATRF JOB 'RR','TTT',MSGLEVEL=(1,1),CLASS=A,
// MSGCLASS=A,NOTIFY=&SYSUID,REGION=8M
//DEFTRF EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DEFINE CLUSTER -
(NAME(navroot.DEF.ASADATRF.DBXXX) -
INDEXED -
UNIQUE -
VOL(DEV001) -
```

Confusing Step: 5. Click **Save** and then click **Finish**.

When you complete all the Implementation operations, a check mark (✓) is displayed next to every link. Click **Done** to return so you can begin **Deploying a Change Data Capture**.

Continue setting up the staging area Server.

Setting up the Tracking File

To enable Adabas CDC, you must do the following:

- **Create the Tracking File**

After creating the tracking file, you should do one of the following procedures:

- **Registering the Archived PLOG Files**
- **Registering the PLOG Files using a Generation Data Group (GDG)**

Create the Tracking File

You do the following to create the tracking file:

To create the tracking file

- **Edit and submit the JOB from the BADATRF member of NAVROOT.USERLIB.**

The BADATRF member is shown below:

```plaintext
//BADATRF JOB 'RR','TTT',MSGLEVEL=(1,1),CLASS=A,
// MSGCLASS=A,NOTIFY=&SYSUID,REGION=8M
//DEFTRF EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DEFINE CLUSTER -
(NAME(navroot.DEF.ASADATRF.DBXXX) -
INDEXED -
UNIQUE -
VOL(DEV001) -
```
To edit this file, you should:

- Change `navroot` to the used Oracle HLQ.
- Change `DBXXX` so that the `XXX` specifies the used Adabase database number.
- Change the JOB card according to your site demands.

Registering the Archived PLOG Files

You must provide a procedure to save the archived PLOG files on DASD and register them in the tracking file. If the UE2 procedure used by Adabas saves the archived files on DASD, you can update this procedure as described below. In other cases, you must provide your own procedure that copies the archive files to DASD and registers them. In all cases, the registration step should be defined as follows:

```
//name EXEC PGM=UADATRF,PARM='<parameters>'
//STEPLIB DD DISP=SHR,DSN=navroot.LOAD
//ASADTRF DD DISP=SHR,DSN=<tracking file name>
```

The UADATRF program receives two positional parameters:

- The name of the archive file
- The length of the STCK (store clock). This value of this parameter depends on the Adabas version.

If using an Adabas version 7.4 or later, then set this parameter to a value of 8. This value indicates that the store clock uses 8 bytes.

For Adabas versions earlier than version 7.4, use a value of 4.

The following is an example of the registration step in the UE2 procedure:

```
//ASUPDBSD EXEC PGM=UADATRF,
// PARM='ADB.PLOG.D&SDATE..T&STIME 8'
//STEPLIB DD DISP=SHR,DSN=Oracle.LOAD
//ASADTRF DD DISP=SHR,DSN=Oracle.DEF.ADATRF.DB005
```

Registering the PLOG Files using a Generation Data Group (GDG)

When you restore the archived PLOG files to DASD from cartridges or tapes, you should use GDG to store the archived PLOGS. In this case, always copy each archive log to GDG 0 generation. The UADATRF program translates the GDG dataset name to its physical name and saves it in the tracking file.

The following is an example of the registration step:

```
//ASUPDBSD EXEC PGM=UADATRF,
// PARM='ADB.GDG.PLOG(0) 8'
//STEPLIB DD DISP=SHR,DSN=Oracle.LOAD
```
Deploying a Change Data Capture

After you complete the design and implementation guides, the following procedures are available.

- **Deployment Procedure**: This section is used to deploy the project.
- **Control**: This section is used to activate or deactivate workspaces after the project is deployed and you are ready to consume changes. In this section, you can deactivate the workspace anytime you want to suspend consumption of changes from the staging area.

Do the following to deploy the CDC solution:

1. Click **Deploy**. The Deployment Procedure and Control sections are displayed in the Deployment view.

2. Click **Deploy** in the **Deployment Procedure** section.

 Studio processes the naming information. This may take a few minutes. If there are naming collisions, a message is displayed asking if you want Oracle Studio to resolve them.

3. Click **Yes** to resolve any naming collisions.

 The Deployment Guide is displayed.
4. If you are ready to deploy, click Finish.

Otherwise, click Cancel and you can return to Create a CDC Project, Set up the CDC Server, or Set up the Staging Area Server to make any changes.

If this project was deployed previously, you will be notified that re-deployment will override the previous instance.

Notes:

- When you redeploy a project where the metadata is changed, the Staging Area (SA) tables should be deleted so that no incorrect information is reported.

- When you redeploy a solution, the a new binding is created for the solution. The new binding is created with the default parameters only. Any temporary features that were added are lost.

5. Where applicable, click OK to redeploy.

6. Click the Deployment Summary link.

The Deployment Summary is shown. It includes the ODBC connection string and JDBC connection string, as well as specific logger scripts to enable CDC capturing.
7. Cut and paste any information required from the Deployment Summary screen to your environment as necessary.

8. If there is nothing wrong with your deployment results, click **Finish**.

 If you found problems, click **Cancel** and to return Create a CDC Project, Set up the CDC Server, or Set up the Staging Area Server to modify the solution.
Activating and Deactivating Solution Workspaces

In the Project guide for your OracleAS CDC adapter solution, click Deploy, then do one of the following to activate or deactivate the workspaces for a solution:

- To activate workspaces, under the Control section click the Activate Workspaces link.
- To deactivate workspaces, click the Deactivate Workspaces link.

During the activation/deactivation process, you may receive messages indicating that the daemon settings on one or more of the machines involved in your solution have changed. Click Yes to proceed.

Note: If you are redeploying a solution you must follow these directions to make sure that the context and adapter_context fields of the SERVICE_CONTEXT table should be saved. Follow these directions to save the fields:

1. In the staging area data source run: select context, agent_context from SERVICE_CONTEXT; and save the returned values.
2. Delete the SERVICECONTEXT table physical files.
3. Redeploy the solution.
4. Activate the router to create the SERVICE_CONTEXT table.
5. Disable the router.
6. In the staging area datasource run: insert into SERVICE_CONTEXT (context, agent_context) values('XXX', 'YYY'). This will Insert the saved values to the SERVICE_CONTEXT table.
7. Activate the solution.
To deploy and integrate OracleAS CDC Adapters for Adabas with Oracle BPEL Process Manager, you need to configure the BPEL Process Manager.

This section includes the following topics:

- Overview of Oracle BPEL Process Manager Integration
- Configuring the Adabas CDC Adapter In the Application Server
- Configuring the Oracle BPEL Process Manager

Overview of Oracle BPEL Process Manager Integration

Oracle BPEL Process Manager provides a comprehensive solution for creating, deploying, and managing BPEL business processes. Oracle BPEL Process Manager is based on the Service Oriented Architecture (SOA) to provide enterprises with flexibility, interoperability, reusability, extensibility, and rapid implementation of Web services and business processes. It reduces the overall costs of management, modification, extension, and redeployment of existing business processes. Each business activity is a self-contained, self-describing, and modular application whose interface is defined by the WSDL, and the business process is modeled as a Web Service.

A Web Service is first published and then composed or orchestrated into business flows. Publishing a service is implemented by taking a function within an existing application or system and making it available in a standard way, while orchestration is implemented by composing multiple services into an end-to-end business process. The CDC solutions that are defined as part of the configuration of the OracleAS CDC Adapter for Adabas are integrated into the orchestration as PartnerLinks. Every PartnerLink is linked to a WSDL that describes the CDC table.

See Also: Oracle Application Server Adapter Concepts Guide.

Configuring the Adabas CDC Adapter In the Application Server

You can use the OC4J or WebLogic application servers to deploy the Oracle Connect Legacy adapter. This section describes how to deploy the Legacy adapter, set up the necessary connections, and build the CDC Stream Positions table.

This section includes the following topics:

- CDC Stream Positions Table Definition
Configuring the Adabas CDC Adapter Connection Factory

CDC Stream Positions Table Definition

Each CDC inbound process is defined for one source table only. You create one CDC Stream Positions table for each CDC adapter. The CDC Stream Positions table contains one row for each process (for each table) to control its stream position and XA transaction. The following SQL statement is used to define the table:

```
create table CDC_STREAM_POSITIONS (TABLE_NAME varchar(127) not null,
STREAM_POSITION varchar(127), PREPARED_STREAM_POSITION varchar(127),
ROLLBACK_STREAM_POSITION varchar(127), NEW_STREAM_POSITION varchar(127),
XID_FORMAT int, XID_BRANCH varchar(128), XID_GLOBAL varchar(128));
create unique index CDC_STREAM_POSITIONS_INDEX on CDC_STREAM_POSITIONS
(TABLE_NAME);
```

You can change the name of the table, but not the columns.

The following table describes the CDC Stream Positions table columns.

<table>
<thead>
<tr>
<th>Columns</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE_NAME</td>
<td>The name of the CDC table for the inbound process. You should not change the data in this column.</td>
</tr>
<tr>
<td>STREAM_POSITION</td>
<td>The last committed stream position of the CDC process for the current table. You should not change the data in this column.</td>
</tr>
<tr>
<td>PREPARED_STREAM_POSITION</td>
<td>The last prepared stream position of the CDC process for the current table. You should not change the data in this column.</td>
</tr>
<tr>
<td>ROLLBACK_STREAM_POSITION</td>
<td>In case of a Rollback Loop, this column contains the stream position of the event that occured at the time of the rollback.</td>
</tr>
<tr>
<td>NEW_STREAM_POSITION</td>
<td>You can enter a valid stream position value in this column to manually change the current stream position. Before you update this column, deactivate the corresponding CDC process. Note: Make sure that the XID_FORMAT column has a null value. If the XID_FORMAT column is not null, do not enter a value for this column.</td>
</tr>
<tr>
<td>XID_FORMAT</td>
<td>The last prepared XID fields. If the XID_FORMAT column is null, the stream position is committed. In this case the XID_BRANCH and XID_GLOBAL columns will contain the last committed XID fields.</td>
</tr>
<tr>
<td>XID_BRANCH</td>
<td></td>
</tr>
<tr>
<td>XID_GLOBAL</td>
<td></td>
</tr>
</tbody>
</table>

You should configure the native data source that contains the CDC Stream Positions tables in your application server. The following example shows an example of a data source definition in OC4J (in the data-sources.xml file):

```
<native-data-source
  name="CdcContext:OracleDS"
  jndi-name="jdbc/CdcContextOracleDS"
  description="Native CDC Context DataSource"
  data-source-class="oracle.jdbc.pool.OracleDataSource"
  user="system"
/>
Configuring the Adabas CDC Adapter Connection Factory

Deploy the Oracle Connect Legacy Adapter RAR into the OC4J or WebLogic server with the name jca-legacy-adapter.

Create the appropriate connection factories in the OC4J or WebLogic application server.

This table provides a description of the connection factory properties.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eisName</td>
<td>Required. Sets the name of the adapter to use. The adapter is defined in the Oracle Connect server using Oracle Studio.</td>
</tr>
<tr>
<td>serverName</td>
<td>Required. Enter the name of the server with the TCP/IP address or host name where the Oracle Connect daemon is running. See Also: Advanced Tuning of the Daemon for details about the daemon.</td>
</tr>
<tr>
<td>workspace</td>
<td>Required. Specifies the name of an Oracle Connect server workspace to use. See Also: Workspaces for details about workspaces.</td>
</tr>
<tr>
<td>portNumber</td>
<td>Optional. Specifies the TCP/IP port where the Oracle Connect daemon is running on the server. The default port is 2551.</td>
</tr>
<tr>
<td>userName</td>
<td>Optional. Specifies a user who can access the Oracle Connect server. The user is defined in the Oracle Connect daemon configuration. See also: daemon Security and workspace Security for details about users allowed to access an Oracle Connect server.</td>
</tr>
<tr>
<td>password</td>
<td>Optional. Specifies a valid password for the user.</td>
</tr>
<tr>
<td>persistentConnection</td>
<td>By default this is set to true. You should not change this value.</td>
</tr>
<tr>
<td>keepAlive</td>
<td>By default this is set to true. You should not change this value.</td>
</tr>
<tr>
<td>firewallProtocol</td>
<td>Optional. Specifies the firewall protocol used: either none or fixedNat (the Nat protocol using a fixed address for the daemon). The default is set to none.</td>
</tr>
<tr>
<td>connectTimeout</td>
<td>Optional. Specifies the connection timeout in seconds. The default is 0, indicating that there is no connection timeout.</td>
</tr>
<tr>
<td>encryptionProtocol</td>
<td>Optional. Specifies the name of encryption protocol to use. The default is set to RC4. If the value of the property is not defined, the RC4 protocol is used.</td>
</tr>
<tr>
<td>encryptionKeyName</td>
<td>Optional. Specifies the name of the symmetric encryption key to use.</td>
</tr>
<tr>
<td>encryptionKeyValue</td>
<td>Optional. Specifies the value of the symmetric encryption key to use.</td>
</tr>
</tbody>
</table>
This section includes the following topics:

- Setting up the Connection to the Oracle Connect Server Metadata
- Using JDeveloper to Integrate a CDC Inbound Process to the Inbound Application

### Setting up the Connection to the Oracle Connect Server Metadata

Perform the following steps to set up the connection to the Oracle Connect server to provide an automatic BPEL application built by JDeveloper:

1. Open the Oracle BPEL Admin window.
2. On the Server tab, on the Configuration tab, specify the following:
   - **LegacyServer**: The IP address of the server where Oracle Connect is installed.
   - **LegacyPort**: The port number of the server where Oracle Connect is installed.
3. Repeat the previous step for each Oracle Connect server to be used by Oracle BPEL Process Manager. Use a comma as a separator between the different servers and ports.
4. Click **Apply**.
5. Restart the Oracle SOA Suite.

### Using JDeveloper to Integrate a CDC Inbound Process to the Inbound Application

The following sections describe how to integrate the CDC inbound process to the inbound application.

- Configuring a CDC Adapter Partner Link
- Configuring WSDL
Configuring a CDC Adapter Partner Link

Carry out the following steps in Oracle JDeveloper to configure a CDC Adapter Partner Link.

1. Drag a Partner Link into one of the Services lanes of the visual editor.
2. In the Create Partner Link dialog box, click the Service Explorer button (the second button under WSDL Settings).
3. In the Service Explorer, expand Adapter Services.
4. Expand the connection server on which you deployed the Adabas resource adapter (this is the server where you created your CDC solution).
5. Under Adapters, expand Legacy to view a list of the Oracle Connect servers that you defined by using the Oracle BPEL Admin window.
6. Expand the Oracle Connect server with the metadata you want to check, to view a list of workspaces.
   - Expand the CDC staging area workspace that you created when . This workspace will have the name with the suffix _sa.
7. Expand the CDCQueue adapter to view a list of captured tables.
8. Select the table you are working with and click OK.
9. Define the Partner Role and My Role then click OK.

Configuring WSDL

When you build an inbound Partner Link, Oracle BPEL Process Manager automatically creates the WSDL that corresponds to the captured table, including the properties of the AttuCDCActivationSpec class. These properties are the only relevant properties for a CDC inbound process. These properties, except for the TableName, can also be provided using the Connection Factory. For information on how to configure the Connection Factory, see Configuring the Adabas CDC Adapter Connection Factory.

The WSDL specifies the name of the adapter’s connection factory as the value of the adapterInstanceJndi attribute of the <jca:address> element in the <service> section. If a connection factory exists on the applicatio server, its properties are taken. Otherwise, the properties specified by the ActivationSpec are used. If a value is specified by both the connection factory and the ActivationSpec, the ActivationSpec property overrides the value in the connection factory. If you want to use the value specified in the connection factory, you have to delete the property from the WSDL.

The following is an example of a CDC inbound WSDL:

```xml
<?xml version = '1.0' encoding = 'UTF-8'?>
<definitions name="nation" targetNamespace="http://xmlns.oracle.com/pcbpel/dlg1_CDCQueue/nation" xmlns="http://schemas.xmlsoap.org/wsdl/
xmlns:legacyReq="noNamespace://dlg1_CDCQueue"
xmlns:tns="http://xmlns.oracle.com/pcbpel/dlg1_CDCQueue/nation"
xmlns:plt="http://schemas.xmlsoap.org/ws/2003/05/partner-link/
xmlns:jca="http://xmlns.oracle.com/pcbpel/wsdl/jca/
xmlns:pc="http://xmlns.oracle.com/pcbpel/"
xmlns:legacyRes="noNamespace://DEN0#">
 <types>
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="noNamespace://dlg1_CDCQueue" targetNamespace="noNamespace://dlg1_CDCQueue"
elementFormDefault="qualified" attributeFormDefault="unqualified">
```
<xsd:restriction base="xsd:string">
  <xsd:maxLength value="24"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="context" use="required">
  <xsd:simpleType>
    <xsd:restriction base="xsd:string">
      <xsd:maxLength value="32"/>
    </xsd:restriction>
  </xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="agent_context" use="required">
  <xsd:simpleType>
    <xsd:restriction base="xsd:string">
      <xsd:maxLength value="64"/>
    </xsd:restriction>
  </xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="terminalID" use="required">
  <xsd:simpleType>
    <xsd:restriction base="xsd:string">
      <xsd:maxLength value="4"/>
    </xsd:restriction>
  </xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="taskID" use="required">
  <xsd:simpleType>
    <xsd:restriction base="xsd:string">
      <xsd:maxLength value="8"/>
    </xsd:restriction>
  </xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
</xsd:schema>
</xsd:types>
<message name="event">
  <part name="event_nation" element="legacyReq:nationStream"/>
</message>
<portType name="nationPortType">
  <operation name="nation">
    <input name="Event_nation" message="tns:event"/>
  </operation>
</portType>
<binding name="nationJCABinding" type="tns:nationPortType">
  <pc:inbound_binding/>
  <operation name="nation">
    <jca:operation
      ActivationSpec="com.oracle.adapter.oracle.AttuCDCActivationSpec"
      TableName="nation" JdbcDataSource="jdbc/CdcContextOracleDS"
      CdcStreamPositionsTable="" EisName="dlg1_CDCQueue" ServerName="server1-xp"
      PortNumber="2551" UserName="" Password="" Workspace="dlg1_sa" RetryInterval="15"
      ConnectTimeout="0"/>
    <input/>
  </operation>
</binding>
<service name="nationService">
  <port name="nationPort" binding="tns:nationJCABinding">
    <jca:address
      ResourceAdapterClassName="com.oracle.adapter.AttuResourceAdapter"
Troubleshooting Rollback Loops

When a problem occurs in the CDC resource adapter work thread, the thread will wait for a defined period of time (retryInterval) then it will retry the last operation. If you want to stop the adapter, you must deactivate the endpoint. The behavior of the resource adapter is different according to the type of rollback loop. In all cases, the resource adapter writes the corresponding error messages to the resource adapter log file and sends the message to the message listener onAlert method.

- If the connection to Oracle Connect is lost, the resource adapter always waits for a defined period of time (retryInterval) until the connection is reestablished.
- In all other cases, the resource adapter retries the last operation immediately and if the problem returns, the resource adapter waits for ascending periods of time, beginning with the retryInterval and doubling the wait time for each successive attempt, but not for more than one minute.

If the OracleAS resource manager invokes a rollback before a 2PC prepare operation, the CDC resource adapter take steps to carry out a special operation that assists you in troubleshooting the problem. In this case, the resource adapter separately sends each event from the last event array to the BPEL endpoint, which saves the stream position of the last problematic event in the ROLLBACK_STREAM_POSITION column.

If you notice that a rollback loop occurs in the CDC resource adapter work thread, check the value of the ROLLBACK_STREAM_POSITION is not null. If the value is not null, check whether there was a data problem. You can select the problematic event from the staging area, using the current stream position value. In this way you can analyze the data to determine what the problem is. In addition, you can skip the problematic event. In this case you stop the endpoint and update the NEW_STREAM_POSITION column with the value of the ROLLBACK_STREAM_POSITION.

**Note:** In this example, the element <nation> is defined as an array. The maximum number of elements in this array is defined by the maxRecords property in the corresponding CDC Queue adapter.
Runtime Tasks and Troubleshooting

Runtime tasks are executed after you install and configure the OracleAS CDC Adapter for Adabas. This chapter describes how to carry out basic maintenance tasks, and make changes to CDC solutions. These tasks include:

- Adding and Removing Tables
- Handling Metadata Changes
- Staging Area Maintenance
- Monitoring the Change Data Capture
- Daemon Life-Cycle Tasks

Adding and Removing Tables

After you deploy the OracleAS CDC adapter solution and start working with it, you may want to change the tables that are being monitored. You do this in the CDC Solution perspective of Oracle Studio. The following describes the main steps that you need to follow to make changes to the table. During this operation you will need to go back and change some of the configurations you made when you set up the OracleAS CDC adapter solution during design time. Do the following to change tables:

1. From the Start menu, select Start, Programs, Oracle, and then select Studio.
2. From the Window menu, click the Open Perspective button and select CDC Solution.
3. In the Getting Started pane, under Recent projects, click the OracleAS CDC solution that you are changing.
   
   If you do not see the CDC solution you want to edit in the list under Recent projects, click Open an existing project and select your solution from the drop-down list in the dialog box that is displayed.
4. Click Implement.
5. Under the Stream Service Configuration section, click Stream Service.
6. In the first screen of the Stream Service wizard, you can change the location of the change files or click Next to make changes to the tables to be captured.
7. Select one or more tables from either pane.

   - Select a table from the right pane then click the left arrow to move a selected table into the left pane and remove it from the list of tables to be captured.
   - Select a table from the left pane then click the right arrow to move a selected table into the right pane and add it to the list of tables to be captured.
8. Click Next, in the screen displayed, clear check boxes from the columns you no longer want to capture. Select check boxes from columns that are not currently included in the change data capture to include them.

9. Click Next, in the screen displayed, clear and select the check boxes to change the filters used in the change data capture.

10. Click Next, in the final screen you can make changes to the auditing configuration.

11. Click Finish to close the wizard and save the changes.

12. You must re-deploy the solution for the changes to be recognized at runtime. See Deploying a Change Data Capture.

For more information on configuring the Stream Service, see Set up the Stream Service.

---

**Note:** When adding a new table, be sure to create a corresponding endpoint for capturing changes. See Using JDeveloper to Integrate a CDC Inbound Process to the Inbound Application.

---

**Handling Metadata Changes**

When you make changes to the way an application accesses an Adabas file, you need to be sure that the solution recognizes the changes and works with them. This section provides you with a procedure to handle the metadata when working with an OracleAS CDC Adapter for Adabas solution if changes are made after deploying the solution. You should carry out these steps at a time when there is little or no activity in the system. If you want to receive new events with a new structure, consume the changes for the table you are updating before carrying out any the steps in this process. Do the following to handle any changes to the metadata:

1. Deactivate the Solution workspaces using the CDC Solution perspective in Oracle Studio.

2. Update the metadata in the Adabas data source and Staging Area by doing one of the following:
   - If you made manual changes to the CDC solution after deployment, or if you do not want to redeploy the solution, then on the Router's (Staging Area) machine, do the following:
     - Run Oracle Studio, and open the Design perspective.
     - Edit the Metadata for the Router's Data source.
     - Expand the table list and edit the metadata for the table.
       - If you are adding a new column, make sure to add it to the end of the COLUMN list. This operation can also be done using the Source view. Make sure you select the correct datatype.
       - If you are modifying a datatype, make sure to select the corresponding datatype when making the modification.
     - Save the metadata.
     - Repeat this procedure on the CDC adapter machine for the Adabas data source.
     - For more information, see Importing Metadata for the Adabas Data Source.
   - For cases where you can redeploy the solution:
Run Oracle Studio, and open the CDC Solution perspective.
Open the CDC solution project.
Click **Implement** and then click **Stream Service**.
Run the wizard. Make sure that you are using the modified metadata.
Redeploy the solution, but do not activate it.

For more information, see Deploying a Change Data Capture.

3. Delete the physical files that represent the modified tables from the Staging Area. Make sure **not** to delete the SERVICECONTEXT and CONTROL_TABLE files.

4. Reactivate the solution using Oracle Studio. See Activating and Deactivating Solution Workspaces.

**Staging Area Maintenance**

The Staging Area files for the OracleAS CDC Adapter solution are DISAM files that store changes until the client application consumes them. When you delete old changed records they are actually only marked as deleted. New changes continue to be written to the deleted records.

In busy production sites the DISAM files can get very large, which can affect the performance of the system.

To ensure that system performance is not degraded, you should defragment the Staging Area files to better maintain the Staging Area repository. Use the following procedures and suggestions when you carry out the defragmentation of the staging area:

- Defragment the DISAM files at least once a week. The frequency can vary depending on the amount of changes in the staging area.
- In addition to defragmenting the staging area files, you should also check for corrupt DISAM files.
- You should carry out the maintenance processes when the lowest possible activity in your system occurs.

To defragment and maintain the staging area, use the DCHECK and DPACK DISAM utilities. The DCHECK utility is used to check for corruption of DISAM files and rebuild the bad indexes and the DPACK utility defragments the DISAM files and rebuilds them without the deleted records. This reduces the size of the files and ensures that the DISAM files contain only active and relevant records.

Do the following to carry out the maintenance activities:

1. Deactivate the OracleAS CDC Solution with the staging area you working with. See Activating and Deactivating Solution Workspaces.

2. Run the DCHECK utility on each file to make sure it's not corrupted. For example, at the command prompt enter the following to check the DIASM file that represents the table called employees.

   dcheck employees
   
   If the file is corrupt you can use the -b switch to rebuild all indexes.

3. Defragment each file using the DPACK utility. For example, at the command prompt enter the following to defragment the DIASM files that represent the tables called **employees** and **salaries**.

   dpack employees
Monitoring the Change Data Capture

After you deploy the OracleAS Change Data Capture, you can monitor its progress. Monitoring provides you with information about the OracleAS CDC adapter’s status, troubleshooting and tuning. This section contains the following topics that explain monitoring in a CDC.

- Service Context Table
- Monitoring the Status

Service Context Table

A control table is maintained by the event router that reports its current state and other important statistics. It can be accessed with any tool that supports SQL access.

The control table is called SERVICE_CONTEXT. This table has a single row with the following columns:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>context</td>
<td>string (32)</td>
<td>The context value of the last change record in the most recently committed transaction. This value can be used to synchronize retrieval of transactions among different tables.</td>
</tr>
<tr>
<td>agent_context</td>
<td>string (64)</td>
<td>This is the agent context that the staging area would return to if it were to restart for whatever reason. The agent context value is calculated as follows: If there are pending uncommitted transactions, the agent_context value is the agent context of the first event of the oldest uncommitted transaction. If there are no pending uncommitted transactions the agent context of the last event of the most recently committed transaction, prefixed with 'next and indicates that on recovery, the next event after that is to be processed. The staging area maintains an internal agent_context that is more advanced than the one stored in the SERVICE_CONTEXT table. The staging area uses memory to speed up change processing and when stopped it may revert back to an earlier agent context. The amount of extra work depends on the existence of long-running transactions.</td>
</tr>
<tr>
<td>start_time</td>
<td>timestamp</td>
<td>The time when the staging area started.</td>
</tr>
<tr>
<td>status</td>
<td>string (16)</td>
<td>Staging area status. For more information, see Monitoring the Status.</td>
</tr>
<tr>
<td>sub_status</td>
<td>string (64)</td>
<td>A second level status. For more information, see Monitoring the Status.</td>
</tr>
<tr>
<td>status_message</td>
<td>string (80)</td>
<td>Message that is returned that describes the staging area status.</td>
</tr>
<tr>
<td>status_time</td>
<td>timestamp</td>
<td>The time that the status is updated.</td>
</tr>
<tr>
<td>completed_transactions</td>
<td>uint4</td>
<td>Number of transactions processed.</td>
</tr>
</tbody>
</table>
The CONTROL table is also used by the event router to persist its state for purpose of recovery. This table must not be modified by the users.

**Monitoring the Status**

The following table describes the status for the CDC adapters when they are running. The status is defined as a state in the SERVICE_CONTEXT table. The table describes the different statuses available for a CDC adapter.

### Table 5–2 SERVICE_CONTEXT Status States

<table>
<thead>
<tr>
<th>State</th>
<th>Sub State</th>
<th>State Details</th>
<th>Description</th>
</tr>
</thead>
</table>
| Active         | Processing| - Reads the change events  
               |                                                                              | The router is connected to the CDC agent and is processing or waiting for the change events. |
|                |           | - Writes the change events  
               |                                                                              |                                                                             |
|                |           | - Reduces the timed-out transaction to disc  
               |                                                                              |                                                                             |
|                |           | - Deletes any expired change events  
               |                                                                              |                                                                             |
| Idle           |           | Waits for new change events  
               |                                                                              | The router’s agent reaches the end of its journal and does not have any new change events. |
Daemon Life-Cycle Tasks

Most of the daemon runtime tasks between Oracle Application Server and OracleAS CDC Adapter for Adabas are carried out using Oracle Studio, which is used to monitor the daemon and server activity and control what happens to the daemon and server processes.

See Also: Appendix B, "Advanced Tuning of the Daemon" for details about the configuration settings.
This section contains the following topics:

- Starting the Daemon
- Shutting Down the Daemon
- Monitoring the Daemon During Runtime
- Daemon Logs

Starting the Daemon

The daemon is started when OracleAS Adapter for Adabas is installed. In case you have shut down the daemon, as described in Shutting Down the Daemon, you can restart the daemon as described in the following task.

**Note:** The daemon is started on the IBM z/OS platform. It cannot be started remotely using Oracle Studio.

**Task: Starting the Daemon**

Activate `INSTROOT.USERLIB(ATTDAEMN)` as a started task to invoke the daemon. For example, in the SDSF screen, enter the following command:

```
's ATTDAEMN'
```

Where `INSTROOT` is the high-level qualifier where Oracle Connect is installed.

**See Also:** Starting the Daemon for details about the `ATTDAEMN` JCL

Shutting Down the Daemon

To shut down the daemon use Oracle Studio, as follows:

1. From the Start menu, select Start, Programs, Oracle, and then select Studio.
2. Expand the Machines folder.
3. Right-click the computer defined in Setting Up the IBM z/OS Platform in Oracle Studio and select Open Runtime Perspective.
4. In the Runtime Explorer, right-click the daemon you want to shut down and select Shutdown Daemon.

Monitoring the Daemon During Runtime

Use the Runtime Manager perspective of Oracle Studio to monitor the daemon during run time.

Perform the following steps:

1. From the Start menu, select Start, Programs, Oracle, and then select Studio.
2. Right-click the computer defined in Setting Up the IBM z/OS Platform in Oracle Studio, and select Open Runtime Perspective.

You can manage the daemon by expanding the relevant node, daemon, workspace or server process, as described in the following sections.
Daemon Life-Cycle Tasks

Daemon (Computer) Options
Right-click the daemon to display the options available for it, including the ability to display the daemon log.

The following table lists the available daemon options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edit Daemon Configuration</td>
<td>Opens the daemon editor, which enables you to reconfigure the daemon. See Also: Appendix B, &quot;Advanced Tuning of the Daemon&quot; for details about the configuration settings.</td>
</tr>
<tr>
<td>Status</td>
<td>Checks the status of the daemon. The information about the daemon includes the name of the daemon configuration used, the active client sessions, and logging information.</td>
</tr>
<tr>
<td>Reload Configuration</td>
<td>Reloads the configuration after any changes. Any servers currently started are not affected by the changed configuration. See Also: Appendix B, &quot;Advanced Tuning of the Daemon&quot; for details about the configuration settings.</td>
</tr>
<tr>
<td>View Log</td>
<td>Displays the daemon log. For details see Daemon Logs on page 5-9.</td>
</tr>
<tr>
<td>View Events</td>
<td>Displays the daemon events log.</td>
</tr>
<tr>
<td>Daemon Properties</td>
<td>Displays information about the computer where the daemon is running, such as the physical address and any username and password needed to access the computer.</td>
</tr>
<tr>
<td>Recycle servers</td>
<td>Closes all unused servers and prepares all active servers to close when the client disconnects. New connection requests are allocated with new servers.</td>
</tr>
<tr>
<td>Kill servers</td>
<td>Immediately closes all active and unused servers. Note: It is recommended to use this option with caution, as it may lead to data loss.</td>
</tr>
<tr>
<td>Shutdown Daemon</td>
<td>Shuts down the daemon on the computer.</td>
</tr>
<tr>
<td>Rename</td>
<td>Enables changing the name of the daemon displayed in the Runtime Explorer.</td>
</tr>
<tr>
<td>Remove</td>
<td>Removes the daemon from the Runtime Explorer.</td>
</tr>
<tr>
<td>Refresh</td>
<td>Refreshes the display.</td>
</tr>
</tbody>
</table>

Workspace Options
Right-click a workspace to display the options available for the workspace, including the ability to display the workspace log.

The following table lists the available options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edit Workspace Configuration</td>
<td>Opens the daemon to enable you to reconfigure the workspace. See Also: Advanced Tuning of the Daemon for details about the configuration settings.</td>
</tr>
</tbody>
</table>
Server Options
Right-click a server to display the options available for the server, including the ability to display the server log.

The options available at the server level are listed in the following table:

Table 5–5 Server Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Checks the status of the server. The information about the server includes the server mode and the number of active client sessions for the server.</td>
</tr>
<tr>
<td>View Log</td>
<td>Displays the server log. For details see Daemon Logs on page 5-9.</td>
</tr>
<tr>
<td>View Events</td>
<td>Displays the server events log.</td>
</tr>
<tr>
<td>Kill server</td>
<td>Ends the server process, regardless of its activity status. Note: It is recommended to use this option with caution, as it may lead to data loss.</td>
</tr>
<tr>
<td>Refresh</td>
<td>Refreshes the display.</td>
</tr>
</tbody>
</table>

Daemon Logs
Oracle Connect produces a number of logs that you can use to troubleshoot problems. The daemon manages the following logs:

- Daemon
- Workspace
- Server process
The Runtime Manager perspective of Oracle Studio provides a monitor for these logs as shown in the following figure:

![Log Monitor](image)

To display the required log, do the following:

1. In Oracle Studio, Runtime perspective, right-click, expand the Daemons folder.
   - If you want to view the workspace log, then expand the daemon with the workspace you want to view.
   - If you want to view the server, right-click the workspace with the server you want to view.

2. Right-click the daemon, workspace, or server and select View Log.

Each log is displayed in a different tab. You can browse the different logs by clicking the tab at the bottom of the screen.

**The Log Monitor**

The logs display daemon, workspace, or server events as they happen. You can view the following types of logs in the monitor:

- **Daemon logs**: Display activity between clients and the daemon, including clients logging in and logging out from the daemon.
- **Workspace logs**: Display information about the workspace being used by the client.
- **Server logs**: Display activity between clients and the server process used by that client to handle the client request.

You can change the logging level. To change the logging level, click Properties. The following levels of logging are available in the dialog box:

- **none**: The log displays the users that log in and out.
- **error**: The log displays the users that log in and out and any errors that have been generated.
- **debug**: The log displays the users that log in and out, any errors that have been generated, and any tracing that was configured. For information on configuring the tracing options, see Logging and workspace General.

You can start and stop the logging display.

- Click **Suspend** to stop collecting logging information.
- Click **Resume** to start collecting logging information.

You can remove the information displayed in the log.

To remove the information, click **Clear**.

If logging is enabled, new information will continue to be displayed. The cleared information cannot be viewed again.

**Resolving Communication Errors**

When Oracle Studio disconnects from the IBM z/OS computer, the computer is displayed in Oracle Studio with an X in a red circle. If this situation occurs, try to access the computer later.

The following table describes the various scenarios that may exist when Oracle Application Server disconnects from the IBM z/OS computer.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Idle (Not Processing a Client Request)</th>
<th>Processing a Client Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explicit Disconnect (client explicitly closes connection or client program terminates)</td>
<td>The server is immediately notified of the disconnect and either becomes available for use by another client or terminates (if it is not reusable).</td>
<td>The server does not know that the client has disconnected and continues processing. When processing completes, the server tries to reply to the client and immediately gets an error that the connection was lost. The server either becomes available for use by another client or terminates (if it is not reusable).</td>
</tr>
<tr>
<td>Abrupt Disconnect (client closed without proper shutdown or client system hanged and communication disconnected)</td>
<td>The server does not know that the client has disconnected and remains in the idle state. After timing out based on whichever comes first of the value for the client idle timeout daemon workspace parameter or the TCP/IP KEEPALIVE parameter, the server is notified of the disconnect and either becomes available for use by another client or terminates (if it is not reusable).</td>
<td>The server does not know that the client has disconnected and continues processing. When processing completes, the server tries to reply to the client. After an interval (typically several minutes, depending on the TCP/IP configuration), during which the TCP/IP subsystem retries sending the message to the client, the server assumes that the client has terminated and notifies the server that the connection has been closed. The server either becomes available for use by another client or terminates (if it is not reusable).</td>
</tr>
</tbody>
</table>

To troubleshoot client/server communication problems, you need to be familiar with the following:

- Daemon configuration settings
- Oracle Connect security
- TCP/IP subsystem. Oracle Application Server Adapter for Adabas uses TPC/IP for internal intercomputer communications.
- System details, such as the account name and password of the administrator account, the IP address of the computers involved and whether a portmapper is being used.

**Resolving Specific Errors**

The following error messages relate to errors received from Oracle Connect.

**C007: Server initialization failed.**

**Cause:** The daemon failed to start its network service.
Action: Check the processes being run on the system to see whether another daemon or program is using the port specified in the oc4j-ra-xml file for the adapter.

Action: Check the TCP/IP subsystem on the current computer by trying to ping it or run FTP or Telnet to or from it.

Action: Check whether the daemon has privileges to use the TCP/IP services on the current computer with the port specified in the oc4j-ra-xml file for the adapter.

C008: Setting server event handler failed.
    Cause: Internal error.
    Action: Contact Oracle Support Services.

C009: IRPCD process has been terminated by user request.
    Cause: This message is informational only. The daemon successfully shut down.
    Action: No action required.

C00A: Application %s not found.
    Cause: The requested workspace does not exist.
    Action: Check that the workspace defined in the oc4j-ra-xml file is also defined in the daemon configuration on the IBM z/OS platform. Use the Status option in the Runtime Manager perspective.

C00B: Invalid IRPCD client context.
    Cause: A non-Oracle Connect program is trying to connect to the daemon.
    Action: Check the processes and kill the relevant process with a system command.

C00C: Daemon request requires a server login.
    Cause: A non-Oracle Connect server or program was trying to use a daemon service reserved for Oracle Connect servers.
    Action: Check the processes and kill the relevant process with a system command.

C00D: Daemon request requires a client login.
    Cause: The requested daemon requires a valid client login, which was not supplied.
    Action: Reissue the command and specify a username and password.
    Action: Edit the user profile in Oracle Studio to specify a valid username and password for the IBM z/OS platform.

    See Also: Setting Up Run-Time User Access to the IBM z/OS Platform.

C00E: Daemon request requires an administrator login.
    Cause: The requested daemon service requires an administrative login.
    Action: Edit the daemon security in Oracle Studio to specify a valid administrator username and password.

    See Also: Daemon Security.
C00F: Anonymous client logins are not allowed.
Cause: The daemon is configured to require a valid username and password, which were not supplied.
Action: Enable anonymous client access in daemon security in Oracle Studio.

See Also: Daemon Security.

Action: Edit the user profile in Oracle Studio to specify a valid username and password for the IBM z/OS platform.

See Also: Setting Up Run-Time User Access to the IBM z/OS Platform.

C010: Anonymous server logins are not allowed.
Cause: Internal error.
Action: Contact Oracle Support Services.

C011: Client has already timed out.
Cause: A server process was started on behalf of a client and the client has timed out before the server completed its startup.
Action: Increase the Connect timeout value for the server workspace in the workspace General.

See Also: Workspace General.

C012: Invalid username/password.
Cause: Invalid username/password supplied when logging on to the daemon.
Action: See the daemon log file for the reason that the username/password were not accepted.
Action: Edit the user profile in Oracle Studio to specify a valid username and password for the IBM z/OS platform.

See Also: Setting Up Run-Time User Access to the IBM z/OS Platform

Action: Make sure the daemon is started from an APF-authorized account that is allowed to check for system usernames and passwords.

C014: Client connection limit reached - try later.
Cause: The maximum number of server processes for the workspace has been reached, and none of the active servers could accept the client connection.
Action: Increase the value of the Number of sub-tasks in the workspace Server Mode tab.

See Also: Workspace Server Mode.

Action: Try running the command later.

C015: Failed to start server process.
Cause: The Oracle Connect daemon failed to start a server process or the started server failed upon starting up.
**Action:** See the daemon and server logs for the reason the server did not start. For example, you might receive an message with a reason specified in the log file similar to the following: [C015] Failed to start NAVIGATOR server process: No server account name defined for anonymous client; code: -1601: SQL code: 0

**Action:** If you use impersonation, check the user profile on the client. Also see C069.

---

**To set impersonation:** APF authorize all the steplibs in the server script on z/OS computer. For example:

```
setprog... ada622-volume adavol
 CICS.CICS.SDFHEXCI = p390dx
 INSTROOT.load = 111111
 INSTROOT.loadaut = 111111
```

*INSTROOT* is the high level qualifier where Oracle Connect is installed.

In the **Security** tab of the Navigator workspace, under the daemon node in the Configuration view, select **Use specific workspace account** and clear the **Workspace account** field of all values.

---

C016: Unexpected server state.

**Cause:** Internal error.

**Action:** Contact Oracle Support Services.

C017: Active daemon clients exist. Shutdown canceled.

**Cause:** One or more clients are still connected to the daemon.

**Action:** Wait until all the clients log off the daemon and then retry the shutdown operation.

C019: Request is not granted because someone else is locking it.

**Cause:** A request to lock a resource managed by the daemon was denied because another user has locked the resource.

**Action:** Wait for the other user to release the resource.

C01A: Lock %s not found.

**Cause:** A request to free a resource was denied because the caller did not lock that resource (for example, another user shut down the daemon you are working with).

**Action:** Contact Oracle Support Services.

C01B: Unexpected error in %s.

**Cause:** Internal error.

**Action:** Contact Oracle Support Services.

C01C: Cannot update configuration without _APPLICATIONS lock.

**Cause:** Internal error.

**Action:** Contact Oracle Support Services.

C01D: Need to lock the application first.

**Cause:** Internal error.

**Action:** Contact Oracle Support Services.
C01F: Cannot set configuration of a deleted application.
  Cause: Internal error.
  Action: Contact Oracle Support Services.

C020: Failed in looking up host name (gethostname())
  Cause: Cannot connect to the remote computer.
  Action: Check that the name specified for the computer in the oc4j-ra-xml file is correct.
  Action: Check that a domain name server (DNS) is available to look up the host name.
  Action: Check the TCP/IP subsystem on the computer by trying to ping it or run FTP or Telnet to or from it.

C021: Required variable %s not found
  Cause: An environment variable required by the Oracle Connect server was not defined when the server started up.
  Action: Check whether the startup script makes any changes to the environment variables used by Oracle Connect.
  Action: Check whether the system-defined environment size is sufficiently large for Oracle Connect.

C022: Server failed to connect and register with the daemon.
  Cause: An Oracle Connect server started by the daemon was not able to connect or register back with the daemon.
  Action: Try to connect again.
  Action: Increase the Connect timeout value for the server workspace in the Workspace General tab.

  See Also: Workspace General.

  Action: Check that the startup script for the workspace launches the correct version of Oracle Connect.
  Action: Increase the value of the Set maximum number of servers and Maximum parameter for the Clients per server limit in the Workspace Server Mode tab.

  See Also: Workspace Server Mode.

C023: Call made to unregistered module %d.
  Cause: Internal error.
  Action: Contact Oracle Support Services.

C024: Failed to create a socket.
  Cause: An error occurred within the TCP/IP subsystem.
  Action: Check whether you have sufficient system privileges.
  Action: Check the TCP/IP subsystem on the computer by trying to ping it or run FTP or Telnet to or from it.
C025: Failed to set socket option %s

Cause: An error occurred within the TCP/IP subsystem.

Action: Check whether you have sufficient system privileges.

Action: Check the TCP/IP subsystem on the computer by trying to ping it or run FTP or Telnet to or from it.

C026: Failed to bind server to port %s

Cause: An Oracle Connect server or daemon was not able to bind to the specified port.

Action: Check whether another program is holding the port that was specified in the oc4j-ra-xml file for the adapter.

Action: Check whether you have sufficient system privileges.

C027: Cannot create TCP service for %s

Cause: An error occurred within the TCP/IP subsystem

Action: Check the TCP/IP subsystem on the computer by trying to ping it or run FTP or Telnet to or from it.

C028: Unable to register (%s, %d, tcp)

Cause: This error may happen when a portmapper is used (host:a) but the portmapper is not available.

Action: Enable the portmapper.

Action: Avoid using the portmapper (by not using :a when starting the daemon).

C029: Failed to create a server thread

Cause: Internal error.

Action: Contact Oracle Support Services.

C02A: Server thread failed to start

Cause: Internal error.

Action: Contact Oracle Support Services.

C02B: Stopping the %s server - no client

Cause: A server that was started by the Oracle Connect daemon to service a client did not get a client connection request within one minute. The server terminates.

Action: In most cases, the client was terminated by a user request, so no specific action is required.

Action: If no client can connect to the server, it may be that the server has multiple network cards and the Oracle Connect daemon is not aware of this. In this case, start the daemon with an IP address.

C02C: Unexpected event - a termination signal intercepted

Cause: Internal error.

Action: Contact Oracle Support Services.

C02D: Modified transport, context unknown/lost

Cause: Internal error.

Action: Contact Oracle Support Services.
C02F: Corrupted arguments passed to procedure
Cause: Internal error.
Action: Contact Oracle Support Services.

C030: Unable to free arguments for %s() of %s
Cause: Internal error.
Action: Contact Oracle Support Services.

C031: Cannot register a non-module RPC %s
Cause: Internal error.
Action: Contact Oracle Support Services.

C032: An IRPCD program is required
Cause: Internal error.
Action: Contact Oracle Support Services.

C033: An IRPCD super-server is required for module events
Cause: Internal error.
Action: Contact Oracle Support Services.

C034: An invalid super-server module ID was specified, %d
Cause: Internal error.
Action: Contact Oracle Support Services.

C035: Out of memory
Cause: Not enough memory to service a client request.
Action: Increase process memory quota or add memory to the system.

C036: Failed to register RPC procedure module %s
Cause: Internal error.
Action: Contact Oracle Support Services.

C037: Failed to register an invalid RPC procedure number %x
Cause: Internal error.
Action: Contact Oracle Support Services.

C038: Cannot reregister RPC procedure number %x
Cause: Internal error.
Action: Contact Oracle Support Services.

C042: Remote call to %s failed; %s
Cause: Remote call to API failed.
Action: Check the daemon log file.
Action: If necessary, change the level of detail written to the log file to help resolve the problem.

See Also: Daemon Logging.

C043: Failed to connect to host %s; %s
**C045: Failed to create a service thread**

**Cause:** The server failed to create a thread to service a client request.

**Action:** A system or process quota limit has been exceeded. Either increase the quota or lower the **Clients per server limit** value in the Workspace **Server Mode** tab.

**See Also:** Workspace **Server Mode**.

**C047: %s out of memory**

**Cause:** Not enough memory was available to Oracle Connect to complete a requested operation.

**Action:** Terminate unnecessary processes running on the server.

**Action:** Add more memory to the system.

**Action:** Allow the process to use more memory.

**Action:** Limit the number of processes the daemon may start. If the demand for servers exceeds the number of available servers, clients get a message telling them the maximum number of servers has been reached and asking them to try again later.

**C066: Communication error with the server%s**

**Cause:** Connection to the Oracle Connect daemon or server failed, or an established session with a server has failed.

**Action:** Check the remote computer definition in the oc4j-ra-xml file.

**Action:** Check that the daemon is up on the IBM z/OS platform. Use the Status option in the Runtime Manager perspective.

**Action:** In case of a network problem, check the network connection by trying to ping the host computer or run FTP or Telnet to or from it.

**C067: Unexpected error occurred in server function %s**

**Cause:** One of the server functions has exited with an exception (such as an abend, or an Invalid Instruction).

**Action:** Contact Oracle Support Services.

**C068: Fail to login daemon**

**Cause:** The daemon is not running on the server computer.

**Action:** Use the Status in Oracle Studio Runtime Manager perspective to check whether a daemon is running on the server.
**Action:** Have the system administrator reinstall Oracle Connect on the server.

**C069: Fail to get server**

*Cause:* The Oracle Connect daemon on the server computer could not start a server process to serve the client. A separate message provides more detail on why the server process could not start.

*Action:* There are many possible causes of this error. If the cause is not clear from the related message, see the Oracle Connect daemon log file on the server.

*Action:* The resolution to this error is highly dependent on the particular cause. The following are some typical causes and resolutions.

*Action:* Some process creation quota was exceeded. Either try again later or increase the quota or the other relevant system resources.

*Action:* The server startup script failed.

*Action:* The username given is not allowed to use the requested server. Use an authorized username.

*Action:* A limit on concurrent clients for a server has been reached. Try again later.

*Action:* If you use impersonation, check the user profile on the client. Also see C015.

**C06A: Failed to connect to server**

*Cause:* The server assigned to the client did not accept the client connection. A separate message provides more detail about why the server process did not accept the connection.

*Action:* See the daemon and server log files for the reason that the server was not available to accept its assigned client.

**C06B: Disconnecting from server**

*Cause:* A network failure, or a server computer failure or a server program failure caused the connection to abort. The currently active transaction is aborted as well.

*Action:* Oracle Connect automatically tries to reestablish a connection with a server upon the next SQL command issued against the server. Once the network or computer failure is corrected, the connection to the daemon is reestablished automatically.

**C070: Server failed to send reply to the client**

*Cause:* Server terminated unexpectedly.

*Action:* Unless the client was intentionally stopped (for example, using Control-C), contact Oracle Support Services.

**C071: Connection to server %s was disconnected. Cursors state was lost.**

*Cause:* Either a network failure, a server computer failure or a server program failure caused the connection to abort. The currently active transaction is aborted as well.

*Action:* Normally, Oracle Connect automatically tries to create a new session with the server upon the next attempt to access the server. If the network and server are accessible, the next operation should succeed. Otherwise, the network or server computer should be fixed before connection can be resumed.
Action: In case of a server crash not related to callable user code, contact Oracle Support Services.

C072: Reconnect to server %s
Cause: This is an informational message only. The client has reestablished its connection with the server.
Action: No action is required.

C073: The parameters passed to the admin server are invalid: %s
Cause: Internal error.
Action: No action is required.

C074: No authorization to perform the requested operation (%s)
Cause: User/account has insufficient privileges.
Action: Grant administrative privileges to the user/account using the Administrator parameter of the Daemon or Workspace Security tabs.

See Also: Daemon Security or Workspace Security.

C075: Failed to register daemon in the TCP/IP service table
Cause: Registration of the daemon in the TCP/IP services file has failed.
Action: Check that the account running the daemon has the permissions to update the TCP/IP services file.

E001: Failed in lock/release operation
Cause: A lock or release operation of a global resource has failed. A separate message provides more details. The separate message specifies the cause of this error.
Action: There are various causes for this error, including lack of sufficient privileges or a system resource shortage.

J0006: Operation on already closed connection was requested
Cause: A request using a connection that was closed was attempted.
Action: Reopen the connection and try again.

J0028: Internal Error: Unknown XML tag %s
Cause: Internal error.
Action: Contact Oracle Support Services.

J0030: Internal Error: Method %s needs to be overwritten
Cause: Internal error.
Action: Contact Oracle Support Services.

J0031: Internal Error: Required attribute %s not found in %s verb
Cause: Internal error.
Action: Contact Oracle Support Services.

J0032: Internal Error: %s ACP object was returned instead of %s as expected
Cause: Internal error.
Action: Contact Oracle Support Services.

J0033: Internal Error: Attempt to work with closed socket
Cause: Internal error.
Action: Contact Oracle Support Services.

J0034: Internal Error: corrupted message; %s bytes read instead of %s as expected
Cause: XML sent from the client to the server has become corrupted.
Action: Check compression settings for XML transferred from the client to the server. If the setting are OK, retry sending the request from the client to the server.

J0035: Internal Error: Invalid redirection address %s returned by daemon
Cause: Internal error.
Action: Contact Oracle Support Services.

J0036: %s: %s
Cause: One of the following errors was received from the server: 0 - server.internalError, 1 - client.xmlError, 2 - client.requestError, 3 - client.noActiveConnection, 4 - server.resourceLimit, 5 - server.redirect, 6 - client.noSuchResource, 7 - client.authenticationError, 8 - client.noSuchInteraction, 9 - client.noSuchConnection, 10 - server.notImplemented, 11 - server.xaProtocolError, 12 - server.xaUnknownXID, 13 - server.xaDuplicateXID, 14 - server.xaInvalidArgument, 15 - client.autogenRejected, 16 - server.xaTransactionTooFresh, 17 - server.resourceNotAvailable, 18 - client.authorizationError, 19 - server.configurationError
Action: Review the server log file to determine the problem.

J0037: Internal Error: No ACP response when %s was expected
Cause: Internal error.
Action: Contact Oracle Support Services.

J0039: Internal Error: ACP root is not found in the XML
Cause: Internal error.
Action: Contact Oracle Support Services.

J0040: Internal Error: Input record is required for interaction %s execution
Cause: Internal error.
Action: Contact Oracle Support Services.

J0048: Invalid metadata type %s is passed to %s function
Cause: A request for metadata was not fulfilled.
Action: Check the validity of the request.

J0050: Key of the put method must be of type string
Cause: In either a GET or PUT operation, the key must be a string.
Action: Change the key used in the operation to a valid key.

J0059: Value %s is invalid for attribute %s
Cause: A request for metadata was not fulfilled.
Action: Check the validity of the request.

J0068: Value must be of type string
Cause: In a PUT operation, the value must be a string.
Action: Change the value used in the operation to a valid value.
J0069: Value must be of type MappedRecord
  Cause: In a PUT operation, the value must be a mapped record.
  Action: Change the value used in the operation to a valid value.

J0070: Value must be of type MappedRecord[]
  Cause: In a PUT operation, the value must be mapped record array.
  Action: Change the value used in the operation to a valid value.

J0071: Bad key for mapped record, #element or #element[] is required
  Cause: In a PUT operation, the value must be mapped record array.
  Action: Change the key used in the record to a valid key.

J0072: Value must be of type Object[]
  Cause: In a PUT operation, the value must be mapped record array.
  Action: Change the value used in the operation to a valid value.

J0078: In nonpersistent connection and the nonkeep alive encryption is not supported - ignored
  Cause: Encryption is not supported for nonpersistent connections.
  Action: There is no action to take. This warning can be ignored.

J0079: Invalid argument passed to %s - Argument: %s, Value: %s
  Cause: The value pass.
  Action: Change the argument used to a number.
Oracle Connect includes a number of tuning parameters that can improve performance. Specifically, the daemon can be configured to optimize communication between the IBM z/OS platform and a client. In addition, the binding environment can be tuned to optimize the request handling.

This section contains the following topics:

- Configuring the Daemon for High Availability
- Configuring a Binding Environment
- Migration Considerations
- Security Considerations
- Transaction Support

### Configuring the Daemon for High Availability

The daemon workspace is responsible for allocating server processes to clients. You can configure a workspace to use a pool of server processes so that a server process is always available for a client request.

Use Oracle Studio to maintain the daemon and the daemon workspace parameters to control the allocation of server processes and their management in a pool.

You can also have a number of daemon workspace configurations. This lets you create individual workspaces for use with different adapters.

### Adding a New Daemon Workspace Configuration

Use Oracle Studio to add a new daemon configuration. You can set up different daemon configurations for different situations.

Carry out the following to add a new daemon workspace configuration:

1. From the Start menu, select Programs, Oracle, and then select Studio.
2. In the Design Perspective Configuration view, expand the Machines folder and then expand the machine where you want to add the workspace.
3. Expand the Daemons folder. The daemon available on this computer are listed.
4. Right-click IRPCD and select New Workspace. The New Daemon Workspace screen is displayed.
5. Enter a name for the new workspace and then enter a description, if desired.

6. Select whether to use default settings or copy the properties of an existing workspace.
   
   To copy the properties of an existing workspace, click the Browse button and select the workspace from which you want to copy the properties.

7. Click Next. The Select Scenario screen is displayed.

8. Select Application Server using connection pooling and click Next.

9. Continue through the wizard, entering the required values for the workspace.

10. Click Finish.

The workspace is displayed under the IRPCD daemon node.

**Editing the Workspace**

You edit a workspace by using the tabs described in the following table:

<table>
<thead>
<tr>
<th>Tab</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Specifies general information including the server type, the command procedure used to start the workspace, the binding configuration associated with this workspace (which dictates the data sources and applications that can be accessed), the timeout parameters, and logging information (which dictates the data sources and applications that can be accessed), the timeout parameters, and logging information.</td>
</tr>
<tr>
<td>Server Mode</td>
<td>Contains the workspace server information including features that control the operation of the servers started up by the workspace and allocated to clients.</td>
</tr>
<tr>
<td>Security</td>
<td>Specifies administration privileges, user access, ports available to access the workspace and workspace account specifications.</td>
</tr>
</tbody>
</table>

Use Oracle Studio to access these tabs, as follows:

1. From the Start menu, select Programs, Oracle, and then select Studio.

2. In the Design perspective Configuration view, expand the Machines folder and then expand the machine where you want to edit the workspace.

3. Expand the Daemons node. The daemon configurations available on this computer are listed.

4. Expand the IRPCD node. The daemon workspaces are listed.

5. Right-click the required workspace and select Open.

6. Select the tab that contains the information you want to edit. For full details of the tabs and the fields in these tabs, see Workspaces.

7. After editing the workspace, click Save.

**Configuring the Server Mode**

The server mode dictates how the daemon starts up new processes. The daemon supports the following server modes:
- **singleClient**: Each client receives a dedicated server process. The account in which a server process runs is determined either by the client login information or by the specific server workspace.

  This mode enables servers to run under a particular user account and isolates clients from each other (because each receives its own process). However, this server mode incurs a high overhead due to process startup times and may use a lot of server resources (because it requires as many server processes as concurrent clients).

- **multiClient**: Clients share a server process and are processed serially. This mode has low overhead because the server processes are already initialized. However, because clients share the same process, they may impact one another, especially if they issue lengthy queries.

  The number of clients that share a process is determined by the Clients per server limit (the maximum number of concurrent clients a server process for the current workspace accepts).

- **reusable**: This is an extension of the single client mode. Once the client processing finishes, the server process does not die and can be used by another client, reducing startup times and application startup overhead.

  This mode does not have the high overhead of single client mode because the servers are already initialized. However, this server mode may use a lot of server resources (because it requires as many server processes as concurrent clients).

  The other modes can be set so that the server processes are reusable by setting the number of times a process can be reused with the Reuse limit value (the maximum number of times a particular server process can be reused or how many clients it can serve before it is retired). Reuse of servers enhances performance because it eliminates the need to repeat initializations. However, reuse runs a risk of higher memory leakage over time. The default value for the Reuse limit field is **None**, indicating that no reuse limit is enforced.

Set the server mode in the **Server Mode** tab of the daemon workspace editor as shown in the following figure:
When using any of the server modes you can specify a pool of server processes. These server processes are started when the daemon starts and are maintained in a pool. The server processes are available for use by new client requests from the pool, saving initialization time. Instead of starting a new server process each time one is requested by a client, the client receives a process immediately from the pool of available processes. When the client finishes processing, this server process either dies, or if reusable servers have been specified, it is returned to the pool.

You set up a pool of server processes by specifying the following parameters in the Server Mode tab.

- **Port Range**: Select the range for specific firewall ports through which you access the workspace. Determines the range of ports available for this workspace when starting server processes. Use this option when you want to control the port number, so that Oracle Connect can be accessed through a firewall.

  Enter the port range in the following fields:
  - **From**: Enter the highest numbered port in the range
  - **To**: Enter the lowest numbered port in the range
  - **Use Default Port Range**: Select this to use the port range that is defined in the daemon.

- **Maximum number of server processes**: Enter the maximum number of server processes that can run at the same time.

- **Limit server reuse**: Select this if you want to limit the number of servers that can be reused. If this is selected, the **Reuse limit** parameter is available.

  If **Limit server reuse** is selected, in the field next to the check box, enter the maximum number of times a server can be reused. Select the maximum of clients accepted in a server process.
A one-client server can be reused after its (single) client has disconnected. Reuse of servers enhances startup performance because it avoids the need to repeat initialization.

This parameter is not available if the Limit server reuse parameter is not selected.

This parameter is not available if the server mode value is singleClient.

- **Limit Concurrent clients per server**: Select this to limit the number of clients that a server can accept for the current workspace process.
  
  If this is not selected, the number of clients is unlimited.

  If Limit concurrent clients per server is selected, in the field next to the check box, enter the maximum number of clients that a server process for the current workspace accepts. The default for this field is None, indicating that the number of clients for each server is unlimited. This field is available if the server mode value is multiClient or multiThreaded.

- **Specify Server Priority**: Set the priority for servers. For example, a workspace for applications with online transaction processing can be assigned a higher priority than a workspace that requires only query processing. The lower the number, the higher the priority. For example, workspaces with a priority of 1 are given a higher priority than workspaces with a priority of 2.

  **Note**: This is unavailable if Use default server priority is selected.

- **Use default server priority**: Sets the priority to 0. There is no specific priority for this workspace. Clear this check box to set a priority in the Specify Server Priority parameter.

- **Keep when daemon ends**: Select this to kill all servers started by that daemon when a daemon is shutdown, even if they are active. Select this if you want the servers for the workspace to remain active, even after the daemon has been shut down. If selected, it is the responsibility of the system operator or manager to ensure that the servers are eventually killed. This must be done at the system level.

- **Number of prestarted servers in pool**: The number of server processes that are prestarted for this workspace when the daemon starts up. These are available for use by new client processes with minimal initialization time. Instead of starting a new server process each time one is requested by a client, the daemon immediately allocates (to the client) a server from a pool of available servers. When the number of available server processes drops lower than the value specified in the Minimum number of available servers field, the daemon again starts server processes until the specified number of available servers is reached. The default for this parameter is 0, meaning that no servers are prestarted for this workspace.

- **Number of spare servers**: The minimum number of server processes in the prestarted server's pool before the Oracle Connect daemon resumes creating new server processes (up to the number specified in the Initial number of servers field value, described earlier). If this parameter is set to a value greater than the Initial number of servers field value, the daemon considers the value to be the same as the value specified in the Initial number of servers field. In this case, a new server process is started and added to the pool each time a server process is removed from the pool and allocated to a client). The default for this parameter is 0, which means that new servers are created only when there are no other available servers.

- **Number of sub-tasks**: The number of sub-tasks for a server that are prestarted for this workspace when the daemon starts up. In addition to setting up a pool of server processes as described earlier, you can set additional server processes as
Configuring a Binding Environment

Each binding configuration includes the following information:

- Environment settings, which are used to configure the environment used by any of the adapters defined in the binding.
- Application adapters on the current computer.

To configure environment settings in Oracle Studio, perform the following steps:

1. From the Start menu, select Programs, Oracle, and then select Studio.
2. In the Design perspective Configuration view, expand the Machine folder, then expand the machine where you want to configure the binding.
3. Expand the Bindings folder. The binding available on this computer are listed.
4. Right-click NAV and select Open.
5. In the Environment tab, edit the environment settings as needed. To edit an environment setting, expand the property category and click the value to edit.

The binding Environment tab is shown in the following figure:

![The binding Properties tab](image)

The binding environment is divided into the following categories:

- Debug
- General
- Language
The following table lists the parameters that define debugging and logging operations:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACX trace</td>
<td>Select this for the input xml sent to the back-end adapter and the output xml returned by the back-end adapter to be written to the log.</td>
</tr>
<tr>
<td>GDB Trace</td>
<td>This parameter is not applicable for use with OracleAS CDC Adapter for Adabas.</td>
</tr>
<tr>
<td>General trace</td>
<td>Select this to log general trace information. The default writes only error messages to the log.</td>
</tr>
<tr>
<td>Query warnings</td>
<td>This parameter is not applicable for use with OracleAS CDC Adapter for Adabas.</td>
</tr>
<tr>
<td>Add timestamp to traced events</td>
<td>Select this to add a timestamp on each event row in the log.</td>
</tr>
<tr>
<td>Query processor trace</td>
<td>This parameter is not applicable for use with OracleAS CDC Adapter for Adabas.</td>
</tr>
<tr>
<td>Binary XML Log Level</td>
<td>Select the binary XML log level from the list. The following logging levels are available:</td>
</tr>
<tr>
<td>Log file</td>
<td>The high-level qualifier of the log file for messages. The following type of message are written to the log:</td>
</tr>
<tr>
<td>Trace Directory</td>
<td>This parameter is not applicable for use with OracleAS CDC Adapter for Adabas.</td>
</tr>
<tr>
<td>Optimizer trace</td>
<td>This parameter is not applicable for use with OracleAS CDC Adapter for Adabas.</td>
</tr>
</tbody>
</table>
Table 6–2 (Cont.) Debug Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transaction extended logging</td>
<td>Select this for the transaction manager to write additional information about transactions to the log.</td>
</tr>
</tbody>
</table>
Table 6–4 Language Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td>Identifies the application language. A default codepage is selected based on the value specified for this parameter. See also: Appendix E, &quot;Globalization Settings&quot;.</td>
</tr>
<tr>
<td>Code Page</td>
<td>For use with globalization support to identify the codepage for the workspace. See also: Appendix E, &quot;Globalization Settings&quot;.</td>
</tr>
</tbody>
</table>
| NLS String  | Specifies the codepage used by a field whose data type is defined as nlsString. Use this for a field whose codepage is other than that of the computer codepage. This parameter includes the following values:  
  - The name of the codepage.  
  - Whether the character set reads from right to left (as in middle eastern character sets).  
  The default is false. |

Modeling

The modeling parameters are not applicable with OracleAS CDC Adapter for Adabas.

ODBC

The odbc parameters are not applicable for use with OracleAS CDC Adapter for Adabas.

OLEDB

The oledb parameters are not applicable for use with OracleAS CDC Adapter for Adabas.

Optimizer

The following parameters enable you to customize the performance:

Optimizer goal: The optimization policy. Select one of the following from the list to the right:

- **none** (default): All row optimization is used.
- **first**: First row optimization is performed based on the assumption that the results produced by the query are used as the rows are retrieved. The query optimizer uses a strategy that retrieves the first rows as fast as possible, which might result in a slower overall time to retrieve all the rows.
- **all**: Optimization is performed based on the assumption that the results produced by the query are used after all the rows have been retrieved. The query optimizer uses a strategy that retrieves all the rows as fast as possible, which might result in a slower time to retrieve the first few rows.

Aggregate queries automatically use all row optimization, regardless of the value of this parameter.

All other optimizer parameters are not applicable for use with the OracleAS CDC Adapter for Adabas.
Parallel Processing

This following list shows the parallel processing properties. The parallel processing properties control how parallel processes are handled in the binding.

### Table 6–5 Parallel Processing Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disable threads</td>
<td>Select this to disable multi-threading. If this is selected, the following properties are disabled:</td>
</tr>
<tr>
<td></td>
<td>■ <strong>Disable threaded read ahead (QP)</strong>: Select this to disable read-ahead functionality.</td>
</tr>
<tr>
<td></td>
<td>■ <strong>Disable query read ahead (QP)</strong>: Select this to disable read-ahead functionality for components using Query Processor services.</td>
</tr>
<tr>
<td></td>
<td>■ <strong>ODBC async execution</strong> property to enable ODBC asynchronous execution</td>
</tr>
<tr>
<td></td>
<td>■ <strong>Disable QP parallel execution</strong>: Select this to disable parallel processing for query execution. This option is available only if both Disable threaded read ahead (QP) and Disable query ready ahead (QP) are not selected.</td>
</tr>
<tr>
<td></td>
<td>■ <strong>Hash parallelism</strong>: Select this to read both sides of hash joins at the same time. By default, this property is selected. If you do not want this behavior, clear the check box.</td>
</tr>
</tbody>
</table>

Query Processor

The following table lists the parameters that enable you to fine tune how queries are processed:

### Table 6–6 Query Processor Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disable command reuse</td>
<td>Select this to disable Query Processor caching the executed state of a query for reuse.</td>
</tr>
<tr>
<td>Disable DS property cache</td>
<td>Select this to disable caching data source properties.</td>
</tr>
<tr>
<td>Disable insert parameterization</td>
<td>Select this to disable parameterization constants in INSERT statements.</td>
</tr>
<tr>
<td>Disable metadata caching</td>
<td>Select this to disable caching object metadata. If this is selected, the object metadata is taken from the original data source instead of the cache.</td>
</tr>
<tr>
<td>Disable query parameterization</td>
<td>Select this to not convert constants into parameters when accessing data sources.</td>
</tr>
<tr>
<td>Disable row mark field fetch</td>
<td>Select this for OLE DB <code>getRows</code> errors to be marked and reshow on every <code>getRows</code>, if the rowset is active.</td>
</tr>
<tr>
<td>Compile after load</td>
<td>Select this to always compiles an Oracle Connect procedure or view after it is read.</td>
</tr>
</tbody>
</table>
Table 6–6  (Cont.) Query Processor Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ignore segments bind failure</td>
<td>This property determines how Oracle Connect responds when the execution of one of the segments of a segmented data source fails:</td>
</tr>
<tr>
<td></td>
<td>■ Select this to Log a message and continue execution. This is the default setting.</td>
</tr>
<tr>
<td></td>
<td>■ Clear the check box to Log a message and stop execution. By default, this property is selected. If you want to stop execution after sending a</td>
</tr>
<tr>
<td></td>
<td>message, clear this check box.</td>
</tr>
<tr>
<td>Prompt database-user password</td>
<td>Select this to configure Oracle Connect to prompt the user for security information when accessing a data source.</td>
</tr>
<tr>
<td>Use alternate qualifier</td>
<td>Select this to use the @ symbol instead of a colon (:) when connecting to multiple data sources.</td>
</tr>
<tr>
<td>Use table filter expression</td>
<td>Select this to enable the use of tables that have filter expressions specified in their metadata.</td>
</tr>
<tr>
<td>Write empty string as null</td>
<td>Select this to replace empty strings in a SET clause of an UPDATE statement or in a VALUES list of an INSERT statement with null values.</td>
</tr>
<tr>
<td>Optimistic for update</td>
<td>Select this to use optimistic locking as the default locking behavior on queries with a FOR UPDATE clause.</td>
</tr>
<tr>
<td>Disable compilation cache</td>
<td>Select this to disable saving successfully compiled statements in the cache.</td>
</tr>
<tr>
<td>Maximum SQL cache</td>
<td>Enter the maximum number of SQL queries that can be stored in cache memory. This property’s value is ignored if Disable compilation cache is selected. The default is 3.</td>
</tr>
<tr>
<td>First tree extensions</td>
<td>Enter the maximum size allowed for an SQL query after compilation. The default is 150.</td>
</tr>
<tr>
<td>Maximum columns in parsing</td>
<td>Enter the maximum number of columns that a query can reference. The default is 500.</td>
</tr>
<tr>
<td>Maximum segmented database threads</td>
<td>Enter the maximum number of open threads allowed, when working with segmented databases.</td>
</tr>
<tr>
<td>Minimum number of parameters allocated</td>
<td>Enter the minimum number of parameters that can be used in a query.</td>
</tr>
<tr>
<td>Continuous query retry interval</td>
<td>Enter the number of seconds that the query processor waits before executing a query again, when no records are returned. The default is 2.</td>
</tr>
<tr>
<td>Continuous query timeout</td>
<td>Enter the number of seconds that the query processor will continue to issue queries, when no records are returned. The default is 3600 (one hour), which indicates that after an hour without new messages the continuous query will end. Enter 0 to indicate that there is no timeout and the continuous query will not end automatically.</td>
</tr>
<tr>
<td>Continuous query prefix</td>
<td>Enter a prefix to replace the $$ prefix that is used to identify the continuous query special columns. For example, if you enter $$, then the continuous query alias is '$$StreamPosition' and the control command alias is '$$ControlCommand'.</td>
</tr>
</tbody>
</table>
**Table 6–6 (Cont.) Query Processor Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arithmetic fixed precision</td>
<td>Enter an integer determine the precision scale factor for floating decimal position. The default is 0, which indicates that the exact arithmetic function is not used. When the value is set to a small positive integer, the special precise floating point arithmetic is used in the query processor. The value determines the precision scale factor (for example, a value of 2 indicates two digits decimal precision). Setting this parameter can be done at a workspace level and it affects all queries running in that workspace with no change to the query or to the underlying data source. The query processor ADD(), SUBTRACT() and SUM() functions that currently use double arithmetic for both floating and decimal types will use this logic. When the value is set to the default, 0, the exact arithmetic function is not used. This property is used to set the Exact Arithmetic function. The <code>qpArithmeticFixedPrecision</code> property is an integer value that determines the fixed precision the Oracle Connect query processor uses for precise floating point arithmetic. It is used to create an accurate result when using the SUM function. Because floating point datatypes are not accurate their results over time does not correspond to the expected arithmetic sum. In other words, in the floating point representation, values such as 0.7 cannot be represented precisely. If there are eight precision digits, there is usually imprecision in the least significant digit so the number is actually approximately 0.699999995. The <code>qpArithmeticFixedPrecision</code> property corrects this imprecision by using an exact floating point.</td>
</tr>
<tr>
<td>Parser depth</td>
<td>The maximum depth of the expression tree. The default is 500</td>
</tr>
<tr>
<td>Token size</td>
<td>Enter the maximum length of a string in an SQL query. The minimum value is 64. The default value is 350.</td>
</tr>
<tr>
<td>Insert from select commit rate</td>
<td>Enter the commit rate to use when executing an INSERT-FROM-SELECT operation. If a value more than 0 is entered, a commit is performed automatically after inserting the indicated number of rows. For example, if the value is 5, a commit is performed every time 5 rows are inserted.</td>
</tr>
<tr>
<td>Disable SQS cache</td>
<td>Select this to always read compiled Oracle Connect procedures and views from a disk. In this case, they are not saved in the cache.</td>
</tr>
<tr>
<td>Procedures cache size</td>
<td>Enter the number of stored queries created with a CREATE PROCEDURE statement that can be kept in cache memory. This property’s value is ignored if <code>Disable SQS cache</code> size is selected.</td>
</tr>
<tr>
<td>Expose XML fields</td>
<td>Expose XML fields: Select this to display data returned for a query as XML, representing the true structure of the result. This is useful when querying a data source table that contains arrays or variants.</td>
</tr>
<tr>
<td></td>
<td>• <strong>XML field name</strong>: Enter the name used in a query to indicate that the data is returned as XML, instead of the keyword XML. This is available only if <code>Expose XML fields</code> is selected.</td>
</tr>
</tbody>
</table>
Transactions

The following table lists the parameters that define transaction support:

| Table 6–7  Transaction Parameters |
|-----------------|----------------------------------|
| Parameter       | Description                      |
| Transaction extended logging | Select this to write extended information about transactions to the transaction manager log files. |
| Commit on destroy | Select this to commit all single-phase commit transactions opened for a data source, if a connection closes while the transaction is still open. |
| Disable 2PC | Select this to disable two-phase commit capabilities, even in drivers that support two phase commit. |
| User commit confirm table | This parameter is not applicable for use with OracleAS CDC Adapter for Adabas. |
| Transaction log file | The high-level qualifier and name of the log file that logs activity when using transactions. The Transaction log file parameter can also include the keyword NORRS after a comma (so that the format is log,NORRS) when RRS is not running on the z/OS platform. |
| Recovery delay | The number of minutes from the start of a transaction before any recovery operation on that transaction can be attempted. The default is 15 minutes. |
| Time limit | Enter the time to wait for a transaction to complete before an error is returned. This parameter is also used when performing a RECOVERY, and it then indicates the number of minutes to wait before a forced activity can be performed, since the last transaction activity. |

Conversions

Select one:
- No conversion: Select this if you want all transactions to remain as sent. This is selected by default
- Convert all to distributed: Select this to convert all simple transactions into distributed transactions.
- Convert all to simple: Select this to convert all distributed transactions into simple transactions.

Tuning

The following table lists the parameters that define the tuning:

| Table 6–8  Tuning Parameters |
|-----------------|----------------------------------|
| Parameter       | Description                      |
| Dsm maximum buffer size | Enter the maximum size of a cache memory. This cache is used when memory is required on a temporary basis (as when Oracle Connect sorts data for a query output, for a subquery, or for aggregate queries). This cache size is not used for hash joins and lookup joins (see the hashBufferSize parameter). The default value is 1000000 bytes. |
The following table lists the parameters that define XML support:

### Table 6–9  XML Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM maximum XML in memory</td>
<td>Specifies the maximum size of an XML document held in memory. The default is 65535 bytes.</td>
</tr>
<tr>
<td>COM maximum XML size</td>
<td>Specifies the maximum size of an XML document passed to another computer. The default is 65535 bytes.</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> When you increase this value for this property, you may need to increase the value for the Maximum XML in memory property in the daemon. For more information on daemons, see Control.</td>
</tr>
<tr>
<td>COM XML transport buffer size</td>
<td>Enter the maximum size of the internal communications buffer. The default value (−1) indicates there is no size limit.</td>
</tr>
</tbody>
</table>
You can migrate an adapter configuration from one platform to another. The configuration information is stored in the Oracle Connect repository on the source platform and is exported to an XML file which can then be imported to the target platform.

Note that when migrating a configuration, any file names and paths that are specific to the source platform must be changed to valid files on the target platform.

To migrate an adapter configuration using Oracle Studio, perform the following steps:

1. From the Start menu, select Programs, Oracle, and then select Studio.
2. In the Design perspective, Configuration view, expand the Machines folder.
3. Right-click the required computer, and select Export XML definitions.
4. In the File name field, type the path and name of the XML file where the XML representation of the computer and its complete configuration is stored.
5. Edit any paths in the XML definition to the paths required on the target platform. For example, the setting for the serverLogFile parameter may require changing, depending on the platform.
6. Set up the target platform in Oracle Studio in the same way you set up the source platform, as described in Setting Up the IBM z/OS Platform in Oracle Studio.
7. In the Configuration Explorer, right-click the target computer and select Import XML definitions.
8. Import the XML file to the target platform.

Oracle Connect works within the confines of the platform security system. For example, on an z/OS computer with RACF installed, and with the workspace server mode set to multi-tasking, a RACROUTE VERIFY is performed for each task in the address space, according to the client connection.

In addition, Oracle Connect provides the following security:

- A binary XML encryption mechanism, which is activated as follows:
  1. The client’s first message to the server includes a pre-defined shared key, including the key name and value in the connection string. The server gets
the key value for the key name passed from the client from the native object store (NOS).

2. The server generates a random 128-bit RC4 session key which is returned encrypted to the client, using the shared key. If no predefined shared key is provided, then a predefined, hardcoded key is used (this key is hardcoded on the client and on the server).

3. Passwords are always encrypted when passed over the wire, using an RC4, 128-bit session key, regardless of whether the entire session is encrypted or not.

4. If a predefined shared key was provided, then the entire session is encrypted. Otherwise, only the password exchange is encrypted (using the hardcoded key).

■ Credentials: Passwords and usernames exchanged over the network are encrypted using a pre-defined, hardcoded, 128-bit RC4 session key.

■ Design Time: Security within Oracle Studio to grant access to Oracle Studio itself and to grant access to computers, user profiles and workspaces.

■ Run time: Security used to access Adabas, including controlling the daemon for the access.

### Setting Design Time Security

Setting design time security is described in the following sections:

- Securing access to Oracle Studio is described in Setting Password Access to Oracle Studio.

- Securing rights to configure a computer in Oracle Studio is described in Specifying Users with Administrative Rights.

- Securing access to user profiles is accomplished by right-clicking the relevant user profile in Oracle Studio and selecting Change Master Password. In the dialog box that is displayed, specify a password that must be provided in the future to edit the specific user profile.

- Securing access to workspaces is accomplished by right-clicking the relevant workspace in Oracle Studio and selecting Set Authorization. In the dialog box that is displayed, specify a valid user and password that must be provided in the future to edit the specific workspace.

### Setting Run Time Security

During run time, security considerations are implemented as follows:

- When the client request accesses the legacy platform through the daemon, either anonymous access is allowed or a valid user name and password must be provided for the computer in the user profile. The `username` and `password` properties in the J2CA 1.5 Adabas adapter are used at this stage to access the daemon.

---

**Note:** The user name used to access the daemon must also be the name of a user profile used.
■ Access by the client must be through a valid port, according to the port range entered in the Server section of the workspace Server Mode tab in Oracle Studio. For more information, see the explanation of the workspace Server Mode.

  **Note:** Access to the legacy platform through a firewall using the NAT protocol is specified when the computer is added to Oracle Studio.

■ To be allocated a server process, the client must be granted anonymous access to the workspace or be listed in the Authorized Workspace Users section of the workspace Security tab in Oracle Studio. For more information see the explanation of the workspace Security tab.

■ The ability to run commands on the daemon, such as starting or stopping a daemon or ending server processes is available only to administrators who have been registered in Oracle Connect as a daemon administrator. A client is registered as a valid daemon administrator in the Administrator privileges section of the daemon Security tab in Oracle Studio. For more information, see explanation of the daemon Security tab.

  **Note:** You can also specify administrators who can run commands only at the level of the workspace. Select these administrators in the workspace Security tab, as described in the explanation of the workspace Security.

---

**Transaction Support**

OracleAS CDC Adapter for Adabas supports global transactions and can fully participate in a distributed transaction if you access the Adabas data under CICS.

**Notes:**

■ To use OracleAS CDC Adapter for Adabas with global transactions, you must have RRS installed and configured.

■ The rollback event is not supported, instead compensating records are supplied.

To work with global transactions, select **Convert all to distributed** in the Transaction section of the binding environmental properties. See Transactions in the Configuring a Binding Environment section.

To use global transactions capability to access data on the z/OS computer, define every library in the ATTSRVR JCL as an APF-authorized library.

To define a DSN as APF-authorized, in the SDSF screen, enter the following command:

```
/setprog apf,add,dsn=instroot.library,volume=ac002
```

Where ac002 is the volume where you installed Oracle Connect and INSTROOT is the high level qualifier where Oracle Connect is installed.

If the Oracle Connect installation volume is managed by SMS, when defining APF-authorization, then enter the following command in the SDSF screen:

```
/setprog apf,add,dsn=instroot.library,SMS
```

**Note:**

Access to the legacy platform through a firewall using the NAT protocol is specified when the computer is added to Oracle Studio.
Make sure that the library is APF-authorized, even after an IPL (restart) of the computer.

If RRS is not running, then OracleAS Adapter for Adabas can participate in a distributed transaction, as the only one-phase commit resource, if you enter the keyword NORRS, as shown in the Transaction log file property. The Transaction log file property is in the Transactions section in the Configuring a Binding Environment section.

**Note:** If a no log file is entered, then the format for the Transaction log file parameter when RRS is not running is: N,NORRS.
Oracle Studio enables you to define outbound adapter interactions. In addition, Oracle Studio defines input and output structures used for these interactions. The interactions and input and output structures are maintained as metadata by Oracle Studio in the **Metadata** tab of the Design perspective.

This appendix contains the following sections:

- Metadata for the Adabas Data Source
- Adapter Metadata

### Metadata for the Adabas Data Source

The location of the Adabas data source in Oracle Studio that you use to edit the metadata depends on whether you are using an Adabas data source with ADD data or an Adabas data source with Predict data.

Do the following to maintain the metadata for the Adabas (ADD) data source:

1. From the **Start** menu, select **Programs, Oracle**, and then select **Studio**.
2. Expand the **Machines** folder, then expand the machine with the metadata you are working with.
3. Expand the **Bindings** folder.
4. Expand the **NAV** binding.
5. Expand the **Data sources** folder to display the data sources.
6. Right-click the Adabas (ADD) data source and select **Show Metadata View** to display the **Metadata** view.
7. Right-click the table you want to view in the Metadata Explorer and select **Edit**.

The metadata editor opens, displaying the **General** tab, with general table details.

Do the following to maintain the metadata for the Adabas (Predict) data source:

1. From the **Start** menu, select **Programs, Oracle**, and then select **Studio**.
2. Expand the **Machines** folder, then expand the machine you defined when you **Set up the CDC Server**.
3. Expand the **Bindings** folder.
4. Expand the binding with the name of your CDC solution and the suffix `_ag`.
5. Expand the **Data sources** folder to display the data sources.
6. Right-click the Adabas (Predict) data source and select **Show Metadata View** to display the Metadata view.

7. Right-click the table you want to view in the Metadata Explorer and select **Edit**. The metadata editor opens, displaying the **General** tab, with general table details. The following tabs are used to view and edit the metadata:

   - **General Tab**
   - **Columns Tab**
   - **Indexes Tab**
   - **Statistics Tab**
   - **Advanced Tab**

**General Tab**

Use the **General** tab to maintain information about the whole table, such as the table name and the way the table is organized.

The **General** tab is shown in the following figure:

*Figure A–1  The General Tab*

The **General** tab comprises fields, as listed in the following table:
Use the Columns tab to specify metadata that describe the table columns. The tab is divided into the following:

- Column Definition Section
- Column Properties

The Columns tab is shown in the following figure:
**Figure A–2 The Columns Tab**

The top section of this tab lets you define the columns in the source data. You can click in any row (which represents a column in the database table) to edit the information. The following table describes this section.

### Table A–2 Metadata Column Tab Definitions

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The name of the column</td>
</tr>
<tr>
<td>Data type</td>
<td>The data type of the column. Selecting this field displays a drop-down box listing the possible data types.</td>
</tr>
<tr>
<td>Size</td>
<td>The size of the column</td>
</tr>
<tr>
<td>Scale</td>
<td>The information entered in this field depends on the data type: For decimal data types, this is the number of digits to the right of the decimal place. This number must not be greater than the number of digits. The default value is 0. For scaled data types, this is the total number of digits. The number must be negative.</td>
</tr>
<tr>
<td>Dimension</td>
<td>The maximum number of occurrences of a group of columns that make up an array. The (+) to the left of a column indicates a group field. This type of field will have a Dimension value. Click (+) to display the group members.</td>
</tr>
<tr>
<td>Offset</td>
<td>An absolute offset for the field in a record.</td>
</tr>
</tbody>
</table>
The buttons on the right side of the tab are used to manipulate the data in this section of the tab. The following table describes how you can move around in this section.

<table>
<thead>
<tr>
<th><strong>Table A–3 Definition Section Buttons</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Button</strong></td>
</tr>
<tr>
<td>Insert</td>
</tr>
<tr>
<td>Up</td>
</tr>
<tr>
<td>Down</td>
</tr>
<tr>
<td>Rename</td>
</tr>
<tr>
<td>Delete</td>
</tr>
<tr>
<td>Find</td>
</tr>
</tbody>
</table>

**Column Properties**

You can change the property value by clicking in the **Value** column. Follow these steps for displaying the column properties.

**To display the column properties**

- Select a column from the Column Definition (top) section.

  The properties for the column are displayed at the bottom of the tab.

The following table shows some of the properties available for selected columns.

<table>
<thead>
<tr>
<th><strong>Field name</strong></th>
<th><strong>Description</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed offset</td>
<td>This column lets you determine whether to calculate the offset. There are two options:</td>
</tr>
<tr>
<td></td>
<td>Calc offset: If you clear this check box, the absolute offset for each of the columns is calculated.</td>
</tr>
<tr>
<td></td>
<td>Fixed offset: When you select this check box, you will have a fixed offset.</td>
</tr>
<tr>
<td></td>
<td>The offset of a field is usually calculated dynamically by the server at runtime according to the offset and size of the proceeding column. Select the check box in this column to override this calculation and specify a fixed offset at design time. This can happen if there is a part of the buffer that you want to skip.</td>
</tr>
<tr>
<td></td>
<td>By selecting the check box, or by editing the offset value you pin the offset for that column. The indicated value is used at runtime for the column instead of a calculated value. Note that the offset of following columns that do not have a fixed offset are calculated from this fixed position.</td>
</tr>
</tbody>
</table>

<p>| Primary Key | Select this to indicate that this column is a primary key. |</p>
<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alias</td>
<td>A name used to replace the default virtual table name for an array. Virtual table names are created by adding the array name to the record name. When an array includes another array the name of the nested array is the name of the record and the parent array and the nested array. When the default generated virtual table name is too long, use an Alias to replace the long name.</td>
</tr>
<tr>
<td>Autoincrement</td>
<td>The current field is updated automatically by the data source during an <code>INSERT</code> statement and is not explicitly defined in the <code>INSERT</code> statement. The <code>INSERT</code> statement should include an explicit list of values. This attribute is used for fields such as an order number field whose value is incremental each time a new order is entered to the data source.</td>
</tr>
<tr>
<td>Comment</td>
<td>A short note or description about the column.</td>
</tr>
<tr>
<td>DB command</td>
<td>Adabas specific commands for the column. The information displayed is generated automatically when the metadata is generated and should not be modified.</td>
</tr>
<tr>
<td>Empty value</td>
<td>The value for the field in an insert operation, when a value is not specified.</td>
</tr>
<tr>
<td>Explicit Select</td>
<td>When <code>true</code>, the current field is not returned when you execute a <code>SELECT * FROM...</code> statement. To return this field, you must explicitly ask for it in a query, for example, <code>SELECT NATION_ID, SYSKEY FROM NATION</code> where SYSKEY is a field defined with Explicit Select.</td>
</tr>
<tr>
<td>Hidden</td>
<td>The current field is hidden from users. The field is not displayed when a <code>DESCRIBE</code> statement is executed on the table.</td>
</tr>
<tr>
<td>Non Selectable</td>
<td>When <code>true</code>, the current field is never returned when you execute an SQL statement. The field is displayed when a <code>DESCRIBE</code> statement is executed on the table.</td>
</tr>
<tr>
<td>Non Updateable</td>
<td>If <code>true</code>, the current field cannot be updated.</td>
</tr>
<tr>
<td>Nullable</td>
<td>This value allows the current field to contain <code>NULL</code> values.</td>
</tr>
<tr>
<td>Null value</td>
<td>The null value for the field during an insert operation, when a value is not specified.</td>
</tr>
<tr>
<td>Chapter of</td>
<td>This property shows that the set member field is a chapter of an owner field. A value for this property must be used when accessing a set member as a chapter in an ADO application.</td>
</tr>
<tr>
<td>OnBit</td>
<td>The position of the bit in a <code>BIT</code> field and the starting bit in a <code>BITS</code> field.</td>
</tr>
<tr>
<td>Subfield of</td>
<td>The value is generated automatically when you generate metadata from Adabas data that includes a superdescriptor based on a subfield. A field is created to base this index on, set to the offset specified as the value of the Subfield start field.</td>
</tr>
<tr>
<td>Subfield start</td>
<td>The offset within the parent field where a subfield starts.</td>
</tr>
</tbody>
</table>
Indexes Tab

Use the **Indexes** tab to specify metadata describing the indexes of a table.

---

**Note:** The Indexes tab contains information only if the **Organization** field in the Table tab is set to **Index**.

---

The **Indexes** tab is shown in the following figure:

**Figure A–3  The Indexes Tab**

This tab has two sections. The first section lets you define the index keys for the columns in the table. The bottom of the tab lists the properties for each of the columns at the top.

The following sections describe the **Indexes** tab:

- **Table Information**
- **Properties**

**Table Information**

The following table describes the fields for the top part of the tab, which defines the indexes used for the table.
The buttons on the right side of the tab are used to manipulate the data in this section of the tab. The following table describes how you can move around in this section.

**Table A–5  Indexes Tab Components**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The names of existing indexes for the current table.</td>
</tr>
<tr>
<td>Order</td>
<td>The ordering of the rows retrieved by the index.</td>
</tr>
<tr>
<td>DB Command</td>
<td>Adabas-specific commands for the index. The information displayed is generated automatically when the metadata is generated and should not be modified.</td>
</tr>
</tbody>
</table>

The buttons on the right side of the tab are used to manipulate the data in this section of the tab. The following table describes how you can move around in this section.

**Table A–6  Index Definition Buttons**

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert</td>
<td>Inserts an index to the table.</td>
</tr>
<tr>
<td>Rename Index</td>
<td>Lets you rename the selected index.</td>
</tr>
<tr>
<td>Delete</td>
<td>Deletes the selected index.</td>
</tr>
</tbody>
</table>

**Properties**

You can index properties for each index column. Follow these steps for displaying the properties for each index.

**To display the index properties**

- Select a column from the Index Definitions (top) section.
  
  The properties for the column are displayed at the bottom of the tab.

This properties displayed at the bottom of the tab describe the index or segment. The properties available depend on the data source.

**Statistics Tab**

Use the **Statistics** tab to update metadata statistics for a table. The **Statistics** tab is shown in the following figure:
The **Statistics** tab has three sections. The following tables describe each section.

**Table A–7  Table Information**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rows</td>
<td>Enter or use arrows to select the approximate number of rows in the table. If the value is -1, then the number of rows in the table is unknown (a value was not supplied and the update statistics utility was not run to update the value). A value of 0 indicates that this table is empty.</td>
</tr>
<tr>
<td>Blocks</td>
<td>Enter or use arrows to select the approximate number of blocks in the table.</td>
</tr>
</tbody>
</table>

**Note:** If neither the number of rows nor the number of blocks is specified for a table, queries over the table might be executed in a nonoptimal manner.

Use the Columns group box to specify cardinality for each of the columns in the table:

**Table A–8  Columns group Components**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column name</td>
<td>The columns in the table.</td>
</tr>
</tbody>
</table>
Use the Indexes group box to specify cardinality for the columns in each of the indexes in the table:

**Table A–9 Indexes group Components**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indexes and segments</td>
<td>The indexes and segments in the table.</td>
</tr>
<tr>
<td>Cardinality</td>
<td>The number of distinct key values in the index. If the value is −1, then the number of distinct key values in the index is unknown (a value was not supplied and the update statistics utility was not run to update the value). A value of 0 indicates that there are no distinct key values in the index.</td>
</tr>
</tbody>
</table>

Generating Statistics

Click **Update** in the **Statistics** tab to generate updated statistics for the table. The Update Statistics screen is displayed, as shown in the following figure:

**Figure A–5 The Update Statistics screen**

![Update Statistics](image)

The following tables list the fields that are used to update statistics:

The **Type** section lets you edit the following:
The Resolution section lets you specify the statistical information returned:

**Table A-10 Type Components**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated</td>
<td>An estimation of the amount of statistical information returned.</td>
</tr>
<tr>
<td>Estimated with rows</td>
<td>An estimation of the amount of statistical information returned. The estimate includes an estimation of the number of rows in the table. Specify the number in the text box. This number is used to shorten the time to produce the statistics, assuming that the value specified here is the correct value, or close to the correct value.</td>
</tr>
<tr>
<td>Exact</td>
<td>The exact statistical information returned. Note that this can be a lengthy task and can lead to disk space problems with large tables.</td>
</tr>
</tbody>
</table>

**Table A-11 Resolution Components**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Only information about the table and indexes is collected. Information for partial indexes and columns is not collected.</td>
</tr>
<tr>
<td>All columns and indexes</td>
<td>Information about the table, indexes, partial indexes and columns is collected.</td>
</tr>
<tr>
<td>Select columns and indexes</td>
<td>Enables you to select the columns and indexes for which you want to collect statistics. In the enabled list of columns or indexes, left click those columns you want included (you can use shift-click and control-click to select a number of columns or indexes).</td>
</tr>
</tbody>
</table>

Advanced Tab

The Advanced tab lets you enter information about the virtual view policy for arrays. These parameters are valid only if you are using virtual array views. The configurations made in this editor are for the selected table, only. The same parameters are configured on the data source level in the data source editor.
Enter the following information in this tab:

- **Generate sequential view**: Select this to map non-relational files to a single table.

- **Generate virtual views**: Select this to have individual tables created for each array in the non-relational file.

- **Include row number column**: Select one of the following:
  - **true**: Select `true`, to include a column that specifies the row number in the virtual or sequential view. This is true for this table only, even in the data source is not configured to include the row number column.
  - **false**: Select `false`, to not include a column that specifies the row number in the virtual or sequential view for this table even if the data source is configured to include the row number column.
  - **default**: Select `default` to use the default data source behavior for this parameter.

  For information on how to configure these parameters for the data source, see [Configuring the Data Source Driver Advanced Properties](#).

- **Inherit all parent columns**: Select one of the following:
  - **true**: Select `true`, for virtual views to include all the columns in the parent record. This is true for this table only, even in the data source is not configured to include all of the parent record columns.
---

**Adapter Metadata**

Use Oracle Studio to maintain the metadata for the CDC Queue adapter in your staging area.

1. From the **Start** menu, select **Programs, Oracle**, and then select **Studio**.
2. Expand the **Machines** folder, then expand the machine with your staging area.
3. Expand the **Bindings** folder.
4. Expand the binding for your CDC staging area (with the _sa suffix).
5. Expand the **Adapters** folder to display the adapters list.
6. Right-click the CDC Queue adapter for your solution, and select **Show Metadata View** to open the Metadata view.

You can create and edit the following adapter metadata properties:

- **Adapter Metadata General Properties**: Enter and edit information about the adapter, such as the adapter name and the way in which you connect to the adapter. You make these changes in the Design perspective, Metadata view.
- **Adapter Metadata Interactions**: Enter details of an interaction. The interaction Advanced tab is displayed for some adapters only, such as the Database adapter and includes more details about the interaction.
- **Adapter Metadata Schema Records**: The input and output record structure for a record in the adapter definition.

---

**Adapter Metadata General Properties**

You can enter and edit information about the adapter, such as the adapter name and the way in which you connect to the adapter. You make these changes in the Design perspective, Metadata view. The following describes how to open the Adapter General Properties editor.

1. In Oracle Studio Design perspective, Metadata view, expand the **Adapters** folder.
2. Right-click the adapter that you want to edit, and select **Open**.

   The **General properties editor** is displayed.

The Adapter General Properties editor is shown in the following figure:

---

**false**: Select **false**, so virtual views do not include the columns in the parent record for this table even if the data source is configured to include all of the parent record columns.

**default**: Select **default** to use the default data source behavior for this parameter.

For information on how to configure these parameters for the data source, see Configuring the Data Source Driver Advanced Properties.
The General properties are listed in the following table:

**Table A–12 General tab Components**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Specifies an identifying description of the adapter.</td>
</tr>
<tr>
<td>Authentication</td>
<td>Specifies the authentication to access the adapter. The available mechanisms are:</td>
</tr>
<tr>
<td></td>
<td>■ kerbv5</td>
</tr>
<tr>
<td></td>
<td>■ none</td>
</tr>
<tr>
<td></td>
<td>■ basic password</td>
</tr>
<tr>
<td>Max request size</td>
<td>Specifies the maximum size in bytes for an XML request or reply. Larger messages are rejected with an error.</td>
</tr>
<tr>
<td>Max active connections</td>
<td>Specifies the maximum number of simultaneous connections for an adapter (per process).</td>
</tr>
<tr>
<td>Max idle timeout</td>
<td>Specifies the maximum time, in seconds, that an active connection can stay idle. After that time, the connection is closed.</td>
</tr>
<tr>
<td>Adapter Specifications</td>
<td>Specifies the adapter-specific properties for an interaction. The CDC Queue adapter does not have any adapter-specific properties.</td>
</tr>
</tbody>
</table>
Adapter Metadata Interactions

The Adapter Metadata Interactions editor defines an interaction and its input and output definitions. The following describes how to open the Adapter Metadata editor.

1. In Oracle Studio Design perspective, Metadata view, expand the Adapters folder.
2. Expand the adapter with the interaction that you want to edit.
3. Expand the Adapter folder.
4. Right-click the adapter you want to edit and select Open.

The Adapter Metadata Interactions editor is displayed.

The Adapter Metadata Interactions editor is shown in the following figure:

Figure A–8 Adapter Metadata Interactions

The Adapter Metadata Interaction properties are listed in the following table:

Table A–13 Interaction General tab Components

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Provides a descriptive identifier for the interaction.</td>
</tr>
</tbody>
</table>
In the Adapter Metadata Interactions editor, click **Advanced** at the bottom of the editor to open the Interaction **Advanced** tab. Use this to enter advanced details for the interaction or to create interaction manually.

The following figure shows the Interactions **Advanced** tab.
This tab has three sections.

The **SQL Statement** section lets you build any valid SQL statement. Use the tabs to select the tables and statement types and build a statement. When you select **Enable manual query editing**, you can manually enter a valid SQL statement at the bottom of the screen.

The **Interaction Properties** section lets you select any of the following:

- **Pass Through**: Select this to pass a query directly to the Adabas data.
- **Reuse compiled query**: Select this to save query objects created in the previous execution to the cache. This allows the objects to be reused.
- **Fail on no rows returned**: Select this if you want the system to return an error if no rows are selected.
- **Encoding**: Select one of the following from the list:
  - **base64**: Select this for base 64 encoding
Adapter Metadata

– **hex**: Select this for hexadecimal encoding

The **Parameters** section lets you create parameters to use for the interaction. To create a parameter, click **Add**. Enter a name in the dialog box and click **OK**. The parameter is entered in the list. You can edit the following properties for each parameter you create. Click in the corresponding cell to edit the properties.

- **Name**: The name of the parameter. This is automatically entered when you create a new parameter. You can click in the cell to change this parameter.
- **Type**: The type of parameter. Select one of the following types from the list:
  - string
  - number
  - timestamp
  - binary
  - xml
- **Nullable**: Select True or False to determine whether the parameter can be nullable.
- **Default**: Enter a default value for the parameter, which is used if the parameter attribute is missing in the input record.

---

**Notes:**

- If a field is not nullable and a default value is not supplied in the schema part of the Adapter Definition, an error occurs if the parameter attribute is missing in the input record.
- The parameters must be entered in the same order as they are used in the SQL statement.

---

**Adapter Metadata Schema Records**

The Adapter Metadata Schema Records editor defines the general details of the input and output record structures for the interaction. The following describes how to open the Adapter Metadata Schema Records editor:

1. In Oracle Studio Design perspective, Metadata view, expand the **Adapters** folder.
2. Expand the adapter with the schema records that you want to edit.
3. Expand the **Schemas**.
4. Right-click the schema you want to edit and select **Open**.

The **Adapter Metadata Schema Records** editor is displayed.

The Adapter Metadata Schema Records editor is shown in the following figure:
The Adapter Metadata Schema Records properties are listed in the following tables:

**Table A–14 Schema Record Tab**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fields list</td>
<td>Defines the single data item within a record. This section has a table with the following three columns:</td>
</tr>
<tr>
<td></td>
<td>- Name: The name of the field</td>
</tr>
<tr>
<td></td>
<td>- Type: The data type of the field. See the Valid Data Types table for a list of the valid data types.</td>
</tr>
<tr>
<td></td>
<td>- Length: The size of the field including a null terminator, when the data type supports null termination (such as the string data type).</td>
</tr>
<tr>
<td>Specifications</td>
<td>Defines specific field properties. To display the properties, select the specific field in the Fields list.</td>
</tr>
</tbody>
</table>

The following table describes the valid data types that can be used when defining these specifications in the Schema Record editor.

**Table A–15 Valid Data Types**

<table>
<thead>
<tr>
<th>Binary</th>
<th>Boolean</th>
<th>Byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>Double</td>
<td>Enum</td>
</tr>
<tr>
<td>Float</td>
<td>Int</td>
<td>Long</td>
</tr>
</tbody>
</table>
You can also edit the adapter metadata by viewing its XML schema. The following describes how to open the adapter metadata XML editor:

1. In Oracle Studio Design perspective, Metadata view, expand the Adapters folder.
2. Right-click the adapter that you want to edit, and select Open as XML.

The adapter XML editor is displayed in the Design view.

The adapter XML editor is shown in the following figure:

For information on how to edit the properties in the XML editor Design view, see Editing XML Files in Oracle Studio.

See CDC Queue Adapter Properties for an explanation of the attributes for the CDC Queue adapter that you should edit.
Advanced Tuning of the Daemon

The daemon configuration is managed using Oracle Studio. Daemon configuration is divided into the following groups:

- Control
- Logging
- Security
- Workspaces

Control

Using the Control tab for the daemon, you define various daemon control options. The Daemon Control tab is accessed as follows:

1. From the Start menu, select Programs, Oracle, and then select Studio.
2. From the Design perspective Configuration view expand the Machines folder.
3. Right-click the computer and select Open Runtime Perspective.
4. Right-click the required daemon in the Runtime Explorer and select Edit Daemon Configuration. The Control tab for the daemon is displayed in the editor.
5. After making changes to the daemon, right-click the daemon and select Reload Configuration.

Note: You can also change daemon settings using the Configuration Explorer, by selecting a computer and scrolling the list to the required daemon. Right-click the daemon and select Edit Daemon.

Changes made to the daemon configuration are only implemented after the configuration is reloaded using the Reload Configuration option in the Runtime Manager perspective.

The Control tab is shown in the following figure:
The following table shows the parameters that can be set in the **Control** tab:

### Table 6–10 Daemon Control tab Components

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daemon IP Address</td>
<td>Enter the IP address of the machine(s) where the daemon is listening. If no IP address is entered, the daemon will listen on all available IP addresses.</td>
</tr>
<tr>
<td>Daemon port</td>
<td>Enter the port where the daemon is listening. If no port is entered, the daemon listens on all available ports.</td>
</tr>
<tr>
<td>Automatically recover from failure</td>
<td>The daemon restarts automatically if it fails for any reason (any error that causes the daemon process to terminate, such as network process lost or the CPU running the daemon crashes and the backup daemon is defined on another CPU). All available and unconnected servers are terminated and any connected servers are marked and terminated on release. Also the backup starts a backup for itself. The backup appends a new log file to the log of the original daemon, adding a line indicating that a backup daemon was started.</td>
</tr>
<tr>
<td>Maximum XML request size</td>
<td>The maximum number of bytes that the daemon handles for an XML document.</td>
</tr>
<tr>
<td>Default language</td>
<td>The language that the daemon supports. This setting is used when working with a client with a code page different from the server code page.</td>
</tr>
<tr>
<td>Maximum XML in memory</td>
<td>The maximum amount of space reserved for the XML in memory.</td>
</tr>
</tbody>
</table>
Using the **Logging** tab, you define the daemon log file settings, the log file structure and the location where the log is saved. In addition, use it to define the data that is logged and traced in the file.

The following describes how to open the **Logging** tab.

1. From the **Start** menu, select **Programs, Oracle**, and then select **Studio**.
2. From the Design perspective Configuration view expand the **Machines** folder.
3. Right-click a computer and select **Open Runtime Perspective**.
4. Right-click the daemon in the Runtime Explorer and select **Edit Daemon Configuration**.
5. Click the **Logging** tab.
6. After making changes to the daemon, right-click the daemon and select **Reload Configuration**.
7. Right-click the daemon and select **Recycle Servers**. Any servers in the connection pool are closed and new servers start with the new configuration.

The **Logging** tab for the daemon is shown in the following figure:

![The Logging tab](image)

The **Daemon Logging** tab comprises fields, as listed in the following table:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logging options</td>
<td></td>
</tr>
<tr>
<td>Daemon log file location</td>
<td>Specifies the daemon produces its log data. The full path must be specified.</td>
</tr>
<tr>
<td>Server log filename format</td>
<td>Defines the name and location of the server log file. The field must specify the full path name. If no directory information is provided for the log file, then it will be located in the login directory of the account running Oracle Connect workstation.</td>
</tr>
<tr>
<td>Daemon operations</td>
<td>Select this to log all of the daemon operations.</td>
</tr>
</tbody>
</table>
The following tokens can appear in the log file template and will be replaced accordingly:

- `%A`: workspace name
- `%D`: date (yymmdd)
- `%I`: instance number of the given workspace server
- `%L`: server account login directory
- `%P`: server process ID
- `%T`: time (hhmmss)
- `%U`: server account name (username)

For example, `%L/server_%A%I.log` may produce a log file such as:

```
/usr/smith/server_sales15.log
```

The default log file template is `%L/server_%A%I.log`.

### Security

The following Security tab for the daemon is used to:

- Grant administration rights for the daemon.
Determine access to the computer.

The following shows how to open the Daemon Security tab:

1. From the Start menu, select Programs, Oracle, and then select Studio.
2. From the Design perspective Configuration view expand the Machines folder.
3. Right-click the computer and select Open Runtime Perspective.
4. Right-click the daemon in the Runtime Explorer and select Edit Daemon Configuration.
5. Click the Security tab.
6. After making changes to the daemon, right-click the daemon and select Reload Configuration.

---

**Note:** You can also change daemon settings using the Configuration Explorer, by selecting a computer and scrolling the list to the required daemon. Right-click the daemon and select Edit Daemon.

Changes made to the daemon configuration are not implemented. They are only implemented after the configuration is reloaded using the Reload Configuration option in the Runtime Manager.

---

7. Right-click the daemon and select Recycle servers. Any servers in the connection pool are closed and new servers start with the new configuration.

The Daemon Security tab is shown in the following figure:

*Figure 6–5  The Daemon Security tab*

The Daemon Security tab comprises fields, as listed in the following table:
A daemon can include a number of workspaces. A workspace defines the server processes and environment that are used for the communication between the client and the server for the duration of the client request. Each workspace has its own definition. The workspace definition is divided into the following groups:

- **General**
- **Server Mode**
- **Security**

### General

Using the **General** tab, you enter general information about the features that control the operation of the workspace, such as the server type, the command procedure used to start the workspace and the binding configuration associated with this workspace.

Do the following to open the **General** tab:

1. From the **Start** menu, select **Programs, Oracle**, and then select **Studio**.
2. From the Design perspective Configuration view, expand the **Machines** folder.
3. Right-click a computer and select Open Runtime Perspective.

4. Expand the Daemons node to display the workspaces in the Runtime Explorer.

5. Right-click the workspace and select Edit Workspace Configuration. The General tab opens.

6. After making changes to the workspace, right-click the daemon and select Reload Configuration.

   **Note:** You can also change daemon settings using the Configuration Explorer, by selecting a computer and scrolling the list to the required daemon. Right-click the daemon and select Edit Daemon.

   Changes made to the daemon configuration are not implemented. They are only implemented after the configuration is reloaded using the Reload Configuration option in the Runtime Manager.

7. Right-click the daemon and select Recycle Servers. Any servers in the connection pool are closed and new servers start with the new configuration.

The General tab is shown in the following figure:

**Figure 6–6 The General tab**

The General tab comprises fields, as listed in the following table:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info</td>
<td></td>
</tr>
</tbody>
</table>
**Table 6–13  (Cont.) General Tab Components**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workspace name</td>
<td>The name used to identify the workspace.</td>
</tr>
<tr>
<td><strong>Note:</strong></td>
<td>The default configuration includes the default Navigator workspace. This workspace is automatically used if a workspace is not specified as part of the connection settings.</td>
</tr>
<tr>
<td>Description</td>
<td>A description of the workspace.</td>
</tr>
<tr>
<td>Startup script</td>
<td>The full path name of the script that starts the workspace server processes. The script specified here must always activate the nav_login procedure and then run the server program (svc). If you do not specify the directory, the startup procedure is taken from the directory where the daemon resides. Oracle Connect includes a default startup script, which it is recommended to use.</td>
</tr>
<tr>
<td>Server type</td>
<td>This field is not applicable for use with OracleAS Adapters for Adabas.</td>
</tr>
<tr>
<td>Workspace binding name</td>
<td>This field is not applicable for use with OracleAS Adapters for Adabas.</td>
</tr>
<tr>
<td>Timeout parameters</td>
<td>The time the client waits for the workspace server to start. If the workspace server does not start within this period, then the client is notified that the server did not respond. Specifying the timeout here overrides the default setting, specified in the Control section.</td>
</tr>
<tr>
<td><strong>See Also:</strong></td>
<td>Control for details about the Daemon Control section.</td>
</tr>
<tr>
<td>Client idle timeout</td>
<td>The maximum amount of time a workspace client can be idle before the connection with the server is closed.</td>
</tr>
<tr>
<td>Connect timeout</td>
<td>The time the client waits for a workspace server to start. If the workspace server does not start within this period, then the client is notified that the server did not respond.</td>
</tr>
<tr>
<td>Call timeout</td>
<td>The timeout period for short calls for all daemons. The definition of a short call is a call that should be completed in a few seconds. For example, most calls to a database such as DESCRIBE should be completed in a few seconds as opposed to call like a GETROWS call, which can take a long time. In heavily loaded or otherwise slow systems, even short calls such as calls to open a file, may take a significant amount of time. If a short call takes more than the specified time to complete, then the connection is stopped. The default value for this parameter is 60 seconds. Values of less than 60 seconds are considered to be 60 seconds. Specifying the timeout in a workspace overrides the value set in this field for that workspace.</td>
</tr>
<tr>
<td>Logging and Trace Options</td>
<td></td>
</tr>
</tbody>
</table>

Specific log file format

Defines the name and location of the server log file if you want the data written to a file instead of SYSOUT for the server process. The parameter must specify the name and the high level qualifier.

The following tokens can appear in the log file template and will be replaced accordingly:

- %A: workspace name
- %D: date (yyymmdd)
- %I: instance number of the given workspace server
- %L: server account's login directory
- %P: server's process ID
- %T: time (hhmmss)
- %U: server's account name (username)

Trace options

Specifies the type of tracing to be performed. The following tracing options are available:

- **No timeout**: Select this to disable the standard RPC timeouts, setting them to a long duration (approximately an hour) to facilitate debugging.
- **Call trace**: Select this to generate a message in the server log file for each RPC function called. This is useful for troubleshooting the server.
- **RPC trace**: Select this to enable debugging messages on the server.
- **Sockets**: Select this to generate a message in the server log file for each socket operation. This is useful for troubleshooting client/server communication - providing a detailed trace of every client/server communication.
- **Extended RPC trace**: Select this to generate a verbose message in the server log file for each low-level RPC function called. This is useful for troubleshooting the server.
- **System trace**: Select this to generate operating system-specific tracing.
- **Timing**: Select this to generate a timestamp for every entry to the server log file.

Query governing restrictions

Max number of rows in a table that can be read

Select the maximum number of table rows that are read in a query. When the number of rows read from a table exceeds the number stated the query returns an error.

Max number of rows allowed in a table before scan is rejected

Select the maximum number of table rows that can be scanned. This parameter has different behavior for query optimization and execution.

- For query optimization, the value set is compared to the table cardinality. If the cardinality is greater than the value, the scan strategy is ignored as a possible strategy (unless it is the only available strategy).
- For query execution, a scan is limited to the value set. When the number of rows scanned exceeds the number entered, the query returns an error.
Server Mode

The Server Mode tab lets you configure the features that control the operation of the servers started up by the workspace and allocated to clients.

For example, you can configure the workspace to start up a number of servers for future use, prior to any client request, instead of starting each server when a request is received from a client.

Do the following to open the Server Mode tab:

1. From the Start menu, select Programs, Oracle, and then select Studio.
2. From the Design Perspective Configuration view, expand the Machines folder.
3. Right-click the computer and select Open Runtime Perspective.
4. Expand the Daemons node to display the workspaces in the Runtime Explorer.
5. Right-click the workspace and select Edit Workspace Configuration.
6. Click the Server Mode tab.
7. After making changes to the workspace, right-click the daemon and select Reload Configuration.

---

Notes:

- You can also change daemon settings using the Configuration Explorer, by selecting a computer and scrolling the list to the required daemon. Right-click the daemon and select Edit Daemon.
- Changes made to the daemon configuration are not implemented. They are only implemented after the configuration is reloaded using the Reload Configuration option in the Runtime Manager.

---

8. Right-click the daemon and select Recycle Servers. Any servers in the connection pool are closed and new servers start with the new configuration.

The Server Mode tab is shown in the following figure:
Figure 6–7  The Server Mode tab

The Server Mode tab has the following fields:
### Workspaces

#### Advanced Tuning of the Daemon

**Table 6–14 Server Mode Tab Components**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workspace server mode</td>
<td>Specifies the type of new server processes that the daemon starts up. The daemon supports the following server modes:</td>
</tr>
<tr>
<td></td>
<td>■ singleClient: Each client receives a dedicated server process. The account in which a server process runs is determined either by the client login information or by the specific server workspace.</td>
</tr>
<tr>
<td></td>
<td>■ multiClient: Clients share a server process and are processed serially. This mode has low overhead because the server processes are already initialized. However, because clients share the same process, they can impact one another, especially if they issue lengthy queries. The number of clients that share a process is determined by the Clients per server limit field.</td>
</tr>
<tr>
<td></td>
<td>■ multiThreaded: This mode is not applicable for use with OracleAS Adapter for Adabas.</td>
</tr>
<tr>
<td></td>
<td>■ reusable: An extension of single-client mode. Once the client processing finishes, the server process does not die and can be used by another client, reducing startup times and application startup overhead.</td>
</tr>
<tr>
<td></td>
<td>This mode does not have the high overhead of single-client mode because the servers are already initialized. However, this server mode can use a lot of server resources as it requires as many server processes as concurrent clients.</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> The other modes can be set so that the server processes are reusable. The number of times a process can be reused is controlled by the Reuse limit field value.</td>
</tr>
<tr>
<td>Reuse limit</td>
<td>Sets the maximum number of times a particular server can be reused. A one-client server can be reused after its (single) client has disconnected. Reuse of servers enhances startup performance because it avoids the need to repeat initialization. The default for this field is none (0), indicating that server reuse is unlimited. This parameter is disabled only if the server mode value is singleClient.</td>
</tr>
<tr>
<td>Clients per server limit</td>
<td>Sets the maximum number of clients a server process for the current workspace accepts. The default for this field is none (0), indicating that the number of clients for each server is unlimited. This field is enabled only if the server mode value is multiClient or multiThreaded.</td>
</tr>
</tbody>
</table>
Server availability

Specifies the number of servers in a pool of servers, available to be assigned to a client.

The following options are available:

- **Initial number of servers**: The number of server processes that are prestarted for this workspace when the daemon starts up. When the number of available server processes drops lower than the value specified in the Minimum number field, the daemon again starts server processes until this number of available server processes is reached. The default for this field is 0.

- **Minimum number**: The minimum number of server processes in the prestarted pool before the daemon resumes creating new server processes (to the value specified in the Initial number of servers field). If this field is set to a value higher than the Initial number of servers field, the daemon uses the value specified in the Initial number of servers field. The default for this field is 0.

- **Keep when daemon ends**: When a daemon is shutdown, all the servers started by that daemon are also killed, even if they are active. Set this field to true if you want the servers for the workspace to remain active, even after the daemon has been shut down. If this field is set to true, it is the responsibility of the system operator or manager to ensure that the servers are eventually killed. This must be done at the system level.

- **Set maximum number of servers**: The maximum number of available server processes. Once this number is reached, no new nonactive server processes are created for the particular workspace. For example, if a number of server processes are released at the same time, so that there are more available server processes than specified by this field, the additional server processes higher than this value are terminated. The default for this field is zero, meaning that there is no maximum.

Port range

Determines the range of ports available for this workspace when starting server processes. Use this option when you want to control the port number, so that Oracle Connect can be accessed through a firewall.

Enter the port range in the following fields:

- **From**: enter the lowest numbered port in the range.
- **To**: Enter the highest numbered port in the range.

Use default port range

Select this to use the port range that is defined in the daemon. This is defined in the Port range for servers field in the daemon Control tab.

Maximum number of server processes

Enter the maximum number of server processes that can run at the same time.

Limit server reuse

Select this if you want to limit the number of servers that can be reused. If this is selected, the Reuse limit parameter is available.
If Limit server reuse is selected, in the field next to the check box, enter the maximum number of times a server can be reused. Select the maximum of clients accepted in a server process.

A one-client server can be reused after its (single) client has disconnected. Reuse of servers enhances startup performance because it avoids the need to repeat initialization.

This parameter is not available if the Limit server reuse parameter is not selected.

This parameter is not available if the server mode value is singleClient.

Limit concurrent clients per server

Select this to limit the number of clients that a server can accept for the current workspace process.

If this is not selected, the number of clients is unlimited.

If Limit concurrent clients per server is selected, in the field next to the check box, enter the maximum number of clients that a server process for the current workspace accepts. The default for this field is None, indicating that the number of clients for each server is unlimited. This field is available if the server mode value is multiClient or multiThreaded.

Specify Server Priority

Set the priority for servers. For example, a workspace for applications with online transaction processing can be assigned a higher priority than a workspace that requires only query processing. The lower the number, the higher the priority. For example, workspaces with a priority of 1 are given a higher priority than workspaces with a priority of 2.

Note: This is unavailable if Use default server priority is selected.

Use default server priority

Sets the priority to 0. There is no specific priority for this workspace. Clear this check box to set a priority in the Specify server priority parameter.

Server Provisioning

Number of prestarted servers in pool

Initial number of servers: The number of server processes that are prestarted for this workspace when the daemon starts up. When the number of available server processes drops lower than the value specified in the Minimum number field, the daemon again starts server processes until this number of available server processes is reached. The default for this field is 0.
The Security tab lets you configure the security level for a workspace. This lets you set the security options for the workspace only. The Security tab is used to:

- Grant administration rights for the workspace
- Determine access to the workspace by a client

Do the following to open the Security tab:

1. From the Start menu, select Programs, Oracle, and then select Studio.
2. From the Design Perspective Configuration view, expand the Machines folder.
3. Right-click the computer and select Open Runtime Perspective.
4. Expand the Daemons node to display the workspaces in the Runtime Explorer.
5. Right-click the workspace and select Edit Workspace Configuration.
6. Click the Security tab.
7. After making changes to the workspace, right-click the daemon and select Reload Configuration.
8. Right-click the daemon and select **Recycle Servers**. Any servers in the connection pool are closed and new servers start with the new configuration.

The **Security** tab is shown in the following figure:

*Figure 6–8 The Security tab*

The **Security** tab has the following fields:
### Table 6–15 Security Tab

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Server Account</strong></td>
<td>This section defines the users (accounts) allowed to access the workspace, firewall access ports, workspace account, and anonymous login permissions.</td>
</tr>
<tr>
<td>Use specific workspace account</td>
<td>Select this if you want to define the operating system account used for the workspace. If selected, enter the name of the workspace account in the <em>workspace account</em> field. If not selected, the account name that was provided by the client is used.</td>
</tr>
<tr>
<td>Allow anonymous clients to use this workspace</td>
<td>Select this if you want to allow this workspace to be invoked without authentication. If selected, enter the name of the workspace account in the <em>Server account to use with anonymous clients</em> field.</td>
</tr>
</tbody>
</table>
| Authorized Workspace users    | Indicate which users have permission to use the workspace. Select one of the following:  
  - **All users**: Any user who has logged on to the daemon may use the workspace  
  - **Selected users only**: Select this to allow only users (or accounts) with specific permission to use the workspace. When this is selected, add the names of users (or accounts) and groups that can be use the workspace in the field below.  
  
  *Note*: If no user is specified, any user who has logged on to the daemon may use the workspace. |
| Authorized Administrators     | Identifies the users (accounts) with administrator privileges. Select one of the following:  
  - **All users**: Indicates that anyone can access the workspace and change the settings.  
  - **Selected users only**: Select this to allow only users (or accounts) with specific permission to be administrators. When this is selected, add the names of users (or accounts) and groups that can be workspace administrators.  
  
  If no user is specified, any user who has logged on to the daemon may administer this workspace. |
The OracleAS CDC Adapter for Adabas has a number of configuration properties. You can edit the properties in Oracle Studio after Setting Up a Change Data Capture with the OracleAS CDC Adapter for Adabas. This chapter describes the configuration properties and how to edit them. It contains the following sections:

- Editing Properties in Oracle Studio
- Configuration Properties
- Access to Change Events
- Transaction Support
- Security

### Editing Properties in Oracle Studio

After you create the OracleAS CDC solution, you can also edit the properties. The solution creates two adapters, the adapter and the CDC Queue adapter. The adapter is created on the server machine and the CDC Queue adapter is created on the staging area machine. For more information, see Setting up a Change Data Capture in Oracle Studio.

### Editing the OracleAS CDC Adapter Properties

To edit the CDC adapter properties, open the Oracle Studio Design perspective and find the binding for the CDC solution on the server machine. Then open the adapter, which contains the name of the CDC solution with the suffix _ag added to it. Changes to adapter properties are reset when the CDC solution is redeployed, therefore these changes must be reapplied following solution deployment. For information on deploying a solution, see Deploying a Change Data Capture.

Do the following to edit the CDC adapter properties.

1. From the Start menu, select Programs, Oracle, and then select Studio.
2. Expand the Machines folder.
3. Expand the server machine that you created when Setting up a Change Data Capture in Oracle Studio.
4. Expand the Bindings folder, and then expand the binding the name of the CDC solution with the suffix _ag added to it.
5. Expand the Adapter folder.
6. Right-click the adapter the adapter with the name of the solution and the suffix _ag and select Open.
   The adapter configuration editor opens in the editor, which displays the properties for the adapter.

7. Edit the adapter parameters as required.
   See OracleAS CDC Adapter Configuration Properties for a description of the properties.

Configuration Properties

This section describes the configuration properties for the OracleAS CDC Adapter for Adabas. You can edit the properties using Oracle Studio. The OracleAS CDC Adapter for Adabas has the following types of properties:

- Data Source Properties
- CDC Logger Properties
- OracleAS CDC Adapter Configuration Properties
- Change Router Properties
- Referential Integrity Considerations

Data Source Properties

The following are the Data Source Properties:

- dbNumber: The Adabas database number.
- predictFileNumber: (Predict only) The Predict file number.
- predictDbNumber: (Predict only) When the Predict file resides in a different database than the data indicate the database number in which the Predict file resides.

CDC Logger Properties

Tracking File name: The name of the mainframe file that is used to register the Adabas archive files. This must be the same name that is defined in the UE2 procedure. For more information, see The Tracking File.

Adabas Version: the version of Adabas you are using. All versions earlier than version 8 are supported.

The OracleAS CDC Adapter for Adabas also supports the standard CDC agent configuration properties. For more information, see Set up the CDC Service.

The Tracking File

The OracleAS CDC Adatpter for Adabas CDC solution uses a tracking file to register the archive files. These files should be created on DASD directly by the UE2 procedure or restored from tapes or cartridges. The tracking file specifies the following information regarding each registered archived PLOG file:

- The dataset name.
- The timestamp indicating the starting time of each archived PLOG.
- The Adabas session number.
The starting block counter.

For more information, see Setting up the Tracking File.

OracleAS CDC Adapter Configuration Properties

This section describes the common configuration properties for Oracle CDC adapters and the change router configuration properties, which is located on the staging area machine.

To edit the CDC adapter properties, open the Oracle Studio Design perspective and find the binding for the CDC solution you created. The binding contains the name of the CDC solution with the suffix _ag added to it. Open the adapter with the name of the solution and the suffix _ag to edit the properties. For information on how to edit adapter properties in Oracle Studio, see Editing the OracleAS CDC Adapter Properties. Changes to adapter properties are reset when the CDC solution is redeployed, therefore these changes must be reapplied following solution deployment.

See the following topics for a description of the configuration properties:

- CDC Queue Adapter Properties
- Common CDC Adapter Properties

CDC Queue Adapter Properties

The CDC Queue adapter is a data base adapter that is found in the staging area. It is created automatically when Setting up a Change Data Capture in Oracle Studio. It has three properties:

- connectString
- defaultDatasource
- multipleResults

To ensure that the queue adapter works properly with your CDC solution, do not change the values for these properties.

The CDC Queue adapter may have additional properties that can be viewed in the adapter’s XML schema. For information on how to view the XML, see Adapter Metadata XML.

The following property, which is viewed in the XML only can be edited:

- maxRecords: The maximum number of records that can be returned.

For information on how to edit XML records in Oracle Studio, see Advanced Tuning of the Metadata.

Common CDC Adapter Properties

The following table describes the common configuration properties for Oracle CDC adapters. The OracleAS CDC Adapter for Adabas uses only these properties.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>datasource</td>
<td>string</td>
<td></td>
<td>The name of the data source for the OracleAS CDC adapter.</td>
</tr>
</tbody>
</table>
**Table 6–16 (Cont.) CDC Adapter Configuration Properties**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>routers</td>
<td></td>
<td></td>
<td>A list of users who can connect to the adapter and get change events from it for processing. If no routers are specified, any valid user for the workspace can get change events from the Oracle Connect adapter. To add the list of users in Oracle Studio, expand the router property then right-click users. A new entry called Item(#) is added to the Property column. In the Value column, enter the User Name for this router.</td>
</tr>
<tr>
<td>retryInterval</td>
<td>int</td>
<td>2</td>
<td>The polling interval for the database journal. When no events are received in the database journal, the adapter waits for the amount of time (in seconds) that is indicated for this property.</td>
</tr>
<tr>
<td>getTransactionInfo</td>
<td>boolean</td>
<td>true</td>
<td>When set to true, transaction information (begin, commit, rollback) is returned.</td>
</tr>
<tr>
<td>getBeforeImage</td>
<td>boolean</td>
<td>false</td>
<td>When true, before image information is returned.</td>
</tr>
<tr>
<td>realTime</td>
<td>boolean</td>
<td>true</td>
<td>When true, this reduces latency in getting change events, however it also increases the polling of the database journal. The change router asks for N events from the adapter. If the adapter finds fewer than N events in the database journal and realTime is true, these events are immediately returned to the change router. If realTime is false, the adapter polls the journal again after waiting for the number of seconds indicated in the retryInterval.</td>
</tr>
<tr>
<td>logLevel</td>
<td></td>
<td></td>
<td>The logging level. The following are the available log levels:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- none</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- api</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- internalCalls</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- info</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- debug</td>
</tr>
<tr>
<td>checkTimeoutEveryNEvents</td>
<td>int</td>
<td>100</td>
<td>The number of events that occur before the CDC adapter checks the timeout value. For example, if this property is set to 100, the adapter will check the timeout value after 100 events have taken place. If the amount of time set in the timeout property is past, the adapter will timeout.</td>
</tr>
</tbody>
</table>
Change Router Properties

The following table describes the SQL-based change event router configuration parameters.

To edit the router properties, open the Oracle Studio Design perspective and find the binding for the CDC solution you created. The binding contains the name of the CDC solution with the suffix `_router` added to it. Open the adapter with the name of the solution and the suffix `_router` to edit the properties. For information on how to edit adapter properties in Oracle Studio, see Editing the OracleAS CDC Adapter Properties.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cdcDatasource</td>
<td>string</td>
<td></td>
<td>The OracleAS Change Data Source.</td>
</tr>
<tr>
<td>eliminateUncommittedChanges</td>
<td>Boolean</td>
<td>false</td>
<td>When set to true, only committed change records are moved to the Change Table. If false, all change records are moved to the change tables (in which case, memory usage is minimal) hence the change table may contain rolled back data. For most adapters, following the RI considerations (see Referential Integrity Considerations) results in rolled-back changes eliminated naturally by means of compensating change records generated by the adapter in case of a rollback. Consult the respective CDC adapter documentation for details.</td>
</tr>
<tr>
<td>eventExpirationHours</td>
<td>int</td>
<td>48</td>
<td>Indicates how long change records are kept in change tables within the staging area. After the indicated time, change records are deleted. You can set a value between 0 and 50000. A value of 0 means that the records are never deleted. A value of 1 indicates that the records are kept for one hour.</td>
</tr>
<tr>
<td>logLevel</td>
<td>enum</td>
<td></td>
<td>The logging level for the router. The following are the available log levels:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>■ none</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>■ api</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>■ internalCalls</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>■ info</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>■ debug.</td>
</tr>
<tr>
<td>maxDeletedEventsInBatch</td>
<td>int</td>
<td>500</td>
<td>Controls how many expired change records are delete in a single pass. This number may need to be lowered in some rare cases in order to reduce latency when a large number of change events is continuously being received.</td>
</tr>
</tbody>
</table>
Table 6–17  (Cont.) Change Router Configuration Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>maxOpenfiles</td>
<td>int</td>
<td>200</td>
<td>Controls the number of physical files opened by the router.</td>
</tr>
<tr>
<td>maxTransactionMemory</td>
<td>int</td>
<td>1000</td>
<td>Specifies how much memory can be stored in memory per transaction before it is off-loaded to disk. This number should be higher than the average transaction size so that the slower-than-memory disk is not used too often.</td>
</tr>
<tr>
<td>maxStagingMemory</td>
<td>int</td>
<td>1000</td>
<td>Specifies how much memory in total can be used for storing active transactions (ones that have not yet committed or rolled back).</td>
</tr>
<tr>
<td>sourceEventQueue</td>
<td>Structure:</td>
<td></td>
<td>Connection information to the OracleAS CDC adapter.</td>
</tr>
<tr>
<td>■ server</td>
<td>string</td>
<td></td>
<td></td>
</tr>
<tr>
<td>■ workspace</td>
<td>string</td>
<td></td>
<td></td>
</tr>
<tr>
<td>■ adapter</td>
<td>string</td>
<td></td>
<td></td>
</tr>
<tr>
<td>■ eventWait</td>
<td>int</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>■ maxEventsAsBlocks</td>
<td>int</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>■ reconnectWait</td>
<td>int</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>■ fixedNat</td>
<td>boolean</td>
<td>false</td>
<td></td>
</tr>
<tr>
<td>stagingDirectory</td>
<td>string</td>
<td></td>
<td>Specifies the directory where the staging area change files will be stored. This directory also stores off-loaded transactions as well as timed-out transactions and error files.</td>
</tr>
<tr>
<td>transactionTimeout</td>
<td>int (in seconds)</td>
<td>3600</td>
<td>Specifies how long can a transaction be active without getting new events. This parameter should be set according to the corresponding setting of the captured database. In particular, this setting must not be lower than the database’s transaction time-out setting as this may lead to the loss of transactions.</td>
</tr>
<tr>
<td>useType</td>
<td>enum</td>
<td>sqlBbas ed Cdc</td>
<td>This parameter must be set to this value.</td>
</tr>
<tr>
<td>routers</td>
<td></td>
<td></td>
<td>A list of users who can connect to the change event router and get change events from it for processing. If no routers are specified, any valid Oracle Connect user for the workspace may get change events from the adapter. To add the list of users in Oracle Studio, expand the router property then right-click users. A new entry called Item(#) is added to the Property column. In the Value column, enter the User Name for this router.</td>
</tr>
</tbody>
</table>
Referential Integrity Considerations

Some related tables have referential integrity (RI) constraints enforced on them. For example, with OrderHeader and OrderLines one cannot have OrderLines without an associated OrderHeader.

When processing change events by the table (which is how an OracleAS CDC works) as opposed to by transaction, referential integrity cannot be maintained properly. For example, when first handling all OrderHeader records and then all OrderLines records then a deleted OrderHeader may be applied long before the required delete of the associated OrderLines records.

In order to reduce the potential referential integrity to a known time frame after which referential integrity is restored, a somewhat different process is needed (compared with Reading the Change Tables’).

A special SYNC_POINTS table should be added to maintain a common sync-point for use with multiple related tables. The table is defined as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>senders</td>
<td>List</td>
<td></td>
<td>A list of users who can connect to the change event router and send change events to it for processing. If no routers are specified, any valid Oracle Connect user for the workspace may get change events from the adapter. To add the list of users in Oracle Studio, expand the senders property then right-click users. A new entry called Item(#) is added to the Property column. In the Value column, enter the User Name for this router.</td>
</tr>
<tr>
<td>subscribeAgentLog</td>
<td>Boolean</td>
<td>False</td>
<td>When set to true, the change router writes the contents of the OracleAS CDC adapter’s log into its own log. Do not set this property to true if the logLevel property is set to debug because the large amount of information that is sent in this mode will cause performance delays.</td>
</tr>
<tr>
<td>nodeID</td>
<td>String</td>
<td></td>
<td>ID for a node when using multi-router mode. Each node represents a router.</td>
</tr>
<tr>
<td>alternativeOwnerSeparator</td>
<td>String</td>
<td>..</td>
<td>This is the value of the separator that is used to separate the name of the owner and the suffix table. In Oracle Studio, the default separator for the staging area is an underscore (_). For example, owner.table. When using SSIS to configure a CDC solution, an underscore will cause an error. When you change the default separator in the Oracle Studio Preferences window, the new value is entered in this property.</td>
</tr>
</tbody>
</table>
This table’s primary unique key is the concatenation of application_name + sync_name. The use of this table is not mandatory but it is part of the recommended use pattern of SQL-based CDC.

The SYNC_POINTS table is created with the following definition (where filename is changed into an actual path):

```xml
<?xml version='1.0' encoding='UTF-8'?>
<navobj>
 <table name='SYNC_POINTS' fileName='<staging-directory-path>SYNC_POINTS' organization='index'>
 <fields>
 <field name='application_name' datatype='string' size='64'/>
 <field name='sync_name' datatype='string' size='64'/>
 <field name='context' datatype='string' size='32'/>
 </fields>
 <keys>
 <key name='Key0' size='128' unique='true'>
 <segments>
 <segment name='application_name'/>
 <segment name='sync_name'/>
 </segments>
 </key>
 </keys>
 </table>
</navobj>
```

The following procedure describes how to ensure RI is regained at the end of a group of ETL rounds. It is an extension of the procedure described earlier for consuming change records. Here we assume that tables T1, T2 and T3 are related with RI constraints and that A is the application we are working under.

**To create a stream position**

1. This is a one-time setup step aimed to create a stream position record for T [1/2/3] + A in the STREAMPOSITIONS table. The following SQL statement creates that record:

   ```sql
 insert into STREAMPOSITIONS values ('A', 'T1', '');
 insert into STREAMPOSITIONS values ('A', 'T2', '');
 insert into STREAMPOSITIONS values ('A', 'T3', '');
   ```

2. This step is performed at the beginning of a group of ETL rounds processing (that is before starting to process change events for T1, T2 and T3). The goal here is to get a shared sync point for retrieval of T1, T2 and T3. This is done by sampling the context column of the SERVICE_CONTEXT table. This value is the stream position of the last change record in the most recently committed transaction. This is done as follows:

   ```sql
 insert into SYNC_POINTS
   ```

---

### Table 6–18  SYNC_POINTS Table Structure

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>application_name</td>
<td>string (64)</td>
<td>The application for which the processing is done.</td>
</tr>
<tr>
<td>table_name</td>
<td>string (64)</td>
<td>The name of the synchronization point</td>
</tr>
<tr>
<td>context</td>
<td>String (32)</td>
<td>A stream position that can be safely used as an upper bound for event retrieval of all related tables</td>
</tr>
</tbody>
</table>
select 'A' application_name, 'T123' sync_name, context from SERVICE_CONTEXT;

Here, T123 is the name chosen for the synchronization [points of tables T1, T2, and T3.

3. This step is where change data is actually read. It occurs on each ETL round.

select n.* from T t, STREAM_POSITIONS sp, SYNC_POINTS sy where
sp.application_name = 'A' and
sp.table_name = 'T' and
sy.application_name = sp.application_name and
sy.sync_name = 'T123' and
n.context > sp.context and n.context <= sy.context order by n.context;

Note that “n.context <= sy.context” is used because the context represents a change record to be processed and processing should include the change record associated with sy.context, too.

This query retrieves change records starting from just after the last handled change record but stopping at a common sync point. “n.*” can be replaced with an explicit list of columns, however it is important that the ‘context’ column must be selected as this is the change record stream position which is required for the next step.

This step occurs at the end of each ETL round once all change records were retrieved and processed for a table Ti. Let’s assume that the value of the ‘context’ column of the last change record was ‘C’. This value needs to be stored back into the STREAM_POSITION table for the next ETL round. This is done with:

update STREAMPOSITIONS set context='C' where application_name 'A' and table_name = 'Ti';

This value can be stored more frequently during the ETL process as needed. The general guideline is that once change record data has been committed to the target database, the stream position should be updated as well.

Access to Change Events

Changes are captured and maintained in a change table. The table contains the original table columns and CDC header columns. The header columns are described in the following table:
Table 6–19  Header Columns

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>context</td>
<td>The change record stream position in the staging area. The column is defined as primary unique index. It is a 32-bytes string with the following structure:</td>
</tr>
<tr>
<td></td>
<td>&lt;yyyymmdd&gt;T&lt;hhmmss&gt;.&lt;nnnn&gt;&lt;cccccc&gt;</td>
</tr>
<tr>
<td></td>
<td>Where:</td>
</tr>
<tr>
<td></td>
<td>■ &lt;yyyymmdd&gt;T&lt;hhmmss&gt; is the commit processing timestamp as generated in the staging area when starting to process the Commit event.</td>
</tr>
<tr>
<td></td>
<td>■ &lt;nnnn&gt; is a unique number to differentiate between transactions committed during the same second (up to 99,999 are assumed).</td>
</tr>
<tr>
<td></td>
<td>■ &lt;cccccc&gt; is a counter for the change events in the transaction making every stream position unique (up to 9,999,999 are assumed).</td>
</tr>
<tr>
<td>operation</td>
<td>This column lists the operations available for the CDC adapter. The available operations are:</td>
</tr>
<tr>
<td></td>
<td>■ INSERT</td>
</tr>
<tr>
<td></td>
<td>■ DELETE</td>
</tr>
<tr>
<td></td>
<td>■ UPDATE</td>
</tr>
<tr>
<td></td>
<td>■ BEFOREIMAGE</td>
</tr>
<tr>
<td></td>
<td>■ COMMIT</td>
</tr>
<tr>
<td></td>
<td>■ ROLLBACK</td>
</tr>
<tr>
<td></td>
<td>Note: All operations for Adabas Mainframe appear as committed in the PLOG. In case of rollback, delete will appear before commit and no rollback event is generated.</td>
</tr>
<tr>
<td>transactionID</td>
<td>The operation's transaction ID.</td>
</tr>
<tr>
<td>fullTransactionID</td>
<td>The untruncated full transaction ID of the operation, with all 64 bytes.</td>
</tr>
<tr>
<td>tableName</td>
<td>The name of the table where the change was made. For INSERT, UPDATE, and BEFOREIMAGE operations, the owner name and then the table name are displayed. For COMMIT and ROLLBACK operations, this value is the same as the OPERATION value.</td>
</tr>
<tr>
<td>timestamp</td>
<td>The date and time of the last occurrence in an Adabas block.</td>
</tr>
<tr>
<td>sequence</td>
<td>The Adabas input record sequence.</td>
</tr>
<tr>
<td>BEFZ</td>
<td>This is an Adabas PLOG header field.</td>
</tr>
<tr>
<td>indicator</td>
<td>This is an Adabas PLOG header field.</td>
</tr>
<tr>
<td>recordType</td>
<td>The Adabas record type (INCLUDE or EXCLUDE).</td>
</tr>
<tr>
<td>userID</td>
<td>The Adabas user ID number.</td>
</tr>
<tr>
<td>fileNumber</td>
<td>The Adabas file number.</td>
</tr>
<tr>
<td>RABN</td>
<td>The Relative Adabas Block Number.</td>
</tr>
<tr>
<td>imageType</td>
<td>The captured image type (BEFORE or AFTER).</td>
</tr>
<tr>
<td>workRabChain</td>
<td>This is an Adabas PLOG header field.</td>
</tr>
</tbody>
</table>
The data portion is an exact copy of the back-end table layout.

Each change in the journal is captured as an event with the following format:

```xml
<event name='table_name' timestamp='...'>
 <table_name>
 <header ...></header>
 <data ...></data>
 </table_name>
</event>
```

**Transaction Support**

The OracleAS CDC Adapter for Adabas supports transactions.

The rollback event is not supported, instead compensating records are supplied.

**Security**

The user profile for Oracle Connect must have read privileges for the archive files.
The OracleAS CDC Adapter for Adabas supports a number of data types that are used when defining metadata in Oracle Studio. The data types are mapped from the COBOL data types during the import procedure.

**Note:** The mapping of data types between the OracleAS CDC Adapter for Adabas and Oracle Application Server is performed internally by Oracle Connect.

### Data Type Mapping

The COBOL data type COMP, in the table is an abbreviation for, and synonymous with, COMPUTATIONAL. Square brackets ([ ]) denote optional qualifiers for some COBOL compilers, which may not be allowed for other COBOL compilers.

<table>
<thead>
<tr>
<th>COBOL Data Type</th>
<th>Oracle Connect Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>BINARY (with fractional data)</td>
<td>string</td>
</tr>
<tr>
<td>BINARY (without fractional data)</td>
<td>int</td>
</tr>
<tr>
<td>COMP (with fractional data)</td>
<td>string</td>
</tr>
<tr>
<td>COMP (without fractional data)</td>
<td>int</td>
</tr>
<tr>
<td>COMP-2</td>
<td>double</td>
</tr>
<tr>
<td>COMP-3</td>
<td>string</td>
</tr>
<tr>
<td>COMP-4 (with fractional data)</td>
<td>string</td>
</tr>
<tr>
<td>COMP-4 (without fractional data)</td>
<td>int</td>
</tr>
<tr>
<td>COMP-5 (with fractional data)</td>
<td>string</td>
</tr>
<tr>
<td>COMP-5 (without fractional data)</td>
<td>int</td>
</tr>
<tr>
<td>COMP-X (with fractional data)</td>
<td>string</td>
</tr>
<tr>
<td>COMP-X (without fractional data)</td>
<td>int</td>
</tr>
<tr>
<td>INDEX</td>
<td>int</td>
</tr>
<tr>
<td>[SIGN [IS]] LEADING</td>
<td>string</td>
</tr>
<tr>
<td>[SIGN [IS]] LEADING SEPARATE</td>
<td>string</td>
</tr>
<tr>
<td>[CHARACTER]</td>
<td></td>
</tr>
<tr>
<td>NATIVE-2</td>
<td>int</td>
</tr>
<tr>
<td>COBOL Data Type</td>
<td>Oracle Connect Data Type</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>NATIVE-4</td>
<td>int</td>
</tr>
<tr>
<td>NATIVE-8</td>
<td>string</td>
</tr>
<tr>
<td>PACKED-DECIMAL</td>
<td>string</td>
</tr>
<tr>
<td>POINTER</td>
<td>int</td>
</tr>
<tr>
<td>[SIGN [IS]] TRAILING</td>
<td>string</td>
</tr>
<tr>
<td>[SIGN [IS]] TRAILING SEPARATE</td>
<td>string</td>
</tr>
<tr>
<td>[CHARACTER]</td>
<td></td>
</tr>
</tbody>
</table>
Globalization Settings

The OracleAS CDC Adapter for Adabas provides the globalization support for the following languages:

- Arabic
- English (the default)
- French
- German
- Greek
- Hebrew
- Italian
- Japanese
- Korean
- Portugueses
- Simple Chinese
- Spanish
- Traditional Chinese
- Turkish

This appendix describes how to define the language support.

Defining the Language and Codepage

The language and codepage parameters are accessed from the computer where Oracle Studio is installed.

Perform the following steps to define the required language and codepage:

1. From the Start menu, select Programs, Oracle, and then select Studio.
2. In the Design perspective Configuration view, expand the Machines folder.
3. Expand the machine for which you want to set the language.
4. Expand the Bindings folder and right-click the NAV binding.
5. Select Open.
6. Expand the Language Settings and do the following:
From the **Language** list, select the NLS supported language to use in this binding. Valid values are listed in the Language Name column of the **NLS Language Codes** table.

From the **Codepage** list, select the codepage that you want to use with this language. The code pages available are determined by the Language that is selected. If you have additional code pages available, you can manually enter them in this field.

**Note:** If you change the language, the code page will also change. Check to be sure that you want to use the selected code page with the language you selected.

If no codepage is selected, the default codepage for the selected language is used.

From the **NLS string** list, select the NLS string for this language and code page. The NLS strings available are determined by the code page that is selected. If you have additional NLS strings available, you can manually enter them in this field.

The codepage is used by a field with a data type defined as `nlsString`. This parameter is used for a field with a codepage that is different than the machine’s codepage. This property includes values for the name of the codepage and whether the character set reads from right to left (as in middle-eastern character sets).

For example, the following specifies a Japanese EUC 16-bit codepage:

```xml
<misc nlsString="JA16EUC,false"/>
```

7. Save the change. New servers will use the language selected.

The following table lists the codepages:

<table>
<thead>
<tr>
<th>Language Name</th>
<th>Language Code</th>
<th>Windows Default</th>
<th>ASCII Platforms (Default)</th>
<th>EBCDIC Platforms (Default)</th>
<th>Alternative Codepages (EBCDIC based unless noted otherwise)</th>
</tr>
</thead>
<tbody>
<tr>
<td>English UK</td>
<td>ENUK</td>
<td>Windows-1252</td>
<td>ISO-8859-15</td>
<td>IBM1146</td>
<td>IBM285, IBM037, IBM500, IBM1140, IBM1148, IBM1047, ISO-8859-1 (ASCII based)</td>
</tr>
<tr>
<td>Language Name</td>
<td>Language Code</td>
<td>Windows Default</td>
<td>ASCII Platforms (Default)</td>
<td>EBCDIC Platforms (Default)</td>
<td>Alternative Codepages (EBCDIC based unless noted otherwise)</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>---------------------------</td>
<td>----------------------------</td>
<td>----------------------------------------------------------</td>
</tr>
<tr>
<td>French</td>
<td>FRE</td>
<td>Windows-125 2</td>
<td>ISO-8859-15</td>
<td>IBM1147</td>
<td>IBM297, IBM037, IBM500, IBM1140, IBM1148, IBM1047, ISO-8859-1 (ASCII based)</td>
</tr>
<tr>
<td>Latin International</td>
<td>LAT</td>
<td>Windows-125 2</td>
<td>ISO-8859-15</td>
<td>IBM1148</td>
<td>IBM500, IBM037, IBM1140, IBM1047, ISO-8859-1 (ASCII based)</td>
</tr>
<tr>
<td>Spanish</td>
<td>SPA</td>
<td>Windows-125 2</td>
<td>ISO-8859-15</td>
<td>IBM1145</td>
<td>IBM284, IBM037, IBM500, IBM1140, IBM1148, IBM1047, ISO-8859-1 (ASCII based)</td>
</tr>
<tr>
<td>German</td>
<td>GER</td>
<td>Windows-125 2</td>
<td>ISO-8859-15</td>
<td>IBM1141</td>
<td>IBM273, IBM037, IBM500, IBM1140, IBM1148, IBM1047, ISO-8859-1 (ASCII based)</td>
</tr>
<tr>
<td>Portuguese</td>
<td>POR</td>
<td>Windows-125 2</td>
<td>ISO-8859-15</td>
<td>IBM1140</td>
<td>IBM037, IBM500, IBM1148, IBM1047, ISO-8859-1 (ASCII based)</td>
</tr>
<tr>
<td>Italian</td>
<td>ITL</td>
<td>Windows-125 2</td>
<td>ISO-8859-15</td>
<td>IBM1144</td>
<td>IBM280, IBM037, IBM500, IBM1140, IBM1148, IBM1047, ISO-8859-1 (ASCII based)</td>
</tr>
<tr>
<td>Greek</td>
<td>GRK</td>
<td>Windows-125 3</td>
<td>ISO-8859-7</td>
<td>IBM875</td>
<td>-</td>
</tr>
<tr>
<td>Russian^1</td>
<td>RUS</td>
<td>Windows-125 1</td>
<td>ISO-8859-5</td>
<td>IBM1154</td>
<td>IBM1025</td>
</tr>
</tbody>
</table>
Table 6–21 (Cont.) NLS Language Codes

<table>
<thead>
<tr>
<th>Language Name</th>
<th>Language Code</th>
<th>Windows Default</th>
<th>ASCII Platforms (Default)</th>
<th>EBCDIC Platforms (Default)</th>
<th>Alternative Codepages (EBCDIC based unless noted otherwise)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turkish$^2$</td>
<td>TUR</td>
<td>Windows-1254</td>
<td>ISO-8859-9</td>
<td>IBM1155</td>
<td>IBM1026</td>
</tr>
<tr>
<td>Hebrew</td>
<td>HEB</td>
<td>Windows-1255</td>
<td>ISO-8859-8</td>
<td>IBM424</td>
<td>IBM 862</td>
</tr>
<tr>
<td>Arabic</td>
<td>ARA</td>
<td>Windows-1256</td>
<td>ISO-8859-6</td>
<td>IBM420</td>
<td></td>
</tr>
<tr>
<td>Chinese - Simplified</td>
<td>SCHI</td>
<td>GBK</td>
<td>GBK</td>
<td>IBM935</td>
<td>-</td>
</tr>
<tr>
<td>Chinese - Traditional</td>
<td>TCHI</td>
<td>BIG5</td>
<td>BIG5</td>
<td>IBM937</td>
<td>-</td>
</tr>
<tr>
<td>Korean</td>
<td>KOR</td>
<td>MS949</td>
<td>EUC-KR</td>
<td>IBM933</td>
<td>MS949</td>
</tr>
</tbody>
</table>

1 Russian users who use ANSI 1251 Cyrillic as their Windows codepage must edit the RUS.TXT file and compile it to RUS.CP using the NAV_UTIL CODEPAGE.

2 To work with solutions in Oracle Studio, when using Turkish, add the -nl en switch to the Target path in the Oracle Studio shortcut properties. For example: "C:\Program Files\Oracle\Studio1\studio.exe -nl en"
In many cases you must manually edit the metadata to configure parts of a solution or composition. Metadata is created in XML format. You define aspects of a solution by changing the values of the elements and attributes of the XML files that belong to the solution. Oracle Studio provides a graphical interface where you can define the various aspects of a solution. This interface lets you make changes easily without having to manually edit the XML file.

Preparing to Edit XML Files in Oracle Studio

You can edit XML files for the following items in Oracle Studio:

- Machines
- Bindings.
- Daemons
- Users

When you open an XML file, a graphical representation of the file is opened in the editor. The editor displays the elements and attributes in the file in the first column and their corresponding values in the second column. Each entry has an icon that indicates whether the entry is an element or an attribute. Click the Source tab to view the file in its native format. The following figure is an example of the editor’s view of an XML file.

Figure 6–9  XML Graphical Display
Do the following to edit an XML file in Oracle Studio

1. In the Design perspective, open the Navigator view.
2. In the Navigator view, find the item with the XML file that you want to edit. This can be a machine, binding, daemon, or user.
3. Right-click the item and select **Open as XML**. A graphical list of the file’s elements and attributes opens in the editor.
4. Find the element or attribute (property) that you want to change.
5. Click in the right column next to the property you are changing and edit or add the value.
6. Save the file, then select it again in the Project Explorer and press F5 to refresh. The XML file is updated automatically.

**Making Changes to the XML File**

You can also make the following changes to XML files in Oracle Studio:

- **Remove Objects**
- **Add DTD Information**
- **Edit Namespaces**
- **Add Elements and Attributes**
- **Replace an Element**

**Remove Objects**

You can delete an element, attribute, or other object from the XML file.

Do the following to remove an object

1. Right-click an object from the list in the editor.
2. Select **Remove**.

**Add DTD Information**

You can add DTD information to an element or attribute.

Do the following to add DTD Information

1. Right-click an element or attribute and select **Add DTD Information**. The Add DTD Information dialog box opens.
2. Enter the information requested in the dialog box. The following table describes the Add DTD Information dialog box.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root element name</td>
<td>The name of the XML root element.</td>
</tr>
<tr>
<td>Public ID</td>
<td>The value in this field is the Public Identifier. It is used to associate the XML file (using an XML catalog entry) with a DTD file by providing a hint to the XML processor. Click Browse to select an XML catalog entry from a list. An XML Catalog entry contains two parts, a Key (which represents a DTD or XML schema) and a URI (which contains information about a DTD or XML schema's location). Select the catalog entry you want to associate with your XML file.</td>
</tr>
</tbody>
</table>
| System ID    | The value in this field is the DTD the XML file is associated with. You can change the DTD the file is associated with by editing this field. The XML processor will try to use the Public ID to locate the DTD, and if this fails, it will use the System ID to find it. Click Browse to select a system ID. You can this in two ways:  
  - Select the file from the workbench. In this case, update the with the import dialog box.  
  - Select an XML catalog entry. |

3. Save the file, then select it again in the Project Explorer and press F5 to refresh. The XML file is updated automatically.

**Edit Namespaces**

You can make changes to the namespaces associated with an element or attribute. Do the following to edit namespaces

1. Right-click an element or attribute and select **Edit namespaces**. The Edit Schema Information dialog box opens.
2. Click on one of the buttons to make any changes to this information.

Do the following to add a new namespace

1. From the Schema Information dialog box, click Add.

2. The Add Namespace Definitions dialog box opens. Select one of the following:
   - **Select from registered namespaces**. This selection is available when the dialog box opens. Select from the list of registered namespaces and then click OK. If no registered namespaces are available, the list is empty.
   - **Specify new namespace**. Enter the information described in the following table:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix</td>
<td>The prefix is added to all qualified elements and attributes in the XML file.</td>
</tr>
<tr>
<td>Namespace Name</td>
<td>The namespace of the XML file.</td>
</tr>
<tr>
<td>Location Hint</td>
<td>The location of the XML schema of the XML file. An XML Catalog ID or a URI can be entered in this field. Click Browse to search for the schema you want. You can this in two ways: Select the schema from the workbench. In this case, update the with the import dialog box. Select an XML catalog entry. The Namespace Name and Prefix fields are be filled with the appropriate values from the schema (you must leave the fields blank for this to occur).</td>
</tr>
</tbody>
</table>

   **Note**: If you are creating an XML file from an XML schema, you cannot change the Namespace Name or Location Hint values.

To edit a namespace

1. From the Schema Information dialog box, click Edit.

2. Enter the information in the fields.
Add Elements and Attributes

You can add additional elements and attributes to the XML file.

Do the following to add Elements and Attributes

1. Right-click an element.
2. Select one of the following:
   - Add Attribute to add an attribute under the selected element.
   - Add Child to add another element under the selected element
   - Add Before to add another element above the selected element
   - Add After to add another element below the selected element

3. Provide a name for the element or attribute if required. You may also be able to select the element from a submenu. The element or attribute will be added to the file.

4. Save the file, then select it again in the Project Explorer and press F5 to refresh. The XML file is updated automatically.

Replace an Element

You can replace an element with another legal element.

Do the following to replace an element

1. Right-click an element from the list in the editor.
2. Select Replace with.
3. Select an element from the submenu. Only legal elements are available.
4. The original element is replaced with the selected element.
A
ACX trace parameter, 6-7
Adabas, setting up, 3-6
adapter inbound configuration, 4-1
add timestamp to traced events parameter, 6-7
Arithmetic fixed precision parameter, 6-12

B
binary XML log level parameter, 6-7
BPEL
 configuring inbound WDSL, 4-5
BPEL Process Manager, 4-1

C
cache
 maximum queries, 6-11
cache buffer size parameter, 6-8
code page parameter, 6-9
COM maximum XML size in memory parameter, 6-14
COM maximum XML size parameter, 6-14
COM XML transport buffer parameter, 6-14
commit on destroy, 6-13
continuous query
 prefix, 6-11
 retry interval, 6-11
timeout, 6-11
continuous query prefix parameter, 6-11
continuous query retry interval parameter, 6-11
continuous query timeout parameter, 6-11

disk space requirements
 IBM mainframe, 2-2
 Windows, 2-2
dsm maximum buffer size parameter, 6-13
dsm middle buffer size parameter, 6-14
dsmMaxSortBufferSize parameter, 6-14

D
daemon
 logging, B-3
 security, B-5
 server modes, 6-2
 shutting down, 5-7
 starting, 5-7
 timeout, 5-11
data sources, disabling caching, 6-10
data types
 atomic metadata, D-1
 NLS string parameter, 6-9

debug parameters
 ACX trace, 6-7
 add timestamp to traced events, 6-7
 environment, 6-7
 GDB trace, 6-7
 general trace, 6-7
 binary XML log level, 6-7
 log file, 6-7
 optimizer trace, 6-7
 query processor trace, 6-7
 query warnings, 6-7
 trace directory, 6-7
 Transaction extended logging, 6-8
 disable 2PC, 6-13
 disable command reuse parameter, 6-10
 disable compilation cache parameter, 6-11
 disable DS property cache parameter, 6-10
 disable insert parameterization parameter, 6-10
 disable metadata caching parameter, 6-10
 disable query parameterization parameter, 6-10
 disable row mark fail fetch parameter, 6-10
 disable SQS cache parameter, 6-12
 disable threads parameter, 6-10
 disabling
 parameterization of constants, 6-10
 parameterization of queries, 6-10

E
environment parameters
 ACX trace, 6-7
 add timestamp to traced events, 6-7
 Arithmetic fixed precision, 6-12
 cache buffer size, 6-8
 code page, 6-9
 COM maximum XML size, 6-14
 COM maximum XML size in memory, 6-14
 COM XML transport buffer, 6-14
 commit on destroy, 6-13
 continuous query prefix, 6-11
continuous query retry interval, 6-11
continuous query timeout, 6-11
debug, 6-7
disable 2PC, 6-13
disable command reuse, 6-10
disable compilation cache, 6-11
disable DS property cache, 6-10
disable insert parameterization, 6-10
disable metadata caching, 6-10
disable query parameterization, 6-10
disable row mark fail fetch, 6-10
disable SQS cache, 6-12
disable threads, 6-10
dsm maximum buffer size, 6-13
dsm maximum sort buffer size, 6-14
dsm middle buffer size, 6-14
expose XML fields, 6-12
file close on transaction, 6-14
file pool size, 6-14
file pool size per file, 6-14
first tree extensions, 6-11
GDB trace, 6-7
general, 6-8
general trace, 6-7
hash buffer size, 6-14
hash enable RO, 6-14
hash max open files, 6-14
hash primary event size, 6-14
hash secondary event size, 6-14
ignore segment bind failure, 6-11
insert from select commit rate, 6-12
language, 6-8, 6-9
log file, 6-7
maximum columns in parsing, 6-11
Maximum segmented database thread, 6-11
maximum SQL cache, 6-11
minimum number of parameters allocated, 6-11
modeling, 6-9
nav utility editor, 6-8
NLS string, 6-9
ODBC, 6-9
OLEDB, 6-9
optimistic for updates, 6-11
optimizer, 6-9
optimizer goal, 6-9
optimizer trace, 6-7
parallel processing, 6-10
parser depth, 6-12
procedures cache size, 6-12
prompt database user password, 6-11
query processor, 6-10
query processor trace, 6-7
query warnings, 6-7
recovery delay, 6-13
Replace invalid XML characters, 6-15
time limit, 6-13
token size, 6-12
trace directory, 6-7
transaction conversions parameters, 6-13
Transaction extended logging, 6-8
transaction extended logging, 6-13
transaction log file, 6-13
transactions, 6-13
temporary directory, 6-8
tuning, 6-13
use alternate qualifier, 6-11
use global file pool, 6-14
use table filter expression, 6-11
user commit confirm table, 6-13
write empty string as null, 6-11
XML, 6-14
XML date format parameter, 6-15
XML trim char column, 6-15
year 2000 policy, 6-8
error log, binary XML log level parameter, 6-7
error log, log file parameter, 6-7
exact arithmetic, 6-12
expose XML field parameter, 6-12
file close on transaction, 6-14
file pool size, 6-14
file pool size per file, 6-14
first tree extensions parameter, 6-11
floating point precision, 6-12
GDB trace parameter, 6-7
general parameters
  cache buffer size, 6-8
  environment, 6-8
  nav utility editor, 6-8
  temporary directory, 6-8
  year 2000 policy, 6-8
general trace parameter, 6-7
hardware requirements
  IBM mainframe disk space, 2-2
  IBM mainframe memory, 2-2
  UNIX, 2-2
  Windows disk space, 2-2
  Windows memory, 2-2
  Windows processor, 2-2
hash buffer size, 6-14
hash buffer size parameter, 6-14
hash enable RO parameter, 6-14
hash joins, 6-14
hash max open files parameter, 6-14
hash primary event size parameter, 6-14
hash secondary event size parameter, 6-14
post-installation, 2-9
preinstallation, 2-5
ignore segment bind failure parameter, 6-11
importing installation kit, 2-5
index cache
dsm middle buffer size parameter, 6-14
insert from select commit rate parameter, 6-12
installation kit, importing, 2-5
installing
IBM mainframe, 2-6
Solaris Operating System (SPARC), 2-14

J
joins
hash buffer size parameter, 6-14
hash max open files parameter, 6-14

L
language parameter, 6-9
language parameters
code page, 6-9
environment, 6-8, 6-9
language, 6-9
NLS string, 6-9
locking, optimistic, 6-11
log file parameter, 6-7
log files
binary XML log level parameter, 6-7
daemon options, B-3
log file parameter, 6-7
logging
daemon configurations, B-3
optimizer strategy, 6-7, 6-8

M
maximum columns in parsing parameter, 6-11
Maximum segmented database thread, 6-11
maximum SQL cache parameter, 6-11
memory
dsm maximum buffer size parameter, 6-13
dsm maximum sort buffer size parameter, 6-14
dsm middle buffer size parameter, 6-14
memory requirements
IBM mainframe, 2-2
Windows, 2-2
metadata
atomic data types, D-1
disabling retrieval from cache, 6-10
Microsoft software requirements, 2-3
minimum number of parameters allocated
parameter, 6-11
modeling environment parameters, 6-9

N
nav utility editor parameter, 6-8
nav utility editor, text editor, 6-8
NLS string parameter, 6-9

O
ODBC environment parameters, 6-9
OLEDB environment parameters, 6-9
operating system requirements
UNIX, 2-2
Windows, 2-3
optimistic for updates parameter, 6-11
optimizer
optimizer goal parameter, 6-9
trace directory parameter, 6-7
optimizer environment parameters, 6-9
optimizer goal parameter, 6-9
optimizer trace parameter, 6-7
Oracle Application Server requirements, 2-2

P
parallel processing environment parameters, 6-10
parallel processing parameters
disable threads, 6-10
parameterization of constants, disabling, 6-10
parameterization of queries, disabling, 6-10
parser depth parameter, 6-12
password, setting automatic prompt, 6-11
post-installation, IBM mainframe, 2-9
post-installation, Solaris Operating System (SPARC), 2-15
preinstallation, IBM mainframe, 2-5
preinstallation, Solaris Operating System (SPARC), 2-14
procedures cache size parameter, 6-12
processor requirements
UNIX, 2-2
Windows, 2-2
prompt database user password parameter, 6-11

Q
queries
disabling reuse, 6-10
disabling saved compilation, 6-11
enabling retrieval after failure, 6-10
maximum cached in memory, 6-11
maximum length of string, 6-12
maximum size after compilation, 6-11
query optimizer
logging strategy, 6-7, 6-8
optimizer goal parameter, 6-9
trace directory parameter, 6-7
query processor
environment parameters, 6-10
query processor parameters
Arithmetic fixed precision, 6-12
continuous query prefix, 6-11
continuous query retry interval, 6-11
continuous query timeout, 6-11
disable command reuse, 6-10
disable compilation cache, 6-11
disable DS property cache, 6-10
disable insert parameterization, 6-10
disable metadata caching, 6-10
disable query parameterization, 6-10
disable row mark fail fetch, 6-10
disable SQS cache, 6-12
emptyStringISNull parameter, 6-11
expose XML fields, 6-12
first tree extensions, 6-11
ignore segment bind failure, 6-11
insert from select commit rate, 6-12
maximum columns in parsing, 6-11
Maximum segmented database thread parameter, 6-11
maximum SQL cache, 6-11
minimum number of parameters allocated, 6-11
optimistic for updates, 6-11
parser depth, 6-12
procedures cache size, 6-12
prompt database user password, 6-11
token size, 6-12
use alternate qualifier, 6-11
use table filter expression, 6-11
query processor trace parameter, 6-7
query warnings parameter, 6-7

R
recovery delay, 6-13
Replace invalid XML characters parameter, 6-15
requirements
UNIX hardware requirements, 2-1
UNIX software requirements, 2-2
Windows hardware requirements, 2-2
Windows software requirements, 2-3
row optimization, optimizer goal parameter, 6-9

S
security
daemon configurations, B-5
setting automatic prompt, 6-11
segmented data sources, response upon failure, 6-11
servers
configuring modes, 6-2
reusable, 6-3
Reuse limit daemon parameter, 6-3, B-13
setting up Adabas, 3-6
SMS
See system managed storage
software requirements
Microsoft, 2-3
Oracle Application Server, 2-2
UNIX operating system, 2-2
Windows operating system, 2-3
Solaris Operating System (SPARC)
installing, 2-14
post-installation, 2-15
preinstallation, 2-14
sort buffer, dsms maximum sort buffer size parameter, 6-14
staging area, 1-4
stored queries, maximum in cache memory, 6-12
system managed storage, 2-5

t
temporary directory parameter, 6-8
temporary files, 6-8
threading model, 6-11
time limit parameter, 6-13
timeout
client idle, 5-11
daemon, 5-11
token size parameter, 6-12
trace directory parameter, 6-7
trace information, logging, 6-7
transaction conversions parameters, 6-13
transaction extended logging, 6-13
Transaction extended logging parameter, 6-8
transaction log file, 6-13
transactions environment parameters, 6-13
transactions parameters
commit on destroy, 6-13
disable 2PC, 6-13
recovery delay, 6-13
time limit, 6-13
transaction conversions parameters, 6-13
transaction extended logging, 6-13
transaction log file, 6-13
user commit confirm table, 6-13
tuning parameters
dsm maximum buffer size, 6-13
dsm maximum sort buffer size, 6-14
dsm middle buffer size, 6-14
environment, 6-13
file close on transaction, 6-14
file pool size, 6-14
file pool size per file, 6-14
hash buffer size, 6-14
hash enable RO, 6-14
hash max open files, 6-14
hash primary event size, 6-14
hash secondary event size, 6-14
use global file pool, 6-14

U
use alternate qualifier parameter, 6-11
use global file pool, 6-14
use table filter expression parameter, 6-11
user commit confirm table, 6-13

W
Workspace server mode, B-13
write empty string as null parameter, 6-11

X
XML
environment parameters, 6-14
XML date format parameter, 6-15
XML parameters
   COM maximum XML size,  6-14
   COM maximum XML size in memory,  6-14
   COM XML transport buffer,  6-14
   Replace invalid XML characters,  6-15
   XML date format parameter,  6-15
   XML trim char column,  6-15
XML trim char column parameter,  6-15

Y

Y2K
   See year 2000 policy parameter
year 2000 policy parameter,  6-8