

Oracle® Fusion Middleware
Getting Started With JAX-WS Web Services for Oracle
WebLogic Server

11g Release 1 (10.3.4)

E13758-03

January 2011

This document describes how to develop WebLogic Web
services using the Java API for XML-based Web services
(JAX-WS).

Oracle Fusion Middleware Getting Started With JAX-WS Web Services for Oracle WebLogic Server, 11g
Release 1 (10.3.4)

E13758-03

Copyright © 2007, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface .. vii

Documentation Accessibility .. vii
Conventions .. vii

1 Introduction

2 Use Cases and Examples

2.1 Creating a Simple HelloWorld Web Service... 2-1
2.1.1 Sample HelloWorldImpl.java JWS File .. 2-4
2.1.2 Sample Ant Build File for HelloWorldImpl.java .. 2-4
2.2 Creating a Web Service With User-Defined Data Types... 2-5
2.2.1 Sample BasicStruct JavaBean ... 2-8
2.2.2 Sample ComplexImpl.java JWS File.. 2-8
2.2.3 Sample Ant Build File for ComplexImpl.java JWS File... 2-10
2.3 Creating a Web Service from a WSDL File... 2-11
2.3.1 Sample WSDL File .. 2-15
2.3.2 Sample TemperaturePortType Java Implementation File .. 2-15
2.3.3 Sample Ant Build File for TemperatureService ... 2-16
2.4 Invoking a Web Service from a Java SE Application.. 2-18
2.4.1 Sample Java Client Application.. 2-20
2.4.2 Sample Ant Build File For Building Java Client Application..................................... 2-21
2.5 Invoking a Web Service from a WebLogic Web Service .. 2-22
2.5.1 Sample ClientServiceImpl.java JWS File ... 2-24
2.5.2 Sample Ant Build File For Building ClientService... 2-25

3 Developing WebLogic Web Services

3.1 Overview of the WebLogic Web Service Programming Model... 3-1
3.2 Configuring Your Domain For Advanced Web Services Features...................................... 3-2
3.2.1 Resources Required by Advanced Web Service Features ... 3-3
3.2.2 Scripts for Extending a Domain for Advanced Web Service Features 3-6
3.2.3 Configuring a Domain for Advanced Web Service Features Using the Configuration

Wizard ... 3-7
3.2.3.1 Creating a Domain With the Web Services Extension Template 3-7
3.2.3.2 Extending a Domain With the Web Services Extension Template........................ 3-8
3.2.4 Using WLST to Extend a Domain With the Web Services Extension Template 3-9

iv

3.2.5 Updating Resources Added After Extending Your Domain 3-10
3.3 Developing WebLogic Web Services Starting From Java: Main Steps............................. 3-11
3.4 Developing WebLogic Web Services Starting From a WSDL File: Main Steps 3-12
3.5 Creating the Basic Ant build.xml File ... 3-13
3.6 Running the jwsc WebLogic Web Services Ant Task ... 3-13
3.6.1 Examples of Using jwsc ... 3-15
3.6.2 Advanced Uses of jwsc .. 3-16
3.7 Running the wsdlc WebLogic Web Services Ant Task .. 3-16
3.8 Updating the Stubbed-out JWS Implementation Class File Generated By wsdlc.......... 3-18
3.9 Deploying and Undeploying WebLogic Web Services .. 3-19
3.9.1 Using the wldeploy Ant Task to Deploy Web Services .. 3-19
3.9.2 Using the Administration Console to Deploy Web Services...................................... 3-21
3.10 Browsing to the WSDL of the Web Service .. 3-21
3.11 Configuring the Server Address Specified in the Dynamic WSDL.................................. 3-22
3.11.1 Web service is not a callback service and can be invoked using HTTP/S 3-23
3.11.2 Web service is a callback service .. 3-23
3.11.3 Web service is invoked using a proxy server ... 3-23
3.12 Testing the Web Service .. 3-24
3.13 Integrating Web Services Into the WebLogic Split Development Directory

Environment ... 3-24

4 Programming the JWS File

4.1 Overview of JWS Files and JWS Annotations... 4-1
4.2 Java Requirements for a JWS File ... 4-2
4.3 Programming the JWS File: Typical Steps... 4-2
4.3.1 Example of a JWS File ... 4-3
4.3.2 Specifying that the JWS File Implements a Web Service (@WebService

Annotation)... 4-4
4.3.3 Specifying the Mapping of the Web Service to the SOAP Message Protocol

(@SOAPBinding Annotation)... 4-5
4.3.4 Specifying That a JWS Method Be Exposed as a Public Operation (@WebMethod and

@OneWay Annotations) ... 4-5
4.3.5 Customizing the Mapping Between Operation Parameters and WSDL Elements

(@WebParam Annotation).. 4-6
4.3.6 Customizing the Mapping Between the Operation Return Value and a WSDL Element

(@WebResult Annotation) .. 4-7
4.3.7 Specifying the Binding to Use for an Endpoint (@BindingType Annotation)............ 4-8
4.4 Accessing Runtime Information About a Web Service ... 4-8
4.4.1 Accessing the Protocol Binding Context .. 4-9
4.4.2 Accessing the Web Service Context ... 4-11
4.4.3 Using the MessageContext Property Values .. 4-13
4.5 Should You Implement a Stateless Session EJB? ... 4-14
4.6 Programming the User-Defined Java Data Type .. 4-15
4.7 Invoking Another Web Service from the JWS File.. 4-17
4.8 Using SOAP 1.2 .. 4-17
4.9 Validating the XML Schema... 4-18
4.9.1 Enabling Schema Validation on the Server... 4-18
4.9.2 Enabling Schema Validation on the Client ... 4-19

v

4.10 JWS Programming Best Practices .. 4-19

5 Using JAXB Data Binding

5.1 Overview of Data Binding Using JAXB... 5-1
5.2 Developing the JAXB Data Binding Artifacts ... 5-3
5.3 Standard Data Type Mapping... 5-3
5.3.1 Supported Built-In Data Types .. 5-4
5.3.1.1 XML-to-Java Mapping for Built-in Data Types.. 5-4
5.3.1.1.1 XML Schema .. 5-5
5.3.1.1.2 Default Java Binding ... 5-6
5.3.1.2 Java-to-XML Mapping for Built-In Data Types ... 5-7
5.3.2 Supported User-Defined Data Types.. 5-8
5.3.2.1 Supported XML User-Defined Data Types .. 5-8
5.3.2.2 Supported Java User-Defined Data Types.. 5-9
5.4 Customizing Java-to-XML Schema Mapping Using JAXB Annotations 5-9
5.4.1 Example of JAXB Annotations.. 5-10
5.4.2 Specifying Default Serialization of Fields and Properties (@XmlAccessorType

Annotation).. 5-11
5.4.3 Mapping Properties to Local Elements (@XmlElement)... 5-11
5.4.4 Specifying the MIME Type (@XmlMimeType Annotation) 5-12
5.4.5 Mapping a Top-level Class to a Global Element (@XmlRootElement) 5-12
5.4.6 Binding a Set of Classes (@XmlSeeAlso) ... 5-13
5.4.7 Mapping a Value Class to a Schema Type (@XmlType) ... 5-13
5.5 Customizing XML Schema-to-Java Mapping Using Binding Declarations 5-14
5.5.1 Creating an External Binding Declarations File ... 5-16
5.5.1.1 Creating an External Binding Declarations File Using JAX-WS Binding

Declarations.. 5-16
5.5.1.1.1 Specifying the Root Element... 5-16
5.5.1.1.2 Specifying Child Elements .. 5-16
5.5.1.2 Creating an External Binding Declarations File Using JAXB Binding

Declarations.. 5-17
5.5.1.2.1 Specifying the Root Element... 5-17
5.5.1.2.2 Specifying Child Elements .. 5-17
5.5.2 Embedding Binding Declarations .. 5-17
5.5.2.1 Embedding JAX-WS or JAXB Binding Declarations in the WSDL File 5-18
5.5.2.2 Embedding JAXB Binding Declarations in the XML Schema............................. 5-18
5.5.3 JAX-WS Custom Binding Declarations ... 5-18
5.5.4 JAXB Custom Binding Declarations .. 5-21

6 Invoking Web Services

6.1 Overview of Web Services Invocation ... 6-2
6.2 Invoking a Web Service from a Java SE Client ... 6-2
6.2.1 Using the clientgen Ant Task To Generate Client Artifacts .. 6-3
6.2.2 Getting Information About a Web Service... 6-5
6.2.3 Writing the Java Client Application Code to Invoke a Web Service............................ 6-5
6.2.4 Compiling and Running the Client Application... 6-6
6.2.5 Sample Ant Build File for a Java Client .. 6-7

vi

6.3 Invoking a Web Service from a WebLogic Web Service ... 6-8
6.3.1 Sample build.xml File for a Web Service Client.. 6-9
6.3.2 Sample JWS File That Invokes a Web Service .. 6-11
6.4 Configuring Web Service Clients .. 6-12
6.5 Defining a Web Service Reference Using the @WebServiceRef Annotation................... 6-12
6.6 Managing Client Identity.. 6-14
6.6.1 Defining the Client ID During Port Initialization .. 6-15
6.6.2 Accessing the Server-generated Client ID... 6-16
6.6.3 Client Identity Lifecycle... 6-18
6.7 Using a Proxy Server When Invoking a Web Service... 6-18
6.7.1 Using the ClientProxyFeature API to Specify the Proxy Server 6-18
6.7.2 Using System Properties to Specify the Proxy Server ... 6-20
6.8 Client Considerations When Redeploying a Web Service... 6-20
6.9 Client Considerations When Web Service and Client Are Deployed to the Same

Managed Server ... 6-21

7 Administering Web Services

7.1 Overview of WebLogic Web Services Administration Tasks... 7-1
7.2 Administration Tools ... 7-2
7.3 Using the WebLogic Server Administration Console.. 7-2
7.3.1 Invoking the Administration Console .. 7-3
7.3.2 How Web Services Are Displayed In the Administration Console 7-4
7.3.3 Creating a Web Services Security Configuration.. 7-5
7.4 Using the Oracle Enterprise Manager Fusion Middleware Control 7-5
7.5 Using the WebLogic Scripting Tool ... 7-6
7.6 Using WebLogic Ant Tasks ... 7-6
7.7 Using the Java Management Extensions (JMX).. 7-7
7.8 Using the Java EE Deployment API ... 7-7
7.9 Using Work Managers to Prioritize Web Services Work and Reduce Stuck Execute

Threads ... 7-8
7.10 Monitoring Web Services and Clients.. 7-8
7.10.1 Monitoring Web Services ... 7-9
7.10.2 Monitoring Web Service Clients... 7-10

8 Migrating JAX-RPC Web Services and Clients to JAX-WS

8.1 Setting the Final Context Root of a WebLogic Web Service ... 8-2
8.2 Using WebLogic-specific Annotations... 8-2
8.3 Generating a WSDL File... 8-2
8.4 Using JAXB Custom Types.. 8-2
8.5 Using EJB 3.0.. 8-2
8.6 Migrating from RPC Style SOAP Binding... 8-3
8.7 Updating SOAP Message Handlers ... 8-3
8.8 Invoking JAX-WS Clients .. 8-3

vii

Preface

This preface describes the document accessibility features and conventions used in this
guide—Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

viii

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Convention Meaning

1

Introduction 1-1

1Introduction

This document describes how to program WebLogic Web services using the Java API
for XML-based Web services (JAX-WS). JAX-WS is a standards-based API for coding,
assembling, and deploying Java Web services.

JAX-WS is designed to take the place of JAX-RPC in Web services and Web
applications. To compare the features that are supported for JAX-WS and JAX-RPC,
see "How Do I Choose Between JAX-WS and JAX-RPC?" in Introducing WebLogic Web
Services for Oracle WebLogic Server. For information about migrating a JAX-RPC Web
service to JAX-WS, see Chapter 8, "Migrating JAX-RPC Web Services and Clients to
JAX-WS."

The following table summarizes the contents of this guide.

Table 1–1 Content Summary

This section . . . Describes how to . . .

Chapter 2, "Use Cases
and Examples"

Run common use cases and examples.

Chapter 3, "Developing
WebLogic Web Services"

Develop Web services using the WebLogic development
environment.

Chapter 4,
"Programming the JWS
File"

Program the JWS file that implements your Web service.

Chapter 5, "Using JAXB
Data Binding"

Use the Java Architecture for XML Binding (JAXB) data
binding.

Chapter 6, "Invoking
Web Services"

Invoke your Web service from a stand-alone client or another
Web service.

Chapter 7,
"Administering Web
Services"

Administer WebLogic Web services using the Administration
Console.

Chapter 8, "Migrating
JAX-RPC Web Services
and Clients to JAX-WS"

Migrate a JAX-RPC Web service to JAX-WS.

1-2 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

For an overview of WebLogic Web services, standards, samples, and related
documentation, see Introducing WebLogic Web Services for Oracle WebLogic Server. For
information about WebLogic Web service security, see Securing WebLogic Web Services
for Oracle WebLogic Server.

A Note About Upgrading Existing WebLogic Web Services

There are no steps required to upgrade a 10.x WebLogic Web service to Release 10.3.1;
you can redeploy a 10.x Web service to WebLogic Server Release 10.3.1 without
making any changes or recompiling it.

Note: The JAX-WS implementation in Oracle WebLogic Server is
extended from the JAX-WS Reference Implementation (RI) developed
by the Glassfish Community (see
https://jax-ws.dev.java.net/). All features defined in the
JAX-WS specification (JSR-224) are fully supported by Oracle
WebLogic Server.

The JAX-WS RI also contains a variety of extensions, provided by
Glassfish contributors. Unless specifically documented, JAX-WS RI
extensions are not supported for use in Oracle WebLogic Server.

2

Use Cases and Examples 2-1

2Use Cases and Examples

The following sections describe common Web service use cases and examples:

■ Section 2.1, "Creating a Simple HelloWorld Web Service"

■ Section 2.2, "Creating a Web Service With User-Defined Data Types"

■ Section 2.3, "Creating a Web Service from a WSDL File"

■ Section 2.4, "Invoking a Web Service from a Java SE Application"

■ Section 2.5, "Invoking a Web Service from a WebLogic Web Service"

Each use case provides step-by-step procedures for creating simple WebLogic Web
services and invoking an operation from a deployed Web service. The examples
include basic Java code and Ant build.xml files that you can use in your own
development environment to recreate the example, or by following the instructions to
create and run the examples in an environment that is separate from your
development environment.

The use cases do not go into detail about the processes and tools used in the examples;
later chapters are referenced for more detail.

2.1 Creating a Simple HelloWorld Web Service
This section describes how to create a very simple Web service that contains a single
operation. The Java Web Service (JWS) file that implements the Web service uses just the
one required JWS annotation: @WebService. A JWS file is a standard Java file that uses
JWS metadata annotations to specify the shape of the Web service. Metadata
annotations were introduced with JDK 5.0, and the set of annotations used to annotate
Web service files are called JWS annotations. WebLogic Web services use standard JWS
annotations. For a complete list of JWS annotations that are supported, see "Web
Service Annotation Support" in WebLogic Web Services Reference for Oracle WebLogic
Server.

The following example shows how to create a Web service called
HelloWorldService that includes a single operation, sayHelloWorld. For
simplicity, the operation returns the inputted String value.

Note: For best practice examples demonstrating advanced Web
service features, see "Roadmaps for Developing Web Service Clients"
and "Roadmaps for Developing Reliable Web Services and Clients" in
Programming Advanced Features of JAX-WS Web Services for Oracle
WebLogic Server.

Creating a Simple HelloWorld Web Service

2-2 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

1. Set your WebLogic Server environment.

Open a command window and execute the setDomainEnv.cmd (Windows) or
setDomainEnv.sh (UNIX) script, located in the bin subdirectory of your
domain directory. The default location of WebLogic Server domains is MW_
HOME/user_projects/domains/domainName, where MW_HOME is the
top-level installation directory of the Oracle products and domainName is the
name of your domain.

2. Create a project directory, as follows:

 prompt> mkdir /myExamples/hello_world

3. Create a src directory under the project directory, as well as subdirectories that
correspond to the package name of the JWS file (shown later in this procedure):

 prompt> cd /myExamples/hello_world
 prompt> mkdir src/examples/webservices/hello_world

4. Create the JWS file that implements the Web service.

Open your favorite Java IDE or text editor and create a Java file called
HelloWorldImpl.java using the Java code specified in Section 2.1.1, "Sample
HelloWorldImpl.java JWS File."

The sample JWS file shows a Java class called HelloWorldImpl that contains a
single public method, sayHelloWorld(String). The @WebService
annotation specifies that the Java class implements a Web service called
HelloWorldService. By default, all public methods are exposed as operations.

5. Save the HelloWorldImpl.java file in the
src/examples/webservices/hello_world directory.

6. Create a standard Ant build.xml file in the project directory
(myExamples/hello_world/src) and add a taskdef Ant task to specify the
full Java classname of the jwsc task:

<project name="webservices-hello_world" default="all">
 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
</project>

See Section 2.1.2, "Sample Ant Build File for HelloWorldImpl.java" for a full
sample build.xml file that contains additional targets from those described in
this procedure, such as clean, undeploy, client, and run. The full build.xml
file also uses properties, such as ${ear-dir}, rather than always using the
hard-coded name for the EAR directory.

7. Add the following call to the jwsc Ant task to the build.xml file, wrapped
inside of the build-service target:

 <target name="build-service">
 <jwsc
 srcdir="src"
 destdir="output/helloWorldEar">
 <jws file="examples/webservices/hello_world/HelloWorldImpl.java"
 type="JAXWS"/>
 </jwsc>
 </target>
The jwsc WebLogic Web service Ant task generates the supporting artifacts,
compiles the user-created and generated Java code, and archives all the artifacts
into an Enterprise Application EAR file that you later deploy to WebLogic Server.

Creating a Simple HelloWorld Web Service

Use Cases and Examples 2-3

You specify the type of Web service (JAX-WS) that you want to create using
type="JAXWS".

8. Execute the jwsc Ant task by specifying the build-service target at the
command line:

prompt> ant build-service

See the output/helloWorldEar directory to view the files and artifacts
generated by the jwsc Ant task.

9. Start the WebLogic Server instance to which the Web service will be deployed.

10. Deploy the Web service, packaged in an Enterprise Application, to WebLogic
Server, using either the Administration Console or the wldeploy Ant task. In
either case, you deploy the helloWorldEar Enterprise application, located in the
output directory.

To use the wldeploy Ant task, add the following target to the build.xml file:

 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>
 <target name="deploy">
 <wldeploy action="deploy"
 name="helloWorldEar" source="output/helloWorldEar"
 user="${wls.username}" password="${wls.password}"
 verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>

Substitute the values for wls.username, wls.password, wls.hostname,
wls.port, and wls.server.name that correspond to your WebLogic Server
instance.

Deploy the WAR file by executing the deploy target:

 prompt> ant deploy

11. Test that the Web service is deployed correctly by invoking its WSDL in your
browser:

http://host:port/HelloWorldImpl/HelloWorldService?WSDL

You construct the URL using the default values for the contextPath and
serviceUri attributes. The default value for the contextPath is the name of
the Java class in the JWS file. The default value of the serviceURI attribute is the
serviceName element of the @WebService annotation if specified. Otherwise,
the name of the JWS file, without its extension, followed by Service. For
example, if the serviceName element of the @WebService annotation is not
specified and the name of the JWS file is HelloWorldImpl.java, then the
default value of its serviceUri is HelloWorldImplService.

These attributes will be set explicitly in the next example, Section 2.2, "Creating a
Web Service With User-Defined Data Types." Use the hostname and port relevant
to your WebLogic Server instance.

You can use the clean, build-service, undeploy, and deploy targets in the
build.xml file to iteratively update, rebuild, undeploy, and redeploy the Web service
as part of your development process.

Creating a Simple HelloWorld Web Service

2-4 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

To run the Web service, you need to create a client that invokes it. See Section 2.4,
"Invoking a Web Service from a Java SE Application" for an example of creating a Java
client application that invokes a Web service.

2.1.1 Sample HelloWorldImpl.java JWS File
package examples.webservices.hello_world;
// Import the @WebService annotation
import javax.jws.WebService;
@WebService(name="HelloWorldPortType", serviceName="HelloWorldService")
/**
 * This JWS file forms the basis of simple Java-class implemented WebLogic
 * Web Service with a single operation: sayHelloWorld
 */
public class HelloWorldImpl {
 // By default, all public methods are exposed as Web Services operation
 public String sayHelloWorld(String message) {
 try {
 System.out.println("sayHelloWorld:" + message);
 } catch (Exception ex) { ex.printStackTrace(); }

 return "Here is the message: '" + message + "'";
 }
}

2.1.2 Sample Ant Build File for HelloWorldImpl.java
The following build.xml file uses properties to simplify the file.

<project name="webservices-hello_world" default="all">
 <!-- set global properties for this build -->
 <property name="wls.username" value="weblogic" />
 <property name="wls.password" value="weblogic" />
 <property name="wls.hostname" value="localhost" />
 <property name="wls.port" value="7001" />
 <property name="wls.server.name" value="myserver" />
 <property name="ear.deployed.name" value="helloWorldEar" />
 <property name="example-output" value="output" />
 <property name="ear-dir" value="${example-output}/helloWorldEar" />
 <property name="clientclass-dir" value="${example-output}/clientclasses" />
 <path id="client.class.path">
 <pathelement path="${clientclass-dir}"/>
 <pathelement path="${java.class.path}"/>
 </path>
 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>
 <target name="all" depends="clean,build-service,deploy,client" />
 <target name="clean" depends="undeploy">
 <delete dir="${example-output}"/>
 </target>
 <target name="build-service">
 <jwsc
 srcdir="src"
 destdir="${ear-dir}">
 <jws file="examples/webservices/hello_world/HelloWorldImpl.java"

Creating a Web Service With User-Defined Data Types

Use Cases and Examples 2-5

 type="JAXWS"/>
 </jwsc>
 </target>
 <target name="deploy">
 <wldeploy action="deploy" name="${ear.deployed.name}"
 source="${ear-dir}" user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>
 <target name="undeploy">
 <wldeploy action="undeploy" name="${ear.deployed.name}"
 failonerror="false"
 user="${wls.username}" password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>
 <target name="client">
 <clientgen

wsdl="http://${wls.hostname}:${wls.port}/HelloWorldImpl/HelloWorldService?WSDL"
 destDir="${clientclass-dir}"
 packageName="examples.webservices.hello_world.client"
 type="JAXWS"/>
 <javac
 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
 includes="**/*.java"/>
 <javac
 srcdir="src" destdir="${clientclass-dir}"
 includes="examples/webservices/hello_world/client/**/*.java"/>
 </target>
 <target name="run">
 <java classname="examples.webservices.hello_world.client.Main"
 fork="true" failonerror="true" >
 <classpath refid="client.class.path"/>
 <arg
 line="http://${wls.hostname}:${wls.port}/HelloWorldImpl/HelloWorldService" />
 </java> </target>
</project>

2.2 Creating a Web Service With User-Defined Data Types
The preceding use case uses only a simple data type, String, as the parameter and
return value of the Web service operation. This next example shows how to create a
Web service that uses a user-defined data type, in particular a JavaBean called
BasicStruct, as both a parameter and a return value of its operation.

There is actually very little a programmer has to do to use a user-defined data type in a
Web service, other than to create the Java source of the data type and use it correctly in
the JWS file. The jwsc Ant task, when it encounters a user-defined data type in the
JWS file, automatically generates all the data binding artifacts needed to convert data
between its XML representation (used in the SOAP messages) and its Java
representation (used in WebLogic Server).The data binding artifacts include the XML
Schema equivalent of the Java user-defined type.

The following procedure is very similar to the procedure in Section 2.1, "Creating a
Simple HelloWorld Web Service." For this reason, although the procedure does show

Creating a Web Service With User-Defined Data Types

2-6 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

all the needed steps, it provides details only for those steps that differ from the simple
HelloWorld example.

1. Set your WebLogic Server environment.

Open a command window and execute the setDomainEnv.cmd (Windows) or
setDomainEnv.sh (UNIX) script, located in the bin subdirectory of your
domain directory. The default location of WebLogic Server domains is MW_
HOME/user_projects/domains/domainName, where MW_HOME is the
top-level installation directory of the Oracle products and domainName is the
name of your domain.

2. Create a project directory:

 prompt> mkdir /myExamples/complex

3. Create a src directory under the project directory, as well as subdirectories that
correspond to the package name of the JWS file (shown later in this procedure):

 prompt> cd /myExamples/complex
 prompt> mkdir src/examples/webservices/complex

4. Create the source for the BasicStruct JavaBean.

Open your favorite Java IDE or text editor and create a Java file called
BasicStruct.java, in the project directory, using the Java code specified in
Section 2.2.1, "Sample BasicStruct JavaBean."

5. Save the BasicStruct.java file in the
src/examples/webservices/complex subdirectory of the project directory.

6. Create the JWS file that implements the Web service using the Java code specified
in Section 2.2.2, "Sample ComplexImpl.java JWS File."

The sample JWS file uses several JWS annotations: @WebMethod to specify
explicitly that a method should be exposed as a Web service operation and to
change its operation name from the default method name echoStruct to
echoComplexType; @WebParam and @WebResult to configure the parameters
and return values; and @SOAPBinding to specify the type of Web service. The
ComplexImpl.java JWS file also imports the
examples.webservice.complex.BasicStruct class and then uses the
BasicStruct user-defined data type as both a parameter and return value of the
echoStruct() method.

For more in-depth information about creating a JWS file, see Chapter 4,
"Programming the JWS File."

7. Save the ComplexImpl.java file in the
src/examples/webservices/complex subdirectory of the project directory.

8. Create a standard Ant build.xml file in the project directory and add a taskdef
Ant task to specify the fully Java classname of the jwsc task:

<project name="webservices-complex" default="all">
 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
</project>

See Section 2.2.3, "Sample Ant Build File for ComplexImpl.java JWS File" for a full
sample build.xml file.

9. Add the following call to the jwsc Ant task to the build.xml file, wrapped
inside of the build-service target:

Creating a Web Service With User-Defined Data Types

Use Cases and Examples 2-7

<target name="build-service">
 <jwsc
 srcdir="src"
 destdir="output/ComplexServiceEar" >
 <jws file="examples/webservices/complex/ComplexImpl.java"
 type="JAXWS">
 <WLHttpTransport
 contextPath="complex" serviceUri="ComplexService"
 portName="ComplexServicePort"/>
 </jws>
 </jwsc>
</target>

In the preceding example:

– The type attribute of the <jws> element specifies the type of Web service
(JAX-WS or JAX-RPC).

– The <WLHttpTransport> child element of the <jws> element of the jwsc
Ant task specifies the context path and service URI sections of the URL used to
invoke the Web service over the HTTP/S transport, as well as the name of the
port in the generated WSDL. For more information about defining the context
path, see "Defining the Context Path of a WebLogic Web Service" in WebLogic
Web Services Reference for Oracle WebLogic Server.

10. Execute the jwsc Ant task:

prompt> ant build-service

See the output/ComplexServiceEar directory to view the files and artifacts
generated by the jwsc Ant task.

11. Start the WebLogic Server instance to which the Web service will be deployed.

12. Deploy the Web service, packaged in the ComplexServiceEar Enterprise
Application, to WebLogic Server, using either the Administration Console or the
wldeploy Ant task. For example:

 prompt> ant deploy

13. Deploy the Web service, packaged in an Enterprise Application, to WebLogic
Server, using either the Administration Console or the wldeploy Ant task. In
either case, you deploy the ComplexServiceEar Enterprise application, located
in the output directory.

To use the wldeploy Ant task, add the following target to the build.xml file:

 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>
 <target name="deploy">
 <wldeploy action="deploy"
 name="ComplexServiceEar" source="output/ComplexServiceEar"
 user="${wls.username}" password="${wls.password}"
 verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>

Substitute the values for wls.username, wls.password, wls.hostname,
wls.port, and wls.server.name that correspond to your WebLogic Server
instance.

Deploy the WAR file by executing the deploy target:

Creating a Web Service With User-Defined Data Types

2-8 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

 prompt> ant deploy

14. Test that the Web service is deployed correctly by invoking its WSDL in your
browser:

http://host:port/complex/ComplexService?WSDL

To run the Web service, you need to create a client that invokes it. See Section 2.4,
"Invoking a Web Service from a Java SE Application" for an example of creating a Java
client application that invokes a Web service.

2.2.1 Sample BasicStruct JavaBean
package examples.webservices.complex;
/**
 * Defines a simple JavaBean called BasicStruct that has integer, String,
 * and String[] properties
 */
public class BasicStruct {
 // Properties
 private int intValue;
 private String stringValue;
 private String[] stringArray;
 // Getter and setter methods
 public int getIntValue() {
 return intValue;
 }
 public void setIntValue(int intValue) {
 this.intValue = intValue;
 }
 public String getStringValue() {
 return stringValue;
 }
 public void setStringValue(String stringValue) {
 this.stringValue = stringValue;
 }
 public String[] getStringArray() {
 return stringArray;
 }
 public void setStringArray(String[] stringArray) {
 this.stringArray = stringArray;
 }
 public String toString() {
 return "IntValue="+intValue+", StringValue="+stringValue;
 }
}

2.2.2 Sample ComplexImpl.java JWS File
package examples.webservices.complex;
// Import the standard JWS annotation interfaces
import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;
// Import the BasicStruct JavaBean
import examples.webservices.complex.BasicStruct;
// Standard JWS annotation that specifies that the portType name of the Web

Creating a Web Service With User-Defined Data Types

Use Cases and Examples 2-9

// Service is "ComplexPortType", its public service name is "ComplexService",
// and the targetNamespace used in the generated WSDL is "http://example.org"
@WebService(serviceName="ComplexService", name="ComplexPortType",
 targetNamespace="http://example.org")
// Standard JWS annotation that specifies this is a document-literal-wrapped
// Web Service
@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,
 use=SOAPBinding.Use.LITERAL,
 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)
/**
 * This JWS file forms the basis of a WebLogic Web Service. The Web Services
 * has two public operations:
 *
 * - echoInt(int)
 * - echoComplexType(BasicStruct)
 *
 * The Web Service is defined as a "document-literal" service, which means
 * that the SOAP messages have a single part referencing an XML Schema element
 * that defines the entire body.
 */
public class ComplexImpl {
 // Standard JWS annotation that specifies that the method should be exposed
 // as a public operation. Because the annotation does not include the
 // member-value "operationName", the public name of the operation is the
 // same as the method name: echoInt.
 //
 // The WebResult annotation specifies that the name of the result of the
 // operation in the generated WSDL is "IntegerOutput", rather than the
 // default name "return". The WebParam annotation specifies that the input
 // parameter name in the WSDL file is "IntegerInput" rather than the Java
 // name of the parameter, "input".
 @WebMethod()
 @WebResult(name="IntegerOutput",
 targetNamespace="http://example.org/complex")
 public int echoInt(
 @WebParam(name="IntegerInput",
 targetNamespace="http://example.org/complex")
 int input)
 {
 System.out.println("echoInt '" + input + "' to you too!");
 return input;
 }
 // Standard JWS annotation to expose method "echoStruct" as a public operation
 // called "echoComplexType"
 // The WebResult annotation specifies that the name of the result of the
 // operation in the generated WSDL is "EchoStructReturnMessage",
 // rather than the default name "return".
 @WebMethod(operationName="echoComplexType")
 @WebResult(name="EchoStructReturnMessage",
 targetNamespace="http://example.org/complex")
 public BasicStruct echoStruct(BasicStruct struct)
 {
 System.out.println("echoComplexType called");
 return struct;
 }
}

Creating a Web Service With User-Defined Data Types

2-10 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

2.2.3 Sample Ant Build File for ComplexImpl.java JWS File
The following build.xml file uses properties to simplify the file.

<project name="webservices-complex" default="all">
 <!-- set global properties for this build -->
 <property name="wls.username" value="weblogic" />
 <property name="wls.password" value="weblogic" />
 <property name="wls.hostname" value="localhost" />
 <property name="wls.port" value="7001" />
 <property name="wls.server.name" value="myserver" />
 <property name="ear.deployed.name" value="complexServiceEAR" />
 <property name="example-output" value="output" />
 <property name="ear-dir" value="${example-output}/complexServiceEar" />
 <property name="clientclass-dir" value="${example-output}/clientclass" />
 <path id="client.class.path">
 <pathelement path="${clientclass-dir}"/>
 <pathelement path="${java.class.path}"/>
 </path>
 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>
 <target name="all" depends="clean,build-service,deploy,client"/>
 <target name="clean" depends="undeploy">
 <delete dir="${example-output}"/>
 </target>
 <target name="build-service">
 <jwsc
 srcdir="src"
 destdir="${ear-dir}"
 keepGenerated="true"
 >
 <jws file="examples/webservices/complex/ComplexImpl.java"
 type="JAXWS">
 <WLHttpTransport
 contextPath="complex" serviceUri="ComplexService"
 portName="ComplexServicePort"/>
 </jws>
 </jwsc>
 </target>
 <target name="deploy">
 <wldeploy action="deploy"
 name="${ear.deployed.name}"
 source="${ear-dir}" user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}"/>
 </target>
 <target name="undeploy">
 <wldeploy action="undeploy" failonerror="false"
 name="${ear.deployed.name}"
 user="${wls.username}" password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}"/>
 </target>
 <target name="client">
 <clientgen
 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"

Creating a Web Service from a WSDL File

Use Cases and Examples 2-11

 destDir="${clientclass-dir}"
 packageName="examples.webservices.complex.client"
 type="JAXWS"/>
 <javac
 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
 includes="**/*.java"/>
 <javac
 srcdir="src" destdir="${clientclass-dir}"
 includes="examples/webservices/complex/client/**/*.java"/>
 </target>
 <target name="run" >
 <java fork="true"
 classname="examples.webservices.complex.client.Main"
 failonerror="true" >
 <classpath refid="client.class.path"/>
 <arg line="http://${wls.hostname}:${wls.port}/complex/ComplexService"
 />
 </java>
 </target>
</project>

2.3 Creating a Web Service from a WSDL File
Another common use case of creating a Web service is to start from an existing WSDL
file, often referred to as the golden WSDL. A WSDL file is a public contract that
specifies what the Web service looks like, such as the list of supported operations, the
signature and shape of each operation, the protocols and transports that can be used
when invoking the operations, and the XML Schema data types that are used when
transporting the data. Based on this WSDL file, you generate the artifacts that
implement the Web service so that it can be deployed to WebLogic Server. You use the
wsdlc Ant task to generate the following artifacts.

■ JWS service endpoint interface (SEI) that implements the Web service described by
the WSDL file.

■ JWS implementation file that contains a partial (stubbed-out) implementation of
the generated JWS SEI. This file must be customized by the developer.

■ JAXB data binding artifacts.

■ Optional Javadocs for the generated JWS SEI.

Typically, you run the wsdlc Ant task one time to generate a JAR file that contains the
generated JWS SEI file and data binding artifacts, then code the generated JWS file that
implements the interface, adding the business logic of your Web service. In particular,
you add Java code to the methods that implement the Web service operations so that
the operations behave as needed and add additional JWS annotations.

After you have coded the JWS implementation file, you run the jwsc Ant task to
generate the deployable Web service, using the same steps as described in the
preceding sections. The only difference is that you use the compiledWsdl attribute to
specify the JAR file (containing the JWS SEI file and data binding artifacts) generated
by the wsdlc Ant task.

Note: The only file generated by the wsdlc Ant task that you update
is the JWS implementation file. You never need to update the JAR file
that contains the JWS SEI and data binding artifacts.

Creating a Web Service from a WSDL File

2-12 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

The following simple example shows how to create a Web service from the WSDL file
shown in Section 2.3.1, "Sample WSDL File." The Web service has one operation,
getTemp, that returns a temperature when passed a zip code.

1. Set your WebLogic Server environment.

Open a command window and execute the setDomainEnv.cmd (Windows) or
setDomainEnv.sh (UNIX) script, located in the bin subdirectory of your
domain directory. The default location of WebLogic Server domains is MW_
HOME/user_projects/domains/domainName, where MW_HOME is the
top-level installation directory of the Oracle products and domainName is the
name of your domain.

2. Create a working directory:

 prompt> mkdir /myExamples/wsdlc

3. Put your WSDL file into an accessible directory on your computer.

For the purposes of this example, it is assumed that your WSDL file is called
TemperatureService.wsdl and is located in the
/myExamples/wsdlc/wsdl_files directory. See Section 2.3.1, "Sample WSDL
File" for a full listing of the file.

4. Create a standard Ant build.xml file in the project directory and add a taskdef
Ant task to specify the full Java classname of the wsdlc task:

<project name="webservices-wsdlc" default="all">
 <taskdef name="wsdlc"
 classname="weblogic.wsee.tools.anttasks.WsdlcTask"/>
</project>

See Section 2.3.3, "Sample Ant Build File for TemperatureService" for a full sample
build.xml file that contains additional targets from those described in this
procedure, such as clean, undeploy, client, and run. The full build.xml file
also uses properties, such as ${ear-dir}, rather than always using the
hard-coded name for the EAR directory.

5. Add the following call to the wsdlc Ant task to the build.xml file, wrapped
inside of the generate-from-wsdl target:

 <target name="generate-from-wsdl">
 <wsdlc
 srcWsdl="wsdl_files/TemperatureService.wsdl"
 destJwsDir="output/compiledWsdl"
 destImplDir="output/impl"
 packageName="examples.webservices.wsdlc"
 type="JAXWS"/>
 </target>

The wsdlc task in the examples generates the JAR file that contains the JWS SEI
and data binding artifacts into the output/compiledWsdl directory under the
current directory. It also generates a partial implementation file
(TemperaturePortTypeImpl.java) of the JWS SEI into the
output/impl/examples/webservices/wsdlc directory (which is a
combination of the output directory specified by destImplDir and the directory
hierarchy specified by the package name). All generated JWS files will be
packaged in the examples.webservices.wsdlc package.

6. Execute the wsdlc Ant task by specifying the generate-from-wsdl target at
the command line:

Creating a Web Service from a WSDL File

Use Cases and Examples 2-13

prompt> ant generate-from-wsdl

See the output directory if you want to examine the artifacts and files generated
by the wsdlc Ant task.

7. Update the generated
output/impl/examples/webservices/wsdlc/TemperaturePortTypeImp
l.java JWS implementation file using your favorite Java IDE or text editor to add
Java code to the methods so that they behave as you want.

See Section 2.3.2, "Sample TemperaturePortType Java Implementation File" for an
example; the added Java code is in bold. The generated JWS implementation file
automatically includes values for the @WebService JWS annotation that
corresponds to the value in the original WSDL file.

For simplicity, the sample getTemp() method in
TemperaturePortTypeImpl.java returns a hard-coded number. In real life,
the implementation of this method would actually look up the current
temperature at the given zip code.

8. Copy the updated TemperaturePortTypeImpl.java file into a permanent
directory, such as a src directory under the project directory; remember to create
child directories that correspond to the package name:

prompt> cd /examples/wsdlc
prompt> mkdir src/examples/webservices/wsdlc
prompt> cp output/impl/examples/webservices/wsdlc/TemperaturePortTypeImpl.java
\src/examples/webservices/wsdlc/TemperaturePortTypeImpl.java

9. Add a build-service target to the build.xml file that executes the jwsc Ant
task against the updated JWS implementation class. Use the compiledWsdl
attribute of jwsc to specify the name of the JAR file generated by the wsdlc Ant
task:

 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
 <target name="build-service">
 <jwsc
 srcdir="src"
 destdir="${ear-dir}">
 <jws file="examples/webservices/wsdlc/TemperaturePortTypeImpl.java"
 compiledWsdl="${compiledWsdl-dir}/TemperatureService_wsdl.jar"
 type="JAXWS">
 <WLHttpTransport
 contextPath="temp" serviceUri="TemperatureService"
 portName="TemperaturePort">
 </WLHttpTransport>
 </jws>
 </jwsc>
 </target>

In the preceding example:

Note: There are restrictions on the JWS annotations that you can add
to the JWS implementation file in the "starting from WSDL" use case.
See "wsdlc" in the WebLogic Web Services Reference for Oracle WebLogic
Server for details.

Creating a Web Service from a WSDL File

2-14 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

– The type attribute of the <jws> element specifies the type of Web services
(JAX-WS or JAX-RPC).

– The <WLHttpTransport> child element of the <jws> element of the jwsc
Ant task specifies the context path and service URI sections of the URL used to
invoke the Web service over the HTTP/S transport, as well as the name of the
port in the generated WSDL.

10. Execute the build-service target to generate a deployable Web service:

prompt> ant build-service

You can re-run this target if you want to update and then re-build the JWS file.

11. Start the WebLogic Server instance to which the Web service will be deployed.

12. Deploy the Web service, packaged in an Enterprise Application, to WebLogic
Server, using either the Administration Console or the wldeploy Ant task. In
either case, you deploy the wsdlcEar Enterprise application, located in the
output directory.

To use the wldeploy Ant task, add the following target to the build.xml file:

 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>
 <target name="deploy">
 <wldeploy action="deploy" name="wsdlcEar"
 source="output/wsdlcEar" user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>

Substitute the values for wls.username, wls.password, wls.hostname,
wls.port, and wls.server.name that correspond to your WebLogic Server
instance.

Deploy the WAR file by executing the deploy target:

 prompt> ant deploy

13. Test that the Web service is deployed correctly by invoking its WSDL in your
browser:

http://host:port/temp/TemperatureService?WSDL

The context path and service URI section of the preceding URL are specified by the
original golden WSDL. Use the hostname and port relevant to your WebLogic
Server instance. Note that the deployed and original WSDL files are the same,
except for the host and port of the endpoint address.

You can use the clean, build-service, undeploy, and deploy targets in the
build.xml file to iteratively update, rebuild, undeploy, and redeploy the Web service
as part of your development process.

To run the Web service, you need to create a client that invokes it. See Section 2.4,
"Invoking a Web Service from a Java SE Application" for an example of creating a Java
client application that invokes a Web service.

2.3.1 Sample WSDL File
<?xml version="1.0"?>
<definitions

Creating a Web Service from a WSDL File

Use Cases and Examples 2-15

 name="TemperatureService"
 targetNamespace="http://www.xmethods.net/sd/TemperatureService.wsdl"
 xmlns:tns="http://www.xmethods.net/sd/TemperatureService.wsdl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/" >
 <message name="getTempRequest">
 <part name="zip" type="xsd:string"/>
 </message>
 <message name="getTempResponse">
 <part name="return" type="xsd:float"/>
 </message>
 <portType name="TemperaturePortType">
 <operation name="getTemp">
 <input message="tns:getTempRequest"/>
 <output message="tns:getTempResponse"/>
 </operation>
 </portType>
 <binding name="TemperatureBinding" type="tns:TemperaturePortType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="getTemp">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"
 namespace="urn:xmethods-Temperature" />
 </input>
 <output>
 <soap:body use="literal"
 namespace="urn:xmethods-Temperature" />
 </output>
 </operation>
 </binding>
 <service name="TemperatureService">
 <documentation>
 Returns current temperature in a given U.S. zipcode
 </documentation>
 <port name="TemperaturePort" binding="tns:TemperatureBinding">
 <soap:address

location="http://localhost:7001/temp/TemperatureService"/>
 </port>
 </service>
</definitions>

2.3.2 Sample TemperaturePortType Java Implementation File
package examples.webservices.wsdlc;
import javax.jws.WebService;
import javax.xml.ws.BindingType;
/**
 * examples.webservices.wsdlc.TemperatureServiceImpl class implements web
 * service endpoint interface
 * examples.webservices.wsdlc.TemperaturePortType */
@WebService(
 portName="TemperaturePort"
 serviceName="TemperatureService",
 targetNamespace="http://www.xmethods.net/sd/TemperatureService.wsdl"
 endpointInterface="examples.webservices.wsdlc.TemperaturePortType"

Creating a Web Service from a WSDL File

2-16 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

 wsdlLocation="/wsdls/TemperatureServices.wsdl")
@BindingType(value="http://schemas.xmlsoap.org/wsdl/soap/http")
public class TemperaturePortTypeImpl implements
examples.webservices.wsdlc.TemperaturePortType {
 public TemperaturePortTypeImpl() { }
 public float getTemp(java.lang.String zip) {
 return 1.234f;
 }
}

2.3.3 Sample Ant Build File for TemperatureService
The following build.xml file uses properties to simplify the file.

<project default="all">
 <!-- set global properties for this build -->
 <property name="wls.username" value="weblogic" />
 <property name="wls.password" value="weblogic" />
 <property name="wls.hostname" value="localhost" />
 <property name="wls.port" value="7001" />
 <property name="wls.server.name" value="myserver" />
 <property name="ear.deployed.name" value="wsdlcEar" />
 <property name="example-output" value="output" />
 <property name="compiledWsdl-dir" value="${example-output}/compiledWsdl" />
 <property name="impl-dir" value="${example-output}/impl" />
 <property name="ear-dir" value="${example-output}/wsdlcEar" />
 <property name="clientclass-dir" value="${example-output}/clientclasses" />
 <path id="client.class.path">
 <pathelement path="${clientclass-dir}"/>
 <pathelement path="${java.class.path}"/>
 </path>
 <taskdef name="wsdlc"
 classname="weblogic.wsee.tools.anttasks.WsdlcTask"/>
 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>
 <target name="all"
 depends="clean,generate-from-wsdl,build-service,deploy,client" />
 <target name="clean" depends="undeploy">
 <delete dir="${example-output}"/>
 </target>
 <target name="generate-from-wsdl">
 <wsdlc
 srcWsdl="wsdl_files/TemperatureService.wsdl"
 destJwsDir="${compiledWsdl-dir}"
 destImplDir="${impl-dir}"
 packageName="examples.webservices.wsdlc" />
 </target>
 <target name="build-service">
 <jwsc
 srcdir="src"
 destdir="${ear-dir}">
 <jws file="examples/webservices/wsdlc/TemperaturePortTypeImpl.java"
 compiledWsdl="${compiledWsdl-dir}/TemperatureService_wsdl.jar"
 type="JAXWS">
 <WLHttpTransport

Invoking a Web Service from a Java SE Application

Use Cases and Examples 2-17

 contextPath="temp" serviceUri="TemperatureService"
 portName="TemperaturePort"/>
 </jws>
 </jwsc>
 </target>
 <target name="deploy">
 <wldeploy action="deploy" name="${ear.deployed.name}"
 source="${ear-dir}" user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>
 <target name="undeploy">
 <wldeploy action="undeploy" name="${ear.deployed.name}"
 failonerror="false"
 user="${wls.username}" password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>
 <target name="client">
 <clientgen
 wsdl="http://${wls.hostname}:${wls.port}/temp/TemperatureService?WSDL"
 destDir="${clientclass-dir}"
 packageName="examples.webservices.wsdlc.client"
 type="JAXWS">
 <javac
 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
 includes="**/*.java"/>
 <javac
 srcdir="src" destdir="${clientclass-dir}"
 includes="examples/webservices/wsdlc/client/**/*.java"/>
 </target>
 <target name="run">
 <java classname="examples.webservices.wsdlc.client.TemperatureClient"
 fork="true" failonerror="true" >
 <classpath refid="client.class.path"/>
 <arg
 line="http://${wls.hostname}:${wls.port}/temp/TemperatureService" />
 </java>
 </target>
</project>

2.4 Invoking a Web Service from a Java SE Application

When you invoke an operation of a deployed Web service from a client application,
the Web service could be deployed to WebLogic Server or to any other application
server, such as .NET. All you need to know is the URL to its public contract file, or
WSDL.

Note: You can invoke a Web service from any Java SE or Java EE
application running on WebLogic Server (with access to the WebLogic
Server classpath). Invoking a Web service from stand-alone Java
applications that are running in an environment where WebLogic
Server libraries are not available is not supported in this release for
JAX-WS Web services.

Invoking a Web Service from a Java SE Application

2-18 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

In addition to writing the Java client application, you must also run the clientgen
WebLogic Web service Ant task to generate the artifacts that your client application
needs to invoke the Web service operation. These artifacts include:

■ The Java class for the Service interface implementation for the particular Web
service you want to invoke.

■ JAXB data binding artifacts.

■ The Java class for any user-defined XML Schema data types included in the WSDL
file.

The following example shows how to create a Java client application that invokes the
echoComplexType operation of the ComplexService WebLogic Web service
described in Section 2.2, "Creating a Web Service With User-Defined Data Types." The
echoComplexType operation takes as both a parameter and return type the
BasicStruct user-defined data type.

1. Set your WebLogic Server environment.

Open a command window and execute the setDomainEnv.cmd (Windows) or
setDomainEnv.sh (UNIX) script, located in the bin subdirectory of your
domain directory. The default location of WebLogic Server domains is MW_
HOME/user_projects/domains/domainName, where MW_HOME is the
top-level installation directory of the Oracle products and domainName is the
name of your domain.

2. Create a project directory:

 prompt> mkdir /myExamples/simple_client

3. Create a src directory under the project directory, as well as subdirectories that
correspond to the package name of the Java client application (shown later on in
this procedure):

 prompt> cd /myExamples/simple_client
 prompt> mkdir src/examples/webservices/simple_client

4. Create a standard Ant build.xml file in the project directory and add a taskdef
Ant task to specify the full Java classname of the clientgen task:

<project name="webservices-simple_client" default="all">
 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
</project>

See Section 2.4.2, "Sample Ant Build File For Building Java Client Application" for
a full sample build.xml file. The full build.xml file uses properties, such as
${clientclass-dir}, rather than always using the hard-coded name output
directory for client classes.

5. Add the following calls to the clientgen and javac Ant tasks to the
build.xml file, wrapped inside of the build-client target:

 <target name="build-client">
 <clientgen
 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
 destDir="output/clientclass"

Note: It is assumed in this procedure that you have created and
deployed the ComplexService Web service.

Invoking a Web Service from a Java SE Application

Use Cases and Examples 2-19

 packageName="examples.webservices.simple_client"
 type="JAXWS"/>
 <javac
 srcdir="output/clientclass" destdir="output/clientclass"
 includes="**/*.java"/>
 <javac
 srcdir="src" destdir="output/clientclass"
 includes="examples/webservices/simple_client/*.java"/>
</target>

The clientgen Ant task uses the WSDL of the deployed ComplexService Web
service to generate the necessary artifacts and puts them into the
output/clientclass directory, using the specified package name. Replace the
variables with the actual hostname and port of your WebLogic Server instance that
is hosting the Web service.

In this example, the package name is set to the same package name as the client
application, examples.webservices.simple_client. If you set the package
name to one that is different from the client application, you would need to import
the appropriate class files. For example, if you defined the package name as
examples.webservices.complex, you would need to import the following
class files in the client application:

import examples.webservices.complex.BasicStruct;
import examples.webservices.complex.ComplexPortType;
import examples.webservices.complex.ComplexService;

The clientgen Ant task also automatically generates the
examples.webservices.simple_client.BasicStruct JavaBean class,
which is the Java representation of the user-defined data type specified in the
WSDL.

The build-client target also specifies the standard javac Ant task, in addition
to clientgen, to compile all the Java code, including the Java program described
in the next step, into class files.

The clientgen Ant task also provides the destFile attribute if you want the
Ant task to automatically compile the generated Java code and package all
artifacts into a JAR file. For details and an example, see "clientgen" in the WebLogic
Web Services Reference for Oracle WebLogic Server.

6. Create the Java client application file that invokes the echoComplexType
operation.

Open your favorite Java IDE or text editor and create a Java file called Main.java
using the code specified in Section 2.4.1, "Sample Java Client Application."

The application follows standard JAX-WS guidelines to invoke an operation of the
Web service using the Web service-specific implementation of the Service
interface generated by clientgen. For details, see Chapter 6, "Invoking Web
Services."

7. Save the Main.java file in the src/examples/webservices/simple_
client subdirectory of the main project directory.

8. Execute the clientgen and javac Ant tasks by specifying the build-client
target at the command line:

prompt> ant build-client

See the output/clientclass directory to view the files and artifacts generated
by the clientgen Ant task.

Invoking a Web Service from a Java SE Application

2-20 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

9. Add the following targets to the build.xml file, used to execute the Main
application:

 <path id="client.class.path">
 <pathelement path="output/clientclass"/>
 <pathelement path="${java.class.path}"/>
 </path>
 <target name="run" >
 <java fork="true"
 classname="examples.webservices.simple_client.Main"
 failonerror="true" >
 <classpath refid="client.class.path"/>
 </target>

The run target invokes the Main application, passing it the WSDL URL of the
deployed Web service as its single argument. The classpath element adds the
clientclass directory to the CLASSPATH, using the reference created with the
<path> task.

10. Execute the run target to invoke the echoComplexType operation:

 prompt> ant run

If the invoke was successful, you should see the following final output:

run:
 [java] echoComplexType called. Result: 999, Hello Struct

You can use the build-client and run targets in the build.xml file to iteratively
update, rebuild, and run the Java client application as part of your development
process.

2.4.1 Sample Java Client Application
The following provides a simple Java client application that invokes the
echoComplexType operation. Because the <clientgen> packageName attribute
was set to the same package name as the client application, we are not required to
import the <clientgen>-generated files.

package examples.webservices.simple_client;
/**
 * This is a simple Java application that invokes the
 * echoComplexType operation of the ComplexService Web service.
 */
public class Main {
 public static void main(String[] args) {
 ComplexService test = new ComplexService();
 ComplexPortType port = test.getComplexPortTypePort();
 BasicStruct in = new BasicStruct();
 in.setIntValue(999);
 in.setStringValue("Hello Struct");
 BasicStruct result = port.echoComplexType(in);
 System.out.println("echoComplexType called. Result: " + result.getIntValue() +
", " + result.getStringValue());
 }
}

Invoking a Web Service from a WebLogic Web Service

Use Cases and Examples 2-21

2.4.2 Sample Ant Build File For Building Java Client Application
The following build.xml file defines tasks to build the Java client application. The
example uses properties to simplify the file.

<project name="webservices-simple_client" default="all">
 <!-- set global properties for this build -->
 <property name="wls.hostname" value="localhost" />
 <property name="wls.port" value="7001" />
 <property name="example-output" value="output" />
 <property name="clientclass-dir" value="${example-output}/clientclass" />
 <path id="client.class.path">
 <pathelement path="${clientclass-dir}"/>
 <pathelement path="${java.class.path}"/>
 </path>
 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
 <target name="clean" >
 <delete dir="${clientclass-dir}"/>
 </target>
 <target name="all" depends="clean,build-client,run" />
 <target name="build-client">
 <clientgen
 type="JAXWS"
 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
 destDir="${clientclass-dir}"
 packageName="examples.webservices.simple_client"/>
 <javac
 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
 includes="**/*.java"/>
 <javac
 srcdir="src" destdir="${clientclass-dir}"
 includes="examples/webservices/simple_client/*.java"/>
 </target>
 <target name="run" >
 <java fork="true"
 classname="examples.webservices.simple_client.Main"
 failonerror="true" >
 <classpath refid="client.class.path"/>
 </java>
 </target>
</project>

2.5 Invoking a Web Service from a WebLogic Web Service
You can invoke a Web service (WebLogic, Microsoft .NET, and so on) from within a
deployed WebLogic Web service.

The procedure is similar to that described in Section 2.4, "Invoking a Web Service from
a Java SE Application" except that instead of running the clientgen Ant task to
generate the client stubs, you use the <clientgen> child element of <jws>, inside of
the jwsc Ant task. The jwsc Ant task automatically packages the generated client
stubs in the invoking Web service WAR file so that the Web service has immediate
access to them. You then follow standard JAX-WS programming guidelines in the JWS
file that implements the Web service that invokes the other Web service.

The following example shows how to write a JWS file that invokes the
echoComplexType operation of the ComplexService Web service described in
Section 2.2, "Creating a Web Service With User-Defined Data Types."

Invoking a Web Service from a WebLogic Web Service

2-22 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

1. Set your WebLogic Server environment.

Open a command window and execute the setDomainEnv.cmd (Windows) or
setDomainEnv.sh (UNIX) script, located in the bin subdirectory of your
domain directory. The default location of WebLogic Server domains is MW_
HOME/user_projects/domains/domainName, where MW_HOME is the
top-level installation directory of the Oracle products and domainName is the
name of your domain.

2. Create a project directory:

 prompt> mkdir /myExamples/service_to_service

3. Create a src directory under the project directory, as well as subdirectories that
correspond to the package name of the JWS and client application files (shown
later on in this procedure):

 prompt> cd /myExamples/service_to_service
 prompt> mkdir src/examples/webservices/service_to_service

4. Create the JWS file that implements the Web service that invokes the
ComplexService Web service.

Open your favorite Java IDE or text editor and create a Java file called
ClientServiceImpl.java using the Java code specified in Section 2.5.1,
"Sample ClientServiceImpl.java JWS File."

The sample JWS file shows a Java class called ClientServiceImpl that contains
a single public method, callComplexService(). The Java class imports the
JAX-WS stubs, generated later on by the jwsc Ant task, as well as the
BasicStruct JavaBean (also generated by clientgen), which is the data type
of the parameter and return value of the echoComplexType operation of the
ComplexService Web service.

The ClientServiceImpl Java class defines one method,
callComplexService(), which takes one parameter: a BasicStruct which is
passed on to the echoComplexType operation of the ComplexService Web
service. The method then uses the standard JAX-WS APIs to get the Service and
PortType of the ComplexService, using the stubs generated by jwsc, and then
invokes the echoComplexType operation.

5. Save the ClientServiceImpl.java file in the
src/examples/webservices/service_to_service directory.

6. Create a standard Ant build.xml file in the project directory and add the
following task:

<project name="webservices-service_to_service" default="all">
 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
</project>

The taskdef task defines the full classname of the jwsc Ant task.

See Section 2.5.2, "Sample Ant Build File For Building ClientService" for a full
sample build.xml file that contains additional targets from those described in
this procedure, such as clean, deploy, undeploy, client, and run. The full

Note: It is assumed that you have successfully deployed the
ComplexService Web service.

Invoking a Web Service from a WebLogic Web Service

Use Cases and Examples 2-23

build.xml file also uses properties, such as ${ear-dir}, rather than always
using the hard-coded name for the EAR directory.

7. Add the following call to the jwsc Ant task to the build.xml file, wrapped
inside of the build-service target:

<target name="build-service">
 <jwsc
 srcdir="src"
 destdir="output/ClientServiceEar" >
 <jws
 file="examples/webservices/service_to_service/ClientServiceImpl.java"
 type="JAXWS">
 <WLHttpTransport
 contextPath="ClientService" serviceUri="ClientService"
 portName="ClientServicePort"/>
 <clientgen
 type="JAXWS"
wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
 packageName="examples.webservices.complex" />
 </jws>
 </jwsc>
</target>

In the preceding example, the <clientgen> child element of the <jws> element
of the jwsc Ant task specifies that, in addition to compiling the JWS file, jwsc
should also generate and compile the client artifacts needed to invoke the Web
service described by the WSDL file.

In this example, the package name is set to examples.webservices.complex,
which is different from the client application package name,
examples.webservices.simple_client. As a result, you need to import the
appropriate class files in the client application:

import examples.webservices.complex.BasicStruct;
import examples.webservices.complex.ComplexPortType;
import examples.webservices.complex.ComplexService;

If the package name is set to the same package name as the client application, the
import calls would be optional.

8. Execute the jwsc Ant task by specifying the build-service target at the
command line:

prompt> ant build-service

9. Start the WebLogic Server instance to which you will deploy the Web service.

10. Deploy the Web service, packaged in an Enterprise Application, to WebLogic
Server, using either the Administration Console or the wldeploy Ant task. In
either case, you deploy the ClientServiceEar Enterprise application, located in
the output directory.

To use the wldeploy Ant task, add the following target to the build.xml file:

 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>
 <target name="deploy">
 <wldeploy action="deploy" name="ClientServiceEar"
 source="ClientServiceEar" user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"

Invoking a Web Service from a WebLogic Web Service

2-24 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

 targets="${wls.server.name}" />
 </target>

Substitute the values for wls.username, wls.password, wls.hostname,
wls.port, and wls.server.name that correspond to your WebLogic Server
instance.

Deploy the WAR file by executing the deploy target:

 prompt> ant deploy

11. Test that the Web service is deployed correctly by invoking its WSDL in your
browser:

http://host:port/ClientService/ClientService?WSDL

See Section 2.4, "Invoking a Web Service from a Java SE Application" for an example of
creating a Java client application that invokes a Web service.

2.5.1 Sample ClientServiceImpl.java JWS File
The following provides a simple Web service client application that invokes the
echoComplexType operation.

package examples.webservices.service_to_service;

import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.xml.ws.WebServiceRef;

// Import the BasicStruct data type, generated by clientgen and used
// by the ComplexService Web Service
import examples.webservices.complex.BasicStruct;

// Import the JAX-WS stubs generated by clientgen for invoking
// the ComplexService Web service.
import examples.webservices.complex.ComplexPortType;
import examples.webservices.complex.ComplexService;

@WebService(name="ClientPortType", serviceName="ClientService",
 targetNamespace="http://examples.org")
public class ClientServiceImpl {
// Use the @WebServiceRef annotation to define a reference to the
// ComplexService Web service.
 @WebServiceRef()
 ComplexService test;

 @WebMethod()
 public String callComplexService(BasicStruct input, String serviceUrl)
 {
 // Create a port stub to invoke ComplexService
 ComplexPortType port = test.getComplexPortTypePort();

 // Invoke the echoComplexType operation of ComplexService
 BasicStruct result = port.echoComplexType(input);
 System.out.println("Invoked ComplexPortType.echoComplexType.");
 return "Invoke went okay! Here's the result: '" + result.getIntValue() +
 ", " + result.getStringValue() + "'";
 }
}

Invoking a Web Service from a WebLogic Web Service

Use Cases and Examples 2-25

2.5.2 Sample Ant Build File For Building ClientService
The following build.xml file defines tasks to build the client application. The
example uses properties to simplify the file.

The following build.xml file uses properties to simplify the file.

<project name="webservices-service_to_service" default="all">
 <!-- set global properties for this build -->
 <property name="wls.username" value="weblogic" />
 <property name="wls.password" value="weblogic" />
 <property name="wls.hostname" value="localhost" />
 <property name="wls.port" value="7001" />
 <property name="wls.server.name" value="myserver" />
 <property name="ear.deployed.name" value="ClientServiceEar" />
 <property name="example-output" value="output" />
 <property name="ear-dir" value="${example-output}/ClientServiceEar" />
 <property name="clientclass-dir" value="${example-output}/clientclasses" />
 <path id="client.class.path">
 <pathelement path="${clientclass-dir}"/>
 <pathelement path="${java.class.path}"/>
 </path>
 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>
 <target name="all" depends="clean,build-service,deploy,client" />
 <target name="clean" depends="undeploy">
 <delete dir="${example-output}"/>
 </target>
 <target name="build-service">
 <jwsc
 srcdir="src"
 destdir="${ear-dir}" >
 <jws
 file="examples/webservices/service_to_service/ClientServiceImpl.java"
 type="JAXWS">
 <WLHttpTransport
 contextPath="ClientService" serviceUri="ClientService"
 portName="ClientServicePort"/>
 <clientgen
 type="JAXWS"
 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
 packageName="examples.webservices.complex" />
 </jws>
 </jwsc>
 </target>
 <target name="deploy">
 <wldeploy action="deploy" name="${ear.deployed.name}"
 source="${ear-dir}" user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>
 <target name="undeploy">
 <wldeploy action="undeploy" name="${ear.deployed.name}"
 failonerror="false"
 user="${wls.username}"
 password="${wls.password}" verbose="true"

Invoking a Web Service from a WebLogic Web Service

2-26 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>
 <target name="client">
 <clientgen
 wsdl="http://${wls.hostname}:${wls.port}/ClientService/ClientService?WSDL"
 destDir="${clientclass-dir}"
 packageName="examples.webservices.service_to_service.client"
 type="JAXWS"/>
 <javac
 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
 includes="**/*.java"/>
 <javac
 srcdir="src" destdir="${clientclass-dir}"
 includes="examples/webservices/service_to_service/client/**/*.java"/>
 </target>
 <target name="run">
 <java classname="examples.webservices.service_to_service.client.Main"
 fork="true"
 failonerror="true" >
 <classpath refid="client.class.path"/>
 </java>
 </target>
</project>

3

Developing WebLogic Web Services 3-1

3Developing WebLogic Web Services

The following sections describe the iterative development process for WebLogic Web
services:

■ Section 3.1, "Overview of the WebLogic Web Service Programming Model"

■ Section 3.2, "Configuring Your Domain For Advanced Web Services Features"

■ Section 3.3, "Developing WebLogic Web Services Starting From Java: Main Steps"

■ Section 3.4, "Developing WebLogic Web Services Starting From a WSDL File: Main
Steps"

■ Section 3.5, "Creating the Basic Ant build.xml File"

■ Section 3.6, "Running the jwsc WebLogic Web Services Ant Task"

■ Section 3.7, "Running the wsdlc WebLogic Web Services Ant Task"

■ Section 3.8, "Updating the Stubbed-out JWS Implementation Class File Generated
By wsdlc"

■ Section 3.9, "Deploying and Undeploying WebLogic Web Services"

■ Section 3.10, "Browsing to the WSDL of the Web Service"

■ Section 3.11, "Configuring the Server Address Specified in the Dynamic WSDL"

■ Section 3.12, "Testing the Web Service"

■ Section 3.13, "Integrating Web Services Into the WebLogic Split Development
Directory Environment"

3.1 Overview of the WebLogic Web Service Programming Model
The WebLogic Web services programming model centers around JWS files—Java files
that use JWS annotations to specify the shape and behavior of the Web service—and
Ant tasks that execute on the JWS file. JWS annotations are based on the metadata
feature, introduced in Version 5.0 of the JDK (specified by JSR-175 at
http://www.jcp.org/en/jsr/detail?id=175) and include standard
annotations defined by Web Services Metadata for the Java Platform specification
(JSR-181), described at http://www.jcp.org/en/jsr/detail?id=181, the
JAX-WS specification (JSR-224), described at https://jax-ws.dev.java.net, as
well as additional ones. For a complete list of JWS annotations that are supported, see
"Web Service Annotation Support" in Introducing WebLogic Web Services for Oracle
WebLogic Server. For additional detailed information about this programming model,
see "Anatomy of a WebLogic Web Service" in Introducing WebLogic Web Services for
Oracle WebLogic Server.

Configuring Your Domain For Advanced Web Services Features

3-2 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

The following sections describe the high-level steps for iteratively developing a Web
service, either starting from Java or starting from an existing WSDL file:

■ Section 3.3, "Developing WebLogic Web Services Starting From Java: Main Steps"

■ Section 3.4, "Developing WebLogic Web Services Starting From a WSDL File: Main
Steps"

Iterative development refers to setting up your development environment in such a
way so that you can repeatedly code, compile, package, deploy, and test a Web service
until it works as you want. The WebLogic Web service programming model uses Ant
tasks to perform most of the steps of the iterative development process. Typically, you
create a single build.xml file that contains targets for all the steps, then repeatedly
run the targets, after you have updated your JWS file with new Java code, to test that
the updates work as you expect.

In addition to the command-line tools described in this section, you can use an IDE,
such as Oracle JDeveloper or Oracle Enterprise Pack for Eclipse (OEPE), to develop
Web services. For more information, see "Using Oracle IDEs to Build Web Services" in
Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server.

3.2 Configuring Your Domain For Advanced Web Services Features
When creating or extending a domain, you can apply the WebLogic Advanced Web
Services for JAX-WS Extension template (wls_webservices_jaxws.jar) to
configure automatically the resources required to support the following advanced Web
service features:

■ Asynchronous messaging

■ Web services reliable messaging

■ Message buffering

■ Security using WS-SecureConversation

Although use of this extension template is not required, it makes the configuration of
the required resources much easier. Alternatively, you can manually configure the
resources required for these advanced features using the Oracle WebLogic
Administration Console or WLST.

The following procedures describe how to configure a domain automatically for the
advanced Web services features. For more detailed instructions about using the
Configuration Wizard to create and update WebLogic Server domains, see Creating
Domains Using the Configuration Wizard.

■ Section 3.2.1, "Resources Required by Advanced Web Service Features"

■ Section 3.2.2, "Scripts for Extending a Domain for Advanced Web Service Features"

■ Section 3.2.3, "Configuring a Domain for Advanced Web Service Features Using
the Configuration Wizard"

■ Section 3.2.4, "Using WLST to Extend a Domain With the Web Services Extension
Template"

■ Section 3.2.5, "Updating Resources Added After Extending Your Domain"

3.2.1 Resources Required by Advanced Web Service Features
Table 3–1 lists the resources that are defined automatically when using the WebLogic
Advanced Web Services for JAX-WS Extension template. If you do not apply the

Configuring Your Domain For Advanced Web Services Features

Developing WebLogic Web Services 3-3

extension template, you need to configure the resources manually using the Oracle
WebLogic Administration Console or WLST.

The following variables are used in the table:

■ server_designator specifies an ID that is generated automatically by the
configuration framework. Typically, this ID is of the format auto_number.

■ uniqueID specifies unique numeric ID that is generated automatically by the
configuration framework. Typically, this ID is a numeric value, such as 1234.

■ server_name specifies the user-specified name of the server.

Note: At runtime, you should not change the name of resources;
otherwise, you may experience runtime errors or data loss.

Several resources are reserved for future use, as indicated in the table.

Configuring Your Domain For Advanced Web Services Features

3-4 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

Table 3–1 Resources Required by Advanced Web Services Features

Resource Name Resource Type Description

WseeJaxwsJmsModule JMS Module Defines a JMS module that defines the JMS resources
needed for advanced Web services. All associated
targets (JMS servers targeted to a server) on this JMS
module will be used to support JAX-WS Web services.
All servers to which this module is targeted must
have the proper Web services resources configured.

Oracle recommends that you target this module to all
servers in the domain.

Note: You must configure the JMS module as a
Uniform Distributed Destination (UDD). Any queues
that are used by Web services on JAX-WS must be
Uniform Distributed Queues. Otherwise, an exception
is thrown.

To configure distributed destinations manually and
for more information, see "Using Distributed
Destination" in Programming JMS for Oracle WebLogic
Server.

WseeJaxwsFileStore_
server_designator

File store Specifies the file store, or physical store, used by the
WebLogic Server to handle the I/O operations to save
and retrieve data from the physical storage (such as
file, DBMS, and so on).

A separate file store is configured on each Managed
Server targeted by the WseeJaxwsJmsModule, as
specified by server_designator. In a single server
domain, the file store is named
WseeJaxwsFileStore.

Note: Oracle recommends targeting the file store to a
migratable target.

To configure the file stores manually, see "Using the
WebLogic Persistent Store" in Configuring Server
Environments for Oracle WebLogic Server.

WseeJaxwsJmsServer_
server_designator

JMS server Specifies the JMS server management container. A
separate JMS Server is configured on each Managed
Server targeted by WseeJaxwsJmsModule, as
specified by server_designator. The JMS server
uses WseeFileStore_server_designator as the
file store.

Note: Oracle recommends targeting the JMS server to
a migratable target.

To configure the JMS server manually, see "JMS
Configuration" in Configuring and Managing JMS for
Oracle WebLogic Server.

WseeJaxwsJmsServeruni
queID

JMS subdeployment Specifies the JMS subdeployment targeting the JMS
servers defined on all Managed Servers in the cluster.

To configure the JMS subdeployment manually, see
"Configure subdeployments in JMS system modules"
in Oracle WebLogic Server Administration Console Help.

Configuring Your Domain For Advanced Web Services Features

Developing WebLogic Web Services 3-5

weblogic.wsee.jaxws.m
db.DispatchPolicy

Work Manager Enables an application to execute multiple work items
concurrently within a container. One Work Manager is
generated for the domain and targeted to all servers to
which the WseeJaxwsJmsModule is targeted.

Note: You should not change the name of the Work
Manager resource.

To configure Work Managers manually, see
"Description of the Work Manager API" in Timer and
Work Manager API (CommonJ) Programmer's Guide for
Oracle WebLogic Server.

ReliableWseeJaxwsSAFA
gent_server_name

Store-and-forward (SAF)
service agent

Provides highly available JMS message production. A
separate SAF agent is configured on each Managed
Server, as specified by server_name. The SAF agent
uses WseeFileStore_server_name as the file
store.

In a single server domain, the SAF agent is named
ReliableWseeJaxwsSAFAgent.

To configure SAF service agents, see "Understanding
the Store-and-Forward Service" in Configuring and
Managing Store-and-Forward for Oracle WebLogic Server.

WseeBufferedRequestQu
eue_server_designator

JMS queue Specifies the queue used for buffered requests. A
separate queue is configured on each Managed Server,
as specified by server_name.

In a single server domain, the queue is named
WseeBufferedRequestQueue. In a clustered
domain, each JMS queue is prefixed by dist_.

To configure the queues manually, see "Configure
queues" in Oracle WebLogic Server Administration
Console Help.

WseeBufferedRequestEr
rorQueue_server_
designator

JMS queue Specifies the error queue used for
WseeBufferedRequestQueue for buffered requests
that cannot be processed within the maximum
number of retries. A separate queue is configured on
each Managed Server, as specified by server_name.

In a single server domain, the queue is named
WseeBufferedRequestErrorQueue. In a clustered
domain, each JMS queue is prefixed by dist_.

To configure the queues manually, see "Configure
queues" in Oracle WebLogic Server Administration
Console Help.

Table 3–1 (Cont.) Resources Required by Advanced Web Services Features

Resource Name Resource Type Description

Configuring Your Domain For Advanced Web Services Features

3-6 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

3.2.2 Scripts for Extending a Domain for Advanced Web Service Features
The WebLogic Advanced Web Services for JAX-WS Extension template (wls_
webservices_jaxws.jar) JAR file includes the following two Python scripts to
assist you when extending an existing domain to use the WebLogic Advanced Web
Services for JAX-WS Extension template.

WseeBufferedResponseQ
ueue_server_
designator

JMS queue Specifies the queue used for buffered responses. A
separate queue is configured on each Managed Server,
as specified by server_designator.

In a single server domain, the queue is named
WseeBufferedResponseQueue. In a clustered
domain, each JMS queue is prefixed by dist_.

To configure the queues manually, see "Configure
queues" in Oracle WebLogic Server Administration
Console Help.

WseeBufferedResponseE
rrorQueue_server_
designator

JMS queue Specifies the error queue used for
WseeBufferedResponseQueue for buffered
responses that cannot be delivered within the
maximum number of retries. A separate queue is
configured on each Managed Server, as specified by
server_designator.

In a single server domain, the queue is named
WseeBufferedResponseErrorQueue. In a
clustered domain, each JMS queue is prefixed by
dist_.

To configure the queues manually, see "Configure
queues" in Oracle WebLogic Server Administration
Console Help.

WseeStore Logical store Defines the logical store. A separate logical store is
configured on each Managed Server targeted by
WseeJaxwsJmsModule. The logical store points to
the WseeBufferedRequestQueue queue for its
configuration and file store.

To configure the logical store manually, see "Manually
Configuring the Logical Store" in Programming
Advanced Features of JAX-WS Web Services for Oracle
WebLogic Server.

Note: Before running either script, you need to ensure that the JMS
Module is targeted to all servers in the domain.

Table 3–1 (Cont.) Resources Required by Advanced Web Services Features

Resource Name Resource Type Description

Configuring Your Domain For Advanced Web Services Features

Developing WebLogic Web Services 3-7

3.2.3 Configuring a Domain for Advanced Web Service Features Using the
Configuration Wizard

The following sections describe how to configure a domain for advanced Web service
features.

■ Section 3.2.3.1, "Creating a Domain With the Web Services Extension Template"

■ Section 3.2.3.2, "Extending a Domain With the Web Services Extension Template"

3.2.3.1 Creating a Domain With the Web Services Extension Template
To create a domain that is automatically configured for the advanced Web service
features:

1. Start the Configuration Wizard.

2. In the Welcome window, select Create a new WebLogic domain.

3. Click Next.

4. Select Generate a domain configured automatically to support the following
products and select WebLogic Advanced Web Services for JAX-WS Extension.

5. Click Next.

6. Enter the name and location of the domain and click Next.

7. Configure the administrator user name and password and click Next.

8. Configure the server start mode and JDK and click Next.

9. To configure additional servers and clusters:

a. On the Select Optional Configuration screen, at a minimum select Managed
Servers, Clusters, and Machines to define the Managed Servers and clusters.
Select any other items, as desired, and click Next.

b. Configure the Managed Servers in your environment and click Next.

c. Configure the clusters in your environment and click Next.

d. Assign the managed servers to the clusters on the Assign to Clusters screen
and click Next.

e. Configure the machines in your environment and click Next.

f. Target the services defined in the environment to clusters or servers on the
Target Services to Clusters or Servers screen and click Next.

Table 3–2 Scripts for Extending a Domain for Advanced Web Service Features

Script Description

wls_webservice_complete_update_utils.py Enables you to extend the domain using the extension
template from within a WLST script. For more
information and an example, see Section 3.2.4, "Using
WLST to Extend a Domain With the Web Services
Extension Template."

wls_webservice_complete_update.py Enables you to extend the domain using the extension
template from the java command line. For example:

java weblogic.WLST -i wls_webservice_
complete_update.py <domain-dir>

Configuring Your Domain For Advanced Web Services Features

3-8 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

Note: Target the WseeJaxwsJmsModule JMS module and
weblogic.wsee.jaxws.mdb.DispatchPolicy Work Manager to all
servers in the cluster.

Servers targeted on this screen will be fully configured for use with advanced
Web services.

g. Configure additional information on additional configuration screens (if
selected in step 9a) and click Next.

10. When you reach the Configuration Summary screen, verify the domain details and
click Create.

3.2.3.2 Extending a Domain With the Web Services Extension Template
To extend an existing domain so that it is automatically configured for these Web
Services features:

1. Start the Configuration Wizard.

2. In the Welcome window, select Extend an Existing WebLogic Domain.

3. Click Next.

4. Select the domain to which you want to apply the extension template.

5. Click Next.

6. Select Extend my domain automatically to support the following added products
and select WebLogic Advanced Web Services for JAX-WS Extension.

7. Click Next.

8. To configure additional servers and clusters:

a. On the Select Optional Configuration screen, at a minimum select Managed
Servers, Clusters, and Machines to define the Managed Servers and clusters.
Select any other items, as desired, and click Next.

b. Configure the Managed Servers in your environment and click Next.

c. Configure the clusters in your environment and click Next.

d. Assign the managed servers to the clusters on the Assign to Clusters screen
and click Next.

e. Configure the machines in your environment and click Next.

f. Target the services defined in the environment to clusters or servers on the
Target Services to Clusters or Servers screen and click Next.

Note: Target the WseeJaxwsJmsModule JMS module and
weblogic.wsee.jaxws.mdb.DispatchPolicy Work Manager to all
servers in the cluster.

Servers targeted on this screen will be fully configured for use with advanced
Web services.

g. Configure additional information on additional configuration screens (if
selected in step 9a) and click Next.

9. Verify that you are extending the correct domain, then click Extend.

10. Click Done to exit.

Configuring Your Domain For Advanced Web Services Features

Developing WebLogic Web Services 3-9

3.2.4 Using WLST to Extend a Domain With the Web Services Extension Template
The following provides an example of how to use WLST to extend a domain using the
Web services extension template. Specifically, this example demonstrates how to
extend a single server domain. It is assumed that you have already created a single
server domain. You can add additional servers and clusters to the domain in the
location noted in the example script below.

After updating the script and executing it against your domain, all resources will be
configured for advanced Web service features.

Review the comments provided in the sample for more information. For more
information about the WLST commands described, see the Oracle WebLogic Scripting
Tool.

Example 3–1 WLST Script to Extend a Domain With the Web Services Extension Template

Read the domain.
readDomain(single_server_domain_dir)

Apply the template to the domain to configure the servers for advanced Web service features.
installDir = install_directory/wlserver_10.3
templateLocation = installDir + ’/common/templates/applications/wls_webservice_jaxws.jar’
addTemplate(templateLocation)

Save and close the domain
updateDomain()
closeDomain()

Read the domain
readDomain(domain_dir)

Optionally create any servers and clusters required in your domain environment.
<Include create calls here . . . >
For example: create('server1','Server') or create('cluster1','Cluster')

Optionally configure the JMS module as a Uniform Distributed Destination (Recommended)
setDistDestType('WseeJaxwsJmsModule', 'UDD')

Target WseeJaxwsJmsModule to the desired servers and clusters.
assign('JMSSystemResource', 'WseeJaxwsJmsModule', 'Target', server_or_cluster)
Repeat assign call for other servers and clusters in the environment.

Unassign the resource from the Administration Server.
unassign('JMSSystemResource', 'WseeJaxwsJmsModule', 'Target', Administration_Server)

sys.path.append(domain_dir)

Import the wls_webservice_complete_update_utils.py script. This script is added to the domain
directory
when you extend the domain using the Web services extension template.
import wls_webservice_complete_update_utils as update
update.doWseeFixup(globals())

Note: The wls_webservice_complete_update_utils.py
script used at the end of this example is added to the domain directory
when you extend the domain using the Web services extension
template.

Developing WebLogic Web Services Starting From Java: Main Steps

3-10 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

Save and close the domain
updateDomain()
closeDomain()

3.2.5 Updating Resources Added After Extending Your Domain
Once you have created or extended a domain using the Weblogic Advanced Web
Services for JAX-WS Extension template, if you then modify the resources in your
domain, you can update the configuration of those resources quickly and easily using
the following WLST script.

After updating the script and executing it against your domain, all resources will be
configured for advanced Web service features.

Review the comments provided in the sample for more information. For more
information about the WLST commands described, see the Oracle WebLogic Scripting
Tool.

Example 3–2 WLST Script for Updating Resources Added After Extending Your Domain

Read the domain.
readDomain(domain_dir)

Optionally configure the JMS module as a Uniform Distributed Destination (Recommended)
setDistDestType('WseeJaxwsJmsModule', 'UDD')

Target WseeJaxwsJmsModule to the desired servers and clusters.
assign('JMSSystemResource', 'WseeJaxwsJmsModule', 'Target', server_or_cluster_name)
Repeat assign call for other servers and clusters in the environment.

Unassign the resource from the Administration Server.
unassign('JMSSystemResource', 'WseeJaxwsJmsModule', 'Target', Administration_Server_name)

sys.path.append(domain_dir)

Import the wls_webservice_complete_update_utils.py script. This script is added to the domain
directory
when you extend the domain using the Web services extension template.
import wls_webservice_complete_update_utils as update
update.doWseeFixup(globals())

Save and close the domain.
updateDomain()

3.3 Developing WebLogic Web Services Starting From Java: Main Steps
This section describes the general procedure for developing WebLogic Web services
starting from Java—in effect, coding the JWS file from scratch and later generating the
WSDL file that describes the service. See Chapter 2, "Use Cases and Examples" for
specific examples of this process.

Note: The wls_webservice_complete_update_utils.py
script used at the end of this example is added to the domain directory
when you extend the domain using the Web services extension
template.

Developing WebLogic Web Services Starting From Java: Main Steps

Developing WebLogic Web Services 3-11

The following procedure is just a recommendation; if you have set up your own
development environment, you can use this procedure as a guide for updating your
existing environment to develop WebLogic Web services.

See Chapter 6, "Invoking Web Services" for information on writing client applications
that invoke a Web service.

Note: This procedure does not use the WebLogic Web services split
development directory environment. If you are using this
development environment, and would like to integrate Web services
development into it, see Section 3.13, "Integrating Web Services Into
the WebLogic Split Development Directory Environment" for details.

Table 3–3 Steps to Develop Web Services Starting From Java

Step Description

1 Set up the environment. Open a command window and execute the setDomainEnv.cmd (Windows)
or setDomainEnv.sh (UNIX) command, located in the bin subdirectory of
your domain directory. The default location of WebLogic Server domains is
MW_HOME/user_projects/domains/domainName, where MW_HOME is the
top-level installation directory of the Oracle products and domainName is the
name of your domain.

2 Create a project directory. The project directory will contain the JWS file, Java source for any
user-defined data types, and the Ant build.xml file. You can name the
project directory anything you want.

3 Create the JWS file that
implements the Web service.

See Chapter 4, "Programming the JWS File."

4 Create user-defined data
types. (Optional)

If your Web service uses user-defined data types, create the JavaBeans that
describes them. See Section 4.6, "Programming the User-Defined Java Data
Type."

5 Create a basic Ant build file,
build.xml.

See Section 3.5, "Creating the Basic Ant build.xml File."

6 Run the jwsc Ant task
against the JWS file.

The jwsc Ant task generates source code, data binding artifacts, deployment
descriptors, and so on, into an output directory. The jwsc Ant task generates
an Enterprise application directory structure at this output directory; later
you deploy this exploded directory to WebLogic Server as part of the iterative
development process. See Section 3.6, "Running the jwsc WebLogic Web
Services Ant Task."

7 Deploy the Web service to
WebLogic Server.

See Section 3.9, "Deploying and Undeploying WebLogic Web Services."

8 Browse to the WSDL of the
Web service.

Browse to the WSDL of the Web service to ensure that it was deployed
correctly. See Section 3.10, "Browsing to the WSDL of the Web Service."

9 Test the Web service. See Section 3.12, "Testing the Web Service."

10 Edit the Web service.
(Optional)

To make changes to the Web service, update the JWS file, undeploy the Web
service as described in Section 3.9, "Deploying and Undeploying WebLogic
Web Services," then repeat the steps starting from running the jwsc Ant task
(Step 6).

Developing WebLogic Web Services Starting From a WSDL File: Main Steps

3-12 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

3.4 Developing WebLogic Web Services Starting From a WSDL File: Main
Steps

This section describes the general procedure for developing WebLogic Web services
based on an existing WSDL file. See Chapter 2, "Use Cases and Examples," for a
specific example of this process.

The procedure is just a recommendation; if you have set up your own development
environment, you can use this procedure as a guide for updating your existing
environment to develop WebLogic Web services.

It is assumed in this procedure that you already have an existing WSDL file.

Note: This procedure does not use the WebLogic Web services split
development directory environment. If you are using this
development environment, and would like to integrate Web services
development into it, see Section 3.13, "Integrating Web Services Into
the WebLogic Split Development Directory Environment" for details.

Table 3–4 Steps to Develop Web Services Starting From Java

Step Description

1 Set up the environment. Open a command window and execute the setDomainEnv.cmd (Windows)
or setDomainEnv.sh (UNIX) command, located in the bin subdirectory of
your domain directory. The default location of WebLogic Server domains is
MW_HOME/user_projects/domains/domainName, where MW_HOME is the
top-level installation directory of the Oracle products and domainName is the
name of your domain.

2 Create a project directory. The project directory will contain the generated artifacts and the Ant
build.xml file.

3 Create a basic Ant build file,
build.xml.

See Section 3.5, "Creating the Basic Ant build.xml File."

4 Put your WSDL file in a
directory that the build.xml
Ant build file is able to read.

For example, you can put the WSDL file in a wsdl_files child directory of
the project directory.

5 Run the wsdlc Ant task
against the WSDL file.

The wsdlc Ant task generates the JWS service endpoint interface (SEI), the
stubbed-out JWS class file, JavaBeans that represent the XML Schema data
types, and so on, into output directories. See Section 3.7, "Running the wsdlc
WebLogic Web Services Ant Task."

6 Update the stubbed-out JWS
file generated by the wsdlc
Ant task.

The wsdlc Ant task generates a stubbed-out JWS file. You need to add your
business code to the Web service so it behaves as you want. See Section 3.8,
"Updating the Stubbed-out JWS Implementation Class File Generated By
wsdlc."

7 Run the jwsc Ant task
against the JWS file.

Specify the artifacts generated by the wsdlc Ant task as well as your
updated JWS implementation file, to generate an Enterprise Application that
implements the Web service. See Section 3.6, "Running the jwsc WebLogic
Web Services Ant Task."

8 Deploy the Web service to
WebLogic Server.

See Section 3.9, "Deploying and Undeploying WebLogic Web Services."

Running the jwsc WebLogic Web Services Ant Task

Developing WebLogic Web Services 3-13

See Chapter 6, "Invoking Web Services" for information on writing client applications
that invoke a Web service.

3.5 Creating the Basic Ant build.xml File
Ant uses build files written in XML (default name build.xml) that contain a
<project> root element and one or more targets that specify different stages in the
Web services development process. Each target contains one or more tasks, or pieces of
code that can be executed. This section describes how to create a basic Ant build file;
later sections describe how to add targets to the build file that specify how to execute
various stages of the Web services development process, such as running the jwsc Ant
task to process a JWS file and deploying the Web service to WebLogic Server.

The following skeleton build.xml file specifies a default all target that calls all
other targets that will be added in later sections:

<project default="all">
 <target name="all"
 depends="clean,build-service,deploy" />
 <target name="clean">
 <delete dir="output" />
 </target>
 <target name="build-service">
 <!--add jwsc and related tasks here -->
 </target>
 <target name="deploy">
 <!--add wldeploy task here -->
 </dftarget>
</project>

3.6 Running the jwsc WebLogic Web Services Ant Task
The jwsc Ant task takes as input a JWS file that contains JWS annotations and
generates all the artifacts you need to create a WebLogic Web service. The JWS file can
be either one you coded yourself from scratch or one generated by the wsdlc Ant task.
The jwsc-generated artifacts include:

■ JSR-109 Web service class file.

■ JAXB data binding artifact class file.

■ All required deployment descriptors, including:

– Servlet-based Web service deployment descriptor file: web.xml.

– Ear deployment descriptor files: application.xml and
weblogic-application.xml.

9 Browse to the WSDL of the
Web service.

Browse to the WSDL of the Web service to ensure that it was deployed
correctly. See Section 3.10, "Browsing to the WSDL of the Web Service."

10 Test the Web service. See Section 3.12, "Testing the Web Service."

11 Edit the Web service.
(Optional)

To make changes to the Web service, update the JWS file, undeploy the Web
service as described in Section 3.9, "Deploying and Undeploying WebLogic
Web Services," then repeat the steps starting from running the jwsc Ant task
(Step 6).

Table 3–4 (Cont.) Steps to Develop Web Services Starting From Java

Step Description

Running the jwsc WebLogic Web Services Ant Task

3-14 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

If you are running the jwsc Ant task against a JWS file generated by the wsdlc Ant
task, the jwsc task does not generate these artifacts, because the wsdlc Ant task
already generated them for you and packaged them into a JAR file. In this case, you
use an attribute of the jwsc Ant task to specify this wsdlc-generated JAR file.

After generating all the required artifacts, the jwsc Ant task compiles the Java files
(including your JWS file), packages the compiled classes and generated artifacts into a
deployable JAR archive file, and finally creates an exploded Enterprise Application
directory that contains the JAR file.

To run the jwsc Ant task, add the following taskdef and build-service target to
the build.xml file:

<taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
<target name="build-service">
 <jwsc
 srcdir="src_directory"
 destdir="ear_directory"
 >
 <jws file="JWS_file"
 compiledWsdl="WSDLC_Generated_JAR"
 type="WebService_type"/>
 </jwsc>
 </target>

where:

■ ear_directory refers to an Enterprise Application directory that will contain
all the generated artifacts.

■ src_directory refers to the top-level directory that contains subdirectories that
correspond to the package name of your JWS file.

■ JWS_file refers to the full pathname of your JWS file, relative to the value of the
src_directory attribute.

■ WSDLC_Generated_JAR refers to the JAR file generated by the wsdlc Ant task
that contains the JWS SEI and data binding artifacts that correspond to an existing
WSDL file.

■ WebService_type specifies the type of Web service. This value can be set to
JAXWS or JAXRPC.

The required taskdef element specifies the full class name of the jwsc Ant task.

Only the srcdir and destdir attributes of the jwsc Ant task are required. This
means that, by default, it is assumed that Java files referenced by the JWS file (such as
JavaBeans input parameters or user-defined exceptions) are in the same package as the
JWS file. If this is not the case, use the sourcepath attribute to specify the top-level

Note: The WSDL file is generated when the service endpoint is
deployed.

Note: You specify this attribute only in the "starting from WSDL" use
case; this procedure is described in Section 3.4, "Developing WebLogic
Web Services Starting From a WSDL File: Main Steps."

Running the jwsc WebLogic Web Services Ant Task

Developing WebLogic Web Services 3-15

directory of these other Java files. See "jwsc" in WebLogic Web Services Reference for
Oracle WebLogic Server for more information.

3.6.1 Examples of Using jwsc
The following build.xml excerpt shows a basic example of running the jwsc Ant
task on a JWS file:

 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
 <target name="build-service">
 <jwsc
 srcdir="src"
 destdir="output/helloWorldEar">
 <jws
 file="examples/webservices/hello_world/HelloWorldImpl.java"
 type="JAXWS"/>
 </jwsc>
 </target>

In the example:

■ The Enterprise application will be generated, in exploded form, in
output/helloWorldEar, relative to the current directory.

■ The JWS file is called HelloWorldImpl.java, and is located in the
src/examples/webservices/hello_world directory, relative to the current
directory. This implies that the JWS file is in the package
examples.webservices.helloWorld.

■ A JAX-WS Web service is generated.

The following example is similar to the preceding one, except that it uses the
compiledWsdl attribute to specify the JAR file that contains wsdlc-generated
artifacts (for the "starting with WSDL" use case):

 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
 <target name="build-service">
 <jwsc
 srcdir="src"
 destdir="output/wsdlcEar">
 <jws
 file="examples/webservices/wsdlc/TemperaturePortTypeImpl.java"
 compiledWsdl="output/compiledWsdl/TemperatureService_wsdl.jar"
 type="JAXWS"/>
 </jwsc>
 </target>

In the preceding example, the TemperaturePortTypeImpl.java file is the
stubbed-out JWS file that you updated to include your business logic. Because the
compiledWsdl attribute is specified and points to a JAR file, the jwsc Ant task does
not regenerate the artifacts that are included in the JAR.

To actually run this task, type at the command line the following:

 prompt> ant build-service

Running the wsdlc WebLogic Web Services Ant Task

3-16 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

3.6.2 Advanced Uses of jwsc
This section described two very simple examples of using the jwsc Ant task. The task,
however, includes additional attributes and child elements that make the tool very
powerful and useful. For example, you can use the tool to:

■ Process multiple JWS files at once. You can choose to package each resulting Web
service into its own Web application WAR file, or group all of the Web services
into a single WAR file.

■ Specify the transports (HTTP/HTTPS) that client applications can use when
invoking the Web service.

■ Update an existing Enterprise Application or Web application, rather than
generate a completely new one.

See "jwsc" in the WebLogic Web Services Reference for Oracle WebLogic Server for complete
documentation and examples about the jwsc Ant task.

3.7 Running the wsdlc WebLogic Web Services Ant Task
The wsdlc Ant task takes as input a WSDL file and generates artifacts that together
partially implement a WebLogic Web service. These artifacts include:

■ JWS service endpoint interface (SEI) that implements the Web service described by
the WSDL file.

■ JWS implementation file that contains a partial (stubbed-out) implementation of
the generated JWS SEI. This file must be customized by the developer.

■ JAXB data binding artifacts.

■ Optional Javadocs for the generated JWS SEI.

The wsdlc Ant task packages the JWS SEI and data binding artifacts together into a
JAR file that you later specify to the jwsc Ant task. You never need to update this JAR
file; the only file you update is the JWS implementation class.

To run the wsdlc Ant task, add the following taskdef and generate-from-wsdl
targets to the build.xml file:

 <taskdef name="wsdlc"
 classname="weblogic.wsee.tools.anttasks.WsdlcTask"/>
 <target name="generate-from-wsdl">
 <wsdlc
 srcWsdl="WSDL_file"
 destJwsDir="JWS_interface_directory"
 destImplDir="JWS_implementation_directory"
 packageName="Package_name"
 type="WebService_type"/>
 </target>

where:

■ WSDL_file refers to the name of the WSDL file from which you want to generate
a partial implementation, including its absolute or relative pathname.

■ JWS_interface_directory refers to the directory into which the JAR file that
contains the JWS SEI and data binding artifacts should be generated.

The name of the generated JAR file is WSDLFile_wsdl.jar, where WSDLFile
refers to the root name of the WSDL file. For example, if the name of the WSDL file

Running the wsdlc WebLogic Web Services Ant Task

Developing WebLogic Web Services 3-17

you specify to the file attribute is MyService.wsdl, then the generated JAR file is
MyService_wsdl.jar.

■ JWS_implementation_directory refers to the top directory into which the
stubbed-out JWS implementation file is generated. The file is generated into a
subdirectory hierarchy corresponding to its package name.

The name of the generated JWS file is Service_PortTypeImpl.java, where
Service and PortType refer to the name attribute of the <service> element
and its inner <port> element, respectively, in the WSDL file for which you are
generating a Web service. For example, if the service name is MyService and the
port name is MyServicePortType, then the JWS implementation file is called
MyService_MyServicePortTypeImpl.java.

■ Package_name refers to the package into which the generated JWS SEI and
implementation files should be generated. If you do not specify this attribute, the
wsdlc Ant task generates a package name based on the targetNamespace of
the WSDL.

■ WebService_type specifies the type of Web service. This value can be set to
JAXWS or JAXRPC.

The required taskdef element specifies the full class name of the wsdlc Ant task.

Only the srcWsdl and destJwsDir attributes of the wsdlc Ant task are required.
Typically, however, you generate the stubbed-out JWS file to make your programming
easier. Oracle recommends you explicitly specify the package name in case the
targetNamespace of the WSDL file is not suitable to be converted into a readable
package name.

The following build.xml excerpt shows an example of running the wsdlc Ant task
against a WSDL file:

 <taskdef name="wsdlc"
 classname="weblogic.wsee.tools.anttasks.WsdlcTask"/>
 <target name="generate-from-wsdl">
 <wsdlc
 srcWsdl="wsdl_files/TemperatureService.wsdl"
 destJwsDir="output/compiledWsdl"
 destImplDir="impl_output"
 packageName="examples.webservices.wsdlc"
 type="JAXWS" />
 </target>

In the example:

■ The existing WSDL file is called TemperatureService.wsdl and is located in
the wsdl_files subdirectory of the directory that contains the build.xml file.

■ The JAR file that will contain the JWS SEI and data binding artifacts is generated
to the output/compiledWsdl directory; the name of the JAR file is
TemperatureService_wsdl.jar.

■ The package name of the generated JWS files is
examples.webservices.wsdld.

■ The stubbed-out JWS file is generated into the impl_
output/examples/webservices/wsdlc directory relative to the current
directory.

■ Assuming that the service and port type names in the WSDL file are
TemperatureService and TemperaturePortType, then the name of the JWS

Updating the Stubbed-out JWS Implementation Class File Generated By wsdlc

3-18 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

implementation file is TemperatureService_
TemperaturePortTypeImpl.java.

■ A JAX-WS Web service is generated.

To actually run this task, type the following at the command line:

 prompt> ant generate-from-wsdl

See "wsdlc in WebLogic Web Services Reference for Oracle WebLogic Server for more
information.

3.8 Updating the Stubbed-out JWS Implementation Class File Generated
By wsdlc

The wsdlc Ant task generates the stubbed-out JWS implementation file into the
directory specified by its destImplDir attribute; the name of the file is Service_
PortTypeImpl.java, where Service is the name of the service and PortType is
the name of the port type in the original WSDL. The class file includes everything you
need to compile it into a Web service, except for your own business logic.

The JWS class implements the JWS Web service endpoint interface that corresponds to
the WSDL file; the JWS SEI is also generated by wsdlc and is located in the JAR file
that contains other artifacts, such as the Java representations of XML Schema data
types in the WSDL and so on. The public methods of the JWS class correspond to the
operations in the WSDL file.

The wsdlc Ant task automatically includes the @WebService annotation in the JWS
implementation class; the value corresponds to the equivalent value in the WSDL. For
example, the serviceName attribute of @WebService is the same as the name
attribute of the <service> element in the WSDL file.

When you update the JWS file, you add Java code to the methods so that the
corresponding Web service operations operate as required. Typically, the generated
JWS file contains comments where you should add code, such as:

 //replace with your impl here

In addition, you can add additional JWS annotations to the file, with the following
restrictions:

■ You can include the following annotations from the standard (JSR-181)
javax.jws package in the JWS implementation file: @WebService,
@HandlerChain, @SOAPMessageHandler, and @SOAPMessageHandlers. If
you specify any other JWS annotation from the javax.jws package, the jwsc
Ant task returns error when you try to compile the JWS file into a Web service. For
example, if you specify the @Policy annotation in a your JWS implementation
file, the jwsc Ant task throws a compilation error.

■ You can specify only the serviceName, endpointInterface, and
targetNamespace attributes of the @WebService annotation. Use the
serviceName attribute to specify a different <service> WSDL element from the
one that the wsdlc Ant task used, in the rare case that the WSDL file contains
more than one <service> element. Use the endpointInterface attribute to
specify the JWS SEI generated by the wsdlc Ant task. Use the targetNamespace
attribute to specify the namespace of a WSDL service, which can be different from
the on in JWS SEI.

■ You can specify JAX-WS—JSR 224, JAXB (JSR 222)—or Common (JSR 250)
annotations, as required. For more information about the annotations that are

Deploying and Undeploying WebLogic Web Services

Developing WebLogic Web Services 3-19

supported, see "JWS Annotation Reference" in WebLogic Web Services Reference for
Oracle WebLogic Server.

After you have updated the JWS file, Oracle recommends that you move it to an
official source location, rather than leaving it in the wsdlc output directory.

The following example shows the wsdlc-generated JWS implementation file from the
WSDL shown in Section 2.3.1, "Sample WSDL File"; the text in bold indicates where
you would add Java code to implement the single operation (getTemp) of the Web
service:

package examples.webservices.wsdlc;
import javax.jws.WebService;
/**
 * TemperaturePortTypeImpl class implements web service endpoint interface
 * TemperaturePortType */
@WebService(
 serviceName="TemperatureService",
 endpointInterface="examples.webservices.wsdlc.TemperaturePortType")
public class TemperaturePortTypeImpl implements TemperaturePortType {
 public TemperaturePortTypeImpl() {
 }
 public float getTemp(java.lang.String zipcode)
 {
 //replace with your impl here
 return 0;
 }
}

3.9 Deploying and Undeploying WebLogic Web Services
Because Web services are packaged as Enterprise Applications, deploying a Web
service simply means deploying the corresponding EAR file or exploded directory.

There are a variety of ways to deploy WebLogic applications, from using the
Administration Console to using the weblogic.Deployer Java utility. There are also
various issues you must consider when deploying an application to a production
environment as opposed to a development environment. For a complete discussion
about deployment, see Deploying Applications to Oracle WebLogic Server.

This guide, because of its development nature, discusses just two ways of deploying
Web services:

■ Section 3.9.1, "Using the wldeploy Ant Task to Deploy Web Services"

■ Section 3.9.2, "Using the Administration Console to Deploy Web Services"

3.9.1 Using the wldeploy Ant Task to Deploy Web Services
The easiest way to deploy a Web service as part of the iterative development process is
to add a target that executes the wldeploy WebLogic Ant task to the same
build.xml file that contains the jwsc Ant task. You can add tasks to both deploy and
undeploy the Web service so that as you add more Java code and regenerate the
service, you can redeploy and test it iteratively.

To use the wldeploy Ant task, add the following target to your build.xml file:

 <target name="deploy">
 <wldeploy action="deploy"
 name="DeploymentName"

Deploying and Undeploying WebLogic Web Services

3-20 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

 source="Source" user="AdminUser"
 password="AdminPassword"
 adminurl="AdminServerURL"
 targets="ServerName"/>
 </target>

where:

■ DeploymentName refers to the deployment name of the Enterprise Application, or
the name that appears in the Administration Console under the list of
deployments.

■ Source refers to the name of the Enterprise Application EAR file or exploded
directory that is being deployed. By default, the jwsc Ant task generates an
exploded Enterprise Application directory.

■ AdminUser refers to administrative username.

■ AdminPassword refers to the administrative password.

■ AdminServerURL refers to the URL of the Administration Server, typically
t3://localhost:7001.

■ ServerName refers to the name of the WebLogic Server instance to which you are
deploying the Web service.

For example, the following wldeploy task specifies that the Enterprise Application
exploded directory, located in the output/ComplexServiceEar directory relative to
the current directory, be deployed to the myServer WebLogic Server instance. Its
deployed name is ComplexServiceEar.

 <target name="deploy">
 <wldeploy action="deploy"
 name="ComplexServiceEar"
 source="output/ComplexServiceEar" user="weblogic"
 password="weblogic" verbose="true"
 adminurl="t3://localhost:7001"
 targets="myserver"/>
 </target>

To actually deploy the Web service, execute the deploy target at the command-line:

 prompt> ant deploy

You can also add a target to easily undeploy the Web service so that you can make
changes to its source code, then redeploy it:

 <target name="undeploy">
 <wldeploy action="undeploy"
 name="ComplexServiceEar"
 user="weblogic"
 password="weblogic" verbose="true"
 adminurl="t3://localhost:7001"
 targets="myserver"/>
 </target>

When undeploying a Web service, you do not specify the source attribute, but rather
undeploy it by its name.

Browsing to the WSDL of the Web Service

Developing WebLogic Web Services 3-21

3.9.2 Using the Administration Console to Deploy Web Services
To use the Administration Console to deploy the Web service, first invoke it in your
browser using the following URL:

 http://[host]:[port]/console

where:

■ host refers to the computer on which WebLogic Server is running.

■ port refers to the port number on which WebLogic Server is listening (default
value is 7001).

Then use the deployment assistants to help you deploy the Enterprise application. For
more information on the Administration Console, see the Oracle WebLogic Server
Administration Console Help.

3.10 Browsing to the WSDL of the Web Service
You can display the WSDL of the Web service in your browser to ensure that it has
deployed correctly.

The following URL shows how to display the Web service WSDL in your browser:

 http://[host]:[port]/[contextPath]/[serviceUri]?WSDL

where:

■ host refers to the computer on which WebLogic Server is running (for example,
localhost).

■ port refers to the port number on which WebLogic Server is listening (default
value is 7001).

■ contextPath refers to the context root of the Web service. There are many places
to set the context root (the <WLHttpTransport>, <module>, or <jws> element
of jwsc) and certain methods take precedence over others. See "Defining the
Context Path of a WebLogic Web Service" in WebLogic Web Services Reference for
Oracle WebLogic Server for a complete explanation.

■ serviceUri refers to the value of the serviceUri attribute of the
<WLHttpTransport> child element of the jwsc Ant task. If you do not specify
any serviceUri attribute in the jwsc Ant task, then the serviceUri of the Web
service is the default value: the serviceName element of the @WebService
annotation if specified; otherwise, the name of the JWS file, without its extension,
followed by Service.

For example, assume that you specified the following <WLHttpTransport> child
element in the jwsc task that you use to build your Web service:

<target name="build-service">
 <jwsc
 srcdir="src"
 destdir="${ear-dir}"
 keepGenerated="true">
 <jws file="examples/webservices/complex/ComplexImpl.java"
 type="JAXWS">
 <WLHttpTransport
 contextPath="complex" serviceUri="ComplexService"
 portName="ComplexServicePort"/>
 </jws>
 </jwsc>

Configuring the Server Address Specified in the Dynamic WSDL

3-22 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

</target>

Then the URL to view the WSDL of the Web service, assuming the service is running
on a host called ariel at the default port number (7001), is:

 http://ariel:7001/complex/ComplexService?WSDL

3.11 Configuring the Server Address Specified in the Dynamic WSDL
The WSDL of a deployed Web service (also called dynamic WSDL) includes an
<address> element that assigns an address (URI) to a particular Web service port. For
example, assume that the following WSDL snippet partially describes a deployed
WebLogic Web service called ComplexService:

<definitions name="ComplexServiceDefinitions"
 targetNamespace="http://example.org">
...
 <service name="ComplexService">
 <port binding="s0:ComplexServiceSoapBinding" name="ComplexServicePort">
 <s1:address location="http://myhost:7101/complex/ComplexService"/>
 </port>
 </service>
</definitions>

The preceding example shows that the ComplexService Web service includes a port
called ComplexServicePort, and this port has an address of
http://myhost:7101/complex/ComplexService.

WebLogic Server determines the complex/ComplexService section of this address
by examining the contextPath and serviceURI attributes of the jwsc elements, as
described in Section 3.10, "Browsing to the WSDL of the Web Service." However, the
method WebLogic Server uses to determine the protocol and host section of the
address (http://myhost:7101, in the example) is more complicated, as described
below. For clarity, this section uses the term server address to refer to the protocol and
host section of the address.

The server address that WebLogic Server publishes in a dynamic WSDL of a deployed
Web service depends on whether the Web service can be invoked using HTTP/S or
JMS, whether you have configured a proxy server, whether the Web service is
deployed to a cluster, or whether the Web service is actually a callback service.

The following sections reflect these different configuration options, and provide links
to procedural information about changing the configuration to suit your needs.

■ Section 3.11.1, "Web service is not a callback service and can be invoked using
HTTP/S"

■ Section 3.11.2, "Web service is a callback service"

■ Section 3.11.3, "Web service is invoked using a proxy server"

It is assumed in the sections that you use the WebLogic Server Administration Console
to configure cluster and standalone servers.

3.11.1 Web service is not a callback service and can be invoked using HTTP/S
1. If the Web service is deployed to a cluster, and the cluster Frontend Host,

Frontend HTTP Port, and Frontend HTTPS Port are set, then WebLogic
Server uses these values in the server address of the dynamic WSDL.

Testing the Web Service

Developing WebLogic Web Services 3-23

See "Configure HTTP Settings for a Cluster" in Oracle WebLogic Server
Administration Console Help.

2. If the preceding cluster values are not set, but the Frontend Host, Frontend
HTTP Port, and Frontend HTTPS Port values are set for the individual server
to which the Web service is deployed, then WebLogic Server uses these values in
the server address.

See "Configure HTTP Protocol" in Oracle WebLogic Server Administration Console
Help.

3. If these values are not set for the cluster or individual server, then WebLogic
Server uses the server address of the WSDL request in the dynamic WSDL.

3.11.2 Web service is a callback service
1. If the callback service is deployed to a cluster, and the cluster Frontend Host,

Frontend HTTP Port, and Frontend HTTPS Port are set, then WebLogic
Server uses these values in the server address of the dynamic WSDL.

See "Configure HTTP Settings for a Cluster" in Oracle WebLogic Server
Administration Console Help.

2. If the callback service is deployed to either a cluster or a standalone server, and the
preceding cluster values are not set, but the Frontend Host, Frontend HTTP
Port, and Frontend HTTPS Port values are set for the individual server to
which the callback service is deployed, then WebLogic Server uses these values in
the server address.

See "Configure HTTP Protocol" in Oracle WebLogic Server Administration Console
Help.

3. If the callback service is deployed to a cluster, but none of the preceding values are
set, but the Cluster Address is set, then WebLogic Server uses this value in the
server address.

See "Configure Clusters" in Oracle WebLogic Server Administration Console Help.

4. If none of the preceding values are set, but the Listen Address of the server to
which the callback service is deployed is set, then WebLogic Server uses this value
in the server address.

See "Configure Listen Addresses" in Oracle WebLogic Server Administration Console
Help.

3.11.3 Web service is invoked using a proxy server
Although not required, Oracle recommends that you explicitly set the Frontend
Host, FrontEnd HTTP Port, and Frontend HTTPS Port of either the cluster or
individual server to which the Web service is deployed to point to the proxy server.

See "Configure HTTP Settings for a Cluster" or "Configure HTTP Protocol" in Oracle
WebLogic Server Administration Console Help.

3.12 Testing the Web Service
After you have deployed a WebLogic Web service, you can use the Web services test
client, included in the WebLogic Administration Console, to test your service without
writing code. You can quickly and easily test any Web service, including those with
complex types and those using advanced features of WebLogic Server such as

Integrating Web Services Into the WebLogic Split Development Directory Environment

3-24 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

conversations. The test client automatically maintains a full log of requests allowing
you to return to the previous call to view the results.

To test a deployed Web service using the Administration Console, follow these steps:

1. Invoke the Administration Console in your browser using the following URL:

http://[host]:[port]/console

where:

– host refers to the computer on which WebLogic Server is running.

– port refers to the port number on which WebLogic Server is listening (default
value is 7001).

2. Follow the procedure described in "Test a Web Service" in Oracle WebLogic Server
Administration Console Help.

3.13 Integrating Web Services Into the WebLogic Split Development
Directory Environment

This section describes how to integrate Web services development into the WebLogic
split development directory environment. It is assumed that you understand this
WebLogic feature and have set up this type of environment for developing standard
Java Platform, Enterprise Edition (Java EE) Version 5 applications and modules, such
as EJBs and Web applications, and you want to update the single build.xml file to
include Web services development.

For detailed information about the WebLogic split development directory
environment, see "Creating a Split Development Directory Environment" in Developing
Applications for Oracle WebLogic Server and the splitdir/helloWorldEar example
installed with WebLogic Server, located in the WL_
HOME/samples/server/examples/src/examples directory, where WL_HOME is
the top-level directory of your WebLogic Server installation.

1. In the main project directory, create a directory that will contain the JWS file that
implements your Web service.

For example, if your main project directory is called /src/helloWorldEar, then
create a directory called /src/helloWorldEar/helloWebService:

prompt> mkdir /src/helloWorldEar/helloWebService

2. Create a directory hierarchy under the helloWebService directory that
corresponds to the package name of your JWS file.

For example, if your JWS file is in the package examples.splitdir.hello
package, then create a directory hierarchy examples/splitdir/hello:

prompt> cd /src/helloWorldEar/helloWebService
prompt> mkdir examples/splitdir/hello

3. Put your JWS file in the just-created Web service subdirectory of your main project
directory
(/src/helloWorldEar/helloWebService/examples/splitdir/hello in
this example.)

4. In the build.xml file that builds the Enterprise application, create a new target to
build the Web service, adding a call to the jwsc WebLogic Web service Ant task,
as described in Section 3.6, "Running the jwsc WebLogic Web Services Ant Task."

Integrating Web Services Into the WebLogic Split Development Directory Environment

Developing WebLogic Web Services 3-25

The jwsc srcdir attribute should point to the top-level directory that contains
the JWS file (helloWebService in this example). The jwsc destdir attribute
should point to the same destination directory you specify for wlcompile, as
shown in the following example:

 <target name="build.helloWebService">
 <jwsc
 srcdir="helloWebService"
 destdir="destination_dir"
 keepGenerated="yes" >
 <jws file="examples/splitdir/hello/HelloWorldImpl.java"
 type="JAXWS" />
 </jwsc>
 </target>

In the example, destination_dir refers to the destination directory that the
other split development directory environment Ant tasks, such as wlappc and
wlcompile, also use.

5. Update the main build target of the build.xml file to call the Web service-related
targets:

 <!-- Builds the entire helloWorldEar application -->
 <target name="build"
 description="Compiles helloWorldEar application and runs appc"
 depends="build-helloWebService,compile,appc" />

6. If you use the wlcompile and wlappc Ant tasks to compile and validate the
entire Enterprise Application, be sure to exclude the Web service source directory
for both Ant tasks. This is because the jwsc Ant task already took care of
compiling and packaging the Web service. For example:

<target name="compile">
 <wlcompile srcdir="${src.dir}" destdir="${dest.dir}"
 excludes="appStartup,helloWebService">
 ...
 </wlcomplile>
...
</target>
<target name="appc">
 <wlappc source="${dest.dir}" deprecation="yes" debug="false"
 excludes="helloWebService"/>
</target>

7. Update the application.xml file in the META-INF project source directory,
adding a <web> module and specifying the name of the WAR file generated by the
jwsc Ant task.

For example, add the following to the application.xml file for the helloWorld
Web service:

<application>

Note: When you actually build your Enterprise Application, be sure
you run the jwsc Ant task before you run the wlappc Ant task. This is
because wlappc requires some of the artifacts generated by jwsc for
it to execute successfully. In the example, this means that you should
specify the build-helloWebService target before the appc target.

Integrating Web Services Into the WebLogic Split Development Directory Environment

3-26 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

...
 <module>
 <web>
 <web-uri>examples/splitdir/hello/HelloWorldImpl.war</web-uri>
 <context-root>/hello</context-root>
 </web>
 </module>
...
</application>

Your split development directory environment is now updated to include Web service
development. When you rebuild and deploy the entire Enterprise Application, the
Web service will also be deployed as part of the EAR. You invoke the Web service in
the standard way described in Section 3.10, "Browsing to the WSDL of the Web
Service."

Note: The jwsc Ant task always generates a Web Application WAR
file from the JWS file that implements your Web service, unless you
JWS file defines an EJB via the @Stateless annotation. In that case
you must add an <ejb> module element to the application.xml
file instead.

4

Programming the JWS File 4-1

4Programming the JWS File

The following sections provide information about programming the JWS file that
implements your Web service:

■ Section 4.1, "Overview of JWS Files and JWS Annotations"

■ Section 4.2, "Java Requirements for a JWS File"

■ Section 4.3, "Programming the JWS File: Typical Steps"

■ Section 4.4, "Accessing Runtime Information About a Web Service"

■ Section 4.5, "Should You Implement a Stateless Session EJB?"

■ Section 4.6, "Programming the User-Defined Java Data Type"

■ Section 4.7, "Invoking Another Web Service from the JWS File"

■ Section 4.8, "Using SOAP 1.2"

■ Section 4.9, "Validating the XML Schema"

■ Section 4.10, "JWS Programming Best Practices"

4.1 Overview of JWS Files and JWS Annotations
There are two ways to program a WebLogic Web service from scratch:

1. Annotate a standard EJB or Java class with Web service Java annotations, as
defined by JSR-181, the JAX-WS specification, and by the WebLogic Web services
programming model.

2. Combine a standard EJB or Java class with the various XML descriptor files and
artifacts specified by JSR-109 (such as, deployment descriptors, WSDL files, data
mapping descriptors, data binding artifacts for user-defined data types, and so
on).

Oracle strongly recommends using option 1 above. Instead of authoring XML
metadata descriptors yourself, the WebLogic Ant tasks and runtime will generate the
required descriptors and artifacts based on the annotations you include in your JWS.
Not only is this process much easier, but it keeps the information about your Web
service in a central location, the JWS file, rather than scattering it across many Java and
XML files.

The Java Web service (JWS) annotated file is the core of your Web service. It contains
the Java code that determines how your Web service behaves. A JWS file is an ordinary
Java class file that uses Java metadata annotations to specify the shape and
characteristics of the Web service. The JWS annotations you can use in a JWS file
include the standard ones defined by the Web services Metadata for the Java Platform

Java Requirements for a JWS File

4-2 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

specification (JSR-181), described at
http://www.jcp.org/en/jsr/detail?id=181, plus a set of additional
annotations based on the type of Web service you are building—JAX-WS or JAX-RPC.
For a complete list of JWS annotations that are supported for JAX-WS and JAX-RPC
Web services, see "Web Service Annotation Support" in WebLogic Web Services Reference
for Oracle WebLogic Server.

When programming the JWS file, you include annotations to program basic Web
service features. The annotations are used at different levels, or targets, in your JWS
file. Some are used at the class-level to indicate that the annotation applies to the entire
JWS file. Others are used at the method-level and yet others at the parameter level.

4.2 Java Requirements for a JWS File
When you program your JWS file, you must follow a set of requirements, as specified
by the Web Services Metadata for the Java Platform specification (JSR-181) at
http://www.jcp.org/en/jsr/detail?id=181. In particular, the Java class that
implements the Web service:

■ Must be an outer public class, must not be declared final, and must not be
abstract.

■ Must have a default public constructor.

■ Must not define a finalize() method.

■ Must include, at a minimum, a @WebService JWS annotation at the class level to
indicate that the JWS file implements a Web service.

■ May reference a service endpoint interface by using the
@WebService.endpointInterface annotation. In this case, it is assumed that
the service endpoint interface exists and you cannot specify any other JWS
annotations in the JWS file other than @WebService.endpointInterface,
@WebService.serviceName, and @WebService.targetNamespace.

■ If JWS file does not implement a service endpoint interface, all public methods
other than those inherited from java.lang.Object will be exposed as Web
service operations. This behavior can be overridden by using the @WebMethod
annotation to specify explicitly the public methods that are to be exposed. If a
@WebMethod annotation is present, only the methods to which it is applied are
exposed.

4.3 Programming the JWS File: Typical Steps
The following procedure describes the typical steps for programming a JWS file that
implements a Web service.

For more information about each of the JWS annotations, see "JWS Annotation
Reference" in WebLogic Web Services Reference for Oracle WebLogic Server.

Note: It is assumed that you have created a JWS file and now want
to add JWS annotations to it.

Programming the JWS File: Typical Steps

Programming the JWS File 4-3

4.3.1 Example of a JWS File
The following sample JWS file shows how to implement a simple Web service.

package examples.webservices.simple;
// Import the standard JWS annotation interfaces
import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

Table 4–1 Steps to Program the JWS File

Step Description

1 Import the standard JWS
annotations that will be used
in your JWS file.

The standard JWS annotations are in either the javax.jws,
javax.jws.soap, or javax.xml.ws package. For example:

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;
import javax.xml.ws.BindingType;

2 Import additional
annotations, as required.

For a complete list of JWS annotations that are supported, see "Web Service
Annotation Support" in WebLogic Web Services Reference for Oracle WebLogic
Server.

3 Add the standard required
@WebService JWS
annotation at the class level to
specify that the Java class
exposes a Web service.

See Section 4.3.2, "Specifying that the JWS File Implements a Web Service
(@WebService Annotation)."

4 Add the standard
@SOAPBinding JWS
annotation at the class level to
specify the mapping between
the Web service and the
SOAP message protocol.
(Optional)

In particular, use this annotation to specify whether the Web service is
document-literal, document-encoded, and so on. See Section 4.3.3,
"Specifying the Mapping of the Web Service to the SOAP Message Protocol
(@SOAPBinding Annotation)."

Although this JWS annotation is not required, Oracle recommends you
explicitly specify it in your JWS file to clarify the type of SOAP bindings a
client application uses to invoke the Web service.

5 Add the JAX-WS
@BindingType JWS
annotation at the class level to
specify the binding type to
use for a Web service
endpoint implementation
class. (Optional)

See Section 4.3.7, "Specifying the Binding to Use for an Endpoint
(@BindingType Annotation)."

6 Add the standard
@WebMethod annotation for
each method in the JWS file
that you want to expose as a
public operation. (Optional)

Optionally specify that the operation takes only input parameters but does
not return any value by using the standard @Oneway annotation. See
Section 4.3.4, "Specifying That a JWS Method Be Exposed as a Public
Operation (@WebMethod and @OneWay Annotations)."

7 Add @WebParam annotation
to customize the name of the
input parameters of the
exposed operations.
(Optional)

See Section 4.3.5, "Customizing the Mapping Between Operation Parameters
and WSDL Elements (@WebParam Annotation)."

8 Add @WebResult
annotations to customize the
name and behavior of the
return value of the exposed
operations. (Optional)

See Section 4.3.6, "Customizing the Mapping Between the Operation Return
Value and a WSDL Element (@WebResult Annotation)."

9 Add your business code. Add your business code to the methods to make the WebService behave as
required.

Programming the JWS File: Typical Steps

4-4 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

// Standard JWS annotation that specifies that the porType name of the Web
// Service is "SimplePortType", the service name is "SimpleService", and the
// targetNamespace used in the generated WSDL is "http://example.org"
@WebService(name="SimplePortType", serviceName="SimpleService",
 targetNamespace="http://example.org")
// Standard JWS annotation that specifies the mapping of the service onto the
// SOAP message protocol. In particular, it specifies that the SOAP messages
// are document-literal-wrapped.
@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,
 use=SOAPBinding.Use.LITERAL,
 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)
/**
 * This JWS file forms the basis of simple Java-class implemented WebLogic
 * Web Service with a single operation: sayHello
 *
 */
public class SimpleImpl {
 // Standard JWS annotation that specifies that the method should be exposed
 // as a public operation. Because the annotation does not include the
 // member-value "operationName", the public name of the operation is the
 // same as the method name: sayHello.
 @WebMethod()
 public String sayHello(String message) {
 System.out.println("sayHello:" + message);
 return "Here is the message: '" + message + "'";
 }
}

4.3.2 Specifying that the JWS File Implements a Web Service (@WebService
Annotation)

Use the standard @WebService annotation to specify, at the class level, that the JWS
file implements a Web service, as shown in the following code excerpt:

@WebService(name="SimplePortType", serviceName="SimpleService",
 targetNamespace="http://example.org")

In the example, the name of the Web service is SimplePortType, which will later
map to the wsdl:portType element in the WSDL file generated by the jwsc Ant
task. The service name is SimpleService, which will map to the wsdl:service
element in the generated WSDL file. The target namespace used in the generated
WSDL is http://example.org.

You can also specify the following additional attributes of the @WebService
annotation:

■ endpointInterface—Fully qualified name of an existing service endpoint
interface file. This annotation allows the separation of interface definition from the
implementation. If you specify this attribute, the jwsc Ant task does not generate
the interface for you, but assumes you have created it and it is in your
CLASSPATH.

■ portname—Name that is used in the wsdl:port.

None of the attributes of the @WebService annotation is required. See the Web
Services Metadata for the Java Platform (JSR 181) at
http://www.jcp.org/en/jsr/detail?id=181 for the default values of each
attribute.

Programming the JWS File: Typical Steps

Programming the JWS File 4-5

4.3.3 Specifying the Mapping of the Web Service to the SOAP Message Protocol
(@SOAPBinding Annotation)

It is assumed that you want your Web service to be available over the SOAP message
protocol; for this reason, your JWS file should include the standard @SOAPBinding
annotation, at the class level, to specify the SOAP bindings of the Web service (such as,
document-encoded or document-literal-wrapped), as shown in the following code
excerpt:

@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,
 use=SOAPBinding.Use.LITERAL,
 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)

In the example, the Web service uses document-wrapped-style encodings and literal
message formats, which are also the default formats if you do not specify the
@SOAPBinding annotation. In general, document-literal-wrapped Web services are
the most interoperable type of Web service.

You use the parameterStyle attribute (in conjunction with the
style=SOAPBinding.Style.DOCUMENT attribute) to specify whether the Web
service operation parameters represent the entire SOAP message body, or whether the
parameters are elements wrapped inside a top-level element with the same name as
the operation.

The following table lists the possible and default values for the three attributes of the
@SOAPBinding (either the standard or WebLogic-specific) annotation.

4.3.4 Specifying That a JWS Method Be Exposed as a Public Operation (@WebMethod
and @OneWay Annotations)

Use the standard @WebMethod annotation to specify that a method of the JWS file
should be exposed as a public operation of the Web service, as shown in the following
code excerpt:

public class SimpleImpl {
 @WebMethod(operationName="sayHelloOperation")
 public String sayHello(String message) {
 System.out.println("sayHello:" + message);
 return "Here is the message: '" + message + "'";
 }
...

In the example, the sayHello() method of the SimpleImpl JWS file is exposed as a
public operation of the Web service. The operationName attribute specifies,
however, that the public name of the operation in the WSDL file is
sayHelloOperation. If you do not specify the operationName attribute, the
public name of the operation is the name of the method itself.

Table 4–2 Attributes of the @SOAPBinding Annotation

Attribute Possible Values Default Value

style SOAPBinding.Style.RPC

SOAPBinding.Style.DOCUMENT

SOAPBinding.Style.DOCUMENT

use SOAPBinding.Use.LITERAL SOAPBinding.Use.LITERAL

parameterSty
le

SOAPBinding.ParameterStyle.BARE

SOAPBinding.ParameterStyle.WRAPPED

SOAPBinding.ParameterStyle.WRAPPED

Programming the JWS File: Typical Steps

4-6 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

You can also use the action attribute to specify the action of the operation. When
using SOAP as a binding, the value of the action attribute determines the value of
the SOAPAction header in the SOAP messages.

To exclude a method as a Web service operation, specify
@WebMethod(exclude="true").

You can specify that an operation not return a value to the calling application by using
the standard @Oneway annotation, as shown in the following example:

 public class OneWayImpl {
 @WebMethod()
 @Oneway()
 public void ping() {
 System.out.println("ping operation");
 }
...

If you specify that an operation is one-way, the implementing method is required to
return void, cannot use a Holder class as a parameter, and cannot throw any checked
exceptions.

None of the attributes of the @WebMethod annotation is required. See the Web Services
Metadata for the Java Platform (JSR 181) at
http://www.jcp.org/en/jsr/detail?id=181 for the default values of each
attribute, as well as additional information about the @WebMethod and @Oneway
annotations.

4.3.5 Customizing the Mapping Between Operation Parameters and WSDL Elements
(@WebParam Annotation)

Use the standard @WebParam annotation to customize the mapping between
operation input parameters of the Web service and elements of the generated WSDL
file, as well as specify the behavior of the parameter, as shown in the following code
excerpt:

 public class SimpleImpl {
 @WebMethod()
 @WebResult(name="IntegerOutput",
 targetNamespace="http://example.org/docLiteralBare")
 public int echoInt(
 @WebParam(name="IntegerInput",
 targetNamespace="http://example.org/docLiteralBare")
 int input)
 {
 System.out.println("echoInt '" + input + "' to you too!");
 return input;
 }
...

In the example, the name of the parameter of the echoInt operation in the generated
WSDL is IntegerInput; if the @WebParam annotation were not present in the JWS
file, the name of the parameter in the generated WSDL file would be the same as the

Note: For JAX-WS, the service endpoint interface (SEI) defines the
public methods. If no SEI exists, then all public methods are exposed
as Web service operations, unless they are tagged explicitly with
@WebMethod(exclude="true").

Programming the JWS File: Typical Steps

Programming the JWS File 4-7

name of the method's parameter: input. The targetNamespace attribute specifies
that the XML namespace for the parameter is
http://example.org/docLiteralBare; this attribute is relevant only when
using document-style SOAP bindings where the parameter maps to an XML element.

You can also specify the following additional attributes of the @WebParam annotation:

■ mode—The direction in which the parameter is flowing (WebParam.Mode.IN,
WebParam.Mode.OUT, or WebParam.Mode.INOUT). OUT and INOUT modes
are only supported for RPC-style operations or for parameters that map to
headers.

■ header—Boolean attribute that, when set to true, specifies that the value of the
parameter should be retrieved from the SOAP header, rather than the default
body.

None of the attributes of the @WebParam annotation is required. See the Web Services
Metadata for the Java Platform (JSR 181) at
http://www.jcp.org/en/jsr/detail?id=181 for the default value of each
attribute.

4.3.6 Customizing the Mapping Between the Operation Return Value and a WSDL
Element (@WebResult Annotation)

Use the standard @WebResult annotation to customize the mapping between the Web
service operation return value and the corresponding element of the generated WSDL
file, as shown in the following code excerpt:

public class Simple {
 @WebMethod()
 @WebResult(name="IntegerOutput",
 targetNamespace="http://example.org/docLiteralBare")
 public int echoInt(
 @WebParam(name="IntegerInput",
 targetNamespace="http://example.org/docLiteralBare")
 int input)
 {
 System.out.println("echoInt '" + input + "' to you too!");
 return input;
 }
...

In the example, the name of the return value of the echoInt operation in the
generated WSDL is IntegerOutput; if the @WebResult annotation were not present
in the JWS file, the name of the return value in the generated WSDL file would be the
hard-coded name return. The targetNamespace attribute specifies that the XML
namespace for the return value is http://example.org/docLiteralBare; this
attribute is relevant only when using document-style SOAP bindings where the return
value maps to an XML element.

None of the attributes of the @WebResult annotation is required. See the Web Services
Metadata for the Java Platform (JSR 181) at
http://www.jcp.org/en/jsr/detail?id=181 for the default value of each
attribute.

4.3.7 Specifying the Binding to Use for an Endpoint (@BindingType Annotation)
Use the JAX-WS @BindingType annotation to customize the binding to use for a web
service endpoint implementation class, as shown in the following code excerpt:

Accessing Runtime Information About a Web Service

4-8 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

import javax.xml.ws.BindingType;
import javax.xml.ws.soap.SOAPBinding;
 public class Simple {
 @WebService()
 @BindingType(value=SOAPBinding.SOAP12HTTP_BINDING)
 public int echoInt(
 @WebParam(name="IntegerInput",
 targetNamespace="http://example.org/docLiteralBare")
 int input)
 {
 System.out.println("echoInt '" + input + "' to you too!");
 return input;
 }
...

In the example, the deployed endpoint would use the SOAP1.2 over HTTP binding. If
not specified, the binding defaults to SOAP 1.1 over HTTP.

You can also specify the following additional attributes of the @BindingType
annotation:

■ features—An array of features to enable/disable on the specified binding. If not
specified, features are enabled based on their own rules.

For more information about the @BindingType annotation, see JAX-WS 2.1
Annotations at
https://jax-ws.dev.java.net/nonav/2.1.4/docs/annotations.html.

4.4 Accessing Runtime Information About a Web Service
When a client application invokes a WebLogic Web service that was implemented with
a JWS file, WebLogic Server automatically creates a context that the Web service or
client can use to access, and sometimes change, runtime information about the service.

To access runtime information, you can use one of the following methods:

■ javax.xml.ws.BindingProvider
(http://download.oracle.com/javaee/5/api/javax/xml/ws/Binding
Provider.html)—From the client application, access the request and response
context of the protocol binding. See Section 4.4.1, "Accessing the Protocol Binding
Context."

■ javax.xml.ws.WebServiceContext
(http://download.oracle.com/javaee/5/api/javax/xml/ws/WebServ
iceContext.html)—From the Web service, access runtime message context and
security information relative to a request being served. Typically, a
WebServiceContext is injected into an endpoint using the @Resource
annotation. See Section 4.4.2, "Accessing the Web Service Context."

■ javax.xml.ws.handler.MessageContext
(http://download.oracle.com/javaee/5/api/javax/xml/ws/handler
/MessageContext.html)—Access a set of runtime properties from a message
handler—from the client application or Web service—or directly from the
WebServiceContext from a Web service. See Section 4.4.3, "Using the
MessageContext Property Values."

The following sections describe how to use the BindingProvider,
WebServiceContext, and MessageContext to access runtime information in more
detail.

Accessing Runtime Information About a Web Service

Programming the JWS File 4-9

4.4.1 Accessing the Protocol Binding Context

The javax.xml.ws.BindingProvider interface enables you to access from the
client application the request and response context of the protocol binding. For more
information, see
http://download.oracle.com/javaee/5/api/javax/xml/ws/BindingProv
ider.html. For more information about developing Web service client files, see
"Invoking Web Services" on page 6-1.

The following example shows a simple Web service client application that uses the
context to access HTTP request header information. The code in bold is discussed in
the programming guidelines described following the example.

package examples.webservices.hello_world.client;

import javax.xml.namespace.QName;
import java.net.MalformedURLException;
import java.net.URL;
import java.util.Map;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.handler.MessageContext;
import com.sun.xml.ws.developer.JAXWSProperties;
import com.sun.xml.ws.client.BindingProviderProperties;

/**
 * This is a simple standalone client application that invokes the
 * the <code>sayHelloWorld</code> operation of the Simple Web service.
 */

public class Main {
 public static void main(String[] args) {
 HelloWorldService service;
 try {
 service = new HelloWorldService(new URL(args[0] + "?WSDL"),
 new QName("http://hello_world.webservices.examples/",
 "HelloWorldService"));
 } catch (MalformedURLException murl) { throw new RuntimeException(murl); }
 HelloWorldPortType port = service.getHelloWorldPortTypePort();
 String result = null;
 result = port.sayHelloWorld("Hi there!");
 System.out.println("Got result: " + result);
 Map requestContext = ((BindingProvider)port).getRequestContext();
 requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 "http://examples.com/HelloWorldImpl/HelloWorldService");
 requestContext.put(JAXWSProperties.CONNECT_TIMEOUT, 300);
 requestContext.put(BindingProviderProperties.REQUEST_TIMEOUT, 300);

Note: The com.sun.xml.ws.developer.JAXWSProperties
(https://jax-ws-architecture-document.dev.java.net/n
onav/doc/com/sun/xml/ws/developer/JAXWSProperties.ht
ml) and
com.sun.xml.ws.client.BindingProviderProperties
(https://jax-ws-architecture-document.dev.java.net/n
onav/doc/com/sun/xml/ws/client/BindingProviderProper
ties.html) APIs are supported as an extension to the JDK 6.0,
provided by Sun Microsystems. Because the APIs are not provided as
part of the JDK 6.0 kit, they are subject to change.

Accessing Runtime Information About a Web Service

4-10 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

 Map responseContext = ((BindingProvider)port).getResponseContext();
 Integer responseCode =
 (Integer)responseContext.get(MessageContext.HTTP_RESPONSE_CODE);
...
 }
}

Use the following guidelines in your JWS file to access the runtime context of the Web
service, as shown in the code in bold in the preceding example:

■ Import the javax.xml.ws.BindingProvider API, as well as any other related
APIs that you might use:

import java.util.Map;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.handler.MessageContext;
import com.sun.xml.ws.developer.JAXWSProperties;
import com.sun.xml.ws.client.BindingProviderProperties;
import com.sun.xml.ws.client.BindingProviderProperties;

■ Use the methods of the BindingProvider class to access the binding protocol
context information. The following example shows how to get the request and
response context for the protocol binding and subsequently set the target service
endpoint address used by the client for the request context, set the connection and
read timeouts (in milliseconds) for the request context, and set the HTTP response
status code for the response context:

Map requestContext = ((BindingProvider)port).getRequestContext();
requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 "http://examples.com/HelloWorldImpl/HelloWorldService");
requestContext.put(JAXWSProperties.CONNECT_TIMEOUT, 300);
requestContext.put(BindingProviderProperties.REQUEST_TIMEOUT, 300);
Map responseContext = ((BindingProvider)port).getResponseContext();
Integer responseCode =
 (Integer)responseContext.get(MessageContext.HTTP_RESPONSE_CODE);

The following table summarizes the methods of the
javax.xml.ws.BindingProvider that you can use in your JWS file to access
runtime information about the Web service.

One you get the request or response context, you can access the BindingProvider
property values defined in the following table and the MessageContext property
values defined in Section 4.4.3, "Using the MessageContext Property Values."

Table 4–3 Methods of the BindingProvider

Method Returns Description

getBinding() Binding Returns the binding for the binding provider.

getRequestContext() java.Util.Map Returns the context that is used to initialize the message and
context for request messages.

getResponseContext() java.Util.Map Returns the response context.

Accessing Runtime Information About a Web Service

Programming the JWS File 4-11

In addition, in the previous example:

■ The JAXWSProperties.CONNECT_TIMEOUT property is used to define the
connection timeout. For a complete list of JAXWSProperties that you can set, see
the com.sun.xml.ws.developer.JAXWSProperties Javadoc at
https://jax-ws-architecture-document.dev.java.net/nonav/doc/c
om/sun/xml/ws/developer/JAXWSProperties.html.

■ The BindingProviderProperties.REQUEST_TIMEOUT property is used to
define the request timeout. For a complete list of
BindingProviderProperties that you can set, see the
com.sun.xml.ws.client.BindingProviderProperties Javadoc at
https://jax-ws-architecture-document.dev.java.net/nonav/doc/c
om/sun/xml/ws/client/BindingProviderProperties.html.

4.4.2 Accessing the Web Service Context
The javax.xml.ws.WebServiceContext interface enables you to access from the
Web service runtime message context and security information relative to a request
being served. Typically, a WebServiceContext is injected into an endpoint using the
@Resource annotation. For more information, see
http://download.oracle.com/javaee/5/api/javax/xml/ws/WebServiceC
ontext.html.

The following example shows a simple JWS file that uses the context to access HTTP
request header information. The code in bold is discussed in the programming
guidelines described following the example.

package examples.webservices.jws_context;
import javax.jws.WebMethod;
import javax.jws.WebService;
import java.util.Map;
import javax.xml.ws.WebServiceContext;
import javax.annotation.Resource;
import javax.xml.ws.handler.MessageContext;
@WebService(name="JwsContextPortType", serviceName="JwsContextService",
 targetNamespace="http://example.org")
/**
 * Simple web service to show how to use the @Context annotation.
 */
public class JwsContextImpl {

Table 4–4 Properties of BindingProvider

Property Type Description

ENDPOINT_ADDRESS_PROPERTY java.lang.String Target service endpoint address.

PASSWORD_PROPERTY java.lang.String Password used for authentication.

SESSION_MAINTAIN_PROPERTY java.lang.Boolea
n

Flag that specifies whether a service client wants to
participate in a session with a service endpoint.
Defaults to false, indicating that the service client
does not want to participate.

SOAPACTION_URI_PROPERTY java.lang.String Property for SOAPAction specifying the SOAPAction
URI. This property is valid only if SOAPACTION_USE_
PROPERTY is set to true.

SOAPACTION_USE_PROPERTY java.lang.Boolea
n

Property for SOAPAction specifying whether or not
SOAPAction should be used.

USERNAME_PROPERTY java.lang.String User name used for authentication.

Accessing Runtime Information About a Web Service

4-12 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

 @Resource
 private WebServiceContext ctx;
 @WebMethod()
 public String msgContext(String msg) {
 MessageContext context=ctx.getMessageContext();
 Map requestHeaders = (Map)context.get(MessageContext.HTTP_REQUEST_HEADERS);
 }
}

Use the following guidelines in your JWS file to access the runtime context of the Web
service, as shown in the code in bold in the preceding example:

■ Import the @javax.annotation.Resource JWS annotation:

import javax.annotation.Resource;

■ Import the javax.xml.ws.WebServiceContext API, as well as any other
related APIs that you might use:

import java.util.Map;
import javax.xml.ws.WebServiceContext;
import javax.xml.ws.handler.MessageContext;

■ Annotate a private variable, of data type javax.xml.ws.WebServiceContext,
with the field-level @Resource JWS annotation:

@Resource
private WebServiceContext ctx;

■ Use the methods of the WebServiceContext class to access runtime information
about the Web service. The following example shows how to get the message
context for the current service request and subsequently access the HTTP request
headers:

MessageContext context=ctx.getMessageContext();
Map requestHeaders = (Map)context.get(MessageContext.HTTP_REQUEST_HEADERS)

For more information about the MessageContext property values, see
Section 4.4.3, "Using the MessageContext Property Values."

The following table summarizes the methods of the
javax.xml.ws.WebServiceContext that you can use in your JWS file to access
runtime information about the Web service. For more information, see
http://download.oracle.com/javaee/5/api/javax/xml/ws/WebServiceC
ontext.html.

Table 4–5 Methods of the WebServiceContext

Method Returns Description

getMessageContext() MessageContext Returns the MessageContext for the current service request.
You can access properties that are application-scoped only,
such as HTTP_REQUEST_HEADERS, MESSAGE_
ATTACHMENTS, and so on, as defined in Section 4.4.3, "Using
the MessageContext Property Values."

getUserPrincipal() java.security.P
rincipal

Returns the Principal that identifies the sender of the current
service request. If the sender has not been authenticated, the
method returns null.

isUserInRole(java.lang
.String role)

boolean Returns a boolean value specifying whether the
authenticated user is included in the specified logical role. If
the user has not been authenticated, the method returns
false.

Accessing Runtime Information About a Web Service

Programming the JWS File 4-13

4.4.3 Using the MessageContext Property Values
The following table defined the javax.xml.ws.handler.MessageContext
property values that you can access from a message handler—from the client
application or Web service—or directly from the WebServiceContext from the Web
service. For more information, see the javax.xml.ws.handler.MessageContext
Javadocs at
http://download.oracle.com/javaee/5/api/javax/xml/ws/handler/Mes
sageContext.html.

Table 4–6 Properties of MessageContext

Property Type Description

HTTP_REQUEST_HEADERS java.util.Map Map of HTTP request headers for the request message.

HTTP_REQUEST_METHOD java.lang.String HTTP request method for example GET, POST, or PUT.

HTTP_RESPONSE_CODE java.lang.Intege
r

HTTP response status code for the last invocation.

HTTP_RESPONSE_HEADERS java.util.Map HTTP response headers.

INBOUND_MESSAGE_
ATTACHMENTS

java.util.Map Map of attachments for the inbound messages.

MESSAGE_OUTBOUND_PROPERTY java.lang.Boolea
n

Message direction. This property is true for outbound
messages and false for inbound messages.

OUTBOUND_MESSAGE_
ATTACHMENTS

java.util.Map Map of attachments for the outbound messages.

PATH_INFO java.lang.String Request path information.

QUERY_STRING java.lang.String Query string for request.

REFERENCE_PARAMETERS java.awt.List WS-Addressing reference parameters. The list must
include all SOAP headers marked with the
wsa:IsReferenceParameter="true" attribute.

SERVLET_CONTEXT javax.servlet.Se
rvletContext

Servlet context object associated with request.

SERVLET_REQUEST javax.servlet.ht
tp.HttpServletRe
quest

Servlet request object associated with request.

SERVLET_RESPONSE javax.servlet.ht
tp.HttpServletRe
sponse

Servlet response object associated with request.

WSDL_DESCRIPTION org.xml.sax.Inpu
tSource

Input source (resolvable URI) for the WSDL document.

WSDL_INTERFACE javax.xml.namesp
ace.QName

Name of the WSDL interface or port type.

WSDL_OPERATION javax.xml.namesp
ace.QName

Name of the WSDL operation to which the current
message belongs.

WSDL_PORT javax.xml.namesp
ace.QName

Name of the WSDL port to which the message was
received.

WSDL_SERVICE javax.xml.namesp
ace.QName

Name of the service being invoked.

Should You Implement a Stateless Session EJB?

4-14 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

4.5 Should You Implement a Stateless Session EJB?
The jwsc Ant task always chooses a plain Java object as the underlying
implementation of a Web service when processing your JWS file.

Sometimes, however, you might want the underlying implementation of your Web
service to be a stateless session EJB so as to take advantage of all that EJBs have to
offer, such as instance pooling, transactions, security, container-managed persistence,
container-managed relationships, and data caching. If you decide you want an EJB
implementation for your Web service, then follow the programming guidelines in the
following section.

EJB 3.0 introduced metadata annotations that enable you to automatically generate,
rather than manually create, the EJB Remote and Home interface classes and
deployment descriptor files needed when implementing an EJB. For more information
about EJB 3.0, see Programming WebLogic Enterprise JavaBeans, Version 3.0 for Oracle
WebLogic Server.

To implement an EJB in your JWS file, perform the following steps:

■ Import the EJB 3.0 annotations, all of which are in the javax.ejb package. At a
minimum you need to import the @Stateless annotation. You can also specify
additional EJB annotations in your JWS file to specify the shape and behavior of
the EJB, see the javax.ejb Javadoc at
http://download.oracle.com/javaee/5/api/javax/ejb/package-sum
mary.html for more information.

For example:

import javax.ejb.Stateless;

■ At a minimum, use the @Stateless annotation at the class level to identify the
EJB:

@Stateless
public class SimpleEjbImpl {

The following example shows a simple JWS file that implement a stateless session EJB.
The relevant code is shown in bold.

package examples.webservices.jaxws;

import weblogic.transaction.TransactionHelper;
import javax.ejb.Stateless;
import javax.ejb.SessionContext;
import javax.ejb.TransactionAttribute;
import javax.ejb.TransactionAttributeType;
import javax.annotation.Resource;
import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.transaction.SystemException;
import javax.transaction.Status;
import javax.transaction.Transaction;
import javax.xml.ws.WebServiceContext;

/**
* A transaction-awared stateless EJB-implemented JWS
*/

// Standard JWS annotation that specifies that the portName,serviceName and
// target Namespace of the Web Service.
@WebService(

Programming the User-Defined Java Data Type

Programming the JWS File 4-15

 name = "Simple",
 portName = "SimpleEJBPort",
 serviceName = "SimpleEjbService",
 targetNamespace = "http://wls/samples")

//Standard EJB annotation
@Stateless
public class SimpleEjbImpl {

 @Resource
 private WebServiceContext context;
 private String constructed = null;

 // The WebMethod annotation exposes the subsequent method as a public
 // operation on the Web Service.
 @WebMethod()
 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public String sayHello(String s) throws SystemException {
 Transaction transaction =
 TransactionHelper.getTransactionHelper().getTransaction();
 int status = transaction.getStatus();
 if (Status.STATUS_ACTIVE != status)
 throw new IllegalStateException("transaction did not start,
 status is: " + status + ", check ejb annotation processing");

 return constructed + ":" + s;
}

4.6 Programming the User-Defined Java Data Type
The methods of the JWS file that are exposed as Web service operations do not
necessarily take built-in data types (such as Strings and integers) as parameters and
return values, but rather, might use a Java data type that you create yourself. An
example of a user-defined data type is TradeResult, which has two fields: a String
stock symbol and an integer number of shares traded.

If your JWS file uses user-defined data types as parameters or return values of one or
more of its methods, you must create the Java code of the data type yourself, and then
import the class into your JWS file and use it appropriately. The jwsc Ant task will
later take care of creating all the necessary data binding artifacts.

Follow these basic requirements when writing the Java class for your user-defined
data type:

■ Define a default constructor, which is a constructor that takes no parameters.

■ Define both getXXX() and setXXX() methods for each member variable that
you want to publicly expose.

■ Make the data type of each exposed member variable one of the built-in data
types, or another user-defined data type that consists of built-in data types.

Note: You can use JAXB to provide custom mapping. For more
information, see "Customizing Java-to-XML Schema Mapping Using
JAXB Annotations" on page 5-9.

Programming the User-Defined Java Data Type

4-16 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

The jwsc Ant task can generate data binding artifacts for most common XML and
Java data types. For the list of supported user-defined data types, see Section 5.3.2,
"Supported User-Defined Data Types." See Section 5.3.1, "Supported Built-In Data
Types" for the full list of supported built-in data types.

The following example shows a simple Java user-defined data type called
BasicStruct:

package examples.webservices.complex;
/**
 * Defines a simple JavaBean called BasicStruct that has integer, String,
 * and String[] properties
 */
public class BasicStruct {
 // Properties
 private int intValue;
 private String stringValue;
 private String[] stringArray;
 // Getter and setter methods
 public int getIntValue() {
 return intValue;
 }
 public void setIntValue(int intValue) {
 this.intValue = intValue;
 }
 public String getStringValue() {
 return stringValue;
 }
 public void setStringValue(String stringValue) {
 this.stringValue = stringValue;
 }
 public String[] getStringArray() {
 return stringArray;
 }
 public void setStringArray(String[] stringArray) {
 this.stringArray = stringArray;
 }
}

The following snippets from a JWS file show how to import the BasicStruct class
and use it as both a parameter and return value for one of its methods; for the full JWS
file, see Section 2.2.2, "Sample ComplexImpl.java JWS File":

package examples.webservices.complex;
// Import the standard JWS annotation interfaces
import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;
// Import the WebLogic-specific JWS annotation interface
// Import the BasicStruct JavaBean
import examples.webservices.complex.BasicStruct;
@WebService(serviceName="ComplexService", name="ComplexPortType",
 targetNamespace="http://example.org")
...
public class ComplexImpl {
 @WebMethod(operationName="echoComplexType")
 public BasicStruct echoStruct(BasicStruct struct)
 {
 return struct;

Using SOAP 1.2

Programming the JWS File 4-17

 }
}

4.7 Invoking Another Web Service from the JWS File
From within your JWS file you can invoke another Web service, either one deployed
on WebLogic Server or one deployed on some other application server, such as .NET.
The steps to do this are similar to those described in Section 2.4, "Invoking a Web
Service from a Java SE Application," except that rather than running the clientgen
Ant task to generate the client stubs, you include a <clientgen> child element of the
jwsc Ant task that builds the invoking Web service to generate the client stubs
instead. You then use the standard JAX-WS APIs in your JWS file, the same as you do
for a Java SE client application.

See Section 6.3, "Invoking a Web Service from a WebLogic Web Service" for detailed
instructions.

4.8 Using SOAP 1.2
WebLogic Web services use, by default, Version 1.1 of Simple Object Access Protocol
(SOAP) as the message format when transmitting data and invocation calls between
the Web service and its client. WebLogic Web services support both SOAP 1.1 and the
newer SOAP 1.2, and you are free to use either version.

To specify that the Web service use Version 1.2 of SOAP, use the class-level
@javax.xml.ws.BindingTyp annotation in your JWS file and set its single attribute
to the value SOAPBinding.SOAP12HTTP_BINDING, as shown in the following
example (relevant code shown in bold):

package examples.webservices.soap12;
import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.xml.ws.BindingType;
import javax.xml.ws.SOAPBinding;
@WebService(name="SOAP12PortType",
 serviceName="SOAP12Service",
 targetNamespace="http://example.org")
@BindingType(value = SOAPBinding.SOAP12HTTP_BINDING)
/**
 * This JWS file forms the basis of simple Java-class implemented WebLogic
 * Web Service with a single operation: sayHello. The class uses SOAP 1.2
 * as its binding.
 *
 */
public class SOAP12Impl {
 @WebMethod()
 public String sayHello(String message) {
 System.out.println("sayHello:" + message);
 return "Here is the message: '" + message + "'";
 }
}

Other than set this annotation, you do not have to do anything else for the Web service
to use SOAP 1.2, including changing client applications that invoke the Web service;
the WebLogic Web services runtime takes care of all the rest.

Validating the XML Schema

4-18 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

4.9 Validating the XML Schema
By default, SOAP messages are not validated against their XML schemas. You can
enable XML schema validation for document-literal Web services on the server or
client, as described in the following sections.

4.9.1 Enabling Schema Validation on the Server

To enable schema validation on the server, add the @SchemaValidation annotation
on the endpoint implementation. For example:

import com.sun.xml.ws.developer.SchemaValidation;
import javax.jws.WebService;
@SchemaValidation
@WebService(name="HelloWorldPortType", serviceName="HelloWorldService")
public class HelloWorldImpl {
 public String sayHelloWorld(String message) {
 System.out.println("sayHelloWorld:" + message);
 return "Here is the message: '" + message + "'";
 }
}

You can pass your own validation error handler class as an argument to the
annotation, if you want to manage errors within your application. For example:

@SchemaValidation(handler=ErrorHandler.class)

4.9.2 Enabling Schema Validation on the Client

To enable schema validation on the client, create a SchemaValidationFeature
object and pass this as an argument when creating the PortType stub
implementation.

Note: This feature adds a small amount of extra processing to a Web
service request.

Note: The com.sun.xml.ws.developer.SchemaValidation
API is supported as an extension to the JDK 6.0, provided by Sun
Microsystems. Because this API is not provided as part of the JDK 6.0
kit, it is subject to change. For more information, see
https://jax-ws-architecture-document.dev.java.net/no
nav/doc/com/sun/xml/ws/developer/SchemaValidation.ht
ml.

Note: The
com.sun.xml.ws.developer.SchemaValidationFeature API
is supported as an extension to the JDK 6.0, provided by Sun
Microsystems. Because this API is not provided as part of the JDK 6.0
kit, it is subject to change. For more information, see
https://jax-ws-architecture-document.dev.java.net/no
nav/doc/com/sun/xml/ws/developer/SchemaValidationFea
ture.html.

JWS Programming Best Practices

Programming the JWS File 4-19

package examples.webservices.hello_world.client;
import com.sun.xml.ws.developer.SchemaValidationFeature;
import javax.xml.namespace.QName;
import java.net.MalformedURLException;
import java.net.URL;
public class Main {
 public static void main(String[] args) {
 HelloWorldService service;
 try {
 service = new HelloWorldService(new URL(args[0] + "?WSDL"),
 new QName("http://example.org", "HelloWorldService"));
 } catch (MalformedURLException murl) { throw new RuntimeException(murl); }
 SchemaValidationFeature feature =
 new SchemaValidationFeature();
 HelloWorldPortType port = service.getHelloWorldPortTypePort(feature);
 String result = null;
 result = port.sayHelloWorld("Hi there!");
 System.out.println("Got result: " + result);
 }
}

You can pass your own validation error handler as an argument to the
SchemaValidationFeature object, if you want to manage errors within your
application. For example:

 SchemaValidationFeature feature =
 new SchemaValidationFeature(MyErrorHandler.class);
 HelloWorldPortType port = service.getHelloWorldPortTypePort(feature);

4.10 JWS Programming Best Practices
The following list provides some best practices when programming the JWS file:

■ When you create a document-literal-bare Web service, use the @WebParam JWS
annotation to ensure that all input parameters for all operations of a given Web
service have a unique name. Because of the nature of document-literal-bare Web
services, if you do not explicitly use the @WebParam annotation to specify the
name of the input parameters, WebLogic Server creates one for you and run the
risk of duplicating the names of the parameters across a Web service.

■ In general, document-literal-wrapped Web services are the most interoperable
type of Web service.

■ Use the @WebResult JWS annotation to explicitly set the name of the returned
value of an operation, rather than always relying on the hard-coded name
return, which is the default name of the returned value if you do not use the
@WebResult annotation in your JWS file.

JWS Programming Best Practices

4-20 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

5

Using JAXB Data Binding 5-1

5Using JAXB Data Binding

The following sections provide information about using JAXB data binding:

■ Section 5.1, "Overview of Data Binding Using JAXB"

■ Section 5.2, "Developing the JAXB Data Binding Artifacts"

■ Section 5.3, "Standard Data Type Mapping"

■ Section 5.4, "Customizing Java-to-XML Schema Mapping Using JAXB
Annotations"

■ Section 5.5, "Customizing XML Schema-to-Java Mapping Using Binding
Declarations"

5.1 Overview of Data Binding Using JAXB
With the emergence of XML as the standard for exchanging data across disparate
systems, Web service applications need a way to access data that are in XML format
directly from the Java application. Specifically, the XML content needs to be converted
to a format that is readable by the Java application. Data binding describes the
conversion of data between its XML and Java representations.

JAX-WS uses Java Architecture for XML Binding (JAXB), described at
http://jcp.org/en/jsr/detail?id=222, to manage all of the data binding
tasks. Specifically, JAXB binds Java method signatures and WSDL messages and
operations and allows you to customize the mapping while automatically handling the
runtime conversion. This makes it easy for you to incorporate XML data and
processing functions in applications based on Java technology without having to know
much about XML.

The following figure shows the JAXB data binding process.

Overview of Data Binding Using JAXB

5-2 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

Figure 5–1 Data Binding With JAXB

As shown in the previous figure, the JAXB data binding process consists of the
following tasks:

■ Bind—Binds XML Schema to schema-derived JAXB Java classes, or value classes.
Each class provides access to the content via a set of JavaBean-style access
methods (that is, get and set). Binding is managed by the JAXB schema compiler.

■ Unmarshal—Converts the XML document to create a tree of Java program
elements, or objects, that represents the content and organization of the document
that can be accessed by your Java code. In the content tree, complex types are
mapped to value classes. Attribute declarations or elements with simple types are
mapped to properties or fields within the value class and you can access the
values for them using get and set methods. Unmarshalling is managed by the
JAXB binding framework.

■ Marshal—Converts the Java objects back to XML content. In this case, the Java
methods that are deployed as WSDL operations determine the schema
components in the wsdl:types section. Marshalling is managed by the JAXB
binding framework.

You can use the JAXB binding language to define custom binding declarations or
specify JAXB annotations to control the conversion of data between XML and Java.

This following sections describe:

■ Section 5.2, "Developing the JAXB Data Binding Artifacts"—Describes how to
develop the JAXB data binding artifacts using WebLogic Server.

■ Section 5.3, "Standard Data Type Mapping"—Describes the standard built-in and
user-defined data types that are supported.

■ Section 5.4, "Customizing Java-to-XML Schema Mapping Using JAXB
Annotations"—Describes how you can control and customize the Java-to-XML
Schema mapping using JAXB annotations in the JWS file.

■ Section 5.5, "Customizing XML Schema-to-Java Mapping Using Binding
Declarations"—Describes how you can control and customize the XML
Schema-to-Java mapping using binding declarations that are defined in a separate
file or embedded inline.

Standard Data Type Mapping

Using JAXB Data Binding 5-3

5.2 Developing the JAXB Data Binding Artifacts
The steps to develop the JAXB data binding artifacts using WebLogic Server depend
on whether you are starting from a Java class file or a WSDL.

■ Start from Java: Using this programming model, you create the Java classes. At
run-time, JAXB marshals the Java objects to generate the XML content which is
then packaged in a SOAP message and sent as a Web service request or response.

To control the Java-to-XML mapping, you include JAXB annotations in your JWS
file, as described in Section 5.4, "Customizing Java-to-XML Schema Mapping
Using JAXB Annotations." If no customizations are required, JAXB uses the
standard built-in and user-defined data type mapping as described in the
following sections: Section 5.3.1.2, "Java-to-XML Mapping for Built-In Data Types"
and Section 5.3.2.2, "Supported Java User-Defined Data Types."

For more information about this programming model, see Section 3.3, "Developing
WebLogic Web Services Starting From Java: Main Steps."

■ Start from WSDL: Using this programming model, the XML Schemas exist and
JAXB unmarshals the XML document to generate the Java objects.

To control the XML-to-Java mapping, you can define custom binding declarations
within the WSDL or XML Schema, or in an external file, as described in
Section 5.5, "Customizing XML Schema-to-Java Mapping Using Binding
Declarations." If no customizations are required, the standard built-in and
user-defined data type mapping as described in the following sections:
Section 5.3.1.1, "XML-to-Java Mapping for Built-in Data Types" and Section 5.3.2.1,
"Supported XML User-Defined Data Types."

For more information about this programming model, see Section 3.4, "Developing
WebLogic Web Services Starting From a WSDL File: Main Steps."

Please note, when invoking the jwsc, wsdlc, or clientgen Ant tasks described in
these procedures:

■ You must specify the type="JAXWS" attribute to generate a JAX-WS Web service
and JAXB binding artifacts. For jwsc, you specify the type attribute as part of the
<jws> child element.

■ You can optionally specify the <binding> child element to specify a
customizations file that contains JAX-WS and JAXB data binding customizations.
For information about creating a customizations file, see Section 5.5, "Customizing
XML Schema-to-Java Mapping Using Binding Declarations." If no customizations
are required, JAXB uses the standard built-in and user-defined data type
mappings described in Section 5.3, "Standard Data Type Mapping."

For more information about the jwsc, wsdlc, or clientgen Ant tasks, see "Ant Task
Reference" in WebLogic Web Services Reference for Oracle WebLogic Server.

5.3 Standard Data Type Mapping
WebLogic Web services support a full set of built-in XML Schema, Java, and SOAP
types, as specified by the JAXB 2.0 (JSR 222) specification at
http://jcp.org/en/jsr/detail?id=222, that you can use in your Web service
operations without performing any additional programming steps. Built-in data types
are those such as integer, string, and time.

Additionally, you can use a variety of user-defined XML and Java data types as input
parameters and return values of your Web service. User-defined data types are those
that you create from XML Schema or Java building blocks, such as

Standard Data Type Mapping

5-4 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

<xsd:complexType> or JavaBeans. The WebLogic Web services Ant tasks, such as
jwsc and clientgen, automatically generate the data binding artifacts needed to
convert the user-defined data types between their XML and Java representations. The
XML representation is used in the SOAP request and response messages, and the Java
representation is used in the JWS that implements the Web service.

The following sections describe the built-in and user-defined data types that are
supported by JAXB:

■ Section 5.3.1, "Supported Built-In Data Types"

■ Section 5.3.2, "Supported User-Defined Data Types"

5.3.1 Supported Built-In Data Types
The following sections describe the built-in data types supported by WebLogic Web
services and the mapping between their XML and Java representations. As long as the
data types of the parameters and return values of the back-end components that
implement your Web service are in the set of built-in data types, WebLogic Server
automatically converts the data between XML and Java.

When using user-defined data types, then you must create the data binding artifacts
that convert the data between XML and Java. WebLogic Server includes the jwsc and
wsdlc Ant tasks that can automatically generate the data binding artifacts for most
user-defined data types. See Section 5.3.2, "Supported User-Defined Data Types" for a
list of supported XML and Java data types.

5.3.1.1 XML-to-Java Mapping for Built-in Data Types
The following table lists alphabetically the supported XML Schema data types (target
namespace http://www.w3.org/2001/XMLSchema) and their corresponding Java
data types. For a list of the supported user-defined XML data types, see Section 5.3.1.2,
"Java-to-XML Mapping for Built-In Data Types."

Table 5–1 Mapping XML Schema Built-in Data Types to Java Data Types

XML Schema Data Type
Java Data Type (lower case indicates a primitive data
type)

anySimpleType (for xsd:element
of this type)

java.lang.Object

anySimpleType (for
xsd:attribute of this type)

java.lang.String

base64Binary byte[]

boolean boolean

byte byte

date java.xml.datatype.XMLGregorianCalendar

dateTime javax.xml.datatype.XMLGregorianCalendar

decimal java.math.BigDecimal

double double

duration javax.xml.datatype.Duration

float float

g java.xml.datatype.XMLGregorianCalendar

hexBinary byte[]

Standard Data Type Mapping

Using JAXB Data Binding 5-5

The following example, borrowed from the JAXB specification, shows an example of
the default XML-to-Java binding.

5.3.1.1.1 XML Schema <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="purchaseOrder" type="PurchaseOrderType"/>
<xsd:element name="comment" type="xsd:string"/>
<xsd:complexType name="PurchaseOrderType">
 <xsd:sequence>
 <xsd:element name="shipTo" type="USAddress"/>
 <xsd:element name="billTo" type="USAddress"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="items" type="Items"/>
 </xsd:sequence>
 <xsd:attribute name="orderDate" type="xsd:date"/>
</xsd:complexType>
<xsd:complexType name="USAddress">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zip" type="xsd:decimal"/>
 </xsd:sequence>
<xsd:attribute name="country" type="xsd:NMTOKEN" fixed="US"/>
</xsd:complexType>
<xsd:complexType name="Items">
 <xsd:sequence>
 <xsd:element name="item" minOccurs="1" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="productName" type="xsd:string"/>
 <xsd:element name="quantity">
 <xsd:simpleType>
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:maxExclusive value="100"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>

int int

integer java.math.BigInteger

long long

NOTATION javax.xml.namespace.QName

Qname javax.xml.namespace.QName

short short

string java.lang.String

time java.xml.datatype.XMLGregorianCalendar

unsignedByte short

unsignedInt long

unsignedShort int

Table 5–1 (Cont.) Mapping XML Schema Built-in Data Types to Java Data Types

XML Schema Data Type
Java Data Type (lower case indicates a primitive data
type)

Standard Data Type Mapping

5-6 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

 <xsd:element name="USPrice" type="xsd:decimal"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="shipDate" type="xsd:date"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="partNum" type="SKU" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>
<!-- Stock Keeping Unit, a code for identifying products -->
<xsd:simpleType name="SKU">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\d{3}-[A-Z]{2}"/>
 </xsd:restriction>
</xsd:simpleType>
</xsd:schema>

5.3.1.1.2 Default Java Binding import javax.xml.datatype.XMLGregorianCalendar; import
java.util.List;
public class PurchaseOrderType {
 USAddress getShipTo(){...}
 void setShipTo(USAddress){...}
 USAddress getBillTo(){...}
 void setBillTo(USAddress){...}
 /** Optional to set Comment property. */
 String getComment(){...}
 void setComment(String){...}
 Items getItems(){...}
 void setItems(Items){...}
 XMLGregorianCalendar getOrderDate()
 void setOrderDate(XMLGregorianCalendar)
};
public class USAddress {
 String getName(){...}
 void setName(String){...}
 String getStreet(){...}
 void setStreet(String){...}
 String getCity(){...}
 void setCity(String){...}
 String getState(){...}
 void setState(String){...}
 int getZip(){...}
 void setZip(int){...}
 static final String COUNTRY="USA";
};
public class Items {
 public class ItemType {
 String getProductName(){...}
 void setProductName(String){...}
 /** Type constraint on Quantity setter value 0..99.*/
 int getQuantity(){...}
 void setQuantity(int){...}
 float getUSPrice(){...}
 void setUSPrice(float){...}
 /** Optional to set Comment property. */
 String getComment(){...}
 void setComment(String){...}
 XMLGregorianCalendar getShipDate();

Standard Data Type Mapping

Using JAXB Data Binding 5-7

 void setShipDate(XMLGregorianCalendar);
 /** Type constraint on PartNum setter value "\d{3}-[A-Z]{2}".*/
 String getPartNum(){...} void setPartNum(String){...}
 };
 /** Local structural constraint 1 or more instances of Items.ItemType.*/
 List<Items.ItemType> getItem(){...}
}
public class ObjectFactory {
 // type factories
 Object newInstance(Class javaInterface){...}
 PurchaseOrderType createPurchaseOrderType(){...}
 USAddress createUSAddress(){...}
 Items createItems(){...}
 Items.ItemType createItemsItemType(){...}
 // element factories
JAXBElement<PurchaseOrderType>createPurchaseOrder(PurchaseOrderType){...}
 JAXBElement<String> createComment(String value){...}
}

5.3.1.2 Java-to-XML Mapping for Built-In Data Types
The following table lists alphabetically the supported Java data types and their
equivalent XML Schema data types. For a list of the supported user-defined Java data
types, see Section 5.3.2.2, "Supported Java User-Defined Data Types."

Table 5–2 Mapping Java Data Types to XML Schema Data Types

Java Data Type (lower case
indicates a primitive data type) XML Schema Data Type

boolean boolean

byte byte

double double

float float

long long

int int

javax.activation.DataHand
ler

base64Binary

java.awt.Image base64Binary

java.lang.Object anyType

java.lang.String string

java.math.BigInteger integer

java.math.BigDecimal decimal

java.net.URI string

java.util.Calendar dateTime

java.util.Date dateTime

java.util.UUID string

javax.xml.datatype.XMLGre
gorianCalendar

anySimpleType

javax.xml.datatype.Durati
on

duration

Standard Data Type Mapping

5-8 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

5.3.2 Supported User-Defined Data Types
The tables in the following sections list the user-defined XML and Java data types for
which the jwsc and wsdlc Ant tasks can automatically generate data binding
artifacts, such as the corresponding Java or XML representation.

If your XML or Java data type is not listed in these tables, and it is not one of the
built-in data types listed in Section 5.3.1, "Supported Built-In Data Types," then you
must create the user-defined data type artifacts manually.

5.3.2.1 Supported XML User-Defined Data Types
The following table lists the XML Schema data types supported by the jwsc and
wsdlc Ant tasks and their equivalent Java data type or mapping mechanism.

javax.xml.namespace.QName Qname

javax.xml.transform.Sourc
e

base64Binary

short short

Table 5–3 Supported User-defined XML Schema Data Types

XML Schema Data Type
Equivalent Java Data Type or Mapping
Mechanism

<xsd:complexType> with elements of both
simple and complex types.

JavaBean

<xsd:complexType> with simple content. JavaBean

<xsd:attribute> in <xsd:complexType> Property of a JavaBean

Derivation of new simple types by restriction of
an existing simple type.

Equivalent Java data type of simple type.

Facets used with restriction element. Facets not enforced during serialization and
deserialization.

<xsd:list> Array of the list data type.

Array derived from soapenc:Array by
restriction using the wsdl:arrayType
attribute.

Array of the Java equivalent of the arrayType
data type.

Array derived from soapenc:Array by
restriction.

Array of Java equivalent.

Derivation of a complex type from a simple type. JavaBean with a property called _value whose
type is mapped from the simple type according
to the rules in this section.

<xsd:anyType> java.lang.Object

<xsd:any> java.lang.Object

<xsd:any[]> java.lang.Object

<xsd:union> Common parent type of union members.

Table 5–2 (Cont.) Mapping Java Data Types to XML Schema Data Types

Java Data Type (lower case
indicates a primitive data type) XML Schema Data Type

Customizing Java-to-XML Schema Mapping Using JAXB Annotations

Using JAXB Data Binding 5-9

5.3.2.2 Supported Java User-Defined Data Types
The following table lists the Java user-defined data types supported by the jwsc and
wsdlc Ant tasks and their equivalent XML Schema data type.

5.4 Customizing Java-to-XML Schema Mapping Using JAXB Annotations
If required, you can override the default binding rules for Java-to-XML Schema
mapping using JAXB annotations. Table 5–5 summarizes the JAXB mapping
annotations that you can include in your JWS file to control how the Java objects are
mapped to XML. Each of these annotations are available with the
javax.xml.bind.annotation package, described at
http://download.oracle.com/javaee/5/api/javax/xml/bind/annotatio
n/package-summary.html.

<xsi:nil> and <xsd:nillable> attribute Java null value.

If the XML data type is built-in and usually
maps to a Java primitive data type (such as int
or short), then the XML data type is actually
mapped to the equivalent object wrapper type
(such as java.lang.Integer or
java.lang.Short).

Derivation of complex types Mapped using Java inheritance.

Abstract types Abstract Java data type.

Table 5–4 Supported Java User-defined Data Types

Java Data Type Equivalent XML Schema Data Type

JavaBean whose properties are any supported
data type.

<xsd:complexType> whose content model is a
<xsd:sequence> of elements corresponding to
JavaBean properties.

Array and multidimensional array of any
supported data type (when used as a JavaBean
property)

An element in a <xsd:complexType> with the
maxOccurs attribute set to unbounded.

java.lang.Object

Note: The data type of the runtime object must
be a known type.

<xsd:anyType>

java.util.Collection Literal Array

java.util.List Literal Array

java.util.ArrayList Literal Array

java.util.LinkedList Literal Array

java.util.Vector Literal Array

java.util.Stack Literal Array

java.util.Set Literal Array

java.util.TreeSet Literal Array

java.utils.SortedSet Literal Array

java.utils.HashSet Literal Array

Table 5–3 (Cont.) Supported User-defined XML Schema Data Types

XML Schema Data Type
Equivalent Java Data Type or Mapping
Mechanism

Customizing Java-to-XML Schema Mapping Using JAXB Annotations

5-10 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

The default mapping of Java objects to XML Schema for the supported built-in and
user-defined types are listed in the following sections:

■ Section 5.3.1.2, "Java-to-XML Mapping for Built-In Data Types"

■ Section 5.3.2.2, "Supported Java User-Defined Data Types"

5.4.1 Example of JAXB Annotations
The following provides an example of the JAXB annotations.

@XmlRootElement(name = "ComplexService", namespace ="http://examples.org")
@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "basicStruct", propOrder = {
 "intValue",
 "stringArray",
 "stringValue"
)
public class BasicStruct {
 protected int intValue;
 @XmlElement(nillable = true)
 protected List<String> stringArray;
 protected String stringValue;
 public int getIntValue() {
 return intValue;
 }
 public void setIntValue(int value) {
 this.intValue = value;
 }
 public List<String> getStringArray() {
 if (stringArray == null) {
 stringArray = new ArrayList<String>();
 }
 return this.stringArray;
 }

 public String getStringValue() {
 return stringValue;

Table 5–5 JAXB Mapping Annotations

Annotation Description

@XmlAccessorType Specifies whether fields or properties are mapped by default. See
Section 5.4.2, "Specifying Default Serialization of Fields and Properties
(@XmlAccessorType Annotation)."

@XmlElement Maps a property contained in a class to a local element in the XML Schema
complex type to which the containing class is mapped. See Section 5.4.3,
"Mapping Properties to Local Elements (@XmlElement)."

@XMLMimeType Associates the MIME type that controls the XML representation of the
property with a textual representation, such as image/jpeg. See
Section 5.4.4, "Specifying the MIME Type (@XmlMimeType Annotation)."

@XmlRootElement Maps a top-level class to a global element in the XML Schema that is used
by the WSDL of the Web service. See Section 5.4.5, "Mapping a Top-level
Class to a Global Element (@XmlRootElement)."

@XmlSeeAlso Binds other classes when binding the current class. See Section 5.4.6,
"Binding a Set of Classes (@XmlSeeAlso)."

@XmlType Maps a class or enum type to an XML Schema type.See Section 5.4.7,
"Mapping a Value Class to a Schema Type (@XmlType)."

Customizing Java-to-XML Schema Mapping Using JAXB Annotations

Using JAXB Data Binding 5-11

 }
 public void setStringValue(String value) {
 this.stringValue = value;
 }
}

5.4.2 Specifying Default Serialization of Fields and Properties (@XmlAccessorType
Annotation)

The @XmlAccessorType annotation specifies whether fields or properties are
mapped by default. The annotation can be specified for the following Java program
elements:

■ Package

■ Top-level class

The @XmlAccessorType can be specified with the @XmlType (see Section 5.4.7,
"Mapping a Value Class to a Schema Type (@XmlType)") and @XmlRootElement (see
Section 5.4.5, "Mapping a Top-level Class to a Global Element (@XmlRootElement)")
annotations.

The following table lists the optional element that can be passed to the
@XmlAccessorType annotation.

For more information, see the javax.xml.bind.annotation.XmlAccessorType
Javadoc at
http://download.oracle.com/javaee/5/api/javax/xml/bind/annotatio
n/XmlAccessorType.html. An example is provided in Section 5.4.1, "Example of
JAXB Annotations."

5.4.3 Mapping Properties to Local Elements (@XmlElement)
The @XmlElement annotation maps a property contained in a class to a local element
in the XML Schema complex type to which the containing class is mapped. The
annotation can be specified for the following Java program elements:

■ JavaBean property

■ Non-static, non-transient field

The following table lists the annotation elements that can be passed to the
@XmlElement annotation.

Table 5–6 Optional Element for @XMLAccessorType Annotation

Element Description

value Specifies XMLAccessType.value, where value can be one of the following
values:

■ FIELD—Fields are bound to XML.

■ PROPERTY—JavaBean properties (getter/setter pairs) are bound to XML.

■ PUBLIC_MEMBER—Public fields and JavaBean properties are bound to
XML. This is the default.

■ NONE—Neither fields nor JavaBean properties are bound to XML.

Customizing Java-to-XML Schema Mapping Using JAXB Annotations

5-12 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

For more information, see the javax.xml.bind.annotation.XmlElement
Javadoc at
http://download.oracle.com/javaee/5/api/javax/xml/bind/annotatio
n/XmlElement.html.

5.4.4 Specifying the MIME Type (@XmlMimeType Annotation)
The @XmlMimeType annotation specifies the MIME type that controls the XML
representation of the property. The annotation can be specified for data types, such as
Image or Source, that are bound to the xsd:base64Binary binary in XML.

The following table lists the required element that can be passed to the
@XmlMimeType annotation.

For more information, see the javax.xml.bind.annotation.XmlMimeType
Javadoc at
http://download.oracle.com/javaee/5/api/javax/xml/bind/annotatio
n/XmlMimeType.html.

5.4.5 Mapping a Top-level Class to a Global Element (@XmlRootElement)
The @XmlRootElement annotation maps a top-level class to a global element in the
XML Schema that is used by the WSDL of the Web service. The annotation can be
specified for the following Java program elements:

■ Top-level class

■ Enum type

The @XmlRootElement can be specified with the @XmlType (see Section 5.4.7,
"Mapping a Value Class to a Schema Type (@XmlType)") and @XmlAccessorType
(see Section 5.4.2, "Specifying Default Serialization of Fields and Properties
(@XmlAccessorType Annotation)") annotations.

The following table lists the optional elements that can be passed to the
@XmlRootElement annotation.

Table 5–7 Optional Element Summary for @XMLElement Annotation

Element Description

name Local name of the XML element that represents the property of a JavaBean.
This element defaults to the JavaBean property name.

namespace Namespace of the XML element that represents the property of a JavaBean. By
default, the namespace is derived from the namespace of the containing class.

nillable Customize the element declaration to be nillable.

Table 5–8 Required Element for @XMLMimeType Annotation

Element Description

value Specifies the textual representation of the MIME type, such as image/jpeg,
text/xml, and so on.

Table 5–9 Optional Elements for @XmlRootElement Annotation

Element Description

name Local name of the XML element. This element defaults to the class name.

Customizing Java-to-XML Schema Mapping Using JAXB Annotations

Using JAXB Data Binding 5-13

For more information, see the javax.xml.bind.annotation.XmlRootElement
Javadoc at
http://download.oracle.com/javaee/5/api/javax/xml/bind/annotatio
n/XmlRootElement.html. An example is provided in Section 5.4.1, "Example of
JAXB Annotations."

5.4.6 Binding a Set of Classes (@XmlSeeAlso)
The @XmlSeeAlso annotation binds a list of classes when binding the current class.
The following table lists the optional element that can be passed to the
@XMLRootElement annotation.

5.4.7 Mapping a Value Class to a Schema Type (@XmlType)
The @XmlType annotation maps a class or enum type to an XML Schema type. The
type can be a simple or complex type. The annotation can be specified for the
following Java program elements:

■ Top-level class

■ Enum type

The @XmlType can be specified with the @XmlRootElement (see Section 5.4.5,
"Mapping a Top-level Class to a Global Element (@XmlRootElement)") and
@XmlAccessorType (see Section 5.4.2, "Specifying Default Serialization of Fields and
Properties (@XmlAccessorType Annotation)") annotations.

The following table lists the optional elements that can be passed to the @XmlType
annotation.

For more information, see the javax.xml.bind.annotation.XmlType Javadoc at
http://download.oracle.com/javaee/5/api/javax/xml/bind/annotatio
n/XmlType.html. An example is provided in Section 5.4.1, "Example of JAXB
Annotations."

namespace Namespace of the XML element. By default, the namespace is derived from
the package of the class.

Table 5–10 Optional Element for @XmlSeeAlso Annotation

Element Description

value List of classes that JAXB uses when binding the current class.

Table 5–11 Optional Elements for @XmlType Annotation

Element Description

name Name of the XML Schema type to which the class is mapped.

namespace Name of the target namespace of the XML Schema type. By default, the target
namespace to which the package containing the class is mapped.

propOrder List of JavaBean property names defined in a class. The list defines an order
for the XML Schema elements when the class is mapped to an XML Schema
complex type. Each name in the list is the name of a Java identifier of the
JavaBean property. All of the JavaBean properties must be listed.

Table 5–9 (Cont.) Optional Elements for @XmlRootElement Annotation

Element Description

Customizing XML Schema-to-Java Mapping Using Binding Declarations

5-14 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

5.5 Customizing XML Schema-to-Java Mapping Using Binding
Declarations

Due to the distributed nature of a WSDL, you cannot always control or change its
contents to meet the requirements of your application. For example, the WSDL may
not be owned by you or it may already be in use by your partners, making changes
impractical or impossible.

If directly editing the WSDL is not an option, you can customize how the WSDL
components are mapped to Java objects by specifying custom binding declarations. You
can use binding declarations to control specific features, as well, such as asynchrony,
wrapper style, and so on, and to control the JAXB data binding artifacts that are
produced by customizing the XML Schema.

You can define binding declarations in one of the following ways:

■ Create an external binding declarations file that contains all binding declarations
for a specific WSDL or XML Schema document. See Section 5.5.1, "Creating an
External Binding Declarations File."

■ Embed binding declarations within the WSDL or XML Schema document. See
Section 5.5.2, "Embedding Binding Declarations."

The binding declarations are semantically equivalent regardless of which method you
choose.

Custom binding declarations are associated with a scope, as shown in the following
figure.

Figure 5–2 Scopes for Custom Binding Declarations

The following table describes the meaning of each scope.

Note: If customizations are required, Oracle recommends this
method to maintain flexibility by keeping the customizations separate
from the WSDL or XML Schema document.

Customizing XML Schema-to-Java Mapping Using Binding Declarations

Using JAXB Data Binding 5-15

Scopes for custom binding declarations adhere to the following inheritance and
overriding rules:

■ Inheritance—Customization values are inherited from the top down. For example,
a WSDL element (JAX-WS) in a component scope inherits a customization value
defined in global scope. A schema element (JAXB) in a component scope inherits a
customization value defined in global, schema, and definition scopes.

■ Overriding—Customization values are overridden from the bottom up. For
example, a WSDL element (JAX-WS) in a component scope overrides a
customization value defined in global scope. A schema element (JAXB) in a
component scope overrides a customization value defined in definition, schema,
and global scopes.

The following sections describe how to create custom binding declarations and
describe the standard custom binding declarations:

■ Section 5.5.1, "Creating an External Binding Declarations File"

■ Section 5.5.2, "Embedding Binding Declarations"

■ Section 5.5.3, "JAX-WS Custom Binding Declarations"

■ Section 5.5.4, "JAXB Custom Binding Declarations"

For more information about using custom binding declarations, see:

■ JAX-WS WSDL Customizations at
https://jax-ws.dev.java.net/nonav/2.1.2m1/docs/customizations
.html

■ "Customizing XML Schema to Java Representation Binding" in the JAXB
specification at http://jcp.org/en/jsr/detail?id=222.

Table 5–12 Scope for Custom Binding Declarations

Scope Definition

Global scope Describes customization values with global scope. Specifically:

■ For JAX-WS binding declarations, describes customization values
that are defined as part of the root element, as described in
Section 5.5.1.1.1, "Specifying the Root Element."

■ For JAXB annotations, describes customization values that are
contained within the <globalBindings> binding declaration.
Global scope values apply to all of the schema elements in the
source schema as well as any schemas that are included or
imported.

Schema scope Describes JAXB customization values that are contained within the
<schemaBindings> binding declaration. Schema scope values apply
to the elements in the target namespace of a schema.

Note: This scope applies for JAXB binding declarations only.

Definition scope Describes JAXB customization values that are defined in binding
declarations of a type definition or global declaration. Definition scope
values apply to elements that reference the type definition or global
declaration.

Note: This scope applies for JAXB binding declarations only.

Component scope Describes customization values that apply to the WSDL or schema
element that was annotated.

Customizing XML Schema-to-Java Mapping Using Binding Declarations

5-16 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

5.5.1 Creating an External Binding Declarations File
Create an external binding declarations file that contains all binding declarations for a
specific WSDL or XML Schema document. Then, pass the binding declarations file to
the <binding> child element of the wsdlc, jwsc, or clientgen Ant task.

The following sections describe:

■ Section 5.5.1.1, "Creating an External Binding Declarations File Using JAX-WS
Binding Declarations"

■ Section 5.5.1.2, "Creating an External Binding Declarations File Using JAXB
Binding Declarations"

5.5.1.1 Creating an External Binding Declarations File Using JAX-WS Binding
Declarations
The following sections describe how to specify the root and child elements of the
JAX-WS binding declarations file. For information about the custom binding
declarations that you can define, see Section 5.5.3, "JAX-WS Custom Binding
Declarations."

5.5.1.1.1 Specifying the Root Element The jaxws:bindings declaration is the root of
all other binding declarations and defines the location of the WSDL file and the
namespace to which the XML Schema conforms:
http://java.sun.com/xml/ns/jaxws.

The format of the root declaration is as follows:

<jaxws:bindings
 wsdlLocation="uri_of_wsdl"
 jaxws:xmlns="http://java.sun.com/xml/ns/jaxws">

uri_of_wsdl specifies the URI of the WSDL file.

The package, wrapper style, and asynchronous mapping customizations, defined in
Table 5–5, can be globally defined as part of the root binding declaration in the external
customization file. Global bindings apply to the entire scope of the
wsdl:definition in the WSDL referenced by the wsdlLocation attribute.

The following provides an example of the root binding element that defines the
package name, wrapper style, and asynchronous mapping customizations.

<jaxws:bindings
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 wsdlLocation="http://localhost:7001/simple/SimpleService?WSDL"
 xmlns:jaxws="http://java.sun.com/xml/ns/jaxws">
 <package name="example.webservices.simple.simpleservice">
 <enableWrapperStyle>true</enableWrapperStyle>
 <enableAsyncMapping>false</enableAsyncMapping>
</jaxws:bindings>

5.5.1.1.2 Specifying Child Elements The root jaxws:bindings element can contain
child elements. You specify the WSDL node that is being customized by passing an
XPath expression in the node attribute.

An XML Schema inlined inside a compiled WSDL file can be customized by using
standard JAXB bindings. For more information, see "XML Schema Customization" in
JAX-WS WSDL Customizations at
https://jax-ws.dev.java.net/nonav/2.1.2m1/docs/customizations.html. For

Customizing XML Schema-to-Java Mapping Using Binding Declarations

Using JAXB Data Binding 5-17

information about the custom JAXB binding declarations that you can define, see
Section 5.5.4, "JAXB Custom Binding Declarations."

For example, the following example defines the package name as
examples.webservices.complex.complexservice for the
wsdl:definitions node of the WSDL document.

<jaxws:bindings
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 wsdlLocation="http://localhost:7001/simple/SimpleService?WSDL
 xmlns:jaxws="http://java.sun.com/xml/ns/jaxws">
 <jaxws:bindings node="wsdl:definitions"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <jaxws:package name="examples.webservices.simple.simpleservice"/>
</bindings>

5.5.1.2 Creating an External Binding Declarations File Using JAXB Binding
Declarations
The JAXB binding declarations file is an XML document that conforms to the XML
Schema for the following namespace: http://java.sun.com/xml/ns/jaxb. The
following sections describe how to specify the root and child elements of the JAXB
binding declarations file. For information about the custom binding declarations that
you can define, see Section 5.5.4, "JAXB Custom Binding Declarations."

5.5.1.2.1 Specifying the Root Element The jaxb:bindings declaration is the root of all
other binding declarations.The format of the root declaration is as follows:

<jaxb:bindings
 schemaLocation="uri_of_schema">

uri_of_schema specifies the URI of the XML Schema file.

5.5.1.2.2 Specifying Child Elements The root jaxb:bindings element can contain child
elements. You specify the schema node that is being customized by passing an XPath
expression in the node attribute.

For example, the following example defines the package name as
examples.webservices.simple.simpleservice.

<jaxb:bindings
 schemaLocation="simpleservice.xsd">
 <jaxb:bindings node="//xs:simpleType[@name='value1']">
 <jaxb:package name="examples.webservices.simple.simpleservice"/>
 </jaxb:bindings>
</jaxb:bindings>

5.5.2 Embedding Binding Declarations
You can embed binding declarations in a WSDL file using one of the following
methods:

■ Embed a JAX-WS or JAXB binding declaration in the WSDL file
using the jaxws:bindings element as a WSDL extension. See Section 5.5.2.1,
"Embedding JAX-WS or JAXB Binding Declarations in the WSDL File."

■ Embed a JAXB binding declaration in the XML Schema as part of an <appinfo>
element. See Section 5.5.2.2, "Embedding JAXB Binding Declarations in the XML
Schema."

Customizing XML Schema-to-Java Mapping Using Binding Declarations

5-18 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

5.5.2.1 Embedding JAX-WS or JAXB Binding Declarations in the WSDL File
You can embed a binding declaration in the WSDL file using the jaxws:bindings
element as a WSDL extension. For information about the custom binding declarations
that you can define, see Section 5.5.3, "JAX-WS Custom Binding Declarations."

For example, the following example defines the class name as SimpleService for the
SimpleServiceImpl service endpoint interface (or port).

<wsdl:portType name="SimpleServiceImpl">
 <jaxws:bindings xmlns:jaxws="http://java.sun.com/xml/ns/jaxws">
 <jaxws:class name="SimpleService"/>
 </jaxws:bindings>
</wsdl:portType>

If this binding declaration had not been specified, the class name of the service
endpoint interface would be set to the wsdl:portType
name—SimpleServiceImpl—by default.

An XML Schema inlined inside a compiled WSDL file can be customized by using
standard JAXB bindings. For more information, see "XML Schema Customizations" in
JAX-WS WSDL Customizations, which is available at
https://jax-ws.dev.java.net/nonav/2.1.2m1/docs/customizations.ht
ml. For information about the custom JAXB binding declarations that you can define,
see Section 5.5.4, "JAXB Custom Binding Declarations."

5.5.2.2 Embedding JAXB Binding Declarations in the XML Schema
You can embed a JAXB custom declaration within the <appinfo> element of the XML
Schema, as illustrated below.

<xs:annotation>
 <xs:appinfo>
 <binding declaration>
 </xs:appinfo>
</xs:annotation>

For example, the following defines the package name for the schema:

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.w3.org/2001/XMLSchema"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 jaxb:version="2.0">
 <annotation>
 <appinfo>
 <jaxb:schemaBindings>
 <jaxb:package name="example.webservices.simple.simpleservice"/>
 </jaxb:schemaBindings>
 </appinfo>
 </annotation>
</schema>

5.5.3 JAX-WS Custom Binding Declarations
The following table summarizes the typical JAX-WS customizations. For a complete
list of JAX-WS custom binding declarations, see JAX-WS WSDL Customization at
https://jax-ws.dev.java.net/nonav/2.1.2/docs/customizations.html
.

Customizing XML Schema-to-Java Mapping Using Binding Declarations

Using JAXB Data Binding 5-19

Table 5–13 JAX-WS Custom Binding Declarations

Customization Description

Package name Use the jaxws:package binding declaration to define the
package name.

If you do not specify this customization, the wsdlc Ant task
generates a package name based on the targetNamespace of
the WSDL. This data binding customization is overridden by the
packageName attribute of the wsdlc, jwsc, or clientgen Ant
task. For more information, see "wsdlc" in the WebLogic Web
Services Reference for Oracle WebLogic Server.

This binding declaration can be specified as part of the root
binding element, as described in Section 5.5.1, "Creating an
External Binding Declarations File," or on the
wsdl:definitions node, as shown in the following example:

<bindings
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 wsdlLocation=
 "http://localhost:7001/simple/SimpleService?WSDL"
 xmlns="http://java.sun.com/xml/ns/jaxws">
 <bindings node="wsdl:definitions"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <package
name="example.webservices.simple.simpleService"/>
</bindings>

Wrapper-style rules Use the jaxws:enablesWrapperStyle binding declaration to
enable or disable the wrapper style rules that control how the
parameter types and return types of a WSDL operation are
generated.

This binding declaration can be specified as part of the root
binding element, as described in Section 5.5.1, "Creating an
External Binding Declarations File," or on one of the following
nodes:

■ wsdl:definitions—Applies to all wsdl:operations
of all wsdl:portType attributes.

■ wsdl:portType—Applies to all wsdl:operations in the
wsdl:portType.

■ wsdl:operation—Applies to the wsdl:operation only.

The following example disables the wrapper style rules for the
wsdl:definitions node:

<bindings
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
wsdlLocation="http://localhost:7001/simple/SimpleServic
e?WSDL"
 xmlns="http://java.sun.com/xml/ns/jaxws">
 <bindings node="wsdl:definitions"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <enableWrapperStyle>
 false
 </enableWrapperStyle>
</bindings>

Customizing XML Schema-to-Java Mapping Using Binding Declarations

5-20 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

Asynchrony Use the jaxws:enableAsycMapping binding declaration to
instruct the clientgen Ant task to generate asynchronous
polling and callback operations along with the normal
synchronous methods when it compiles a WSDL file.

This binding declaration can be specified as part of the root
binding element, as described in Section 5.5.1, "Creating an
External Binding Declarations File," or on one of the following
nodes:

■ wsdl:definitions—Applies to all wsdl:operations
of all wsdl:portType attributes.

■ wsdl:portType—Applies to all wsdl:operations in the
wsdl:portType.

■ wsdl:operation—Applies to the wsdl:operation only.

The following example disables asynchronous polling and
callback operations:

<bindings
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
wsdlLocation="http://localhost:7001/simple/SimpleServic
e?WSDL"
 xmlns="http://java.sun.com/xml/ns/jaxws">
 <bindings node="wsdl:definitions"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <enableAsyncMapping>
 false
 </enableAsyncMapping>
</bindings>

Provider Use the jaxws:provider binding declaration to mark the part
as a provider interface. This binding declaration can be specified
as part of the wsdl:portType. This binding declaration applies
when you are developing a service starting from a WSDL file.

Class name Use the jaxws:class binding declaration to define the class
name. This binding declaration can be specified for one of the
following nodes:

■ wsdl:portType—Defines the interface class name.

■ wsdl:fault—Defines fault class names.

■ soap:headerfault—Defines exception class names.

■ wsdl:service—Defines the implementation class names.

The following example defines the class name for the
implementation class.

<bindings
node="wsdl:definitions/wsdl:service[@name='SimpleServic
e']">
 <class name="myService"></class>
</bindings>

Table 5–13 (Cont.) JAX-WS Custom Binding Declarations

Customization Description

Customizing XML Schema-to-Java Mapping Using Binding Declarations

Using JAXB Data Binding 5-21

5.5.4 JAXB Custom Binding Declarations
The following table lists the typical JAXB customizations.

Method name Use the jaxws:method binding declaration to customize the
generated Java method name of a service endpoint interface or
the port accessor method in the generated Service class.

The following example defines the Java method name for the
wsdl:operation EchoHello.

<bindings
node="wsdl:definitions/wsdl:portType[@name='SimpleServi
ceImpl']/wsdl:operation[@name='EchoHello']">
 <method name="Greeting"></method>
</bindings>

Java parameter name Use the jaxws:parameter binding declaration to customize
the parameter name of generated Java methods. This declaration
can be used to change the method parameter of a
wsdl:operation in a wsdl:portType.

The following example defines the Java method name for the
wsdl:operation echoHello.

<bindings
node="wsdl:definitions/wsdl:portType[@name='SimpleServi
ceImpl']/wsdl:operation[@name='EchoHello']">
 <parameter
part="definitions/message[@name='EchoHello']/
 part[@name='parameters']" element="hello"
 name="greeting"/>
</bindings>

Javadoc Use the jaxws:javadoc binding declaration to specify Javadoc
text for a package, class, or method.

For example, the following defines Javadoc at the method level.

<bindings
node="wsdl:definitions/wsdl:portType[@name='SimpleServi
ceImpl']/wsdl:operation[@name='EchoHello']">
 <method name="Hello">
 <javadoc>Prints hello.</javadoc>
 </method>
</bindings>

Handler chain Use the javaee:handlerchain binding declaration to
customize or add handlers. The inline handler must conform to
the handler chain configuration defined in the Web Services
Metadata for the Java Platform specification (JSR-181) at
http://www.jcp.org/en/jsr/detail?id=181.

Note: The following table only summarizes the JAXB custom
binding declarations, to help get you started. For a complete list and
description of all JAXB custom binding declarations, see the JAXB
specification (http://jcp.org/en/jsr/detail?id=222) or
"Customizing JAXB Bindings" in the Sun Java EE 5 Tutorial.

Table 5–13 (Cont.) JAX-WS Custom Binding Declarations

Customization Description

Customizing XML Schema-to-Java Mapping Using Binding Declarations

5-22 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

Table 5–14 JAXB Custom Binding Declarations

Customization Description

Global bindings Use the <globalBindings> binding declaration to define
binding declarations with global scope (see Figure 5–2).

You can specify attributes and elements to the
<globalBindings> binding declaration. For example, the
following binding declaration defines:

■ collectionType attribute that specifies a type class,
myArray, that implements the java.util.List interface
and that is used to represent all lists in the generated
implementation.

■ generateIsSetMethod attribute to generate the
isSet() method corresponding to the getter and setter
property methods.

■ javaType element to customize the binding of an XML
Schema atomic datatype to a Java datatype (built-in or
application-specific).

<jaxb:globalBindings
 collectionType ="java.util.myArray"
 generateIsSetMethod="false">
 <jaxb:javaType name="java.util.Date"
 xmlType="xsd:date"
 </jaxb:javaType>
</jaxb:globalBindings>

Schema bindings Use the <schemaBindings> binding declaration to define
binding declarations with schema scope (see Figure 5–2).

For an example, see the description of "Package name" in this
table.

Customizing XML Schema-to-Java Mapping Using Binding Declarations

Using JAXB Data Binding 5-23

Package name Use the <package> element of the <schemaBindings>
binding declaration (see Table 5–12) to define the package name
for the schema.

If you do not specify this customization, the wsdlc Ant task
generates a package name based on the targetNamespace of
the WSDL. This data binding customization is overridden by the
packageName attribute of the wsdlc, jwsc, or clientgen Ant
task. For more information, see "wsdlc" in the WebLogic Web
Services Reference for Oracle WebLogic Server.

For example, the following defines the package name for all
JAXB classes generated from the simpleservice.xsd file:

<jaxb:bindings
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 schemaLocation="simpleservice.xsd"
 node="/xs:schema">
 <jaxb:schemaBindings>
 <jaxb:package name="examples.jaxb"/>
 </jaxb:schemaBindings>
</jaxb:bindings>

The following shows how to define the package name for an
imported XML Schema:

<jaxb:bindindgs
 xmlns:xs="http://www.w3.org/2001/XMLSchema"

node="//xs:schema/xs:import[@namespace='http://examples
.webservices.org/complexservice']">
 <jaxb:schemaBindings>
 <jaxb:package name="examples.jaxb"/>
 </jaxb:schemaBindings>
 </jaxb:bindings>

Class name Use the <class> binding declaration to define the class name
for a schema element.

The following example defines the class name for an
xsd:complexType:

<xs:complexType name="ComplexType">
 <xs:annotation><xs:appinfo>
 <jaxb:javadoc>This is my
class.</jaxb:javadoc>
 </jaxb:class>
 </xs:appinfo></xs:annotation>
</xs:complexType>

Java property name Use the <property> binding declaration to define the property
name for a schema element.

The following example shows how to define the Java property
name:

<jaxb:bindindgs
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 node="//xs:schema/">
 <jaxb:schemaBindings>
 <jaxb:property generateIsSetMethod="true"/>
 </jaxb:schemaBindings>
</jaxb:bindings>

Table 5–14 (Cont.) JAXB Custom Binding Declarations

Customization Description

Customizing XML Schema-to-Java Mapping Using Binding Declarations

5-24 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

Java datatype Use the <javaType> binding declaration to customize the
binding of an XML Schema atomic datatype to a Java datatype
(built-in or application-specific).

For example, see Global bindings (above).

Javadoc Use the <javadoc> child element of the <class> or
<property> binding declaration to specify Javadoc for the
element.

For example:

<xs:complexType name="ComplexType">
 <xs:annotation><xs:appinfo>
<jaxb:class name="MyClass">
 <jaxb:javadoc>This is my
class.</jaxb:javadoc>
 </jaxb:class>
 </xs:appinfo></xs:annotation>
</xs:complexType>

Table 5–14 (Cont.) JAXB Custom Binding Declarations

Customization Description

6

Invoking Web Services 6-1

6Invoking Web Services

The following sections describe how to invoke WebLogic Web services:

■ Section 6.1, "Overview of Web Services Invocation"

■ Section 6.2, "Invoking a Web Service from a Java SE Client"

■ Section 6.3, "Invoking a Web Service from a WebLogic Web Service"

■ Section 6.4, "Configuring Web Service Clients"

■ Section 6.5, "Defining a Web Service Reference Using the @WebServiceRef
Annotation"

■ Section 6.6, "Managing Client Identity"

■ Section 6.7, "Using a Proxy Server When Invoking a Web Service"

■ Section 6.8, "Client Considerations When Redeploying a Web Service"

■ Section 6.9, "Client Considerations When Web Service and Client Are Deployed to
the Same Managed Server"

For more information about:

■ Invoking message-secured Web services, see "Updating a Client Application to
Invoke a Message-Secured Web Service" in Securing WebLogic Web Services for
Oracle WebLogic Server.

■ Best practices for developing Web service clients, see "Roadmap for Developing
Web Service Clients" in Programming Advanced Features of JAX-WS Web Services for
Oracle WebLogic Server.

■ Invoking Web services asynchronously, see "Invoking Web Services
Asynchronously" in Programming Advanced Features of JAX-WS Web Services for
Oracle WebLogic Server.

■ Creating a dynamic proxy client, using the javax.xml.ws.Service API, that
enables a Web service client to invoke a Web service based on a service endpoint
interface (SEI) dynamically at run-time (without using clientgen), see "Creating
Dynamic Proxy Clients" in Programming Advanced Features of JAX-WS Web Services
for Oracle WebLogic Server.

Note: It is assumed in this chapter that, when you invoke a Web
service using the client-side artifacts generated by the clientgen or
wsdlc Ant tasks, you have the entire set of WebLogic Server classes in
your CLASSPATH.

Overview of Web Services Invocation

6-2 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

6.1 Overview of Web Services Invocation
Invoking a Web service refers to the actions that a client application performs to use
the Web service.

There are two types of client applications:

■ Java SE client—In its simplest form, a Java SE client is a Java program that has the
Main public class that you invoke with the java command.

■ Java EE component deployed to WebLogic Server—In this type of client
application, the Web service runs inside a Java Platform, Enterprise Edition (Java
EE) Version 5 component deployed to WebLogic Server, such as an EJB, servlet, or
another Web service. This type of client application, therefore, runs inside a
WebLogic Server container.

You can invoke a Web service from any Java SE or Java EE application running on
WebLogic Server (with access to the WebLogic Server classpath). Support for
stand-alone Java applications that are running in an environment where WebLogic
Server libraries are not available is not available in this release of JAX-WS.

The sections that follow describe how to use Oracle's implementation of the JAX-WS
specification to invoke a Web service from a Java client application. You can use this
implementation to invoke Web services running on any application server, both
WebLogic and non-WebLogic.

This chapter focuses on how to generate a static Java class of the Service interface
implementation for the particular Web service you want to invoke. For information
about generating dynamic proxy clients, see "Creating Dynamic Proxy Clients" in
Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server.

WebLogic Server includes examples of creating and invoking WebLogic Web services
in the WL_HOME/samples/server/examples/src/examples/webservices
directory, where WL_HOME refers to the main WebLogic Server directory. For detailed
instructions on how to build and run the examples, open the WL_
HOME/samples/server/docs/index.html Web page in your browser and expand
the WebLogic Server Examples->Examples->API->Web Services node.

In addition to the command-line tools described in this section, you can use an IDE
such as Oracle JDeveloper or Oracle Enterprise Pack for Eclipse (OEPE) for Web
service proxy generation and testing. For more information, see "Using Oracle IDEs to
Build Web Services" in Introducing WebLogic Web Services for Oracle WebLogic Server.

6.2 Invoking a Web Service from a Java SE Client

The following table summarizes the main steps to create a Java SE application that
invokes a Web service.

Note: You can invoke a Web service from any Java SE or Java EE
application running on WebLogic Server (with access to the WebLogic
Server classpath). Invoking a Web service from stand-alone Java
applications that are running in an environment where WebLogic
Server libraries are not available is not supported in this release for
JAX-WS Web services.

Invoking a Web Service from a Java SE Client

Invoking Web Services 6-3

6.2.1 Using the clientgen Ant Task To Generate Client Artifacts
The clientgen WebLogic Web services Ant task generates, from an existing WSDL
file, the client artifacts that client applications use to invoke both WebLogic and
non-WebLogic Web services. These artifacts include:

■ The Java class for the Service interface implementation for the particular Web
service you want to invoke.

■ JAXB data binding artifacts.

■ The Java class for any user-defined XML Schema data types included in the WSDL
file.

For additional information about the clientgen Ant task, such as all the available
attributes, see "Ant Task Reference" in the WebLogic Web Services Reference for Oracle
WebLogic Server.

Update your build.xml file, adding a call to the clientgen Ant task, as shown in
the following example:

Note: It is assumed that you use Ant in your development
environment to build your client application, compile Java files, and
so on, and that you have an existing build.xml file that you want to
update with Web services client tasks. For general information about
using Ant in your development environment, see Section 3.5,
"Creating the Basic Ant build.xml File." For a full example of a
build.xml file used in this section, see Section 6.2.5, "Sample Ant
Build File for a Java Client."

Table 6–1 Steps to Invoke a Web Service from a Java SE Client

Step Description

1 Set up the environment. Open a command window and execute the setDomainEnv.cmd (Windows)
or setDomainEnv.sh (UNIX) command, located in the bin subdirectory of
your domain directory. The default location of WebLogic Server domains is
MW_HOME/user_projects/domains/domainName, where MW_HOME is the
top-level installation directory of the Oracle products and domainName is the
name of your domain.

2 Update your build.xml file
to execute the clientgen
Ant task to generate the
needed client-side artifacts to
invoke a Web service.

See Section 6.2.1, "Using the clientgen Ant Task To Generate Client Artifacts."

3 Get information about the
Web service, such as the
signature of its operations
and the name of the ports.

See Section 6.2.2, "Getting Information About a Web Service."

4 Write the client application
Java code that includes code
for invoking the Web service
operation.

See Section 6.2.3, "Writing the Java Client Application Code to Invoke a Web
Service."

5 Create a basic Ant build file,
build.xml.

See Section 3.5, "Creating the Basic Ant build.xml File."

6 Compile and run your Java
client application.

See Section 6.2.4, "Compiling and Running the Client Application."

Invoking a Web Service from a Java SE Client

6-4 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
 <target name="build-client">
 <clientgen
 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
 destDir="clientclasses"
 packageName="examples.webservices.simple_client"
 type="JAXWS"/>
 </target>

Before you can execute the clientgen WebLogic Web service Ant task, you must
specify its full Java classname using the standard taskdef Ant task.

You must include the wsdl and destDir attributes of the clientgen Ant task to
specify the WSDL file from which you want to create client-side artifacts and the
directory into which these artifacts should be generated. The packageName attribute
is optional; if you do not specify it, the clientgen task uses a package name based on
the targetNamespace of the WSDL. The type is required in this example;
otherwise, it defaults to JAXRPC.

In this example, the package name is set to the same package name as the client
application, examples.webservices.simple_client. If you set the package
name to one that is different from the client application, you would need to import the
appropriate class files. For example, if you defined the package name as
examples.webservices.complex, you would need to import the following class
files in the client application:

import examples.webservices.complex.BasicStruct;
import examples.webservices.complex.ComplexPortType;
import examples.webservices.complex.ComplexService;

If the WSDL file specifies that user-defined data types are used as input parameters or
return values of Web service operations, clientgen automatically generates a
JavaBean class that is the Java representation of the XML Schema data type defined in
the WSDL. The JavaBean classes are generated into the destDir directory.

For a full sample build.xml file that contains additional targets from those described
in this procedure, such as clean, see Section 6.2.5, "Sample Ant Build File for a Java
Client."

To execute the clientgen Ant task, along with the other supporting Ant tasks,
specify the build-client target at the command line:

prompt> ant build-client

See the clientclasses directory to view the files and artifacts generated by the
clientgen Ant task.

Note: The clientgen Ant task also provides the destFile
attribute if you want the Ant task to automatically compile the
generated Java code and package all artifacts into a JAR file. For
details and an example, see "clientgen" in the WebLogic Web Services
Reference for Oracle WebLogic Server.

Invoking a Web Service from a Java SE Client

Invoking Web Services 6-5

6.2.2 Getting Information About a Web Service
You need to know the name of the Web service and the signature of its operations
before you write your Java client application code to invoke an operation. There are a
variety of ways to find this information.

The best way to get this information is to use the clientgen Ant task to generate the
Web service-specific Service files and look at the generated *.java files. These files
are generated into the directory specified by the destDir attribute, with
subdirectories corresponding to either the value of the packageName attribute, or, if
this attribute is not specified, to a package based on the targetNamespace of the
WSDL.

■ The ServiceName.java source file contains the getPortName() methods for
getting the Web service port, where ServiceName refers to the name of the Web
service and PortName refers to the name of the port. If the Web service was
implemented with a JWS file, the name of the Web service is the value of the
serviceName attribute of the @WebService JWS annotation and the name of the
port is the value of the portName attribute of the <WLHttpTransport> child
element of the <jws> element of the jwsc Ant task.

■ The PortType.java file contains the method signatures that correspond to the
public operations of the Web service, where PortType refers to the port type of
the Web service. If the Web service was implemented with a JWS file, the port type
is the value of the name attribute of the @WebService JWS annotation.

You can also examine the actual WSDL of the Web service; see Section 3.10, "Browsing
to the WSDL of the Web Service" for details about the WSDL of a deployed WebLogic
Web service. The name of the Web service is contained in the <service> element, as
shown in the following excerpt of the TraderService WSDL:

 <service name="TraderService">
 <port name="TraderServicePort"
 binding="tns:TraderServiceSoapBinding">
 ...
 </port>
 </service>

The operations defined for this Web service are listed under the corresponding
<binding> element. For example, the following WSDL excerpt shows that the
TraderService Web service has two operations, buy and sell (for clarity, only
relevant parts of the WSDL are shown):

 <binding name="TraderServiceSoapBinding" ...>
 ...
 <operation name="sell">
 ...
 </operation>
 <operation name="buy">
 </operation>
 </binding>

6.2.3 Writing the Java Client Application Code to Invoke a Web Service
In the following code example, a Java application invokes a Web service operation.
The application uses standard JAX-WS API code and the Web service-specific
implementation of the Service interface, generated by clientgen, to invoke an
operation of the Web service.

Invoking a Web Service from a Java SE Client

6-6 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

The example also shows how to invoke an operation that has a user-defined data type
(examples.webservices.simple_client.BasicStruct) as an input parameter
and return value. The clientgen Ant task automatically generates the Java code for
this user-defined data type.

Because the <clientgen> packageName attribute was set to the same package name
as the client application, we are not required to import the <clientgen>-generated
files.

package examples.webservices.simple_client;
/**
 * This is a simple Java application that invokes the
 * the echoComplexType operation of the ComplexService Web service.
 */
public class Main {
 public static void main(String[] args) {
 ComplexService test = new ComplexService();
 ComplexPortType port = test.getComplexPortTypePort();
 BasicStruct in = new BasicStruct();
 in.setIntValue(999);
 in.setStringValue("Hello Struct");
 BasicStruct result = port.echoComplexType(in);
 System.out.println("echoComplexType called. Result: " + result.getIntValue() +
", " + result.getStringValue());
 }
}

In the preceding example:

■ The following code shows how to create a ComplexPortType stub:

ComplexService test = new ComplexService(),
ComplexPortType port = test.getComplexPortTypePort();

The ComplexService class implements the JAX-WS Service interface. The
getComplexServicePortTypePort() method is used to return an instance of
the ComplexPortType stub implementation.

■ The following code shows how to invoke the echoComplexType operation of the
ComplexService Web service:

BasicStruct result = port.echoComplexType(in);

The echoComplexType operation returns the user-defined data type called
BasicStruct.

6.2.4 Compiling and Running the Client Application
Add javac tasks to the build-client target in the build.xml file to compile all
the Java files (both of your client application and those generated by clientgen) into
class files, as shown by the bold text in the following example:

 <target name="build-client">
 <clientgen
 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
 destDir="clientclasses"
 packageName="examples.webservices.simple_client"
 type="JAXWS"/>
 <javac
 srcdir="clientclasses"
 destdir="clientclasses"

Invoking a Web Service from a Java SE Client

Invoking Web Services 6-7

 includes="**/*.java"/>
 <javac
 srcdir="src"
 destdir="clientclasses"
 includes="examples/webservices/simple_client/*.java"/>
 </target>

In the example, the first javac task compiles the Java files in the clientclasses
directory that were generated by clientgen, and the second javac task compiles
the Java files in the examples/webservices/simple_client subdirectory of the
current directory; where it is assumed your Java client application source is located.

In the preceding example, the clientgen-generated Java source files and the
resulting compiled classes end up in the same directory (clientclasses). Although
this might be adequate for prototyping, it is often a best practice to keep source code
(even generated code) in a different directory from the compiled classes. To do this, set
the destdir for both javac tasks to a directory different from the srcdir directory.
To run the client application, add a run target to the build.xml that includes a call to
the java task, as shown below:

<path id="client.class.path">
 <pathelement path="clientclasses"/>
 <pathelement path="${java.class.path}"/>
</path>
<target name="run" >
 <java
 fork="true"
 classname="examples.webServices.simple_client.Main"
 failonerror="true" >
 <classpath refid="client.class.path"/>
</target>

The path task adds the clientclasses directory to the CLASSPATH. The run
target invokes the Main application, passing it the URL of the deployed Web service as
its single argument.

See Section 6.2.5, "Sample Ant Build File for a Java Client" for a full sample
build.xml file that contains additional targets from those described in this
procedure, such as clean.

Rerun the build-client target to regenerate the artifacts and recompile into classes,
then execute the run target to invoke the echoStruct operation:

 prompt> ant build-client run

You can use the build-client and run targets in the build.xml file to iteratively
update, rebuild, and run the Java client application as part of your development
process.

6.2.5 Sample Ant Build File for a Java Client
The following example shows a complete build.xml file for generating and
compiling a Java client. See Section 6.2.1, "Using the clientgen Ant Task To Generate
Client Artifacts" and Section 6.2.4, "Compiling and Running the Client Application" for
explanations of the sections in bold.

<project name="webservices-simple_client" default="all">
 <!-- set global properties for this build -->
 <property name="wls.hostname" value="localhost" />
 <property name="wls.port" value="7001" />

Invoking a Web Service from a WebLogic Web Service

6-8 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

 <property name="example-output" value="output" />
 <property name="clientclass-dir" value="${example-output}/clientclass" />
 <path id="client.class.path">
 <pathelement path="${clientclass-dir}"/>
 <pathelement path="${java.class.path}"/>
 </path>
 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
 <target name="clean" >
 <delete dir="${clientclass-dir}"/>
 </target>
 <target name="all" depends="clean,build-client,run" />
 <target name="build-client">
 <clientgen
 wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
 destDir="${clientclass-dir}"
 packageName="examples.webservices.simple_client"
 type="JAXWS"/>
 <javac
 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
 includes="**/*.java"/>
 <javac
 srcdir="src" destdir="${clientclass-dir}"
 includes="examples/webservices/simple_client/*.java"/>
 </target>
 <target name="run" >
 <java fork="true"
 classname="examples.webservices.simple_client.Main"
 failonerror="true" >
 <classpath refid="client.class.path"/>
 </java>
 </target>
</project>

6.3 Invoking a Web Service from a WebLogic Web Service
Invoking a Web service from within a WebLogic Web service is similar to invoking one
from a Java SE application, as described in Section 6.2, "Invoking a Web Service from a
Java SE Client," with the following variation:

■ Instead of using the clientgen Ant task to generate the JAX-WS Service
interface of the Web service to be invoked, you use the <clientgen> child
element of the <jws> element, inside the jwsc Ant task that compiles the
invoking Web service. In the JWS file that invokes the other Web service, however,
you still use the same standard JAX-WS APIs to get Service and PortType
instances to invoke the Web service operations.

■ You can use the @WebServiceRef annotation to define a reference to a Web
service, as described in Section 6.3.2, "Sample JWS File That Invokes a Web
Service."

This section describes the differences between invoking a Web service from a client in
a Java EE component, specifically another Web service, and invoking from a Java SE
client. It is assumed that you have read and understood Section 6.2, "Invoking a Web
Service from a Java SE Client." It is also assumed that you use Ant in your
development environment to build your client application, compile Java files, and so
on, and that you have an existing build.xml that builds a Web service that you want
to update to invoke another Web service.

Invoking a Web Service from a WebLogic Web Service

Invoking Web Services 6-9

The following list describes the changes you must make to the build.xml file that
builds your client Web service, which will invoke another Web service. See
Section 6.3.1, "Sample build.xml File for a Web Service Client" for the full sample
build.xml file:

■ Add a <clientgen> child element to the <jws> element that specifies the JWS
file that implements the Web service that invokes another Web service. Set the
required wsdl attribute to the WSDL of the Web service to be invoked. Set the
required packageName attribute to the package into which you want the JAX-WS
client stubs to be generated.

The following list describes the changes you must make to the JWS file that
implements the client Web service; see Section 6.3.2, "Sample JWS File That Invokes a
Web Service" for the full JWS file example.

■ Import the files generated by the <clientgen> child element of the jwsc Ant
task. These include the JAX-WS Service interface of the invoked Web service, as
well as the Java representation of any user-defined data types used as parameters
or return values in the operations of the invoked Web service.

■ Get the Service and PortType interface implementation and invoke the
operation on the port as usual; see Section 6.2.3, "Writing the Java Client
Application Code to Invoke a Web Service" for details.

6.3.1 Sample build.xml File for a Web Service Client
The following sample build.xml file shows how to create a Web service that itself
invokes another Web service; the relevant sections that differ from the build.xml for
building a simple Web service that does not invoke another Web service are shown in
bold.

The build-service target in this case is very similar to a target that builds a simple
Web service; the only difference is that the jwsc Ant task that builds the invoking Web
service also includes a <clientgen> child element of the <jws> element so that
jwsc also generates the required JAX-WS client stubs.

<project name="webservices-service_to_service" default="all">
 <!-- set global properties for this build -->
 <property name="wls.username" value="weblogic" />
 <property name="wls.password" value="weblogic" />
 <property name="wls.hostname" value="localhost" />
 <property name="wls.port" value="7001" />
 <property name="wls.server.name" value="myserver" />
 <property name="ear.deployed.name" value="ClientServiceEar" />
 <property name="example-output" value="output" />
 <property name="ear-dir" value="${example-output}/ClientServiceEar" />
 <property name="clientclass-dir" value="${example-output}/clientclasses" />
 <path id="client.class.path">
 <pathelement path="${clientclass-dir}"/>
 <pathelement path="${java.class.path}"/>
 </path>
 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />

Note: If the package name set using the packageName attribute of
<clientgen> is set to the same package name as the client
application, then you are not required to import the
<clientgen>-generated files.

Invoking a Web Service from a WebLogic Web Service

6-10 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
 <taskdef name="wldeploy"
 classname="weblogic.ant.taskdefs.management.WLDeploy"/>
 <target name="all" depends="clean,build-service,deploy,client" />
 <target name="clean" depends="undeploy">
 <delete dir="${example-output}"/>
 </target>
 <target name="build-service">
 <jwsc
 srcdir="src"
 destdir="${ear-dir}" >
 <jws
 file="examples/webservices/service_to_service/ClientServiceImpl.java"
 type="JAXWS">
 <clientgen

wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
 packageName="examples.webservices.complex" />
 </jws>
 </jwsc>
 </target>
 <target name="deploy">
 <wldeploy action="deploy" name="${ear.deployed.name}"
 source="${ear-dir}" user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>
 <target name="undeploy">
 <wldeploy action="undeploy" name="${ear.deployed.name}"
 failonerror="false"
 user="${wls.username}"
 password="${wls.password}" verbose="true"
 adminurl="t3://${wls.hostname}:${wls.port}"
 targets="${wls.server.name}" />
 </target>
 <target name="client">
 <clientgen
 wsdl="http://${wls.hostname}:${wls.port}/ClientService/ClientService?WSDL"
 destDir="${clientclass-dir}"
 packageName="examples.webservices.service_to_service.client"
 type="JAXWS"/>
 <javac
 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
 includes="**/*.java"/>
 <javac
 srcdir="src" destdir="${clientclass-dir}"
 includes="examples/webservices/service_to_service/client/**/*.java"/>
 </target>
 <target name="run">
 <java classname="examples.webservices.service_to_service.client.Main"
 fork="true"
 failonerror="true" >
 <classpath refid="client.class.path"/>
 </java>
 </target>
</project>

Invoking a Web Service from a WebLogic Web Service

Invoking Web Services 6-11

6.3.2 Sample JWS File That Invokes a Web Service
The following sample JWS file, called ClientServiceImpl.java, implements a
Web service called ClientService that has an operation that in turn invokes the
echoComplexType operation of a Web service called ComplexService. This
operation has a user-defined data type (BasicStruct) as both a parameter and a
return value. The relevant code is shown in bold and described after the example.

package examples.webservices.service_to_service;

import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.xml.ws.WebServiceRef;

// Import the BasicStruct data type, generated by clientgen and used
// by the ComplexService Web Service
import examples.webservices.complex.BasicStruct;

// Import the JAX-WS stubs generated by clientgen for invoking
// the ComplexService Web service.
import examples.webservices.complex.ComplexPortType;
import examples.webservices.complex.ComplexService;

@WebService(name="ClientPortType", serviceName="ClientService",
 targetNamespace="http://examples.org")
public class ClientServiceImpl {
// Use the @WebServiceRef annotation to define a reference to a Web service.
 @WebServiceRef()
 ComplexService test;

 @WebMethod()
 public String callComplexService(BasicStruct input, String serviceUrl)
 {
 // Create a port stub to invoke ComplexService
 ComplexPortType port = test.getComplexPortTypePort();

 // Invoke the echoComplexType operation of ComplexService
 BasicStruct result = port.echoComplexType(input);
 System.out.println("Invoked ComplexPortType.echoComplexType.");
 return "Invoke went okay! Here's the result: '" + result.getIntValue() +
 ", " + result.getStringValue() + "'";
 }
}

Follow these guidelines when programming the JWS file that invokes another Web
service; code snippets of the guidelines are shown in bold in the preceding example:

■ Import any user-defined data types that are used by the invoked Web service. In
this example, the ComplexService uses the BasicStruct JavaBean:

import examples.webservices.complex.BasicStruct;

■ Import the JAX-WS interfaces of the ComplexService Web service; the stubs are
generated by the <cliengen> child element of <jws>:

import examples.webservices.complex.ComplexPortType;
import examples.webservices.complex.ComplexService;

■ Define a reference to a Web service and an injection target for it using the
@WebServiceRef annotation:

Configuring Web Service Clients

6-12 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

@WebServiceRef()
ComplexService service;

Alternatively, you can create a proxy stub to the ComplexService Web service, as
shown below:

ComplexService test = new ComplexService();

■ Return an instance of the ComplexPortType stub implementation by calling the
getComplexPortTypePort() operation on the Web service reference:

ComplexPortType port = service.getComplexPortTypePort();

■ Invoke the echoComplexType operation of ComplexService using the port
you just instantiated:

BasicStruct result = port.echoComplexType(input);

6.4 Configuring Web Service Clients
By default, Web service clients use the Web service configuration defined for the
server. You can override the configuration settings used by the Web service client
using one of the following methods:

■ Using the Administration or WLST, if applicable. Only a subset of Web service
features are configurable on the client.

■ Using the @WebServiceRef annotation to associate the Web service client with
the configuration defined for the specified Web service reference. The Web service
reference configuration is defined in the weblogic.xml for Web containers and
weblogic-ejb-jar.xml for EJB containers. For more information about the
@WebServiceRef annotation, see Section 6.5, "Defining a Web Service Reference
Using the @WebServiceRef Annotation."

■ Using the WsrmClientInitFeature when creating a Web services reliable
messaging client. For more information, see "Configuring Reliable Messaging on
the Web Service Client" in Programming Advanced Features of JAX-WS Web Services
for Oracle WebLogic Server.

6.5 Defining a Web Service Reference Using the @WebServiceRef
Annotation

The @WebServiceRef annotation enables you to define a reference to a Web service
and attach the configuration of the Web service to the client instance.

For example, in the following code excerpt, @WebServiceRef is used to attach the
configuration for MyReliableEchoService to the client’s Web service instance. The
port that is subsequently created and initialized uses the properties defined for
MyReliableEchoService service reference in the weblogic.xml for the Web
application.

package wsrm_jaxws.example;
import java.xml.ws.WebService;
import java.xml.ws.WebServiceRef;
import wsrm_jaxws.example.client_service.*;
import wsrm_jaxws.example.client_service.EchoResponse;
...
@WebService
public class ClientServiceImpl {

Defining a Web Service Reference Using the @WebServiceRef Annotation

Invoking Web Services 6-13

 @WebServiceRef(name="MyServiceRef")
 private ReliableEchoService service;
 private ReliableEchoPortType port = null;

 @PostConstruct
 public void initPort() {
 port = service.getReliableEchoPort();
 ...
 }
}

Example 6–1 shows an example of a weblogic.xml file that contains a Web service
reference description. For information about the reliable messaging properties shown
in this example, see "Configuring Reliable Messaging" in Programming Advanced
Features of JAX-WS Web Services for Oracle WebLogic Server.

Example 6–1 Example weblogic.xml File Containing Web Service Reference Description

<?xml version='1.0' encoding='UTF-8'?>
<weblogic-web-app xmlns="http://xmlns.oracle.com/weblogic/weblogic-web-app">
 <service-reference-description>
 <!-- Any name you want, but use this same name on
 @WebServiceRef(name=<my name>). This anno goes on the service
 field in your client container -->
 <service-ref-name>MyServiceRef</service-ref-name>
 <!-- Use / and any path within the web app to get a local WSDL, or
 use a resource name as defined by the Java ClassLoader, or use an
 absolute/external URL you can guarantee is deployed when this web
 app deploys -->
 <wsdl-url>/WEB-INF/wsdls/ReliableEcho.wsdl</wsdl-url>
 <!-- One or more port-infos, one for each type of port/stub you'll create
 in your JWS -->
 <port-info>
 <!-- The local name of wsdl:port (not portType). The Java type for this
 port, when created from the @WebServiceRef JWS field, will contain,
 in RequestContext, the props you define below -->
 <port-name>ReliableEchoPort</port-name>

 <!-- Any prop name/value pairs you want to show up on you service stub
 The Java type for this port, when created from the @WebServiceRef JWS field,
 will contain, in RequestContext, the stub-props you define below -->

 <!-- RM Source Properties -->

 <stub-property>
 <name>weblogic.wsee.wsrm.BaseRetransmissionInterval</name>
 <value>PT30S</value>
 </stub-property>

 <stub-property>
 <name>weblogic.wsee.wsrm.RetransmissionExponentialBackoff</name>
 <value>true</value>
 </stub-property>

 <!-- RM Destination Properties -->

 <stub-property>
 <name>weblogic.wsee.wsrm.RetryCount</name>
 <value>5</value>

Managing Client Identity

6-14 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

 </stub-property>

 <stub-property>
 <name>weblogic.wsee.wsrm.RetryDelay</name>
 <value>PT30S</value>
 </stub-property>

 <stub-property>
 <name>weblogic.wsee.wsrm.AcknowledgementInterval</name>
 <value>PT5S</value>
 </stub-property>

 <stub-property>
 <name>weblogic.wsee.wsrm.NonBufferedDestination</name>
 <value>true</value>
 </stub-property>

 <!-- RM Source *or* Destination Properties -->

 <stub-property>
 <name>weblogic.wsee.wsrm.InactivityTimeout</name>
 <value>PT5M</value>
 </stub-property>

 <stub-property>
 <name>weblogic.wsee.wsrm.SequenceExpiration</name>
 <value>PT10M</value>
 </stub-property>

 </port-info>

 </service-reference-description>
 <wl-dispatch-policy>weblogic.wsee.mdb.DispatchPolicy</wl-dispatch-policy>
</weblogic-web-app>

6.6 Managing Client Identity
Web services enable you to assign any meaningful name to a client, which is
represented as the client identity (client ID). This client ID is used to group statistics
and other monitoring information, and for reporting runtime validations, and so on.

For on-server clients (clients running in a container within a WebLogic Server
instance), the client ID can be generated in one of the following ways:

■ By the client when it initializes connection to Web service port. This is the
recommended approach. See Section 6.6.1, "Defining the Client ID During Port
Initialization".

■ By the server and discovered later by the client. See Section 6.6.2, "Accessing the
Server-generated Client ID".

The weblogic.wsee.jaxws.persistence.ClientIdentityFeature client
feature enables Web service clients to set and access the Web service client ID. The
following table summarizes the ClientIdentityFeature methods.

Note: Although optional, Oracle strongly recommends that you
define the client ID explicitly.

Managing Client Identity

Invoking Web Services 6-15

The following sections describe the methods for managing the client ID:

■ Section 6.6.1, "Defining the Client ID During Port Initialization"

■ Section 6.6.2, "Accessing the Server-generated Client ID"

■ Section 6.6.3, "Client Identity Lifecycle"

6.6.1 Defining the Client ID During Port Initialization
To provide its client ID, the Web service client can pass an instance of the
ClientIdentityFeature containing the client ID to the Web service port at
initialization time.

The client ID must be unique within the Web application or EJB that contains the
client. It is recommended that the client ID appropriately reflect the business purpose.
In order to ensure that the client ID is unique, the system prepends the names of the
containing server, application, and component (Web application or EJB) to the client
ID.

The following example demonstrates this method of specifying the client ID. It is
recommended that you close the client instance once all processing has been complete,
as shown.

This example is excerpted from "Web Service Client Best Practices Example" in
Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server.

Example 6–2 Example of Specifying the Client ID During Port Initialization

import javax.servlet.*;
import javax.xml.ws.*;
import weblogic.jws.jaxws.client.ClientIdentityFeature;
. . .
public class BestPracticeAsyncClient

Table 6–2 Methods of ClientIdentityFeature for Setting and Accessing Client ID

Method Description

getClientID() Gets the currently defined client ID for the Web service port.

setClientID() Sets the client ID for the Web service port.

In addition, you can set the client ID by passing it as an
argument when instantiating the ClientIdentityFeature
object. For example:

ClientIdentityFeature clientIDFeature = new
 ClientIdentityFeature("MyBackendServiceAsyncClient");

dispose() Disposes the client ID.

If a client ID is not disposed of explicitly, it will be done when
the container for the client instances that use the client ID is
deactivated (for example, the host Web application or EJB is
deactivated). For more information, see Section 6.6.3, "Client
Identity Lifecycle."

Notes: Care should be taken when choosing a client ID. If a client
instance is created with the same client ID as an existing client
instance, the two client instances will be treated as the same instance.
No exception will be thrown to alert you to the duplication.

Managing Client Identity

6-16 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

 extends GenericServlet {
...
 private BackendServiceService _service;
...
 // Client ID
 ClientIdentityFeature clientIdFeature =
 new ClientIdentityFeature("MyBackendServiceAsyncClient");
 features.add(clientIdFeature);
...
 _features = features.toArray(new WebServiceFeature[features.size()]);
...
 BackendService port = _service.getBackendServicePort(_features);
...
 ((java.io.Closeable)_port).close();
 }
}

6.6.2 Accessing the Server-generated Client ID

Client IDs that are generated automatically by the server use the following format:

applicationname[_applicationversion]:componentname:uniqueID

Where:

■ applicationname—Name of the application hosting the client.

■ applicationversion—Version of the application. Only used if multiple
versions of the same application is running simultaneously.

■ componentname—Name of the component (Web application or EJB) hosting the
client.

■ uniqueID—Calculated based on the information that is available when the client
instance is created. The uniqueID is constructed by choosing one of the following
(whichever is available):

– Web service reference name, as defined by the @WebServiceRef annotation.

– [portNamespaceURI:portLocalName][:][endpointAddress]—port
name, endpoint address, or both (separated by a colon).

– Port class simple name.

The following information, when available, may also be concatenated to the
uniqueID, separated by a colon (:), in the order presented below:

– WSDL location (minus ?wsdl)

– Features used to create the client instance, represented by the features class
name and separated by dash (-).

Note: As described in this section, in order to ensure that the client
ID is unique, the server-generated version may be long and difficult to
read. To guarantee that the client ID is presented in a user-friendly
format, it is recommended that you define the client ID during port
initialization, as described in Section 6.6.1, "Defining the Client ID
During Port Initialization".

Managing Client Identity

Invoking Web Services 6-17

For example, assume that you deploy a Web service client with the following
information associated with it:

■ Application name: example

■ Component: Web application called BestPracticeClient

■ Port name: http://example/BackendServicePort

■ Port class: BackendService

■ WSDL:
jar:file:/E:/p4/dev/src1034/wls/modules/wsee/test/server/buil
d/output/example/BackendService.war!/WEB-INF/BackendServiceSe
rvice.wsdl

The server-generated client ID will be:

example:BestPracticeClient:http://example/:BackendServicePort:jar:file:/E:/p4/dev/
src1034/wls/modules/wsee/test/server/build/output/example/BackendService.war!/WEB-
INF/BackendServiceService.wsdl:AsyncClientTransportFeature()-ClientIdentityFeature

Each time the code is executed, assuming it is in the same containment hierarchy, the
same client ID is generated. This provides a stable client ID that can be used across
server VM instances and allows for asynchronous responses to be delivered to the
client even after a server restart.

The following example demonstrates how to access the server-generated client ID.
This example is excerpted from "Web Service Client Best Practices Example" in
Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server.

Example 6–3 Example of Accessing the Server-generated Client ID

...
 // Create a port without explicitly defining the client ID to view the client ID that is
 // generated automatically.
 ClientIdentityFeature dummyClientIdFeature = new ClientIdentityFeature(null);
 BackendService dummyPort = _service.getBackendServicePort(dummyClientIdFeature);
 System.out.println("Generated Client Identity is: " + dummyClientIdFeature.getClientId());

 // Best Practice: Explicitly close client instances when processing is complete.
 // If not closed, the port will be closed automatically when it goes out of scope.
 // Note, this client ID will remain registered and visible until our
 // container (Web application) is undeployed.
 ((java.io.Closeable)dummyPort).close();

Note: A given Client ID can be used from multiple locations in the
client code, but care should be taken to initialize any port or Dispatch
instance that uses that client ID in the same way (same features,
service, and so on) as was used in any other location for that client ID.

For best practice information on the recommended approach to client
instance (port or Dispatch) initialization, see "Roadmap for
Developing Web Service Clients" in Getting Started With JAX-WS Web
Services for Oracle WebLogic Server.

Using a Proxy Server When Invoking a Web Service

6-18 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

6.6.3 Client Identity Lifecycle
A client ID is registered with the Web services runtime when the first client instance
(port or Dispatch instance) using the client ID is created. Any asynchronous response
endpoint associated with the client instances is also tracked along with the registered
client ID.

The client ID remains registered until one of the following occurs:

■ The client ID is explicitly disposed using the dispose() method on
ClientIdentityFeature, as described in Table 6–2.

■ The container for the client instances that use the client ID is deactivated (for
example, the host Web application or EJB is deactivated).

6.7 Using a Proxy Server When Invoking a Web Service
You can use a proxy server to proxy requests from a client application to an
application server (either WebLogic or non-WebLogic) that hosts the invoked Web
service. You typically use a proxy server when the application server is behind a
firewall. You can specify the proxy server in your client application using Java system
properties. There are two ways to specify the proxy server in your client application:
programmatically using the WebLogic ClientProxyFeature API or using system
properties.

6.7.1 Using the ClientProxyFeature API to Specify the Proxy Server
You can programmatically specify within the Java client application itself the details of
the proxy server that will proxy the Web service invoke using the
weblogic.wsee.jaxws.proxy.ClientProxyFeature API. For more about the
ClientProxyFeature API, see the Oracle WebLogic Server API Reference.

The proxy server settings defined by the ClientProxyFeature override the settings
defined at the JVM-level, as described in Section 6.7.2, "Using System Properties to
Specify the Proxy Server".

You can configure the proxy server information using the ClientProxyFeature and
pass the feature as an argument when creating the Web service port, as shown in the
following example.

Example 6–4 Pass ClientProxyFeature as an Argument When Creating Port

package examples.webservices.simple_client;
import weblogic.wsee.jaxws.proxy
public class Main {
 public static void main(String[] args) {
 ComplexService test = new ComplexService();
 ClientProxyFeature cpf = new ClientProxyFeature();
 cpf.setProxyHost("localhost");
 cpf.setProxyPort(8888);
 cpf.setProxyUserName("proxyu");
 cpf.setProxyPassword("proxyp");

Note: The ClientProxyFeature configures the port for WebLogic
HTTP over SSL. It is recommended that you configure SSL for
WebLogic Server. For more information, see "Configuring SSL" in
Securing Oracle WebLogic Server.

Using a Proxy Server When Invoking a Web Service

Invoking Web Services 6-19

 ComplexPortType port = test.getComplexPortTypePort(cpf);
 BasicStruct in = new BasicStruct();
 in.setIntValue(999);
 in.setStringValue("Hello Struct");
 BasicStruct result = port.echoComplexType(in);
 System.out.println("echoComplexType called. Result: " + result.getIntValue() + ", " +
result.getStringValue());
 }
}

Alternatively, you can configure the proxy server information after the port is created,
as shown in the following example. In this case, you execute the attachsPort()
method to attach the ClientProxyFeature to the existing port.

Example 6–5 Configuring the ClientProxyFeature After Creating the Port

package examples.webservices.simple_client;
import weblogic.wsee.jaxws.proxy
public class Main {
 public static void main(String[] args) {
 ComplexService test = new ComplexService();
 ComplexPortType port = test.getComplexPortTypePort();
 ClientProxyFeature cpf = new ClientProxyFeature();
 cpf.setProxyHost("localhost");
 cpf.setProxyPort(8888);
 cpf.setProxyUserName("proxyu");
 cpf.setProxyPassword("proxyp");
 cpf.attachsPort(port);
 BasicStruct in = new BasicStruct();
 in.setIntValue(999);
 in.setStringValue("Hello Struct");
 BasicStruct result = port.echoComplexType(in);
 System.out.println("echoComplexType called. Result: " + result.getIntValue() + ", " +
result.getStringValue());
 }
}

If after configuring the ClientProxyFeature and attaching it to the port you want
to disable the client proxy settings, you set the proxy port to a negative value. For
example:

Example 6–6 Disabling Client Proxy Settings

. . .
 ClientProxyFeature cpf = new ClientProxyFeature();
 cpf.setProxyPort(-1);\
 cpf.attachsPort(port);
. . .

6.7.2 Using System Properties to Specify the Proxy Server
To use system properties to specify the proxy server, write your client application in
the standard way, and then specify Java system properties when you execute the client
application.

The following table summarizes the Java system properties.

Client Considerations When Redeploying a Web Service

6-20 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

The following excerpt from an Ant build script shows an example of setting Java
system properties when invoking a client application called
clients.InvokeMyService:

 <target name="run-client">
 <java fork="true"
 classname="clients.InvokeMyService"
 failonerror="true">
 <classpath refid="client.class.path"/>
 <arg line="${http-endpoint}"/>
 <jvmarg line=
 "-Dhttp.proxyHost=${proxy-host}
 -Dhttp.proxyPort=${proxy-port}
 -Dhttp.nonProxyHosts=${mydomain}"
 />
 </java>
 </target>

6.8 Client Considerations When Redeploying a Web Service
WebLogic Server supports production redeployment, which means that you can
deploy a new version of an updated WebLogic Web service alongside an older version
of the same Web service.

WebLogic Server automatically manages client connections so that only new client
requests are directed to the new version. Clients already connected to the Web service
during the redeployment continue to use the older version of the service until they
complete their work, at which point WebLogic Server automatically retires the older
Web service.

You can continue using the old client application with the new version of the Web
service, as long as the following Web service artifacts have not changed in the new
version:

■ WSDL that describes the Web service

■ WS-Policy files attached to the Web service

If any of these artifacts have changed, you must regenerate the JAX-WS stubs used by
the client application by re-running the clientgen Ant task.

Note: In this case, the proxySet system property must not be set. If
the proxySet system property is set to (proxySet=false), proxy
properties will be ignored and no proxy will be used.

Table 6–3 Java System Properties Used to Specify Proxy Server

Property Description

http.proxyHost=proxyHost
or
https.proxyHost=proxyHost

Name of the host computer on which the proxy server is
running. Use https.proxyHost for HTTP over SSL.

http.proxyPort=proxyPort or
https.proxy.Port=proxyPort

Port to which the proxy server is listening. Use https.proxyPort
for HTTP over SSL.

http.nonProxyHosts=hostna
me | hostname | ...

List of hosts that should be reached directly, bypassing the
proxy. Separate each host name using a | character. This
property applies to both HTTP and HTTPS.

Client Considerations When Web Service and Client Are Deployed to the Same Managed Server

Invoking Web Services 6-21

For example, if you change the signature of an operation in the new version of the Web
service, then the WSDL file that describes the new version of the Web service will also
change. In this case, you must regenerate the JAX-WS stubs. If, however, you simply
change the implementation of an operation, but do not change its public contract, then
you can continue using the existing client application.

6.9 Client Considerations When Web Service and Client Are Deployed to
the Same Managed Server

If a Web service and client are deployed to the same Managed Server, and one of the
following is true:

■ The Web service clients uses the @WebServiceRef annotation, but does not
specify a value for the wsdlLocation element.

■ The Web service client uses the wsdlLocation element of the @WebServiceRef
annotation to refer to the live WSDL location (for example,
@WebServiceRef(wsdlLocation="http://xyz.com/myService?WSDL")),
as opposed to a WSDL that is packaged with the Web service application (for
example, @WebServiceRef(wsdlLocation="myService.wsdl")).

Then, when you restart the Managed Server on which the Web service and client are
deployed, the Web service client may fail to redeploy, regardless of the deployment
order, because the applications are deployed initially in administration mode, and
later transition to production mode to accept HTTP requests. In this situation, you
must restart the application manually once the server has restarted.

If a Web service and client are deployed to the same Managed Server, to avoid this
situation, it is recommended that you package the WSDL as part of the Web service
application and refer to the packaged version from the @WebServiceRef annotation.

Client Considerations When Web Service and Client Are Deployed to the Same Managed Server

6-22 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

7

Administering Web Services 7-1

7Administering Web Services

The following sections describe how to administer WebLogic Web services:

■ Section 7.1, "Overview of WebLogic Web Services Administration Tasks"

■ Section 7.2, "Administration Tools"

■ Section 7.3, "Using the WebLogic Server Administration Console"

■ Section 7.4, "Using the Oracle Enterprise Manager Fusion Middleware Control"

■ Section 7.5, "Using the WebLogic Scripting Tool"

■ Section 7.6, "Using WebLogic Ant Tasks"

■ Section 7.7, "Using the Java Management Extensions (JMX)"

■ Section 7.8, "Using the Java EE Deployment API"

■ Section 7.9, "Using Work Managers to Prioritize Web Services Work and Reduce
Stuck Execute Threads"

■ Section 7.10, "Monitoring Web Services and Clients"

7.1 Overview of WebLogic Web Services Administration Tasks
When you use the jwsc Ant task to compile and package a WebLogic Web service, the
task packages it as part of an Enterprise application. The Web service itself is packaged
inside the Enterprise application as a Web application WAR file, by default. However,
if your JWS file implements a session bean then the Web service is packaged as an EJB
JAR file. Therefore, basic administration of Web services is very similar to basic
administration of standard Java Platform, Enterprise Edition (Java EE) Version 5
applications and modules. These standard tasks include:

■ Installing the Enterprise application that contains the Web service.

■ Starting and stopping the deployed Enterprise application.

■ Configuring the Enterprise application and the archive file which implements the
actual Web service. You can configure general characteristics of the Enterprise
application, such as the deployment order, or module-specific characteristics, such
as session time-out for Web applications or transaction type for EJBs.

■ Creating and updating the Enterprise application's deployment plan.

■ Monitoring the Enterprise application.

■ Testing the Enterprise application.

The following administrative tasks are specific to Web services:

Administration Tools

7-2 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

■ Configuring the WS-Policy files associated with a Web service endpoint or its
operations.

■ Viewing the SOAP handlers associated with the Web service.

■ Viewing the WSDL of the Web service.

■ Creating a Web service security configuration.

7.2 Administration Tools
There are a variety of ways to administer Java EE modules and applications that run
on WebLogic Server, including Web services; use the tool that best fits your needs:

■ Section 7.3, "Using the WebLogic Server Administration Console"

■ Section 7.4, "Using the Oracle Enterprise Manager Fusion Middleware Control"

■ Section 7.5, "Using the WebLogic Scripting Tool"

■ Section 7.6, "Using WebLogic Ant Tasks"

■ Section 7.7, "Using the Java Management Extensions (JMX)"

■ Section 7.8, "Using the Java EE Deployment API"

7.3 Using the WebLogic Server Administration Console
The WebLogic Server Administration Console is a Web browser-based, graphical user
interface you use to manage a WebLogic Server domain, one or more WebLogic Server
instances, clusters, and applications, including Web services, that are deployed to the
server or cluster.

One instance of WebLogic Server in each domain is configured as an Administration
Server. The Administration Server provides a central point for managing a WebLogic
Server domain. All other WebLogic Server instances in a domain are called Managed
Servers. In a domain with only a single WebLogic Server instance, that server
functions both as Administration Server and Managed Server. The Administration
Server hosts the Administration Console, which is a Web Application accessible from
any supported Web browser with network access to the Administration Server.

You can use the WebLogic Administration Console to:

■ Install an Enterprise application

■ Start and stop a deployed Enterprise application

■ Configure an Enterprise application

■ Configure Web applications

■ Configure EJBs

■ Create a deployment plan

■ Update a deployment plan

■ Test the modules in an Enterprise application

■ Associate the WS-Policy file with a Web service

■ View the SOAP message handlers of a Web service

■ View the WSDL of a Web service

■ Create a Web service security configuration

Using the WebLogic Server Administration Console

Administering Web Services 7-3

For more information about using the Administration Console to administer Web
services, see the Oracle WebLogic Server Administration Console Help.

The following sections provide more details on the following topics:

■ Section 7.3.1, "Invoking the Administration Console"

■ Section 7.3.2, "How Web Services Are Displayed In the Administration Console"

■ Section 7.3.3, "Creating a Web Services Security Configuration"

For information about monitoring Web services and clients, see Section 7.10,
"Monitoring Web Services and Clients".

7.3.1 Invoking the Administration Console
To invoke the Administration Console in your browser, enter the following URL:

http://host:port/console

where

■ host refers to the computer on which the Administration Server is running.

■ port refers to the port number where the Administration Server is listening for
connection requests. The default port number for the Administration server is
7001.

Click the Help button, located at the top right corner of the Administration Console, to
invoke the Online Help for detailed instructions on using the Administration Console.

The following figure shows the main Administration Console window.

Figure 7–1 WebLogic Server Administration Console Main Window

7.3.2 How Web Services Are Displayed In the Administration Console
Web services are typically deployed to WebLogic Server as part of an Enterprise
Application. The Enterprise Application can be either archived as an EAR, or be in

Using the WebLogic Server Administration Console

7-4 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

exploded directory format. The Web service itself is almost always packaged as a Web
Application; the only exception is if your JWS file implements a session bean in which
case it is packaged as an EJB. The Web service can be in archived format (WAR or EJB
JAR file, respectively) or as an exploded directory.

It is not required that a Web service be installed as part of an Enterprise application; it
can be installed as just the Web Application or EJB. However, Oracle recommends that
users install the Web service as part of an Enterprise application. The WebLogic Ant
task used to create a Web service, jwsc, always packages the generated Web service
into an Enterprise application.

To view and update the Web service-specific configuration information about a Web
service using the Administration Console, click on the Deployments node in the left
pane and, in the Deployments table that appears in the right pane, locate the
Enterprise application in which the Web service is packaged. Expand the application
by clicking the + node; the Web services in the application are listed under the Web
Services category. Click on the name of the Web service to view or update its
configuration.

The following figure shows how the HelloWorldService Web service, packaged
inside the helloWorldEar Enterprise application, is displayed in the Deployments
table of the Administration Console.

Figure 7–2 WebLogic Server Administration Console Main Window

showing how the HelloWorldService Web service, packaged inside the
helloWorldEar Enterprise application, is displayed in the Deployments table.

7.3.3 Creating a Web Services Security Configuration
When a deployed WebLogic Web service has been configured to use message-level
security (encryption and digital signatures, as described by the WS-Security
specification), the Web services runtime determines whether a Web service security

Using the Oracle Enterprise Manager Fusion Middleware Control

Administering Web Services 7-5

configuration is also associated with the service. This security configuration specifies
information such as whether to use an X.509 certificate for identity, whether to use
password digests, the keystore to be used for encryption, and so on. A single security
configuration can be associated with many Web services.

Because Web services security configurations are domain-wide, you create them from
the domainName > WebService Security tab of the Administration Console, rather than
the Deployments tab. The following figure shows the location of this tab.

Figure 7–3 Web Service Security Configuration in Administration Console

7.4 Using the Oracle Enterprise Manager Fusion Middleware Control
The Oracle Enterprise Manager Fusion Middleware Control (Fusion Middleware
Control) Fusion Middleware Control is a Web browser-based, graphical user interface
that you can use to monitor and administer a farm. A farm is a collection of
components managed by Fusion Middleware Control. It can contain Oracle WebLogic
Server domains, one or more Managed Servers and the Oracle Fusion Middleware
system components that are installed, configured, and running in the domain.

Fusion Middleware Control organizes a wide variety of performance data and
administrative functions into distinct, Web-based home pages for the farm, Oracle
WebLogic Server domain, components, and applications. The Fusion Middleware
Control home pages make it easy to locate the most important monitoring data and the
most commonly used administrative functions—all from your Web browser.

The following figure shows Fusion Middleware Control.

Using the WebLogic Scripting Tool

7-6 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

Figure 7–4 Oracle Enterprise Manager Fusion Middleware Control

For more information about monitoring and testing Web services using the Enterprise
Manager, see "Securing and Administering WebLogic Web Services" in Security and
Administrator's Guide for Web Services.

Fusion Middleware Control is available as part of the Oracle Fusion Middleware
product; it is not available to you if you purchase the standalone version of Oracle
WebLogic Server. For more information about Fusion Middleware Control, see
"Getting Started Using Oracle Enterprise Manager Fusion Middleware Control" in
Oracle Application Server Administrator's Guide.

7.5 Using the WebLogic Scripting Tool
The WebLogic Scripting Tool (WLST) is a command-line scripting interface that you
can use to interact with and configure WebLogic Server domains and instances, as well
as deploy Java EE modules and applications (including Web services) to a particular
WebLogic Server instance. Using WLST, system administrators and operators can
initiate, manage, and persist WebLogic Server configuration changes.

Typically, the types of WLST commands you use to administer Web services fall under
the Deployment category.

For more information on using WLST, see Oracle WebLogic Scripting Tool.

7.6 Using WebLogic Ant Tasks
WebLogic Server includes a variety of Ant tasks that you can use to centralize many of
the configuration and administrative tasks into a single Ant build script. These Ant
tasks can:

Using the Java EE Deployment API

Administering Web Services 7-7

■ Create, start, and configure a new WebLogic Server domain, using the wlserver
and wlconfig Ant tasks.

■ Deploy a compiled application to the newly-created domain, using the wldeploy
Ant task.

See "Using Ant Tasks to Configure and Use a WebLogic Server Domain" and
"wldeploy Ant Task Reference" in Developing Applications for Oracle WebLogic Server for
specific information about the non-Web services related WebLogic Ant tasks.

7.7 Using the Java Management Extensions (JMX)
A managed bean (MBean) is a Java bean that provides a Java Management Extensions
(JMX) interface. JMX is the Java EE solution for monitoring and managing resources on
a network. Like SNMP and other management standards, JMX is a public specification
and many vendors of commonly used monitoring products support it.

WebLogic Server provides a set of MBeans that you can use to configure, monitor, and
manage WebLogic Server resources through JMX. WebLogic Web services also have
their own set of MBeans that you can use to perform some Web service administrative
tasks.

There are two types of MBeans: runtime (for read-only monitoring information) and
configuration (for configuring the Web service after it has been deployed).

The configuration Web services MBeans are:

■ WebserviceSecurityConfigurationMBean

■ WebserviceCredentialProviderMBean

■ WebserviceSecurityMBean

■ WebserviceSecurityTokenMBean

■ WebserviceTimestampMBean

■ WebserviceTokenHandlerMBean

The runtime Web services MBeans are:

■ WseeRuntimeMBean

■ WseeHandlerRuntimeMBean

■ WseePortRuntimeMBean

■ WseeOperationRuntimeMBean

■ WseePolicyRuntimeMBean

For more information on JMX, see the Oracle WebLogic Server MBean Reference and the
following sections in Developing Custom Management Utilities With JMX for Oracle
WebLogic Server:

■ "Understanding WebLogic Server MBeans"

■ "Accessing WebLogic Server MBeans with JMX"

■ "Managing a Domain's Configuration with JMX"

7.8 Using the Java EE Deployment API
In Java EE 5, the J2EE Application Deployment specification (JSR-88), described at
http://jcp.org/en/jsr/detail?id=88, defines a standard API that you can

Using Work Managers to Prioritize Web Services Work and Reduce Stuck Execute Threads

7-8 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

use to configure an application for deployment to a target application server
environment.

The specification describes the Java EE Deployment architecture, which in turn defines
the contracts that enable tools or application programmers to configure and deploy
applications on any Java EE platform product. The contracts define a uniform model
between tools and Java EE platform products for application deployment
configuration and deployment. The Deployment architecture makes it easier to deploy
applications: Deployers do not have to learn all the features of many different Java EE
deployment tools in order to deploy an application on many different Java EE
platform products.

See Deploying Applications to Oracle WebLogic Server for more information.

7.9 Using Work Managers to Prioritize Web Services Work and Reduce
Stuck Execute Threads

After a connection has been established between a client application and a Web
service, the interactions between the two are ideally smooth and quick, whereby the
client makes requests and the service responds in a prompt and timely manner.
Sometimes, however, a client application might take a long time to make a new
request, during which the Web service waits to respond, possibly for the life of the
WebLogic Server instance; this is often referred to as a stuck execute thread. If, at any
given moment, WebLogic Server has a lot of stuck execute threads, the overall
performance of the server might degrade.

If a particular Web service gets into this state fairly often, you can specify how the
service prioritizes the execution of its work by configuring a Work Manager and
applying it to the service. For example, you can configure a response time request class (a
specific type of Work Manager component) that specifies a response time goal for the
Web service.

The following shows an example of how to define a response time request class in a
deployment descriptor:

<work-manager>
 <name>responsetime_workmanager</name>
 <response-time-request-class>
 <name>my_response_time</name>
 <goal-ms>2000</goal-ms>
 </response-time-request-class>
</work-manager>

You can configure the response time request class using the Administration Console,
as described in "Work Manager: Response Time: Configuration" in Oracle WebLogic
Server Administration Console Help.

For more information about Work Managers in general and how to configure them for
your Web service, see "Using Work Managers to Optimize Scheduled Work" in
Configuring Server Environments for Oracle WebLogic Server.

7.10 Monitoring Web Services and Clients
You can monitor runtime information for Web services and clients, such as number of
invocations, errors, faults, and so on, using the Administration Console or WLST.

The following naming convention is used to identify the Web service or client in the
monitoring pages:

Monitoring Web Services and Clients

Administering Web Services 7-9

<application_name>#<application_version>!<service_name><contextpath><url_pattern>

Where:

■ application_name—Name of the application that contains the Web service or
client.

■ application_version—Version of the application that contains the Web
service or client.

■ service_name—Name of the Web service or client.

■ context_path—Context path defined for the Web service. For more information,
see "Defining the Context Path of a WebLogic Web Services" in WebLogic Web
Services Reference for Oracle WebLogic Server.

■ url_pattern—System default or user-defined Web service URL pattern. For
more information, see "Specifying the Transport Used to Invoke the Web Service"
in WebLogic Web Services Reference for Oracle WebLogic Server.

7.10.1 Monitoring Web Services
To monitor a Web service using the Administration Console, click on the Deployments
node in the left pane and in the Deployments table that appears in the right pane,
locate the Enterprise application in which the Web service is packaged. Expand the
application by clicking the + node; the Web services in the application are listed under
the Web Services category. Click on the name of the Web service and click the
Monitoring tab.

Alternatively, click the Deployments node in the left pane, the Monitoring tab that
appears in the right pane, and then the Web Service tab. Click on the name of the Web
service for which you want to view monitoring statistics.

The following table lists the tabs that you can select to monitor Web service
information. The pages aggregate the statistics of all the servers on which the Web
service is running.

Note: For JAX-WS Web services, the built-in Ws-Protocol
operation displays statistics that are relevant to the underlying WS-*
protocols. This information is helpful in evaluating the application
performance.

Table 7–1 Monitoring Web Services

Click this tab . . . To view . . .

Monitoring> General General statistics about the Web services, including total error and invocations counts.

Monitoring> Invocations Invocation statistics, such as dispatch and execution times and averages.

Monitoring> WS-Policy Policies that are attached to the Web service, organized into the following categories:
authentication, authorization, confidentiality, and integrity.

Monitoring> Ports Table listing the Web service endpoints (ports). The table provides a summary of
information for each port. Click a port name to view more details.

Monitoring> Ports >
General

General statistics about the Web service endpoint. The page displays information such
as the Web service endpoint name, its URI, and its associated Web service, Enterprise
application, and application module. Error and invocations counts are aggregated for
all Web service endpoint operations.

Monitoring Web Services and Clients

7-10 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

7.10.2 Monitoring Web Service Clients
To monitor a Web service client using the Administration Console, click on the
Deployments node in the left pane and, in the Deployments table that appears in the
right pane, locate the Enterprise application in which the Web service client is
packaged. Expand the application by clicking the + node and click on the application
module within which the Web service client is located. Click the Monitoring tab, then
click the Web Service Clients tab.

Alternatively, click the Deployments node in the left pane, the Monitoring tab that
appears in the right pane, and then the Web Service Clients tab. Click on the name of
the Web service client for which you want to view monitoring statistics.

The table provides a summary of runtime information for each Web service client.
Click the client name in the table to view more information.

Monitoring> Ports >
Invocations

Invocation statistics for the Web service endpoint, such as success, fault, and violation
counts.

Monitoring> Ports >
Cluster Routing

Cluster routing statistics for the Web service endpoint, such as request and response,
and routing failures.

Monitoring> Ports >
Make Connection

MakeConnection anonymous endpoints for a Web service. For each anonymous
endpoint, runtime monitoring information is displayed, such as the number of
messages received, the number of messages pending, and so on. You can customize
the information that is shown in the table by clicking Customize this table.

Click the name of an anonymous endpoint to view more details.

Monitoring> Ports >
Reliable Message

Reliable messaging sequences for a Web service. For each reliable messaging
sequence, runtime monitoring information is displayed, such as the sequence state,
the source and destination servers, and so on. You can customize the information that
is shown in the table by clicking Customize this table.

Click the sequence ID to view more details.

Monitoring> Ports >
Reliable Message >
Requests

Reliable messaging requests for a Web service. For each reliable messaging request,
runtime monitoring information is displayed. You can customize the information that
is shown in the table by clicking Customize this table.

Click the reliable message ID to view more details.

Monitoring> Ports >
WS-Policy

Statistics related to the policies that are attached to the Web service endpoint,
organized into the following categories: authentication, authorization, confidentiality,
and integrity.

Monitoring> Ports >
Operations

List of operations for the Web service endpoint.

For each operation, runtime monitoring information is displayed, such as the number
of times the operation has been invoked since the WebLogic Server instance started,
the average time it took to invoke the Web service, the average time it took to
respond, and so on. You can customize the information that is shown in the table by
clicking Customize this table.

Note: For JAX-WS Web services, the built-in Ws-Protocol operation displays statistics
that are relevant to the underlying WS-* protocols. For example, for Web services
reliable messaging, this operation captures message statistics for CreateSequence
and AckRequested messages received or sent by the reliable messaging subsystem
on behalf of the Web service or client. This information is helpful in evaluating the
application performance.

Click the name of an operation to view more information. Click the General or
Invocations tab to display general statistics or invocation statistics, respectively, for
the selected operation.

Table 7–1 (Cont.) Monitoring Web Services

Click this tab . . . To view . . .

Monitoring Web Services and Clients

Administering Web Services 7-11

Note: For JAX-WS Web services, the Web services runtime creates
system-defined client instances within a Web service endpoint that are
used to send protocol-specific messages as required by that endpoint.
These client instances are named after the Web service endpoint that
they serve with the following suffix: -SystemClient. Monitoring
information relevant to the system-defined client instances is provided
to assist in evaluating the application.

Table 7–2 Monitoring Web Service Clients

Click this tab . . . To view . . .

Monitoring> General General statistics about the Web service clients, including total error and invocations
counts. The page displays the Web service client name, its associated Enterprise
application and application module, and context root. Error and invocations statistics
are aggregated for all servers on which the Web service is running.

Monitoring> Invocations Invocation statistics, such as dispatch and execution times and averages.

Monitoring> WS-Policy Policies that are attached to the Web service client, organized into the following
categories: authentication, authorization, confidentiality, and integrity.

Monitoring> Servers Table listing the server on which the client is currently running. Click the client name
and then use the tabs in the following steps to view more information about the Web
service client on that server.

Monitoring> Servers >
General

General statistics about the Web service client. The page displays information such as
the Web service client port, its associated Enterprise application, and application
module, context root, and so on. Error and invocations counts are aggregated for all
Web service client operations.

Monitoring> Servers >
Invocations

Invocation statistics for the Web service client, such as success, fault, and violation
counts.

Monitoring> Servers >
Cluster Routing

Cluster routing statistics for the Web service client, such as request and response, and
routing failures. For more information, see "Monitoring Cluster Router Performance"
in Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server.

Monitoring> Servers >
Make Connection

MakeConnection anonymous endpoints for a Web service client. For each anonymous
endpoint, runtime monitoring information is displayed, such as the number of
messages received, the number of messages pending, and so on. You can customize
the information that is shown in the table by clicking Customize this table.

Click the name of an anonymous endpoint to view more details.

Monitoring> Servers >
Reliable Message

Reliable messaging sequences for a Web service client. For each reliable messaging
sequence, runtime monitoring information is displayed, such as the sequence state,
the source and destination servers, and so on. You can customize the information that
is shown in the table by clicking Customize this table.

Click the name of an anonymous endpoint to view more details.

Monitoring> Servers >
WS-Policy

Statistics related to the policies that are attached to the Web service client, organized
into the following categories: authentication, authorization, confidentiality, and
integrity.

Monitoring> Servers >
Operations

List of operations for the Web service client. For each operation, runtime monitoring
information is displayed, such as average response, execution, and dispatch times,
response, invocation and error counts, and so on. You can customize the information
that is shown in the table by clicking Customize this table.

Click the name of an operation to view more information. Click the General or
Invocations tab to display general statistics or invocation statistics, respectively, for
the selected operation.

Monitoring Web Services and Clients

7-12 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

8

Migrating JAX-RPC Web Services and Clients to JAX-WS 8-1

8Migrating JAX-RPC Web Services and
Clients to JAX-WS

This section provides tips for migrating JAX-RPC Web services and clients to JAX-WS.
The following table summarizes the topics that are covered.

When migrating your JAX-RPC Web services, to preserve the original WSDL file, use
the top-down approach, starting from a WSDL file, to generate the JAX-WS Web
service. For more information, see "Developing WebLogic Web Services Starting From
a WSDL File: Main Steps" on page 3-12.

Note: In some cases, a JAX-RPC feature may not be supported
currently by JAX-WS. In this case, the application cannot be migrated
unless it is re-architected.

Table 8–1 Tips for Migrating JAX-RPC Web Services and Clients to JAX-WS

Topic Description

Section 8.1, "Setting the
Final Context Root of a
WebLogic Web Service"

Describes the methods that can be used to set the final context root of a WebLogic Web
service. The use of @WLXXXTransport JWS annotations is not supported for JAX-WS;
these annotations are supported by JAX-RPC only.

Section 8.2, "Using
WebLogic-specific
Annotations"

Describes the WebLogic-specific annotations that are supported by JAX-WS.

Section 8.3, "Generating a
WSDL File"

Describes how to generate a WSDL file when you are generating a JAX-WS Web service
using the jwsc Ant task.

Section 8.4, "Using JAXB
Custom Types"

Describes the use of Java Architecture for XML Binding (JAXB) for managing all of the
data binding tasks.

Section 8.5, "Using EJB
3.0"

Describes changes in EJB 3.0 from EJB 2.1. JAX-WS supports EJB 3.0. JAX-RPC supports
EJB 2.1 only.

Section 8.6, "Migrating
from RPC Style SOAP
Binding"

Provides guidelines for setting the SOAP binding. RPC style is supported, but not
recommended for JAX-WS.

Section 8.7, "Updating
SOAP Message
Handlers"

Explains how you must re-write your JAX-RPC SOAP message handlers when
migrating to JAX-WS.

Section 8.8, "Invoking
JAX-WS Clients"

Explains how you must re-write your JAX-RPC client to invoke JAX-WS clients.

Setting the Final Context Root of a WebLogic Web Service

8-2 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

8.1 Setting the Final Context Root of a WebLogic Web Service
You can set the final context root of a WebLogic Web service using a variety of
methods, as described in "Defining the Context Path of a WebLogic Web Service" in
WebLogic Web Services Reference for Oracle WebLogic Server.

As described in this section, when defining a JAX-RPC Web service, you can use the
@WLXXXTransport JWS annotations to specify the context root. For JAX-WS Web
services, the @WLXXXTransport JWS annotations are not valid. If used in the JAX-RPC
Web service, the JWS file needs to be updated to remove the annotations in favor of
one of the other methods.

8.2 Using WebLogic-specific Annotations
JAX-WS supports the following WebLogic-specific annotations:

■ @Policy

■ @Policies

■ @SecurityPolicy

■ @SecurityPolicies

■ @WssConfiguration

All other WebLogic-specific annotations must be removed from your JAX-RPC
applications when migrating to JAX-WS. For more information, see "WebLogic-specific
Annotations" in WebLogic Web Services Reference for Oracle WebLogic Server.

8.3 Generating a WSDL File
When you run the jwsc file on a JAX-RPC Web service, a WSDL file is generated in the
specified output directory. For JAX-WS Web services, the WSDL file is generated when
the service endpoint is deployed. In order to generate a WSDL file in the output
directory, you must specify the wsdlOnly attribute of the <jws> child element of the
jwsc Ant task. For more information, see "jwsc" in the WebLogic Web Services Reference
for Oracle WebLogic Server.

8.4 Using JAXB Custom Types
JAX-WS uses Java Architecture for XML Binding (JAXB), described at
http://jcp.org/en/jsr/detail?id=222, to manage all of the data binding
tasks. If your application supports custom types using XMLBeans or Tylar, you will
need to modify them to use JAXB. For more information about using JAXB, see
Chapter 5, "Using JAXB Data Binding."

8.5 Using EJB 3.0
JAX-WS supports EJB 3.0. JAX-RPC supports EJB 2.1 only.

EJB 3.0 introduced metadata annotations that enable you to automatically generate,
rather than manually create, the EJB Remote and Home interface classes and
deployment descriptor files needed when implementing an EJB.

For more information about EJB 3.0 bean class requirements and changes from 2.x, see
"Programming the Bean File: Requirements and Changes from 2.X" in Enterprise
JavaBeans (EJB) 3.0.

Invoking JAX-WS Clients

Migrating JAX-RPC Web Services and Clients to JAX-WS 8-3

8.6 Migrating from RPC Style SOAP Binding
Use of the SOAPBinding.Style.RPC style, although supported, is not recommended
with JAX-WS. It is recommended that you change the style to
SOAPBinding.Style.DOCUMENT.

8.7 Updating SOAP Message Handlers
Although the SOAP APIs are similar, JAX-RPC SOAP handlers will need to be
modified to run with JAX-WS. For more information, see "Creating and Using SOAP
Message Handlers" in Programming Advanced Features of JAX-WS Web Services for Oracle
WebLogic Server.

8.8 Invoking JAX-WS Clients
JAX-RPC clients will need to be re-written as the JAX-RPC and JAX-WS client APIs are
completely different. For more information about writing JAX-WS clients, see
"Invoking Web Services" in Getting Started With WebLogic Web Services Using JAX-WS.

Invoking JAX-WS Clients

8-4 Getting Started With JAX-WS Web Services for Oracle WebLogic Server

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction
	2 Use Cases and Examples
	2.1 Creating a Simple HelloWorld Web Service
	2.1.1 Sample HelloWorldImpl.java JWS File
	2.1.2 Sample Ant Build File for HelloWorldImpl.java

	2.2 Creating a Web Service With User-Defined Data Types
	2.2.1 Sample BasicStruct JavaBean
	2.2.2 Sample ComplexImpl.java JWS File
	2.2.3 Sample Ant Build File for ComplexImpl.java JWS File

	2.3 Creating a Web Service from a WSDL File
	2.3.1 Sample WSDL File
	2.3.2 Sample TemperaturePortType Java Implementation File
	2.3.3 Sample Ant Build File for TemperatureService

	2.4 Invoking a Web Service from a Java SE Application
	2.4.1 Sample Java Client Application
	2.4.2 Sample Ant Build File For Building Java Client Application

	2.5 Invoking a Web Service from a WebLogic Web Service
	2.5.1 Sample ClientServiceImpl.java JWS File
	2.5.2 Sample Ant Build File For Building ClientService

	4 Programming the JWS File
	4.1 Overview of JWS Files and JWS Annotations
	4.2 Java Requirements for a JWS File
	4.3 Programming the JWS File: Typical Steps
	4.3.1 Example of a JWS File
	4.3.2 Specifying that the JWS File Implements a Web Service (@WebService Annotation)
	4.3.3 Specifying the Mapping of the Web Service to the SOAP Message Protocol (@SOAPBinding Annotation)
	4.3.4 Specifying That a JWS Method Be Exposed as a Public Operation (@WebMethod and @OneWay Annotations)
	4.3.5 Customizing the Mapping Between Operation Parameters and WSDL Elements (@WebParam Annotation)
	4.3.6 Customizing the Mapping Between the Operation Return Value and a WSDL Element (@WebResult Annotation)
	4.3.7 Specifying the Binding to Use for an Endpoint (@BindingType Annotation)

	4.4 Accessing Runtime Information About a Web Service
	4.4.1 Accessing the Protocol Binding Context
	4.4.2 Accessing the Web Service Context
	4.4.3 Using the MessageContext Property Values

	4.5 Should You Implement a Stateless Session EJB?
	4.6 Programming the User-Defined Java Data Type
	4.7 Invoking Another Web Service from the JWS File
	4.8 Using SOAP 1.2
	4.9 Validating the XML Schema
	4.9.1 Enabling Schema Validation on the Server
	4.9.2 Enabling Schema Validation on the Client

	4.10 JWS Programming Best Practices

	5 Using JAXB Data Binding
	5.1 Overview of Data Binding Using JAXB
	5.2 Developing the JAXB Data Binding Artifacts
	5.3 Standard Data Type Mapping
	5.3.1 Supported Built-In Data Types
	5.3.1.1 XML-to-Java Mapping for Built-in Data Types
	5.3.1.1.1 XML Schema
	5.3.1.1.2 Default Java Binding

	5.3.1.2 Java-to-XML Mapping for Built-In Data Types

	5.3.2 Supported User-Defined Data Types
	5.3.2.1 Supported XML User-Defined Data Types
	5.3.2.2 Supported Java User-Defined Data Types

	5.4 Customizing Java-to-XML Schema Mapping Using JAXB Annotations
	5.4.1 Example of JAXB Annotations
	5.4.2 Specifying Default Serialization of Fields and Properties (@XmlAccessorType Annotation)
	5.4.3 Mapping Properties to Local Elements (@XmlElement)
	5.4.4 Specifying the MIME Type (@XmlMimeType Annotation)
	5.4.5 Mapping a Top-level Class to a Global Element (@XmlRootElement)
	5.4.6 Binding a Set of Classes (@XmlSeeAlso)
	5.4.7 Mapping a Value Class to a Schema Type (@XmlType)

	5.5 Customizing XML Schema-to-Java Mapping Using Binding Declarations
	5.5.1 Creating an External Binding Declarations File
	5.5.1.1 Creating an External Binding Declarations File Using JAX-WS Binding Declarations
	5.5.1.1.1 Specifying the Root Element
	5.5.1.1.2 Specifying Child Elements

	5.5.1.2 Creating an External Binding Declarations File Using JAXB Binding Declarations
	5.5.1.2.1 Specifying the Root Element
	5.5.1.2.2 Specifying Child Elements

	5.5.2 Embedding Binding Declarations
	5.5.2.1 Embedding JAX-WS or JAXB Binding Declarations in the WSDL File
	5.5.2.2 Embedding JAXB Binding Declarations in the XML Schema

	5.5.3 JAX-WS Custom Binding Declarations
	5.5.4 JAXB Custom Binding Declarations

	6 Invoking Web Services
	6.1 Overview of Web Services Invocation
	6.2 Invoking a Web Service from a Java SE Client
	6.2.1 Using the clientgen Ant Task To Generate Client Artifacts
	6.2.2 Getting Information About a Web Service
	6.2.3 Writing the Java Client Application Code to Invoke a Web Service
	6.2.4 Compiling and Running the Client Application
	6.2.5 Sample Ant Build File for a Java Client

	6.3 Invoking a Web Service from a WebLogic Web Service
	6.3.1 Sample build.xml File for a Web Service Client
	6.3.2 Sample JWS File That Invokes a Web Service

	6.4 Configuring Web Service Clients
	6.5 Defining a Web Service Reference Using the @WebServiceRef Annotation
	6.6 Managing Client Identity
	6.6.1 Defining the Client ID During Port Initialization
	6.6.2 Accessing the Server-generated Client ID
	6.6.3 Client Identity Lifecycle

	6.7 Using a Proxy Server When Invoking a Web Service
	6.7.1 Using the ClientProxyFeature API to Specify the Proxy Server
	6.7.2 Using System Properties to Specify the Proxy Server

	6.8 Client Considerations When Redeploying a Web Service
	6.9 Client Considerations When Web Service and Client Are Deployed to the Same Managed Server

	7 Administering Web Services
	7.1 Overview of WebLogic Web Services Administration Tasks
	7.2 Administration Tools
	7.3 Using the WebLogic Server Administration Console
	7.3.1 Invoking the Administration Console
	7.3.2 How Web Services Are Displayed In the Administration Console
	7.3.3 Creating a Web Services Security Configuration

	7.4 Using the Oracle Enterprise Manager Fusion Middleware Control
	7.5 Using the WebLogic Scripting Tool
	7.6 Using WebLogic Ant Tasks
	7.7 Using the Java Management Extensions (JMX)
	7.8 Using the Java EE Deployment API
	7.9 Using Work Managers to Prioritize Web Services Work and Reduce Stuck Execute Threads
	7.10 Monitoring Web Services and Clients
	7.10.1 Monitoring Web Services
	7.10.2 Monitoring Web Service Clients

	8 Migrating JAX-RPC Web Services and Clients to JAX-WS
	8.1 Setting the Final Context Root of a WebLogic Web Service
	8.2 Using WebLogic-specific Annotations
	8.3 Generating a WSDL File
	8.4 Using JAXB Custom Types
	8.5 Using EJB 3.0
	8.6 Migrating from RPC Style SOAP Binding
	8.7 Updating SOAP Message Handlers
	8.8 Invoking JAX-WS Clients

