
BEA JRockit
Mission
Control
JRockit Management
Console User Guide
(JRockit 5.0 R26)

5.0
August 2006

Copyright
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Interaction, BEA AquaLogic Interaction Analytics, BEA
AquaLogic Interaction Collaboration, BEA AquaLogic Interaction Content Services, BEA AquaLogic Interaction Data
Services, BEA AquaLogic Interaction Integration Services, BEA AquaLogic Interaction Process, BEA AquaLogic
Interaction Publisher, BEA AquaLogic Interaction Studio, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Kodo, BEA Liquid Data for
WebLogic, BEA Manager, BEA MessageQ, BEA SALT, BEA Service Architecture Leveraging Tuxedo, BEA WebLogic
Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA WebLogic Enterprise
Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA WebLogic Mobility Server,
BEA WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API,
BEA WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Real Time, BEA
WebLogic RFID Compliance Express, BEA WebLogic RFID Edge Server, BEA WebLogic RFID Enterprise Server,
BEA WebLogic Server Process Edition, BEA WebLogic SIP Server, BEA WebLogic WorkGroup Edition, BEA
Workshop for WebLogic Platform, BEA Workshop JSP, BEA Workshop JSP Editor, BEA Workshop Struts, BEA
Workshop Studio, Dev2Dev, Liquid Computing, and Think Liquid are trademarks of BEA Systems, Inc. Accelerated
Knowledge Transfer, AKT, BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA SOA
Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

Using BEA JRockit Management Console v

Contents

Introduction
What is New in the BEA JRockit Management Console. 1-1

JRockit Mission Control License Information. 1-2

Console Overhead . 1-2

About this User Guide . 1-2

Finding Additional Information about BEA JRockit . 1-2

Using the Management Console to Monitor Applications
Architectural Overview . 2-1

JMX Specification . 2-2

Platform MBeans . 2-2

Attributes Described . 2-3

Viewing the Attributes . 2-4

Icons Explained. 2-5

Attribute Subscriptions . 2-5

Viewing and Editing the Attribute Subscriptions . 2-6

Subscribing to Attributes . 2-6

Getting Started to Use the BEA JRockit Management Console
Connection to JRockit from the Management Console . 3-1

Starting the BEA JRockit Management Console . 3-2

Enable the Management Server . 3-2

Change the Port . 3-2

Using BEA JRockit Management Console vi

Advanced/Security Options. 3-2

Start the BEA JRockit Management Console . 3-3

Touring the BEA JRockit Management Console Interface
Management Console Tabs. 4-2

Administrator Mode . 4-3

Developer Mode . 4-3

Setting up the BEA JRockit Management Console
Managing Connections . 5-1

Creating a New Connection . 5-1

Creating a New Folder . 5-2

Connecting to BEA JRockit . 5-3

Disconnecting from BEA JRockit. 5-3

Renaming a Connection or Folder . 5-3

Removing a Connection or Folder . 5-3

Hiding Disconnected Connections . 5-4

About the Ignore List . 5-4

Enabling Console Settings. 5-4

Opening the Preferences Window . 5-4

Mode of Operation . 5-5

Graphics and E-mail Settings . 5-5

Auto Discovery Settings. 5-6

Persistence Directory . 5-6

Setting the Persistence Directory . 5-7

Clearing All Attribute Subscription Logs . 5-7

Communication Settings . 5-7

Console Settings File . 5-8

Using BEA JRockit Management Console vii

Locating consolesettings.xml . 5-8

Using the BEA JRockit Management Console
Viewing Summary Information. 6-1

Customizing the Displays . 6-3

Customizing Gauges and Bars . 6-3

Customizing Graphs . 6-3

Changing Graph Attributes . 6-4

Monitoring Memory Usage . 6-5

Memory Tab Functionality . 6-7

Monitoring Running Processes . 6-7

Viewing Information about JRockit . 6-8

Viewing and Creating Custom Alerts and Notifications . 6-10

About Notification Triggers . 6-11

Creating a New Rule . 6-11

Creating Your Own Notification Actions and Constraints . 6-15

Editing a Rule . 6-15

Using a Rule to Monitor a Connection. 6-15

Viewing a Notification Alert . 6-16

Removing a Rule from a Connection . 6-17

Removing a Rule from the Available Rules List . 6-17

Getting Method Profiling Data . 6-17

Starting and Stopping a Method Profiling Template . 6-18

Creating a New Method Profiling Template . 6-18

Removing a Method Profiling Template . 6-19

Adding a Method to a Template . 6-19

Removing a Method from a Template . 6-21

Method Profiling Settings. 6-21

viii Using BEA JRockit Management Console

Counting Exceptions in BEA JRockit . 6-21

Adding an Exception . 6-22

Starting, Stopping, and Removing an Exception Count . 6-22

Creating User Actions for the Plugin Menu in the Management
Console

Writing Your Own User Action . 7-1

Using Advanced Features of the Management Console
Historical Data. 8-1

Viewing Historical Data. 8-1

Thread Stack Dump. 8-2

Viewing the Thread Stack Dump . 8-3

Starting and Running the Console in Headless Mode. 8-3

Running a Headless Management Console . 8-4

Controlling the Console with Command Line Options . 8-4

JRA Recordings. 8-6

Creating a JRA Recording . 8-6

Adding Custom Notification Actions and Constraints
Creating a Custom Action . A-1

Creating and Implementing a Notification Action—an Example A-2

Create the Action (Step 2) . A-2

Implementing handleNotificationEvent() (Step 3). A-5

Creating the Action Editor (Step 4) . A-5

Implementing the Abstract Methods (Step 5) . A-6

Adding the New Action to the Deployment Entries (Step 6). A-7

Displaying the New Action Editor (Steps 7 and 8) . A-8

Creating a Custom Constraint . A-8

Using BEA JRockit Management Console ix

Index

x Using BEA JRockit Management Console

Using BEA JRockit Management Console 1-1

C H A P T E R 1

Introduction

The BEA JRockit Management Console that is described in this document is compatible with the
BEA JRockit 5.0 (R26) JVM; a JMX-compliant monitoring tool. It uses the extensive JMX
instrumentation of the Java virtual machine to provide information on performance and resource
consumption of applications running on BEA JRockit. This document contains procedures and
information on how to monitor your running applications.

Note: To monitor a Java application running on JRockit 5.0, you must use the Management
Console bundled with JRockit 5.0. Attaching a 1.4.2 console to a JRockit 5.0 process
does not work.

The following subjects are covered in this chapter:

What is New in the BEA JRockit Management Console

JRockit Mission Control License Information

Console Overhead

About this User Guide

Finding Additional Information about BEA JRockit

What is New in the BEA JRockit Management Console
The BEA JRockit Management Console is now part of the JRockit Mission Control 1.0
tools suite. This means that the Management Console is still free of charge, but parts
relating to the other tools in the suite, such as starting JRA (JRockit Runtime Analyzer)
recordings, will require a license.

In t roduct ion

1-2 Using BEA JRockit Management Console

For a complete list of the enhancements for this release, please see the Release Notes.

JRockit Mission Control License Information
The following license types are currently available:

Developer License—The Developer License is free and allows JRockit to run the tools for
one hour.

Enterprise License—The Enterprise License allows unlimited use of the tools. It is bound
to an IP address.

To download the license you need, please visit:

http://dev2dev.bea.com/jrockit/tools.html

Console Overhead
The extra cost of running the Management Console against a running BEA JRockit JVM is small
and can almost be disregarded. This provides for a low cost monitoring and profiling of your
application.

Note: We do not recommend that you run the Management Console on the same machine as
the JRockit you are monitoring. If you run the Management Console on the same
machine, the Management Console GUI will steal valuable resources from the
applications running on the JVM and you risk performance degradation as a result.

About this User Guide
This document shows you what information you can get from your Java Virtual Machine (JVM),
how to get that information, and how to interpret it. This user guide assumes that you know what
a JVM is.

Finding Additional Information about BEA JRockit
You can find additional information about BEA JRockit throughout the BEA JRockit
documentation set. For a complete list of available documents, please refer to the BEA JRockit
JDK Online Documentation

Using BEA JRockit Management Console 2-1

C H A P T E R 2

Using the Management Console to
Monitor Applications

One of the biggest changes in the Management Console compared to the previous release is the
addition of the JMX layer and the possibility of using MBeans. This chapter describes how the
JMX layer and the MBeans are used to monitor your running Java applications. You will find
information on the following subjects:

Architectural Overview

Attributes Described

Attribute Subscriptions

Architectural Overview
Figure 2-1 shows the architecture of the monitoring and management support. In the this release,
JRockit (JVM) is highly instrumented for monitoring and management. The platform
instrumentation provides information on performance, resource consumption, and the JVM and
logging settings of applications running on the Java platform.

JMX provides a standard way to instrument the Java runtime environment and applications; the
JMX Remote API allows that instrumentation to be accessed remotely. The instrumentation is
accessible through the JMX managed bean (MBean) interfaces, which are registered in the
management server. Applications can also create their own MBeans and register them in the
management server, which can serve as a single point for remote access. A JMX-compliant client,
such as the BEA JRockit Management Console, can connect to the platform management server
and manage the application (as well as the Java platform) using JMX technology.

Us ing the Management Conso le to Moni to r App l i ca t i ons

2-2 Using BEA JRockit Management Console

Figure 2-1 Architecture of the JRockit Monitoring and Management Support

JMX Specification
For a complete reference on the JMX standard, please see:

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/package-summary.html

Platform MBeans
The Java platform provides a set of platform MBeans for monitoring and managing the Java
virtual machine and the logging facility. Table 2-1 describes the MBeans included in this release:

Table 2-1 MBeans Included in BEA JRockit 5.0 (R26)

Platform MBean Description

java.lang.management.ClassLoadingMXBean Class loading system of the Java virtual
machine.

java.lang.management.CompilationMXBean Compilation system of the Java virtual
machine.

java.lang.management.MemoryMXBean Memory system of the Java virtual machine.

java.lang.management.MemoryManagerMXBean Memory manager in the Java virtual machine.

java.lang.management.MemoryPoolMXBean Memory pool in the Java virtual machine.

java.lang.management.GarbageCollectorMXBean Garbage collector in the Java virtual machine.

Att r ibutes Desc r ibed

Using BEA JRockit Management Console 2-3

JRockit has its own set of MBeans that inherit the functionality of the platform MBeans described
in Table 2-1. The correct names of the JRockit specific MBeans follow the same naming
convention, except for the jrockit extension; for example,
java.lang.management.ThreadMXBean is the same as
jrockit.management.ThreadMXBean.

An MBean is a managed object that follows the design patterns conforming to the JMX
specification. An MBean can represent a device, an application, or any resource that needs to be
managed. The management interface of an MBean comprises a set of readable and/or writable
attributes.

Each platform MBean has a set of attributes and operations such as memory usage, thread CPU
usage, garbage collection statistics, and so on. Some might also emit notifications. We will
explore a few platform MBeans in the following sections.

The Management Console can connect to the Management Server, which in turn allows you to
monitor your application and view all the JMX objects. You need to be connected to the
management server to view the objects. To start the Management Console, see Starting the BEA
JRockit Management Console.

Attributes Described
The registered MBeans and their attributes are all listed in the Attribute Subscription Browser
(Figure 2-3). Each attribute has its own set of attribute subscriptions that can be used to monitor
the different aspects of your application and connection.

java.lang.management.ThreadMXBean Threading system of the Java virtual machine.

java.lang.management.RuntimeMXBean Runtime system of the Java virtual machine.

java.lang.management.OperatingSystemMXBean Operating system on which the Java virtual
machine is running.

java.util.logging.LoggingMXBean Logging facility.

Table 2-1 MBeans Included in BEA JRockit 5.0 (R26)

Platform MBean Description

Us ing the Management Conso le to Moni to r App l i ca t i ons

2-4 Using BEA JRockit Management Console

Viewing the Attributes
1. Make sure you are connected to the management server (see Enable the Management Server)

and that you are connected to a JRockit instance (see Connection to JRockit from the
Management Console).

2. Click Connection > Browse Attributes.

The Attribute subscription browser appears, see Figure 2-2.

Figure 2-2 Attribute Subscription Browser for Local Host

The tree to the left shows all available MBeans and their subscriptions on the management
server.

MBean

Attribute
subscriptions

MBean
attributes

MBean
operations

At t r ibute Subsc r ipt ions

Using BEA JRockit Management Console 2-5

Icons Explained
Table 2-2 describes the available icons in the Attribute subscription browser.

Attribute Subscriptions
The registered MBeans are all listed in the Attribute Subscription Browser (Figure 2-3). Each
MBean has its own set of attribute subscriptions that can be used to monitor the different aspects
of your application and connection. By subscribing to the attributes, you have a powerful way to
monitor your application. You can subscribe to the attributes from many places in the
Management Console; for example, you can add subscription attributes to the graphs on the
Overview tab or you can select the Enable Persistence selection in the Attribute subscription
browser.

When you select the Enable Persistence option, the attributes are saved to a .csv file that is stored
where you have specified. See Persistence Directory for more information on the persistence file.

Table 2-2 Description of Icons

Icon Description

The MBean itself

A composite attribute. Open the folder and you display all attribute subscriptions for the
composite attribute.

An asynchronous JMX-notification based attribute. Open the folder and you display all
attribute subscriptions for the composite value delivered with a notification event.

Indicates that the attribute subscription is numerical.

Indicates that the attribute subscription is a synthetic numerical. A synthetic attribute
subscription does not exist on the server. It is either calculated on the client or derived from
other attribute subscriptions.

Indicates that the attribute subscription is neither synthetic nor numeric.

Us ing the Management Conso le to Moni to r App l i ca t i ons

2-6 Using BEA JRockit Management Console

Viewing and Editing the Attribute Subscriptions
1. Make sure you are connected to the management server (see Enable the Management Server)

and that you are connected to a JRockit instance (see Connecting to BEA JRockit).

2. Click Connection > Browse Attributes.
The Attribute subscription browser appears, see Figure 2-3.

Figure 2-3 Attributes Subscription Browser

The tree to the left shows all available MBeans on the management server. These MBeans
are organized according to their domains (see Table 2-2 for a description of the icons).

3. Select an attribute subscription you want to change or view.

You can change the properties of the attribute subscription under Attribute Subscription
Information. This information is saved in your settings file (see Persistence Directory for
more information on the settings file).

4. Close the window when you are done to return to the Management Console.

Subscribing to Attributes
1. Open the Attribute subscription browser window.

2. Select an attribute subscription.

3. Select Enable Persistence.

At t r ibute Subsc r ipt ions

Using BEA JRockit Management Console 2-7

4. Choose a different attribute or close the window.

Us ing the Management Conso le to Moni to r App l i ca t i ons

2-8 Using BEA JRockit Management Console

Using BEA JRockit Management Console 3-1

C H A P T E R 3

Getting Started to Use the BEA JRockit
Management Console

The Management Console described in this document is a JMX-compliant monitoring tool. It
uses the extensive JMX instrumentation of JRockit to provide information on performance and
resource consumption of applications running on the Java platform.

This section includes information on the following subjects:

Connection to JRockit from the Management Console

Starting the BEA JRockit Management Console

Connection to JRockit from the Management Console
With the BEA JRockit Management Console you monitor and control running instances of the
BEA JRockit JVM. It provides real-time information about the running Java application’s
characteristics, such as memory consumption and CPU usage. This information can be used both
during development, for example, to find where in an application’s life cycle it consumes more
memory, and in a deployed environment, for example, to monitor the system health of a running
application server.

The Management Console is connected to the running instance of JRockit via the management
server, as shown in Figure 2-1. The JRockit process contains JRockit, the running application,
and a management server. The machine running the Management Console is preferably on a
machine outside the machine running JRockit, that way it is the least intrusive. In Figure 2-1 the
Management Console is listening to the JRockit process on port 7091 (the default port).

Get t ing Star ted to Use the BEA JRock i t Management Conso le

3-2 Using BEA JRockit Management Console

Starting the BEA JRockit Management Console
The starting of the Management Console is a two-step process:

1. Enable the Management Server

2. Start the BEA JRockit Management Console

Enable the Management Server
Before the Management Console can connect to BEA JRockit JVM, the management server in
the VM needs to be started. The server is disabled by default. To enable the management server,
start BEA JRockit JVM with the -Xmanagement option, like this:

java -Xmanagement [your application]

Change the Port
When BEA JRockit JVM is started with the -Xmanagement option set, it should print out a short
message following the command line indicating that the management server is running and which
port it is using. You can optionally choose which port to use by setting, as a command line
argument, the port number in the port property:

java -Djrockit.managementserver.port=<portnumber>

The default port that the management server uses to connect is 7091. It is strongly recommended
that you block this port in your firewall, otherwise unauthorized users might access the
management server.

Advanced/Security Options
The -Xmanagement option is the same as using the following startup options from Sun
Microsystems:

-Dcom.sun.management.jmxremote.port=7091

-Dcom.sun.management.jmxremote.authenticate=false

-Dcom.sun.management.jmxremote.ssl=false

If you want to start the management server using alternate startup options, see:
http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html#remote for more information
on remote monitoring and management.

Sta r t ing the BEA JRock i t Management Conso le

Using BEA JRockit Management Console 3-3

Start the BEA JRockit Management Console
The Management Console executable is located in JRockit_JDK/bin, where JRockit_JDK is
the directory where the JDK is installed. If this directory is on your system path, you can start the
tool by simply typing console in a command (shell) prompt. Otherwise, you have to type the full
path to the executable file.

Start the BEA JRockit Management Console from the command prompt by typing:

console

You can also start the Management Console without using the launcher. From the command
prompt, type:

java -jar <jrockit-install-directory>/console/ManagementConsole.jar

When the console is started the Management Console window appears, see Figure 3-1.

Figure 3-1 The main Management Console window.

Get t ing Star ted to Use the BEA JRock i t Management Conso le

3-4 Using BEA JRockit Management Console

Using BEA JRockit Management Console 4-1

C H A P T E R 4

Touring the BEA JRockit Management
Console Interface

This section introduces the graphical elements of this interface (see Figure 4-1) and explains the
basic elements.

Figure 4-1 BEA JRockit JVM Management Console Window (when connected to JRockit)

Tour ing the BEA JRock i t Management Conso le In te r face

4-2 Using BEA JRockit Management Console

The BEA JRockit Management Console window is divided into two panes: a connection browser
tree in the left pane (Figure 4-2) and a tabbed information pane in the right (Figure 4-5).

In the connection browser (Figure 4-2) you administrate the different connections that you have
to running JRockits. The Ignore List contains connections to other JVMs that have either been set
up by you or detected in the network.

Figure 4-2 Connection Browser

The toolbar (Figure 4-3) contains the most used tools of the Management Console: new
connections folder, new connection, connect, disconnect, and preferences.

Note: You need to create a connection before you see a list of connections. See Creating a New
Connection for information on how to create a connection.

Figure 4-3 Management Console Toolbar

The status bar (Figure 4-4) at the bottom of the window displays informational messages and tool
tips when you hover over a toolbar button or select something in a menu. It also indicates whether
or not the BEA JRockit Management Console is connected to one or several BEA JRockit JVM
implementations.

Figure 4-4 Management Console Status Bar

To turn off the Status Bar, select View > Status Bar.

Management Console Tabs
You can run the Management Console in two different modes: Administrator (see Figure 4-5)
and Developer (see Figure 4-6) mode. The default mode is the Developer mode. To switch
between the two modes, see Mode of Operation.

Using BEA JRockit Management Console 4-3

Administrator Mode
The first tab shows an Overview of information for the selected BEA JRockit JVM connection(s)
(as highlighted in the connection browser pane). The other tabs contain detailed information
about different areas of the VM, as will be described in Using the BEA JRockit Management
Console.

Figure 4-5 Information Tabs (Administrator Mode)

Developer Mode
When the console is in the Developer mode, additional tabs appear, as shown in Figure 4-6. For
a full description of the different tabs, see Using the BEA JRockit Management Console.

Figure 4-6 Information Tabs (Developer Mode)

Tour ing the BEA JRock i t Management Conso le In te r face

4-4 Using BEA JRockit Management Console

Using BEA JRockit Management Console 5-1

C H A P T E R 5

Setting up the BEA JRockit

Management Console

Before you start running and using the Management Console, it is a good idea to set up the
different connections for the JVMs you want to view. The Management Console is best run
remotely on a computer connected to the management server. That way the console is the least
intrusive on the JRockit that is running in your system.

Configuring—or “setting up”—the Management Console includes these tasks:

Managing Connections—deciding which connections to make.

Enabling Console Settings—various settings about the console.

Console Settings File—saves for example, connection settings.

Managing Connections
The connection browser (Figure 4-2) displays a collection of saved connections to BEA JRockit
JVMs organized in folders. If necessary, you can add your own folders and connection nodes to
the tree structure.

Creating a New Connection
1. Select the folder in which the connection should be placed

2. Click Connection > New Connection.

The Add new connection dialog box (Figure 5-1) appears:

Se t t ing up the BEA JRock i t Management Conso le

5-2 Using BEA JRockit Management Console

Figure 5-1 Add New Connection Dialog Box

3. Type in a name of the server, the port (the port number of the enabled JMX server), and the
new connection in the appropriate text fields or retain the default values.

Note: If you have enabled auto discovery when you started the Management Console, you
will see a list of all running JRockit instances under Server name (for more
information see Auto Discovery Settings).

4. Type in a user name for the connection and a password. If you want to store the password in
the settings file, select the store option (the password is stored unencrypted).

5. Type in a connection name.

6. Select or deselect Connect now depending on if you want to monitor your JRockit VM at
once or not.

7. Click Add.

The connection will now appear in the Connections folder.

Creating a New Folder
1. Select the existing Connections folder.

2. Click Connection > New Folder.

The new folder appears in the connection browser (Figure 5-2).

Managing Connect i ons

Using BEA JRockit Management Console 5-3

Figure 5-2 New Folders

3. Select the new folder once to activate the folder, then click again to highlight the name.

4. Type in a name for the folder and press Enter.

Connecting to BEA JRockit
1. From your list of connections, select the BEA JRockit JVM connection you wish to activate.

To connect an entire folder, select the folder.

2. Click Connection > Connect.

When the connection is made, the status bar will read “Connected” and activity on the
console will commence.

Disconnecting from BEA JRockit
1. From your list of connections, select the BEA JRockit JVM connection you want to

disconnect.

To disconnect an entire folder, select the folder.

2. Click Connection > Disconnect.

The connection will be lost and the status bar will indicate that you’ve been disconnected.

Renaming a Connection or Folder
1. Select the BEA JRockit JVM connection or folder to rename.

2. Click once more to change the name.

3. Type in a new name and press Enter.

Removing a Connection or Folder
1. Select the connection subfolder you want to remove.

Se t t ing up the BEA JRock i t Management Conso le

5-4 Using BEA JRockit Management Console

2. Click Connection > Remove.

The selected connection disappears from the connection browser.

Hiding Disconnected Connections
Sometimes you only want to display information about the active BEA JRockit JVM connections.
To hide information about disconnected connections:

Click the Hide Disconnected button on the toolbar.

To show the information about disconnected connections again, simply deselect Hide
Disconnected in same way that you made the selection.

Note: If you have one connection only, it will be visible at all times.

About the Ignore List
In the Ignore List you hide those connections that you do not want to access.

Enabling Console Settings
The Management Console has different preferences that can be set. These preferences are
grouped into the following main groups: General, Persistence, and Communication (see
Figure 5-3). The Communication preference is only visible in developer mode.

This section is divided into the following subsections:

Mode of Operation

Graphics and E-mail Settings

Persistence Directory

Communication Settings

Opening the Preferences Window
Click Tools > Preferences.

The Preferences dialog box (Figure 5-3) appears.

Enab l ing Conso le Set t ings

Using BEA JRockit Management Console 5-5

Figure 5-3 Preferences Window

Mode of Operation
The Management Console can be run in two different operating modes depending on the type of
information you want to access:

Developer Mode: This is the default mode and provides more features (compared to the
Administrator mode) such as a rudimentary method profiler and exception count
functionality. Additional tabs are also available: the Method Profiler tab and the
Exception Count tab.

Administrator Mode: This mode is designed for system administrators who are mostly
interested in observing the state of the BEA JRockit JVM.

Graphics and E-mail Settings
In addition to setting the operation mode, you use General Preferences to change the following:

Turn on or off the anti-aliasing setting. This is good if you are running the Management
Console on a Linux system. Using anti-aliasing over a remote X connection over Linux
slows down the GUI considerably.

Change the default e-mail settings for the notification system, for example, the system
sends an e-mail to this address when a certain heap size is reached.

Se t t ing up the BEA JRock i t Management Conso le

5-6 Using BEA JRockit Management Console

Auto Discovery Settings
The Auto discovery option allows you to have the Management Console look for additional
JRockit instances in your network. By leaving Block auto discovery messages unselected, the
Management Console automatically searches for other JRockit instances in your network. The
JRockits that are found will appear in the Server name drop down list in the Add New
Connection window (see Figure 5-1).

Persistence Directory
The persistence directory is where the Management Console saves the persisted values of
attributes (in the attribute subscription log). Values that are saved are, for example, any changes
that you make to MBeans, i.e., name changes or such. The attribute subscription logs are saved
upon exiting the Management Console. If there, for some reason, arises problems with the logs,
you can clear the logs by deleting them and then have the Management Console create a new one
for you (see Clearing All Attribute Subscription Logs).

When you enable log rotation, you can set a size on the persisted log. By doing so, you let the
Management Console create a new log file as soon as the limit is reached. If you combine the log
rotation setting with a setting for the maximum log size, you will enable full log rotation, i.e. the
Management Console will delete the oldest log file as soon as the maximum log size limit is
reached, and you will always know how much space the log files take on your computer.

Figure 5-4 Preferences for Persistence Directory

Enab l ing Conso le Set t ings

Using BEA JRockit Management Console 5-7

Setting the Persistence Directory
1. Click Tools > Preferences.

2. Select the Persistence option.

3. Click Choose to find another location for the attribute subscription logs.

4. Click Yes when you are asked to disconnect JRockit connections.

5. Select a location for the files.

The default location for the files are <User_Home>\.ManagementConsole\data\.

6. Click Open.

Every time you exit the Management Console, a new aspect value log is saved in the
specified directory. It i not recommended to change these logs by hand.

7. Close the Preferences window.

Clearing All Attribute Subscription Logs
1. Click Tools > Preferences.

2. Select the Persistence option.

3. Click Clear all attribute subscription logs.

4. Click Yes when you are asked to disconnect JRockit connections.

5. Close the Preferences window.

Note: If you delete all persistence logs by clicking this button, you will also delete any other
files stored in the <User_Home>\.ManagementConsole\data\.

Communication Settings
The possibility to change communication settings is on if you have set the Management Console
to Developer mode (see Mode of Operation). The available communication setting is the default
update interval.

Se t t ing up the BEA JRock i t Management Conso le

5-8 Using BEA JRockit Management Console

Console Settings File
For the Management Console to remember your specific settings, for example, your connections,
it automatically creates a settings file when you exit. This file is called consolesettings.xml
and is located in the folder:

<user home directory>\.ManagementConsole

The exact path to the user home directory will vary on different platforms. On Windows it is
usually something like \Documents and Settings\<username>, for example:

C:\Documents and Settings\<username>\.ManagementConsole

If you do not currently see such a file in the above directory, one has probably not been created
yet. As soon as you exit the Management Console one is created.

WARNING: Do not edit the settings file by hand! Doing so may cause the Management
Console to crash on startup.

If you are experiencing problems with the settings file, you can always delete it and let the
Management Console create a new one for you.

Locating consolesettings.xml
The consolesettings.xml file is located in your home directory, under the
\ManagementConsole folder. If you are using Windows, the path should be:

C:\Documents and Settings\<user_name>\ManagementConsole

(where <user_name> is the user name under which you are running the Management Console)

If you are using Linux, the path will normally be:

/home/<user_name>/ManagementConsole

(where <user_name> is the user name under which you are running the Management Console)

Using BEA JRockit Management Console 6-1

C H A P T E R 6

Using the BEA JRockit Management
Console

To help you navigate in the Management Console, there are several information tabs (the number
of tabs depends on which mode of operation you are using, see Developer Mode). You can also
customize the display to fit your personal preferences. This section contains information on the
following subjects:

Viewing Summary Information

Customizing the Displays

Monitoring Memory Usage

Monitoring Running Processes

Viewing Information about JRockit

Viewing and Creating Custom Alerts and Notifications

Getting Method Profiling Data

Counting Exceptions in BEA JRockit

Viewing Summary Information
The Overview tab (Figure 6-1) shows a summary of selected connections. To select more than
one connection, select the folder containing the connections you want to view. They will appear
simultaneously. The page is divided into a “dashboard” with gauges in the upper part and graphs
in the lower part.

Using the BEA JRock i t Management Conso le

6-2 Using BEA JRockit Management Console

Note: The figure shows the Overview tab when the console is connected to JRockit, see
Creating a New Connection.

Figure 6-1 Overview Tab

The Used physical memory gauge shows the percentage of occupied physical memory on
the computer.

The Used Java heap gauge shows the percentage of occupied Java heap memory in the
VM.

The CPU usage gauge shows the usage rate of the processor—or the average processor
load—on a multi-processor machine.

The Heap usage chart shows the percentage of used Java heap over time.

The CPU usage chart shows the average usage rate of the processor(s) over time.

The Edit button allows you to edit the graph (see Changing Graph Attributes).

To study the graph a bit closer, you can freeze the monitoring by selecting Freeze.

Customiz ing the D isp lays

Using BEA JRockit Management Console 6-3

Customizing the Displays
You can customize the console and change the way some of the monitoring data is displayed, as
described in the following sections:

Customizing Gauges and Bars

Customizing Graphs

Customizing Gauges and Bars
The gauges and bars are graphical devices showing memory and processor usage (Figure 6-2).

Figure 6-2 Gauges and Bars

 To change from a gauge display to a bar display, right-click when pointing at the gauge
and select Bar display, as shown in Figure 6-3.

Figure 6-3 Gauge Context Menu (Bar Display Selected)

The selected gauge will appear as a bar (Figure 6-3).

To change back to a gauge, repeat the above, but select Gauge display.

To reset the watermark—which indicates the highest level measured so far—right-click
when pointing at the gauge or bar and click Reset Watermark.

Customizing Graphs
Graphs appear on the Management Console to show specified information about BEA JRockit.

Using the BEA JRock i t Management Conso le

6-4 Using BEA JRockit Management Console

To change a graph timeline on any of the charts, right-click the graph and choose: Show
Hours, Show Minutes, or Show Seconds.

To hide a graph click the vertical tab at the left of the diagram you want to hide. When
the diagram is hidden, the tab appears horizontally.

To view more graph attributes, click the Edit button, the Edit Graph Attributes window
appears (see Figure 6-4).

Figure 6-4 The Edit Graph Attributes window

Changing Graph Attributes
1. Click Edit. The Edit Graph Attributes window appears (see Figure 6-4).

In this window, you can do the following:

Moni to r ing Memory Usage

Using BEA JRockit Management Console 6-5

– Add attribute subscriptions to a graph. Highlight the attribute subscription and click
Add.

– Change color of an active attribute subscription.

– Remove an attribute subscription. Highlight the attribute subscription and click
Remove.

– Change the texts, such as the title of the graph, the X and Y labels, and the number of
characters in the index name.

– Set the Y-axis to an auto range, which is useful if you have attributes plotted over a
wide spectra.

2. Close the window when you are done with the settings.

If you have trouble seeing all attributes on a graph, try to rescale the attribute in the Edit Graph
Attribute window.

Monitoring Memory Usage
The Memory tab (Figure 6-5) shows information about the memory status of the system, as
shown.

Using the BEA JRock i t Management Conso le

6-6 Using BEA JRockit Management Console

Figure 6-5 Memory Tab

The Used physical memory gauge shows the percentage of machine memory in use.

The Used Java heap gauge shows the percentage of occupied Java heap.

The Heap usage chart shows the percentage of occupied heap over time. In this example,
you can see that the JVM performs a garbage collections when the cure dips.

At the bottom of the page the following text information is displayed (in kilobytes):

Used heap shows the size of the used Java heap.

Free heap shows the free Java heap size.

Total heap shows the size of the entire Java heap.

Used memory shows the amount of occupied physical memory.

Free memory shows the amount of free physical memory.

Total memory shows the total physical memory size.

Moni to r ing Running P rocesses

Using BEA JRockit Management Console 6-7

Total nursery shows the amount of the physical memory that is used for the nursery (only
visible when running a generational garbage collector)

The Edit button allows you to edit the graph (see Changing Graph Attributes).

To study the graph a bit closer, you can freeze the monitoring by selecting Freeze.

Memory Tab Functionality
You can manipulate certain memory aspects of the JVM from the Memory Tab. These aspects
are described in Table 6-1.

Monitoring Running Processes
The Processor tab (Figure 6-6) shows information about the running processor status of the
system.

Table 6-1 Memory Tab Functionality

Function Procedure

Manipulating the heap size You can manipulate the heap size in any of the following ways:
• Reset the size of your heap by entering a numeric value in the New heap size

field and click Change heap size. The size set here, expressed in megabytes,
represents the current heap size, not the maximum heap size.

• Make the current size the maximum heap size by selecting lock heapsize.

Please refer to the Configuration and Tuning Guide for heap size requirements.

Exiting on out of memory
errors

If you want to exit the JVM when JRockit encounters an Out of memory (OOM)
error, select Exit on OOM.

Changing the nursery size If you are running a generational garbage collector, you can reset the nursery size
by typing a new value in New nursery size and click Change nursery size. This
action is not setting the nursery size to exactly the size you specify, it only tries to
get as close as possible to the value.

Note: If you are not running a generational collector, these fields are disabled.

Please refer to the Configuration and Tuning Guide for nursery size requirements.

Using the BEA JRock i t Management Conso le

6-8 Using BEA JRockit Management Console

Figure 6-6 Processor Tab

The CPU usage chart shows the average processor load as a percentage over time.

The CPU load bar shows the average processor load in percentages of the overall load.

Number of processes shows the number of Java processes that currently are running.

CPU Load shows the overall processor load in percentage.

JVM Process Load shows the load of the BEA JRockit JVM process(es), expressed as a
percentage.

The Edit button allows you to edit the graph (see Changing Graph Attributes).

To study the graph a bit closer, you can freeze the monitoring by selecting Freeze.

Viewing Information about JRockit
The System tab (Figure 6-7) shows various information about the system status.

Viewing In fo rmat ion about JRock i t

Using BEA JRockit Management Console 6-9

Figure 6-7 System Tab

Garbage collector name shows which garbage collector the BEA JRockit JVM is running.
If you are using the default dynamic garbage collector (-Xgcprio), the garbage collector
name changes during the run of the JVM.

To learn more about garbage collection, please see the Memory Management Guide.

Garbage collector strategy shows which strategy the garbage collector used for the latest
collection.

Garbage collector heuristics shows which heuristics the garbage collector used for the
latest collection.

JRockit has been running for shows how long BEA JRockit has been running.

Management Console has been connected for shows how long the currently displayed
connection has been connected.

Total number of running threads shows the number of active threads at any given
time in the application run.

Process affinity contains buttons that correspond to processors. It displays a green icon if
BEA JRockit is running on this processor and a red icon if it is not. By clicking on a
processor, the BEA JRockit process can be bound to one or more processors. JRockit

Using the BEA JRock i t Management Conso le

6-10 Using BEA JRockit Management Console

might be released from such a connection by deselecting the button again. This is only a
suggested affinity, which means that the operating system might not follow the suggestion.

Note: A question mark is displayed until the processor information has had time to be
displayed. If you cannot see the information right away, please check back later.

Changing the process affinity is a feature that is only available when monitoring a JRockit
instance running on the Windows platform. The Process Affinity display is only activated
when the Management Console is in the Developer mode, described in Mode of Operation.

System properties shows which Java system properties that are loaded in the VM.

Viewing and Creating Custom Alerts and Notifications
The Notification tab (Figure 6-8) lists all available rules for the alerts that you have created; the
active rules for the specific connection are listed under Active rules for this connection (the right
pane). When you start using the Management Console, the list of available rules is empty. When
you exit the Management Console, the rules that you have created are saved in the console
settings file (see Console Settings File). You create your own notification rules by combining an
attribute subscription with a trigger, with optional constraints. The trigger alerts you with a
prescribed notification (see Creating a New Rule) as soon as the rule option is met.

Figure 6-8 Notification Tab (Rules Defined)

You can programatically create custom notification actions and constraints, which are also stored
in the console settings file. Once added, these actions and constraints will also appear on the
Notification tab of the Management Console. This document does not cover how to do that.

Viewing and Crea t ing Cus tom A le r ts and No t i f i cat ions

Using BEA JRockit Management Console 6-11

About Notification Triggers
A notification trigger can be a certain event, for example, that the connection to BEA JRockit
JVM was lost, or that an attribute reaches a certain value, for example, the used memory reaches
90%. A notification constraint can limit when a rule is triggered; for example, by not sending
alerts at night or on certain dates.

The notification action is how the alert is communicated to the user. It can be one of the
following:

E-mail shows an e-mail when the notification is sent to the specified address by using the
specified SMTP server.

System out action displays the notification in the command window where you started the
BEA JRockit Management Console.

Application alert displays the notification in an alert dialog in the Management Console.

Log to file logs the notification to the specified file.

Creating a New Rule
1. Select the Notification tab.

2. Click New.

The Select attribute subscription trigger dialog appears (Figure 6-9):

Using the BEA JRock i t Management Conso le

6-12 Using BEA JRockit Management Console

Figure 6-9 Select Trigger Dialog

3. Select a trigger (the individual triggers are described to the right in the window).

4. Enter a threshold in Max value below the trigger list (not required for all triggers).

5. Set a trigger flank:

– on trigger triggers the notification when the attribute reaches the trigger value from a
lower value (for example, if the trigger is 80 and the attribute value goes up from a
lower value, the trigger will set off).

– on recovery triggers the notification when the aspect reaches the trigger value from a
higher value (for example, if the trigger is 80 and the attribute value goes down from a
higher value, the trigger will set off).

6. Click Next.

The Select action dialog appears (Figure 6-10):

Viewing and Crea t ing Cus tom A le r ts and No t i f i cat ions

Using BEA JRockit Management Console 6-13

Figure 6-10 Select Action Dialog

7. Select an action and enter settings data, if required.

In this example, you need to set the name of the JRA file, how long the recording should
last, and the different sample statistics.

Now you have two choices:

a. decide that you rule is done, continue with step 12 in “Creating a New Rule”, or

b. decide that you need to add a constraint to your rule. Continue with step 8 in “Creating a
New Rule”.

8. Click Next.

The Select constraint(s) dialog appears (Figure 6-11):

Using the BEA JRock i t Management Conso le

6-14 Using BEA JRockit Management Console

Figure 6-11 Select Constraint Dialog

9. Select a constraint and click Add.

The constraint name will appear in the Active Constraints list.

10. Enter the specific constraint setting.

By selecting a date, day, or time, the event is only triggered on that specific date, day, or
time.

11. Click Next.

The Name your rule dialog appear (Figure 6-12)

Viewing and Crea t ing Cus tom A le r ts and No t i f i cat ions

Using BEA JRockit Management Console 6-15

Figure 6-12 Name Your Rule Dialog

12. Type in a descriptive name for the rule and click Finish.

The new rule appears in the All available rules list on the Notification tab, as shown in
Figure 6-8. If you want to use the rule for your connection, add it as described in Using a
Rule to Monitor a Connection.

Creating Your Own Notification Actions and Constraints
You can create your own notification actions and constraints that you can use for your rules, see
Adding Custom Notification Actions and Constraints for more information on how to do that.

Editing a Rule
1. In the All available rules list, select the rule to be edited and click Edit.

2. Follow step 3 in “Creating a New Rule” through step 12 in “Creating a New Rule” to edit your
rule.

Using a Rule to Monitor a Connection
1. Select the rule, in the Available rules list.

Using the BEA JRock i t Management Conso le

6-16 Using BEA JRockit Management Console

2. Click Add to Connection.

The rule appears in the Active rules for this connection list, as shown in Figure 6-13.

Figure 6-13 Rule Added to Active rules for This Connection List

Viewing a Notification Alert
1. Click View > Notification Alert.

A Notification Alerts window appears (see Figure 6-14 for an example of an alert that was
sent to the application):

Figure 6-14 Notification Alert Sent to Application

2. Select the notification, from the bottom half of the Notification Alerts window, you want to
view.

In the Notification Alerts window you can view how the notification was triggered, when,
for how long the condition was met, etc.

3. Click Close to close the window or Remove if you want to delete the selected alert.

Get t ing Method Pro f i l ing Data

Using BEA JRockit Management Console 6-17

Note: The application alerts are not saved when you exit the Management Console.

Removing a Rule from a Connection
1. Select the rule, in the Active rules for this connection list, you want to stop using.

2. Click Remove from Connection.

The rule now only appears in the Active rules for this connection list.

Removing a Rule from the Available Rules List
1. Select the rule to be removed from the All available rules list.

2. Click Remove.

A removal confirmation dialog box appears.

3. Click Yes.

The rule disappears from the All available rules list.

Getting Method Profiling Data
The Method Profiler tab (see Figure 6-15) contains templates that allows you to monitor method
execution in a non-intrusive way. Method profiling can provide information about the average
time spent in selected methods and the number of times methods are invoked. A template is a
collection of different monitoring methods (the Management Console is shipped with a Demo
Template). The template settings are stored in the console settings file (see Console Settings
File) and can be used with all connections.

Using the BEA JRock i t Management Conso le

6-18 Using BEA JRockit Management Console

Figure 6-15 Method Profiler tab

By creating your own method templates, you get a powerful tool to monitor you running
application’s methods and find out where in the code you might have glitches.

Starting and Stopping a Method Profiling Template
1. From the Select template list, select the template you want to start.

If you have not created a template yet, you can start the template called Demo Template.

2. Click Start or Stop.

The numbers in the Invocation count cells for each method begin to increment as method
calls are made. If you select Stop, this activity will cease.

Creating a New Method Profiling Template
1. Click New template.

The New template dialog box appears (Figure 6-16).

Get t ing Method Pro f i l ing Data

Using BEA JRockit Management Console 6-19

Figure 6-16 New Template Dialog Box

2. Type in a name for the new template in the text field.

3. Click OK.

You can now add methods to your own template.

Removing a Method Profiling Template
1. Select the template you wish to remove.

2. Click Remove.

A confirmation dialog box appears.

3. Click Yes.

Adding a Method to a Template
1. Select the template you wish to add methods to from the Select template list.

2. Click Add Method.

The Enter class name dialog appears (Figure 6-17).

Using the BEA JRock i t Management Conso le

6-20 Using BEA JRockit Management Console

Figure 6-17 Enter Class Name Dialog

3. Enter a fully qualified class name, for example, java.lang.Object in the text field and click
Next.

The Select method dialog appears (Figure 6-18):

Figure 6-18 Select Method Dialog

Count ing Except ions in BEA JRock i t

Using BEA JRockit Management Console 6-21

4. Select the methods to be added to the template and click Finish.

The method name will appear in the Method list for that template, as shown in
Figure 6-19.

Figure 6-19 Method Profiling Information List with Method Added

Removing a Method from a Template
1. From the Select template list, select the template you want to modify.

2. From the Method list, select the method(s) to be removed from the template.

3. Click Remove Method(s).

Method Profiling Settings
You can switch between using qualified method names or short names in the method profiling
table.

To enable invocation count, select the Invocation count checkbox at the bottom of the
page.

To enable timing, select Timing at the bottom of the page.

Counting Exceptions in BEA JRockit
The Exception Count tab (Figure 6-20) shows exceptions thrown in BEA JRockit JVM. It
counts the number of exceptions of a certain type. This information is helpful when you are
troubleshooting your Java application.

Using the BEA JRock i t Management Conso le

6-22 Using BEA JRockit Management Console

Figure 6-20 Exception Counting Tab

Adding an Exception
1. Enter the fully qualified name of the exception into the text field at the top of the page, e.g.,

“java.io.IOException”.

2. Choose whether or not all subclasses of that exception should be included in the count by
selecting or deselecting the Include all subclasses checkbox.

3. Click Add. You can only add subclasses of java.lang.Throwable which are loaded in BEA
JRockit JVM and you can only add exceptions while connected.

The exception should now be displayed in the table.

Starting, Stopping, and Removing an Exception Count
To start the exception count, click Start. The results should now appear next to the name
of the exception being counted. Similarly, to stop the exception count, click Stop.

To remove an exception from the count, select the exception to be removed and click
Remove.

Using BEA JRockit Management Console 7-1

C H A P T E R 7

Creating User Actions for the Plugin
Menu in the Management Console

This section describes how you can create your own user actions that you want to be shown in
the Plugin menu of the Management Console. There are two default user actions supplied with
the Management Console: the jrarecording user action, which initiates a JRA recording on the
connected JRockits, and the ctrlbreak, which sends ctrl-breaks to the connected JRockits.

The parameters specific to a certain user action can be configured either by using the GUI, or by
editing the Management Console settings file (see Console Settings File for more information
about that file).

Writing Your Own User Action
Writing your own user action is quite easy. First you create a subclass of AbstractUserAction
(see Listing 7-1), then you enter a deployment descriptor to the consolesettings.xml file (see
Listing 7-2).

Listing 7-1 demonstrates how to make a User Action that retrieves a thread stack dump from all
connected JRockits.

Listing 7-1 User action that retrieves a thread stack dump from all connected JRockits.

package com.example.useractions;
import java.io.IOException;
import java.util.*;

import com.jrockit.console.rjmx.CommonRJMXNames;

import com.jrockit.console.rjmx.RJMXConnectorModel;

Creat ing Use r Act ions fo r the P lug in Menu in the Management Conso le

7-2 Using BEA JRockit Management Console

import com.jrockit.console.useractions.AbstractUserAction;

/**

 * Test action to request a stackdump from JRockit.

 * (Just an example; no errorhandling or recovery.)

 *

 * @author Marcus Hirt

 */

public class StackDumpAction extends AbstractUserAction {

/**

 * @see

com.jrockit.console.useractions.UserAction#executeAction(List)

 */

public void executeAction(List connections) {

if (connections.size() > 0) {

Iterator iter = connections.iterator();

while (iter.hasNext()) {

RJMXConnectorModel cm = (RJMXConnectorModel)

iter.next();

if (cm.isConnected()) {

try

{

System.out.println(CommonRJMXNames.getThreadMXBean(cm).getThreadStackDump(

));

}

catch (IOException e)

{

// TODO Auto-generated catch

block

e.printStackTrace();

}

}

}

}

}

}

Wr i t ing Your Own Use r Act ion

Using BEA JRockit Management Console 7-3

Once the user action is created, you need to enter a deployment descriptor in the
consolesettings.xml, under the user_actions element. This procedure ensures that your
user action visible in the Plugin menu.

Listing 7-2 Deploying a user action

<user_action>
<user_action_class>com.example.useractions.StackDumpAction</user_action_class>
<user_action_name>mystackdump</user_action_name>
<user_action_menu_name>My Stack Dump Action</user_action_menu_name>
<user_action_description>Example. Gets a stackdump from every connected JRockit
and prints it to stdout.</user_action_description>
</user_action>

Creat ing Use r Act ions fo r the P lug in Menu in the Management Conso le

7-4 Using BEA JRockit Management Console

Using BEA JRockit Management Console 8-1

C H A P T E R 8

Using Advanced Features of the
Management Console

This section describes the more advanced features of the Management Console. Some of these
are only available when running in the Developer mode, described in Mode of Operation.

This section is divided into the following topics:

Historical Data

Thread Stack Dump

Starting and Running the Console in Headless Mode

JRA Recordings

Historical Data
The historical data window displays a chart where historical data for an attribute subscription can
be viewed. This is useful for observing trends over time and, for example, finding when a server
running with BEA JRockit JVM has its peak loads.

Viewing Historical Data
1. Select the connection for which you want to view historical data.

2. Click View > View Historical Data.

The Historical Data Chart appears (see Figure 8-1).

Using Advanced Features o f the Management Conso le

8-2 Using BEA JRockit Management Console

Figure 8-1 Historical Data Chart

3. Click the Edit button.

The Edit Graph Attributes window appears.

4. Add an attribute subscription to the Historical Data Graph (see Customizing Graphs for
information on how to change the graph.

5. Set a start date and start time for when you want to view the data.

6. Select a viewing range.

7. Scroll, using the arrow buttons below the graph, to find the time period of interest.

Thread Stack Dump
The thread stack dump contains a list of all running threads in BEA JRockit JVM with a method
call stack trace for each thread.

Star t ing and Runn ing the Conso le in Headless Mode

Using BEA JRockit Management Console 8-3

Viewing the Thread Stack Dump
1. Click Tools > View Thread Stack Dump.

The Thread Stack Dump window appears (see Figure 8-2).

Figure 8-2 Thread Stack Dump

2. Click Copy to Clipboard if you want to paste the stack dump info into; for example,
MSNotepad.

3. Click OK to close the file.

Starting and Running the Console in Headless Mode
You can run the Management Console, its notification subsystem, and the user actions without
using a GUI. This function is referred to running the console in a “headless” mode and can greatly
reduce the amount of system overhead required to run BEA JRockit.

Look into the information on:

Using Advanced Features o f the Management Conso le

8-4 Using BEA JRockit Management Console

Running a Headless Management Console

Controlling the Console with Command Line Options

Running a Headless Management Console
To run the Console in the headless mode, start the console as you normally would (see “Start the
BEA JRockit Management Console” for details) but add the -headless command-line option;
for example:
java -jar ManagementConsole.jar -headless

You can control the console’s behavior by using the command-line options described in
Table 8-1.

As it runs, the JVM statistics normally associated with the Management Console can be written
to file. The file to which statistics are written will be automatically created, but only if you choose
to save, or “persist” data. It will be created in a directory of your choosing.

You can control which JVM statistics are persisted by specifying them in an XML settings file.
The settings file is also created automatically, when you exit the application when it is running in
GUI mode. By default, it will be created in the <user_home>/.ManagementConsole directory.
You can specify another file at another location by using the -settings command-line option.

Controlling the Console with Command Line Options
You can use one of the command line options listed in Table 8-1to control the behavior of the
headless Management Console.

Note: These options are not specific to running the Console in the headless mode; they are also
valid when running it with a GUI.

Table 8-1 Headless Management Console Command-line Options

Option Description

-headless Starts the console in the headless mode (won't load GUI
related classes).

-settings <settings file> Starts the console using the specified settings file. If
you are starting in the GUI mode and this file doesn't
exist, it will be created when you close the application.

-connectall Makes all connections available in the settings file (that
is, previously added by using the GUI).

Star t ing and Runn ing the Conso le in Headless Mode

Using BEA JRockit Management Console 8-5

For example:

java -jar ManagementConsole.jar -headless -settings

 C:\Headless\consolesettings.xml -connectall -autoconnect -uptime 3600

 -useraction ctrlbreak 30 60

This example:

Starts the management console in headless mode (-headless).

Reads the specified settings file (-settings C:\Headless\consolesettings.xml).

Tries to connect to all previously specified JVMs (-connectall).

Actively searches for new connections using JDP (-autoconnect).

After an hour it will automatically shut down (-uptime 3600).

After running 30 seconds, it will start issuing control breaks to all connected JVMs every
minute (-useraction ctrlbreak 30 60).

All notification rules that have been previously added to specific connections will be active.

-connect <connection 1> <connection
2> <...>

Connects to the named connections available in the
settings file previously added by using the GUI.

-autoconnect Automatically connects to any JVM running the
management server with JDP turned on.

-uptime <time in seconds> Runs the Console for the specified amount of time, and
then automatically shut it down.

-useraction <name> <delay in seconds>
<period (optional)>

Runs the named user action after the specified delay. If
no period has been specified, the action will be run
once. If the period has been specified it will be run
every <period (optional)> seconds.

-version Prints the version of the ManagementConsole and then
exits.

Table 8-1 Headless Management Console Command-line Options

Using Advanced Features o f the Management Conso le

8-6 Using BEA JRockit Management Console

JRA Recordings
The BEA JRockit Runtime Analyzer (JRA) is an internal tool used by the BEA JRockit
development team to analyze runtime performance of BEA JRockit and Java applications
running on it. This tool provides information on internals in BEA JRockit that are useful to the
development team and BEA JRockit in general.

One part of the JRA runs inside the JVM, recording information about it and the Java application
currently running. You start the recording in the Management Console and view the recorded
result in the JRA. For information on how to use the JRA, see Using the BEA JRockit Runtime
Analyzer.

Creating a JRA Recording
1. Click Plugins > Start JRA Recording.

The JRA Recording dialog appears (Figure 8-3).

Figure 8-3 JRA Recording Dialog

2. Type a descriptive name for the recording in the File name field. This is the name by which
the file is saved.

3. Type in the duration of the recording.

4. Select the type(s) of recording you want.

– Enable method sampling

– Enable GC sampling

– Enable native sampling

JRA Record ings

Using BEA JRockit Management Console 8-7

5. Click Start recording.

The JRA Recording Progress box appears (Figure 8-4).

Figure 8-4 JRA Recording Progress Box

6. When the recording is complete, click Done.

You can cancel the recording at any time by clicking Abort.

Using Advanced Features o f the Management Conso le

8-8 Using BEA JRockit Management Console

Using BEA JRockit Management Console A-1

A P P E N D I X A

Adding Custom Notification Actions
and Constraints

After starting the Management Console for the first time, a file named consolesettings.xml
is created in the \ManagementConsole directory in your home directory. Among other entries,
this file contains the deployment entries for the default actions and constraints. You can create
custom notification actions and constraints for the Management Console, which are also stored
in this file. Once added, these actions and constraints will appear on the Notifications tab of the
Management Console.

This appendix includes information on the following subjects:

Creating a Custom Action

Creating and Implementing a Notification Action—an Example

Creating a Custom Constraint

Creating a Custom Action
The following procedure walks you through the steps necessary to create and implement a custom
action. In this procedure, you will be creating a print action.

1. Add the ManagementConsole.jar to your build path.

You can find this .jar in the <jrockit_home>/console directory.

2. Create a subclass of AbstractNotificationAction. This class will receive the
NotificationEvents.

3. Implement handleNotificationEvent:

Adding Custom No t i f i cat i on Ac t i ons and Const ra in ts

A-2 Using BEA JRockit Management Console

public void handleNotificationEvent(NotificationEvent event)

You can also override the exportToXml and initializeFromXml methods to store your
action settings to XML.

4. Create a subclass of AbstractNotificationActionEditor to create the graphical editor
used to edit the settings. If you have no editable settings for your action, you can just use the
com.jrockit.console.notification.ui.NotificationActionEditorEmpty.

5. Implement the abstract methods:

protected void storeToObject(Describable object);

protected void initializeEditor(Describable object);

6. Edit the consolesettings.xml file to include your new action under the
<registry_entry> element.

7. Add your new classes in the classpath.

8. Run the console.

The new action will be available in the new rule dialog box in the notification section of the
Management Console (see Creating a New Rule).

Creating and Implementing a Notification Action—an
Example

This section shows a real-life example of how an action is created and implemented. Once
implemented, a text field where you can enter a parameter will appear on the Notification tab.
The step numbers that appear in headings below refer to the steps in the procedures under
Creating a Custom Action.

Note: This example assumes that ManagementConsole.jar has been added to the build path
(Step 1).

Create the Action (Step 2)
First, create a subclass of AbstractNotificationAction, as shown in Listing A-1. This class
will receive the NotificationEvents.

Creat ing and Implement ing a Not i f i ca t i on Act i on—an Example

Using BEA JRockit Management Console A-3

Listing A-1 Building the Parameterized Action

package com.example.actions;

import org.w3c.dom.Element;

import com.jrockit.console.notification.*;

import com.jrockit.console.util.XmlToolkit;

/**

 * Test class showing how to build a parameterized action.

 *

 * @author Marcus Hirt

 */

public class MyTestAction extends AbstractNotificationAction

{

 private final static String TEST_SETTING = "test_param";

 public final static String DEFAULT_VALUE = "default value";

 private String m_parameter = DEFAULT_VALUE;

 /**

 * @see com.jrockit.console.notification.NotificationAction#

 * handleNotificationEvent(NotificationEvent)

 */

 public void handleNotificationEvent(NotificationEvent event)

 {

 System.out.println("===MyTestAction with param: " +

 getParameter() + "======");

 System.out.println(NotificationToolkit.prettyPrint(event));

 }

 /**

 * @see com.jrockit.console.util.XmlEnabled#exportToXml

 * (Element)

 */

 public void exportToXml(Element node)

 {

Adding Custom No t i f i cat i on Ac t i ons and Const ra in ts

A-4 Using BEA JRockit Management Console

 XmlToolkit.setSetting(node, TEST_SETTING, m_parameter);

 }

 /**

 * @see com.jrockit.console.util.XmlEnabled#initializeFromXml

 * (Element)

 */

 public void initializeFromXml(Element node)

 {

 m_parameter = XmlToolkit.getSetting(node, TEST_SETTING,

 DEFAULT_VALUE);

 }

 /**

 * Returns the parameter.

 *

 * @return some parameter.

 */

 public String getParameter()

 {

 return m_parameter;

 }

 /**

 * Sets the parameter.

 *

 * @param parameter the value to set the parameter to.

 */

 public void setParameter(String parameter)

 {

 m_parameter = parameter;

 }

}

Creat ing and Implement ing a Not i f i ca t i on Act i on—an Example

Using BEA JRockit Management Console A-5

Implementing handleNotificationEvent() (Step 3)
While creating the subclass of AbstractNotificationAction, you implemented the abstract
method handleNotificationEvent(). This method acts on the incoming event and this is
where you put the code representing the action you wish to take. From the event, you can access
the RJMXConnectorModule via getSource() from which you can access the functionality
available from the JVM.

Creating the Action Editor (Step 4)
Next, we create a subclass of AbstractNotificationActionEditor to create the graphical
editor used to edit the settings. Listing A-2 shows how this is done.

Listing A-2 Creating the Action Editor

package com.example.actions;

import java.awt.*;

import javax.swing.*;

import com.jrockit.console.notification.Describable;

import com.jrockit.console.notification.ui.AbstractNotification

 ActionEditor;

/**

* Simple test editor. Displays a text field where you can enter a

* parameter.

* (Note that you'd get better layout results using a GridbagLayout.)

*

* @author Marcus Hirt

*/

public class MyTestActionEditor extends AbstractNotificationActionEditor

{

 private JTextField m_parameterField = new

 JTextField(MyTestAction.DEFAULT_VALUE);

 /**

 * Constructor for MyTestActionEditor.

 */

Adding Custom No t i f i cat i on Ac t i ons and Const ra in ts

A-6 Using BEA JRockit Management Console

 public MyTestActionEditor()

 {

 super();

 setName("MyTestAction settings");

 add(new JLabel("Param:"), BorderLayout.WEST);

 add(m_parameterField, BorderLayout.CENTER);

 setMinimumSize(new Dimension(140,0));

 }

 /**

 * @see com.jrockit.console.notification.ui.Abstract

 * Editor#initializeEditor(com.jrockit.console.notification.

 * Describable)

 */

 protected void initializeEditor(Describable action)

 {

 m_parameterField.setText(((MyTestAction) action).

 getParameter());

 }

 /**

 * @see com.jrockit.console.notification.ui.AbstractEditor#

 * storeToObject(com.jrockit.console.notification.Describable)

 */

 protected void storeToObject(Describable action)

 {

 ((MyTestAction)action).setParameter(m_parameterField.

 getText());

 }

}

Implementing the Abstract Methods (Step 5)
When we created the action editor above, we implemented the abstract methods
initializeEditor() and storeToObject(), as shown in Table A-3.

Creat ing and Implement ing a Not i f i ca t i on Act i on—an Example

Using BEA JRockit Management Console A-7

Listing A-3 Implementing the Abstract Methods

 */
 protected void initializeEditor(Describable action)

 {

 m_parameterField.setText(((MyTestAction) action).

 getParameter());

 }

 /**

 * @see com.jrockit.console.notification.ui.AbstractEditor#

 * storeToObject(com.jrockit.console.notification.Describable)

 */

 protected void storeToObject(Describable action)

 {

 ((MyTestAction)action).setParameter(m_parameterField.

 getText());

 }

Adding the New Action to the Deployment Entries (Step 6)
Before the action and editor can appear on the Management Console, you need to add it to the
deployment entries in consolesettings.xml, under the <notification_actions> element,
as shown in Listing A-4.

Listing A-4 Adding the New Action to the Deployment Entries

<registry_entry>

 <entry_class>

 com.example.actions.MyTestAction

 </entry_class>

 <entry_name>

 Test action

 </entry_name>

 <entry_description>

 Test action, dynamically added.

Adding Custom No t i f i cat i on Ac t i ons and Const ra in ts

A-8 Using BEA JRockit Management Console

 </entry_description>

 <entry_editor_class>

 com.example.actions.MyTestActionEditor

 </entry_editor_class>

</registry_entry>

Displaying the New Action Editor (Steps 7 and 8)
Finally, add the new classes to your classpath and start the console. When you navigate to the
Notifications tab, you’ll see the new editor on the tab.

Creating a Custom Constraint
Create custom constraints by using the same procedure described in Creating a Custom Action,
except that you must implement:

boolean validate(NotificationEvent event)

instead of:

void handleNotificationEvent(NotificationEvent event)

Using BEA JRockit Management Console 1-1

Index

Symbols
.csv 2-5

A
adding an exception 6-22
Administrator mode 5-5
anti-aliasing 5-5
aspect value change

add constraint 6-14
on recovery 6-12
on trigger 6-12

asynchronous 2-5
attribute logs 5-6
attribute subscription 2-4, 2-5

browser 2-5
attribute subscription browser 2-5
attribute subscriptions

viewing 2-6
auto discovery 5-6

C
change scale of graph 6-4
changing graph attributes 6-4
command line options 8-4

autoconnect 8-5
connect 8-5
connectall 8-4
Djrockit.managementserver.port 3-2
headless 8-4
settings 8-4
uptime 8-5

useraction 8-5
version 8-5
-Xmanagement 3-2

composite attribute 2-5
connecting a connection to JRockit 5-3
connection browser 4-2, 5-1
connection node 5-1
connection time 6-9
console overhead 1-2
consolesettings 6-17
consolesettings.xml 5-8, A-1
CPU Load 6-8
CPU load bar 6-8
CPU usage 6-2
CPU usage chart 6-2, 6-8
customizing

display 6-3
gauges and bars 6-3
graphs 6-3

D
dash board 6-1
default port 3-2
Developer mode 5-5
developer mode 4-3
disconnecting a connection from JRockit 5-3
Djrockit.managementserver.port 3-2

E
edit graph 6-2
e-mail settings 5-5
Enable Persistence 2-5

1-2 Using BEA JRockit Management Console

Enable Persitence 2-6
enabling console settings 5-4
Exception Count 5-5
Exception Count tab 6-21

F
free heap 6-6
free memory 6-6
freeze 6-2

G
garbage collector heuristics 6-9
garbage collector name 6-9
garbage collector strategy 6-9
gauges 6-3
GC sampling 8-6
graphics setting 5-5
GUI slow 5-5

H
headless mode 8-3
heap usage chart 6-2, 6-6
hide a graph 6-4
hiding a disconnected connection 5-4
highest level measured 6-3
historical data 8-1

I
ignore list 5-4
information tabs

Memory tab 6-5
Notification tab 6-10, 6-15
Overview tab 6-1
Processor tab 6-7
System tab 6-8

J
Java heap memory 6-2
java.lang.management.ClassLoadingMXBean
2-2
java.lang.management.CompilationMXBean 2-2
java.lang.management.GarbageCollectorMXBe
an 2-2
java.lang.management.MemoryManagerMXBea
n 2-2
java.lang.management.MemoryMXBean 2-2
java.lang.management.MemoryPoolMXBean
2-2
java.lang.management.OperatingSystemMXBea
n 2-3
java.lang.management.RuntimeMXBean 2-3
java.lang.management.ThreadMXBean 2-3
java.util.logging.LoggingMXBean 2-3
JRA 8-6
JRA recording 8-6
JRockit uptime 6-9
jrockit.management.ThreadMXBean 2-3
JVM Process Load 6-8

L
log rotation 5-6

M
MBean 2-5
Memory tab 6-5
Method Profiler 5-5
Method Profiler tab 6-17
Method Profiling

Method Profiling Information List 6-21
settings 6-21
starting and stopping 6-18

method sampling 8-6
Method Templates 6-18

adding a method 6-19
creating a new template 6-18

Using BEA JRockit Management Console 1-3

Method Profiling Information List 6-21
removing 6-19
removing a method 6-21

method templates 6-18
mode of operation 5-5

N
native sampling 8-6
new connection 5-1
notification action 6-11

Application alert 6-11
creating a new rule 6-11
editing a rule 6-15
E-mail 6-11
Log to file 6-11
System out 6-11

notification constraint 6-11
Notification tab 6-10
notification trigger 6-11
Notifications tab A-1
number of processes 6-8
numerical attribute 2-5
nursery size 6-7

O
operation mode 5-5

Administrator mode 5-5
Developer mode 5-5

out of memory errors 6-7
overhead 1-2
Overview tab 6-1

P
persistence directory 5-6
persistence logs 5-6
platform mbeans 2-2
port number 3-2
process affinity 6-9
Processor tab 6-7

CPU load bar 6-8
CPU Usage 6-8

profiling overhead 1-2

R
remote X connection 5-5
removing a connection 5-3
removing a folder 5-3
renaming a connection 5-3
renaming a folder 5-3
running threads 6-9

S
security options 3-2
settings file 5-8
slow GUI 5-5
starting, stopping, and removing an exception
count 6-22
status bar 4-2
synthetic numerical attribute 2-5
System Properties 6-10
System tab 6-8

T
tabbed interface 4-2
thread stack dump 8-2

viewing 8-3
total heap 6-6
total memory 6-6
total nursery 6-7

U
used heap 6-6
used heap gauge 6-6
used Java heap gauge 6-2
used memory 6-6
used memory gauge 6-6
used physical memory guage 6-2

1-4 Using BEA JRockit Management Console

W
watermark 6-3

