BEAJROCKIT

Missio

0?7,

r
S’ 7
L/

1

Control~

Method Profiling

JRockit Mission Control 3.0.2
Document Revised: June, 2008

Contents

Introduction to Profiling Methods and Using Exception

Counters
Profiling Tabs. oo e 11
Using the Method Profiler
Getting Familiar with the Method Profiler Tab 2-1
Profilingthe Methods e 2-2
Working with Templates. 2-3
Workingwith Methods e 2-5
Jumping to Application SoUrce. 2-7

Using the Exception Counter

Getting Familiar with the Exception Count Tab., 3-1
Profiling the EXCEPLiONSottt e 3-3
Jumping to Application SOUICE.t tieea 3-3
Working with Templates. 3-4
Working with Exceptionsinthe Template it 3-5

Method Profiling 1

Method Profiling

CHAPTERa

Introduction to Profiling Methods and
Using Exception Counters

The Management Console’s profiling feature allows you to, non-intrusively, profile methods
invoked and exceptions thrown during application runtime. You can learn much about an
application through profiling; for example, you can see how often a method is invoked, how long
it takes a method to execute during runtime, or how often specific exceptions are thrown. This
sort of information is useful in determining whether or not you are getting optimal performance
from your application. By studying the profile of an application run, you can make informed
decisions about how you’ve configured and tuned the JVM running the application.

Profiling Tabs

Application profiling is done on two different Management Console tabs:
e Method Profiler Tab; see Using the Method Profiler.

e Exception Count Tab; see Using the Exception Counter.

Method Profiling 1-1

Introduction to Profiling Methods and Using Exception Counters

1-2 Method Profiling

Using the Method Profiler

The Method Profiler tab allows you to monitor method execution in a non-intrusive way. Method
profiling can provide information about the average time spent in selected methods and the
number of times methods are invoked. monitor you running application’s methods and find out
where in the code you might have glitches.

The topics in this section include:

e Getting Familiar with the Method Profiler Tab

Working with Templates

Using the Method Profiler

Profiling the Methods

e Jumping to Application Source

Getting Familiar with the Method Profiler Tab

Methods are profiled on the Method Profiler tab (Figure 2-1).

Method Profiling 2-1

Using the Method Profiler

Figure 2-1 Method Profiler Tab

4 localhost X =7

Method Profiler @

1 - - @ =

~+ Control Panel @ Profiling Information B
D Method Inwocations Time TimeIny,
Profile method invocation @ object tostring() i i /A
P — (@ string.tostringl) M4 A HA
Frafile method Hming (D) StringBuffer. appendiObiject) A NiA G

~ Templates 2 @
Add and delete templates,

@My Profiled Methods

My Profiled Methods @ @

Please add/select methods ta profile.

+1- (5O jizva lang, Objest |
+ DG java.lang. String
+ DG java.lang. StringBy

< »

[E Overview | ify MBean Browser Lj Memary | & Threads é@ﬂuntime 1+ Triggers J: Exception Count | () Method Profiler

The Method Profiler tab is divided into the following sections:
1. Control Panel—from which profiling instructions are set and profiling is started and stopped.

2. Templates—where you can add and delete profiling template. Templates are collections of
different methods you want to profile.

3. My Profiled Methods—lists all methods that are included in the template. This panel’s name
changes dynamically to correspond to the selected template in the Templates panel.

4. Profiling Information—which shows method-by-method results of the profile.

Profiling the Methods

This section describes how to run the Method Profiler. Before you begin, make sure you have
completed these steps:

1. Created a template, as described in Working with Templates.

2-2 Method Profiling

Working with Templates

2. Added methods to the template, as described in Working with Methods.

To profile methods

1. Inthe Control Panel, select the profiling parameters you want to use (you must select at least
one parameter).

— Profile method invocation, which will display how many times the method has been
invoked since the profiling started.

— Profile method timing, which will display how much time (in milliseconds) it takes
for each method to execute.

2. Inthe Templates panel, click the checkbox next to the template you want to use.

That template name will appear atop the list of the methods.

3. Optionally, if you want to add new methods to the template, in the list of methods, open the
class you want to profile and select the methods you want to add to the profile.

4. In the Control Panel, click the start button to begin profiling (Figure 2-2).

Figure 2-2 Method profiler start arrow

~ Control Panel

Start Button—> G f

[ielav~File methed invocation. J)
When profiling commences, a progress meter will appear in the Control Panel (Figure 2-3).
5. Click the stop button to stop the profiling (Figure 2-3).

Figure 2-3 Method profiler progress meter and stop button

~ Control Panel 1
£

Stop Button —{p[m] |

g B s S
Progress Meter

The results of the profile will appear in the Profiling Information panel.

Working with Templates

Templates are a user-defined collection of methods you want profiled during runtime. By using
templates, the same methods are profiled during a run, eliminating the need to reselect methods

Method Profiling 2-3

Using the Method Profiler

each time you want to profile the same methods. This not only saves time, but it ensures
consistency and accuracy of the profile results. This section shows how to use the Method
Profiler tab by setting up your own templates.

The following topics are covered:
e To create a template
e To rename a template

e To delete a template

To create a template
1. Inthe Templates panel, click Add
The Add Template dialog box appears (Figure 2-4).

Figure 2-4 Add Template dialog box

#Z 4dd Template

Enter template name

Methods ko Profile

[Ok H Cancel]

2. Enter a name for your template (for example, Methods to Profile) and click OK.

The new template will appear in the Templates list (Figure 2-5).

Figure 2-5 New template added

+ Templates @
Add and delete templates,

[] g Methads to Profile
@My Prafiled Methods

To add methods to the template, see To add methods to the template.

To rename a template

1. Highlight the template you want to rename.

2-4 Method Profiling

Working with Methods

2. Click Edit.
The Edit template dialog box appears (Figure 2-6).

Figure 2-6Edit Template dialog box

X

#Z Edit Template

Enter template name

Methods bo Profile

Ok] [Cancel

3. Type in a new name for the template.

4. Click OK.

The renamed template will appear on the Templates list.

To delete a template
1. Inthe Templates panel, select the template you want to delete.

2. Click Delete.

The template disappears from the Templates panel.

Working with Methods

Templates are comprised of the methods you want counted. Use the list of methods panel:
e To add methods to the template
e To delete a method from the template
To add methods to the template
Before you can add methods, you need to create a template, as described in To create a template.

1. In the Templates panel, highlight the template to which you want to add methods.

The title of the template list will change to match the name of the highlighted template
(Figure 2-7).

Method Profiling 2-5

Using the Method Profiler

Figure 2-7 Method list panel with new template name

#: Templates @
Add and delete templates,

@@Methods ko ProFiID [Add...]

@My rofiled Methods

Methods to Profile Q)]

Please add/select methods to profile,

2. In the method list panel, click Add.
The Add Class dialog box appears (Figure 2-8).

Figure 2-8 Add Class dialog box

€ pdd Class

Add class to method profiler _
Enter the name of the class you want to profile @

Enter class name, eg. java.lang.Integer

java.lang. Integer|

Ok] [Cancel

3. Type the name of the class you want to profile (for example, java.lang. Integer) and click
OK.

The new class appears in the method list (Figure 2-9).

Figure 2-9 Method list with class added

Methods to Profile @

Flease add/select methods to profile

£ DG java.lang.Integer | [Add... |

4. Click the plus sign (+) next to the class name to see the methods that are included in that class.

2-6 Method Profiling

Jumping to Application Source

The list expands to show all methods in that class. The methods are indicated by an M
graphic (Figure 2-10).

Figure 2-10 M graphics indicate method

[bytevalue
@ compareTolInteg
@ compareTo{Obje

(D decodefString) 3
5. Click the checkbox next to each method you want to profile (Figure 2-11).

Figure 2-11 List with methods selected

Methods to Profile @

Please add/select methods to profile,

= [H© java.lang.Integer -~
M@ bitCountint)
MO bytevalue()
Q compareToilntege
1@ compareTo(Ohject
@ decode(string)
@ doublevalue()
0D equalsiobject)
@ Aoatwalel)
DQ getChars(int, int, ©
DQ getInteger(String,
1@ getinteger(String,

[getInteger(String) ¥
3 >

The selected methods will be profiled when method profiling is launched, as described in
Profiling the Methods.

To delete a method from the template

1. In the list of methods, highlight the method you want to delete.

2. Click Delete.

The method disappears from the list.

Jumping to Application Source

If you are using the Method Profiler as an Eclipse plug-in, you can jump from the My Profiled
Methods tree or the Profiling Information table directly to the source code. A feature called
Jump-to-Source allows you not only to see the name of a “problem” method displayed in the My
Profiled Methods tree or Profiling Information table, but lets you jump from the displayed
method name directly to that method’s source, where you can evaluate the code to see what might

Method Profiling 2-1

Using the Method Profiler

be causing the problem. This feature extremely is useful in helping you locate and debug coding
errors that are creating runtime problems for your application.

To jump to the source code from the Method Profiler

1. Inthe My Profiled Methods tree or Profiling Information table and right-click the problem
method to open a context menu.

2. Select Open Method.

3. The source code appears in a separate editor.

2-8 Method Profiling

Using the Exception Counter

Exception counting is a type of profiling that enumerates exceptions thrown by the Oracle
JRockit JVM during application runtime. As the name implies, exception counting counts the
number of exceptions of a certain type, providing information that is helpful when you are
troubleshooting your Java application.

This section includes the following topics:
e Getting Familiar with the Exception Count Tab
e Working with Templates
e Working with Exceptions in the Template
e Profiling the Exceptions
e Jumping to Application Source
e Working with Templates

e Working with Exceptions in the Template

Getting Familiar with the Exception Count Tab

Exceptions are counted on the Exception Count tab (Figure 3-1).

Method Profiling 3-1

Using the Exception Counter

3-2

Figure 3-1 Exception Count Tah

The Exception Count tab is divided into the following sections:
1.
2.

Please add/select exceptions,

java.io
2 java.lang
2 java.lang.reflect

Add...

localhost X =5
Exception Count @
~ Control Panel Q (% Profiling Information Q B
E Exception Class Count | Subclasses
2 QIE jarva.io, IOException MiA Yes
¥ Templates @ QIE java.lang. ClassCastException Mi& Yes
Add and delete templates, QIE java.lang, ClassMotFoundException MiA Yes
alp)
My Profiled Exceptions add... as java.lang.Exception HiA Yes
1 java.lang. IndexOutOfBoundsE xception Mia es
QIE java.lang. MullPointerException MiA Yes
QIE java.lang. MumberFormatException MiA Yes
QIE java.lang. RuntimeException MiA Yes
. @ QIE java.lang. Throwable Mi& Yes
My Profiled Exceptions @ QIE java.lang.reflect, InvocationTargetException Mia es

[T Overview | i MBean Browser | [J Memory | @ Threads Runtime | <& Triggers | 20 Exception Count | () Method Profiler

Control Panel—where profiling is started and stopped.

Templates—where you can add and delete exception count templates. Templates are

collections of different exception counters you want to profile.

My Profiled Exceptions—Iists all exceptions that are included in the template. This panel
name changes name dynamically to correspond to the selected template in the Templates

panel.

Profiling Information—shows the exceptions thrown during the profiling session.

Method Profiling

Profiling the Exceptions

Profiling the Exceptions

This section describes how to run the Exception Counter. Before you begin, make sure you have
completed these steps:

1. Created a template, as described in Working with Templates.

2. Added methods to the template, as described in Working with Exceptions in the Template.

To profile exceptions
1. In the Templates panel, click the checkbox next to the template you want to use.

That template name will appear atop the list of exceptions.

2. Inthe list of exceptions, open the exception class you want to profile and select the exceptions
you want to count.

3. Inthe Control Panel, click the start arrow to begin profiling (Figure 3-2).

Figure 3-2 Exception counter start arrow

~ Control Panel

Start Button—pe G
When profiling commences, a progress meter will appear in the Control Panel (Figure 3-3).
4. When you have finished profiling, click the stop button (Figure 3-3).

Figure 3-3 Exception counter progress meter and stop button

~ Control Panel

Stop Button —fgpb-[m] |

Progress Meter

The results of the count will appear in the Profiling Information panel.

Jumping to Application Source

If you are using the Exception Counter as an Eclipse plug-in, you can jump from the My Profiled
Exceptions table or the Profiling Information table directly to the source code. A feature called
Jump-to-Source allows you not only to see the name of a “problem” class displayed in the My

Profiled Exceptions table or Profiling Information table, but lets you jump from the displayed

Method Profiling 3-3

Using the Exception Counter

class name directly to that class’s source, where you can evaluate the code to see what might be
causing the problem. This feature extremely is useful in helping you locate and debug coding
errors that are creating runtime problems for your application.

To jump to the source code from the Exception Counter

1. Inthe My Profiled Exceptions table or the Profiling Information table, right-click the
problem class to open a context menu.

2. Select Open Type.

3. The source code appears in a separate editor.

Working with Templates

3-4

Templates are a user-defined collection of exceptions you want counted during runtime. By using
templates, the same exceptions are counted during a run, ensuring consistency and accuracy of
the count results.

The following topics show how to use the templates on the Exception Count tab:
e To create a template
e To rename a template

e To delete a template

To create a template
1. Inthe Templates panel, click Add.
The Add Template dialog box appears (Figure 3-4).

Figure 3-4 Add Template dialog box

#Z 4dd Template

Enter template name

My Template

[Ok H Cancel]

2. Enter a name for your template (for example, My Template) and click OK.

The new template will appear in the Templates list (Figure 3-5).

Method Profiling

Working with Exceptions in the Template

Figure 3-5 New Template added

+ Templates @
Add and delete templates,

@My Profiled Exceptions
B @My Template

Add exceptions to the template, as described in Working with Exceptions in the Template.

To rename a template
1. Highlight the template you want to rename.
2. Click Edit.
The Edit Template dialog box appears (Figure 3-6).
Figure 3-6 Edit Template dialog box

#Z Edit Template

Enter template name

Ok] [Cancel

3. Click OK.

The renamed template will appear on the Templates list.

To delete a template
1. Highlight the template you want to delete.

2. Click Delete.

The template name disappears from the list of templates.

Working with Exceptions in the Template

Templates are comprised of the exceptions you want counted. Use the list of exceptions panel.

e To add exceptions to the template

Method Profiling 3-5

Using the Exception Counter

e To edit exceptions

e To remove exceptions from the template

To add exceptions to the template
1. Inthe Template panel, highlight the template to which you want to add exceptions.

The title of the template list will change to match the name of the highlighted template
(Figure 3-7).

Note: If the template name is too long, the list name will be truncated.

Figure 3-7 Exception list panel with new template

+ Templates
Add and delete templates,
@My Profiled Exceptions

Add

Edit...

Delete

o HEE o

My Template
Please add/select exceptions,

Add...
2. Inthe exception list panel, click Add.
The Add new exception to profile dialog box appears (Figure 3-8).

Figure 3-8 Add new exception to profile

% Add new exception to profile

Add new exception to profile
et

Enter name of the exception class, e.g. java.lang.Exception

java.lang.Exception

[Jinclude subclasses in the exception count

[Ok H Cancel]

3. Type the name of the exception class you want to use (for example, java. lang.Exception).

4. If you want to include all subclasses to the specified exception class in the exception count
profile, select Include subclasses in the exception count.

3-6 Method Profiling

Working with Exceptions in the Template

5. Click OK.

The dialog box closes and the new exception class appears in the exception list
(Figure 3-9).

Figure 3-9 Exception list

My Template F

Please add/select exceptions, ;
+ j Rl

0 i)

anr
o anh

6. Click the plus sign (+) next to the class name.

The list will expand and you will see all subclasses for the selected class

7. Click the checkbox next to each subclass you want to profile.

The selected exceptions will be profiled when exception profiling is launched, as described

in Profiling the Exceptions.

To edit exceptions

Editing an exception allows you to enabled or disable profiling of subclasses. The checkbox in
the tree enables or disables the actual profiling but in the dialog box, you can specify whether or

not classes derived from that exception class should be included in the count or not.

1. Highlight the exception you want to edit.
2. Click Edit.

The Edit <exception.name> dialog box appears (Figure 3-10).

Figure 3-10Edit exception dialog hox

¥ Edit exception java.lang.Exception

Edit exception java.lang.Exception
et

Exception name

[Jinclude subclasses in the exception count

Ok] [Cancel

Method Profiling

3-1

Using the Exception Counter

3. Do one of the following:
— To include classes derived from the exception, select the checkbox.

— If classes are already included and you want to exclude them, deselect the checkbox.

4. Click OK.

To remove exceptions from the template
1. Select the exception class or subclass you want to delete.

2. Click Delete.

The exception is removed from the list.

3-8 Method Profiling

