
Oracle® Communication and Mobility Server
Administrator’s Guide

10g Release 3 (10.1.3)

E12656-01

July 2008

Oracle Communication and Mobility Server Administrator’s Guide 10g Release 3 (10.1.3)

E12656-01

Copyright © 2006, 2008, Oracle. All Rights Reserved.

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs
on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including
documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable
Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway,
Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

Copyright © 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.

License to copy and use this software is granted provided that it is identified as the 'RSA Data Security, Inc.
MD5 Message-Digest Algorithm' in all material mentioning or referencing this software or this function.

License is also granted to make and use derivative works provided that such works are identified as
'derived from the RSA Data Security, Inc. MD5 Message-Digest Algorithm' in all material mentioning or
referencing the derived work.

RSA Data Security, Inc. makes no representations concerning either the merchantability of this software or
the suitability of this software for any particular purpose. It is provided 'as is' without express or implied
warranty of any kind.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface ... xi

Intended Audience.. xi
Documentation Accessibility ... xi
Related Documents ... xi
Conventions .. xii

1 An Overview of Oracle Communication and Mobility Server

New in this Release.. 1-1
TLS Support .. 1-1
Scalable Presence Deployments with User Dispatcher .. 1-2

Presence Dispatching ... 1-2
Web Services Improvements .. 1-2

Introduction to OCMS... 1-2
OCMS Three Layer Model ... 1-3

Proxy Layer ... 1-3
Application Layer... 1-4
Data Layer ... 1-4

OCMS System Components... 1-4
SIP Servlets and SIP Servlet Applications .. 1-5

Differences between HTTP and SIP Servlets .. 1-6
Typical SIP Servlet Applications .. 1-6

SIP Servlet Container ... 1-7
How the OCMS SIP Servlet Container Works ... 1-7

Edge Proxy Server.. 1-8
Proxy Registrar ... 1-9

Location Lookup Service... 1-10
ENUM Lookup Service ... 1-10

Presence Server.. 1-11
How the Presence Server Works ... 1-12

Application Router.. 1-13
Modes of Operation... 1-13
Using the Application Router in Standard Mode: an Example .. 1-14
Using the Application Router in Incremental Mode: an Example 1-14

Subscriber Data Services .. 1-15
Authentication and Authorization Data... 1-15

iv

User Data... 1-15
Location Lookup Data... 1-15

Logging... 1-15
Session Replication.. 1-15

2 Deployment Topologies

About Deployment Topologies ... 2-1
Topology Components .. 2-2

Third-Party Load Balancer.. 2-2
Edge Proxy Nodes.. 2-2
SIP Application Servers... 2-2
Aggregation Proxy... 2-3
Proxy Registrar ... 2-3
User Dispatcher .. 2-3

Presence Dispatching ... 2-3
Supported OCMS Topologies .. 2-3
Deploying OCMS as a Highly Available SIP Network .. 2-3
Deploying OCMS as a Presence Server ... 2-5
Deploying a Scalable Presence Deployment .. 2-6

Presence Cluster ... 2-6
XDM Cluster ... 2-7
Presence Node .. 2-8
XDM Node .. 2-8
Complete Presence and XDM Cluster... 2-8

Deploying OCMS as an Instant Messaging Service ... 2-9
Deploying an OCMS Testing Environment ... 2-11
Configuration Recommendations ... 2-13

3 Configuring the SIP Server MBeans

Overview of SIP Server Management .. 3-1
Starting, Stopping and Restarting the OCMS SIP Server .. 3-2

Starting an Application and Stopping a SIP Servlet Application ... 3-2
Managing OCMS MBeans.. 3-3

Accessing MBeans.. 3-4
Accessing SIP Servlet Container MBeans.. 3-4
Accessing the MBeans for a Selected SIP Application... 3-5

Configuring the SIP Servlet Container MBeans .. 3-5
SIP Servlet Container.. 3-6
Setting the Keystore... 3-11
Enabling TLS... 3-11
SIP Servlet Container Logging... 3-12
STUN Service.. 3-12

Configuring SIP Applications ... 3-13
Subscriber Data Services ... 3-13
Proxy Registrar... 3-16
Application Router .. 3-17

Setting and Viewing the SIP Port.. 3-19

v

4 Configuring Security and Login Modules

Overview of Security ... 4-1
The OCMS JAAS-Compliant Login Modules .. 4-1

Application Type and Authentication Mode.. 4-2
Configuring Subscriber Data Services... 4-3

CommandService .. 4-4
Configuring Applications to Use Login Modules ... 4-6

Configuring Login Modules though system-jazn-data.xml and orion-application.xml 4-6
Configuring Login Modules in system-jazn-data.xml .. 4-6
Declaring the OCMS Login Module in orion-application.xml... 4-7
Declaring the RADIUS Login Module in orion-application.xml ... 4-7

Security in SIP Servlets ... 4-8
Authentication Using the P-Asserted Identity Header ... 4-9
Authentication of Web Service Calls and XCAP Traffic .. 4-10
Default Role for All Users ... 4-10
 Configuring Oracle Internet Directory as the User Repository ... 4-10

Overview of Configuration for OID Support ... 4-10
Prerequisites for OID Support ... 4-10

Configuring the OID LDAP Backend... 4-11
Mapping JAAS Usernames to LDAP User Entries ... 4-11
Mapping JAAS Realms to LDAP Subscribers.. 4-11
Mapping JAAS Roles to LDAP Groups .. 4-11

Installing OCMS Components into the OID LDAP Tree .. 4-12
Associating an OCMS Instance with OID .. 4-12
Installing the OCMS Static Verifiers ... 4-13

Repackaging Subscriber Data Services .. 4-13
Configuring User Service and Security Service... 4-13

Provisioning OCMS Users to OID .. 4-18
Adding Users to LDAP Groups... 4-18

5 Configuring High Availability

About Configuring High Availability.. 5-1
Setting Up a Highly Available Cluster of OCMS Nodes ... 5-3

Associating Nodes with OPMN... 5-3
Associating Nodes with OPMN Using the Dynamic Discovery Method 5-3
Associating Nodes with OPMN Using the Discovery Server Method 5-4

Starting the Cluster .. 5-5
Verifying the Status of the Cluster... 5-5
Stopping the Cluster .. 5-5

Configuring the OCMS SIP Containers for High Availability ... 5-5
Configuring the Edge Proxy Nodes for High Availability... 5-6

The NAT Traversal Option Enabled for the Edge Proxy ... 5-7
Disabling NAT Traversal Enabled by the Edge Proxy.. 5-7

Configuring Highly Available SIP Servlet Applications ... 5-8
Enabling High Availability in SIP Servlet Applications... 5-8
Configuring Application Session Data Replication ... 5-10

vi

Configuring High Availability for a Deployed SIP Servlet Application 5-11
Disabling High Availability at the Application Level ... 5-12
Upgrading SIP Servlet Applications in OCMS ... 5-12

Configuring an Overload Policy .. 5-13
Overview of Overload Policy Architecture... 5-13
Collectors.. 5-13
Deactivating the Overload Protection for System Tuning .. 5-19

6 Viewing Statistics and Metrics

Viewing Statistics and Metrics .. 6-1
SIP Servlet Container Monitor ... 6-1

Viewing System Status... 6-1
Viewing Transactions .. 6-2
Using the Current, Peak, and Total Usage Statistics to Tune the System........................... 6-4

Application Counters .. 6-4
Memory Monitor .. 6-5

Starting and Stopping the Memory Monitor .. 6-5
SIP Cluster ... 6-5

7 Configuring Presence and Presence Web Services

Overview of Presence .. 7-1
Configuring Presence .. 7-2

Configuring XDMS .. 7-3
Bus .. 7-3
PackageManager .. 7-4
Presence ... 7-5
PresenceEventPackage .. 7-6
PresenceWInfoEventPackage ... 7-7
UA-ProfileEventPackage... 7-8
UserAgentFactoryService ... 7-8
Command Service (XDMS Provisioning) ... 7-9
XCapConfig... 7-9

Configuring Presence Web Services .. 7-10
PresenceWebServiceDeployer... 7-11
PresenceSupplierWebService .. 7-11
PresenceConsumerWebService... 7-12
Aggregation Proxy.. 7-12
Configuring the Aggregation Proxy to Work with Realms .. 7-13
Securing the XDMS with the Aggregation Proxy... 7-14

Configuring Scalable Presence Deployments with the User Dispatcher 7-14
Failover ... 7-14

Presentity Migration.. 7-15
Standby Server Pool... 7-15
Failure Types .. 7-16
Failover Actions ... 7-16
Overload Policy.. 7-17
Synchronization of Failover Events... 7-17

vii

Expanding the Cluster.. 7-17
Updating the Node Set.. 7-18
Migrating Presentities ... 7-18

Failover Use Cases .. 7-18
One Presence Server Overloaded for 60 Seconds.. 7-18
One Presence Server Overloaded Multiple Times for Five Seconds 7-19
Overload Policy Triggered by an OCMS Software Failure.. 7-19
A Presence Server Hardware Failure.. 7-19
Expanding the Cluster with One Presence Node.. 7-19
Removing a Node from the Cluster .. 7-20
OPMN Restart After a Presence Server Crash... 7-20
503 Responses from an Application .. 7-20

8 OCMS Parlay X Web Services Architecture

Architecture of Web Service Client Applications .. 8-1
Web Service Security ... 8-1

Web Service Security on Notification.. 8-2
Installing the Web Services .. 8-3

9 OCMS Parlay X Presence Web Services

Introduction... 9-1
Presence Web Services Interface Descriptions ... 9-1
Using the Presence Web Services Interfaces ... 9-3

Interface: PresenceConsumer, Operation: subscribePresence... 9-3
Code Example.. 9-3

Interface: PresenceConsumer, Operation: getUserPresence.. 9-3
Code Example.. 9-4

Interface: PresenceConsumer, Operation: startPresenceNotification .. 9-4
Code Example.. 9-4

Interface: PresenceConsumer, Operation: endPresenceNotification.. 9-5
Code Example.. 9-5

Interface PresenceSupplier, Operation: publish and Oracle Specific Remove Presence 9-5
Code Example.. 9-5

Interface: PresenceSupplier, Operation: getOpenSubscriptions ... 9-6
Code Example.. 9-6

Interface: PresenceSupplier, Operation: updateSubscriptionAuthorization............................. 9-6
Code Example.. 9-6

Interface: PresenceSupplier, Operation: getMyWatchers .. 9-7
Code Example.. 9-7

Interface: PresenceSupplier, Operation: getSubscribedAttributes ... 9-7
Code Example.. 9-7

Interface: PresenceSupplier, Operation: blockSubscription... 9-7
Code Example.. 9-7

OCMS Parlay X Presence Custom Error Codes .. 9-7

viii

10 OCMS Parlay X Multimedia Messaging Web Services

Introduction .. 10-1
Multimedia Messaging Web Services Interface Descriptions.. 10-1
Using the Multimedia Messaging Web Services Interfaces ... 10-3

Interface: SendMessage, Operation: sendMessage... 10-3
Interface: sendMessage, Operation: getMessageDeliveryStatus.. 10-3
Interface: ReceiveMessage, Operation: getReceivedMessages... 10-3
Interface: ReceiveMessage, Operation: getMessageURIs.. 10-3
Interface ReceiveMessage, Operation: getMessage.. 10-3
Interface: MessageNotificationManager, Operation: startMessageNotification.................... 10-4
Interface: MessageNotificationManager, Operation: stopMessageNotification.................... 10-4

11 Provisioning Users with Sash

Overview of Sash .. 11-1
Launching Sash.. 11-1

Launching Sash from the Command Line... 11-1
Connecting Sash to an External OCMS Instance .. 11-2

Connecting to an External Instance of OC4J .. 11-2
Connecting Sash to an External Oracle Application Server Instance............................... 11-2

Using Sash .. 11-2
Viewing Available Commands ... 11-2

Viewing Subcommands .. 11-5
Creating a User... 11-7

Creating a User from the Sash Command-Line Prompt ... 11-7
Creating a User with the Command Service MBean ... 11-8
Creating a User with the identity add Command.. 11-9

Deleting a User Account with the identity delete Command ... 11-10
Provisioning the XDMS Using Sash.. 11-10

Provisioning XDMS User Accounts Using the CommandService MBean 11-10
Provisioning XDMS User Accounts from the Sash Prompt.. 11-10
Using xcap Commands .. 11-11

Provisioning XDMS User Accounts .. 11-11
Adding XDMS Users ... 11-11
Removing an XDMS User ... 11-11
Searching for Application Usage for an XDMS User.. 11-11
Listing XDMS Users... 11-12
Provisioning Application Usage.. 11-12
Listing All Application Usages .. 11-12

Scripting with Sash ... 11-12
Error Logging in Sash ... 11-13

12 Configuring the Logging System

Overview of Oracle Diagnostic Logging in OCMS.. 12-1
Logging Components ... 12-1
Filtering of Logging Information by Single Class Files ... 12-1
Log Files.. 12-2

ix

Logger Interfaces... 12-2
Logging Levels ... 12-2
Setting the Log Levels for Components.. 12-3

13 Deploying Applications

Overview of SIP Servlet Applications .. 13-1
Deploying SIP Applications ... 13-2

Deploying, Undeploying, and Redeploying SIP Applications Using Oracle Application
Server Control .. 13-3
Deploying, Undeploying, and Redeploying SIP Servlet Applications with Application
Server Control ... 13-4

Deploying an Application using the Deployment Wizard.. 13-4
Undeploying an Application Using the Deployment Wizard .. 13-7
Redeploying an Application Using the Deployment Wizard ... 13-7

Deploying, Undeploying, and Redeploying an Application Using the admin_client.jar
Utility .. 13-8

Deploying an Application Using admin_client.jar ... 13-8
Undeploying an Application Using admin_client.jar .. 13-8
Redploying an Application Using admin_client.jar ... 13-8

Deploying the SIP Application Using the admin_client.jar Command-Line Utility 13-8

A Supported Protocols, RFCs, and Standards

SIP Servlet Container ... A-1
RFCs .. A-1
Drafts... A-2
Specification Requests .. A-3

Presence Server .. A-3
RFCs .. A-3
Drafts Referenced in the Composition Policies .. A-4
XDMS Server.. A-4
Authorization and Privacy Filtering .. A-4
Presence Data Modeling and Processing... A-5
OMA Extensions.. A-5
Hard State via XCAP .. A-5

B Third-Party Licensing

Third-Party Licenses ... B-1

Index

x

xi

Preface

This guide describes how to configure and manage the Oracle Communication and
Mobility Server.

Intended Audience
This manual is intended for Oracle Communication and Mobility Server
administrators.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Standards will continue to evolve over
time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For additional information, visit the Oracle Accessibility Program Web site
at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen reader,
may not always correctly read the code examples in this document. The conventions
for writing code require that closing braces should appear on an otherwise empty line;
however, JAWS may not always read a line of text that consists solely of a bracket or
brace.

Accessibility of Links to External Web Sites in Documentation This documentation
may contain links to Web sites of other companies or organizations that Oracle does
not own or control. Oracle neither evaluates nor makes any representations regarding
the accessibility of these Web sites.

Related Documents
For more information, see the following manuals:

■ Oracle Communication and Mobility Server Installation Guide

■ Oracle Containers for J2EE Configuration and Administration Guide

■ Oracle Containers for J2EE Deployment Guide

xii

■ Oracle Containers for J2EE Security Guide

■ Oracle Internet Directory Administrator’s Guide

■ Oracle Internet Guide to Delegated Administration

■ Oracle Communication and Mobility Server resources on Oracle Technology
Network (http://www.oracle.com/technology/products/ocms/otn_front.htm).
This is the location for Oracle Communication and Mobility Server guides, release
notes, white papers, and updates.

Support—Visit: http://www.oracle.com/support

Conventions
The following conventions are also used in this manual:

Convention Meaning

 .
 .
 .

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that parts
of the statement or command not directly related to the example have
been omitted

boldface text Boldface type in text indicates a term defined in the text, the glossary,
or in both locations.

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or
none.

An Overview of Oracle Communication and Mobility Server 1-1

1
An Overview of Oracle Communication and

Mobility Server

This chapter provides an introduction to the Oracle Communication and Mobility
Server (OCMS) in the following sections:

■ "New in this Release"

■ "Introduction to OCMS"

■ "OCMS Three Layer Model"

■ "OCMS System Components"

■ "OCMS System Components"

New in this Release
This release of Oracle Communication and Mobility Server 10.1.3.4 includes the
following enhancements and new features:

■ "TLS Support"

■ "Scalable Presence Deployments with User Dispatcher"

■ "Web Services Improvements"

Oracle Database is now the main, supported database for OCMS subscriber
persistence. Oracle TimesTen is no longer included with OCMS 10.1.3.4.

To read about new and improved features, see the following link:

http://www.oracle.com/technology/products/ocms/otn_front.htm.

See also "Supported Protocols, RFCs, and Standards".

TLS Support
OCMS 10.1.3.4 supports TLS as a network connectivity option.

The OCMS SIP Servlet Container support TLS in two modes, one in which the SIP
container acts as a TLS server and another where you configure the SIP Servlet
Container to provide mutual TLS, where the container not only provides its server
certificate but also requires a client certificate.

Introduction to OCMS

1-2 Oracle Communication and Mobility Server Administrator’s Guide

Scalable Presence Deployments with User Dispatcher
The User Dispatcher enables the Presence and XDMS applications to scale. The User
Dispatcher is a proxy that dispatches SIP, HTTP, and XCAP (over HTTP) requests to
their appropriate destinations on a consistent basis.

Presence Dispatching
Because the Presence application maintains the states for all users in the deployment,
the User Dispatcher enables scaling (distribution) of the Presence application. The
User Dispatcher supports request dispatching to the following Presence
sub-applications, which use the SIP and XCAP (over HTTP) protocols:

■ Presence server

■ Presence XDMS

■ Shared XDMS

Web Services Improvements
The following improvements have been made to the Web Services APIs:

■ ParlayX 2.1 Presence Web Services API fully supported including asynchronous
Web services. For more information see, Chapter 9, "OCMS Parlay X Presence Web
Services".

■ A new API created for the SIP-based ParlayX 2.1 Messaging Web Services API. For
more information see Chapter 10, "OCMS Parlay X Multimedia Messaging Web
Services".

■ A new API for Contact Management API. This is a JAVA utility API that helps
managing users contact list and presence rules. For more detail, refer to the
javadoc that comes with the installation of OCMS. The javadoc is located at
$ORACLE_ HOME/sdp/api-docs/sdpcontactmanagement-10.1.3.4.0-javadoc.zip

Introduction to OCMS
Oracle Communication and Mobility Server (OCMS) is a carrier-grade SIP application
environment for the deployment, and management of SIP applications. Built on a
standard Java2 Enterprise Edition (J2EE) platform, OCMS is a flexible, scalable
environment enabling easy integration of SIP applications and services.

Among the applications that may be deployed on SIP platforms:

■ Voice and video telephony, including call management services such as call
forwarding and call barring

■ Publication of and subscription to user presence information, such as
online/offline status, notifications, permission to access a user’s status, and so on

■ Instant messaging

■ Push to Talk applications, including Push-to-Talk over Cellular (PoC)

OCMS provides standard SIP applications, including a Presence Server, a combination
Proxy and Registrar server, and a SIP Server. An integral part of any SIP platform,
these applications are automatically installed to the OCMS platform, reducing
development resources and time to go live.

OCMS provides a standards-based Presence Server which provides SIMPLE compliant
Presence and event notification features. The OCMS Presence Server is robust enough

OCMS Three Layer Model

An Overview of Oracle Communication and Mobility Server 1-3

to support carriers with a heavy load of subscribers, while still being a viable solution
for ISVs, system integrators, and enterprises requiring an integration platform and an
enterprise Presence Server.

OCMS provides the following functionality:

■ Deployment—SIP Servlet applications are easily packaged and deployed on
Oracle Application Server acting as a SIP servlet container.

■ Configuration and Management—The Oracle Application Server administrator
console enables managing SIP applications as well as the SIP server and its
components.

■ Authentication and Security—User, role, and policy data can be stored on an
external RADIUS database, or in Oracle Identity Management, enabling OCMS to
authenticate connecting users against this data. OCMS secures SIP traffic through
digest-based authentication as specified in RFC 3261. In addition, trusted hosts can
be configured using p-asserted identity headers.

■ Logging and Monitoring—OCMS enables monitoring of the deployed SIP
applications through comprehensive logging functions as well as metrics exposed
as JMX Mbeans.

OCMS Three Layer Model
Oracle Communication and Mobility Server architecture is composed of three layers:

■ Proxy Layer

■ Application Layer

■ Data Layer

Figure 1–1 OCMS Three Layer Model

Proxy Layer
The Proxy layer includes an IP load balancer and the OCMS Edge Proxy Server. The IP
load balancer provides a unique public address to which SIP requests are sent. The IP
load balancer distributes SIP requests either to the OCMS Edge Proxy Server or
directly to an OCMS SIP Server.

The IP load balancer is not SIP-aware - it is unaware of the content of the traffic it
forwards, such as the sender and recipient. The IP load balancer distributes requests to
OCMS nodes based on the availability of individual servers. This is essential in a

OCMS System Components

1-4 Oracle Communication and Mobility Server Administrator’s Guide

clustered environment, particularly in the event of a node failure. If a node fails, the
load balancer redistributes traffic to the remaining nodes until the failure is corrected.

The OCMS Edge Proxy is a SIP load balancer, proxying SIP requests to a particular
OCMS SIP Server. The Edge Proxy forms logical pathways between sessions and SIP
servers, such that SIP traffic sent from a particular session is always handled by the
same server. As the number of SIP clients increases, additional Edge Proxy servers can
be added, providing highly scalable and efficient handling of SIP clients.

Application Layer
The Application layer is typically composed of a cluster of OCMS SIP Server nodes.
The Application layer provides SIP clients with low response time and high
throughput when handling SIP requests. As the Application layer handles a greater
number of transactions, it can be scaled up by adding additional OCMS SIP Server
nodes. To achieve high availability of session data, replication of session data can be
enabled so that sessions survive a failover.

Data Layer
The Data layer is typically composed of a highly available, high performance database
for the storage and retrieval of user, authentication, authorization, and location data.
This data is replicated among all nodes. Similarly, SIP Servlet session data is replicated
among nodes. In the event of a node failure, another node takes over the session data
of the failed node.

OCMS System Components
Figure 1–2 illustrates the logical system components of OCMS:

OCMS System Components

An Overview of Oracle Communication and Mobility Server 1-5

Figure 1–2 Oracle Communication and Mobility Server

The OCMS components are as follows:

■ SIP Servlets and SIP Servlet Applications

■ SIP Servlet Container

■ Edge Proxy Server

■ Proxy Registrar

■ Presence Server

■ User Dispatcher (described in Scalable Presence Deployments with User
Dispatcher)

■ Application Router

■ Subscriber Data Services

■ Logging

■ Session Replication

SIP Servlets and SIP Servlet Applications
Servlets are dynamic applications that run on a web server using the J2EE platform.
Like the HTTP Servlet API, the SIP Servlet API (JSR116) extends the functionality of
the Java Servlet to receive SIP requests and generate SIP responses, regardless of the
underlying network. A SIP application consists of one or more SIP Servlets which,
along with a deployment descriptor, are packaged and deployed on a J2EE SIP Servlet
Container.

OCMS System Components

1-6 Oracle Communication and Mobility Server Administrator’s Guide

Differences between HTTP and SIP Servlets
Although they are similar, the SIP Servlet differs from the HTTP Servlet as follows:

■ SIP applications include intelligent request routing and the ability to proxy
requests as required, even to multiple destinations.

■ SIP is a peer-to-peer protocol, with endpoints that can typically initiate and
respond to SIP requests.

■ SIP Servlet applications may be registered so as to be invoked in response to
particular events.

■ Unlike the HTTP Servlet, the SIP Servlet is asynchronous. This means that when
receiving a SIP request, a SIP Servlet application can initiate another action, return
control to the SIP Servlet container, and respond to the request at a later time.

■ A SIP Servlet application is often composed of more than one SIP Servlet.

■ As SIP and HTTP servlets are based on the same generic Servlet specification, both
types of servlets can be easily converged into one application. An application
composed of both SIP and HTTP servlets can therefore handle both SIP and HTTP
traffic.

Figure 1–3 SIP Servlet Model versus HTTP Servlet Model

Typical SIP Servlet Applications
Typical SIP-based applications include:

■ Telephony over IP, with the following features:

– Speed dial

– Wake-up call service

– Call forwarding service

– Click-to-call

– Emergency call service

■ Video calls

■ Push to talk

■ Instant messaging

■ Presence information service

■ Network gaming

OCMS System Components

An Overview of Oracle Communication and Mobility Server 1-7

Figure 1–4 SIP Servlet Applications

SIP Servlet Container
A SIP Servlet Container extends the J2EE Application Server, providing a runtime
environment for SIP applications, including services such as security, concurrency, life
cycle management, transaction, deployment, and other services. A JSR116-compliant
SIP Servlet Container provides network services for sending and receiving SIP
requests and responses using a combination of transport protocols, IP addresses, and
port numbers to listen for incoming SIP traffic.

The OCMS SIP Servlet Container can be installed on an existing instance of Oracle
Application Server, running in OC4J. Alternatively, the OCMS SIP Servlet Container
can run on its own stand-alone instance of OC4J.

The typical OCMS SIP Servlet Container is composed of an Oracle Application Server
instance with OC4J as its J2EE container, and Oracle Process Manager and Notification
Server (OPMN) to monitor the server. OCMS currently supports high availability
deployments in this configuration only.

Figure 1–5 The SIP Servlet Container on Oracle Application Server

How the OCMS SIP Servlet Container Works
The SIP Servlet Container is configured upon server startup. Once a SIP Servlet
application is deployed to the SIP Servlet Container, its deployment descriptor is used
to configure its servlets and create a servlet context. The SIP application’s listeners and
servlets are instantiated, and the servlets are initialized with the servlet configurations.

When the SIP Servlet Container receives an initial incoming request, it processes a set
of rules in order to send the request to the correct SIP Servlet. Once the request arrives

OCMS System Components

1-8 Oracle Communication and Mobility Server Administrator’s Guide

at the SIP Servlet, the Servlet must either proxy the request to a new destination,
dispatch it to another Servlet, or send a response.

Edge Proxy Server
The Edge Proxy server provides the following functionality:

■ Acts as a load balancer for initial incoming SIP requests

■ Provides SIP Server affinity and failover for subsequent SIP requests in a session

■ Manages the health of the OCMS application servers in a cluster by dynamically
constructing a routing table of OCMS application servers

The Edge Proxy distributes incoming SIP traffic among OCMS SIP application servers
when used between a SIP-unaware load balancer and an OCMS cluster. A standalone
Java application running on its own server, the Edge Proxy establishes an affinity
between the client and SIP Application Server for the duration of the session. This
means that the same OCMS SIP Application Server always handles traffic from a
particular client for the duration of the session, creating a path between the client and
server.

Figure 1–6 Edge Proxy Functionality

Multiple Edge Proxy Servers can be deployed in a highly available environment. In
this scenario, a load balancer distributes incoming traffic among the Edge Proxy
Servers. Together, the Edge Proxy Servers can handle a greater load of subscribers
connecting to the cluster of OCMS SIP Application Servers.

OCMS System Components

An Overview of Oracle Communication and Mobility Server 1-9

Figure 1–7 Multiple Edge Proxy Servers

Figure 1–7 illustrates how the use of two Edge Proxy Servers reduces the load of SIP
connections in a clustered OCMS environment. A third-party load balancer provides a
single virtual IP address to which clients may address requests, and distributes SIP
requests to the Edge Proxy Servers. Edge Proxy Servers can be duplicated to enable
high availability—if one Edge Proxy fails, the other Edge Proxy takes over the
workload of the failed node. When scaling up OCMS Server nodes, it may be
necessary to add additional Edge Proxy Servers to the topology in order to handle the
additional connections being established in the system.

Proxy Registrar
The OCMS Proxy Registrar combines the functionality of a SIP Proxy Server and
Registrar. Its main tasks include:

■ Registering subscribers. The Proxy Registrar registers a subscriber’s address and
maps it to the actual address of the subscriber’s terminal. The Proxy Registrar
stores subscriber contact information in the Location Service data store, and uses
this data to create paths between the SIP Application Server and the subscriber.

■ Proxying requests onward. Upon receiving SIP requests, the Proxy Registrar finds
the current contact information of the subscriber using the Location Lookup
Service or ENUM (TElephone NUmber Mapping) Service. The Proxy Registrar
replaces the request destination URI with the current, correct SIP address as
returned by one of the lookup services, and proxies the request to this destination.

OCMS System Components

1-10 Oracle Communication and Mobility Server Administrator’s Guide

Figure 1–8 Proxy Registrar

Location Lookup Service
The Location Lookup Service stores registration information for all subscribers, as
defined by RFC3261. This information is used by the Proxy Registrar to reach
subscribers at the right client at any time. For example, a subscriber can connect to
OCMS using a client at home or work

Registration data is stored in an Oracle database. The Proxy Registrar uses the
Location Service to look up the subscriber’s actual, current contact information and
proxy requests to that URI. The Proxy Registrar thus creates a direct, reusable
connection between the user and the node. The Proxy Registrar uses this connection to
route subsequent requests to the correct destination. The client, meanwhile, must
regularly refresh its state so as to keep the Location Service data current.

ENUM Lookup Service
If an incoming SIP request destination URI includes a telephone URI, the Proxy
Registrar must translate the telephone number to a SIP address, using an ENUM
(TElephone NUmber Mapping) service. OCMS provides an ENUM Service which uses a
configured DNS server to look up the telephone number and translate it into a SIP
address. The ENUM Service replaces the telephone number destination URI with the
translated SIP address and proxies the request to its destination.

The main tasks of the ENUM Lookup Services are as follows:

1. Convert the telephone destination in an incoming request URI into a host name.
For example:

$ORIGIN 2.4.2.4.5.5.5.5.1.4.1.e164.arpa.

2. Look up the converted host name in the configured DNS server. The DNS server
returns a matching SIP address based on its search for the phone number.

IN NAPTR 10 100 "u" "E2U+sip" "!^.*$!sip:4242@555telco.example.com!"

3. Replace the telephone number URI with a properly formatted SIP address.

4. Proxy the request to the SIP address.

OCMS System Components

An Overview of Oracle Communication and Mobility Server 1-11

Presence Server
OCMS includes its own Presence Server, based on the following: RFCs 2778, 3265,
3856, 3857, 3858, 3859, 3863, 3903, as well as OMA Presence Enabler 1.0. The OCMS
Presence Server handles registration, storage, and retrieval of presence information.

Presence describes a user’s availability and willingness to communicate. The Presence
Server can signal whether users are on- or offline and whether they are idle or
available. The Presence Server enables users publish their contact details such as
instant messaging handle, mobile phone number, and audio and video capability.

 A number of roles are defined in the context of Presence:

■ Presentity—A Presentity is a user entity that provides presence information to the
Presence Server. A presentity can have a number of PUAs, such as a computer at
work, a computer at home, and a mobile device.

■ Presence User Agent (PUA)—A device that provides presence information, such
as an instant messaging application (Oracle Communicator), or a mobile device. A
PUA provides presentity information to the Presence Server.

■ Watcher—Requests presence or watcher information from the Presence Server.
The two types of watchers include the fetcher and subscriber.

– Fetcher—Retrieves a presentity’s presence data from the Presence Server.

– Subscriber—Subscribes to a presentity’s presence information, so as to be
updated with current information regarding that presentity’s presence.

The Presence Server does the following:

■ Processes presence PUBLISH requests

■ Composites event state into a presence document for a presentity

■ Accepts SUBSCRIBE requests from watchers to create subscriptions to a given
presentity's presence data

■ Acts as a notifier, generating NOTIFY requests to notify subscribers of the state of
their subscribed presentity

Figure 1–9 Basic Presence Functionality

As illustrated in Figure 1–9, presentity Alice has three Presence User Agents (PUAs). A
client running on any of these PUAs publishes Alice’s presence to the OCMS Presence
Server. Meanwhile, watchers Bob and Cathy want to subscribe to Alice’s presence
information.

OCMS System Components

1-12 Oracle Communication and Mobility Server Administrator’s Guide

Bob and Cathy each run a client that sends the Presence Server a SUBSCRIBE request
for Alice's presence. The Presence Server consults Alice's presence policy document in
order to determine if Bob and Cathy are permitted to subscribe to his presence. If they
are, then the Presence server sends a NOTIFY message containing information about
Alice’s current presence state. Whenever Alice's presence state changes, the Presence
Server sends a NOTIFY message to Bob and Cathy's clients informing them of the
change

How the Presence Server Works
The following example illustrates how the Presence Server manages presence
information.

Figure 1–10 How the Presence Server Works

A user’s presence information can change. For example, the user might be using a
different PUA, such as a mobile device or a laptop, or the user may be idle or away.
The following describes how the Presence Server handles this change in data:

1. The presentity uploads a policy document that specifies the information to which
each watcher is entitled. For example, a user might only want particular watchers
to see whether or not she is online.

2. Each PUA sends the new presence information to the Presence Server and issues a
SIP PUBLISH request. The presence information is sent in the form of a presence
document.

3. The Presence Server receives the presence documents and merges the data into a
single document using a composition policy that specifies rules regarding merging
presence documents.

4. The unified document is filtered using the privacy policy uploaded to the Presence
Server by the presentity (see step 1). This filtering removes any details that the
presentity does not want to provide to a given watcher.

5. The Presence Server sends the watcher a NOTIFY request containing the presence
document.

OCMS System Components

An Overview of Oracle Communication and Mobility Server 1-13

Application Router
OCMS Application Router is a SIP application that routes incoming SIP requests to the
correct application. The Application Router routes requests by placing route headers
in each SIP request it processes. A number of route headers can be placed in a request,
each representing a different destination URI. The SIP request is either sent through
the chain of destination URIs, or proxied to a new URI upon arriving at its first
destination.

The Application Router typically routes SIP requests to the Proxy Registrar or the
Presence Server, respectively. Any number of additional application URIs can be
configured in the Application Router.

Modes of Operation
The Application Router operates in two modes: standard and incremental.

Standard Mode The Application Router embeds any number of destination URIs, or
routes, in the headers of incoming SIP requests. The SIP request follows this chain of
URIs until the request is consumed. The order of URIs is determined by the
incremented alias assigned to each route (uri.1, uri.2, and so on).

Figure 1–11 The Application Router in Standard mode

Incremental Mode The Application Router incrementally embeds each route within the
incoming SIP request, along with a route back to the Application Router. The SIP
request is sent to the first destination, and then returns to the Application Router. The
Application Router examines the SIP request’s destination URI, which results in one of
two possible outcomes:

■ If the destination URI has been changed by the application to which the request
was sent, the Application Router proxies the SIP request to the new URI.

■ If the destination URI has not changed, the Application Router embeds the second
route in the header of the SIP request and sends it on its way. Again, the SIP
request arrives at the second destination, whereupon it returns to the Application
Router. The Application Router must, once again, decide whether to proxy the SIP
request to a new URI or embed the third route in the header of the SIP request.

For example, as shown in the following illustration, the Application Router embeds
within a SIP request destinations uri.1, uri.2, and uri.3. The SIP request goes first
to uri.1. If application 1 changes the destination URI of the SIP request, the
Application Router routes the request to the new URI, or application x (see
Figure 1–12). Otherwise, the Application Router routes the request to the next URI
configured in the route header, namely uri.2.

OCMS System Components

1-14 Oracle Communication and Mobility Server Administrator’s Guide

Here again, application 2 may change the destination URI of the SIP request, in which
case the SIP request continues on to application y (see Figure 1–12). Otherwise, the
Application Router routes the SIP request to uri.3, and so on.

Figure 1–12 The Application Router in Incremental Mode

Using the Application Router in Standard Mode: an Example
The Application Router can be used in conjunction with a call screening application,
for example. In this scenario, the Application Router runs in standard mode with two
destination URIs configured in the route header: one to the call screening application
and one to the OCMS Proxy Registrar.

An incoming SIP request is intercepted by the Application Router, which embeds both
the call screening application URI and the Proxy Registrar URI in the route header of
the SIP request. The SIP request continues on to the call screening application, which
determines whether or not to put through the request for a call to a given user.

If the call screening application accepts the call, the SIP request continues on to the
Proxy Registrar, which forwards the request to the correct destination.

If the call screening application rejects the call, it responds with a "403 Forbidden"
error message for example, stopping the SIP request and breaking the routing chain.

Using the Application Router in Incremental Mode: an Example
The Application Router can be used in the context of a call forwarding application. A
call forwarding application typically forwards calls by modifying the SIP request
destination URI. For example, a call forwarding application might change the
destination URI to the URI of a voice mail server.

This is accomplished by using the Application Router in incremental mode to intercept
and proxy the SIP requests. SIP requests are sent to the Application Router, which
forwards the requests to the call forwarding application and places a return route to
itself in the header of the SIP request. The call forwarding application determines
whether or not to send the SIP request to the voice mail server and consequently
modifies the SIP request destination URI. As the SIP request destination URI has
changed, the SIP request returns to the Application Router, which proxies the SIP
request to the destination determined by the call forwarding application.

Suppose the SIP request returns to the Application Router, but the call forwarding
application has not changed its destination URI. In this case, the Application Router

OCMS System Components

An Overview of Oracle Communication and Mobility Server 1-15

sends the SIP request to the next application as configured in the Application Router
settings.

Subscriber Data Services
The OCMS subscriber data services stores user authentication data, user, role, and
policy data, as well as user location data. In a scaled, highly available configuration,
the shared database enables all OCMS SIP application servers to access stored data.

The following data is stored:

■ Authentication and Authorization Data

■ User Data

■ Location Lookup Data

Authentication and Authorization Data
Authentication and authorization data provide the primary framework through which
access control is configured for the OCMS. Authentication and authorization data can
be stored on a RADIUS server, or on Oracle Identity Management.

User Data
The User database stores private subscriber IDs used for subscriber authentication.
The Proxy Registrar authenticates users by mapping private subscriber IDs stored in
the user database to public subscriber addresses in SIP requests and responses. User
data is stored on Oracle Identity Management.

Location Lookup Data
Location data is always stored in a persistent database. The database persists Location
data beyond a server restart.

Logging
The Logging service is used to log and monitor system events and SIP traffic. Logs can
be used to audit and debug the system.

Session Replication
The Session Replication module handles the replication of session state among
multiple SIP Application server nodes. Built on top of OC4J clusters, Session
Replication is used only in high availability scenarios.

OCMS System Components

1-16 Oracle Communication and Mobility Server Administrator’s Guide

Deployment Topologies 2-1

2
Deployment Topologies

This chapter discusses OCMS deployment topologies in the following sections:

■ "About Deployment Topologies"

■ "Topology Components"

■ "Supported OCMS Topologies"

■ "Deploying OCMS as a Highly Available SIP Network"

■ "Deploying OCMS as a Presence Server"

■ "Deploying a Scalable Presence Deployment"

■ "Deploying OCMS as an Instant Messaging Service"

■ "Deploying an OCMS Testing Environment"

■ "Configuration Recommendations"

About Deployment Topologies
OCMS supports single-node and clustered, multi-node deployment topologies.

A single-node deployment consists of a single SIP Application Server instance. This
deployment, which typically hosts SIP applications along with a database server, is
appropriate for running a testing environment or a very small deployment of OCMS.

A SIP Application Server cluster is defined as a set of SIP Application Server instances
that share state related to the applications. A cluster consists of one or more
application server nodes, with each node running one instance of OCMS.

A highly available OCMS cluster provides the following:

■ Replication of objects and values contained in a SIP Application Session.

■ Database backed location service data.

■ Load balancing of incoming requests across OCMS SIP application servers.

■ Overload protection protects the server from malfunctioning in the event of
overload and rejects traffic which cannot be handled properly.

■ Transparent failover across applications within the cluster. If an instance of an
application fails, it becomes unresponsive and the session can fail over to another
instance of the application, on another node in a cluster.

Topology Components

2-2 Oracle Communication and Mobility Server Administrator’s Guide

Topology Components
Components of a highly available topology include the following:

■ Third-Party Load Balancer

■ Edge Proxy Nodes

■ SIP Application Servers

■ Aggregation Proxy

■ Proxy Registrar

■ User Dispatcher

Third-Party Load Balancer
A third-party load balancer balances the load of incoming traffic among the Edge
Proxy nodes. It also deflects failed Edge Proxy nodes and redirects traffic to other Edge
Proxy nodes.

Edge Proxy Nodes
The Edge Proxy nodes form sticky connections between clients and servers for the
duration of the session, creating a path between a client and server and sending SIP
traffic over that path. The Edge Proxy nodes balance the load of SIP traffic among the
SIP Application Servers.

Both Edge Proxy Servers are configured with a virtual IP address. Each Edge Proxy
node detects failed SIP Application Server nodes and fails over to the remaining SIP
Application Server nodes.

SIP Application Servers
The SIP Application Servers are all linked to each Edge Proxy node. The SIP
Application Servers are linked to each other through OPMN. The OCMS SIP state on
each computer is replicated to the other two nodes. If one SIP Application Server node
fails, another node takes over, using the replicated state of the failed node.

For more information on replicating states among OAS instances and configuring
clustering, see "Setting Up a Highly Available Cluster of OCMS Nodes".

Table 2–1 Additional Information

For more information on... See:

OCMS installation Oracle Communication and Mobility Server
Installation Guide

Operating systems supported by highly
available OCMS clusters

Oracle Communication and Mobility Server
Certification Guide

Configuring a highly available clustered
Oracle Application Server environment

■ The "Application Clustering" chapter in
Containers for J2EE Configuration and
Administration Guide.

■ The "Active-Active Topologies" chapter in
Oracle Application Server High Availability
Guide.

Configuring highly available OCMS
topologies

Chapter 5, "Configuring High Availability" in
this guide

Deploying OCMS as a Highly Available SIP Network

Deployment Topologies 2-3

Aggregation Proxy
The Aggregation Proxy authorizes Web Service calls and authenticates XCAP traffic.
The Aggregation Proxy then proxies this traffic to the Parlay X Web Service and
XDMS. This is an optional component.

Proxy Registrar
The OCMS Proxy Registrar combines the functionality of a SIP Proxy Server and
Registrar. Its main tasks include registering subscribers, looking up subscriber
locations, and proxying requests onward. The Proxy Registrar stores user location and
registration data on the Oracle database. This is an optional component.

For more information, see "Proxy Registrar".

User Dispatcher
The User Dispatcher enables the Presence and XDMS applications to scale. The User
Dispatcher is a proxy that dispatches SIP and XCAP (over HTTP) requests to their
appropriate destinations on a consistent basis.

Presence Dispatching
Because the Presence application maintains the states for all users in the deployment,
the User Dispatcher enables scaling (distribution) of the Presence application. The
User Dispatcher supports request dispatching to the following Presence
sub-applications, which use the SIP and XCAP (over HTTP) protocols:

■ Presence server

■ Presence XDMS

■ Shared XDMS

Supported OCMS Topologies
Supported topologies include:

■ Deploying OCMS as a Highly Available SIP Network

■ Deploying OCMS as a Presence Server

■ Deploying OCMS as an Instant Messaging Service

■ Deploying an OCMS Testing Environment

Deploying OCMS as a Highly Available SIP Network
When deployed as a highly available SIP network, OCMS can be used to implement a
basic VoIP system, enabling voice and video calls. This topology (illustrated in
Figure 2–1) includes the following:

■ A hardware load balancer

■ A cluster of Edge Proxy Servers

Note: Only the Oracle Application Server installation mode supports
high availability. For more information, refer to the Oracle
Communication and Mobility Server Installation Guide.

Deploying OCMS as a Highly Available SIP Network

2-4 Oracle Communication and Mobility Server Administrator’s Guide

■ A cluster of two SIP Application Servers, each running a SIP Servlet Container

■ Replicated databases, including user data, authentication data, and user location
information

Figure 2–1 OCMS as a Highly Available SIP Network

This topology provides a highly available SIP network capable of handling millions of
users. Each SIP Application Server must run an Oracle database and Proxy Registrar
application.

The SIP network topology includes hardware and software components described in
Table 2–2.

Table 2–2 SIP Network Topology Hardware and Software Requirements

Hardware Software Installation Type1

1 Refer to the OCMS Installation Guide for more information.

Load balancer N/A N/A

Two computers with at least 4 GB
of RAM and a dual 2.8 Ghz CPU

Edge Proxy Custom installation

Two computers with at least 4 GB
of RAM and a dual 2.8 Ghz CPU

■ OAS 10.1.3.4

■ Oracle database

■ Proxy Registrar
Application

Typical installation

Deploying OCMS as a Presence Server

Deployment Topologies 2-5

Load Balancer
A load balancer or DNS round-robin algorithm balances the load of incoming traffic
among the Edge Proxy nodes. Using the DNS round-robin algorithm requires all
clients to implement DNS lookup.

Deploying OCMS as a Presence Server
OCMS can be deployed as a Presence Server. The Presence Server topology is
deployed on two nodes: one running the Presence Server and the other running the
Aggregation Proxy and XDMS. This topology (illustrated in Figure 2–2) can be
implemented within an IMS network to provide Presence functionality.

The Presence Server topology includes the following:

■ One SIP Application Server node with the Presence Server

■ One SIP Application Server node with an XDMS and an Aggregation Proxy

Figure 2–2 Presence Server Topology

The Presence Server topology includes hardware and software components described
in Table 2–3.

See also: "Topology Components" for a description of the
components used in this topology.

Table 2–3 Presence Server Topology Hardware and Software Requirements

Hardware Software Installation Type1

One computer with at least 4 GB of
RAM and a dual 2.8 Ghz CPU

■ OAS 10.1.3.4

■ Presence Server

Typical installation

Deploying a Scalable Presence Deployment

2-6 Oracle Communication and Mobility Server Administrator’s Guide

XDMS
Manual post-installation configuration is required for the XDMS, involving
configuring Presence as an XDMS. For more information, refer to the OCMS
Installation Guide.

Deploying a Scalable Presence Deployment
This section describes the recommended and supported deployment topology for a
large scale Presence Solution requiring Presence, XDMS, and User Dispatcher. It
illustrates the typical flows from a multi-node perspective.

To scale across multiple nodes, the User Dispatcher component dispatches all traffic
targeting a particular Presentity to the same Presence Server instance.

Presence Cluster
A Presence Cluster is defined as a set of Presence Nodes connected after one or more
Load Balancers. The Presence Cluster is responsible for processing incoming subscribe
and publish requests made towards the presence event-package and of course for
sending out notify’s whenever appropriate. The Presence Cluster will also accept and
processing subscribe requests for the presence.winfo event-package.

The Presence Cluster will interact with the XDM Cluster in order to obtain information
needed to complete its responsibilities. The information queried of the XDM Cluster is
user’s presence-rules and pidf-manipulation documents.

The Presence Cluster is layered into the following three distinct tiers:

■ The load-balancing layer, responsible for dispatching incoming traffic to the User
Dispatchers. The load balancers are stateless and do not understand SIP as a
protocol.

■ The user-dispatching layer, responsible for dispatching traffic based on user
information. A user is assigned to a particular Presence Server instance and all
traffic destined to that user will be dispatched to the same Presence Server
instance. Even though each User Dispatcher is stateless and does not share state
with the other User Dispatchers, they still need to have the same view of the
Presence Server tier.

■ The bottom layer is where the Presence Server instances reside. Each instance is
separated from the others and does not share any state with any other instances.

One computer with at least 4 GB of
RAM and a dual 2.8 Ghz CPU

■ OAS 10.1.3.4

■ XDMS

■ Aggregation Proxy

■ Oracle database 10.2.0.3
or 11.1.0.7 (required for
the Aggregation Proxy).

Typical installation

1 Refer to the OCMS Installation Guide for more information.

See also: See "Topology Components" for a description of the
components used in this topology.

Table 2–3 (Cont.) Presence Server Topology Hardware and Software Requirements

Hardware Software Installation Type1

Deploying a Scalable Presence Deployment

Deployment Topologies 2-7

The purpose of the Presence Server tier is to serve incoming SUBSCRIBE and
PUBLISH requests destined to the presence event-package as well as servicing
subscriptions to the presence.winfo event-package.

The Presence Cluster consists of the following physical nodes:

■ The Load Balancer, such as an F5.

■ The Presence Node, which consists of the following components:

– User Dispatcher

– Presence Server

XDM Cluster
The XDM cluster is defined as a set of XDM Nodes connected after one or more Load
Balancers. The XDM cluster processes all XDM related traffic, that is, SIP subscribe
traffic towards the ua-profile event-package and XCAP traffic. As such, it deals with
everything that has to do with manipulating XML documents. The XDM Cluster uses
a database for actual storage of the XML documents but note that the database, and
potentially its cluster, is not part of the XDM Cluster.

The XDM cluster consists of the following layers:

■ The load-balancing tier, responsible for dispatching both SIP and XCAP traffic to
the next layer. For XCAP traffic the next tier is the Aggregation Proxy but for SIP,
the traffic goes directly to the User Dispatcher layer.

■ Aggregation Proxy layer – authenticates incoming traffic and upon successful
authentication it forwards the requests to the User Dispatcher layer. All XCAP
traffic for external traffic goes through the Aggregation Proxy layer. Internal
traffic, however, will not go through the Aggregation Proxy but rather directly to
the User Dispatchers.

■ User Dispatcher layer – from a SIP perspective it carries out the exact same duties
and functions as in the Presence Cluster (it is the same kind of traffic after all). The
main difference in the XDM Cluster compared to the presence one is that in the
XDM Cluster the User Dispatchers will also have to handle XCAP traffic.
However, the XCAP traffic is treated in the exact same way as SIP and the purpose
of the User Dispatcher for XCAP traffic is the same as for SIP: to extract user
information based on the request and then dispatch it to the correct XDMS
instance.

■ The XDM Server layer has the same function as the Presence Servers in the
Presence Cluster. The XDMS instances serve incoming SUBSCRIBE requests for
the event-package ua-profile and will whenever appropriate send out NOTIFY
messages to all registered subscribers. Note that the XDMS does not accept
PUBLISH requests and updating the state of the Resources (which are XML
documents) is through XCAP operations. An XDM Client can manipulate the
documents managed by an XDMS by issuing appropriate XCAP operations. A
successful XCAP operation may alter the content of a document whereby the
XDMS would send out NOTIFY messages to the subscriber of that document to
inform them about the change. Whenever the XDMS needs to get an XML
document it queries the next layer, the database layer.

■ The Database tier physically stores the XML documents managed by the XDMS.
This tier guarantees high-availability and scalability so that if one of the nodes in
the database layer fails, documents that resided on that node will still be accessible
to the XDMS without any loss of data or service.

Deploying a Scalable Presence Deployment

2-8 Oracle Communication and Mobility Server Administrator’s Guide

The XDM Cluster consists of the following physical nodes:

■ The Load Balancer, such as an F5.

■ The XDM Node, which consists of the following components:

– Aggregation Proxy

– User Dispatcher

– The XDM Server (XDMS)

■ The database.

Presence Node
The Presence Node is the main component in the Presence Cluster and is responsible
for dispatching the incoming traffic to the correct Presence Server instance and of
course servicing users with presence information. The User Dispatcher serves the same
purpose both in a single node deployment and in a multi-node deployment. That is, its
purpose is to dispatch incoming traffic to a particular PS instance and if this instance is
running on the same physical node or not is of no relevance to the User Dispatcher.
The User Dispatcher identifies a particular node by its full address, that is, the IP
address and port, and has no concept of local instances.

A Presence Node will always have a User Dispatcher deployed that serves as the main
entrance into the node itself. Typically, the User Dispatchers listen to port 5060 and the
other Presence Servers on that node listen on other ports. In this way, a single node
will appear as one Presence Server to clients but is in fact multiple instances running
behind the User Dispatcher. Each of the components deployed on the Presence Node is
executing in their own separate Java Virtual Machine. That is, the User Dispatcher and
the Presence Server instances execute in their own OC4J and SIP containers. The
reason for this is to be able to utilize all the available memory on that machine.

XDM Node
The XDM Node always has an Aggregation Proxy deployed that typically listens on
port 80 for XCAP traffic. The Aggregation Proxy authenticates incoming traffic and
upon successful authentication forwards the request to the User Dispatcher. As with
the Presence Node, the XDM Node will also have a User Dispatcher deployed (usually
on port 5060) and for SIP traffic there is no difference between the XDM and Presence
Nodes. The difference between the two types of nodes is that the User Dispatcher will
also dispatch XCAP traffic. As it does with SIP, it extracts the user id out of the request
and, based on that, maps the request to a particular XDMS instance to which it
forwards the request.

There will be a number of XDMS instances deployed to which the User Dispatcher
dispatches both SIP and XCAP traffic. Just as in the case of the Presence Server
instances on the Presence Node, each XDMS instance is not aware of the others and
executes in isolation.

The Aggregation Proxy and User Dispatcher are deployed onto the same OC4J
container and use the same Java Virtual Machine.

Complete Presence and XDM Cluster
Figure 2–3 shows a complete Presence and XDM cluster with all necessary
components. This figure also illustrates that the two clusters, Presence and XDM, are
treated as two separate clusters and the way into those two networks for initial traffic
is always through their respective Load Balancers. Even the Presence Servers will

Deploying OCMS as an Instant Messaging Service

Deployment Topologies 2-9

actually go through the Load Balancer of the XDM Cluster when setting up
subscriptions. However, once a subscription has been established the subsequent
requests will not go through the Load Balancer but rather directly to the XDMS
instance hosting the subscription. All nodes in the XDM Cluster are directly accessible
from the Presence Cluster.

Figure 2–3 Presence and XDM Nodes

Deploying OCMS as an Instant Messaging Service
The OCMS Instant Messaging topology is a highly available, topology that enables
messaging, including instant messaging client applications. Figure 2–4 illustrates a
sample topology consisting of six nodes in three clusters. The IM topology comprises a
four-node SIP network topology and a two-node Presence Server topology, with the
addition of the Application Router. The Application Router routes SIP requests to
either the Proxy Registrar or the Presence Server, enabling registering and retrieving
user contact and location data, as well as handling all aspects of Presence publication
and notification. The Aggregation Proxy on either SIP Application Server node is used
to authenticate subscriber access to presence documents stored on the XDMS. This
topology provides the server-side functionality behind instant messaging client
applications.

Deploying OCMS as an Instant Messaging Service

2-10 Oracle Communication and Mobility Server Administrator’s Guide

Figure 2–4 Instant Messaging Service Topology

This topology includes hardware and software components described in Table 2–4.

Table 2–4 Topology Hardware and Software Requirements

Hardware Software Installation Type1

Load balancer N/A N/A

Two computers with at least 4 GB
of RAM and a dual 2.8 Ghz CPU

Edge Proxy Custom installation

Deploying an OCMS Testing Environment

Deployment Topologies 2-11

For more information about scaling this hybrid topology, see "Deploying OCMS as a
Highly Available SIP Network" and "Deploying OCMS as a Presence Server".

Deploying an OCMS Testing Environment
An OCMS testing environment is deployed on a single SIP application server node. A
single-node OCMS topology is appropriate for testing, demonstrations, and small
enterprises.

Figure 2–5 illustrates a single-node deployment which includes a Proxy Registrar.

Two computers with at least 4 GB
of RAM and a dual 2.8 Ghz CPU

■ OAS 10.1.3.4

■ Oracle Database

■ Aggregation Proxy

■ Application Router

■ Proxy Registrar

Typical installation

One computer with at least 4 GB
of RAM and a dual 2.8 Ghz CPU

■ OAS 10.1.3.4

■ Presence Server

Typical installation

One computer with at least 4 GB
of RAM and a dual 2.8 Ghz CPU

■ OAS 10.1.3.4

■ XDMS

Typical installation

1 Refer to the OCMS Installation Guide for more information.

See also: "Topology Components" for a description of the
components used in this topology.

Note: Because the testing environment is deployed on a single node,
it cannot provide high availability.

Table 2–4 (Cont.) Topology Hardware and Software Requirements

Hardware Software Installation Type1

Deploying an OCMS Testing Environment

2-12 Oracle Communication and Mobility Server Administrator’s Guide

Figure 2–5 Single Node Deployment

Figure 2–6 illustrates a single-node deployment with Proxy Registrar, Presence,
Aggregation Proxy, XDMS, and Application Router.

Figure 2–6 Single Node Deployment with Presence

The single node topology includes hardware and software components described in
Table 2–5.

Configuration Recommendations

Deployment Topologies 2-13

Configuration Recommendations
The following is recommended for most topologies:

■ Use TCP as the transport protocol. SIP clients use UDP or TCP to transport SIP
messages. If there is a concern about exceeding UDP MTU size limits, TCP should
be used. The preference for TCP can be enforced by adding NAPTR and SRV
records to the DNS indicating that TCP is the preferred protocol. Make sure that
clients connecting to OCMS fully support NAPTR and SRV records.

■ Run the OCMS SIP Server in the default Record-Route mode. The best way for
clients to handle NAT/FW in the network is to establish a TCP connection to the
server upon registration, and reuse this connection for all incoming and outgoing
SIP traffic. This requires the client to have an outboundproxy setting that points
to the Proxy Registrar, and that the Proxy Registrar is configured to use
record-route.

Table 2–5 Single Node Topology Hardware and Software Requirements

Hardware Software Installation Type1

1 Refer to the OCMS Installation Guide for more information.

One computer with at least 4 GB
of RAM and a dual 2.8 Ghz CPU

■ OAS 10.1.3.4

■ Oracle database

■ Proxy Registrar

Typical installation

If deployment includes Presence:

■ Presence application

■ Aggregation Proxy

Typical installation

See also: "Topology Components" for a description of the
components used in this topology.

Configuration Recommendations

2-14 Oracle Communication and Mobility Server Administrator’s Guide

Configuring the SIP Server MBeans 3-1

3
Configuring the SIP Server MBeans

This chapter, through the following sections, describes how to manage the OCMS SIP
Server through Oracle 10g Enterprise Manager Application Server Control.

■ "Overview of SIP Server Management"

■ "Starting, Stopping and Restarting the OCMS SIP Server"

■ "Managing OCMS MBeans"

■ "Setting and Viewing the SIP Port"

Overview of SIP Server Management
The OCMS SIP Server is an OC4J container that you manage using the Oracle 10g
Enterprise Manager Application Server Control console (Figure 3–1).

Figure 3–1 The Oracle 10g Enterprise Manager Application Server Control

In addition to the standard Application Server Control functions that enable starting,
stopping, restarting, deploying, undeploying, and redeploying applications, the
Application Server Control MBean browser enables you to configure and manage the
OCMS components. Configuring the attributes of the OCMS MBeans (Managed Beans)

Starting, Stopping and Restarting the OCMS SIP Server

3-2 Oracle Communication and Mobility Server Administrator’s Guide

enables you to execute administrative tasks and set the basic configuration (port, IP,
and host address) of the OCMS SIP Server itself. In addition, the OCMS MBeans
enables you to configure and manage presence.

Starting, Stopping and Restarting the OCMS SIP Server
Application Server Control enables you to stop and restart the OCMS SIP Server. Like
other OC4J containers, the OCMS SIP Server can be stopped and restarted using the
Stop and Restart buttons on the Home page (Figure 3–1). These buttons control the
entire OC4J instance; stopping or restarting OC4J also stops or restarts the OCMS SIP
Servlet Container and the applications deployed to it.

If you have installed OCMS in standalone mode, you can invoke the start and stop
scripts available under ORACLE_HOME/sdp/bin from the command line:

startocms

or

stopocms

You can also stop or restart OC4J using the opmnctl or the admin_client.jar
command-line utility to stop, start, or restart OC4J or its applications.

To stop all OPMN-managed processes including OC4J on a local Oracle Application
Server instance using opmnctl:

opmnctl stopall

To stop the OC4J instance of OCMS on a local Oracle Application Server instance
using opmnctl:

opmnctl stopproc process-type=ocms

To start all OPMN-managed processes, including OC4J, on a local Oracle Application
Server instance using opmnctl:

cd ORACLE_HOME/opmn/bin
opmnctl startall

To restart the OC4J instance of OCMS on a local Oracle Application Server instance
using opmnctl:

cd ORACLE_HOME/opmn/bin
opmnctl restartproc process-type=ocms

Use the following syntax when using admin_client.jar to start, stop or restart an
application and its child applications on a specific OC4J instance or across an entire
cluster.

java -jar admin_client.jar uri adminId adminPassword -start|-stop appName

For more information, see Oracle Application Server Administrator’s Guide.

Starting an Application and Stopping a SIP Servlet Application
The Stop, Start and Restart buttons on the Applications page (Figure 3–2) control the
running status for selected SIP servlet applications.

Managing OCMS MBeans

Configuring the SIP Server MBeans 3-3

Figure 3–2 The Applications Page of the Application Server Control

Managing OCMS MBeans
The Application Server Control Console’s MBeans browser (Figure 3–3) enables you to
view and configure MBeans. An MBean (managed bean) is a Java object that
represents a JMX-manageable resource in a distributed environment, such as an
application, a service, a component, or a device. MBeans expose a management
interface, including a set of attributes and operations. This interface does not change
during the lifetime of an MBean instance. MBeans can also send notifications when
defined events occur.

The MBean attributes enable you to configure the OCMS SIP Server.

Figure 3–3 Viewing MBeans

Note: Changes made to the SIP Container applications persist when
you restart OC4J; changes made to the logging persist when updated.

Managing OCMS MBeans

3-4 Oracle Communication and Mobility Server Administrator’s Guide

See Oracle Containers for J2EE Configuration and Administration Guide for information on
managing MBeans.

Accessing MBeans
The Application Server Control Console’s MBean browser enable you to view,
configure and deploy both system MBeans and application-defined MBeans.

You access the MBeans related to the JSR 116-compliant OCMS SIP Servlet Container
through the System MBean Browser. For more information, see "Managing OCMS
MBeans".

To display the available System MBeans, the MBean Browser accesses the MBean
Server that runs in OC4J.

Figure 3–4 Viewing System MBeans

The SIP Application-based MBeans do not display in the System MBean Browser;
instead, they appear in the context of the application that registered them. For
example, Figure 3–3 illustrates the MBeans registered by the Subscriber Data Services
application.

Accessing SIP Servlet Container MBeans
The System MBean Browser enables you to browse the SIP Servlet Container MBeans
(Figure 3–3). To access the System MBean Browser:

Note: MBeans are packaged with the application that they manage.

Managing OCMS MBeans

Configuring the SIP Server MBeans 3-5

1. Navigate to the OC4J Home page for the SIP Server instance.

2. Click Administration. The Administration page appears, displaying the available
tasks.

3. If needed, expand the JMX section of the task list to display System MBean Browser.

4. Click the Go to Task icon in the System Bean Browser row of the table. The System
MBean Browser appears, displaying the available MBeans in the tree view.
Selecting an MBean in the tree control enables you to view and edit its attributes,
invoke its operations, and manage notification subscriptions. Click Apply to
commit any changes to the MBean’s parameters.

Figure 3–5 The JMX Section of the Task List

Accessing the MBeans for a Selected SIP Application
To view the MBeans for a selected application:

1. Click Applications on the SIP Server OC4J home page. A list of applications
appears.

2. Click the Application Defined MBean icon for the selected application. The
Application MBeans page appears. The tree view displays the MBeans registered to
the application. Selecting an MBean in this tree control lets you view its attributes,
operations, statistics, and notifications.

3. Click Apply to commit any changes to the MBean’s attributes.

Configuring the SIP Servlet Container MBeans
This section describes the configuration parameters for the following System MBeans
(listed in Table 3–1):

Tip: Use the Search function to locate an MBean

Table 3–1 SIP Servlet Container MBeans

Tasks MBean Name

Tasks include:

■ Setting or changing the IP address of the SIP
Container.

■ Setting or changing the DNS IP address.

■ Setting or changing the domains and realms.

■ Setting or changing the proxy that receives client
requests.

■ Setting the default applications for incoming requests.

SIP Servlet Container

Setting the log levels for the logger components
(CUSTOMER, BADMSG, TRAFFIC, CONFIG, TIMER,
STATISTICS, FORMAT, and APPLICATION). For more
information, see Chapter 12, "Configuring the Logging
System".

SIP Servlet Container Logging

Managing OCMS MBeans

3-6 Oracle Communication and Mobility Server Administrator’s Guide

SIP Servlet Container
The SIP servlet container is a standalone Java process that provides the execution
environment for the SIP applications. The attributes exposed by the SIP Servlet
Container MBean (SipServletContainer) enable you to change values that are set
during the installation of OCMS (listed in Table 3–2). For more information on setting
the values for these attributes during installation, refer to Oracle Communication and
Mobility Server Installation Guide.

Table 3–3 describes the SIP Servlet Container MBean’s attributes. While the format for
entering values is sip:host:port;transport=tcp|udp for the following attributes, you
generally need only enter the host value, as other values are pre-seeded.

■ Contact

■ DistributableContact

■ DistributableRecordRoute

■ DistributableVia

■ DnsIpAddress

■ Via

Setting bindings that enable clients to traverse NAT
(Network Address Translating) entities.

STUN Service

View the current statues of the system queues. SIP Servlet Container

Set overload actions when the capacity thresholds for
memory usage, Application Queue usage, Network Queue
usage, or SIP Session Table usage are reached.

Overload Policy

Set the default timeouts for OC4J clusters. SIP Cluster

Table 3–2 Values Populated by Installation of OCMS

Value SIP Servlet Container Attribute(s)

The IP address of the SIP
Container.

IPAddress

The traffic port used by the
SIP Container.

SIPPort

The proxy for receiving
client requests.

EdgeProxy

The domain (or hostname)
of the SIP Server and the SIP
realm used for
authentication.

DomainsandRealms

Table 3–1 (Cont.) SIP Servlet Container MBeans

Tasks MBean Name

Managing OCMS MBeans

Configuring the SIP Server MBeans 3-7

Table 3–3 Attributes of the SIP Servlet Container

Attribute Value

ApplicationAliases A short name for the application. For more information, see "Setting an
Alias for an Application".

Contact The host, port, and transport used in the Contact header that is embedded
in SIP requests by applications acting as User Agent Clients (UACs). Enter
this value as a SIP URI.

This contact information provides an address that enables the SIP Server
to respond.

DefaultApplications A comma-separated list of applications that are invoked if no application
matches a request. By default, the Application Router is set as the default
application. If many applications have been deployed to the SIP
Container, you should also deploy an application dispatcher as the default
application. The application dispatcher (or Application Router in OCMS)
routes incoming requests to other applications by addressing them
directly. For more information, see "Application Router" in "An Overview
of Oracle Communication and Mobility Server".

If no default application is set, then the container designates all of the SIP
applications that it locates as the default application. For more
information on default application and how the SIP container invokes
servlets, see Servlet Mapping in Oracle Communication and Mobility Server
Developer’s Guide.

DeployedApplications A read-only list of deployed applications.

DistributableContact The host, port, and transport placed in the Contact header for distributable
applications acting as User Agent Clients (UACs) in a high-availability
environment.

DistributableRecordRoute The host, port, and transport placed in the RecordRoute header for
distributable applications in a high-availability environment. Enter this
value as a SIP URI in the following format:

sip:host:port;transport=tcp.

You need only enter the hostname
(sip:my.host:5060;transport=tcp).

For high availability configurations, configure this parameter in the
following format:

sip:<SIP container IP address>:<port>.

Remove the transport method to enable the use of any type of transport
between the Edge Proxy and OCMS. For more information, see
"Configuring the OCMS SIP Containers for High Availability".

DistributableVia The host, port, and transport used in the Via header for distributable
applications in a high-availability environment. Enter this value as a SIP
URI in the following format:

sip:host:port;transport=tcp.

You need only enter the hostname
(sip:my.host:5060;transport=tcp).

Managing OCMS MBeans

3-8 Oracle Communication and Mobility Server Administrator’s Guide

DnsIpAddress A comma-separated list with the DNS that the container shall try to
resolve against. Enter as a SipURI, that is, sip:host:port;transport=tcp,
where host is the only required part. For example,
'127.0.0.1:53;transport=udp'. Port and transport defaults to 53 and UDP.
An empty string enables the synchronous OS based resolver (no NAPTR
or SRV support) which considers the local hosts file. This mode is
intended for demonstration or development systems.

For details about how DNS resolution takes place, see "RFC 3263: Session
Initiation Protocol (SIP): Locating SIP Servers". Because DNS resolution is
performed within the context of SIP message processing, any DNS
performance problems result in increased latency. It is recommended to
use a caching DNS server in a production environment to minimize
potential performance problems. You must specify a DNS in production
environments.

DomainsAndRealms This attribute defines a mapping of SIP domains to Java-authenticated
realms. This mapping is used to dynamically challenge a SIP request with
the appropriate authentication realm during SIP authentication. For
example, a domain/realm mapping of voip.com/voip would require a user
with the SIP URI of user@voip.com to authenticate against the voip realm in
response to the challenge by the SIP servlet container.

Enter a comma-separated list of the configured hosted domains and their
corresponding realms used for authentication. Applications -- rather than
the SIP container itself -- use such a hosted domain to send a 404 (Not
Found) message.

DomainLoopDetection If set to true (the default setting), The SIP container checks whenever a
request is about to be sent from the server to a destination that has a
resolvable host name. If the host name resolves to one of the server’s own
listening ports (meaning that the server will send the request back to
itself) the server checks the resolved host name against configurations set
for the DomainsandRealms and RecordRoute header attributes. If there is no
match for the hostname, then the request is blocked and the server
responds with a 482 (Loop Detected) message. This protects the server from
fake DNS names that point to the server’s IP address and then send a
request with the fake hostname in the top-most route header. Because the
SIP container cannot recognize the hostname, it will never pop the Route
header and the request will loop.

IPAddress The IP address on which the SIP servlet container listens. The default
value of 0.0.0.0 designates all IP addresses. For a production environment,
change this value to an actual IP address.

NeedClientAuth Setting this attribute to true enables mutual TLS, where the SIP servlet
container not only provides a server certificate during the TLS handshake,
but also requires a client certificate. The default value, false, enables the
SIP servlet container to act as a TLS server by providing a server certificate
during the TLS handshake with the client. This function is only available if
useTLS is set to true. Setting this parameter to true will not work with most
SIP clients, as they cannot provide a client certificate.

Although most SIP client applications cannot provide certificates, other
clients, such as proxy servers can.

NetworkThreadCount The number of network threads spawned by the SIP container to handle
network traffic. The value must be an integer.

Table 3–3 (Cont.) Attributes of the SIP Servlet Container

Attribute Value

Managing OCMS MBeans

Configuring the SIP Server MBeans 3-9

Edge Proxy The proxy that receives client requests. This proxy adds a pre-loaded
route. For example: sip:my.host:5060;transport=tcp. This setting is required
for clients to maintain a reusable TCP connection to the server. To ensure
this connection, clients may implement a keep-alive algorithm, such as
sending periodic CRLFs (carriage-return line feeds).

In clustered environments, you must configure an Edge Proxy for each
OCMS instance to support communication with the Edge Proxy or other
proxy applications. For high availability installations, this attribute must
be set to the address of the Edge Proxy or to the virtual hostname and port
service used by the load balancer in front of the Edge Proxies. Set this
value using the following format:

sip:<EdgeProxy or Load Balancer IP address>:<port>;lr

For more information, see "Configuring the OCMS SIP Containers for
High Availability".

RecordRoute The host, port and transport used in the RecordRoute header of
non-distributable applications. Enter this value as a SIP URI in the
following format:

sip:host:port;transport=tcp.

You need only enter the hostname
(sip:my.host:5060;transport=tcp).

For high availability configurations, configure this parameter in the
following format:

sip:<SIP Container IP address>:<port>.

Remove transports methods to enable any type of transport to be used
between the Edge Proxy and OCMS. For more information, see
"Configuring the OCMS SIP Containers for High Availability".

SIPPort The port through which the SIP Servlet Container accepts traffic. The
default value is 5060.

SipServletCommanInterceptors A comma-separated list of SipServlet interceptor classes. The interceptors
must implement
org.aopalliance.intercept.MethodInterceptor. If the class has
a public constructor with javax.servlet.ServletConfig it will be
used to instantiate the interceptor. To enable P-Asserted-Identity support
(RFC 3325) for authentication when using OCMS UserService and
SecurityService, replace
oracle.sdp.sipservletengine.SecurityInterceptor with
oracle.sdp.extinterceptors.PaiSecurityInterceptor.

SipServletOc4jInterceptors A comma-separated list of SipServlet interceptor classes specific to OC4J.
The interceptors must implement
org.aopalliance.intercept.MethodInterceptor. If the class has
a public constructor with javax.servlet.ServletConfig it will be
used to instantiate the interceptor. This list will be prepended to the list of
interceptors entered for the SipServletCommonInterceptors attribute.

StatisticsPeriodicity The interval, in minutes, at which the SIP servlet container logs statistics
that display in the SIP Servlet Container Monitor. Setting this attribute to 0
suspends logging operation.

TimerListenerOc4jInterceptors A comma-separated list of OC4J-specific TimerListener interceptor
classes. The interceptors must implement
org.aopalliance.intercept.MethodInterceptor.

TimerT1 The estimate, in seconds, for a round trip. This value must be an integer.

Table 3–3 (Cont.) Attributes of the SIP Servlet Container

Attribute Value

Managing OCMS MBeans

3-10 Oracle Communication and Mobility Server Administrator’s Guide

Setting an Alias for an Application

A SIP application in the OCMS SIP servlet container is basically the parsed sip.xml
file. Hence, the SIP application contains all of the parsed servlet-definitions as well as
the servlet-mappings (that is, the rules) and other sip.xml components as listeners.

As illustrated in Chapter 13, "Deploying Applications", The SIP application is usually
built as an Enterprise Archive (EAR) that is deployed to OC4J. Once the SIP
application has been deployed, the application server parses the sip.xml and
instantiates the servlets and listeners. The application server also creates a name for
the deployed application by piecing together the components of the EAR file. Because
this generated name can be lengthy, you can create an alias for the application. You can
use this shorter, more intuitive application name when you configure the default
application. This short name can be used in the URI parameter of the route header or
the request-URI.

TimerT2 The maximum interval, in seconds, for non-INVITE requests and INVITE
responses. This value must be an integer.

TimerT4 The maximum interval, in seconds, that a message can remain in the
network. This value must be an integer.

TlsKeyStore The file path to a keystore of Sun's JKS type.

TlsKeyStorePassword A password or a password indirection. For example,
'->jazn.com/oc4jadmin' which means that the password for the JAZN user
'oc4jadmin' in the realm 'jazn.com' is used to unlock the store. A JAZN
user is created by invoking the jazn.jar in OC4J.

TlsTrustStore A file path to a truststore of Sun’s JKS type.

TlsTrustStorePassword A password or a password indirection. For example,
'->jazn.com/oc4jadmin' which means that the password for the JAZN user
'oc4jadmin' in the realm 'jazn.com' is used to unlock the store. A JAZN
user is created by invoking the jazn.jar in OC4J.

Trusted Hosts A comma-separated list IP of addresses representing trusted hosts as
described in RFC 3325. For example, enter 192.168.0.10, 192.168.0.11.
Leaving the value field blank means that there are no trusted hosts;
entering an asterisk (*), means that all IP addresses can be trusted. Regular
expressions are not supported.

UdptoTcpTriggerSize The maximum number of bytes contained in a request message sent by
the SIP servlet container. When a request message reaches this size, the
SIP servlet container uses TCP rather than UDP to transport the request.
The default value for a request is 1300 bytes.

UseStun Select true to use STUNbis keepalive traffic.

UseTCP Select true for the SIP servlet container to listen for TCP traffic. Oracle
recommends setting TCP as the transport protocol because of network
fragmentation issues. Add NAPTR and SRV records to the DNS to
indicate that TCP is the preferred protocol. Ensure that clients connecting
to OCMS fully support NAPTR and SRV records.

UseTLS Select true to enable the SIP servlet container to provide server certificates
during a TLS handshake with a client. If set to true, the SIP Servlet
container listens to the TLS port. You must also configure the TlsKeystore,
TlsKeyStorePassword, TlsTrustStore, and TlsTrustStorePassword attributes.

UseUDP Select true for the SIP servlet container to listen for UDP traffic.

Via The host, port, and transport used in the VIA header of non-distributable
applications. Enter this value as a SIP URI.

Table 3–3 (Cont.) Attributes of the SIP Servlet Container

Attribute Value

Managing OCMS MBeans

Configuring the SIP Server MBeans 3-11

For example, the name of a presence application deployed to the server might appear
as presenceapplicationear-4.0.0-dev/eventnotificationssr-4.0.0-dev. Using the
ApplicationAliases attribute, you can set a short name for this application by entering
key-value pair such as
presence=presenceapplicationear-4.0.0-dev/eventnotificationssr-4.0.0-dev. The key is the alias
(presence) and the value is the real name of the application. This alias can be used for
the real name of the application.

Using TLS

The useTLS attribute, when set to true, enables the SIP servlet container to act as a TLS
server by providing a server certificate during the TLS handshake. You must also
configure the TlsKeystore, TlsKeyStorePassword, TlsTrustStore, and TlsTrustStorePassword
attributes. In addition to providing the server certificate, the needClientAuth attribute
enables the SIP servlet container to perform mutual TLS by requiring a client
certificate during the TLS handshake.

Setting the Keystore
A keystore is a database of public and private keys that can be grouped into two
categories: key entries and trusted certificate entries. The SIP Servlet container works
with keystores of Sun’s JKS type (PKCS12 is not supported). A keystore of the JKS type
may contain both key entries and trusted certificate entries. Using two different files
instead of one single keystore file provides for a cleaner separation between the SIP
Servlet container’s certificates and certificates from other entities (which is also
supported by the SIP Servlet container).

Enabling TLS
To enable TLS, you must set the following java system properties: useTLS, and,
optionally, needClientAuth. You must also configure the TlsKeystore,
TlsKeyStorePassword, TlsTrustStore, and TlsTrustStorePassword attributes.

Setting the useTLS attribute means that the container will listen to the configured TLS
port and provide the server certificate during the TLS handshake.

If you set the needClientAuth attribute, the server will as usual provide it's server
certificate but will also require a certificate from the client. This is a setting that will
not work with Oracle Communicator (and other SIP clients) as SIP clients typically
cannot provide a client certificate. In an environment where the client is a proxy server
this setting can be used.

Note: The value for set for ApplicationAliases attribute must also
match the appId parameter of the Application Router’s Slipperiest
attribute to ensure that the OCMS SIP servlet container invokes the
applications that are appropriate to incoming requests. The appId
parameter is case-sensitive.

Note: Multiple private key entries in the keystore are not supported;
the SIP Servlet container supports one certificate for each domain.
There is no mechanism to feed the container with a password for a
keystore entry.

Managing OCMS MBeans

3-12 Oracle Communication and Mobility Server Administrator’s Guide

SIP Servlet Container Logging
For information on the logging system and configuring log levels, see Chapter 12,
"Configuring the Logging System".

STUN Service
The OCMS STUN Service implements STUN -- Simple Traversal of User Datagram
Protocol (UDP) Through Network Address Translators (NATs). As described in RFC
3489, STUN enables STUN clients behind a NAT (that is, clients behind a router) to
discover the presence of a NAT, the type of NAT, and then to learn the address
bindings (including IP addresses) allocated by the NAT.

STUN is a client-server protocol in which a STUN client sends a request (a Binding
Request) to a server, which in turn sends a response. OCMS supports the receipt of
Binding Requests from a client, which are sent over UDP and are used to both
discover the presence of a NAT and discover the public IP address and the port
mappings that it generates. When a STUN client sends a Binding Request to the STUN
server, the STUN Server examines the request’s source IP address and port and copies
them into a response that it sends back to the client. When the STUN client receives
the Binding Response, it compares the IP address and port in the packet with the local
IP address and port to which it bound itself when it sent the Binding Request to the
STUN Server.

The attributes of the STUN Service MBean (described in Table 3–4) enable you to set
the STUN Server’s primary and secondary IP addresses and ports that form the four
RFC 3489-dictated address-port combinations used by the STUN server to receive
client Binding Requests. Per RFC 3489, the combinations are as follows:

■ A1, P1 -- The Primary Address and Primary Port

■ A2, P1 -- The Secondary Address and the Primary Port

■ A1, P2 -- The Primary Address and the Secondary Port

■ A2, P2 -- The Secondary Address and the Secondary Port

Typically, the STUN server’s Primary Port (P1) is set to UDP port 3478. The Stun
server uses the Secondary Address and Secondary Port values (A2, P2) in the
CHANGED-ADDRESS attribute included in its Binding Response.

Table 3–4 Attributes of the STUNService MBean

Attribute Value

Autostart Set to true for the Stun Server to start automatically when OCMS
starts.

PrimaryAddress The primary STUN address on which to listen for incoming
Binding Requests. The default value is 127.0.0.1.

PrimaryPort The primary STUN port on which to listen for incoming Binding
Requests. The value is UDP port 3478, the default STUN Port as
described in RFC 3489.

SecondaryAddress The secondary STUN address on which to listen for incoming
Binding Requests. This cannot be the same value as
PrimaryAddress.

SecondaryPort The secondary STUN port to which to listen for incoming
Binding Requests. The default value is UDP port 3479.

Managing OCMS MBeans

Configuring the SIP Server MBeans 3-13

Configuring SIP Applications
This section describes the configuration enabled by the MBeans registered to the
following SIP applications:

■ Subscriber Data Services

■ Presence (See "Configuring Presence and Presence Web Services")

■ Proxy Registrar

■ Application Router

■ Aggregation Proxy

Subscriber Data Services
Subscriber Data Services (subscriberdataservices) is the parent application to all SIP
applications that require authentication and security against the OCMS user
repository. For example, the Application Router, Aggregation Proxy, and Proxy
Registrar require Subscriber Data Services. In the case of the latter, the Location Service
and the registrar component of the Proxy Registrar are dependent upon Subscriber
Data Services. Subscriber Data Services also provides access to the Oracle Internet
Directory (OID). For more information, see "Overview of Security". See also
"Configuring Oracle Internet Directory as the User Repository" for information on
using Oracle Internet Directory (OID), the LDAP data store used by Oracle WebCenter
Suite, as the user provisioning repository for an OCMS deployment.

Account Security
Subscriber Data Services provides account security through the Account Lockout
Service and Login Failure service MBean groups.

The Account Lockout group includes the following MBeans:

■ AA Service

The AA Service MBean is used by the Login Failure Service to lock accounts. This
MBean depends on the MathFunction Model MBeans, which enable the AA
Service MBean to calculate the next lock duration for an account based on the
current number of failed login attempts.

Table 3–5 describes the attributes of the AA Service MBean.

Note: Account locking persists when you restart OC4J.

Table 3–5 Attributes of the AA Service MBean

Attribute Value

MathFunction The type of math function used to calculate the next lock
duration for an account based on the number of current failed
login attempts. The math functions, which include Linear,
Exponential and Constant, are packaged as ModelMBeans.
The default value is Linear.

DefaultLockDuration The lock duration, in seconds, to use if no math functions are
available. The default value is 600.

JNDIName The JNDI Name of the AA Service. This value is read-only

SecurityServiceName The JNDI Name bound to the service object that is used to
unlock user accounts. This value is read-only.

Managing OCMS MBeans

3-14 Oracle Communication and Mobility Server Administrator’s Guide

■ Constant (read-only)

The constant function used by the MathFunction MBean to calculate the next lock
duration for an account based on the number of current failed login attempts.

■ Exponential

The exponential math function used by the MathFunction MBean to calculate the
next lock duration for an account based on the number of current failed login
attempts.

■ Linear

The linear math function used by the MathFunction MBean to calculate the next
lock duration for an account based on the number of current failed login attempts.

Of the Subscriber Data Services MBeans, only AA Service and Command Service can
be configured.

CommandService

The operations of the CommandService MBean enable you to execute the equivalent of
Sapphire Shell (Sash) commands which are used to provision OCMS users to the
Oracle database. For example, to view a list of commands for account management:

1. Click the Operations tab. A list of get commands appears.

2. Click help for a returning a help String for a partial command. The parameters for
the help operation appear.

3. Enter account in the Value field.

4. Click Invoke Operation. The commands pertaining to account management
appear (Figure 3–6). These commands match those retrieved by entering help
account at the Sash prompt. For more information, see "Viewing Subcommands"
in Chapter 11, "Provisioning Users with Sash".

Table 3–6 Subscriber Data Services MBeans

MBean Tasks

ModelMBeanDeployer The helper MBean used by the Subscriber
Data Services application to deploy its Model
MBeans.

Tip: Click Use Multiline Editor to expand the Value field to
accommodate long command names.

Managing OCMS MBeans

Configuring the SIP Server MBeans 3-15

Figure 3–6 Viewing Help for a Command

To view a list of all of the available commands (Figure 3–7), select listAllCommands
from the Operations tab and then click Invoke Operation from the listAllCommands
page that appears. For a description of Sash commands, see "Viewing Available
Commands". For more information on user management through Sash, see "Creating a
User".

Figure 3–7 Viewing Available Commands

Managing OCMS MBeans

3-16 Oracle Communication and Mobility Server Administrator’s Guide

The Command Service MBean is deployed within the presence application to enable
user provisioning to the XDMS (XML Document Management Server). See Command
Service (XDMS Provisioning).

Proxy Registrar
The Proxy Registrar is a user agent server (UAS) that implements the proxy and
registrar functions described in RFC 3261. This SIP entity is a router of messages. The
Proxy Registrar's registrar function processes the REGISTER requests from User Agent
clients and uses a Location Service to store a binding (that is, an association) between a
user's address of record (AOR) and the user's SIP or SIPS URIs that are located in a
CONTACT field. Upon receiving requests to the AOR, the proxy function locates the
mapped URIs through a Location Service lookup and then proxies the request using
the location information retrieved by this lookup. Table 3–7 describes the attributes of
the Proxy Registrar.

Table 3–7 Attributes of the Proxy Registrar

Attributes Description

CurrentRegDevices A read-only attribute that displays the number of currently
registered devices.

DefaultExpires Sets the expiration value for the REGISTER request if the
client has not indicated a preferred value itself. The default
value for this attribute is 3600 seconds.

MaxExpires Sets the maximum expiration value for the REGISTER
request accepted by the server. Although a client can request
any expiration value in the REGISTER request, the server can
set a maximum amount of time that it accepts for expiration.
If the client requests a time greater than the value set for
MaxExpires, then the server sets the expiration time for that
particular REGISTER request to the value set for MaxExpires.

The default value for this attribute is 7200 seconds.

MinExpires Specifies the minimum expiration value for a REGISTER
request accepted by server. While clients can request any
expiration time, they can also specify a very low value for
the expiration of the REGISTER request. Such low values
require clients to update registration information frequently,
which creates traffic on the network. If a client requests a
value that is below this minimum expiration time, then the
server does not accept the REGISTER request and responds
with a 423 (Interval Too Brief) error response per RFC 3261.
This response message specifies the lowest expiration time
allowed, which is set by the MinExpires attribute. The server
is allowed to shorten an expiration time, but can never
lengthen one.

The default value for this attribute is 60 seconds.

SipRegAllowThirdParty Specifies whether the Proxy Registrar allows third-party
registrations. In a third-party registration, the entity issuing
the request (in the From header) is different from the entity
being registered (in the To header) to whom the provided
Contact information applies. If set to true, the Proxy
Registrar allows third party registrations. If set to false (the
default value), then third-party registrations are rejected (the
requestor receives a 403 Forbidden status code). This is a
read-only attribute that is always set to false.

SipRegMaxUsers A read-only attribute that specifies the maximum number of
users supported by the Proxy Registrar.

Managing OCMS MBeans

Configuring the SIP Server MBeans 3-17

Application Router
When the OCMS SIP servlet container receives incoming requests that do not contain
the application ID (appId) parameter, the container invokes the Application Router
which inserts routing information that includes this parameter into the request’s
ROUTE. As a result, the container can respond to incoming INVITE, MESSAGE,
PUBLISH, REGISTER, and SUBSCRIBE requests by invoking the appropriate
applications in the correct order. As described in Oracle Communication and Mobility
Server Developer’s Guide, the appId parameter is an OCMS extension to JSR-116 used
to route requests to applications.

Because requests generated by SIP clients other than Oracle Communicator typically
do not contain the appId parameter in either their ROUTE or REQUEST URI headers,
the presence of the appId parameter in an incoming request’s ROUTE header ensures
that the OCMS SIP servlet container correctly handles requests. The Application
Router MBean (ocmsrouteloaderear, illustrated in Figure 3–8) enables you to configure
the destinations for incoming INVITE, MESSAGE, PUBLISH, REGISTER, and
SUBSCRIBE requests by defining the application routing sequence and other
route-related criteria.

Figure 3–8 Setting the Application Routing for an INVITE Request

Table 3–8 describes the attributes that you configure for the routing of INVITE,
MESSAGE, PUBLISH, REGISTER, and, SUBSCRIBE requests.

Managing OCMS MBeans

3-18 Oracle Communication and Mobility Server Administrator’s Guide

Table 3–8 Attributes of the Application Router

Attribute Description

IncrementalMode This boolean enables you to select the Application Router’s execution mode: true for
incremental, false for standard.

■ Select true to set the incremental execution mode for the Application Router. For the
incremental mode, the Application Router inserts the first (or top-most) URI configured in
the SIPUriList attribute as well as the URI of the return route to the Application Router
itself, which is defined as the value to the RouteLoaderUri attribute. When the request
returns to the Application Router, the Application Router then checks if the Request URI
has changed. If so, it proxies the request to this new URI. If the Request URI remains
unchanged, then the Application router inserts the next URI defined in the SIPUriList into
the request’s ROUTE header and repeats the cycle.

You must configure the following Application Router attributes for the incremental mode:

■ RecordRoute

■ RouteLoaderUri

■ SIPUriList

■ Select false to set the standard mode for the Application Router. In the standard mode, the
Application Router inserts all of the routes defined in the SipUriList attribute in the
request’s ROUTE header. The request then follows the routes in the sequence that they are
defined in the SipUriList attribute.

You must configure the following Application Router attributes for the standard mode:

■ RecordRoute

■ RouteLoaderUri

■ SipUriList

RecordRoute Set to true to enable record routing.

RouteLoaderUri The URI of the return route to the Application Router. This value must be the same URI as the
SIP servlet container. In general, you set the value as the URI of the Proxy Registrar because
the SIP servlet container recognizes the URI of the Proxy Registrar as its own.

SipUriList A comma-separated list of URIs, transport methods, and appIds of applications that the
Application Router inserts in the ROUTE header of an incoming request.

The default list, which routes requests to the Proxy Registrar, is defined as

sip:<SIP Container IP Address>:<SIP port>;transport=TCP;lr;appId=proxyregistrar

For example:

sip:144.25.174.189:5060;transport=TCP;lr;appId=proxyregistrar

Request routing is set according to the order of the applications listed in this attribute. For
example, to call an application called dialin as the first destination for an INVITE request,
insert the information for dialin as the first item on the list as follows:

sip:144.25.174.189:5060;transport=TCP;lr;appId=dialin,sip:144.25.174.189:5060;
transport=TCP;lr;appId=proxyregistrar

To ensure that request-related applications that you deploy to the OCMS SIP servlet container
are invoked in response to incoming requests, you must add any application that you deploy
to this list. The name of the application defined for the appId parameter (which is
case-sensitive) can either be the full name of the deployed application, or an alias for the
application. If the latter, the name must match the application alias set for the
ApplicationAliases parameter of the SIP Servlet Container MBean. The Proxy Registrar must
always be the last item listed in the SIPUriList attribute.[[See Deploying SIP Applications]]

For more information on the appID parameter, refer to Oracle Communication and Mobility
Server Developer’s Guide.

Managing OCMS MBeans

Configuring the SIP Server MBeans 3-19

Setting and Viewing the SIP Port
The SIP port is set in the opmn.xml file rather than through Enterprise Manager. You
should specify a specific port number, such as 5060, rather than a range of ports.

You can view what SIP port you have set in the opmn.xml from the "Server Properties"
page in Enterprise Manager. Do not change the SIP port through this page. If you
attempt to change it the "protocol" part in the opmn.xml file will be modified from
"sip" to "ajp" and the SIP container will start on the default port, 5060.

Managing OCMS MBeans

3-20 Oracle Communication and Mobility Server Administrator’s Guide

Configuring Security and Login Modules 4-1

4
Configuring Security and Login Modules

This chapter describes how to set the security provider for an application. This chapter
includes the following topics:

■ "Overview of Security"

■ "Configuring Subscriber Data Services"

■ "Configuring Applications to Use Login Modules"

■ "Security in SIP Servlets"

■ "Authentication Using the P-Asserted Identity Header"

■ "Authentication of Web Service Calls and XCAP Traffic"

■ "Configuring Oracle Internet Directory as the User Repository"

Overview of Security
OCMS implements both basic (HTTP) authentication and digest authentication as
described in RFCs 3261 and 2617. In OCMS, both SIP and HTTP applications can be
configured to authenticate against a RADIUS authentication system or Oracle Internet
Directory (OID) version 10.1.4.0.1.

The Subscriber Data Services application provides the infrastructure for authentication
and authorization. This application, which is parent to applications requiring
authentication, enables its child applications to access the authentication backend
(RADIUS or Oracle Internet Directory) by means of native Enterprise JavaBeans (EJBs).
Subscriber Data Services provides a framework that enables security but does not
impose security constraints itself; this is done instead by its child applications, such as
Proxy Registrar, which have authority constraints defined by the
<security-constraint> element in sip.xml. For more information on
configuring security in the deployment descriptor file, see "Security in SIP Servlets".

Each of the child applications of Subscriber Data Services must be configured to use a
JAAS (Java Authentication and Authorization Service) login module for authentication
and authorization against the configured user repository.

The OCMS JAAS-Compliant Login Modules
OCMS leverages the pluggable architecture of JAAS by providing the RADIUS Login
Module that checks user credentials stored in the RADIUS user repositories for SIP or
HTTP applications.

Overview of Security

4-2 Oracle Communication and Mobility Server Administrator’s Guide

The RADIUS Login Module provides digest authentication for SIP applications as
described in RFC 4590 and basic authentication HTTP applications for users
provisioned to a RADIUS database.

The RADIUS database only authenticates users; it does not authorize users. Therefore,
if you use the RADIUS Login Module, you must create users and assign the
appropriate roles in the Oracle database that correspond to each user provisioned to
the RADIUS database for role-based authorization. When deleting a user's
authentication information from a RADIUS database, you must also delete that user's
authorization information (for example, an account and role-related information)
manually from the Oracle database. This prevents a future user provisioned with the
same user name in RADIUS from inheriting the authorization and account-specific
information of a user who had previously been deleted.

These pluggable JAAS login modules enable the SIP servlet container to perform
authentication and authorization against external databases for User Agents sending
SIP requests. The modules implement user authentication against the RADIUS user
repositories by first invoking the JAAS LoginModule class and then by authorizing a
previously authenticated user by verifying that the appropriate access permissions
have been granted.

Application Type and Authentication Mode
The type of authentication depends on the protocol used by the login module. As
noted in Table 4–1, Digest authentication is used on the SIP side and Basic
authentication is used on the HTTP side.

Note: Due to licensing restrictions, open source RADIUS is not
packaged with OCMS during installation. Prior to configuring the
RADIUS Login Module with OCMS, the JRadius client library must be
manually downloaded and installed. The necessary JRadius client
library can be downloaded from the Sourceforge project at:

http://jradius-client.sourceforge.net/

Once the JRadius client library has been downloaded, manually copy
the jradius-client.jar file to $ORACLE_
HOME/j2ee/home/lib/ext on Oracle Containers for J2EE (OC4J)
deploymentsYou must then restart the application server to deploy
the RADIUS Login Module.

Note: Because these login modules authenticate users against
external repositories, they are considered custom security providers in
OC4J. See Oracle Containers for J2EE Security Guide for information on
configuring a custom security provider within a J2EE application.

Note: Although the Aggregation Proxy is a Web application, it is not
limited to basic authentication because it explicitly performs
authentication using internal security APIs. As a result, the
Aggregation Proxy’s default security settings (which set the
authentication method as digest) will work without further
configuration.

Configuring Subscriber Data Services

Configuring Security and Login Modules 4-3

Configuring Subscriber Data Services
Subscriber Data Services (subscriberdataservices) is the parent application to all SIP
applications that require authentication and security against the OCMS user
repository. For example, the Application Router, Aggregation Proxy, and Proxy
Registrar require Subscriber Data Services. In the case of the latter, the Location Service
and the registrar component of the Proxy Registrar are dependent upon Subscriber
Data Services. Subscriber Data Services also provides access to Oracle Internet
Directory (OID). For more information, see "Overview of Security". See also
"Configuring Oracle Internet Directory as the User Repository" for information on
using Oracle Internet Directory (OID) as the user provisioning repository for an OCMS
deployment.

Account Security
Subscriber Data Services provides account security through the Account Lockout
Service and Login Failure service MBean groups.

The Account Lockout group includes the following MBeans:

■ AA Service

The AA Service MBean is used by the Login Failure Service to lock accounts. This
MBean depends on the MathFunction Model MBeans, which enable the AA
Service MBean to calculate the next lock duration for an account based on the
current number of failed login attempts.

Table 4–2 describes the attributes of the AA Service MBean.

Table 4–1 Authentication Based on Protocol

Protocol Authentication Mode

SIP Digest

HTTP Basic

Note: This chapter describes how to specify the login module used
by an application and how to configure the OCMS and RADIUS login
modules themselves. See "Configuring Oracle Internet Directory as the
User Repository" for information on using Oracle Internet Directory
(OID), the LDAP data store used by Oracle WebCenter Suite, as the
user provisioning repository for an OCMS deployment.

Note: Account locking persists when you restart OC4J.

Table 4–2 Attributes of the AA Service MBean

Attribute Value

MathFunction The type of math function used to calculate the next lock
duration for an account based on the number of current failed
login attempts. The math functions, which include Linear,
Exponential and Constant, are packaged as ModelMBeans.
The default value is
hotisp.math:service=MathFunction,name=Linear.

Configuring Subscriber Data Services

4-4 Oracle Communication and Mobility Server Administrator’s Guide

■ Constant (read-only)

The constant function used by the MathFunction MBean to calculate the next lock
duration for an account based on the number of current failed login attempts.

■ Exponential

The exponential math function used by the MathFunction MBean to calculate the
next lock duration for an account based on the number of current failed login
attempts.

■ Linear

The linear math function used by the MathFunction MBean to calculate the next
lock duration for an account based on the number of current failed login attempts.

Of the Subscriber Data Services MBeans, only AA Service and Command Service can
be configured.

CommandService
The operations of the CommandService MBean enable you to execute the equivalent of
Sash commands which are used to provision OCMS users to the Oracle database. For
example, to view a list of commands for account management:

1. Click the Operations tab. A list of get commands appears.

2. Click help for a returning a help String for a partial command. The parameters for
the help operation appear.

3. Enter account in the Value field.

4. Click Invoke Operation. The commands pertaining to account management
appear (Figure 4–1). These commands match those retrieved by entering help
account at the Sash prompt. For more information, see "Viewing Subcommands"
in Chapter 11, "Provisioning Users with Sash".

DefaultLockDuration The lock duration, in seconds, to use if no math functions are
available. The default value is 600.

JNDIName The JNDI Name of the AA Service. This value is read-only

SecurityServiceName The JNDI Name bound to the service object that is used to
unlock user accounts. This value is read-only.

Table 4–3 Subscriber Data Services MBeans

MBean Tasks

ModelMBeanDeployer The helper MBean used by the Subscriber
Data Services application to deploy its Model
MBeans.

Tip: Click Use Multiline Editor to expand the Value field to
accommodate long command names.

Table 4–2 (Cont.) Attributes of the AA Service MBean

Attribute Value

Configuring Subscriber Data Services

Configuring Security and Login Modules 4-5

Figure 4–1 Viewing Help for a Command

To view a list of all of the available commands (Figure 4–2), select listAllCommands
from the Operations tab and then click Invoke Operation from the listAllCommands
page that appears. For a description of Sash commands, see "Viewing Available
Commands". For more information on user management through Sash, see "Creating a
User".

Figure 4–2 Viewing Available Commands

Configuring Applications to Use Login Modules

4-6 Oracle Communication and Mobility Server Administrator’s Guide

The Command Service MBean is deployed within the presence application to enable
user provisioning to the XDMS (XML Document Management Server). See Command
Service (XDMS Provisioning).

Configuring Applications to Use Login Modules
You configure security for SIP applications by first defining the
<security-constraint> element in the deployment descriptor file, sip.xml,
setting the security provider (login module) appropriate to the authenticating user
repository used by the application and then by configuring the login module itself. For
more information on setting security in sip.xml, see "Security in SIP Servlets".

You can configure a login module for each application that you deploy. During the
deployment process, you can configure the login module for SIP or HTTP applications
using the Security Provider task in the Deployment Settings page of the Application
Server Control deployment wizard. Once you deploy an application, you can examine
or edit its login module’s configuration From the Edit Login Module page, accessed
from the Security Providers task in the Administration page (Figure 4–3).

Figure 4–3 Modifying a Login Module.

For more information, see Deploying with Application Server Control Console in Oracle
Containers for J2EE Deployment Guide

Configuring Login Modules though system-jazn-data.xml and orion-application.xml
Alternatively, login modules can also be configured through the
<jazn-loginconfig> settings either in the system-jazn-data.xml file or in the
orion-application.xml file located in an application’s EAR (Enterprise Archive)
file.

Configuring Login Modules in system-jazn-data.xml
The system-jazn-data.xml file is the repository for login module configuration.
The settings in this file are updated when you administer login modules through
Oracle Application Server Control (Figure 4–3) or through the OracleAS JAAS

Configuring Applications to Use Login Modules

Configuring Security and Login Modules 4-7

Provider Admintool. For more information, see Oracle Containers for J2EE Security
Guide.

Table 4–4 describes the options supported by the OCMS Login Module and the
RADIUS Login Module that you configure in system-jazn-data.xml.

Declaring the OCMS Login Module in orion-application.xml
The <jazn-loginconfig> element in orion-application.xml defines the login
modules used by an application. The configurations you set in this file are populated
to system-jazn-data.xml. Example 4–1 illustrate configuring login modules for
authentication against a RADIUS authentication system.

Declaring the RADIUS Login Module in orion-application.xml
Example 4–1 defines a login module for the Proxy Registrar application. This
application, however, requires users to be authenticated against the RADIUS database.
In addition to the options described in Table 4–4, the RADIUS Login Module also
supports the options described in Table 4–5.

Example 4–1 Declaring the Radius Login Module in orion-application.xml

 <jazn-loginconfig>
 <application Key="name">
 <name>proxyregistrar</name>
 <login-modules>
 <login-module Key="class control-flag">
 <class>
 oracle.sdp.radiusloginmodule.RadiusLoginModule

Table 4–4 Login Module Options

Option Description

useUTF8 If set to true, then the login module
supports user names and passwords
encoded in the UTF-8 character set.

authMethod For SIP applications, select either Basic or
Digest. For HTTP applications, select
Basic.

failurePeriod The time, in seconds, that an account is
locked. The value entered in
orion-application.xml takes
precedence over the value entered in the
DefaultLockDuration attribute of the AA
Service MBean. See also "SIP Servlet
Container".

maxfailure The number of failed login attempts before
an account is blocked.

Table 4–5 RADIUS Login Module Options

Option Description

hostname The host name or IP address of the remote RADIUS server.

authPort The destination port for authentication requests.

acctPort The destination port for the accounting server.

sharedSecret A String known only to the RADIUS server and the RADIUS
client.

Security in SIP Servlets

4-8 Oracle Communication and Mobility Server Administrator’s Guide

 </class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>useUTF8</name>
 <value>true</value>
 </option>
 <option>
 <name>authMethod</name>
 <value>Digest</value>
 </option>
 <option>
 <name>failurePeriod</name>
 <value>600</value>
 </option>
 <option>
 <name>maxFailure</name>
 <value>5</value>
 </option>
 <option>
 <name>hostName</name>
 <value>127.0.0.1</value>
 </option>
 <option>
 <name>authPort</name>
 <value>1812</value>
 </option>
 <option>
 <name>acctPort</name>
 <value>1813</value>
 </option>
 <option>
 <name>sharedSecret</name>
 <value>secret</value>
 </option>
 <option>
 <name>radiusClientClass</name>

<value>oracle.sdp.radiusloginmodule.JRadiusClient</value>
 </option>
 </options>
 </login-module>
 </login-modules>
 </application>
 </jazn-loginconfig>

Security in SIP Servlets
OCMS supports declarative and programmatic security for SIP servlets as described in
the SIP Servlet API.

Declarative Security
The SIP Servlet API describes declarative security as expressing an application’s
security structure that includes roles, access control, and authentication requirements
in a form that is external to the application1. The deployment descriptor, sip.xml, is

1 SIP Servlet API, Version 1.0

Authentication Using the P-Asserted Identity Header

Configuring Security and Login Modules 4-9

the vehicle for declarative security. Developers define how security should be effected
in a deployed application by defining the <security-constraint> element. This
element, which is described in detail in Oracle Communication and Mobility Server
Developer’s Guide, includes the following child elements (described in Table 4–6).

In OCMS, you first configure security for SIP applications by defining these elements.
You can also set the login module used by the application in the
system-jazn-data.xml file or in the orion-application.xml file as described
in "Configuring Applications to Use Login Modules".

Programmatic Security
Programmatic security describes the security model from inside a servlet using the
SipServletMessage methods getRemoteUser, isUserInRole, and
getUserPrincipal.

Authentication Using the P-Asserted Identity Header
The SIP Servlet API 1.0 states that in addition to basic and digest authentication, a
User Agent authenticates users through the P-Asserted Identity, a SIP header field that
conveys the identity of an authenticated user between the nodes of a trusted domain.
As described in RFC 3325, a proxy within a trusted domain can receive messages from
both trusted and non-trusted nodes alike. In the case of the latter, the proxy
authenticates the originator of the message using digest authentication. The proxy
then creates the P-Identity Asserted header field from the identity that it derived from
authentication and places this field into the message header which it passes to other
entities. For example, an inbound proxy server authenticates a user and then inserts
the P-Asserted Identity header field into the received SIP message. By inserting the
P-Asserted Identity header field, other servers within the trusted domain (such as the
Presence Server) do not have to perform authentication again.

OCMS supports the trusted domain identity assertion described in RFC 3325 through
the SipservletCommandInterceptors attribute of its SIP Servlet Container Mbean.

Note: You can prevent a SIP application from performing
authentication by removing the constraints defined in sip.xml and
then by redeploying the application.

Table 4–6 Child Elements of the <security-constraint> Element

Element Description

<proxy-authentication> If this element is present in SIP.xml, the container must
challenge the user agent with a 407 (Proxy Authentication
Required) response status code when authenticating an
incoming request or return a 401 response (Unauthorized).

<resource-collection> A set of servlets and SIP methods. This element describes the
servlet that requires authentication and the SIP methods used
for authentication.

<auth-constraint> Indicates the user roles that are permitted access to this
resource collection.

<role-name> The name of a security role.

Authentication of Web Service Calls and XCAP Traffic

4-10 Oracle Communication and Mobility Server Administrator’s Guide

Authentication of Web Service Calls and XCAP Traffic
OCMS supports Presence in Oracle Web Center 11g by allowing the Web Center
system to manage their community memberships and presence authorization via APIs
provided by OCMS. Web Center uses a community proxy user to represent a
community to gain access to community members’ presence information.

Web Services calls are authenticated by WS-Security. WS-Security is enabled by default
to authenticate Web Service applications.

Default Role for All Users
OCMS 10.1.3.4 enables you to define a default role for all users in the JAAS (Java
Authentication and Authorization Service) login modules. For example, you can
define the role, PUBLIC, for all users by defining an <option> element in the
system-jazn-data.xml file or in the orion-application.xml file located in an
application’s EAR (Enterprise Archive) file as illustrated in Example 4–2:

Example 4–2 Defining a Default Role for All Users

<option>
 <name>defaultRole</name>
 <value>{{PUBLIC}}</value>
</option>

Alternatively, you can configure security for SIP applications by first defining the
<auth-constraint> subelement of <security-constraint> in the deployment
descriptor file, sip.xml, and then by setting the security provider (login module)
appropriate to the authenticating user repository used by the application and then by
configuring the login module itself through the MBean browser.

 Configuring Oracle Internet Directory as the User Repository
This section describes how to configure Oracle Internet Directory (OID), as the user
provisioning repository for an OCMS deployment. This appendix includes the
following sections:

■ "Overview of Configuration for OID Support"

■ "Configuring the OID LDAP Backend"

■ "Repackaging Subscriber Data Services"

■ "Provisioning OCMS Users to OID"

Overview of Configuration for OID Support
For OCMS to support authentication and authorization services for users provisioned
to OID requires the following configuration for both OCMS and OID:

■ "Configuring the OID LDAP Backend"

■ "Installing OCMS Components into the OID LDAP Tree"

■ "Repackaging Subscriber Data Services"

■ "Provisioning OCMS Users to OID"

Prerequisites for OID Support
Using the OID data store requires the following:

Configuring Oracle Internet Directory as the User Repository

Configuring Security and Login Modules 4-11

■ A properly installed and configured instance of OCMS.

■ An instance of OID, Version 10.1.4.0.1.

■ For dynamic verifiers you must enable reversible password encryption for the
LDAP realms employed for user authentication by selecting Userpassword
Reversible Encryption. This configuration is not required for static verifiers.For more
information, see Oracle Internet Directory Administrator’s Guide.

Configuring the OID LDAP Backend
You must also configure the following OID LDAP attributes for the OID LDAP
backend:

■ orclcommonnicknameattribute (See "Mapping JAAS Usernames to LDAP User
Entries".)

■ orclsubscribernicknameattribute (See "Mapping JAAS Realms to LDAP Subscribers".)

■ orclcommonnamingattribute (See "Mapping JAAS Roles to LDAP Groups".)

Mapping JAAS Usernames to LDAP User Entries
JAAS (Java Authentication and Authorization Service) user names are mapped to
LDAP Users based on value of the orclcommonnicknameattribute under the node
cn=Common, cn=Products, cn=OracleContext for each of the provisioned LDAP realms.
For example, setting this attribute to uid for a given realm implies that SIP or Web
users authenticating against OID must provide their corresponding LDAP UID as their
username during authentication.

Mapping JAAS Realms to LDAP Subscribers
JAAS realms are mapped to LDAP Realm entries based on the value given to
orclsubscribernicknameattribute under the root cn=Common, cn=Products,
cn=OracleContext node for an OID deployment. For example, setting the value of
orclsubscribernicknameattribute to o for an OID deployment implies that SIP or Web
users authenticating against OID must belong to the JAAS realm identified by the
value of the o attribute. As a result, user sip.user@company.com is challenged under the
realm, company. The mapping of SIP domains to JAAS realms is exposed through the
SipServletContainer’s DomainsAndRealms attribute. In this example, the SIP domain,
company.com, is mapped to the JAAS realm, company. The JAAS realm, company, is then
mapped to the LDAP Subscriber for whom the value for the attribute in
orclsubscribernicknameattribute (that is, the o attribute) is set to company. See also "SIP
Servlet Container".

Mapping JAAS Roles to LDAP Groups
Group membership determines the JAAS roles for a specific user. Mapping LDAP
groups to JAAS roles is based on the value given to orclcommonnamingattribute under
the node cn=Common, cn=Products, cn=OracleContext for each of the provisioned LDAP
Realms. For example, if a user belongs to an LDAP group with the distinguished name
of cn=Location Service, cn=groups, dc=example, dc=com and the

Note: OID is only supported for standalone OCMS deployments and
OCMS deployments on Version 10.1.3.2 or higher of Oracle
Application Server. See Oracle Communication and Mobility Server
Installation Guide for further hardware and software requirements and
installation options.

Configuring Oracle Internet Directory as the User Repository

4-12 Oracle Communication and Mobility Server Administrator’s Guide

orclcommonnamingattribute is set to cn, then that JAAS user is populated with the
"Location Service" JAAS role.

Installing OCMS Components into the OID LDAP Tree
To allow the OCMS container to connect to an instance of OID, its product container
must be installed into OID’s LDAP tree under the node
cn=Products,cn=OracleContext for the appropriate LDAP realm(s). Each instance of
OCMS that will connect to a given instance of OID must add an application entry
under the OCMS product container, granting it the appropriate privileges, as
described in "Associating an OCMS Instance with OID". In addition, if static verifiers
are required for an OID deployment, an OCMS verifier entry must also be added
under the OCMS product container. Installation of static verifiers is described in
"Installing the OCMS Static Verifiers".

To integrate an instance of OCMS into a deployment of OID, you must make entries
and modifications to OID’s LDAP tree under the appropriate LDAP realm(s) (the
examples use sample realm under dc=example,dc=com).

These modifications can be made through a graphical tool such as oidadmin or
through a command-line tool such as ldapmodify with the appropriate LDIF
definitions. The following sections provide examples of the LDIF configuration data
that could be used to install OCMS components into OID’s LDAP tree.

Associating an OCMS Instance with OID
Perform the following steps to associate an OCMS instance with OID:

1. Add the OCMS product container entry under the cn=Products,cn=OracleContext
node for the appropriate LDAP realm:

dn: cn=OCMS,cn=Products,cn=OracleContext,dc=example,dc=com
changetype: add
objectclass: orclContainer

2. Associate an instance of OCMS by adding an OCMS application entry under the
OCMS product container created above.

dn:
orclApplicationCommonName=OCMSInstance1,cn=OCMS,cn=Products,cn=OracleContext,
dc=example,dc=com
changetype: add
objectclass: orclApplicationEntity
orclappfullname: OCMS Instance 1
userpassword: password1
description: OCMS Instance 1 of the OCMS SIP Container

3. Grant verifier services privileges to the OCMS application by adding the OCMS
application object as a member of the verifier services group.

dn:cn=verifierServices,cn=Groups,cn=OracleContext,dc=example,dc=com
changetype: modify Grant verifier services privileges to the OCMS application
by adding the OCMS application object as a member of the verifier services
group.
add: uniquemember
uniquemember: orclApplicationCommonName=OCMSInstance1,
cn=OCMS,cn=Products,cn=OracleContext,dc=example,dc=com

4. Repeat steps 2 and 3 for each instance of OCMS wishing to associate with this OID
LDAP server for its user data store.

Configuring Oracle Internet Directory as the User Repository

Configuring Security and Login Modules 4-13

Installing the OCMS Static Verifiers
Perform the following step to install OCMS static verifiers:

1. Add the OCMS verifier entry under the OCMS product container. This step is not
required for deployments of OID configured to use dynamic verifiers.

dn: cn=OCMSVerifierProfileEntry,cn=OCMS,cn=Products,cn=OracleContext,
dc=example,dc=com
objectclass:top
objectclass:orclpwdverifierprofile
cn:OCMSVerifierProfileEntry
orclappid:ocms
orclpwdverifierparams;authpassword: crypto:SASL/MD5 $ realm:example $
usernameattribute:mail $usernamecase:lower

Set the usernameattribute above to the value of the orclcommonnicknameattribute
under the node cn=Common,cn=Products,cn=OracleContext for the given LDAP
realm where the verifier is to be installed.

Set the realm verifier parameter to match one of the JAAS realms configured in the
SipServletContainer’s DomainsAndRealms JMX attribute, as described in
"Mapping JAAS Realms to LDAP Subscribers".

Set the orclappid attribute to a unique component name assigned to the OCMS
component. The value of this attribute determines the value of the
StaticVerifierAttribute used for the Security Service EJB configuration in
"Configuring User Service and Security Service". For example, if orclappid is set to
"ocms", then the StaticVerifierAttribute should be set to "authpassword;ocms",
following the general static verifier pattern of authpassword;orclappid (where
authpassword is a static string).

Refer to Oracle Internet Directory Administrator's Guide 10g for more information on
static verifiers.

Repackaging Subscriber Data Services
Configuring OCMS to support OID requires that Subscriber Data Services
(subscriberdataservices.ear) and its child applications be undeployed from
the OCMS OC4J instance. Before the application and its child applications can be
re-deployed, the user service and security service EJB configuration must be altered by
adding the following LDAP configuration parameters to the ejb-jar.xml files for
securityservice.jar and userservice.jar:

■ java.naming.security.principal

■ java.naming.provider.url

■ java.naming.security.protocol (an optional parameter)

The user service EJB configuration also exposes the SipUriLdapAttribute, which
defines the LDAP user attribute where the SIP URI is stored. This attribute defaults to
mail if no value is defined.

Configuring User Service and Security Service
To configure the Subscriber Data Services application with OID as the user
provisioning store:

1. Copy the EAR file of the Subscriber Data Services application
(subscriberdataservices.ear) as well as its child applications to a
temporary directory.

Configuring Oracle Internet Directory as the User Repository

4-14 Oracle Communication and Mobility Server Administrator’s Guide

2. Undeploy the Subscriber Data Services application and its child applications from
the OC4J instance. See "Deploying, Undeploying, and Redeploying SIP Servlet
Applications with Application Server Control".

3. Expand the Subscriber Data Services application in the temporary directory.

4. Expand securityservice.jar

5. Edit ejb-jar.xml (located under META-INF) by replacing the following entry
with the entry listed in Example 4–3 that includes the
java.naming.security.principal, java.naming.provider.url, and
the java.naming.security.protocol parameters.

 <env-entry>
 <description><![CDATA[Datasource for Service activation
facades]]></description>
 <env-entry-name>SecurityServiceDSN</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value><![CDATA[java:jdbc/OcmsSsDs]]></env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>SecurityDAOImpl</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>

<env-entry-value><![CDATA[com.hotsip.securityservice.dao.timesten.SecurityDAOIm
pl]]>
 </env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>StoreHashedCredentials</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value><![CDATA[True]]></env-entry-value>
 </env-entry>
 <env-entry>
 <description><![CDATA[Datasource for Service activation
facades]]></description>
 <env-entry-name>UserServiceDSN</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value><![CDATA[java:jdbc/OcmsUsDs]]></env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>UserDAOImpl</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>

<env-entry-value><![CDATA[oracle.sdp.userservice.dao.timesten.UserDAOImpl]]>
 </env-entry-value>
 </env-entry>

Example 4–3 ejb-jar.xml Entries

 <env-entry>
 <description><![CDATA[DN of the OCMS LDAP application entry for this
instance of OCMS.]]></description>
 <env-entry-name>java.naming.security.principal</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>

<env-entry-value><![CDATA[orclApplicationCommonName=OCMSInstance1,cn=OCMS,cn=Produ
cts,cn=OracleContext, dc=example,dc=com]]></env-entry-value>
 </env-entry>
 <env-entry>
 <description><![CDATA[Password for the OCMS LDAP application entry for

Configuring Oracle Internet Directory as the User Repository

Configuring Security and Login Modules 4-15

this instance of OCMS.]]></description>
 <env-entry-name>java.naming.security.credentials</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>

<env-entry-value><![CDATA[{903}FOO48C7YXgS6EMBZ4I47/Xs0JsjJXuHOUlVCyJzWHXo=]]></en
v-entry-value>
 </env-entry>
 <env-entry>
 <description><![CDATA[LDAP Provider URL]]></description>
 <env-entry-name>java.naming.provider.url</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>

<env-entry-value><![CDATA[ldap://ldapusers.example.com:636]]></env-entry-value>
 </env-entry>
 <env-entry>
 <description><![CDATA[Security Protocol (e.g. ssl)]]></description>
 <env-entry-name>java.naming.security.protocol</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value><![CDATA[ssl]]></env-entry-value>
 </env-entry>
 <env-entry>
 <description><![CDATA[The LDAP user attribute containing the user’s
static verifier hash.]]></description>
 <env-entry-name>StaticVerifierAttribute</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value><![CDATA[authpassword;ocms]]>
 </env-entry-value>
 </env-entry>
 <env-entry>
 <description><![CDATA[The optional LDAP filter that should be applied
when searching for users.]]></description>
 <env-entry-name>UserSearchFilter</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>

<env-entry-value><![CDATA[(&(mail=*@example.com)(orclisvisible=true))]]>
 </env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>SecurityDAOImpl</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>

<env-entry-value><![CDATA[oracle.sdp.securityservice.dao.ldap.SecurityDAOImpl]]>
 </env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>UserDAOImpl</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>

<env-entry-value><![CDATA[oracle.sdp.userservice.dao.ldap.UserDAOImpl]]>
 </env-entry-value>
 </env-entry>

Configuring Oracle Internet Directory as the User Repository

4-16 Oracle Communication and Mobility Server Administrator’s Guide

6. Repackage securityservice.jar.

7. Expand the userservice.jar.

8. Edit the ejb-jar.xml under META-INF by replacing the following entry with
the entry described in Example 4–4 that includes the
java.naming.security.principal, java.naming.provider.url,
java.naming.security.protocol, and SipUriLdapAttribute
parameters. Do not remove the UserServiceDSN entry.

 <env-entry>
 <description><![CDATA[Datasource for Service activation
facades]]></description>
 ...
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value><![CDATA[java:jdbc/OcmsUsDs]]></env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>UserDAOImpl</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>

<env-entry-value><![CDATA[oracle.sdp.userservice.dao.timesten.UserDAOImpl]]>
 </env-entry-value>
 </env-entry>

Example 4–4 userservice.jar Entries

 <env-entry>
 <description><![CDATA[DN of the OCMS LDAP application entry for this
instance of OCMS.]]></description>
 <env-entry-name>java.naming.security.principal</env-entry-name>

Note: The java.naming.security.principal,
java.naming.security.credentials and
java.naming.provider.url environment entries must be
updated with the LDAP server’s configuration. Typically, the entry for
java.naming.security.principal will be set to the dn for the
orclApplicationEntity object associated with the current instance of
OCMS. The optional entry, java.naming.security.protocol,
must be set to "ssl" for SSL-based connections to the OID LDAP
server.

The value of java.naming.security.credentials can be
provided in cleartext by prepending the "!" character to the cleartext
password (for example, "!password"). For additional security, use the
obfuscated form of the password.

In OID deployments configured to use dynamic verifiers, the
StaticVerifierAttribute entry is not needed and should be removed. In
OID deployments configured to use static verifiers, the
StaticVerifierAttribute entry should be set to the user attribute where
the OCMS static verifier is stored. Typically, the value of this attribute
is "authpassword;orclappid", where authpassword is a static string and
orclappid is replaced by the value of the orclappid attribute uniquely
identifying the OCMS static verifier installed into OID.

The optional UserSearchFilter attribute sets the value of the LDAP
filter to apply when searching for users in the LDAP repository. If
omitted, no user search filter will be applied.

Configuring Oracle Internet Directory as the User Repository

Configuring Security and Login Modules 4-17

 <env-entry-type>java.lang.String</env-entry-type>

<env-entry-value><![CDATA[orclApplicationCommonName=OCMSInstance1,cn=OCMS,cn=Produ
cts,cn=OracleContext, dc=example,dc=com]]></env-entry-value>
 </env-entry>
 <env-entry>
 <description><![CDATA[Password for the OCMS LDAP application entry for
this instance of OCMS.]]></description>
 <env-entry-name>java.naming.security.credentials</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>

<env-entry-value><![CDATA[{903}FOO48C7YXgS6EMBZ4I47/Xs0JsjJXuHOUlVCyJzWHXo=]]></en
v-entry-value>
 </env-entry>
 <env-entry>
 <description><![CDATA[LDAP Provider URL]]></description>
 <env-entry-name>java.naming.provider.url</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>

<env-entry-value><![CDATA[ldap://ldap.example.com:636]]></env-entry-value>
 </env-entry>
 <env-entry>
 <description><![CDATA[The optional LDAP user attribute containing the
user's SIP URI.]]></description>
 <env-entry-name>SipUriLdapAttribute</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value><![CDATA[mail]]></env-entry-value>
 </env-entry>
 <env-entry>
 <description><![CDATA[The optional LDAP filter that should be applied
when searching for users.]]></description>
 <env-entry-name>UserSearchFilter</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>

<env-entry-value><![CDATA[(&(mail=*@example.com)(orclisvisible=true))]]>
 </env-entry-value>
 </env-entry>
 <env-entry>
 <description><![CDATA[Security Protocol (e.g. ssl)]]></description>
 <env-entry-name>java.naming.security.protocol</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value><![CDATA[ssl]]></env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>UserDAOImpl</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>

<env-entry-value><![CDATA[oracle.sdp.userservice.dao.ldap.UserDAOImpl]]>
 </env-entry-value>
 </env-entry>

Configuring Oracle Internet Directory as the User Repository

4-18 Oracle Communication and Mobility Server Administrator’s Guide

9. Repackage userservice.jar.

10. Repackage the EAR file for Subscriber Data Services.

11. Redeploy the repackaged Subscriber Data Services application and its child
applications to the OCMS OC4J instance.

Provisioning OCMS Users to OID
You must provision user accounts to OID using the Oracle Identity Management
(OIM) Web-based Oracle Delegated Administration Services application (OIDDAS),
described in Oracle Identity Management Guide to Delegated Administration.

You access this tool from a browser by entering http://<host>:<port>/oiddas,
where the host and port are the hostname and HTTP port for the Oracle Application
Server instance of the OID deployment.

Adding Users to LDAP Groups
Proxy registrar can be configured to have users with any roles by assigning a default
PUBLIC role.

Using Oracle Delegated Administration Services, you can add a user to an LDAP
group by adding the distinguished name of the user to the list of values in the LDAP
group’s uniquemember attribute. For more information, refer to Oracle Identity
Management Guide to Delegated Administration.

You can also configure the sip.xml authentication constraints in proxyregistrar to
require user membership in a particular role (for example, Location Service), based on
the SIP message type.

Note: The java.naming.security.principal,
java.naming.security.credentials and
java.naming.provider.url environment entries must be
updated with the LDAP server’s configuration. In addition, the
optional entry, java.naming.security.protocol, must be set to
"ssl" for SSL-based connections to the OID LDAP server. The
userservice exposes an optional environment parameter,
SipUriLdapAttribute. The value set for this entry is the LDAP
user attribute where the SIP URI is stored. If no value is set for this
entry, then the attribute defaults to mail.

Configuring High Availability 5-1

5
Configuring High Availability

This chapter discusses configuring high availability through the following sections:

■ "About Configuring High Availability"

■ "Setting Up a Highly Available Cluster of OCMS Nodes"

■ "Configuring the OCMS SIP Containers for High Availability"

■ "Configuring the Edge Proxy Nodes for High Availability"

■ "Configuring Highly Available SIP Servlet Applications"

■ "Configuring an Overload Policy"

About Configuring High Availability
OCMS provides high availability through redundancy, application state replication,
and clustering. Highly available OCMS topologies are active-active, meaning that any
redundant nodes actively function in the context of the topology. This makes OCMS
scalable as well.

Figure 5–1 Highly Available OCMS Topology

About Configuring High Availability

5-2 Oracle Communication and Mobility Server Administrator’s Guide

A highly available OCMS topology (Figure 5–1) provides the following:

■ Process death detection and automatic restart—Processes may die unexpectedly
due to configuration or software problems. A proper process monitoring and
restart system monitors all system processes constantly and restarts them if
necessary.

■ Clustering—Clustering components of a system together allows the components
to be viewed functionally as a single entity from the perspective of a client for
runtime processing and manageability. A cluster is a set of processes running on
single or multiple computers that share the same workload. There is a close
correlation between clustering and redundancy. A cluster provides redundancy
for a system.

■ Configuration management—A clustered group of similar components often
need to share common configuration. Proper configuration management ensures
that components provide the same reply to the same incoming request, allows
these components to synchronize their configurations, and provides highly
available configuration management for less administration downtime.

■ State replication and routing—For stateful applications, client state can be
replicated to enable stateful failover of requests in the event that processes
servicing these requests fail.

■ Server load balancing and failover—When multiple instances of identical server
components are available, client requests to these components can be load
balanced to ensure that the instances have roughly the same workload. With a
load balancing mechanism in place, the instances are redundant. If any of the
instances fails, then requests to the failed instance can be sent to the surviving
instances.

Configuring a highly available OCMS environment involves the following main steps,
depending on the OCMS topology you have chosen to deploy:

■ Setting Up a Highly Available Cluster of OCMS Nodes—This involves associating
each OCMS node with OPMN to form a manageable cluster.

■ Configuring the OCMS SIP Containers for High Availability—Use the Application
Server Control Console MBean browser to configure parameters affecting high
availability in the SIP Servlet container.

■ Configuring the Edge Proxy Nodes for High Availability—Optional. Required
only if using Edge Proxy nodes in the OCMS topology.

■ Configuring Highly Available SIP Servlet Applications—Edit the SIP Servlet
application descriptor files to enable support for high availability. Configure state
replication for each application.

■ "Configuring an Overload Policy"—Optional. Required only if using the Proxy
Registrar in the OCMS topology.

Table 5–1 Additional Information

For more information on... See:

OCMS deployment topologies Chapter 2, "Deployment Topologies" in this
guide

OCMS installation Oracle Communication and Mobility Server
Installation Guide

Operating systems supported by highly
available OCMS clusters

Oracle Communication and Mobility Server
Certification Guide

Setting Up a Highly Available Cluster of OCMS Nodes

Configuring High Availability 5-3

Setting Up a Highly Available Cluster of OCMS Nodes

Each OCMS node—including the Edge Proxy nodes—must be configured to support
high availability.

Following are the main steps in setting up a cluster of OCMS servers:

1. Associating Nodes with OPMN—Oracle Process Manager and Notification Server
provides a command-line interface for process control and monitoring for single or
multiple Oracle Application Server components and instances. Using OPMN, you
can start and stop each OCMS node and its sub-components.

2. Starting the Cluster—Starting the cluster with OPMN indicates that all OCMS
nodes have been correctly associated with OPMN and are recognized as a cluster.

3. Verifying the Status of the Cluster—Using OPMN or Enterprise Manager, you can
verify that each node in the cluster is up and running.

4. Stopping the Cluster—Having set up and verified the cluster of OCMS nodes, be
sure to stop the cluster before configuring each SIP container for high availability
(see "Configuring the OCMS SIP Containers for High Availability").

Associating Nodes with OPMN
Setting up a cluster of OCMS nodes requires associating the nodes with OPMN. There
are three ways to do this:

■ Configuring the cluster during Oracle Application Server installation. For more
information, refer to the Oracle Application Server Installation Guide.

■ Associating Nodes with OPMN Using the Dynamic Discovery Method

■ Associating Nodes with OPMN Using the Discovery Server Method

Associating Nodes with OPMN Using the Dynamic Discovery Method
In this method -- one that is recommended by Oracle -- you define the same multicast
address and port for each Oracle Application Server instance in the cluster. An
advantage in using this method is that you do not have to specify the name of each

Configuring a highly available clustered
Oracle Application Server environment

■ The "Application Clustering" chapter in
Containers for J2EE Configuration and
Administration Guide.

■ The "Active-Active Topologies" chapter in
Oracle Application Server High Availability
Guide.

Note: If using UDP, place all servers on the same subnet or switch to
avoid the defragmentation of large UDP packages.

See also: For more information regarding configuring and
managing clusters using OPMN, see Oracle Process Manager and
Notification Server Administrator’s Guide.

Table 5–1 (Cont.) Additional Information

For more information on... See:

Setting Up a Highly Available Cluster of OCMS Nodes

5-4 Oracle Communication and Mobility Server Administrator’s Guide

Oracle Application Server instance in the cluster. Instead, you can dynamically add or
remove instances from the cluster by editing the multicast address and port.

1. For each Oracle Application Server instance that you want to group in the same
cluster, run the following command:

$ORACLE_HOME/opmn/bin/opmnctl config topology update
discover="*<multicastAddress>:<multicastPort>"

For example:

$ORACLE_HOME/opmn/bin/opmnctl config topology update
 discover="*225.0.0.20:6200"

where:

■ multicastAddress specifies the multicast address that you want to use for
the cluster. The multicast address must be within the valid address range,
which is 224.0.1.0 to 239.255.255.255. Note that the multicast address is
preceded by an asterisk (*).

■ multicastPort can be any unused port number.

Use the same multicast IP and port for all the instances.

2. On each Oracle Application Server instance where you ran the command in Step 1,
run opmnctl reload so that OPMN reads the updated opmn.xml file.

$ORACLE_HOME/opmn/bin/opmnctl reload

Associating Nodes with OPMN Using the Discovery Server Method
Although Oracle recommends associating nodes with OPMN using the dynamic
discovery method, you can also define a cluster by specifying the names of the nodes
running the Oracle Application Server instances in the opmn.xml file for each
instance. For example, to cluster four instances (node1.example.com, node2.example.com,
node3.example.com, node4.example.com), associate these nodes with OPMN using the
discovery server method as follows:

1. Run Oracle Application Server on all nodes.

2. Designate one instance as the discovery server, which maintains the topology for
the cluster. (In this example, node1.excample.com acts as the discovery server for the
cluster.)

3. In the opmn.xml file for all instances in the cluster, specify the node that is
running the discovery server (node1.example.com in Example 5–1). As illustrated in
Example 5–1, the opmn.xml file includes the <discover> element. The 6200
value specifies the port number on which the notification server listens. Use the
remote port number designated in the <port> sub-element of the
<notification-server> element.

Example 5–1 Designating an Instance as the Discovery Server

<?xml version="1.0" encoding="UTF-8"?>
<opmn xmlns="http://www.oracle.com/ias-instance">
 ...
 <notification-server interface="ipv4">
 <port local="6100" remote="6200" request="6003"/>

 <topology>
 <discover list="node1.example.com:6200"/>

Configuring the OCMS SIP Containers for High Availability

Configuring High Availability 5-5

 </topology>
 ...
 </notification-server>
 <process-manager>
 ...
 </process-manager>
</opmn>

4. On all server instances, run opmnctl reload so that OPMN loads the updated
opmn.xml file:

$ORACLE_HOME/opmn/bin/opmnctl reload

Starting the Cluster
To start the cluster using OPMN run the following command on each instance in the
cluster:

cd ORACLE_HOME/opmn/bin/
$ORACLE_HOME/opmn/bin/opmnctl startall

Verifying the Status of the Cluster
To verify the status of the OCMS nodes in the cluster:

1. In a Web browser, enter the URI of Enterprise Manager running on any SIP
container in the cluster:

http://<SIP container URI>:<port number>/em

2. Enter the administrator user name and password at the prompt.

Enterprise Manager displays the status of the cluster topology.

Stopping the Cluster
After verifying the status of the cluster, stop the nodes in the cluster using OPMN so
that you can continue configuring the SIP containers (see "Configuring the OCMS SIP
Containers for High Availability").

To stop OCMS, execute the following command on each node in the cluster:

cd ORACLE_HOME/opmn/bin/
$ORACLE_HOME/opmn/bin/opmnctl stopall

Configuring the OCMS SIP Containers for High Availability
In the Application Server Control Console MBean browser, configure the following
parameters under the SIP Servlet Container MBean for each SIP Application Server
node:

1. Configure the EdgeProxy parameter in the SIPContainer Mbean to point to the SIP
URI of the Edge Proxy or to a third-party load balancer if more than one Edge
Proxy is used.

Use the following format:

SIP:<Edge Proxy or Load Balancer IP address>:<port>;lr

2. Configure the DistributableRecordRoute parameter in the following format:

Configuring the Edge Proxy Nodes for High Availability

5-6 Oracle Communication and Mobility Server Administrator’s Guide

SIP:<SIP Container IP address>:<port>

Remove any appended transport methods (such as transport=tcp) to enable
any type of transport to be used between the Edge Proxy and OCMS.

3. Configure the RecordRoute parameter using the following format:

SIP:<SIP Container IP address>:<port>

Remove any appended transport methods (such as transport=tcp) to enable
any type of transport to be used between the Edge Proxy and OCMS.

Configuring the Edge Proxy Nodes for High Availability

To configure the Edge Proxy nodes for high availability:

■ Configure each OCMS node running an Edge Proxy for high availability as
described in "Setting Up a Highly Available Cluster of OCMS Nodes" and
"Configuring the OCMS SIP Containers for High Availability".

■ Point the edgeproxy parameter in the SIPContainer Mbean to one of the following:

– The IP address of the Edge Proxy node.

– For more than one Edge Proxy node -- The virtual IP address or host name of
the third-party load balancer or DNS server if clients connect using DNS
lookup.

■ Configure the interval at which SIP Container nodes ping the Edge Proxy nodes,
as well as the number of missed ping intervals before the Edge Proxy nodes
remove the unresponsive SIP Container from the routing table. These parameters
enable the Edge Proxy node(s) to monitor the health of the SIP Container nodes.

For each Edge Proxy node in the topology, configure the following:

1. In the Application Server Control Console Mbean Browser, click the edgeproxy
Mbean.

2. Configure the RecordRoute parameter to point to one of the following:

■ For a single Edge Proxy without a load balancer—Set the parameter to the IP
address of the Edge Proxy node

■ For more than one Edge Proxy with a load balancer or DNS server—Set the
parameter to the virtual IP address or host name of the third-party load
balancer or DNS server (if clients connect using a DNS lookup)

Note: In the load balancer, you must disable stickiness for UDP
datagrams sent to the Edge Proxy servers. Refer to the load balancer
documentation for more information on disabling stickiness when
sending datagrams over UDP.

Note: When setting up OCMS in a high-availability environment
with multiple Edge Proxy nodes and a load balancer, the SIP port for
the Edge Proxy and the Virtual Server on the load balancer must be
the same.

Configuring the Edge Proxy Nodes for High Availability

Configuring High Availability 5-7

3. Modify the edgeproxy.xml file (sdp/edgeproxy/conf/edgeproxy.xml,
illustrated in Example 5–2) to include the oc4j-ping element:

<oc4j-ping interval="1" allowed-miss-count="16"/>

The oc4j-ping element configures the interval, in seconds, at which the Oracle
Application Servers in the cluster ping the Edge Proxy. The
allowed-miss-count attribute specifies the number of missed ping intervals
allowed before the Edge Proxy removes an unresponsive Oracle Application
Server from the routing table.

Example 5–2 edgeproxy.xml

<?xml version="1.0" encoding="UTF-8" ?>
<edge-proxy xmlns:xsi="http://www.oracle.com/sdp">
 <record-route sip-uri="sip:%IPADDRESS%:%SIPPORT%"/>
 <jmx-rmi-connector port="%EPRMIPORT%"/>
 <oc4j-ping interval="1" allowed-miss-count="16"/>
 <nat-traverse enabled="true"/>
 <sip-stack ip="%IPADDRESS%">
 <listening-point transport="tcp" port="%SIPPORT%" />
 <listening-point transport="udp" port="%SIPPORT%" />
 </sip-stack>
</edge-proxy>

4. In the edgeproxy.xml file, modify the nat-traverse element if necessary.

■ If the Edge Proxy enables SIP clients to traverse of NATs (Network Address
Translators), then set the value to true (the default). The corresponding
default value must be set in Oracle Communicator.

■ If NAT traversal is not used, then this attribute must be set to false. For
more information disabling NAT traversal, see "Disabling NAT Traversal
Enabled by the Edge Proxy".

5. Verify the status of the Edge Proxy node or nodes in the cluster by performing the
following:

■ Starting the Cluster

■ Verifying the Status of the Cluster

For more information, refer to "Configuring OCMS in a Clustered Environment with
Edge Proxy" in Oracle Communication and Mobility Server Installation Guide

The NAT Traversal Option Enabled for the Edge Proxy
NAT traversal enables access to SIP User Agents even when they are located behind
firewalls or NATs. To support SIP clients residing behind firewalls or NATs, proxy
servers use the Path extension header mechanism (described in RFC 3327), which
ensures that SIP clients follow specific paths that enable the traversal of NATs and
firewalls throughout the network. When you enable the NAT traversal function in the
Edge Proxy, an OCMS cluster supports the Path extension header mechanism by
inserting a Path header field into REGISTER requests.

Disabling NAT Traversal Enabled by the Edge Proxy
By default, NAT traversal is enabled in edgproxy.xml (nat-traverse
enabled=true, as noted in Example 5–2). To disable this function:

1. If the Edge Proxy is running, stop it by entering the following command:

Configuring Highly Available SIP Servlet Applications

5-8 Oracle Communication and Mobility Server Administrator’s Guide

$ORACLE_HOME/opmn/bin/opmnctl stopproc process-type=EdgeProxy

2. Edit the nat-traverse element of edgeproxy.xml (located at
ORACLE_HOME/sdp/edgeproxy/conf/edgeproxy.xml) as follows:

<nat-traverse enabled="false"/>

3. Start the Edge Proxy using the following command:

$ORACLE_HOME/opmn/bin/opmnctl startproc process-type=EdgeProxy

4. Repeat these steps for each Edge Proxy node in the OCMS cluster.

Configuring Highly Available SIP Servlet Applications
This section describes how to configure high availability for SIP Servlet applications
deployed to a cluster of OCMS nodes.

■ Enabling High Availability in SIP Servlet Applications—Prior to deployment, each
application’s descriptor files (web.xml and sip.xml) must be configured for
high availability. The orion-application.xml file for each application must
also be configured for high availability.

■ Configuring Application Session Data Replication—The session data of each SIP
Servlet application can be replicated to other nodes in the cluster, in the event of
node failure.

■ Configuring High Availability for a Deployed SIP Servlet Application—You can
also configure high availability for an application that you have already deployed.

■ Disabling High Availability at the Application Level—You can remove support for
high availability from your SIP Servlet applications.

■ Upgrading SIP Servlet Applications in OCMS—This section explains how to
perform a rolling upgrade on deployed SIP Servlet applications.

Enabling High Availability in SIP Servlet Applications
To configure a highly available SIP Servlet application:

Caution: When NAT traversal is enabled, the Edge Proxy nodes
insert their local IP addresses into the RecordRoute headers of SIP
requests. Therefore, the Edge Proxy nodes must be globally routable.
This may not be the case if the cluster has been configured according
to the white paper, Oracle Communication and Mobility Server in a
High-Availability Environment Running with F5 BigIP (available at the
Oracle Technology Network).

Notes:

■ When configuring high availability for SIP Servlet applications
that depend upon the Proxy Registrar, you must also configure
the Proxy Registrar for high availability.

■ High availability is not currently supported for converged
applications (meaning applications comprised of both SIP and
HTTP servlets).

Configuring Highly Available SIP Servlet Applications

Configuring High Availability 5-9

1. Modify the sip.xml file (located at ORACLE_HOME/j2ee/ocms/
applications/<application name>/<web module
name>/WEB-INF/sip.xml) to include the <distributable> element.

For example:

<?xml version="1.0" encoding="UTF-8"?>
<sip-app>
<display-name>proxyregistrarssr</display-name>

 <distributable/>
<!--Servlets-->
<servlet>
<servlet-name>Registrar</servlet-name>
<servlet-class>oracle.sdp.registrar.VoipRegistrarServlet</servlet-class>
<init-param>
<param-name>LocationService</param-name>
<param-value>oracle.sdp.locationdbservice.LocationDbServiceBD
</param-value>
</init-param>
</servlet>

</sip-app>

2. Modify the web.xml file (located at ORACLE_HOME/j2ee/ocms/
applications/<application name>/<web module
name>/WEB-INF/web.xml) to include the <distributable> element.

For example:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.2//EN" "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">
<web-app>
 <display-name>proxyregistrarssr</display-name>
 <distributable/>
</web-app>

3. Modify the orion-application.xml file (located at
ORACLE_HOME/j2ee/ocms/application-deployments/<application
name>/orion-application.xml) to include the <cluster> element which is
used to configure clustering both for Oracle Application Server nodes as well as
specific SIP servlet applications.

For example:

<orion-application ... >
<cluster allow-colocation="false">
...
</cluster>

</orion-application>

The <cluster> element, which is used in both orion-application.xml and
application.xml files, includes the following sub-elements that control
application replication:

– enabled—Specifies whether clustering is enabled. The default value is true.

– group-name—The name to use when establishing replication group
channels. If not supplied, the application name as defined in server.xml
(the Oracle Application Server configuration file) is used by default. New
group channels are created for each enterprise application. If a value is
specified, the application and all child applications use the channels associated
with this group name.

Configuring Highly Available SIP Servlet Applications

5-10 Oracle Communication and Mobility Server Administrator’s Guide

– allow-colocation—Specifies whether to allow application state to be
replicated to a node residing on the same host machine. The default value is
true.

– write-quota—The number of other group members to which the
application state should replicate to. This attribute enables reducing overhead
by limiting the number of nodes to which state is written. The default value is
1.

For additional information regarding the <cluster> element and its
sub-elements, refer to the chapter "Configuring Application Clustering" in
Containers for J2EE Configuration and Administration Guide.

4. Repeat these steps for each application deployed on each OCMS instance.

For information about developing highly available SIP Servlet applications, refer to
Oracle Communication and Mobility Server Developer’s Guide.

Configuring Application Session Data Replication
OCMS supports multicast replication by defining the orion-application.xml
file’s <cluster> and <property-config> elements. The <property-config>
element contains data required to use the JGroups group communication protocol to
replicate session state across nodes in the cluster.

To set the replication policy, edit the ORACLE_HOME/j2ee/ocms/
application-deployments/<application name>/orion-application.xml
file as follows:

■ Set the <cluster> element’s allow-colocation attribute to false.

■ Set the <property-config> element’s <url> element to the path to the
JGroup’s XML file describing the application-related high-availability
configuration (illustrated in Example 5–4).

Example 5–3 Editing orion-application.xml File for Replication

<orion-application ... >

Note: Although the default value is true, set allow-colocation
to false if multiple hosts are available. If multiple Oracle
Application Server instances are instantiated on the same machine,
specify different listener ports for each instance in the
default-web-site.xml, jms.xml, and rmi.xml configuration
files.

Note: Ensure that you use the correct spelling for attributes in the
orion-application.xml file, as misspellings will not result in
error messages. For example, if you misspell start-port in the
cluster configuration section as start-prt, replication will appear to
have started even though session replication does not work.

Important: Deploy the application symmetrically to all SIP
application server nodes.

Configuring Highly Available SIP Servlet Applications

Configuring High Availability 5-11

...
<cluster allow-colocation="false">
...

<property-config>
<url>file:///ORACLE_HOME/j2ee/ocms/application-deployments/
<application name>/jgroups-tcp.xml</url>

</property-config>
</cluster>

Example 5–4 illustrates the JGroups XML file (referred to as jgroups-tcp.xml) in
Example 5–3.

Example 5–4 A Sample JGroups Application High Availability Configuration File

<config>
<TCP/>
<MPING mcast_addr="230.0.0.130" mcast_port="8500" ip_ttl="1"/>
<MERGE2 min_interval="5000" max_interval="10000"/>
<FD timeout="1000" max_tries="3" shun="false"/>
<FD_SOCK/>
<VERIFY_SUSPECT timeout="1000"/>
<pbcast.NAKACK gc_lag="100" retransmit_timeout="3000"/>
<pbcast.STABLE desired_avg_gossip="20000"/>
<pbcast.GMS join_timeout="3000" join_retry_timeout="2000" shun="false"
print_local_addr="true"/>

</config>

In Example 5–4, failure detection (set by <FD timeout>) is set in milliseconds. In the
sample JGroups file, it is set at 1000 milliseconds with three retries (max_tries="3").

Configuring High Availability for a Deployed SIP Servlet Application
Perform the following if the SIP Servlet application has already been developed and
deployed, but not configured for high availability.

1. Undeploy the SIP Servlet application.

2. Unpack the application EAR.

3. Modify the sip.xml and web.xml files to include the <distributable>
element, as described in "Enabling High Availability in SIP Servlet Applications".
To edit the sip.xml and web.xml files, do the following:

a. Create a new folder and name it <Your SIP application>.

b. Unpack the EAR file to the new folder.

c. Unpack the WAR file inside the EAR file to the folder <Your SIP
application>/<WAR module name>.

d. Edit the following files:

<Your SIP application>/<WAR module name>/WEB-INF/sip.xml
<Your SIP application>/<WAR module name>/WEB-INF/web.xml

e. Under <Your SIP application>/<WAR module name>, re-package the
contents of the WAR file using the original WAR file name. Replace the
original WAR file with in the <Your SIP application> folder with the
new one that you just created.

f. Delete the <Your SIP application>/<WAR module name> folder.

Configuring Highly Available SIP Servlet Applications

5-12 Oracle Communication and Mobility Server Administrator’s Guide

g. Package the contents of the <Your SIP application> into an EAR file.
Use the file name of the original EAR file.

4. Re-deploy the application EAR to the SIP Servlet Container.

Disabling High Availability at the Application Level
To remove an application from the cluster:

1. In a text editor, open the application-specific orion-application.xml file.

2. Set the enabled attribute of the <cluster> element to false. For more
information, see "Configuring Application Session Data Replication".

For example:

<orion-application ... >
...
<cluster enabled="false">
...
</cluster>

</orion-application>

3. Save the orion-application.xml file.

Upgrading SIP Servlet Applications in OCMS
SIP Servlet applications can be upgraded using a rolling upgrade procedure that
minimizes downtime.

To perform a rolling upgrade of a SIP servlet application in OCMS:

1. On the OCMS node where you want to upgrade the SIP Servlet application,
execute the following command to stop running all OCMS processes on the node:

$ORACLE_HOME/opmn/bin/opmnctl shutdown

2. Comment out the <topology> element in the ORACLE_
HOME/opmn/conf/opmn.xml file to remove the SIP Application Server from
the cluster.

3. Restart the SIP container by running the following command:

$ORACLE_HOME/opmn/bin/opmnctl startall

4. Upgrade the SIP Servlet application on the SIP container you took out of the
cluster.

5. Shut down the SIP container again so that you can put it back in the cluster:

$ORACLE_HOME/opmn/bin/opmnctl shutdown

6. Uncomment the <topology> element in the opmn.xml file to place the SIP
container back into the cluster.

7. Place the SIP container back into the cluster by executing the following command:

$ORACLE_HOME/opmn/bin/opmnctl startall

The SIP Servlet application upgrades following the completion of all in-progress
calls.

8. Repeat the process with the remaining SIP containers.

Configuring an Overload Policy

Configuring High Availability 5-13

Configuring an Overload Policy
The Overload Policy enables OCMS to execute overload protection when capacity
reaches high threshold levels. To configure this MBean, you first set the maximum
value for number of SIP sessions (SipSessionTableMaxSize) and the maximum size for
the Application (AppQueueMaxSize) and Network queues (StackQueueMaxSize) as
described in Table 5–2). You then set the threshold values for each of these, as
described in Configuring High and Low Thresholds.

In addition to the maximum values settings, the AllowedTrafficDuring503 attribute
enables you to set the percentage of traffic allowed to pass through the system when it
becomes overloaded and issues the 503 (Service Unavailable) error response to clients.
The system does not process any new incoming requests if you set this attribute to
zero (0), the default value.

Overview of Overload Policy Architecture
The Overload Policy receives collectors and actions from the Policy Manager (the
lookup service for collectors, actions and policies). The Policy Manager sends
notifications to all observers when available collectors, actions, or policies have
changed.

Collectors
Collectors notify policies when states change. The Overload Policy subscribes to state
changes for the following collectors:

■ Memory Usage

■ Application Queue

■ Network Queue

■ SIP Session Table Usage

Note: Refer to the load figures displayed for the
ApplicationPeakQueue, NetworkPeakQueue, Sessions, 503ResponseSent
and MessagesDropped attributes of the SIP Servlet Container Monitor
when setting these values.

Table 5–2 Default Values for SIP Sessions, Application and Network Queues

Attribute Default Value

AppQueueMaxSize 200

StackQueueMaxSize 100

SipSessionTableMaxSize 70000

Note: Because of the internal use of the queues by OCMS, the actual
peak values for the queues in an overload situation may exceed the
maximum values configured in the Overload Policy.

Configuring an Overload Policy

5-14 Oracle Communication and Mobility Server Administrator’s Guide

Overview of Overload Policy
The Overload Policy implements the following default actions, for which it enacts an
overload action when high threshold values are reached and then reverts this action
when usage sinks to the low threshold value:

■ Do not accept new connections: This overload action occurs when a high warning
threshold value has been met.

■ Send 503 (Service Unavailable) response on initial requests: This overload action
occurs when a high alarm threshold value has been met.

■ Stop reading from all connections: This overload action occurs when a high critical
threshold has been met.

Configuring High and Low Thresholds
The Overload Policy MBean enables you to configure the high and low values for the
Warning, Alarm and Critical levels for Memory Usage, Application Queue, Network
Queue, and SIP Session Table Usage. At each level, there may be one or even several
actions to execute if usage exceeds the specified threshold. When the high value set for
a threshold is met, the Overload Policy calls overload actions. This value is the
threshold at which these actions start. If usage drops to the low value set for a
threshold, then the Overload Policy stops the overload action. For example, if a high
level is set to 90 and low level is set to 80, overload actions that start when usage
reaches 90% and are then stopped when usage drops back to 80%.

Starting and Stopping the Overload Policy
The start and stop operations for the Overload Policy MBean enable you manually
start and stop the Overload Policy. To automatically start the Overload Policy at the
startup of OCMS, set the Autostart attribute to true.

Memory Usage
The Memory Monitor reports memory usage to the Overload Policy. The usage is
reported as percent of total memory. For example, if the Memory Monitor reports a
value of 85, it means that 85% of total memory is currently in use and that 15% of it is
free.

Using the Overload Policy MBean, you configure the Warning, Alarm and Critical
threshold levels for the Overload Policy’s memory usage. At each level, there may be
one or several actions to execute if memory usage exceeds the specified threshold. The
MBean enables you to set high and low threshold values for each of these levels. The
high value is the threshold at which to start executing overload actions. The low level
marks the threshold at which to stop executing the action. For example, if high level is
set to 90 and low level is set to 80, the actions start when memory usage reaches 90%
and then stop when memory usage drops to 80% again.

Delaying a Memory Overload Action
High and low levels keep overload actions from starting and stopping repeatedly for
small changes in memory usage. In addition to the threshold level that sets the start of
the executing actions, you can also configure a delay time (in seconds) for memory
overload actions using the MemoryActionDelay attribute. When the high threshold is
exceeded, a scheduled timer fires after the specified delay time (in seconds). Memory
overload actions are not be executed before the delay time has passed, and if memory
usage drops below high threshold during the delay time, the timer is canceled and no
actions executes.

Configuring an Overload Policy

Configuring High Availability 5-15

Configure the MemoryActionDelay attribute by entering the delay (in seconds) from the
instance when the memory threshold value has been exceeded to the instant the
actions are executed. The execution stops if the memory drops below the threshold
during the delay. The value set for the delay must be greater than 0. The default value
is 60 seconds.

Table 5–3 lists the attributes that you configure to set the values for the high and low
warning thresholds for memory usage.

Table 5–4 lists the attributes that you configure to set the high and low alarm
thresholds for memory usage.

Table 5–5 lists the attributes that you configure to set the high and low critical
thresholds for memory usage.

Table 5–3 Warning High and Low Thresholds for Memory Usage

Attribute Description

MemoryWarningHigh The high value for a warning threshold that triggers an overload
action to decline new connections. This is the default overload
action. The range of values is 0-100. 0 disables the action. The
default value is 95.

MemoryWarningLow The low value for a warning threshold that triggers an end to the
overload action. The range of values is 0-100. The default value
is 90.

MemoryWarningActions A comma-separated list of actions performed when a memory
warning level has been reached. The default value is
oracle.sdp.networlayer.NetworkServiceImpl$StopAcceptAction.

Table 5–4 The Alarm HIgh and Low Thresholds for Memory Usage

Attribute Description

MemoryAlarmHigh The high value for an alarm threshold for memory usage that triggers an action to
send a 503 response (Service Unavailable) on initial requests. This is the default
overload action. The range of values is 0-100. 0 disables the action. The default value
is 95.

MemoryAlarmLow The low value for the alarm threshold for memory usage that triggers an end to the
overload action. The range of values is 0-100. The default value is 90.

MemoryAlarmActions A comma-separated list of actions performed when a memory alarm threshold level
has been reached. The default value is
com.hotsip.jainsipimpl.javax.sip.context.SipContextImpl$Send503Action.

Table 5–5 Critical High and Low Thresholds for Memory Usage

Attribute Description

MemoryCriticalHigh The high value for a critical threshold for memory usage that triggers an overload
action to stop reading connections. This is the default overload action. The range of
values is 0-100; 0 disables the action. The default value is 98.

MemoryCriticalLow The value that triggers an end to the overload action when the low threshold for
memory usage has been reached. The range of values is 0-100. The default value is 90.

MemoryCriticalActions A comma-separated list of action performed when the critical threshold of memory
usage has been reached. The default value is
oracle.sdp.networklayer.NetworkServiceImpl$StopReadAction.

Configuring an Overload Policy

5-16 Oracle Communication and Mobility Server Administrator’s Guide

Application Queue
The Application Queue is the communication link between the network layer and the
applications. An event is added to the Application Queue when network packages are
framed and ready for application consumption after a session timer fires or other
network related events occur. The network layer's EventNotifier reports Application
Queue usage to the Overload Policy. This usage is reported as a percent of the total
queue capacity. For example, if the EventNotifier reports a value of 85, it means that
85% of total queue capacity is currently used and that 15% of the queue is empty. The
AppQueMaxSize attribute sets the capacity of the Application Queue. The default value
is 200. This value must always be greater than zero.

The EventNotifier does not report every change in Application Queue usage to the
Overload Policy: below 95%, every 5% change is reported (that is 0, 5, 10, 15 and so
on). From 95% and above, every 1% change is reported (that is, 95, 96, 97 and so on).
The Overload Policy MBean enables you to configure the Warning (Table 5–6), Alarm
(Table 5–7), and Critical (Table 5–8) thresholds of the Application Queue.

Table 5–6 lists the attributes of the Overload Policy that enable you to set the high and
low warning thresholds for the Application Queue usage.

Table 5–7 lists the attributes of the Overload Policy that enable you to set the high and
low alarm thresholds for the Application Queue usage.

Table 5–8 lists the attributes of the Overload Policy MBean that enable you to set the
high and low critical thresholds for the Application Queue usage.

Table 5–6 Warning High and Low Threshold and Actions for the Application Queue

Attribute Value

AppQueueWarningHigh The high threshold warning value for Application Queue usage
that triggers an action to decline new connections. This is the
default overload action. The range of values is 0-100. Selecting 0
disables the action. The default value is 70.

AppQueueWarningLow The low threshold warning value for Application Queue usage
that triggers an end to the overload action. The range of values is
0-100. The default value is 50.

AppQueueWarningActions A comma-separated list of actions performed when a warning
threshold for Application Queue usage has been reached. The
default value is
oracle.sdp.networklayer.NetworkServiceImpl$StopAcceptAction.

Table 5–7 Alarm High and Low Threshold Actions for the Application Queue

Attribute Description

AppQueueAlarmHigh The high alarm threshold value for the Application Queue usage that triggers an
overload action to send a 503 Response (Service Unavailable) to initial requests. (This is
the default overload action.) The range of values is 0-100. 0 disables the action. The
default value is 80.

AppQueueAlarmLow The low alarm threshold value for Application Queue usage that triggers an end to the
overload action. The range of values is 0-100. The default value is 60.

AppQueueAlarmActions A comma-separated list of action performed when an alarm threshold is reached. The
default value is com.hotsip.jainsipimpl.javax.sip.context.SipContextImpl$Send503Action.

Configuring an Overload Policy

Configuring High Availability 5-17

Network Queue
The network layer deposits the incoming unframed data from the network into the
Network Queue. The network layer’s EventQueue reports the Network Queue usage
to the Overload Policy. The usage is reported as a percent of the total queue capacity.
For example, if the EventQueue reports a value of 85, it means that 85% of total queue
capacity is currently in use and 15% of the queue is empty. The StackQueueMaxSize
attribute sets the Network Queue capacity. The default value for this attribute is 100.
The value must always be greater than zero.

The EventQueue does not report every change in queue usage to the Overload Policy.
Below 95%, every 5% change is reported (that is, 0, 5, 10, 15 and so on). From 95% and
above, every 1% change is reported (that is, 95, 96, 97 and so on). The Overload Policy
MBean enables you to configure the Warning (Table 5–9), Alarm (Table 5–10), and
Critical (Table 5–11) thresholds of the Network Queue.

Table 5–9 lists the attributes that you configure to set the high and low threshold
values that trigger Warning actions.

Table 5–10 lists the attributes that you configure to set the high and low threshold
values that trigger Alarm actions.

Table 5–8 Critical High and Low Threshold Actions for the Application Queue

Attribute Description

AppQueueCriticalHigh The high threshold value for Application Queue usage that triggers an overload
action to stop reading connections. This is the default overload action. The range of
values is 0-100; 0 disables the action. The default value is 90.

AppQueueCriticalLow The low threshold value for Application Queue usage that triggers an end to the
overload action. The range of values is 0-100. The default value is 70.

AppQueueCriticalActions A comma-separated list of actions performed when a critical level is reached. The
default value is oracle.sdp.networklayer.NetworkServiceImpl$StopReadAction.

Table 5–9 Warning High and Low Threshold Actions for the Network Queue

Attribute Description

StackQueueWarningHigh The high warning threshold value for Network Queue usage
that triggers the overload action to decline new connections.
This is the default overload action. The range of values is 0-100;
0 disables the action. The default value is 70.

StackQueueWarningLow The low warning threshold value that trigger end to the
overload action. The range of values is 0-100. The default value
is 50.

StackQueueWarningActions A comma-separated list of actions performed when a warning
threshold is reached. The default value is
oracle.sdp.networklayer.NetworkServiceImpl$StopAcceptAction.

Configuring an Overload Policy

5-18 Oracle Communication and Mobility Server Administrator’s Guide

Table 5–11 lists the attributes that you configure to set the high and low values that
trigger Critical actions.

SIP Session Table Usage
The SIP servlet engine’s Application Manager reports SIP session table usage to the
Overload Policy. The usage is reported as a percent of total table capacity. For
example, if the Application Manager reports a value of 85, it means that 85% of total
table capacity is currently in use and 15% of it is free. The SessionTableMaxSizeSip
attribute sets the SIP session table capacity. The default value of this attribute is 70000.
The value must be greater than zero.

Not every change in table usage is reported back to overload policy. Below 95%, every
5% change is reported (that is, 0, 5, 10, 15 an so on). From 95% and above, every 1%
change is reported (that is, 95, 96, 97 and so on). The Overload Policy MBean enables
you to configure the Warning (Table 5–12), Alarm (Table 5–13), and Critical
(Table 5–14) thresholds that trigger overload actions.

Table 5–12 lists the attributes that you configure to set the warning thresholds.

Table 5–10 Alarm High and Low Threshold Actions for the Network Queue

Attribute Description

StackQueueAlarmHigh The high alarm threshold for Network Queue usage that triggers an
overload action to send a 503 (Service Unavailable) response to initial
requests. This is the default action. The range of values is 0-100; 0
disables the action. The default value is 80.

StackQueueAlarmLow The low alarm threshold for Network Queue usage that triggers an
end to the overload action. The range of values is 0-100. The default
value is 60.

StackAlarmQueueActions A comma-separated list of actions performed when a threshold is
reached. The default value is
com.hotsip.jainsipimpl.javax.sip.context.SipContexImpl$Send503Action.

Table 5–11 Critical High and Low Threshold Actions for the Network Queue

Attribute Description

StackQueueCriticalHigh The high critical threshold value for Network Queue usage that triggers an overload
action to stop reading all connections. (This is the default overload action.) The range
of values is 0-100. 0 disables the action. The default value is 90.

StackQueueCriticalLow The low critical threshold value that triggers an end to the overload action. The range
of values is 0-100. The default value is 70.

StackQueueCriticalActions A comma-separated list of actions performed when a critical level is reached. The
default value is oracle.sdp.networklayer.NetworkServiceImpl$StopReadAction.

Table 5–12 Warning High and Low Threshold Actions for SIP Session Table Usage

Attribute Description

SipSessionWarningHigh The high warning threshold value for SIP session table usage
that triggers an overload action to decline new connections. This
is the default overload action. The range of values is 0-100; 0
disables the action. The default value is 90.

SipSessionWarningLow The low warning threshold that triggers an end to the overload
action. The range of values is 0-100. The default value is 85.

SipSessionWarningActions A comma-separated list of actions performed when a critical
level is reached. The default value is
oracle.sdp.networklayer.NetworkServiceImpl$StopAcceptAction.

Configuring an Overload Policy

Configuring High Availability 5-19

Table 5–13 lists the attributes that you configure to set the alarm level thresholds.

Table 5–14 lists the attributes that you configure to set the critical thresholds.

Deactivating the Overload Protection for System Tuning
Technically, overload protection is always activated. When you tune the system, you
can prevent overload actions from executing by doing either of the following:

■ Disabling all of the rules by setting all of the trigger values to zero (0).

■ Setting the AppQueueMaxSize, StackQueueMaxSize, and SipSessionTableMaxSize
attributes to high numbers.

Table 5–13 Alarm High and Low Threshold Actions for SIP Session Table Usage

Attribute Description

SipSessionAlarmHigh The high alarm threshold of SIP session table usage that triggers an overload action to
send a 503 Response (Service Unavailable) to initial requests. This is the default
overload action. The range of values is 0-100; 0 disables the action. The default value
is 98.

SipSessionAlarmLow The low alarm threshold of SIP session table usage that triggers an end to the
overload action. The range of values is 0-100. The default value is 97.

SipSessionAlarmActions A comma-separated list of actions performed when an alarm threshold is reached.
The default value is
com.hotsip.jainsipimpl.javax.sip.context.SipContextImpl$Send503Action.

Table 5–14 Critical Threshold Actions for SIP Session Table Usage

Attribute Description

SipSessionCriticalHigh The high critical threshold value for SIP session table usage that triggers an overload
action to stop reading all connections. This is the default overload action. The range of
values is 0-100; 0 disables the action. The default value is 100.

SipSessionCriticalLow The low critical threshold for SIP session table usage that triggers an end to the
overload action. The range of values is 0-100. The default value is 99.

SipSessionCriticalActions A comma-separated list of actions performed when a critical level is reached. The
default value is oracle.sdp.networklayer.NetworkServiceImpl$StopReadAction.

Configuring an Overload Policy

5-20 Oracle Communication and Mobility Server Administrator’s Guide

Viewing Statistics and Metrics 6-1

6
Viewing Statistics and Metrics

This chapter includes the following sections:

■ "Viewing Statistics and Metrics"

Viewing Statistics and Metrics
This section contains the following topics:

■ "SIP Servlet Container Monitor"

■ "Application Counters"

■ "Memory Monitor"

■ "SIP Cluster"

SIP Servlet Container Monitor
The SIP Servlet Container Monitor MBean (SipServletContainerMonitor) displays
read-only values for system queues and SIP transactions that enable you to assess the
performance of the SIP servlet container when it enters an abnormal state. These
values can also serve as a reference for system tuning.

The following sections describe SIP Servlet Container Monitor’s attributes:

■ "Viewing System Status"

■ "Viewing Transactions"

■ "Using the Current, Peak, and Total Usage Statistics to Tune the System"

Viewing System Status
Table 6–1 lists the attributes that display the current status of the SIP servlet container.

Table 6–1 Current Status of the SIP Servlet Container

SIP Servlet Container Status Attribute

The time that the SIP container was last started. SipServiceStartTime

The time that the SIP container entered its current
state.

SipServiceLastChanged

The number of events dropped by OCMS. SipMessagesDropped

Viewing Statistics and Metrics

6-2 Oracle Communication and Mobility Server Administrator’s Guide

Viewing Transactions
The SipServletContainerMonitor MBean’s SipSummaryTotalTransactions attribute
displays the total number of transactions (both current and completed) as a read-only
value. The MBean further delineates transactions by displaying the total number of
requests received by the SIP servlet container as well as the total number of
subsequent responses that it receives and sends.

Total Requests and Responses
The SipSummaryInRequests attribute displays the total number of requests received by
the SIP servlet container. In addition to this attribute, the SipServletContainerMonitor
provides read-only values for the responses that comprise each transaction, both in
terms of the total of SIP response messages received and sent by the SIP servlet
container (the SipSummaryInResponses and SipSummaryOutResponses attributes,
respectively) and also in terms of the total number of messages from provisional
responses (Status Code 1xx) to the final responses (Status Codes 200 - 600). The
SipServletContainerMonitor displays the total of SIP responses for each message
category supported by OCMS (Table 6–2). See RFC 3261 and RFC 3265 for more
information on response codes.

Table 6–2 SIP Response Messages Supported by OCMS

Status Code Reason Phrase Related Attributes

1xx Provisional Response Messages 1xx-related attributes:

■ SipStatsInfoClassIns

■ SipStatsInfoClassOuts

2xx Success Messages 2xx-related attributes:

■ SipStatsSuccessClassOuts

■ SipStatsSuccessClassIns

3xx Redirection Response Messages 3xx-related attributes:

■ SipStatesRedirClassIns

■ SipStatsRedirClassOuts

4xx Client Error Responses 4xx-related attributes:

■ SipStatsReqFailClassIns

■ SipStatsReqFailClassOuts

5xx Server Failure Responses 5xx-related attributes:

■ SipStatsServerFailClassIns

■ SipStatsServerFailClassOuts

■ 503ResponseSent

6xx Global Failure Messages 6xx-related attributes:

■ SipStatsGlobalFailClassIns

■ SipStatsGlobalFailClassOuts

NA Non-SIP Response Codes Non-SIP response-related
attributes:

■ SipStatsOtherClassesIns

■ SipStatsOtherClassesOuts

Viewing Statistics and Metrics

Viewing Statistics and Metrics 6-3

Provisional Response Messages
As described in RFC 3261, the 1xx SIP response messages indicate informational or
provisional responses and are sent when servers expects that obtaining a final
response will exceed 200 milliseconds. The SipStatsInfoClassIns indicates the total
number of 1xx responses received by the SIP servlet container, including transmission.
The SipStatsInfoClassOuts attribute represents the number of messages sent, relayed, or
re-transmitted by the SIP servlet container.

Success Messages
The SipStatsSuccessClassOuts and SipStatsSuccessClassIns represent the total number of
200 (OK) or 202 (Accepted) response messages sent and received by the SIP servlet
container, respectively.

Redirection Response Messages
The 3xx responses provide information about the user's new location, or about
alternative services that might be able to satisfy the call. The SipStatesRedirClassIns
attribute represents the total number of 3xx responses received by (and re-transmitted
to) the SIP servlet container. The SipStatsRedirClassOuts attribute represents the total
number of 3xx responses sent (or re-transmitted) by the SIP servlet container.

Client Error Responses
The 4xx response messages are failure responses issued from server. When a client
receives a 4xx response message, it should not attempt to send the request again
without modifying it. The SipStatsReqFailClassIns attribute represents the total number
of client error received by (or re-transmitted to) the SIP Servlet Container. The
SipStatsReqFailClassOuts attribute represents the total number of client error messages
sent (or retransmitted) by the SIP servlet container.

Server Failure Responses
The SIP Servlet Container sends the following error messages:

■ 500 Server Internal Error

■ 501 Not Implemented

■ 502 Bad Gateway

■ 503 Service Unavailable

■ 504 Server Time-out

■ 505 Version Not Supported

■ 513 Message Too Large

The SipStatsServerFailClassIns attribute represents the total number of 5xx response
messages received by (or re-transmitted to) the SIP servlet container. The
SipStatsServerFailClassOuts attribute represents the total number of 5xx response
messages sent (or re-transmitted) by the SIP servlet container.

While the SipStatsServerFailClassOuts attribute represents all of the 5xx response
messages sent by the SIP servlet container, the 503ResponseSent attribute represents the
total number of 503 (Service Unavailable) responses sent by the SIP servlet container.

Global Failure Messages
The 6xx responses provide information specific to a user (as opposed to information
specific to the instance indicated in the Request-URI). The SipStatsGlobalFailClassIns
represents the total number of 6xx response messages received by (or re-transmitted)

Viewing Statistics and Metrics

6-4 Oracle Communication and Mobility Server Administrator’s Guide

to the SIP servlet container. The SipStatsGlobalFailClassOuts attribute represents the
total number of 6xx responses sent (or relayed) by the SIP servlet container.

Non-SIP Response Codes
The SipStatsOtherClassesIns and SipStatsOtherClassesOuts represent non-SIP response
messages (that is, response codes other than the 1xx, 2xx, 3xx, 4xx, 5xx, and 6xx that
OCMS supports). The SipStatsOtherClassesIns attribute represents the total number of
non-SIP responses messages received by (or re-transmitted to) the SIP servlet
container. The SipStatsClassesOuts attribute represents the total number of non-SIP
response messages sent (or relayed) by the SIP servlet container.

Using the Current, Peak, and Total Usage Statistics to Tune the System
This SipServletContainerMontior’s attributes enable you to view the current, peak and
total usage for the application and network queues as well as the current and total
number of SIP sessions. These read-only values can serve as a reference when you
tune overload protection using the Overload Policy MBean. In particular, you can use
the numbers for ApplicationPeakQueue, NetworkPeakQueue, and Sessions to gauge the
values for the Overload Policy’s AppQueueMaxSize, StackQueueMaxSize, and
SipSessionTableMaxSize attributes.

In general, overload protection is not invoked for normal load situations. Use this
Mbean to find out the numbers for a normal load by monitoring the system’s
responses to various test scenarios without executing the overload protection. You can
then set the overload protection to start above these figures. See also "Deactivating the
Overload Protection for System Tuning".

Application Counters
In addition to the counters available to the SIP servlet container (described in "SIP
Servlet Container Monitor"), OCMS enables you to assess application performance
through counters (listed in Table 6–3) that display as read-only values for each
deployed SIP application. These counters provide metrics both counter values and
range values (current, high, low) are implementations of the following JSR-77 interfaces:

■ javax.management.j2ee.statistics.RangeStatistic

■ javax.management.j2ee.statistics.CountStatistic

Note: The number of 503 responses sent and messages dropped
(indicated by the 503ResponseSent and MessagesDropped attributes,
respectively) indicate how often overload protection should execute to
reduce incoming traffic.

Table 6–3 Application Counters

Attribute Description

SipSessions The current number of SIP sessions. This is a range statistic.

SipApplicationSessions The total number of SIP sessions. This is a range statistic.

OutResponse The total number of responses sent by the application.

OutRequest The total number of SIP application sessions.

TotalSipApplicationSessions The total number of SIP applications that have been created.

TotalSipSessions The total number of SIP sessions that have been created.

Viewing Statistics and Metrics

Viewing Statistics and Metrics 6-5

Memory Monitor
The Memory Monitor reports memory usage to the Overload Policy. The Memory
Monitor polls the memory status from the runtime environment at either specified or
random polling intervals. The Memory Monitor MBean includes attributes that enable
you to select the type of polling interval and also the duration of the polling interval.
Table 6–4 lists the attributes of the Memory Monitor MBean.

Starting and Stopping the Memory Monitor
The start and stop operations enable you to manually start and stop the Memory
Monitor.

SIP Cluster
The SIP Cluster MBean (SipCluster) enables you to override the default timeouts set
for OC4J clusters. High Availability for OCMS is based on OC4J clusters. Because this
framework is based on HTTP, the intervals set for replication are inappropriate for
SIP, as they are on the order of seconds rather than milliseconds.

The SIPCluster MBean enables you to configure the following timers for state
replication between peer nodes:

InResponse The number of responses received by the application.

InRequest The number of requests received by the application.

Table 6–4 Attributes of the Memory Monitor MBean

Attribute Description

AutoStart Select true to activate the Memory Monitor on startup of the SIP
container.

PollingInterval Enter the time, in seconds, between each interval that the
Memory Monitor polls the memory status of the runtime
environment. This attribute sets a fixed interval between polls.
This value must be greater than five (5) seconds. The default
value is 5.

RandomInterval Select true to set the Memory Monitor to poll at a random
intervals. The average length of these intervals will be the same
as the value set for the PollingInterval attribute, but individual
polls may differ by 50% from the fixed interval. For example, if
the polling interval is set to 20 seconds, then a random interval
may be pending between 10 and 30 seconds. The default setting
is false.

MemoryMonitorStatus The current status of the Memory Monitor. This value is
read-only.

MemoryUsage The current memory usage. This value is read-only.

Caution: Because the values set for these timers can significantly
impact high availability for OCMS, contact Oracle Support
(http://www.oracle.com/) support before you change the values for
this MBean. The seeded values will suffice for most systems.

Table 6–3 (Cont.) Application Counters

Attribute Description

Viewing Statistics and Metrics

6-6 Oracle Communication and Mobility Server Administrator’s Guide

■ RestoreTimeout -- If a node cannot recognize the session ID of an incoming request,
it requests a state replica from a peer. The interval set by the attribute reflects the
time that the node waits for the requested state replica from another peer.

■ OwnedByTimeout -- The time needed to pass ownership of the replicated data from
one peer to another. This value sets the interval in which the node owning the
state replica drops ownership and the requesting node confirms ownership. Once
the requesting peer attains the data, its session replica is promoted to a "live" state.

Note: The default value for the restore timeout for OC4J clusters is 0,
meaning that the peer would wait indefinitely for the state replica.
Without the override provided by this attribute, the peer might block
all of its active threads under some circumstances.

Note: The default value to pass ownership for OC4J clusters is -1,
which instructs the peer not to wait for the replicated data. Because
there is no interval between ownership, two peers can concurrently
host "live" session replicas for a short period of time.

Configuring Presence and Presence Web Services 7-1

7
Configuring Presence and Presence Web

Services

This chapter provides an introduction to the Oracle Communication and Mobility
Server (OCMS) in the following sections:

■ "Overview of Presence"

■ "Configuring Presence"

■ "Configuring Presence Web Services"

■ "Configuring Scalable Presence Deployments with the User Dispatcher"

Overview of Presence
Presence represents the end-user’s willingness and ability to receive calls. Client
presence is often represented as a contact management list, which displays user
availability as icons. These icons, which not only represent a user’s availability, but
also a user’s location, means of contact, or current activity, enable efficient
communications between users.

The Presence application enables a service provider to extend presence service to end
users. The application also enables service providers to base other services on presence
information. The MBeans registered to the Presence application enable you to
configure the presence service, which accepts, stores, and distributes presence
information. See also "Presence Server" in Chapter 1, "An Overview of Oracle
Communication and Mobility Server".

The Presence application MBeans enable you to manage the following:

■ Presence Status Publication

■ Presence Status Subscriptions

■ Watcher-Info Support

■ Presence XDMS Authorization of Subscriptions

■ Privacy Filtering

■ Presence Hard State

■ Composition of Multiple Presence Sources

Presence Status Publication
A presentity can publish a PIDF (Presence Information Data Format) document
containing presence state to the Presence Server.

Configuring Presence

7-2 Oracle Communication and Mobility Server Administrator’s Guide

Presence Status Subscriptions
The Presence server supports subscriptions to a user’s status. The Presence Server
notifies the user when the watcher (subscriber) is authorized to view the user’s status.
The Presence server also notifies all of the active, authorized watchers of the
publication of a new presence document.

Watcher-Info Support
The Presence Server enables the user who is publishing presence information to
subscribe to watcher-info events to receive information on all watchers currently
subscribing to the user’s presence information. The Presence Server also notifies users
of changes in the watcher subscriptions, such as new or terminated subscriptions.

Presence XDMS Authorization of Subscriptions
Whenever a watcher subscribes to a user’s presence, the Presence Server checks the
authorization policy that the publisher has set to see if the subscriber has the required
authorization.

If no matching rule can be found, the subscriber is put in a pending state and a
watcher info notification is sent to the publisher. Usually, the publisher’s client (User
Agent) presents a pop-up box asking whether to accept or reject a new pending
subscriber. The answer is added to the publisher’s authorization policy document in
the form of a rule for this subscriber. The document is then updated by the client on
the XDMS using HTTP. When the document is updated, the Presence Server reads the
new policy document and acts on the new rule, changing the subscription state
accordingly.

Privacy Filtering
A user can create privacy filtering rules to allow or block a user.

Presence Hard State
The hard state feature enables a user to leave a document in the XDMS that notifies
watchers when there are no other documents. In general, this feature is used for
leaving an off-line note, such as "On Vacation".

Composition of Multiple Presence Sources
If a user has two or more clients (such as a PC and a mobile phone) both publishing
presence documents, the Presence Server combines two or more documents into a
unified document as dictated by a composition policy. The Presence server supports
two different composition policies: a default policy and a policy that performs
composition according to the OMA (Open Mobile Alliance) Presence enabler.

The default composition policy is a simple, but robust, algorithm. It adds
<dm:timestamp> elements to the <dm:person> and <dm:device> elements if they
are missing, and <pidf:timestamp> elements to the <pidf:tuple> elements if
they are missing.

When the Presence Server creates the candidate document, it includes all
<pidf:tuple> and <dm:device> elements from the source documents. It includes
only one <dm:person> element in the candidate document, and uses the latest
published element based on the <dm:timestamp> element. All other <dm:person>
elements are ignored.

Configuring Presence
Configuring the following MBeans enables Presence:

Configuring Presence

Configuring Presence and Presence Web Services 7-3

■ Bus

■ PackageManager

■ Presence

■ PresenceApplicationDeployer

■ PresenceEventPackage

■ PresenceWInfoEventPackage

■ UA-ProfileEventPackage

■ UserAgentFactoryService

Configuring XDMS
The following MBeans enables you to configure the XDMS (XML Document
Management Server):

■ Command Service (XDMS Provisioning)

■ XCapConfig

Bus
The Bus MBean supports presence by setting the thread pool, the high and low
watermarks for the job queues, and the duration that a job remains in the queue before
notifications are dispatched. Table 7–1 describes the attributes of the Bus MBean.

Note: If you change any attributes of the following MBeans, you
must restart OCMS for these changes to take effect.

■ Presence

■ PresenceEventPackage

■ PresenceWInfoEventPackage

■ UAProfileEventPackage

■ XCAPConfig

Table 7–1 Attributes of the Bus MBean

Attribute Value Type Description

HighWatermark int The number of pending jobs reached before the
bus’s exhausted threshold level is reached. The
default value is 20.

KeepAlive long The number of seconds to keep an idle thread
alive before dropping it (if the current number of
threads exceeds the value specified for
MinThreads). The default value is 60.

LogDuration long The duration, in seconds, that an event remains in
the queue. A warning is logged to the system log
for events that remain in the queue for a period
exceeding the specified duration before they are
broadcast to the bus. This warning indicates that
server is about to be overloaded, since an old job
has been sent to the bus. The default value is 60.

Configuring Presence

7-4 Oracle Communication and Mobility Server Administrator’s Guide

PackageManager
The PresenceEventPackage, PresenceWInfoEventPackage, and
UA-ProfileEventPackage MBeans enable you to configure the event packages, which
define the state information to be reported by a notifier to a watcher (subscriber).
These packages form the core of the Presence Server, as most requests flow through
them.

A notifier is a User Agent (UA) that generates NOTIFY requests that alert subscribers
to the state of a resource (the entity about which watchers request state information).
Notifiers typically accept SUBSCRIBE requests to create subscriptions. A watcher is
another type of UA, one that receives the NOTIFY requests issued by a notifier. Such
requests contain information about the state of a resource of interest to the watcher.
Watchers typically also generate SUBSCRIBE requests and send them to notifiers to
create subscriptions.

The PackageManager MBean sets the configuration for the PresenceEventPackage,
WatcherinfoPackage, and UA-ProfileEventPackage Means. Table 7–2 describes the
attributes of the PackageManger MBean.

LowWatermark int Specifies the low threshold level for the number
of pending jobs. When this threshold is reached
from below, the Bus logs a warning that it is
about to be choked. At this point, no more
warnings are logged until the high watermark
level is reached. The default value is 15.

MinThreads int The minimum number of threads held in the
thread pool. If no threads are used, then the
specified number of threads remains in an idle
state, ready for upcoming jobs. The default value
is 15.

MaxThreads int The maximum number of threads held in the
thread pool. When the specified number of
threads are occupied with jobs, subsequent jobs
are placed in a queue and are dealt with as the
threads become available. The default value is 10.

Table 7–2 Attributes of the EventPackages MBean

Attribute Description

CaseSensitiveUserPart Setting this attribute to true enables case-sensitive handling of
the user part of the SIP URI. If this parameter is set to false, then
the user part of the URI is not a case-sensitive match. For
example, foo is considered the same as FoO. The domain part of
the URI is always case-insensitive.

EventPackageNames A comma-separated list of event package names. For example:
presence,presence.winfo,ua-profile.

WaitingSubsCleanupInterval The interval, in seconds, in which the subscription cleanup
check runs. The thread sleeps for this period and then awakens
to check for any waiting subscriptions with a timestamp older
than the MaxWaitingSubsTimeHours parameter. All old
subscriptions are then removed from the subscribed resource.

Table 7–1 (Cont.) Attributes of the Bus MBean

Attribute Value Type Description

Configuring Presence

Configuring Presence and Presence Web Services 7-5

Presence
The Presence MBean controls how the Presence Server interacts with presentities,
Publish User Agents (PUAs) that provide presence information to presence services.
The attributes (described in Table 7–3) include those for setting the composition policy
for creating a unified document when a user publishes presence documents from two
or more clients, as well as setting the blocking, filtering, and presence hard state.

Max WaitingSubsTimeHours The maximum time, in hours, that a subscription can be in a
waiting state before the server removes it. This parameter is
used by the subscription cleanup check thread
(waitingsubscleanupinterval) to decide if a waiting
subscription is old enough to be removed from the subscribed
resource.

Table 7–3 Attributes of the Presence MBean

Attribute Description/Value

CompositionPolicyFilename The filename of the composition policy document. Values include
compose.xslt, for the OCMS composition policy, and
compose_OMA.xslt, for the OMA composition policy.

DefaultSubHandling The default subscription authorization decision that the server makes when
no presence rule is found for an authenticated user. The defined values are:

■ block

■ confirm

■ polite-block

Unauthenticated users will always be blocked if no rule is found. For more
information about this, see Chapter 3.2.1: Subscription Handling in the IETF
SIMPLE draft for presence rules
(http://www.ietf.org/internet-drafts/draft-ietf-simple-pr
esence-rules-04.txt).

DocumentStorageFactory The name of the DocumentStorage Factory Class. The default value is
oracle.sdp.presenceeventpackage.document.XMLDocumentStora
geFactoryImpl.

DocumentStorageRootUrl The system identifier for the document storage. In the file storage case, this is
the root file URL path where documents are stored. The content of this
directory should be deleted when the server is restarted. The default value is
file:/tmp/presencestorage/.

DocumentStorageType The type of storage to be used for presence documents. If the number of
users is large, Oracle recommends that you store the presence documents on
file. Valid values:

■ file

■ memory

The default value is memory.

HttpAssertedIdentityHeader The type of asserted identity header used in all HTTP requests from the
Presence Server to the XDMS. Set the value of this attribute to one expected
by the XDMS. Valid values:

■ X_3GPP_ASSERTED_IDENTITY

■ X_3GPP_INTENDED_IDENTITY

■ X_XCAP_ASSERTED_IDENTITY (The default value.)

Table 7–2 (Cont.) Attributes of the EventPackages MBean

Attribute Description

Configuring Presence

7-6 Oracle Communication and Mobility Server Administrator’s Guide

PresenceEventPackage
Table 7–4 describes the attributes of the PresenceEventPackage MBean. The presence
event package has two subgroups: publish and subscribe. Each subgroup has a
minexpires and a maxexpires parameter to set the interval of the expiry of a
publication or a subscription that is accepted by the Presence Server. A client states
when its publication or subscription expires. If a client sends an expiry time that is
lower than the configured minexpires time, the server returns a 423 (Subscription Too
Brief) response. If a client sends an expires time that is higher than the configured
maxexpires time, the server returns the maxexpires time in the response. To keep a
publication or subscription alive, the client sends republish or resubscribe to the
server within the expiry time. The client must perform this task repeatedly through the
lifetime of the publication or subscription.

PidfManipulationAuid The ID of the application usage for PIDF (Presence Information Data Format)
manipulation. The default value is pidf-manipulation.

PidfManipulationDocumentName The document name for pidf manipulation application usage. For example:
hardstate. Unauthenticated users are blocked when no rule is found. If the
URI contains a domain name instead of an IP address, then you must
configure the DNS Server. The default value is hardstate.

PidfManipulationEnabled Set to true (the default value) to enable PIDF manipulation.

PidfManipulationXcapUri The SIP URI of the XDMS for the pidf manipulation application usage. The
default value is: sip:127.0.0.1;transport=TCP;lr. The loose route (lr) parameter
must be included in the SIP URI for the server to function properly.

PoliteBlockPendingSubscription Set to true if pending subscriptions should be polite-blocked. This feature is
used to hide the presentity from the presence watcher with a pending
subscription and instead send them fake presence documents. If set to false
the subscriptions will remain as pending.

PresRulesAuid The ID of the application usage for presrules. The default is pres-rules.

PresRulesDocumentName The document name for presrules application usage. The default value is
presrules.

PresRulesXcapUri The SIP URI of the XDMS for the presence rules application usage. The
default value is: sip:127.0.0.1; transport=TCP;lr. The loose route (lr) parameter
must be included in the SIP URI for the server to function properly.

PrivacyFilteringEnabled Set to true to enable privacy filtering. Set to false to disable filtering. If privacy
filtering is disabled, then all subscriptions that are allowed to see a user’s
presence will always see everything that has been published for the
presentity.

TransformerFactory The name of the TransformerFactory class. The default value is
oracle.xml.jaxp.JXSAXTransformerFactory.

Table 7–3 (Cont.) Attributes of the Presence MBean

Attribute Description/Value

Configuring Presence

Configuring Presence and Presence Web Services 7-7

PresenceWInfoEventPackage
As described in RFC 3857, a Watcher Information Event Package monitors the
resources in another event package to ascertain the state of all of the subscriptions to
that resource. This information is then sent to the subscriptions of the Watcher
Information Event Package. As a result, the subscriber learns of changes in the
monitored resources subscriptions.

The PresenceWInfoEventPackage MBean (described in Table 7–5) sets the subscription
state information for the Watcher Information Event Package.

Table 7–4 Attributes of the PresenceEventPackage

Attribute Value/Description

Description A description of the PresenceEventPackage. For example: The event package that
enables presence.

DocumentFactory The DocumentFactory class name. The default value is
oracle.sdp.presenceeventpackage.document.PresenceDocumentFac
toryImpl.

EscMaxDocumentSize The maximum size, in bytes, for the contents of a publication. If a client attempts
to publish a document that is larger than the specified size, the server sends the
413 response, Request entity too long. The default value is 10000.

ESCMaxExpires The maximum time, in seconds, for a publication to expire. The default value is
3600.

ESCMaxPubPerRes The maximum number of publications allowed per resource. If the maximum
number has been reached for a resource when a new publish is received, the
server sends the 503 Response (Service Unavailable).

ESCMinExpires The minimum time, in seconds, for a publication to expire. The default is 60.

EventStateCompositor The class name of the EventStateCompositor. The default value is
oracle.sdp.presenceeventpackage.PublishControl.

Name The name of this event package. The default value is Presence.

Notifier The name of the Notifier class. The default value is
oracle.sdp.presenceeventpackage.PresenceSubscriptionControl.

NotifierMaxDocumentSize The maximum size for a SUBSCRIBE.

NotifierMaxExpires The maximum time, in seconds, for a SUBSCRIBE to expire. The default is 3600.

NotifierMaxNoOfSubsPerRes The maximum number of subscriptions allowed per resource. If the maximum
number has been reached for a resource, then a new presence subscribe is
received and the server sends the 503 Response (Service Unavailable).

NotifierMinExpires The minimum time, in seconds, for a SUBSCRIBE to expire.

ResourceManagerClassName The name of the ResourceManager class. The default is
oracle.sdp.presenceeventpackage.PresentityManagerImpl.

Table 7–5 Attributes of the WatcherinfoEventPackage

Attribute Description/Value

Description A description of the PresenceWInfoEventPackage. For example: The event
package that enables watcherinfo.

DocumentFactory The name of the DocumentFactory class. The default is
oracle.sdp.eventnotificationservice.DocumentFactoryImpl.

Name The name of the event package. The default value is presence.winfo.

Notifier The Notifier class name. The default value is
oracle.sdp.presenceeventpackage.PresenceSubscriptionControl.

Configuring Presence

7-8 Oracle Communication and Mobility Server Administrator’s Guide

UA-ProfileEventPackage
Table 7–6 describes the attributes of the UA-ProfileEventPackage MBean.

UserAgentFactoryService
The UserAgentFactoryService MBean sets the commands for user agent factory
service. The Presence Server uses the user agent factory to subscribe to changes in
XML documents stored in the XDMS for presence.

NotifierMaxDocumentSize The maximum document size for SUBSCRIBE.

NotifierMaxExpires The maximum time, in seconds, for a SUBSCRIBE to expire. The default is 3600.

NotifierMaxNoSubsPerRes The maximum number of subscriptions allowed per resource. If the maximum
number has been reached for a resource when a new presence subscribe is
received, the server will send a 503 Response (Service Unavailable). The default
value is 100.

NotifierMinExpires The minimum time, in seconds, for a SUBSCRIBE to expire.

ResourceManagerClassName The name of the ResourceManager class. The default is
oracle.sdp.winfoeventpackage.WatcherinfoResourceManager.

Table 7–6 Attributes of the UA-Profile Event Package

Attributes Description/Value

Description A description of the UA-ProfileEventPackage. The default value is The event
package that enables the ua-profile.

Document Factory The Document Factory class name. The default value is:

oracle.sdp.eventnotificationservice.DocumentFactoryImpl

Name The name of the event package. The default value is ua-profile.

Notifier The name of the Notifier class. The default value is:

oracle.sdp.presenceeventpackage.PresenceSubscriptionControl

NotifierMaxDocumentSize The maximum document size for a SUBSCRIBE.

NotifierMaxExpires The maximum time, in seconds, for a SUBSCRIBE to expire. The default is 6000.

NotifierMaxNoOfSubsPerRes The maximum number of subscriptions allowed per resource. If the maximum
number has been reached for a resource when a new presence subscribe is
received, the server will send a 503 Response (Service Unavailable). The default
value is 100.

NotifierMinExpires The minimum time, in seconds, for a SUBSCRIBE to expire. The default value is
60.

ResourceManager The name of the Resource Manager class. The default value is:

oracle.sdp.winfoeventpackage.WatcherinfoResourceManager

Table 7–5 (Cont.) Attributes of the WatcherinfoEventPackage

Attribute Description/Value

Configuring Presence

Configuring Presence and Presence Web Services 7-9

Command Service (XDMS Provisioning)
The Command Service MBean enables user provisioning to the XDMS. For more
information see "CommandService".

XCapConfig
The XCapConfig MBean controls the configuration of the XDMS, the repository of the
XCAP (Extensible Markup Language Configuration Access Protocol) documents
containing user presence rules (pres-rules) and hard state information. The
XCapConfig MBean settings can be ignored if the XDMS is external to OCMS.

Table 7–7 Attributes of the UserAgentFactoryService MBean

Attribute Name Description/Value

DNSNames A comma-separated list of DNS (Domain Name System) IP
addresses used by the user agent.

IpAddress The IP address for the user agent client; use the empty string (the
default setting) for the default network interface on the current
system.

PreferredTransport The preferred transport protocol that enables communication
between the Presence Server and the XDMS. The default value is
TCP. Valid values are TCP and UDP.

Port The IP port for the user agent client. The default value is 5070.

Table 7–8 Attributes of the XCapConfig MBean

Attribute Name Description/Value

CreateNonExistingUserstore Set to true to create a user store if one does not exist when storing a document;
otherwise, set to false. If the parameter is set to false and a client tries to store a
document for a user that does not exist, then the store fails. If the parameter is set
to true, then the user will first be created in the XDMS and then the document will
be stored. The default value is true.

MaxContentLength The maximum size, in bytes, for an XDMS document. Although Oracle
recommends a default maximum size per XDMS document of 1 MB (1000 contacts
at about 1 KB each), you can increase or decrease the size of the document. If you
increase the document size, then you must be sure to that there is sufficient disk
space to accommodate the XDMS document * the number of users * the number of
applications. If you set a smaller per-document size, then this calculation is
reduced to the sum of (max_doc_size_n * number of users) where each max_
doc_size_n is specific to application n.

The default size for the resource-lists document is also 1 MB.

PersistenceRootUrl The persistent storage location. Use the default value jpa:oc4j if you are running a
single node instance. This provides for default caching.

Use the value jpa:multinode if you are running a multinode presence topology that
includes a presence server running on a single instance.

PidfManipulationAuid The ID of the application usage for PIDF (Presence Information Data Format)
manipulation. The default value is pidf-manipulation.

PidfManipulationDocname The document name for pidf manipulation application usage. For example:
hardstate. Unauthenticated users are blocked when no rule is found. If the URI
contains a domain name instead of an IP address, then you must configure the
DNS Server.

The default value is hardstate.

PresRulesAU The name of the pres-rules application usage. The default value is pres-rules.

Configuring Presence Web Services

7-10 Oracle Communication and Mobility Server Administrator’s Guide

Configuring Presence Web Services
OCMS enables Web Service clients to access presence services through its support of
the Parlay X Presence Web Service as defined in Open Service Access, Parlay X Web
Services, Part 14, Presence ETSI ES 202 391-14. A Parlay X Web Service enables an HTTP
Web Service client to access such presence services as publishing and subscribing to
presence information. The Parlay X Presence Web Service does not require developers
to be familiar with the SIP protocol to build such a Web-based client; instead, Parlay X
enables Web developers can build this client using their knowledge of Web Services.

The Presence Web Services application, which is deployed as a child application of the
Presence application, contains the following MBeans that enable you to configure a
Web Services deployment server:

■ Bus

■ PackageManager

– PresenceEventPackage

– PresenceWInfoEventPackage

– UA-ProfileEventPackage

■ PresenceWebServiceDeployer

■ PresenceSupplierWebService

■ PresenceConsumerWebService

PresRulesDocName The name of the pres-rules document. The default value is presrules.

PublicContentServerRootUrl The URL to the public content server root. The URL must be set to the public URL
of the content server (that is, the URL of the authentication HTTP proxy server).

PublicXCAPRootUrl The URL to the public XDMS root, entered as
http://<your.xdms.domain.com>/services/. For example, enter
http://127.0.0.1:8080/services. The URL defined in this parameter gives clients the
location of the content server (which can be on a separate server from the XDMS).
The XDMS places this URL in the Content-Type header of its outgoing NOTIFY
messages. For example, the Content-Type header in the following NOTIFY message
from the XDMS to the Presence Server notes that the body of the pres-rules
document is stored externally and also includes instructions within the URL for
retrieving the document.

CSeq: 1 NOTIFY
From: <sip:bob_0@144.22.3.45>;tag=66910936-0e31-41b2-abac-10d7616d04ef
To: <sip:bob_0@144.22.3.45>;tag=ffa3e97bd77f91e6ca727fbf48a5678b
Content-Type:
message/external-body;URL="http://127.0.0.1:8888/contentserver/pres-rul
es/users/bob_0@144.22.3.45/presrules";access-type="URL"
...
Event:
ua-profile;document="pres-rules/users/sip:bob_
0@144.22.3.45/presrules";profile
-type=application;auid="pres-rules"

RequireAssertedIdentity Set to true if all HTTP/XDMS requests require an asserted identity header;
otherwise, set this parameter to false. Setting this attribute to true requires all XCAP
traffic to be authenticated by the Aggregation Proxy. If this attribute is set to true,
then any incoming XCAP request that lacks an asserted identity is denied access.

Table 7–8 (Cont.) Attributes of the XCapConfig MBean

Attribute Name Description/Value

Configuring Presence Web Services

Configuring Presence and Presence Web Services 7-11

■ UserAgentFactoryService

■ XCapConfig

The Presence Web Services application also includes the PresenceSupplierWebService
and PresenceConsumerWebService MBeans, which contain attributes for managing
presence publication and watcher subscriptions enabled through the OCMS
implementation of Presence Consumer and Presence Supplier interfaces.

PresenceWebServiceDeployer
Starts the JMX framework for the Presence Web Services application and deploys all of
its Model MBeans. The operations of the PresenceWebServiceDeployer MBean enable
you to retrieve information of the objects exposed by the Presence Web Service to this
MBean.

PresenceSupplierWebService
The PresenceSupplierWebService MBean (described in Table 7–10) enables you to
manage the presence data published to watchers.

Table 7–9 Operations of the PresenceWebServiceDeployer MBean

Operation Description

getManagedObjectNames Returns a String array containing the object names of the
deployed application.

getMBeanInfo Returns the meta-data for the deployed MBean.

getMBeanInfo (locale) Returns the localized meta-data for the deployed Mbean.

Table 7–10 Attributes of the PresenceSupplierWebService MBean

Attributes Description

Expires The default expiry time, in seconds, for the PUBLISH of a
presence status. The value entered for this attribute should be
optimized to match that entered for the SessionTimeout attribute.

PIDFManipulationAU The name of the application usage for PIDF (Presence
Information Data Format) manipulation. The default value is
pidf-manipulation.

PidfManipulationDocname The document name for pidf manipulation application usage.
For example: hardstate. Unauthenticated users are blocked when
no rule is found. If the URI contains a domain name instead of
an IP address, then you must configure the DNS Server.

The default value is hardstate.

PresRulesAU The name of the pres-rules application usage. The default value
is pres-rules.

PresRulesDocname The name of the pres-rules document. The default value is
presrules.

PublicXCAPRootUrl The URL to the public XDMS root, entered as
http://<your.xdms:domain.com>/services/. For example, enter
http://127.0.0.1:8080/services.

SessionTimeout The timeout of the HTTP session, in seconds. The value entered
for this attribute should be optimized to match the value entered
for the Expires attribute. This timeout takes effect for new
sessions only.

Configuring Presence Web Services

7-12 Oracle Communication and Mobility Server Administrator’s Guide

PresenceConsumerWebService
The PresenceConsumerWebService MBean (described in Table 7–11) enables you to set
the duration of watcher subscriptions.

Aggregation Proxy
The Aggregation Proxy is a server-side entry point for OMA clients that authenticates
any XCAP traffic and Web Service calls (which are conducted through HTTP, not SIP)
by providing identity assertion. This component acts as the gatekeeper for the trusted
domain that houses the Presence Server and the XDMS.

The Parlay X Web Service operates within a trusted domain where the Aggregation
Proxy authorizes the user of the Web Service. It authenticates XCAP traffic and Web
Service calls emanating from a Parlay X client by inserting identity headers that
identify the user of the Web Services. The Aggregation Proxy then proxies this traffic
(which is sent over HTTP) to the Parlay X Web Service and XDMS.

The attributes of the Aggregation Proxy MBean (Table 7–12) enable you to set the type
of identity assertion that is appropriate to the XDMS. In addition, you set the host and
port of the Web Server and XDMS that receive the proxied traffic from the Aggregation
Proxy.

SIPOutboundProxy The IP address of the outbound proxy server where all requests
are sent on the first hop. Enter this address in the following
format:

sip:<IP address>;lr;transport=TCP

You can also enter the default port (5060) in this address. For
example, enter sip:127.0.0.1:5060;lr;transport=TCP. The shortest
format for entering this address is sip:127.0.0.1;lr.

If you do not define this attribute, then no outbound proxy will
be used.

Table 7–11 Attributes of the PresenceConsumerWebService MBean

Attribute Value

Expires The default expiry time, in seconds, for watcher subscriptions.
The value entered for this attribute should be optimized to
match the value entered for the SessionTimeout attribute.

SessionTimeout The timeout of the HTTP session, in seconds. The value entered
for this attribute should be optimized to match the value entered
for the Expires attribute. This timeout takes effect for new
sessions only.

SIPOutboundProxy The IP address of the outbound proxy server where all requests
are sent on the first hop. Enter this address in the following
format:

sip:<IP address>;lr;transport=TCP

You can also enter the default port (5060) in this address. For
example, enter sip:127.0.0.1:5060;lr;transport=TCP. The shortest
format for entering this address is sip:127.0.0.1;lr.

If you do not define this attribute, then no outbound proxy will
be used.

Table 7–10 (Cont.) Attributes of the PresenceSupplierWebService MBean

Attributes Description

Configuring Presence Web Services

Configuring Presence and Presence Web Services 7-13

Configuring the Aggregation Proxy to Work with Realms
You can configure the Aggregation Proxy to work with one or more realms.

Perform the following steps:

Table 7–12 Attributes of the Aggregation Proxy

Attribute Description

AssertedIdentityType Enter the number corresponding to the identity header inserted
into proxied HTTP requests that is appropriate to the XDMS:

1. X_3GPP_ASSERTED_IDENTITY (the default)

2. X_3GPP_INTENDED_IDENTITY

3. X_XCAP_ASSERTED_IDENTITY

ContentHost Hostname of the Content Server where the Aggregation Proxy
sends proxied requests.

ContentPort The port number of the Content Server where the Aggregation
Proxy sends proxied requests.

ContentRoot The root URL of the Content Server.

IgnoreUserpartCase Set to true if case-sensitive handling of the user name is not
required.

JAASLogingContext The name for the JAAS (Java Authentication and Authorization
Service) javax.security.auth.login.LoginContext.

JAASRoles A comma-separated list of JAAS roles for authentication. If the
value is "*", it will allow all JAAS roles.

PresenceConsumerEndpoint Note: this attribute is deprecated and is only here for backward
compatibility.

The path to the endpoint of the Presence Consumer Web Service.
The methods of the Presence Consumer interface enable
watchers to obtain presence data.

PresenceSupplierEndpoint Note: this attribute is deprecated and is only here for backward
compatibility.

The path to the endpoint of the PresenceSupplier Web Service.
The methods of the Presence Supplier Interface enable
presentities to provide presence manage the data accessed by
watchers.

TrustedHosts A comma-separated list of IP addresses of trusted hosts.
Asserted identity headers are removed from requests with
addresses that are not included in this list.

WebServiceHost Note: this attribute is deprecated and is only here for backward
compatibility.

The host name of the Web Services deployment server to which
the Aggregation proxies requests.

WebServicePort Note: this attribute is deprecated and is only here for backward
compatibility.

The port of the Web Services deployment server to which the
Aggregation proxies requests.

XCAPHost The host name of the XDMS to which the Aggregation Proxy
proxies requests.

XCAPPort The port of the XDMS to which the Aggregation Proxy proxies
requests.

XCAPRoot The root URL of the XDMS.

Configuring Scalable Presence Deployments with the User Dispatcher

7-14 Oracle Communication and Mobility Server Administrator’s Guide

1. Select aggregationproxy > Administration > Security Provider >
OCMSLoginModule > Edit.

Five attributes are displayed, the most important of which is the realm.

2. Configure the realm or realms as a comma-separated list in the following format:

<domain>=<realm>,<domain>=<realm>,...

Securing the XDMS with the Aggregation Proxy
Secure the XDMS by deploying it behind the Aggregation Proxy. Access to the XDMS
should be restricted only to the Aggregation Proxy and the Presence Server. In
addition, securing the XDMS requires that you configure the Presence Sever
application’s XCapConfig MBean, the Aggregation Proxy and the Oracle
Communicator as follows:

■ Deny access to any incoming XCAP request that lacks an asserted identity header
by setting the value of the RequiredAssertedIdentity attribute of Presence Server’s
XCAPConfig MBean to true. Setting this attribute to true requires authentication of
all XCAP by the Aggregation Proxy.

■ Set the appropriate XDMS-related values for the XCAPHost, XCAPPort, XCAPRoot,
ContentHost, ContentPort and ContentRoot attributes of the Aggregation Proxy
MBean.

■ Configure the Oracle Communicator’s XDMS settings in customize.xml to
point to the Aggregation Proxy -- not to the XDMS -- by defining the
<RootContext> element as aggregationproxy, the context root of the
Aggregation Proxy and by setting the <host> and <port> elements to the host of
the Aggregation Proxy and the HTTPS port on that host, such as 443.

The Aggregation Proxy must be deployed as a child application of Subscriber Data
Services. You can bind to the default-web-site for HTTP. To enable HTTP over
SSL, you must configure the OC4J Container on which the Aggregation Proxy executes
to provide HTTPS. Refer to Oracle Containers for J2EE Security Guide for instructions on
configuring HTTPS. To enable access to the Aggregation Proxy over HTTPS, bind the
Aggregation Proxy with the secure-web-site. Ensure that the Presence Server
binds with the default-web-site if it resides on the same server with the
Aggregation Proxy. Because the Presence Server resides in the presence.ear file, all
of the HTTP servlets in that EAR file must bind to default-web-site.

Configuring Scalable Presence Deployments with the User Dispatcher

In non-distributed environments, stateful applications function properly because they
receive requests from a single node. In distributed environments where applications
must be scaled over multiple nodes to accomodate traffic, stateful applications may
fail because any node can serve a request, not just to the one running the application
that maintains the session state for the request. The User Dispatcher guarantees that
SIP and HTTP user requests are dispatched to the node that maintains the session state
needed to succesfully process that request; once user requests are directed to the User
Dispatcher, they are consistently sent to the same destination.

Failover
Fail-over is a technique that can be used by the User Dispatcher to assert a higher level
of availability of the Presence Server. Since the Presence server does not replicate any
state (such as established subscriptions) the state has to be recreated by the clients on
the new server node by setting up new subscriptions. Also, since a subscription is a

Configuring Scalable Presence Deployments with the User Dispatcher

Configuring Presence and Presence Web Services 7-15

SIP dialog and the User Dispatcher is not record routing, it cannot fail-over a
subscription from one node to another. All subsequent requests will follow the route
set and end up on the old node.

This is not a problem when failing over from a failing server since that node is not
processing the traffic anyway and any request within a dialog will eventually get a fail
response or timeout and the dialog will be terminated. However, when migrating back
a user from the backup node to the original node (when it has been repaired), which
has to be done to maintain an even distribution after the failure, this is a problem that
can lead to broken presence functionality. The only way to migrate a subscription from
one running server to another is to either restart the client or the server.

However, the server that holds the subscription can actively terminate it by sending
out a terminating NOTIFY and discarding the subscription state. This will force the
client to issue a new initial SUBSCRIBE to establish a new dialog. For a subscription to
migrate from one live node to another the User Dispatcher must fail-over the traffic
(which is only affecting initial requests) and instruct the current server to terminate the
subscriptions.

Presentity Migration
Presentities must be migrated when the set of nodes have changed. This involves
having the Presence application to terminate some or all subscriptions to make the
migration happen.

Stateless User Dispatcher and Even Distribution The most basic approach is to contact the
Presence application on all nodes to terminate all its subscriptions. The problem with
this is that a burst of traffic will be generated although spread out over a period of
time. This time period results in incorrect presence states since the longer the
termination period is the longer it will take until all users get a correct presence state.

To optimize this you could terminate only those subscriptions that actually need to be
terminated (the ones that has been migrated). The problem is that the User Dispatcher
does not know which users these are (since it does stateless distribution based on an
algorithm) and the Presence application does not either (since it only knows what
users it has). However, if the Presence application could iterate over all its
subscriptions and for each of them ask the User Dispatcher if this user would go to this
Presence node, then the Presence server could terminate only those that will not come
back to itself. This may be a heavy operation, but under the constraint that each
Presence server is collocated with a User Dispatcher each such callback would be
within the same JVM.

Presence Application Broadcast Another solution is to have the Presence servers
guarantee that a user only exists on one Presence node at any given time. This can be
done by having the Presence application broadcast a message to all its neighbors when
it receives a PUBLISH or SUBSCRIBE for a new presentity (a presentity that it does not
already have a state for). If any other Presence node that receives this broadcast
message already has active subscriptions for this presentity, that server must terminate
that subscription so that the client can establish a new subscription with the new
server.

With this functionality in the Presence application, the User Dispatcher would not
have to perform additional steps to migrate a user from one live node to another.

Standby Server Pool
Another approach is to have a standby pool of servers that are idling ready to take
over traffic from a failing node. When an active node fails the User Dispatcher will

Configuring Scalable Presence Deployments with the User Dispatcher

7-16 Oracle Communication and Mobility Server Administrator’s Guide

redistribute all its traffic to one server from the standby pool. This node will now
become active and when the failing node eventually is repaired it will be added to the
standby pool. This will eliminate the need for migrating users back from a live node
when a failing node resumes.

This approach requires more hardware and the utilization of hardware resources will
not be optimal.

Failure Types
There are several types of failures that can occur in a Presence server and different
types of failures may require different actions from the User Dispatcher.

Fatal Failures If the failure is fatal all state information is lost and established sessions
will fail. However, depending on the failure response, subscriptions (presence
subscribe sessions) can survive using a new SIP dialog. If the response code is a 481
the presence client must according to RFC 3265 establish a new SUBSCRIBE dialog
and this is not considered to be a failure from a presence perspective. All other failure
responses may (depending on the client implementation) be handled as an error by the
client and should therefore be considered a failure.

After a fatal failure the server does not have any dialog states from the time before the
failure, which means that all subsequent requests that arrive at this point will receive a
481 response back. During the failure period all transactions (both initial and
subsequent) will be terminated with a non-481 error code, most likely a 500 or an
internal 503 or 408 (depending on if there is a proxy in the route path or not, and what
the nature of the failure is).

Typically a fatal failure will result in the server process or the entire machine being
restarted.

Temporary Failures A temporary failure is one where none or little data is lost so that
after the failure session states will remain in the server. This means that a subsequent
request that arrives after the server has recovered from the failure will be processed
with the same result, as it would have been before the failure.

All requests that arrive during the failure period will be responded with a non-481
failure response, such as 503.

In general a temporary failure has a shorter duration, and a typical example is an
overload situation in which case the server will respond 503 on some or all requests.

Failover Actions
The User Dispatcher can take several actions when it has detected a failure in a
Presence server node. The goal with the action is to minimize the impact of the failure
in terms of number of failed subscriptions and publications and the time it takes to
recover. In addition to this the User Dispatcher needs to keep the distribution as even
as possible over the active servers.

The fail-over action to be used in this version of the User Dispatcher is to disable the
node in the pool. This approach is better than removing the node because when the
ResizableBucketServerPool is used since the add and remove operations are not
deterministic. This means that the result of adding a node depends on the sequence of
earlier add and delete operations, whether as the disable operation will always result
in the same change in distribution given the set of active and disabled nodes.

Configuring Scalable Presence Deployments with the User Dispatcher

Configuring Presence and Presence Web Services 7-17

Overload Policy
An activated overload policy can indicate several types of failures but its main
purpose is to protect from a traffic load that is to big for the system to handle. If such a
situation is detected as a failure, fail-over actions can lead to bringing down the whole
cluster since if the distribution of traffic is fairly even all the nodes will be in or near an
overloaded situation. If the dispatchers remove one node from the cluster and
redistribute that node’s traffic over the remaining nodes they will certainly enter an
overload situation that causes a chain reaction.

Since it is difficult to distinguish this overload situation from a software failure that
triggers the overload policy to be activated even though the system is not under load,
it might still be better to take the fail-over action unless Overload Policy is disabled. If
the system is really in an overload situation it is probably under dimensioned and then
the fail-over should be disabled.

The User Dispatcher will not fail over when it has detected a 503 response (which
indicates overload policy activated). However, if a server is in the highest overload
policy state where it drops messages instead of responding 503 the User Dispatcher
monitor will receive an internal 408, which can never be distinguished from a dead
server and failover will occur.

Synchronization of Failover Events
Depending on the failure detection mechanism there may be a need to synchronize the
fail-over events (or the resulting state) between the different dispatcher instances. This
is required if the detection mechanism is not guaranteed to be consistent across the
cluster, such as an Error Response. For instance one server node sends a 503 response
on one request but after that works just fine (this can be due to a glitch in the overload
policy). If there was only one 503 sent then only one dispatcher instance will receive it
and if that event triggers a fail-over then that dispatcher instance will be out of sync
with the rest of the cluster. Further, even if the grace period is implemented so that it
takes several 503 responses over a time period to trigger the fail-over there is still a risk
for a race condition if the failure duration is the same as the grace period.

The following methods can be used to assure that the state after fail-over is
synchronized across the cluster of dispatcher instances:

Broadcasting Fail-Over Events In this approach each dispatcher instance have to send a
notification to all other instances (typically using JGroups or some other multicast
technique) when it has decided to take a fail-over action and change the set of servers.
This method can still lead to race conditions since two instances may fail-over and
send a notification at the same time for two different server nodes.

Shared State If all dispatcher nodes in the cluster share the same state from a single
source of truth then when the state is changed (due to a fail-over action) by any
instance all other instances will se the change.

Expanding the Cluster
Since the Presence application can generate an exponentially increasing load due to the
fact that every user subscribes to multiple (potentially a growing number of) other
users, there is a need for a way to dynamically expand the cluster without too much
disturbance. Compared to for instance a classic telecom application where it may be
acceptable to bring all servers down for an upgrade of the cluster during low traffic
hours, a Presence system may have higher availability requirements than that.

Configuring Scalable Presence Deployments with the User Dispatcher

7-18 Oracle Communication and Mobility Server Administrator’s Guide

Expanding the cluster may involve both adding Presence nodes and User Dispatcher
nodes.

When a new Presence server is added to a cluster, some presentities must be migrated
from old nodes to the new node in order to keep a fairly even distribution. This
migration needs to be minimized to avoid a too big flood of traffic on the system upon
changing the cluster.

When a new User Dispatcher is added to the cluster that User Dispatcher node must
achieve the same dispatching state as the other dispatcher nodes. This may depending
on the pool implementation require a state being synchronized with the other
dispatcher nodes (for instance when using the bucket pool implementation with
persistence).

Updating the Node Set
Depending on the algorithm used to find the server node for a given presentity,
different number of presentity will be migrated to another node when a new node is
added or removed. An optimal Pool implementation will minimize this number.

Migrating Presentities
When the node set has been updated some Presentities may have to be migrated to
maintain an even distribution. The different ways to do this are described in
"Presentity Migration".

Failover Use Cases
These use cases illustrates how the User Dispatcher reacts in different failure situations
in one or several Presence server nodes.

One Presence Server Overloaded for 60 Seconds
The cluster consists of four Presence servers, each node consisting of one OCMS
instance with a User Dispatcher and a Presence application deployed. 100.000 users
are distributed over the four servers evenly (25.000 on each node). Due to an
abnormally long GC pause on one of the servers, the processing of messages is blocked
by the Garbage Collector, which leads to the SIP queues getting filled up and the
overload policy is activated. 60s later the processing resumes and the server continues
to process messages.

The User Dispatcher will not do any fail-over but keep sending traffic to the failing
node. In this case no sessions will be migrated to another node since all PUBLISH and
initial SUBSCRIBE requests will be sent to the failing node. The initial SUBSCRIBES
that arrives during the failure period will fail with a non-481 error (likely 503). It is up
to the client to try and setup a new subscription when the failing one expires or report
a failure. All PUBLISH requests and initial SUBSCRIBE request will generate a failure.

When the failing node resumes to normal operation all traffic will be processed again
and no requests should fail. The time it takes until all presence states are correct again
will be minimal since no sessions were failed-over.

If the monitoring feature is implemented in a way that detects the node as down in
this case, then some users will be migrated to another node and when this node comes
back they will be migrated back again. This will generate some increased load for a
duration of time. If the overload policy was activated because of a too high traffic load
this migration is bad, since is will most likely happen again and since the other servers
will most likely also be close to overload. This could lead to a chain reaction resulting
in the whole cluster going down and a complete loss of service.

Configuring Scalable Presence Deployments with the User Dispatcher

Configuring Presence and Presence Web Services 7-19

One Presence Server Overloaded Multiple Times for Five Seconds
This use case describes a Presence server that is going in and out from overload with
short time periods such as 5 seconds. This is common if the system is under
dimensioned and can barely cope with the traffic load, but it could also be caused by
some other disturbance only on that particular node. The User Dispatcher will behave
exactly as in "One Presence Server Overloaded for 60 Seconds" and the result will be
the same except that the number of failed sessions and failed-over sessions will be
smaller due to the shorter failure period.

Overload Policy Triggered by an OCMS Software Failure
A failure in the OCMS software or an application deployed on top of it causes all
threads to be locked (deadlock). This will eventually lead to that the in queue is filled
up and the overload policy is activated even though the system is not actually
overloaded. This is a permanent error that can only be solved by restarting the server.

Depending on if and how the monitor function is implemented the number of affected
users can be minimized. However this cannot be distinguished from a real overload
situation in which case a fail-over may not be the best thing to do.

A Presence Server Hardware Failure
The cluster consists of four Presence servers, each node consisting of one OCMS
instance with a User Dispatcher and a Presence application deployed. 100.000 users
are distributed over the four servers evenly (25.000 on each node). One of the presence
servers crashes due to a hardware failure. A manual operation is required to replace
broken server with a new one and only after two hours is the server up and running
again. Depending on the type of the failure the response code sent back on
transactions proxied to the failed node will be 408 or 503.

In this case all sessions on this node will fail since the failure duration is (most likely)
more than the expiration time for the subscriptions. If a monitor server is implemented
with fail-over then the failure time will be minimized to the detection time (seconds).
The users will be migrated by the migration feature, which will create an increased
load for a duration of time.

Because the User Dispatcher was also running on the failed node, all the persisted data
for the user dispatcher will be lost when replacing the server with a new machine.

Expanding the Cluster with One Presence Node
The cluster consists of 3 Presence servers, each node consisting of one OCMS instance
with a User Dispatcher and a Presence application deployed. 100.000 users are
distributed over the four servers evenly (33.000 on each node). A new node is installed
and added to the cluster. The following sequence of operations are performed to add
the new node:

1. The User Dispatcher and the Presence application on the new node are configured
with the same settings as the rest of the cluster. This includes synchronizing the
distribution state to the new User Dispatcher in case of a pool implementation
with persistence.

2. The addServer JMX operation is invoked with the new node on the cluster User
Dispatcher MBean. This will invoke the addServer operation on all User
Dispatcher nodes (including the new node).

3. The Load Balancer is reconfigured with the new node so that initial requests are
sent to the new User Dispatcher node.

Configuring Scalable Presence Deployments with the User Dispatcher

7-20 Oracle Communication and Mobility Server Administrator’s Guide

4. Depending on the migration approach an additional JMX operation may be
invoked on the Presence application (using the cluster MBean server).

The result of this is that the new distribution of users is 25.000 on each node after 8.000
users have been migrated. Depending on the migration method this will generate an
increased load of traffic on the system over a period of time.

Removing a Node from the Cluster
The cluster consists of four Presence servers, each node consisting of one OCMS
instance with a User Dispatcher and a Presence application deployed. 100.000 users
are distributed over the four servers evenly (25.000 on each node). One Presence node
is removed from the cluster. The following sequence of operations are performed to
remove the node:

1. The Load Balance is reconfigured to not include the node to be removed.

2. The removeNode JMX operation is invoked to remove the node from all the User
Dispatcher’s in the cluster. The cluster MBean is used to delegate the operation.

3. Depending on the migration approach an additional JMX operation may be
invoked on the node to be removed.

4. When all users have been migrated from the node to be removed (the duration of
this depends on the migration method) the node is finally stopped and removed
from the cluster.

The result of this is that the new distribution of users is 33.000 on each node after 8.000
have been migrated.

OPMN Restart After a Presence Server Crash
Consider a four-node cluster with a User Dispatcher and a Presence application
deployed on each node. The Presence server JVM on one of the nodes crashes and
OPMN restarts the process. The restart takes one minute.

503 Responses from an Application
Due to a software bug or misbehavior in the application, 503 responses are sent for all
incoming traffic. The SIP server itself is not under a significant load and the Overload
Policy has not been activated. This may or may not be a permanent error condition.

OCMS Parlay X Web Services Architecture 8-1

8
OCMS Parlay X Web Services Architecture

This chapter describes the architecture, security, and installation for the OCMS Parlay
X Web Services. This chapter contains the following sections:

■ "Architecture of Web Service Client Applications"

■ "Web Service Security"

■ "Installing the Web Services"

Architecture of Web Service Client Applications
The architecture of client applications is such that one client of a Web service will be
acting on behalf of many end users of the system (Figure 8-1).

Multiple users can simultaneously connect to the same Web service client, which will
act on behalf of those users when invoking the Web Service. Note the following usage
guidelines:

■ Security – the OCMS Web server on which the Web services are running
authenticates the client and not the end users. The client is a trusted entity and
once the client is authenticated it is assumed that all end users of the client are
authenticated. This places the task of authenticating end users on the Web service
client. For the client to be correctly authenticated, they must connect with
pre-determined authentication credentials.

■ The Web client need not invoke all the Web services – that is, a web client might
invoke methods on the SendMessage Web service only, and therefore has no need
to concern itself with the other Web services. However, there are instances where
the needs of the client application dictate that it invokes specific methods on the
different web services in a specific order to achieve its goals. For example, a client
applications for sending messages that also wants to receive message notifications
for all the messages sent must first call the startMessageNotification method of the
MessageNotificationManager interface before it can receive notifications for
messages sent.

Web Service Security
The default deployments of all Web services on the OCMS server require that the
clients authenticate themselves using DIGEST authentication (requires username and
password). To support this, the parlayxclient-10.1.3.4.jar includes runtime xml
descriptors (<interface-name>Binding_Stub.xml) that are configured to support
inclusion of the required headers for DIGEST authentication from the clients.

Web Service Security

8-2 Oracle Communication and Mobility Server Administrator’s Guide

Therefore, clients using the OCMS parlayxclient-10.1.3.4.jar need only set the
username and password for the specific Web service client they are using. For instance:

SendMessageClient smc = new SendMessageClient();
...
smc.setUsername(“oracle-ws-client”);
smc.setPassword(“secret”);

The username and password used for authentication must be pre-determined and
configured on the OCMS web server in order for authentication to succeed.
Configuring the correct username and password on the server depends on the choice
of security provider to be configured. For instance, consider configuring the username
and password of the multimedia messaging web services (this includes SendMessge,
ReceiveMessage and MessageNotificationManager services) to use a file based security
provider (the simplest). Perform the following steps on the OCMS server:

1. Log onto Application Server Control Enterprise Manager.

2. Select Administration > Security > Security Providers and edit the
messagingwebservice security provider.

3. Verify that the default security provider is a File-Based Security Provider. To
modify it, select Change Security Provider > File-Based Security Provider, select
"Use the OC4J instance default file based security provider" and click OK.

4. Select the Realms and click the Users link by the default realm (jazn.com).

5. Choose Create to add a new user.

6. Enter the user name (for example, oracle-ws-client), password (for example, secret)
and add the users user role. Select OK. You can now connect to any of the
multimedia messaging web services as user "oracle-ws-client" with password
"secret", using the following code on the client side:

 smc.setUsername("oracle-ws-client");
 smc.setPassword("secret");

Typically, client application developers do not need to know the details of setting up
authentication credentials on the server side, since that would be handled by the
server administrator.

If the server administrator chooses to change the authentication requirements on the
Web services (for instance, to use a PLAINTEXT username and password instead of
DIGEST), they will provide instructions on new requirements. This typically requires
unpacking the parlayxclient-10.1.3.4.jar, modifying <interface-name>Binding_
Stub.xml, and re-packaging the updated parlayxclient-10.1.3.4.jar for use when
running your application. The instructions provided by your server administrator
should include the relevant details.

Web Service Security on Notification
The different Web services include corresponding notification Web services
(MessageNotification, PresenceNotification) that run on the client side and receive
notifications (message delivery status, message receipt, presence status change) when
the appropriate event occurs. This implementation does not provide for the use of Web
Service security (WS-Security) by default during notification of the clients. That is, the
server assumes that the notification Web services running on the client side do not use
WS-Security, and makes no attempt to authenticate itself when sending notifications. If
you do enable WS-Security on the client side, the notification from the server will fail
because the notification SOAP request will be missing the required headers.

Installing the Web Services

OCMS Parlay X Web Services Architecture 8-3

Installing the Web Services
The Web services are packaged as a standard .ear file and can be deployed the same as
any other Web services through Enterprise Manager. The .ear file contains two .war
files that implement the two interfaces. If the Web services are deployed on the same
server as the presence server, they must be a child application of the presence server.

Your client applications need to import (and be compiled against) the parlayx libraries
that are provided with OCMS. This consists of importing the following jars into your
projects:

■ parlayx-10.1.3.4.jar – this jar contains all the 'unmodified' classes – classes that are
generated by the oracle web services assembler and are not to be
modified/customized. This includes the types (common types as well as the types
for different web services), runtime classes, and local classes.

■ parlayxclient-10.1.3.4.jar – this jar contains all the modified
<interface-name>Client classes (for instance, PresenceConsumerClient, and
SendMessageClient) that have been specialized to work with the corresponding
Web services deployed with Oracle Communication and Mobility Server.

In addition to compiling against these jar files, they should be also included in the
runtime configuration of the client (this might mean, for instance, setting the classpath
in case of a console client, or including the jars in the deployed war/ear in a client
application deployed into a J2EE container).

In addition to the jars above, the OCMS installation contains war files for the
notification Web services. These war files contain all the necessary jar files that
developers need to import to enable notification for the different Web services:

■ messagingwsnotification-10.1.3.4.war – deployable war file that contains jars that
should be imported when building a client intends to receive notifications for
message delivery status and message reception. This war should also be deployed
along with the client application in order for the OCMS server to be able to invoke
the messaging notification Web service.

■ presencewsnotification-10.1.3.4.war – deployable war file that contains jars that
should be imported when building a client intends to receive notifications for
presence status changes. This war should also be deployed along with the client
application so that the OCMS can invoke the presence notification Web service.

Installing the Web Services

8-4 Oracle Communication and Mobility Server Administrator’s Guide

OCMS Parlay X Presence Web Services 9-1

9
OCMS Parlay X Presence Web Services

This chapter describes OCMS support for the Parlay X 2.1 Presence Web Services
interfaces for developing applications. The Web service functions as a Presence
Network Agent which can publish, subscribe, and listen to notifies on behalf of the
users of the Web service. This chapter contains the following sections:

■ "Introduction"

■ "Presence Web Services Interface Descriptions"

■ "Using the Presence Web Services Interfaces"

■ "OCMS Parlay X Presence Custom Error Codes"

Introduction
OCMS provides support for Part 14 of the Parlay X Presence Web Service as defined in
the Open Service Access, Parlay X Presence Web Services, Part 14, Presence ETSI ES 202
391-14 specification. The OCMS Parlay X Web service maps the Parlay X Web service
to a SIP/IMS network according to the Open Service Access, Mapping of Parlay X
Presence Web Services to Parlay/OSA APIs, Part 14, Presence Mapping, Subpart 2,
Mapping to SIP/IMS Networks, ETSI TR 102 397-14-2 specification.

The Presence Web Service communicates directly with IMS presence network elements
using the SIP/SIMPLE protocol interface, and uses the JSR-32 UAC framework to
communicate with the SIP network.

The HTTP server that hosts the Presence Web Service is a Presence Network Agent or
a Parlay X to SIP gateway.

Presence Web Services Interface Descriptions
The Presence Web Services consist of the following interfaces:

■ PresenceConsumer: The watchers use these methods to obtain presence data
(Table 9–1).

Note: Due to the synchronous nature of the Web Service, to receive a
callback from the Web service the client must implement the Web
Service callback interface. For Presence, the required interface is the
PresenceNotification interface described in Open Service Access,
Parlay X Presence Web Services, Part 14, Presence ETSI ES 202 391-14.

Presence Web Services Interface Descriptions

9-2 Oracle Communication and Mobility Server Administrator’s Guide

■ PresenceNotification: The presence consumer interface uses the client callback
defined in this interface to send notifications. (Table 9–2).

■ PresenceNotificationListener: This is a thin Java wrapper layer on top of the Parlay
X PresenceNotification interface. An Oracle extension provides the user context if
available. The client application should implement this interface and register it
using the addPresenceNotificationListener() method from
PresenceNotificationListenerManager. Once registered with the
manager, it will be called if there is incoming notification. The end client can
register multiple listeners. All listeners will be called on every incoming
notification. The user context in the form of a SIP address is passed in the context
parameter. This class is included in the presencewsnotification-10.1.3.4.war.

■ PresenceSupplier: The presentity uses these methods to supply presence data and
manage access to the data by its watchers (Table 9–3).

Table 9–1 PresenceConsumer Interface

Operation Description

subscribePresence The Web Services send a SUBSCRIBE to the presence server.

getUserPresence Returns the cached presence status because the status
changes of the presentity are asynchronously sent to the Web
services through a SIP NOTIFY. The Web services actually
have the subscription, not the Web services client.

startPresenceNotification Indicates that the watcher want to receive notifications for a
user presence status.

endPresenceNotification Indicates that the watcher does not want further notifications
for a specific notification request (identified by the
correlator).

Table 9–2 PresenceNotification Interface (used by PresenceNotificationListener)

Operation Description

statusChanged The asynchronous operation is called by the Web Service
when an attribute for which notifications were requested
changes.

statusEnd The notifications have ended. This message will not be
delivered in the case of an error ending the notifications or
deliberate ending of the notifications (using
endPresenceNotification operation).

notifySubscription This asynchronous operation is called by the Web Service to
notify the watcher (application) that the subscription has
terminated. Typical reasons are a timeout of the underlying
SIP soft state subscription or the decision of the presentity to
block further presence information to that watcher.

subscriptionEnded This asynchronous method notifies the watcher that the
server or the presentity handled the pending subscription.

Table 9–3 PresenceSupplier Interface

Operation Description

publish Maps directly to a SIP PUBLISH.

Using the Presence Web Services Interfaces

OCMS Parlay X Presence Web Services 9-3

Using the Presence Web Services Interfaces
This section describes how to use each of the operations in the interfaces, and includes
code examples.

Interface: PresenceConsumer, Operation: subscribePresence
This is the first operation the application must call before using another operation in
this interface. It serves two purposes:

■ It allows the Web services to associate the current HTTP session with a user.

■ It provides a context for all the other operations in this interface by subscribing to
at least one presentity (SUBSCRIBE presence event).

Code Example
// Setting the attribute to activity
PresenceAttributeType pa = PresenceAttributeType.Activity;
PresenceAttributeType[] pat = new PresenceAttributeType[]{pa};

// These inputs are required but not used.
SimpleReference sr = new SimpleReference();
sr.setCorrelator("unique_correlator");
sr.setInterfaceName("PresenceNotification");
sr.setEndpoint(new URI
("http://127.0.0.1:8088/presencenotification/PresenceNotification"));

// Calling the web service
consumer.subscribePresence (new URI
("sip.presentity@test.example.com") , pat, "webcenter", sr);

Interface: PresenceConsumer, Operation: getUserPresence
Call this operation to retrieve a subscribed presentity presence. If the person is offline,
it returns ActivityNone and the hardstate note will be written to
PresenceAttribute.note. If it returns ActivityOther, the description of the
activity is returned in the OtherValue field.

getOpenSubscriptions Called by the presentity (supplier) to check if any watcher
wants to subscribe to its presence data. No SIP message maps
to this method. Returns pending subscriptions currently in
the Web services server.

updateSubscriptionAuthorizati
on

The supplier uses this method to answer any open pending
subscriptions. An XCAP PUT message is sent to the XDMS
server to update the presence-rule document.

getMyWatchers Retrieves the local list of watchers from the Web services
server.

getSubscribedAttributes Retrieves the local list of subscribed attributes from the Web
services server. Currently, only returns Activity.

blockSubscription Causes the Web services server to end a watcher subscription
by modifying the XCAP document on the XDMS server (i.e.,
putting the watcher on the block list).

Table 9–3 (Cont.) PresenceSupplier Interface

Operation Description

Using the Presence Web Services Interfaces

9-4 Oracle Communication and Mobility Server Administrator’s Guide

If the Name field is equal to "ServiceAndDeviceNote", OtherValue is a combination
of the service note and the device note. Note that there can be more than one
"ServiceAndDeviceNote" when the presentity is logged into multiple clients.

Code Example
PresenceAttributeType pat = new
 PresenceAttributeType(){PresenceAttributeType.Activity};
PresenceAttribute[] resultPA =
 consumer.getUserPresence(new URI(presentity),pat);
for (int i = 0; i < resultPA.length; i++){
 PresenceAttribute pa = resultPA[i];
 // Check to see if it is an activity type.
 if (pa.getTypeAndValue().getUnionElement() ==
 PresenceAttributeType.Activity){
 // Get the presence status.
 System.out.println("Activity: " +
 pa.getTypeAndValue().getActivity().toString());
 // Get the customized presence note.
 if (pa.getNote().length() > 0){
 System.out.println("Note: " + pa1.getNote());
 }
 }
 // If this is of type Other, then we need to extract
 // different type of information.
 if (pa.getTypeAndValue().getUnionElement() ==
 PresenceAttributeType.Other){
 // This is "ActivityOther", a custom presence status.
 if (pa.getTypeAndValue().getOther()
 .getName().compareToIgnoreCase("ActivityOther") == 0){
 System.out.println("Other Activity->" +
 pa.getTypeAndValue().getOther().getValue() + "\n");
 } else {
 // Currently, the only other value beside ActivityOther is
 // "ServiceAndDeviceNote" which is the service note +
 // device note.
 System.out.println("Combined Note->" +
 pa.getTypeAndValue().getOther().getValue() + "\n");
 }
 }
}

Interface: PresenceConsumer, Operation: startPresenceNotification
This operation indicates that the watcher want to receive notifications for a user presence
status.

Code Example
SimpleReference sr = getNotificationReference(presentity);

TimeMetric freq = new TimeMetric();
freq.setMetric(TimeMetrics.Minute);
TimeMetric duration = new TimeMetric();
duration.setMetric(TimeMetrics.Minute);

PresenceAttributeType pa = PresenceAttributeType.Activity;
PresenceAttributeType[] pat = new PresenceAttributeType[] { pa };
mConsumer.startPresenceNotification(new URI(presentity), pat, sr, freq, duration,
0, false);

Using the Presence Web Services Interfaces

OCMS Parlay X Presence Web Services 9-5

Interface: PresenceConsumer, Operation: endPresenceNotification
This operation indicates that the watcher does not want further notifications for a specific
notification request (identified by the correlator).

Code Example
// Pass in the correlator used in startPresenceNotification.
mConsumer.endPresenceNotification(correlator);

Interface PresenceSupplier, Operation: publish and Oracle Specific Remove Presence
This is the first operation the application must call before using another operation in
this interface. It serves three purposes:

■ It allows the Web services to associate the current HTTP session with a user.

■ It publishes the user’s presence status.

■ It subscribes to watcher-info so that the Web services can keep track of any
watcher requests.

There are three attributes that are of interest when performing a PUBLISH. These
attributes can be set in a PresenceAttribute structure and passed into the PUBLISH
method.

■ Presence status with a customized note: this is the customized note configured in
the My Presence text box in Oracle Communicator. The <note> element is
contained in the <person> element of the Presence Information Data Format
(PIDF) XML file.

■ Device note: implicitly inserted by Oracle Communicator, or inserted from a Web
service. The <note> element is contained in the <device> element of the Presence
Information Data Format (PIDF) XML file.

■ Service note: configured in the Presence tab in the Oracle Communicator
preferences. The <note> element is contained in the <tuple> element of the
Presence Information Data Format (PIDF) XML file.

Code Example
// PresenceAttribute contains presence status and note.
typeValue.setUnionElement(PresenceAttributeType.Activity);
typeValue.setActivity(activity);
paActivity.setTypeAndValue(typeValue);
// Setting the customized note here.
paActivity.setNote(activityNote);
paActivity.setLastChange(dateTime);

// Create the PresenceAttribute containing device note.
AttributeTypeAndValue typeValueOther = createATV();
PresenceAttribute paOther = new PresenceAttribute();
// Device note is carried in a PresenceAttributeType.Other
typeValueOther.setUnionElement(PresenceAttributeType.Other);
// Set the name to "DeviceNote" to indicate the value
// should be used as device note.
other.setName("DeviceNote");
other.setValue(deviceName);
typeValueOther.setOther(other);

Using the Presence Web Services Interfaces

9-6 Oracle Communication and Mobility Server Administrator’s Guide

paOther.setTypeAndValue(typeValueOther);

// Create the PresenceAttribute containing service note.
AttributeTypeAndValue typeValueOther1 = createATV();
PresenceAttribute paOther1 = new PresenceAttribute();
// Service note is carried in another
// PresenceAttributeType.Other
typeValueOther1.setUnionElement(PresenceAttributeType.Other);
OtherValue other1 = new OtherValue();
// Set the name to "ServiceNote" to indicate the value
// should be used as device note.
other1.setName("ServiceNote");
other1.setValue(serviceName);
typeValueOther1.setOther(other1);
paOther1.setTypeAndValue(typeValueOther1);
// The note is not used. Can be anything.
paOther1.setNote("OracleExtension");
paOther1.setLastChange(dateTime);

//Unpublish Functionality Implemented by OCMS
//To perform an "Unpublish", set OtherValue to (Expires, 0)
//OtherValue other = new OtherValue();
//other.setName("Expires");
//other.setValue(0);
//typeValue.setOther (other);
//typeValue.setUnionElement(PresenceAttributeTypeOther);

paArray = new PresenceAttribute[]{paActivity,paOther,paOther1};

// Calling the publish method by passing the PresenceAttribute
// array containing the presence status, device note and service
// note.
publish(paArray);

Interface: PresenceSupplier, Operation: getOpenSubscriptions
This operation retrieves a list of new requests to be on your watcher list.

Code Example
SubscriptionRequest[] srArray = getOpenSubscriptions();
for (SubscriptionRequest sr:srArray) {
 System.out.println(sr.getWatcher() .toString());
}

Interface: PresenceSupplier, Operation: updateSubscriptionAuthorization
This operation allows you to place a watcher on either the block or allow list.

Code Example
 //You always pass in Activity
pp.set.PresenceAttribute(PresenceAttributeType.Activity);
updateSubscriptionAuthorization(new URI("sip:allow@test.example.com"),
new PresencePermission[]{pp});
PresencePermission pp = new PresencePermission();
pp.setDecision(true);
//Put the user on the allow list

OCMS Parlay X Presence Custom Error Codes

OCMS Parlay X Presence Web Services 9-7

Interface: PresenceSupplier, Operation: getMyWatchers
This operation retrieves the list of watchers in your allow list.

Code Example
 URI[] uris;
uris = getMyWatchers();
for (URI uri:uris)
 System.out.println(uri.toString());

Interface: PresenceSupplier, Operation: getSubscribedAttributes
This operation returns only a single item of PresenceTypeAttribute.Activity. An
exception will be thrown if there is no existing subscription.

Code Example
PresenceAttributeType[] pat =
getSubscriberdAttributes("sip:watcher@test.example.com");

Interface: PresenceSupplier, Operation: blockSubscription
This operation places a watcher into the block list.

Code Example
blockSubscription(new URI("sip:block.this.watcher@test.example.com"));

OCMS Parlay X Presence Custom Error Codes
OCMS introduces two extensions to the Parlay X standard exceptions:

■ PresencePolicyException extends PolicyException, and

■ PresenceServiceException extends ServiceException

Table 9–4 and Table 9–5 describe the error codes and their associated error message.

Table 9–4 OCMS Parlay X Presence Custom Error Codes: PresencePolicyException

Error Code Error Message

SDP20201 Watcher is on the block, polite-block or pending list.

SDP20202 Subscription is pending.

Table 9–5 OCMS Parlay X Presence Custom Error Codes: PresenceServiceException

Error Code Error Message

SDP20101 Invalid result from XDMS server.

SDP20102 Invalid HTTP session data.

SDP20103 Invalid URI.

SDP20104 Peer unavailable.

SDP20105 Unknownhost.

SDP20106 Service not available.

SDP20107 Internal error.

OCMS Parlay X Presence Custom Error Codes

9-8 Oracle Communication and Mobility Server Administrator’s Guide

SDP20108 User unauthenticated.

Table 9–5 (Cont.) OCMS Parlay X Presence Custom Error Codes:

Error Code Error Message

OCMS Parlay X Multimedia Messaging Web Services 10-1

10
OCMS Parlay X Multimedia Messaging Web

Services

This chapter describes OCMS support for the Parlay X Multimedia Messaging Web
Services interfaces for developing applications. This chapter contains the following
sections:

■ "Introduction"

■ "Multimedia Messaging Web Services Interface Descriptions"

■ "Using the Multimedia Messaging Web Services Interfaces"

Introduction
OCMS implements support for a subset of the operations in the SendMessage,
ReceiveMessage, and MessageNotificationManager interfaces, as they are defined in
ETSI ES 202 391-5 V1.2.1 (2006-12), Open Service Access (OSA), Parlay X Web Services
Part 5: Multimedia Messaging (Parlay X 2).

Multimedia Messaging Web Services Interface Descriptions
The Multimedia Messaging Web Services consist of the following interfaces:

■ SendMessage: Provides operations to send messages and check status of sent
messages (Table 10–1).

■ ReceiveMessage: Provides operations to retrieve messages that have been received
(Table 10–2).

■ MessageNotificationManager: Provides an application side notification interface
where notifications about multimedia messages are delivered.(Table 10–3).

■ MessageNotification: Provides notifications about multimedia messages
(Table 10–4).

■ MessagingNotificationListener: This is a thin Java wrapper layer on top of the
Parlay X MessagingNotification interface. An Oracle extension provides the user
context if available. The client application should implement this interface and
register it using the addMessagingNotificationListener() method from
MessagingNotificationListenerManager. Once registered with the
manager, it will be called if there is incoming notification. The end client can
register multiple listeners. All listeners will be called on every incoming
notification. The user context in the form of a SIP address is passed in the context
parameter. This class is included in the messagingwsnotification-10.1.3.4.war.

Multimedia Messaging Web Services Interface Descriptions

10-2 Oracle Communication and Mobility Server Administrator’s Guide

Table 10–1 SendMessage Interface

Operation Description

sendMessage Request to send a Message to a set of destination addresses,
returning a requestIdentifier to identify the message. The
requestIdentifier can subsequently be used by the application
to poll for the message status.

getMessageDeliveryStatus This method is not supported in this implementation,
and will always throw a ServiceException with code
SVC0001. To get the delivery status on a sent message,
call the sendMessage method with a valid
SimpleReference pointing to the notification endpoint
which will be invoked for each of the target URIs.

Table 10–2 ReceiveMessage Interface

Operation Description

getReceivedMessages This method is not supported in this implementation. Clients
are not allowed to poll for received messages; instead,
they must use the startMessageNotification
method of the MessageNotificationManager interface
to register the notification endpoint that will be
invoked whenever a new message is available for the
endpoint user.

getMessageURIs This method is not supported in this implementation – calling
this method will always result in a ServiceException with
code SVC001.

getMessage This method will read the whole message. The data is
returned as an attachment in the return message.

Table 10–3 MessageNotificationManager Interface

Operation Description

startMessageNotification Start notifications to the application for a given Message
Service activation number and criteria.

Implemented according to the Parlay X 2.1 specification,
section 8.4.1, with the clarifications described in:"Interface:
MessageNotificationManager, Operation:
startMessageNotification".

stopMessageNotification This operations allows an application to end a multimedia
message notification.

Implemented according to the Parlay X 2.1 specification,
section 8.4.2, with the clarifications described in "Interface:
MessageNotificationManager, Operation:
stopMessageNotification"

Table 10–4 MessageNotification Interface

Operation Description

notifyMessageReception This notification is sent when a message is received by the
server from the SIP network. The MessageReference's Subject
will contain the text message if the content-type is plain-text.

notifyMessageDeliveryReceipt This notification is sent if either the message has been
delivered or if delivery is impossible.

Using the Multimedia Messaging Web Services Interfaces

OCMS Parlay X Multimedia Messaging Web Services 10-3

Using the Multimedia Messaging Web Services Interfaces
This section provides guidelines for using each of the operations in the interfaces.

Interface: SendMessage, Operation: sendMessage
This method is always invoked on behalf of an actual end user. The end user is
identified by a SIP Address-Of-Record (AOR). We determine the AOR by parsing the
from part of the message request:

The requestIdentifier returned should not be used to poll for message status using the
getMessageDeliveryStatus method because this implementation does not implement
the getMessageDeliveryStatus method. Instead, pass in a valid SimpleReference object
to the sendMessage method in order to get a notification of the delivery status once it
is available for each of the target URIs.

The senderAddress, priority and charging parameters are presently ignored.

Group URLs are not supported.

If the caller of this method includes an attachment in the SOAP context, then that
attachment is presumed to contain the body of the message, in which case the subject
parameter is ignored; the raw contents of the attachment (bytes) are sent to the target
URIs. If, however, the caller does not include a SOAP attachment, then it is presumed
that the subject parameter consists of the whole message – therefore a SIP message
with content type text/plain is sent to the target recipients.

Interface: sendMessage, Operation: getMessageDeliveryStatus
This method is not supported in this implementation, and will always throw a
ServiceException with code SVC0001. To get the delivery status on a sent message, call
the sendMessage method with a valid SimpleReference pointing to the notification
endpoint which will be invoked for each of the target URIs.

Interface: ReceiveMessage, Operation: getReceivedMessages
This method is not supported in this implementation, and will always throw a
ServiceException with code SVC001. Clients are not allowed to poll for received
messages; instead, they must use the startMessageNotification method of the
MessageNotificationManager interface to register the notification endpoint that
will be invoked whenever a new message is available for the endpoint user.

Interface: ReceiveMessage, Operation: getMessageURIs
This method is not supported in this implementation – calling this method will always
result in a ServiceException with code SVC001.

Interface ReceiveMessage, Operation: getMessage
Implemented according to the Parlay X 2.1 specification, section 8.2.3, with the
following clarification:

Whenever this method is called with a messageRefIdentifier that does not exist on the
server, a ServiceException with error code SVC002 is thrown.

Using the Multimedia Messaging Web Services Interfaces

10-4 Oracle Communication and Mobility Server Administrator’s Guide

Interface: MessageNotificationManager, Operation: startMessageNotification
Implemented according to the Parlay X 2.1 specification, section 8.4.1, with the following
clarifications:

■ The messageServiceActivationNumber translates to the SIP Address-Of-Record of
the user for whom message notifications will be delivered.

■ The criteria parameter is currently ignored.

■ The correlator parameter in the SimpleReference object used in this method must
be globally unique for every instance of an end user on any client. See discussion
under stopMessageNotification below.

Interface: MessageNotificationManager, Operation: stopMessageNotification
Implemented according to the Parlay X 2.1 specification, section 8.4.2, with the following
clarification:

■ Since the messageServiceActicationNumber provided in the call to
startMessgeNotification is the SIP AOR of the end user, then the correlator passed to
stopMessageNotification must be able to be uniquely mapped to a particular
end-user instance from a particular client. Therefore, we require that the
notification correlator be globally unique for each end user instance on any client,
so that we can correctly map the stop notification request to the correct user
instance.

Provisioning Users with Sash 11-1

11
Provisioning Users with Sash

This chapter describes using the Sash utility. This chapter includes the following
sections:

■ "Overview of Sash"

■ "Launching Sash"

■ "Using Sash"

■ "Creating a User"

■ "Provisioning the XDMS Using Sash"

■ "Scripting with Sash"

■ "Error Logging in Sash"

Overview of Sash
The Sapphire Shell (Sash) is a command-line utility to provision OCMS users to the
Oracle database, the XDMS (XML Document Management Server) and the RADIUS
server. You can provision users from the Sash command line prompt (sash#) or by
using the CommandService MBean.

See "Configuring Oracle Internet Directory as the User Repository" for information on
using Oracle Internet Database (OID) as the user provisioning repository for an OCMS
deployment.

Launching Sash
On Linux systems, the Sash launcher script (launch_sash.sh) is located in the same
folder that contains the start and stop scripts for OCMS.

Launching Sash from the Command Line
OCMS provides the following shortcuts for launching Sash from the command line:

launch_sash.sh (UNIX)

launch_sash.bat (Windows)

This shortcut is located at ORACLE_HOME/sdp/bin on OC4J OCMS installations.

Using Sash

11-2 Oracle Communciaton and Mobility Server Administrator’s Guide

Connecting Sash to an External OCMS Instance
By default, Sash connects to the local instance of OCMS. If needed, you can override
this default behavior and connect Sash to external instances of OC4J or to another
instance of Oracle Application Server.

Connecting to an External Instance of OC4J
Sash connects to the OCMS server through RMI. Example 11–1 illustrates how to
connect Sash to a server with the host IP address 10.0.0.234.

Example 11–1 Connecting Sash to OCMS

sash –-host 10.0.0.234

When you connect to OC4J, Sash prompts you for a username and a password. The
user name is the same as that for OC4J administrator (oc4jadmin). The password is the
same as the password associated with the OC4J administrator. Once you log in, the
Sash command prompt (sash) appears. An error message displays if the login is
unsuccessful.

Connecting Sash to an External Oracle Application Server Instance
To connect Sash to an external instance of the Oracle Application Server, use the
--ias option and then add -- port followed by the port number for OPMN
(Oracle Process and Management and Notification) server. Example 11–2 illustrates
how to connect to an external instance of the Oracle Application Server.

Example 11–2 Connecting to an External Instance of the Oracle Application Server

sash --ias --port 6003

The default port is 6003 if --port is not specified.

When you connect to the server, enter the administrator user name and password.

Using Sash
There are two groups of Sash commands: commands that create, delete and update
system objects and commands that query the system for information.

Viewing Available Commands
Entering help displays a list of all available commands in the server (described in
Table 11–1). The list of commands varies depending on the components deployed to
the server.

Tip: The OPMN request port is configured in the opmn.xml
configuration file under ORACLE_HOME/opmn/conf/opmn.xml.

Using Sash

Provisioning Users with Sash 11-3

Table 11–1 Sash Commands

Command Description Aliases Subcommands

privateIdentity Commands for adding
and removing private
communication
identities used for
authentication.

None Subcommands include:

■ add – Adds a new user to the system. For example:

privateIdentity add privateId=alice

■ delete – Removes a user from the system. For
example:

privateIdentity delete privateId=alice

publicIdentity Commands for adding
and removing public
identities associated
with a private identity.

pubid Subcommands include:

■ add – Adds a public identity to the system which is
associated with a particular user. For example:

publicIdentity add
publicId=sip:alice@test.company.com
privateId=alice

■ delete – Deletes a communication identity from
the system. For example:

publicIdentity delete
publicId=sip:alice@test.company.com
privateId=alice

account Contains commands
for managing user
accounts. This
command enables you
to set the account as
active, locked, or as a
temporary account.

None Subcommands include:

■ add – adds a new account to the system. The syntax
is as follows:

account add uid=<string>
[active=<true|false>]
[locked=<true|false>]
[accountExpiresAt=<accountExpiresAt>]
[tempAccount=<true|false>]
[description=<string>]
[lockExpiresAt=<lockExpiresAt>]
[currentFailedLogins=<integer>]

For example: account add uid=alice
active=true

■ delete – Deletes an account from the system. For
example: account delete uid=<string>

■ update – Updates an account. For example:

account update uid=<string>
[active=<true|false>]
[locked=<true|false>]
[accountExpiresAt=<accountExpiresAt>]
[tempAccount=<true|false>]
[description=<string>]
[lockExpiresAt=<lockExpiresAt>]
[currentFailedLogins=<integer>]

■ info – Retrieves information for a specific account.
For example: account info uid=<string>

Using Sash

11-4 Oracle Communciaton and Mobility Server Administrator’s Guide

role Manages role types
and user roles in the
system. role is an
additional security and
authorization
mechanism that is
defined within the
<auth-constraint>
element of sip.xml.
This command
authorizes a group of
users access to
applications. The
applications in turn
check for a specific
role. OCMS defines
one role for the Proxy
Registrar application,
"Location Services".

None Subcommands include role system and role user.

role system
(subcommand of
role)

Manages the roles
types.

None Subcommands include:

■ list – Lists the roles in the system. For example:

role system list

■ add – Adds a new role to the system. For example:

role system add name=<string>
[description=<string>]

■ update – Updates a role in the system. For
example:

role system update name=<string>
[description=<string>]

■ delete – Deletes a role from the system. For
example:

role system delete name=<string>
[description=<string>]

Table 11–1 (Cont.) Sash Commands

Command Description Aliases Subcommands

Using Sash

Provisioning Users with Sash 11-5

Viewing Subcommands
To view the subcommands for a specific command, enter help <command>. For
example, entering help for the account command (help account) retrieves a brief
overview of the subcommands available to the account command (illustrated in
Example 11–3).

Example 11–3 Retrieving Help for a Specific Command

*** Description ****
Contains commands for management of user accounts.
In an account you can set if the account is active,

role user
(subcommand of
role)

Manages the user roles None Subcommands include:

■ add – Adds a role to a user. For example:

role user add uid=<string>
name=<string>

■ delete – Deletes a role from a user. For example:

role user delete uid=<string>
name=<string>

■ list – Lists roles for a user. For example:

role user list uid=<string>

credentials Command for
managing credentials.

None Subcommands include:

■ add – Adds credentials to a user. For example:

credentials add password=<string>
realm=<string> uid=<string>

■ addAll – Adds credentials for all of the configured
realms in the system to a user. For example:

credentials addAll password=<string>
uid=<string>

■ delete – Deletes realm credentials for a user. For
example:

credentials delete realm=<string>
uid=<string>

■ deleteAll – Deletes all credentials for a user. For
example:

credentials deleteall uid=<string>

■ update – Updates the credentials for a user. For
example:

credentials update password=<string>
realm=<string> uid=<string>

■ updateAll – Updates a user’s credentials for all
provisioned realms in the system. For example:

credentials updateAll
password=<string> uid=<string>

■ list – Lists all of the realms for which credentials
exist for a given user. For example:

credentials list uid=<string>

identity add Enables you to create a
basic user account.

None None. See "Creating a User with the identity add
Command".

Table 11–1 (Cont.) Sash Commands

Command Description Aliases Subcommands

Using Sash

11-6 Oracle Communciaton and Mobility Server Administrator’s Guide

locked or if it perhaps should be a temporarily account.

Aliases: [no aliases]

Syntax:
account

Sub-commands:
Adds a new account to the system
 account add uid=<string> [active=<true|false>] [locked=<true|false>] [
accountExpiresAt=<accountExpiresAt>] [tempAccount=<true|false>] [
description=<string>] [lockExpiresAt=<lockExpiresAt>] [
currentFailedLogins=<integer>]

Deletes an account
 account delete uid=<string>

Updates an account
 account update uid=<string> [active=<true|false>] [locked=<true|false>] [
accountExpiresAt=<accountExpiresAt>] [tempAccount=<true|false>] [
description=<string>] [lockExpiresAt=<lockExpiresAt>] [
currentFailedLogins=<integer>]

Retrieve information about a particular account
 account info uid=<string>

In addition to the overview of the command group, the information displayed by
entering help <command> also includes the aliases (if any) to the command. For
example, the overview of the account command illustrated in Example 11–3 notes [no
aliases] for the command.

Some commands require parameters. For example, if you enter help role system
add, the system informs you that the add command requires the name of the role and
an optional command for setting the description as well by displaying

role system add name=<string> [description=<string>].

The system alerts you if you omit a mandatory parameter or if you pass in a parameter
that is not recognized.

Note: The delete command used with account, role, role
system, role user, privateIdentity, publicIdentity, and
identity has the following aliases:

■ remove

■ del

■ rm

Note: Optional commands such as [description=<string>] are
enclosed within square brackets [...].

Creating a User

Provisioning Users with Sash 11-7

Creating a User
This section describes the publicIdentity and privateIdentity commands and
how to use them in conjunction with the add, account, role, and credentials
subcommands listed in Table 11–1 to provision a user account to the Oracle database.

The Private Identity (privateIdentity) uniquely identifies a user within a given
authentication realm. The Public Identity (publicIdentity) is the SIP address that
users enter to register devices. This address is the user’s AOR (Address of Record),
and the means through which users call one another. A user can have only one Private
Identity, but can have several Public Identities associated with that Private Identity.

To create a user, first add the user to the system by creating a private identity and then
a public identity for the user using the privateIdentity and publicIdentity
commands with the add privateId and add publicId subcommands,
respectively.

Once you create the private and public identity for the user, create an account for the
user with the account add uid command and optionally set the status of the
account (such as active or locked). The role command sets the role memberships for
role-based permissions. Set the level of permissions for the users using the role
command, and then set user credentials by defining the user’s realm and password
with the credentials command.

Creating a User from the Sash Command-Line Prompt
This section illustrates how to create a user from the Sash command prompt (sash#,
illustrated in Example 11–4) by creating an OCMS user known as alice using the
commands described in Table 11–1.

1. Create a user using the privateIdentity command as follows:

privateIdentity add privateId=alice

2. Create the public identity for alice by entering the SIP address:

publicIdentity add publicId=sip:alice@test.company.com privateId=alice

3. Add an account for alice and use one of the optional commands described in
Table 11–1 to set the status of the account. To create an active account for alice,
enter the following:

account add uid=alice active=true

Note: To enable authentication to third-party databases (such as
RADIUS), user accounts that contain authentication data and are
stored externally must match the Private Identity to ensure the proper
functioning of the Proxy Registrar and other applications that require
authentication.

Creating a User

11-8 Oracle Communciaton and Mobility Server Administrator’s Guide

4. Use the role command to add alice to the Location Service user group. Doing so
grants alice permission to the Proxy Registrar’s Location Service lookup:

role user add uid=alice name="Location Service"

5. Add user authentication credentials for alice:

credentials add uid=alice realm=test.company.com password=welcome1

The credentials command is not needed for applications configured to use the
RADIUS Login Module to authenticate users against RADIUS servers. Fore more
information on these login modules, see Chapter 4, "Configuring Security and
Login Modules".

Example 11–4 Creating a User from the Sash Command-Line Prompt

sash# privateIdentity add privateId=alice
sash# publicIdentity add publicId=sip:alice@test.company.com privateId=alice
sash# account add uid=alice active=true
sash# role user add uid=alice name="Location Service"
sash# credentials add uid=alice realm=test.company.com password=welcome1

Creating a User with the Command Service MBean
You can execute Sash commands using the CommandService MBean’s execute
operation. The Command Service MBean is defined within the Subscriber Data
Services application. For information on accessing application-defined MBeans, see
"Accessing the MBeans for a Selected SIP Application".

To create a user:

1. Select the execute operation. The Operation page for the execute operation appears.

2. Enter privateIdentity add privateId=alice in the Value field (Figure 11–1).

3. Click Invoke Operation. Repeat this process for each of the user creation
commands. For example, the subsequent publicIdentity and account
commands would both be followed by Invoke Operation.

Note: OCMS Version 10.1.3.2 requires that the uid be in lower-case.
Oracle Communicator users provisioned using OCMS Version 10.1.3.2
must also enter their account names in lower case during login. OCMS
Version 10.1.3.3 and 10.1.3.4 support mixed-case uids. However,
Oracle Communicator users can only log in by entering their user
name exactly as it was provisioned. For example, if you define the uid
as Alice, then the user must login as Alice. If you upgrade to 10.1.3.4
from 10.1.3.2, users provisioned in 10.1.3.2 must continue to log in
using lower case.

Note: You must also configure realms using the SIP Servlet
Container MBean before you use Sash to add authorization credentials
to a user. For more information, see "Configuring the SIP Servlet
Container MBeans".

Tip: You can create multiple users by creating Sash batch files. For
more information, see "Scripting with Sash".

Creating a User

Provisioning Users with Sash 11-9

Figure 11–1 Creating a User with the Command Service MBean

See "CommandService" for more information on executing Sash commands through
Application Server Control.

Creating a User with the identity add Command
The identity add command enables you to create a user with one command string.
This command, which is an alias to the privateIdentity, publicIdentity,
account, role and credentials commands, enables you to quickly create a basic
user account that contains the minimum information needed for users to connect to
OCMS through a SIP client. For example, to create a basic account for user alice using
this command, enter the following from either the command line or through the
Command Service Mbean’s execute operation:

identity add privateId=alice publicId=sip:sip.alice@company.com role="Location
Service" realm=company.com password=welcome1

The identity add command only enables you to create a basic user account.
Accounts that require more complex construction, such as those that associate multiple
publicIds with a single privateId, must be created using multiple Sash commands
as illustrated in Example 11–4.

Note: For applications configured to authenticate users against a
RADIUS system (the applications with the RADIUS Login Module as
the security provider), the command to create a user account is as
follows:

identity add privateId=alice publicId=sip:sip.alice@company.com
role="Location Service"

Provisioning the XDMS Using Sash

11-10 Oracle Communciaton and Mobility Server Administrator’s Guide

Deleting a User Account with the identity delete Command
The identity delete command enables you to delete all of a user’s roles,
credentials, account information, public and private identities using a single command
string. For example, to delete an account for user alice using this command, enter the
following from either the command line or through the Command Service Mbean’s
execute operation:

identity delete privateId=alice

Provisioning the XDMS Using Sash
The commands for provisioning the XDMS are included in the xcap group. Each of
these commands is preceded by xcap. The XDMS commands within the xcap group
that support user provisioning are included in the user and applicationUsage
subgroups. You can provision XDMS from the Sash prompt or by using the
CommandService MBean that is provided with the Presence application.

Provisioning XDMS User Accounts Using the CommandService MBean
You can provision XDMS using the execute command provided by the
CommandService MBean that is registered to the Presence application (Figure 11–2).
Use the CommandService MBean’s execute operation as described in "Creating a User
with the Command Service MBean" to provision accounts to the XDMS. For more
information on the MBean itself, see "Command Service (XDMS Provisioning)".

Figure 11–2 Using the CommandService MBean for XCAP Account Management

Provisioning XDMS User Accounts from the Sash Prompt
To use XDMS commands to provision users and application usages from the Sash
prompt, you must first connect to an application that consumes XDMS, such as
Presence.

For Windows systems, enter the following from the command prompt:

launch_sash.bat -a <application name>

On Linux, enter the following:

Provisioning the XDMS Using Sash

Provisioning Users with Sash 11-11

launch_sash.sh -a <application name>

You connect to the application through a command prompt, such as the Windows
command shell (Cmd.exe). You cannot connect to these applications directly from the
Sash prompt.

For example, to connect to the Presence application on a Windows system:

1. From the command prompt, navigate to the sbin directory that contains the Sash
executable. This file is located at ORACLE_HOME\sdp\sash\sbin.

2. Enter the name of the Presence application using sash.bat -a
presenceapplication. For example, enter the following:

c:\product\10.1.3.4\ocms\sdp\sash\sbin>sash.bat -a presenceapplication

3. When prompted, login to Sash using your OC4J administrator name and
password.

4. From the Sash command prompt, enter an XDMS command, such as xcap user
list.

Using xcap Commands
This section describes how to manage user accounts and application usages using the
xcap group of commands.

Provisioning XDMS User Accounts
The add, delete and list commands enable you to manage user accounts on the
XDMS.

Adding XDMS Users
The xcap user add command adds an XDMS user with the given user name and
application usage. For example, to add a user from the Sash prompt, enter:

sash# xcap user add userName=<string> applicationUsage=<string>

Removing an XDMS User
The xcap user delete command removes an XDMS user with the given user name
from the application usage. For example, to delete a user from the Sash prompt, enter:

sash# xcap user delete userName=<string> [appusages=<string>]

The application usage parameter (appusages) is optional. If no application usage is
specified, then the user is removed from all application usages. When the server is
configured to automatically create a user, the delete command removes all existing
documents.

Searching for Application Usage for an XDMS User
The xcap user appusages command returns all the application usages applicable
to a given user. To review the application usages assigned to a user, enter the following
from the Sash prompt:

sash# xcap user appusages userName=<string>

Caution: Do not use the add command if the XDMS is configured to
automatically create users.

Scripting with Sash

11-12 Oracle Communciaton and Mobility Server Administrator’s Guide

Listing XDMS Users
The xcap user list command returns all of the XDMS users in the system, or
optionally returns the XDMS users for a given application usage.

sash# xcap user list [all=<true|false>] [appusage=<string>]

If the optional all parameter is not set, then the resulting display is limited to a
maximum of 100 users.

Provisioning Application Usage
The commands for provisioning of XDMS application usage are in the appusage
group (xcap appusage).

Listing All Application Usages
The xcap appusage list command returns all the application usages on the
server. For example, enter the following from the Sash prompt:

sash# xcap appusage list

Scripting with Sash
You can construct scripts for common tasks that contain several operations. Sash can
be evoked to execute a file containing a list of commands. To enable scripting, Sash
provides such command-line flags as:

■ -- exec (short name: -e): When this command-line flag is followed by a
command enclosed within quotation marks, Sash executes the command and then
exits.

■ -- file (short name: -f): When this command-line flag is followed by a
filename, Sash reads the file and executes all commands in the file as they were
entered and then exits.

Example 11–5 illustrates a text file called ocsm_users.txt, which contains a group of
users defined with the identity add command. You can provision these users
by entering -f ocms_users.txt from the Sash prompt:

Example 11–5 Creating Users from a Text File (ocms_users.txt)

identity add publicId=sip:alice@doc.oracle.com privateId=alice role=user
password=1234 realm=doc.oracle.com
identity add publicId=sip:bob@doc.oracle.com privateId=bob role=user password=1234
realm=doc.oracle.com
identity add privateId=candace publicId=sip:candace@doc.oracle.com role=user
password=1234 realm=doc.oracle.com
identity add privateId=deirdre publicId=sip:deirdre@doc.oracle.com role=user
password=1234 realm=doc.oracle.com
identity add privateId=evelyn publicId=sip:evelyn@doc.oracle.com role=user
password=1234 realm=doc.oracle.com
identity add privateId=frank publicId=sip:frank@doc.oracle.com role=user
password=1234 realm=doc.oracle.com
identity add privateId=gretchen publicId=sip:gretchen@doc.oracle.com role=user
password=1234 realm=doc.oracle.com
identity add privateId=hans publicId=sip:hans@doc.oracle.com role=user
password=1234 realm=doc.oracle.com
identity add privateId=imogen publicId=sip:imogen@doc.oracle.com role=user
password=1234 realm=doc.oracle.com
identity add privateId=jack publicId=sip:jack@doc.oracle.com role=user

Error Logging in Sash

Provisioning Users with Sash 11-13

password=1234 realm=doc.oracle.com

■ -- nonewline: This command-line flag facilitates parsing output by stripping
returns or newlines from the messages returned from the executed commands.
Although this command facilitates parsing, it makes reading messages manually
more difficult.

Error Logging in Sash
Sash does not log to any files (with the default configuration), it only prints messages
on the console. The log level for Sash is configured in $ORACLE _HOME/sdp/sash/
conf/logging.properties.

Error Logging in Sash

11-14 Oracle Communciaton and Mobility Server Administrator’s Guide

Configuring the Logging System 12-1

12
Configuring the Logging System

This chapter describes the logging framework used by OCMS. This chapter includes
the following sections:

■ "Overview of Oracle Diagnostic Logging in OCMS"

■ "Logging Levels"

■ "Setting the Log Levels for Components"

Overview of Oracle Diagnostic Logging in OCMS
OCMS uses Oracle Diagnostic Logging which is provided with Oracle Application
Server. Oracle Diagnostic Logging implements APIs to be used by Oracle products to
emit error diagnostics and a LogLoader tool that collects error diagnostic logs for
analysis. The interface to Oracle Diagnostic Logging is java.util.logging.

Logging Components
OCMS defines the following logging components:

■ oracle.sdp.ocms.customer: this logger capture all the messages that a customer
would like to look at. It follows the XML format of Oracle Diagnostic Logging and
it is localized.

■ oracle.sdp.ocms.application: this logger will capture all log messages from SIP
applications deployed on the server. For example, SipServlet.log().

The remaining logging components are provided for debug purposes only:

■ oracle.sdp.ocms.anomalousmsg: this logger captures faulty or unparsable SIP
messages. The usable levels are FINE and FINER.

■ oracle.sdp.ocms.traffic: this logger captures SIP messages. The usable levels are
FINE and FINER.

■ oracle.sdp.ocms.config: this logger captures all configuration and system
properties.

■ oracle.sdp.ocms.statistics and oracle.sdp.sipcluster.util.stat: these loggers capture
statistics, such as the number of sent messages.

Filtering of Logging Information by Single Class Files
The logging framework creates loggers with the above names appended with a fully
qualified name of the class that created the logger. This allows developers to filter out
logging information at the level of single class files. For example, when a class

Logging Levels

12-2 Oracle Communication and Mobility Server Administrator’s Guide

oracle.sdp.commons.MyClass creates a customer logger, the name of the logger will
be:

"oracle.sdp.ocms.customer.oracle.sdp.commons.MyClass"

The configuration file contains definitions of the loggers, references to physical log
files, and a definition of the trace logger. The trace logger is a logger that is automatically
created whenever any of the above loggers are created. For example when a class
requests a customer logger through a call to LogFactory.getLogger(Class), a trace
logger is also created. This allows all customer messages to be written in the trace log
and log messages with throwable data to print more information in the trace log.

Log Files
All base loggers in OCMS (system, anomalousmsg, customer, traffic, config, statistics,
application) use a log directory and a log file of their own under the main logging
directory sdp. The log file is not configurable, and is an XML file named log.xml.

For debug messages a directory called trace is also created.

Logger Interfaces
The main logging from the SIP Container is to a customer log and a trace log. The
customer log contains the localized customer messages, and the trace log is used for
debug logging (disabled in a default installation). The customer logger name is
oracle.sdp.ocms.system.

The following logger interfaces are implemented:

■ oracle.sdp.commons.logging.Logger

■ oracle.sdp.commons.logging.CustomerLogger – This interface and
oracle.sdp.commons.logging.TraceLogger are the interfaces most classes will use
in normal types of logging. It is the only interface where localized messages are
used. All other interfaces are considered to be of debug type.

■ oracle.sdp.commons.logging.TraceLogger – This interface and
oracle.sdp.commons.logging.CustomerLogger are the interfaces most classes will
use in normal types of logging. It is the only interface where localized messages
are used. All other interfaces are considered to be of debug type.

■ oracle.sdp.commons.logging.MessageLogger – Logs messages received and
messages sent from the server.

■ oracle.sdp.commons.logging.ConfigurationLogger – Logs configuration
information at the start-up of a service. For example, coreVersion = "10.1.3.4".

■ oracle.sdp.commons.logging.TimerLogger – Logs timing information needed for
performance tuning. For example, logging of execution time for a database call.

■ oracle.sdp.commons.logging.StatisticsLogger – Logs statistics at regular intervals.

Logging Levels
The following logging levels are provided:

■ SEVERE – These message indicate a serious problem that requires immediate
attention from the administrator

■ WARNING – These message indicate a potential problem that should be reviewed
by the administrator.

Setting the Log Levels for Components

Configuring the Logging System 12-3

■ INFO – The INFO level designates informational messages that highlight the
progress of the application at a general level. These messages indicate a major
life-cycle event, such as the activation or de-activation of a primary
sub-component. This is the default log level.

■ CONFIG – These messages provide a finer level of granularity for reporting
normal events. Enabling logging at this level has a minimal performance impact.

■ FINE – These messages provide trace or debug information. Enabling logging at
this level may have a small performance impact.

■ FINER, FINEST – These logging levels are for debug purposes only and are not
recommended for production environments.

Setting the Log Levels for Components
You can set the logging level of components dynamically through Oracle Application
Server Enterprise Manager. Logging configuration changes are picked up
automatically every 60 seconds and do not require a server reboot.

To set log levels:

1. In Enterprise Manager select Administration.

2. Select the Go to task icon next to 'Logger Configuration'.

3. In the Logger Configuration page enter the name of the logging interface (for
example, 'oracle.sdp.ocms.traffic') in the search field and click Go.

4. Change the logging level as required.

By default, all of the component loggers except for traffic and anomalousmsg are set to
INFO. The traffic and anomalousmsg logs are set to OFF. As a consequence, a system
using these default settings will not write any messages to the traffic or anomalousmsg
logs. Refer to "Logging Levels" for more information.

Setting the Log Levels for Components

12-4 Oracle Communication and Mobility Server Administrator’s Guide

Deploying Applications 13-1

13
Deploying Applications

This chapter, through the following sections, describes deploying SIP servlet
applications to application servers:

■ "Overview of SIP Servlet Applications"

■ "Deploying SIP Applications"

Overview of SIP Servlet Applications
A SIP application can be comprised of servlets, class files, static resources and content,
along with descriptive meta information which unifies these elements. As specified in
JSR-116, a SIP servlet application is a structured hierarchy of directories. For
converged applications (those comprised of both HTTP and SIP), the root of the
hierarchy serves as the document root for files published from a Web server.1 Within
the hierarchy of the SIP servlet application, the WEB-INF directory stores the
directories containing the sip.xml deployment descriptor file
(/WEB-INF/sip.xml), the utility classes available to the application loader
class(/WEB-INF/classes), and the directories containing the JAR files, servlets,
beans, and utility classes useful to the Web application (/WEB-INF/lib).

The Deployment Descriptor File
The SIP application’s deployment descriptor file, sip.xml, is comprised of the
following elements:

<sip-app>
 <context-param>...</context param>
 <display-name>...</display-name>
 <distributable>...</distributable>
 <session-config>...</session-config>
 <servlet>...</servlet>
 <servlet mappings>...</servlet mappings>
 <listener>...</listener>
 <security-constraint>...</security-constraint>
</sip-app>

The application’s common parameters are set in within the <context-param>
element. The <session-config> element defines the application sessions. The
<servlet> element defines the servlet for the container through its
<servlet-name> and <servlet-class> child elements. The <servlet
mappings> element defines how the application’s servlets respond to requests. The
application’s life cycle listener classes and error handling are defined within the

1 SIP Servlet API, Version 1.0

Deploying SIP Applications

13-2 Oracle Communication and Mobility Server Administrator’s Guide

<listener> element. Security is declared for each servlet using the
<security-constraint> element. Refer to Oracle Communication and Mobility
Server Developer’s Guide for a full description of the sip.xml file’s elements.

Development to Deployment
The cycle from development to deployment of a SIP servlet application is as follows:

■ Creating a SIP servlet by extending javax.servlet.sip.SipServlet and
then by overriding the required methods for a particular service.

■ Defining the SIP servlet application’s initialization parameters (servlet definitions)
and invocation rules (servlet mappings).

■ Creating the deployment descriptor file (sip.xml) and web.xml file.

■ Building and packaging the application files and the sip.xml and web.xml files
into a Web Archive format file (WAR file).

■ Packaging the WAR file into an Enterprise Archive (EAR) file.

■ Deploying the EAR file to OC4J.

Once the SIP servlet application has been successfully deployed and started on OC4J,
view the log files and test it using a softphone client such as the Oracle Communicator
client.

Deploying SIP Applications
OCMS accepts Enterprise Archive (EAR) files and Web Application Archive (WAR),
but not SAR files. You must package a WAR file as an EAR file to enable the
deployment of the SIP application to OC4J.

An EAR file can contain SAR files, JAR files, Web Application Archive (WAR) and EJB
modules as follows:

J2EEAppName.ear
 META-INF/
 application.xml
 orion-application.xml (optional)
WebModuleName.war
 static HTML files, such as index.html
 JSP pages
 images
 WEB-INF/
 web.xml (Standard J2EE descriptor)
 orion-web.xml (optional OC4J Web descriptor)
 classes/
 servlet classes, according to package
 lib/
 JAR files for dependency classes
SIPApplicationName.sar
 WEB-INF/
 sip.xml (deployment descriptor)
 web.xml (for converged applications)
 classes/
 servlet classes, according to package
 lib/*.JAR
 JAR files for dependency classes

For more information on deployment and EAR application structure, see Oracle
Containers for J2EE Developer’s Guide.

Deploying SIP Applications

Deploying Applications 13-3

Deploying, Undeploying, and Redeploying SIP Applications Using Oracle Application
Server Control

Application Server Control provides a JSR 88-based deployment wizard, accessed by
clicking the Deploy button on the Applications page. This wizard enables deployment
and redeployment of J2EE applications and includes both task-oriented deployment
plan editors for assigning or mapping the common deployment descriptors at
deployment time as well as a generic deployment plan editor that enables you to
access all deployment descriptors for advanced configuration. For information on
undeploying and redeploying applications, see "Deploying, Undeploying, and
Redeploying SIP Servlet Applications with Application Server Control".

Enterprise applications deployed beneath the Subscriber Data Services application
inherit security infrastructure and authentication-related EJBs (Enterprise Java Beans).
This infrastructure is required to support authentication against the OCMS JAAS
Security providers.

Once an application has been deployed to the OC4J SIP Server instance, you can start
or stop it using the admin_client.jar utility by executing the following command:

java -jar admin_client.jar uri adminId adminPwd -start|-stop appName

For Oracle Application Server, the URI parameter has the following format:

deployer:oc4j:opmn://host.example.com:6003/ocms

For OC4J standalone, the URI parameter has the following format:

deployer:oc4j:localhost:23791

This section gives a brief overview of both of these options through the following
topics:

■ "Deploying, Undeploying, and Redeploying SIP Servlet Applications with
Application Server Control"

■ "Deploying, Undeploying, and Redeploying an Application Using the admin_
client.jar Utility"

For more information, refer to Oracle Containers for J2EE Deployment Guide.

Note: Although you can change an deployment plan using
Application Server Control, you cannot use Application Server
Control to alter the sip.xml deployment descriptor file. For
information on deployment plans, see Oracle Containers for J2EE
Deployment Guide.

Note: When an application has been undeployed, its MBeans are
also undeployed.

Note: SIP applications can only be deployed to OC4J if they are
packaged into a J2EE-compliant EAR file. For more information, see
"Deploying Applications".

Deploying SIP Applications

13-4 Oracle Communication and Mobility Server Administrator’s Guide

Deploying, Undeploying, and Redeploying SIP Servlet Applications with Application
Server Control

The Application Server Control Console provides a wizard that steps you through
deploying, undeploying, and redeploying SIP applications.

For more information, see Deploying with Application Server Control Console in Oracle
Containers for J2EE Deployment Guide.

Deploying an Application using the Deployment Wizard
The Deploy button on the Applications page invokes the deployment wizard which
guides you through the deployment process through the following pages:

■ The Select Archive page (Figure 13–1) is the first page of the wizard. To complete
this page, point OC4J to the location of the EAR (Enterprise Archive) file
containing the SIP application. This page also enables you to select the option to
create or apply a deployment plan, a client-side aggregation of all of the
configuration data needed to deploy an archive into OC4J. If you use an existing

Tip: Use a firewall to block all incoming SIP traffic until all of the
applications have been fully deployed and the server started.

You can filter SIP traffic using a shell script, such as the following
Linux script, blockport.sh, which uses the iptables tool.

 #!/bin/bash

 if [$# != 1]
 then
 echo "blockport.sh <port>"
 exit
 fi

 iptables -A INPUT -p tcp -m tcp --dport $1 -j DROP
 iptables -A INPUT -p udp -m udp --dport $1 -j DROP
 service iptables save

 echo "Port "$1" blocked."

Likewise, you can use a shell script to enable the flow of SIP traffic
once the server is running and all applications have been fully
deployed. The following Linux script, unblockport.sh, is an
example of script that enables SIP traffic:

#!/bin/bash

 if [$# != 1]
 then
 echo "unblockport.sh <port>"
 exit
 fi

 iptables -D INPUT -p tcp -m tcp --dport $1 -j DROP
 iptables -D INPUT -p udp -m udp --dport $1 -j DROP
 service iptables save

 echo "Port "$1" unblocked."

Deploying SIP Applications

Deploying Applications 13-5

deployment plan, you enter its location. If you opt for new deployment plan,
select the Automatically Create a New Deployment Plan option. Refer to
"Deploying Applications" for information on EAR file structure and how to
package a SIP application for deployment.

Figure 13–1 Deploying an Application: Entering the Archive Location

■ Clicking Next invokes the Application Attributes page (Figure 13–2). This page
enables you to enter the application name and select the parent application.
The application name cannot contain spaces.

Select Subscriber Data Services as the parent application for OCMS
applications requiring authentication.

The Application Attributes page also enables you to set the binding of a Web
application to a Web site by specifying the name portion of the
name-web-site.xml configuration file that defines the Web site. A Web
application deployed as part of a J2EE application must be bound to the Web
site through which it is accessed.

The Web module context root, which will be appended to the URL used to
access the application through a Web browser, is also set as part of the process
to enable Web access. This value is typically read from the
application.xml deployment descriptor packaged with the application.

Tip: The wizard automatically creates a new deployment plan if you
do not enter the location of an existing plan.

Note: The SIP application becomes a child of the default application
if you do not specify a parent application.

Deploying SIP Applications

13-6 Oracle Communication and Mobility Server Administrator’s Guide

Figure 13–2 Deploying an Application: Entering the Application Name and Parent
Application

■ The Deployment Settings page (Figure 13–3) provides a tasks that enable you to edit
the deployment plan.

Figure 13–3 Deploying an Application: Configuring the Deployment Settings

Complete deployment tasks as needed and then click Deploy. The confirmation
page appears (Figure 13–4).

Deploying SIP Applications

Deploying Applications 13-7

Figure 13–4 Confirming the Deployment

Undeploying an Application Using the Deployment Wizard
You can remove (undeploy) an application by first selecting it and then by clicking the
Undeploy button. When you undeploy an application, you likewise undeploy the
MBeans registered to the application.

Likewise, if you undeploy a parent application, its the child applications are also
undeployed. As a result, the parent application and all related applications must be
redeployed. See Oracle Containers for J2EE Deployment Guide for information on when
to restart OC4J when undeploying an application.

Redeploying an Application Using the Deployment Wizard
The Redeploy button enables you undeploy an application without restarting OC4J.
Redeploying a SIP application packaged within an EAR file prompts OC4J to
undeploy the previous instance; you do not have to first select the application and
then click Undeploy.

Note: To ensure that the OMCS SIP servlet container responds
appropriately to incoming requests, you must add any deployed
application that processes requests to the Application Router’s
SIPUriList attribute. Configuring this attribute ensures that
applications are added to the ROUTE header of incoming INVITE,
MESSAGE, PUBLISH, REGISTER, or SUBSCRIBE requests from
non-OCMS (that is, non-OCMS Communicator) SIP clients. The Proxy
Registrar must always be the last item listed in the SIPUriList
attribute.

Deploying SIP Applications

13-8 Oracle Communication and Mobility Server Administrator’s Guide

Like deploying an application, the wizard prompts you through a three-step process
for redeploying an application in which you point OC4J to the EAR file, select or create
a deployment plan, select the parent application and Web bindings, and complete
deployment descriptor configuration tasks.

Deploying, Undeploying, and Redeploying an Application Using the admin_client.jar
Utility

The admin_client.jar command-line utility used to perform deployment-related
operations on active OC4J instances in an Oracle Application Server clustered
environment as well as on standalone OC4J servers.

The admin_client.jar utility is installed by default in ORACLE_HOME/j2ee/home in
an OC4J instance. OC4J must be started before this utility can be used.

Deploying an Application Using admin_client.jar
To deploy an EAR, use the -deploy command with the EAR-specific context as
follows:

java -jar admin_client.jar uri adminId adminPassword -deploy -file
path/filename -deploymentName appName [-bindAllWebApps [webSiteName]]
[-targetPath path] [-parent appName] [-deploymentDirectory path]
-enableIIOP [-iiopClientJar path/filename]

Undeploying an Application Using admin_client.jar
To undeploy an application:

java -jar admin_client.jar uri adminId adminPassword -undeploy appName

Redploying an Application Using admin_client.jar
To redeploy a previously deployed archive, use the -redeploy command and with
the following syntax:

java -jar admin_client.jar uri adminId adminPassword -redeploy -file
path/filename -deploymentName appName [-keepSettings] [-sequential]

Refer to Deploying with the admin_client.jar Utility in Oracle Containers for J2EE
Deployment Guide for more information on the -redeploy command subswitches.

Deploying the SIP Application Using the admin_client.jar Command-Line Utility
You can deploy an EAR file from the command line using the admin_client.jar
utility as follows:

java -jar admin_client.jar uri adminId adminPassword -deploy -file
path/filename-deploymentName appName [-bindAllWebApps [webSiteName]]
[-targetPath path] [-parent appName] [-deploymentDirectory path]
-enableIIOP [-iiopClientJar path/filename][-deploymentPlan path/filename]

For more information undeploying and redeploying applications using the admin_
client.jar utility, see "Deploying, Undeploying, and Redeploying an Application
Using the admin_client.jar Utility". See also Oracle Containers for J2EE Configuration and
Administration Guide and Oracle Containers for J2EE Deployment Guide.

Deploying SIP Applications

Deploying Applications 13-9

Note: The admin_client.jar utility is installed by default in
ORACLE_HOME/j2ee/home in an OC4J instance. OC4J must be
started before this utility can be used.

Deploying SIP Applications

13-10 Oracle Communication and Mobility Server Administrator’s Guide

Supported Protocols, RFCs, and Standards A-1

A
Supported Protocols, RFCs, and Standards

This appendix lists the protocols, RFCs, and standards supported by Oracle
Communication and Mobility Server in the following sections:

■ "SIP Servlet Container"

■ "Presence Server"

SIP Servlet Container
The following sections list the RFCs, drafts, and specification requests supported by
the OCMS SIP Servlet container:

■ RFCs

■ Drafts

■ Specification Requests

RFCs
RFC 2246 The TLS Protocol

RFC 2543 SIP: Session Initiation Protocol

RFC 2782 A DNS RR for Specifying the Location of Services (DNS SRV)

RFC 2806 URLs for Telephone Calls

RFC 2976 The SIP INFO Method

RFC 3261 SIP: Session Initiation Protocol

RFC 3262 Reliability of Provisional Responses in the Session Initiation Protocol

RFC 3263 Session Initiation Protocol (SIP): Locating SIP Servers

RFC 3264 An Offer/Answer Model with the Session Description Protocol (SDP)

RFC 3265 Session Initiation Protocol (SIP)-Specific Event Notification

RFC 3266 Support for IPv6 in Session Description Protocol (SDP)

RFC 3311 The Session Initiation Protocol (SIP) UPDATE Method

RFC 3312 Integration of Resource Management and Session Initiation Protocol (SIP)

RFC 3323 A Privacy Mechanism for the Session Initiation Protocol (SIP)

RFC 3325 Private Extensions to the Session Initiation Protocol (SIP) for Asserted
Identity within Trusted Networks

SIP Servlet Container

A-2 Oracle Communication and Mobility Server Administrator’s Guide

RFC 3326 The Reason Header Field for the Session Initiation Protocol (SIP)

RFC 3327 Session Initiation Protocol (SIP) Extension Header Field for Registering
Non-Adjacent Contacts

RFC 3420 Internet Media Type message/sipfrag

RFC 3428 Session Initiation Protocol (SIP) Extension for Instant Messaging

RFC 3455 Private Header (P-Header) Extensions to the Session Initiation Protocol (SIP)
for the 3rd-Generation Partnership Project (3GPP)

RFC 3489 STUN - Simple Traversal of User Datagram Protocol (UDP) Through
Network Address Translators (NATs)

RFC 3515 The Session Initiation Protocol (SIP) Refer Method

RFC 3556 Session Description Protocol (SDP) Bandwidth Modifiers for RTP Control
Protocol (RTCP) Bandwidth

RFC 3581 An Extension to the Session Initiation Protocol (SIP) for Symmetric Response
Routing

RFC 3605 Real Time Control Protocol (RTCP) attribute in Session Description Protocol
(SDP)

RFC 3608 Session Initiation Protocol (SIP) Extension Header Field for Service Route
Discovery During Registration

RFC 3665 Session Initiation Protocol (SIP) Basic Call Flow Examples

RFC 3725 Best Current Practices for Third Party Call Control (3pcc) in the Session
Initiation Protocol (SIP)

RFC 3761 The E.164 to Uniform Resource Identifiers (URI) Dynamic Delegation
Discovery System (DDDS) Application (ENUM)

RFC 3824 Using E.164 numbers with the Session Initiation Protocol (SIP)

RFC 3840 Caller Preferences for the Session Initiation Protocol (SIP): partial support

RFC 3891 The Session Initiation Protocol (SIP) "Replaces" Header

RFC 3903 Session Initiation Protocol (SIP) Extension for Event State Publication

RFC 3911 The Session Initiation Protocol (SIP) "Join" Header

RFC 3959 The Early Session Disposition Type for the Session Initiation Protocol (SIP)

RFC 3966 The tel URI for Telephone Numbers

RFC 4028 Session Timers in the Session Initiation Protocol (SIP)

RFC 4320 Actions Addressing Identified Issues with the Session Initiation Protocol's
(SIP) Non-INVITE Transaction

RFC 4321 Problems Identified Associated with the Session Initiation Protocol's (SIP)
Non-INVITE Transaction

RFC 4483 A Mechanism for Content Indirection in Session Initiation Protocol (SIP)
Messages

Drafts
campen-sipping-stack-loop-detect An Efficient Loop Detection Algorithm for SIP
Proxies

Presence Server

Supported Protocols, RFCs, and Standards A-3

lawrence-maxforward-problems Problems with Max-Forwards Processing (and
Potential Solutions)

ietf-sip-connect-reuse Connection Reuse in the Session Initiation Protocol (SIP)

sparks-sipping-max-breadth Limiting the Damage from Amplification Attacks in SIP
Proxies

ietf-sip-fork-loop-fix Addressing an Amplification Vulnerability in Forking Proxies

Specification Requests
JSR 116 SIP Servlet 1.0

Presence Server
The following sections list protocols, RFCs, drafts, and standards supported by the
OCMS Presence Server and its components:

■ RFCs

■ Drafts Referenced in the Composition Policies

■ XDMS Server

■ Authorization and Privacy Filtering

■ Presence Data Modeling and Processing

■ OMA Extensions

■ Hard State via XCAP

RFCs
RFC 2778 A Model for Presence and Instant Messaging

RFC 2779 Instant Messaging / Presence Protocol Requirements

RFC 3265 Session Initiation Protocol (SIP)-Specific Event Notification

RFC 3856 A Presence Event Package for the Session Initiation Protocol (SIP)

RFC 3857 A Watcher Information Event Template-Package for the Session Initiation
Protocol (SIP)

RFC 3858 An Extensible Markup Language (XML) Based Format for Watcher
Information

RFC 3859 Common Profile for Presence (CPP)

RFC 3863 Presence Information Data Format (PIDF)

RFC 3903 Session Initiation Protocol (SIP) Extension for Event State Publication

RFC 4119 A Presence-based GEOPRIV Location Object Format

RFC 4479 A Data Model for Presence

RFC 4480 RPID: Rich Presence Extensions to the Presence Information Data Format
(PIDF)

RFC 4481 Timed Presence Extensions to the Presence Information Data Format (PIDF)
to Indicate Status Information for Past and Future Time Intervals

RFC 4825 The Extensible Markup Language (XML) Configuration Access Protocol
(XCAP)

Presence Server

A-4 Oracle Communication and Mobility Server Administrator’s Guide

4827 An Extensible Markup Language (XML) Configuration Access Protocol (XCAP)
Usage for Manipulating Presence Document Contents

Drafts Referenced in the Composition Policies
The following drafts are transparent to the server, but are important for clients. These
drafts are specifically referenced in composition policies such as the OMA composition
policy.

"RPID: Rich Presence Extensions to the Presence Information Data Format (PIDF)",
draft-ietf-simple-rpid-10

"CIPID: Contact Information in Presence Information Data Format",
draft-ietf-simple-cipid-07

"Timed Presence Extensions to the Presence Information Data Format (PIDF) to
Indicate Presence Information for Past and Future Time Intervals",
draft-ietf-simple-future-05

Partial Publish and Partial Notify:

■ "Session Initiation Protocol (SIP) extension for Partial Notification of Presence
Information", draft-ietf-simple-partial-notify

■ "Presence Information Data format (PIDF) Extension for Partial Presence",
draft-ietf-simple-partial-pidf-format

■ "Publication of Partial Presence Information",draft-ietf-simple-partial-publish

■ "Presence Authorization Rules", draft-ietf-simple-presence-rules-10

"OMA Extensions to the Presence Data Model", OMA-TS-Presence_SIMPLE-V1_
0-20051122-C

"OMA extensions to geopriv common policy", OMA-TS-XDM_Core-V1_0-20051122-C

"OMA Extensions to Presence Rules", OMA-TS-Presence_SIMPLE_XDM-V1_
0-20051122-C

XDMS Server
"The Extensible Markup Language (XML) Configuration Access Protocol (XCAP)",
draft-ietf-simple-xcap-08

"A Framework for Session Initiation Protocol User Agent Profile Delivery",
draft-ietf-sipping-config-framework-07

 "A Mechanism for Content Indirection in Session Initiation Protocol (SIP) Messages",
draft-ietf-sip-content-indirect-mech-05

Exceptions:

The current XCAP application does not support partial document put or get.

Authorization and Privacy Filtering
"A Document Format for Expressing Privacy Preferences",
draft-ietf-geopriv-common-policy-05

Note: RFC 4825 is partially supported. There is no support for partial
document manipulation (XPATH).

Presence Server

Supported Protocols, RFCs, and Standards A-5

"Presence Authorization Rules", draft-ietf-simple-presence-rules-04

draft-ietf-geopriv-common-policy-05

Presence Data Modeling and Processing
"A Data Model for Presence", draft-ietf-simple-presence-data-model-07

"A Processing Model for Presence",
draft-rosenberg-simple-presence-processing-model-01

OMA Extensions
[urn:oma:params:xml:ns:pidf:oma-pres] OMA extensions to the presence data model
(OMA-TS-Presence_SIMPLE-V1_0-20051122-C)

[urn:oma:params:xml:ns:common-policy] OMA extensions to geopriv common policy
(OMA-TS-XDM_Core-V1_0-20051122-C)

[urn:oma:params:xml:ns:pres-rule] OMA extensions to presence rules
(OMA-TS-Presence_SIMPLE_XDM-V1_0-20051122-C)

Hard State via XCAP
"An Extensible Markup Language (XML) Configuration Access Protocol (XCAP)
Usage for Manipulating Presence Document Contents",
draft-ietf-simple-xcap-pidf-manipulation-usage-02

Presence Server

A-6 Oracle Communication and Mobility Server Administrator’s Guide

Third-Party Licensing B-1

B
Third-Party Licensing

This Appendix lists third-party licensing information for software included in this
release.

Third-Party Licenses
Third-party software license information for software included in this release is listed
in Table B–1.

Table B–1 Third-party licenses

Library/Component License

Saxon B http://www.mozilla.org/MPL/MPL-1.1.html

Commons HTTPClient 3.1 http://apache.org/licenses/

Commons Logging1.0.4 http://apache.org/licenses/

Commons Codec 1.3 http://apache.org/licenses/

Commons Lang 2.1 http://apache.org/licenses/

Log4J 1.2.9 http://apache.org/licenses/

XMLBeans (xbean.jar) 2.3.0 http://apache.org/licenses/

DNSJava 2.0.1 View DNSJava License

Jline 0.9.1 View Jline License

JSR116 View JSR116 License

JSR289 View JSR289 License

spring 2.5.1 http://apache.org/licenses/

stax-api (JSR 173) 1.0.1 http://apache.org/licenses/

jainsip (JSR 32) 1.2 http://www.jcp.org/en/home/index

Boost http://www.boost.org/LICENSE_1_0.txt

Wtl 7.5 http://sourceforge.net/projects/wtl,
http://www.microsoft.com/resources/sharedsource/licensingb
asics/permissivelicense.mspx

Third-Party Licenses

B-2 Oracle Communication and Mobility Server Administrator’s Guide

RSA /* Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991.
All rights reserved.

License to copy and use this software is granted provided that it
is identified as the "RSA Data Security, Inc. MD5 Message-Digest

Algorithm" in all material mentioning or referencing this
software or this function.

License is also granted to make and use derivative works
provided that such works are identified as "derived from the
RSA Data Security, Inc. MD5 Message-Digest Algorithm" in all
material mentioning or referencing the derived work.

RSA Data Security, Inc. makes no representations concerning
either the merchantability of this software or the suitability of
this software for any particular purpose. It is provided "as is"
without express or implied warranty of any kind.

These notices must be retained in any copies of any part of this
documentation and/or software. */

RFC 2617 http://rfc.net/rfc2617.html

IETF’s IPR policy is at

http://www.ietf.org/rfc/rfc3978.txt and

http://www.ietf.org/rfc/rfc3978.txt

GUI header file (atlgdix.h,
menubutton.h)

Additional GDI/USER wrappers

Written by Bjarke Viksoe (bjarke@viksoe.dk)

Copyright (c) 2001-2002 Bjarke Viksoe.

Thanks to Daniel Bowen for COffscreenDrawRect.

This code may be used in compiled form in any way you desire.
This file may be redistributed by any means PROVIDING it is
not sold for profit without the authors written consent, and
providing that this notice and the authors name is included.

This file is provided "as is" with no expressed or implied
warranty. The author accepts no liability if it causes any damage
to you or your computer whatsoever. It's free, so don't hassle me
about it. Beware of bugs.

String handling (stdstring.h) COPYRIGHT:

1999 Joseph M. O'Leary. This code is free. Use it anywhere you
want. Rewrite it, restructure it, whatever. Please don't blame me
if it makes your $30 billion dollar satellite explode in orbit. If you
redistribute it in any form, I'd appreciate it if you would leave
this notice here.

If you find any bugs, please let me know:

jmoleary@earthlink.net

http://home.earthlink.net/~jmoleary

GUI Slider implementation
(slider.js)

Slider000118 by Christiaan Hofman, January 2000

You may use or modify this code provided that this copyright
notice appears on all copies.

Table B–1 (Cont.) Third-party licenses

Library/Component License

Index-1

Index

A
Aggregation Proxy, 2-3

authenticating XCAP traffic, 7-12
configuring HTTPS connections, 7-14

application layer, 1-4
Application Router

about, 1-13, 1-14
configuring, 3-17
incremental mode, 1-13, 1-14
standard mode, 1-13, 1-14

applications
deployment, 13-3

architecture, 1-3, 1-4
Associating nodes with OPMN, 5-3

Discovery Server Method, 5-4
Dynamic Discovery Method, 5-3

Authentication and Authorization Data, 1-15

C
cluster, 5-2, 5-3

start, 5-5
stop, 5-5
verify status, 5-5

CommandService MBean
executing Sash commands, 3-14, 4-4

Configuration Recommendations, 2-13
Contact Management API, 1-2

D
data layer, 1-4
Deployment Topologies, 2-1, 2-3, 2-5, 2-9, 2-11
disabling high availability in the application, 5-12
Discovery Server Method, 5-4
drafts, A-1, A-3
Dynamic Discovery Method, 5-3

E
Edge Proxy, 2-2

about, 1-8
high availability, 5-6

edgeproxy Mbean, 5-6
ENUM Service, 1-10

F
Fetcher, 1-11

H
High Availability, 2-1

Application session data replication, 5-10
associating nodes with OPMN, 5-3, 5-4
clustering, 5-3
configuring, 5-1
Edge Proxy, 5-6
SIP Servlet applications, 5-8, 5-11, 5-12
SIP servlet containers, 5-5

I
IETF, A-1, A-3

J
JAAS, 4-1

L
Location Lookup Data, 1-15
Location Lookup Service, 1-10
logging, 1-15

error logging in Sash, 11-10
login

configuring account locking, 3-13, 4-3

N
NOTIFY, 1-11

O
OCMS, 1-2

system components, 1-4
three layer model, 1-3, 1-4

OCMS as a Highly Available SIP Network, 2-3
OCMS as a Presence Server, 2-5
OCMS as an Instant Messaging Platform, 2-9
OCMS Testing Environment, 2-11
opmn.xml, 5-4
Oracle Communication and Mobility Server, 1-2

Index-2

system components, 1-4
three layer model, 1-3, 1-4

orion-application.xml, 5-10
Overload Policy

setting threshold levels for capacity, 5-13

P
Parlay X

Presence custom error codes, 9-7
Parlay X Web Services, 9-1
Presence

about, 1-11, 1-12
configuring, 7-1

Presence User Agent, 1-11
Presence Web Services interfaces, 9-1, 10-1

code examples, 9-3, 10-3
using, 9-3, 10-3

PresenceConsumer interface, 9-2, 10-2
PresenceNotification interface, 9-2, 10-2
PresenceSupplier interface, 9-2
Presentity, 1-11
protocols, A-1, A-3
proxy layer, 1-3
Proxy Registrar, 2-3

about, 1-9
configuring, 3-16

PUBLISH, 1-11

R
RADIUS Login Module, 4-2
replication, 5-10
RFCs, A-1, A-3

S
Sash

command and subcommands, 11-2
connection to external instances, 11-2
error logging, 11-10

Session Replication, 1-15
SIP Application Servers, 2-2
SIP applications

about, 1-5
deployment through Application Server

Control, 13-3
high availability, 5-8, 5-11, 5-12
inheriting authentication and security from

Subscriber Data Services, 3-13, 4-3
setting aliases, 3-10
setting the default application, 3-7
typical, 1-6
upgrading, 5-12

SIP servlet container
about, 1-7
configuring with the sipservletcontainer

MBean, 3-5
high availability, 5-5

SIP servlets, 1-5
sip.xml, 5-9, 5-11

basic structure of deployment descriptor file, 13-1
specification requests, A-1, A-3
Standards, A-1, A-3
STUN

configuring the STUN server, 1-2, 3-12, 7-14
Subscriber, 1-11
Subscriber Data Services, 1-15, 3-13, 4-3
system usage statistics, 6-1

T
testing environment, 2-11
third-party load balancer, 2-2

U
unpublish, 9-5, 10-3
Upgrading SIP applications, 5-12
User Data, 1-15
User Dispatcher, 1-2, 7-14
users

authentication against RADIUS authentication
system, 4-2

bulk provisioning, 11-12
provisioning users using Sash, 11-7
provisioning using the CommandService

Mbean, 11-8

W
Watcher, 1-11
web.xml, 5-9, 5-11

X
XDMS

provisioning with Sash, 11-10
provisioning with the CommandService

MBean, 11-10
XDMS Server, 2-6

	Contents
	Preface
	Intended Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 An Overview of Oracle Communication and Mobility Server
	New in this Release
	TLS Support
	Scalable Presence Deployments with User Dispatcher
	Presence Dispatching

	Web Services Improvements

	Introduction to OCMS
	OCMS Three Layer Model
	Proxy Layer
	Application Layer
	Data Layer

	OCMS System Components
	SIP Servlets and SIP Servlet Applications
	Differences between HTTP and SIP Servlets
	Typical SIP Servlet Applications

	SIP Servlet Container
	How the OCMS SIP Servlet Container Works

	Edge Proxy Server
	Proxy Registrar
	Location Lookup Service
	ENUM Lookup Service

	Presence Server
	How the Presence Server Works

	Application Router
	Modes of Operation
	Standard Mode
	Incremental Mode

	Using the Application Router in Standard Mode: an Example
	Using the Application Router in Incremental Mode: an Example

	Subscriber Data Services
	Authentication and Authorization Data
	User Data
	Location Lookup Data

	Logging
	Session Replication

	2 Deployment Topologies
	About Deployment Topologies
	Topology Components
	Third-Party Load Balancer
	Edge Proxy Nodes
	SIP Application Servers
	Aggregation Proxy
	Proxy Registrar
	User Dispatcher
	Presence Dispatching

	Supported OCMS Topologies
	Deploying OCMS as a Highly Available SIP Network
	Deploying OCMS as a Presence Server
	Deploying a Scalable Presence Deployment
	Presence Cluster
	XDM Cluster
	Presence Node
	XDM Node
	Complete Presence and XDM Cluster

	Deploying OCMS as an Instant Messaging Service
	Deploying an OCMS Testing Environment
	Configuration Recommendations

	3 Configuring the SIP Server MBeans
	Overview of SIP Server Management
	Starting, Stopping and Restarting the OCMS SIP Server
	Starting an Application and Stopping a SIP Servlet Application

	Managing OCMS MBeans
	Accessing MBeans
	Accessing SIP Servlet Container MBeans
	Accessing the MBeans for a Selected SIP Application

	Configuring the SIP Servlet Container MBeans
	SIP Servlet Container
	Setting an Alias for an Application
	Using TLS

	Setting the Keystore
	Enabling TLS
	SIP Servlet Container Logging
	STUN Service

	Configuring SIP Applications
	Subscriber Data Services
	CommandService

	Proxy Registrar
	Application Router

	Setting and Viewing the SIP Port

	4 Configuring Security and Login Modules
	Overview of Security
	The OCMS JAAS-Compliant Login Modules
	Application Type and Authentication Mode

	Configuring Subscriber Data Services
	CommandService

	Configuring Applications to Use Login Modules
	Configuring Login Modules though system-jazn-data.xml and orion-application.xml
	Configuring Login Modules in system-jazn-data.xml
	Declaring the OCMS Login Module in orion-application.xml
	Declaring the RADIUS Login Module in orion-application.xml

	Security in SIP Servlets
	Authentication Using the P-Asserted Identity Header
	Authentication of Web Service Calls and XCAP Traffic
	Default Role for All Users
	Configuring Oracle Internet Directory as the User Repository
	Overview of Configuration for OID Support
	Prerequisites for OID Support

	Configuring the OID LDAP Backend
	Mapping JAAS Usernames to LDAP User Entries
	Mapping JAAS Realms to LDAP Subscribers
	Mapping JAAS Roles to LDAP Groups

	Installing OCMS Components into the OID LDAP Tree
	Associating an OCMS Instance with OID
	Installing the OCMS Static Verifiers

	Repackaging Subscriber Data Services
	Configuring User Service and Security Service

	Provisioning OCMS Users to OID
	Adding Users to LDAP Groups

	5 Configuring High Availability
	About Configuring High Availability
	Setting Up a Highly Available Cluster of OCMS Nodes
	Associating Nodes with OPMN
	Associating Nodes with OPMN Using the Dynamic Discovery Method
	Associating Nodes with OPMN Using the Discovery Server Method

	Starting the Cluster
	Verifying the Status of the Cluster
	Stopping the Cluster

	Configuring the OCMS SIP Containers for High Availability
	Configuring the Edge Proxy Nodes for High Availability
	The NAT Traversal Option Enabled for the Edge Proxy
	Disabling NAT Traversal Enabled by the Edge Proxy

	Configuring Highly Available SIP Servlet Applications
	Enabling High Availability in SIP Servlet Applications
	Configuring Application Session Data Replication
	Configuring High Availability for a Deployed SIP Servlet Application
	Disabling High Availability at the Application Level
	Upgrading SIP Servlet Applications in OCMS

	Configuring an Overload Policy
	Overview of Overload Policy Architecture
	Collectors
	Deactivating the Overload Protection for System Tuning

	6 Viewing Statistics and Metrics
	Viewing Statistics and Metrics
	SIP Servlet Container Monitor
	Viewing System Status
	Viewing Transactions
	Using the Current, Peak, and Total Usage Statistics to Tune the System

	Application Counters
	Memory Monitor
	Starting and Stopping the Memory Monitor

	SIP Cluster

	7 Configuring Presence and Presence Web Services
	Overview of Presence
	Configuring Presence
	Configuring XDMS
	Bus
	PackageManager
	Presence
	PresenceEventPackage
	PresenceWInfoEventPackage
	UA-ProfileEventPackage
	UserAgentFactoryService
	Command Service (XDMS Provisioning)
	XCapConfig

	Configuring Presence Web Services
	PresenceWebServiceDeployer
	PresenceSupplierWebService
	PresenceConsumerWebService
	Aggregation Proxy
	Configuring the Aggregation Proxy to Work with Realms
	Securing the XDMS with the Aggregation Proxy

	Configuring Scalable Presence Deployments with the User Dispatcher
	Failover
	Presentity Migration
	Stateless User Dispatcher and Even Distribution
	Presence Application Broadcast

	Standby Server Pool
	Failure Types
	Fatal Failures
	Temporary Failures

	Failover Actions
	Overload Policy
	Synchronization of Failover Events
	Broadcasting Fail-Over Events
	Shared State

	Expanding the Cluster
	Updating the Node Set
	Migrating Presentities

	Failover Use Cases
	One Presence Server Overloaded for 60 Seconds
	One Presence Server Overloaded Multiple Times for Five Seconds
	Overload Policy Triggered by an OCMS Software Failure
	A Presence Server Hardware Failure
	Expanding the Cluster with One Presence Node
	Removing a Node from the Cluster
	OPMN Restart After a Presence Server Crash
	503 Responses from an Application

	8 OCMS Parlay X Web Services Architecture
	Architecture of Web Service Client Applications
	Web Service Security
	Web Service Security on Notification

	Installing the Web Services

	9 OCMS Parlay X Presence Web Services
	Introduction
	Presence Web Services Interface Descriptions
	Using the Presence Web Services Interfaces
	Interface: PresenceConsumer, Operation: subscribePresence
	Code Example

	Interface: PresenceConsumer, Operation: getUserPresence
	Code Example

	Interface: PresenceConsumer, Operation: startPresenceNotification
	Code Example

	Interface: PresenceConsumer, Operation: endPresenceNotification
	Code Example

	Interface PresenceSupplier, Operation: publish and Oracle Specific Remove Presence
	Code Example

	Interface: PresenceSupplier, Operation: getOpenSubscriptions
	Code Example

	Interface: PresenceSupplier, Operation: updateSubscriptionAuthorization
	Code Example

	Interface: PresenceSupplier, Operation: getMyWatchers
	Code Example

	Interface: PresenceSupplier, Operation: getSubscribedAttributes
	Code Example

	Interface: PresenceSupplier, Operation: blockSubscription
	Code Example

	OCMS Parlay X Presence Custom Error Codes

	10 OCMS Parlay X Multimedia Messaging Web Services
	Introduction
	Multimedia Messaging Web Services Interface Descriptions
	Using the Multimedia Messaging Web Services Interfaces
	Interface: SendMessage, Operation: sendMessage
	Interface: sendMessage, Operation: getMessageDeliveryStatus
	Interface: ReceiveMessage, Operation: getReceivedMessages
	Interface: ReceiveMessage, Operation: getMessageURIs
	Interface ReceiveMessage, Operation: getMessage
	Interface: MessageNotificationManager, Operation: startMessageNotification
	Interface: MessageNotificationManager, Operation: stopMessageNotification

	11 Provisioning Users with Sash
	Overview of Sash
	Launching Sash
	Launching Sash from the Command Line
	Connecting Sash to an External OCMS Instance
	Connecting to an External Instance of OC4J
	Connecting Sash to an External Oracle Application Server Instance

	Using Sash
	Viewing Available Commands
	Viewing Subcommands

	Creating a User
	Creating a User from the Sash Command-Line Prompt
	Creating a User with the Command Service MBean
	Creating a User with the identity add Command
	Deleting a User Account with the identity delete Command

	Provisioning the XDMS Using Sash
	Provisioning XDMS User Accounts Using the CommandService MBean
	Provisioning XDMS User Accounts from the Sash Prompt
	Using xcap Commands
	Provisioning XDMS User Accounts
	Adding XDMS Users
	Removing an XDMS User
	Searching for Application Usage for an XDMS User
	Listing XDMS Users
	Provisioning Application Usage
	Listing All Application Usages

	Scripting with Sash
	Error Logging in Sash

	12 Configuring the Logging System
	Overview of Oracle Diagnostic Logging in OCMS
	Logging Components
	Filtering of Logging Information by Single Class Files
	Log Files
	Logger Interfaces

	Logging Levels
	Setting the Log Levels for Components

	13 Deploying Applications
	Overview of SIP Servlet Applications
	Deploying SIP Applications
	Deploying, Undeploying, and Redeploying SIP Applications Using Oracle Application Server Control
	Deploying, Undeploying, and Redeploying SIP Servlet Applications with Application Server Control
	Deploying an Application using the Deployment Wizard
	Undeploying an Application Using the Deployment Wizard
	Redeploying an Application Using the Deployment Wizard

	Deploying, Undeploying, and Redeploying an Application Using the admin_client.jar Utility
	Deploying an Application Using admin_client.jar
	Undeploying an Application Using admin_client.jar
	Redploying an Application Using admin_client.jar

	Deploying the SIP Application Using the admin_client.jar Command-Line Utility

	A Supported Protocols, RFCs, and Standards
	SIP Servlet Container
	RFCs
	Drafts
	Specification Requests

	Presence Server
	RFCs
	Drafts Referenced in the Composition Policies
	XDMS Server
	Authorization and Privacy Filtering
	Presence Data Modeling and Processing
	OMA Extensions
	Hard State via XCAP

	B Third-Party Licensing
	Third-Party Licenses

	Index
	A
	C
	D
	E
	F
	H
	I
	J
	L
	N
	O
	P
	R
	S
	T
	U
	W
	X

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

