
BEA JRockit
Mission
Control™®

BEA JRockit Runtime
Analyzer
Mission Control version 2.1®
Document Revised: April, 2007

Copyright
Copyright © 1995-2007 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks
Copyright © 1995-2005 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service Registry, BEA Builder,
BEA Campaign Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA MessageQ,
BEA WebLogic Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA
WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA
WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API, BEA
WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Server Process Edition, BEA
WebLogic SIP Server, BEA WebLogic WorkGroup Edition, Dev2Dev, Liquid Computing, and Think Liquid are
trademarks of BEA Systems, Inc. BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA
SOA Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

BEA JRockit Runtime Analyzer iii

Contents

Welcome to the BEA JRockit Runtime Analyzer (JRA)
How Does the JRA System Work? . 1-1

What is a JRA recording? . 1-2

What is the JRA tool? . 1-2

Using the JRA Tool

Getting Started with the BEA JRockit Runtime Analyzer Tool
Creating a Recording. 3-7

About JRA Overhead when Recording . 3-11

Opening a JRA File . 3-11

Comparing and Contrasting JRA Recordings . 3-12

Customizing Your JRA Tool . 3-12

Changing Table Settings . 3-12

Filtering Information . 3-14

Collapsing and Expanding a View. 3-14

Changing View of a Tab. 3-15

General Information in JRA Recording
Getting Familiar with the General Tab . 4-18

Viewing General Information . 4-19

Viewing Memory Usage Information . 4-20

Viewing VM Arguments Information. 4-20

iv BEA JRockit Runtime Analyzer

Viewing Memory Allocation Information . 4-21

Viewing Threads Information . 4-22

Viewing Exceptions Information . 4-22

Methods and Call Trace Information
Getting Familiar with the Methods Tab . 5-23

Viewing Hot Methods . 5-24

Viewing Predecessors and Successors . 5-25

Garbage Collection Events Information
Getting Familiar with the GC Events Tab . 6-27

Changing Focus on Heap Usage Chart. 6-29

Viewing Specifics about Garbage Collections. 6-29

Viewing the Detailed Information About the Garbage Collection. 6-31

Viewing Information on the General Garbage Collection Tab 6-32

Viewing Information on the GC Method Call Tree Tab . 6-33

Viewing Information on the Old/Young Collection Tab . 6-33

Viewing Information on the Cache Lists Tab (Only valid for old collections). . . 6-34

The Pause Time Tab . 6-35

General Garbage Collector Information
Getting Familiar with the GC General Tab . 7-37

Viewing General Garbage Collection Information . 7-38

Viewing Garbage Collection Call Tree Information . 7-39

Viewing Garbage Collection Strategy Changes Information. 7-39

Java Heap Content Information
Getting Familiar with the Heap Overview Tab . 8-41

Viewing the Heap Snapshot at the End of the Recording Information 8-42

BEA JRockit Runtime Analyzer v

Viewing the Heap Contents Information . 8-43

Viewing the Free Memory Contribution Information . 8-43

Object Statistics Information
Getting Familiar with the Object Statistics Tab . 9-45

Viewing Start of Recording Information . 9-46

Viewing End of Recording Information . 9-47

Code Optimization Information
Getting Familiar with the Optimizations Tab. 10-49

Viewing Optimization Information . 10-50

Viewing Methods Optimized During Recording Information 10-51

Lock Profiling Information
Getting Familiar with the Lock Profiling Tab . 11-53

Java Locks Profiling . 11-54

Enabling Java Lock Profiling Data . 11-55

Native Lock Profiling . 11-55

Enabling Native Locks Information . 11-56

Start and End Processes Information
Getting Familiar with the Processes Tab . 12-57

Snapshot of Processes at Beginning and End of Recording . 12-58

Detailed Processes Information . 12-59

Thread Latency Viewer Overview
Getting Familiar with the Thread Latency Overview Tab . 13-61

Event Graph Window . 13-63

Workflow From Recording to Viewing . 13-63

Drilling Down to Your Problem . 13-63

vi BEA JRockit Runtime Analyzer

Expanding and Collapsing Thread Nodes . 13-63

Customizing Your View. 13-63

Using the Filter Functions . 13-63

Using the Time Scale on Top of Window . 13-63

Getting Familiar with the Events Table Tab . 13-63

About Selecting Events for “intressanta mängden” . 13-63

Selecting Events for “intressanta mängden” . 13-63

Deleting Events from “intressnta mängden” . 13-63

 . 13-63

Getting Familiar with the Events Table Tab
About Selecting Events for “intressanta mängden” . 14-65

Selecting Events for “intressanta mängden” . 14-65

Deleting Events from “intressnta mängden” . 14-65

Filtering Columns. 14-65

 . 14-65

Getting Familiar with the Stack Trace Tree Overview Tab
About the Stack Trace Tree Overview Tab . 15-67

Adding and Removing Content in the Tree Table . 15-67

Deleting Events from “intressanta mängden” . 15-67

Filtering Columns. 15-67

 . 15-67

Adding Comments to a Recording

BEA JRockit Runtime Analyzer 1-1

C H A P T E R 1

Welcome to the BEA JRockit Runtime
Analyzer (JRA)

The JRA is a JVM profiler and a Java application profiler that is especially designed for BEA
JRockit. It has been around for quite some time within the JRockit development team, and was
originally created to let the JRockit developers find good ways to optimize the JVM based on
real-world applications, but it has proven very useful to developers outside of BEA for solving
problems in both production and development.

This section is divided into the following topics:

How Does the JRA System Work?

What is a JRA recording?

What is the JRA tool?

How Does the JRA System Work?
The JRA system consists of two parts (see Figure 1-1): one part inside the JRockit JVM that
collects data and saves it, and an analysis tool that visualizes the information to make it useful to
the end-users. The JRockit-internal part produces a recording of the system’s runtime behavior
during a user specified period of time, typically a few minutes. The recording results in an XML
file that JRockit writes to disk and automatically launches in the JRA tool once the recording is
complete (this behavior is valid for JRockit 5.0; for JRockit 1.4, the file is saved to disk and you
need to locate it first to open it).

The recording is a great way to share how JRockit has worked with your application. You can
also use several recordings to compare and contrast how different command line options change

Welcome to the BEA JRock i t Runt ime Ana l yze r (JRA)

1-2 BEA JRockit Runtime Analyzer

the behavior of your application, for example, by creating before-and-after recordings. When
sending trouble reports to the BEA JRockit support department, you are required to attach a JRA
recording to your trouble report. The recording is analyzed “offline” by the Runtime Analyzer
tool.

Figure 1-1 The BEA JRockit Runtime Analyzer System

The recording engine uses several sources of information including the JRockit Hot Spot
Detector (also used by the optimization engine to decide what methods to optimize), the operating
system, the JRockit Memory System (most notably the garbage collector), and the JRockit lock
profiler, if enabled.

What is a JRA recording?
It is a collection of data about the JVM that can be used to analyze the doings and happenings of
JRockit. It is also a “flight recording” of what has happened in the JVM when running the JRA.

What is the JRA tool?
The JRockit Runtime Analyzer tool is a Java application that parses a previously produced JRA
recording and visualizes the data. This is a convenient way to analyze the data offline. The size
of the compressed recording is on the order of a few hundred kilobytes, so a system administrator
can easily make a recording of a deployed system and send it to the JVM or application developer
who probably is in a better position to analyze it.

The JRA tool shows a top list of the hottest methods where you can select a method and see its
call tree, i.e. its predecessors (what other methods have called this method) and successors (what

How Does the JRA Sys tem Work?

BEA JRockit Runtime Analyzer 1-3

methods the selected method will call). A percentage for each branch indicates how common a
given path is.

As for memory management, there is a graph of the varying heap usage and pause times for the
garbage collections. Detailed information about each GC shows exactly how much memory was
released in a collection. There are also pie charts showing the distributions in size of free memory
blocks and the distribution of occupied memory in small and large object chunks.

Welcome to the BEA JRock i t Runt ime Ana l yze r (JRA)

1-4 BEA JRockit Runtime Analyzer

BEA JRockit Runtime Analyzer 2-5

C H A P T E R 2

Using the JRA Tool

How to use the JRA Tool is divided into the following topics:

Getting Started with the BEA JRockit Runtime Analyzer Tool

General Information in JRA Recording

Methods and Call Trace Information

Garbage Collection Events Information

General Garbage Collector Information

Java Heap Content Information

Object Statistics Information

Code Optimization Information

Lock Profiling Information

Start and End Processes Information

Adding Comments to a Recording

Using the JRA Too l

2-6 BEA JRockit Runtime Analyzer

BEA JRockit Runtime Analyzer 3-7

C H A P T E R 3

Getting Started with the BEA JRockit
Runtime Analyzer Tool

Before you can view how your application is behaves, you need to create a JRA recording, i.e.
collect data from your application. The JRockit recording engine produces a recording of the
system’s runtime behavior during a specified period of time, typically a few minutes. The
recording results in an XML file that opens automatically in the JRA tool upon completion (for
JRockit 1.4, the XML file is saved to the disk where JRockit is running). The file can be analyzed
“offline” by the Runtime Analyzer tool.

This section describes how you start a recording and how you setup the JRA tool to suit your
needs.

The following topics will be covered:

Creating a Recording

About JRA Overhead when Recording

Opening a JRA File

Comparing and Contrasting JRA Recordings

Customizing Your JRA Tool

Creating a Recording
There are several ways to start a JRA recording:

To start a recording within Mission Control

Get t ing Star ted wi th the BEA JRock i t Runt ime Ana l yze r Too l

3-8 BEA JRockit Runtime Analyzer

To start a recording with jrcmd

Starting a Recording from the JRockit Command Line

Note: If you are running Mission Control on a Windows system, you need to be a member of
the Administrators or the Performance Logs user groups to be able to create a JRA
recording. The typical error message, for not being part of either of these groups, can look
like this:
[perf] Failed to init virtual size counter:

To start a recording within Mission Control

1. Start your Java application with JRockit and add the -Xmanagement option to the command
line.

2. Start the JRockit Browser and connect to the JRockit instance you just started.

3. Make sure that your application is running and is under load.

If you run the application without load, the data captured from that application will not
show where there is room for improvements.

4. Click the Start JRA recording button.

The JRA Recording dialog box appears (Figure 3-1).

Figure 3-1 JRA Recording Dialog Box

5. Select the connection you want to record.

Creat ing a Reco rd ing

BEA JRockit Runtime Analyzer 3-9

6. Type a descriptive name for the recording in the Local filename field.

The file is created in the current directory of the BEA JRockit process, unless you specify
a different path. If an old file already exists, it will be overwritten by the new recording.

7. Set a time for the length of the recording (in seconds) in the Recording time field.

Note: If you set a time that is too short, e.g. shorter than 30 seconds, you will probably not
get enough sample data for the recording to be meaningful.

8. Select none, one, or all of the following sampling options:

– Records samples of methods—records samples of methods

– Use gc sampling—records garbage collection events

– Use native sampling—records samples of native code

– Compress recording—compresses recording to a zip file

The Selected JRockits field displays which JRockit you will create your recording from.

9. Click Finish.

The JRA recording progress window appears. When the recording is finished, it loads in
the JRA tool.

To start a recording with jrcmd

1. Make sure that your application is running and is under load.

If you run the application without stress, the data captured from that application will not
show where there is room for improvements.

2. Use one of the following commands to initiate a recording:

Windows platforms:
bin\jrcmd.exe <pid> jrarecording time=<jrarecording time>

filename=<filename>

Unix platforms:
bin/jrcmd <pid> jrarecording time=<jrarecording time> filename=<filename>

Where the arguments are:

– jrarecording time—the duration of the recording in seconds (a good length is 300
seconds, i.e., five minutes).

Get t ing Star ted wi th the BEA JRock i t Runt ime Ana l yze r Too l

3-10 BEA JRockit Runtime Analyzer

– filename—the name of the file you want to save the recording to (for example
jrarecording.xml.zip). The file will be created in the current directory of the
JRockit process. It will be overwritten if it already exists.

For example:
bin\jrcmd.exe <pid> jrarecording time=300 filename=c:\temp\jra.xml.zip
Starts a JRA recording of 300s and stores the result in the specified file.

After the recording is initiated, BEA JRockit prints a message indicating that the recording
has started. When the recording is done, it will print another message; it is now safe to shut
down your application.

Starting a Recording from the JRockit Command Line
Use the -XXjra command in combination with an option listed in Table 3-1, for example,
-XXjra:recordingtime to specify the duration of the recording.

Note: Setting methodtraces to false can still result in some stack traces being captured. These
stack traces are captured as part of JRockit’s dynamic optimizations and will have a depth
of 3. If optimizations are turned off (-Xnoopt) these traces will not be captured.

Table 3-1 Command Line Startup Options

Option Description

delay Amount of time, in seconds, to wait before recording starts.

recordingtime Duration, in seconds, for the recording. This is an optional parameter. If you
don’t use it, the default is 60 seconds)

filename The name of recording file. This is an optional parameter. If you don’t use it,
the default is jrarecording.xml.

sampletime The time, in milliseconds, between samples. Do not use this parameter unless
you are familiar with how it works. This is an optional parameter.

nativesamples Displays method samples in native code; that is, you will see the names of
functions written in C-code. This is an optional parameter.

methodtraces You can set this to false to disable the stack trace collection that otherwise
happens for each sample. The default value is true.

tracedepth Sets the number of frames that will be captured when collecting stack traces.
Possible value are 0 through 16. The default value is 16.

Opening a JRA F i l e

BEA JRockit Runtime Analyzer 3-11

You can view the startup options that you have set in the JRA recording, see Viewing VM
Arguments Information. Listing 3-1 shows an example of how you can setup a JRA recording.

Listing 3-1 An example of using the -XXjra startup command:

-XXjra:delay=10,recordingtime=100,filename=jrarecording2.xml

would result in a recording that:

Commenced ten seconds after JRockit started (delay=10).

Lasted 100 seconds (recordingtime=100).

Was written to a file called jrarecording2.xml (filename=jrarecording2.xml).

About JRA Overhead when Recording
The overhead while recording is very low—typically less than two percent. However, since JRA
is forcing a full garbage collection at the beginning and at the end of the recording to generate the
heap histogram data, there may be a spike at the beginning and at the end of a recording.

Opening a JRA File
Once you have created a JRA file, you can open it in the JRA tool to view what has happened in
your application and in JRockit.

Note: If you have previously viewed a JRA recording in the JRA tool, it will automatically load
when you open JRockit Mission Control.

To open a JRA file by dragging and dropping

1. Locate the JRA recording on your system.

2. Drag and drop the file to JRockit Mission Control.

To open a JRA file from JRockit Mission Control

1. In JRockit Mission Control, click File > Open file > Open JRA Recording.

2. Locate and select the recorded file and click Open.

Get t ing Star ted wi th the BEA JRock i t Runt ime Ana l yze r Too l

3-12 BEA JRockit Runtime Analyzer

3. Click OK.

The JRA General tab now opens and you can view the data in the recording (see
Figure 4-1).

Note: If you have opened a recording that has been recorded with an older version of the
JRA, some fields may not have any relevant data, since that data was impossible to
obtain. That data will appear as “N/A”.

Comparing and Contrasting JRA Recordings
The new JRA is excellent to use for comparing and contrasting recording. For example, you want
to try different startup options in JRockit to see how they affect the running of your application.

To compare and contrast JRA recordings

1. Create two recordings, one for each setting you wish to try.

2. Open both recordings and lay them out in the JRA tool next to each other, by simply dragging
the name tab to the toolbar in the JRA tool window.

Customizing Your JRA Tool
The following can be set to change the way you view a recording:

Changing Table Settings

Filtering Information

Collapsing and Expanding a View

Changing View of a Tab

Changing Table Settings
The JRA tool lists a lot of information in different tables. These tables can be customized to
display information of your choice. You can also preset the width of the columns in the tables.

Note: You need to change the settings per table, i.e. there is no global change to all tables since
they contain different types of information depending on the tab you are looking at.

To change the settings of the table

1. Click the Table settings button (see Figure 3-2).

Customiz ing Your JRA Too l

BEA JRockit Runtime Analyzer 3-13

Figure 3-2 Table settings button

A Table settings window appears (see Figure 3-3).

Figure 3-3 Table settings Window

2. Select what you want displayed in the table.

3. Set the Min. width and Weight of the column (optional) to a pixel value of your choice.

4. Select Initial sort order for a table item that you want the table to be sorted by.

5. Click OK.

Get t ing Star ted wi th the BEA JRock i t Runt ime Ana l yze r Too l

3-14 BEA JRockit Runtime Analyzer

Filtering Information
Some of the information tables can contain lengths of data that can be hard to scroll through.
Instead of scrolling through the long tables, you can filter for the information that you are
interested in viewing.

To filter information

1. Select a table column name for which you want to filter the information. In this example,
Figure 3-4, Pause Time was selected.

2. Enter a number or text for the information you want to see. In this example, Figure 3-4, 60*
was used to see all Pause Times that contains a value starting with 6 and 0 (zero).

Figure 3-4 Filtering information

Collapsing and Expanding a View
Sometimes the information on a tab can be cumbersome to work with, then it is good to collapse
the view of some fields.

To collapse/expand a view

Click on the small arrow next to a description field (see highlight in Figure 3-5) to collapse
the view of the General Information field.

Figure 3-5 Collapsing a view

Customiz ing Your JRA Too l

BEA JRockit Runtime Analyzer 3-15

Changing to view less values by right clicking a field. The next time you start the JRA tool, you
will not see the specific field.

Changing View of a Tab
Sometimes the method names are hard to view in the default horizontal layout, therefore, you
might want to change the layout to a vertical view instead.

To change the layout of a tab

Click either the Horizontal layout or the Vertical layout button in the right hand corner of
the tab that you are viewing (see Figure 3-6).

Note: Not all tabs have this functionality.

Figure 3-6 Horizontal and Vertical layout buttons

Get t ing Star ted wi th the BEA JRock i t Runt ime Ana l yze r Too l

3-16 BEA JRockit Runtime Analyzer

BEA JRockit Runtime Analyzer 4-17

C H A P T E R 4

General Information in JRA Recording

The JRA recording contains a lot of data about the application’s behavior, information about
JRockit itself, such as JRockit version and which commands were used at the startup of JRockit,
etc. All that information is displayed on the General tab in the JRA tool. As soon as you have
made a recording, your JRA tool automatically opens the recording and displays general
information on the General tab.

For recordings that have been generated with a JRockit that is older than R26.4, you might still
be able to open them up in this version of the JRA tool; however, some fields may be blank, since
older versions of JRockit did not have the same recording capabilities as this newer release.

Note: Only text fields that require extra explanations have been covered in this documentation.

This section is divided into the following topics:

Getting Familiar with the General Tab

Viewing General Information

Viewing Memory Usage Information

Viewing VM Arguments Information

Viewing Memory Allocation Information

Viewing Threads Information

Viewing Exceptions Information

Gene ra l I n fo rmat ion in JRA Record ing

4-18 BEA JRockit Runtime Analyzer

Getting Familiar with the General Tab
The General tab (see Figure 4-1) contains information on both JRockit, your system, and your
application.

Figure 4-1 The General tab

The General tab is divided into the following sections:

1. General Information—contains all general information about the JVM, operating system,
recording time, etc.

2. Memory Usage—contains information on how JRockit is using the memory.

View ing Genera l In fo rmat ion

BEA JRockit Runtime Analyzer 4-19

3. VM Arguments—lists all startup options that were used.

4. Allocation—contains information on how your application allocates memory on the Java
heap.

5. Threads—contains information on thread usage.

6. Exceptions—contains exceptions related information.

Viewing General Information
This section displays (see Figure 4-2) information about the JRockit version, the operating
system version, number of CPUs that has been used during the recording, etc.

The value Actual recording time can differ from expected recording time, e.g. if the
application that runs on BEA JRockit finished while a recording was still in progress.

The Maximum heap size is set with a JRockit command-line option.

The VM information can be information regarding the garbage collection that has been
used.

The value Number of codeblocks is a JVM internal value. All generated code is divided
into (non-heap) memory blocks called code blocks.

Figure 4-2 General Information section

Gene ra l I n fo rmat ion in JRA Record ing

4-20 BEA JRockit Runtime Analyzer

Viewing Memory Usage Information
This section (see Figure 4-3) shows a snapshot of the memory usage before and after the
recording.

The value Committed java heap was the current total heap size at the beginning and the
end of the recording. It is less than or equal to the maximum heap size.

Figure 4-3 Memory Usage section

Viewing VM Arguments Information
This section displays (see Figure 4-4) the different command-line options that were used when
starting JRockit. The options that have been used in the example are the following:

The JRA recording time (XXjra) has been set (100 seconds).

The name of the recorded file has been set (filename) and native sampling has been
switched on.

The initial, minimum and maximum Java heap has been set (-Xms and -Xmx)

The management server is started (-Xmanagement)

The default dynamic garbage collector has been turned off and the static parallel garbage
collector is used instead (-XXsetgc)

There are many more command-line options that can be set. For comprehensive information on
the different command-line options, please see the BEA JRockit Reference Manual.

Viewing Memory A l l ocat i on In fo rmat ion

BEA JRockit Runtime Analyzer 4-21

Figure 4-4 VM Arguments

Viewing Memory Allocation Information
This section displays (see Figure 4-5) information about how JRockit is allocating memory on
the Java heap.

The Thread local area (TLA) size is a JRockit internal value. It is a small memory area,
local to a thread, where the JVM can allocate small objects without having to take the heap
lock.

Ratio of bytes for large/small objects. Per default, JRockit considers an object to be large
if it is larger than the thread local area size; it is small if it would normally fit in a thread
local area. Large objects are always allocated in the old space (second generation) of the
heap, never in the nursery.

The Number (#) free list misses is a JRockit internal value. JRockit has a list of free
memory blocks on the Java heap. During allocation, an object is normally put in the first
free block on the “free list.” If it does not fit there, JRockit will try the next block, and the
next, etc. Each block where the code block did not fit is considered a “free list miss.”

Figure 4-5 Allocation section

Gene ra l I n fo rmat ion in JRA Record ing

4-22 BEA JRockit Runtime Analyzer

Viewing Threads Information
This section displays (see Figure 4-6) information on the number of Java threads that existed both
before and after the recording.

The value of Number of deamon threads before/after recording is the number of
deamon threads. A deamon thread is a thread that runs in the background to support the
runtime environment, for example, a garbage collector thread. The JVM exists when all
non-daemon threads have completed.

The value System total of # (number) context switches per second is fetched from the
operating system. An unusually high context switch value compared to other applications
may indicate contention in your application.

Figure 4-6 Threads section

Viewing Exceptions Information
This section displays (see Figure 4-7) information on the total number of Java exceptions that are
thrown during a recording. This includes both caught and uncaught exceptions. Excessive
exception throwing can be a performance problem. Hardware generated exceptions are
originating from a “trap” in the hardware and are usually the most “expensive” kinds of
exceptions.

Figure 4-7 Exceptions information

BEA JRockit Runtime Analyzer 5-23

C H A P T E R 5

Methods and Call Trace Information

Methods where JRockit spends most of its time are called hot. Once you have identified such a
method, you might want to investigate it to see if it is a “bottleneck” for the application or not.
The way that BEA JRockit collects method information is via a sampling thread that is called the
hotspot detector. It uses statistical sampling to find Java methods that are candidates for
optimization. The samples are collected by iterating through the Java threads in the virtual
machine and suspending them one at a time. The current instruction pointer of the suspended
thread is used to lookup in which Java method the thread is currently executing. The invocation
count of the method is incremented and the method is added to a queue of methods to be
optimized if the invocation count exceeds a certain threshold.

The JRA recording system makes use of the hotspot detector by setting it to a high sampling
frequency during the recording and directing the samples to the .jra file.

This section is divided into the following topics:

Getting Familiar with the Methods Tab

Viewing Hot Methods

Viewing Predecessors and Successors

Getting Familiar with the Methods Tab
The Methods tab is divided into three sections (see Figure 5-1) that lists the top hot methods with
its predecessors and successors during the recording.

Methods and Ca l l T race In fo rmat ion

5-24 BEA JRockit Runtime Analyzer

Figure 5-1 The Methods tab

The Methods tab is divided into the following sections:

1. Top Hot Methods—a listing of the top hot methods. Click on the different table headings to
get a different sort order.

2. Predecessors—a listing of all preceding methods to the method that you have selected in the
Top Hot Methods list. If you have selected many methods, there will not be any information
shown in this section.

3. Successors—a listing of all succeeding methods to the method that you have selected in the
Top Hot Methods list. If you have selected many methods, there will not be any information
shown in this section.

Viewing Hot Methods
The method sampling in JRockit is based on CPU sampling. This requires that you put load on
the system to get any samples. The Top Hot Methods lists (see Figure 5-2) all methods sampled

Viewing Predecesso rs and Successors

BEA JRockit Runtime Analyzer 5-25

during the recording and sorts them with the most sampled method s first. These are the methods
where most of JRockit’s time is spent.

Figure 5-2 Top Hot Methods shown

If your recording has native sampling enabled during the recording, you can see methods prefixed
by jvm, which are native methods in the JVM.

Viewing Predecessors and Successors
By selecting a method in the Top Hot Methods list, you can see its sampled Predecessors and
Successors (see Figure 5-3) in the tree views to the right (or below if you have changed the layout
of the tab). These are the methods that call the selected method and the methods the selected
method calls.

Methods and Ca l l T race In fo rmat ion

5-26 BEA JRockit Runtime Analyzer

Figure 5-3 Viewing Predecessors and Successors

The number within brackets is the number of sampled call traces of which the method is part. The
percentage shows how common a particular path is in the method tree. If you see methods that
are called a lot from JRockit, you might want to investigate if that method is causing your
application to run slower than necessary.

BEA JRockit Runtime Analyzer 6-27

C H A P T E R 6

Garbage Collection Events Information

The GC Events tab shows detailed information about each garbage collection (GC) event that
has occurred. The tab contains a graph for Java heap usage before and after each garbage
collection as well as detailed garbage collection information for each collection.

This section is divided into the following topics:

Getting Familiar with the GC Events Tab

Changing Focus on Heap Usage Chart

Viewing Specifics about Garbage Collections

Viewing the Detailed Information About the Garbage Collection

Getting Familiar with the GC Events Tab
The GC Events tab is divided into six sections (see Figure 6-1) that pictures how the garbage
collector has performed during the recording.

Garbage Co l l ec t i on Events In fo rmat ion

6-28 BEA JRockit Runtime Analyzer

Figure 6-1 The GC Events tab

The GC Events tab is divided into the following sections:

1. GC Events Overview chart—this chart shows the entire recording in its full length (when
you initially open your recording). You can use this to refocus the Heap Usage graph, see
Changing Focus on Heap Usage Chart.

2. Heap Usage graph—this graph shows heap usage compared to pause times and how that
varies during the recording. If you have selected a specific area in the GC Events Overview,
you will only see that section of the recording. You can change the graph content in the Heap
Usage drop-down list (marked 6 in Figure 6-1) to get a graphical view of the references and
finalizers after each old collection.

3. Garbage Collections events—this list shows all garbage collection events that have taken
place during the recording. When you click on a specific event, you will see a corresponding
flag in the Heap Usage graph for that particular event, see Viewing Specifics about Garbage
Collections.

4. Details—this section contains all the details about the specific garbage collection round.
When you select a garbage collection in the Garbage Collection list, the tabs in the Details
section changes depending on if you have selected an old collection or a young collection.

Changing Focus on Heap Usage Char t

BEA JRockit Runtime Analyzer 6-29

5. Chart Configuration—this section allows you to change the appearance on the active chart.

6. Heap Usage—this list allows you to toggle the view on the Heap Usage chart to view
References and finalizers. It shows different types of reference counts after each collection.

Changing Focus on Heap Usage Chart
Depending on how long your JRA recording is, the Heap Usage chart can be quite cumbersome
to view in full mode; therefore, you can refocus the chart. by dragging the handles on the slide
bar to the section of the recording that you want to view. Once you have set the side on the slide
bar, you can slide that section to the position of the chart that you are interested in studying.

To change focus on the Heap Usage chart

1. Click and drag the handles on both sides on the GC Events Overview chart (see Figure 6-2).

Figure 6-2 The GC Events overview zoom function

2. Drag the GC Events overview chart into the desired position for the Heap Usage chart (see
Figure 6-3).

Figure 6-3 The GC Events overview chart

Viewing Specifics about Garbage Collections
The Garbage Collections section on the GC Events tab is a list of all garbage collections that
have taken place during the recording. It lists all garbage collection events during the recording,
provided that the garbage collection sampling was enabled. A garbage collection can be an old

Garbage Co l l ec t i on Events In fo rmat ion

6-30 BEA JRockit Runtime Analyzer

collection, which is a garbage collection in the old space of the Java heap or a young collection,
which is a garbage collection in the young space (nursery).

To view one garbage collection in the Heap Usage chart and Details section

1. Scroll in the Garbage Collection list to the garbage collection you want to view.

2. Click on that garbage collection.

The garbage collection index number is now visible in the GC Chart and the Details
section has also changed to show all the specifics about that garbage collection.

The Details section changes name depending on if you selected an old collection or a
young collection (see Figure 6-4).

Figure 6-4 Viewing garbage collection in Heap Usage chart and Details section

To view many garbage collections in the Heap Usage chart

1. Scroll in the Garbage Collections list.

2. Click and hold either the Shift key or Ctrl key to select multiple collections.

The garbage collection index numbers are now visible in the GC Chart (see Figure 6-5).

Viewing the Deta i l ed In fo rmat i on About the Garbage Co l lec t ion

BEA JRockit Runtime Analyzer 6-31

Figure 6-5 Viewing multiple garbage collections in Heap Usage chart

Viewing the Detailed Information About the Garbage
Collection

When you select a garbage collection, the Details section of the GC Events tab changes name to
either Details - Old Collection or Details - Young Collection depending on the type of garbage
collection you have selected (this is only possible when selecting one garbage collection). You
will also see different sets of tabs that contain specific information about the garbage collection
that you have selected (see Figure 6-6).

Figure 6-6 Tab differences when viewing old and young collections

Garbage Co l l ec t i on Events In fo rmat ion

6-32 BEA JRockit Runtime Analyzer

Each one of these tabs are described here. As much of the information in the tabs are fairly
self-explanatory, those types of details will not be covered in the documentation.

This section describes the following tabs:

Viewing Information on the General Garbage Collection Tab

Viewing Information on the GC Method Call Tree Tab

Viewing Information on the Old/Young Collection Tab

Viewing Information on the Cache Lists Tab (Only valid for old collections)

The Pause Time Tab

Viewing Information on the General Garbage Collection Tab
The General tab (see Figure 6-7) displays information such as start time and end time of the
garbage collection.

Figure 6-7 The General garbage collection tab

Generation—Indicates whether the garbage collector performed an old or young collection
(see the Memory Management user guide for more information on generational garbage
collection). If a parallel garbage collector has been used, there will be only old collections
in the Garbage Collections list.

Pause Time—the time in milliseconds that the garbage collector stops all threads in
JRockit. This is not the same as end time-start time in the case of a concurrent garbage
collector.

Start/End Time—the times when the garbage collection started and ended, counted in
milliseconds from when JRockit started.

Viewing the Deta i l ed In fo rmat i on About the Garbage Co l lec t ion

BEA JRockit Runtime Analyzer 6-33

Heap Usage Before/After—the used heap size before or after the garbage collection.

Number of References—there are different types of references collected during a
recording. For information on what a reference is, see the Memory Management user
guide.

Committed Heap Size—the total size of the heap (used plus unused memory) after the
garbage collection.

Finalizer Queue Length (and Before)—the finalizer queue length.

Viewing Information on the GC Method Call Tree Tab
The GC Method Call Tree tab (see Figure 6-8) shows an aggregation of the call traces of the
threads triggering a garbage collection.

Figure 6-8 The GC Method Call Tree tab

Viewing Information on the Old/Young Collection Tab
The name of this tab is dynamically changed when you select a garbage collection instance in the
Garbage Collections section. Here you find information about nursery, mark and sweep pause
times, etc. (see Figure 6-9).

Garbage Co l l ec t i on Events In fo rmat ion

6-34 BEA JRockit Runtime Analyzer

Figure 6-9 The Old/Young Collection tab

Nursery Size Before/After—indicates the size of the young space on the heap before and
after the garbage collection (in some cases the nursery size can increase).

The information below is only valid for old collections:

Nursery Start/End Position—the starting and ending position in the memory address of
nursery.

Mark/Sweep Phase Time—the time spent in the marking and sweep phases, measured in
milliseconds.

Compacted Size—the size of the heap that has been compacted in the garbage collection.

Compaction Ratio—the ratio of heap size before and after the compaction, measured in
percent.

Desired/Actual evacuation—the desired evacuation is the size of the area on the Java
heap that you want to evacuate and the actual evacuation is the size of the area that JRockit
managed to evacuate. The value for actual evacuation can be smaller than the desired due
to temporarily pinned objects (objects that are not allowed to be moved during garbage
collection). The evacuation takes place during compaction or shrinking of the Java heap.

GC Reason—indicates the reason for doing this garbage collection.

Viewing Information on the Cache Lists Tab (Only valid for
old collections)
The Cache Lists tab (see Figure 6-10) the specification for the different cache lists. Each cache
list contains settings for upper and lower cache size.

Viewing the Deta i l ed In fo rmat i on About the Garbage Co l lec t ion

BEA JRockit Runtime Analyzer 6-35

Figure 6-10 The Cache Lists tab

Index—this is the identification number for the cache list.

#free blocks—the number of free blocks in the cache list.

Cache size—the total size of this cache list.

Avg free block size—the average size of each free memory block in the cache list.

Low limit—the lower limit of a free memory block. There will be no smaller memory
block than this in the selected cache list.

High limit—the upper limit of a free memory block. There will be no larger memory
blocks than this in the selected cache list.

The Pause Time Tab
The information under the Pause Time tab is mainly intended for BEA JRockit internal use when
you have sent a JRA recording for analysis to the JRockit engineering team.

GC Pause—this column displays the names of the pauses (the main entry in the tree
structure). If you are running a parallel garbage collector, then there will only be one pause
per garbage collection. For the concurrent garbage collector, there can be several pauses
during one garbage collection. The pauses consists of pause parts that can help the JRockit
engineering staff to analyze why certain pauses are longer than others.

Note: During a pause, the application is standing still.

Garbage Co l l ec t i on Events In fo rmat ion

6-36 BEA JRockit Runtime Analyzer

Length—this is the length, measured in milliseconds, of the pause.

Start/End—this is the absolute time, measured in milliseconds, since January 1, 1970.

BEA JRockit Runtime Analyzer 7-37

C H A P T E R 7

General Garbage Collector Information

The GC General tab shows an overview of information about all garbage collections (GC) that
took place during the recording. The information includes, amongst other, the total number of
pause times and when and how the garbage collector has changed strategy.

This section is divided into the following topics:

Getting Familiar with the GC General Tab

Viewing General Garbage Collection Information

Viewing Garbage Collection Call Tree Information

Viewing Garbage Collection Strategy Changes Information

Getting Familiar with the GC General Tab
The GC General tab (see Figure 7-1) is divided into three sections that gives you information
about the garbage collection at a glance.

Gene ra l Garbage Co l l ec to r In fo rmat ion

7-38 BEA JRockit Runtime Analyzer

Figure 7-1 The GC General tab

The GC General tab is divided into the following sections:

1. General—this section shows overall statistics about the garbage collections during the entire
JRA recording.

2. Garbage Collection Call Tree—this section is a collection of all call traces that were
sampled for all garbage collections for the JRA recording.

3. GC Strategy Changes—this section lists when a garbage collection strategy took place and
how it changed.

Viewing General Garbage Collection Information
The General section (see Figure 7-2) shows general garbage collection information such as the
total number of garbage collections during the recording and the duration of all pause times. You
can use this information to, for example, see whether your application is coming down to desired
pause time averages or not.

Viewing Garbage Co l l ec t i on Ca l l T ree In fo rmat ion

BEA JRockit Runtime Analyzer 7-39

Figure 7-2 General Garbage Collection Information

Viewing Garbage Collection Call Tree Information
The Garbage Collection Call Tree section (see Figure 7-3) shows all call traces during the
recording that triggered a garbage collection. The number within the brackets (next to the garbage
bin icon) is the total number of garbage collection rounds that were performed during the JRA
recording. Expand the call tree to see in which methods the garbage collection has taken place.

Figure 7-3 Garbage Collection Call Tree Information

Viewing Garbage Collection Strategy Changes
Information

The Garbage Collection Strategy Changes section (see Figure 7-4) shows when the garbage
collector has changed strategy, for example, JRockit has been set to run for best throughput
(-Xgcprio:throughput, GC Prio in Figure 7-4), then JRockit changes strategy in runtime to
best reach this goal (New Strategy). The strategy change can, for example, be from
singleParPar to genParPar. The strategy changes are listed under New Strategy. The old
strategies are listed under Generational, Mark Phase, and Sweep Phase.

Note: These strategy changes only happen if you are running JRockit with the default garbage
collector option, -Xgcprio.

Gene ra l Garbage Co l l ec to r In fo rmat ion

7-40 BEA JRockit Runtime Analyzer

Figure 7-4 Garbage Collection Strategy Changes Information

In the example seen in Figure 7-4, there has been one strategy change for the garbage collector.

BEA JRockit Runtime Analyzer 8-41

C H A P T E R 8

Java Heap Content Information

The Heap Overview tab gives a quick overview of what the memory in the Java heap consists of
in you application. You get a quick overview of how the heap looked at the end of the recording
and also compiled information about the status of the heap during the entire recording.

This section contains the following topics:

Getting Familiar with the Heap Overview Tab

Viewing the Heap Snapshot at the End of the Recording Information

Viewing the Heap Contents Information

Viewing the Free Memory Contribution Information

Getting Familiar with the Heap Overview Tab
The Heap Overview tab is divided into three sections (see Figure 8-1).

Java Heap Content In fo rmat ion

8-42 BEA JRockit Runtime Analyzer

Figure 8-1 The Heap Overview tab

The Heap Overview tab is divided into the following sections:

1. Heap Snapshot at the End of the Recording—this section contains all the specifics about
your heap at a glance.

2. Heap Contents—this graph gives a visual overview of the distribution of different sizes of
objects. The table below the graph gives the exact data for each category of memory.

3. Free Memory Contribution—this graph gives a visual overview of the distribution of the
different chunks of free memory that there is on the heap. The table below the graph gives the
exact data for each category of memory.

Viewing the Heap Snapshot at the End of the Recording
Information

When the JRA stops recording, it calculates the value of the committed heap size, which is how
much heap the application has been allowed to use. This size can be set by the -xmx flag.

V iewing the Heap Contents In fo rmat ion

BEA JRockit Runtime Analyzer 8-43

The memory that is considered large object chunks, is the total amount of memory on the heap
that the Java application is allowed to use for large objects (64 KB to 512 kB).

The memory for the pinned object chunks is the amount of memory that is occupied by pinned
objects. A pinned object is both referenced by another object in the application and is not allowed
to be moved for compaction purposes, for example, i/o buffers that are accessed from native
methods (native i/o). The number of pinned object chunks shows a value of how many object
that are pinned.

Dark matter is memory that is free, but cannot be used due to the physical layout of the memory
chunk (i.e. it might be too small for the application to allocate). Dark matter can cause
fragmentation on the disk.

Viewing the Heap Contents Information
The Heap Contents pie chart gives a graphic overview of the distribution of objects on the heap.
The color coding helps you determine how much of the heap that consists of large, small, and
pinned object chunks as well as how much memory is considered dark and how much is free. The
amount of dark matter indicates how much space in the Java heap that is wasted due to
fragmentation of the Java heap. It is normal to have a certain amount of dark matter on the heap.

For information on how to minimize the dark matter, see Minimize Dark Matter in the BEA
JRockit Configuration and Tuning Guide.

Below the chart, there is a table that lists all objects with the exact data: memory in MB and
percentage that they occupy of the heap.

Viewing the Free Memory Contribution Information
The Free Memory Contribution pie chart gives a graphic overview of how the free memory is
distributed in free blocks of different sizes on the Java heap. The block sizes are categorized by
the following entities: small, medium, large, and very large. The block sizes are multiples of the
minimum block size set at startup (default 2kB). You set the minimum block size with the option
-XXminblocksize. Below are the multiples used for the different block sizes:

Small: 1–4

Medium: 4–32

Large: 32–256

Very large: 256 and up

Java Heap Content In fo rmat ion

8-44 BEA JRockit Runtime Analyzer

BEA JRockit Runtime Analyzer 9-45

C H A P T E R 9

Object Statistics Information

The Object Statistics tab (see Figure 9-1) displays the most common types and classes
occupying the Java heap at the beginning and at the end of the JRA recording.

This section is divided into the following topics:

Getting Familiar with the Object Statistics Tab

Viewing Start of Recording Information

Viewing End of Recording Information

Getting Familiar with the Object Statistics Tab
At the beginning and end of a recording session, snapshots are taken of the most common types
and classes of object types that occupy the Java heap, that is, the types which instances in total
occupy the most memory. The results are shown on the Object Statistics tab (see Figure 9-1).
Abnormal results in the object statistics might help you detect the existence of a memory leak in
your application.

Objec t S tat is t i cs In fo rmat ion

9-46 BEA JRockit Runtime Analyzer

Figure 9-1 The Object Statistics tab

The Object Statistics tab is divided into the following sections:

1. Start of Recording—this section lists the most common types on the heap at the beginning
of the recording.

2. End of Recording—this section lists the most common types on the heap at the end of the
recording.

Viewing Start of Recording Information
When the JRA starts a recording it looks at the Java heap to see which types occupy the most
memory in the used heap space. That information is listed under the Start of Recording section
(see Figure 9-2).

Viewing End o f Record ing In fo rmat ion

BEA JRockit Runtime Analyzer 9-47

Figure 9-2 Start of Recording section

Viewing End of Recording Information
Right before the JRA stops a recording it looks at the Java heap to see which types occupy the
most memory in the used heap space. That information is listed under the End of Recording
section (see Figure 9-3).

Figure 9-3 End of Recording section

Objec t S tat is t i cs In fo rmat ion

9-48 BEA JRockit Runtime Analyzer

BEA JRockit Runtime Analyzer 10-49

C H A P T E R 10

Code Optimization Information

The Optimizations tab (see Figure 10-1) displays the methods that were optimized by the
adaptive optimization system in JRockit during the recording.

This section is divided into the following topics:

Getting Familiar with the Optimizations Tab

Viewing Optimization Information

Viewing Methods Optimized During Recording Information

Getting Familiar with the Optimizations Tab
The JRA records all optimization events that occur during the course of the recording. JRockit
uses JIT compilation for the initial conversion to machine code. The most commonly used
methods are then further optimized during the application run. This information is then displayed
in the Optimizations tab (see Figure 10-1).

Code Opt imizat i on In fo rmat ion

10-50 BEA JRockit Runtime Analyzer

Figure 10-1 Optimizations tab

The Optimizations tab is divided into the following sections:

1. Optimization—this section displays the before and after scenario of the optimizations that
have taken place.

2. Methods Optimized During Recording—this section displays which methods that have
been optimized during the recording, i.e. this is necessarily not a full list of all optimizations
that are performed for your application.

Viewing Optimization Information
The Optimizations section (see Figure 10-2) contains information on how many optimizations
have taken place and the total duration of the optimizations. You can also see how many JIT
compilations have been performed and the time JRockit took to compile those. For more
information on JIT compilation, see the Introduction to BEA JRockit JDK.

View ing Methods Opt imized Dur ing Reco rd ing In fo rmat ion

BEA JRockit Runtime Analyzer 10-51

Figure 10-2 Optimization section

Viewing Methods Optimized During Recording
Information

The Methods Optimized During Recording section (see Figure 10-3) lists all methods that
were optimized during the JRA recording. Here you can study the size changes of each method
that has been optimized.

Note: Some optimizations, such as inlining, causes the method size to increase

Figure 10-3 Methods Optimized During Recording section

Code Opt imizat i on In fo rmat ion

10-52 BEA JRockit Runtime Analyzer

BEA JRockit Runtime Analyzer 11-53

C H A P T E R 11

Lock Profiling Information

The Lock Profiling tab (see Figure 11-1) shows comprehensive information about lock activity
for both the application JRA is monitoring (Java locks) and JRockit itself (native locks). You
need to enable the recording capability before you start the profiling of your application. If you
have not enabled the lock profiling data recording, the lock profiling sections are left blank on the
Lock Profiling tab. For more information on locks, please refer to About Thin, Fat, Recursive,
and Contended Locks in BEA JRockit.

This section is divided into the following topics:

Getting Familiar with the Lock Profiling Tab

Java Locks Profiling

Enabling Java Lock Profiling Data

Native Lock Profiling

Enabling Native Locks Information

Getting Familiar with the Lock Profiling Tab
The Lock Profiling tab displays lock information for both your application and JRockit (see
Figure 11-1).

Lock P ro f i l ing In fo rmat ion

11-54 BEA JRockit Runtime Analyzer

Figure 11-1 Lock Profiling tab

The Lock Profiling tab is divided into the following sections:

1. Java Locks—this section lists all locks in your application.

2. Native Locks—this section lists all locks in JRockit.

Java Locks Profiling
The information that is displayed under the Java Locks chart (see Figure 11-2) shows the number
of locks of the threads in your application. You see information on the number of fat uncontended
and contended locks, thin uncontended and contended locks, thin and fat recursive locks, and fat
sleeping locks.

Nat ive Lock P ro f i l ing

BEA JRockit Runtime Analyzer 11-55

Figure 11-2 Java Locks

Enabling Java Lock Profiling Data
To record Java lock profiling data, you need to enable it from the command line when you start
JRockit. If your the Java Locks section is blank, it is not enabled.

To enable Java lock profiling data

Issue the command -Djrockit.lockprofiling at the JRockit command line.

For example:

java -Djrockit.lockprofiling=true -XXjra:<AnyJRAParam> -jar MyApplication.jar

Native Lock Profiling
If you are looking at a recording of JRockit J2SE 5.0 or later, the recording includes information
about native locks (see Figure 11-3). Native locks are locks in the JRockit internal code and is
nothing your application can control.

Figure 11-3 Native Locks

If you find high contention on a JRockit internal lock that might be causing issues for your
application, either contact BEA support or contact JRockit through the BEA JRockit news group
at the dev2dev web site.

Lock P ro f i l ing In fo rmat ion

11-56 BEA JRockit Runtime Analyzer

Enabling Native Locks Information
Lock profiling data can only be generated from the command line. If you have no information
displayed in the

To enable native locks profiling data

1. Select a JRockit from the JRockit Browser.

2. Click Mission Control > JRA > Start JRA Recording.

3. Select Use native samples.

BEA JRockit Runtime Analyzer 12-57

C H A P T E R 12

Start and End Processes Information

The Processes tab (see Figure 12-1) lists which processes were running during both the start and
the end of the JRA recording.

This section is divided into the following topics:

Getting Familiar with the Processes Tab

Snapshot of Processes at Beginning and End of Recording

Detailed Processes Information

Getting Familiar with the Processes Tab
The Processes tab displays start and end information of running processes (see Figure 12-1).

Star t and End Processes In fo rmat ion

12-58 BEA JRockit Runtime Analyzer

Figure 12-1 Processes tab

The Processes tab is divided into the following sections:

1. Snapshot of the processes running on the machine at the start and at the end of the
recording—this section lists all processes that were active either during the start or the end
of the recording or both.

2. Process—this section details the processes information.

Snapshot of Processes at Beginning and End of
Recording

The information that is displayed under the Snapshot view (see Figure 12-2) shows all processes
that were running at the start of the recording and at the end of the recording.

Deta i l ed P rocesses In fo rmat ion

BEA JRockit Runtime Analyzer 12-59

Figure 12-2 Snapshot view

Detailed Processes Information
When selecting a process in the Snapshot view, you see a listing of all details for that process at
the bottom of the tab (see Figure 12-3). The path, the name of the executable, if the process was
present during start and end, the process ID, and also if the process was started with a
command-line option.

Figure 12-3 Detail process view

Star t and End Processes In fo rmat ion

12-60 BEA JRockit Runtime Analyzer

BEA JRockit Runtime Analyzer 13-61

C H A P T E R 13

Thread Latency Viewer Overview

The Thread Latency Overview tab (see Figure 13-1) displays an overview of all running threads
during the recording.

This section is divided into the following topics:

Getting Familiar with the Thread Latency Overview Tab
At the beginning and end of a recording session, snapshots are taken of the most common types
and classes of object types that occupy the Java heap, that is, the types which instances in total
occupy the most memory. The results are shown on the Thread Latency Overview tab (see
Figure 13-1). Abnormal results in the object statistics might help you detect the existence of a
memory leak in your application.

Thread Latency V iewer Overv iew

13-62 BEA JRockit Runtime Analyzer

Figure 13-1 The Thread Latency Overview tab

The Thread Latency Overview tab is divided into the following sections:

1. Start of Recording—this section lists the most common types on the heap at the beginning
of the recording.

2. End of Recording—this section lists the most common types on the heap at the end of the
recording.

Event Graph Window

BEA JRockit Runtime Analyzer 13-63

Event Graph Window

Workflow From Recording to Viewing

Drilling Down to Your Problem

Expanding and Collapsing Thread Nodes

Customizing Your View

Using the Filter Functions

Using the Time Scale on Top of Window

Getting Familiar with the Events Table Tab

About Selecting Events for “intressanta mängden”

Selecting Events for “intressanta mängden”

Deleting Events from “intressnta mängden”

Thread Latency V iewer Overv iew

13-64 BEA JRockit Runtime Analyzer

BEA JRockit Runtime Analyzer 14-65

C H A P T E R 14

Getting Familiar with the Events Table
Tab

About Selecting Events for “intressanta mängden”

Selecting Events for “intressanta mängden”

Deleting Events from “intressnta mängden”

Filtering Columns

Get t ing Fami l ia r w i th the Events Tab le Tab

14-66 BEA JRockit Runtime Analyzer

BEA JRockit Runtime Analyzer 15-67

C H A P T E R 15

Getting Familiar with the Stack Trace
Tree Overview Tab

About the Stack Trace Tree Overview Tab

Adding and Removing Content in the Tree Table

Deleting Events from “intressanta mängden”

Filtering Columns

Get t ing Fami l ia r w i th the S tack T race T ree Overv iew Tab

15-68 BEA JRockit Runtime Analyzer

BEA JRockit Runtime Analyzer 16-69

C H A P T E R 16

Adding Comments to a Recording

The JRA tool is equipped with a small text editor where you can add comments about the
recording and your application. These comments will help the BEA JRockit engineering team to
understand what has happened to JRockit and your application during the recording (see
Figure 16-1).

Figure 16-1 The Comments Tab

Adding Comments to a Record ing

16-70 BEA JRockit Runtime Analyzer

To add a comment

1. Enter a description of you application in the text field.

2. Close the JRA recording.

3. Click Yes, when asked if you want to save the recording.

	Welcome to the BEA JRockit Runtime Analyzer (JRA)
	How Does the JRA System Work?
	What is a JRA recording?
	What is the JRA tool?

	Using the JRA Tool
	Getting Started with the BEA JRockit Runtime Analyzer Tool
	Creating a Recording
	About JRA Overhead when Recording

	Opening a JRA File
	Comparing and Contrasting JRA Recordings
	Customizing Your JRA Tool
	Changing Table Settings
	Filtering Information
	Collapsing and Expanding a View
	Changing View of a Tab

	General Information in JRA Recording
	Getting Familiar with the General Tab
	Viewing General Information
	Viewing Memory Usage Information
	Viewing VM Arguments Information
	Viewing Memory Allocation Information
	Viewing Threads Information
	Viewing Exceptions Information

	Methods and Call Trace Information
	Getting Familiar with the Methods Tab
	Viewing Hot Methods
	Viewing Predecessors and Successors

	Garbage Collection Events Information
	Getting Familiar with the GC Events Tab
	Changing Focus on Heap Usage Chart
	Viewing Specifics about Garbage Collections
	Viewing the Detailed Information About the Garbage Collection
	Viewing Information on the General Garbage Collection Tab
	Viewing Information on the GC Method Call Tree Tab
	Viewing Information on the Old/Young Collection Tab
	Viewing Information on the Cache Lists Tab (Only valid for old collections)
	The Pause Time Tab

	General Garbage Collector Information
	Getting Familiar with the GC General Tab
	Viewing General Garbage Collection Information
	Viewing Garbage Collection Call Tree Information
	Viewing Garbage Collection Strategy Changes Information

	Java Heap Content Information
	Getting Familiar with the Heap Overview Tab
	Viewing the Heap Snapshot at the End of the Recording Information
	Viewing the Heap Contents Information
	Viewing the Free Memory Contribution Information

	Object Statistics Information
	Getting Familiar with the Object Statistics Tab
	Viewing Start of Recording Information
	Viewing End of Recording Information

	Code Optimization Information
	Getting Familiar with the Optimizations Tab
	Viewing Optimization Information
	Viewing Methods Optimized During Recording Information

	Lock Profiling Information
	Getting Familiar with the Lock Profiling Tab
	Java Locks Profiling
	Enabling Java Lock Profiling Data

	Native Lock Profiling
	Enabling Native Locks Information

	Start and End Processes Information
	Getting Familiar with the Processes Tab
	Snapshot of Processes at Beginning and End of Recording
	Detailed Processes Information

	Thread Latency Viewer Overview
	1. Start of Recording-this section lists the most common types on the heap at the beginning of the recording.
	2. End of Recording-this section lists the most common types on the heap at the end of the recording.

	Getting Familiar with the Events Table Tab
	Getting Familiar with the Stack Trace Tree Overview Tab
	Adding Comments to a Recording

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

