
BEAAquaLogic
Enterprise
Security™

Programming Security
for Web Services

Version 3.0
Revised: December 2007

Copyright
Copyright © 1995-2008 BEA Systems, Inc. All Rights Reserved.

Third-Party Software License Agreement
Sun Microsystems, Inc.’s XACML implementation v2.0

Copyright © 2003-2004 Sun Microsystems, Inc. All Rights Reserved.

This product includes Sun Microsystems, Inc.’s XACML implementation v2.0, which is governed by the following terms:

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

1. Redistribution of source code must retain the above copyright notice, list of conditions and the following disclaimer.

2. Redistribution in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

Neither the name of Sun Microsystems, Inc. or the names of contributors maybe used to endorse or promote products
derived from this software without specific prior written permission.

This software is provided "AS IS," without a warranty of any kind. ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY
EXCLUDED. SUN MICROSYSTEMS, INC. ("SUN") AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY

DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THIS
SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY
LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL,
INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF

LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE, EVEN IF SUN HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You acknowledge that this software is not designed or intended for use in the design, construction, operation or
maintenance of any nuclear facility.

For all third-party software license agreements, see the 3rd_party_licenses.txt file, which is placed in the
BEA_HOME\ales30-admin directory.

Trademarks and Service Marks
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Interaction, BEA AquaLogic Interaction Analytics, BEA
AquaLogic Interaction Collaboration, BEA AquaLogic Interaction Content Services, BEA AquaLogic Interaction Data
Services, BEA AquaLogic Interaction Integration Services, BEA AquaLogic Interaction Process, BEA AquaLogic
Interaction Publisher, BEA AquaLogic Interaction Studio, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Kodo, BEA Liquid Data for

WebLogic, BEA Manager, BEA MessageQ, BEA SALT, BEA Service Architecture Leveraging Tuxedo, BEA WebLogic
Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA WebLogic Enterprise
Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA WebLogic Mobility Server,
BEA WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API,
BEA WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Real Time, BEA
WebLogic RFID Compliance Express, BEA WebLogic RFID Edge Server, BEA WebLogic RFID Enterprise Server,
BEA WebLogic Server Process Edition, BEA WebLogic SIP Server, BEA WebLogic WorkGroup Edition, BEA
Workshop for WebLogic Platform, BEA Workshop JSP, BEA Workshop JSP Editor, BEA Workshop Struts, BEA
Workshop Studio, Dev2Dev, Liquid Computing, and Think Liquid are trademarks of BEA Systems, Inc. Accelerated
Knowledge Transfer, AKT, BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA SOA
Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

Programming Security for Web Services vii

1. Introduction and Roadmap
Scope . 1-1

Documentation Audience . 1-1

Prerequisites for this Document. 1-2

Guide to this Document . 1-2

Related Information . 1-3

2. Introduction to the Web Services Security Service Module
Overview of Web Services . 1-1

Product Overview . 1-2

Web Services Environment . 1-3

Web Services Security Service Module . 1-6

Client Trust Model . 1-7

Deployment Model. 1-8

Usage Model. 1-9

Product Features . 1-11

3. Optimizing Web Services Performance with Caches
Using the Web Services Client Authorization Cache . 2-1

Installing the Web Services Authorization Cache . 2-2

Client Configuration File . 2-2

Third Party Dependencies . 2-3

Authorization Cache Operation . 2-3

Configuring the Client Authorization Cache . 2-5

Config . 2-5

CacheManager. 2-6

Using the Web Services SSM Identity Cache . 2-7

viii Programming Security for Web Services

4. Using Failover with a Web Services Client
Configuring a Web Services Client for Failover. 3-1

Client Configuration File . 3-3

FailOverManager API . 3-3

getInstance(). 3-3

getInstance(ArrayList failOverEndPoints,int noOfRetries, int httpConTimeOut) . . 3-4

setEndPointList (ArrayList endpoints) . 3-4

getEndPointList() . 3-4

5. Web Services Interfaces
Registry Service Interface . 4-1

How the Registry Service Works . 4-2

Registry Service Methods . 4-3

Methods Common to All Web Services Interfaces . 4-4

Authentication Service Interface . 4-4

Authentication Process. 4-5

Authentication Service Methods . 4-7

authenticate() Method . 4-7

assertIdentity() Method. 4-8

isAssertionTokenSupported() Method . 4-9

validateIdentity() Method . 4-10

Authorization Service Interface . 4-11

Authorization Process . 4-11

Authorization Service Methods . 4-13

isAccessAllowed() . 4-13

isAuthenticationRequired() Method . 4-15

Authorization Via XACML . 4-16

Programming Security for Web Services ix

Two-Way SSL Recommended . 4-16

XACML Service Use Case. 4-16

Sample XACML Client Application is Provided. 4-17

Overview of XACML Context . 4-17

Authentication and Valid Token Types. 4-18

SOAP Binding of XACML Context. 4-19

How the XACML Request Element is Interpreted in AquaLogic Enterprise Security . .
4-20

Attribute . 4-21

Subject . 4-22

Multiple subjects . 4-23

The subject id <Attribute> . 4-23

Mapping Other Subject and Attribute Elements to AquaLogic Enterprise Security
Identity . 4-24

Mapping Resources and the AquaLogic Enterprise Security Resource 4-25

Mapping Actions and the AquaLogic Enterprise Security Action 4-25

How the Environment Element is Interpreted in AquaLogic Enterprise Security . .
4-25

Sample Request . 4-26

How the AquaLogic Enterprise Security XACML Response is Generated. 4-27

Mapping Decision. . 4-28

Mapping Status . 4-28

Mapping Obligations. 4-29

Sample Response. 4-31

WSDL Definition of the XACML Service. 4-32

Auditing Service Interface. 4-34

Auditing Process. 4-35

Auditing Service Method . 4-36

x Programming Security for Web Services

Role Mapping Service Interface . 4-36

Role Mapping Process . 4-37

Role Mapping Service Method . 4-38

Credential Mapping Service Interface. 4-39

Credential Mapping Process . 4-39

Credential Mapping Method . 4-41

Introduction and Roadmap 1-1

C H A P T E R 1

Introduction and Roadmap

The following sections describe the content and organization of this document:

“Scope” on page 1-1

“Documentation Audience” on page 1-1

“Prerequisites for this Document” on page 1-2

“Guide to this Document” on page 1-2

“Related Information” on page 1-3

Scope
This document provides an overview of the Web Services Security Service Module and the
related standards and features it supports.

Documentation Audience
It is assumed that the reader understands Web Services technologies and has a general
understanding of the Microsoft Windows or UNIX operating systems being used. This document
is intended for the following audiences:

Web Services Developers—Developers who are programmers who focus on developing
Web services applications and who work with other engineering, quality assurance (QA),
and database teams to implement security features. Web services developers have in-depth
working knowledge of Web Services programming.

I n t roduct i on and Roadmap

1-2 Introduction and Roadmap

Application Developers—Developers who focus on designing applications and work with
other engineers, quality assurance (QA) technicians, and database teams to implement
applications.

Security Administrators—Administrators who are responsible for installing and
configuring the AquaLogic Enterprise Security products and designing policy. Security
administrators work with other administrators to implement and maintain security
configurations, authentication and authorization schemes, and to set up and maintain access
to deployed application resources. Security administrators have a general knowledge of
security concepts and the AquaLogic Enterprise Security architecture.

Prerequisites for this Document
Prior to reading this guide, you should read the Introduction to BEA AquaLogic Enterprise
Security. This document describes how the product works and provides conceptual information
that is helpful to understanding the necessary installation components.

Guide to this Document
This document is organized as follows:

Chapter 2, “Introduction to the Web Services Security Service Module,”provides an
overview of the Web Services Security Service Module and the related standards and
features it supports.

Chapter 3, “Optimizing Web Services Performance with Caches,” describes how to use the
Web Services Client Authorization Cache to allow an application using the Web Services
SSM to take advantage of in-process caching to achieve performance improvements when
making authorization calls.

Chapter 4, “Using Failover with a Web Services Client,” describes how to develop a Web
Services client that uses failover to connect to alternate Web Services SSM if the primary
SSM is unreachable.

Chapter 5, “Web Services Interfaces,” describes the Web Services interfaces and the
methods that each interface supports.

Related In fo rmat ion

Introduction and Roadmap 1-3

Related Information
The BEA corporate web site provides all documentation for BEA AquaLogic Enterprise Security.
Other BEA AquaLogic Enterprise Security documents that may be of interest to the reader
include:

WSDL Documentation for the Web Service Interfaces—This document provides reference
documentation for the Web Services Interfaces that are provided with and supported by this
release of BEA AquaLogic Enterprise Security.

Policy Managers Guide—This document how to write access control policies for BEA
AquaLogic Enterprise Security, and describes how to import and export policy data.

Installing Security Services Modules—This document describes how to install ALES
Security Services Modules, including the Web Services Security Service Module.

Developing Security Providers —This document provides security vendors and security
and application developers with the information needed to develop custom security
providers.

Javadocs for Security Service Provider Interfaces—This document provides reference
documentation for the Security Service Provider Interfaces that are provided with and
supported by this release of BEA AquaLogic Enterprise Security.

Programming Security for Java Applications—The document describes how to implement
security in Java applications. It include descriptions of the Security Service Application
Programming Interfaces and programming instructions for implementing security in Java
applications.

Javadocs for Java API—This document provides reference documentation for the Java
Application Programming Interfaces that are provided with and supported by this release of
BEA AquaLogic Enterprise Security.

I n t roduct i on and Roadmap

1-4 Introduction and Roadmap

Programming Security for Web Services 1-1

C H A P T E R 2

Introduction to the Web Services
Security Service Module

This section provides an introduction to AquaLogic Enterprise Security Web Services Security
Service Module and describes interfaces clients use to interact with it.

This section covers the following topics:

“Overview of Web Services” on page 2-1

“Product Overview” on page 2-2

“Product Features” on page 2-11

Overview of Web Services
Web services are a special type of service that can be shared by and used as components of
distributed Web-based applications. Web services interface with existing back-end applications,
such as customer relationship management systems, order-processing systems, and so on.

Traditionally, software application architecture tended to fall into two categories: huge
monolithic systems running on mainframes or client-server applications running on desktops.
Although these architectures work well for the purpose the applications were built to address,
they are closed and cannot be easily accessed by the diverse users of the Web. Thus the software
industry has evolved toward loosely coupled service-oriented applications that interact
dynamically over the Web. The applications break down the larger software system into smaller
modular components, or shared services. These services can reside on different computers and
can be implemented by vastly different technologies, but they are packaged and transported using

In t roduct ion to the Web Serv i ces Secur i t y Se rv ice Module

1-2 Programming Security for Web Services

standard Web protocols, such as Extensible Markup Language (XML) and Hyper Text Transfer
Protocol (HTTP), thus making them easily accessible by any user on the Web.

This concept of services is not new. Remote Method Invocation (RMI), Component Object
Model (COM), and Common Object Request Broker Architecture (CORBA) are all
service-oriented technologies. However, applications based on these technologies must be
written using that particular technology, often as implemented by a particular vendor. This
requirement typically hinders widespread acceptance of such services on the Web. To solve this
problem, web services are defined to share the following properties that make them easily
accessible from heterogeneous environments:

Web services are accessed over the Web.

Web services describe themselves using an XML-based description language.

Web services communicate with clients (both end-user applications or other web services)
through XML messages that are transmitted by standard Internet protocols, such as HTTP.

Product Overview
The BEA AquaLogic Enterprise Security provides three Web Server Security Service Modules
(SSMs): the IIS Web Server SSM, the Apache Web Server SSM, and the Web Services SSM (see

Product Overv i ew

Programming Security for Web Services 1-3

Figure 2-1). This document only describes the Web Services SSM and the security service
application programming interfaces (APIs) that it supports.

Figure 2-1 Web Server and Web Services SSMs

The following topics provide more information on the these products:

“Web Services Environment” on page 2-3

“Web Services Security Service Module” on page 2-6

“Client Trust Model” on page 2-7

“Deployment Model” on page 2-8

“Usage Model” on page 2-9

Web Services Environment
Figure 2-2 shows the major components that make up the BEA AquaLogic Enterprise Security
product environment.

Apache Web Server

Web Browser

Apache Web Server
SSM

BEA AquaLogic Enterprise Security
Web Server SSM Products

IIS Web Server
SSM

Web Services
SSM

IIS Web Server
Customer-

Developed Web
Server

Web Browser Web Browser

In t roduct ion to the Web Serv i ces Secur i t y Se rv ice Module

1-4 Programming Security for Web Services

Figure 2-2 AquaLogic Enterprise Security Product Environment

Administration Server

The Administration Server allows you to configure, deploy, and manage multiple Security
Service Modules in a distributed environment. While the modules consume configuration
data and then service security requests accordingly, the Administration Server allows you
to configure and deploy security configuration information to the modules and modify that
information as needed.

Service Control Manager

The Service Control Manager (SCM) is an essential component of the configuration
provisioning mechanism and a key component of a fully-distributed security enforcement
architecture.

Note: In this release of AquaLogic Enterprise Security it is possible to deploy an SSM
without the SCM. You can use the PolicyIX tool, described in P olicyIX in the
Administration Reference, to communicate directly with the BLM and retrieve
configuration data. The PolicyIX tool allows you to export configuration data
(configured either through the ALES Administration Console or directly via the BLM
API) for a given SSM to an XML file, and use it with the configured SSMs when the
SCM is not available.

A SCM is a machine agent that exposes a provisioning, or deployment, interface to the
Administration Server to facilitate the management of a potentially large number of
distributed Security Service Modules (SSMs). The SCM can receive and store meta-data
updates, both full and incremental, initiated by the Administration Server.

The Administration Server uses this provisioning mechanism to distribute configuration
data to each created instance of a SSM where it is consumed locally (see Figure 2-3). Each

Service Control
Manager

Java Security
Service Module

Administration Server

WebLogic Server
Security Service

Module

Web Services
Security Service

Module

Product Overv i ew

Programming Security for Web Services 1-5

instance of an SSM is assigned a unique configuration ID, which is registered with the
SCM when the SSM is enrolled. The SCM uses the configuration ID when distributing and
updating configuration data to each SSM instance to ensure that the correct data is
distributed.

Web Services Security Service Module

The Web Services SSM provides an application programming interface (API) that allows
security developers to write custom applications that invoke AquaLogic Enterprise Security
services through SOAP. These interfaces support the most commonly required security
functions and are organized into services that are logically grouped by functionality. You
define and deploy the security configuration using the Administration Server. You can
configure more than one instance of the Web Services SSM on a single machine; however,
each instance must run in separate process. The number of machines in your network on
which you can configure a Web Services SSM is unlimited (see Figure 2-3). After you
deploy the initial security configuration to a Web Server SSM, it does not require any
additional communication with the Service Control Manager (SCM) to perform runtime
security functions. However, the SCM does maintain communication with each Web
Services SSM instance so that it can distribute, or deploy, full and incremental security
configuration and updates and updates to access control policies.

Figure 2-3 Deploying Security Configuration and Policy Data

SSM Configuration

Administration Application System with SCM
and SSMs

Provisioning
Interface Local

Store Configuration ID

Configuration ID

Administration
Application

Service Control
Manager

Web Services
SSM

Web Services
SSM

In t roduct ion to the Web Serv i ces Secur i t y Se rv ice Module

1-6 Programming Security for Web Services

Web Services Security Service Module
The Web Services Security Service Module (SSM) provides five security service APIs:
Authentication, Authorization, Auditing, Role Mapping, and Credential Mapping (see
Figure 2-4). These APIs can be used to developed web services clients to access the AquaLogic
Enterprise Security infrastructure and use it to make access control decisions for users attempting
to access web server application resources. Once the web services client is implemented, it uses
the Web Services SSM (which incorporates the Security Services APIs, the Security Framework,
and the configured security providers) to make access control decisions for the web server to
which it is connected. Then you can use the AquaLogic Enterprise Security Administration
Server to configured and deploy a security configuration to protect the web server application
resources. Thus, the Web Services SSM enables security administrators and web developers to
perform security tasks for applications running on a web server. Additionally, you can use the

Product Overv i ew

Programming Security for Web Services 1-7

Web Services SSM to add information provided by the Security Framework (such as roles and
response attributes) to the HTTP requests handled by the protected web server applications.

Figure 2-4 shows the components of the Web Services SSM.

Figure 2-4 Web Services SSM Architecture

For a description of the Web Services Security Service APIs, see “Web Services Interfaces” on
page 5-1

Client Trust Model
To protect messages in transit between the client and the Web Services SSM, a channel security
protocol (SSL 3.0 or TLS 1.0) is used for all communication between the two. The Web Services
SSM supports both one-way and two-way SSL (see Figure 2-5). To establish an SSL connection
with one-way SSL, only the server is required to present a digital certificate. With two-way SSL
authentication, both the client and server must present digital certificates before the SSL
connection is enabled between the two. Thus, with two-way SSL, the Web Services SSM not only

Authentication

Provider
Auditing
Provider

Credential
Mapping
Provider

Role Mapping
Provider

Authentication
Service

Authorization
Service

Auditing
Service

Credential
Service

Web Services Security Service APIs

Role Mapping
Service

The service-based security framework
delegates requests to the appropiate provider

Security Framework

Authorization
Provider

BEA AquaLogic Enterprise Security
Web Services

Security Service Module

JAAS IA

Registry
Service

In t roduct ion to the Web Serv i ces Secur i t y Se rv ice Module

1-8 Programming Security for Web Services

authenticates itself to the client to complete the SSL handshake (which is the minimum
requirement for certificate authentication), but it also requires authentication from the requesting
client. The client first authenticates the server's certificate, and then the server authenticates the
client's certificate. The client certificate must be signed by a recognized certificate authority
(CA).

As mentioned, Web services clients can communicate with the Web Services SSM over one-way
or two-way SSL connections. However, when the client communicates over a one-way SSL, each
client request be accompanied by a valid client name/password pair or an ALES cookie.
Figure 2-5 shows the Web Services SSM client trust model.

For more information on authentication, see “Authentication Service Interface” on page 5-4.

Figure 2-5 Client Trust Model

Deployment Model
Figure 2-6 shows how you typically deploy instances of Web Services Security Service Modules
(SSM) to protect application resources. The web servers (the web services clients) are located in
the web tier, which is in the Demilitarized Zone (DMZ), and are protected from unwanted traffic
on the Internet by a firewall. The DMZ is created by using two firewalls. If the web servers and
Web Services SSMs are running on different machines, the Web Services SSMs are located in
the application tier behind the second firewall for added security. The Web Services SSM

Web Services
Client

Web Services
SSM

3) One-way SSL
 Enabled (HTTPS)

1) HTTP Connect

2) Server Certificate

One-way SSL
Handshake

Web Services
Client

Web Services
SSM

4) Two-way SSL
 Enabled (HTTPS)

1) HTTP Connect

2) Server Certificate

3) Client CertificateTwo-way SSL
Handshake

4) ALL Client Requests
Include Credentials

Product Overv i ew

Programming Security for Web Services 1-9

supports Secure Sockets Layer (SSL) communication so all traffic between the web servers and
the SSM is encrypted.

Figure 2-6 Typical Web Services Deployment Model

Usage Model
Once the Web Services client has established an SSL connection with the Web Services SSM, it
can issue requests on behalf of users for access to the web resources protected by the Web
Services SSM (see Figure 2-7).

User A uses web servers with web services client plug-ins to access the Registry Service
and locate specific instances of SSMs, and a specific security service on that SSM instance.
The Web servers use that information to make requests for access to application resources
on behalf of users. BEA provides two web server products that have built-in web services
clients: the IIS Web Server SSM and the Apache Web Server SSM.

User B uses a custom SSM client, which has a user-written web services client, to access
the Registry Service and in turn the specific SSM security service. Because communication
between the custom SSM client and the Web Services SSMs is placed on the network, the
custom SSM clients can be located any where on the network. Their location is not
restricted to the local machine.

The Admin user uses the administration console to the distribute the initial security
configuration and all updates over the network. If the Administration Server is
disconnected from the Web Services SSMs, the SSMs continue to function.

Web
Server 1

Web
Services
SSM 1

Clients
Web Tier

Application Tier

Web
Browser

1

Web
Browser

n

Web
Server 1

DMZ

Web
Services
SSM n

(Web Server Farm)
Firewall Firewall

In t roduct ion to the Web Serv i ces Secur i t y Se rv ice Module

1-10 Programming Security for Web Services

Figure 2-7 Usage Model

The interaction between the client and the Web Services SSM is as follows (see Figure 2-7):

1. The client issues a user request that includes the following:

– A user identity credential (a username/password pair, a signed SAML 1.1 assertion, or
ALES cookie)

– The resource to which the user wants access and the action to be performed

– The Authentication Service

2. The client queries the local Registry Service to retrieve the fully qualified URL for the
endpoint of the authentication service. If the authentication service exists on the local
machine, the SSM returns the URL to the client. If it does not exist, the request fails. If the
Authentication Service is omitted from the client request, the URL for the default
authentication service on the local machine is returned.

3. The web services client calls the Authentication Service, uses the user credentials to
authenticate the user. If authentication succeeds, the service returns an identity assertion token
that is an internal representation of the user’s identity. If the authentication fails, the service
returns an AuthenticationFaliure SOAP Fault.

4. The client queries the local Registry Service to retrieve the fully qualified URL for the
endpoint of the Authorization Service.

Web Services
Client Plug-in

Custom SSM
Client

SCM

Servlet Container

Admin
Console

User A

User B

Admin

HTTP

Registry
Service

Security
Framework

Security
Providers

Security
Services

ATN

ATZ

RM

CM

AUD

Web Services SSM
Web Server

Product Featu res

Programming Security for Web Services 1-11

5. The Authorization Service and the associated Role Mapping Service determine whether the
user has been granted the privileges required to access to the specified resource and perform
the requested action. The service answers the question "Is this user allowed to perform the
particular action on specified resource?" To make the access decision, the service compares
the roles granted to the user to the policy written to protect the requested resource. If none of
the user’s roles match the roles allowed to access the requested resource, or if the resource
does not have any policy to protect it, access is denied.

6. If access is allowed, the user is granted access to the resource and the request is serviced.

Product Features
The Web Services Security Service Module (SSM) has the following features:

Standalone Deployment

Each instance of a Web Services SSM is made accessible to clients via a separate SOAP
endpoint with a unique URL. Further, each security service is deployed as a separate
component inside the hosting process, with each service using disparate configuration entry
to identify and initialize itself. Figure 2-8 shows how each Web Services SSM is deployed
and initialized in an environment where multiple Web Services SSMs are deployed.

Figure 2-8 Multiple Web Services SSM Deployments

Credentials Protection

Identity assertions must be signed by a trusted entity. An assertion that is not signed or
signed by an unknown authority is rejected and the processing stopped. The digital
signature is attached to the identity assertion and covers the entire assertion.

Web Services
Client A1

Web Services
Client A2

Security
Providers

Web Services
SSM A

Local
Configuration

A SCM

GetConfig

Init

Authenticate
Servlet Container

In t roduct ion to the Web Serv i ces Secur i t y Se rv ice Module

1-12 Programming Security for Web Services

XML Structures Follow Industry Standards

The XML structures defined by the OASIS WS-Security Standard v1.0 for passing
username/password during client authentication with one-way SSL. See Figure 2-9 for the
general format of the SOAP messages exchanged between the web services client and the
Web Services SSM.

Figure 2-9 SOAP Message Format

Secure Web Services security service APIs

Access to the Web Services SSM security service APIs is restricted to clients that have
been authenticated.

Channel and message protection

In order to protect messages in transit, the Web Services SSM supports a channel security
protocol (SSL 3.0 or TLS 1.0) for all communication that takes place between the SSM
and its clients.

Support for one-way and two-way SSL client connections

The Web Services SSM always authenticates itself to its client using its X.509 site
certificate.

Web Services Client
Credentials

XML
Signature

XML
Encryption

User
Credentials

Method
Parameters

Web Services Method

SOAP Body

WSSE Header

SOAP Header

SOAP Envelope

Web Services SSM

SOAP
Request (SSL)

Response
Parameters

Method Response

SOAP Body

WSSE Header

SOAP Header

SOAP Envelope

XML
Signature

XML
Encryption

SOAP
Response (SSL)

Product Featu res

Programming Security for Web Services 1-13

A client presents its certificate as part of a two-way SSL handshake with the Web Services
SSM servlet container. The client's identity, contained in the SSL certificate, is
subsequently used for client authentication.

Note: For two-way SSL authentication, any certificate authority (CA) used to generate the
client certificate must be manually added to the Web Services SSM peer.jks
keystore.

Automatic restart of security services

The Web Services SSM uses the AquaLogic Enterprise Security process monitoring and
management mechanism to automatically restarted a security service if it is found to be
unresponsive. Upon restart, the service is initialized using the latest configuration and
automatically resumes its normal operation.

Event auditing capabilities

The Web Services SSM relies on the AquaLogic Enterprise Security auditing capabilities
to provide a file-based, audit logging facility with configurable audit log filename. Any
service or request-related failures produce an audit trail. Additionally, the following Web
Service SSM instance lifecycle events produce audit trails:

– Initialization complete, ready to serve requests

– Shutdown initiated

– Restarted after a process crash

Configuration stored locally

The Web Services SSM relies only on the local configuration for its operation. The local
configuration includes all necessary information to start-up Web Services SSM process,
identify its instance, and set up a two-way SSL connection to the local Service Control
Manager (SCM) process.

WSDL 1.1

The Web Services Description Language (WSDL) is an XML-based specification that
describes a web service. A WSDL document describes web service operations, input and
output parameters, and how a client application connects to the web service.

For more information, see http://www.w3.org/TR/wsdl.

In t roduct ion to the Web Serv i ces Secur i t y Se rv ice Module

1-14 Programming Security for Web Services

Programming Security for Web Services 2-1

C H A P T E R 3

Optimizing Web Services Performance
with Caches

You can improve ALES’s authorization performance in Web Services application using one or
more caches. The following caches are available:

authorization caching on the client side

identity caching on the server side

authorization caching on the server side

The client-side authorization cache and the server-side identity cache are described in the
following sections:

“Using the Web Services Client Authorization Cache” on page 3-1

“Using the Web Services SSM Identity Cache” on page 3-7

Using the Web Services Client Authorization Cache
You can use a client-side Authorization cache to allow an application using the Web Services
SSM to take advantage of in-process caching to achieve performance improvements when
making authorization calls.

The Web Services Authorization cache has been implemented as an Axis handler. The handler
implementation allows you to add and remove the Authorization cache without affecting existing
code. The Authorization cache can be configured through a Java API. If you do not use the
configuration API to configure the cache, the default values for the cache will be used.

Opt imiz ing Web Se rv ices Per fo rmance wi th Caches

2-2 Programming Security for Web Services

Installing the Web Services Authorization Cache
The Authorization cache is provided as a separate Java Library (JAR file),
ssmwsClientCache.jar. This JAR file, as well as the cacheclientconfig.wsdd file, must
both be available to your Web Services client application in order for the cache to function. The
ssmwsClientCache.jar is installed by default in:

BEA_HOME/ales30-ssm/webservice-ssm/lib

To enable the cache in your Web Services client application:

1. Add ssmwsClientCache.jar to the classpath of the Web Services client application.

2. Add the following Java option to the Web Service client application’s startup commands:

-Daxis.ClientConfigFile=<file location for cacheclientconfig.wsdd>

As an alternative, you can enable the cache programmatically by setting the Axis properties for
the cacheclientconfig.wsdd at the beginning of the Web Services client program before any
Axis call. For example:

AxisProperties.setProperty("axis.ClientConfigFile",
D:/ssmws/axis/config/cacheclientconfig.wsdd");

Client Configuration File
Listing 3-1 gives an example of the cacheclientconfig.wsdd file.

Listing 3-1 Cache Client WSDD File

<?xml version="1.0" encoding="UTF-8"?>

<deployment name="defaultClientConfig"

xmlns="http://xml.apache.org/axis/wsdd/"

xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

<globalConfiguration>

<parameter name="disablePrettyXML" value="true"/>

<requestFlow>

<handler

type="java:com.bea.security.ssmws.client.CacheRequestHandler"/>

</requestFlow>

<responseFlow>

<handler

Using the Web Se rv ices C l i ent Author i za t i on Cache

Programming Security for Web Services 2-3

type="java:com.bea.security.ssmws.client.CacheResponseHandler"/>

</responseFlow>

</globalConfiguration>

<transport name="http"

pivot="java:org.apache.axis.transport.http.HTTPSender"/>

<transport name="local"

pivot="java:org.apache.axis.transport.local.LocalSender"/>

<transport name="java"

pivot="java:org.apache.axis.transport.java.JavaSender"/>

</deployment>

Third Party Dependencies
The Web Services client Authorization cache requires a third party product, Apache Axis 1.2.1,
which is a Java implementation of SOAP. The following elements of Axis are required:

axis.jar

axis-ant.jar

commons-discovery-0.2.jar

commons-logging-1.0.4.jar

jaxrpc.jar

saaj.jar

wsdl4j-1.5.1.jar

For more information about downloading and using Axis, see the Apache Software Foundation’s
Axis site.

Authorization Cache Operation
The authorization method, isAccessAllowed(), has five parameters:

IdentityAssertion

Resource

Action

Context

Request Credential Type

Opt imiz ing Web Se rv ices Per fo rmance wi th Caches

2-4 Programming Security for Web Services

Direction

The first four parameters and Direction act as the keys in the Authorization cache’s entries. The
keys in the Authorization cache are constructed using the following formula:

Map (key = IdentityAssertion + Resource + Action + Contexts + Direction, value =
Result + ResponseAttributes + Roles)

Note that the context object is actually an array of context record elements. Two arrays are
considered equal if they contain the same elements in the same order. Consequently, two context
objects are considered unequal if the context record elements they consist of were added in a
different order.

If the Request Credential Type parameter is set, the return result may have a new
IdentityAssertion. In this case, the cache will be bypassed, and the cache is updated
accordingly if a new IdentityAssertion is returned.

The value in the cache holds all the contents of the response, including access decision, response
attributes (single values and lists), and roles, if any.

As described in “Config” on page 3-5, the Authorization cache’s behavior is configurable, using
the Config class. The Authorization cache will be updated if one of following criteria is met:

SessionExpirationDuration expires. The expired entry will be removed. The client
will call isAccessAllowed and establish a new session for this IdentityAssertion.
SessionExpirationDuration is a system attribute that you can configure using the Config
class. Set this attribute to a time that is short enough that the policy changes will not affect
the correctness of the caching results.

A new IdentityAssertion is returned when calling isAccessAllowed. The client will
remove all cached evaluation decisions on this IdentityAssertion.

The number of user sessions exceeds the maximum capacity
(Config.sessionEvictionCapacity). A configurable percentage
(Config.sessionEvictionPercentage) of least-recently-used sessions will be removed.

The number of cached decisions exceeds the maximum capacity per user session
(Config.userEvictionCapacity). A configurable percentage
(Config.userEvictionPercentage) of least-recently-used cached values will be
removed.

When the API method CacheManager.flush() is called, the whole cache will be flushed.

There will be only one Authorization cache in any one Web Services client application. The cache
is used only for the authorization call to one Web Services SSM.

Using the Web Se rv ices C l i ent Author i za t i on Cache

Programming Security for Web Services 2-5

Configuring the Client Authorization Cache
In addition to the public API provided by the Web Services SSM (see Web Services Interface in
Programming Security for Web Services), the Web Services Client Authorization Cache provides
a configuration API so that you can customize the Authorization cache implementation. The
following classes are packaged in com.bea.security.ssmws.client:

Config

CacheManager

The optimal values to use in configuring the cache depend on your application’s particular needs
and traffic. The maximum number of entries in the cache is the product of the
SessionEvictionCapacity and the UserEvictionCapacity. Make sure that the maximum
size of the cache does not exceed the amount of memory that you can allocate for the cache. In
production, monitoring the CacheManager’s HitRatio will indicate how effectively the cache is
being used.

Please note that configuration parameters of the server-side authorization cache have no effect on
the client-side authorization cache. These caches are completely independent and do not share
any configuration.

Config
The com.bea.security.ssmws.client.Config class provides these methods for configuring
the Authorization cache:

setSessionExpirationDuration
public void setSessionExpirationDuration(int
sessionExpirationDuration)

Set the duration for which to cache session data, in seconds. Default value is 60.

setSessionEvictionCapacity
public void setSessionEvictionCapacity(int sessionEvictionCapacity)

Set the number of authorization sessions to maintain in the cache. Once the limit is
reached, old sessions are dropped and automatically re-established when needed. Default
value is 1000.

setSessionEvictionPercentage
public void setSessionEvictionPercentage(float
sessionEvictionPercentage)

Opt imiz ing Web Se rv ices Per fo rmance wi th Caches

2-6 Programming Security for Web Services

Set the percentage of authorization sessions to drop when the eviction capacity is reached.
Default value is 10.

setUserEvictionCapacity
public void setUserEvictionCapacity(int UserEvictionCapacity)

Set the maximum number of users who can have sessions in cache simultaneously. Once
exceeded, old cached values are overwritten. Default value is 500.

setUserEvictionPercentage
public void setUserEvictionPercentage(float UserEvictionPercentage)

Set the percentage of users whose cached sessions will be dropped when the eviction
capacity is reached. Default value is 10.

CacheManager
The com.bea.security.ssmws.client.CacheManager class provides these methods for
configuring and operating the Authorization cache:

initialize
public static void initialize(Config config)

Initializes the configuration for the Authorization cache with the given Config object.
This method can be called one time. If any other call occur before this, an implicit
initialization is done. Once initialized, subsequent calls to initialize are ignored.

instance
public CacheManager instance ()

Returns the one global instance of CacheManager.

flush
public void flush()

Flushes all the entries in the cache.

getVersion
public String getVersion ()

Return a version string. Currently, “1.0” will be returned.

getSize
public void getSize()

Return the total number of cache entries at the time of this call.

Using the Web Serv i ces SSM Ident i t y Cache

Programming Security for Web Services 2-7

getHitRatio
public void getHitRatio()

Return the hit ratio at the time of this call.

Using the Web Services SSM Identity Cache
You can improve the performance of Web Services applilcations by enabling and configuring the
Web Services Security Service Module’s server-side identity cache.

Every isAccessAllowed operation called by the client requires a valid identity (subject, roles,
custom profile data, etc). However, the client stores only a token that can be used to create a valid
identity on the server side. Identity creation is a relatively expensive operation that can consume
substantial amount of resources and time. To avoid this overhead, you can configure the Web
Services SSM to cache the identities; thus, when the server gets a request, it will try to find the
identity object in the cache instead of creating a new one.

You configure the Web Services SSM identity cache in the <cache> element of
<INSTANCE_HOME>/apps/ssmws-asi/SAR-INF/config.xml, where <INSTANCE_HOME> is
the installation directory of the Web Services SSM instance. Listing 3-2 shows a fragment from
this configuration file.

Listing 3-2 Configuration for Server-Side Identity Cache

<cache>

<!-- This setting enables/disables server-side identity caching. Values:

true/false. Optional -->

<enabled>true</enabled>

<!-- TTLs for server-side caching of user identities, seconds. Names: any

acceptable credential type. Optional -->

<tokenTTLs>

<SAML.Assertion>300</SAML.Assertion>

<ALESIdentityAssertion>300</ALESIdentityAssertion>

</tokenTTLs>

</cache>

The <cache> element contains two parameters that configure the identity cache:

enabled - specifies whether the identity cache is enabled (default value is true).

Opt imiz ing Web Se rv ices Per fo rmance wi th Caches

2-8 Programming Security for Web Services

tokenTTLs - Time to live in the cache for different credential types. Every nested element
specifies the time to live in seconds for entries in the corresponding identity cache. The
default time to live is 300 seconds. Once the configured time to live has expired, the the
identity object is removed from the cache and a subsequent call will require
re-authentication of the user.

You should configure the identity cache based on your requirements, available hardware,
application usage patterns, etc. However, if the Web Services SSM is used to secure an
application that has a concept of session timeout itself, for example, a web application or a portal
application, then you should set the timeout value of the identity cache to a value similar to the
one that is used in the application. In that case, the identity object will be removed as soon as the
application session has been expired, and, on the other hand, no additional re-authentication will
be required while the session is active.

Programming Security for Web Services 3-1

C H A P T E R 4

Using Failover with a Web Services
Client

AquaLogic Enterprise Security supports the ability of Axis-based Web Services clients to fail
over to another Web Services SSM when the client encounters a connection problem. The
following sections describe this failover functionality:

“Configuring a Web Services Client for Failover” on page 4-1

“FailOverManager API” on page 4-3

Note: The Web Services client failover feature is supported for clients developed with Axis 1.2
or later. For more information, see the Apache Axis site: http://ws.apache.org/axis/ .

Configuring a Web Services Client for Failover
To configure a Web Services client for failover:

1. In the client’s classpath, include /webservice-ssm/lib/ssmwsClientFailover.jar and
Log4j.jar.

2. In the client’s JAVA_OPTIONS, include:

-Daxis.ClientConfigFile=<SSMWS_INSTANCE_HOME>/config/failover-client-co
nfig.wsdd

3. In the client’s code, include failover initialization code similar to the code in Listing 4-1:

Using Fa i love r w i th a Web Se rv i ces C l ient

3-2 Programming Security for Web Services

Listing 4-1 Sample Failover Initialization

// Populate the SSMInstanceList with the list of WS SSM instances. For

example:

ArrayList SSMInstanceList = new ArrayList();

SSMInstanceList.add("http://12.10.1.4:9090");

SSMInstanceList.add("http://12.10.1.2:9090");

// Set the Http Connection Time Out and number of retry attempts

// that will be made on the SSM instance

int noOfRetry = 3;

int httpConTimeOut = 60000; // The time is in milliseconds.

FailOverManager.getInstance(SSMInstanceList, noOfRetry,httpConTimeOut);

// <<<<<<< Original Client Code >>>>>>

ServiceRegistryBindingStub serviceRegistry =

new ServiceRegistryBindingStub(new java.net.URL(serviceRegistryURL),null);

SsmIdType ssmIdType =

new SsmIdType(ServiceTypeEnum.ALES_AUTHENTICATION, ssmId);

ComplexAnyURI authURL;

authURL = serviceRegistry.locateService(ssmIdType);

System.out.println("Authentication URL: " +

authURL.getLocateServiceResponse().toString());

/**

* Authentication Code

*/

// get the URL for the Authentication Service should be

// http://<hostname>:<webservice-ssm-port>/Authentication

authenticationService = new AuthenticationBindingStub(

new java.net.URL(authURL.getLocateServiceResponse().toString()),null);

Fa i lOverManager AP I

Programming Security for Web Services 3-3

Client Configuration File
Listing 4-2 gives an example of the failover-client-config.wsdd file.

Listing 4-2 Cache Client WSDD File

<?xml version="1.0" encoding="UTF-8"?>

<deployment name="defaultClientConfig"

xmlns="http://xml.apache.org/axis/wsdd/"

xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

<globalConfiguration>

<parameter name="disablePrettyXML" value="true"/>

<parameter name="enableNamespacePrefixOptimization" value="false"/>

</globalConfiguration>

<transport name="http"

pivot="java:com.bea.security.ssmws.client.failover.FailOverHTTPSender"/>

<transport name="local"

pivot="java:org.apache.axis.transport.local.LocalSender"/>

<transport name="java"

pivot="java:org.apache.axis.transport.java.JavaSender"/>

</deployment>

FailOverManager API
The FailOverManager class stores and manages the failover endpoints for Web Services clients.
This class is a singleton; it stores a list of endpoints and the values for the number of retries on
connection failure and HTTP connection timeout. It includes the following public methods:

getInstance()
Returns an instance of the FailOverManager. This method makes sure that there is only one
instance of this class in the JVM. This method is invoked to get an instance of the
FailOverManager configured with its default properties. The FailOverManager has the
following configuration properties:

Using Fa i love r w i th a Web Se rv i ces C l ient

3-4 Programming Security for Web Services

failOverEndPoints
A list of endpoints; on failover, the Web Services client attempts to connect to the listed
endpoints in the order they are provided. If no endpoinnts are specified, the only
connection URL that will be tried is the first one that is used when setting up a Web
Service call via the BindingStub. Default is empty.

noOfRetries
The number of times each endpoint is tried before failing over to the next endpoint.
Default is 3.

httpConTimeOut
Time, in milliseconds, to wait before trying again to connect to the current endpoint.
Default is 0, indicating immediate retry.

If you need to change any of these values, then use the getInstance(ArrayList
failOverEndPoints,int noOfRetries, int httpConTimeOut) method, which takes these
as arguments.

getInstance(ArrayList failOverEndPoints,int noOfRetries,
int httpConTimeOut)
Returns an instance of the FailOverManager. You can supply values for the failover endpoint
list, number of retries, and HTTP connection timeout as arguments.

setEndPointList (ArrayList endpoints)
Replaces the existing list of failover endpoints with the provided list of endpoints. The
currentEndPoint variable of the FailOverManager points to the first endpoint in the list. On
failover, the Web Services client attempts to connect to the listed endpoints in the order they are
provided. Each endpoint is tried the number of times specified by the noOfRetries property of
the FailOverManager before failing over to the next endpoint. If all the endpoints fail, AXIS
will throw the regular connection exception to the client.

This method is thread-safe; you can call this method during runtime to refresh the list of
endpoints.

getEndPointList()
Returns the list of end points.

Programming Security for Web Services 4-1

C H A P T E R 5

Web Services Interfaces

To develop Web Services clients, you use the Web Services Security Service Module (SSM)
application programming interfaces (APIs) developed by BEA Systems.

These interfaces are described in the following sections:

“Registry Service Interface” on page 5-1

“Methods Common to All Web Services Interfaces” on page 5-4

“Authentication Service Interface” on page 5-4

“Authorization Service Interface” on page 5-11

“Authorization Via XACML” on page 5-16

“Auditing Service Interface” on page 5-34

“Role Mapping Service Interface” on page 5-36

“Credential Mapping Service Interface” on page 5-39

Registry Service Interface
To map security service type and SSM configuration and SOAP endpoints, each Web Services
SSM process has its own separate Registry Service. The address of the Registry Service should
be known to the web services client from its configuration. This service maps the SSM
Configuration ID and the service type to the Web Services SSM and SOAP endpoints for the
security services. The Configuration ID is defined in the default.properties file for the SSM

Web Serv ices In te r faces

4-2 Programming Security for Web Services

instance. The Registry Service makes it possible to distinguish between the supported service
types (auditing, authentication, authorization, credential mapping, and role mapping). Registry
Service operations on a particular machine are limited to the local machine (see Figure 5-1). The
Web Services client learns about the Registry Service from its configuration file.

Figure 5-1 Registry Service Function

The following topics provide or more information on the Registry Service.

“How the Registry Service Works” on page 5-2

“Registry Service Methods” on page 5-3

How the Registry Service Works
The Registry Service works as follows (Figure 5-2):

Web
Services

Client

Registry Service

Security Services

Web Services SSM 1

Registry Service

Security Services

Web Services SSM n

Access
Service

Locate
Service

N
et

w
or

k

Locate
Service

Access
Service

Locate
Service

Access
Service

Regis t r y Se rv ice In te r face

Programming Security for Web Services 4-3

Figure 5-2 How the Registry Service Works

1. If a web services client asks the Registry Service about the existence of a particular security
service type, the Registry Service responds with a true or false answer.

2. If a web services client asks for the URL of a valid security service type for the local host, the
Registry Service returns the fully qualified URL of the endpoint for the requested service type
that is provided by the SSM configuration. The Configuration ID is defined in the
default.properties file.

3. If a web services client asks the registry for a URL for a security service type that has an
invalid security service type for Web Services SSM identified by the Configuration ID, the
Registry Service returns a RegistryFailure SOAP Fault.

Note: The Registry Service does not provide lifecycle management functions for the Web
Services.

For more information on the Registry Service interface and the methods it supports, see
WSDLdocs for Web Services Interfaces.

Registry Service Methods
The Registry Service supports two methods: locateService() and doesServiceExist().
Both methods accept the requested service type of the Web Server SSM or Web Services SSM
that provides the service. The supported service types are: ALES_AUDIT,
ALES_AUTHENTICATION, ALES_AUTHORIZATION, ALES_CREDENTIAL, and ALES_ROLE. The
type for all service types is string.

Web
Services

Client

Registry Service

Authenticate

Security Service
URL

Web Services
SSM Instance 1

Service Type

Servlet Container

Web Services
SSM Instance n

Registry Failure

Web Serv ices In te r faces

4-4 Programming Security for Web Services

For the locateService() method, the Registry Service returns the fully qualified URL for the
endpoint of the requested service. For the doesServiceExist() method, the service returns a
Boolean value (true or false) that indicates whether the service exists and can be requested.

Methods Common to All Web Services Interfaces
The following methods are supported by all Web Services interfaces, except for the Registry
Service interface.

getServiceType()—This method takes an empty request and returns a structure that
contains the service. The Web Services SSM supports these security service types:
ALES_AUDIT, ALES_AUTHENTICATION, ALES_AUTHORIZATION, ALES_CREDENTIAL, and
ALES_ROLE. The type for all service types is string.

getServiceVersion()—This method takes an empty request and returns a structure that
contains the version of the service. The Web Service SSM supports these version types:
MajorVersion (type int), MinorVersion (type int), PatchLevel (type string), and
Version (type long).

isCompatible()—This method accepts service version information and returns
compatibility information. The method accept these values: MajorVersion (type int),
MinorVersion (type int), PatchLevel (type string), and Version (type long). It
returns these compatibility responses: ALES_NOT_COMPATIBLE, ALES_COMPATIBLE,
ALES_COMPATIBLE_DEPRECATED, ALES_COMPATIBLE_UNKNOWN. All compatibility
responses are returned as strings. You use this method to determine whether the version of
the service interface specified in the web services client is compatible with the current
version of the service interface in the instance of the Web Services SSM.

Authentication Service Interface
The Authentication Service provides security functions to an application so as to establish, verify,
and transfer a person or process identity. Thus, the Authentication Service provides two main
security functions: authentication and identity assertion.

The Authentication Service accepts user credentials and/or identity assertion tokens and verifies
that they match the user identity stored in the existing user profile. The following types of identity
assertion tokens are supported:

Username/password

Signed Security Assertion Markup Language (SAML) 1.1 assertions

Authent i cat ion Serv ice In te r face

Programming Security for Web Services 4-5

ALES cookie

The Extensible Markup Language (XML) structures used by the Authentication Service for
transmitting identity assertion tokens and other credential types are defined the WSDL interface.

To ensure secure handling of credentials, all credentials presented to the Web Services Security
Service Module must satisfy the following requirements:

All SAML 1.1 identity assertions must be signed by a trusted entity, as determined by the
SAML IdentityAsserter. The signature must be attached to the identity assertion and cover
the entire assertion. An identity assertion that is not signed or signed by an unknown
authority is rejected and the processing is stopped.

The caller should verify the validity of server credentials prior to invoking the Web
Service. In particular, the caller should verify its validity by examining its expiration date,
certification path, and revocation status.

The Web Services SSM only accepts clear-text passwords. However, the credentials presented
are always be protected by SSL, either one-way or two-way. The Web Services SSM returns
credentials to clients over SSL as well.

The SOAP authentication interface enables the Web Services SSM to return challenges to clients
if they fail to provides the information necessary to complete the authentication process. In such
cases, the client can respond with the requested information. In order to avoid expensive round
trips, however, the web services client should pass in all available credentials information with
the initial SOAP request.

The following topics provide more information on the Authentication Service interface:

“Authentication Process” on page 5-5

“Authentication Service Methods” on page 5-7

Authentication Process
The authentication process is as follows (see Figure 5-3):

Web Serv ices In te r faces

4-6 Programming Security for Web Services

Figure 5-3 Authentication Service Process

1. The web services client connects to the Web Services SSM over HTTP and the Web Services
SSM responds by presenting a digital certificate to prove its identity to the client. The Web
Services SSM authenticates itself to the web services client using its server X.509 certificate.
If the Web Services SSM presents a certificate that is not valid (for instance, the certificate
has expired or has a subject name mismatch), the client should break the connection.

2. The web services client verifies the SSMs digital certificate and submits a certificate signed
by a recognized certificate authority (CA) to the Web Services SSM.

3. The Web Services SSM verifies the clients certificate and establishes an SSL connection.

4. The web services client submits credentials to Web Services SSM to login. Web services
clients present user credentials with each login request. Use credential can be
username/password, a SAML assertion, or an ALES cookie.

5. The Authentication Service verifies the client credentials.

6. If the credentials authenticate, the Authentication Service returns an identity assertion token
to the web services client.

7. If the credentials do not authenticate, the Authentication Service submits the credentials for
checking. The Authentication Service does one of two things:

– Validates the user credentials, grants the login, and returns a success message to the
Web Services SSM.

– Invalidates the user credentials, blocks the login, and returns a failure message to the
Web Services SSM.

Web
Services

Client

Web Services
SSM

Authentication Service

Identity Credentials

Authentication
Failure

Identity Assertion
Token

Authentication
Challenge

Context Requests

Authent i cat ion Serv ice In te r face

Programming Security for Web Services 4-7

8. If an authentication decision cannot be made with the parameters included in the initial client
request, the request fails.

9. If authentication is successful, the Web Services SSM returns the default identity assertion
token representing the user. The type of the default identify assertion token is configurable. If
the type is not specified, SAML assertions are used.

10. If authentication fails, the Web Services SSM returns an AuthenticationFailure SOAP
Fault to the caller.

For more information on the Authentication Service Interface and the methods it supports, see
WSDLdocs for Web Services Interfaces.

Authentication Service Methods
To support authentication functions the authentication provides the following methods:

“authenticate() Method” on page 5-7

“assertIdentity() Method” on page 5-8

“isAssertionTokenSupported() Method” on page 5-9

“validateIdentity() Method” on page 5-10

authenticate() Method
This method accepts any credential type supported by the authentication provider or a response
to an earlier authentication challenge, and, optionally, the type of requested identity assertion that
represents the identity and application context of the authenticated user. In response, it returns
either the requested identity assertion token and status information or an authentication challenge.

Note: In addition to the identity assertion types, the Web Services SSM supports user
credentials in form of usernames with passwords.

Table 5-1 describes the authenticate() method parameters.

Table 5-1 authenticate() Method Parameters

 Parameter Description Supported Values/Types

Input Parameters

Identity
Credential

Specifies the identity credential that is to
be used to authenticate the caller.

ssm:IdentityCredential
Type

Web Serv ices In te r faces

4-8 Programming Security for Web Services

assertIdentity() Method
This method accepts any supported identity assertion type or a response to an earlier
authentication challenge, and, optionally, the type of requested identity assertion that represents
the identity and application context of the authenticated user. In response, it returns either the
requested identity assertion token and status information or an authentication challenge.

Table 5-2 describes the assertIdentity() method parameters.

RquestCredential
Type

Specifies the identity credential type. ssm:CredentialTypeType

AppContext Specifies the application context in
which authentication is being requested.

ssm:"ContextType"

Where ssm:ContextType can
be one of the following:
StringValue/string,
BoolValue/boolean,
DateTimeValue/dateTime,
TimeValue/time,
IntValue/integer
IpValue/ssm:IpType

Return Parameters

IdentityAssertion Returns the identity assertion token. type="ssm:Identity
AssertionType"

Challenge Returns an authentication challenge to the
caller.

type="ssm:ChallengeType"

StatusInfo Returns status information. type="xsd:string"

Table 5-1 authenticate() Method Parameters (Continued)

 Parameter Description Supported Values/Types

Authent i cat ion Serv ice In te r face

Programming Security for Web Services 4-9

isAssertionTokenSupported() Method
This method accepts an identity assertion credential type that represents the authenticated user’s
identity. It returns a Boolean value (true or false) to indicate whether this token type is
supported by this instance of the Web Services SSM.

Table 5-3 describes the isAssertionTokenSupported() method parameters.

Table 5-2 assertIdentity() Method Parameters

 Parameter Description Supported Values/Types

Input Parameters

IdentityAssertion An identity assertion token that
represents the authenticated
identity of the user.

type="ssm:IdentityAssertion
Type"

Requested
CredentialType

Specifies the type of credential
being submitted for
authentication.

 type="ssm:CredentialTypeType"

AppContext Specifies the application context
in which authentication is being
requested.

ssm:ContextType

Where ssm:ContextType can be one
of the following:
StringValue/string,
BoolValue/boolean,
DateTimeValue/dateTime,
TimeValue/time,
IntValue/integer
IpValue/ssm:IpType

Return Parameters

IdentityAssertion Returns the identity assertion token. An acceptable user's identity assertion
token.
type="ssm:Identity
AssertionType"

Challenge Returns an authentication challenge
to the caller.

type="ssm:ChallengeType"

StatusInfo Returns status information. type="xsd:string"

Web Serv ices In te r faces

4-10 Programming Security for Web Services

validateIdentity() Method
This method accepts any supported identity assertion type that represents the identity of the
authenticated user. It returns a structure with a Boolean value (true or false) that indicates
whether the token is valid.

Table 5-4 describes the validateIdentity() method parameter.

Table 5-3 isAssertionTokenSupported() Method Parameters

 Parameter Description Supported Values/Types

Input Parameter

Assertion
CredentialType

Specifies the identity assertion
credential type. The type specified
can be any type supported by the
ALES Credential Mapping
provider. The Authentication
Service may also return an
authentication challenge to the
caller requesting other assertion
token types. If the caller fails to
specify an assertion token type
supported by the Authentication
Service even after challenges, the
Authentication Service returns
CredentialMappingFailure to
the caller.

AssertionCredentialType

type="ssm:CredentialTypeType"

Return Parameter

isAssertionToken
SupportedResponse

Specifies whether the assertion
token is supported.

true/false

type="xsd:boolean"

Author i zat ion Se rv ice In te r face

Programming Security for Web Services 4-11

Authorization Service Interface
The Authorization Service is a service that allows an application to determine if a specific identity
is permitted to access a specific resource. This decision may then be enforced in the application
directly at the policy enforcement point.

The Authorization Service is primarily based on a single method: isAccessAllowed(). This
method accepts a supported type of user credential or an identity token, a runtime resource, and
a runtime action. Optionally, this method can accept the type of the requested identity assertion
token that represents the identity of the authenticated user, the application context, and direction
parameters. The isAccessAllowed() method requires that a valid, authenticated identity or a
null identity token (representing an anonymous identity) be present when requesting an access
decision. The following topics provide more information on the Authorization Service.

“Authorization Process” on page 5-11

“Authorization Service Methods” on page 5-13

Authorization Process
The authorization process is as follows (see Figure 5-4):

Table 5-4 validateIdentity() Method Parameters

 Parameter Description Supported Values/Types

Input Parameter

IdentityAssertion An identity assertion token that
represents the authenticated identity of
the user.

IdentityAssertion

type="ssm:Identity
AssertionType"

Return Parameter

validateIdentity
Response

Specifies whether the identity is valid. true/false

type="xsd:boolean"

Web Serv ices In te r faces

4-12 Programming Security for Web Services

Figure 5-4 Authorization and Role Mapping Process

1. The authorization process begins when the web services client calls the Web Services SSM to
answer the question "Is this user allowed to perform this particular action on the specified
resource?" Identity assertion token types supported include ALES cookies and signed SAML
1.1 assertions.

2. If the token matches a credential in the cache, the SSM sets the user identity to the internal
identity representation, which includes the user identity and the list of roles the user has been
granted.

3. If the token does not match any of the credentials in the cache, the SSM calls the
Authorization Service and the Role Mapping Service to determine whether the user is
authorized to access resources and to get the list of roles the user has been granted. If the user
is authorized, the user identity is set to the internal identity representation, which includes the
user identity and the list of roles the user has been granted.

4. The Authorization Service then compares the user identity to the resource security policy to
determine whether the user is in a role that has been granted the access privilege that is
necessary to perform the requested action on the particular resource.

5. If the authorization process fails due to parameter-related problems, an
AuthorizationFailure SOAP Fault is returned to the caller.

6. In the absence of an error, the authorization decision that is returned to the web services client
contains a clear and unambiguous true or false statement that allows or disallows access to the
resource in question. A negative authorization decision is a valid result and does not result in
a SOAP Fault.

Web
Services

Client Authorization
Service

Identity Assertion
Token

Authorization
Failure

Authorization
Decision

User Roles

Context Requests

Identity Assertion
Token

Role Mapping
ServiceUser Roles

Identity Assertion
Token

Context Requests

Web Services SSM

Author i zat ion Se rv ice In te r face

Programming Security for Web Services 4-13

For more information about the Authorization Service interface, see the WSDLdocs for Web
Services Interfaces.

Authorization Service Methods
The Authorization Service supports the following methods:

“isAccessAllowed()” on page 5-13

“isAuthenticationRequired() Method” on page 5-15

isAccessAllowed()
This method accepts a supported type of an identity assertion token and runtime resource and
action structures. Optionally, it can accept the requested identity assertion credential type,
application context, and authorization direction parameters. In response, this method returns the
authorization decision and authorization data, or, if required by the authorization provider,
additional context requests.

Table 5-5 describes the isAccessAllowed() method parameters.

Table 5-5 isAccessAllowed() Method Parameters

 Parameter Description Supported Values/Types

Input Parameters

IdentityAssertion An identity assertion token that
represents the authenticated identity of
the user. The token type must be supported
by the ALES Credential Mapping provider;
otherwise, the service returns
CredentialMappingFailure to the
caller.

IdentityAssertion/
ssm:IdentityAssertionType

RuntimeResource Specifies the runtime resource that the
caller is requesting.

ResourceString,
AuthorityName

type="ssm:Runtime
ResourceType"

Web Serv ices In te r faces

4-14 Programming Security for Web Services

RuntimeAction Specifies the runtime action that the
caller is requesting.

ActionString,
AuthorityName

type="ssm:Runtime
ActionType"

Request
CredentialType

Specifies the identity assertion
credential type. The type specified can
be any type supported by the ALES
Credential Mapping provider. The
Authentication Service may also return
an authentication challenge to the
caller requesting other assertion token
types. If the caller fails to specify an
assertion token type supported by the
Authentication Service even after
challenges, the Authentication Service
returns CredentialMappingFailure
to the caller.

AssertionCredentialType/
ssm:CredentialTypeType

AppContext Specifies the application context in
which access to the resource is being
requested.

ssm:"ContextRecordType"

Where
ssm:ContextRecordType is one
of the following:
StringValue/string,
BoolValue/boolean,
DateTimeValue/dateTime,
TimeValue/time,
IntValue/integer
IpValue/ssm:IpType

AtzDirection Specifies authorization direction
parameters.

ALES_ONCE, ALES_POST,
ALES_PRIOR

type="ssm:AtzDirectionEnum"

Return Parameters

isAccessAllowed
Response

Indicates whether access is allowed. true/false

type="xsd:boolean"

Table 5-5 isAccessAllowed() Method Parameters (Continued)

 Parameter Description Supported Values/Types

Author i zat ion Se rv ice In te r face

Programming Security for Web Services 4-15

isAuthenticationRequired() Method
The Authorization Service interface also supports the isAuthenticationRequired() method.
This method accepts a runtime resource and a runtime action. It returns a Boolean value (true or
false) that indicates whether authentication is require to access this resource. The web services
client uses this method to test whether privileges are required to access a particular resource.

Table 5-6 describes the isAuthenticationRequired() method parameters.

AtzDecisionData Information about the access decision. type="ssm:AtzDecisionData
Type"

"ContextRequests" Requests additional context if required
by the ASI Authorization provider.

type="ssm:ContextRequestsType"

Table 5-5 isAccessAllowed() Method Parameters (Continued)

 Parameter Description Supported Values/Types

Table 5-6 isAuthenticationRequired() Method Parameters

 Parameter Description Parameter Values/Types

Input Parameters

RuntimeResource Specifies the runtime resource that the
caller is requesting.

ResourceString,
AuthorityName

type="ssm:Runtime
ResourceType"/

RuntimeAction Specifies the runtime action that the
caller is requesting.

ActionString,
AuthorityName

type="ssm:Runtime
ActionType"

Return Parameter

isAuthentication
RequiredResponse

Indicates whether authentication is required. true/false

type="xsd:boolean"

Web Serv ices In te r faces

4-16 Programming Security for Web Services

Authorization Via XACML
This version of AquaLogic Enterprise Security allows external applications to ask authorization
questions using the XACML protocol. This capability is supported only in the Web Services
SSM.

The XACML service is implemented as an extension to the existing Authorization Service in the
Web Service SSM, and uses the same configuration and administration scripts of the Web Service
SSM. The XACML service is silently installed together with the Web Service SSM. The
XACML service is not viewable or configurable through the Administration Console.

Note: The XACML service supports XACML 2.0 only. It does not support a XACML 1.0
context. In addition, the SAML 2.0 profile for XACML 2.0 is not supported in this
release.

Two-Way SSL Recommended
As described in “Client Trust Model” on page 2-7, the Web Services SSM supports both one-way
and two-way SSL (see Figure 2-5). However, the connection between the PEP and the XACML
service should be over two-way SSL.

XACML Service Use Case
This section describes a typical use case for the XACML service.

The following new terms are used in this section: PEP and PDP. The policy enforcement point
(PEP) is the system entity that performs access control by making decision requests and enforcing
authorization decisions. The policy decision point (PDP) is the system entity that evaluates
applicable policy and renders an authorization decision. The XACML service implements a
PDP: it provides a XACML-based Authorization service (inside the Web Service SSM) to your
client PEP.

The basic use case for the XACML service is similar to the following:

1. The PEP receives an access request from some user (subject).

2. The PEP makes sure that the user is authenticated, either by authentication or some form of
identity of assertion.

3. The PEP constructs the XACML context request using the user’s identity assertion, the action
to be performed, the resource the user is requesting, and the environmental values if
applicable.

Autho r i za t i on V ia XACML

Programming Security for Web Services 4-17

4. The PEP sends the request via SOAP to the XACML service (PDP).

5. The XACML service converts the request to a format understood by the AquaLogic
Enterprise Server and calls the Authorization Service’s isAccessAllowed method to authorize
the user.

6. Depending on the authorization result, the XACML service constructs a XACML context
response and returns it to the PEP with status, and obligations if any.

7. The PEP takes actions according to the response.

Sample XACML Client Application is Provided
This version of AquaLogic Enterprise Security includes a simple XACML client (PEP)
application that does authorization to the Web Service SSM using the XACML protocol. The
example demonstrates the following concepts:

Authorization with ALESIdentityAssertion as the subject.

Authorization with extra attributes in the subject and/or environment in XACML context.

Get authorization result, response attributes and roles from the XACML response.

The example is located in
BEA_HOME\ales30-ssm\webservice-ssm\examples\XACMLClient.

Overview of XACML Context
XACML is an OASIS standard language that specifies schemas for authorization policies and for
authorization decision requests and responses. It also specifies how to evaluate policies against
requests to compute a response. In this release, AquaLogic Enterprise Server implements the
authorization process using XACML context. The XACML context is used to convey an
authorization decision request and response.

The XACML standard
(http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf) specifies how
the XACML context should be used for authorization, and the behaviors of PEPs and PDPs.

The XACML context is the protocol used by the PEP to ask the PDP for an authorization
decision. It defines a <xacml-context:Request> element to convey the request and a
<xacml-context:Response> for the response. The request contains four elements for
authorization, including:

Subject

Web Serv ices In te r faces

4-18 Programming Security for Web Services

Action

Resource

Environment

The PEP sends the authorization request to the PDP using a XACML context, which contains the
subject, action, resource, and environment. The PEP is asking the PDP the following question:
“Given such a subject, is it allowed to perform the specified action on the specified resource in
the specified environment?”.

The response contains:

Decision

Status

Obligations

The XACML service takes the XACML request, converts the request to a format understood by
the AquaLogic Enterprise Server, and calls the Java API (specifically, the Authorization
Service’s isAccessAllowed method) to authorize the user.

When a decision has been made, the XACML service wraps the AquaLogic Enterprise Server
returned values into the XACML response. The XACML service returns a SOAP fault if the PEP
sends a malformed request that does not follow the XACML context schema. Otherwise, the
XACML service will always return a decision of “Permit”, “Deny”, “Indeterminate” or
“NotApplicable”.

The PEP then interprets the result and enforces the decision. For the “Permit” decision, the PEP
allows the request, and for the “Deny” decision, the PEP denies the request. For results of
“Indeterminate” or “NotApplicable,” it is up to the PEP to interpret them. For “Permit-biased”
PEP, the access will be allowed; for “Deny-biased” PEP, access will be denied.

Authentication and Valid Token Types
The policy enforcement point (PEP) that sends the authorization request to the XACML service
is responsible for authenticating the user and supplying a valid AquaLogic Enterprise Server
token as the subject.

The following types of identity assertion tokens are supported:

Username/password

Signed Security Assertion Markup Language (SAML) 1.1 assertions

Autho r i za t i on V ia XACML

Programming Security for Web Services 4-19

ALES cookie

The Extensible Markup Language (XML) structures used by the Authentication Service for
transmitting identity assertion tokens and other credential types are defined the WSDL interface.

The XACML service accepts the token supplied by the PEP and tries to assert that token
(assertion) in AquaLogic Enterprise Server.

SOAP Binding of XACML Context
As described in “Overview of XACML Context” on page 5-17, the request contains an
<xacml-context:Request> and the response contains an <xacml-context:Response>
element. These two elements are directly enclosed in the SOAP body.

One, and only one, request or response should be in the SOAP body.

There are currently two defined XACML namespaces. Policies are defined using the identifier
urn:oasis:names:tc:xacml:2.0:policy:schema:os, and request and response contexts
are defined using the identifier urn:oasis:names:tc:xacml:2.0:context:schema:os.

This implementation uses the following identifier to represent the XACML
service:http://security.bea.com/ssmws/ssm-ws-1.0.wsdl.

Listing 5-1 shows a sample SOAP request.

Listing 5-1 Sample Soap Request

POST /XACMLAuthorization HTTP/1.0

Host: pdp-01

Connection: Keep-Alive

Content-Type: application/soap+xml; charset=utf-8

SOAPAction: ssmws:xacml:authorization

<?xml version="1.0"?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body>

 <xacml-context:Request

xmlns:xacml-context="urn:oasis:names:tc:xacml:2.0:context:schema:os">

 <xacml-context:Subject>…</xacml-context:Subject>

Web Serv ices In te r faces

4-20 Programming Security for Web Services

 <xacml-context:Resource>…</xacml-context:Resource>

 <xacml-context:Action>…</xacml-context:Action>

 <xacml-context:Environment>…</xacml-context:Environment>

 </xacml-context:Request>

 </soap:Body>

</soap:Envelope>

If a malformed SOAP request is sent to the server (for example, a non-XML request or an XML
request that does not follow the schema definition), a SOAP fault is returned to the client (PEP).

How the XACML Request Element is Interpreted in
AquaLogic Enterprise Security
The request element defined by the XACML standard
(http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf) is as follows:

<xs:element name="Request" type="xacml-context:RequestType"/>

<xs:complexType name="RequestType">

 <xs:sequence>

 <xs:element ref="xacml-context:Subject" maxOccurs="unbounded"/>

 <xs:element ref="xacml-context:Resource" maxOccurs="unbounded"/>

 <xs:element ref="xacml-context:Action"/>

 <xs:element ref="xacml-context:Environment"/>

 </xs:sequence>

</xs:complexType>

As detailed in the standard, the <Request> element contains <Subject>, <Resource>,
<Action> and <Environment> elements. There may be multiple <Subject> elements and,
under some conditions, multiple <Resource> elements. Each child element contains a sequence
of <xacml-context:Attribute> elements associated with the subject, resource, action, and
environment, respectively.

Autho r i za t i on V ia XACML

Programming Security for Web Services 4-21

The sections that follow describe how the <Subject>, <Resource>, <Action> and
<Environment> elements are interpreted.

Attribute
XACML subject, resource, action, and environment elements usually contain XACML context
attributes, <xacml-context:Attribute>.

The context attributes contain metadata (such as AttributeId, DataType), and one or more
<AttributeValue> element. As described in the XACML standard
(http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf), the schema
of Attribute is as follows:

<xs:element name="Attribute" type="xacml-context:AttributeType"/>

<xs:complexType name="AttributeType">

 <xs:sequence>

 <xs:element ref="xacml-context:AttributeValue"

maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="AttributeId" type="xs:anyURI" use="required"/>

 <xs:attribute name="DataType" type="xs:anyURI" use="required"/>

 <xs:attribute name="Issuer" type="xs:string" use="optional"/>

</xs:complexType>

Different attributes in different elements will have different AttributeId and DataType.

The <AttributeValue>, by definition, can carry anything. It contains any element under any
namespace, as well as any attributes. Any valid XML data can be put in. However, it must be
meaningful for its parent <Attribute>’s AttributeId and DataType.

There can be multiple <AttributeValue> elements in an <Attribute>; however, the XACML
service allows only one of them. If there is more than one, an indeterminate result is returned and
a processing-error status is reported.

An <Attribute> without an <AttributeValue> results in a SOAP fault because it does not
follow the schema.

If there is an Issuer attribute in <Attribute>, it is currently ignored by the XACML service.

Web Serv ices In te r faces

4-22 Programming Security for Web Services

The DataType of the <Attribute> is usually ignored, because the content of the
<AttributeValue> is regarded only as a string type.

Subject
The <Subject> consists of a sequence of <xacml-context:Attribute> elements associated
with the subject.

<xs:element name="Subject" type="xacml-context:SubjectType"/>

<xs:complexType name="SubjectType">

 <xs:sequence>

 <xs:element ref="xacml-context:Attribute" minOccurs="0"

maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="SubjectCategory" type="xs:anyURI"

default="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject"/>

</xs:complexType>

The <Subject> element has an optional attribute, SubjectCategory. This represents the
subject’s role of this request. For example, ‘access-subject’, ‘requesting-machine’,
‘code-base’.

Inside a <Subject>, there could be an <Attribute> with AttributeId of
“urn:oasis:names:tc:xacml:1.0:subject-category”, and the <AttributeValue> of
this <Attribute> also represents the subject category. This is equal to the “SubjectCategory”
attribute of the <Subject>.

For example, the following two <Subject> elements are functionally equal:

<Subject>

 <Attribute

AttributeId="urn:oasis:names:tc:xacml:2.0:subject-category"

DataType="xs:anyURI">

<AttributeValue>urn:oasis:names:tc:xacml:1.0:subject-category:access-subje

ct</AttributeValue>

 </Attribute>

 </Subject>

Autho r i za t i on V ia XACML

Programming Security for Web Services 4-23

<Subject

SubjectCategory=”urn:oasis:names:tc:xacml:1.0:subject-category:access-subj

ect”>

 </Subject>

Multiple subjects
There can be multiple subjects in a <Request> element.

The XACML context specifies that these subjects should be "disjunctive," which is defined in the
standard as a sequence of predicates combined using the logical ‘OR’ operation.

For example, one subject may represents the human user who initiates the request, another may
represent the code that is doing the request. They are specified by subject categories.

The rules of handling multiple subjects are as follows:

If the two subjects have the same subject categories, the elements inside them are treated
as if they are in one <Subject> element.

For one request, there must be at least one <Subject> having the “access-subject”
category, which represents the direct accessing subject. For the <Attribute> elements of
this category, there should be no more than one <Attribute> element with the following
AttributeId, which represents the requester’s identity:
urn:oasis:names:tc:xacml:1.0:subject:subject-id.

The subject-id <Attribute> is described in “The subject id <Attribute>” on page 5-23.

For other <Subject> elements or other <Attribute> elements that are not a subject-id,
they are converted as an AquaLogic Enterprise Security authorization context
(AppContext).

The subject id <Attribute>
The DataType attribute of the subject-id <Attribute> element indicates the subject type. The
type is of “anyURI” type, but in order to be understood, the DataType should be prefixed with the

identifier that represents the XACML service:
http://security.bea.com/ssmws/ssm-ws-1.0.wsdl.

In addition, a fragment should be suffixed after this URL indicating the subject type that could
be asserted in AquaLogic Enterprise Security; that is, the first parameter of the
assertIdentity() method in the Authentication service API.

Web Serv ices In te r faces

4-24 Programming Security for Web Services

For example, if the subject contains ALESIdentityAssertion, it should have the DataType
http://security.bea.com/ssmws/ssm-ws-1.0.wsdl#ALESIdentityAssertion, and the
<AttributeValue> of this <Attribute> is taken as the subject.

However, if a valid <AttributeValue> is provided and correctly recognized by the Web
Service SSM, the DataType may not be checked.

If the <Subject> (which is of ‘access-subject’ category) does not contain an <Attribute> with
“subject-id”, this subject will be considered as an anonymous user. The service will construct an
anonymous identity and pass it to the authorization service.

Also note that this implementation reuses the Web Service SSM’s identity cache for better
performance, as described in “Optimizing Web Services Performance with Caches” on page 3-1.

Mapping Other Subject and Attribute Elements to AquaLogic Enterprise
Security Identity
For other <Subject> elements and <Attribute> elements that are not in the ‘access-subject’
category, or are in the ‘access-subject’ category but without a “subject-id” id, those
<Attribute> elements are converted as authorization context (AppContext) of AquaLogic
Enterprise Security.

If there are multiple <Attribute> elements with the same id, a later one will override the
previous one.

Also, only text values in <AttributeValue> are acceptable; child XML elements are ignored.

The rule for converting an attribute to an AquaLogic Enterprise Security context key-value pair
is as follows:

1. If the AttributeId is a URN (for example, “urn:oasis:names:tc:xacml:1.0:
subject:authn-locality:authentication-method”), the last field of the URN, that is,
the string after the last colon, is taken as the context key, and the AttributeValue is the context
value. For example, if the previous URN has an AttributeValue of “username/password”, the
resulting ALES context will be “authentication-method” : “username/password”.

2. If the AttributeId is a URL (for example,
“http://security.bea.com/ssmws/ssm-ws-1.0.wsdl/schema#Cache-Control”), the fragment
(the string after the ‘#’ character) of the URL is taken as the context key. The example URL
is converted as “Cache-Control”.

Note that this is a XACML extension: the XACML standard does not have this type of
URL as AttributeId, but the PEP could use this method to pass some context to AquaLogic
Enterprise Server system.

Autho r i za t i on V ia XACML

Programming Security for Web Services 4-25

3. If none of the above matches, the full URI is used as the context key. The value is always the
AttributeValue in this Attribute.

Mapping Resources and the AquaLogic Enterprise Security Resource
At least one of the resource attributes should have the following AttributeId:
urn:oasis:names:tc:xacml:2.0:resource:resource-id.

The AttributeValue of this resource attribute should be the resource that can be understood by
AquaLogic Enterprise Security; that is, the resource under the binding point of the SSM. The
example queries the user for the resource name, and suggests a value of "store/book."

The DataType of this attribute should always be the XML schema standard “string” type:
http://www.w3.org/2001/XMLSchema#string.

Other attributes in <Resource>, except for the one associated with the naming authority, are
converted as authorization context attributes for authorization evaluation in AquaLogic
Enterprise Security, using the same rule as <Subject> attributes.

Mapping Actions and the AquaLogic Enterprise Security Action
At least one of the attributes in the <Action> element must have the following AttributeId:
urn:oasis:names:tc:xacml:1.0:action:action-id.

The attribute value of this attribute is the action performed on the resource. For example: GET,
POST. The example queries the user for the action name.

The DataType of this attribute should be the XML schema standard string
http://www.w3.org/2001/XMLSchema#string.

Other attributes in <Action> are converted as context attributes for authorization evaluation in
AquaLogic Enterprise Security, using the same rule as <Subject> attributes.

How the Environment Element is Interpreted in AquaLogic Enterprise
Security
The XACML service converts environment attributes to AquaLogic Enterprise Security
application context. The rule to convert environment elements to AquaLogic Enterprise Security
contexts is the same as for the subject. All attributes in <Environment> elements are converted.

For example, a sample environment element is as follows:

<Environment>

Web Serv ices In te r faces

4-26 Programming Security for Web Services

 <Attribute

AttributeId="http://security.bea.com/ssmws/ssm-ws-1.0.wsdl#DOB"

DataType="http://www.w3.org/2001/XMLSchema#dateTime">

 <AttributeValue>1979-03-29</AttributeValue>

 </Attribute>

 </Environment>

The fragment (the string after the ‘#’ character) of the URL is taken as the context key and the
AttributeValue is the context value, which results in an AquaLogic Enterprise Security context
of DOB:1979-03-29.

Sample Request
Listing 5-2 shows a full sample of a XACML request, without the SOAP envelope.

Listing 5-2 XACML Request

<Request xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os">

 <Subject>

 <Attribute

AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id" DataType="

http://security.bea.com/ssmws/ssm-ws-1.0.wsdl#ALESIdentityAssertion">

 <AttributeValue>

 <ALESIdentityAssertion xmlns=”…”>……</ALESIdentityAssertion>

 </AttributeValue>

 </Attribute>

 </Subject>

 <Resource>

 <Attribute

AttributeId="urn:oasis:names:tc:xacml:2.0:resource:resource-id"

DataType="http://www.w3.org/2001/XMLSchema#string">

 <AttributeValue>/cgi-bin/j_security_check</AttributeValue>

Autho r i za t i on V ia XACML

Programming Security for Web Services 4-27

 </Attribute>

 </Resource>

 <Action>

 <Attribute

AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"

DataType="http://www.w3.org/2001/XMLSchema#string">

 <AttributeValue>POST</AttributeValue>

 </Attribute>

 </Action>

 <Environment/>

</Request>

How the AquaLogic Enterprise Security XACML Response is
Generated
The <Response> element is the root element of a response. It contains one or more <Result>
elements, which contain authorization decision results. The XACML service supports only one
<Result> element.

The <Result> element is defined as follows:

<xs:element name="Result" type="xacml-context:ResultType"/>

<xs:complexType name="ResultType">

 <xs:sequence>

 <xs:element ref="xacml-context:Decision"/>

 <xs:element ref="xacml-context:Status" minOccurs="0"/>

 <xs:element ref="xacml:Obligations" minOccurs="0"/>

 </xs:sequence>

 <xs:attribute name="ResourceId" type="xs:string" use="optional"/>

</xs:complexType>

The <Result> element has a ResourceId attribute that indicates the identifier of the request
resource element. This implementation does not use this value.

Web Serv ices In te r faces

4-28 Programming Security for Web Services

Mapping Decision.
Decision is the evaluation result. It contains a string value of “Permit”, “Deny”, “Indeterminate”,
or “NotApplicable”. “Permit” or “Deny” are typically returned. For example:
<Decision>Permit</Decision>.

If some required attribute is required, “Indeterminate” is returned, with the “missing-attribute”
status.

Mapping Status
The <Status> element is an optional element of <Result>. It contains the following elements:

<StatusCode>

<StatusCode> has an attribute named “Value,” which can be one of the following values:

– urn:oasis:names:tc:xacml:1.0:status:ok

– urn:oasis:names:tc:xacml:1.0:status:missing-attribute

– urn:oasis:names:tc:xacml:1.0:status:syntax-error

– urn:oasis:names:tc:xacml:1.0:status:processing-error

If any exception occurred during the authorization process, processing-error is returned.

If some attribute is required for evaluating the policy, missing-attribute is returned.

Otherwise, “ok” is returned.

“syntax-error” is never returned.

<StatusMessage>(Optional)

<StatusMessage> is simply a string to show the message accompanying the status. If an
exception occurs, the exception will be in the <StatusMessage> for information purpose.

<StatusDetail>(Optional)

<StatusDetail> is an extension point and it can contain anything. This implementation puts
a <MissingAttributeDetail> value in it if the status is “missing-attribute”. In that case, the
AttributeId is the missing attribute key, prefixed with the XACML service namespace
(http://security.bea.com/ssmws/ssm-ws-1.0.wsdl#) and there is no
<AttributeValue> in the <MissingAttributeDetail> element.

Autho r i za t i on V ia XACML

Programming Security for Web Services 4-29

Mapping Obligations
A XACML obligation is an operation specified in a policy or policy set that should be performed
by the PEP in conjunction with the enforcement of an authorization decision.

This implementation places the AquaLogic Enterprise Server evaluation returned values, like
roles or the report_as values, in an obligation. Obligations are used only when the authorization
result is “Permit.”

<xs:element name="Obligations" type="xacml:ObligationsType"/>

 <xs:complexType name="ObligationsType">

 <xs:sequence>

 <xs:element ref="xacml:Obligation" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

<xs:element name="Obligation" type="xacml:ObligationType"/>

 <xs:complexType name="ObligationType">

 <xs:sequence>

 <xs:element ref="xacml:AttributeAssignment" minOccurs="0"

maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="ObligationId" type="xs:anyURI" use="required"/>

 <xs:attribute name="FulfillOn" type="xacml:EffectType"

use="required"/>

 </xs:complexType>

 <xs:element name="AttributeAssignment"

type="xacml:AttributeAssignmentType"/>

 <xs:complexType name="AttributeAssignmentType" mixed="true">

 <xs:complexContent mixed="true">

 <xs:extension base="xacml:AttributeValueType">

Web Serv ices In te r faces

4-30 Programming Security for Web Services

 <xs:attribute name="AttributeId" type="xs:anyURI"

use="required"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

Obligations consist of one or more <Obligation> elements. An <Obligation> has the following
attributes:

FulfillOn: could be “Permit” or “Deny.” This obligation should be fulfilled if the effect
(result) is permit or deny. This implementation always puts “Permit” in this attribute.

ObligationId: the identifier of this obligation. Two types of obligation id are available in
this implementation:

– http://security.bea.com/ssmws/ssm-ws-1.0.wsdl#ResponseAttributes
represents a set of response attributes.

– http://security.bea.com/ssmws/ssm-ws-1.0.wsdl#Roles represents the roles
when performing authorization.

The <Obligation> element has zero or more <AttributeAssignment> elements.
<AttributeAssignment> has an AttributeId and text content. The AttributeId is the returned
attribute key, prefixed with the namespace http://security.bea.com/ssmws/ssm-ws-1.0.wsdl#,
and the content is the attribute value.

For example, the response attribute “currency” : ”USD” is returned as:

<AttributeAssignment

AttributeId="http://security.bea.com/ssmws/ssm-ws-1.0.wsdl#currency"

DataType="http://www.w3.org/2001/XMLSchema#string">USD

</AttributeAssignment>

A role looks as follows:

<AttributeAssignment

AttributeId="http://security.bea.com/ssmws/ssm-ws-1.0.wsdl#role"

DataType="http://www.w3.org/2001/XMLSchema#string">Admin

</AttributeAssignment>

Autho r i za t i on V ia XACML

Programming Security for Web Services 4-31

Sample Response
Listing 5-3 shows a complete sample response, without the SOAP envelope.

Listing 5-3 XACML Response

<?xml version="1.0" encoding="UTF-8"?>

<Response xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os">

 <Result>

 <Decision>Deny</Decision>

 <Status>

 <StatusCode

Value="urn:oasis:names:tc:1.0:status:processing-error"/>

 <StatusMessage>Authentication required</StatusMessage>

 </Status>

 <Obligations>

 <Obligation FulfillOn="Permit"

ObligationId="http://security.bea.com/ssmws/ssm-ws-1.0.wsdl#Roles">

 <AttributeAssignment

DataType="http://www.w3.org/2001/XMLSchema#string"

AttributeId="http://security.bea.com/ssmws/ssm-ws-1.0.wsdl#role">

 Admin

 </AttributeAssignment>

 </Obligation>

 </Obligations>

 </Result>

</Response>

Web Serv ices In te r faces

4-32 Programming Security for Web Services

WSDL Definition of the XACML Service
Listing 5-4 shows the WSDL definition of the XACML Service.

Listing 5-4 The WSDL File for the XACML Service

<?xml version="1.0" encoding="UTF-8"?>

<definitions

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:xacml-context="urn:oasis:names:tc:xacml:2.0:context:schema:os"

 xmlns:ssm="http://security.bea.com/ssmws/ssm-soap-types-1.0.xsd"

 xmlns:tns="http://security.bea.com/ssmws/ssm-ws-1.0.wsdl"

 targetNamespace="http://security.bea.com/ssmws/ssm-ws-1.0.wsdl">

<types>

 <!-- note this policy schema is not a full one. it is stripped for the

XACML runtime only -->

 <xs:import namespace="urn:oasis:names:tc:xacml:2.0:policy:schema:os"

schemaLocation="access_control-xacml-2.0-policy-schema-os.xsd"/>

 <xs:import namespace="urn:oasis:names:tc:xacml:2.0:context:schema:os"

schemaLocation="access_control-xacml-2.0-context-schema-os.xsd"/>

 <!-- for fault types -->

 <xs:import

namespace="http://security.bea.com/ssmws/ssm-soap-types-1.0.xsd"

schemaLocation="ssm-soap-types.xsd"/>

 </types>

<message name="XACMLAtzDecisionRequest">

 <part name="param" element="xacml-context:Request"/>

 </message>

Autho r i za t i on V ia XACML

Programming Security for Web Services 4-33

 <message name="XACMLAtzDecisionResponse">

 <part name="param" element="xacml-context:Response"/>

 </message>

 <message name="XACMLFault">

 <part name="fault" element="ssm:xacmlFailure"/>

 </message>

 <message name="serviceFault">

 <part name="fault" element="ssm:serviceFailure"/>

 </message>

<portType name="XACMLPort">

 <operation name="authorize">

 <input message="tns:XACMLAtzDecisionRequest"/>

 <output message="tns:XACMLAtzDecisionResponse"/>

 <fault name="serviceFault" message="tns:serviceFault" />

 <fault name="xacmlFault" message="tns:XACMLFault"/>

 </operation>

 </portType>

<binding name="XACMLBinding" type="tns:XACMLPort">

 <soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

 <!-- Axis has problem support this wrapped style, use document instead.

-->

 <operation name="authorize">

 <soap:operation soapAction="ssmws:xacml:authorization"

style="document"/>

 <input>

 <soap:body use="literal"/>

 </input>

Web Serv ices In te r faces

4-34 Programming Security for Web Services

 <output>

 <soap:body use="literal"/>

 </output>

 <fault name="serviceFault">

 <soap:fault use="literal"/>

 </fault>

 <fault name="xacmlFault">

 <soap:fault use="literal"/>

 </fault>

 </operation>

 </binding>

<service name="XACMLService">

 <port name="XACMLAuthorization" binding="tns:XACMLBinding">

 <soap:address location="http://localhost/XACMLAuthorization"/>

 </port>

 </service>

</definitions>

Auditing Service Interface
The Auditing Service logs events based on activity related to enterprise security. The Web
Services Security Service Module (SSM) runtime uses the Auditing Service to log appropriate
data when events occur. The Auditing Service is based on an event model. When something of
note occurs, an auditing event is automatically logged. A user or a application that wants
notification when a particular event occurs can derive a new class from the AuditRecord class.

The following topics provide more information on the Auditing Service.

“Auditing Process” on page 5-35

“Auditing Service Method” on page 5-36

Aud i t ing Se rv ice In te r face

Programming Security for Web Services 4-35

Auditing Process
The auditing process is as follows (see Fig):

Figure 5-5 Auditing Process

1. During the auditing process, the Web Services SSM audit logging function supports
automated, centralized logging of audit messages. To capture a particular event for
notification purposes an auditing user can use the recordEvent() method to specify the
name of the audit record to be captured, and, optionally, the identity assertion token of the
auditing user, and the application context.

2. If the auditing provider requires application context that is not included in the
recordEvent() method, the Auditing Service returns requests for additional application
context.

3. If parameter-related audit logging failures occur, including passing in an invalid identity
assertion token for the user, an AuditingFailure SOAP Fault is returned to the caller.

4. If no errors occur during the auditing process, an empty response is returned to the auditing
user as an event notification and the audit event is logged by the auditing provider.

For more information on the Auditing Service interface and the methods it supports, see
WSDLdocs for Web Services Interfaces.

Auditing
User Auditing

Service

Audit
Request

Audit Record

Context Requests

Security
Framework

Identity Assertion
Token

Context
Requests

Web Services SSM

Security
Providers

Auditing
Provider

Audit
Request

Audit
Event

Audit
Event

Auditing
Failure

Web Serv ices In te r faces

4-36 Programming Security for Web Services

Auditing Service Method
The Auditing Service passes the audit event to the Web Services SSM runtime. Based on its
configuration, the SSM runtime routes the event to the proper auditing providers so that it can be
recorded.

The Auditing Service supports a single method, recordEvent(). This method accepts an audit
record, and, optionally, an identity assertion token, representing the auditing user, and an
application context.

Table 5-7 describes the recordEvent() method parameters.

Role Mapping Service Interface
The Role Mapping Service allows an application to extract role information about specific
identities and resources within the context of the application. These roles can then be used for
customizing an interface or for other purposes.

Table 5-7 recordEvent() Method Parameters

 Parameter Description Supported Values/Types

Input Parameters

AuditRecord Specifies the type of the audit record
that encapsulates the logging
information.

type="ssm:AuditRecord
Type"

IdentityAssertion An identity assertion token that
represents the authenticated identity of
the auditing user.

type="ssm:Identity
AssertionType"

AppContext Specifies the application context in
which request for an auditing record is
being made.

ssm:ContextType

Where ssm:ContextType can
be one of the following:
StringValue/string,
BoolValue/boolean,
DateTimeValue/dateTime,
TimeValue/time,
IntValue/integer
IpValue/ssm:IpType

Role Mapping Serv ice In te r face

Programming Security for Web Services 4-37

Note: Do not use roles by themselves for authorization, because many policies, allowing or
disallowing access to a resource, may be written against a role. Use the Authorization
Service to determine actual access rights.

The Role Mapping Service evaluates an interaction of an identity with a resource within an
application context and returns a list of role names associated with the configuration of that
identity. These roles can change with every resource or be static for the identity across all
resources. The roles assigned to an identity are determined by the security policy.

The Web Services SSM is capable of retrieving the roles that a user may have for the given
resource and action combination. The user identity is passed as an identity assertion token,
instead of a Java object. To obtain roles, authenticated users must be authorized to obtain their
roles for the given resource/action combination.

The Role Mapping Service requires that the application pass in a valid identity, a valid resource,
and a valid action. The application context is optional and may be set to null if no context is
passed in.

The following topics provide more information on the Role Mapping Service.

“Role Mapping Process” on page 5-37

“Role Mapping Service Method” on page 5-38

Role Mapping Process
The role mapping process is as follows (see Figure 5-4):

1. During the role mapping process, the Web Services SSM provides a mechanism for optionally
specifying the application context to support role mapping.

2. If parameter-related role mapping failures occur, including passing in an invalid identity
assertion token for the user, a RoleMappingFailure SOAP Fault is returned to the caller.

3. If no errors occur during the role mapping process, a list of zero or more roles, configured in
the policy for the provided user/resource/action combination, is returned to the caller. An
empty list is a valid response and does not result in a SOAP Fault.

For more information on the Role Mapping Service interface and the methods it supports, see
WSDLdocs for the Web Services Interfaces.

Web Serv ices In te r faces

4-38 Programming Security for Web Services

Role Mapping Service Method
The Role Mapping Service interface supports one method, getRoles(). This method gets the
roles for an authenticated user identity in reference to a RuntimeResource, RuntimeAction,
and an optional Context.

The getRoles() method accepts a supported type of an identity token, and, optionally, runtime
resource and action structures, and an application context. It returns either a list of user roles
associated for the identity and a time-to-live parameter for user roles.

Table 5-8 describes the getRoles() method parameters.

Table 5-8 getRoles Method Parameters

 Parameter Description Supported Values/Types

Input Parameters

IdentityAssertion An identity assertion token that
represents the authenticated identity
of the user. The token type must be
supported by the Role Mapping
provider; otherwise, the service returns
RoleMappingFailure to the caller.

IdentityAssertion

type="ssm:IdentityAssertion
Type"

RuntimeResource
resource

Specifies the runtime resource that
the caller is requesting.

ResourceString,
AuthorityName

type="ssm:RuntimeResource
Type"

RuntimeAction
action

Specifies the runtime action that the
caller is requesting.

ActionString,

AuthorityName

type="ssm:Runtime
ActionType"

Credent ia l Mapp ing Serv ice In te r face

Programming Security for Web Services 4-39

Credential Mapping Service Interface
The Credential Mapping Service allows an client application to fetch credentials of certain types
that are associated with a specific identity for a specific resource. These credentials can then be
used on behalf of that identity to execute some privileged function, such as logging into a
database or sending e-mail.

The following topics provide more information on the Credential Mapping Service.

“Credential Mapping Process” on page 5-39

“Credential Mapping Method” on page 5-41

Credential Mapping Process
The credential mapping process is as follows (see Figure 5-6):

AppContext Specifies the application context in
which access to the resource is being
requested.

type="ssm:ContextType"

Where ssm:ContextType can be
one of the following:
StringValue/string,
BoolValue/boolean,
DateTimeValue/dateTime,
TimeValue/time,
IntValue/integer
IpValue/ssm:IpType

Return Parameters

Roles Specifies a list roles granted to the
user.

type="ssm:IdentityRoleType"

RolesTtlAdvice Specifies time to live for user roles. type="xsd:positiveInteger

Table 5-8 getRoles Method Parameters (Continued)

 Parameter Description Supported Values/Types

Web Serv ices In te r faces

4-40 Programming Security for Web Services

Figure 5-6 Credential Mapping Process

1. The client presents a get credentials request to the Web Services SSM. The request includes
a supported type of an identity assertion token and a list of requested credential types.
Optionally, the request can include a runtime resource, runtime action, and an application
context.

2. In response, the Web Services SSM returns a list of requested user credentials and identity
assertion tokens or, if required by the Credential Mapping provider, additional context
requests.

3. The Web Services SSM returns the following types of credentials in response to the client’s
request:

– Username/password pairs

– Signed SAML 1.1 assertions

– ALES cookies

4. If parameter-related credential mapping failures occur, the Web Service returns a
CredentialMappingFailure SOAP Fault to the caller.

5. If no errors occur during the credential mapping process, the Web Services SSM returns a list
of zero or more credentials that are configured in the security policy for the specified
user/resource/action combination. An empty list is a valid response and does not result in a
SOAP Fault. Also, if some of the requested credential types are not available for specified
user/resource/action combination, a SOAP Fault does not result.

Web
Services

Client

Identity Assertion
Token

Web Services
SSM

Credential
Mapping
Service

Requested User
Credentials

Context Requests

Requested
Credential Types

Identity Assertion
Tokens

Credent ia l Mapp ing Serv ice In te r face

Programming Security for Web Services 4-41

For more information on the Credential Mapping Service interface and the methods it supports,
see WSDLdocs for Web Services Interfaces.

Credential Mapping Method
The Credential Mapping Service supports one method: getCredentials(). This method
accepts a supported type of an identity assertion token and a list of requested credential types.
Optionally, this method can accept an identity assertion token that represents the identity of a
different user and a runtime resource structure, which includes the requested resource and action
and the application context. In response, the getCredentials() method returns either a list of
requested user credentials, identity assertion tokens, and a list of any missing credential types.

Note: Since password credentials need to be returned in clear text to the caller in order to be
usable for authentication in external systems, you should pay particular attention to
providing channel and message security to protect messages in transit between clients
and the Web Service. At a minimum, you must use a channel security protocol, such as
SSL or TLS, for all communication.

Authenticated users are always authorized to obtain their own credentials for the given
resource/action combination. However, authenticated user cannot requests credentials on behalf
of another user.

Credential mapping process involves issuing new types of credentials to the specified
combination of user, resource, and action. The user identity is passed as an identity assertion
token, instead of a Java object.

Table 5-9 describes the getCredentials() method parameters.

Table 5-9 getCredentials Method Parameters

 Parameter Description Supported Values/Types

Input Parameters

IdentityAssertion An identity assertion token that
represents the authenticated identity
of the user. The type used must be
supported by the ALES Credential
Mapping provider; otherwise, the service
returns CredentialMappingFailure
to the caller.

IdentityAssertion

ssm:"IdentityAssertion
Type"

Web Serv ices In te r faces

4-42 Programming Security for Web Services

Requested
CredentialTypes

Specifies a list of the types of
credentials being requested. The Web
Services SSM supports the following
types of credentials:
• Username/password pairs
• Signed SAML 1.1 assertions
• ALES proprietary cookie

type="ssm:CredentialTypes
Type"

Any non-empty string consisting
of any number of alphanumeric
characters and these separators:
period (“.”), comma (“,”), and
underscore (“_”).

RuntimeResource Specifies the runtime resource that the
caller is requesting.

ResourceString,
AuthorityName

type="ssm:RuntimeResource
Type"

RuntimeAction Specifies the runtime action that the
caller is requesting.

ActionString, AuthorityName

type="ssm:Runtime
ActionType"

AppContext Specifies the application context in
which access to the resource is being
requested. Specified as a name/value
pair.

ssm:"ContextType"

Where ssm:ContextType can be
one of the following:
StringValue/string,
BoolValue/boolean,
DateTimeValue/dateTime,
TimeValue/time,
IntValue/integer
IpValue/ssm:IpType

Return Parameters

MissingTypes List of missing credential types. type="xsd:string"

Identity
Credential

List of user credentials. type="ssm:IdentityCredentialType"

IdentityAssertion Identity assertion tokens that represent
the authenticated identity of the user.

IdentityAssertion

type="ssm:IdentityAssertionType"

Table 5-9 getCredentials Method Parameters (Continued)

 Parameter Description Supported Values/Types

Credent ia l Mapp ing Serv ice In te r face

Programming Security for Web Services 4-43

Web Serv ices In te r faces

4-44 Programming Security for Web Services

