
BEATuxedo ®

Using CORBA
Transactions

Version 10.0
Document Released: September 28, 2007

Using CORBA Transactions iii

Contents

1. Introducing Transactions
Overview of Transactions in BEA Tuxedo CORBA Applications. 1-2

ACID Properties of Transactions . 1-2

Resource Manager . 1-2

Supported Programming Model. 1-3

Supported API Model . 1-3

Support for Business Transactions. 1-3

Distributed Transactions and the Two-Phase Commit Protocol 1-4

When to Use Transactions . 1-4

How to Use Transactions in BEA Tuxedo CORBA Applications 1-5

How to Use Transactions When Using the BEA Bootstrapping Mechanism 1-6

How to Use Transactions When Using the INS Bootstrapping Mechanism 1-7

Writing a Transactions Sample Application . 1-8

Workflow for the Transactions Sample Application . 1-8

Development Steps . 1-10

2. Transaction Service
About the Transaction Service . 2-2

Capabilities and Limitations . 2-2

Lightweight Clients with Delegated Commit . 2-2

Support for Third-Party Clients Using INS . 2-3

Multithreaded Transaction Client Support . 2-3

iv Using CORBA Transactions

Transaction Propagation (CORBA Only) . 2-3

Transaction Integrity . 2-4

Transaction Termination . 2-4

Flat Transactions . 2-4

Interoperability Between CORBA Remote Clients and the BEA Tuxedo Domain 2-4

Intradomain and Interdomain Interoperability . 2-5

Network Interoperability . 2-5

Relationship of the Transaction Service to Transaction Processing 2-5

Process Failure . 2-6

General Constraints . 2-6

Transaction Service in CORBA Applications . 2-7

Getting Initial References to the TransactionCurrent Object Using the Bootstrap
Object. 2-7

Getting Initial References to the TransactionFactory Object Using INS 2-8

CORBA Transaction Service API. 2-9

CORBA Transaction Service API Extensions . 2-21

Notes on Using Transactions in BEA Tuxedo CORBA Applications 2-23

UserTransaction API . 2-25

UserTransaction Methods . 2-25

Exceptions Thrown by UserTransaction Methods . 2-27

3. Transactions in CORBA Server Applications
Integrating Transactions in a BEA Tuxedo Client and Server Application 3-2

Transaction Support in CORBA Applications . 3-2

Making an Object Automatically Transactional . 3-3

Enabling an Object to Participate in a Transaction . 3-4

Preventing an Object from Being Invoked While a Transaction Is Scoped 3-5

Excluding an Object from an Ongoing Transaction . 3-6

Using CORBA Transactions v

Assigning Policies . 3-6

Using an XA Resource Manager . 3-6

Opening an XA Resource Manager. 3-7

Closing an XA Resource Manager . 3-8

Transactions and Object State Management . 3-8

Delegating Object State Management to an XA Resource Manager 3-8

Waiting Until Transaction Work Is Complete Before Writing to the Database. . . . 3-8

User-defined Exceptions . 3-10

About User-defined Exceptions. 3-10

Defining the Exception . 3-11

Throwing the Exception . 3-11

How the Transactions University Sample Application Works. 3-12

About the Transactions University Sample Application . 3-12

Transactional Model Used by the Transactions University Sample Application . 3-13

Object State Considerations for the University Server Application 3-14

Configuration Requirements for the Transactions Sample Application 3-15

4. Transactions in CORBA Client Applications
Overview of BEA Tuxedo CORBA Transactions . 4-2

Summary of the Development Process for Transactions . 4-2

Step 1: Using the Bootstrap Object to Obtain the TransactionCurrent Object. 4-2

C++ Example. 4-3

JStep 2: Using the TransactionCurrent Methods . 4-3

C++ Example. 4-5

5. Administering Transactions
Modifying the UBBCONFIG File to Accommodate Transactions 5-2

Summary of Steps . 5-2

vi Using CORBA Transactions

Step 1: Specify Application-wide Transactions in the RESOURCES Section . . . 5-2

Step 2: Create a Transaction Log (TLOG) . 5-3

Step 3: Define Each Resource Manager (RM) and the Transaction Manager Server in
the GROUPS Section . 5-5

Step 4: Enable an Interface to Begin a Transaction . 5-7

Modifying the Domain Configuration File to Support Transactions (BEA Tuxedo CORBA
Servers) . 5-10

Characteristics of the DMTLOGDEV, DMTLOGNAME, DMTLOGSIZE,
MAXRDTRAN, and MAXTRAN Parameters . 5-10

Characteristics of the AUTOTRAN and TRANTIME Parameters (BEA Tuxedo
CORBA and ATMI Servers) . 5-11

Sample Distributed Application Using Transactions . 5-13

RESOURCES Section. 5-13

MACHINES Section. 5-14

GROUPS and NETWORK Sections. 5-15

SERVERS, SERVICES, and ROUTING Sections . 5-16

Using CORBA Transactions 1-1

C H A P T E R 1

Introducing Transactions

This topic includes the following sections:

Overview of Transactions in BEA Tuxedo CORBA Applications

When to Use Transactions

How to Use Transactions in BEA Tuxedo CORBA Applications

Writing a Transactions Sample Application

Notes: The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported. All BEA Tuxedo CORBA Java
client and BEA Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

1-2 Using CORBA Transactions

Overview of Transactions in BEA Tuxedo CORBA
Applications

This topic includes the following sections:

ACID Properties of Transactions

Resource Manager

Supported Programming Model

Supported API Model

Support for Business Transactions

Distributed Transactions and the Two-Phase Commit Protocol

ACID Properties of Transactions
One of the most fundamental features of the BEA Tuxedo system is transaction management.
Transactions are a means to guarantee that database transactions are completed accurately and
that they take on all the ACID properties (atomicity, consistency, isolation, and durability) of a
high-performance transaction. BEA Tuxedo protects the integrity of your transactions by
providing a complete infrastructure for ensuring that database updates are done accurately, even
across a variety of resource managers (RMs). If any one of the operations fails, the entire set of
operations is rolled back.

Resource Manager
A Resource Manager (RM) is a data repository, such as a database management system or the
BEA Tuxedo system’s Application Queuing Manager, with tools for accessing the data. The BEA
Tuxedo system uses one or more RMs to maintain the state of an application. For example, bank
records in which account balances are maintained are kept in an RM. When the state of the
application changes through a service that allows a customer to withdraw money from an
account, the new balance in the account is recorded in the appropriate RM.

The BEA Tuxedo system helps you manage transactions involving resource managers that
support the XA interface. To coordinate all the operations performed and all the modules affected
by a transaction, the BEA Tuxedo system plays the role of the Transaction Manager (TM).

The TM coordinates global transactions involving system-wide resources. Local resource
managers (RMs) are responsible for individual resources. The Transaction Manager Server

Overv iew o f T ransact ions in BEA Tuxedo CORBA App l i cat ions

Using CORBA Transactions 1-3

(TMS) begins, commits, and aborts transactions involving multiple resources. The application
code uses the normal embedded SQL interface to the RM to perform reads and updates. The TMS
uses the XA interface to the RM to perform the work of a global transaction.

Supported Programming Model
BEA Tuxedo supports the Object Management Group Common Object Request Broker
(CORBA) in C++, in compliance with the The Common Object Request Broker: Architecture and
Specification, Revision 2.4.2, January 2001.

Supported API Model
BEA Tuxedo supports the CORBA services Object Transaction Service (OTS). BEA Tuxedo
provides a C++ interface to the OTS and is based on the OTS. The OTS is accessed through the
org.omg.CosTransactions.Current environmental object. For information about using the
TransactionCurrent environmental object, see the “CORBA Bootstrapping Programming
Reference” in the CORBA Programming Reference.

Note: BEA Tuxedo also supports use of the CORBA Interoperable Naming Service (INS)
bootstrapping mechanism. For information on INS, see the “CORBA Bootstrapping
Programming Reference” in the CORBA Programming Reference.

Support for Business Transactions
OTS provides the following support for your business transactions:

Creates a global transaction identifier when a client application initiates a transaction.

Works with the BEA Tuxedo infrastructure to track objects that are involved in a
transaction and, therefore, need to be coordinated when the transaction is ready to commit.

Notifies the resource managers—which are, most often, databases—when they are
accessed on behalf of a transaction. Resource managers then lock the accessed records
until the end of the transaction.

Orchestrates the two-phase commit when the transaction completes, which ensures that all
the participants in the transaction commit their updates simultaneously. It coordinates the
commit with any databases that are being updated using Open Group’s XA protocol.
Almost all relational databases support this standard.

Executes the rollback procedure when the transaction must be stopped.

1-4 Using CORBA Transactions

Executes a recovery procedure when failures occur. It determines which transactions were
active in the machine at the time of the crash, and then determines whether the transaction
should be rolled back or committed.

Distributed Transactions and the Two-Phase Commit
Protocol
BEA Tuxedo CORBA supports distributed transactions and the two-phase commit protocol for
enterprise applications. A distributed transaction is a transaction that updates multiple resource
managers (such as databases) in a coordinated manner. The two-phase commit protocol (2PC) is
a method of coordinating a single transaction across one or more resource managers. It guarantees
data integrity by ensuring that transactional updates are committed in all of the participating
databases, or are fully rolled back out of all the databases, reverting to the state prior to the start
of the transaction.

When to Use Transactions
Transactions are appropriate in the situations described in the following list. Each situation
describes a transaction model supported by BEA Tuxedo CORBA.

The client application needs to make invocations on several objects, which may involve
write operations to one or more databases. If any one invocation is unsuccessful, any state
that is written (either in memory or, more typically, to a database) must be rolled back.

For example, consider a travel agent application. The client application needs to arrange
for a journey to a distant location; for example, from Strasbourg, France, to Alice Springs,
Australia. Such a journey would inevitably require multiple individual flight reservations.
The client application works by reserving each individual segment of the journey in
sequential order; for example, Strasbourg to Paris, Paris to New York, New York to Los
Angeles. However, if any individual flight reservation cannot be made, the client
application needs a way to cancel all the flight reservations made up to that point.

The client application needs a conversation with an object managed by the server
application, and the client application needs to make multiple invocations on a specific
object instance. The conversation may be characterized by one or more of the following:

– Data is cached in memory or written to a database during or after each successive
invocation.

– Data is written to a database at the end of the conversation.

How to Use T ransact ions in BEA Tuxedo CORBA App l i cat ions

Using CORBA Transactions 1-5

– The client application needs the object to maintain an in-memory context between each
invocation; that is, each successive invocation uses the data that is being maintained in
memory across the conversation.

– At the end of the conversation, the client application needs the ability to cancel all
database write operations that may have occurred during or at the end of the
conversation.

For example, consider an Internet-based online shopping cart application. Users of the
client application browse through an online catalog and make multiple purchase selections.
When the users are done choosing all the items they want to buy, they proceed to check
out and enter their credit card information to make the purchase. If the credit card check
fails, the shopping application needs a way to cancel all the pending purchase selections in
the shopping cart, or roll back any purchase transactions made during the conversation.

Within the scope of a single client invocation on an object, the object performs multiple
edits to data in a database. If one of the edits fails, the object needs a mechanism to roll
back all the edits. (In this situation, the individual database edits are not necessarily
CORBA.)

For example, consider a banking application. The client invokes the transfer operation on a
teller object. The transfer operation requires the teller object to make the following
invocations on the bank database:

– Invoking the debit method on one account.

– Invoking the credit method on another account.

If the credit invocation on the bank database fails, the banking application needs a way to
roll back the previous debit invocation.

How to Use Transactions in BEA Tuxedo CORBA
Applications

Figure 1-1 illustrates transactions in a BEA Tuxedo CORBA application.

1-6 Using CORBA Transactions

Figure 1-1 Transactions in a BEA Tuxedo CORBA Application

The way you use transactions differs depending on whether you use the BEA bootstrapping
mechanism or the Interoperable Naming Service (INS) bootstrapping mechanism.

Note: You should use the BEA bootstrapping mechanism if you are using BEA Tuxedo
CORBA client software. You should use the INS bootstrapping mechanism if you are
using a third-party client.

How to Use Transactions When Using the BEA Bootstrapping
Mechanism
When the BEA proprietary Bootstrapping mechanism is used, you use a basic transaction in the
following way:

1. The client application uses the Bootstrap object to return an object reference to the
TransactionCurrent object for the BEA Tuxedo domain.

2. A client application begins a transaction using the Tobj::TransactionCurrent::begin()
operation, and issues a request to the CORBA interface through the TP Framework. All
operations on the CORBA interface execute within the scope of a transaction.

CORBA Java Client
Application

CORBA C++ Client
Application

ActiveX Client
Application

T

T
CORBA

Get Student Details

Get Course Details

Register for Courses

Browse Courses

 University Server
Application

T Part of a Transaction

University
Database

How to Use T ransact ions in BEA Tuxedo CORBA App l i cat ions

Using CORBA Transactions 1-7

– If a call to any of these operations raises an exception (either explicitly or as a result of
a communication failure), the exception can be caught.

– If all the changes that need to occur have taken place successfully, and the state of the
database (or objects) is consistent, then the transaction should be committed; otherwise,
the transaction should be rolled back.

– The client application commits the current transaction using the
Tobj::TransactionCurrent::commit() operation. This operation ends the
transaction and starts the processing of the operation. The transaction is committed only
if all of the participants in the transaction agree to commit.

3. The Tobj::TransactionCurrent:commit() operation causes the TP Framework to call
the transaction manager to complete the transaction.

4. The transaction manager is responsible for coordinating with the resource managers to update
the database.

How to Use Transactions When Using the INS Bootstrapping
Mechanism
When you use CORBA services Interoperable Naming Service (INS) bootstrapping mechanism
is used, you use a basic transaction in the following way:

1. The client application uses the ORB::resolve_initial_references() operation to get a
FactoryFinder object for the BEA Tuxedo domain.

2. The client application uses the FactoryFinder to get a TransactionFactory.

Note: The TransactionFactory returns objects that adhere to the standard CORBA Services
Transaction Service interfaces instead of the BEA delegated interfaces. This means
that a third-party client can use their ORB’s resolve_initial_references()
function to get the TransactionFactory from a BEA Tuxedo CORBA server and use
stubs generated from standard OMG IDL to act on the instances returned.

3. The client application then uses the create() operation on the TransactionFactory to begin
a transaction and issues a request to the CORBA interface through the TP Framework.

4. From the Control object returned from the create() operation, the client application uses the
get_terminator() operation to get the transaction Terminator interface.

5. The client application then uses the commit() or rollback() operation on the Terminator
interface to end or abort the transaction. The commit() operation causes the TP Framework
to call the transaction manager to complete the transaction.

1-8 Using CORBA Transactions

6. The transaction manager is responsible for coordinating with the resource managers to update
the database.

Note: All operations on the CORBA interface execute within the scope of a transaction.

If a call to any of these operations raises an exception (either explicitly or as a
result of a communication failure), the exception can be caught.

If all the changes that need to occur have taken place successfully, and the state of
the database (or objects) is consistent, then the transaction should be committed;
otherwise, the transaction should be rolled back.

The client application commits the current transaction using the
Terminator::commit() operation. This operation ends the transaction and starts
the processing of the operation. The transaction is committed only if all of the
participants in the transaction agree to commit.

Note: For more information on INS, see the “CORBA Bootstrapping Programming Reference”
in the CORBA Programming Reference.

Writing a Transactions Sample Application
This topic includes the following sections:

Workflow for the Transactions Sample Application

Development Steps

Workflow for the Transactions Sample Application
In the Transactions sample CORBA application, the operation of registering for courses is
executed within the scope of a transaction. The transaction model used in the Transactions sample
application is a combination of the conversational model and the model in which a single client
invocation makes multiple individual operations on a database.

The Transactions sample application works in the following way:

1. Students submit a list of courses for which they want to be registered.

2. For each course in the list, the server application checks whether:

– The course is in the database.

– The student is already registered for a course.

– The student exceeds the maximum number of credits the student can take.

Wri t ing a T ransact ions Sample App l i cat ion

Using CORBA Transactions 1-9

3. One of the following occurs:

– If the course meets all the criteria, the server application registers the student for the
course.

– If the course is not in the database or if the student is already registered for the course,
the server application adds the course to a list of courses for which the student could
not be registered. After processing all the registration requests, the server application
returns the list of courses for which registration failed. The client application can then
choose to either commit the transaction (thereby registering the student for the courses
for which registration request succeeded) or to roll back the transaction (thus, not
registering the student for any of the courses).

– If the student exceeds the maximum number of credits the student can take, the server
application returns a TooManyCredits user exception to the client application. The
client application provides a brief message explaining that the request was rejected. The
client application then rolls back the transaction.

Figure 1-2 illustrates how the Transactions sample application works.

Figure 1-2 Transactions Sample Application

The Transactions sample application shows two ways in which a transaction can be rolled back:

CORBA Java Client
Application

CORBA C++ Client
Application

ActiveX Client
Application

T

T
CORBA
Server

 University Server
Application

T Part of a Transaction

browse_courses()

get_course_details()

register_for_courses()

get_student_details()

University
Database

1-10 Using CORBA Transactions

Nonfatal. If the registration for a course fails because the course is not in the database, or
because the student is already registered for the course, the server application returns the
numbers of those courses to the client application. The decision to roll back the transaction
lies with the user of the client application (and the Transaction client application code rolls
back the transaction automatically in this case).

Fatal. If the registration for a course fails because the student exceeds the maximum
number of credits he or she can take, the server application generates a CORBA exception
and returns it to the client. The decision to roll back the transaction also lies with the client
application.

Thus, the Transactions sample application also shows how to implement user-defined
CORBA exceptions. For example, if the student tries to register for a course that would
exceed the maximum number of courses for which the student can register, the server
application returns the TooManyCredits exception. When the client application receives
this exception, the client application rolls back the transaction automatically.

Note: For information about how transactions are implemented in BEA Tuxedo CORBA
applications, see the Transactions Sample in the BEA Tuxedo online documentation.

Development Steps
This topic describes the following development steps for writing a BEA Tuxedo application that
contains transaction processing code:

Step 1: Writing the OMG IDL

Step 2: Defining Transaction Policies for the Interfaces

Step 3: Writing the Server Application

Step 4: Writing the Client Application

Step 5: Creating a Configuration File

The Transactions sample application is used to demonstrate these development steps. The source
files for the Transactions sample application are located in the \samples\corba\university
directory of the BEA Tuxedo software. For information about building and running the
Transactions sample application, see the Transactions Sample in the BEA Tuxedo online
documentation.

Wri t ing a T ransact ions Sample App l i cat ion

Using CORBA Transactions 1-11

Step 1: Writing the OMG IDL
You need to specify interfaces involved in transactions in Object Management Group (OMG)
Interface Definition Language (IDL) just as you would any other CORBA interface. You must
also specify any user exceptions that might occur from using the interface.

For the Transactions sample application, you would define in OMG IDL the Registrar interface
and the register_for_courses() operation. The register_for_courses() operation has a
parameter, NotRegisteredList, which returns to the client application the list of courses for
which registration failed. If the value of NotRegisteredList is empty, then the client
application commits the transaction. You also need to define the TooManyCredits user
exception.

Listing 1-1 includes the OMG IDL for the Transactions sample application.

Listing 1-1 OMG IDL for the Transactions Sample Application

#pragma prefix "beasys.com"

module UniversityT

{

typedef unsigned long CourseNumber;

typedef sequence<CourseNumber> CourseNumberList;

struct CourseSynopsis

{

CourseNumber course_number;

string title;

};

typedef sequence<CourseSynopsis> CourseSynopsisList;

interface CourseSynopsisEnumerator

{

//Returns a list of length 0 if there are no more entries

CourseSynopsisList get_next_n(

in unsigned long number_to_get, // 0 = return all

out unsigned long number_remaining

);

1-12 Using CORBA Transactions

void destroy();

};

typedef unsigned short Days;

const Days MONDAY = 1;

const Days TUESDAY = 2;

const Days WEDNESDAY = 4;

const Days THURSDAY = 8;

const Days FRIDAY = 16;

}

//Classes restricted to same time block on all scheduled days,

//starting on the hour

struct ClassSchedule

{

Days class_days; // bitmask of days

unsigned short start_hour; // whole hours in military time

unsigned short duration; // minutes

};

struct CourseDetails

{

CourseNumber course_number;

double cost;

unsigned short number_of_credits;

ClassSchedule class_schedule;

unsigned short number_of_seats;

string title;

string professor;

string description;

};

typedef sequence<CourseDetails> CourseDetailsList;

typedef unsigned long StudentId;

struct StudentDetails

{

StudentId student_id;

string name;

CourseDetailsList registered_courses;

};

Wri t ing a T ransact ions Sample App l i cat ion

Using CORBA Transactions 1-13

enum NotRegisteredReason

{

AlreadyRegistered,

NoSuchCourse

};

struct NotRegistered

{

CourseNumber course_number;

NotRegisteredReason not_registered_reason;

};

typedef sequence<NotRegistered> NotRegisteredList;

exception TooManyCredits

{

unsigned short maximum_credits;

};

//The Registrar interface is the main interface that allows

//students to access the database.

interface Registrar

{

CourseSynopsisList

get_courses_synopsis(

in string search_criteria,

 in unsigned long number_to_get,

 out unsigned long number_remaining,

out CourseSynopsisEnumerator rest

);

 CourseDetailsList get_courses_details(in CourseNumberList

 courses);

StudentDetails get_student_details(in StudentId student);

NotRegisteredList register_for_courses(

in StudentId student,

in CourseNumberList courses

) raises (

TooManyCredits

);

};

1-14 Using CORBA Transactions

// The RegistrarFactory interface finds Registrar interfaces.

interface RegistrarFactory

{

Registrar find_registrar(

);

};

Step 2: Defining Transaction Policies for the Interfaces
Transaction policies are used on a per-interface basis. During design, it is decided which
interfaces within a BEA Tuxedo application will handle transactions. Table 1-1 describes the
CORBA transaction policies.

During development, you decide which interfaces will execute in a transaction by assigning
transaction policies. You specify transaction policies in the Implementation Configuration File
(ICF). A template ICF file is created by the genicf command. For more information about the
ICFs, see “Implementation Configuration File (ICF)” in the CORBA Programming Reference.

Table 1-1 CORBA Transaction Policies

Transaction Policy Description

always The interface must always be part of a transaction. If the
interface is not part of a transaction, a transaction will be
automatically started by the TP Framework.

ignore The interface is not transactional. However, requests made to
this interface within a scope of a transaction are allowed. The
AUTOTRAN parameter, specified in the UBBCONFIG file for this
interface, is ignored.

never The interface is not transactional. Objects created for this
interface can never be involved in a transaction. The BEA
Tuxedo system generates an exception
(INVALID_TRANSACTION) if an interface with this policy is
involved in a transaction.

optional The interface may be transactional. Objects can be involved in a
transaction if the request is transactional. This transaction policy
is the default.

Wri t ing a T ransact ions Sample App l i cat ion

Using CORBA Transactions 1-15

In the Transactions sample application, the transaction policy of the Registrar interface is set
to always.

Step 3: Writing the Server Application
When using transactions in server applications, you need to write methods that implement the
interface’s operations. In the Transactions sample application, you would write a method
implementation for the register_for_courses() operation.

If your BEA Tuxedo application uses a database, you need to include in the server application
code that opens and closes an XA resource manager. These operations are included in the
Server::initialize() and Server::release() operations of the Server object. Listing 1-2
shows the portion of the code for the Server object in the Transactions sample application that
opens and closes the XA resource manager.

Note: For a complete example of a CORBA server application that implements transactions,
see the Transactions Sample in the BEA Tuxedo online documentation.

Listing 1-2 C++ Server Object in Transactions Sample Application

CORBA::Boolean Server::initialize(int argc, char* argv[])

{

TRACE_METHOD("Server::initialize");

try {

open_database();

begin_transactional();

register_fact();

return CORBA_TRUE;

}

catch (CORBA::Exception& e) {

LOG(“CORBA exception : “ <<e);

}

catch (SamplesDBException& e) {

LOG(“Can’t connect to database”);

}

catch (...) {

LOG(“Unexpected database error : “ <<e);

}

catch (...) {

1-16 Using CORBA Transactions

LOG(“Unexpected exception”);

}

cleanup();

return CORBA_FALSE;

}

void Server::release()

{

TRACE_METHOD(“Server::release”);

cleanup();

}

static void cleanup()

{

unregister_factory();

end_transactional();

close_database();

}

//Utilities to manage transaction resource manager

CORBA::Boolean s_became_transactional = CORBA_FALSE;

static void begin_transactional()

{

TP::open_xa_rm();

s_became_transactional = CORBA_TRUE;

}

static void end_transactional()

{

if(!s_became_transactional){

return//cleanup not necessary

}

try {

TP::close_xa_rm ();

}

catch (CORBA::Exception& e) {

 LOG(“CORBA Exception : “ << e);

}

catch (...) {

Wri t ing a T ransact ions Sample App l i cat ion

Using CORBA Transactions 1-17

 LOG(“unexpected exception”);

 }

s_became_transactional = CORBA_FALSE;

}

Step 4: Writing the Client Application
The client application needs code that performs the following tasks:

1. Obtains a reference to the TransactionCurrent object from the Bootstrap object.

2. Begins a transaction by invoking the Tobj::TransactionCurrent::begin() operation on
the TransactionCurrent object.

3. Invokes operations on the object. In the Transactions sample application, the client
application invokes the register_for_courses() operation on the Registrar object,
passing a list of courses.

Listing 1-3 shows the portion of the CORBA C++ client applications in the Transactions sample
application that illustrates the development steps for transactions.

Note: The sample code shown in Listing 1-3 illustrates how to use the BEA bootstrapping
mechanism. For information on how to use the INS bootstrapping mechanism, see the
“CORBA Bootstrapping Programming Reference” in the CORBA Programming
Reference.

Listing 1-3 Transactions Code for CORBA C++ Client Applications

CORBA::Object_var var_transaction_current_oref =
 Bootstrap.resolve_initial_references(“TransactionCurrent”);
CosTransactions::Current_var transaction_current_oref=
 CosTransactions::Current::_narrow(var_transaction_current_oref.in());
//Begin the transaction
var_transaction_current_oref->begin();
try {
//Perform the operation inside the transaction
 pointer_Registar_ref->register_for_courses(student_id, course_number_list);
 ...
//If operation executes with no errors, commit the transaction:
 CORBA::Boolean report_heuristics = CORBA_TRUE;
 var_transaction_current_ref->commit(report_heuristics);
 }

1-18 Using CORBA Transactions

catch (...) {
//If the operation has problems executing, rollback the
//transaction. Then throw the original exception again.
//If the rollback fails, ignore the exception and throw the
//original exception again.
try {
 var_transaction_current_ref->rollback();
 }
catch (...) {
 TP::userlog("rollback failed");
 }
throw;
}

Step 5: Creating a Configuration File
You need to add the following information to the configuration file for a transactional BEA
Tuxedo application:

In the GROUPS section:

– In the OPENINFO parameter, include the information needed to open the resource
manager for the database. You obtain this information from the product documentation
for your database. Note that the default version of the
com.beasys.Tobj.Server.initialize method automatically opens the resource
manager.

– In the CLOSEINFO parameter, include the information needed to close the resource
manager for the database. By default, the CLOSEINFO parameter is empty.

– Specify the TMSNAME and TMSCOUNT parameters to associate the XA resource manager
with a specified server group.

In the SERVERS section, define a server group that includes both the server application that
includes the interface and the server application that manages the database. This server
group needs to be specified as transactional.

Include the pathname to the transaction log (TLOG) in the TLOGDEVICE parameter. For more
information about the transaction log, see Chapter 5, “Administering Transactions.”

Listing 1-4 includes the portions of the configuration file that define this information for the
Transactions sample application.

Wri t ing a T ransact ions Sample App l i cat ion

Using CORBA Transactions 1-19

Listing 1-4 Configuration File for Transactions Sample Application

*RESOURCES

IPCKEY 55432

DOMAINID university

MASTER SITE1

MODEL SHM

LDBAL N

SECURITY APP_PW

*MACHINES

BLOTTO

LMID = SITE1

APPDIR = C:\TRANSACTION_SAMPLE

TUXCONFIG=C:\TRANSACTION_SAMPLE\tuxconfig

TLOGDEVICE=C:\APP_DIR\TLOG

TLOGNAME=TLOG

TUXDIR="C:\tuxdir"

MAXWSCLIENTS=10

*GROUPS

SYS_GRP

 LMID = SITE1

 GRPNO = 1

ORA_GRP

 LMID = SITE1

 GRPNO = 2

OPENINFO = "ORACLE_XA:Oracle_XA+SqlNet=ORCL+Acc=P

/scott/tiger+SesTm=100+LogDir=.+MaxCur=5"

CLOSEINFO = ""

TMSNAME = "TMS_ORA"

TMSCOUNT = 2

*SERVERS

DEFAULT:

RESTART = Y

MAXGEN = 5

TMSYSEVT

1-20 Using CORBA Transactions

 SRVGRP = SYS_GRP

 SRVID = 1

TMFFNAME

 SRVGRP = SYS_GRP

 SRVID = 2

 CLOPT = "-A -- -N -M"

TMFFNAME

 SRVGRP = SYS_GRP

 SRVID = 3

 CLOPT = "-A -- -N"

TMFFNAME

 SRVGRP = SYS_GRP

 SRVID = 4

 CLOPT = "-A -- -F"

TMIFRSVR

 SRVGRP = SYS_GRP

 SRVID = 5

UNIVT_SERVER

 SRVGRP = ORA_GRP

 SRVID = 1

 RESTART = N

 ISL

 SRVGRP = SYS_GRP

 SRVID = 6

 CLOPT = -A -- -n //MACHINENAME:2500

*SERVICES

For information about the transaction log and defining parameters in the Configuration file, see
Chapter 5, “Administering Transactions.”

Using CORBA Transactions 2-1

C H A P T E R 2

Transaction Service

This topic includes the following sections:

About the Transaction Service

Capabilities and Limitations

Transaction Service in CORBA Applications

UserTransaction API

This topic provides the information that programmers need to write transactional CORBA
applications for the BEA Tuxedo system. Before you begin, you should read Chapter 1,
“Introducing Transactions.”

Notes: The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported. All BEA Tuxedo CORBA Java
client and BEA Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

2-2 Using CORBA Transactions

About the Transaction Service
BEA Tuxedo provides a Transaction Service that supports transactions in CORBA applications.
The Transaction Service provides an implementation of the CORBA Services Transaction
Service that is described in the OMG CORBA Services Transaction Service Specification. This
specification defines the interfaces for an object service that provides transactional functions.

Capabilities and Limitations
This topic includes the following sections:

Lightweight Clients with Delegated Commit

Support for Third-Party Clients Using INS

Multithreaded Transaction Client Support

Transaction Integrity

Transaction Termination

Flat Transactions

Interoperability Between CORBA Remote Clients and the BEA Tuxedo Domain

Intradomain and Interdomain Interoperability

Network Interoperability

Relationship of the Transaction Service to Transaction Processing

Process Failure

General Constraints

These sections describe the capabilities and limitations of the Transaction Service that supports
CORBA applications.

Lightweight Clients with Delegated Commit
A lightweight client runs on a single-user, unmanaged desktop system that has irregular
availability. Owners may turn their desktop systems off when they are not in use. These
single-user, unmanaged desktop systems should not be required to perform network functions
such as transaction coordination. In particular, unmanaged systems should not be responsible for

Capabi l i t i es and L imi ta t ions

Using CORBA Transactions 2-3

ensuring atomicity, consistency, isolation, and durability (ACID) properties across failures for
transactions involving server resources. BEA Tuxedo CORBA remote clients are lightweight
clients.

The Transaction Service allows lightweight clients to do a delegated commit, which means that
the Transaction Service allows lightweight clients to begin and terminate transactions while the
responsibility for transaction coordination is delegated to a transaction manager running on a
server machine. Client applications do not require a local transaction server. The remote
TransactionCurrent implementation that CORBA clients use delegates the actual responsibility
of transaction coordination to transaction manager on the server.

Support for Third-Party Clients Using INS
In BEA Tuxedo release 8.0 and later, the CORBA Interoperable Naming Service (INS) is
supported. Therefore, clients that implement the CORBA services Object Transaction Service
(OTS) can communicate with BEA Tuxedo CORBA servers and initiate and terminate
transactions. Using INS, any third-party client ORB that can compile the standard OTS IDL files
and produce usable stub files can interact with the BEA Tuxedo CORBA transaction manager.
However, such interaction is limited because the transaction coordination interfaces that would
allow a third-party ORB to become a resource manager are not supported. Only BEA provided
resource managers and/or XA compliant resource managers can participate in the coordination of
a transaction. Further, the BEA provided and XA compliant resource managers can participate in
transaction coordination only if they use the XA protocols—not the CORBA services OTS
protocols—for transaction coordination.

In summary, a third-party client ORB can be used to initiate a transaction, and the client can
request the rollback or commit of the transaction, however, the client ORB cannot participate in
the coordination of the two-phase commit protocol using the CORBA services OTS.

Multithreaded Transaction Client Support
In release 8.0, BEA Tuxedo CORBA supports multithreaded clients for nontransactional clients
and transactional clients.

Transaction Propagation (CORBA Only)
For CORBA applications, the OMG CORBA Services Transaction Service specification states
that a client can choose to propagate a transaction context either implicitly or explicitly. BEA
Tuxedo provides implicit propagation. Explicit propagation is strongly discouraged.

2-4 Using CORBA Transactions

Objects that are related to transaction contexts that are passed around using explicit transaction
propagation should not be mixed with implicit transaction propagation APIs. It should be noted,
however, that explicit propagation does not place any constraints on when transactional methods
can be processed. There is no guarantee that all transactional methods will be completed before
the transaction is committed.

Transaction Integrity
Checked transaction behavior provides transaction integrity by guaranteeing that a commit will
not succeed unless all transactional objects involved in the transaction have completed the
processing of their transactional requests. If implicit transaction propagation is used, the
Transaction Service provides checked transaction behavior that is equivalent to that provided by
the request/response interprocess communication models defined by The Open Group. For
CORBA applications, for example, the Transaction Service performs reply checks, commit
checks, and resume checks, as described in the OMG CORBA Services Transaction Service
Specification.

Unchecked transaction behavior relies completely on the application to provide transaction
integrity. If explicit propagation is used, the Transaction Service does not provide checked
transaction behavior and transaction integrity is not guaranteed.

Transaction Termination
BEA Tuxedo CORBA allows transactions to be terminated only by the client that created the
transaction.

Note: The client may be a server object that requests the services of another object.

Flat Transactions
BEA Tuxedo CORBA implements the flat transaction model. Nested transactions are not
supported.

Interoperability Between CORBA Remote Clients and the
BEA Tuxedo Domain
BEA Tuxedo CORBA supports remote clients invoking methods on server objects in different
BEA Tuxedo domains in the same transaction.

Capabi l i t i es and L imi ta t ions

Using CORBA Transactions 2-5

Remote CORBA clients with multiple connections to the same BEA Tuxedo domain may make
invocations to server objects on these separate connections within the same transaction.

Intradomain and Interdomain Interoperability
BEA Tuxedo CORBA supports native clients invoking methods on server objects in the BEA
Tuxedo domain. In addition, BEA Tuxedo supports server objects invoking methods on other
objects in the same or in different processes within the same BEA Tuxedo domain.

In BEA Tuxedo applications, transactions can span multiple domains as long as factory-based
routing is properly configured across multiple domains. To support transactions across multiple
domains, you must configure the factory_finder.ini file to identify factory objects that are
used in the current (local) domain but that are resident in a different (remote) domain. For more
information, see Using the BEA Tuxedo Domains Component.

Network Interoperability
A client application can have only one active Bootstrap object and TransactionCurrent object
within a single domain. BEA Tuxedo CORBA does not support exporting or importing
transactions to or from remote BEA Tuxedo domains.

However, transactions can encompass multiple domains in a serial fashion. For example, a server
with a transaction active in Domain A can communicate with a server in Domain B within the
context of that same transaction.

Relationship of the Transaction Service to Transaction
Processing
The Transaction Service relates to various transaction processing servers, interfaces, protocols,
and standards in the following ways:

Support for BEA Tuxedo ATMI servers. Servers using the BEA Tuxedo CORBA
Transaction Service can make invocations on other BEA Tuxedo
Application-to-Transaction Monitor Interface (ATMI) server processes in the same
domain. In addition, ATMI services can invoke CORBA objects in both transactional and
nontransactional contexts, both within the same domain and across domains via a BEA
Tuxedo Domains gateway. However, BEA Tuxedo CORBA does not support remote
clients or native clients invoking ATMI services in the BEA Tuxedo domain.

Support for The Open Group XA interface. The Open Group resource managers are
resource managers that can be involved in a distributed transaction by allowing their

2-6 Using CORBA Transactions

two-phase commit protocol to be controlled via The Open Group XA interface. BEA
Tuxedo supports interaction with The Open Group resource managers.

Support for the OSI TP protocol. Open Systems Interconnect Transaction Processing (OSI
TP) is the transactional protocol defined by the International Organization for
Standardization (ISO). BEA Tuxedo CORBA does not support interactions with OSI TP
transactions.

Support for the LU 6.2 protocol. Systems Network Architecture (SNA) LU 6.2 is a
transactional protocol defined by IBM. BEA Tuxedo CORBA does not support interactions
with LU 6.2 transactions.

Support for the ODMG standard. ODMG-93 is a standard defined by the Object Database
Management Group (ODMG) that describes a portable interface to access Object Database
Management Systems. BEA Tuxedo CORBA does not support interactions with ODMG
transactions.

Process Failure
The Transaction Service monitors the participants in a transaction for failures and inactivity. The
BEA Tuxedo system provides management tools for keeping the application running when
failures occur. Because BEA Tuxedo CORBA is built upon the BEA Tuxedo transaction
management system, it inherits the BEA Tuxedo capabilities for keeping applications running.

General Constraints
The following constraints apply to the Transaction Service:

In BEA Tuxedo CORBA, a client or a server object cannot invoke methods on an object
that is infected with (or participating in) another transaction. The method invocation issued
by the client or the server will return an exception.

For CORBA applications, a server application object using transactions from the BEA
Tuxedo CORBA Transaction Service library requires the TP Framework functionality. For
more information about the TP Framework, see “TP Framework” in the CORBA
Programming Reference.

For CORBA applications, a return from the rollback method on the Current object is
asynchronous.

As a result, the objects that were infected by (or participating in) the rolled back
transaction get their states cleared by BEA Tuxedo a little later. Therefore, no other client
can infect these objects with a different transaction until BEA Tuxedo clears the states of

T ransact ion Se rv ice in CORBA App l i cat ions

Using CORBA Transactions 2-7

these objects. This condition exists for a very short amount of time and is typically not
noticeable in a production application. A simple workaround for this race condition is to
try the appropriate operation after a short (typically a 1-second) delay.

In BEA Tuxedo CORBA applications, clients may not make one-way method invocations
within the context of a transaction to server objects having the NEVER, OPTIONAL, or
ALWAYS transaction policies.

No error or exception will be returned to the client because it is a one-way method
invocation. However, the method on the server object will not be executed, and an
appropriate error message will be written to the log. Clients may make one-way method
invocations within the context of a transaction to server objects with the IGNORE
transaction policy. In this case, the method on the server object will be executed, but not in
the context of a transaction. For more information about the transaction policies, see
“Implementation Configuration File (ICF)” in the CORBA Programming Reference.

Transaction Service in CORBA Applications
This topic includes the following sections:

Getting Initial References to the TransactionCurrent Object Using the Bootstrap Object

Getting Initial References to the TransactionFactory Object Using INS

CORBA Transaction Service API

CORBA Transaction Service API Extensions

Notes on Using Transactions in BEA Tuxedo CORBA Applications

These sections describe how BEA Tuxedo implements the OTS, with particular emphasis on the
portion of the CORBAservices Object Transaction Service that is described as
implementation-specific. They describe the OTS application programming interface (API) that
you use to begin or terminate transactions, suspend or resume transactions, and get information
about transactions.

Getting Initial References to the TransactionCurrent Object
Using the Bootstrap Object
To use the TransactionCurrent object to access the Transaction Service API and the extension to
the Transaction Service API as described later in this chapter, an application needs to complete
the following operations:

2-8 Using CORBA Transactions

1. Create a Bootstrap object. For more information about creating a Bootstrap object, see the
“CORBA Bootstrapping Programming Reference” in the CORBA Programming Reference.

2. Invoke the resolve_initial_reference("TransactionCurrent") method on the
Bootstrap object. The invocation returns a standard CORBA object pointer. For a description
of this Bootstrap object method, see the CORBA Programming Reference.

3. If an application requires only the Transaction Service APIs, it should issue a
CosTransactionsCurrent::_narrow() (in C++) on the object pointer returned from step
2 above.

If an application requires the Transaction Service APIs with the extensions, it should issue
a Tobj::TransactionCurrent::_narrow() (in C++) on the object pointer returned
from step 2 above.

Getting Initial References to the TransactionFactory Object
Using INS
BEA Tuxedo also supports the use of the CORBA Interoperable Naming Service (INS) by
third-party clients to obtain initial transaction object references. INS uses the
ORB::resolve_initial_references() operation.

Listing 2-1 shows an example of how a client application, using INS, gets an object reference to
the TransactionFactory object. For a complete code example, see the client application in the
University Sample.

Listing 2-1 Code Example for a Client Application that Uses INS

// Get the factory finder from the ORB:

CORBA::Object_var v_fact_finder_oref =

 orb->resolve_initial_references("FactoryFinder");

// Narrow the factory finder :

Tobj::FactoryFinder_var v_fact_finder_ref =

 Tobj::FactoryFinder::_narrow(v_fact_finder_oref.in());

// Get the TransactionFactory from the FactoryFinder

CORBA::Object_var v_txn_fac_oref =

 v_fact_finder_ref->find_one_factory_by_id(

 "IDL:omg.org/CosTransactions/TransactionFactory:1.0");

T ransact ion Se rv ice in CORBA App l i cat ions

Using CORBA Transactions 2-9

// Narrow the TransactionFactory object reference

CosTransactions::TransactionFactory_var v_txn_fac_ref =

 CosTransactions::TransactionFactory::_narrow(

 v_txn_fac_oref.in());

For more information about using the ORB::resolve_initial_references() operation, see
“CORBA Bootstrapping Programming Reference” in the CORBA Programming Reference.

CORBA Transaction Service API
This topic includes the following sections:

Data Types

Exceptions

Current Interface

Control Interface

TransactionalObject Interface

These sections describe the CORBA-based components of the CosTransactions modules that
BEA Tuxedo implements to support the Transaction Service. For more information about these
components, see the OMG CORBA Services Transaction Service Specification, Version 1.1,
May 2000.

Data Types
Listing 2-2 shows the supported data types.

Listing 2-2 Data Types Supported by the Transaction Service

enum Status {

 StatusActive,

 StatusMarkedRollback,

 StatusPrepared,

 StatusCommitted,

 StatusRolledBack,

2-10 Using CORBA Transactions

 StatusUnknown,

 StatusNoTransaction,

 StatusPreparing,

 StatusCommitting,

 StatusRollingBack

};

// This information comes from the OMG Transaction Service

// Specification, Version 1.1, May 2000. Used with permission

// of the OMG.

Exceptions
Listing 2-3 shows the supported exceptions in IDL code.

Listing 2-3 Exceptions Supported by the Transaction Service

// Heuristic exceptions

exception HeuristicMixed {};

exception HeuristicHazard {};

// Other transaction-specific exceptions

exception SubtransactionsUnavailable {};

exception NoTransaction {};

exception InvalidControl {};

exception Unavailable {};

Table 2-1 describes the exceptions.

Note: This information comes from the OMG CORBA Services Transaction Service
Specification, Version 1.1, May 2000. Used with permission of the OMG.

T ransact ion Se rv ice in CORBA App l i cat ions

Using CORBA Transactions 2-11

Current Interface
The Current interface defines methods that allow a client of the Transaction Service to explicitly
manage the association between threads and transactions. The Current interface also defines
methods that simplify the use of the Transaction Service for most applications. These methods
can be used to begin and end transactions, to suspend and resume transactions, and to obtain
information about the current transaction.

The CosTransactions module defines the Current interface (shown in Listing 2-4).

Table 2-1 Exceptions Supported by the Transaction Service

Exception Description

HeuristicMixed A request raises this exception to report that a heuristic
decision was made and that some relevant updates have been
committed and others have been rolled back.

HeuristicHazard A request raises this exception to report that a heuristic
decision was made, that the disposition of all relevant
updates is not known, and that for those updates whose
disposition is known, either all have been committed or all
have been rolled back. Therefore, the HeuristicMixed
exception takes priority over the HeuristicHazard
exception.

SubtransactionsUnava
ilable

This exception is raised for the Current interface begin
method if the client already has an associated transaction.

NoTransaction This exception is raised for the Current interface
rollback and rollback_only methods if there is no
transaction associated with the client application.

InvalidControl This exception is raised for the Current interface resume
method if the parameter is not valid in the current execution
environment.

Unavailable This exception is raised for the Control interface
get_terminator and get_coordinator methods if
the Control interface cannot provide the requested object.

2-12 Using CORBA Transactions

Listing 2-4 Current Interface IDL

// Current transaction

interface Current : CORBA::Current {

 void begin()

 raises(SubtransactionsUnavailable);

 void commit(in boolean report_heuristics)

 raises(

 NoTransaction,

 HeuristicMixed,

 HeuristicHazard

);

 void rollback()

 raises(NoTransaction);

 void rollback_only()

 raises(NoTransaction);

 Status get_status();

 string get_transaction_name();

 void set_timeout(in unsigned long seconds);

 Control get_control();

 Control suspend();

 void resume(in Control which)

 raises(InvalidControl);

};

// This information comes from the OMG Transaction Service

// Specification, Version 1.1, May 2000. Used with permission

// of the OMG.

Table 2-2 provides a description of the Current transaction methods.

Note: This information was taken from the OMG CORBA Services Transaction Service
Specification, Version 1.1, May 2000. Used with permission of the OMG.

T ransact ion Se rv ice in CORBA App l i cat ions

Using CORBA Transactions 2-13

Table 2-2 Transaction Methods in the Current Object

Method Description

begin Creates a new transaction. The transaction context of the
client application is modified so that the thread is associated
with the new transaction. If the client application is currently
associated with a transaction, the
SubtransactionsUnavailable exception is raised. If
the client application cannot be placed in transaction mode
due to an error while starting the transaction, the standard
system exception INVALID_TRANSACTION is raised. If the
call was made in an improper context, the standard system
exception BAD_INV_ORDER is raised.

commit If there is no transaction associated with the client
application, the NoTransaction exception is raised.

If the call was made in an improper context, the standard
system exception BAD_INV_ORDER is raised.

If the system decides to roll back the transaction, the
standard exception TRANSACTION_ROLLEDBACK is raised
and the thread’s transaction context is set to NULL.

A HeuristicMixed exception is raised to report that a
heuristic decision was made and that some relevant updates
have been committed and others have been rolled back. A
HeuristicHazard exception is raised to report that a
heuristic decision was made, and that the disposition of all
relevant updates is not known; for those updates whose
disposition is known, either all have been committed or all
have been rolled back. The HeuristicMixed exception
takes priority over the HeuristicHazard exception. If a
heuristic exception is raised or the operation completes
normally, the thread’s transaction exception context is set to
NULL.

If the operation completes normally, the thread's transaction
context is set to NULL.

2-14 Using CORBA Transactions

rollback If there is no transaction associated with the client
application, the NoTransaction exception is raised.

If the call was made in an improper context, the standard
system exception BAD_INV_ORDER is raised.

If the operation completes normally, the thread's transaction
context is set to NULL.

rollback_only If there is no transaction associated with the client
application, the NoTransaction exception is raised.
Otherwise, the transaction associated with the client
application is modified so that the only possible outcome is
to roll back the transaction.

get_status If there is no transaction associated with the client
application, the StatusNoTransaction value is
returned. Otherwise, this method returns the status of the
transaction associated with the client application.

get_transaction_name If there is no transaction associated with the client
application, an empty string is returned. Otherwise, this
method returns a printable string describing the transaction
(specifically, the XID as specified by The Open Group). The
returned string is intended to support debugging.

Table 2-2 Transaction Methods in the Current Object (Continued)

Method Description

T ransact ion Se rv ice in CORBA App l i cat ions

Using CORBA Transactions 2-15

set_timeout This method modifies a state variable associated with the
target object that affects the timeout period associated with
transactions created by subsequent invocations of the begin
method.

The initial transaction timeout value is 300 seconds. Calling
set_timeout() with an argument value larger than zero
specifies a new timeout value. Calling set_timeout()
with a zero argument sets the timeout value back to the
default of 300 seconds.

After calling set_timeout(), transactions created by
subsequent invocations of begin are subject to being rolled
back if they do not complete before the specified number of
seconds after their creation.

Note: The initial transaction timeout value is 300 seconds.
If a transaction is started via AUTOTRAN instead of
the begin method, then the timeout value is
determined by the TRANTIME value in the BEA
Tuxedo configuration file. For more information,
see Chapter 5, “Administering Transactions.”

get_control If the client is not associated with a transaction, a NULL
object reference is returned. Otherwise, a Control object is
returned that represents the transaction context currently
associated with the client application. This object may be
given to the resume method to reestablish this context.

Table 2-2 Transaction Methods in the Current Object (Continued)

Method Description

2-16 Using CORBA Transactions

suspend If the client application is not associated with a transaction,
a NULL object reference is returned.

If the associated transaction is in a state such that the only
possible outcome of the transaction is to be rolled back, the
standard system exception TRANSACTION_ROLLEDBACK
is raised and the client application becomes associated with
no transaction.

If the call was made in an improper context, the standard
system exception BAD_INV_ORDER is raised. The caller's
state with respect to the transaction is not changed.

Otherwise, an object is returned that represents the
transaction context currently associated with the client
application. The same client can subsequently give this
object to the resume method to reestablish this context. In
addition, the client application becomes associated with no
transaction.

Note: As defined in The Common Object Request Broker:
Architecture and Specification, Revision 2.4, the
standard system exception
TRANSACTION_ROLLEDBACK indicates that the
transaction associated with the request has already
been rolled back or has been marked to roll back.
Thus, the requested method either could not be
performed or was not performed because further
computation on behalf of the transaction would be
fruitless.

Table 2-2 Transaction Methods in the Current Object (Continued)

Method Description

T ransact ion Se rv ice in CORBA App l i cat ions

Using CORBA Transactions 2-17

Control Interface
The Control interface allows a program to explicitly manage or propagate a transaction context.
An object that supports the Control interface is implicitly associated with one specific
transaction.

Listing 2-5 shows the Control interface, which is defined in the CosTransactions module.

Listing 2-5 Control Interface

interface Control {

 Terminator get_terminator()

 raises(Unavailable);

 Coordinator get_coordinator()

resume If the client application is already associated with a
transaction which is in a state such that the only possible
outcome of the transaction is to be rolled back, the standard
system exception TRANSACTION_ROLLEDBACK is raised
and the client application becomes associated with no
transaction.

If the call was made in an improper context, the standard
system exception BAD_INV_ORDER is raised.

If the system is unable to resume the global transaction
because the caller is currently participating in work outside
any global transaction with one or more resource managers,
the standard system exception INVALID_TRANSACTION is
raised.

If the parameter is a NULL object reference, the client
application becomes associated with no transaction. If the
parameter is valid in the current execution environment, the
client application becomes associated with that transaction
(in place of any previous transaction). Otherwise, the
InvalidControl exception is raised.

Note: See suspend for a definition of the standard
system exception TRANSACTION_ROLLEDBACK.

Table 2-2 Transaction Methods in the Current Object (Continued)

Method Description

2-18 Using CORBA Transactions

 raises(Unavailable);

};

// This information comes from the OMG Transaction Service

// Specification, Version 1.1, May 2000. Used with permission

// of the OMG.

The Control interface is used only in conjunction with the suspend and resume methods.

Terminator Interface
The Terminator interface supports operations to commit or roll back a transaction. Typically,
these operations are used by the transaction originator. An implementation of the Transaction
Service may restrict the scope in which a Terminator can be used; at a minimum, it can be used
within a single thread.

Listing 2-6 shows the Terminator interface.

Listing 2-6 Terminator Interface

interface Terminator {

 void commit(in boolean report_heuristics)

 raises(

 HeuristicMixed,

 HeuristicHazard

);

 void rollback();

};

// This information was taken from the OMG Transaction Service

// Specification, Version 1.1, May 2000. Used with permission

// of the OMG.

Table 2-3 describes the Terminator interface methods.

T ransact ion Se rv ice in CORBA App l i cat ions

Using CORBA Transactions 2-19

TransactionalObject Interface
In BEA Tuxedo release 8.0 and later, the CosTransactions::TransactionalObject is no
longer used by an object to indicate that it is transactional. If an interface inherits from a
TransactionalObject and the ICF indicates a different transaction policy, a warning is issued. The
TransactionalObject is not used for any other purpose. For details on transaction policies that
need to be set to infect objects with transactions, see “Implementation Configuration File (ICF)”
in the CORBA Programming Reference.

Table 2-3 Termination Interface Methods

Method Description

commit If the transaction has not been marked rollback only, and all of the
participants in the transaction agree to commit, the transaction is
committed and the operation terminates normally. Otherwise, the
transaction is rolled back (as described below for the rollback method)
and the TRANSACTION_ROLLEDBACK standard exception is raised.

If the report_heuristics parameter is true, the Transaction Service
will report inconsistent or possibly inconsistent outcomes using the
HeuristicMixed and HeuristicHazard exceptions. A
Transaction Service implementation may optionally use the CORBA
Notification Service to report heuristic decisions.

The commit operation may roll back the transaction if there are
subtransactions of the transaction that have not themselves been
committed or rolled back or if there are existing or potential activities
associated with the transaction that have not completed. The nature and
extent of such error checking is implementation-dependent. When a
top-level transaction is committed, all changes to recoverable objects
made in the scope of this transaction are made permanent and visible to
other transactions or clients. When a subtransaction is committed, the
changes are made visible to other related transactions as appropriate to
the degree of isolation enforced by the resources.

rollback The transaction is rolled back.

When a transaction is rolled back, all changes to recoverable objects
made in the scope of this transaction (including changes made by
descendant transactions) are rolled back. All resources locked by the
transaction are made available to other transactions as appropriate to the
degree of isolation enforced by the resources.

2-20 Using CORBA Transactions

The CosTransactions module defines the TransactionalObject interface (shown in
Listing 2-7). This interface defines no methods; it is simply a marker.

Listing 2-7 TransactionalObject Interface

interface TransactionalObject {

};

// This information was taken from the OMG Transaction Service

// Specification, Version 1.1, May 2000. Used with permission

// of the OMG.

TransactionFactory Interface
The TransactionFactory interface is provided to allow the transaction originator to begin a
transaction. This interface defines two operations, create and recreate, which create a new
representation of a top-level transaction. A TransactionFactory is located using the
FactoryFinder interface of the life cycle service and not by the
resolve_initial_reference() operation on the ORB interface.

Listing 2-8 shows the TransactionFactory interface.

Note: The Control recreate method of the TransactionFactory interface is not
supported.

Listing 2-8 TransactionFactory Interface

interface TransactionFactory {

 Control create(in unsigned long time_out);

 Control recreate(in PropagationContext ctx);

};

// This information was taken from the OMG Transaction Service

// Specification, Version 1.1, May 2000. Used with permission

// of the OMG.

T ransact ion Se rv ice in CORBA App l i cat ions

Using CORBA Transactions 2-21

Table 2-4 describes the TransactionFactory interface methods.

Other CORBAservices Object Transaction Service Interfaces
All other CORBAservices Object Transaction Service interfaces are not supported. Note that the
Current interface described earlier is supported only if it has been obtained from the Bootstrap
object. The Control interface described earlier is supported only if it has been obtained using the
get_control and the suspend methods on the Current object.

CORBA Transaction Service API Extensions
This topic describes specific extensions to the CORBAservices Transaction Service API
described earlier. The APIs in this topic enable an application to open or close an Open Group
resource manager.

The following APIs help facilitate participation of resource managers in a distributed transaction
by allowing their two-phase commit protocol to be controlled via The Open Group XA interface.

The following definitions and interfaces are defined in the Tobj module.

Exception
The following exception is supported:

exception RMfailed {};

Table 2-4 TransactionFactory Interface Methods

Method Description

create A new top-level transaction is created and a Control object is returned.
The Control object can be used to manage or to control participation in
the new transaction. An implementation of the Transaction Service may
restrict the ability for the Control object to be transmitted to or used in
other execution environments; at a minimum, it can be used by the client
application.

If the parameter has a nonzero value n, then the new transaction will be
subject to being rolled back if it does not complete before n seconds have
elapsed. If the parameter is zero, then no application specified timeout is
established.

recreate Not supported.

2-22 Using CORBA Transactions

A request raises this exception to report that an attempt to open or close a resource manager
failed.

TransactionCurrent Interface
This interface supports all the methods of the Current interface in the CosTransactions
module and is described in “C++ Bootstrap Object Programming Reference” in the CORBA
Programming Reference. Additionally, this interface supports APIs to open and close the
resource manager.

Listing 2-9 shows the TransactionCurrent interface, which is defined in the Tobj module.

Listing 2-9 TransactionCurrent Interface

Interface TransactionCurrent: CosTransactions::Current {
 void open_xa_rm()
 raises(RMfailed);
 void close_xa_rm()
 raises(Rmfailed);
}

Table 2-5 describes APIs that are specific to the resource manager. For more information about
these APIs, see the CORBA Programming Reference.

T ransact ion Se rv ice in CORBA App l i cat ions

Using CORBA Transactions 2-23

Notes on Using Transactions in BEA Tuxedo CORBA
Applications
Consider the following guidelines when integrating transactions into your BEA Tuxedo CORBA
client/server applications:

Nested transactions are not permitted in the BEA Tuxedo system. You cannot start a new
transaction if an existing transaction is already active. (You may start a new transaction if
you first suspend the existing one; however, the object that suspends the transaction is the
only object that can subsequently resume the transaction.)

The object that starts a transaction is the only entity that can end the transaction. (In a strict
sense, the object can be the client application, the TP Framework, or an object managed by
the server application.) An object that is invoked within the scope of a transaction may
suspend and resume the transaction (and while the transaction is suspended, the object can
start and end other transactions). However, you cannot end a transaction in an object unless
you began the transaction there.

BEA Tuxedo does not support concurrent transactions. Objects can be involved with only
one transaction at one time. An object is involved in a transaction for the duration of the
entire transaction, and is available to be involved in a different transaction only after the
current transaction is completed.

Table 2-5 Resource Manager APIs for the Current Interface

Method Description

open_xa_rm This method opens The Open Group resource manager to which this
process is linked. A RMfailed exception is raised if there is a failure
while opening the resource manager.

Any attempts to invoke this method by remote clients or the native clients
raises the standard system exception NO_IMPLEMENT.

close_xa_rm This method closes The Open Group resource manager to which this
process is linked. An RMfailed exception is raised if there is a failure
while closing the resource manager. A BAD_INV_ORDER standard
system exception is raised if the function was called in an improper
context (for example, the caller is in transaction mode).

Any attempts by the remote clients or the native clients to invoke this
method raises the standard system exception NO_IMPLEMENT.

2-24 Using CORBA Transactions

BEA Tuxedo does not queue requests to objects that are currently involved in a
transaction. If a nontransactional client application attempts to invoke an operation on an
object that is currently in a transaction, the client application receives the following error
message:

C++

CORBA::OBJ_ADAPTER

If a client that is in a transaction attempts to invoke an operation on an object that is
currently in a different transaction, the client application receives the following error
message:

C++

CORBA::INVALID_TRANSACTION

For transaction-bound objects, consider doing all state handling in the
Tobj_ServantBase::deactivate_object() operation. This makes it easier for the
object to handle its state properly, because the outcome of the transaction is known at the
time that deactivate_object() is invoked.

For method-bound objects that have several operations, but only a few that affect the
object’s durable state, consider doing the following:

– Assign the optional transaction policy.

– Scope any write operations within a transaction, by making invocations on the
TransactionCurrent object.

If the object is invoked outside a transaction, the object does not incur the overhead of
scoping a transaction for reading data. This way, regardless of whether the object is
invoked within a transaction, all the object’s write operations are handled transactionally.

Transaction rollbacks are asynchronous. Therefore, it is possible for an object to be
invoked while its transactional context is still active. If you try to invoke such an object,
you receive an exception.

If an object with the always transaction policy is involved in a transaction that is started
by the BEA Tuxedo system, and not the client application, note the following:

– If the server application marks the transaction for rollback only and the server throws a
CORBA exception, the client application receives the CORBA exception.

– If the server application marks the transaction for rollback only and the server does not
throw a CORBA exception, the client application receives the OBJ_ADAPTER exception.
In this case, the BEA Tuxedo system automatically rolls back the transaction. However,

UserT ransact ion AP I

Using CORBA Transactions 2-25

the client application is completely unaware that a transaction has been scoped in the
BEA Tuxedo domain.

If the client application initiates a transaction, and the server application marks the
transaction for a rollback, one of the following occurs:

– If the server throws a CORBA exception, the client application receives a CORBA
exception.

– If the server does not throw a CORBA exception, the client application receives the
TRANSACTION_ROLLEDBACK exception.

UserTransaction API
This topic includes the following sections:

UserTransaction Methods

Exceptions Thrown by UserTransaction Methods

UserTransaction Methods
Table 2-6 describes the methods in the UserTransaction object.

Table 2-6 Methods in the UserTransaction Object

Method Name Description

begin Starts a transaction on the current thread.

commit Commits the transaction associated with the current
thread.

2-26 Using CORBA Transactions

getStatus Returns the transaction status, or
STATUS_NO_TRANSACTION if no transaction is
associated with the current thread.

One of the following values:
• STATUS_ACTIVE

• STATUS_COMMITTED

• STATUS_COMMITTING

• STATUS_MARKED_ROLLBACK

• STATUS_NO_TRANSACTION

• STATUS_PREPARED

• STATUS_PREPARING

• STATUS_ROLLEDBACK

• STATUS_ROLLING_BACK

• STATUS_UNKNOWN

rollback Rolls back the transaction associated with the current
thread.

setRollbackOnly Marks the transaction associated with the current thread
so that the only possible outcome of the transaction is to
roll it back.

setTransactionTimeout Specifies the timeout value for the transactions started by
the current thread with the begin method. If an
application has not called the begin method, then the
Transaction Service uses a default value for the
transaction timeout.

Table 2-6 Methods in the UserTransaction Object (Continued)

Method Name Description

UserT ransact ion AP I

Using CORBA Transactions 2-27

Exceptions Thrown by UserTransaction Methods
Table 2-7 describes exceptions thrown by methods of the UserTransaction object.

Table 2-7 Exceptions Thrown by UserTransaction Methods

Exception Description

HeuristicMixedException Thrown to indicate that a heuristic decision was
made and that some relevant updates have been
committed while others have been rolled back.

HeuristicRollbackException Thrown to indicate that a heuristic decision was
made and that some relevant updates have been
rolled back.

NotSupportedException Thrown when the requested operation is not
supported (such as a nested transaction).

RollbackException Thrown when the transaction has been marked for
rollback only or the transaction has been rolled
back instead of committed.

IllegalStateException Thrown if the current thread is not associated with
a transaction.

SecurityException Thrown to indicate that the thread is not allowed
to commit the transaction.

SystemException Thrown by the transaction manager to indicate
that it has encountered an unexpected error
condition that prevents future transaction services
from proceeding.

2-28 Using CORBA Transactions

Using CORBA Transactions 3-1

C H A P T E R 3

Transactions in CORBA Server
Applications

This topic includes the following sections:

Integrating Transactions in a BEA Tuxedo Client and Server Application

Transactions and Object State Management

User-defined Exceptions

These sections describe how to integrate transactions into a BEA Tuxedo server application.
Before you begin, you should read Chapter 1, “Introducing Transactions.”

Notes: The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported. All BEA Tuxedo CORBA Java
client and BEA Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

3-2 Using CORBA Transactions

Integrating Transactions in a BEA Tuxedo Client and
Server Application

This topic includes the following sections:

Transaction Support in CORBA Applications

Making an Object Automatically Transactional

Enabling an Object to Participate in a Transaction

Preventing an Object from Being Invoked While a Transaction Is Scoped

Excluding an Object from an Ongoing Transaction

Assigning Policies

Using an XA Resource Manager

Opening an XA Resource Manager

Closing an XA Resource Manager

Transaction Support in CORBA Applications
BEA Tuxedo supports transactions in the following ways:

The client or the server application can begin and end transactions explicitly by using calls
on the TransactionCurrent object. For details about the TransactionCurrent object, see
Chapter 4, “Transactions in CORBA Client Applications.”

You can assign transactional policies to an object’s interface so that when the object is
invoked, the BEA Tuxedo system can start a transaction automatically for that object, if a
transaction has not already been started, and commit or roll back the transaction when the
method invocation is complete. You use transactional policies on objects in conjunction
with an XA resource manager and database when you want to delegate all the transaction
commit and rollback responsibilities to that resource manager.

Objects involved in a transaction can force a transaction to be rolled back. That is, after an
object has been invoked within the scope of a transaction, the object can invoke
rollback_only() on the TransactionCurrent object to mark the transaction for rollback
only. This prevents the current transaction from being committed. An object may need to
mark a transaction for rollback if an entity, typically a database, is otherwise at risk of
being updated with corrupt or inaccurate data.

I n tegra t ing T ransac t i ons in a BEA Tuxedo C l ient and Serve r App l i cat ion

Using CORBA Transactions 3-3

Objects involved in a transaction can be kept in memory from the time they are first
invoked until the moment when the transaction is ready to be committed or rolled back. In
the case of a transaction that is about to be committed, these objects are polled by the BEA
Tuxedo system immediately before the resource managers prepare to commit the
transaction. In this sense, polling means invoking the object’s
Tobj_ServantBase::deactivate_object() operation and passing a reason value.

When an object is polled, the object may veto the current transaction by invoking
rollback_only() on the TransactionCurrent object. In addition, if the current transaction
is to be rolled back, objects have an opportunity to skip any writes to a database. If no
object vetoes the current transaction, the transaction is committed.

The following sections explain how you can use object activation policies and transaction
policies to determine the transactional behavior you want in your objects. Note that these policies
apply to an interface and, therefore, to all operations on all objects implementing that interface.

Note: If a server application manages an object that you want to be able to participate in a
transaction, the Server object for that application must invoke the TP::open_xa_rm()
and TP::close_xa_rm() operations. For more information about database connections,
see “Opening an XA Resource Manager” on page 3-7.

Making an Object Automatically Transactional
The BEA Tuxedo system provides the always transactional policy, which you can define on an
object’s interface to have the BEA Tuxedo system start a transaction automatically when that
object is invoked and a transaction has not already been scoped. When an invocation on that
object is completed, the BEA Tuxedo system commits or rolls back the transaction automatically.
Neither the server application, nor the object implementation, needs to invoke the
TransactionCurrent object in this situation; the BEA Tuxedo system automatically invokes the
TransactionCurrent object on behalf of the server application.

Assign the always transactional policy to an object’s interface when:

The object writes to a database and you want all the database commit or rollback
responsibilities delegated to an XA resource manager whenever this object is invoked.

You want to give the client application the opportunity to include the object in a larger
transaction that encompasses invocations on multiple objects, and the invocations must all
succeed or be rolled back if any one invocation fails.

If you want an object to be automatically transactional, assign the following policies to that
object’s interface in the Implementation Configuration File:

3-4 Using CORBA Transactions

Note: Database cursors cannot span transactions. However, in C++, the
CourseSynopsisEnumerator object in the BEA Tuxedo University sample applications
uses a database cursor to find matching course synopses from the University database.
Because database cursors cannot span transactions, the activate_object() operation
on the CourseSynopsisEnumerator object reads all matching course synopses into
memory. Note that the cursor is managed by an iterator class and is thus not visible to the
CourseSynopsisEnumerator object.

Enabling an Object to Participate in a Transaction
If you want an object to be able to be invoked within the scope of a transaction, you can assign
the optional transaction policies to that object’s interface. The optional transaction policy
may be appropriate for an object that does not perform any database write operations, but that you
want to have the ability to be invoked during a transaction.

You can use the following policies, when they are specified in the Implementation Configuration
File for that object’s interface, to make an object optionally transactional:

When the transaction policy is optional, if the AUTOTRAN parameter is enabled in the
application’s UBBCONFIG file, the implementation is transactional. Servers containing
transactional objects must be configured within a group associated with an XA-compliant
resource manager.

If the object does perform database write operations, and you want the object to be able to
participate in a transaction, assigning the always transactional policy is generally a better choice.
However, if you prefer, you can use the optional policy and encapsulate any write operations

Activation Policies Transaction Policy

• process

• method

• transaction

always

Activation Policies Transaction Policy

• process

• method

• transaction

optional

I n tegra t ing T ransac t i ons in a BEA Tuxedo C l ient and Serve r App l i cat ion

Using CORBA Transactions 3-5

within invocations on the TransactionCurrent object. That is, within your operations that write
data, scope a transaction around the write statements by invoking the TransactionCurrent object
to, respectively, begin and commit or roll back the transaction, if the object is not already scoped
within a transaction. This ensures that any database write operations are handled transactionally.
This also introduces a performance efficiency: if the object is not invoked within the scope of a
transaction, all the database read operations are nontransactional, and, therefore, more
streamlined.

Note: When choosing the transaction policies to assign to your objects, make sure you are
familiar with the requirements of the XA resource manager you are using. For example,
some XA resource managers (such as the Oracle 7 Transaction Manager Server) require
that any object participating in a transaction scope their database read operations, in
addition to write operations, within a transaction (you can still scope your own
transactions, however). Other resource managers, such as Oracle8i, do not require a
transaction context for read and write operations. If an application attempts a write
operation without a transaction context, Oracle8i will start a local transaction implicitly,
in which case the application needs to commit the local transaction explicitly.

Preventing an Object from Being Invoked While a
Transaction Is Scoped
In many cases, it may be critical to exclude an object from a transaction. If such an object is
invoked during a transaction, the object returns an exception, which may cause the transaction to
be rolled back. BEA Tuxedo CORBA provides the never transaction policy, which you can
assign to an object’s interface to specifically prevent that object from being invoked within the
course of a transaction, even if the current transaction is suspended.

This transaction policy is appropriate for objects that write durable state to disk that cannot be
rolled back, such as for an object that writes data to a disk that is not managed by an XA resource
manager. Having this capability in your client/server application is crucial if the client application
does not or cannot know if some of its invocations are causing a transaction to be scoped.
Therefore, if a transaction is scoped, and an object with this policy is invoked, the transaction can
be rolled back.

To prevent an object from being invoked while a transaction is scoped, assign the following
policies to that object’s interface in the Implementation Configuration File:

3-6 Using CORBA Transactions

Excluding an Object from an Ongoing Transaction
In some cases, it may be appropriate to permit an object to be invoked during the course of a
transaction but also keep that object from being a part of the transaction. If such an object is
invoked during a transaction, the transaction is automatically suspended. After the invocation on
the object is completed, the transaction is automatically resumed. BEA Tuxedo CORBA provides
the ignore transaction policy for this purpose.

The ignore transaction policy may be appropriate for an object such as a factory that typically
does not write data to disk. By excluding the factory from the transaction, the factory can be
available to other client invocations during the course of a transaction. In addition, using this
policy can introduce an efficiency into your server application because it minimizes the overhead
of invoking objects transactionally.

To prevent any transaction from being propagated to an object, assign the following policies to
that object’s interface in the Implementation Configuration File:

Assigning Policies
For information about how to create an Implementation Configuration File and specify policies
on objects, see “Step 4: Define the in-memory behavior of objects” in “Steps for Creating a BEA
Tuxedo CORBA Server Application” in the CORBA Programming Reference.

Using an XA Resource Manager
The Transaction Manager Server (TMS) handles object state data automatically. For an example,
the University sample C++ application in the

Activation Policies Transaction Policy

• process

• method

never

Activation Policies Transaction Policy

• process

• method

ignore

I n tegra t ing T ransac t i ons in a BEA Tuxedo C l ient and Serve r App l i cat ion

Using CORBA Transactions 3-7

drive:\TUX8\samples\corba\university\transactions directory uses the Oracle TMS
as an example of a relational database management service (RDBMS).

Using any XA resource manager imposes specific requirements on how different objects
managed by the server application may read and write data to that database, including the
following:

Some XA resource managers, such as Oracle7, require that all database operations be
scoped within a transaction. This means that all method invocations on the DBaccess
object need to be scoped within a transaction because this object reads from a database.
The transaction can be started either by the client or by the BEA Tuxedo system.

Other XA resource managers, such as Oracle8i, do not require a transaction context for
read and write operations. If an application attempts a write operation without a transaction
context, Oracle8i will start a local transaction implicitly, in which case the application
needs to commit the local transaction explicitly.

When a transaction is committed or rolled back, the XA resource manager automatically
handles the durable state implied by the commit or rollback. That is, if the transaction is
committed, the XA resource manager ensures that all database updates are made
permanent. Likewise, if there is a rollback, the XA resource manager automatically
restores the database to its state prior to the beginning of the transaction.

This characteristic of XA resource managers actually makes the design problems
associated with handling object state data in the event of a rollback much simpler.
Transactional objects can always delegate the commit and rollback responsibilities to the
XA resource manager, which greatly simplifies the task of implementing a server
application.

Opening an XA Resource Manager
If an object’s interface has the always or optional transaction policy, you must invoke the
TP::open_xa_rm() operation in the Server::initialize() operation in the Server object.
The resource manager is opened using the information provided in the OPENINFO parameter,
which is in the GROUPS section of the UBBCONFIG file. Note that the default version of the
Server::initialize() operation automatically opens the resource manager.

If you have an object that does not write data to disk and that participates in a transaction—the
object typically has the optional transaction policy—you still need to include an invocation to
the TP::open_xa_rm() operation. In that invocation, specify the NULL resource manager.

3-8 Using CORBA Transactions

Closing an XA Resource Manager
If your Server object’s Server::initialize() operation opens an XA resource manager, you
must include the following invocation in the Server::release() operation:

TP::close_xa_rm();

Transactions and Object State Management
This topic includes the following sections:

Delegating Object State Management to an XA Resource Manager

Waiting Until Transaction Work Is Complete Before Writing to the Database

If you need transactions in your BEA Tuxedo CORBA client and server application, you can
integrate transactions with object state management in a few different ways. In general, BEA
Tuxedo CORBA can automatically scope the transaction for the duration of an operation
invocation without requiring you to make any changes to your application’s logic or the way in
which the object writes durable state to disk.

Delegating Object State Management to an XA Resource
Manager
Using an XA resource manager, such as Oracle, generally simplifies the design problems
associated with handling object state data in the event of a rollback. (The Oracle resource
manager is used in the BEA Tuxedo CORBA University sample C++ applications). Transactional
objects can always delegate the commit and rollback responsibilities to the XA resource manager,
which greatly simplifies the task of implementing a server application. This means that process-
or method-bound objects involved in a transaction can write to a database during transactions,
and can depend on the resource manager to undo any data written to the database in the event of
a transaction rollback.

Waiting Until Transaction Work Is Complete Before Writing
to the Database
The transaction activation policy is a good choice for objects that maintain state in memory
that you do not want written, or that cannot be written, to disk until the transaction work is
complete. When you assign the transaction activation policy to an object, the object:

T ransact i ons and Objec t S ta te Management

Using CORBA Transactions 3-9

Is brought into memory when it is first invoked within the scope of a transaction.

Remains in memory until the transaction is either committed or rolled back.

When the transaction work is complete, BEA Tuxedo CORBA invokes each transaction-bound
object’s Tobj_ServantBase::deactivate_object() operation passing a reason code that
can be either DR_TRANS_COMMITTING or DR_TRANS_ABORTED. If the variable is
DR_TRANS_COMMITTING, the object can invoke its database write operations. If the variable is
DR_TRANS_ABORTED, the object skips its write operations.

When to Assign the Transaction Activation Policy
Assigning the transaction activation policy to an object may be appropriate in the following
situations:

You want the object to write its persistent state to disk at the time that the transaction work
is complete.

This introduces a performance efficiency because it reduces the number of database write
operations that may need to be rolled back.

You want to provide the object with the ability to veto a transaction that is about to be
committed.

If BEA Tuxedo CORBA passes the reason DR_TRANS_COMMITTING, the object can, if
necessary, invoke rollback_only() on the TransactionCurrent object. Note that if you do
make an invocation to rollback_only() from within the
Tobj_ServantBase::deactivate_object() operation, then deactivate_object() is
not invoked again.

You want to provide the object with the ability to perform batch updates.

You have an object that is likely to be invoked multiple times during the course of a single
transaction, and you want to avoid the overhead of continually activating and deactivating
the object during that transaction.

Transaction Policies to Use with the Transaction Activation Policy
To give an object the ability to wait until the transaction is committing before writing to a
database, assign the following policies to that object’s interface in the Implementation
Configuration File:

3-10 Using CORBA Transactions

Note: Transaction-bound objects cannot start a transaction or invoke other objects from inside
the Tobj_ServantBase::deactivate_object() operation. The only valid
invocations transaction-bound objects can make inside deactivate_object() are
write operations to the database.

Also, if you have an object that is involved in a transaction, the Server object that
manages that object must include invocations to open and close the XA resource
manager, even if the object does not write any data to disk. (If you have a transactional
object that does not write data to disk, you specify the NULL resource manager.) For
more information about opening and closing an XA resource manager, see “Opening an
XA Resource Manager” on page 3-7 and “Closing an XA Resource Manager” on
page 3-8.

User-defined Exceptions
This topic includes the following sections:

About User-defined Exceptions

Defining the Exception

Throwing the Exception

About User-defined Exceptions
Including a user-defined exception in a BEA Tuxedo CORBA client/server application involves
the following steps:

1. In your OMG IDL file, define the exception and specify the operations that can use it.

2. In the implementation file, include code that throws the exception.

3. In the client application source file, include code that catches and handles the exception.

For example, the Transactions sample C++ application includes an instance of a user-defined
exception, TooManyCredits. This exception is thrown by the server application when the client
application tries to register a student for a course, and the student has exceeded the maximum

Activation Policy Transaction Policy

transaction always or optional

User-def ined Except ions

Using CORBA Transactions 3-11

number of courses for which he or she can register. When the client application catches this
exception, the client application rolls back the transaction that registers a student for a course.
This section explains how you can define and implement user-defined exceptions in your BEA
Tuxedo CORBA client/server application, using the TooManyCredits exception as an example.

Defining the Exception
In the OMG IDL file for your client/server application:

1. Define the exception and define the data sent with the exception. For example, the
TooManyCredits exception is defined to pass a short integer representing the maximum
number of credits for which a student can register. Therefore, the definition for the
TooManyCredits exception contains the following OMG IDL statements:

exception TooManyCredits
{
 unsigned short maximum_credits;
};

2. In the definition of the operations that throw the exception, include the exception. The
following example shows the OMG IDL statements for the register_for_courses()
operation on the Registrar interface:

NotRegisteredList register_for_courses(
 in StudentId student,
 in CourseNumberList courses
) raises (
 TooManyCredits
);

Throwing the Exception
In the implementation of the operation that uses the exception, write the code that throws the
exception, as in the following C++ example.

if (...) {

 UniversityZ::TooManyCredits e;

 e.maximum_credits = 18;

 throw e;

3-12 Using CORBA Transactions

How the Transactions University Sample Application
Works

This topic includes the following sections:

About the Transactions University Sample Application

Transactional Model Used by the Transactions University Sample Application

Object State Considerations for the University Server Application

Configuration Requirements for the Transactions Sample Application

About the Transactions University Sample Application
To implement the student registration process, the Transactions sample application does the
following:

The client application obtains a reference to the TransactionCurrent object from the
Bootstrap object.

When the student submits the list of courses for which he or she wants to register, the
client application:

a. Begins a transaction by invoking the Current::begin() operation on the
TransactionCurrent object.

b. Invokes the register_for_courses() operation on the Registrar object, passing a list
of courses.

The register_for_courses() operation on the Registrar object processes the
registration request by executing a loop that does the following iteratively for each course
in the list:

a. Checks to see how many credits the student is already registered for.

b. Adds the course to the list of courses for which the student is registered.

The Registrar object checks for the following potential problems, which prevent the
transaction from being committed:

– The student is already registered for the course.

– A course in the list does not exist.

How the T ransact i ons Un ive rs i t y Sample App l i cat ion Works

Using CORBA Transactions 3-13

– The student exceeds the maximum credits allowed.

As defined in the application’s OMG IDL, the register_for_courses() operation
returns a parameter to the client application, NotRegisteredList, which contains a list of
the courses for which the registration failed.

If the NotRegisteredList value is empty, the client application commits the transaction.

If the NotRegisteredList value contains any courses, the client application queries the
student to indicate whether he or she wants to complete the registration process for the
courses for which the registration succeeded. If the user chooses to complete the
registration, the client application commits the transaction. If the user chooses to cancel the
registration, the client application rolls back the transaction.

If the registration for a course has failed because the student exceeds the maximum number
of credits he or she can take, the Registrar object returns a TooManyCredits exception to
the client application, and the client application rolls back the entire transaction.

Transactional Model Used by the Transactions University
Sample Application
The basic design rationale for the Transactions sample application is to handle course
registrations in groups, as opposed to one at a time. This design helps to minimize the number of
remote invocations on the Registrar object.

In implementing this design, the Transactions sample application shows one model of the use of
transactions, which were described in “Integrating Transactions in a BEA Tuxedo Client and
Server Application” on page 3-2. The model is as follows:

The client begins a transaction by invoking the begin() operation on the
TransactionCurrent object, followed by making an invocation to the
register_for_courses() operation on the Registrar object.

The Registrar object registers the student for the courses for which it can, and then returns
a list of courses for which the registration process was unsuccessful. The client application
can choose to commit the transaction or roll it back. The transaction encapsulates this
conversation between the client and the server application.

The register_for_courses() operation performs multiple checks of the University
database. If any one of those checks fail, the transaction can be rolled back.

3-14 Using CORBA Transactions

Object State Considerations for the University Server
Application
Because the Transactions University sample application is transactional, the University server
application generally needs to consider the implications on object state, particularly in the event
of a rollback. In cases where there is a rollback, the server application must ensure that all affected
objects have their durable state restored to the proper state.

Because the Registrar object is being used for database transactions, a good design choice for this
object is to make it transactional (assign the always transaction policy to this object’s interface).
If a transaction has not already been scoped when this object is invoked, the BEA Tuxedo system
will start a transaction automatically.

By making the Registrar object automatically transactional, all database write operations
performed by this object will always be done within the scope of a transaction, regardless of
whether the client application starts one. Since the server application uses an XA resource
manager, and since the object is guaranteed to be in a transaction when the object writes to a
database, the object does not have any rollback or commit responsibilities because the XA
resource manager takes responsibility for these database operations on behalf of the object.

The RegistrarFactory object, however, can be excluded from transactions because this object
does not manage data that is used during the course of a transaction. By excluding this object from
transactions, you minimize the processing overhead implied by transactions.

Object Policies Defined for the Registrar Object
To make the Registrar object transactional, the ICF file specifies the always transaction policy
for the Registrar interface. Therefore, in the Transaction sample application, the ICF file
specifies the following object policies for the Registrar interface:

Object Policies Defined for the RegistrarFactory Object
To exclude the RegistrarFactory object from transactions, the ICF file specifies the ignore
transaction policy for the Registrar interface. Therefore, in the Transaction sample application,
the ICF file specifies the following object policies for the RegistrarFactory interface:

Activation Policy Transaction Policy

process always

How the T ransact i ons Un ive rs i t y Sample App l i cat ion Works

Using CORBA Transactions 3-15

Using an XA Resource Manager in the Transactions Sample Application
The Transactions sample application uses the Oracle Transaction Manager Server (TMS), which
handles object state data automatically. Using any XA resource manager imposes specific
requirements on how different objects managed by the server application may read and write data
to that database, including the following:

Some XA resource managers, such as Oracle7, require that all database operations be
scoped within a transaction. This means that the CourseSynopsisEnumerator object needs
to be scoped within a transaction because this object reads from a database.

When a transaction is committed or rolled back, the XA resource manager automatically
handles the durable state implied by the commit or rollback. That is, if the transaction is
committed, the XA resource manager ensures that all database updates are made
permanent. Likewise, if there is a rollback, the XA resource manager automatically
restores the database to its state prior to the beginning of the transaction.

This characteristic of XA resource managers actually makes the design problems
associated with handling object state data in the event of a rollback much simpler.
Transactional objects can always delegate the commit and rollback responsibilities to the
XA resource manager, which greatly simplifies the task of implementing a server
application.

Configuration Requirements for the Transactions Sample
Application
The University sample applications use an Oracle Transaction Manager Server (TMS). To use
the Oracle database, you must include specific Oracle-provided files in the server application
build process. For more information about building, configuring, and running the Transactions
sample application, see The Transaction Sample Application in the BEA Tuxedo online
documentation. For more information about the configurable settings in the UBBCONFIG file, see
“Modifying the UBBCONFIG File to Accommodate Transactions” on page 5-2.

Activation Policy Transaction Policy

process ignore

3-16 Using CORBA Transactions

Using CORBA Transactions 4-1

C H A P T E R 4

Transactions in CORBA Client
Applications

This topic includes the following sections:

Overview of BEA Tuxedo CORBA Transactions

Summary of the Development Process for Transactions

Step 1: Using the Bootstrap Object to Obtain the TransactionCurrent Object

JStep 2: Using the TransactionCurrent Methods

This topic describes how to use transactions in CORBA C++ client applications for the BEA
Tuxedo CORBA software. Before you begin, you should read Chapter 1, “Introducing
Transactions.”

Notes: The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported. All BEA Tuxedo CORBA Java
client and BEA Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

For an example of how transactions are implemented in working client applications, see the The
Transaction Sample Application in the BEA Tuxedo online documentation. For an overview of
the TransactionCurrent object, see “Client Application Development Concepts” in Creating
CORBA Client Applications.

4-2 Using CORBA Transactions

Overview of BEA Tuxedo CORBA Transactions
Client applications use transaction processing to ensure that data remains correct, consistent, and
persistent. The transactions in the BEA Tuxedo software allow client applications to begin and
terminate transactions and to get the status of transactions. The BEA Tuxedo software uses
transactions as defined in the CORBA services Object Transaction Service, with extensions for
ease of use.

Transactions are defined on interfaces. The application designer decides which interfaces within
a BEA Tuxedo client/server application will handle transactions. Transaction policies are defined
in the Implementation Configuration File (ICF) for server applications. Generally, the ICF file
for the available interfaces is provided to the client programmer by the application designer.

Summary of the Development Process for Transactions
To add transactions to a client application, complete the following steps:

Step 1: Using the Bootstrap Object to Obtain the TransactionCurrent Object

JStep 2: Using the TransactionCurrent Methods

The rest of this topic describes these steps using portions of the client applications in the
Transactions University sample application. For information about the Transactions University
sample application, see The Transactions Sample Application in the BEA Tuxedo online
documentation.

The Transactions University sample application is located in the following directory on the BEA
Tuxedo software kit:

For Microsoft Windows systems:
drive:\tuxdir\samples\corba\university\transactions

For UNIX systems:
drive:/tuxdir/samples/corba/university/transactions

Step 1: Using the Bootstrap Object to Obtain the
TransactionCurrent Object

If you are using the BEA Tuxedo CORBA client software, you should use the Bootstrap object
to obtain an object reference to the TransactionCurrent object for the specified BEA Tuxedo

JS tep 2 : Us ing the T ransact ionCur rent Methods

Using CORBA Transactions 4-3

domain. For more information about the TransactionCurrent object, see “Client Application
Development Concepts” in Creating CORBA Client Applications.

Note: If you are using a third-party client ORB, you should the CORBA Interoperable Naming
Service (INS) CORBA::ORB::resolve_initial_references operation to obtain an
object reference to the FactoryFinder object for the specified BEA Tuxedo domain. For
information on how to use INS to get initial object references for transaction clients, see
“CORBA Bootstrapping Programming Reference” in the CORBA Programming
Reference.

The following C++ examples illustrate how the Bootstrap object is used to return the
TransactionCurrent object.

C++ Example
CORBA::Object_var var_transaction_current_oref =

 Bootstrap.resolve_initial_references(“TransactionCurrent”);

CosTransactions::Current_var transaction_current_oref=

 CosTransactions::Current::_narrow(

 var_transaction_current_oref.in());

JStep 2: Using the TransactionCurrent Methods
The TransactionCurrent object has methods that allow a client application to manage
transactions. These methods can be used to begin and end transactions and to obtain information
about the current transaction.

Table 4-1 describes the methods in the TransactionCurrent object.

Table 4-1 Methods in the TransactionCurrent Object

Method Description

begin Creates a new transaction. Future operations take place
within the scope of this transaction. When a client
application begins a transaction, the default transaction
timeout is 300 seconds. You can change this default, using
the set_timeout method.

commit Ends the transaction successfully. Indicates that all
operations on this client application have completed
successfully.

4-4 Using CORBA Transactions

A basic transaction works in the following way:

1. A client application begins a transaction using the Tobj::TransactionCurrent::begin
method. This method does not return a value.

2. The operations on the CORBA interface execute within the scope of a transaction. If a call to
any of these operations raises an exception (either explicitly or as a result of a
communications failure), the exception can be caught and the transaction can be rolled back.

3. Use the Tobj::TransactionCurrent::commit method to commit the current transaction.
This method ends the transaction and starts the processing of the operation. The transaction
is committed only if all of the participants in the transaction agree to commit.

rollback Forces the transaction to roll back.

rollback_only Marks the transaction so that the only possible action is to
roll back. Generally, this method is used only in server
applications.

suspend Suspends participation in the current transaction. This
method returns an object that identifies the transaction and
allows the client application to resume the transaction
later.

resume Resumes participation in the specified transaction.

get_status Returns the status of a transaction with a client
application.

get_transaction_name Returns a printable string describing the transaction.

set_timeout Modifies the timeout period associated with transactions.
The default transaction timeout value is 300 seconds. If a
transaction is automatically started instead of explicitly
started with the begin method, the timeout value is
determined by the value of the TRANTIME parameter in
the UBBCONFIG file. For more information about setting
the TRANTIME parameter, see Chapter , “Administering
Transactions.”

get_control Returns a control object that represents the transaction.

Table 4-1 Methods in the TransactionCurrent Object (Continued)

Method Description

JS tep 2 : Us ing the T ransact ionCur rent Methods

Using CORBA Transactions 4-5

The association between the transaction and the client application ends when the client
application calls the Tobj::TransactionCurrent:commit method or the
Tobj::TransactionCurrent:rollback method.The following C++ examples illustrate
using a transaction to encapsulate the operation of a student registering for a class.

C++ Example
//Begin the transaction
transaction_current_oref->begin();
try {
//Perform the operation inside the transaction
 pointer_Registar_ref->register_for_courses(student_id, course_number_list);
 ...
//If operation executes with no errors, commit the transaction:
 CORBA::Boolean report_heuristics = CORBA_TRUE;
 transaction_current_ref->commit(report_heuristics);
}
catch (CORBA::Exception &) {
//If the operation has problems executing, rollback the
//transaction. Then throw the original exception again.
//If the rollback fails, ignore the exception and throw the
//original exception again.
try {
 transaction_current_ref->rollback();
}
catch (CORBA::Exception &) {
 TP::userlog("rollback failed");

throw;
}

4-6 Using CORBA Transactions

Using CORBA Transactions 5-1

C H A P T E R 5

Administering Transactions

This topic includes the following sections:

Modifying the UBBCONFIG File to Accommodate Transactions

Modifying the Domain Configuration File to Support Transactions (BEA Tuxedo CORBA
Servers)

Sample Distributed Application Using Transactions

Before you begin, you should read Chapter 1, “Introducing Transactions.”

Notes: The administrative information applies whether you are using the Bootstrap object or the
CORBA interoperable Naming Service (INS) to obtain initial object references to the
BEA Tuxedo ORB.

The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported. All BEA Tuxedo CORBA Java
client and BEA Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

5-2 Using CORBA Transactions

Modifying the UBBCONFIG File to Accommodate
Transactions

This topic includes the following sections:

Summary of Steps

Step 1: Specify Application-wide Transactions in the RESOURCES Section

Step 2: Create a Transaction Log (TLOG)

Step 3: Define Each Resource Manager (RM) and the Transaction Manager Server in the
GROUPS Section

Step 4: Enable an Interface to Begin a Transaction

Summary of Steps
To accommodate transactions, you must modify the RESOURCES, MACHINES, GROUPS, and the
INTERFACES or SERVICES sections of the application’s UBBCONFIG file in the following ways:

In the RESOURCES section, specify the application-wide number of allowed transactions and
the value of the commit control flag.

In the MACHINES section, create the TLOG information for each machine.

In the GROUPS section, indicate information about each resource manager and about the
Transaction Manager Server.

In the INTERFACES section (for BEA Tuxedo CORBA applications only) or the SERVICES
section (for BEA Tuxedo ATMI applications only), enable the automatic transaction
option.

For instructions about modifying these sections in the UBBCONFIG file, see “Creating a
Configuration File” in the Setting Up a BEA Tuxedo Application.

Step 1: Specify Application-wide Transactions in the
RESOURCES Section
Table 5-1 provides a description of transaction-related parameters in the RESOURCES section of
the configuration file.

Modi f y ing the UBBCONFIG F i l e t o Accommodate T ransact ions

Using CORBA Transactions 5-3

Step 2: Create a Transaction Log (TLOG)
This section discusses creating a transaction log (TLOG), which refers to a log in which
information on transactions is kept until the transaction is completed.

Creating the UDL
The Universal Device List (UDL) is like a map of the BEA Tuxedo file system. The UDL gets
loaded into shared memory when an application is booted. To create an entry in the UDL for the
TLOG device, create the UDL on each machine using global transactions. If the TLOGDEVICE is
mirrored between two machines, it is unnecessary to do this on the paired machine. The Bulletin
Board Liaison (BBL) then initializes and opens the TLOG during the boot process.

Table 5-1 Transaction-related Parameters in the RESOURCES Section

Parameter Meaning

MAXGTT Limits the total number of global transaction identifiers (GTRIDs) allowed on
one machine at one time. The maximum value allowed is 2048, the minimum
is 0, and the default is 100. You can override this value on a per-machine
basis in the MACHINES section.

Entries remain in the table only while the global transaction is active, so this
parameter has the effect of setting a limit on the number of simultaneous
transactions.

CMTRET Specifies the initial setting of the TP_COMMIT_CONTROL characteristic. The
default is COMPLETE. Following are its two settings:
• LOGGED—the TP_COMMIT_CONTROL characteristic is set to

TP_CMT_LOGGED, which means that tpcommit() returns when all the
participants have successfully precommitted.

• COMPLETE—the TP_COMMIT_CONTROL characteristic is set to
TP_CMT_COMPLETE, which means that tpcommit() will not return
until all the participants have successfully committed.

Note: You should consult with the RM vendors to determine the
appropriate setting. If any RM in the application uses the late commit
implementation of the XA standard, the setting should be
COMPLETE. If all the resource managers use the early commit
implementation, the setting should be LOGGED for performance
reasons. (You can override this setting with tpscmt().)

5-4 Using CORBA Transactions

To create the UDL, enter a command using the following format, before the application has been
booted:

tmadmin -c crdl -z config -b blocks

where:

Note: In general, the value that you supply for blocks should not be less than the value for
TLOGSIZE. For example, if TLOGSIZE is specified as 200 blocks, specifying -b 500
would not cause a degradation.

For more information about storing the TLOG, see Installing the BEA Tuxedo System.

Defining Transaction-related Parameters in the MACHINES Section
You can define a global transaction log (TLOG) using several parameters in the MACHINES section
of the UBBCONFIG file. You must manually create the device list entry for the TLOGDEVICE on
each machine where a TLOG is needed. You can do this either before or after TUXCONFIG has been
loaded, but it must be done before the system is booted.

Note: If you are not using transactions, the TLOG parameters are not required.

Table 5-2 provides a description of transaction-related parameters in the MACHINES section of the
configuration file.

-z config Specifies the full pathname for the device where you should create the
UDL.

-b blocks Specifies the number of blocks to be allocated on the device.

config Should match the value of the TLOGDEVICE parameter in the
MACHINES section of the UBBCONFIG file.

Table 5-2 Transaction-related Parameters in the MACHINES Section

Parameter Meaning

TLOGNAME The name of the DTP transaction log for this machine.

TLOGDEVICE Specifies the BEA Tuxedo or BEA Tuxedo file system that contains
the DTP transaction log (TLOG) for this machine. If this parameter is
not specified, the machine is assumed not to have a TLOG. The
maximum string value length is 64 characters.

Modi f y ing the UBBCONFIG F i l e t o Accommodate T ransact ions

Using CORBA Transactions 5-5

Creating the Domains Transaction Log (BEA Tuxedo ATMI Servers Only)
This section applies to the ATMI servers only.

You can create the Domains transaction log before starting the Domains gateway group by using
the following command:

dmadmin(1) crdmlog (crdlog) -d local_domain_name

Create the Domains transaction log for the named local domain on the current machine (the
machine on which dmadmin is running). The command uses the parameters specified in the
DMCONFIG file. This command fails if the named local domain is active on the current machine or
if the log already exists. If the transaction log has not been created, the Domains gateway group
creates the log when it starts up.

Step 3: Define Each Resource Manager (RM) and the
Transaction Manager Server in the GROUPS Section
Additions to the GROUPS section fall into two categories:

Defining the Transaction Manager Servers that perform most of the work that controls
global transactions:

– The TMSNAME parameter specifies the name of the server executable.

TLOGSIZE The size of the TLOG file in physical pages. Its value must be between
1 and 2048, and its default is 100. The value should be large enough
to hold the number of outstanding transactions on the machine at a
given time. One transaction is logged per page. The default should
suffice for most applications.

TLOGOFFSET Specifies the offset in pages from the beginning of TLOGDEVICE to
the start of the VTOC that contains the transaction log for this
machine.The number must be greater than or equal to 0 and less than
the number of pages on the device. The default is 0.

TLOGOFFSET is rarely necessary. However, if two VTOCs share the
same device or if a VTOC is stored on a device (such as a file system)
that is shared with another application, you can use TLOGOFFSET to
indicate a starting address relative to the address of the device.

Table 5-2 Transaction-related Parameters in the MACHINES Section (Continued)

Parameter Meaning

5-6 Using CORBA Transactions

– The TMSCOUNT parameter specifies the number of such servers to boot
(the minimum is 2, the maximum is 10, and the default is 3).

A NULL Transactional Manager Server does not communicate with any resource manager.
It is used to exercise an application’s use of the transactional primitives before actually
testing the application in a recoverable, real environment. This server is named TMS and it
simply begins, commits, or terminates without talking to any resource manager.

Defining opening and closing information for each resource manager:

– OPENINFO is a string with information used to open a resource manager.

– CLOSEINFO is used to close a resource manager.

Sample GROUPS Section
The following sample GROUPS section derives from the bankapp banking application:

BANKB1 GRPNO=1 TMSNAME=TMS_SQL TMSCOUNT=2

OPENINFO=”TUXEDO/SQL:<APPDIR>/bankdl1:bankdb:readwrite”

Table 5-3 describes the transaction values specified in this sample GROUPS section.

Characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and CLOSEINFO
Parameters
Table 5-4 lists the characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and CLOSEINFO
parameters.

Table 5-3 Transaction Values in the GROUPS Section of a Sample UBBCONFIG File

Transaction Value Meaning

BANKB1 GRPNO=1
TMSNAME=TMS_SQL\ TMSCOUNT=2

Contains the name of the Transaction Manager
Server (TMS_SQL) and the number (2) of these
servers to be booted in the group BANKB1

TUXEDO/SQL Published name of the resource manager

<APPDIR>/bankdl1 Includes a device name

bankdb Database name

readwrite Access mode

Modi f y ing the UBBCONFIG F i l e t o Accommodate T ransact ions

Using CORBA Transactions 5-7

Step 4: Enable an Interface to Begin a Transaction
To enable an interface to begin a transaction, you change different sections in the UBBCONFIG file,
depending on whether you are configuring a BEA Tuxedo CORBA server or BEA Tuxedo ATMI
server.

Changing the INTERFACES Section (BEA Tuxedo CORBA Servers)

Changing the SERVICES Section (BEA Tuxedo ATMI Servers)

Changing the INTERFACES Section (BEA Tuxedo CORBA Servers)
The INTERFACES section in the UBBCONFIG file supports BEA Tuxedo CORBA interfaces:

For each CORBA interface, set AUTOTRAN to Y if you want a transaction to start
automatically when an operation invocation is received. AUTOTRAN=Y has no effect if the
interface is already in transaction mode. The default is N. The effect of specifying a value
for AUTOTRAN depends on the transactional policy specified by the developer in the
Implementation Configuration File (ICF) for the interface. This transactional policy will
become the transactional policy attribute of the associated T_IFQUEUE MIB object at run
time. The only time this value affects the behavior of the application is if the developer
specified a transaction policy of optional.

Table 5-4 Characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and CLOSEINFO Parameters

Parameter Characteristics

TMSNAME Name of the Transaction Manager Server executable.

Required parameter for transactional configurations.

TMS is a NULL Transactional Manager Server.

TMSCOUNT Number of Transaction Manager Servers (must be between 2 and 10).

Default is 3.

OPENINFO

CLOSEINFO
Represents information to open or close a resource manager.

Content depends on the specific resource manager.

Starts with the name of the resource manager.

Omission means the resource manager needs no information to open.

5-8 Using CORBA Transactions

Note: To work properly, this feature depends on collaboration between the system designer
and the administrator. If the administrator sets this value to Y without prior knowledge
of the transaction policy defined by the developer in the interface’s ICF, the actual
run time effect of the parameter might be unknown.

If AUTOTRAN is set to Y, you must set the TRANTIME parameter, which specifies the
transaction timeout, in seconds, for the transactions to be created. The value must be
greater than or equal to zero and must not exceed 2,147,483,647
(231 - 1, or about 70 years). A value of zero implies there is no timeout for the transaction.
(The default is 30 seconds.)

Table 5-5 describes the characteristics of the AUTOTRAN, TRANTIME, and FACTORYROUTING
parameters.

Table 5-5 Characteristics of the AUTOTRAN, TRANTIME, and FACTORYROUTING Parameters

Parameter Characteristics

AUTOTRAN • Makes an interface the initiator of a transaction.
• To work properly, it is dependent on collaboration between

the system designer and the system administrator. If the
administrator sets this value to Y without prior knowledge of
the ICF transaction policy set by the developer, the actual
run-time effort of the parameter might be unknown.

• The only time this value affects the behavior of the application
is if the developer specified a transaction policy of
optional.

• If a transaction already exists, a new one is not started.
• Default is N.

TRANTIME • Represents the timeout for the AUTOTRAN transactions.

• Valid values are between 0 and 231 - 1, inclusive.
• Zero (0) represents no timeout.
• Default is 30 seconds.

FACTORYROUTING • Specifies the name of the routing criteria to be used for
factory-based routing for this CORBA interface.

• You must specify a FACTORYROUTING parameter for
interfaces requesting factory-based routing.

Modi f y ing the UBBCONFIG F i l e t o Accommodate T ransact ions

Using CORBA Transactions 5-9

Changing the SERVICES Section (BEA Tuxedo ATMI Servers)
The following are three transaction-related features in the SERVICES section:

If you want a service (instead of a client) to begin a transaction, you must set the
AUTOTRAN flag to Y. This is useful if the service is not needed as part of any larger
transaction, and if the application wants to relieve the client of making transaction
decisions. If the service is called when there is already an existing transaction, this call
becomes part of it. (The default is N.)

Note: Generally, clients are the best initiators of transactions because a service has the
potential of participating in a larger transaction.

If AUTOTRAN is set to Y, you must set the TRANTIME parameter, which is the transaction
timeout, in seconds, for the transactions to be created. The value must be greater than or
equal to 0 and must not exceed 2,147,483,647 (231 - 1, or about 70 years). A value of zero
implies there is no timeout for the transaction. (The default is 30 seconds.)

You must specify a ROUTING parameter for transactions that request data-dependent
routing.

Table 5-6 describes the characteristics of the AUTOTRAN, TRANTIME, and ROUTING parameters:

Table 5-6 Characteristics of the AUTOTRAN, TRANTIME, and ROUTING Parameters

Parameter Characteristics

AUTOTRAN Makes a service the initiator of a transaction.

Relieves the client of the transactional burden.

If a transaction already exists, a new one is not started.

Default is N.

TRANTIME Represents the timeout for the AUTOTRAN transactions.

Valid values are between 0 and 231 - 1, inclusive.

0 represents no timeout.

Default is 30 seconds.

ROUTING Points to an entry in the ROUTING section where data-dependent routing
is specified for transactions that request this service.

5-10 Using CORBA Transactions

Modifying the Domain Configuration File to Support
Transactions (BEA Tuxedo CORBA Servers)

This topic includes the following sections:

Characteristics of the DMTLOGDEV, DMTLOGNAME, DMTLOGSIZE, MAXRDTRAN,
and MAXTRAN Parameters

Characteristics of the AUTOTRAN and TRANTIME Parameters (BEA Tuxedo CORBA
and ATMI Servers)

To enable transactions across domains, you need to set parameters in both the
DM_LOCAL_DOMAINS and the DM_REMOTE_SERVICES sections of the Domains configuration file
(DMCONFIG). Entries in the DM_LOCAL_DOMAINS section define local domain characteristics.
Entries in the DM_REMOTE_SERVICES section define information on services that are imported
and that are available on remote domains.

Characteristics of the DMTLOGDEV, DMTLOGNAME,
DMTLOGSIZE, MAXRDTRAN, and MAXTRAN Parameters
The DM_LOCAL_DOMAINS section of the Domains configuration file identifies local domains and
their associated gateway groups. This section must have an entry for each gateway group (local
domain). Each entry specifies the parameters required for the Domains gateway processes
running in that group.

Table 5-7 provides a description of the five transaction-related parameters in this section:
DMTLOGDEV, DMTLOGNAME, DMTLOGSIZE, MAXRDTRAN, and MAXTRAN.

Modi f y ing the Domain Conf igurat ion F i l e t o Suppor t T ransact ions (BEA Tuxedo CORBA Serve rs)

Using CORBA Transactions 5-11

Characteristics of the AUTOTRAN and TRANTIME Parameters
(BEA Tuxedo CORBA and ATMI Servers)
The DM_REMOTE_SERVICES section of the Domains configuration file identifies information on
services imported and available on remote domains. Remote services are associated with a
particular remote domain.

Table 5-7 Characteristics of the DMTLOGDEV, DMTLOGNAME, DMTLOGSIZE, MAXRDTRAN, and MAXTRAN
Parameters

Parameter Characteristics

DMTLOGDEV Specifies the BEA Tuxedo file system that contains the Domains
transaction log (DMTLOG) for this machine. The DMTLOG is stored as a
BEA Tuxedo VTOC table on the device. If this parameter is not specified,
the Domains gateway group is not allowed to process requests in
transaction mode. Local domains running on the same machine can share
the same DMTLOGDEV file system, but each local domain must have its
own log (a table in the DMTLOGDEV) named as specified by the
DMTLOGNAME keyword.

DMTLOGNAME Specifies the name of the Domains transaction log for this domain. This
name must be unique when the same DMTLOGDEV is used for several
local domains. If a value is not specified, the value defaults to the string
DMTLOG. The name must contain 30 characters or less.

DMTLOGSIZE Specifies the numeric size of the Domains transaction log for this
machine (in pages). It must be greater than zero and less than the amount
of available space on the BEA Tuxedo file system. If a value is not
specified, the value defaults to 100 pages.

Note: The number of domains in a transaction determine the number
of pages you must specify in the DMTLOGSIZE parameter. One
transaction does not necessarily equal one log page.

MAXRDTRAN Specifies the maximum number of domains that can be involved in a
transaction. It must be greater than zero and less than 32,768. If a value
is not specified, the value defaults to 16.

MAXTRAN Specifies the maximum number of simultaneous global transactions
allowed on this local domain. It must be greater than or equal to zero, and
less than or equal to the MAXGTT parameter specified in the TUXCONFIG
file. If not specified, the default is the value of MAXGTT.

5-12 Using CORBA Transactions

Table 5-8 describes the two transaction-related parameters in this section: AUTOTRAN and
TRANTIME.

Table 5-8 Characteristics of the AUTOTRAN and TRANTIME Parameters

Parameter Characteristics

AUTOTRAN Used by gateways to automatically start/terminate transactions for
remote services. This capability is required if you want to enforce
reliable network communication with remote services. You specify this
capability by setting the AUTOTRAN parameter to Y in the corresponding
remote service definition.

TRANTIME Specifies the default timeout value in seconds for a transaction
automatically started for the associated service. The value must be
greater than or equal to zero, and less than 2147483648. The default is
30 seconds. A value of zero implies the maximum timeout value for the
machine.

Sample D is t r ibuted Appl i ca t ion Us ing T ransact ions

Using CORBA Transactions 5-13

Sample Distributed Application Using Transactions
This topic includes the following sections:

RESOURCES Section

MACHINES Section

GROUPS and NETWORK Sections

SERVERS, SERVICES, and ROUTING Sections

This topic describes a sample configuration file for a sample CORBA application that enables
transactions and distributes the application over three sites. The application includes the
following features:

Data-dependent routing on ACCOUNT_ID.

Data distributed over three databases.

BRIDGE processes communicating with the system via the ATMI interface.

System administration from one site.

The configuration file includes seven sections: RESOURCES, MACHINES, GROUPS, NETWORK,
SERVERS, SERVICES, and ROUTING.

RESOURCES Section
The RESOURCES section shown in Listing 5-1 specifies the following parameters:

MAXSERVERS, MAXSERVICES, and MAXGTT are less than the defaults. This makes the
Bulletin Board smaller.

MASTER is SITE3 and the backup master is SITE1.

MODEL is set to MP and OPTIONS is set to LAN, MIGRATE. This allows a networked
configuration with migration.

BBLQUERY is set to 180 and SCANUNIT is set to 10. This means that DBBL checks of the
remote BBLs are done every 1800 seconds (one half hour).

5-14 Using CORBA Transactions

Listing 5-1 Sample RESOURCES Section

*RESOURCES

#

IPCKEY 99999

UID 1

GID 0

PERM 0660

MAXACCESSERS 25

MAXSERVERS 25

MAXSERVICES 40

MAXGTT 20

MASTER SITE3, SITE1

SCANUNIT 10

SANITYSCAN 12

BBLQUERY 180

BLOCKTIME 30

DBBLWAIT 6

OPTIONS LAN, MIGRATE

MODEL MP

LDBAL Y

MACHINES Section
The MACHINES section shown in Listing 5-2 specifies the following parameters:

TLOGDEVICE and TLOGNAME are specified, which indicate that transactions will be done.

The TYPE parameters are all different, which indicates that encode/decode will be done on
all messages sent between machines.

Listing 5-2 Sample MACHINES Section

*MACHINES

Gisela LMID=SITE1

 TUXDIR=”/usr/tuxedo”

 APPDIR=”/usr/home”

Sample D is t r ibuted Appl i ca t ion Us ing T ransact ions

Using CORBA Transactions 5-15

 ENVFILE=”/usr/home/ENVFILE”

 TLOGDEVICE=”/usr/home/TLOG”

 TLOGNAME=TLOG

 TUXCONFIG=”/usr/home/tuxconfig”

 TYPE=”3B600”

romeo LMID=SITE2

 TUXDIR=”/usr/tuxedo”

 APPDIR=”/usr/home”

 ENVFILE=”/usr/home/ENVFILE”

 TLOGDEVICE=”/usr/home/TLOG”

 TLOGNAME=TLOG

 TUXCONFIG=”/usr/home/tuxconfig”

 TYPE=”SEQUENT”

juliet LMID=SITE3

 TUXDIR=”/usr/tuxedo”

 APPDIR=’/usr/home”

 ENVFILE=”/usr/home/ENVFILE”

 TLOGDEVICE=”/usr/home/TLOG”

 TLOGNAME=TLOG

 TUXCONFIG=”/usr/home/tuxconfig”

 TYPE=”AMDAHL”

GROUPS and NETWORK Sections
The GROUPS and NETWORK sections shown in Listing 5-3 specify the following parameters:

The TMSCOUNT is set to 2, which means that only two TMS_SQL transaction manager servers
will be booted per group.

The OPENINFO string indicates that the application will perform database access.

5-16 Using CORBA Transactions

Listing 5-3 Sample GROUPS and NETWORK Sections

*GROUPS

DEFAULT: TMSNAME=TMS_SQL TMSCOUNT=2

BANKB1 LMID=SITE1 GRPNO=1

 OPENINFO=”TUXEDO/SQL:/usr/home/bankdl1:bankdb:readwrite”

BANKB2 LMID=SITE2 GRPNO=2

 OPENINFO=”TUXEDO/SQL:/usr/home/bankdl2:bankdb:readwrite”

BANKB3 LMID=SITE3 GRPNO=3

 OPENINFO=”TUXEDO/SQL:/usr/home/bankdl3:bankdb:readwrite”

*NETWORK

SITE1 NADDR=”0X0002ab117B2D4359”

 BRIDGE=”/dev/tcp”

 NLSADDR=”0X0002ab127B2D4359”

SITE2 NADDR=”0X0002ab117B2D4360”

 BRIDGE=”/dev/tcp”

 NLSADDR=”0X0002ab127B2D4360”

SITE3 NADDR=”0X0002ab117B2D4361”

 BRIDGE=”/dev/tcp”

 NLSADDR=”0X0002ab127B2D4361”

SERVERS, SERVICES, and ROUTING Sections
The SERVERS, SERVICES, and ROUTING sections shown in Listing 5-4 specify the following
parameters:

The TLR servers have a -T number passed to their tpsrvrinit() functions.

All requests for the services are routed on the ACCOUNT_ID field.

None of the services will be performed in AUTOTRAN mode.

Sample D is t r ibuted Appl i ca t ion Us ing T ransact ions

Using CORBA Transactions 5-17

Listing 5-4 Sample SERVERS, SERVICES, and ROUTING Sections

*SERVERS

DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=N CLOPT=”-A”

TLR SRVGRP=BANKB1 SRVID=1 CLOPT=”-A -- -T 100"

TLR SRVGRP=BANKB2 SRVID=3 CLOPT=”-A -- -T 400"

TLR SRVGRP=BANKB3 SRVID=4 CLOPT=”-A -- -T 700"

XFER SRVGRP=BANKB1 SRVID=5 REPLYQ=Y

XFER SRVGRP=BANKB2 SRVID=6 REPLYQ=Y

XFER SRVGRP=BANKB3 SRVID=7 REPLYQ=Y

*SERVICES

DEFAULT: AUTOTRAN=N

WITHDRAW ROUTING=ACCOUNT_ID

DEPOSIT ROUTING=ACCOUNT_ID

TRANSFER ROUTING=ACCOUNT_ID

INQUIRY ROUTING=ACCOUNT_ID

*ROUTING

ACCOUNT_ID FIELD=ACCOUNT_ID BUFTYPE=”FML”

 RANGES=”MON - 9999:*,

 10000 - 39999:BANKB1

 40000 - 69999:BANKB2

 70000 - 100000:BANKB3

 “”

5-18 Using CORBA Transactions

