‘.."‘

S’ 7
2 bea
L/

BEAJRoCKIte
Mission
Control®

Monitoring Thread
Activity with the JRockit
Management Console

ProductNameShort 3.0.2
Document Revised: June, 2008

Contents

Introduction to Monitoring Threads

Getting Familiar withthe Threads Tab. i it 1-1
Viewing Thread Usage Information i, 1-3
Viewing Live Threads Table. i e e 1-3
Data Columns in Live Threads Table Described, 1-4
Finding Dead Locked Threadst e 1-6
Viewing Thread Stacktracest e e 1-6
Jumping to Application SOUICE.ottt e 1-7
Threads Tab Functionality i i i 1-7

Monitoring Thread Activity with the Management Console iii

iv

Monitoring Thread Activity with the Management Console

CHAPTERa

Introduction to Monitoring Threads

You can monitor thread activity for a running application by using the Threads tab on the
Management Console. This tab contains both a graph that plots thread usage by an application
over time and a sortable list of all live threads used by the application. It also displays thread
stacktraces.

This topic includes information on the following subjects:

e Getting Familiar with the Threads Tab

Viewing Thread Usage Information

Viewing Live Threads Table

Data Columns in Live Threads Table Described

Finding Dead Locked Threads
e Viewing Thread Stacktraces
e Jumping to Application Source

e Threads Tab Functionality

Getting Familiar with the Threads Tab

The Threads tab (Figure 1-1) displays thread usage, which threads are live, and stack traces of
the threads.

Monitoring Thread Activity with the JRockit Management Console 1-1

Introduction to Monitoring Threads

Figure 1-1 The Threads Tah

Threads

Thread Usage Graph

1007
=ln]
80
70
&0
50
40 —
30
20
10

@ || E
@

. Thread count @

o

41:00 4106

Live Threads
Live Threads

Filter column | Thread Mame

Thread Mame

£ roear

<

TR e Lo e

41:12 T

v

Thread State

41:18 4124 4130

me

41:36

[Add...][Remove]

4142 4148 41E [[|Freeze scroling

47 2] (3) Stack traces for selected threads W (@)

Deadlocker #

v

Irs

b3

Stack traces for selected threads 11:41:54 AM
= Main Thread [1] (RUNMABLE] ~

<

= jrockit.net, SocketMativeIO, readBytesPinned line: no
3 jrockit.net, SocketMativelQ, socketRead line: 31

& GC Daemon TIMED_WAITING MfA java.net, SocketInputStream, socketReado line: not
2 P Stale Descriptor De... TIMED_WAITING MfA = java.net.SocketInputStream.read line: 129
APT event thread RUNMABLE HfA = java.in.BufferedInputstrean il lne: 215

MK server connection ... WAITING HfA = java.in.BufferedInputStrean read line: 235
=2 JavazD Disposer WAITING e = java.io.DatalnputStream.readByte line: 241
o Local Descriptor Scanner TIMED_WAITING MjA = sun.rmi.transport. StreamRemoteall executeCall line
@ Main Thread RUMMABLE I = sun.rmi.server UnicastRef invoke line: 126
P RMI ConnectionExpirati... TIMED_WAITING N/A = com.sun. jre. remote.internal PRef irvoke line: not a
o RMI LeaseChecker TIMED_WAITING Mf& = javax.management.remote, rmi, RMIConnectionImpl_
o RMI RenewClean-{172,... TIMED_WAITING MjA = javax.management.remote, rmi, RMIConneckordRem:
& RMI TCP Accept-0 RUMMABLE HfA = com.jrockit, console, rms, RIMEConnection. invokeOm
5 RMI TCP Accept-7091 RUMNABLE [

= com.jrackit.console. rimx.RIMXConnectorMadel inval o,

b3

1-2

[O5] Cwverview | i5 MBean Browser D Memary | p& Threads Runtime L Triggers 13 Exception Count | () Methad Profiler

The Threads tab is divided into the following sections:

1. Thread Usage Graph—shows the number of available threads in use, by the application.

2. Live Threads—a listing of all live threads, along with such information as thread state. You
can add columns to this table to show information about, for example, lock name, lock owner
names and IDs, and wait count and time.

3. Stacktraces for selected threads— a table that shows the stacktrace for a thread when that
thread is selected on the Live Threads table.

4. Thread Usage Graph legend—this legend lets you define attributes that you wish to monitor.

Monitoring Thread Activity with the JRockit Management Console

Viewing Thread Usage Information

Viewing Thread Usage Information

The Thread Usage Graph (see Figure 1-2) plots the number of available threads in use, over
time, by an application.

Figure 1-2 Thread Usage graph

Thread Usage Graph

@
”{D [Thread count @

)

26:48 26:49 28:50 26:51 23:5'2H“72_Bli§:?_ 26:54 28:55 26:56 26:57 26:58 DFrEEZE scrolling
By default, upon Management Console startup, the Thread Usage Graph (marked 1 in
Figure 1-2) shows the attribute Thread count. The attributes are identified in the legend to the
right of the graph (marked 2 in Figure 1-2).

Please refer to Threads Tab Functionality for a description of the functions you can use with this
graph.

Viewing Live Threads Table

You can monitor live thread activity on the Live Threads table (Figure 1-3). This table shows all
live threads in use by an application. Along with the thread name, other information about live
threads is presented on the table, such as thread state and whether or not the thread is suspended.
You can add columns to this table to show information such as the lock name, the lock owner
names and IDs, the wait count and time, and so on. You can also use the Live Threads table to
display stacktraces for each live thread.

Monitoring Thread Activity with the JRockit Management Console 1-3

Introduction to Monitoring Threads

Figure 1-3 Live Threads Tahle

Live Threads Q:><h B2®
Live Threads
Filter column | Thread Mame v
Thread Mame Thread State Deadlocker #
5% Finalizer RUNMAELE M4
2 Framework Event Dispa... WAITING A
¥ GC Daeman TIMED_WAITING M{A
&® 1IDP Stale Descriptor De... TIMED_WAITING N/a
B IMAPT evert thread RUMNMABLE A
z’:“) M server conneckion ... WAITING A
z’:“) JavazD Disposer WAITING A
&2 Local Descriptor Scanner TIMED_WAITING NJa
8 Main Thread RUNMAELE M4
@’9 RMI ConnectionExpirati,.. TIMED_WAITING N/A
&® RMI Leasehecker TIMED_WAITING M{A
SBRMI RenewClean[172.... TIMED_WAITING M4 =
B rnar e aoo A s
£ >

By default, when the Management Console opens, the table shows the following information:
e Thread Name—the user-supplied name of the thread and name-related information.

e Thread State—identifies the thread’s state; for example, NEW, RUNNABLE,
BLOCKED, WAITING, TIMED_WAITING, and TERMINATED. For more
information on thread states, please refer to the Javadoc for java. lang.Thread.State.

o Deadlocked—identifies whether or not the thread is deadlocked. This value will be either
Yes, the tread is deadlocked, No, the thread is not deadlocked, or N/A, deadlock data is not
available.

Please refer to Threads Tab Functionality for a description of the functions you can use with this
table.

Data Columns in Live Threads Table Described

By default, the Live Threads table only displays three columns of data, but in fact, you can
display up to 13 data elements for each thread by selecting them on the Table Settings dialog
box.

1-4 Monitoring Thread Activity with the JRockit Management Console

Data Columns in Live Threads Table Described

The data elements you can add are listed in Table 1-1.

Table 1-1 Live Thread Data Elements

Data Element

Description

Thread Name

The name of the Thread.

Blocked Count

The total number of times that the thread blocked to enter or reenter
a monitor.

Blocked Time The approximate accumulated elapsed time (in milliseconds) that the
thread has blocked to enter or reenter a monitor since thread
contention monitoring was enabled.

Lock Name The string representation of the monitor lock that the thread is

blocked to enter or waiting to be notified through the Object.wait
method.

Lock Owner ID

The ID of the thread which holds the monitor lock of an object on
which the thread is blocking.

Lock Owner Name

The name of the thread which holds the monitor lock of an object on
which the thread is blocking.

Thread ID

The ID of the thread.

Thread State

The state of the thread.

Waited Count

The total number of times that the thread waited for notification.

Waited Time The approximate accumulated elapsed time (in milliseconds) the
thread has waited for notification since thread contention monitoring
was enabled.

Native True if the thread is executing native code via the Java Native
Interface (JNI).

Suspended Identifies whether or not the thread is suspended. This value will be
either Yes, the thread is suspended or No, the thread is not suspended.

Deadlocked Identifies whether or not the thread is deadlocked. This value will be

either Yes, the tread is deadlocked, No, the thread is not deadlocked,
or N/A, deadlock data is not available.

Monitoring Thread Activity with the JRockit Management Console 1-5

Introduction to Monitoring Threads

Finding Dead Locked Threads

The Threads tab contains a function for finding dead locked threads in runtime. Combining the
finding of dead locked threads and their stack traces provides a powerful way to find problems in
your applications.

To find dead locked threads
e Click the Dead Lock button (Figure 1-4).

Figure 1-4 Dead Lock button

—P:@

Note: When the Dead Lock button is active, it slows down your application. Turn off the button
as soon as you have found the dead locks.

Viewing Thread Stacktraces

You can display stacktraces for individual threads (Figure 1-5). The stacktrace displays a
snapshot of where in your application the computer is executing instructions, at which method it
is currently executing instructions. The Management Console takes these snap shots continuously
when the Threads tab is visible. If your application, for example, halts, you can use the
stacktraces to find out where in your application the computer was executing code and which
methods that was called before it stopped. The stacktrace can offer a hint of where to look in you
application if you get a deadlock.

To display a stacktrace for a thread
e Highlight a thread on the Live Threads table.

The Stacktraces for selected threads panel shows the stacktrace for the highlighted thread
(Figure 1-5).

1-6 Monitoring Thread Activity with the JRockit Management Console

Jumping to Application Source

Figure 1-5 Stack traces for selected threads panel

Stack traces for selected threads Q:><h @
Stack traces for selected threads 4:35:58 PM
= Main Thread [1] (RUNMABLE] ~

jrockit.net, SocketMativelO, readBytesPinned line: no
jrockit.net, SocketMativelQ, socketRead line: 31
java.net,SocketInputStream, socketReadd line: not &
java.net,SocketInputStream.read line: 129
java.io.BufferedInputStream. fill line: 218
java.io.BufferedInputStream.read line: 235
java.io.DatalnputStream. readByte line: 241
sun.rmi.transport, StreamPemoteCall executeCall line
sun.rmi.server . UnicastRef.invoke line: 126
com,sun.jm. remote.internalPRef invoke line: not a
javax.management.remote, rmi, RMIConnectionImpl _
javax.management.remote, rmi, RMIConnector$Rem:
com, jrockit, console, rjm:. R IMEConnection. invokeOm
com.jrockit. console. rimx. RIMXConnectorModel.invot

< >

Jumping to Application Source

If you are using the Management Console as an Eclipse plug-in, you can jump from the
Stacktraces for selected threads panel directly to the source code. A feature called
Jump-to-Source allows you not only to see the name of a “problem” class or method displayed in
the stacktrace, but lets you jump from the displayed method or class name directly to that class
or method’s source, where you can evaluate the code to see what might be causing the problem.
This feature extremely is useful in helping you locate and debug coding errors that are creating
runtime problems for your application.

To jump to the source code from the threads stacktrace
1. In the stacktrace, right-click the problem method or class to open a context menu.
2. Select Open Method or Open Type (depending upon what you are jumping from).

3. The source code appears in a separate editor.

Threads Tab Functionality

The functions you can perform on this tab are:
e You can add and remove attributes.

e You can freeze the graph to better study it. Click the Freeze scrolling option to freeze the
graph.

Monitoring Thread Activity with the JRockit Management Console 1-1

Introduction to Monitoring Threads

1-8

e You can filter columns in the Live Thread table.

e You can zoom-in to specific view on the graph, including a selected time period. You can
also use the Zoom function to redefine the X-axis to show different time increments.

e You can redefine the Y-axis to better show a spread of data.

e You can rename the titles on the graphs to better suit the attributes you are monitoring.

Monitoring Thread Activity with the JRockit Management Console

