

Oracle® Fusion Middleware
Tutorial for Oracle WebCenter Developers

11g Release 1 (11.1.1)

E10273-01

May 2009

Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers, 11g Release 1 (11.1.1)

E10273-01

Copyright © 2007, 2009, Oracle and/or its affiliates. All rights reserved.

Primary Author: Vanessa Wang

Contributor: Peter Moskovits, Robin Fisher

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... v

Audience... v
Documentation Accessibility ... v
Related Documents ... vi
Conventions ... vi

1 Introduction to WebCenter Framework and the Tutorial

What is WebCenter Framework? ... 1-1
What Will I Create? .. 1-2

2 Preparing for the Tutorial

Introduction... 2-1
Step 1: Obtain the Software.. 2-1
Step 2: Download the Sample Tutorial Files... 2-2
Step 3: Add the Tutorial Sample Schema to Your Database .. 2-3
Step 4: Install the WebCenter Schema.. 2-5

3 Creating a WebCenter Application with a Customizable Page

Introduction... 3-1
Step 1: Create a Custom WebCenter Application... 3-2
Step 2: Add the Images Files to the Application .. 3-6
Step 3: Create a Page .. 3-8
Step 4: Add Layout Components to the Page... 3-11
Step 5: Add Oracle Composer to the Page to Enable Customization .. 3-25
Step 6: Customize the Page at Runtime Using Oracle Composer.. 3-31

4 Adding WebCenter Web 2.0 Services to Your Application

Introduction... 4-2
Step 1: Add the Search Toolbar Task Flow to the Application .. 4-2
Step 2: Create a Connection for the Documents Service .. 4-6
Step 3: Add the Document Library Task Flow to Your Application.. 4-10
Step 4: Browse Documents at Runtime ... 4-15
Step 5: Create a Database Connection to the WebCenter Schema for the Tags Service 4-18
Step 6: Add the Tags Service to Your Application .. 4-19

iv

Step 7: Use, Add, and Search Tags in Your Application at Runtime ... 4-21

5 Building Portlets and Wiring Them in Your Application

Introduction ... 5-2
Step 1: Create a Standards-Based Java (JSR 168) Portlet... 5-3
Step 2: Create the JavaBeans to Store the Standards-Based Portlet Information 5-15
Step 3: Create the Business Logic for the Standards-Based Portlet ... 5-23
Step 4: Test and Deploy the Standards-Based Portlet .. 5-31
Step 5: Register the Standards-Based Portlet with Your Application ... 5-36
Step 6: Test the Standards-Based Portlet in Your Application.. 5-38
Step 7: Register the Preconfigured Portlet Producer .. 5-40
Step 8: Add an OmniPortlet to Your Page... 5-43
Step 9: Define OmniPortlet at Runtime .. 5-46
Step 10: Wire the Standards-Based Portlet and OmniPortlet Together 5-53
Step 11: Test the Interaction Between the Portlets .. 5-56

6 Conclusion

Summary .. 6-1
Moving On... 6-2

Index

v

Preface

This tutorial introduces you to Oracle WebCenter Framework, a key component of
Oracle WebCenter Suite that enables you to build your own custom WebCenter
applications. As you work through this tutorial, you'll become familiar with Oracle
JDeveloper and the components that have been added to support the new Oracle
WebCenter Framework functionality. When you're ready to begin building your own
application, you can move on to the Oracle Fusion Middleware Developer's Guide for
Oracle WebCenter for assistance.

If you are looking for a pre-built sample application, you can check out the Fusion
Order Demo for WebCenter, located on the Oracle WebCenter Suite page on the
Oracle Technology Network (OTN) at http://webcenter.oracle.com.

Audience
This document is intended for users wishing to familiarize themselves with Oracle
WebCenter Framework and learn how to develop custom WebCenter applications.

This tutorial does not assume any prior knowledge of Oracle JDeveloper or Oracle
WebCenter Suite. It does, however, assume that you are already somewhat familiar
with the following:

■ Oracle Application Development Framework (Oracle ADF)

■ Oracle ADF Faces

■ Java

The tutorial is intended for the developer who wants to build a custom WebCenter
application, or the application developer who wants to use Oracle ADF to build
customization capabilities into their application.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive

Note: For the portable document format (PDF) version of this
manual, when a URL breaks onto two lines, the full URL data is not
sent to the browser when you click it. To get to the correct target of
any URL included in the PDF, copy and paste the URL into your
browser's address field. In the HTML version of this manual, you can
click a link to directly display its target in your browser.

vi

technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Related Documents
For more information on Oracle WebCenter Framework, see the following documents,
which are available on the Oracle WebCenter Suite Documentation page on the Oracle
Technology Network (OTN) at
http://www.oracle.com/technology/products/webcenter/documentatio
n.html:

■ Oracle Fusion Middleware Developer's Guide for Oracle WebCenter, which
explains how to use Oracle JDeveloper and Oracle WebCenter Framework to
develop custom WebCenter applications

■ Oracle Fusion Middleware User's Guide for Oracle WebCenter, which explains
how to use custom WebCenter applications at runtime (in a browser)

For more information on Application Development Framework, see the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

vii

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Convention Meaning

viii

1

Introduction to WebCenter Framework and the Tutorial 1-1

1 Introduction to WebCenter Framework and
the Tutorial

Welcome to Oracle WebCenter Framework! This chapter introduces you to key Oracle
WebCenter Framework concepts, then explains what you will create during the steps
in this tutorial. The lessons are designed to familiarize you with different aspects of
WebCenter Framework functionality, and to demonstrate enough about each feature
so that you can create your own custom WebCenter applications.

If you need additional information about a feature, you can always refer to the Oracle
Fusion Middleware Developer's Guide for Oracle WebCenter and the Oracle Fusion
Middleware User's Guide for Oracle WebCenter.

What is WebCenter Framework?
Oracle WebCenter Framework is a declarative JavaServer Faces (JSF)-based
framework that enables embedding of AJAX-based components, services, portlets, and
content into context-rich customizable applications. Leveraging a revolutionary way of
layered customizations, these applications and portals store user changes in Oracle
Metadata Services that is used across all of Oracle Fusion Middleware and is the
foundation for Fusion Applications. It insulates users and developers from patching
and upgrades to speed new capabilities to make businesses more agile, and is
delivered as an extension to Oracle JDeveloper to provide an integrated development
environment for composite Java EE applications, business processes, BI applications,
and enterprise portals.

Figure 1–1 provides an overview of the Oracle WebCenter architecture, showing the
major components that make up the product and the features and services offered.

What Will I Create?

1-2 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 1–1 Overview of the Oracle WebCenter Architecture

For more information about Oracle WebCenter, refer to Chapter 1, “Understanding
Oracle WebCenter“in the Oracle Fusion Middleware Developer's Guide for Oracle
WebCenter.

What Will I Create?
In this tutorial, you will use WebCenter Framework to build a custom WebCenter
application that is customizable at runtime, empowering you and your end users to
edit application pages according to personal requirements and directly leveraging
Oracle Metadata Services. You will also use WebCenter Services to integrate content
from a content repository and display it in a user-friendly interface, and enable users
to “tag” and search the content. You will build and consume two types of portlets: a
rich, standards-based portlet and an out-of-the-box PDK-Java portlet that you define
using a wizard. Finally, you will enable interaction between the two portlets, so that
user actions on one portlet drives the content that displays in the second portlet.

Figure 1–2 shows the custom WebCenter application you will create in this tutorial.

What Will I Create?

Introduction to WebCenter Framework and the Tutorial 1-3

Figure 1–2 Final Tutorial Application

This tutorial is designed for the chapters to be completed in the same sequence as they
are presented. Due to dependencies, completing them in a different order may result
in missing resources or even errors.

The path through this tutorial is as follows:

■ Chapter 2, "Preparing for the Tutorial" tells you what you must do before you can
complete the steps in this tutorial, including installing the resource files for the
sample application you will build. Be sure to complete all the steps described in
this chapter.

■ Chapter 3, "Creating a WebCenter Application with a Customizable Page"
introduces you to creating a custom WebCenter application, creating a JSF page,
and enabling runtime customization with Oracle Composer. You will also use
Oracle Composer to customize your application at runtime.

■ Chapter 4, "Adding WebCenter Web 2.0 Services to Your Application" shows you
how to add various services to your application that enable your users to access
content on a file system by using a document library, search for content across the
application, and add tagging and a tag cloud to your application. You will also
learn how to use each of these services at runtime.

■ Chapter 5, "Building Portlets and Wiring Them in Your Application" tells you how
to create two types of portlets: an OmniPortlet and a simple standards-based Java

What Will I Create?

1-4 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

(JSR 168) portlet. You will also enhance the JSR 168 portlet to embrace more
sophisticated logic. You will then enable these two portlets to communicate with
each other, so that when you select an option in the first (JSR 168) portlet, the
content of the second portlet (OmniPortlet) updates based on that selection.

2

Preparing for the Tutorial 2-1

2 Preparing for the Tutorial

This chapter tells you how to obtain the sample files and install the tutorial and Oracle
WebCenter database schemas required for completing this tutorial. These files and
database schemas are necessary for building the complete sample application. You
must have administrator’s access to the database where you’ll install the database
schemas.

Introduction
We will set up the environment for the tutorial by following these steps:

■ Step 1: Obtain the Software

■ Step 2: Download the Sample Tutorial Files

■ Step 3: Add the Tutorial Sample Schema to Your Database

■ Step 4: Install the WebCenter Schema

Step 1: Obtain the Software
Ensure that you have installed Oracle JDeveloper 11g Release 1 (11.1.1) and the Oracle
WebCenter extension (11.1.1). If you are not sure whether you have the WebCenter
extension, you can verify this by opening Oracle JDeveloper, then choosing Help >
About from the menu, then click the Extensions tab. On the Extensions list, sort by
Identifier to locate the oracle.webcenter.* components. Figure 2–1 shows the
Oracle WebCenter components listed in JDeveloper.

Step 2: Download the Sample Tutorial Files

2-2 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 2–1 Oracle WebCenter Framework in Oracle JDeveloper

If you do not see these components, you must install the WebCenter extension.

To install the WebCenter extension to Oracle JDeveloper using the Update Center:

1. Launch Oracle JDeveloper.

2. If the Select Default Roles dialog box displays, select Default Role to enable all
technologies, and click OK.

3. If a dialog box displays asking if you want to migrate settings from an earlier
version, click No.

4. In Oracle JDeveloper, choose Help > Check for Updates.

5. On the Welcome page, click Next.

6. Select Search Update Centers, then click Next.

7. On the Updates page, search for the WebCenter extension, select it, then click
Finish.

8. When prompted, restart JDeveloper.

For more information on obtaining and installing Oracle WebCenter Framework, see
the Oracle WebCenter page on OTN (http://webcenter.oracle.com).

Step 2: Download the Sample Tutorial Files
At various points throughout this tutorial, you'll be asked to include certain content
and images in your application. This material is contained in a zip file, which you can
download by following these instructions:

To download the sample tutorial files:

1. Open a browser, and enter the following in the Address field:

http://www.oracle.com/technology/products/webcenter/files/webcenter
tutorial11gr1.zip

2. Open the ZIP file (webcentertutorial11gR1.zip).

3. Unzip the file to a local drive, such as C.

Step 3: Add the Tutorial Sample Schema to Your Database

Preparing for the Tutorial 2-3

Figure 2–2 shows the file unzipped to: C:\TutorialContent.

Figure 2–2 Sample Content ZIP File Unzipped

Step 3: Add the Tutorial Sample Schema to Your Database
Some examples we will use in this tutorial will access data using SQL. You must add
the schema to your database to complete these lessons. However, if you do not have
access to a database, you can still complete many of the other lessons in this tutorial.

You can either install the tutorial schema using SQL*Plus or by using Oracle
JDeveloper. This section shows you how to create the database connection for the
database where you will install the tutorial schema, then add the schema to the
database, all within JDeveloper.

To complete the steps in this section, you will need the connection information (such
as the location and port number) for your database containing the schema. Take note
of this information for use later in the tutorial. Also, if the database is not on your local
computer, you must modify the build script (buildFromJDev.sql or build.sql,
depending on whether you are using JDeveloper or SQL*Plus to install the script) to
specify the TNS alias when it reconnects.

To add the sample schema to your database:

1. In Oracle JDeveloper, choose Tools > SQL Worksheet, then click the green + sign
to create a new connection.

Note: If you see an error that says:

DROP USER FOD CASCADE

*

ERROR at line 1:

ORA-01918: user 'FOD' does not exist,

you can ignore this message, as it means that the schema does not yet
exist.

Step 3: Add the Tutorial Sample Schema to Your Database

2-4 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

2. In the Create Database Connection dialog box, enter connection information for
the system administrator of your database (Figure 2–3):

■ Connection Name: TutorialSchema

■ Connection Type: Oracle (JDBC)

■ User name: <your system administrator user ID>

■ Password: <your system administrator password>

■ Role: Choose a role from the Role list (SYSDBA or SYSOPER)

■ Host: <host name of your database> (for example, localhost)

■ JDBC Port: <port> (for example, 1521)

■ SID: <system identifier for the database with the same JDBC
port> (for example, ORCL)

Figure 2–3 Database Connection for the Tutorial Schema

3. Click OK to close the Create Database Connection dialog box, then click OK again
to close the Select Connection dialog box.

4. Choose Tools > SQL Worksheet, then select the newly created connection.

5. Click OK.

6. In the SQL Worksheet panel, create the schema by enter the following command:

create user fod identified by fusion;

7. Click the Execute Statement icon at the top of the panel.

8. In the SQL Worksheet panel, enter the following command:

grant connect, resource to fod identified by fusion;

Step 4: Install the WebCenter Schema

Preparing for the Tutorial 2-5

In doing so, you enable the credentials in the script we’ve provided to access the
schema in your database.

9. Click the Execute Statement icon (the green arrow) at the top of the panel.

Figure 2–4 Execute Statement Icon

10. Choose Tools > SQL Worksheet again.

11. In the Select Connection dialog box, click the pencil icon to edit the connection.

12. Modify the connection to use the new credentials. Change the Username to fod
and the Password to fusion, then click OK to close the Edit Database Connection
dialog box.

13. Click OK to close the Select Connection dialog box.

14. Close the SQL Worksheet panel.

15. Start a new SQL Worksheet using the new connection. Choose Tools > SQL
Worksheet again.

16. Create the schema objects by executing the buildFromJDev.sql script that’s
located in the Scripts folder (c:\TutorialContent\Scripts):

@@<path/>buildFromJDev.sql

You can ignore the warnings in the Log window:

WARNING:
java.io.PipedInputStream.checkStateForReceive(PipedInputStream.java:244)
java.io.IOException: Pipe closed

Step 4: Install the WebCenter Schema
To use the Tags service, you must have the WebCenter schema installed in your
database. You can do this by using the built-in SQL Worksheet utility that you used in
the previous step.

To install the WebCenter schema:

1. From the Tools menu, select SQL Worksheet.

2. In the Select Connection dialog box, click the pencil icon to edit the connection.

3. Modify the connection to use an administrator username and password, such as
system or sys, then click OK.

4. Click OK to close the Select Connection dialog ox.

5. Choose Tools > SQL Worksheet.

6. Enter the following SQL statement in the SQL Worksheet panel:

@@JDEV_HOME/jdeveloper/jdev/extensions/oracle.webcenter.install/sql/wc_

Note: You can also manually install the schema using SQL*Plus by
using the script we’ve provided,
c:\TutorialContent\Scripts\build.sql.

Step 4: Install the WebCenter Schema

2-6 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

schema.sql

7. Click the Execute Statement icon, or press F9, to run the script.

8. At the prompt, enter webcenter as the name for the schema and a password for the
schema, such as welcome1. The name of the schema must be webcenter.

9. If prompted for the Default Tablespace and Temporary Tablespaces, accept the
defaults (users and temp).

Now that you’ve set up the files and the database for your environment, you’re ready
to begin!

3

Creating a WebCenter Application with a Customizable Page 3-1

3 Creating a WebCenter Application with a
Customizable Page

In this lesson, you will create a basic custom WebCenter application, then create a
page within the application where you will later add services, content, and portlets.
You will also add layout components and Oracle Composer to the page, so that you
(and your users) can customize the page at runtime. At the end of the lesson, we will
experiment with customizing our page at runtime using Oracle Composer.

Figure 3–1 shows how your page will look at the end of this lesson.

Figure 3–1 MyPage.jspx at the End of this Lesson

Introduction
This lesson contains the following steps:

■ Step 1: Create a Custom WebCenter Application

■ Step 2: Add the Images Files to the Application

■ Step 3: Create a Page

■ Step 4: Add Layout Components to the Page

■ Step 5: Add Oracle Composer to the Page to Enable Customization

■ Step 6: Customize the Page at Runtime Using Oracle Composer

Before you begin the steps in this lesson, ensure you have followed the steps up to this
point in the tutorial.

Step 1: Create a Custom WebCenter Application

3-2 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Step 1: Create a Custom WebCenter Application
Let's begin by building a simple custom WebCenter application. WebCenter
Framework includes a template that you can use to quickly get started.

To create a custom WebCenter application:

1. In Oracle JDeveloper, choose File > New from the menu.

2. In the New Gallery, on the Current Project Technologies tab, you should see the
General category highlighted. Under General, click Applications.

3. In the Items list, scroll down and select WebCenter Application, then click OK
(Figure 3–2).

Figure 3–2 Create New WebCenter Application

4. On the Application Name tab, in the Application Name field, enter
MyTutorialApplication.

5. Click Finish. Oracle JDeveloper generates the base files, including two projects, for
your application, which you can see in the Application Navigator (Figure 3–3):

■ Model, in which you define the JavaBeans and other data controls you need if
the application is to perform any back-end logic.

■ ViewController, in which you'll create the JavaServer Faces (JSF) page that
will consume WebCenter services and portlets.

Step 1: Create a Custom WebCenter Application

Creating a WebCenter Application with a Customizable Page 3-3

Figure 3–3 Generated Application Project Files in the Application Navigator

6. Let’s make a few adjustments for the purposes of testing our application.
Right-click the ViewController project, then choose Project Properties
(Figure 3–4).

Step 1: Create a Custom WebCenter Application

3-4 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 3–4 Editing the Project Properties

7. In the Project Properties dialog box, in the left column, choose Java EE
Application (Figure 3–5).

Step 1: Create a Custom WebCenter Application

Creating a WebCenter Application with a Customizable Page 3-5

Figure 3–5 Project Properties: Java EE Application

8. Here, we’ll change the context root of the application to make it easier for us to
reference the application resources that we’ll use throughout this tutorial. In the
Java EE Web Application Name field, enter:

MyTutorialApplication

9. In the Java EE Web Context Root field, enter the same value:

MyTutorialApplication

The Project Properties dialog box should now look like Figure 3–6:

Step 2: Add the Images Files to the Application

3-6 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 3–6 Project Properties with the Modified Context Root Values

10. Click OK to accept your changes.

11. Save your application by clicking the Save All icon in the toolbar.

 Now that you have created a basic custom WebCenter application, you can now
create a page. Before we create the page, though, let’s add the image files to our
application so that we can use them with our page.

Step 2: Add the Images Files to the Application
Now that we’ve created our application, let’s quickly add the image files we want to
use, including a logo for our page. Ensure that you’ve followed the steps in Chapter 2,
"Preparing for the Tutorial," which includes a step for obtaining the images files you
will add.

To add the image files to our application:

1. In your file system directory (for example, Windows Explorer), navigate to the
location where you installed Oracle JDeveloper (JDev_Home) and locate the
following directory:

JDEV_USER_HOME\mywork\MyTutorialApplication\ViewController\public_html

JDEV_USER_HOME refers to the default directory where JDeveloper stores your
projects, and depends on how the JDEV_USER_HOME environment variable is set.
This could be, for example, your C:\ drive, or it could be
D:\Oracle\Middleware\, and so on. You should examine your file system to
find out where this directory is set.

The MyTutorialApplication subdirectory was automatically generated when
you created the application.

2. In the public_html directory, create a directory called images.

Step 2: Add the Images Files to the Application

Creating a WebCenter Application with a Customizable Page 3-7

3. Locate the tutorial sample files you downloaded and extracted in Chapter 2,
"Preparing for the Tutorial," and copy the contents of the
C:\TutorialContent\images folder into the new images directory.

4. Return to Oracle JDeveloper and click the Refresh icon next to the Projects list in
the Application Navigator. You should now see the images folder in the
Application Navigator (Figure 3–7).

Figure 3–7 Images in the Application Navigator

You can now use these images with your application.

Note: You’ll notice that the image names are enumerated: 1.jpg,
2.jpg, and so on. These image names match the product ID of the
items we will retrieve when we create our portlets in Chapter 5,
"Building Portlets and Wiring Them in Your Application." If you
change the names of these image files, the statement may not return
the correct results.

Step 3: Create a Page

3-8 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Step 3: Create a Page
In this step, you will learn how to create a simple JSF page for your application, which
will contain the services and portlets that you’ll configure and add in the subsequent
steps of this tutorial.

1. In the Application Navigator for MyTutorialApplication, right-click the
ViewController project, then choose New.

2. In the New Gallery, under Web Tier, choose JSF.

3. Under Items, choose JSF Page, then click OK (Figure 3–8).

Figure 3–8 Choosing JSF Page from the New Gallery

4. In the Create JSF Page dialog box, in the Name field, enter MyPage.

5. Ensure the Create as XML Document (*.jspx) box is selected.

6. Let’s set up an initial layout for our page. WebCenter Framework includes a few
“quick start” layouts that help you get started with creating a page layout. You
can use these layouts when you begin creating your own applications, or create
your own layout from the beginning. In this tutorial, let’s use a quick start layout.

Under Initial Page Layout and Content, select Quick Start Layout, then click
Browse (Figure 3–9).

Step 3: Create a Page

Creating a WebCenter Application with a Customizable Page 3-9

Figure 3–9 Create JSF Page Dialog Box

7. Under Categories, select One Column.

8. Under Types, select the second type.

9. Under Layouts, select the second layout. The Component Gallery should look like
Figure 3–10.

Figure 3–10 Selecting an Initial Layout

10. Click OK, then click OK again.

JDeveloper finishes the wizard and displays your page in the Application
Navigator (Figure 3–11).

Step 3: Create a Page

3-10 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 3–11 MyPage in the Application Navigator

11. To the right of the Application Navigator, you’ll notice your page displays in the
Design view (notice the Design tab is highlighted at the bottom of the view), as
shown in Figure 3–12.

Figure 3–12 Design tab

12. Below the Application Navigator, notice the Structure window for your page. This
view shows all the elements of your page in a hierarchical view. Just below that
Structure tab, you’ll see a pushpin icon (Figure 3–13).

Figure 3–13 Pushpin in the Structure Window

Clicking this icon toggles the behavior of the Structure window -- if it is pressed,
then the Structure window displays the current view no matter where you click in
Oracle JDeveloper. If it is not pressed, the Structure window updates according to
where you click in JDeveloper.

You can expand the nodes in this view to see the various components that were
automatically added to your page, since you chose to use the Quick Start Layout.
Notice the Panel Splitter and Panel Splitter facets under f:view, for example
(Figure 3–14).

Step 4: Add Layout Components to the Page

Creating a WebCenter Application with a Customizable Page 3-11

Figure 3–14 Structure Window for MyPage.jspx

Now that we’ve created our application and a JSF page, let’s adjust the layout of our
page and add Oracle Composer to our page to enable users to customize the page at
runtime.

Step 4: Add Layout Components to the Page
Selecting the Quick Start Layout when we created the page gave us a few “starter”
layout components, specifically the Panel Splitter, which gives us the basic framework
of our page. Now, let’s add a few layout components to the page and structure the
header section so that we can begin to add content, such as a logo image.

To add layout component to the page:

1. In the Structure window, select the Panel Splitter, which is listed as
af:panelSplitter - vertical. You'll notice that the Property Inspector for
this component displays to the right and below the Component Palette
(Figure 3–15). The contents of the Property Inspector update depending on your
focus in Oracle JDeveloper. Similar to the Structure window, you can use the
pushpin icon in the Property Inspector to freeze the view according to the
currently selected component.

Note: You can alternatively change to the Source view of the page.
For the purposes of the tutorial, using the Structure window enables
you to see clearly where you've added a new component.

Note: You can always view the Property Inspector for a component
by right-clicking the component, then choosing Go To Properties
from the context menu.

Step 4: Add Layout Components to the Page

3-12 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 3–15 Property Inspector for the Panel Splitter

2. In the Property Inspector, under Common, locate the SplitterPosition property,
and change the value from 50 to 85 (Figure 3–16). Once you click elsewhere in
JDeveloper, the property is saved.

Step 4: Add Layout Components to the Page

Creating a WebCenter Application with a Customizable Page 3-13

Figure 3–16 Setting the SplitterPosition Property

3. In the Structure window, expand the Panel Splitter. You’ll notice it contains two
facets. In the next step, we’ll drop an ADF Faces component onto the first facet.

4. Add an ADF Faces layout component to our page to control how the content will
display.

In the Component Palette, choose ADF Faces from the list. If the Component
Palette is not currently displaying, you can show it by choosing View >
Component Palette.

5. Under Layout, scroll down to Panel Stretch Layout, select it (Figure 3–17), and
drag and drop it onto the first facet in the Structure window.

Note: The Component Palette is context sensitive. That is, the
contents of the Component Palette update according to the focus of
your view in Oracle JDeveloper. As you're going through this tutorial,
if you suddenly “lose” components in the Component Palette or do
not see the components described, try ensuring that you have the
correct page or panel selected.

Step 4: Add Layout Components to the Page

3-14 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 3–17 Panel Stretch Layout in the Component Palette

Figure 3–18 shows the Panel Stretch Layout in the Structure window.

Figure 3–18 Panel Stretch Layout in the Structure Window

6. When you drop the Panel Stretch Layout component, you'll notice that the
Property Inspector now displays the properties for this component(Figure 3–19).

Step 4: Add Layout Components to the Page

Creating a WebCenter Application with a Customizable Page 3-15

Figure 3–19 Properties of the Panel Stretch Layout

7. Set the following properties in the Property Inspector, as shown in Figure 3–20:

■ StartWidth: 300px

■ EndWidth: 400px

■ TopHeight: 0px

■ Bottomheight: 0px

Step 4: Add Layout Components to the Page

3-16 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 3–20 Property Inspector for the Panel Stretch Layout with Updated Values

8. Next, let’s add a logo to the header of the page, in the start facet of the Panel
Stretch Layout. In the Structure window, expand the Panel Stretch Layout you just
added so that you can see the different facets (Figure 3–21), then select the start
facet.

Step 4: Add Layout Components to the Page

Creating a WebCenter Application with a Customizable Page 3-17

Figure 3–21 Panel Stretch Layout Facets

Notice how the corresponding facet is highlighted in the Design view
(Figure 3–22). This is where we’ll add the logo image.

Step 4: Add Layout Components to the Page

3-18 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 3–22 Start Facet in the Design View

9. The logo we’ll add is an image file we added to our application in Step 2: Add the
Images Files to the Application. In the Application Navigator, under
ViewController > Web Content, open the images folder.

10. Drag and drop logo.png onto the start facet in the Design view of your page.
When you drop the image, choose ADF Faces Image from the context menu
(Figure 3–23).

Step 4: Add Layout Components to the Page

Creating a WebCenter Application with a Customizable Page 3-19

Figure 3–23 Choosing ADF Faces Image from the Context Menu

The logo displays on your page, as shown in Figure 3–24.

Step 4: Add Layout Components to the Page

3-20 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 3–24 Logo Image on Page in the Start Facet

Also notice that the image now displays in the Structure window, as shown in
Figure 3–25.

Step 4: Add Layout Components to the Page

Creating a WebCenter Application with a Customizable Page 3-21

Figure 3–25 Logo Image in the Structure Window

11. Let’s finish the layout of the header. In the Design view, notice the end facet
(Figure 3–26).

Figure 3–26 End Facet in the Design View

From the Component Palette, drag and drop the Panel Group Layout ADF Faces
component onto this facet. You can see this now either in the Design view or, more
easily in the Structure window (Figure 3–27).

Step 4: Add Layout Components to the Page

3-22 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 3–27 Panel Group Layout in the End Facet

12. While the Panel Group Layout is selected, in the Property Inspector, under
Appearance, change the Halign property to end. This changes the alignment of
the components you will add to this layout component.

13. Change the Layout property to horizontal (Figure 3–28).

Step 4: Add Layout Components to the Page

Creating a WebCenter Application with a Customizable Page 3-23

Figure 3–28 Changing the Properties of the Panel Group Layout

14. For the purposes of this tutorial, let's add a Status Indicator. The Status Indicator
keeps us informed of the application's activity during runtime. For example, if you
click a link, the Status Indicator will let you know the application is accessing the
target of that link.

Ensure that the MyPage.jspx tab is displaying in the Design view.

15. In the Component Palette, choose ADF Faces from the list to display the ADF
Faces components.

16. Under Common Components, scroll down the list and locate Status Indicator,
then select it (Figure 3–29).

Step 4: Add Layout Components to the Page

3-24 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 3–29 Status Indicator in the Component Palette

17. Drag and drop the Status Indicator onto the Panel Group Layout in the end facet,
as shown in Figure 3–30.

Figure 3–30 Status Indicator on the Panel Group Layout

Step 5: Add Oracle Composer to the Page to Enable Customization

Creating a WebCenter Application with a Customizable Page 3-25

18. Let’s examine how the page looks at runtime. Right-click the page in the Design
view, then choose Run. The page containing the logo and status indicator displays
in your browser, as you can see in Figure 3–31.

Figure 3–31 MyPage with Logo and Status Indicator at Runtime

19. Return to JDeveloper.

Now that we’ve set up the initial header for our page, let’s add Oracle Composer
so that we can customize our page at runtime.

Step 5: Add Oracle Composer to the Page to Enable Customization
In traditional Java EE applications, if you wanted to edit pages (for example, add
content, edit security definitions, and so on), you had to make these changes in Oracle
JDeveloper, which is the application design time, and then redeploy the updated
application to the production environment. With Oracle Composer, you and your
application users can now edit your pages at runtime and see the results of your
modifications immediately.

Using Oracle Composer, you can give users the ability to move objects around on their
page, hide or show content, as well add new content to the page. Let's add Oracle
Composer to our page.

To add Oracle Composer to our page:

1. First, let’s add the Change Mode Button to the page. This button will enable
runtime users of your application to switch between viewing the page and editing
it using Oracle Composer.

In the Component Palette, choose Oracle Composer from the list at the top.

2. Under Common Components, drag and drop the Change Mode Button
component onto the Panel Group Layout in the Structure window. Adding this
component will let you switch back and forth between the Edit mode and the
View mode of your page at runtime. Figure 3–32 shows the Change Mode Button
in the Component Palette.

Note: You can adjust the display of the Component Palette to see all
of the options. You can do so by clicking and dragging the bars (such
as the Layout bar) up and down to view the component names.

Step 5: Add Oracle Composer to the Page to Enable Customization

3-26 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 3–32 Change Mode Button in the Component Palette

3. If necessary, you can move the button above the Status Indicator by dragging it in
the Structure window (Figure 3–33).

Step 5: Add Oracle Composer to the Page to Enable Customization

Creating a WebCenter Application with a Customizable Page 3-27

Figure 3–33 Change Mode Button in the Structure Window

4. Add a Page Customizable component to the layout. The Page Customizable,
which is an Oracle Composer component, adds the runtime customization
capabilities to the page.

In the Component Palette, ensure that Oracle Composer is still selected.

5. Under Common Components, drag and drop Page Customizable (Figure 3–34)
onto the second facet in the Structure window (Figure 3–35).

Step 5: Add Oracle Composer to the Page to Enable Customization

3-28 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 3–34 Page Customizable in the Component Palette

Figure 3–35 Page Customizable in the Second Facet

Step 5: Add Oracle Composer to the Page to Enable Customization

Creating a WebCenter Application with a Customizable Page 3-29

6. In the Structure window, expand the Page Customizable, then delete the Panel
Customizable since we do not need it (Figure 3–36). You can delete it by selecting
it, then pressing your Delete key.

Figure 3–36 Deleting the Panel Customizable

7. Now, we’ll add a Layout Customizable to our page to create a layout for this
region. In the subsequent chapters, we will add services and portlets to this area.
From the Component Palette, drag and drop Layout Customizable onto the Page
Customizable in the Structure window (Figure 3–37).

Figure 3–37 Layout Customizable in the Page Customizable

8. While the Layout Customizable is selected, in the Property Inspector, under
Common, set the Type property to twoColumnBottom (Figure 3–38).

Step 5: Add Oracle Composer to the Page to Enable Customization

3-30 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 3–38 Setting the Layout Customizable Properties

9. Now that we’ve added a few Oracle Composer components to our page, let’s run
the page and check out some of its features at runtime.

Right-click MyPage in the Design view, then choose Run from the context menu
to view your page at runtime (Figure 3–39).

Figure 3–39 MyPage at Runtime with the Change Mode (Edit) Button

We’ll explore Oracle Composer at runtime in the next step.

Step 6: Customize the Page at Runtime Using Oracle Composer

Creating a WebCenter Application with a Customizable Page 3-31

Step 6: Customize the Page at Runtime Using Oracle Composer
After you add Oracle Composer to a page at design time (in JDeveloper), you can run
your page and customize the page at runtime (in a web browser). Your application
users can also customize their pages at runtime -- this way, you do not have to go back
to JDeveloper every time you want to modify the appearance of your application.

In this step, we’ll test a few features that Oracle Composer offers. But, for a more
in-depth description of using Oracle Composer, refer to the Oracle Fusion Middleware
User's Guide for Oracle WebCenter.

1. While MyPage displays in your browser, you'll notice an Edit button next to the
Status Indicator. Click the Edit button to see how the page looks in Edit mode
(Figure 3–40).

Figure 3–40 Edit Mode of MyPage

2. Let’s take a quick tour of what you can do in Edit mode.

In the top horizontal region, click Add Content to view the runtime catalog. Here,
you can click Open to see the different ADF Faces Components you can add at
runtime (Figure 3–41).

Step 6: Customize the Page at Runtime Using Oracle Composer

3-32 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 3–41 Adding Content at Runtime

3. Let’s add a Text object to see how it looks. In the Catalog, next to Text, click Add,
then click Close. A text box now displays in the region, as shown in Figure 3–42.

Step 6: Customize the Page at Runtime Using Oracle Composer

Creating a WebCenter Application with a Customizable Page 3-33

Figure 3–42 Text Box in the Edit Mode at Runtime

4. In the upper right corner of the region, click Edit Text to switch to the Rich Text
Editor.

5. Place your cursor in the text box and enter some sample text. You can play around
with the different functions in the toolbar, as well, such as changing the text to
bold or switching the font, as shown in Figure 3–43.

Figure 3–43 Entering and Modifying Text in the Rich Text Editor at Runtime

6. When you’re finished, click Done Editing.

7. You can change the overall layout of your page by clicking Change Layout, then
choosing a layout option (Figure 3–44).

Step 6: Customize the Page at Runtime Using Oracle Composer

3-34 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 3–44 Changing the Layout at Runtime

8. Try selecting a layout option, such as the three column layout. The page
automatically refreshes with your changes, as you can see in Figure 3–45.

Figure 3–45 MyPage in a Three Column Layout at Runtime

9. You can also change the layout of each of the component boxes by clicking the
pencil icon in the upper right corner of the box (Figure 3–46).

Step 6: Customize the Page at Runtime Using Oracle Composer

Creating a WebCenter Application with a Customizable Page 3-35

Figure 3–46 Component Properties: Box

In the Component Properties for the layout box, you can change the layout of the
box, the background color, and so on. Click Cancel to exit the Properties pane.

10. You can perform several other tasks at runtime, as well. For example:

■ Drag and drop components from one region to another. Hover your mouse
over the text box, and while you see the crosshairs, click and drag the text box
from one region to another on the page.

■ Delete components. In the upper right corner of the box, click the X to delete
the component.

11. Return to Oracle JDeveloper.

Notice that the changes you made, for example the sample text, does not display
in your Design view. Modifications that you or your application users make at
runtime in Oracle Composer are stored behind the scenes, which means that the
changes you make do not affect the source of your application.

12. Although your application view is not affected by runtime modifications, the
customizations made at runtime are stored in the MDS (Metadata Services). So,
while you are developing an application, it is good practice to clear out these
changes.

From the Build menu, choose Clean Runtime MDS Customizations (Figure 3–47).
If a confirmation dialog box displays, click Yes.

Step 6: Customize the Page at Runtime Using Oracle Composer

3-36 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 3–47 Clean Runtime MDS Customizations Menu Option

You can learn more about Oracle Composer and Oracle Metadata Services in the
Oracle Fusion Middleware Developer's Guide for Oracle WebCenter.

Now that we've created a custom WebCenter application and customizable JSF page,
and taken a quick tour of Oracle Composer at runtime, let’s start adding services and
components to our page in the next chapter, Chapter 4, "Adding WebCenter Web 2.0
Services to Your Application."

4

Adding WebCenter Web 2.0 Services to Your Application 4-1

4Adding WebCenter Web 2.0 Services to Your
Application

Oracle WebCenter Framework enables you to enhance your application with
WebCenter Web 2.0 features, such as secure information sharing and online
collaboration. In this chapter, we will explore a few of the features you can use to add
these capabilities to your application.

In this lesson, you will add a search toolbar, document library, and tagging capabilities
to your application. With the document library, or the Documents service, you can
enable your users to share content like Word documents or PDFs in an
easy-to-navigate environment, right in the application. The Tags service enables you
and your users to add keywords to documents, files, and other items in your
application to make it easier to search and organize content. This service also includes
a “tag cloud” task flow where you can visualize the mapping of the keywords to your
application contents right on your page.

These services are just a few examples of the myriad services Oracle WebCenter Suite
offers. You will see how easy it is to use services to make your application dynamic
and provide frequently-used communication options to your users. To learn more
about WebCenter Web 2.0 Services, refer to the Oracle Fusion Middleware Developer's
Guide for Oracle WebCenter.

Figure 4–1 shows how your page will look at the end of this lesson.

Introduction

4-2 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 4–1 MyPage.jspx at the End of this Lesson

Introduction
This lesson contains the following steps:

■ Step 1: Add the Search Toolbar Task Flow to the Application

■ Step 2: Create a Connection for the Documents Service

■ Step 3: Add the Document Library Task Flow to Your Application

■ Step 4: Browse Documents at Runtime

■ Step 5: Create a Database Connection to the WebCenter Schema for the Tags
Service

■ Step 6: Add the Tags Service to Your Application

■ Step 7: Use, Add, and Search Tags in Your Application at Runtime

Before you begin the steps in this lesson, ensure you have followed the steps up to this
point in the tutorial.

Step 1: Add the Search Toolbar Task Flow to the Application
With Oracle WebCenter Framework, you can also allow your users to search through
information within the services. For example, you may want to add a Search field so

Step 1: Add the Search Toolbar Task Flow to the Application

Adding WebCenter Web 2.0 Services to Your Application 4-3

that users can search for a particular file in your document library. Figure 4–2 shows a
sample of the search results you can retrieve in your application.

Figure 4–2 Sample Search Results

To add the Search service to your application:

1. Make sure your page, MyPage.jspx, is open.

2. In the Structure window, locate the Panel Group Layout (in the end facet) that you
added in Chapter 3, "Creating a WebCenter Application with a Customizable
Page." Figure 4–3 shows the Panel Group Layout selected. You will add the Search
task flow here.

Step 1: Add the Search Toolbar Task Flow to the Application

4-4 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 4–3 Panel Group Layout

3. As we mentioned in Chapter 3, "Creating a WebCenter Application with a
Customizable Page," you can use the pushpin in the Structure window to freeze
the current view. For this step, you click MyPage in the Design view, then ensure
the pushpin is in the “freeze” position (pressed). This way, when you click the
Search toolbar task flow in the ensuing steps, the Structure window does not
contextually refresh.

4. In the Resource Palette, in the WebCenter Services Catalog, open the Task Flows
node. If you do not see the Resource Palette in Oracle JDeveloper (it usually
displays as a tab next to the Component Palette), choose View > Resource Palette.

5. Under My Catalogs, open the WebCenter Services Catalog, then expand Task
Flows.

6. Locate the Search Toolbar task flow (Figure 4–4).

Step 1: Add the Search Toolbar Task Flow to the Application

Adding WebCenter Web 2.0 Services to Your Application 4-5

Figure 4–4 Search Toolbar Task Flow in the WebCenter Services Catalog

Drag and drop this task flow onto the Panel Group Layout then choose Region
from the context menu. If you are prompted to add the appropriate libraries,
choose Add Libraries.

7. In the Structure window, move the Search Toolbar task flow (af:region -
#{bindings.sarchtoolbar1.regionModel}) above the Change Mode
Button.

Note: As previously mentioned, you can use the pushpin in the
Structure window to freeze the current view. For this step, you should
click MyPage in the Design view, then ensure the pushpin is in the
“freeze” position (pressed).

Step 2: Create a Connection for the Documents Service

4-6 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 4–5 Search Toolbar in the Structure Window

8. Run the page to your browser to see how it looks at runtime. Figure 4–6 shows the
Search toolbar next to the Edit (Change Mode) button.

Figure 4–6 Search Toolbar on MyPage at Runtime

9. Now that we’ve added a Search toolbar to our application, let’s add the
Documents service so that we have content to search.

Return to JDeveloper.

Step 2: Create a Connection for the Documents Service
With every service in the WebCenter Framework, we perform a few basic steps:
configure the service with our application, add the service task flow to our page, then
run the page and customize or use the service at runtime.

Before we can take advantage of the Documents service, which enables us to browse,
manage, and create documents at runtime, we must first create a connection to our
content repository. In this tutorial, our content repository will be the directory we
created in Chapter 2, "Preparing for the Tutorial."

You can learn more about creating connections for the Documents service in the
Oracle Fusion Middleware Developer's Guide for Oracle WebCenter.

To create a connection to our content repository:

1. In Oracle JDeveloper, in the Application Navigator, locate the Application
Resources node and expand it. Notice the Connections folder here (Figure 4–7).

Step 2: Create a Connection for the Documents Service

Adding WebCenter Web 2.0 Services to Your Application 4-7

Figure 4–7 Connections Folder in the Application Resources Panel

2. Ensure the ViewController project is highlighted.

3. Under Application Resources, right-click the Connections folder, then choose
New Connection > Content Repository... (Figure 4–8).

Figure 4–8 Choosing the New Content Repository Connection Menu Option

Step 2: Create a Connection for the Documents Service

4-8 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

4. In the Create Content Repository Connection dialog box that displays, notice the
first option: you can choose to either limit the usage of this connection to the
current application by choosing Application Resources, or enable all applications
created using your instance of Oracle JDeveloper to use this connection by
choosing IDE Connections.

Select Application Resources.

5. In the Connection Name field, enter MyTutorialContent.

6. From the Repository Type list, choose File System.

7. Select Set as primary connection for Documents service to set this connection as
the active connection any time you add the Documents service to your application.

If you did not choose this option and created a connection to another content
repository, Oracle WebCenter Framework would automatically set the first
connection you created as the active connection.

8. Under Configuration Parameters, let's set the Base Path to the location where you
downloaded the tutorial sample files on your C drive (in Chapter 2, "Preparing for
the Tutorial"), by entering c:\TutorialContent.

9. Click Test Connection. You should see a Success! message in the Status field, as
shown in Figure 4–9.

Note: Creating a connection here enables you to reuse the same
connection throughout your application. If you chose IDE
Connections, you could reuse the connection in any application you
create using your instance of Oracle WebCenter Framework. The
connection name would display in the Resource Palette under IDE
Connections.

Step 2: Create a Connection for the Documents Service

Adding WebCenter Web 2.0 Services to Your Application 4-9

Figure 4–9 Create Content Repository Connection

10. Click OK.

11. In the Application Navigator, in the Application Resources panel, you will see
your new connection, as shown in Figure 4–10.

Step 3: Add the Document Library Task Flow to Your Application

4-10 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 4–10 New Connection in the Application Resources Panel

Step 3: Add the Document Library Task Flow to Your Application
Oracle WebCenter Framework enables content integration by:

■ Content Repository data controls: enable read-only access to a content repository,
and maintain tight control over the way the content displays in the application.

■ Documents service: enable users to view and manage documents in your
organization’s content repositories.

Both methods of integration use content repository connections, which you created in
the previous step. In this tutorial, we’ll use the Documents service to integrate content
(the sample content on our file system that we downloaded in Chapter 2, "Preparing
for the Tutorial") into our application.

Using the Documents service, users can view, upload, and collaborate around
documents. In this tutorial, you will use a file system connection that will let you view
documents and enable your application users to share them, but not upload them.
Using a content repository such as Oracle Content Server or Oracle Content Database,
you can take advantage of all the features of this service. To learn more about using
different content repositories and more details about the various Documents service
task flows, refer to Chapter 15, “Integrating the Documents Service” in the Oracle
Fusion Middleware Developer's Guide for Oracle WebCenter.

In this step, you will add the task flow provided by the service to your application.
The Documents service provides several task flows, one of which is the Document
Library. The Document Library task flow, when used with a file system content
repository, enables your users to view folders and files within the application much as
they would on their own file system in a read- and write-only format (Figure 4–11).

Note: To learn more about configuring and using WebCenter
Services, refer to the Oracle Fusion Middleware Developer's Guide for
Oracle WebCenter.

Step 3: Add the Document Library Task Flow to Your Application

Adding WebCenter Web 2.0 Services to Your Application 4-11

Figure 4–11 Document Library View of Sample Folders at Runtime

To add the Document Library task flow to your application at design time in Oracle
JDeveloper:

1. In Oracle JDeveloper, ensure MyTutorialApplication is open and that you have
configured your application for services and set up a connection to the content
repository, as described in Step 2: Create a Connection for the Documents Service.

2. Let's add the Document Library task flow to the page. Ensure that MyPage.jspx
is open.

3. In the Structure window, locate where we are going to add the task flow
(Figure 4–12). Under the second facet navigate to pe:pageCustomizable >
pe:layoutCustomizable - twoColumnBottom. Here, you will see the Panel
Customizable where we will add the task flow.

Note: As previously mentioned, you can use the pushpin in the
Structure window to freeze the current view. For this step, you should
click MyPage in the Design view, then ensure the pushpin is in the
“freeze” position (pressed).

Step 3: Add the Document Library Task Flow to Your Application

4-12 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 4–12 Location Where We Will Add the Document Library View

4. Add a chrome around the Document Library, so that at runtime, the layout shows
a frame around the list of documents.

In the Component Palette, choose Oracle Composer from the list.

5. Under Layout, drag and drop Show Detail Frame onto the
cust:panelCustomizable that you selected (as shown in Figure 4–12).

6. While the Show Detail Frame is selected, in the Property Inspector, under
Common, change the Text property to My Documents, as shown in Figure 4–13.
Notice also that the frame is also selected in the Design view of your page.

Figure 4–13 Changing the Title of the Show Detail Frame

7. In the Resource Palette, under WebCenter Services Catalog, open the Task Flows
folder and locate Document Library. Figure 4–14 shows the task flow in the
WebCenter Services Catalog.

Step 3: Add the Document Library Task Flow to Your Application

Adding WebCenter Web 2.0 Services to Your Application 4-13

Figure 4–14 Document Library Task Flow in the Resource Palette

8. Drag and drop the Document Library task flow onto the Show Detail Frame. You
can do this either by dragging it onto the Show Detail Frame in the Structure
window or in the Design view of the page.

9. In the context menu that displays, click Create Region, as shown in Figure 4–15.

Step 3: Add the Document Library Task Flow to Your Application

4-14 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 4–15 Dropping the Document LIbrary Task Flow onto the Page in the Design
View

10. If the Confirm Add ADF Library dialog box displays, click Add Library.

11. The Edit Task Flow Binding dialog box displays. In this dialog box, you can set up
the connection parameter for the task flow.

Click the connectionName parameter and enter ${’MyTutorialContent’} to
tell the Document Library task flow to use this connection.

12. Since the connection points to the root folder of our tutorial sample files, let's
update the startFolderPath parameter to the folder containing the product
manuals.

Click the startFolderPath parameter and enter ${'/Manuals'} next to it, then
click OK. Figure 4–16 displays the Edit Task Flow Binding dialog box with the
appropriate values.

Figure 4–16 Edit Task Flow Binding Dialog Box

The Structure window shows the new task flow with the af:region tag, as
shown in Figure 4–17.

Note: If you do not enter a connection name here, the content
repository connection where you selected Set as primary connection
for Documents service is the active connection.

Step 4: Browse Documents at Runtime

Adding WebCenter Web 2.0 Services to Your Application 4-15

Figure 4–17 Document Library View Task Flow in the Structure Window

13. In the Application Navigator, right-click the MyPage.jspx page and select Run. In
the next step, we’ll examine the Document Library at runtime.

Step 4: Browse Documents at Runtime
Now that you've added the task flow to your application, you can see the documents
in your content repository.

1. After you run your application to your browser, you'll see a list of your files
display (Figure 4–18).

Figure 4–18 Documents in the Document Library View

Let's examine this view. As you can see, the service shows by default the names of
the folders: prodA, prodB, prodC. This information all comes from your file
system and let's you quickly show your content without much coding.

Also notice the Search field within the My Documents frame. This search feature is
limited to just the files in the document library. The search toolbar you added in
Step 1: Add the Search Toolbar Task Flow to the Application searches across any
page and service you add to your application.

2. Click the folder prodA. Notice how the folder opens within the context of the
view. You can use the breadcrumbs to navigate throughout your document

Step 4: Browse Documents at Runtime

4-16 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

library. You can also view the various attributes about the documents (for
example, Size, Last Modified).

Figure 4–19 Document Library View Showing the Contents of a Folder

3. Click the Create New Folder icon in the toolbar (Figure 4–20).

Figure 4–20 Create New Folder Icon in the Toolbar

4. In the Create Folder dialog box, enter a folder name, such as prodA_details
(Figure 4–21).

Figure 4–21 Document Library View with the Create Folder Dialog Box

5. Click Create. Figure 4–22 shows the new folder in your browser.

Step 4: Browse Documents at Runtime

Adding WebCenter Web 2.0 Services to Your Application 4-17

Figure 4–22 prodA_details Folder in the Document Library at Runtime

6. Since you are using your own file system as your content repository, any actions
you perform at runtime also affect the content repository itself. Let’s examine the
content repository, in this case on your file system.

Notice the prodA_details folder also exists in your
C:\TutorialContent\Manuals\prodA directory (Figure 4–23).

Figure 4–23 New Folder in the File System

While we’re able to do this on our file system, if you use a secure repository like
Oracle Content Server, you’ll need appropriate privileges to perform these actions.

7. Return to your browser to view the Document Library at runtime.

8. Click the file productmanual_prodA.txt. Notice that a new browser tab or
window displays with the contents of the text file (Figure 4–24).

Step 5: Create a Database Connection to the WebCenter Schema for the Tags Service

4-18 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 4–24 Text File in a Browser Window

You can easily navigate from the parent folder to the text file by switching your
browser window. Document Library displays the content of text and image files in
the browser. For more information on using the Document Library at runtime,
refer to the Oracle Fusion Middleware User's Guide for Oracle WebCenter.

9. Return to Oracle JDeveloper.

As you can see, the Document Library view provides a quick and easy way for you to
display content in a meaningful way and with functionality. You can learn more about
this simple view and the more complex Document Library views in the Oracle Fusion
Middleware Developer's Guide for Oracle WebCenter.

To exercise more direct control over the behavior, look, and feel of your content, you
can use the JCR data control, which you can learn about in Chapter 6 “Integrating
Content” in Oracle Fusion Middleware Developer's Guide for Oracle WebCenter.

Step 5: Create a Database Connection to the WebCenter Schema for the
Tags Service

Next, we’ll add the Tags service. To use the Tags service, you must have access to the
WebCenter schema. You installed this schema in Chapter 2, "Preparing for the
Tutorial." In this section, we’ll create a connection to the database containing this
schema, so that the Tags service we add can use this schema.

To learn more about setting up your application for consuming services, refer to the
Oracle Fusion Middleware Developer's Guide for Oracle WebCenter.

To create the database connection:

1. In the Application Navigator, expand the Application Resources panel.

2. Right-click Connections, choose New Connection, then choose Database.

3. Enter the following information for your database connection (Figure 4–25). Note
that the Connection Name must be WebCenter.

■ Connection Name: WebCenter

■ Connection Type: Oracle (JDBC)

■ User name: username (for example, webcenter)

■ Password: password (for example, welcome1)

■ Host: <host where you installed the WebCenter schema> (for
example, localhost)

■ JDBC Port: <port> (for example, 1521)

■ SID: <system identifier for the database with the same JDBC
port> (for example, ORCL)

Step 6: Add the Tags Service to Your Application

Adding WebCenter Web 2.0 Services to Your Application 4-19

Figure 4–25 Database Connection

4. Click Test Connection to test your database connection. If you do not see a
Success! message, check to make sure you entered the correct information for the
WebCenter schema (see Chapter 2, "Preparing for the Tutorial" if you’re not sure
what you entered when you install it).

5. Click OK. Now that we’ve created our database connection, we can add the Tags
service to the application.

Step 6: Add the Tags Service to Your Application
Tags enable you and your application users to apply your own meaningful terms to
items in your application, making those items more easily discoverable in search
results. Because your application users can create tags for their own content or content
they’ve searched for, the tags are much more powerful and usable than search
keywords created by application developers who may not be as familiar with the
user-created content. This user-powered keyword creation makes the content in your
application highly searchable and discoverable.

A “tag cloud” is a visual illustration of all the tags for the application, making it easy
for you and your users to identify the tags used in the application. You can then search
for a tag in your application to locate any item that has been associated with that tag.

With every service in the Oracle WebCenter Framework, we perform a few basic steps:
configure the service with our application, add the service task flow to our page, then
run the page and customize or use the service at runtime.

In this section, we’ll add the Tags service to our application and display it on our page.
We will add a Tag Cloud so that we can visualize the tags and enable us to add new
tags to our application.

To add the Tags service task flow:

Step 6: Add the Tags Service to Your Application

4-20 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

1. In the Structure window for MyPage, navigate to the Panel Customizable
containing the Show Detail Frame where you added the Document Library View
(Figure 4–26).

Figure 4–26 Panel Customizable Containing the Show Detail Frame

2. In the Component Palette, choose Oracle Composer from the list.

3. Under Layout, drag and drop a Show Detail Frame onto the Panel Customizable,
so that it displays just below the first Show Detail Frame, as shown in Figure 4–27.

Figure 4–27 Second Show Detail Frame

4. While the Show Detail Frame is selected, in the Property Inspector, under
Common, change the Text property to Tag Cloud.

5. In the Resource Palette, under WebCenter Service Catalog, open the Task Flows
folder and locate the Tagging - Tag Cloud task flow, then drag and drop it onto
the Show Detail Frame you just added.

6. In the Create Region context menu, choose Create Region. The Tagging - Tag
Cloud task flow displays in the Structure window, as shown in Figure 4–28.

Note: As previously mentioned, you can use the pushpin in the
Structure window to freeze the current view. For this step, you should
click MyPage in the Design view, then ensure the pushpin is in the
“freeze” position (pressed).

Step 7: Use, Add, and Search Tags in Your Application at Runtime

Adding WebCenter Web 2.0 Services to Your Application 4-21

Figure 4–28 Tagging - Tag Cloud Task Flow in the Second Show Detail Frame

7. Right click MyPage in the Design view and choose Run. We’ll examine the Tags
service at runtime in the next step.

Step 7: Use, Add, and Search Tags in Your Application at Runtime
After you add the Tagging - Tag Cloud task flow to your page, the Tag Cloud
automatically populates with the tags in the WebCenter schema. If you installed the
WebCenter schema for the purposes of this tutorial, you will not see any tags in the
Tag Cloud. In our example, we have a few tags that we populated to illustrate how the
Tag Cloud can look at runtime.

To use the Tags service at runtime:

1. In your browser, you should now see the Tag Cloud displaying below the
Document Library. In our example, we have a few sample tags that exist in our
WebCenter schema. If a tag cloud exists in your WebCenter schema, the contents
of your tag cloud may appear slightly different. If you do not have any tags, you
will not see any tags in the Tag Cloud.

Figure 4–29 shows how MyPage looks at runtime with sample tags in the Tag
Cloud.

Step 7: Use, Add, and Search Tags in Your Application at Runtime

4-22 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 4–29 Tag Cloud at Runtime

2. Once you add the Tags service to your application, you can use it with the
Document Library service. Let’s see how we can add tags to a document in our
document library.

In the Document Library, open a folder, such as prodB, and select the row
containing a document name, such as productmanual_prodB.txt. Be sure to click
the row and not the link for the filename, otherwise you’ll just display the text file
in a new browser window as you did in Step 4: Browse Documents at Runtime.

3. In the Document Library menu, choose File > Tags... (Figure 4–30).

Step 7: Use, Add, and Search Tags in Your Application at Runtime

Adding WebCenter Web 2.0 Services to Your Application 4-23

Figure 4–30 Choosing the Tags Menu Option in the Document Library

4. The Tag this Document dialog displays. Add a few tags, such as:

productb guide prodb

Step 7: Use, Add, and Search Tags in Your Application at Runtime

4-24 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 4–31 Adding New Tags to a Document

5. Click Save, then create another tag on another document. For example, open the
prodA folder, then add a few tags to productmanual_prodA.txt.

6. In the Tag this Document dialog box, enter a few tags, then save your changes:

producta guide proda

7. Click the Refresh icon to the right of the Tag Cloud title bar (Figure 4–32).

Figure 4–32 Refresh Tag Cloud Icon

Notice that the Tag Cloud now displays your new tags, for example producta,
productb, guide, and prodb as shown in Figure 4–33.

Step 7: Use, Add, and Search Tags in Your Application at Runtime

Adding WebCenter Web 2.0 Services to Your Application 4-25

Figure 4–33 New Tags in the Tag Cloud

8. Let’s see how tags help us locate items in our application. In the Search toolbar at
the top of the page, enter productb, then click the arrow icon. You’ll see the
Search Results return the tag for productb (Figure 4–34).

Figure 4–34 productb Tag in the Search Results

9. In the Search Results window, click the productb tag. The Tag Center displays in a
pop-up window (Figure 4–35).

Step 7: Use, Add, and Search Tags in Your Application at Runtime

4-26 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 4–35 Tag Center

The Tag Center displays the Tag Cloud, all the results from your search that are
associated with the tag productb, including other advanced search options. You
can close this window after you’re done viewing the different options and return
to your application.

10. If you’re interested, add a few more tags to see how the Tag Cloud changes.
Otherwise, you can move on to the next step.

11. Let’s examine the Search toolbar again. You can also search for any keyword to
view items that contain the keyword. The keyword does not necessarily have to be
a tag.

For example, in the Search toolbar, enter the keyword product, then click the
arrow. The search returns all documents and tags that contain the word
“product,” as shown in Figure 4–36.

Step 7: Use, Add, and Search Tags in Your Application at Runtime

Adding WebCenter Web 2.0 Services to Your Application 4-27

Figure 4–36 Search Results for “product”

Note that the search results in our example may not exactly reflect what you see in
your application, as the results depend on the items you tagged.

12. When you search for a tag, the search returns a partial match -- that is, because we
searched for product, we saw in our Search Results tags and documents that
contain the word product. But, because no item was specifically tagged with
“product,” the search did not return any tagged items.

Let’s search for a specific tag and see what happens. In the Search toolbar, enter
producta, then click the arrow icon.

Figure 4–37 shows the search results. Notice that the tagged item, usersguide_
prodA.txt displays. Because the item was tagged with “producta,” our search
returned the specific item.

Figure 4–37 Search Results for “producta”

You can learn more about adding the Search, Documents, and Tags services to a
custom WebCenter application in Oracle Fusion Middleware Developer's Guide for
Oracle WebCenter. You can learn more about using these services at runtime (in your
browser) in the Oracle Fusion Middleware User's Guide for Oracle WebCenter.

Now that we have added a few services to our application, let’s build a few portlets,
add them to the application, then wire them in Chapter 5, "Building Portlets and
Wiring Them in Your Application."

Step 7: Use, Add, and Search Tags in Your Application at Runtime

4-28 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

5

Building Portlets and Wiring Them in Your Application 5-1

5 Building Portlets and Wiring Them in Your
Application

In this lesson, you will learn how to build two types of portlets: a standards-based Java
(JSR 168) portlet, which you will build using a wizard in Oracle JDeveloper, and an
OmniPortlet, using a step-by-step wizard at runtime.

After you create the portlets, you will add them to the page, then connect the two
portlets. By the end of this lesson, you should have a good handle on what's involved
with building and testing a standards-based Java (JSR 168) portlet and a PDK-Java
portlet (OmniPortlet). You’ll also be able to “wire” the two portlets so that when you
click a link in one portlet, the content in the second portlet is dynamically updated.

Figure 5–1 shows how your page will look at the end of this lesson.

Introduction

5-2 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 5–1 MyPage.jspx at the End of this Lesson

Introduction
This lesson contains the following steps:

■ Step 1: Create a Standards-Based Java (JSR 168) Portlet

■ Step 2: Create the JavaBeans to Store the Standards-Based Portlet Information

■ Step 3: Create the Business Logic for the Standards-Based Portlet

■ Step 4: Test and Deploy the Standards-Based Portlet

■ Step 5: Register the Standards-Based Portlet with Your Application

■ Step 6: Test the Standards-Based Portlet in Your Application

■ Step 7: Register the Preconfigured Portlet Producer

■ Step 8: Add an OmniPortlet to Your Page

■ Step 9: Define OmniPortlet at Runtime

■ Step 10: Wire the Standards-Based Portlet and OmniPortlet Together

■ Step 11: Test the Interaction Between the Portlets

Step 1: Create a Standards-Based Java (JSR 168) Portlet

Building Portlets and Wiring Them in Your Application 5-3

Both of these portlets use the tutorial schema that we installed in Chapter 2, "Preparing
for the Tutorial," and require that you have a database connection. We created the
database connection when we added the Tags service in Chapter 4, "Adding
WebCenter Web 2.0 Services to Your Application," so if you did not complete the steps
in that chapter, you must follow the steps in Step 5: Create a Database Connection to
the WebCenter Schema for the Tags Service in that chapter before you build the
portlets.

Step 1: Create a Standards-Based Java (JSR 168) Portlet
Oracle WebCenter Framework enables you to quickly and easily build a
standards-based portlet that you can use with a portal or application, such as the one
you’re currently creating.

In this step, we will create an application based on the Portlet Producer template, then
build a standards-based portlet. Afterwards, we'll consume the portlet into our tutorial
application. Figure 5–2 shows the portlet at runtime in MyTutorialApplication.

Figure 5–2 Standards-Based Portlet at Runtime in MyTutorialApplication

1. In Oracle JDeveloper, create a new application based on the Portlet Producer
Application template (Figure 5–3), then click OK. To do so, choose File >New,
then choose Applications > Portlet Producer Application in the New Gallery.

Note: The steps to build this portlet rely on the naming convention
we’ve used, so follow the steps carefully. If you do not use the names
we’ve provided, you may not achieve the same results.

Step 1: Create a Standards-Based Java (JSR 168) Portlet

5-4 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 5–3 Creating a New Portlet Producer Application

2. In the Create Portlet Producer Application wizard, in the Application Name field,
enter MyTutorialPortlet.

3. By default, the Directory field should contain the directory where the application
will reside (Figure 5–4). You can change the directory location, if you like, but let’s
leave it as it is for the purposes of the tutorial.

Figure 5–4 Creating a Portlet Producer Application - Step 1

4. Click Next.

Step 1: Create a Standards-Based Java (JSR 168) Portlet

Building Portlets and Wiring Them in Your Application 5-5

5. On the Project Name page of the wizard (Figure 5–5), let’s leave the default name:
Portlets, and click Next.

Figure 5–5 Creating a Portlet Producer Application - Step 2

6. On the last page of the wizard, you can configure the Java settings. You can see
that the default package contained in the portlet producer application is portlet
(Figure 5–6). For the purposes of this tutorial, let’s leave the default options and
click Finish.

Figure 5–6 Creating a Portlet Producer Application - Step 3

Step 1: Create a Standards-Based Java (JSR 168) Portlet

5-6 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

7. In the Application Navigator, under your new MyTutorialPortlet application,
right-click Portlets, and select New (Figure 5–7).

Figure 5–7 Selecting New from the Menu

8. Click the Current Project Technologies tab.

9. In the Categories list as shown in Figure 5–8, expand the Web Tier category, and
select Portlets.

Step 1: Create a Standards-Based Java (JSR 168) Portlet

Building Portlets and Wiring Them in Your Application 5-7

Figure 5–8 Creating a New Portlet Producer Application

Notice there are two kinds of portlets you can create:

■ An Oracle PDK-Java portlet. PDK-Java portlets can be consumed by
WebCenter applications, Oracle Portal, or some other type of Oracle-specific
solution. You build an Oracle PDK-Java portlet using the APIs provided by
the PDK. Note that the OmniPortlet producer you will register in Step 7:
Register the Preconfigured Portlet Producer is a type of Oracle PDK-Java
Portlet

■ A standards-based Java (JSR 168) Java portlet. Java portlets can be consumed
by portals from any vendor that supports the portlet standards. In this
tutorial, we're going to build a standards-based (JSR 168) Java portlet.

10. Select Standards-based Java Portlet (JSR 168), and click OK.

The JSR 168 Java Portlet wizard displays, which generates a skeleton for the
portlet. We’ll later add our own logic to the portlet. Let's see how this is done.

11. On the General Portlet Information page, in the Name and Class fields, enter
Products.

12. Select Enable inter-portlet communication using Oracle WSRP V2 extensions.
Selecting this option enables your portlet to support Oracle WSRP 2.0 extensions,
and generates the oracle-portlet.xml file that is used for WSRP 2.0 features,
such as navigation parameters. We’ll need these parameters later on, when we
enable the OmniPortlet and this portlet to communicate with each other.
Figure 5–9 shows how the General Portlet Information page should now look.

Note: The steps to build this portlet rely on the naming convention
we’ve used, so follow the steps carefully. If you do not use the names
we’ve provided, you may not achieve the same results.

Step 1: Create a Standards-Based Java (JSR 168) Portlet

5-8 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 5–9 Creating a JSR 168 Java Portlet - General Portlet Information

13. Click Next.

14. On the Additional Portlet Information page, we can either leave the defaults or,
because we know we are going to show a few details about the products in our
database, we can change the display name so anyone using the portlet will know
what the portlet contains. Update the fields on this page according to Table 5–1.
Figure 5–10 shows the resulting Additional Portlet Information page.

Table 5–1 Name and Attribution Values

Property Value

Display Name Name that will appear in the JDeveloper Component Palette.
Because you entered Products as the class name, this field is
automatically populated with that name.

Portlet Title Title that will appear on the portlet header. Because you entered
Products as the class name, this field is automatically populated
with that name.

Short Title Title that will appear on the portlet header on mobile devices.

Let’s leave the default name, Products.

Description Description of the portlet. This field is relevant only when the
portlet is used in an Oracle Portal 10g environment.

Enter a description, for example, This is a JSR 168
portlet that displays the products.

Keywords Keywords provide additional information about a page, item, or
portlet so that users can locate it during a search. Although
keywords are not supported by Oracle WebCenter Suite or
Oracle Portal 10g, they are supported by other vendors from
whom you may have obtained a deployment environment.

Enter sample, Tutorial, products.

Step 1: Create a Standards-Based Java (JSR 168) Portlet

Building Portlets and Wiring Them in Your Application 5-9

Figure 5–10 Creating a JSR 168 Java Portlet - Additional Portlet Information

15. Click Next.

16. On the Content Types and Portlet Modes page, notice that text/html is the default
content type. That means that the portlet will support text encoded with HTML.
View and edit are listed as the default portlet modes for text/html. View is
always available as a portlet mode; edit mode provides a page that allows users to
personalize the portlet instance.

Notice the Implementation Method area as shown in Figure 5–11. These controls
enable you to specify whether you want to generate JSP for the portlet, or use your
own custom JSP code.

Step 1: Create a Standards-Based Java (JSR 168) Portlet

5-10 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 5–11 Creating a JSR 168 Portlet - Content Types and Portlet Modes

In this lesson, we'll ask JDeveloper to generate JSPs for us by leaving the default
selection.

17. Click Next.

Although you could click Finish here and produce a basic portlet, let's continue
and choose some other options and settings for our portlet.

18. On the Customization Preferences page, let's leave the default values and click
Next (Figure 5–12).

Although we're not going to do anything with this page now, in the future you
can use it to add other customization options for the portlet. For example, if your
portlet accepted a Zip Code parameter, you might want to allow users to
personalize the Zip Code label. If this were the case, you would use the Add
button to make the Zip Code label personalizable.

Step 1: Create a Standards-Based Java (JSR 168) Portlet

Building Portlets and Wiring Them in Your Application 5-11

Figure 5–12 Creating a JSR 168 Java Portlet - Customization Preferences

19. On the Security Roles page, click Next (Figure 5–13). The Security Roles page is
used to specify which of the application's security roles you want to establish for
this portlet.

Figure 5–13 Creating a JSR 168 Java Portlet - Security Roles

20. On the Caching Options page, click Next (Figure 5–14).

The settings on this page enable you to define expiry-based caching for your
portlet. You do not need any caching conditions now.

Step 1: Create a Standards-Based Java (JSR 168) Portlet

5-12 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 5–14 Creating a JSR 168 Java Portlet - Caching Options

21. On the Initialization Parameters page, click Next (Figure 5–15). Our portlet does
not require any initialization parameters.

Figure 5–15 Creating a JSR 168 Java Portlet - Initialization Parameters

22. On the Portlet Navigation Parameters page, let's create a navigation parameter
based on the product ID.

Navigation parameters are a WSRP 2.0 feature. This page enables you to specify
external parameters to be consumed by the standards-based portlet, and only
displays if you select the Enable inter-portlet communication using Oracle
WSRP V2 extensions option on the first page of the wizard.

Step 1: Create a Standards-Based Java (JSR 168) Portlet

Building Portlets and Wiring Them in Your Application 5-13

Click Add.

23. Double-click the values and update each value to the following:

■ Name: productId

■ Label: Product ID

■ Hint: Enter Product ID

We will use these navigation parameters later on in Step 10: Wire the
Standards-Based Portlet and OmniPortlet Together. Figure 5–16 shows the
updated Portlet Navigation Parameters page.

Figure 5–16 Creating a JSR 168 Java Portlet - Portlet Navigation Parameters

24. Click Next.

25. On the last page of the wizard (Step 9 of 9), click Finish.

After you click Finish, you should be able to locate several newly generated files
in the Application Navigator under the Portlets project. The expanded Navigator
looks like Figure 5–17.

Step 1: Create a Standards-Based Java (JSR 168) Portlet

5-14 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 5–17 Files Generated for the New Portlet

■ Under Application Sources, under portlet and portlet.resource, notice two
Java classes:

– Products.java is invoked by the portlet container. It contains all the
methods required by the portlet standards.

– ProductsBundle.java contains all the translation strings for the portlet.

■ Under Web Content, Products, html:

– edit.jsp, which contains the information needed to populate the
Personalize dialog box.

– view.jsp, which is invoked when the portlet is sharing the page with other
components.

■ Under Web Content, WEB-INF, three deployment descriptors:

– oracle-portlet.xml, which contains information to support Oracle
extensions for import/export and inter-portlet communication. It appears
because you chose Enable WSRP V2 inter-portlet communication using
Oracle extensions on Step 1 of the wizard.

– portlet.xml, which specifies all the portlet resources (the information you
entered through the JSR 168 Java Portlet Wizard).

– web.xml, which specifies the web application resources.

26. Save all your files. In the next step, we’ll create a JavaBean to store all the portlet
information you just generated.

Step 2: Create the JavaBeans to Store the Standards-Based Portlet Information

Building Portlets and Wiring Them in Your Application 5-15

Step 2: Create the JavaBeans to Store the Standards-Based Portlet
Information

In this step, you will create the JavaBean to store the information for your
standards-based portlet.

1. In the Application Navigator, right-click the portlet package, and choose New.
Figure 5–18 shows the portlet package in the Application Navigator.

Figure 5–18 Portlet Package

2. In the New Gallery, click the All Technologies tab.

3. In the Categories list, under General, choose Java, select Bean from the Items list,
then click OK (Figure 5–19).

Figure 5–19 Choosing the JavaBean in the New Gallery

4. In the Create Bean dialog box that displays, enter the following information to set
up the new JavaBean (Figure 5–20):

■ Name: ProductDetailsBean

■ Package: portlet

■ Extends: java.lang.Object

Step 2: Create the JavaBeans to Store the Standards-Based Portlet Information

5-16 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 5–20 Create ProductDetailsBean

This creates a new bean called ProductDetailsBean in the portlet package.

5. Click OK. The new JavaBean displays in the Design window (Figure 5–21).

Figure 5–21 ProductDetails JavaBean in the Design View

Figure 5–22 shows the JavaBean in the Structure window. As we mentioned in
Chapter 3, "Creating a WebCenter Application with a Customizable Page," you can
use the pushpin in the Structure window to freeze and unfreeze the current view.
Ensure that you have selected the ProductDetails Bean in the Design view,
then toggle the pushpin so that you see the ProductDetails Bean in the
Structure window.

Figure 5–22 ProductDetailsBean in the Structure Window

6. Now that we've set up our JavaBean, let's add the information we need for the
portlet. In the Structure window, right-click the ProductDetailsBean, then choose
New Field from the context menu.

Step 2: Create the JavaBeans to Store the Standards-Based Portlet Information

Building Portlets and Wiring Them in Your Application 5-17

Figure 5–23 Creating a New Field for the ProductDetails Bean

7. In the Create Field dialog box, in the Name field, enter productId. This name
represents the name of the product in our database schema.

8. Ensure the Type is set to String.

9. Ensure the Scope is set to private (Figure 5–24).

Figure 5–24 Create Field Dialog Box

10. Click OK. The new field displays in the Design view of the JavaBean (Figure 5–25).

Step 2: Create the JavaBeans to Store the Standards-Based Portlet Information

5-18 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 5–25 New Field in the ProductDetailsBean

11. Now, let's create the other four fields we want to show in our portlet. Follow steps
6 through 10 to create these four fields with the following names:

■ productName

■ productPrice

■ imageURL

■ categoryDescription

■ supplierName

The Design view of your JavaBean should now contain the six fields (Figure 5–26).

Figure 5–26 ProductsBean with the Six Fields

12. Now that we've set up the fields for the JavaBean, let’s generate the accessors.

In the Structure window, right-click ProductDetailsBean and choose Generate
Accessors from the context menu.

 The Generate Accessors dialog box displays (Figure 5–27).

Step 2: Create the JavaBeans to Store the Standards-Based Portlet Information

Building Portlets and Wiring Them in Your Application 5-19

Figure 5–27 Generate Accessors Dialog Box

13. Click the Select All button to select all the fields you created for this bean
(Figure 5–28).

Step 2: Create the JavaBeans to Store the Standards-Based Portlet Information

5-20 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 5–28 Generate Accessors DIalog Box with all Fields Selected

14. Click OK to generate the accessors for these fields. Oracle JDeveloper generates
the code as shown in Example 5–1:

Example 5–1 ProductDetails JavaBean

package portlet;

public class ProductDetailsBean {
 private String productId;
 private String productName;
 private String productPrice;
 private String imageURL;
 private String categoryDescription;
 private String supplierName;

 public ProductDetailsBean() {
 }

 public void setProductId(String productId) {
 this.productId = productId;
 }

 public void setProductName(String productName) {

Step 2: Create the JavaBeans to Store the Standards-Based Portlet Information

Building Portlets and Wiring Them in Your Application 5-21

 this.productName = productName;
 }

 public String getProductName() {
 return productName;
 }

 public void setProductPrice(String productPrice) {
 this.productPrice = productPrice;
 }

 public String getProductPrice() {
 return productPrice;
 }

 public void setImageURL(String imageURL) {
 this.imageURL = imageURL;
 }

 public String getImageURL() {
 return imageURL;
 }

 public void setCategoryDescription(String categoryDescription) {
 this.categoryDescription = categoryDescription;
 }

 public String getCategoryDescription() {
 return categoryDescription;
 }

 public void setSupplierName(String supplierName) {
 this.supplierName = supplierName;
 }

 public String getSupplierName() {
 return supplierName;
 }
}

15. Create another JavaBean for the portlet called ProductsBean.java. This bean
represents the list of products, which the portlet will display at runtime.

To create the JavaBean right-click the portlet package in the Application Navigator
and choose New from the context menu to display the Create Bean dialog box
(Figure 5–29).

Step 2: Create the JavaBeans to Store the Standards-Based Portlet Information

5-22 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 5–29 Creating the ProductsBean

16. Replace the code of ProductsBean.java in the Source view with the code in
Example 5–2.

Example 5–2 ProductsBean.java Code

package portlet;

import java.util.ArrayList;

public class ProductsBean {
 public static final String DEFAULT_PRODUCT_ID = "12";

 private ArrayList<ProductDetailsBean> products =
 new ArrayList<ProductDetailsBean>();

 public ProductsBean() {
 super();
 }

 public void addProduct(ProductDetailsBean product) {
 products.add(product);
 }

 public ArrayList<ProductDetailsBean> getProducts() {
 return products;
 }
}

The Source view of the bean should now look like Figure 5–30.

Note: If the formatting of the code in this text does not work, you
can open the
C:\TutorialContent\Portlets\ProductsBeanJava.txt file
and copy and paste the code from there.

Step 3: Create the Business Logic for the Standards-Based Portlet

Building Portlets and Wiring Them in Your Application 5-23

Figure 5–30 ProductsBean.java Code

17. Save all your files.

In the next steps, we'll set up the connection between our JavaBeans and the database
schema that contains the data we want to show in our portlet.

Step 3: Create the Business Logic for the Standards-Based Portlet
After you create the JavaBean to access the data in the database, you create the
business logic for the portlet in a Java Class. This class will contain a connection to the
database, establish the connection, then query for information using the SQL
statement in the class file. When you create a standards-based portlet, you must
manually create this class.

1. In the Application Navigator, right-click the portlet package, then choose New
from the context menu.

2. In the New Gallery, click Java, then choose Java Class from the Items list
(Figure 5–31).

Step 3: Create the Business Logic for the Standards-Based Portlet

5-24 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 5–31 Choosing the Java Class Option in the New Gallery

3. Click OK.

4. In the Create Java Class dialog box, in the Name field, enter the name:
ProductsService, as shown in Figure 5–32.

Step 3: Create the Business Logic for the Standards-Based Portlet

Building Portlets and Wiring Them in Your Application 5-25

Figure 5–32 Create Java Class Dialog Box

5. Leave the rest of the default values in this dialog box, as we will overwrite them in
the next step, then click OK.

6. In the ProductsService.java file that displays, replace all the
automatically-generated code with the code shown in Example 5–3. The code
assumes that the database where you installed the sample schema is local. In the
code, modify the highlighted JDBC connection
(jdbc:oracle:thin:@localhost:1521:xe)to point to your database and
tutorial (fod) schema

Example 5–3 ProductsService.java Code

package portlet;

import java.sql.Connection;

Note: If the formatting of the code in this text does not work, you
can open the
C:\TutorialContent\Portlets\ProductsServiceJava.txt
file and copy and paste the code from there.

Step 3: Create the Business Logic for the Standards-Based Portlet

5-26 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

public class ProductsService {
 public ProductsService() {
 }

 public ProductsBean getProducts() throws ClassNotFoundException {
 Connection conn = getConnection();
 ProductsBean products = new ProductsBean();
 if (conn != null) {
 try {
 Statement stmt = conn.createStatement();
 String query =
 "SELECT DISTINCT product_id, product_name name, cost_price
price, 'http://localhost:7101/MyTutorialApplication/' || external_url image_url,
category_description, supplier_name " +
 "FROM category_translations, products_base, suppliers" +
 " WHERE products_base.category_id = category_
translations.category_id" +
 " AND products_base.supplier_id = suppliers.supplier_id " +
 " AND cost_price between 25 and 75 " +
 " order by product_id";
 ResultSet rs = stmt.executeQuery(query);
 while (rs.next()) {
 ProductDetailsBean productDetails = new ProductDetailsBean();
 productDetails.setProductId(rs.getString(1));
 productDetails.setProductName(rs.getString(2));
 productDetails.setProductPrice(rs.getString(3));
 productDetails.setImageURL(rs.getString(4));
 productDetails.setCategoryDescription(rs.getString(5));
 productDetails.setSupplierName(rs.getString(6));

 products.addProduct(productDetails);
 }
 conn.close();
 } catch (SQLException sqle) {
 System.out.println("======== Oracle Fusion Middleware Tutorial for
WebCenter Developers ======== ");
 System.out.println("Database Connection established successfully
but encountered an error while working with the DB:" +
 sqle);

System.out.println("==
============== ");
 } catch (Throwable t) {
 System.out.println("======== Oracle Fusion Middleware Tutorial for
WebCenter Developers ======== ");
 System.out.println("Error while trying to get Product Details: " +
 t);

System.out.println("==
============== ");
 }

 }
 return products;
 }

Step 3: Create the Business Logic for the Standards-Based Portlet

Building Portlets and Wiring Them in Your Application 5-27

 public static Connection getConnection() throws ClassNotFoundException {
 Connection conn = null;
 try {
 Class.forName("oracle.jdbc.driver.OracleDriver");
 conn =
DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:xe", "fod",
 "fusion");
 } catch (SQLException sqle) {
 conn = null;
 System.out.println("======== Oracle Fusion Middleware Tutorial for
WebCenter Developers ======== ");
 System.out.println("SQL error while trying to get connection to DB: "
+
 sqle);

System.out.println("==
============== ");
 } catch (Throwable t) {
 conn = null;
 System.out.println("======== Oracle Fusion Middleware Tutorial for
WebCenter Developers ======== ");
 System.out.println("Error while trying to get the connection to DB: "
+
 t);

System.out.println("==
============== ");
 }
 return conn;
 }
}

7. Save the file.

8. Before we can update our portlet’s view.jsp file to use this Java class, let’s return
to our portlet code so that it uses the parameter value. This parameter value is the
productId navigation parameter defined for the Products portlet in Figure 5–16.

Click the Products.java tab to bring it into focus. Or, if the file is not open,
double-click the name in the Application Navigator.

9. In the Products.java file, we must update the ProcessAction() method in
the generated portlet class file to pass the parameter value from the portlet to the
Java Bean, so that the appropriate products display depending on the parameter
entered.

In the Products.java file, locate the processAction() method. Example 5–4
shows the section of the code in the Products.java file where the method is
located.

Note: In this code, the package names and import statements of the
view.jsp, ProductsService, and ProductsBean depend on the
name, class name, and package you specified or the portlet. Also, in
this code, you must update the connection information to point to the
database containing the tutorial (fod) schema. If you encounter
problems with this portlet, you can check the Messages log below the
Visual Editor (the Design view) to verify that the connection
information you entered in this code is correct.

Step 3: Create the Business Logic for the Standards-Based Portlet

5-28 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Example 5–4 End of the Products.java File Containing the processAction() Method

 public void processAction(ActionRequest request,
 ActionResponse response) throws PortletException,
 IOException {
 // Determine which action.
 String okAction = request.getParameter(OK_ACTION);
 String applyAction = request.getParameter(APPLY_ACTION);

 if (okAction != null || applyAction != null) {
 // Save the preferences.
 PortletPreferences prefs = request.getPreferences();
 String param = request.getParameter(PORTLETTITLE_KEY);
 prefs.setValues(PORTLETTITLE_KEY, buildValueArray(param));
 prefs.store();
 if (okAction != null) {
 response.setPortletMode(PortletMode.VIEW);
 response.setWindowState(WindowState.NORMAL);
 }
 }
 }

Example 5–4 shows the section we must update. For simplicity, you can replace all
the code in the Products.java file with the code in the
C:\TutorialContent\Portlets\ProductsJava.txt file. Alternatively,
Example 5–4 shows the updated section.

Example 5–5 Updating the Final Section of the Products.java file

 // Form field names
 public static final String PARAMETER1 = "productId";
 public static final String FORM_PARAMETER1 = "form_Parameter1";
 public static final String FORM_SUBMIT = "dosub";
 // Portlet Modes
 public static final String MODE_NAME_PARAM = "mode";
 public static final String MODE_VIEW = "view";

 public void processAction(ActionRequest request,
 ActionResponse response) throws PortletException,
 IOException {

 // Determine what kind of action we have by examining the mode parameter
 boolean viewMode =
 MODE_VIEW.equals(request.getParameter(MODE_NAME_PARAM));

 // Extract the form field parameter and pass it through as a portlet
parameter
 String param1 = request.getParameter(FORM_PARAMETER1);
 if (param1 == null) {
 param1 = ProductsBean.DEFAULT_PRODUCT_ID;
 }

 if (viewMode) {
 // Set the new parameter values. These will be intepreted by the
 // container as navigational parameters as the names match the names
of
 // the declared parameters.
 response.setRenderParameter(PARAMETER1, param1);
 } else {
 // Determine which action.

Step 3: Create the Business Logic for the Standards-Based Portlet

Building Portlets and Wiring Them in Your Application 5-29

 String okAction = request.getParameter(OK_ACTION);
 String applyAction = request.getParameter(APPLY_ACTION);

 if (okAction != null || applyAction != null) {
 // Save the preferences.
 PortletPreferences prefs = request.getPreferences();
 String param = request.getParameter(PORTLETTITLE_KEY);
 prefs.setValues(PORTLETTITLE_KEY, buildValueArray(param));
 prefs.store();
 if (okAction != null) {
 response.setPortletMode(PortletMode.VIEW);
 response.setWindowState(WindowState.NORMAL);
 }
 }
 }
 }
}

10. Now that we've updated our portlet and created the Java Class to enable the
portlet to communicate with the database, let's update our portlet's view.jsp file
for the portlet to use the Java class.

In the Application Navigator, under Portlets >Web Content > Products > html,
open the view.jsp file (Figure 5–33).

Figure 5–33 View.jsp File in the Application Navigator

Step 3: Create the Business Logic for the Standards-Based Portlet

5-30 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

11. Click the Source tab to view the code of this page.

12. Select all the code in the Source view and delete it.

13. Enter the code in Example 5–6 in the Source view of the view.jsp:

Example 5–6 View.jsp Code

<%@ page contentType="text/html" pageEncoding="windows-1252"
import="javax.portlet.*,
 java.util.*,
 portlet.ProductsBean,
 portlet.ProductDetailsBean,
 portlet.ProductsService,
 portlet.Products "%>
<%@ taglib uri="http://java.sun.com/portlet" prefix="portlet"%>

<!-- Include the Portlet render Response & Request objects -->
<portlet:defineObjects/>

<%
 // Get the list of products
 ProductsBean products = new ProductsService().getProducts();
 ArrayList<ProductDetailsBean> productDetails = products.getProducts();

 // "Portlet encode" the Action URL if running Portlet mode
 String actionURL = "view.jsp";
 if (renderResponse != null) {
 actionURL = renderResponse.createActionURL().toString();
 }

 // Extract the current portlet parameter value if running in Portlet mode
 String param1 = "";
 if (renderRequest != null) {
 param1 = renderRequest.getParameter(Products.PARAMETER1);
 if (param1 == null) { param1 = ""; }
 }
%>
<form method="POST" action="<%= actionURL %>">
 <table>
 <tr>
 <th>Select</th>
 <th>Product</th>
 <th>Product supplied by</th>
 <th>Our price</th>
 </tr>

 <%
 for (int i = 0; i < productDetails.size(); i++) {
 ProductDetailsBean productDetail = productDetails.get(i);
%>

 <tr>
 <td align="center">
 <!-- Set the Form parameter name to passed as a render parameter during
processAction -->

Note: If the formatting of the code in this text does not work, you
can open the C:\TutorialContent\Portlets\ViewJSP.txt file
and copy and paste the code from there.

Step 4: Test and Deploy the Standards-Based Portlet

Building Portlets and Wiring Them in Your Application 5-31

 <input type="radio" name="<%= Products.FORM_PARAMETER1 %>"
 value="<%=productDetail.getProductId()%>"
 <%= param1.equals(productDetail.getProductId()) ? " checked='checked'"
: "" %>/>
 </td>
 <td>
 <%=productDetail.getProductName()%>
 </td>
 <td>
 <%=productDetail.getSupplierName()%>
 </td>
 <td align="right">
 $<%=productDetail.getProductPrice()%>
 </td>
 </tr>

 <% } %>

 <tr class="PortletText1">
 <td>
 <input name="<%= Products.FORM_SUBMIT %>" type="submit"
 class="portlet-form-button" value="Show Details"></input>
 </td>
 <td colspan="3"> </td>
 </tr>

 </table>

 <!-- create a hidden parameter to note we're running in "view" mode -->
 <input type="hidden" name="<%= Products.MODE_NAME_PARAM %>"
 value="<%= Products.MODE_VIEW %>"/>
</form>

14. Save the view.jsp.

Now that you have established the connection to the database and set up the portlet to
use the new JavaBean and Java Class to get the appropriate product information for
the portlet, you are ready to include the portlet in a WAR file. WAR stands for web
archive, and it packages all the resources, portlets, and deployment descriptors
required to deploy your portlet.

Step 4: Test and Deploy the Standards-Based Portlet
In this lesson, you'll learn how to deploy the standards-based portlet to your local
Default Server (the Integrated WebLogic Server). When you deploy a portlet, you
package it so that it can run on a Java EE server. If you're familiar with Oracle Portal,
we're in effect creating a portlet provider, which in the WSRP world is known as a portlet
producer.

1. If it is not running yet, start the Default Server by choosing Run > Start Server
Instance.

2. Before we deploy the portlet, let’s quickly compile and test it. In the Application
Navigator, under Web Content > Products, right-click view.jsp and choose Run.
The portlet should compile and you should see it display in your browser, as
shown in Figure 5–34.

Step 4: Test and Deploy the Standards-Based Portlet

5-32 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 5–34 Testing the Standards-Based Portlet

3. In the Application Navigator, under Portlets, Web Content, WEB-INF, right-click
the web.xml file, then choose Create WAR Deployment Profile from the context
menu (Figure 5–36).

Figure 5–35 Create WAR Deployment Profile Menu Option

4. In the Create Deployment Profile dialog box, name the Deployment Profile
Products, then click OK (Figure 5–36).

Step 4: Test and Deploy the Standards-Based Portlet

Building Portlets and Wiring Them in Your Application 5-33

Figure 5–36 Create Deployment Profile - WAR File Dialog Box

5. On the General tab of the WAR Deployment Profile Properties dialog box, look for
the Web Application's Context Root setting. Let's change this to a more logical
name, so that we can easily reference it later.

Select the Specify J2EE Context Root option, then enter Products in the field, as
shown in Figure 5–37.

Figure 5–37 WAR Deployment Profile Properties -- Setting the Context Root

6. Click OK to finish updating the properties, then click OK in the Project Properties
dialog box to finish creating the WAR deployment profile.

7. Oracle WebCenter includes its own default connection to the Integrated WLS
Server. You can see the connection, called IntegratedWLSConnection, in the
Resource Palette, under IDE Connections (Figure 5–38).

Step 4: Test and Deploy the Standards-Based Portlet

5-34 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 5–38 IntegratedWLSConnection in the Resource Palette

8. Now, we're ready to deploy our standards-based portlet. In the Application
Navigator, right-click the Portlets project, then choose Deploy > Products > to >
IntegratedWLSConnection from the context menu.

9. If the Select deployment type dialog box displays, leave the default options and
click OK (Figure 5–39).

Figure 5–39 Select Deployment Type

Step 4: Test and Deploy the Standards-Based Portlet

Building Portlets and Wiring Them in Your Application 5-35

You can check the Deployment - Log below the Visual Editor (the Design view) for
the message “Deployment finished.”

10. Let's to go a browser and verify whether the portlet deployment worked. In your
browser, enter the URL:

http://localhost:7101/Products/info

The WSRP Producer Test Page displays as shown in Figure 5–40.

Figure 5–40 WSRP Producer Test Page

11. You can choose to use either the WSRP version 1 or version 2 WSDL In general, it's
good practice to use more recent versions wherever possible. If the portlet will be
consumed by WSRP 1.0 compliant consumers (such as Oracle Portal), you may
want to choose WSRP 1.0.

Click WSRP v2 WSDL to view the XML for this WSDL (Figure 5–41).

Step 5: Register the Standards-Based Portlet with Your Application

5-36 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 5–41 WSDL Describing Your Portlet as a Web Service

The portlet you just deployed has now been exposed as a web service. What appears
in the browser is the Web Services Description Language (WSDL) that describes this
web service. Now that the portlet is deployed and running, you can add this portlet to
any application that can consume portlets. Our next step is to register the producer
with our tutorial application, then add this portlet to MyPage.

Step 5: Register the Standards-Based Portlet with Your Application
Once we have deployed our portlet, we can register the producer with our tutorial
application and add it to our page.

To register the producer with MyTutorialApplication:

1. In the Application Navigator, choose MyTutorialApplication from the list to
return to our custom WebCenter application (Figure 5–42).

Figure 5–42 MyTutorialApplication in the Application Navigator List

2. In the Resource Palette, click the folder icon, then choose New Connection >
WSRP Producer from the context menu.

3. On the Name page, ensure Resource Palette is selected, and enter a name for the
producer, for example ProductsWSRPProducer, then click Next (Figure 5–43).

Step 5: Register the Standards-Based Portlet with Your Application

Building Portlets and Wiring Them in Your Application 5-37

Figure 5–43 Register WSRP Portlet Producer -- Name

4. On the Connection page, in the WSDL URL field, enter the URL for the WSDL
(typically, we use v.2):

http://localhost:7101/Products/portlets/wsrp2?WSDL

Figure 5–44 Register WSRP Portlet Producer -- Connection

5. Since our Default Server is installed locally, we do not need a proxy. Click Next to
create the connection to the WSRP Producer.

Step 6: Test the Standards-Based Portlet in Your Application

5-38 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

6. Let's leave the rest of the defaults and finish the wizard. On the Registration
Details page, click Finish. You'll see a registration dialog box letting you know the
registration is being completed.

7. In the Resource Palette, under IDE Connections, open the WSRP Producer node,
then expand the ProductsWSRPProducer node. Figure 5–45 shows the Products
portlet here.

Figure 5–45 Products Portlet in the Resource Palette

Now that we've registered the producer with our application, let's add the portlet to
the page and test it.

Step 6: Test the Standards-Based Portlet in Your Application
To test the portlet, we'll add it to MyPage.jspx, run the page, and see if the portlet
displays as expected.

1. In MyTutorialApplication, if MyPage.jspx is not open, locate the page name in
the Application Navigator (under ViewController, Web Content) and
double-click it.

2. In the Structure window, navigate to the second facet, then expand Page
Customizable > Layout Customizable > contentA, and locate the Panel
Customizable, as shown in Figure 5–46.

Note: As previously mentioned, you can use the pushpin in the
Structure window to freeze the current view. For this step, you should
click MyPage in the Design view, then ensure the pushpin is in the
“freeze” position (pressed).

Step 6: Test the Standards-Based Portlet in Your Application

Building Portlets and Wiring Them in Your Application 5-39

Figure 5–46 Panel Customizable Where You Will Add the Products Portlet

3. Drag and drop the Products portlet from the Resource Palette onto this Panel
Customizable.

4. Run the page to see how the portlet looks at runtime. This may take a few
moments.

You’ll notice that selecting the different options and the Show Details button do
not yet work, because we have not wired this portlet with another portlet. Let’s
create a second portlet, then wire it to this portlet. Figure 5–47 shows the Products
portlet at runtime.

Figure 5–47 Products Portlet in a Browser Window

Step 7: Register the Preconfigured Portlet Producer

5-40 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Step 7: Register the Preconfigured Portlet Producer
For this tutorial, we will use a preconfigured portlet producer, called OmniPortlet,
which is predeployed to the Integrated WLS (WebLogic) Server, also referred to as the
Default Server. Be sure you have followed the steps in Chapter 2, "Preparing for the
Tutorial" before you proceed.

To register our portlet producer:

1. Ensure the Default Server is running.

2. To find out the URL for the OmniPortlet producer running on the Default Server,
choose Help > WebCenter Preconfigured Server Readme. This Read Me file
shows all the information needed to use the portlets that are predeployed to the
Default Server, and the login credentials for the server.

3. In the Read Me file, under Preconfigured Portlet Producers, then PortalTools
Portlet Producers, click OmniPortlet Producer.

4. In your browser, you should see the OmniPortlet Producer Test Page. Copy the
URL from the location bar. The URL should look like this:

http://localhost:7101/portalTools/omniPortlet/providers/omniPortlet

Entering this URL in your browser displays the OmniPortlet producer test page
(Figure 5–48).

Figure 5–48 OmniPortlet Producer Test Page

Step 7: Register the Preconfigured Portlet Producer

Building Portlets and Wiring Them in Your Application 5-41

5. In the Resource Palette, click the New icon next to the search toolbar, then choose
New Connection, and then Oracle PDK-Java Producer (Figure 5–49).

Figure 5–49 Registering an Oracle PDK-Java Producer

6. On Step 1 of the Register Oracle PDK-Java Portlet Producer wizard, let's enable
this portlet producer to be used across all our applications. Select Resource
Palette.

7. In the Name field, enter OmniProducer (Figure 5–50).

Step 7: Register the Preconfigured Portlet Producer

5-42 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 5–50 Naming the OmniPortlet Producer

8. Click Next.

9. Enter this URL for the OmniPortlet Producer Test Page, which you copied earlier
in the URL Endpoint field (Figure 5–51).

Figure 5–51 Specifying the Connection Details for the OmniPortlet Producer

10. Click Next.

11. On the Registration Details page, click Finish. You should see a message
indicating that Oracle JDeveloper is registering your producer.

Step 8: Add an OmniPortlet to Your Page

Building Portlets and Wiring Them in Your Application 5-43

Because you chose to register the portlet producer in the Resource Palette, your
new portlet producer displays in the IDE Connections list of the Resource Palette,
as shown in Figure 5–52.

Figure 5–52 OmniProducer in the IDE Connections List

Step 8: Add an OmniPortlet to Your Page
One type of portlet you can use with Oracle WebCenter Framework is OmniPortlet.
This portlet is provided out of the box, and is preconfigured on the Default Server. It
lets you quickly create portlets using a variety of default layouts and data sources.

Figure 5–53 shows a sample portlet you can build with OmniPortlet. The portlet
displays items stored in a database as images, which are stored locally. After you wire
this portlet with the portlet you created in "Step 1: Create a Standards-Based Java (JSR
168) Portlet", a user can click these images in your application to learn more about that
item.

Figure 5–53 OmniPortlet at Runtime

Before you can use this OmniPortlet, ensure that you have added the sample schema
to your database and that you have started the Default Server as described in
Chapter 2, "Preparing for the Tutorial." Also, ensure that you have registered the
OmniPortlet producer, as described in Step 7: Register the Preconfigured Portlet
Producer.

1. In Oracle JDeveloper, ensure MyTutorialApplication is open.

Step 8: Add an OmniPortlet to Your Page

5-44 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

2. In the Application Navigator, ensure the MyPage.jspx is in the Design view. If
you’ve closed your application, you can double-click the page name in the
Application Navigator.

3. In the Structure window, locate the Panel Customizable in second facet, where
you added the Documents and Tags services.

4. Open the Layout Customizable facets, then open contentB to expose the Panel
Customizable (you added the standards-based Java (JSR 168) portlet to
contentA), as shown in Figure 5–54.

Figure 5–54 Panel Customizable in contentB

5. In the Resource Palette, under IDE Connections, navigate to Oracle PDK-Java
Producer > OmniProducer > OmniPortlet (Figure 5–55).

Note: As previously mentioned, you can use the pushpin in the
Structure window to freeze the current view. For this step, you should
click MyPage in the Design view, then ensure the pushpin is in the
“freeze” position (pressed).

Step 8: Add an OmniPortlet to Your Page

Building Portlets and Wiring Them in Your Application 5-45

Figure 5–55 OmniPortlet in the Resource Palette

6. Drag and drop OmniPortlet onto your page onto the Panel Customizable under
contentB in the Structure window. OmniPortlet displays in the Design view of
your page, as shown in Figure 5–56. If you see an error message, ensure you have
started the Default Server, then try again.

For more troubleshooting tips on using OmniPortlet, refer to Oracle Fusion
Middleware Developer's Guide for Oracle WebCenter.

Step 9: Define OmniPortlet at Runtime

5-46 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 5–56 OmniPortlet Instance on MyPage at Design Time

7. Now that we’ve added OmniPortlet to our page, let’s customize its contents.

Run your page to the browser.

Figure 5–57 shows the OmniPortlet on MyPage in your browser.

Figure 5–57 Undefined OmniPortlet at Runtime

Step 9: Define OmniPortlet at Runtime
In this section, we’ll customize our OmniPortlet to bring in some information from the
database schema and the images we added to our application in Chapter 2, "Preparing
for the Tutorial."

Since OmniPortlet is a preconfigured portlet, our only steps are to add it to our
application, then customize it at runtime. Now that we’ve placed it on our page and
run our page to the browser, let’s customize the layout and content of this portlet.

Step 9: Define OmniPortlet at Runtime

Building Portlets and Wiring Them in Your Application 5-47

1. In the upper right corner of the portlet, click the arrow, and choose Customize to
launch the OmniPortlet wizard (Figure 5–59).

Figure 5–58 Customize Link for OmniPortlet

2. On the Data Type page, choose SQL so that we can obtain data from the schema in
a database, then click Next. At this point, be sure you’ve added the schema to your
database (as described in Chapter 2, "Preparing for the Tutorial") and the images to
your application resources (as described in Chapter 3, "Creating a WebCenter
Application with a Customizable Page") otherwise the portlet will not retrieve the
sample tutorial data.

If you’re familiar with SQL and your database, you can always use your own
sample data, but the ensuing images and steps may not necessarily be accurate for
you.

3. On the Data Source page, we can define our SQL statement and set up the
connection to the database where we installed the schema.

In the Statement box, enter the code in Example 5–7. The parameter in the
statement will be used when we wire this portlet with the Products portlet we
added in Step 5: Register the Standards-Based Portlet with Your Application.

Example 5–7 OmniPortlet SQL Statement

SELECT product_name name
, cost_price our_price
, cost_price * 1.3 retail_price
, cost_price * 0.3 savings
, external_url image_url
, category_description
, supplier_name
FROM category_translations, products_base, suppliers
 WHERE products_base.category_id = category_translations.category_id
 AND products_base.supplier_id = suppliers.supplier_id
 AND products_base.product_id = nvl(’##Param1##’,0)

4. Under Connection, click Edit Connection.

Note: If the formatting of the code in this text does not work, you
can open the C:\TutorialContent\Portlets\OmniPortlet_
SQL_Statement.txt file and copy and paste the code from there.

Note: In the statement, you'll notice a reference to the localhost. This
refers to the OmniPortlet producer you registered in Chapter 2,
"Preparing for the Tutorial." Notice that you can also click the Test
button to see what the statement will return.

Step 9: Define OmniPortlet at Runtime

5-48 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

5. Enter a name for your connection and the connection information for your
database. The schema username is fod and the password is fusion. For example,
if you are using an Oracle XE database locally, the page would look like
Figure 5–59.

Figure 5–59 Connection Information for OmniPortlet

6. Let's make sure the connection information is correct by clicking Test. Figure 5–60
shows a successful test message.

Figure 5–60 Successful Connection Message

7. Click Close, then click OK to finish creating the connection.

8. Under Portlet Parameters, set the Default Value for Param1 to 12. Doing so
provides a default value for the parameter in our SQL statement.

Figure 5–61 shows the SQL Source page.

Step 9: Define OmniPortlet at Runtime

Building Portlets and Wiring Them in Your Application 5-49

Figure 5–61 SQL Source Page

9. Click Test next to the Show Bind Variables button to validate the SQL statement
and connection.

Figure 5–62 Test Button

A pop-up window displays returning a row based on the statement. If you do not
see a row returned, validate your SQL statement, connection, and portlet
parameter.

Note: If you do not have the images folder in your ViewController
project as described in Chapter 3, "Creating a WebCenter Application
with a Customizable Page," the images referenced in the SQL
statement will not display. You can go back and add these now by
following Step 2: Add the Images Files to the Application, but you
must run the application to your browser again in order for
OmniPortlet to recognize the new folder.

Step 9: Define OmniPortlet at Runtime

5-50 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 5–63 SQL Statement Test Results

10. Click Next.

11. On the Filter page, click Next.

12. On the View page, let's name the portlet, for example Product Information,
by entering the name in the Title field.

13. We can choose any of the default layouts for this portlet. However, let’s check out
the HTML layout, which you can use to fine tune the look and feel of your portlet.

Under Layout Style, select HTML, as shown in Figure 5–64, then click Next.

Figure 5–64 View Page

Step 9: Define OmniPortlet at Runtime

Building Portlets and Wiring Them in Your Application 5-51

14. On the Layout page, you'll notice a form for filling in HTML for the template.
Here, you can modify the layout of your portlet by updating the Header, Body,
and Footer fields. You can use the default layout that OmniPortlet provides, but
let’s step through creating our own HTML layout.

From the Quick Start list, select Clear Fields, then click Apply. Doing so removes
the existing HTML code from the layout template.

15. In the Repeating Section, enter the HTML in Example 5–8 to create a table that
formats the data.

Example 5–8 OmniPortlet HTML Layout Code

<table>
 <tr>
 <td>
 ##NAME##
 <img src="##IMAGE_URL##"
 title="##NAME## - ##CATEGORY_DESCRIPTION## by ##SUPPLIER_NAME##">
 </td>
 <td>
 <table>
 <tr class="PortletText2">
 <td>
 Product supplied by

 ##SUPPLIER_NAME##

 </td>
 </tr>
 <tr class="PortletText2">
 <td>
 List price: $##RETAIL_PRICE##
 </td>
 </tr>
 <tr class="PortletHeading2">
 <td>
 Our price: $##OUR_PRICE##
 </td>
 </tr>
 <tr class="PortletText2">
 <td>
 You save: $##SAVINGS##
 </td>
 </tr>
 <tr class="PortletText2">
 <td>
 Availability:
 In Stock. Ships from and sold by
 FusionOnline.com
 . Gift-wrap available.
 </td>
 </tr>
 <tr>
 <td> </td>

Note: If the formatting of the code in this text does not work, you
can open the C:\TutorialContent\Portlets\OmniPortlet_
HTML_Layout.txt file and copy and paste the code from there.

Step 9: Define OmniPortlet at Runtime

5-52 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

 </tr>
 </table>
 </td>
 </tr>
 <tr class="PortletText1">
 <td colspan="2">Want it delivered Thursday? Order it in the next 22 hours and
 45 minutes, and choose One-Day Shipping at checkout.</td>
 </tr>
</table>

The Layout page should now look like Figure 5–65.

Figure 5–65 HTML Layout Page

16. Click Finish. Figure 5–66 shows the OmniPortlet in your browser.

Figure 5–66 Completed OmniPortlet at Runtime

Step 10: Wire the Standards-Based Portlet and OmniPortlet Together

Building Portlets and Wiring Them in Your Application 5-53

Now that we have created our two portlets, let’s wire them.

Step 10: Wire the Standards-Based Portlet and OmniPortlet Together
When you added the code for the standards-based portlet called Products, you also
included a parameter called productId. When you select different options in the
Products portlet, the application will send this parameter to OmniPortlet so that it
can display the details of a particular product with that product identification number.

We now must map the two parameters to each other, so that when you choose an
option in the Products portlet, the information in OmniPortlet updates accordingly.

To wire the portlets:

1. In Oracle JDeveloper, ensure MyTutorialApplication is open.

2. In the Application Navigator, open the page definition file for the MyPage.jspx
page. You can do this by opening the page definition file itself in the Application
Navigator, or by right-clicking the page and choosing Go to Page Definition.

3. In the Structure window, use the pushpin to freeze the current view. Ensure the
MyPage Page Definition is selected in the Design view, then, in the Structure
window, click the pushpin so that it is in the “freeze” position (pressed).

4. In the Structure window for the MyPagePageDef.xml (page definition) file,
expand executables, expand OmniPortlet1_1 > parameters, then select the portlet
variable Param1, as shown in Figure 5–67.

Figure 5–67 OmniPortlet Variable in the Structure Window

5. While the variable is selected, you should be able to view the properties for it in
the Property Inspector.

Set the pageVariable property to Products1_1_productId, as shown in
Figure 5–68.

Step 10: Wire the Standards-Based Portlet and OmniPortlet Together

5-54 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 5–68 Setting the Default Value

6. Now we want the detail portlet (OmniPortlet) to refresh whenever the value from
the master portlet changes. To do so, we add a Partial Trigger to the detail portlet.
Click the MyPage.jspx tab at the top of the Visual Editor to bring it into focus.

7. Select the OmniPortlet on the page in the Design view.

Figure 5–69 OmniPortlet on MyPage in the Design View

8. In the Property Inspector for OmniPortlet, under Common, click the arrow next to
PartialTriggers, then choose Edit (Figure 5–70).

Step 10: Wire the Standards-Based Portlet and OmniPortlet Together

Building Portlets and Wiring Them in Your Application 5-55

Figure 5–70 Editing the PartialTriggers Property for OmniPortlet

9. In the Edit Property: PartialTriggers dialog box, the Portlet ID for OmniPortlet is
automatically selected. Locate the Portlet ID for the Products portlet, which is in
facet (contentA), under the Panel Customizable (Figure 5–71).

Figure 5–71 Locating the Portlet ID for the Products Portlet

Step 11: Test the Interaction Between the Portlets

5-56 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

10. Select the Portlet ID, in this case portlet - portlet1, and click the right arrow to
move it to the Selected list, then click OK (Figure 5–72).

Figure 5–72 Selecting the Portlet ID for the Products Portlet

11. Now that we’ve wired the portlet parameters, let’s examine how they behave at
runtime.

Run MyPage.jspx to your browser. In the next step, we’ll test how the JSR 168
(Products) portlet and the OmniPortlet interact at runtime.

Step 11: Test the Interaction Between the Portlets
Let's test the portlets at runtime.

1. In the Products portlet, select an option, for example iPod Speakers, then click
Show Details.

2. In the OmniPortlet, notice that the portlet updates to display information about
the iPod speakers (Figure 5–73).

Figure 5–73 Testing the Interaction Between the Portlets

Figure 5–74 shows MyPage in your browser.

Step 11: Test the Interaction Between the Portlets

Building Portlets and Wiring Them in Your Application 5-57

Figure 5–74 MyPage at Runtime

Congratulations! You've completed this lesson and created two portlets and made
them communicate with each other. Continue on to Chapter 6, "Conclusion" to review
what you learned in this tutorial, and where you can find more information about the
features you used.

Step 11: Test the Interaction Between the Portlets

5-58 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

6

Conclusion 6-1

6Conclusion

Congratulations! You have created a custom WebCenter application and learned about
the fundamentals of Oracle WebCenter Framework.

Summary
In the this Tutorial, you learned how to perform a few quick and easy steps to create a
custom WebCenter application. You also learned about a few components of Oracle
WebCenter Framework, including Oracle Composer and the WebCenter Web 2.0
Services.

Specifically, you learned how to:

■ Create a database connection, which allowed you to access a database containing
information your application needed. As you move on and develop more complex
custom WebCenter applications, you may want to connect to other databases for
various content, and so on. You can use the same methodology to create a
connection to your other databases.

■ Install the WebCenter schema, which allowed you to use the Tags service. Having
this schema available will now let you use both the Tags and Links services, which
you can learn more about in the Oracle Fusion Middleware Developer's Guide for
Oracle WebCenter.

■ Create a simple custom WebCenter application, which allowed you to check out
how to use the built-in WebCenter application template to create a basic JSF
application.

■ Create a customizable page, which took just a few steps to create using the Quick
Start layout and a few customizable components from Oracle Composer. You also
learned about the Component Palette, which contains a variety of ADF Faces
components, ADF Layout components, and Oracle Composer components that
you can use to develop your pages and application.

■ Use Oracle Composer, both in your development environment (by adding the
customizable components to your page), and in your runtime environment (by
adding components like a text box). At runtime, you were able to see how easy it
is for an end user to customize her own page, including moving components
around and adding new components.

■ Add WebCenter services (Search, Documents, and Tags services) to a page. By
adding the Document and Search services, you enabled your users to browse
content from a single content repository (in this case, your file system), and search
for a keyword across your application. You also learned how to add tags to
documents in a document library, and a “tag cloud” to visualize user-defined tags
right in your application.

Moving On

6-2 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

■ Build a standards-based Java (JSR 168) portlet, which you built and coded in just a
few steps, and can now reuse with other applications or portals.

■ Register and define an OmniPortlet, which you added to your application, then
developed by using an out-of-the-box user-friendly wizard at runtime.

■ Wire two portlets, which enabled you to create user interaction at runtime by
having the user actions in one portlet (the standards-based JSR 168 portlet) drive
the content in the second portlet (the OmniPortlet).

Figure 6–1 shows the custom WebCenter application you created in this Tutorial.

Figure 6–1 Tutorial Result

You should now have a basic working knowledge of the fundamentals of Oracle
WebCenter Framework.

Moving On
You can learn more about designing your own custom WebCenter applications,
including using Oracle Composer, WebCenter Web 2.0 Services, and portlets, in the
Oracle Fusion Middleware Developer's Guide for Oracle WebCenter.

Moving On

Conclusion 6-3

To learn more about what you can do at runtime, including using Oracle Composer to
customize pages, and how the various components behave and can be configured at
runtime, see the Oracle Fusion Middleware User's Guide for Oracle WebCenter.

You can find all Oracle WebCenter Suite documentation on the WebCenter
Documentation page on the Oracle Technology Network, at
http://www.oracle.com/technology/products/webcenter/documentatio
n.html.

You can learn more about other features of Oracle WebCenter Suite, and view
demonstrations and see examples of custom WebCenter applications, portlets, and
services in action on the Oracle WebCenter Suite home page on the Oracle Technology
Network at:

http://www.oracle.com/technology/products/webcenter/index.html.

Moving On

6-4 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Index-1

Index

A
Application Navigator

viewing generated application files, 3-3
applications

adding images, 3-6
adding Oracle Composer, 3-25
creating WebCenter applications, 3-2
files produced for a portlet producer

application, 5-14
testing using the Integrated WLS, 5-39
using Oracle Composer, 3-31

C
connections

creating for a content repository, 4-6
creating for Documents service, 4-6
creating to a database, 4-18

content integration
using the Documents service, 4-10

content repository
creating a connection, 4-6

custom WebCenter applications
adding images to the resources, 3-6
adding Oracle Composer, 3-25
creating, 3-2
using Oracle Composer, 3-31

customizable components
using, 3-11

customization
enabling runtime, 3-25
performing at runtime, 3-31

customize mode
testing, 5-39

D
database

creating a connection, 4-18
installing sample schema, 2-3
installing the WebCenter schema, 2-5

database connections
creating, 4-18

deployment profile
WAR file, 5-31

Documents service
adding a task flow, 4-10
creating a connection, 4-6
using at runtime, 4-15
using with Tags, 4-22

I
Integrated WLS

testing applications, 5-39
using the default connection, 5-33

J
JavaServer Faces pages, see pages, 3-8
JSF pages, see pages, 3-8
JSF, see pages, 3-8
JSR 168 portlets

building, 5-3, 5-7
deploying, 5-31
files generated for, 5-14
testing customize mode, 5-39
testing with an application, 5-38
wiring with OmniPortlet, 5-53

L
layout components

enabling page customization, 3-11

O
OmniPortlet

adding to a page, 5-43
customizing, 5-46
registering the producer, 5-40
wiring with a JSR 168 portlet, 5-53

Oracle Composer
adding, 3-25
using, 3-31

Oracle Technology Network, vi
Oracle WebCenter Framework

checking for the extension, 2-1
installing, 2-1

OTN
see Oracle Technology Network, vi

Index-2

P
pages

adding Oracle Composer, 3-25
creating, 3-8
customizing at runtime, 3-31
enabling customization, 3-11, 3-25

PDK-Java portlets
adding OmniPortlet to a page, 5-43
registering, 5-40

portlet producer application
files generated for, 5-14

portlet producers
registering, 5-40
registering a WSRP producer, 5-36
registering the preconfigured portlet

producer, 5-40
portlet providers

see WAR file, 5-31
portlets

adding OmniPortlet, 5-43
building a JSR 168 portlet, 5-3, 5-7
customizing OmniPortlet, 5-46
deploying to Integrated WLS, 5-31
deploying using the Integrated WLS, 5-33
enabling interaction, 5-53
exposing as a web service, 5-36
files generated for, 5-14
registering the producer, 5-40
testing a JSR 168 portlet with an application, 5-38
testing customize mode, 5-39
testing interaction, 5-56
testing using the Integrated WLS, 5-39
wiring, 5-53

preconfigured portlet producer
registering, 5-40

S
sample files

adding the database schema, 2-3
downloading, 2-2

sample schema
installing, 2-3

Search service
adding a task flow, 4-2
using with Tags, 4-26

services
about, 4-1
adding the Document Library task flow, 4-10
adding the Search Toolbar task flow, 4-2
adding the Tags service task flows, 4-19
using Documents and Tags together, 4-22
using Tags and Search together, 4-26
using the Documents service at runtime, 4-15
using the Tags service at runtime, 4-21

standards-based portlets
building a JSR 168 portlet, 5-7
deploying, 5-31
exposing as a web service, 5-36
files generated for, 5-14

testing customize mode, 5-39
testing with an application, 5-38

T
Tags service

adding a task flow, 4-19
installing the WebCenter schema, 2-5
using at runtime, 4-21
using with Documents, 4-22
using with Search, 4-26

task flows
adding the Documents service, 4-10
adding the Search service, 4-2
adding the Tags service, 4-19

W
WAR file

creating, 5-31
Web 2.0

about services, 4-1
web archive

see WAR file, 5-31
web services

exposing portlets as, 5-36
WebCenter applications

creating, 3-2
using Oracle Composer, 3-31

WebCenter Framework
installing, 2-1

WebCenter schema
installing, 2-5

WebCenter Web 2.0 Services
about, 4-1

WebLogic Server
testing applications, 5-39
using the default connection, 5-33

WSDL
publishing a portlet as, 5-36

WSRP producers
creating, 5-31
registering, 5-36

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to WebCenter Framework and the Tutorial
	What is WebCenter Framework?
	What Will I Create?

	2 Preparing for the Tutorial
	Introduction
	Step 1: Obtain the Software
	Step 2: Download the Sample Tutorial Files
	Step 3: Add the Tutorial Sample Schema to Your Database
	Step 4: Install the WebCenter Schema

	3 Creating a WebCenter Application with a Customizable Page
	Introduction
	Step 1: Create a Custom WebCenter Application
	Step 2: Add the Images Files to the Application
	Step 3: Create a Page
	Step 4: Add Layout Components to the Page
	Step 5: Add Oracle Composer to the Page to Enable Customization
	Step 6: Customize the Page at Runtime Using Oracle Composer

	4 Adding WebCenter Web 2.0 Services to Your Application
	Introduction
	Step 1: Add the Search Toolbar Task Flow to the Application
	Step 2: Create a Connection for the Documents Service
	Step 3: Add the Document Library Task Flow to Your Application
	Step 4: Browse Documents at Runtime
	Step 5: Create a Database Connection to the WebCenter Schema for the Tags Service
	Step 6: Add the Tags Service to Your Application
	Step 7: Use, Add, and Search Tags in Your Application at Runtime

	5 Building Portlets and Wiring Them in Your Application
	Introduction
	Step 1: Create a Standards-Based Java (JSR 168) Portlet
	Step 2: Create the JavaBeans to Store the Standards-Based Portlet Information
	Step 3: Create the Business Logic for the Standards-Based Portlet
	Step 4: Test and Deploy the Standards-Based Portlet
	Step 5: Register the Standards-Based Portlet with Your Application
	Step 6: Test the Standards-Based Portlet in Your Application
	Step 7: Register the Preconfigured Portlet Producer
	Step 8: Add an OmniPortlet to Your Page
	Step 9: Define OmniPortlet at Runtime
	Step 10: Wire the Standards-Based Portlet and OmniPortlet Together
	Step 11: Test the Interaction Between the Portlets

	6 Conclusion
	Summary
	Moving On

	Index
	A
	C
	D
	I
	J
	L
	O
	P
	S
	T
	W

