
BEAAquaLogic
Enterprise
Security™®

Policy Managers Guide

Version 3.0
Document Revised: December 2007

Policy Managers Guide v

Contents
1. Introduction

Document Scope and Audience. 1-1

Guide to this Document . 1-2

Related Documentation . 1-2

Contact Us! . 1-3

2. Security Policies Overview
What is an AquaLogic Enterprise Security Policy? . 2-1

Closed-World Security Environment . 2-2

Policy Components . 2-3

Resources. 2-4

Virtual Resources . 2-6

Resource Attributes . 2-6

Action Groups . 2-6

Actions . 2-6

Identities . 2-7

Identity Attributes. 2-8

Groups . 2-8

Users . 2-9

Policies. 2-9

Roles and Role Mapping Policies. 2-10

Authorization Policies . 2-11

Delegation. 2-12

Summary of Policy Differences . 2-13

Declarations . 2-14

vi Policy Managers Guide

Constants . 2-14

Attributes . 2-15

Evaluation Functions . 2-15

3. Writing Policies
Policy Implementation: Main Steps . 3-1

Access Decision Process . 3-4

Authentication Service . 3-4

Role Mapping Service . 3-5

Authorization Service . 3-5

Credential Mapping Service. 3-5

Authorization and Role Mapping Engine . 3-6

Using the Entitlements Administration Application to Write Policies 3-7

Entitlements Administration Application Overview . 3-7

Resources . 3-8

Virtual Resources . 3-11

Resource Attributes. 3-11

Actions and Action Groups. 3-11

Identities. 3-12

Groups. 3-14

Users . 3-16

Identity Attributes . 3-17

Roles. 3-17

Writing Role Mapping Policies and Authorization Policies 3-18

Role Mapping Policies . 3-19

Authorization Policies. 3-19

Policy Reports . 3-20

Role Mapping Policy Reports. 3-20

Policy Managers Guide vii

Authorization Policy Reports . 3-21

Defining Declarations. 3-22

Binding Policies . 3-22

Deployment . 3-23

Distributing SSM Configurations . 3-23

Distributing Policies . 3-24

4. Advanced Topics
Designing More Advanced Policies . 4-1

Multiple Components . 4-2

Policy Constraints. 4-2

Comparison Operators. 4-4

Regular Expressions . 4-4

Constraint Sets. 4-6

String Comparisons . 4-7

Boolean Operators. 4-8

Associativity and Precedence . 4-9

Grouping with Parentheses . 4-9

Boolean Operators and Constraint Sets. 4-10

Declarations . 4-11

Constant Declarations . 4-11

Attribute Declarations . 4-13

Evaluation Function Declarations . 4-20

Policy Inheritance. 4-23

Group Inheritance . 4-24

Direct and Indirect Group Membership . 4-24

Restricting Policy Inheritance . 4-25

Resource Attribute Inheritance . 4-25

viii Policy Managers Guide

WebLogic Resource Type Conversions and Resource Trees . 4-26

Understanding Resource Nodes . 4-26

Root Node . 4-27

Application Deployment Parent Node . 4-27

Application Node . 4-27

Resource Type Node . 4-27

Resource Parent Node. 4-27

Resource Node . 4-27

Resource Paths and Policies for Common Resources. 4-29

EJB Resources . 4-30

EJB Resource Path Example. 4-30

EJB Resource action Mappings . 4-31

EJB Resource Dynamic Resource Attributes . 4-31

JNDI Resources . 4-32

JNDI Resource Path Example. 4-32

JNDI Resource Action Mappings . 4-33

JNDI Dynamic Resource Attributes . 4-33

JNDI Resource Policy Examples . 4-34

URL Resources . 4-34

URL Resource Path Example . 4-34

URL Resource Action Mappings . 4-35

URL Dynamic Resource Attributes . 4-35

HTTP Request Context Elements . 4-37

URL Resource Policy Examples. 4-38

JDBC Resources . 4-39

JDBC Resource Path Example . 4-40

JDBC Resource Action Mappings . 4-40

JDBC Resource Path Example . 4-41

Policy Managers Guide ix

JDBC Dynamic Resource Attributes. 4-42

JDBC Resource Policy Examples . 4-42

JMS Resources . 4-42

JMS Resource Path Example . 4-43

JMS Resource Action Mappings. 4-43

JMS Resource Example . 4-44

JMS Resource Policy Examples . 4-45

Web Services Resources. 4-45

Web Services Resource Path Example . 4-46

Web Services Resource Action Mappings . 4-47

Web Services Resource Policy Examples . 4-47

Web Services Dynamic Resource Attributes. 4-48

Web Services Resource Policy Examples . 4-48

Server Resources . 4-49

Server Resource Path Example . 4-49

Server Resource Actions Mapping . 4-50

Server Dynamic Resource Attributes . 4-50

Server Resource Policy Examples. 4-50

Subject Mapping . 4-51

Policy Element Naming. 4-52

Fully Qualified Names . 4-53

Policy Element Qualifiers . 4-54

Size Restriction on Policy Data. 4-54

Character Restrictions in Policy Data . 4-56

Special Names and Abbreviations. 4-61

Sample Policy Files . 4-62

Application Bindings [binding]. 4-64

Attribute [attr] . 4-64

x Policy Managers Guide

Declarations [dec] . 4-65

Directories [dir]. 4-66

Directory Attribute Schemas [schema]. 4-67

Mutually Exclusive Subject Groups [excl] . 4-67

Resources [object]. 4-68

Resource Attributes [object] . 4-69

Policy Distribution [distribution] . 4-69

Policy Inquiry [piquery] . 4-70

Policy Verification [pvquery] . 4-71

Actions [priv] . 4-72

Action Bindings [privbinding] . 4-72

Action Groups [privgrp] . 4-72

Role [role] . 4-73

Rule [rule] . 4-73

Distribution Targets . 4-74

Subject Group Membership [member] . 4-74

Subjects [subject] . 4-75

Using Response Attributes . 4-76

report() Function . 4-77

report_as() Function. 4-78

Report Function Policy Language . 4-78

Using Evaluation Plug-ins to Specify Response Attributes. 4-79

Using queryResources and grantedResources. 4-79

Resource Discovery. 4-81

5. Importing and Exporting Policy Data
Importing Policy Data . 5-1

Policy Import Tool . 5-2

Policy Managers Guide xi

Configuring the Policy Import Tool . 5-3

Setting Configuration Parameters . 5-3

Sample Configuration File . 5-7

Running the Policy Import Tool . 5-9

Understanding How the Policy Loader Works . 5-10

Exporting Policy Data . 5-11

Policy Export Tool . 5-11

Before You Begin . 5-11

Exporting Policy Data on Windows Platforms. 5-12

Exporting Policy Data on UNIX Platforms . 5-13

What’s Next . 5-13

6. Authorization Caching
Authorization Cache Operation . 6-1

Configuring Authorization Caching . 6-2

Authorization Caching Expiration Functions . 6-5

xii Policy Managers Guide

Policy Managers Guide 1-1

C H A P T E R 1

Introduction

This section describes the contents and organization of this guide—Policy Managers Guide. It
includes the following topics:

“Document Scope and Audience” on page 1-1

“Guide to this Document” on page 1-2

“Related Documentation” on page 1-2

“Contact Us!” on page 1-3

Document Scope and Audience
This document is a resource for system administrators who create and deploy security policies
using BEA AquaLogic Enterprise Security™. Typical tasks include writing security policies
using the ALES Administration Console, writing security policies outside the console and
importing them into ALES, and exporting security policies from ALES and importing them into
other ALES installations.

The topics in this document are relevant during the staging, production deployment, and
production use phases of a software project. For links to other AquaLogic Enterprise Security
documentation and resources, see “Related Documentation” on page 1-2.

It is assumed that readers understand Web technologies and have a general understanding of the
Microsoft Windows or UNIX operating system being used. Prior to using this document, you
should be familiar with the policy model used by BEA AquaLogic Enterprise Security and
described in the Introduction to BEA AquaLogic Enterprise Security.

http://e-docs.bea.com/ales/docs30/secintro/index.html

1-2 Policy Managers Guide

Guide to this Document
This document describes tasks associated with deploying and managing AquaLogic Enterprise
Security. It is organized as follows:

Chapter 2, “Security Policies Overview,” describes the different types of policies, describes
how to design policies and provides general information about the components of policies:
effects, actions, roles, resources, identities, delegation, and declarations.

Chapter 3, “Writing Policies,” describes how to use the Administration Console to write
policies.

Chapter 4, “Advanced Topics,” describes how to write more advanced and complex
policies and how to create policy data files.

Chapter 5, “Importing and Exporting Policy Data,” describes how to import and export
policy data to and from the policy database.

Chapter 6, “Authorization Caching,” describes authorization caching and how this caching
is affected by policy or user profile changes.

Related Documentation
For information about other aspects of AquaLogic Enterprise Security, see the following
documents:

Introduction to BEA AquaLogic Enterprise Security—This document provides overview,
conceptual, and architectural information for AquaLogic Enterprise Security.

Administration Server Installation Guide—This document describes installing
Administration Server.

SSM Installation and Configuration Guide—This document describes installing and
configuring Security Service Modules for AquaLogic Enterprise Security.

Programming Security for Java Applications—This document describes how to implement
security in Java applications. It includes descriptions of the security service Application
Programming Interfaces and programming instructions.

Programming Security for Web Services—This document describes how to implement
security in web servers. It includes descriptions of the Web Services Application
Programming Interfaces.

http://e-docs.bea.com/ales/docs30/installssms/index.html
http://e-docs.bea.com/ales/docs30/secintro/index.html
http://e-docs.bea.com/ales/docs30/installadmin/index.html
http://e-docs.bea.com/ales/docs30/programmersguide/index.html
http://e-docs.bea.com/ales/docs30/webservicesprogrammersguide/index.html

Contact Us!

Policy Managers Guide 1-3

Developing Security Providers for BEA AquaLogic Enterprise Security —This document
provides security vendors and security and application developers with the information
needed to develop custom security providers.

Javadocs for Java API—This document provides reference documentation for the Java
Application Programming Interfaces that are provided with and supported by this release of
BEA AquaLogic Enterprise Security.

Wsdldocs for Web Services API—This document provides reference documentation for the
Web Services Application Programming Interfaces that are provided with and supported by
this release of BEA AquaLogic Enterprise Security.

Javadocs for Security Service Provider Interfaces—This document provides reference
documentation for the Security Service Provider Interfaces that are provided with and
supported by this release of BEA AquaLogic Enterprise Security.

Javadocs for BLM API—This document provides reference documentation for the Business
Logic Manager (BLM) Application Programming Interfaces that are provided with and
supported by this release of BEA AquaLogic Enterprise Security.

Contact Us!
Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be reviewed
directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using, as well as
the title and date of your documentation. If you have any questions about this version of BEA
AquaLogic Enterprise Security, or if you have problems installing and running BEA AquaLogic
Enterprise Security products, contact BEA Customer Support through BEA WebSupport at
http://www.bea.com. You can also contact Customer Support by using the contact information
provided on the Customer Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages.

http://e-docs.bea.com/ales/docs30/dvspisec/index.html
http://e-docs.bea.com/ales/docs30/javadocs/JavaAPI/index.html
http://e-docs.bea.com/ales/docs30/javadocs/WsdlAPI/wsdldoc/index.html
http://e-docs.bea.com/ales/docs30/javadocs/SSPI/index.html
http://e-docs.bea.com/ales/docs30/javadocs/BlmAPI/index.html
http://www.bea.com

1-4 Policy Managers Guide

Policy Managers Guide 2-1

C H A P T E R 2

Security Policies Overview

This section covers the following topics:

“What is an AquaLogic Enterprise Security Policy?” on page 2-1

“Policy Components” on page 2-3

“Resources” on page 2-4

“Identities” on page 2-7

“Policies” on page 2-9

“Declarations” on page 2-14

What is an AquaLogic Enterprise Security Policy?
AquaLogic Enterprise Security is a fine-grained entitlements engine that allows the user to
centrally define and manage a set of policies to control access for both application software
components (for example URLs, EJBs, and EJB methods) as well as the application business
objects (for example accounts and patient records) that make up the application. A set of access
control policies is evaluated and enforced locally in the application container so application
context can be included as part of the access control decision. A major benefit of using
AquaLogic Enterprise Security to implement access control is that it allows you to remove
security logic from the application. This enables you to take access control decisions out of the
hands of your developers and define and manage access control consistently across multiple
applications.

Secur i t y Po l i c ies Overv iew

2-2 Policy Managers Guide

Policies are statements that work together to define access control for your business resources. A
resource is any object that represents an underlying application or application component that
needs to be protected from unauthorized access. A well-written set of policies accurately
represents the access control requirements for your business, is easy to manage, and is designed
for maximum efficiency.

You write separate policies to grant or deny access actions to your business resources to users,
groups, and roles under some set of conditions, or constraints. Therefore, before you begin to
write policies, you must know the access control requirements of your business, the resources that
are to be protected, who the users are and their responsibilities, and what actions the users are to
have on the resources.

There are two types of policies: authorization policies and role mapping policies. Each type has
different functions:

Authorization policies—Also referred to as access policies, define which users, groups, or
roles have what actions on which resources. Authorization policies are used to define the
access control for application software components (for example, URLs, JSPs, EJBs, and
so on), as well as business objects (such as, accounts, customer records, and similar items)
in the application.

Role mapping policies—Define what users and groups belong to what roles for what
resources. You use role mapping policies to define how, when, and under what constraints
roles are assigned to what users and groups.

Closed-World Security Environment
The policy evaluation strategy imposes a closed-world security environment. This means that all
actions on all protected resources are implicitly denied until authorization policies grant specific
actions. In other words, an authorization policy must grant actions on resources before users can
do anything. Once access is granted, you must explicitly deny it to revoke that right — and
explicit DENY policies cannot be overruled.

This provides security that errs on the side of caution. For example, if you forget to deploy an
authorization policy, someone will be denied access. While this is problematic, from a security
standpoint it is preferable to inadvertently allowing access to resources that should be protected.
Users who are denied required access will almost certainly ask for corrective action, while users
inadvertently granted unauthorized access are unlikely to bring this to the attention of
administrators — with potentially disastrous consequences.

Po l i cy Components

Policy Managers Guide 2-3

Policy Components
All policies follow a specified sentence-like syntax. The ALES Entitlements Administration
application provides a graphical interface that facilitates construction of policies. The constraints
portion of the policies can be directly entered as described in this guide, however the main part
of the policy is constructed via the graphical interface. The ALES Administration Console allows
directly entering entire policies, however use of this console to edit policies not suggested post
ALES 3.0.

A single policy can have multiple actions, resources, and defined subjects. The general syntax for
an AquaLogic Enterprise Security policy is as follows:
Effect (action|role, resource, subject, delegator) IF constraint;

The Effect can be to grant, to deny, or to delegate an action or role. Grant is used to assign
an action or a role to a subject. Deny is used to deny an action or a role from a subject.
Delegate is used to assign an action or a role that has been granted to one subject to
another subject.

An action describes a action on a resource. A role is a name that can be assigned to a set
of users, similar to a group. Authorization policies assign actions. Role mapping policies
assign roles. Delegation policies can delegate actions or roles.

A resource is a protected object.

A subject can be a user, group, or role. For authorization policies, subjects can be users,
groups, or roles. For role mapping policies, subjects can be users or groups.

A delegator is a user, or subject, whose action or role is being delegated, or assigned, to
another subject. Delegation policies that delegate actions can delegate the actions from one
user to other users, groups, or roles. Delegation policies that delegate roles can delegate the
role to other users or groups. You cannot delegate a role from one user to role.

Constraints are conditions that must be true for the policy to evaluate to true. A broad
range of operators and functions can be used to define constraints, but in general,
constraints are made up of attribute/value pairs with some comparison operator. Individual
constraints can also be combined with logical operators such AND, OR, and NOT.
Conditions can include a date, a time, a time period, a day of the week, a day of the month,
a day of the year, a location, and other attributes. You may also write custom attributes and
use them as conditions. In addition to attributes that you may define specifically for users
and groups and then use them as conditions, you can also define different types of
declarations and use them as conditions.

Policies must adhere to the following rules:

Secur i t y Po l i c ies Overv iew

2-4 Policy Managers Guide

Parentheses enclose the action or role, resource, subject, and delegator, as a group.

Commas separate the action or role, resource, subject, and delegator.

A delegator cannot be a group or a role.

The delegator portion of a policy is used only for delegation policies.

A delegator must be a user, not a group or role.

For authorization policies, subjects can be users, groups, and roles. However, for role
mapping policies, subjects are limited to users and groups. Roles cannot be used as
subjects in role mapping policies.

You may not delegate to a role, only to a user or group.

The keyword IF indicates a constraint.

All policies end with a semicolon.

Resources
A resource is used to represent an underlying application or application component (or any
object), that can be protected from unauthorized access using authorization policies. Resources
are often hierarchical in nature. Resources can be specific application software components
managed by the container (for example, URLs, EJBs, JSPs, and so on) or any business object in
the application (for example, Reports, Transactions, Revenue Charts). Resources may have
attributes; for example bank accounts have owners and transfer limits. Resources are hierarchical
and child resources inherit the policies and attributes from their parent.

When defining resources you start by defining the top-level resource in the resource tree and then
define the resources that make up the tree. Once a resource is defined, you can write authorization
policies to grant or deny access actions to users, groups, or roles for the top-level resource and
resources on the tree. Hence, defining a resource tree is a necessary prerequisite to writing
policies. For example, if you define a resource named TellerApp (see Figure 2-1), you can then
write an authorization policy that grants or denies access actions to the TellerApp resource.

Resources

Policy Managers Guide 2-5

Figure 2-1 Resource Mapping

Some typical resources that you might want to protect with ALES include:

an application, an application window, or a dialog box

specific business transactions, such as a money transfer or security trade

application controls, such as buttons and menu selections

database or directory server structures

web pages, servlets, and Enterprise Java Beans (EJBs)

desktops, books, pages, and portlets accessed through BEA WebLogic Portal

Note: In development mode, you may use the Resource Discovery setting for an SSM to help
define resources for a particular application. For more information, see “Resource
Discovery” on page 4-81.

For more information about resources, see the following topics:

“Virtual Resources” on page 2-6

“Resource Attributes” on page 2-6

“Action Groups” on page 2-6

“Actions” on page 2-6

Secur i t y Po l i c ies Overv iew

2-6 Policy Managers Guide

Virtual Resources
In addition to the resources that you define in the resource tree, you have the option of defining
virtual resources. Once you configure a resource to allow virtual resources, any of its children are
protected by the same policies as the resource, even though they do not appear in the resource
tree. For example, if you define resource "/report" to be virtual, any authorization requests for
the resource "/report/Monthly/September" would be subject to the policies defined for
"/report". This allows you to avoid having to define a specific resource node in the tree for
every resource to be protected. For large applications with many hierarchical resources (e.g. web
URLs) this can mean a considerably smaller resource tree.

Resource Attributes
You can associate attributes with resources. An attribute contains information about a
characteristic of the resource to which it is associated. For example, filetype could be a
resource attribute that you use to define an html, image, jsp, or pdf file type. Then, you could grant
access to all pdf files in a directory by adding the condition: if filetype = pdf.

Action Groups
An action group is constructed by grouping multiple actions. An action can belong to more than
one action group. In addition to the action groups that are provided in the product, you can define
your own with distinct characteristics. Action groups are not used in policies. They are simply a
way to organize actions and have no meaning when writing a policy and are only provided to
simplify the task of choosing the right action.

It is common to define an action group that applies to a particular application or set of
transactions. You can control access to action groups (those provided in the product and those
that are user-defined) through delegated administration.

Actions
An action represents an activity or task in your business policy that can be executed on a resource.
Actions in a policy specify what action is to be granted or denied on a resource. Actions can be
standard actions associated with specific software components (for example Get and Post for a
URL) or a custom action for a business object in an application (for example, transfer for a bank
account). The actions that may be granted or denied on a particular resource are limited by the
operations supported by the resource. For example, a simple text file may support Read, Write,
Copy, Edit, and Delete operations. Similarly an executable (.exe) may support operations such as

Iden t i t i es

Policy Managers Guide 2-7

Copy, Delete, and Execute. A more complex resource may support far more complex actions. For
example, a checking account application may support operations such as deposit, withdrawal,
view account balance, view account history, transfer to savings, and transfer from savings.

In addition to the actions that are provided in the product, you can define your own actions. You
can also organize actions into logical groups for ease of management.

You use actions to write authorization polices as follows:

grant(action, resource, subject[users, groups, roles]) IF constraint;

For example, if you have the business security requirement: "Only lead tellers can open an
account," you might define an OpenAccount action and a LeadTellers role. Now, to grant
LeadTellers (the role) the authority to open an account (the action), the authorization policy
might look like this:

grant(//priv/OpenAccount, //app/policy/TellerApp, //role/LeadTellers)

if time24 in [900..1700] AND

dayofweek in [Monday..Friday];

When this policy is deployed, only tellers who are assigned the LeadTellers role are allowed to
used the TellerApp to open an account and they may do so only between the hours of 9:00 AM
and 5:00 PM (a time-of-day constraint) on Monday through Friday (a days-of-the-week
constraint).

Identities
ALES provides the ability to manage identity directories. An identity directory serves as a logical
container for a collection of users and groups, and possibly identity attributes. Therefore, the first
step in defining identities is to define the directory. Once you have defined the identity
information, you can use it to write authorization policies and role mapping policies. In
authorization and role mapping policies, the user identity (users, groups, roles) is defined in the
subject element of the policy.

You may define multiple identity directories. The number of directories you define depends on
the level of granularity needed to separate your user community. You may want to have one
global directory containing all users. In this case, you can populate a single directory using
multiple external repositories. Having one directory for all users requires that you have a unique
name for each user and group across all of your identity repositories. If you cannot guarantee this
when you integrate your identity repositories, then you should probably maintain separate
directories. For example, you might have one directory for customers, one for employees, and
one for partners.

Secur i t y Po l i c ies Overv iew

2-8 Policy Managers Guide

The following topics describe user identity components:

“Identity Attributes” on page 2-8

“Groups” on page 2-8

“Users” on page 2-9

Identity Attributes
A user or group can contain attributes that further describe its characteristics—who they are and
what they can do; these are referred to as identity attributes. You can use these identity attributes
to define dynamic constraints for a role to which a user or group belongs. For example, consider
that account balance is an attribute of a user. To allow customers with an account balance over
$100,000 to access the premier banking features of your application, you define
accountbalance as an attribute and apply it to each customer in the bankusers group. Next,
you define the premierbanking role and write a role mapping policy that only allows access to
the application if the customer is in the premierbanking role. Then you write an authorization
policy that defines the actions you want to allow on the bankapp resource and define the subject
as the role premierbanking.

Grant(//role/premierbanking,//app/policy/bankapp,

//sgrp/bankusers/customers/) if accountbalance > 100000

This role mapping policy allows customers who are assigned the premierbanking role to access
the resource called bankapp if they have an accountbalance of over $100,000.

Groups
A group is a collection of users that have something in common, such as a department, a job
function, or a job title. For example, a group named Accounting might contain users in the
accounting department. It is important to realize that this does not directly reflect what access
rights they have. A group can contain either users or other groups; users who are assigned to a
group are called group members. Nested memberships of groups within a group form a hierarchy.
Group membership can be assigned only from within the same directory. Groups have a static
identity, or name, which you assign.

If a group has subgroups and an authorization policy grants certain actions to the group, the
members of subgroups will have the same actions. This is true because each member of a
subgroup is by default a member of the parent group.

Po l ic i es

Policy Managers Guide 2-9

In addition to managing groups in the policy database, AquaLogic Enterprise Security can use
group membership information from a corporate directory. Typically, a group hierarchy is based
on an organizational model of the company, although this is not a requirement. For example, the
source of your user data might be an employee database, where users belong to four groups: the
employee group, the Sales department group, the London office group, and the star-salesmen
group.

Thus, you want to create groups of users whose tasks are related and for whom the policy
enforcement is the same. In the following example (see Figure 2-2), Tellers are assigned to the
Teller Group.

Figure 2-2 Users and Groups

Users
A user corresponds to an individual who makes a request to access a resource, although a user
can also be an automated process that accesses a resource. You can assign users to groups from
the same directory. Each user within a directory must have a unique identity or user name. Users
can be associated with certain characteristics or attributes that contain information about the user.
Policies can be written specifically for individual users, but keep in mind that it may be more
efficient to write policies that apply to a collection of users defined as a role or a group.
AquaLogic Enterprise Security supports both techniques.

Policies
To specify the access control requirements for your resources you write a set of policies that may
include role mapping policies and authorization policies.

The following topics describe the different types of policies:

“Roles and Role Mapping Policies” on page 2-10

Determine the identity
of each teller.

Users

Teller Group
Create a group of tellers. This group is

typically established through an
external application.

Apply attributes for
each user.

Attributes

Secur i t y Po l i c ies Overv iew

2-10 Policy Managers Guide

“Authorization Policies” on page 2-11

“Delegation” on page 2-12

“Summary of Policy Differences” on page 2-13

Roles and Role Mapping Policies
Roles provide a useful abstraction from Users or Groups. For example the Accounting Manager
role may be assigned to a specific Group of individuals but only in the context of the Payroll
application. In another context or application, the same User or Group does not have that role.
Roles in ALES are defined by Role Mapping Policies which have the same construct and follow
the same syntax and ALES Access Policies. Roles are created in a hierarchy. Users who are
granted actions based on a child Role inherit the actions from that Role's parents. Users that are
denied actions based on a Parent role are also denied actions for that role's children.

Separation of Duties enables the ALES administer to exclude users from a specified role if they
are members of another specified role. For example, an administrator may prevent users mapped
to the Traders role from also being mapped to the Trade Approvers role.

Roles can have attributes. Role attribute inheritance follows the same logic as Role inheritance.

Role definitions are governed by an underlying Role mapping policies that define when to grant
roles to users or groups for a particular resource.

The basic format of a role mapping policy is as follows:

grant|deny(role, resource, subjects[users, groups]) IF constraints;

Where the grant|deny portion is the policy effect and either allows or prohibits the role to the
subject for the given resource, the role defines the role, the resource is the application or
application component to which the role is scoped, subjects specify which users and groups
belong to the role, and constraints define any conditions that apply to the role.

For example, the following policy grants the accountants role to the user Bill on the payroll
resource:

GRANT(//role/accountants, //app/policy/acme/payroll, //user/acme/Bill/);

At runtime, user access actions are computed based on the roles the user has been assigned—
either explicitly or through a role mapping policy—at the time an access request is made. Unlike
groups, which are relatively static and persist for duration of the runtime session, roles are highly
dynamic and are assigned to users by processing role mapping policies. Role mapping

Po l ic i es

Policy Managers Guide 2-11

significantly reduces the number of policies required and makes features like role delegation
easier to manage.

A role may apply to one or more users and groups and usually refers to some set of related tasks.
For example, a group of bank tellers might have access to the same set of applications (resources)
to perform specific banking tasks; thus, you might have a role called TellerRole and assign the
BankTellers group to that role. Figure 2-3, Role Mapping Policy shows a group of tellers who
belong to a Teller group that has membership in the CustomerService role that, in turn, has
access to the Teller resource. The actions allowed on that resource are defined by an
authorization policy, which you also define. Now, anyone who is not in the CustomerService
Role does not have access to the Teller resource. You can also apply restrictions and conditions
to limit access to the resource at runtime by defining the constraints such as time-of-day or
day-of-the-week on the role mapping policy and/or the authorization policy.

Figure 2-3 Role Mapping Policy

Authorization Policies
An authorization policy specifies what a user is allowed to do with a resource. The syntax of an
authorization policy is as follows:

grant|deny(action, resource, subjects[users, groups, roles]) IF

constraints;

Role Mapping
Tellers

Teller Resource

Determine who is a teller.

Determine which resources the
role can access and write an
Authorization policy to grant
privileges for the role to that

resource.

Teller Group
Create a group of tellers. This group is

typically established through an
external application.

CustomerService Role
Create a role and write a role
mapping policy that assigns
theTeller group to that role.

Secur i t y Po l i c ies Overv iew

2-12 Policy Managers Guide

Where the grant|deny portion is the policy effect and either allows or prohibits the action to the
subject for the given resource, the action defines the action, resource defines the application
or application component of the action, subjects specify which users, groups, and roles are
granted the action, and constraints defines any conditions that apply to the action.

For example, this policy grants any actions supported by the acme payroll application (the
resource) to the user agarcia in the acme directory:

GRANT(//priv/any, //app/policy/acme/payroll, //user/acme/agarcia/);

The policy grants any actions supported by the acme payroll application (the resource) to the
role accountants so only users and groups who have been granted the accountants role are
granted this action:

GRANT(//priv/any, //app/policy/acme/payroll, //role/accountants/);

Therefore, before anyone can gain this action, a role mapping policy has to be written and
deployed that grants this role to a user or a group.

It is important to note that by default, all access to a resource is denied until an authorization
policy is written and deployed that explicitly grants an access action, or an entitlement, on that
resource to a user, group, or role. If the authorization policy only grants an entitlement on a
resource to a role, then a role mapping policy must be written and deployed that assigns a user or
a group the defined role.

If an authorization policy denies a previously granted entitlement, it takes precedence over the
grant. Explicit DENY authorization policies cannot be overruled. A practical use of a DENY policy
is to explicitly deny an entitlement to ensure that a user or group can never gain access to a
specific resource. For example, this policy denies the view action related to the acme payroll
application to everyone belonging to the group named receptionist in the acme directory:

DENY (//priv/view, //app/policy/acme/payroll, //sgrp/acme/receptionist/);

Delegation
Delegation allows you to share the actions of one user with another user, group or role. Delegate
is, in effect, an access or role policy.

DELEGATE (action|role, resource, subject, delegator) IF constraint;

Po l ic i es

Policy Managers Guide 2-13

A DELEGATE policy that delegates a action allows you to share the actions of one user with
another user, group, or role. You may also add a constraint that restricts this sharing to a certain
time of day or day of the week, for example:

DELEGATE (//priv/any, //app/policy/acme, //user/acme/joe/,

//user/acme/larry/) if dayofweek in [Monday..Friday];

At runtime, this policy delegates any actions that larry (the delegator) has on the acme
application to joe if the day of the week is Monday, Tuesday, Wednesday, Thursday, or Friday.

A DELEGATE policy that delegates a role allows you to share a role of one user with another user
or group. You may also add a constraint that restricts this sharing to a certain time of day or date
range, for example:

DELEGATE (//role/accountants, //app/policy/acme, //user/acme/joe/,

//user/acme/bill/) IF ThisMonth = December;

delegates the role accountants on the acme application from bill (the delegator) to joe at
runtime if the current mouth is December.

Note: Before a delegator’s action or role can be delegated, the ARME must verify that the
delegator has the action or role to be delegated on the specified resource. To perform the
verification, the ARME uses information about the delegator (password, groups, roles)
that is stored in the policy database to build a Subject for the delegator. If the database
does not contain the required information, the delegation policy will not be executed.

Summary of Policy Differences
Table 2-1 summarizes the functions of authorization and role mapping policies and highlights the
differences.

Table 2-1 Summary of Policy Differences

Policy Component Authorization Policy Role Mapping Policy

Effect (Grant,
Deny, or Delegate)

GRANT permits the specified actions
to a user, group, or role.

DENY denies the action to a user, group,
or role.

GRANT permits the specified role to the
specified user or group.

DENY denies the role to the specified user
or group.

Action The action granted or denied. NA

Role NA The role granted or denied.

Secur i t y Po l i c ies Overv iew

2-14 Policy Managers Guide

Declarations
A declaration is a variable that represents either a predefined value (for example, days of the
week) or a value that is dynamically defined at runtime (the date). You use declarations in policies
as attributes. To help you design policies, built-in declarations are pre-defined for your use. You
can also define custom declarations to suit your requirements.

You can define three types of declarations:

“Constants” on page 2-14

“Attributes” on page 2-15

“Evaluation Functions” on page 2-15

Constants
A constant is a named value or set of values that does not change at runtime. You can reference
constants in policies. For example, if you set a constant named Rate to 12, policies can then refer
to the constant Rate rather than using its literal value, 12. Using constants in policies makes them
more readable and makes changes to values that are used across of set policies easier

Constants are especially useful if the value changes periodically and you use the constant in more
than one location. For example, if you enter a rate value 12 into multiple policies, you need to
individually change each one. Instead, if you use the constant Rate, you can edit the value once
and have it take effect in every policy that refers to the constant.

Resources The resource to which the action is granted
or denied.

The resource to which the role is granted or
denied.

Subjects The user, group, or role to which the action
is granted or denied.

The user or group to which the role is
granted or denied.

Delegator The user whose action is delegated. The user whose role is delegated.

Constraints Conditions under which the action is
granted, denied, or delegated.

Conditions under which the role is granted,
denied, or delegated.

Table 2-1 Summary of Policy Differences (Continued)

Policy Component Authorization Policy Role Mapping Policy

Dec la rat ions

Policy Managers Guide 2-15

Attributes
Attributes represent characteristics that define dynamic values, users, groups, and configurations.
Attributes may be associated with users or groups (identity attributes), resources (resource
attributes), or policy requests (dynamic attributes). Attributes may be descriptive, may be used to
configure policy engine behavior, manage delegated administration, or used in forming policy as
part of the policy constraint.

Attributes must have a defined type that denotes the range of legal values it may have. A number
of predefined types exist, such as string, integer, date, time, and IP address. You can also use
custom types. The value of the attribute may be assigned to only one instance of an attribute. An
attribute may be a multi-valued list.

Evaluation Functions
An evaluation function is a named function that you can use in a policy constraint to perform
more advanced operations. Each function may have a number of parameters and returns a
Boolean result of true or false.

AquaLogic Enterprise Security provides a number of predefined evaluation functions and also
allows you to declare your own custom evaluation functions. You can use a predefined function
in your application by using a plug-in extension that a programmer creates specifically for your
application. To use an evaluation function, you must register it as a plug-in with the authorization
and role mapping providers used in the Security Service Module (SSM) configuration and declare
it in a policy. For information about creating and using plug-in extensions, see Provider
Extensions in the Administration Reference.

http://e-docs.bea.com/ales/docs30/adminref/plugins.html
http://e-docs.bea.com/ales/docs30/adminref/plugins.html

Secur i t y Po l i c ies Overv iew

2-16 Policy Managers Guide

Policy Managers Guide 3-1

C H A P T E R 3

Writing Policies

The following topics are covered in this section:

“Policy Implementation: Main Steps” on page 3-1

“Access Decision Process” on page 3-4

“Using the Entitlements Administration Application to Write Policies” on page 3-7

Policy Implementation: Main Steps
To write and deploy a set of policies, perform the following tasks (see Figure 3-1):

Task 1: Define the security requirements for your business. Understand the functions of your
applications and the various types of users who need to access them under different
circumstances.

Task 2: Define resources. Determine that resources you want to protect and define them in a
resource tree. Resources include the resources to be protected, the resource attributes, the actions
that will be used to access the resources, and, optionally, action groups.

Task 3: Define an identity directory and the identity attributes, users, groups, and roles that are
to make up the directory.

Task 4: Define declarations to use with the resources and identities and as constraints in
authorization policies, role mapping policies, and delegation policies.

Task 5: Write role mapping policies that control which users and groups have membership in
specific roles, under what constraints, and on which resources.

3-2 Policy Managers Guide

Task 6: Write authorization policies to define what actions apply to each resource, under what
conditions, and which roles a user or group must have membership in to be granted the defined
action to the specified resource.

Task 7: Bind the top-level resource and the identity directory to the authorization and role
mapping providers configured in the security configuration. By doing this you choose which
Security Service Module (SSM) enforces policies for these resources.

Task 8: Deploy the set of policies to the SSM. The SSM starts to enforce policies only after the
policies are deployed.

Po l icy Implementat i on : Main S teps

Policy Managers Guide 3-3

Figure 3-1 Policy Implementation Tasks

While the subsequent sections of this document describe how to use the Entitlements
Administration Application to define and manage role mapping policies and authorization
policies, you may also use the Business Logic Manager (BLM) as it offers the same capabilities.

For instructions on using the Entitlements Administration Application to perform policy
implementation tasks, see “Using the Entitlements Administration Application to Write
Policies” on page 3-7.

Define Resources
(Resource Tree, Privileges)

Write Authorization Policies

Bind Resources and Identity Directory
to Authorization and Role Maping

Providers

Deploy Policy Set to the SSM

Define the Security Requirements
(Resources, Privileges, Users)Task 1

Task 2

Task 6

Task 7

Task 8

Define Identities
(Directory, Users, Groups, Roles)Task 3

Write Role Mapping PoliciesTask 5

Define DeclarationsTask 4

3-4 Policy Managers Guide

For instructions for using the BLM, see the Javadocs for the Business Logic Manager.

Access Decision Process
AquaLogic Enterprise Security provides the following services and components for securing
access to resources:

“Authentication Service” on page 3-4

“Role Mapping Service” on page 3-5

“Authorization Service” on page 3-5

“Credential Mapping Service” on page 3-5

“Authorization and Role Mapping Engine” on page 3-6

Authentication Service
The authentication service is responsible for authenticating the user. There are two ways a user
can be authenticated.

The authentication service tells the container what type of credentials are required and then
the SSM authenticates those credentials with an external source, such as a directory or
database. ALES supports a wide range of authentication stores and an API is also provided
to write custom authentication modules.

Identify the user is via identity assertion. The ALES SSM authentication service provides a
means for plugging in an Identity Assertion service that can validate a token provided by
an external system. Several Web single sign-on vendors provide Identity Assertion plug-ins
for ALES.

You can configure multiple authentication services to authenticate, assert identity, and collect
additional group or attribute information at authentication time.

Once the user is authenticated, the service will create a subject object. The subject can contain
one or more user principles with attribute information, one or more group principles for the
groups in which the user has membership, and any attributes associated with those groups. The
subject is provided to the authorization and role mapping services.

http://e-docs.bea.com/ales/docs30/javadocs/BlmAPI/index.html

Access Dec is i on P rocess

Policy Managers Guide 3-5

Role Mapping Service
Given the subject, which is provided by the authentication service, the role mapping service
evaluates the role mapping policies to determine if a user or group is granted a role on the
requested resource. Roles provide a level of abstraction between users and the actions they have
in a given context (within an application). Membership rules can be time-based so that users can
delegate their actions for a limited time (for example, when they go on vacation). Roles are
always associated with resources and can be granted broadly or within the context of a particular
application resource.

Authorization Service
The actual authorization decision (isAccessAllowed) is made based on identity, group, or role
membership.

The authorization service evaluates access control policies to determine what a user can do on a
particular resource. Policies can include constraints that the authorization service evaluates
against static data (such as user attributes retrieved when a user is authenticated) or dynamic data
retrieved at runtime when the policy is evaluated. Further, the authorization service can take
application context (for example, EJB parameter values) into account at evaluation time. The
authorization service can return authorization decisions or entitlements through the report
function.

The authorization service supports the use of multiple authorization providers. This allows you
to use ALES in conjunction with an existing entitlements system. When multiple authorization
providers are used, a custom adjudicator is required to determine the outcome when conflicts
occur between these providers.

Credential Mapping Service
The credential mapping service provides a mechanism to address single sign-on to enterprise
systems. This service can map user identity to an appropriate set of credentials for authentication
to enterprise applications, such as PeopleSoft, SAP, and relational databases. This service can
also be used to remove the need to embed credentials within application code. ALES can support
a number of identity token formats, such as SAML, to represent the user’s identity.

3-6 Policy Managers Guide

Authorization and Role Mapping Engine
At runtime, the ASI Authorizer, located in the Security Service Module instance where the
polices are deployed, uses role mapping policies and authorization policies to make decisions that
grant or deny access to users.

Note: The ASI Authorizer is also known as the Authorization and Role Mapping Engine
(ARME).

Figure 3-2 shows the access control decision process. As illustrated, before you can write policies
to define access control for your business resources, you must define those resources, the
associated user identity, and any custom declarations you may want to use. Once resources and
user identify are defined and the policies are written, they do not take effect until they are bound
to the Authorization and Role Mapping providers in the deployed Security Service Module
(SSM). At runtime, user requests to perform actions on specific resources are evaluated to
determine whether the user is granted the requested access.

Figure 3-2 Access Control Decision Process

Us ing the Ent i t l ements Admin is t rat ion App l icat ion to Wr i te Po l i c i es

Policy Managers Guide 3-7

Using the Entitlements Administration Application to
Write Policies

Policies control what actions users can perform on resources. A set of policies can be applied to
a single resource, an entire application, or implemented globally as a structured collection of
entitlements for an organization representing the superset of all of your application policies.

The following sections describe how to write security policies using the Entitlements
Administration Application:

“Entitlements Administration Application Overview” on page 3-7

“Resources” on page 3-8

“Identities” on page 3-12

“Roles” on page 3-17

“Writing Role Mapping Policies and Authorization Policies” on page 3-18

“Defining Declarations” on page 3-22

“Binding Policies” on page 3-22

“Deployment” on page 3-23

Entitlements Administration Application Overview
Figure 3-3 shows how the Entitlements Administration Application represents the various policy
components. You use the Resources, Identity, Policy, and Declarations nodes to write policy.
Then you use the Save button to save and deploy the policy set and the security configuration to
the SSM.

3-8 Policy Managers Guide

Figure 3-3 Administration Console

Resources
Resources are displayed in a hierarchical tree called a resource hierarchy. A page generated from
a Java Server Page (JSP) is an example of an application resource. The page can call EJBs or
COM resources to execute some business logic. The back office services that transfer money
between accounts, issue a payment, or run a report are also resources, although they may not
appear on the web page or execute on the application server.

An administrator may define as many resources and levels in the hierarchy as needed to represent
data, services, and system components within an application.

Us ing the Ent i t l ements Admin is t rat ion App l icat ion to Wr i te Po l i c i es

Policy Managers Guide 3-9

Figure 3-4 Resource Hierarchy

Individual resources in the hierarchy are also called nodes and the type of node can convey
additional information about the resource. Table 3-1 lists and describes the types of nodes that
you can configure using the Entitlements Administration Application.

Table 3-1 Types of Nodes Supported

Node Type Description

Organizational You use organizational nodes to represent organizational structure with
the goal of enforcing uniform access control across multiple applications.

An organizational node can be configured as a distribution point and to
allow virtual resources.

3-10 Policy Managers Guide

Any resource at or above a binding node can be configured as a distribution point for policies.
When a distribution (or deployment) is initiated, you can distribute all updates (by selecting the
root node) or limit which updates are distributed by selecting resources using the nodes that are
configured as distribution points. Only updates that were made at and below the selected nodes
are distributed.

For instructions on managing resources, open the Entitlements Administration Application’s help
system and select Resources in the navigation pane.

Some typical resources that you might want to secure, include:

An application, an application window, or a dialog box

Specific business transactions, such as a money transfer or security trade

Application controls, such as buttons and menu selections

Database or directory server structures

Web pages (URLs), servlets, and Enterprise Java Beans (EJB)

Products or services available through the BEA WebLogic Portal

The following topics provide more information on configuring resources:

“Virtual Resources” on page 3-11

Binding You use binding nodes to represent applications. When you configure the
security providers you can use a binding node to bind the authorization
and role mapping providers to the application resource tree.

A binding node can be configured as a distribution point and to allow
virtual resources.

Resource You use resource nodes to represent subcomponents of your application.
Resource nodes can be used to represent any object within an application,
such as data, services, and system components, to which you might want
to control access. A binding node or a binding application node can have
as many resource nodes as needed at as many levels in the resource
hierarchy as necessary. Thus, resource nodes can have other resource
nodes as children.

 A resource node can be configured to allow virtual resources, but it
cannot be configured as a distribution point.

Table 3-1 Types of Nodes Supported

Us ing the Ent i t l ements Admin is t rat ion App l icat ion to Wr i te Po l i c i es

Policy Managers Guide 3-11

“Resource Attributes” on page 3-11

“Actions and Action Groups” on page 3-11

Virtual Resources
Any resource defined in the resource tree can be configured as a virtual resource. Once you
configure a resource to allow virtual resources, its child resources are protected by the same
policies as the parent, even if they do not appear in the resource tree. For example, given a
resource hierarchy URL such as http://www.myname.com/private/dir1/dir2/, if you
create the resource tree up to http://www.myname.com/private and then configure private
to allow virtual resources, dir1 and dir2 are automatically protected by the access control
policies you assign to private, without having to add dir1 and dir2 as explicit resources on
the resource tree or assigning them explicit policies.

To configure a resource as virtual, select the resource in the resource tree. Then click Modify in
the lower part of the left pane. When it displays in the right pane, select the Allow Virtual
Resource checkbox.

Resource Attributes
All resources can have attributes that store information about the resources to which they belong.
For example, you may create resource attributes to specify resource owner, type of resource,
creation date, and so on.

Attributes are inherited by child resources from their parent. If a resource explicitly sets the value
of an attribute, this value overrides the inherited one.

When you select a resource in the resource hierarchy, its attributes display in the right pane.

Actions and Action Groups
A action is some action that can be performed on a resource. For instance, execute is a typical
application action; and read and write are typical file system actions. You can use the actions
provided or you can create your own. A related collection of actions may be organized into a
action group for management purposes.

A action group allows you to organize actions into logical groups for ease of management. For
example, it is common to define a action group that applies to a particular application or set of
transactions. Action groups can be used as filters when constructing policies, although they
cannot appear directly in a policy. Figure 3-5 shows an example of how action groups and their
associated actions appear in the Entitlements Administration Application.

3-12 Policy Managers Guide

To view the out-of-box actions and action groups provided when ALES is installed, select the
Actions node in the left pane. The right pane provides the Action tab for managing actions and
the Action Groups tab for managing actions. In Figure 3-5, the Action tab is selected.

For instructions on managing actions and action groups, open the Entitlements Administration
Application’s help system and select Actions and Action Groups in the navigation pane.

Figure 3-5 Actions and Action Groups

Identities
Although BEA AquaLogic Enterprise Security provides tools to manage users and groups
locally, they are typically managed through an external repository, such as a Lightweight
Directory Access Protocol (LDAP) directory server or a network database. User and group
information, along with any attributes, is stored as metadata in the policy database and is then
available for viewing directly through the Entitlements Administration Application.

As shown in Figure 3-6, each defined identity directory displays under the Identity node in the
Entitlements Administration Application’s left pane.

Us ing the Ent i t l ements Admin is t rat ion App l icat ion to Wr i te Po l i c i es

Policy Managers Guide 3-13

Figure 3-6 Identity Node

When you select an identity directory, the right pane contains three tabs for managing Users,
Groups, and Attributes.

3-14 Policy Managers Guide

Figure 3-7 Identity Directory

For instructions on managing identities, open the Entitlements Administration Application’s help
system and select Identity in the navigation pane.

“Identity Attributes” on page 3-17

“Groups” on page 3-14

“Users” on page 3-16

“Roles” on page 3-17

Groups
A group is a logical collection of users that share some common characteristics, such as
department, job function, or job title. For example, a company may separate its sales staff into

Us ing the Ent i t l ements Admin is t rat ion App l icat ion to Wr i te Po l i c i es

Policy Managers Guide 3-15

two groups, Sales Representatives and Sales Managers, because they want their sales personnel
to have different levels of access to resources depending on their job functions.

A group can contain either users or other groups; users who are assigned to a group are called
group members. Nested memberships of groups within a group form a hierarchy. Group
membership can be assigned only from within the same directory. Groups have a static identity
that an administrator assigns.

Managing groups is more efficient than managing large numbers of users individually. By using
groups, you do not need to define an access control policy for each and every user. Instead, each
user in the group inherits the policies applied to the group; this rule also applies to nested groups.
Granting a permission or role to a group is the same as giving that permission or role to each user
who is a member of the group. For example, an administrator can specify roles for 50 users at one
time by placing the users in a group, and then granting that group the role on a given resource.

Figure 3-8 shows how groups are represented in the Entitlements Administration Application.
Notice that the BankTellers group contains four members.

Figure 3-8 Groups

3-16 Policy Managers Guide

For instructions on managing groups, open the Entitlements Administration Application’s help
system and expand Identity>Groups in the left navigation pane.

Users
A user corresponds to an individual who makes a request to access a resource, although a user
can be an automated process that accesses the system. Users are included in an authorization
policy by assigning users to groups, and then assigning that group to a role or assigning the users
directly to roles. Each user within a directory must have a unique identity, or user name.

Users can be associated with certain characteristics, referred to as identity attributes; these
attributes store information about the user. The list of attributes that can be set for a user is
dictated by the attribute schema of the directory to which the user belongs. Figure 3-9 shows an
example of a user representation with identity attributes.

Figure 3-9 Users

Us ing the Ent i t l ements Admin is t rat ion App l icat ion to Wr i te Po l i c i es

Policy Managers Guide 3-17

For instructions on managing users, open the Entitlements Administration Application’s help
system and expand Identity>Users in the left navigation pane.

Identity Attributes
Identity attributes are represented under the Identity in the Entitlements Administration
Application (see Figure 3-6). Each user and group can have different characteristics defined as
identity attributes. The type of information or attributes collected—a method typically referred to
as profiling—also varies and typically includes information such as name and address, phone,
e-mail address, personal preferences, and so forth. Identity attributes can be extracted from the
external data source.

An identity attribute is declared specifically to contain identity information. An attribute value
can be used in policies to set limits for that user. Attributes provide a very powerful way to refer
to users and groups indirectly in policies, which results in a more dynamic and versatile policy
set.

For instructions on managing identity attributes, open the Entitlements Administration
Application’s help system and expand Identity>Identity Attributes in the left navigation pane.

Roles
A role is a dynamic alias used to associate users and groups to role-based functional
responsibilities. A role represents a collection of actions on a resource. Roles are computed and
granted to users or groups dynamically based on conditions, such as user name, group
membership, identity attributes, or dynamic data, such as the time of day. Roles membership can
apply to only specific resources within a single application or can be applied globally across the
enterprise. A role can also be delegated from one user to another user. Multiple users or groups
can be granted a single security role. Figure 3-10 shows an example of a roles representation in
the Entitlements Administration Application.

3-18 Policy Managers Guide

Figure 3-10 Roles

For instructions on managing roles, open the Entitlements Administration Application’s help
system and select Roles in the left navigation pane.

Writing Role Mapping Policies and Authorization Policies
A set of policies can include two types of policies: role mapping policies and authorization
polices:

Role mapping policies, at a minimum, are written to create roles that define what subjects
(user and groups) are assigned to the role for what resources. They can also include
constraints.

Authorization policies are written against resources to define what subjects (users, group,
or roles) have what actions on what resources. Authorization policies can also include
constraints.

Us ing the Ent i t l ements Admin is t rat ion App l icat ion to Wr i te Po l i c i es

Policy Managers Guide 3-19

For more information about policies, refer to the following topics:

“Role Mapping Policies” on page 3-19

“Authorization Policies” on page 3-19

Role Mapping Policies
Membership rules are used to grant users or groups membership into a given role. The
membership can be limited based on a number of items including the resource hierarchy, subjects
(users and groups), constraints, and delegator. A role mapping policy with the delegate action,
delegates a role granted to one user (the delegator) on a resource to another user or group. A role
cannot be delegated to a role. Figure 3-11 shows two role mapping policies in the Entitlements
Administration Application’s right pane.

Figure 3-11

For instructions on managing role mapping policies, open the Entitlements Administration
Application’s help system and select Policies>Membership Rules in the left navigation pane.

Authorization Policies
Authorization policies determine what actions can be performed on a resource. Authorization
policies are typically written to grant specific actions upon specific resources to a role with a
defined set of constraints. An authorization policy can define actions, resources, subjects (users,
groups, and roles), constraints, and delegators.

For instructions on managing authorization policies, open the Entitlements Administration
Application’s help system and select Policies>Authorization Policies in the left navigation
pane.

3-20 Policy Managers Guide

Policy Reports
Entitlements Administration Application provides support for generating role mapping policy
reports and authorization policy reports.

“Role Mapping Policy Reports” on page 3-20

“Authorization Policy Reports” on page 3-21

Role Mapping Policy Reports
You can use role mapping policy reports to create a role mapping policy inquiry and use it to
generate a report that you can use for analysis. You can define inquiries that include a policy
subject list (user and group), a role list, a resource list, and a delegator list. Role mapping policy
inquiries ask the question, “What role is granted to a user or group scoped to a particular
resource?”.

Note: In the Entitlements Administration Application, role mapping reports are exposed as
‘membership rule reports’.

For example, let us say that you want to find out who can access a particular resource. You can
run a policy inquiry that includes a resource and an Effect type of GRANT. Such an inquiry
produces a complete list of the roles that will be granted to any subject during access to the
defined resource. To narrow the inquiry you can add roles, subjects (users and groups) and
delegators to the inquiry definition. See Figure 3-12 shows the results of a role mapping policy
report.

Us ing the Ent i t l ements Admin is t rat ion App l icat ion to Wr i te Po l i c i es

Policy Managers Guide 3-21

Figure 3-12 Role Mapping Policy Reports

For instructions on managing role mapping policy reports, open the Entitlements Administration
Application’s help system and select Policy Reports in the left navigation pane.

Authorization Policy Reports
You can use authorization policy reports to create an authorization policy inquiry and use it to
generate a report that you can use for analysis. Authorization policy inquiries search for
action-based policies that match specified characteristics exactly. You can define inquiries that
include a policy subject list (user, group and role), an action list, a resource list, and a delegator
list. Authorization policy inquiries ask this question, “Who can do what to what resource?”.

For example, let us say that you want to find out who has GRANT access to a resource, you can
run a policy inquiry that includes a resource and an Effect type of GRANT. Such an inquiry
produces a complete list of the users for any subject for any role on the defined resource that has
a GRANT action type. To narrow the inquiry you can add actions, subjects (users, groups, and
roles) and delegators to the inquiry definition.

For instructions on managing role mapping policy reports, open the Entitlements Administration
Application’s help system and select Policy Reports in the left navigation pane.

3-22 Policy Managers Guide

Defining Declarations
A declaration is a variable that represents either a predefined value (for example, days of the
week) or a value that is dynamically defined at runtime (for example, the date). To help you
design efficient policies, various built-in declarations are provided for your use.

There are three types of declarations:

Constants–A named, predefined, static value, or set of values that you can reference in a
policy for a value that does not change at runtime.

Dynamic Attributes–Represents characteristics that define dynamic values, users, groups,
resources and configurations. An attribute has an associated type (such as string, integer,
date). For more information, see “Dynamic Attributes” on page 4-16.

Evaluation Functions–A named function that you can use in a policy constraint to
perform more advanced operations. Each function may have a number of parameters and
returns a Boolean result. There are a number of built-in evaluation functions and you can
declare and use your own custom evaluation functions. Each custom evaluation function
must be registered as a plug-in with the authorization and role mapping engine (ARME)
that uses it. For more information, see “Evaluation Function Declarations” on page 4-20.

For instructions on managing declarations, open the Entitlements Administration Application’s
help system and select the Constants, Dynamic Attributes, or Evaluation Functions in the left
navigation pane.

Binding Policies
Policies set must be bound to the authorization and role mapping providers that are configured
for the SSM being used to protect your application resources. In the Entitlements Administration
Application this is performed as follows:

When defining the role mapping or authorization policy, the policy’s Resource tab is used
to specify the applicable resource(s).

The resource(s) are mapped to an SSM configuration. This can be set by selecting the SSM
configuration name from the SSM Bound dropdown list as shown in Figure 3-13.

Us ing the Ent i t l ements Admin is t rat ion App l icat ion to Wr i te Po l i c i es

Policy Managers Guide 3-23

Figure 3-13 Resource Binding to SSM

Deployment
To secure resources, both the SSM configuration and the policies must be deployed to the SSM
being used to securing the application. Whenever configuration and policy changes are made,
they must be distributed to the SSM.

“Distributing SSM Configurations” on page 3-23

“Distributing Policies” on page 3-24

Distributing SSM Configurations
To deploy SSM configurations:

1. Use the Administration Console (not the Entitlements Administration Application) to
distribute the configuration changes. For instructions, see the Administration Console’s
Distributing Configuration help topic.

2. Restart the SSM.

3-24 Policy Managers Guide

Distributing Policies
To distribute policies to the SSM using the Entitlements Administration Application:

1. In the left pane, expand Entitlements Management > Policies and click on Policy
Distribution.

2. In the right pane, expand the Resources tree and select the policy distribution point. Then
click Distribute. The Deployment Status window opens and provides information about the
distribution.

3. When the Percent Complete is 100%, click OK.

After the distribution, you can view the results of the policy distribution by clicking on
Distribution Status tab in the right pane. Figure 3-14 shows the expanded Deployment node in
the Entitlements Administration Application.

Figure 3-14 Policy Distribution Status

Policy Managers Guide 4-1

C H A P T E R 4

Advanced Topics

This topic describes more advanced aspects of writing role mapping and authorization policies.
The following topics are covered here:

“Designing More Advanced Policies” on page 4-1

“WebLogic Resource Type Conversions and Resource Trees” on page 4-26

“Resource Paths and Policies for Common Resources” on page 4-29

“Subject Mapping” on page 4-51

“Resource Paths and Policies for Common Resources” on page 4-29

“Policy Element Naming” on page 4-52

“Sample Policy Files” on page 4-62

“Using Response Attributes” on page 4-76

“Using queryResources and grantedResources” on page 4-79

“Resource Discovery” on page 4-81

Designing More Advanced Policies
All policies, simple or complex, follow the same standard syntax:

GRANT|DENY|DELEGATE (action|role, resource, subject, delegator) IF

constraint;

4-2 Policy Managers Guide

You can extend the policy syntax to encompass very complex situations by grouping policies and
adding constraints. For more information, see the following topics:

“Multiple Components” on page 4-2

“Policy Constraints” on page 4-2

“Declarations” on page 4-11

“Policy Inheritance” on page 4-23

Multiple Components
You are not limited to one role, action, resource or subject per policy. You may specify sets by
enclosing them in brackets [] and separating the individual items with commas. For example:

GRANT(any, //app/policy/MyApp, [//user/ORG/USER21/, //user/ORG/USER22/]);

Policy Constraints
A constraint is a statement that limits when or under what circumstances permission is granted,
denied or delegated. All constraints start with the keyword IF. Simple constraints usually contain
two values separated by an operator. The following example shows an authorization policy with
a simple constraint:

GRANT(//priv/any, //app/policy/MyApp, //sgrp/ORG/allusers/) IF

purchaseAmount < 2000;

In this policy, any user of the resource MyApp who is in the ORG directory is allowed to spend
any amount less than $2000.

Constraints are very useful because they allow your application to have different responses based
on dynamic application, data, business environment, or real-time conditions. For example, you
might use a constraint to grant a user access to a resource only during certain hours of the day.

When checking if a value is within an attribute, the constraint must be written as: <value> in
[attribute]. For example if checking to see that the requested resource name is in a list of user
entitlements, you would say:
sys_obj IN [userentitlements]

To limit the user in the previous example to having actions only in December and January, you
would add the constraint:

IF month IN [december, january]

Des ign ing More Advanced Po l i c i es

Policy Managers Guide 4-3

To limit the user to accessing the application from a computer with a particular static IP address,
you would add the constraint:

IF clientip = 207.168.100.1

Several types of attributes are provided that are automatically computed for you (see
“Declarations” on page 4-11).

Once a grant result is determined at runtime by the ASI Authorizer (also called the Authorization
and Role Mapping Engine (ARME)) for a particular resource, the rest of the applicable GRANT
policies, which may contain additional constraints, are ignored. Therefore, if your business logic
requires the evaluation of multiple constraints, you must combine them into a complex constraint
using an AND operator to achieve the desired result. For example, given the following two
policies:

GRANT(//priv/any, //app/policy/MyApp, //sgrp/ORG/allusers/) IF

purchaseAmount < 2000;

GRANT(//priv/any, //app/policy/MyApp, //sgrp/ORG/allusers/) IF month IN

[december, january];

The conditions under which allusers would be granted access would be determined by which
policy the ASI Authorizer evaluates first. If the goal is to grant access only if both constraints are
true, you must combine these policies into one policy using the AND operator as follows:

GRANT(//priv/any, //app/policy/MyApp, //sgrp/ORG/allusers/) IF

purchaseAmount < 2000 AND month IN [december, january];

For more information on combining multiple constraints into one policy, see “Boolean
Operators” on page 4-8.

The following topics provide more information on constraints:

“Comparison Operators” on page 4-4

“Regular Expressions” on page 4-4

“Constraint Sets” on page 4-6

“String Comparisons” on page 4-7

“Boolean Operators” on page 4-8

“Associativity and Precedence” on page 4-9

“Grouping with Parentheses” on page 4-9

4-4 Policy Managers Guide

“Boolean Operators and Constraint Sets” on page 4-10

Comparison Operators
Constraints support the comparison operators listed in Table 4-1.

Regular Expressions
There are two comparison operators, LIKE and NOTLIKE, that are used to perform regular
expression matching on attribute values or string literals. This is typically used for pattern
matching on resource names. For example, the following policy provides the GET access action
to all JPGs in a web application (//app/policy/MyWebApp).

GRANT(//priv/GET, //app/policy/MyWebApp, //role/webusers)

IF sys_obj LIKE “.*\.JPG”;

The regular expression syntax follows certain policies.

Any character that is not a special character matches itself. Special characters are:

 + * ? . [] ^ $

Table 4-1 Comparison Operators

Symbol Operation Applicable Types

= Equal to All

!= Not equal to All

> Greater than All except String

< Less than All except String

=> Greater than or equal to All except String

=< Less than or equal to All except String

LIKE Matches regular expression String

NOTLIKE Does not match regular expression String

IN Included in a list List of any type

NOTIN Not included in a list List of any type

Des ign ing More Advanced Po l i c i es

Policy Managers Guide 4-5

Backslash (\)
A backslash (\) followed by any special character matches the literal character. For example:

"*u" matches "*u".

Period (.)
A period (.) matches any character. For example:

".ush" matches any string containing the set of characters, such as "Lush" or "Mush".

Brackets ([])
A set of brackets ([]) indicates a one-character regular expression matching any of the characters
in the set. For example:

"[abc]" matches either "a", "b", or "c".

Dash (-)
A dash (-) indicates a range of characters. For example:

"[0-9]" matches any single digit.

Caret (^)
A caret (^) at the beginning of a set indicates that any character outside of the set matches. For
example:

"[^abc]" matches any character other than "a", "b", or "c" not including an empty string.

Parentheses (()) and OR character (|)
The following policies are used to build a multi-character regular expressions.

Parentheses (()) indicate that two regular expressions are combined into one. For example:

(ma)+ matches one or more instances of "mad's".

The OR character (|) indicates a choice of two regular expressions. For example:

bell(y|ies) matches either "belly" or "bellies".

Asterisk (*)
A single-character regular expression followed by an asterisk (*) matches zero or more
occurrences of the regular expression. Examples:

4-6 Policy Managers Guide

"[0-9]*" matches any sequence of digits or an empty string.

".*NY.*" matches any sequence of string that has at least NY in it such as NY, myNYcity,
NYcity or loveNY.

Plus (+)
A single-character regular expression followed by an plus sign (+) matches one or more
occurrences of the regular expression. For example:

"[0-9]+" matches any sequence of digits but not an empty string.

Question Mark (?)
A single-character regular expression followed by a question mark (?) matches either zero or one
occurrence of the regular expression. For example:

"[0-9]?" matches any single digit or an empty string.

Others

A concatenation of regular expression matches the corresponding concatenation of strings.
For example:

“[A-Z][a-z]*” matches any word starting with a capital letter.

When you use a regular expression that contains backslashes, the constraint evaluator and
the regular expression operation both assume that any backslashes are used to escape the
character that follows. To specify a regular expression that exactly matches "a\\a", create
the regular expression using four backslashes as follows:
LIKE "a\\\\a"

Likewise, with the period character "." you need to include one backslash in the
expression:
LIKE "\."

Constraint Sets
There are two operators, IN and NOTIN, used to test the memberships of sets in your constraint.
A constraint set is a definition of a set of items, notated by one or more values separated by
commas, enclosed in square brackets, and prefaced with either the keyword IN or NOTIN. For
example, rather than writing:

Des ign ing More Advanced Po l i c i es

Policy Managers Guide 4-7

. . . IF NextMonth = january or

. . . NextMonth = february or

. . . NextMonth = march;

You can write:

. . . IF NextMonth IN [january, february, march] ;

The keyword IN means in this set of values, and NOTIN means not in this set of values. Neither
keyword is case sensitive.

You can also specify a range of values in a set of constraints. For example, the statement:

IF age NOTIN [1..100]

says if the age value is not between 1 and 100 (inclusive), then the statement is true. The
keywords IN and NOTIN work well with attributes based constant sets.

String Comparisons
You can test for specific text strings in your constraints by using the keywords LIKE and
NOTLIKE. For example, assume you have a user attribute called GroupID. This attribute contains
a string of data indicating information about the group the user belongs to:

GroupID = "59NY20BREQ";

To check for and exclude users in the New York office, you can test the GroupID attribute for NY
as follows:

(Grant policy) IF GroupID NOTLIKE ".*NY.*";

where * represents any number of characters. Similarly, if you want to ensure that the user was
in New York, you can add this constraint:

(Grant policy) IF GroupID LIKE ".*NY.*";

Similar to IN and NOTIN, LIKE and NOTLIKE keywords are not case sensitive.

To compare a string to a policy element in the constraint, replace the first characters of the
element with a wildcard. Normally, the system does not evaluate a policy element as a string. For
example, to compare a user, enter the constraint using the following format:

IF sys_user_q like "??user/acme/Joe/";

4-8 Policy Managers Guide

Boolean Operators
You can build complex policy constraints by using logical operators as described in Table 4-2.

Boolean operators allow you to combine multiple constraints so that the entire constraint returns
true only if certain patterns of the component constraints are true.

Examples:

If one constraint is not true, then the entire constraint is not true:
(whole constraint) is true IF (first constraint is true) AND (second
constraint is true)

If one constraint is true, then the entire constraint is true:
(whole constraint) is true IF (first constraint is true) OR (second
constraint is true)

The following constraint is only true if userBudget is less than $2000 and the current
month is December:
IF userBudget < 2000 AND ThisMonth = December

To make sure it is not December:

IF NOT ThisMonth = December

The use of these Boolean operators can get as complex as you want. For example, you can have
the following constraint:

IF A AND B OR NOT C

In English, this means, If both A and B are true or if C is not true, then the constraint is true. With
a little thought, that is easy enough, but what about a complex constraint, such as:

IF A AND B OR C AND NOT D

Table 4-2 Boolean Operators

Operator Description

AND Each component must be true.

OR At least one component must be true.

NOT The component cannot be true. This reverses
the truth of a constraint.

Des ign ing More Advanced Po l i c i es

Policy Managers Guide 4-9

Does it mean, if A and B are true or C is true and D is not true, grant the action, or does it mean,
if A and B or C is true and D is not true, grant the action, or does it mean something else?

Associativity and Precedence
One way to decipher Boolean expressions is to understand keyword precedence, which is the
order in which keywords are evaluated, and associativity, which is the direction in which terms
are grouped. The order of precedence is:

1. NOT

2. AND

3. OR

AND and OR are left associative and NOT is right associative. That is, with AND and OR the system
always looks to the immediate left of the keyword for the first value and to the immediate right
for the second value. With NOT, the system only looks to the immediate right because NOT does
not compare two or more values; it affects only one value. If our earlier example is evaluated
using associativity and precedence, it means, If either both A and B are true or if C is true and D
is not, the constraint is true.

Grouping with Parentheses
Rather than remembering the policies about associativity and precedence, the easiest thing to do
is to use parentheses to logically group your AND, OR, and NOT statements.

In the previous example:

IF A AND B OR C AND NOT D

you can evaluate the statement by applying the policies of associativity and precedence or you
can logically group the statements in parentheses as follows:

IF (A AND B) OR (C AND NOT D)

This eliminates ambiguity from the statement. It becomes clear that there are two constraints: (A
AND B) and (C AND NOT D), and that one of those constraints must be true for the statement
to be true because the two statements have an OR between them.

Changing the location of the parentheses can change the meaning of the statement. For example:

IF (A AND B OR C) AND (NOT D)

changes the statement completely. Now there are two constraints: (A AND B OR C) and (NOT
D), in which both must be true for the statement to be true.

4-10 Policy Managers Guide

You may nest parentheses within parentheses to clarify or change the logic of the statement. For
example:

IF ((A AND B) OR C) AND (NOT D)

is the same statement as the previous example, but it is now even clearer. However, if the
parentheses are changed slightly, as in:

IF (A AND (B OR C)) AND (NOT D)

the meaning completely changes.

To understand complex grouped statements with parentheses, follow these policies:

Evaluate the statements within parentheses first.

If there are nested parentheses, evaluate the inner ones first.

Once the statements in parentheses are evaluated, evaluate the other statements.

If necessary, use associativity and precedence on the simplified statements.

Boolean Operators and Constraint Sets
Rather than building long OR or AND statements, you can define sets of constraints for your
policies. A constraint set defines a set of items. For example, rather than writing:

If ThisMonth = january OR ThisMonth = february

OR ThisMonth = march

you can write:

IF ThisMonth IN [january, february, march]

The keyword IN means in this set of values, and NOTIN means not in this set of values.

You can also specify a range of values in a set of constraints. For example, the following
statement:

IF age NOTIN[1..100]

says if the age value is not between 1 and 100 (inclusive), then the statement is true.

The keywords IN and NOTIN work well with attributes based on constant sets.

You may be wondering about the value of constraint sets when the constraint statement is nearly
as long as the chain of ORs that you would instead have to write. Besides the ability to specify
ranges of values, the real benefit to constraint sets is that you can predefine them as constants
(“Constant Declarations” on page 4-11). Using the previous example:

Des ign ing More Advanced Po l i c i es

Policy Managers Guide 4-11

IF ThisMonth in [january, february, march]

using a predefined a constant list called FirstQuarter, you can write:

IF ThisMonth in FirstQuarter

rather than the longer bracketed statement.

Declarations
Declarations allow you to add new keywords to the policy language. These keywords can
represent new data types, constants, attributes, or evaluation functions. Declaration names must
start with a letter or an underscore. There are four types of declarations:

Constants–States one definition for a value that is used over and over.

Attributes–Contains data and must have a declared type. There are several types of
attributes, including identity attributes (user and group attributes), resource attributes, and
built-in system attributes.

Evaluation Functions–Returns a true or false value from a plug-in.

Attributes and evaluation functions declare an instance (variable) of a built-in type. Attributes are
based on predefined or user-defined types, and evaluation functions are based on Boolean types.

For more information on declarations, see the following topics:

“Constant Declarations” on page 4-11

“Attribute Declarations” on page 4-13

“Evaluation Function Declarations” on page 4-20

Constant Declarations
A constant is a named value or set of values that does not change at runtime. For instance, if you
set a constant named Rate to 12, policies can then refer to the constant Rate rather than using its
literal value, 12. You use constants to make policies more readable and simplify policy-wide
value changes.

Constants are especially useful if the value changes periodically and you use the constant in more
than one location. For example, if you enter a rate value 12 into multiple policies, you need to
individually change each one. Instead, if you use the constant Rate, you can edit the value once
and have it take effect in every policy that refers to it.

4-12 Policy Managers Guide

Simple Constant
Here are some examples of simple constant declarations:

CONST Insurance = "home";

CONST InterestRate= 12;

Constants can contain other constants in their value:

CONST ClosurePoints = 2;

CONST FavoriteVehicle = Motorcycle;

If you enclose Motorcycle in quotation marks, this constant would contain a string without any
special meaning. If you use Motorcycle without quotation marks, it is recognized as the special
value Motorcycle of type Vehicles.

Constants List
A constant can also contain a list of more than one value. For example, you may define a constant
called MyColors with the values red, green, blue, white and black.

Types are used to restrict the values an attribute may contain. For example, an integer may only
contain numerals and a constant list is simply a declared list or range of values with no implied
order. A constant list always has an underlying type. In the previous example, the underlying type
is a string. You can also create lists of any other type.

The rules for defining constant lists are as follows:

Ensure all the constants in a list represent the same data type.

Use commas to separate the items in the list.

Use square brackets [] to enclose the whole list.

Enclose strings in the list with quotation marks.

If values in a list are a range, indicate the range with two dots. For example, [1..100]. A list
of one item is still a valid list, as long as you enclose it in brackets.

Here are some examples of constant lists:

CONST MyPets = ["Dogs", "Cats", "Birds"];

CONST CurrentAge = [1..120];

CONST WorkWeek = [monday..friday];

CONST Transportation = [Motorcycle];

You can even place another constant list within a constant list, like this:

Des ign ing More Advanced Po l i c i es

Policy Managers Guide 4-13

CONST FamilyPets = ["Ferrets", "Birds", MyPets];

One benefit of a constant list is that it saves you from having to write multiple policies or
string-together constraints to test if a value belongs in a group. Without constant lists, you would
need to compare your value to each independent constant, rather than perform one quick test to
see if the value belongs in the list. For example, given the constant list:

CONST Manager = ["Bert", "Marty", "Sandy"];

If you want to find out if your string attribute called Active contains a value that is in the
Manager list, you could write constraints to test for these three possibilities:

IF Active = "Bert"

OR Active = "Marty"

OR Active = "Sandy"

or you could simply write:

IF Active IN Managers

As mentioned before, there is no implied order to the Manager list. So, even if Bert is clearly a
more privileged Manager than Sandy, the following test is invalid.

If "Bert" > "Sandy"

Attribute Declarations
An attribute is a variable that you can use in policies. Attributes store values that are predefined
or determined dynamically at runtime.

Declaring an attribute allows you to associate an instance of that attribute with an identity or a
resource. For example, you can declare a identity attribute named "email" of type "string", and
then associate email addresses to users.

Attributes make policies more legible by replacing certain constraint values with logical names.
You can use attributes to put values in constraints that depend on conditions unknown when you
write the policy, such as timeofday. Attributes contain values for your input data that your
policies can manipulate. That is, they can serve as variables, for example, account_balance
could be used as an attribute.

There are several ways to use attributes:

Resource Attribute–Provides a value defined and associated with a resource.

Identity Attribute–Provides a value defined and associated with a user or group.

4-14 Policy Managers Guide

Dynamic Attribute–Provides a value computed or retrieved when the policy is evaluated.

– System Attribute – A dynamic attribute that is computed automatically by the
Authorization Provider and available for use in your policy. These attributes usually
begin with the prefix sys_.

– Time and Date Attributes – System attributes that provide time and date information.

Attributes are specific instances of a declared type. For example, an attribute of the type integer
can only contain an integer value. Attributes can represent any type, whether provided as part of
the product or defined by you. Here are some examples of attribute declarations:

cred month : month_type;

cred timeofday : time;

cred pencils_swiped : integer;

For a description of the different types of attributes, see the following topics:

“Resource Attributes” on page 4-14

“Identity Attributes” on page 4-15

“Static Attributes” on page 4-16

“Dynamic Attributes” on page 4-16

“Time and Date Attributes” on page 4-17

“Request Attributes” on page 4-18

Resource Attributes
Resource attributes store information about the entity to which they belong. For example, the
Banking application might have an attribute called Version that contains the current version
number for the application, denoted as a string.

Resource attributes behave differently from identity attributes. While they do inherit attributes
and their values, they do not merge any values of redundant attributes. If the same attribute exists
in more than one place in a tree, the resource first attempts to take the attribute from itself. Failing
that, the resource takes the value of the attribute from the first resource above it on the tree that
contains the attribute. The attributes of the same name on still higher nodes are ignored; once an
instance of the attribute is found, the search ends.

Des ign ing More Advanced Po l i c i es

Policy Managers Guide 4-15

For example, assume that you have an application resource called Banking that contains a variety
of banking features. Deposit is a resource of the ATMCard application, which in turn is an
application node below the Banking organization node. If both the ATMCard resource and the
Banking application have the Version attribute defined with a value (and Deposit does not),
Deposit inherits the value of the Version attribute from ATMCard. The Banking Version
attribute is ignored.

Identity Attributes
User attributes store information about an individual user. For instance, you could have an
attribute called AgeRange that stores a range of dates. Attributes are associated with a directory
through a directory schema. The schema states that all users of a given directory have a given set
of available attributes. Additionally the schema determines if the attribute value is a list.

You can also assign attributes to groups (although groups may only contain list attributes). Thus,
users can inherit the attributes of all groups to which they belong. However, a user can still have
a unique value for an inherited attribute. If you do not assign the user attribute a value, then the
user inherits the value of the attribute from the group. This is how group attributes provide default
attribute values for users who are members of those groups. If a user has the same attribute as a
group, but a different value is assigned to the user attribute, the value of the user attribute always
takes precedence of the value of the group attribute.

Even an empty string, " ", is considered a value for purposes of this rule. Therefore, if you do not
assign a value, the user attribute does not take precedence over a group attribute of the same
name. However, if you placed an empty string in the user attribute, it does take precedence.

Group attributes behave very differently from user attributes. Group attribute values are
cumulative — if the same attribute exists in more than one place in the inheritance path of a user,
the values of the attributes are merged and passed on to the user. For example, assume you have
a user called Bob, and Bob is a member of the Manager group, which in turn is a member of the
Employee group. If both Manager and Employee both have an attribute called WorkPlace with
the values primary and secondary respectively, Bob would inherit a WorkPlace attribute with

4-16 Policy Managers Guide

the value primary and secondary (a list attribute). In fact, to support this merging of attribute
values, all group attributes must be list attributes. If the attribute merging finds the same value
more than once, it eliminates the redundancy from the final list value.

In order to use Identity Attributes in authorization or role mapping policies you must configure a
ALESIdentityAttributeRetriever for ASI Authorization Provider. See ALES Identity Attribute
Retrievers for details.

Static Attributes
Many attributes are specific instances of a declaration type. These attributes are often user
(identity) attributes. For example, a type called ColorType, might have the static credentials
HairColor and EyeColor, which are both of type ColorType. You can attach these static
attributes to a user. Table 4-3 lists some examples of user attributes.

As previously discussed, there are several attribute types. Attributes differ from constants in that
their value may change, but not the name and value type. Depending on the user making the
request, a different value can be calculated for the attribute. In contrast, constants have a static
value, as well as a static name and type. The declaration for a user attribute is attached to one or
more directories. Because of this, all users in the same directory have the same user attribute
names but not necessarily the same values for those attributes. Attributes can be applied to users,
groups, and resources; however, each one behaves a bit differently.

Dynamic Attributes
A dynamic attribute is an attribute with a value that may change at policy evaluation time.
Dynamic attributes have their value set by the provider, your application, or through a plug-in
function. These attributes can have any type of value.

Additionally, plug-ins can be registered to compute the value of dynamic attributes. These
plug-ins can retrieve the values of other attributes and use them to compute the attribute value
needed.

Table 4-3 User Attributes

Instance Type

MonthBorn month_type

ArrivalTime time

Pencils_needed integer

Des ign ing More Advanced Po l i c i es

Policy Managers Guide 4-17

Time and Date Attributes
As shown in Table 4-4, tThere are numerous pre-defined time and date system attributes. Most
system attributes allow you to use comparison and range operators.

Table 4-4 Built-In Time and Date System Attributes

Attribute Value Range or Format

time24 integer 0–2359

time24gmt1
integer 0–2359

dayofweek Dayofweek_type Sunday–Saturday

dayofweekgmt Dayofweek_type Sunday–Saturday

dayofmonth integer 1–31

dayofmonthgmt integer 1–31

dayofyear integer 1–366

dayofyeargmt integer 1–366

daysinmonth integer 28–31

daysinyear integer 365–366

minute integer 0–59

minutegmt integer 0–59

month month_type January–December

monthgmt month_type January–December

year integer 0–9999

yeargmt integer 0–9999

timeofday time HH:MM:SS

timeofdaygmt time HH:MM:SS

hour integer 0–23

hourgmt integer 0–23

4-18 Policy Managers Guide

Request Attributes
Request attributes are system attributes that contain details of the request. Table 4-5 describes
these attributes and provides and example of each one.

currentdate Date MM/DD/YYYY

currentdategmt Date MM/DD/YYYY

1. gmt is an abbreviation for Greenwich Mean Time

Table 4-4 Built-In Time and Date System Attributes (Continued)

Attribute Value Range or Format

Table 4-5 Built-In Request System Attributes

Attribute Value Range or Format

sys_defined Evaluation
function

Returns true if all arguments passed to it are defined
attributes (either single valued or list). Using an
undefined attribute in a policy causes a runtime error.
This can occur when the value of the attribute is
determined from the application code, either through the
context handler or the resource object. If there is a chance
that the attribute does not have a value, then use the
sys_defined evaluation function to ensure that a
value exists before it is used. For example
grant(…) if sys_defined(foo) and foo =
“bar”;

sys_external_attributes list of strings A resource attribute set through the Administration
Console on an application resource to indicate what
attributes are needed for dynamic evaluation. This
contains a list of attribute names.

sys_rule_subj_q string Qualified subject user or group name in the currently
evaluated policy: //user/ales/system/

sys_rule_subj string Unqualified subject user or group name in the currently
evaluated policy: system

Servername string Name of the server, where ALES process is running.

Des ign ing More Advanced Po l i c i es

Policy Managers Guide 4-19

sys_rule_obj_q string Qualified resource name for the currently evaluated
policy: //app/policy/foo

sys_rule_obj string Unqualified resource name for the currently evaluated
policy: foo

sys_rule_priv_q string Qualified current policy action: //priv/write

sys_rule_priv string Unqualified current policy action: write

sys_subjectgroups_q list of string List of groups to which the current user belongs:
["//sgrp/ales/admin/,"
"//sgrp/ales/managers/"]

sys_subjectgroups list of strings List of unqualified group names to which user belongs:
["admin", "managers"]

sys_dir_q string Directory of the user: //dir/ales

sys_dir string Directory of the user, unqualified form: ales

sys_user_q string Current user: //user/ales/system/

sys_user string Current user: unqualified form: system

sys_obj_type enumeration Set through the Administration Console on the resource.
Valid values include:
• Organizational node (orgnode)
• Application node (appnode)
• Binding node (bndnode)
• Application Binding node (bndappnode)
• Resource node (resnode)

sys_obj_distribution_po
int

Boolean
enumeration
{yes, no}

Distribution point set through the Administration Console
on the resource. Setting this to yes, displays the resource
on the distribution page as a potential point of
distribution.

Table 4-5 Built-In Request System Attributes (Continued)

Attribute Value Range or Format

4-20 Policy Managers Guide

Evaluation Function Declarations
An evaluation function is a declaration that returns one of two values: true or false. These
values come from a predefined function and are included by using a plug-in extension that a

sys_suppress_rule_excep
tions

Boolean
enumeration
{yes, no}

Set through the Administration Console to indicate
whether to continue evaluation if a policy with missing
data is encountered.

sys_app_q string Name of the binding resource for the resource on which
query is performed: //app/policy/ALES/admin

sys_app string Unqualified name of the binding resource for the resource
on which the query is performed: admin

sys_obj_q string Resource on which the query is performed:
//app/policy/foo/bar

sys_obj string Resource on which the query is performed: bar

sys_priv_q string Effect of the current policy: //priv/foo

sys_priv string Unqualified form of the effect of the current policy: foo

sys_privilege string Unqualified name of the action on which the resource is
being queried.

The following two policies are equivalent:
grant(//priv/READ,
//app/policy/library, //role/Reader);

grant(any, //app/policy/library,
//role/Reader) if sys_privilege="READ";

The attribute can also be used in a role-mapping policy.
For example, the following policy assigns the role
Reader to all users if the requested action is READ:
grant(//role/Reader,
//app/policy/library,
//sgrp/asi/allusers/) if
sys_privilege="READ";

sys_direction enumeration Defines the direction of authorization: once, post or prior.

Table 4-5 Built-In Request System Attributes (Continued)

Attribute Value Range or Format

Des ign ing More Advanced Po l i c i es

Policy Managers Guide 4-21

programmer creates specifically for your application. Additionally, you can use any of the
built-in evaluation functions available in all applications.

For instance, your programmer might create a plug-in for your accounting application that
includes an evaluation function called Overdrawn that contains the results of a calculation of
whether the account was overdrawn for that month. A constraint for a deny policy might use that
function like this:

[Deny user access to something] IF Overdrawn();

Like functions and procedures in programming, evaluation functions can take zero or more
parameter values, which are passed to the plug-in. For example, if you wanted to provide the
overdrawn amount, you might use it like this:

[Deny user access to something] IF Overdrawn(500);

Evaluation functions can dynamically take different numbers or types of parameter values each
time they are referenced in a policy. It is up to the programmer writing the evaluation function
code to correctly handle the parameters.

Authorization Caching Expiration Functions
Authorization caching allows the system to cache the result of an authorization call and use that
result if future identical calls are made. The cache is smart and automatically invalidates itself if
there is a policy change or other client side change that would affect the authorization results.
However, the cache is not smart enough to know when authorization decisions depend on
dynamic data. Dynamic data includes date and time values, as well as evaluation plug-ins that
reference external sources. If you are using authorization caching you need to set expiration times
on policies that reference dynamic data.

Note: By default, authorization caching is turned on.

Table 4-6 lists the expiration functions for the authorization cache that let you set an expiration
time for the authorization decision. This way you can instruct the cache to only hold the value for
a given period of time, based on Greenwich Mean Time (GMT), or not to hold it at all.

Table 4-6 Expiration Functions for Authorization Cache

Function Argument Type Description

valid_for_mseconds integer Valid for a given number of milliseconds.

valid_for_seconds integer Valid for a given number of seconds.

4-22 Policy Managers Guide

valid_for_minutes integer Valid for a given number of minutes.

valid_for_hours integer Valid for a given number of hours.

valid_until_timeofday time Valid until the specified time on the date the
evaluation is performed.

valid_until_time24 integer Valid until the specified time on the date the
evaluation is performed.

valid_until_hour integer Valid until the specified hour on the date the
evaluation is performed.

valid_until_minute integer Valid until the specified minute of the hour the
evaluation is performed.

valid_until_date Date Valid until the specified date.

valid_until_year integer Valid until the specified year.

valid_until_month month_type Valid until the specified month of the year the
evaluation is performed.

valid_until_dayofyear integer Valid until the specified day of the year the
evaluation is performed

valid_until_dayofmonth integer Valid until the specified day of the month the
evaluation is performed.

valid_until_dayofweek Dayofweek_type Valid until the specified day of the week the
evaluation is performed.

valid_until_timeofday_gmt time Valid until the specified time on the date the
evaluation is performed in GMT time.

valid_until_time24_gmt integer Valid until the specified time on the date the
evaluation is performed in GMT time.

valid_until_hour_gmt integer Valid until the specified minute of the hour the
evaluation is performed in GMT time.

valid_until_minute_gmt integer Valid until the specified minute of the hour the
evaluation is performed in GMT time.

Table 4-6 Expiration Functions for Authorization Cache (Continued)

Function Argument Type Description

Des ign ing More Advanced Po l i c i es

Policy Managers Guide 4-23

For example, suppose you have the following authorization policy:

GRANT(//priv/order,//app/restaurant/breakfast,//group/customers/allusers)

if hour < 11;

With authorization caching enabled (it is enabled by default), the results of this grant decision is
cached until the next policy distribution.

On the other hand, if you call the valid_until_hour() expiration function in the authorization
policy as follows:

GRANT(//priv/order,//app/restaurant/breakfast,//group/customers/allusers) if

hour < 11 and valid_until_hour(11);

with authorization caching, the result of this policy is cached until 11:00 AM, at which time it
expires. Therefore, with authorization caching enabled, it is important to update your time
dependent policies appropriately.

Policy Inheritance
Using policy inheritance can reduce the number of policies required to protect a set of resources.
The following topics describe how inheritance works:

“Group Inheritance” on page 4-24

valid_until_date_gmt Date Valid until the specified date in GMT time.

valid_until_year_gmt integer Valid until the specified year in GMT time.

valid_until_month_gmt month_type Valid until the specified month of the year the
evaluation is performed in GMT time.

valid_until_dayofyear_gmt integer Valid until the specified day of the year the
evaluation is performed in GMT time.

valid_until_dayofmonth_gmt integer Valid until the specified day of the month the
evaluation is performed in GMT time.

valid_until_dayofweek_gmt Dayofweek_type Valid until the specified day of the week the
evaluation is performed in GMT time.

Table 4-6 Expiration Functions for Authorization Cache (Continued)

Function Argument Type Description

4-24 Policy Managers Guide

“Direct and Indirect Group Membership” on page 4-24

“Restricting Policy Inheritance” on page 4-25

“Resource Attribute Inheritance” on page 4-25

Group Inheritance
Users or groups inherit the right (action or role) of any group to which they belong, either directly
or through their parents. Group inheritance allows each user in the group to assume all the group
rights to which they are members, either directly or indirectly through their parent groups (or the
groups of their parents). Both users and groups can have parent groups but only groups can have
children. Group inheritance is very powerful as it allows you to define entitlements once and have
the policy apply to all members.

Note: BEA recommends that you define your role mapping policies using groups, rather than
individual users. Role mapping policies written using users should be used for exceptions
and to handle unusual or infrequent situations.

It is important to note that parent groups usually have fewer rights than their children. As you
move from the bottom of the resource tree to the top, the groups inherit the rights of their
ancestors and are directly granted.

Direct and Indirect Group Membership
The immediate members of a group are called direct members. Direct members appear
immediately below their parent on the inheritance tree. A member that has an inherited
membership is called indirect member. The collection of all groups available, either directly or
through inheritance, is referred to as group closure.

Group inheritance behavior is affected by how group membership searching is configured in your
security providers. Two attributes control group membership searching:

GroupMembershipSearching—Specifies whether group membership searching traverses all
the group’s children or a limited number of levels of child groups.

MaxGroupMembershipSearchLevel—If GroupMembershipSearching is set to limited,
specifies the number of levels of child groups to search. A value of 0 indicates only direct
group memberships will be found. A positive number indicates the number of levels to go
down.

If you set GroupMembershipSearching to unlimited, all indirect members will be considered
when a policy is evaluated. If you set GroupMembershipSearching to limited, only indirect

Des ign ing More Advanced Po l i c i es

Policy Managers Guide 4-25

members within the number of levels of inheritance specified by
MaxGroupMembershipSearchLevel will be considered.

Restricting Policy Inheritance
Policies are inherited in a number of ways:

Policies written on a resource apply to the descendants of that resource.

Policies written on a group apply to all members of that group.

Policies written on a role apply to everyone who has been granted that role.

Policies written on the any action apply to all actions.

You can restrict policy inheritance by limiting its applicability. For example, you can limit the
applicability of a GRANT role mapping policy by adding a constraint. The following policy
illustrates this:

GRANT(//role/admin, //app/policy/www.myserver.com/protected,

//sgrp/acme/manager/) IF sys_obj_q =

//app/policy/www.myserver.com/protected;

where: sys_obj_q is a system attribute on which the query is performed.

The sys_obj_q constraint keeps this policy from being applicable to the descendants of the
protected resource, thus blocking policy inheritance.

Resource Attribute Inheritance
Like users and groups, descendant resources also inherit the attributes of any parent resource.
Resource inheritance allows each child resource in the tree to assume all the attributes of the
parent resource. Resource attribute inheritance is powerful as it allows you to define attributes on
the parent resource, and have the attributes be inherited to all child resources automatically.

Note: BEA recommends that you define attributes on parents, rather than individual child
resources. When an attribute is explicitly defined for a child, the attribute overrides any
inherited value. Policies written directly for child resources should be used for exceptions
or short-lived policies that handle unusual circumstances.

4-26 Policy Managers Guide

WebLogic Resource Type Conversions and Resource
Trees

This section describes how ALES converts the different resource types supported by WebLogic
Server, WebLogic Portal, AquaLogic Data Services Platform, and AquaLogic Service Bus and
how they are represented in a resource tree in the Administration Console.

Table 4-7 lists the resource types supported for WebLogic Server, WebLogic Portal, AquaLogic
Data Services Platform, and AquaLogic Service Bus.

Understanding Resource Nodes
An authorization policy involves a resource, action, subject, and attributes. Every resource is
represented as a node within a tree, and the node is referenced using a path-like expression. The
nodes are delimited by the ‘/’ character and can include the following hierarchy of nodes:

1. root node

2. application deployment parent node

3. application node

4. resource type node

5. resource parent node

Table 4-7 Supported Resource Types

Target System Supported Resource Types

WebLogic Server <adm>, <app>, <com>, <eis>, <ejb>, <jdbc>,
<jms>, <jndi>, <ld>, <svr>, <url>, <web>,
<webservices>

WebLogic Portal All WebLogic Server resources plus <wlp>.

AquaLogic Data Services
Platform

All WebLogic Server resources plus <ld>.

AquaLogic Service Bus All WebLogic Server resources plus
<wlsb-proxy-service> and
<alsb-proxy-service>.

WebLog ic Resource Type Convers i ons and Resource T rees

Policy Managers Guide 4-27

6. resource node

Root Node
The root resource node in ALES is named //app/policy.

Application Deployment Parent Node
Typically, a node called an application deployment parent follows the root node. Using multiple
application deployment parent nodes helps to organize resources according to their physical,
organizational or logical structure.

Application Node
The application deployment parent is followed by the application node that corresponds to an
application a resource is associated with. Not every resource belongs to a particular application
(for example, a JDBC resource); in that case, the keyword shared substitutes for the name of the
application.

Resource Type Node
The next level in the resource path is the resource type node. The name of this node corresponds
to a resource type being addressed, for example, jms, ejb, jndi, etc.

Resource Parent Node
The resource type node is followed by the resource parent node. The resource parent node helps
to organize resources within an application and its value depends on the type of the resource.

Resource Node
The final element in a resource description is the name of the resource itself, which follows the
resource parent node.

Thus, to address any resource in the resource tree, it is necessary to know the following resource
path elements:

application deployment parent

application name

resource type

resource parent

4-28 Policy Managers Guide

resource name

The application deployment parent depends only on the configuration of the authorization
provider; the remaining four elements vary from one resource type to another.

Table 4-8 gives an example of how the different resource type can be represented in the
Administration Console resource tree.

Table 4-8 Examples of Mapping Resource Types to Resource Nodes

Resource Type Sample Resource Tree Conversions

<adm> //app/policy/ALES/shared/adm
//app/policy/ALES/shared/adm/Configuration
//app/policy/ALES/shared/adm/FileDownload
//app/policy/ALES/shared/adm/FileUpload
//app/policy/ALES/shared/adm/ViewLog

<app> //app/policy/essdemo/myapplication/app
//app/policy/essdemo/anotherapplication/app

<com> //app/policy/essdemo/comapplication/com/classpackage/cla
ssname

<eis> //app/policy/essdemo/shared/eis

<ejb> //app/policy/essdemo/ess/ejb/netuix.jar
//app/policy/essdemo/ess/ejb/netuix.jar/PortalCustomizati
onManager

<jdbc> //app/policy/essdemo/shared/jdbc/ConnectionPool
//app/policy/essdemo/shared/jdbc/ConnectionPool/MyPool-DB

<jms> //app/policy/essdemo/shared/jms/queue
//app/policy/essdemo/shared/jms/queue/jms

<jndi> //app/policy/essdemo/shared/jndi/jms
//app/policy/essdemo/shared/jndi/weblogic
//app/policy/essdemo/shared/jndi/weblogic/jms
//app/policy/essdemo/shared/jndi/weblogic/jms/MessageDriv
enBeanConnectionFactory
//app/policy/essdemo/shared/jndi/weblogic/jms/S:MedRecSer
ver
//app/policy/essdemo/shared/jndi/weblogic/management
//app/policy/essdemo/shared/jndi/weblogic/management/home
//app/policy/essdemo/shared/jndi/weblogic/management/home
/localhome

<svr> //app/policy/essdemo/shared/svr

Resource Paths and Po l i c ies fo r Common Resources

Policy Managers Guide 4-29

Resource Paths and Policies for Common Resources
This section describes the values of resource path elements for common resource types. For each
resource type, it describes how to specify the resource path and actions, list dynamic resource
attributes are available, and give examples of policies for that resource type. The examples in this
section assume that the application deployment parent node is //app/policy/AppParentNode.

“EJB Resources” on page 4-30

“JNDI Resources” on page 4-32

“URL Resources” on page 4-34

“JDBC Resources” on page 4-39

“JMS Resources” on page 4-42

“Web Services Resources” on page 4-45

“Server Resources” on page 4-49

<url> //app/policy/essdemo/ess/url/demolaunch
//app/policy/essdemo/ess/url/demolaunch/launch.portal
//app/policy/essdemo/ess/url/demolaunch/framework
//app/policy/essdemo/ess/url/demolaunch/framework/skins
//app/policy/essdemo/ess/url/demolaunch/resources
//app/policy/essdemo/ess/url/demolaunch/resources/images

<webservices> //app/policy/essdemo/shared/webservices

<wlp> //app/policy/essdemo/ess/wlp/essWeb/com_bea_p13n
//app/policy/essdemo/ess/wlp/essWeb/com_bea_p13n/Page
//app/policy/essdemo/ess/wlp/essWeb/com_bea_p13n/Desktop
//app/policy/essdemo/ess/wlp/essWeb/com_bea_p13n/Book
//app/policy/essdemo/ess/wlp/essWeb/com_bea_p13n/Portlet

<ld> //app/policy/essdemo/shared/ld
//app/policy/myrealm/RTLApp/ld/DataServices/RTLServices/CustomerV
iew.ds/CUSTOMER/ORDERS/ORDER_SUMMARY/OrderDate

Table 4-8 Examples of Mapping Resource Types to Resource Nodes

Resource Type Sample Resource Tree Conversions

4-30 Policy Managers Guide

“Subject Mapping” on page 4-51

EJB Resources
Table 4-9 shows the mapping of the resource path elements for an EJB resource.

EJB Resource Path Example
For the purposes of this example, suppose you have an EJB application named
MyEjbApplication and a module named MyManagers, configured by the following EJB
application declaration:

<Application Name="MyEjbApplication" Path="./applications"

StagingMode="nostage" TwoPhase="true">

<EJBComponent Name="MyManagers" Targets="myserver" URI="managers.jar"/>

</Application>

Listing 4-1 shows how an EJB named AccountService could be defined in the standard EJB
ejb-jar.xml deployment descriptor:

Listing 4-1 EJB Configuration

<enterprise-beans>

<!-- Session Beans -->

<session>

<display-name>AccountService</display-name>

<ejb-name>AccountService</ejb-name>

Table 4-9 EJB Resource Path Elements

Element Name Value

application name Same as the EJB application name

resource type ejb

resource parent Same as the EJB module name

resource name EJB_NAME/METHOD_NAME, where:
• EJB_NAME is the name of the EJB
• METHOD_NAME is the invoked method name

Resource Paths and Po l i c ies fo r Common Resources

Policy Managers Guide 4-31

<home>com.bea.security.examples.ejb.AccountServiceHome</home>

<remote>com.bea.security.examples.ejb.AccountService</remote>

<ejb-class>ejb.AccountServiceSession</ejb-class>

<session-type>Stateless</session-type>

<transaction-type>Bean</transaction-type>

</session>

</enterprise-beans>

In the case of a getBalance method call on the AccountService stateless session bean defined
by the configuration in this example, the fully qualified resource path would be:
//app/policy/AppParentNode/MyEjbApplication/ejb/MyManagers/AccountService/
getBalance

EJB Resource action Mappings
The EJB method is now part of the resource URL, instead of being the action. The action now is
always equal to execute.

Consider the example of AccountEJB with method transferMoney. Prior to ALES version 2.6,
the resource would be $some_prefix/AccountEJB and the action would be transferMoney.
As of this release, the resource is $some_prefix/AccountEJB/transferMoney and the action
is execute.

In releases prior to ALES 2.6, the action required to access an EJB resource was the method name
called on the EJB. For example, assume that the AccountService bean has a business method
called getBalance(). To be able to call the getBalance() method, the user must be granted
the getBalance action. In order for the user to be able to instantiate the remote interface by
calling the create() method on the EJB home interface, the user must be granted the create
action.

EJB Resource Dynamic Resource Attributes
The following attributes are supported by EJB resources and can be used as a part of an
authorization policy:

application
The name of the application

module
Name of the module

4-32 Policy Managers Guide

ejb
Name of the EJB

method
Name of the method

methodinterface
One of the values Home, Remote, LocalHome, or Local

Param<N>
A value of the Nth parameter in the method, e.g. Param1, Param2…

For an example that illustrates EJB resources, see WLS_SSM_HOME/examples/EJBAppExample.

JNDI Resources
Table 4-10 shows the mapping of the resource path elements for a JNDI resource.

JNDI Resource Path Example
Listing 4-2 is an extract from weblogic-ejb-jar.xml that defines the JNDI name of the
AccountService EJB used in “EJB Resource Path Example” on page 4-30.

Listing 4-2 JNDI Name Definition

<weblogic-ejb-jar>

<weblogic-enterprise-bean>

<ejb-name>AccountService</ejb-name>

<stateless-session-descriptor></stateless-session-descriptor>

<reference-descriptor></reference-descriptor>

Table 4-10 JNDI Resource Path Elements

Element Name Value

application name shared

resource type jndi

resource parent The JNDI resource path

resource name Not used

Resource Paths and Po l i c ies fo r Common Resources

Policy Managers Guide 4-33

<jndi-name>AccountService</jndi-name>

</weblogic-enterprise-bean>

</weblogic-ejb-jar>

The fully qualified resource name that corresponds to the physical JNDI name of the
AccountService EJB home interface would be:

//app/policy/AppParentNode/shared/jndi/AccountService

JNDI Resource Action Mappings
The action for a JNDI call is the JNDI action name. The action value can have one of the
following values:

modify
Required whenever an application modifies the JNDI tree in any way (that is, adding,
removing, changing). This includes the bind(), rebind(), createSubContext(),
destroySubContext(), and unbind() methods.

lookup
Required whenever an application looks up an object in the JNDI tree. This includes the
lookup() and lookupLink() methods.

list
Required whenever an application lists the contents of a context in JNDI. This includes
the list() and listBindings() methods

JNDI Dynamic Resource Attributes
The following dynamic attributes are supported by JNDI resources and can be used as a part of
an authorization policy:

application
Always shared.

path
The JNDI resource path.

action
The JNDI action name (modify | lookup | list).

4-34 Policy Managers Guide

JNDI Resource Policy Examples
The following policy grants the group Everyone the action to perform the lookup operation on
any JNDI resource. Note that the resource //app/policy/AppParentNode/shared/jndi
must be a virtual one.

grant(//priv/lookup, //app/policy/mybank/shared/jndi, //role/Everyone) if

true;

The following policy grants the role Admin the action to modify a JNDI resource named
DataSource. This allows any user assigned the Admin role to perform such operations as bind()
and unbind().

grant(//priv/modify, //app/policy/mybank/jndi/DataSource, //role/Admin) if

true;

URL Resources
Table 4-11 shows the mapping of the resource path elements for a URL resource.

URL Resource Path Example
In this example, assume that:

there is a web resource accessible through the URL
http://localhost/helloworld/HelloWorld.jsp

the web server configuration file references the web application as HelloWorldApp with
the context path /helloworld

To protect the resource, it is necessary to know how the JSP page is represented in the resource
tree. In this example, the elements of the resource path are:

Table 4-11 URL Resource Path Elements

Element Name Value

application name The name of the web application that contains the resource

resource type url

resource parent The context path of the web application

resource name The resource URI after the context path

Resource Paths and Po l i c ies fo r Common Resources

Policy Managers Guide 4-35

Application Name – the name of the web application,. HelloWorldApp

Resource Type – url

Resource Parent – the context path of the web application, helloworld

Resource Name – the JSP name, HelloWorld.jsp

The resulting resource representation is:

//app/policy/AppParentNode/HelloWorldApp/url/helloworld/HelloWorld.jsp

URL Resource Action Mappings
In case of a URL resource, the action name is mapped to the HTTP request method name: GET,
POST, PUT, HEAD, DELETE, TRACE, CONNECT, etc.

URL Dynamic Resource Attributes
The following dynamic attributes are supported by URL resources and can be used as a part of
an authorization policy:

application
The name of the web application.

contextpath
The context path of the web application.

uri
The URI of the resource.

httpmethod
The HTTP method (same as action).

transporttype
The transport guarantee required to access the URL resource, as it appears in the
corresponding <transport-guarantee> element in the deployment descriptor. The
value can be one of INTEGRAL or CONFIDENTIAL.

authtype
The name of the authentication scheme used to protect the servlet. The value can be one
of: BASIC, FORM, CLIENT_CERT or DIGEST.

pathInfo
Extra path information associated with the URL sent by the client when it made a request.

4-36 Policy Managers Guide

pathtranslated
Extra path information after the servlet name but before the query string is translated to a
real path.

querystring
The query string that is contained in the request URL after the path.

remoteuser
The login of the user making the request, if the user has been authenticated.

requestedsessionid
The session ID specified by the client.

requesturi
The part of this request's URL from the protocol name up to the query string in the first
line of the HTTP request.

requesturl
The URL the client used to make the request. The returned URL contains a protocol,
server name, port number, and server path, but it does not include query string parameters.

servletpath
The part of this request's URL that calls the servlet.

characterencoding
The character encoding used in the body of the request.

contenttype
The MIME type of the body of the request.

locale
The preferred Locale of the client.

protocol
The name and version of the protocol, for example, HTTP/1.1.

remoteaddr
The Internet Protocol address of the client or last proxy that sent the request.

remotehost
The fully qualified name of the client or the last proxy that sent the request.

scheme
The name of the scheme used to make this request, for example, http, https, or ftp.

Resource Paths and Po l i c ies fo r Common Resources

Policy Managers Guide 4-37

servername
The host name of the server to which the request was sent.

serverport
The port number to which the request was sent.

issecure
A boolean indicating whether this request was made using a secure channel, such as
HTTPS.

HTTP Request Context Elements
HTTP request context elements such as servlet attributes, URL query parameters, HTTP request
headers and cookies are available as name/value pairs. This section describes how to access the
following elements while creating authorization policy constraints:

“Servlet Attributes” on page 4-37

“URL Query Strings” on page 4-38

“HTTP Request Headers” on page 4-38

“Cookies” on page 4-38

The attributes that correspond to servlet attributes, URL query parameters, HTTP request headers
and cookies are case insensitive; however, an assumption that the attribute names are case
sensitive will slightly improve the performance.

If names of a servlet attribute, URL query parameter, HTTP request header, or cookie collide,
only one attribute will be available in policy constraints. The order the framework searches for a
matching attribute is:

1. URL query parameters

2. servlet attributes

3. HTTP request headers

4. cookies

Servlet Attributes
Servlet attributes are name/value pairs that can be internally added to a request by a servlet
container. Usually the attributes are added by calling method setAttribute of the

4-38 Policy Managers Guide

ServletRequest interface. The policy attribute names correspond to the names of servlet
attributes. The names are represented as strings and case insensitive.

URL Query Strings
The attribute names that correspond to the parameters in a URL query string are the same as the
parameter names. The names are represented as strings and are case insensitive. The attributes
refer to the query string variable encoded within the request. For example, if a URL includes a
query such as ?test=endcoded%20char, the parameter can be accessed in the constraint of an
authorization policy in the following way:

"if test= "encoded char"

HTTP Request Headers
The attribute name of an HTTP request header corresponds to the name of the header. The name
is returned as a string and is case insensitive. Examples of the headers often available are: date,
if-modified-since, referrer, or user-agent.

Note: The date header, which is usually a date type, is returned as a string.

Cookies
The attribute names that correspond to cookies in an HTTP request are the same as the cookie
name in the request. The names are returned as strings and case insensitive. The value of the
cookie returned is application specific and may need further decoding. For example, if you are
using the ALES cookie, the attribute name is:

"ALESIdentityAssertion"

URL Resource Policy Examples
The following policy grants user anonymous (any unauthorized user) the action to view current
currency exchange rates (the page currentRates.jsp) but only if the connection is secure (for
example, through HTTPS).

grant(//priv/GET,

//app/policy/mybank/bankapp/url/currencyExchange/currentRates.jsp,

//user/myusers/anonymous/) if issecure=yes;

The following policy grants the role Manager the action to post new currency exchange rates (the
page postNewRates.jsp) but only if the user updates the data from local machine.

Resource Paths and Po l i c ies fo r Common Resources

Policy Managers Guide 4-39

grant(//priv/POST,

//app/policy/mybank/bankapp/url/currencyExchange/postNewRates.jsp,

//role/Manager) if remotehost="localhost";

Let us imagine a web application that allows a customer to buy stocks online. When the customer
clicks on the link mybroker/buyStocks.do, the browser sends an HTTP request that is mapped
to a Java servlet. The servlet is responsible for fetching balances of all customer’s accounts and
calculating the customer’s purchasing power, the amount of money he or she can spend on buying
new stocks. Then the servlet then sets a request attribute named purchasingPower and forwards
the request to a page located at mybroker/buyStocks.jsp The mybroker/buyStocks.jsp
shows the customer’s purchasing power and asks about the amount he or she wants to spend.

The mybroker/buyStocks.jsp page should not be displayed if a customer’s purchasing power
is not positive. The following rule grants access to the page only if a customer has a positive
purchasing power by checking the purchasingPower servlet attribute.

grant(//priv/GET, //app/policy/mybank/bankapp/url/mybroker/buyStocks.jsp,

//role/Client) if purchasingPower>0;

Again, let us imagine an application that allows a customer to trade stocks online. Before the
customer can trade stocks, he or she must open a brokerage account. The account can be opened
online by clicking on the mybroker/openAccount.jsp link. The first page that is displayed
contains a trading agreement text and asks the customer to accept it. The checkbox is linked to an
HTML form parameter named customerAgreed. When the HTML form is posted, this
parameter is set to true if the customer has accepted the trading agreement.

The following rule allows customer to proceed only if he or she accepted the trading agreement
by ticking the checkbox off. The rule checks the customerAgreed HTTP request parameter.

deny(//priv/POST,

//app/policy/mybank/bankapp/url/mybroker/openAccount.jsp, //role/Client)

if Not customerAgreed="true"

JDBC Resources
Table 4-12 shows the mapping of the resource path elements for a JDBC resource:

4-40 Policy Managers Guide

JDBC Resource Path Example
Listing 4-3 shows the configuration of a JDBC resource.

Listing 4-3 JDBC Resource Configuration

<JDBCConnectionPool DriverName="oracle.jdbc.driver.OracleDriver"

Name="MyJDBCConnectionPool"

PasswordEncrypted="{3DES}B2Bl+tp70Eh3D1pT53/anw=="

Properties="user=wles" Targets="myserver"

TestTableName="SQL SELECT 1 FROM DUAL"

URL="jdbc:oracle:thin:@localhost:1521:ASI"/>

<JDBCTxDataSource JNDIName="MyDataSource"

Name="MyJDBCDataSourceName"

PoolName="MyJDBCConnectionPool"

Targets="myserver"/>

Because the resource is global and does not belong to any particular module, the fully qualified
resource name is:

//app/policy/AppParentNode/shared/jdbc/ConnectionPool/MyJDBCConnectionPool

where ConnectionPool is the resource type and MyJDBCConnectionPool is the resource name.

JDBC Resource Action Mappings
The action name of a JDBC resource is mapped to a JDBC operation name and can take one of
the following values:

Table 4-12 JDBC Resource Path Elements

Element Name Value

application name The application name or shared if the resource is global

resource type jdbc

resource parent Module name (if any) + the resource type (ConnectionPool or
MultiPool)

resource name The resource name

Resource Paths and Po l i c ies fo r Common Resources

Policy Managers Guide 4-41

admin
Action to perform the admin operations such as clearStatementCache, suspend,
forceSuspend, resume, shutdown, forceShutdown, start, getProperties, and
poolExists.

reserve
Action to reserve a connection in the data source by looking up the data source and then
calling getConnection.

shrink
Action to shrink the number of connections in the data source.

reset
Action to reset the data source connections by shutting down and re-establishing all
physical database connections.

JDBC Resource Path Example
Listing 4-4 gives an example of code that uses the JDBC resource we defined earlier.

Listing 4-4 JDBC Resource Code Example

javax.naming.InitialContext initialContext = new

javax.naming.InitialContext();

javax.sql.DataSource ds = (javax.sql.DataSource)

initialContext.lookup("MyDataSource");

java.sql.Connection conn = ds.getConnection();

PreparedStatement statement =

conn.prepareStatement("SELECT accountName FROM accounts WHERE balance <

0");

ResultSet result = statement.executeQuery();

if (result.next()) {

String accountName = result.getString(1);

System.out.println("The first account with negative balance is " +

accountName);

}

In the example, the code calls the getConnection() method on the data source instance. This
initiates an authorization check to verify the reserve action against the

4-42 Policy Managers Guide

//app/policy/AppParentNode/shared/jdbc/ConnectionPool/MyJDBCConnectionPool
resource.

JDBC Dynamic Resource Attributes
The following dynamic attributes are supported by JDBC resources and can be used as a part of
an authorization policy:

application
The name of an application that hosts the resource.

module
The name of a module the resource belongs to.

category
The resource type (ConnectionPool | MultiPool).

resource
The name of the resource.

action
The JDBC operation name (admin | reserve | shrink | reset).

JDBC Resource Policy Examples
The following policy grants the role ExternalApplication the action to reserve (open) a JDBC
connection from a connection pool called ExternalDataPool:

grant(//priv/reserve,

//app/policy/mybank/shared/jdbc/ConnectionPool/ExternalDataPool,

//role/ExternalApplication) if true;

The following policy grants the role Admin the admin action that will allow him or her to shut
down any JDBC resources except a resource named SystemJdbcPool. Note that the
//app/policy/mybank/shared/jdbc resource must be a virtual one.

grant(//priv/admin, //app/policy/mybank/shared/jdbc, //role/Admin) if Not

resource="SystemJdbcPool";

JMS Resources
Table 4-13 shows the mapping of the resource path elements for a JMS resource:

Resource Paths and Po l i c ies fo r Common Resources

Policy Managers Guide 4-43

JMS Resource Path Example
Listing 4-5 gives an example of how a JMS queue named MyJMSQueue might be configured.

Listing 4-5 JMS Resource Configuration Example

<JMSServer Name="WSStoreForwardInternalJMSServermyserver"

Store="FileStore" Targets="myserver">

<JMSQueue CreationTime="1150241964468"

JNDIName="JMSQueue" Name="MyJMSQueue"/>

</JMSServer>

<JMSConnectionFactory JNDIName="JmsConnectionFactory"

Name="MyJMSConnectionFactory" Targets="myserver"/>

To insure the client can use the JMS queue named MyJMSQueue, it should be granted rights to
access resource //app/policy/AppParentNode/shared/jms/queue/MyJMSQueue.

JMS Resource Action Mappings
The action name of a JMS resource is mapped to the JMS operation name. It can have one of the
following values:

send
Required to send a message to a queue or a topic. This includes calls to the
MessageProducer.send(), QueueSender.send(), and
TopicPublisher.publish() methods.

Table 4-13 JMS Resource Path Elements

Element Name Value

application name The application name or shared if the resource is global

resource type jms

resource parent The destination type (topic or queue)

resource name The resource name

4-44 Policy Managers Guide

receive
Required to create a consumer on a queue or a topic. This includes calls to the
Session.createConsumer(), Session.createDurableSubscriber(),
QueueSession.createReceiver(), TopicSession.createSubscriber(),
TopicSession.createDurableSubscriber(),
Connection.createConnectionConsumer(),
Connection.createDurableConnectionConsumer(),
QueueConnection.createConnectionConsumer(),
TopicConnection.createConnectionConsumer(), and
TopicConnection.createDurableConnectionConsumer() methods.

browse
Required to view the messages on a queue using the QueueBrowser interface.

JMS Resource Example
Listing 4-6 gives an example of a JMS client that uses the JMS queue declared above.

Listing 4-6 JMS Client Example

//Instantiate the inital context

javax.naming.InitialContext initialContext = new

javax.naming.InitialContext();

//Look up the JMS connection factory and the message queue

Queue messageQueue = (Queue) initialContext.lookup("JMSQueue");

JMSConnectionFactory factory =

(JMSConnectionFactory) initialContext.lookup("JmsConnectionFactory");

//Create the queue connection and session

QueueConnection queueConnection = factory.createQueueConnection();

QueueSession session =

queueConnection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);

//Create a text message

TextMessage textMessage = session.createTextMessage();

textMessage.setText("Hello from the client!");

Resource Paths and Po l i c ies fo r Common Resources

Policy Managers Guide 4-45

//Send message to the queue

QueueSender sender = session.createSender(messageQueue);

sender.send(textMessage);

In the example, the client sends a text message to MyJMSQueue. This requires the send action for
resource //app/policy/AppParentNode/shared/jms/queue/MyJMSQueue to successfully
execute the code.

JMS Dynamic Resource Attributes
The following dynamic attributes are supported by JMS resources and can be used as a part of an
authorization policy:

application
The name of an application that hosts the resource.

destinationtype
The JMS destination type (queue | topic).

resource
The name of the resource.

action
The JDBC operation name (send | receive | browse).

JMS Resource Policy Examples
The following policy grants the role Client the action to send messages to a JMS queue named
FeedbackQueue:

grant(//priv/send, //app/policy/mybank/shared/jms/queue/FeedbackQueue,

//role/Client) if true;

The following policy grants the user FeedbackProcessor the action to receive messages from
a JMS queue named FeedbackQueue:

grant(//priv/receive, //app/policy/mybank/shared/jms/queue/FeedbackQueue,

//user/myusers/FeedbackProcessor);

Web Services Resources
Table 4-14 shows the mapping of the resource path elements for a Web Services resource:

4-46 Policy Managers Guide

Web Services Resource Path Example
Listing 4-7 shows the configuration of a web application named BasicWS that contains a Web
Service implementation named BasicWS_Component.

Listing 4-7 Web Application Configuration Example

<application Name="BasicWS"

Path="applications/BasicWS.ear"

StagedTargets="myserver"

<WebServiceComponent Name="BasicWS_Component"

Targets="myserver"

URI="BasicWS.war"/>

</application>

Listing 4-8 shows how the application.xml file from the BasicWS.ear enterprise archive
defines the web application context:

Listing 4-8 Web App Context Example

<module>

<web>

<web-uri>basic_javaclass.war</web-uri>

<context-root>myservices</context-root>

Table 4-14 Web Services Resource Path Elements

Element Name Value

application name The name of the application that contains the resource

resource type webservices

resource parent The application context

resource name The Web Service name

Resource Paths and Po l i c ies fo r Common Resources

Policy Managers Guide 4-47

</web>

</module>

Listing 4-9 shows the configuration of a Web Service named HelloWorld, which is defined in
the descriptor web-services.xml inside the WAR file.

Listing 4-9 Web Service Example

<web-services>

<web-service useSOAP12="false"

name="HelloWorld"

style="rpc"

uri="/HelloWorld">

<operations>

<operation name="sayHello"

method="sayHello(int,java.lang.String)"/>

</operations>

</web-service>

</web-services>

The fully qualified name of this Web Service resource is:

//app/policy/AppParentNode/BasicWS/webservices/myservices/HelloWorld

Web Services Resource Action Mappings
The action for accessing a Web Service is mapped to the name of the Web Service operation.

Web Services Resource Policy Examples
To call the operation sayHello in the HelloWorld service defined in this section, the client must
be granted the action sayHello. Note that some of the clients may require access to the WSDL
file, which is actually a URL resource. Consider the following client code:

String wsdlUrl = "http://localhost:7001//HelloWorld?WSDL";

HelloWorld service = new HelloWorld_Impl(wsdlUrl);

HelloWorldPort port = service.getHelloWorldPort();

String result = port.sayHello(34, "Josh");

Before calling method sayHello, the client accesses the WSDL file. To make the code run
successfully, the client must be granted the action GET on the resource

4-48 Policy Managers Guide

//app/policy/AppParentNode/BasicWS/url/myservices/helloworld in addition to the
Web Service resource. Thus, the following policies must be created:

grant(//priv/GET,

//app/policy/AppParentNode/BasicWS/url/myservices/helloworld,

//role/SomeUser) if true;

grant(//priv/sayHello,

//app/policy/AppParentNode/BasicWS/webservices/myservices/HelloWorld,

//role/SomeUser) if true;

Note that for the URL Resource, the resource name was changed to lower case.

Web Services Dynamic Resource Attributes
The following dynamic attributes are supported by Web Services resources and can be used as a
part of an authorization policy:

application
The name of the application

contextpath
The context part of the web application

webservice
The name of the web service

method
The name of the web service operation called

Param<N>
A value of the Nth parameter in the method, for example,. Param1, Param2…

Web Services Resource Policy Examples
The following policy grants the role Client the action to call the operation getDelayedQuote
on a Web Service named StockQuoteService:

grant(//priv/getDelayedQuote,

//app/policy/mybank/myservices/webservices/publishedservices/StockQuoteSer

vice, //role/Client) if true;

The following policy grants the role Client the action to call the operation getRealtimeQuote
on a Web Service named StockQuoteService, but only if he or she has a premium subscription
type:

Resource Paths and Po l i c ies fo r Common Resources

Policy Managers Guide 4-49

grant(//priv/getRealtimeQuote,

//app/policy/mybank/myservices/webservices/publishedservices/StockQuoteSer

vice, //role/Client) if subscriptionType="premium";

Server Resources
A Server resource determines who can control the state of a WebLogic Server instance. When
users start server instances by invoking the weblogic.Server class in a Java command, the
policy on the Server resource is the only security check that occurs. You can create security
policies that apply to all WebLogic Server instances in a domain or to individual servers.

The following table shows the mapping of the resource path elements for a Server resource:

Server Resource Path Example
Listing 4-10 gives an example of the configuration of a WebLogic Server instance named
myserver.

Listing 4-10 WebLogic Server Instance Configuration

<Server ListenAddress=""

ListenPort="7001"

Machine="mymachine"

Name="myserver"

NativeIOEnabled="true"

ReliableDeliveryPolicy="RMDefaultPolicy"

ServerVersion="8.1.5.0">

<SSL Enabled="false" HostnameVerificationIgnored="false"

Table 4-15 Server Resource Path Elements

Element Name Value

application name shared

resource type svr

resource parent Not used

resource name The server instance name

4-50 Policy Managers Guide

IdentityAndTrustLocations="KeyStores" Name="myserver"/>

</Server>

The fully qualified name of the resource that corresponds to the server instance is
//app/policy/AppParentNode/shared/svr/myserver.

Server Resource Actions Mapping
The action name of a Server resource is mapped to the operation name. It can have one of the
following values:

boot
Action required to start a WebLogic Server instance, either an Administration Server or
Managed Server.

shutdown
Action required to shut down a running WebLogic Server instance, either an
Administration Server or Managed Server.

suspend
Action required to prohibit additional logins (logins other than for privileged
administrative actions) to a running WebLogic Server instance, either an Administration
Server or Managed Server.

resume
Action required to re-enable non-privileged logins to a running WebLogic Server
instance, either an Administration Server or Managed Server.

Server Dynamic Resource Attributes
The following dynamic attributes are supported by Server resources and can be used as a part of
an authorization policy:

server
Name of the server the resource is associated with.

action
Name of an operation performed on the server instance (boot | shutdown | suspend |
resume).

Server Resource Policy Examples
The following policy grants the role Admin the action to boot all WebLogic Server instances.
Note that the resource //app/policy/mybank/shared/svr must be a virtual one.

Subject Mapp ing

Policy Managers Guide 4-51

grant(//priv/boot, //app/policy/mybank/shared/svr, //role/Admin) if true;

The following policy grants the role Admin the action to shutdown or suspend a WebLogic Server
instance named CentralServer but only on Sundays or other days between 2 a.m. and 4 a.m.:

grant[//priv/shutdown,//priv/suspend],

//app/policy/mybank/shared/svr/CentralServer, //role/Admin) if timeofday in

[2:0:0..4:0:0] Or dayofweek=Sunday;

Subject Mapping
All authorization policies in ALES are applied considering a subject that accesses a resource. A
subject representation uses the standard javax.security.auth.Subject class that contains a
set of java.security.Principal objects. The subject consists of a directory name, a user
name, and a set of group names. The user and groups are considered to exist within the specified
directory. The directory name is a part of configuration of the authentication and role-mapping
providers, and can be modified using the ALES Administration Console.

The providers iterate the principals, selecting those that implement the
weblogic.security.spi.WLSUser and weblogic.security.spi.WLSGroup interfaces.
The first WLSUser principal is used to retrieve the user name. All of the WLSGroup principals are
used to build of the group names.

Note that running an application under the ALES framework does not require any changes on the
client or server side in terms of credential handling. The actual methods of supplying credentials
depend on the resource type. For example, to access a URL resource, the user can supply its
credentials in the browser’s prompt dialog or, if the client is Java code, it can send the credentials
as the HTTP Authorization header of the request. Listing 4-11 shows an example how the
credentials can be supplied using standard methods before accessing enterprise resources:

Listing 4-11 Supplying Credentials

Hashtable properties = new Hashtable();

properties.put(InitialContext.PROVIDER_URL, "t3://localhost:7001");

properties.put(InitialContext.SECURITY_PRINCIPAL, "username");

properties.put(InitialContext.SECURITY_CREDENTIALS, "password");

properties.put(InitialContext.INITIAL_CONTEXT_FACTORY,

"weblogic.jndi.WLInitialContextFactory");

javax.naming.InitialContext initialContext =

new javax.naming.InitialContext(properties);

4-52 Policy Managers Guide

//Look up and access the resources here...

Policy Element Naming
The policy language uses standard naming conventions called qualifiers to refer to actions,
applications, resources, roles, and identity elements (directories, users and groups). These
conventions ensure that each component has a unique name, even if you use the same name in
other locations. The Administration Console hides these qualifiers from you during most
operations. See “Fully Qualified Names” on page 4-53 for additional information on naming
conventions.

The following rules apply to policy element names:

Most names are case sensitive. Declarations and attribute names are the exception; they are
case insensitive. Internally, when a declaration name or attribute name is saved, it is saved
in all lowercase. For example, the user names //user/ales/system/ and
//user/ales/System/ reflect the same user.

A qualified name is a name with qualifier prefix prepended to the non-qualified name.
Some names, like user and group names, have an ending suffix also. See Table 4-16 for
examples. Declaration names do not have a qualified form.

The characters used for the names and the length of the names are restricted. See “Size
Restriction on Policy Data” on page 4-54.

Table 4-16 Examples of Qualified Names

Policy Element Example

resource //app/policy/banking/transfer

directory //dir/extranet

action //priv/place_order

action group //grp/trading_actions

user //user/extranet/JohnDoe/

group //sgrp/extranet/trader/

role //role/roleName

logical name //ln/ShortHandForResource

Po l i c y E l ement Naming

Policy Managers Guide 4-53

For more information on policy element naming, see the following topics:

“Fully Qualified Names” on page 4-53

“Policy Element Qualifiers” on page 4-54

“Size Restriction on Policy Data” on page 4-54

“Character Restrictions in Policy Data” on page 4-56

“Special Names and Abbreviations” on page 4-61

Fully Qualified Names
A fully qualified name references the full name for a policy element. This name consists of a
series of simple names separated by forward slashes (/). Fully qualified names have the following
parts, in order:

A starting double forward slash: //

A qualifier followed by a forward slash

For users and groups, a directory name followed by a slash mark, and a final slash after the
name

A name:

For example, in //user/Accounting/JJBob/

user is the qualifier

Accounting is the directory

JJBob is the user name

For resources, the qualified name starts with //app/policy/. Additional names may appear,
each separated by a single slash. This naming convention defines the resource tree. Each resource
name is represented as a node on the tree, but the entire string represents the fully qualified name
of the final resource. For example:

//app/policy/trading_system/PersonalTrades/BondOrder/Order

4-54 Policy Managers Guide

Policy Element Qualifiers
Qualifiers are built in. You cannot create your own qualifier or change the existing ones. They
represent one of the basic policy elements and always begin with a double slash (//) followed by
a single slash (/). Table 4-17 lists the built-in qualifiers.

There is no qualifier for a declaration. Declarations are identified by a different method. For a
discussion of declarations, see “Declaration Names” on page 4-61.

Size Restriction on Policy Data
There are some limits on the size of names, attribute values, and rules, restricted by the type of
database that you use. The restriction by the database is determined by the VARCHAR column size
and the key size allowed by the database. Table 4-18 summarizes the limit for different policy
data for the Oracle and Sybase databases.

Note: As of ALES version 2.5, additional databases are also supported. See Installing the
Administration Server for additional information.

Table 4-17 Policy Element Qualifiers

Qualifier Policy Element

//priv action

//grp action group

//user user

//sgrp group

//app resource

//dir directory

//bind engine

//role role

//ln logical name

http://e-docs.bea.com/ales/docs30/installadmin/index.html
http://e-docs.bea.com/ales/docs30/installadmin/index.html

Po l i c y E l ement Naming

Policy Managers Guide 4-55

Table 4-18 Database Restrictions on Policy Data

Policy Data Oracle Sybase
12.5
2K1

Sybase
12.5
4K

Sybase
12.5
8K

Sybase
12.5
16K

Qualified action name
Qualified action group name
Qualified role name
Qualified resource name
Qualified user name
Qualified subject group name
Qualified logical name
Qualified security provider name

2000 580 1200 2500 5000

All actions in the action field of a rule
All roles in the action field of a rule
All resources in the object field of a rule
All user and group in subject field of a rule
All roles in subject field of a rule

2000 580 1200 2500 5000

Rule conditions 4000 1160 2400 5000 10000

Rule text-combined text of all fields in a rule
(action, object, subject, delegator, and
conditions, plus the syntax delimiters)

N/A2 1962 4010 8106 16298

Declaration name
Attribute name
The individual declaration name inside a type
declaration

2000 580 1200 2500 4000

Declaration text-the combined text of
declaration name, kind, and value, plus the
syntax delimiters

4000 1160 2400 5000 10000

A single attribute value 2000 580 1200 2500 4000

A quoted literal string in the declaration value 4000 1160 2400 4000 4000

A quoted literal string in a constraint for a rule 4000 1160 2400 4000 4000

A qualified name in the declaration value 2000 580 1200 2500 4000

A qualified name in a constraint for a rule 2000 580 1200 2500 4000

4-56 Policy Managers Guide

Character Restrictions in Policy Data
There are several restrictions on the character set that you can use to define policy data. The
following common rules apply and Table 4-19 describes the extended character set restrictions.

All names without qualifier or called non-qualified names allow alphanumeric characters
(a-z, A-Z, and 0-9) and the underscore (_). These names include action group name,
resource name, directory name, security provider name, declaration, and attribute name.

The role name, user name, and subject group name can be multi-byte values.

All names, except action, user, and subject group name, must start with an alpha character
or underscore. Numeric characters are not allowed.

Integer value of a constant declaration 9 digits*3 9 digits* 9 digits* 9 digits* 9 digits*

All attribute values combined for a user, group
or resource attribute

40000 40000 40000 40000 40000

1. Sybase 12.5 has a dependency on the logical page size that you choose when you set up the database
server. The supported logical page size varies from 2K, 4K, 8K, and 16K.
2. N/A means that there is no limit.
3. An asterisk (*) indicates that the limit is imposed.

Table 4-18 Database Restrictions on Policy Data (Continued)

Policy Data Oracle Sybase
12.5
2K1

Sybase
12.5
4K

Sybase
12.5
8K

Sybase
12.5
16K

Table 4-19 Policy Data Character Restrictions

Policy data Extra characters allowed

action Name Alphanumeric characters (a-z, A-Z, and 0-9) and the underscore
(_), must start with an alpha character or underscore.

action Group Name Alphanumeric characters (a-z, A-Z, and 0-9) and the underscore
(_), must start with an alpha character or underscore.

Resource name Alphanumeric characters (a-z, A-Z, and 0-9) and the underscore
(_), must start with an alpha character or underscore. Pound sign
(#), apostrophe (`), dash (-), period (.), colon (:), at (@), tilde (~),
ampersand (&).

Po l i c y E l ement Naming

Policy Managers Guide 4-57

The following topics provide more information:

“Data Normalization” on page 4-58

“Directory Names” on page 4-60

“Logical Name” on page 4-61

“Declaration Names” on page 4-61

Directory Name Alphanumeric characters (a-z, A-Z, and 0-9) and the underscore
(_), must start with an alpha character or underscore.

Security Provider Name Alphanumeric characters (a-z, A-Z, and 0-9) and the underscore
(_), must start with an alpha character or underscore.

Declaration Alphanumeric characters (a-z, A-Z, and 0-9) and the underscore
(_), must start with an alpha character or underscore.

Attribute Name Alphanumeric characters (a-z, A-Z, and 0-9) and the underscore
(_), must start with an alpha character or underscore.

User name or Subject
group name

All printable characters. A forward slash (/) in the name must be
escaped by a backward slash (\), because a forward slash (/) is
used as field separator.

Role Alphanumeric characters (a-z, A-Z, and 0-9) and the underscore
(_), must start with an alpha character or underscore.

ARME or SCM Alphanumeric characters (a-z, A-Z, and 0-9) and the underscore
(_), must start with an alpha character or underscore.

String typed attribute
value

All printable characters are allowed.

Literal string in the value
of a constant declaration

All printable characters are allowed except the double quote (")
and a backslash (\). When used, these characters may cause
parsing problems.

Literal string in a
condition for a rule

All printable characters are allowed except the double quote (").

Table 4-19 Policy Data Character Restrictions (Continued)

Policy data Extra characters allowed

4-58 Policy Managers Guide

Data Normalization
When using the ASI Authorization or ASI Role Mapping providers, there are certain data
transformations that you must consider. The policy database limits what characters are allowed
in certain policy elements. This set is more restrictive than the set allowed by the Security
Framework.

The ASI Authorization and ASI Role Mapping providers perform normalization of input data to
ensure that they abide by the restrictions imposed by the authorization management system. The
management system does not currently perform any automatic normalization, so it is important
to understand the normalization mechanism because it must be preformed manually when writing
policy. Unless otherwise stated, the substitutions listed Table 4-20 apply to the following
elements: resource, attribute, action, role, and directory names.

Additionally, any nonprintable character is translated into the numeric hexadecimal equivalent;
for example, the ASCII character code 1 (a smiley face) is represented as __0x1_. Table 4-20
shows the characters that are normalized and the character substitution applied at runtime. When
writing policy, you must substitute these characters.

Table 4-20 Character Substitution

Character Character Substitution

\n (carriage return) __CR_ also applies to user and group names

0 __0_ 1st character only

1 __1_ 1st character only

2 __2_ 1st character only

3 __3_ 1st character only

4 __4_ 1st character only

5 __5_ 1st character only

6 __6_ 1st character only

7 __7_ 1st character only

8 __8_ 1st character only

9 __9_ 1st character only

Po l i c y E l ement Naming

Policy Managers Guide 4-59

\t (tab) __TAB_

‘ ‘ (space) __SP_

! __EXPL_

“ __DQUOT_

__HASH_ 1st character of resource, or any character in attr, priv,
role, dir

. __PRD_ 1st character of resource, or any character in attr, priv, role,
dir

% __PRCT_

(__OPRN_

) __CPRN_

* __ASTR_

+ __PLUS_

, __COMMA_

/ __FSLSH_

; __SCLN_

< __LT_

= __EQ_

> __GT_

? __QTM_

[__OSQB_

\ __BSLSH_

] __CSQB_

‘ __CSQUOT_

Table 4-20 Character Substitution (Continued)

Character Character Substitution

4-60 Policy Managers Guide

Directory Names
A directory further separates qualifiers. You define directories to store and scope users and
groups. For example, if you had an application called Bankers, the directory that stores users and
groups might look like this:

//dir/Bankers

Once declared, the directory is used with the user and group qualifier to fully qualify subjects.
For example, //sgrp/Bankers/loans/ is a group called loans that belongs to the Bankers
group and //user/Bankers/BSilva/ is a user named BSilva that belongs to the Bankers
application.

Note: A directory name can contain alphanumeric (a-z, A-Z, and 0-9) and underscore (_)
characters, and must begin with an alpha character or underscore. No spaces are allowed
in the name.

A directory name does not necessarily need to represent a resource. For example, it might
represent users in a particular location (as in //dir/NewYork) or a department (as in
//dir/Accounting). Essentially, you can use them any way you want to delineate groups of
users and groups.

An action group is not part of the policy language but is provided for administrative convenience.
Each action in a group is defined as an individual action in the actual policy.

{ __OCRL_

| __PIPE_

} __CCRL_

& __AMP_ Applies only to attr, priv, role, dir

- __DASH_ Applies only to attr, priv, role, dir

: __CLN_ Applies only to attr, priv, role, dir

@ __AT_ Applies only to attr, priv, role, dir

~ __TLD_ Applies only to attr, priv, role, dir

Table 4-20 Character Substitution (Continued)

Character Character Substitution

Po l i c y E l ement Naming

Policy Managers Guide 4-61

Logical Name
A logical name is a shorthand method used to represent a resource. Once you map a logical name
to a fully qualified name, your developers can use the logical name when coding your application.

//ln/name

Declaration Names
A declaration name is not qualified. In fact, that is exactly how they are identified. Any policy
element without a fully qualified name and not in quotation marks (indicating a string), is
assumed to be a declaration. When defined, declarations are preceded by one of the following
identifiers:

const - Constant Declaration
type - Type Declaration
cred - Credential (or Attribute) Declaration
eval - Evaluation Function Declaration

Special Names and Abbreviations
There are several special names, referred to as keywords, that are shortcuts for denoting groups
of objects. The keywords keep you from having multiple rules or multiple rule queries in certain
reoccurring situations. By using these keywords, you can define very powerful, yet generic rules.
The keywords are as follows:

any—Signifies any action. When specifying any in a rule, it means you do not care what
action a user invokes when applying the rule.

ALL—Signifies an action group containing all actions. You must use the grp qualifier with
the keyword ALL (//grp/ALL). The keyword ALL is mainly used for grouping purpose in
the console and, by default, every action defined belongs to the action group ALL.

allusers—For each user directory, there is an implied group called allusers. This group
refers to all users in a directory. For example:

//group/Acct/allusers

This example refers to allusers for the Acct directory and eliminates the need to
individually address each user or to create a named group for all of the users.

Note: The keyword allusers is only a limited pseudo group. It does not have many of the
qualities of a regular group; you cannot map it to anything, you cannot add or remove
members, and it cannot be a member of group hierarchy. You can delegate to
allusers groups.

4-62 Policy Managers Guide

Table 4-21 describes the rules for using keywords.

Sample Policy Files
A policy file is a text file that lists the relevant policy elements using their fully qualified names.
The ALES Administration Server installation includes sets of sample policies for BEA
WebLogic Portal, BEA AquaLogic Data Services Platform, and BEA AquaLogic Service Bus.
You can import these sample policies and use them as a starting point for developing a full set of
policies for your applications. For information about how to import the sample policies, see the
README files in each of the sample directories and see also “Importing Policy Data” on
page 5-1. Table 4-22 shows the location of the samples.

Table 4-21 Rules for Using Keywords

Characteristic any ALL allusers

Policy Element Built-in action Built-in action group Built-in local group

Represents any action All actions including
built-in and user-defined

All users in one local
directory

Used in rules Yes No Yes

Needs qualifier No Yes
//grp/ALL

Yes
//sgrp/ [directory
name]/allusers

Used in policy
queries

Yes
Only finds rules with the
literal any. That is, it does
not return all rules (rules
with any action).

No Yes
Finds rules that
specifically entitle the
group allusers

Controlled by
delegation

No
Must be in a group that is
delegated

Yes
Controls access to all
actions regardless of action
group

Yes
You must be specifically
delegated access to this
group

Case-sensitive Yes Yes Yes

Sample Po l i c y F i l es

Policy Managers Guide 4-63

In addition, this section provides examples of policy files. Sample files for each policy element
are provided with the product and are installed in the following directory:

BEA_HOME\ales30-admin\examples\policy

For a description of each of these files, see the following topics. The policy data filenames are
shown in brackets (“[]”).

“Application Bindings [binding]” on page 4-64

“Attribute [attr]” on page 4-64

“Declarations [dec]” on page 4-65

“Directories [dir]” on page 4-66

“Directory Attribute Schemas [schema]” on page 4-67

“Mutually Exclusive Subject Groups [excl]” on page 4-67

“Resources [object]” on page 4-68

“Resource Attributes [object]” on page 4-69

“Policy Distribution [distribution]” on page 4-69

“Policy Inquiry [piquery]” on page 4-70

“Policy Verification [pvquery]” on page 4-71

“Actions [priv]” on page 4-72

“Action Bindings [privbinding]” on page 4-72

Table 4-22 Sample Policy Files

BEA Product Sample Policy Directory

WebLogic Portal BEA_HOME/ales30-admin/examples/policy/portal_sample
_policy

AquaLogic Data
Services Platform

BEA_HOME/ales30-admin/examples/policy/aldsp_sample_
policy

AquaLogic Service Bus BEA_HOME/ales30-admin/examples/policy/alsb_sample_p
olicy

4-64 Policy Managers Guide

“Action Groups [privgrp]” on page 4-72

“Role [role]” on page 4-73

“Rule [rule]” on page 4-73

“Distribution Targets” on page 4-74

“Subject Group Membership [member]” on page 4-74

“Subjects [subject]” on page 4-75

Application Bindings [binding]
This file contains an example of the Authorization provider and Service Control Manager
bindings. The resources that can be bound are the resources that are created as binding nodes.

Each line contains a name of an Authorization provider or Service Control Manager, followed by
a binding node name. A Security Provider can only bind policy resources and the Service Control
Manager can only bind configuration resources.

Examples:

//bind/myAuthorizationProvider //app/policy/myApplication/myBinding

//bind/mySCM //app/config/myConfiguration/configBind

Attribute [attr]
This file lists the subject attribute for users and subject group. The attribute value property must
comply with user attribute schema defined for //dir/dirName. If the property is "L", the
attribute value must be enclosed in brackets ([]), with items separated by commas. In general, the
attribute value for all users must be set according to the specification defined in user attribute
schema. However, if an attribute is not set when this file is created, its record may be left out in
this file.

Note: Both user and credential declarations must exist in the policy database before it can be
loaded successfully. Further, the user attribute schema must be defined before the user
attribute can be assigned in Attribute Value file.

Examples:

Given the user attribute schema shown in Listing 4-12, the user attribute values and subject
attribute value are defined as shown in Listing 4-13 and Listing 4-14.

Sample Po l i c y F i l es

Policy Managers Guide 4-65

Listing 4-12 User Attribute Schema

//dir/CA_Office my_host_ip S

//dir/CA_Office my_favorite_color L [blue,green]

//dir/NY_Office email_address S "user@crosslogix.com"

//dir/NY_Office my_birthday S

//dir/NY_Office my_favorite_color L [red]

Listing 4-13 Sample User Attributes

//user/CA_Office/user_a@mycom.com/ my_host_ip 121.1.100.25

//user/CA_Office/user_b@mycom.com/ my_host_ip 121.1.100.26

//user/CA_Office/user_c@mycom.com/ my_host_ip 121.1.100.50

//user/CA_Office/user_d@mycom.com/ my_host_ip 121.1.100.225

//user/CA_Office/user_e@mycom.com/ my_host_ip 132.99.25.77

//user/CA_Office/user_a@mycom.com/ my_favorite_color [red]

//user/CA_Office/user_b@mycom.com/ my_favorite_color [white,green]

//user/CA_Office/user_c@mycom.com/ my_favorite_color [red,blue]

//user/NY_Office/user_1/ email_address "user1@crosslogix.com"

//user/NY_Office/user_1/ my_birthday 1/1/1960

//user/NY_Office/user_1/ my_favorite_color [blue]

Listing 4-14 Sample Subject Group Attribute

//sgrp/NY_Office/role1/ my_favorite_color [green]

Declarations [dec]
AquaLogic Enterprise Security supports four kinds of declarations that are used in rules, user
attributes, and resource attributes. You must create the declaration before you use it in a rule. The
kinds of declarations are: enumerated types (ENUM), constants (CONST), attributes (CRED), and
evaluation functions (EVAL). You can use this file to declare each one. Each line contains the
declaration text, starting with declaration type. Declaration names are case-insensitive and are

4-66 Policy Managers Guide

always saved in lower case. The four kinds of declaration text must conform with the following
syntax.

ENUM enum_name = (enum1, enum2, …, enumn);

CONST constant_name_1 = constValue;

CONST constant_name_2 = [value1, value2, …, valuen];CRED cred_name :

datatype;

EVAL eval_name;

Examples:

ENUM color_type = (red, blue, green, white);

CONST my_favorite_color = green;

CONST my_birth_date = 07/04/1980;

CONST favorite_colors_for_tom = [blue, white];

CONST colors_of_my_choice = [my_favorite_color, red];

CONST a_few_cities = ["New York", "Boston", "San Francisco"];

CONST a_magic_number = 28;

CRED string_cred_1 : string;

CRED color_cred : color_type;

CRED date_cred : date;

CRED weight_in_pound : integer;

EVAL is_good_number;

Directories [dir]
Multiple directories can be used to separate users and groups that come from different user stores.
A directory is also associated with a schema and the types of attributes the users in that directory
contains.

This file lists the name of some sample directories. The directory name must start with the prefix:

//dir/

Examples:

//dir/CompanyA

//dir/CompanyB

Sample Po l i c y F i l es

Policy Managers Guide 4-67

Directory Attribute Schemas [schema]
A directory defines all users and user groups. Before a user or a user group can be assigned an
attribute, you must declare the directory to accept their attributes. You can use this file to declare
the attributes that a directory can have.

Each line in the file contains a directory name, an attribute name (the attribute declaration as in
file "decl"), a value type (single- or multi-value), and an optional template value matching the
data type of the attribute. The single-value type is denoted by S and multi-value type by L (from
list-value).

You must enter a multi-value (list) attribute with all values enclosed in square brackets [] and
separated by commas, and enclose each value for a string data typed attribute with double quotes
("). You cannot use another double quote (") and backslash (\) in the template value.

Examples:

//dir/CompanyA my_host_ip S 111.111.111.111

//dir/CompanyA my_favorite_color S

//dir/CompanyA email_address L ["user@bea.com", "xyz@yahoo.com"]

//dir/CompanyB my_birthday S

//dir/CompanyB my_favorite_color L [blue,green]

Mutually Exclusive Subject Groups [excl]
This file lists the subject groups that are mutually exclusive from one another. An exclusive
subject groups record has the following format:
//sgrp/dirName/aSubjectGroupName/ //sgrp/dirName/anotherSubjectGroupName

For subject groups to be mutually exclusive, they must comply with the following requirements:

Both subject groups must be in the same directory.

The subject groups must not share a common sgrp member or user member.

Both subject groups in a pair must exist in the policy database before the pair can be
defined and loaded successfully.

Example:
//sgrp/CA_Office/trader/ //sgrp/CA_Office/salesPerson/

4-68 Policy Managers Guide

Resources [object]
In general, resources are constructed as a tree below two tree roots: the policy resources tree and
the configuration tree. The policy tree has a resource name that starts with the prefix
//app/policy/ (for resource configuration) and configuration tree that starts with the prefix
//app/config/ (for provider configuration). However, you do not see the provider
configuration in the tree. This file lists all the resource names in order, from the root to the child
nodes, together with the resource type and the logical name for the resource.

There is a special resource type, denoted by A, indicating that the resource node is bound by an
ASI Authorization Provider or a Service Control Manager. This special resource node is called a
binding node. All other resources are denoted by O and are called non-binding nodes.

A logical name or alias is a short name for a resource and can be optionally associated with a
resource. Only binding nodes derived from the resource can have an alias. A logical name used
as an alias must start with prefix:

//ln/

and must be unique to the entire resource tree. Each line contains a resource name, an optional
resource type, and an optional alias. If the resource type is missing, it defaults to O. If there is an
alias, the resource type must be specified.

Examples:

//app/policy/myApplication

//app/policy/myApplication/myBinding A

//app/policy/myApplication/myBinding/myresource.one O //ln/myres1

//app/policy/myApplication/myBinding/myresource.two O

//app/policy/myApplication/myBinding/myresource.three

//app/config/myConfiguration O

//app/config/myConfiguration/configBind A //ln/configBind

Sample Po l i c y F i l es

Policy Managers Guide 4-69

Resource Attributes [object]
Because a resource is also referred to as object, a resource attribute is also referred to as an object
attribute. Each line contains a resource name (as in file "object"), an attribute name (the
declaration as in file "decl"), a value type (single- or multi-value), and values matching the data
type of the attribute. The single-value type is denoted by S and multi-value type is by L (from
list-value). You can enter a multi-value attribute either in multiple lines, with the same resource
name, attribute name and value type (L); or, you can enter it using one line, with all the values
enclosed in square brackets [] and separated by commas. You must enclose each value for a string
attribute with double quotes ("). You cannot use another double quote and backslash (\) in the
attribute value.

Examples:

//app/policy/myApplication/myBinding string_attr_1 S "A value to be

decided"

//app/policy/myApplication/myBinding/myresource.one string_attr_1 L "1st

Value"

//app/policy/myApplication/myBinding/myresource.one string_attr_1 L "2nd

Value"

//app/policy/myApplication/myBinding/myresource.one string_attr_1 L "3rd

Value"

//app/policy/myApplication/myBinding/myresource.two string_attr_1 L

["ABC", "DEF", "XYZ"]

//app/policy/myApplication/myBinding/myresource.three color_attr_1 L [red,

blue]

//app/policy/myApplication/myBinding/myresource.three integer_attr_1 S

1001

//app/policy/myApplication/myBinding/myresource.three date_attr_1 L

[01/01/2003, 01/01/2004]

Policy Distribution [distribution]
This file provides the parameters used for policy distribution issued by the Policy Import tool
when the distribution is enabled in a configuration. The policy distributor takes a list of user
directories and distribution point combinations. Therefore, each line contains a directory and a
distribution point separated by white spaces.

The distribution point is a resource node on or above a binding resource node. The directory can
be either a specific directory or //dir/* to include all user directories.

4-70 Policy Managers Guide

Note: You cannot use applications pending deletion as distribution points. Select a node higher
in the tree as the distribution point.

Examples:

//dir/* //app/policy/myApplication

//dir/CompanyA //app/policy/myApplication/myBinding

Policy Inquiry [piquery]
AquaLogic Enterprise Security stores the contents of a policy inquiry in the policy database. This
file contains examples of policy inquiries to import and store in the policy database. Each query
can span multiple lines, can have multiple lines of each type, but must have a minimum of one
line. The first line of each query must specify the action, the effect (grant or deny), the query
owner and the query title.

Each line has the following syntax:

P/O/S oneQualifiedName grant/deny queryOwner queryTitleMayhaveSpace

where P/O/S stands for action, object (resource), and subject.

Listing 4-15 shows policy inquiry examples.

Listing 4-15 Policy Inquiry Examples

Sample query 1:

P //priv/delete grant //user/ales/system/ Saved Policy Inquiry #1

O //app/policy/myApplication/myBinding grant //user/ales/system/

 Saved Policy Inquiry #1

S //ales/ales/userid/ grant //user/ales/system/ Saved Policy Inquiry #1

Sample query 2 (same content as query 1):

P //priv/delete grant //user/ales/system/ Policy Inquiry #2

O //app/policy/myApplication/myBinding

S //ales/ales/userid/

Sample query 3:

P //priv/delete grant //user/ales/system/ Policy Inquiry #3

Sample query 4:

Sample Po l i c y F i l es

Policy Managers Guide 4-71

P //priv/delete deny //user/ales/system/ PIQuery4

P //priv/create

O //app/policy/myApplication

Policy Verification [pvquery]
AquaLogic Enterprise Security stores the contents of a policy verification in the policy database.
This file defines policy verification queries to import and store in the database. Each query spans
multiple lines. The first line of each query must have the owner and title, in the following syntax:

LP/RO/RP/RO oneQualifiedName queryOwner queryname

A query name may contain spaces.

Listing 4-16 shows policy verification examples:

Listing 4-16 Policy Verification Examples

Sample query 1:

LP //priv/delete //user/ales/system/ Policy Verification #1
LO //app/policy/myApp/firstResource //user/ales/system/ Policy Verification #1
RP //priv/create //user/ales/system/ Policy Verification #1
RO //app/policy/myApp/secondResource //user/ales/system/ Policy Verification #1

Sample query 2 (query content is the same as query 1):

LP //priv/delete //user/ales/system/ Policy Verification #2
LO //app/policy/myApp/firstResource
RP //priv/create
RO //app/policy/myApp/secondResource

Sample query 3:

LP * //user/ales/system/ Policy Verification #3
LO //app/policy/myApp/firstResource //user/ales/system/ Policy Verification #3
RP //priv/delete //user/ales/system/ Policy Verification #3
RO //app/policy/myApp/secondResource //user/ales/system/ Policy Verification #3

Sample query 4:

LP * //user/ales/system/ PolicyVerification#4
LO //app/policy/myApp/firstResource //user/ales/system/ PolicyVerification#4
RP * //user/ales/system/ PolicyVerification#4
RO //app/policy/myApp/secondResource //user/ales/system/ PolicyVerification#4

4-72 Policy Managers Guide

Actions [priv]
This file contains a sample list of action names. Each action name must start with the prefix:

//priv/

Examples:

//priv/read

//priv/Read

//priv/search_file

//priv/search_text

Action Bindings [privbinding]
This file contains examples of how actions are bound to action groups. Each line contains an
action group followed by an action.

Examples:

//grp/myPrivGroup //priv/read

//grp/myPrivGroup //priv/search_file

//grp/myPrivGroup //priv/search_text

//grp/DevelopmentGroup //priv/read

//grp/DevelopmentGroup //priv/Read

Action Groups [privgrp]
This file contains examples of action group names. Each action group name must start with the
prefix:

//grp/

Examples:

//grp/myPrivGroup

//grp/DevelopmentGroup

Sample Po l i c y F i l es

Policy Managers Guide 4-73

Role [role]
This file defines a list of role names. Roles are used to construct policies. Each line contains a
role name. Each role name is prefixed with:

//role/

Examples:

//role/manager

//role/QA

//role/trading_Manager

//role/salesEngineer

//role/junior_trader

//role/salesPerson

//role/trader

Rule [rule]
Rules are used by the ASI Authorizer to make authorization and role mapping decisions. This file
lists rules with their rule text conforming to rule syntax. Each line contains one rule, a grant, deny,
or delegate rule. Sample entries assume all of the referenced roles, actions, resources, users,
groups and declarations exist in the policy database.

Examples:

grant(//role/Administrators, //app/policy/myApplication,

//user/ales/system/);

grant(//priv/read, //app/policy/myApplication, //sgrp/ales/allusers/);

deny([//priv/read, //priv/search_text],

//app/policy/myApplication/myBinding/confidentialDocument.one,

//role/public);

delegate(//role/Administrators, //app/policy/myApplication,

//user/ales/John Doe/, //user/ales/system/) if dayofweek in weekend;

4-74 Policy Managers Guide

Distribution Targets
There are two types of distribution targets in BEA AquaLogic Enterprise Security:

The Authorization and Role Mapping providers that enforce policy

The Service Control Manager that manages configuration changes

Both of these targets retrieve their policy data from the policy distributor. The security providers
receive only policy related changes and the Service Control Manager retrieves only configuration
related changes. The file called engine lists the names of the security providers and the Service
Control Manager and respective type.

The name is qualified by the prefix:

//bind/

The names are referred to by the application binding file (binding) and must be imported before
the application binding file.

Examples:

//bind/mySCM SCM

Subject Group Membership [member]
This file lists subject group membership. Each record has one of the following formats:
//sgrp/dirName/aSubjectGroupName/ //sgrp/dirName/aSubjectGroupMemberName/

//sgrp/dirName/aSubjectGroupName/ //user/dirName/aUserMemberName/

When you define subject group memberships, the subject group and members must comply with
the following requirements:

The subject group and the member must be in the same directory.

One user may belong to many subject groups.

One subject group may be a member of many subject groups.

Two subject groups that have common members cannot become mutually exclusive.

Both subject groups and their members must exist in the policy database before the
membership can be loaded successfully.

For an example of a Member policy file, see Listing 4-17.

Sample Po l i c y F i l es

Policy Managers Guide 4-75

Listing 4-17 Sample Member Policy File

//sgrp/CA_Office/junior_trader/ //sgrp/CA_Office/trader/

//sgrp/CA_Office/trader/ //sgrp/CA_Office/senior trader/

//sgrp/CA_Office/senior trader/ //sgrp/CA_Office/trading_Manager/

//sgrp/CA_Office/salesEngineer/ //sgrp/CA_Office/salesManager/

//sgrp/CA_Office/salesPerson/ //sgrp/CA_Office/salesManager/

//sgrp/CA_Office/junior_trader/ //user/CA_Office/user_a@mycom.com/

//sgrp/CA_Office/senior trader/ //user/CA_Office/user_b@mycom.com/

//sgrp/CA_Office/trading_Manager/ //user/CA_Office/user_c@mycom.com/

//sgrp/CA_Office/salesPerson/ //user/CA_Office/user_d@mycom.com/

//sgrp/CA_Office/customer/ //user/CA_Office/user_e@mycom.com/

Subjects [subject]
This file contains a list of users and subject groups. Each record must have one of the following
formats:
//user/dirName/aUserName/
//sgrp/dirName/aSubjectGroupName/

The directory name must be formatted as //dir/dirName and it must exist in the policy database
before its subjects can be loaded successfully.

For an example of a Subjects policy file, see Listing 4-18.

Listing 4-18 Sample Subjects Policy File

//user/CA_Office/user_a@mycom.com/

//user/CA_Office/user_b@mycom.com/

//user/CA_Office/user_c@mycom.com/

//user/CA_Office/user_d@mycom.com/

//user/CA_Office/user_e@mycom.com/

//sgrp/CA_Office/junior_trader/

//sgrp/CA_Office/trader/

//sgrp/CA_Office/senior trader/

//sgrp/CA_Office/salesEngineer/

//sgrp/CA_Office/salesPerson/

4-76 Policy Managers Guide

//sgrp/CA_Office/salesManager/

//sgrp/CA_Office/trading_Manager/

//sgrp/CA_Office/customer/

//user/NY_Office/user_1/

//sgrp/NY_Office/sgrp1/

Using Response Attributes
Response attributes are defined as a list of the attributes you want to return from the authorization
system when a request is made by an application. Response attributes provide a mechanism for
allowing the authorization system to pass arbitrary information back through the Security
Framework to the caller. The use of this information is typically application specific. Some
examples of how you can use response attributes include:

Personalization—The decision as to what resources to display on a portal may be tied
closely to the security policy. Suppose that when a user enters the portal, the portal
displays a list of accounts and menu options denoting operations on the accounts. If a user
attempts to access a particular item and the attempt is rejected for security reasons, the
portal has limited effectiveness. That is, the portal may serve as an information source used
for future attacks. By tying the security policy directly to the portal, only the resources that
the user is allowed to access are displayed.

Business process flow —Business processes often have inter-task dependencies. For
example, suppose that a senior trader has the ability to override the rejection of a trade
placed by a junior trader. To make this decision, the senior trader would have to take into
account the reasons why the proposed trade violates the security policy, which could be the
trade amount, the risk profile, or any of several other reasons. By enhancing the
authorization decision with that context, subsequent authorization decisions based on that
context can be enabled.

Transaction specific data—An application may need specific facts about authorized or
rejected transactions. For example, the application may want to display the post-trade
balance for an executed transaction, information that typically would be calculated as part
of the authorization process but not returned as part of the authorization decision.

Response attributes are typically specified using built-in evaluation functions that report
name/value pairs. There are two functions for returning attributes: report() and report_as().
These functions always return TRUE (if there are no errors), and their information is passed to your
application as response attributes, embedded within the ResponseContextCollector.

Using Response A t t r ibutes

Policy Managers Guide 4-77

You use report() and report_as() in the policy after an IF statement used in a constraint. It is
best to use them in a logical if this policy is evaluated, then manner, even though "then" does not
exist in the language.

For example:

if (constraint) and report_as (name,value);

Note: The evaluated policy must result in a GRANT or DENY decision in order for the
report() and report_as() functions to be invoked. Consider the following usage:

If the evaluated policy is applicable (based on action, resource, subject, and
constraint expression evaluated to TRUE), then report() and report_as() are
invoked for a GRANT or DENY decision.

If the evaluated policy is not applicable, for example in the case of an ABSTAIN
decision, it is just skipped. (If an authorization policy has no policies set on a
resource an ABSTAIN result is returned.) If the policy is skipped, then report()
and report_as() are not invoked.

While the functions are run when the policy is evaluated, they are not really constraints of the
policy. Data reported by the functions are returned only if the adjudicated authorization decision
agrees with the policy. This means the attributes returned from GRANT policies are not passed to
the caller unless the overall access decision is PERMIT.

The following topics provide more information on using response attributes:

“report() Function” on page 4-77

“report_as() Function” on page 4-78

“Report Function Policy Language” on page 4-78

“Using Evaluation Plug-ins to Specify Response Attributes” on page 4-79

report() Function
The report function takes one or more attributes as input parameters and sets a corresponding
response attribute with the name/value pair of the supplied attributes. For example, suppose you
have the attribute called department, containing the value Accounting. If the following
constraint was evaluated:

IF report(department);

the response attribute (department = accounting) is set in the response context results. Your
client application can then use this information in many ways, for example:

4-78 Policy Managers Guide

As a parameter in a database query where it filters the query results by department

To personalize a portal page with an accounting department template

To update the record being modified with the department information

report_as() Function
The report_as function loads a named response attribute with a specified value. The value may
be an attribute, a constant or a string literal. You can specify multiple values, in which case the
response attribute is returned as a list.

IF report_as("error","Your account balance is too low");

IF report_as("query", "Select * from record_table where dept_type = ",

department);

IF report_as("userlogin", trading_login,trading_password);

IF report_as("url","http://www.xyz.com/userinfo/xyz100383.htm");

Report Function Policy Language
The report function returns the name/value pair of the specified attribute. The value may be a
one or more strings and is determined using the attribute retrieval mechanism of the authorization
system. This means that the attribute can come from the following sources: system, user, resource
or context.

The report_as function allows you to write the policy to specify both the attribute name and
value:

report_as("company", "BEA Systems")

Additionally, you can specify a list of values, as follows:

report_as("accounts", "123", "456", "789")

The value portion of the report function supports de-referencing. Assume the user attribute
favorite_color is part of a user profile. You can put the following statement into a policy:

report_as("window_background", favorite_color)

This allows you to set the response attribute window_background with the value of the favorite
color that is stored in another attribute. You can use any of the supported language data types as
values, but they are all returned to the provider using their string representation and no additional
type data is transmitted.

Us ing que ryResources and grantedResources

Policy Managers Guide 4-79

Reporting the same attribute multiple times from the same policy results in only the last report
clause date being used. For example:

grant (p,o,s) if report as (”car”, ”porche”) and report_as (”car”, “ford”);

where: (p,o,s) is shorthand for action, object, and subject, results in the response attribute car
= ford.

Using Evaluation Plug-ins to Specify Response Attributes
The ASI Authorization and ASI Role Mapping providers support the use of custom evaluation
plug-ins to generate response attributes. The report and report_as functions are just special
implementations of ASI Authorization and ASI Role Mapping provider plug-ins. Using custom
evaluation functions, you can write even more complex statements. For example, the following
policy retrieves the current stock price from an authoritative source.

grant(//priv/lookup, //app/policy/stockprice, //role/everyone)

if report_stock_price("BEAS");

A plug-in that implements this function must handle all of the logic required to obtain the actual
stock price and then return it in a response attribute.

Using queryResources and grantedResources
This feature allows a caller to query the authorization system to determine access on a set of
resources rather then a single resource. The ASI Authorization provider determines access to all
child nodes of the node specified in the access query, and returns lists indicating which nodes are
granted and which nodes are denied.

The client performs an isAccessAllowed query on the parentResource. This resource must
be a binding node or a resource of a binding node.

The queryResources functionality evaluation is triggered by the presence of some qrvalue
value in the com.bea.security.authorization.queryResources attribute of the
ContextHandler. The access decision for the parentResource is returned, as normal. One of
the return attributes for this decision is a
com.bea.security.Authorization.grantedResources return attribute. One of the return
attributes for this decision is a com.bea.security.Authorization.deniedResources return
attribute.

For grantedResources, the value of this attribute is a list of values for the qrvalue resource
attribute; or, if the qrvalue is an empty string, the value is the internal ASI Authorizer name for

4-80 Policy Managers Guide

the resource. This list is an intersection of all child nodes of parentResource and all resources
for which the ASI Authorization provider and ASI Role Mapping provider and role policy
evaluates to GRANT. If the qrvalue attribute is not defined on a particular child node, it is omitted
to allow an application to deal with identification of the resource other than the internal ASI
Authorizer representation of it, which is not trivial to convert back to the framework resource.

This list can contain duplicate values. If the empty value for the qrvalue is used, the returned
resource name is unique and defined for each child node.

The same applies for the deniedResources, except for the resources that the policy evaluates to
DENY. For example, assume that an application makes an isAccessAllowed call on the
//app/policy/Foo resource and sets the value of the queryResources attribute to
object_id. The authorization policy has no policies set on the Foo resource, thus an ABSTAIN
result is returned.

Now let’s assume that Foo has child nodes Foo/A, Foo/B, Foo/C. The authorization policy allows
access to Foo/A and Foo/C, given the role policy on Foo by all providers, and the role policy for
A and C for a security provider. Assume that A and C have an object_id resource attribute equal
to "rA" and "rC". Then, the above query returns an attribute grantedResources with the value
["rA", "rC"].

For role providers other than the ASI Role Mapper provider, roles granted on the
parentResource are assumed to apply to all child nodes of the parentResource. For the role
policy, it is evaluated as usual for all child nodes.

To receive the results, you must supply a ResponseContextCollector in the ContextHandler
request.

When the application needs to call into the Security Framework to query resources it passes in:

AppContextElement qrElement = new SimpleContextElement(

"com.bea.security.authorization.", "queryResources", "name");

appContext.addElement(qrElement);

When it retrieves the list of resources from the response, for granted resources, it must call:

AppContextElement granted = responseContext.getElement(

"com.bea.security.Authorization.grantedResources");

or, for denied resources:

AppContextElement denied = responseContext.getElement(

"com.bea.security.Authorization.deniedResources");

Note: The case for authorization on the request and the response is not the same.

Resource D iscove ry

Policy Managers Guide 4-81

Resource Discovery
Running an SSM in discovery mode allows you to autogenerate the initial policies for securing
application.

For details about discovery mode, see Resource Discovery.

http://e-docs.bea.com/ales/docs30/howto/resource_discovery.html

4-82 Policy Managers Guide

Policy Managers Guide 5-1

C H A P T E R 5

Importing and Exporting Policy Data

The AquaLogic Enterprise Security Administration Server includes two tools to assist you in
managing the contents of the policy store: an import tool and an export tool. Using these tools
you can perform the following tasks:

Define your policy data in text files that are external to the Administration Server and
import those files to a policy store on any Administration Server.

Export policy data from an existing policy store on an Administration Server and import
that policy data to a policy store on any Administration Server.

Export policy data from an existing policy store on an Administration Server, install a
newer version of the server software, and re-import the policy data into the upgraded
server.

For information about writing policy files, see “Advanced Topics” on page 4-1. The following
sections describe how to use the policy import and export tools:

“Importing Policy Data” on page 5-1

“Exporting Policy Data” on page 5-11

Importing Policy Data
This section provides instructions and information on how to import policy data to the policy
store. It covers the following topics:

“Policy Import Tool” on page 5-2

5-2 Policy Managers Guide

“Configuring the Policy Import Tool” on page 5-3

“Running the Policy Import Tool” on page 5-9

“Understanding How the Policy Loader Works” on page 5-10

Policy Import Tool
Note: As of AquaLogic Enterprise Security version 2.5, policy loading is now transactional: all

policies are loaded, or none. In addition, the BLMContextManager API has been updated
to include transactional methods.

The Policy Import tool is a Java utility that provides an alternate method of entering policy data
(rather than through the Administration Console). The main purpose of using this tool is to reduce
the amount of manual data entry required. The Policy Import tool lets you load policy data into
the database, distribute that policy, and remove policy data from the database. The Policy Import
tool reads and imports policy data that is stored as text using non-XML, easy to read format. Each
policy element is stored in a separate file, referred to as a policy file. For information on the
specific format of these policy elements, see Chapter 4, “Advanced Topics.”

The Policy Import tool has the following features:

Multi-threaded architecture–Allows for more efficient policy loading.

Separation of policy elements–Loads multiple files with each file corresponding to one
policy element.

Optimized–Fast import of large policies during initial import.

Policy Distribution–After importing, use the Policy Import tool to distribute the policy.

Note: Before you can use the Policy Import tool to distribute policy, you must configure
the distribution file and enable the policy distribution feature in the distribution
configuration file of the policy loader.

Removing Policy–You can also use the Policy Import tool to remove policy elements from
the database.

Note: When running the Policy Import tool on a large policy, the number of records processed
may not be synchronized. If multiple threads are used to import the data, when one thread
completes before the other cannot be determined. If the threads are set too high, a
message may appear indicating that the number of records processed is not synchronized.
This is normal and is not a problem for the Policy Import tool.

http://e-docs.bea.com/ales/docs30/javadocs/BlmAPI/com/wles/blm/BLMContextManager.html

Impor t ing Po l i c y Data

Policy Managers Guide 5-3

For a description of the content of policy files, see Chapter 4, “Advanced Topics.”

When exporting the policy, the configuration resources are saved to the following files:
object_config and objattr_config. These two files are not loaded by the policy loader by
default. If you want to load the configuration resources, you need to create a directory and copy
object_config, objattr_config, and binding into that directory. Rename object_config
to object and objattr_config to objattr. Then you can configure the policy loader to load
these files into this new directory.

Configuring the Policy Import Tool
The Policy Import tool relies on the configuration file for information on how to load the policy
files. You only need to modify the configuration file if you the change the location of the policy
files or you want to change some configuration options. The Domain parameter is required for
successful import. The Policy Import tool uses default values for the other parameters, which are
all optional.

This section covers the following topics:

“Setting Configuration Parameters” on page 5-3

“Sample Configuration File” on page 5-7

Setting Configuration Parameters
Each configuration parameter has the following format:

<Parameter> <Value>

The file paths in the configuration file depend on the directory from which you run the Policy
Import tool. You may use the full path filename to avoid directory dependency. Spaces are
allowed between parameters and between new lines. Parameter names are case insensitive.
Table 5-1 lists the parameters you need to configure for the Policy Import tool.

To create the configuration file (see Listing 5-1 for a complete sample), you need a text editor
such as Notepad. Create the file by entering the necessary parameters and parameter values. The
following sections describe the contents of a sample configuration file, with a detailed
explanation of each parameter and its default value.

Enter the following parts of the configuration file in the format described. These are only sample
entries. Your entries depend on the names you create and where your files are stored. An italics
font is used here to represent variables that you replace with your own parameter names. You do
not need to list the parameters in the configuration file in this order.

5-4 Policy Managers Guide

There is a sample of a Policy Import configuration file named policy_loader_sample.conf
located in the .../examples/policy directory. You can modify this file for your own use. BEA
recommends that you use this file as a template and customize it for your particular needs.

Note: The configuration parameters are listed in alphabetical order in Table 5-1. This is not the
order in which they are listed in the policy_loader_sample.conf file.

Table 5-1 Configuration Parameters

Parameter Description

Action Indicates the Action that the Policy Import tool will perform. Supported values are
LOAD and REMOVE (case insensitive).

REMOVE = Unloads the specific policy from the database.

ADD = Loads the specific policy data into the database.

ApplicationNod
e

Specifies the application node that holds the administration policy. If this parameter is
commented out, the default value of admin is used.

BLMContext
Retries

Specifies the number of times retries should take place. If the ALES Administration
Console server is still starting up, then you need to retry the BLM API Authentication.
In most cases the ALES Administration Console server is always running. Default: 100.

BLMContext
Interval_ms

Specifies the amount of time (in milliseconds) to wait between context retries.
DEFAULT: 100ms.

BulkSize Specifies the number of records to send at one time in a thread. Default: 200.

Note: When there are multiple threads importing policy data, each processing a
number of records, the number of records processed may result in an
“out-of-sync” message. However, it does not harm the data when importing the
policy. The policy import tool switches to single thread when importing some
policy elements, such as resources and declarations, as the later records have
dependency on earlier records.

ConsoleDisplay Specifies whether to hide console interaction or not (yes/no). If you want to run the
policy loader in the background as a batch process, set to no. Default: yes

no = Error messages are not displayed on the console and the user is requested to enter
their Username and Password if they are missing in the configuration file.

yes = Error messages are displayed on the console. This parameter must be enabled if
you want to type in your password on the command prompt, rather then use the one
specified in the password.xml or in the configuration file.

Impor t ing Po l i c y Data

Policy Managers Guide 5-5

Debug Specifies whether you want to log debug information. Default: 0

0 = Does not log debug information.

1 = Sends debug information to the file defined by: ErrorLogFile.

Domain Specifies the Enterprise domain name, as assigned during the installation of the
Administration Application. Default: asidomain.

This parameter is required.

ErrorLogFile Specifies the name of error log file. This file is produced if the Importing Tools fails
while attempting to load a set of policy files. It contains error messages that describe the
failures to assist you in correcting the errors. Default: error.log.

Mode Specifies the mode of operation the Policy Import tool. Values are INITIAL or
RECOVER (case insensitive). Use INITIAL mode the first time you run the Import
Policy Tool to load a set of policy files. If you encounter errors in the initial load attempt,
check the ErrorLogFile for a description of the error, correct the errors in the
generated error file(s) (an error file is produced for each policy file that fails), and rerun
the Import Policy Tool again, but this time in the RECOVER mode. This way the tool
only attempts to load the generated error files. If the tool fails again, fix the errors, and
run it again in RECOVER mode. Repeat until no errors are encountered.

Note: This parameter can also be passed in as a command-line parameter -recover
or -initial. Values for this parameter on the command line override values
specified in the configuration file.

PasswordFile Specifies an encrypted password file. To set up a password file, use the asipassword
utility. This utility prompts you for the alias (username) and the password of the user
trying to import the policy and then saves the encrypted password in the
password.xml file. Default: ../ssl/password.xml. For more information, see
asipassword in the Administration Reference.

PasswordKey
File

Specifies a private key used to decrypt the password stored and encrypted in the
password.xml file. To set up a password file, use the asipassword utility. Default:
../ssl/password.key. For more information, see asipassword in the
Administration Reference.

Policy
DirectoryPath

Specifies the directory path from which to import policy files. For example:
../examples/policy. The path may be relative. Default: “.” (for relative)

Table 5-1 Configuration Parameters (Continued)

Parameter Description

http://e-docs.bea.com/ales/docs30/adminref/utilities.html#asipassword
http://e-docs.bea.com/ales/docs30/adminref/utilities.html#asipassword

5-6 Policy Managers Guide

For more information on the configuration parameters, refer to the following topics:

“Username and Password” on page 5-6

“Policy Import Parameters” on page 5-7

Username and Password
Including the password in the configuration file is optional and is not recommended because it
could be viewed by others who are not authorized to import policy. The password can be
encrypted and stored in the password.xml file. You should set the PasswordFile and
PasswordKeyFile for the policy to automatically retrieve the password using the alias as the
username specified in the configuration file. If you do not include these parameters and the
console display is enabled (the default setting), you are prompted to enter their values when you
run the Policy Import tool. If one of the two parameters is not included in the configuration file
and the console display is disabled, the Policy Import tool logs an error and terminates. When
entered, the password is not displayed for security reasons.

Policy
Distribution

Specifies whether the Policy Import tool will distribute policy. If the distribution file is
in policy distribution path and PolicyDistribution parameter is set to yes, the policy will
be distributed. Supports YES or NO setting. Default: YES.

YES = The Policy Import tool distributes policy data.

NO = The Policy Import tool does not distribute data. It only imports it into the database.
The Administration Console can then be used to distribute data.

requestTimeout Specifies the time (in milliseconds) to wait for the server to respond. Should be longer
for loading large files. May set to infinite (ASI.INFINITE) for very large files.
Default: 600000

RunningThread Number of threads running concurrently to process the policy import. The value
depends on the capacity of the database server. Commonly the optimal value is 2 - 4 or
be larger for a high capacity database server. Default: 2.

Username Specifies the username for the administrator (optional). The username is case
sensitive. If the username is not specified in the configuration file and the
ConsoleDisplay parameter is enabled, then you are prompted to enter one. Default:
system.

Note: This user must have the privilege to import policy.

Table 5-1 Configuration Parameters (Continued)

Parameter Description

Impor t ing Po l i c y Data

Policy Managers Guide 5-7

Policy Import Parameters
This section of the configuration file specifies parameters that the Policy Import tool uses to
import policy data. There are three policy import parameters: PolicyDirectoryPath,
RunningThread and BulkSize.

The PolicyDirectoryPath parameter specifies the directory path for the policy files. When
you start the Policy Import tool, it looks in the directory pointed by PolicyDirectoryPath for
valid files. The directory path is either a relative or full path. If the value is left empty or the value
is a period (.), the current directory of the Policy Import tool is assumed. For example:

PolicyDirectoryPath ../examples/policy

The RunningThread parameter specifies the number of running threads and depends on the
hardware configuration of the database server. The default number is 3. For most database
servers, you want to use a value from 2 to 4. For a high-capacity database server, where a high
CPU speed and large memory size are allocated, increase this number to improve import
performance. If you set this value too high, it may hinder the performance of the Policy Import
tool. If this is the case, you can observe database busy warning messages in the server log file.

The BulkSize parameter denotes the size of each bulk load data block per thread in the Policy
Import tool; that is, the number of entries imported in a single load using a single connection
between server and the database. Increase the parameter value to lessen the time to initiate a
connection. If you enter too high a value, the import process slows, which in turn requires higher
RequestTimeout and ConnectionTimeout values. The optimal value is between 50 and 300.

Sample Configuration File
Use the sample file shown in Listing 5-1 to guide you through the process of creating your
configuration file. Each parameter description includes comments, indicated by the # symbol.
The sample configuration file assumes that all of your policy files are located in the directory
specified by BEA_HOME/ales30-admin/examples/policy.

Note: Be sure to use forward slashes (/) when specifying the policy file directory path.

The sample configuration file also assumes that no policy distribution is performed.

Listing 5-1 Sample Configuration File

Required

In addition to this file, asi.properties is read in from the ALES_HOME/config
directory. Any parameters set here will override values defined there.

5-8 Policy Managers Guide

policy domain name, as set in policy database during database installation
Domain asidomain

Optional

A ALES administrator user id and password.
If either Username or password is not provided, they can be
entered at prompt (case sensitive).
They should be same as stored in database.
#Username system

Encrypted password file
To set up a password file, use asipassword utility tool
PasswordFile ../ssl/password.xml

Password key file
PasswordKeyFile ../ssl/password.key

This is the application node that holds the administration policy.
If commented out it assumes the dafult value of "admin".
ApplicationNode admin

Number of Threads Running concurrently
The value depends on the capacity of the database server
commonly the optimal value is 2 - 4, or could be larger for high capacity
DB server
RunningThread 2

If ALES Admin console server is still coming up then you need to retry
the BLM API Authentication. In most cases the ALES Admin console server will
always be running.
Configure the number of times retries should take place (DEFAULT 100)
BLMContextRetries 2

Configure the the amount of time in milli seconds to wait between context
retries (DEFAULT 100ms)
BLMContextInterval_ms 100

Size for each bulk load. I.e. number of entries loaded in a
single load(200 here)
BulkSize 200

Loading directory value for loading policy files, value is the
directory from which the files will be loaded.
Directory path may be a relative path
PolicyDirectoryPath .

To indicate whether to distribute policy in same operation.
If distribution file is in policyDistribution path and
PolicyDistribution parameter is not set to no the policy WILL be
distributed.

Impor t ing Po l i c y Data

Policy Managers Guide 5-9

Parameter takes either yes or no (case insensitive). Default = YES
PolicyDistribution yes

File where all error messages are logged.
ErrorLogFile policyImporter.log

To indicate the Action that the Policy Import tool will perform.
Values are LOAD or REMOVE (case insensitive). Default = LOAD
#Action REMOVE

To indicate the Mode the Policy Import tool will be in
Values are INITIAL or RECOVER (case insensitive). Default = INITIAL
This parameter can also be passed in as a commandline parameter -recover or
-initial.
Values on the command line will override values specified in the
configuration file.
#Mode RECOVER

uncomment if you want to see debug information, Default = 0 (no debug)
#Debug 1

uncomment if you want to hide console interaction (yes/no), default = yes
If you want to run loader in background/in batch process, set this to no
ConsoleDisplay yes

Running the Policy Import Tool
After you complete the configuration file, you can run the Policy Import tool and import your
policy files.

To run the Policy Import tool:

1. Prepare your policy data files.

You can create your own policy data files as described in Chapter 4, “Advanced Topics.”
or you can use files that you have exported from your policy database as described in
“Exporting Policy Data” on page 5-11.

2. Create a configuration file to define your policy load.

You can use the ../examples/policy/policy_loader_sample.conf file as a template
for your configuration file. Additionally, for a sample configuration file, see “Sample
Configuration File” on page 5-7.

3. Run the Policy Import tool.

On a Microsoft Windows platform, run

5-10 Policy Managers Guide

policyloader.bat

On a UNIX platform, run:

policyloader.sh

4. Check for errors in log file.

Note: If an error occurs, the Policy Loader terminates; you must restart the Policy Import tool.
The name of the error file is defined in the your Policy Import tool configuration file by
the ErrorLogFile parameter. In addition, to distribute policy you need distribution
privileges granted to you.

Also, because the Policy Import tool is multi-threaded and each thread writes out to the
log when it is complete, you cannot guarantee the order in which each load completes.

The Policy Import tool processes policy files according to a predefined order, and if the policy
file is not found, it tries to load the next policy file in the proper order. Records imported
successfully are committed to the database. After the import process begins, you cannot go back
within the same process and edit changes you have made. If you want to change what you have
done, you have to start a new import process. After the import process is complete, you may run
the removal operation to reverse the import process.

Understanding How the Policy Loader Works
When an Object Exists Error occurs—indicating that you created a duplicate policy entry—
the import process does not stop. When the Policy Import tool encounters an error other than the
Object Exists Error, it generates a file named <filename>.<version> (for example,
object.1 , object.2) and the error message is logged in the configured error file.

Once the policy loader has finished, you need to check to see if there are any versioned files. If
there are such files, this indicates that there were errors in certain files and only the problematic
lines from those files have been placed in the versioned files. You can now correct the mistakes
in the versioned files and re-run the policy loader in the recover mode. You can do this in two
ways. Either:

update the mode in the configuration file to RECOVER or

add an extra command line argument (-recover) when running the policy loader again.

Now the loader will only try to load the highest version files that has not already been previously
loaded. If you corrected priv.1 and there are still problems, then the loader will now generate
priv.2 with just the lines that filed. You now have to make the fix in priv.2 and rerun the policy

Expor t ing Po l i c y Data

Policy Managers Guide 5-11

loader in the recover mode. You need to keep doing this until the policy loader does not generate
any new version files and the error log file does not have any errors listed in it for the last run.

Policy unloading works similar to policy loading except the order in which the files are read is
reversed, and the policy is removed from the database instead of being added.

Exporting Policy Data
This section provides instructions and information on how to export policy data from the policy
store. It covers the following topics:

“Policy Export Tool” on page 5-11

“Before You Begin” on page 5-11

“Exporting Policy Data on Windows Platforms” on page 5-12

“Exporting Policy Data on UNIX Platforms” on page 5-13

“What’s Next” on page 5-13

Policy Export Tool
Policy exporting allows you to output data from the policy database to text files called policy
files. These policy files can be imported back to the same or another policy database using the
Policy Import tool, as described in “Importing Policy Data” on page 5-1. This tool allows you to
transfer your policy data easily to a production environment.

To perform policy exporting, you need access to the policy database. In general, you can access
the policy database when you are the policy owner or the database administrator.

All the files that are exported by the Policy Export tool are supported by the Policy Import tool.
All the files are created even though some files may not contain any records. There are two other
files exported: object_config, and objattr_config, that contain the data for SSM
configuration. These files also get loaded and are similar to object and objattr respectively in
format. These files are split so as to differentiate policy elements from configuration elements.
However, the object_config and objattr_config files can be merged into object and
objattr respectively, if needed.

Before You Begin
Before you begin, perform the following tasks:

5-12 Policy Managers Guide

1. Locate or create a target directory in which to store the policy files.

Ensure that the directory is not write-protected. The free space that the export requires
depends on the size of your existing policy. If your export fails because of insufficient disk
space, add more space before attempting the export again. In addition, ensure that the full
directory path contains no white space.

2. Ensure that the database client is installed and configured, and that you have access to the
database.

Depending on the database system, you need to have the database client installed and
configured to connect to the policy database. Make sure all the environment settings are
correct.

Make sure you can access the policy database. For example, for Sybase use the isql
command or use the sqlplus command for Oracle. You must be the policy owner or
database administrator to run the export tool. When exporting, you are asked to provide the
information for policy owner, your database login id and password.

3. Ensure that you can run the tools from the /bin subdirectory for the product installation.

You must run the exporting scripts in this directory because the scripts need to locate some
files relative to this directory.

On a Microsoft Windows platform, you can open a DOS command prompt window and
change to this directory.

Exporting Policy Data on Windows Platforms
This procedure exports your policy from the database into formatted text files. You perform this
export using the export tool included as part of the Administration Application.

To export the policy data on a Windows platform, perform the following steps:

1. Open a command window and change to the \bin directory in the product installation. By
default, this directory location is C:\bea\ales30-admin\bin.

2. Ensure that the current path (.) is included your PATH. Also, ensure that the client environment
is set up properly.

3. At the command prompt, type the following command, and then press <Enter>:

policyexporter.bat directory

where directory is the target directory for the exported policy files. Be sure to include
the full path of the directory. This directory cannot contain white spaces.

Expor t ing Po l i c y Data

Policy Managers Guide 5-13

When exporting the policy, the configuration resources are saved to the following files:
object_config and objattr_config. The Policy Import tool does not import these two files
by default. If you want to import the configuration resources, you need to create a directory, and
copy object_config, objattr_config, and binding into that directory. Rename
object_config to object and objattr_config to objattr. Then you can configure the Policy
Import tool to import these to file in this new directory.

Exporting Policy Data on UNIX Platforms
This procedure exports your policy from the database into formatted text files. You perform this
export using the Policy Export tool included as part of the Administration Server.

Running the Policy Export tool on Sun Solaris requires the use of a shell script. If you do not
normally use this shell or have difficulty running the tool, check with your UNIX system
administrator to determine if it is available in your environment. For Linux, you can run this script
from a Bourne shell.

To export the policy data on a UNIX platform, perform the following steps:

1. Open a command window and change to BEA_HOME/ales30-admin/bin directory.

2. From the command line, enter the following command:

policyexporter.sh

3. When the script prompts you for the directory in which to save the policy files, type the full
path directory name, and then press <Enter>.

When the script completes, a successful message appears.

When exporting the policy, the configuration resources are saved to the following files:
object_config and objattr_config. The Policy Import tool does not import these two files
by default. If you want to import the configuration resources, you need to create a directory, and
copy object_config, objattr_config, and binding into that directory. Rename
object_config to object and objattr_config to objattr. Then you can configure the Policy
Import tool to import these to file in this new directory.

What’s Next
Once you have exported the policy data, you can import the exported policy into policy database
using the Policy Import tool. The exported policy files are in the format required by the Policy
Import tool; however, you need to configure the tool to point to the exported file directory. You
also need to create a policy distribution file distribution if you want the policy to be

5-14 Policy Managers Guide

automatically distributed after the import completes. For additional information, see “Importing
Policy Data” on page 5-1.

Integrating ALES with Application Environments 6-1

C H A P T E R 6

Authorization Caching

Authorization caching allows the ASI Authorization and ASI Role Mapper providers to cache the
result of an authorization call, and use that result if future calls are made by the same caller. The
authorization cache automatically invalidates itself if there is a policy or user profile change. This
section covers the following topics:

“Authorization Cache Operation” on page 6-1

“Configuring Authorization Caching” on page 6-2

“Authorization Caching Expiration Functions” on page 6-5

AquaLogic Enterprise Security also supports use of two other caches:

Client-side authorization caching in Web Services clients. For more information, see Using
the Web Services Client Authorization Cache in Programming Security for Web Services.

Server-side identity caching in the Web Services SSM. For more information, see Using
the Web Services SSM Identity Cache in Programming Security for Web Services

Authorization Cache Operation
The entry keys for elements in the authorization cache are constructed from these elements:

Subject

Resource

Privilege (for authorization only)

http://e-docs.bea.com/ales/docs30/webservicesprogrammersguide/cache.html#client_cache
http://e-docs.bea.com/ales/docs30/webservicesprogrammersguide/cache.html#client_cache
http://e-docs.bea.com/ales/docs30/webservicesprogrammersguide/cache.html#id_cache
http://e-docs.bea.com/ales/docs30/webservicesprogrammersguide/cache.html#id_cache

6-2 Integrating ALES with Application Environments

Roles (for authorization only)

Context

The key construction algorithms are different for the authorization cache and the role mapping
cache. The key-value pairs for entries in the authorization cache are:

Authorization: Map (key = Subject + Resource + Privilege + Roles + Contexts,

value = Result + ResponseAttributes + Roles)

The key-value pairs for entries in the role mapping cache are:

Role mapping: Map (key = Subject + Resource + Contexts, value = Roles)

Note that Contexts and ResponseContexts can be single values or lists.

Note: ALES versions prior to 2.5 used a Pre Load Attributes configuration parameter. You may
need to use this option if you use the latest version of ALES to manage ALES version 2.2
or 2.1 SSMs. For more details on using the Pre Load Attribute caching option see
Authorization Caching in the ALES 2.2 documentation.

Authorization performance of the ASI Authorization Provider can be improved further by setting
the "Lazy Role Provider" switch (which can be found in the ALES Administration Console on
the Performance tab of ASI Role Mapper Provider). If the switch is set, the authorization service
will not make an extra call to acquire the list of roles that corresponds to a particular combination
of subject, resource and context; instead, it will delegate this function to the ARME native
process in a single call when a request for making the authorization decision is made.

The authorization cache is a per session object. This means that a separate cache object is created
every time a client establishes the connection. If two Java-SSM clients have established
connections, a separate cache object is created for each of them, even if the same credentials and
SSM instance were used.

Configuring Authorization Caching
Authorization caching is on by default. It may be configured from within the Administration
Console through the ASI Authorization and ASI Role Mapper provider configuration. Table 6-1
lists the switches affect the authorization cache.

http://e-docs.bea.com/ales/docs22/integrateappenviron/performance.html#wp1151856

Conf igur ing Autho r i za t i on Cach ing

Integrating ALES with Application Environments 6-3

Table 6-1 Authorization Caching

Setting Default
Value

Description

AccessAllowedCaching true Enables/disables caching of authorization decisions.

GetRolesCaching true Enables/disables caching of role mapping decisions.

SessionExpiration 60 Specifies the number of seconds that authorization decisions
for a user will be cached in memory. Upon expiration, the
cached information is cleared and then updated if the user
makes a subsequent request.

While increasing this value can improve performance, it may
also reduce security by making authorization decisions based
on outdated information.

SubjectDataCacheExpiration 60 Defines how long user profile data will be cached. Cached
authorization decisions are reset each time this data cache
expires. You can increase this value to improve performance.

6-4 Integrating ALES with Application Environments

The properties listed in Table 6-2 can be entered as advanced configuration properties to further
tune the cache.

Pre Load Attributes adaptive
-private

Not used as of ALES version 2.5.

Determines whether the provider loads ContextHandler data
before starting to evaluate policy or waits for a callback to ask
for specific items. Pre-loading attributes can dramatically
improve performance in policies that use contextual
attributes.

Note: ALES versions prior to 2.5 used the Pre Load
Attributes configuration parameter. You may need to
use this option if you use the latest version of ALES
to manage ALES version 2.2 or 2.1 SSMs. For more
details on using the Pre Load Attribute caching
option see Authorization Caching in the ALES 2.2
documentation.

Lazy Role Provider true When a request for list of roles is made, determines indicates
whether a call should be made to the Role Mapping Cache /
ARME or whether the call may be postponed until the
returned list of roles is in fact used. Setting this true provides
significant performance improvement when used in
combination with the ASI Authorization provider since the
provider can request the roles and the authorization decision
in a single call.

Table 6-1 Authorization Caching (Continued)

Setting Default
Value

Description

http://e-docs.bea.com/ales/docs22/integrateappenviron/performance.html#wp1151856

Author i za t i on Cach ing Exp i ra t i on Funct ions

Integrating ALES with Application Environments 6-5

Authorization Caching Expiration Functions
There is a small subset of data that may change without the knowledge of the cache. This includes
internally computed time values, as well as custom evaluation plug-ins. Because the cache is not
aware of changes in these values, it does not automatically invalidate a cached decision when they
change. For this reason a series of evaluation functions is provided to control the period of cache
validity. These functions are only needed in policies that make explicit use of internally computed
time values or custom evaluation plug-ins.

Table 6-3 lists the internally computed time values. If these values are referenced in a policy, you
should also explicitly set the cache validity for the policy.

Table 6-2 Advanced Configuration Properties

Setting Default
Value

Description

ASI.AuthorizationCacheLimit 1000 Determines the maximum number of cached
decisions per user session. Once exceeded, old
cached values are overwritten.

ASI.AuthorizationCacheDynamicAttribute
Limit

10 Determines the maximum number of context
attributes a decision may use and still be stored
in the cache.

ASI.PolicyCacheInvalidatorPollingInterval 1000 Determines how often the cache checks for
policy distributions. The value is in
milliseconds

Table 6-3 Time Values Used with Expiration Functions

Credential Value Range or Format

time24 integer 0–2359

time24gmt integer 0–2359

dayofweek Dayofweek_type Sunday–Saturday

dayofweekgmt Dayofweek_type Sunday–Saturday

dayofmonth integer 1–31

6-6 Integrating ALES with Application Environments

Table 6-4 lists the expiration functions for the authorization cache. You can use these functions
to set an expiration time for the decision. This way you can instruct the cache to only hold the
value for a given period of time, or to not hold it at all. These functions correspond roughly to
each of the internally computed time types.

dayofmonthgmt integer 1–31

dayofyear integer 1–366

dayofyeargmt integer 1–366

daysinmonth integer 28–31

daysinyear integer 365–366

minute integer 0–59

minutegmt integer 0–59

month month_type January–December

monthgmt month_type January–December

year integer 0–9999

yeargmt integer 0–9999

timeofday time HH:MMAM” or “HH:MMPM”

timeofdaygmt time HH:MMAM” or “HH:MMPM”

hour integer 0–23

hourgmt integer 0–23

date Date MM/DD/YYYY”

dategmt Date MM/DD/YYYY”

Table 6-3 Time Values Used with Expiration Functions (Continued)

Credential Value Range or Format

Author i za t i on Cach ing Exp i ra t i on Funct ions

Integrating ALES with Application Environments 6-7

Table 6-4 Expiration Functions

Function Argument Description

valid_for_mseconds integer Valid for a given number of milliseconds

valid_for_seconds integer Valid for a given number of seconds

valid_for_minutes integer Valid for a given number of minutes

valid_for_hours integer Valid for a given number of hours

valid_until_timeofday time Valid until the specified time on the date the evaluation
is performed

valid_until_time24 integer Valid until the specified time on the date the evaluation
is performed

valid_until_hour integer Valid until the specified hour on the date the evaluation
is performed

valid_until_minute integer Valid until the specified minute of the hour the
evaluation is performed

valid_until_date Date Valid until the specified date

valid_until_year integer Valid until the specified year

valid_until_month month_type Valid until the specified month of the year the
evaluation is performed

valid_until_dayofyear integer Valid until the specified day of the year the evaluation
is performed

valid_until_dayofmonth integer Valid until the specified day of the month the
evaluation is performed

valid_until_dayofweek Dayofweek_
type

Valid until the specified day of the week the evaluation
is performed

valid_until_timeofday_gmt time Valid until the specified time on the date the evaluation
is performed in GMT time.

valid_until_time24_gmt integer Valid until the specified time on the date the evaluation
is performed in GMT time.

6-8 Integrating ALES with Application Environments

For example, if you had the following policy:

GRANT(//priv/order,//app/resturant/breakfast,//sgrp/customers/allusers/)

if hour < 11;

When authorization caching is enabled, you write the policy as:

GRANT(//priv/order,//app/resturant/breakfast,//sgrp/customers/allusers/)

if hour < 11 and valid_until_hour(11);

With authorization caching, the result of this policy is cached in the provider until 11:00 AM, at
which time, it expires. Not calling valid_until_hour argument results in this policy being
cached until the next policy distribution. Therefore, if you are using authorization caching, it is
important to update your time dependent policies appropriately.

valid_until_hour_gmt integer Valid until the specified minute of the hour the
evaluation is performed in GMT time

valid_until_minute_gmt integer Valid until the specified minute of the hour the
evaluation is performed in GMT time.

valid_until_date_gmt Date Valid until the specified date in GMT time.

valid_until_year_gmt integer Valid until the specified year in GMT time.

valid_until_month_gmt month_type Valid until the specified month of the year the
evaluation is performed in GMT time.

valid_until_dayofyear_gmt integer Valid until the specified day of the year the evaluation
is performed in GMT time.

valid_until_dayofmonth_gmt integer Valid until the specified day of the month the
evaluation is performed in GMT time.

valid_until_dayofweek_gmt Dayofweek_
type

Valid until the specified day of the week the evaluation
is performed in GMT time.

Table 6-4 Expiration Functions (Continued)

Function Argument Description

	Policy Managers Guide
	Introduction
	Document Scope and Audience
	Guide to this Document
	Related Documentation
	Contact Us!

	Security Policies Overview
	What is an AquaLogic Enterprise Security Policy?
	Closed-World Security Environment

	Policy Components
	Resources
	Virtual Resources
	Resource Attributes
	Action Groups
	Actions

	Identities
	Identity Attributes
	Groups
	Users

	Policies
	Roles and Role Mapping Policies
	Authorization Policies
	Delegation
	Summary of Policy Differences

	Declarations
	Constants
	Attributes
	Evaluation Functions

	Writing Policies
	Policy Implementation: Main Steps
	Access Decision Process
	Authentication Service
	Role Mapping Service
	Authorization Service
	Credential Mapping Service
	Authorization and Role Mapping Engine

	Using the Entitlements Administration Application to Write Policies
	Entitlements Administration Application Overview
	Resources
	Virtual Resources
	Resource Attributes
	Actions and Action Groups

	Identities
	Groups
	Users
	Identity Attributes

	Roles
	Writing Role Mapping Policies and Authorization Policies
	Role Mapping Policies
	Authorization Policies

	Policy Reports
	Role Mapping Policy Reports
	Authorization Policy Reports

	Defining Declarations
	Binding Policies
	Deployment
	Distributing SSM Configurations
	Distributing Policies

	Advanced Topics
	Designing More Advanced Policies
	Multiple Components
	Policy Constraints
	Comparison Operators
	Regular Expressions
	Constraint Sets
	String Comparisons
	Boolean Operators
	Associativity and Precedence
	Grouping with Parentheses
	Boolean Operators and Constraint Sets

	Declarations
	Constant Declarations
	Attribute Declarations
	Evaluation Function Declarations

	Policy Inheritance
	Group Inheritance
	Direct and Indirect Group Membership
	Restricting Policy Inheritance
	Resource Attribute Inheritance

	WebLogic Resource Type Conversions and Resource Trees
	Understanding Resource Nodes
	Root Node
	Application Deployment Parent Node
	Application Node
	Resource Type Node
	Resource Parent Node
	Resource Node

	Resource Paths and Policies for Common Resources
	EJB Resources
	EJB Resource Path Example
	EJB Resource action Mappings
	EJB Resource Dynamic Resource Attributes

	JNDI Resources
	JNDI Resource Path Example
	JNDI Resource Action Mappings
	JNDI Dynamic Resource Attributes
	JNDI Resource Policy Examples

	URL Resources
	URL Resource Path Example
	URL Resource Action Mappings
	URL Dynamic Resource Attributes
	HTTP Request Context Elements
	URL Resource Policy Examples

	JDBC Resources
	JDBC Resource Path Example
	JDBC Resource Action Mappings
	JDBC Resource Path Example
	JDBC Dynamic Resource Attributes
	JDBC Resource Policy Examples

	JMS Resources
	JMS Resource Path Example
	JMS Resource Action Mappings
	JMS Resource Example
	JMS Resource Policy Examples

	Web Services Resources
	Web Services Resource Path Example
	Web Services Resource Action Mappings
	Web Services Resource Policy Examples
	Web Services Dynamic Resource Attributes
	Web Services Resource Policy Examples

	Server Resources
	Server Resource Path Example
	Server Resource Actions Mapping
	Server Dynamic Resource Attributes
	Server Resource Policy Examples

	Subject Mapping
	Policy Element Naming
	Fully Qualified Names
	Policy Element Qualifiers
	Size Restriction on Policy Data
	Character Restrictions in Policy Data
	Special Names and Abbreviations

	Sample Policy Files
	Application Bindings [binding]
	Attribute [attr]
	Declarations [dec]
	Directories [dir]
	Directory Attribute Schemas [schema]
	Mutually Exclusive Subject Groups [excl]
	Resources [object]
	Resource Attributes [object]
	Policy Distribution [distribution]
	Policy Inquiry [piquery]
	Policy Verification [pvquery]
	Actions [priv]
	Action Bindings [privbinding]
	Action Groups [privgrp]
	Role [role]
	Rule [rule]
	Distribution Targets
	Subject Group Membership [member]
	Subjects [subject]

	Using Response Attributes
	report() Function
	report_as() Function
	Report Function Policy Language
	Using Evaluation Plug-ins to Specify Response Attributes

	Using queryResources and grantedResources
	Resource Discovery

	Importing and Exporting Policy Data
	Importing Policy Data
	Policy Import Tool
	Configuring the Policy Import Tool
	Setting Configuration Parameters
	Sample Configuration File

	Running the Policy Import Tool
	Understanding How the Policy Loader Works

	Exporting Policy Data
	Policy Export Tool
	Before You Begin
	Exporting Policy Data on Windows Platforms
	Exporting Policy Data on UNIX Platforms
	What’s Next

	Authorization Caching
	Authorization Cache Operation
	Configuring Authorization Caching
	Authorization Caching Expiration Functions

