
BEA JRockit 
Mission 
Control
JRockit Management 
Console User Guide 
(JRockit 1.4.2 R26)

1.4.2
August 2006



Copyright
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is 
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected 
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine 
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA 
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING 
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR 
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY 
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN 
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal, BEA 
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and 
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform, 
BEA AquaLogic Enterprise Security, BEA AquaLogic Interaction, BEA AquaLogic Interaction Analytics, BEA 
AquaLogic Interaction Collaboration, BEA AquaLogic Interaction Content Services, BEA AquaLogic Interaction Data 
Services, BEA AquaLogic Interaction Integration Services, BEA AquaLogic Interaction Process, BEA AquaLogic 
Interaction Publisher, BEA AquaLogic Interaction Studio, BEA AquaLogic Service Bus, BEA AquaLogic Service 
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Kodo, BEA Liquid Data for 
WebLogic, BEA Manager, BEA MessageQ, BEA SALT, BEA Service Architecture Leveraging Tuxedo, BEA WebLogic 
Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA WebLogic Enterprise 
Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic 
Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA WebLogic Mobility Server, 
BEA WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API, 
BEA WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Real Time, BEA 
WebLogic RFID Compliance Express, BEA WebLogic RFID Edge Server, BEA WebLogic RFID Enterprise Server, 
BEA WebLogic Server Process Edition, BEA WebLogic SIP Server, BEA WebLogic WorkGroup Edition, BEA 
Workshop for WebLogic Platform, BEA Workshop JSP, BEA Workshop JSP Editor, BEA Workshop Struts, BEA 
Workshop Studio, Dev2Dev, Liquid Computing, and Think Liquid are trademarks of BEA Systems, Inc. Accelerated 
Knowledge Transfer, AKT, BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA SOA 
Self Assessment are service marks of BEA Systems, Inc. 

All other names and marks are property of their respective owners.



Using BEA JRockit Management Console 1

Contents

Introduction
What’s In the User Guide?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

Information About JRockit Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Finding Additional Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Using the BEA JRockit Management Console
Console Overhead  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

Starting the Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

Enable the Management Server  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

Attaching a Management Client  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

Start the JRockit Management Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

Starting the Management Server with a Security Manager . . . . . . . . . . . . . . . . . 2-3

Set the Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

Change the Number of Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

Parts of the Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

Setting Up the Console  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6

Creating Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6

Creating a New Folder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7

Creating a New Connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7

Connecting a Connection to BEA JRockit JVM . . . . . . . . . . . . . . . . . . . . . . . . . 2-8

Disconnecting a Connection to the BEA JRockit JVM. . . . . . . . . . . . . . . . . . . . 2-8

Renaming a Connection or Folder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9



Using BEA JRockit Management Console 2

Removing a Connection or Folder  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10

Hiding Disconnected Connections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10

Enabling Console Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10

Setting the Operation Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10

Setting Other Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12

Customizing the Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13

Using the Settings File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15

Using the Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16

Information Tabs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16

Overview Tab  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16

Memory Tab  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17

Processor Tab  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19

System Tab  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20

Notification Tab. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22

View Historical Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-28

Using Advanced Features of the Console  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-30

View Thread Stack Dump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-31

Method Profiling Tab  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-31

Exception Counting Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-35

Creating a JRA Recording . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-37

Closing the Console. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-38

Starting and Running the Console in the Headless Mode . . . . . . . . . . . . . . . . . . . . . . . . 2-39

Running a Headless Management Console  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-39

Controlling the Console with Command-line Options. . . . . . . . . . . . . . . . . . . . . . . 2-39

Adding Custom Notification Actions and Constraints
Locating consolesettings.xml  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-1

Creating a Custom Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-2



Using BEA JRockit Management Console 3

Creating and Implementing an Action: Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-2

Create the Action (Step 1)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-3

Implementing handleNotificationEvent() (Step 2) . . . . . . . . . . . . . . . . . . . . . . . . . . .A-5

Creating the Action Editor (Step 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-5

Implementing the Abstract Methods (Step 4)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-7

Adding the New Action to the Deployment Entries (Step 5) . . . . . . . . . . . . . . . . . . .A-8

Displaying the New Action Editor (Steps 6 and 7)  . . . . . . . . . . . . . . . . . . . . . . . . . .A-8

Creating a Custom Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-8

Tracing Thread Activity With Stack Dumps
Monitoring Information in Stack Dumps  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1

Detecting Deadlocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-3

What is a “Lock Chain”? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-3

Lock Chain Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-4

Open Chains  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-4

Deadlock Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-4

Closed Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-4

Index



4 Using BEA JRockit Management Console



Using BEA JRockit Management Console 1-1

C H A P T E R 1

Introduction

Welcome to Using BEA JRockit Management Console. This document contains procedures and 
other information necessary for you to gain optimal performance from BEA Systems’ 
industry-leading Java Virtual Machine, BEA JRockit.

This Introduction includes information on the following subjects:

What’s In the User Guide?

Information About JRockit Compatibility

Finding Additional Information

What’s In the User Guide?
This user guide is organized as follows:

Using the BEA JRockit Management Console shows how to monitor and control running 
instances of BEA JRockit JVM using this graphic tool. The management console provides 
real-time information about the running application’s characteristics, which is helpful both 
during development and in a deployed environment

Adding Custom Notification Actions and Constraints shows you how to create custom 
notification actions and constraints for the Management Console.

Tracing Thread Activity With Stack Dumps shows how to extract thread activity 
information from stack traces.



In t roduct ion

1-2 Using BEA JRockit Management Console

Information About JRockit Compatibility
The JRockit Management Console, described in this document, is compatible with JRockit 1.4.2 
R26.2 and later.

Note: To monitor a Java application running on JRockit 1.4.2, you must use the Management 
Console bundled with JRockit 1.4.2. Attaching a 5.0 console to a JRockit 1.4.2 process 
does not work.

Finding Additional Information
You can find additional information about BEA JRockit throughout the BEA JRockit 
documentation set. For a complete list of available documents, please refer to the BEA JRockit 
JDK Online Documentation.



Using BEA JRockit Management Console 2-1

C H A P T E R 2

Using the BEA JRockit Management 
Console

The JRockit Management Console can be used to monitor and control running instances of BEA 
JRockit JVM. It provides real-time information about the running application’s characteristics, 
which can be used both during development—for example, to find where in an application’s life 
cycle it consumes more memory—and in a deployed environment—for example, to monitor the 
system health of a running application server.

This section includes information on the following subjects:

Console Overhead

Parts of the Console

Setting Up the Console

Using the Console

Creating a JRA Recording

Closing the Console

Starting and Running the Console in the Headless Mode

Console Overhead
The extra cost of running the JRockit Management Console against a running BEA JRockit JVM 
is very small and can almost be disregarded. This provides for a very low cost monitoring and 
profiling of your application.



Using  the  BEA JRock i t  Management  Conso le

2-2 Using BEA JRockit Management Console

Note: It is not recommended that you run the Management Console on the same machine as the 
VM you are monitoring. If you run the Console on the same machine as the BEA JRockit 
you are monitoring, the Management Console GUI will steal valuable resources from the 
application running on the JVM and you risk performance degradation as a result.

Starting the Console
Starting the Management Console is a two-step process:

1. Enable the Management Server

2. Start the JRockit Management Console

Additionally, you might want to also complete these tasks as part of the start-up process:

Set the Port

Change the Number of Connections

Enable the Management Server
Before the Management Console can connect to BEA JRockit JVM, the management server in 
the VM needs to be started. The server is disabled by default. To enable the management server, 
start BEA JRockit JVM with the -Xmanagement option:

-Xmanagement

Attaching a Management Client
You can use the class= and classpath= parameters with -Xmanagement to specify a 
management class and its classpath; for example:

-Xmanagement:class=<classname>,classpath=<path>

 This option loads the class and causes its empty constructor to be called early in JVM startup. 
From the constructor, a new thread is then started, from which your management client is run. 
You should ensure that the constructor returns control quickly because this call is made early in 
BEA JRockit startup.

Start the JRockit Management Console
Start the JRockit Management Console from the command prompt by typing:

console



Star t ing  the  Conso le

Using BEA JRockit Management Console 2-3

Note: Before starting the Management Console, you must specify the JRE path and the 
classpath to the .jar file.

You can also start the Management Console without using the launcher. At the command line, 
enter:

java -jar <jrockit-install-directory>/console/ManagementConsole.jar

Starting the Management Server with a Security Manager
If you try to start the management server (-Xmanagement option) with a security manager 
running (-Djava.security.manager option) the management server might not start and you 
will get error messages such as the following:

"ERROR: failed to initialize class com.jrockit.management.rmp.

   RmpSocketListener."

To allow the management server to run under a security manager, add the text shown in 
Listing 2-1 to your policy file. The standard location of the policy file is:

java.home/lib/security/java.policy (Linux)

java.home\lib\security\java.policy (Windows)

For more information on policy files please refer to:

http://java.sun.com/products/jdk/1.2/docs/guide/security/PolicyFiles.html

Listing 2-1   Code for Starting the Management Server with a Security Manager

/* --- Permissions for the JRockit management Server --- */

/* TODO 1: Locate the installed managementserver.jar in JAVA_HOME/jre/lib */

grant codeBase "file:C:/MY_JAVA_HOME/jre/lib/managementserver.jar" {

   /* TODO 2: Add permissions for your console client to connect.  */

   permission java.net.SocketPermission "my-console-client.com", "accept,

   resolve";

   /* TODO 3: Add permissions for the management server to listen for

      connections.  */

   permission java.net.SocketPermission "localhost:7090", "listen,

      resolve";



Using  the  BEA JRock i t  Management  Conso le

2-4 Using BEA JRockit Management Console

   /* Add permissions for management server standard operations.  */

   permission com.bea.jvm.ManagementPermission "createInstance";

   permission java.lang.RuntimePermission "modifyThreadGroup";

   permission java.lang.RuntimePermission "modifyThread";

   permission java.lang.RuntimePermission "shutdownHooks";

   permission java.util.PropertyPermission "*", "read, write";

 };

Set the Port 
When BEA JRockit JVM is started with the -Xmanagement option set—and provided the VM is 
not running in “quiet” mode—it should print out a short message following the command line 
indicating that the management server is running and which port it is using. You can optionally 
choose which port to use by setting, as a command line argument, the port number in the port 
property: 

java -Djrockit.managementserver.port=<portnumber> 

The default port the management server uses to connect is 7090. It is strongly recommended that 
you block this port in your firewall, otherwise unauthorized users might access the management 
server.

Change the Number of Connections
You can change the number of connections allowed to the server by setting the maxconnect 
property:

-Djrockit.managementserver.maxconnect=<maximum number of connections>

The default limit is four concurrent connections. While this should be enough for most users, you 
can change it, if necessary. The connection limit protects against Denial of Service (DoS) attacks 
by intruders.

Parts of the Console
When the JRockit Management Console window appears, the console has started, as shown in 
Figure 2-1:



Par ts  o f  the  Conso le

Using BEA JRockit Management Console 2-5

Figure 2-1 BEA JRockit JVM Management Console

The JRockit Management Console window is divided into two panes: a connection browser tree 
in the left pane (Figure 2-2) and a tabbed interface in the right pane (Figure 2-3).

Figure 2-2 Connection Browser

Figure 2-3 Information Tabs (Administrator Mode)

The first tab shows an Overview of information for the selected BEA JRockit JVM connection(s) 
(as highlighted in the connection browser pane). The other tabs contain detailed information 
about different areas of the VM, as will be described in Information Tabs.



Using  the  BEA JRock i t  Management  Conso le

2-6 Using BEA JRockit Management Console

Figure 2-3 shows the information tabs available in the console’s Administrator operation mode. 
When the console is in the Developer mode, additional tabs appear, as shown in Figure 2-4. These 
two operation modes are described in Setting the Operation Mode.

Figure 2-4 Information Tabs (Developer Mode)

The console includes a toolbar that contains command buttons for some of the menu options 
(Figure 2-5). To toggle the Toolbar on or off, on the View menu select Tool Bar.

Figure 2-5 Management Console Toolbar

The status bar (Figure 2-6) at the bottom of the window displays informational messages and tool 
tips when you hover over a toolbar button or select something in a menu. It also indicates whether 
the JRockit Management Console is connected to one or several BEA JRockit JVM 
implementations or not. To toggle the Status Bar on or off, on the View menu, select Status Bar.

Figure 2-6 Status Bar

Setting Up the Console
Once the console is running, you will need to configure it to suit your needs. Configuring—or 
“setting up”—the console includes these tasks:

Creating Connections

Enabling Console Settings

Creating Connections
The connection browser displays a collection of saved connections to BEA JRockit JVM 
organized in folders. If necessary, you can add your own folders and connection nodes to the tree 
structure. Active connections currently connected to a running VM are indicated by a green icon; 
those disconnected are indicated by a red icon.



Set t ing  Up the  Conso le

Using BEA JRockit Management Console 2-7

Creating a New Folder
To create your own folder in the connection browser, do the following:

1. Select an existing folder (for example, Connections) for which you want to create a subfolder.

2. Open the New Folder dialog box by doing one of the following:

– Choose Connection→New Folder. 

– Press the right mouse button to open a context menu and select New Folder. 

– Press Ctrl+N. 

– Click the New Folder button on the toolbar. 

The Add new folder dialog box (Figure 2-7) appears:

Figure 2-7 Add New Folder Dialog Box

3. Enter the name of the new folder in the text field and click OK.

The new folder will appear in the connection browser.

Creating a New Connection
To create a new connection to BEA JRockit JVM in the connection browser, do the following:

1. Select the folder in which the connection should be placed

2. Open the New Connection dialog box by doing one of the following:

– Open the Connection menu and select New Connection. 

– Press the right mouse button to open a context menu and select New Connection. 

– Click the New Connection button on the toolbar.

The Add new connection dialog box (Figure 2-8) appears:



Using  the  BEA JRock i t  Management  Conso le

2-8 Using BEA JRockit Management Console

Figure 2-8 Add New Connection Dialog Box

3. Enter the name of the server, the port and the new connection in the appropriate text fields or 
retain the default values. Then, select or deselect Connect now and click Add Connection.

Connecting a Connection to BEA JRockit JVM
To connect to BEA JRockit, do the following:

1. Select the BEA JRockit JVM connection to connect, a subfolder of connections to connect, 
or the folder Connections to connect all existing connections. 

2. Do one of the following to connect the selected connection(s):

– Open the Connection menu and select Connect. 

– Press the right mouse button to open a context menu and select Connect. 

– Press Ctrl+O.

– Click the Connect button on the toolbar. 

When the connection is made, the status bar will read “Connected” and activity on the 
console will commence.

Disconnecting a Connection to the BEA JRockit JVM
To disconnect a connection to the BEA JRockit JVM, do the following:



Set t ing  Up the  Conso le

Using BEA JRockit Management Console 2-9

1. Select the BEA JRockit JVM connection to connect, a subfolder of connections to connect, 
or the folder Connections to disconnect all existing connections. 

2. Do one of the following to disconnect the selected connection(s):

– Open the Connection menu and select Disconnect. 

– Press the right mouse button to open a context menu and select Disconnect. 

– Press Ctrl+D.

– Click the Disconnect button on the toolbar.

The connection will be lost and the status bar will indicate that you’ve been disconnected. 
All activity on the console will cease.

Renaming a Connection or Folder
To rename a connection or a connection folder , do the following:

1. Select the BEA JRockit JVM connection or folder to rename.

2. Do one of the following to rename the selected connection or folder:

– Open the Connection menu and select Properties. 

– Press the right mouse button to open a context menu and select Properties.

– Press F2.

– Click the name label of the item (see Note, below).

The Folder properties dialog box (Figure 2-9) appears:

Figure 2-9 Folder Properties Dialog Box

3. Enter a new name into the text field and click OK



Using  the  BEA JRock i t  Management  Conso le

2-10 Using BEA JRockit Management Console

Note: If you select the last option (click the item label), the Folder properties dialog box will 
not appear. Instead, the label itself will be enabled for direct editing. Simply type the new 
name over the old and click away from the label or press Enter.

Removing a Connection or Folder
To remove a connection or folder, do the following:

1. Select a connection or a subfolder to remove. 

2. Do one of the following to remove the selected item:

– Open the Connection menu and select Remove. 

– Press the right mouse button to open a context menu and select Remove. 

– Press Delete.

3. Click Yes on the confirmation dialog box that appears.

The selected item disappears from the connection browser.

Hiding Disconnected Connections
Sometimes you might want to show just information about active BEA JRockit JVM 
connections. To hide information about disconnected connections, do one of the following:

Open the View menu and select Hide Disconnected.

Click the Hide Disconnected button on the toolbar. 

To show the information about disconnected connections again, simply deselect Hide 
Disconnected in same way that you made the selection. 

Enabling Console Settings
This section describes how to enable various JRockit Management Console settings.

Setting the Operation Mode
The Management Console can be run in two different operating modes: 

Administrator Mode; This is the default mode, designed for system administrators who 
are interested in observing the state of the BEA JRockit JVM.



Set t ing  Up the  Conso le

Using BEA JRockit Management Console 2-11

Developer Mode; The developer mode is for developers and provides additional features 
such as a rudimentary method profiler and exception count functionality. Additional pages 
appearing in the developer mode are the Method Profiler page and the Exception Count 
page.

To set the operation mode, do the following:

1. From the Tools menu, select Preferences...

The Preferences dialog box (Figure 2-10) appears:

Figure 2-10 Preferences Menu (General Tab)

2. Click the Mode of operation drop-down control to display the list of operation modes 
(Figure 2-11).

Figure 2-11 List of Operation Modes

3. Select the mode you want to use and click OK.

Depending upon the mode to which you are toggling, the tabs on the console will change. 
See Figure 2-3 and Figure 2-4 for examples. 



Using  the  BEA JRock i t  Management  Conso le

2-12 Using BEA JRockit Management Console

Setting Other Preferences
In addition to setting the operation mode, you can use the Preferences dialog box to change these 
settings: 

Default e-mail settings for the notification system (please refer to Notification Tab).

Persistence behavior.

To change either of these values, open the Preferences dialog box from the Tools menu and 
proceed as described in the following sections:

Setting E-mail Preferences
To change e-mail preferences, do the following:

1. Select the General tab in the Preferences dialog box 

2. In the appropriate text fields, enter the new e-mail information (SMTP server and E-mail 
address), as shown in Figure 2-12.

3. Click OK

Figure 2-12 E-mail Preferences Panel

Enabling Persistence
Enabling the persistence means that aspect values are saved to a file and can be reviewed in charts 
by opening the View menu and selecting View Historical Data (View Historical Data).

Selecting Aspects to Persist To set persistence preferences, do the following:

1. Disconnect any BEA JRockit JVM connections.

Note: If you have not disconnected the connections and attempt to use this dialog box, you 
will be prompted to disconnect.

The checkboxes in the Aspects to persist panel become enabled (Figure 2-13):



Set t ing  Up the  Conso le

Using BEA JRockit Management Console 2-13

Figure 2-13 Aspects to Persist Panel

2. Select the aspects you want to persist. 

3. Click OK.

The selected aspect values are saved to a file that you can review in charts as described in 
“View Historical Data” on page 2-28.

Specifying the Persistence Directory In addition to setting preferences for the aspects to 
persist, you can also specify where to save the file that contains the aspect value (the “Persistence 
directory”). To do so:

1. Click Choose (next to the Persistence directory field).

If you are still connected to BEA JRockit JVM, you will be prompted to disconnect; click 
Yes to proceed. A standard Open dialog box appears.

2. Locate the directory where you want to save the file and click Open.

The Open dialog box closes, returning you to the Preferences dialog box.

3. Click OK.

The new Persistence directory will appear in that field.

Erasing Persistence Value Logs Finally, you can erase all persistence value logs by clicking 
Clear all aspect logs. You will see a confirmation message to which you should respond Yes. Be 
aware that, if you delete all persistence value logs by clicking this button, you will also delete any 
other files stored in the <USER_HOME>/console/data directory.

Customizing the Display
You can customize the console and change the way some of the monitoring data is displayed, as 
described in this section.



Using  the  BEA JRock i t  Management  Conso le

2-14 Using BEA JRockit Management Console

Customizing Gauges and Bars
The gauges and bars are graphical devices showing memory and processor usage (Figure 2-14).

Figure 2-14 Gauges and Bars

 To change from a gauge display to bar display, press the right mouse button when 
pointing at the gauge and select Bar display, as shown in Figure 2-15.

Figure 2-15 Gauge Context Menu (Bar Display Selected)

The selected gauge will appear as a bar (Figure 2-16).

Figure 2-16 Gauges and Bars with Gauge Converted to a Bar Display

To change back to a gauge, repeat the above, but select Gauge display.

To reset the watermark—which indicates the highest level measured so far—press the right 
mouse button when pointing at the gauge or bar and select Reset Watermark.

Customizing Charts
Charts appear on the JRockit Management Console to show specified information about BEA 
JRockit.



Set t ing  Up the  Conso le

Using BEA JRockit Management Console 2-15

To change scale on any of the charts, select the desired scale unit (seconds, minutes or 
hours) to the right of the chart (Figure 2-17) to be changed.

Figure 2-17 Range Selection Radio Buttons

To hide a chart click the vertical tab to the left of the diagram you want to hide. When the 
diagram is hidden, the tab appears horizontally (Figure 2-18).

Figure 2-18 Hiding a Chart

To show the diagram again, click the horizontal tab again.

Using the Settings File
When you exit the JRockit Management Console, your settings are automatically saved in a file 
called consolesettings.xml. This file is located in the folder:

<user home directory>\ManagementConsole

The exact path to the user home directory will vary on different platforms. On Windows it is 
usually something like \Documents and Settings\<username>; for example:

C:\Documents and Settings\jsmith\ManagementConsole

If no settings file exists in this directory it will be automatically created the next time the 
Management Console is closed.

Chart Displayed

Chart Hidden

Click this tab to 
display/hide the chart.



Using  the  BEA JRock i t  Management  Conso le

2-16 Using BEA JRockit Management Console

WARNING: Do not edit this file by hand! Doing so can make it unusable and may cause the 
Management Console to crash on startup. 

If you are experiencing problems with the settings file, you can always delete it and let the 
Management Console create a new one for you. 

Using the Console
The JRockit Management Console monitors different “aspects” of the BEA JRockit JVM. An 
aspect is data that can be measured; for example, used heap size or VM uptime.

Information Tabs
Information tabs are pages containing details about different areas of the monitored BEA JRockit 
JVM. Display a tab by clicking it or by accessing the View menu. This section describes the tabs 
available on the JRockit Management Console.

Overview Tab
The Overview tab (Figure 2-19) shows an overview of selected connections. To select more than 
one connection, select the folder containing the connections you want to view. They will appear 
simultaneously. The page is divided into a “dashboard” with gauges in the upper part and charts 
in the lower part.



Using  the  Conso le

Using BEA JRockit Management Console 2-17

Figure 2-19 Overview Tab

The Used Memory gauge shows the percentage of occupied physical memory on the 
computer.

The Used Heap gauge shows the percentage of occupied Java heap memory in the VM. 

The CPU Load bar shows the usage rate of the processor - or the average processor load 
on a multi-processor machine.

The Heap Usage chart shows the percentage of used Java heap over time. 

The CPU Usage chart shows the average usage rate of the processor(s) over time.

Memory Tab
The Memory tab (Figure 2-20) shows information about the memory status of the system, as 
shown.



Using  the  BEA JRock i t  Management  Conso le

2-18 Using BEA JRockit Management Console

Figure 2-20 Memory Tab

The Used Memory gauge shows the percentage of machine memory in use.

The Used Heap gauge shows the percentage of occupied Java heap. 

The Heap Usage chart shows the percentage of occupied heap over time. 

The Time in GC chart shows the average time spent on garbage collection over time. This 
chart is only updated when running the BEA JRockit JVM with the Parallel garbage 
collector, and an actual garbage collection occurs.

At the bottom of the page the following text information is displayed (in kilobytes):

Used Heap shows the occupied heap space.

Free Heap shows the free heap space.

Total Heap shows the heap size.



Using  the  Conso le

Using BEA JRockit Management Console 2-19

Used Memory shows the amount of occupied physical memory.

Free Memory shows the amount of free physical memory.

Total Memory shows the total physical memory size.

Memory Tab Functionality
You can manipulate certain memory aspects of the JVM from the Memory Tab. These aspects 
are described in Table 2-1

.

Processor Tab
The Processor tab (Figure 2-21) shows information about the processor status of the system.

Table 2-1  Memory Tab Functionality

Function Procedure

Manipulating the Heap 
Size

You can manipulate the heap size in any of the following ways:
• To reset the size of your heap, enter a numeric value in the New heap 

size field and click Suggest heap size. The size set here, expressed in 
megabytes, represents the current heap size, not the maximum heap 
size. 

• To make the current size the maximum heap size, click lock heap size. 

Please refer to Setting the Heap Size for heap size requirements.

Changing the Nursery Size If you are running a generational garbage collector, you can reset the 
nursery size by typing a new value in New nursery size and click Suggest 
nursery size.

Note: If you are not running a generational collector, these fields will 
appear disabled.

Please refer to Setting the Size of the Nursery for nursery size 
requirements.

Exiting on Out of Memory 
Errors

If you want to exit the JVM when you encounter an Out of memory (OOM) 
error, select Exit on OOM.



Using  the  BEA JRock i t  Management  Conso le

2-20 Using BEA JRockit Management Console

Figure 2-21 Processor Tab

The CPU Load bar shows the average processor load as a percentage. The overall load is 
displayed in green while the load of the JVM process(es) is displayed in yellow.

The CPU Usage chart shows the average processor load as a percentage over time. 

At the bottom of the page the following text information is displayed:

Number of Processors shows the number of processors.

CPU Load shows the overall processor load as a percentage.

JVM Process Load shows the load of the BEA JRockit JVM process(es), expressed as a 
percentage.

System Tab
The System tab (Figure 2-22) shows various information about the system status.



Using  the  Conso le

Using BEA JRockit Management Console 2-21

Figure 2-22 System Tab

Garbage Collection System shows which garbage collector the BEA JRockit JVM is 
running. If you are using a dynamic garbage collector (-Xgcprio), this value will change 
when the garbage collector changes. For more information on the dynamic garbage 
collector, please refer to The Dynamic Garbage Collector.

JRockit has been running for shows how long the BEA JRockit JVM has been running.

Management Console has been connected for shows how long the currently displayed 
connection has been connected. 

Total number of running threads shows the number of active threads at any given time 
in the application run.

Process Affinity contains buttons that correspond to processors. It displays a green icon if 
the BEA JRockit JVM is running on this processor and a red icon if it is not. By selecting 
a button, the BEA JRockit JVM process can be bound to one or more processors. The VM 
might be released from such a connection by deselecting the button again. This is only a 
suggested affinity: the operating system might not follow the suggestion. Changing the 
process affinity is a feature that is only available when monitoring a VM instance running 
on the Windows platform. The Process Affinity display is only activated when the 
Management Console is in the Developer mode, described in Setting the Operation Mode.



Using  the  BEA JRock i t  Management  Conso le

2-22 Using BEA JRockit Management Console

System Properties shows the Java System Properties loaded in the VM.

Notification Tab
Use the Notification tab (Figure 2-23) to define alerts that notify users when certain events occur. 
You can create your own notification rules based on different triggers, with optional constraints, 
that alert you with a prescribed notification. This section describes how to create these rules.

Creating Custom Actions and Constraints
After starting the Management Console for the first time, a file named consolesettings.xml 
will be created in the \ManagementConsole directory in your <user_home> directory. Among 
the contents of this file are the entries for the default actions and constraints. You can 
programatically create custom notification actions and constraints, which are also stored in this 
file. Once added, these actions and constraints will appear on the Notifications tab of the 
Management Console. For complete information on creating custom notification actions and 
constraints, see “Adding Custom Notification Actions and Constraints.”

Figure 2-23 Notification Tab (No Rules Defined)

A notification trigger can be a certain event, for example, that the connection to the BEA JRockit 
JVM was lost, or that an aspect reaches a certain value, for example, the used memory reaches 



Using  the  Conso le

Using BEA JRockit Management Console 2-23

95%. A notification constraint can limit when a rule is triggered for example by not sending alerts 
at night or on certain dates.

The notification action is how the alert is communicated to the user. It can be one of the 
following:

E-mail shows an e-mail when the notification is sent to the specified address using the 
specified SMTP server.

System out action displays the notification in the command window where you started the 
JRockit Management Console.

Application alert displays the notification in an alert dialog in the Management Console.

Log to file logs the notification to the specified file.

Creating a New Rule
Rules determine when and how to issue a notification. To create a new rule, do the following:

1. Click New Rule.

The Name your rule dialog box appears (Figure 2-24):

Figure 2-24 Name Your Rule Dialog Box

2. Enter the name of the new rule in Rule name: and click Next. 



Using  the  BEA JRock i t  Management  Conso le

2-24 Using BEA JRockit Management Console

The Select trigger dialog box appears (Figure 2-25):

Figure 2-25 Select Trigger Dialog Box

3. Select a trigger (the individual triggers are described in the right panel). 

4. Enter a threshold in the text box below the trigger list, if required (Figure 2-26; this box will 
be marked either Min value or Max value, depending on the type of trigger selected. 

Figure 2-26Trigger Threshold and Options Text Boxes

5. Select further options under the Option tab. For example, in Figure 2-26, you need to select 
what kind of aspect value change will trigger the notification:

Options tab 
opened



Using  the  Conso le

Using BEA JRockit Management Console 2-25

– on trigger, which triggers the notification when the aspect reaches the trigger value 
from a lower value (for example, if the trigger is 80 and the aspect value moves up 
from 75).

– on recovery, which triggers the notification when the aspect reaches the trigger value 
from a higher value (for example, if the trigger is 80 and the aspect value moves down 
from 85). 

6. Click Next.

The Select action dialog box appears (Figure 2-27):

Figure 2-27 Select action Dialog Box

7. Select an action and enter settings data, if required. 

8. If necessary, add a constraint to the rule (this step is optional; if you don’t want to add a 
constraint, go to step 8):

a. Click Next.

The Select constraint(s) dialog box appears (Figure 2-28):



Using  the  BEA JRock i t  Management  Conso le

2-26 Using BEA JRockit Management Console

Figure 2-28 Select constraint(s) Dialog Box

b. Select a constraint and click Add.

The constraint name will appear in the add list, as shown in Figure 2-29.

Figure 2-29 Constraint Added

c. Enter constraint settings in the text fields under the list of constraints (Figure 2-29).

9. Click Finish.

The new rule appears in the All available rules list on the Notification tab, as shown in 
Figure 2-30.

Constraint settings; 
Day of week selected.



Using  the  Conso le

Using BEA JRockit Management Console 2-27

Figure 2-30 New Rule in List

10. Add the rule to your connection as described in Add a Rule to BEA JRockit JVM.

Editing a Rule
To edit a rule, do the following:

1. In the Available rules list, select the rule to be edited and click Edit Rule.

2. Check the name of the rule, edit if necessary, and click Next.

3. Check the trigger and trigger settings, edit  if necessary, and click Next.

4. Check the action and the action settings and edit if necessary.

5. To continue editing the rule, do the following (optional; if you don’t want to add a constraint, 
go to step 6):

a. Click Next.

b. Check the constraints and the constraint settings and edit if necessary.

6. Click Finish.

Add a Rule to BEA JRockit JVM
To add a rule to the BEA JRockit JVM, do the following:

1. Select the rule to be added in the Available rules list.

2. Click Add to JRockit.

The rule appears in the Active rules for this connection list, as shown in Figure 2-31.



Using  the  BEA JRock i t  Management  Conso le

2-28 Using BEA JRockit Management Console

Figure 2-31 Rule Added to Active rules for This Connection List

Remove a Rule from the BEA JRockit JVM
To remove a rule from the BEA JRockit JVM, do the following:

1. Select the rule to be removed in the Active rules for this connection list.

2. Click Remove from JRockit.

The rule will now be removed from the Active rules for this connection list.

Remove a Rule
To remove a rule from the Available rules list, do the following:

1. Select the rule to be removed.

2. Click Remove Rule.

A removal confirmation dialog box appears.

3. Click Yes

4. The rule disappears from the Available rules list.

View Historical Data
The historical data window displays a chart where historical data for an aspect can be viewed. 
This is useful for observing trends over time and, for example, finding when a server running with 
a BEA JRockit JVM has its peak loads.

To open this window, do the following:

1. Select the connection for which you want to view data.

2. Open the View menu and select View Historical Data. 

3. Select the aspect for which you want to view historical data, as shown in Figure 2-32.



Using  the  Conso le

Using BEA JRockit Management Console 2-29

Figure 2-32 View Menu with Historical Data Submenu Open

Historical data for the selected aspect appears (Figure 2-33).



Using  the  BEA JRock i t  Management  Conso le

2-30 Using BEA JRockit Management Console

Figure 2-33 Historical Data (CPU Load Selected)

4. Navigate through time either by using the arrows or changing the start time in the Chart 
display settings.

To observe historical data, aspect data from a BEA JRockit JVM must first have been persisted, 
that is, written to file. See Setting Other Preferences to enable or disable persistence. The 
following aspects are possible to persist, and thus display, historical data for:

Used heap (as a percentage)

CPU load (as a percentage)

Average time spent garbage collecting (as a percentage)

As soon as data has been created by a connected connection, it is available for historical 
observation. 

Using Advanced Features of the Console
This section describes the more advanced features of the Management Console. Some of these 
are only available when running in the Developer mode, described in Setting the Operation Mode.



Using  the  Conso le

Using BEA JRockit Management Console 2-31

View Thread Stack Dump
The stack dump contains a list of all running threads in a BEA JRockit JVM with a method call 
stack trace for each thread.

To view the thread stack dump, open the Tool menu and select View Thread Stack Dump. A 
dialog box containing the stack dump appears (Figure 2-34).

Figure 2-34 Thread Stack Dump

Method Profiling Tab
Note: You must be in the developer operation mode before you can perform the tasks described 

in this section. For more information on entering the developer operation mode, see 
Setting the Operation Mode.

The Method Profiler tab allows the developer to monitor method execution in a non-intrusive 
way. The Method Profiler can provide information about the average time spent in selected 
methods and the number of times methods are invoked.

Method Templates are collections of methods that can be re-used on different connections. There 
is a Default template, but the user may also create new templates.



Using  the  BEA JRock i t  Management  Conso le

2-32 Using BEA JRockit Management Console

Adding a Method to a Template
To add a method to a template, do the following:

1. Select the template to be modified from the Select template list.

2. Click Add Method.

The Enter class name dialog box appears (Figure 2-35).

Figure 2-35 Enter Class Name Dialog Box

3. Enter a fully qualified class name, for example, java.util.Vector, in the text field and 
click Next.

The Select method dialog box appears (Figure 2-36):



Using  the  Conso le

Using BEA JRockit Management Console 2-33

Figure 2-36 Select Method Dialog Box

4. Select the methods to be added to the template and press Finish.

The method name will appear on the Method profiling information list, as shown in 
Figure 2-37.

Figure 2-37 Method Profiling Information List with Method Added

Removing a Method from a Template
To remove a method from a template, do the following:

1. From the Select template list, select the template you want to modify.



Using  the  BEA JRock i t  Management  Conso le

2-34 Using BEA JRockit Management Console

2. From the Method Profiling Information list, select the method(s) to be removed from the 
template.

3. Click Remove Method.

Creating a New Template
To create a new template, do the following:

1. Click New template.

The New template dialog box appears (Figure 2-38).

Figure 2-38 New Template Dialog Box

2. Enter a name for the new template in the text field.

3. Click OK.

Removing a Template
To remove a template, do the following:

1. From the Select template list select the template to be removed.

2. Click Remove.

A confirmation dialog box appears.

3. Click Yes.

Starting and Stopping Method Profiling
To start the method profiling, do the following:

1. From the Select template list, select the template to be started.

2. Click Start/Stop.



Using  the  Conso le

Using BEA JRockit Management Console 2-35

If you select Start, numbers in the Invocation count cells for each method begin to 
increment as method calls are made. If you select Stop, this activity will cease.

Method Profiling Settings
You can switch between using qualified method names or short names in the method profiling 
table. 

To enable invocation count, select the Invocation count checkbox at the bottom of the 
page.

To enable timing, select the Timing checkbox at the bottom of the page.

Exception Counting Tab
The Exception Count tab (Figure 2-39) shows exceptions thrown in the BEA JRockit JVM. It 
counts the number of exceptions of a certain type thrown. 



Using  the  BEA JRock i t  Management  Conso le

2-36 Using BEA JRockit Management Console

Figure 2-39 Exception Counting Tab

Add an Exception
To add an exception to observe, do the following:

1. Enter the fully qualified name of the exception into the text field at the top of the page, e.g., 
“java.io.IOException”.

2. Choose whether or not all subclasses of that exception should be included in the count by 
selecting or deselecting the Include subclasses checkbox.

3. Click Add. You can only add subclasses of java.lang.Throwable which are loaded in the 
BEA JRockit JVM and you can only add exceptions while connected.

The exception should now be displayed in the table. 



Creat ing  a  JRA  Reco rd ing

Using BEA JRockit Management Console 2-37

Starting, Stopping, and Removing an Exception Count
To start the exception count, click Start. The results should now appear next to the name of the 
exception being counted. Similarly, to stop the exception count, click Stop.

To remove an exception from the count, select the exception to be removed and click Remove.

Creating a JRA Recording
The BEA JRockit Runtime Analyzer (JRA) is an internal tool used by the BEA JRockit 
development team to analyze runtime performance of BEA JRockit and Java applications 
running on it. This tool provides information on internals in BEA JRockit that are useful to the 
development team. 

One part of the JRA runs inside the JVM, recording information about it and the Java application 
currently running. This tool is launched from the Management Console, as described in the 
following procedure. The recorded information is saved to a file which you can view in the 
analyzer tool, as described in Using the BEA JRockit Runtime Analyzer.

To make a recording, use this procedure:

Note: Before you can make a recording, you need to be working in the Developer mode, as 
described in “Setting the Operation Mode.”

1. Open the Plugins menu and select Make a JRA recording.

The JRA Recording dialog box appears (Figure 2-40).

Figure 2-40 JRA Recording Dialog Box

2. Type a descriptive name for the recording in the Filename field. This will be the name by 
which the file is saved.



Using  the  BEA JRock i t  Management  Conso le

2-38 Using BEA JRockit Management Console

Optionally, you can also select

– The duration of the recording (in seconds)

– Whether or not to use native samples.

3. Click Start recording.

The JRA Recording Progress box appears (Figure 2-41).

Figure 2-41 JRA Recording Progress Box

4. When the recording is complete, click Done.

To view the recording, use the analyzer tool, as described in Using the BEA JRockit Runtime 
Analyzer.

Closing the Console
To close the JRockit Management Console and disconnect all connections, open the Connection 
menu and select Exit. Clicking X in the top right corner of the window will also close the JRockit 
Management Console. 



Star t ing  and Running  the  Conso le  i n  the  Headless  Mode

Using BEA JRockit Management Console 2-39

Starting and Running the Console in the Headless Mode
You can run the Management Console, its notification subsystem, and the user actions without 
using a GUI. This function is referred to running the console in a “headless” mode and can greatly 
reduce the amount of system overhead required to run the Management Console.

Running a Headless Management Console
To run the Console in the headless mode, start the console as you normally would (see “Start the 
JRockit Management Console” for details) but add the -headless command-line option; for 
example:
java -jar ManagementConsole.jar -headless

You can control the console’s behavior by using the command-line options described in 
Table 2-2. 

As it runs, the JVM statistics normally associated with the Management Console can be written 
to file. The file to which statistics are written will be automatically created, but only if you choose 
to save, or “persist” data. It will be created in a directory of your choosing.

You can control which JVM statistics are persisted by specifying them in an XML settings file. 
The settings file is also created automatically, when you exit the application when it is running in 
GUI mode. By default, it will be created in the <user_home>/.ManagementConsole directory. 
You can specify another file at another location by using the -settings command-line option.

Controlling the Console with Command-line Options
You can use one of the command-line options listed in Table 2-2 to control the behavior of the 
headless Management Console.

Note: These options are not specific to running the Console in the headless mode; they are also 
valid when running it with a GUI. 

Table 2-2  Headless Management Console Command-line Options

Option Description

-headless Starts the console in the headless mode (won't 
load GUI related classes). 



Using  the  BEA JRock i t  Management  Conso le

2-40 Using BEA JRockit Management Console

For example: 

java -jar ManagementConsole.jar -headless -settings
   C:\Headless\consolesettings.xml -connectall -autoconnect -uptime 3600
   -useraction ctrlbreak 30 60

This example 

Starts the management console in headless mode (-headless).

Reads the specified settings file (-settings C:\Headless\consolesettings.xml).

Tries to connect to all previously specified JVMs (-connectall).

Actively searches for new connections using JDP (-autoconnect). 

-settings <settings file> Starts the console using the specified settings 
file. If you are starting in the GUI mode and this 
file doesn't exist, it will be created when you 
close the application. 

-connectall Connects to all connections in the setting file.

-connect <connection 1> <connection 2> 
<...>

Connects to the named connections available in 
the settings file previously added by using the 
GUI. 

-autoconnect Automatically connects to any JVM running the 
management server with JDP turned on. 

-uptime <time in seconds> Runs the Console for the specified amount of 
time, and then automatically shut it down. 

-jrockitmode Starts the Console in the JRockit Mode (only 
makes sense in GUI mode). 

-useraction <name> <delay in seconds> 
<period (optional)>

Runs the named user action after the specified 
delay. If no period has been specified, the action 
will be run once. If the period has been specified 
it will be run every <period (optional)> 
seconds. 

-version Prints the version of the ManagementConsole 
and then exits. 

Table 2-2  Headless Management Console Command-line Options



Star t ing  and Running  the  Conso le  i n  the  Headless  Mode

Using BEA JRockit Management Console 2-41

After running 30 seconds, it will start issuing control breaks to all connected JVMs every 
minute (-useraction ctrlbreak 30 60). 

After an hour it will automatically shut down (-uptime 3600). 

All notification rules that have been previously added to specific connections will be active. 



Using  the  BEA JRock i t  Management  Conso le

2-42 Using BEA JRockit Management Console



Using BEA JRockit Management Console A-1

A P P E N D I X A

Adding Custom Notification Actions 
and Constraints

After starting the BEA JRockit JVM Management Console for the first time, a file named 
consolesettings.xml will be created in the \ManagementConsole directory in your home 
directory. Among other entries, this file contains the deployment entries for the default actions 
and constraints. You can create custom notification actions and constraints for the Management 
Console, which are also stored in this file. Once added, these actions and constraints will appear 
on the Notifications tab of the Management Console.

This appendix includes information on the following subjects:

Locating consolesettings.xml

Creating a Custom Action

Creating and Implementing an Action: Example

Creating a Custom Constraint

Locating consolesettings.xml
The consolesettings.xml file is located in your home directory, under the 
\ManagementConsole folder. If you are using Windows, the path should be:

C:\Documents and Settings\<user_name>\ManagementConsole

(where <user_name> is the user name under which you are running the Management Console)

If you are using Linux, the path will normally be:

/home/<user_name>/ManagementConsole



Adding  Custom No t i f i cat i on  Ac t i ons  and  Const ra in ts

A-2 Using BEA JRockit Management Console

(where <user_name> is the user name under which you are running Management Console)

Creating a Custom Action
The following procedure walks you through the steps necessary to create and implement a custom 
action. In this procedure, you will be creating a print action.

1. Add the ManagementConsole.jar to your build path. 

You can find this .jar in the <jrockit_home>/console directory.

2. Create a subclass of AbstractNotificationAction. This class will receive the 
NotificationEvents. 

3. Implement handleNotificationEvent:

public void handleNotificationEvent(NotificationEvent event)

You can also override the exportToXml and initializeFromXml methods to store your 
action settings to XML.

4. Create a subclass of AbstractNotificationActionEditor to create the graphical editor 
used to edit the settings. If you have no editable settings for your action, you can just use the 
com.jrockit.console.notification.ui.NotificationActionEditorEmpty.

5. Implement the abstract methods:

protected void storeToObject(Describable object);

protected void initializeEditor(Describable object);

6. Edit the consolesettings.xml file to include your new action under the 
<registry_entry> element.

7. Add your new classes in the classpath.

8. Run the console.

The new action will be available in the new rule dialog box in the notification section of the 
Management Console (see Notification Tab).

Creating and Implementing an Action: Example
This section shows a real-life example of how an action is created and implemented. Once 
implemented, a text field where you can enter a parameter will appear on the Notification tab. 



Creat ing  and  Implement ing  an  Ac t i on :  Example

Using BEA JRockit Management Console A-3

The step numbers that appear in headings below refer to the steps in the procedures under 
Creating a Custom Action.

Note: This example assumes that ManagementConsole.jar has been added to the build path.

Create the Action (Step 1)
First, we create a subclass of AbstractNotificationAction, as shown in Listing A-1. This 
class will receive the NotificationEvents. 

Listing A-1   Building the Parameterized Action

package com.example.actions;

import org.w3c.dom.Element;

import com.jrockit.console.notification.*;

import com.jrockit.console.util.XmlToolkit;

/**

 * Test class showing how to build a parameterized action.

 * 

 * @author Marcus Hirt

 */

public class MyTestAction extends AbstractNotificationAction

{

   private final static String TEST_SETTING = "test_param";

   public final static String DEFAULT_VALUE = "default value";

   private String m_parameter = DEFAULT_VALUE;

      /**

       * @see com.jrockit.console.notification.NotificationAction#

       * handleNotificationEvent(NotificationEvent)

       */

   public void handleNotificationEvent(NotificationEvent event)

   {

      System.out.println("===MyTestAction with param: " +

         getParameter() + "======");



Adding  Custom No t i f i cat i on  Ac t i ons  and  Const ra in ts

A-4 Using BEA JRockit Management Console

      System.out.println(NotificationToolkit.prettyPrint(event));

   }

   /**

    * @see com.jrockit.console.util.XmlEnabled#exportToXml

    * (Element)

    */

   public void exportToXml(Element node)

   {

      XmlToolkit.setSetting(node, TEST_SETTING, m_parameter);

   }

      /**

       * @see com.jrockit.console.util.XmlEnabled#initializeFromXml

      * (Element)

      */

   public void initializeFromXml(Element node)

   {

      m_parameter = XmlToolkit.getSetting(node, TEST_SETTING,

         DEFAULT_VALUE);

   }

      /**

      * Returns the parameter.

      *

      * @return some parameter.

      */

   public String getParameter()

   {

      return m_parameter;

   }

   /**

   * Sets the parameter.

   *

   * @param parameter the value to set the parameter to.

   */

   public void setParameter(String parameter)



Creat ing  and  Implement ing  an  Ac t i on :  Example

Using BEA JRockit Management Console A-5

   {

      m_parameter = parameter;

   }

}

Implementing handleNotificationEvent() (Step 2)
While creating the subclass of AbstractNotificationAction created, we implemented 
handleNotificationEvent(), as shown in Listing A-2. This method acts on the incoming event.

Listing A-2   Implementing handleNotificationEvent

public class MyTestAction extends AbstractNotificationAction

{

   private final static String TEST_SETTING = "test_param";

   public final static String DEFAULT_VALUE = "default value";

   private String m_parameter = DEFAULT_VALUE;

      /**

       * @see com.jrockit.console.notification.NotificationAction#

       * handleNotificationEvent(NotificationEvent)

       */

   public void handleNotificationEvent(NotificationEvent event)

   {

Creating the Action Editor (Step 3)
Next, we create a subclass of AbstractNotificationActionEditor to create the graphical 
editor used to edit the settings. Listing A-3 shows how this is done.

Listing A-3   Creating the Action Editor

package com.example.actions;



Adding  Custom No t i f i cat i on  Ac t i ons  and  Const ra in ts

A-6 Using BEA JRockit Management Console

import java.awt.*;

import javax.swing.*;

import com.jrockit.console.notification.Describable;

import com.jrockit.console.notification.ui.AbstractNotification

   ActionEditor;

/**

* Simple test editor. Displays a text field where you can enter a

* parameter.

* (Note that you'd get better layout results using a GridbagLayout.)

*

* @author Marcus Hirt

*/

public class MyTestActionEditor extends AbstractNotificationActionEditor

{

   private JTextField m_parameterField = new

   JTextField(MyTestAction.DEFAULT_VALUE);

   /**

   * Constructor for MyTestActionEditor.

   */

   public MyTestActionEditor()

   {

      super();

      setName("MyTestAction settings");

      add(new JLabel("Param:"), BorderLayout.WEST);

      add(m_parameterField, BorderLayout.CENTER);

      setMinimumSize(new Dimension(140,0));

   }

   /**

   * @see com.jrockit.console.notification.ui.Abstract

   * Editor#initializeEditor(com.jrockit.console.notification.

   * Describable)

   */

   protected void initializeEditor(Describable action)

   {

      m_parameterField.setText(((MyTestAction) action).

         getParameter());



Creat ing  and  Implement ing  an  Ac t i on :  Example

Using BEA JRockit Management Console A-7

   }

   /**

   * @see com.jrockit.console.notification.ui.AbstractEditor#

   * storeToObject(com.jrockit.console.notification.Describable)

   */

   protected void storeToObject(Describable action)

   {

      ((MyTestAction)action).setParameter(m_parameterField.

         getText());

   }

}

Implementing the Abstract Methods (Step 4)
When we created the action editor above, we implemented the abstract methods 
initializeEditor() and storeToObject(), as shown in Table A-4.

Listing A-4   Implementing the Abstract Methods

  */
   protected void initializeEditor(Describable action)

   {

      m_parameterField.setText(((MyTestAction) action).

         getParameter());

   }

   /**

   * @see com.jrockit.console.notification.ui.AbstractEditor#

   * storeToObject(com.jrockit.console.notification.Describable)

   */

   protected void storeToObject(Describable action)

   {

      ((MyTestAction)action).setParameter(m_parameterField.

         getText());

   }



Adding  Custom No t i f i cat i on  Ac t i ons  and  Const ra in ts

A-8 Using BEA JRockit Management Console

Adding the New Action to the Deployment Entries (Step 5)
Before the action and editor can appear on the Management Console, you need to add it to the 
deployment entries in consolesettings.xml, under the <registry_entry> element, as 
shown in Listing A-5.

Listing A-5   Adding the New Action to the Deployment Entries

<registry_entry>

   <entry_class>

      com.company.actions.MyTestAction

   </entry_class>

   <entry_name>

      Test action

   </entry_name>

   <entry_description>

      Test action, dynamically added.

   </entry_description>

   <entry_editor_class>

      com.company.actions.MyTestActionEditor

   </entry_editor_class>

</registry_entry>

Displaying the New Action Editor (Steps 6 and 7)
Finally, add the new classes to your classpath and start the console. When you navigate to the 
Notifications tab, you’ll see the new editor on the tab.

Creating a Custom Constraint
Create custom constraints by using the same procedure described in Creating a Custom Action, 
except that you must implement:

boolean validate(NotificationEvent event)

instead of:

void handleNotificationEvent(NotificationEvent event)



Creat ing  a  Custom Const ra int

Using BEA JRockit Management Console A-9

as shown in Listing A-6:

Listing A-6   Code Change for Creating a Customer Constraint

public class MyTestAction extends AbstractNotificationAction

{

   private final static String TEST_SETTING = "test_param";

   public final static String DEFAULT_VALUE = "default value";

   private String m_parameter = DEFAULT_VALUE;

      /**

       * @see com.jrockit.console.notification.NotificationAction#

       * handleNotificationEvent(NotificationEvent)

       */

      boolean validate(NotificationEvent event)

   {



Adding  Custom No t i f i cat i on  Ac t i ons  and  Const ra in ts

A-10 Using BEA JRockit Management Console



Using BEA JRockit Management Console B-1

A P P E N D I X B

Tracing Thread Activity With Stack 
Dumps

Stack dumps, or “stack traces,” reveal information about an application’s thread activity that can 
help you diagnose problems and better optimize application and JVM performance; for example, 
stack dumps can show the occurrence of “deadlock” conditions, which can seriously impact 
application performance.

Stack dumps usually occur when certain errors are thrown. You can also create a stack dump by 
invoking a control break (usually by pressing Ctrl-Break or Ctrl-\; or SIGQUIT on Linux). 
This section provides information on working with stack dumps. It includes information on these 
subjects:

Monitoring Information in Stack Dumps

Detecting Deadlocks

Monitoring Information in Stack Dumps
When printing stack traces with Control-Break, BEA JRockit also shows the status of active 
locks (monitors). For each thread, BEA JRockit prints the following information if the thread is 
in a waiting state:

If the thread is trying to take a lock (to enter a synchronized block), but the lock is already held 
by another thread, this is indicated at the top of the stack trace, as “Blocked trying to get lock”.

If the thread is waiting on a notification on a lock (by calling Object.wait()), this is indicated 
at the top of the stack trace as “Waiting for notification”.



Trac ing  Th read  Ac t i v i t y  Wi th  S tack  Dumps

B-2 Using BEA JRockit Management Console

If the thread has taken any locks, this is shown in the stack trace. After a line in the stack trace 
describing a function call is a list of the locks taken by the thread in that function. This is 
described as ^-- Holding lock (where the ^-- serves as a reminder that the lock is taken in 
the function written above the line with the lock).

Caution: The lines with the lock information might not always be correct, due to compiler 
optimizations. This means two things:

If a thread, in the same function, takes first lock A and then lock B, the order in which they 
are printed is unspecified.

Sometimes, if a thread, in method foo() calls method bar(), and takes a lock A in bar(), 
the lock might be printed as being taken in foo().

Normally, this shouldn't be a problem. The order of the lock lines should never move much from 
their correct position. Also, lock lines will never be missing—you can be assured that all locks 
taken by a thread are shown in the stack dump.

The semantics for waiting (for notification) on an object in Java is somewhat complex. First you 
must take the lock for the object, and then you call wait() on that object. In the wait method, the 
lock is released before the thread actually goes to sleep waiting for a notification. When it 
receives a notification, wait re-takes the lock before returning. So, if a thread has taken a lock, 
and is waiting (for notification) on that lock, the line in the stack trace that describes when the 
lock was taken is not shown as “Holding lock,” but as “Lock released while waiting.” 

All locks are described as Classname@0xLockID[LockType]; for example:

java/lang/Object@0x105BDCC0[thin lock]

Where:

Classname@0xLockID describe the object the to which the lock belongs. The classname is 
an exact description, the fully qualified class name of the object. LockID, on the other 
hand, is a temporary ID which is only valid for a single thread stack dump. That is, you 
can trust that if a thread A holds a lock java/lang/Object@0x105BDCC0, and a thread B 
is waiting for a lock java/lang/Object@0x105BDCC0, in a single thread stack dump, then 
it is the same lock. If you do any subsequent stack dumps however, LockID is not 
comparable and, even if a thread holds the same lock, it might have a different LockID 
and, conversely, the same LockID does not guarantee that it holds the same lock. 

LockType describes the kind of BEA JRockit internal lock type the lock is. Currently, 
three kinds of locks exist: 



Detect ing  Dead locks

Using BEA JRockit Management Console B-3

– fat locks: locks with a history of contention, or that have been waited on (for 
notification).

– thin locks: locks that have no contention (several threads trying to take the lock 
simultaneously).

– recursive locks: locks occur when a thread takes a lock it already holds.

Listing B-7 shows an example of what a stack trace for a single thread can look like.

Listing B-7   Example: Stack Trace for a Single Thread

"Open T1" prio=5 id=0x680 tid=0x128 waiting
   -- Waiting for notification on: java/lang/Object@0x1060FFC8[fat lock]
   at jrockit/vm/Threads.waitForSignalWithTimeout(Native Method)@0x411E39C0
   at jrockit/vm/Locks.wait(Locks.java:1563)@0x411E3BE5
   at java/lang/Thread.sleep(Thread.java:244)@0x41211045
   ^-- Lock released while waiting: java/lang/Object@0x1060FFC8[fat lock]
   at test/Deadlock.loopForever(Deadlock.java:67)@0x412304FC
   at test/Deadlock$LockerThread.run(Deadlock.java:57)@0x4123042E
   ^-- Holding lock: java/lang/Object@0x105BDCC0[recursive]
   ^-- Holding lock: java/lang/Object@0x105BDCC0[thin lock]
   at java/lang/Thread.startThreadFromVM(Thread.java:1690)@0x411E5F73
   --- End of stack trace

Detecting Deadlocks 
After the normal stack dumps, BEA JRockit performs a deadlock detection. This is done by 
finding “lock chains” in the Java application. If a lock chain is found to be circular, the application 
is considered caught in a deadlock. 

What is a “Lock Chain”?
Although they appear somewhat complex, lock chains are fairly straightforward; they can be 
defined as follows: 

Threads A and B form a lock chain if Thread A holds a lock that Thread B is trying to 
take. If A is not trying to take a lock, then the lock chain is “open.” 

If A->B is a lock chain, and B->C is a lock chain, then A->B->C is a more complete lock 
chain.



Trac ing  Th read  Ac t i v i t y  Wi th  S tack  Dumps

B-4 Using BEA JRockit Management Console

If a Thread D doesn’t exist, meaning lock chain C->D doesn’t exist, then A->B->C is a 
complete and open lock chain.

Lock Chain Types
BEA JRockit analyzes the threads and forms complete lock chains. There are three possible kinds 
of lock chains: Open, Deadlock and Closed lock chains.

Open Chains
Open lock chains represent a straight dependency, as described in What is a “Lock Chain”?. 
Thread A is waiting for B which is waiting for C, and so on.

Deadlock Chains
Deadlock (circular) chains are similar to an open lock chain, except that the first element is 
waiting for the last element, in the simplest case: A is waiting for B, which is waiting for A. Note 
that a deadlocked chain has no head. BEA JRockit selects an arbitrary thread to display as the first 
element in the chain.

Closed Chains
Closed chains are like open chains, but the first element in the chain is waiting for a lock in 
another chain. This other chain may be open, deadlocked or closed. If the other chain is 
deadlocked, then the closed chain is also deadlocked. Note that the division between a closed 
chain and the other chain is arbitrary. 

Closed chains arise whenever two different threads are blocked trying to take the same lock; for 
example: Thread A holds lock Lock A while Thread B is waiting for Lock A; Thread C is also 
waiting for Lock A. BEA JRockit will interpret this in one of the following ways:

B > A as an open lock chain.

C > A as a closed lock chain.

C > A as an open lock chain.

B > A as a closed lock chain. 

The only item you might find of interest is if you have a deadlocked lockchain. This can never be 
resolved, and the application will be stuck waiting indefinitely. Also, if you have long (but open) 
lock chains, your application might be spending unnecessary time waiting for locks.



Using BEA JRockit Management Console 1-1

Index

A
Administrator mode 2-10
aspect 2-16
aspect value change 2-24

add constraint 2-26
on trigger 2-25

C
command line options

-Djrockit.managementserver.maxconnect 
2-4

-Djrockit.managementserver.port 2-4
-Xmanagement 2-2

consolesettings.xml 2-15
CPU Load bar 2-20
CPU Usage chart 2-20

D
Developer Mode 2-11

I
Information tabs

Overview tab 2-16

J
Java heap memory 2-17

M
Management Console 2-1, 2-16

adding an exception 2-36
Administrator mode 2-6
advanced features

Exception Count tab 2-35
Method Profiler tab 2-31
method templates 2-31

changing the number of connections 2-4
command buttons 2-6
connecting a connection to JRockit 2-8
connection browser 2-5, 2-6
connection node 2-6
CPU Load 2-20
CPU Load bar 2-17
CPU Usage chart 2-17
customizing 2-13

charts 2-14
gauges and bars 2-14
settings file 2-15

dash board 2-16
disconnecting a connection from JRockit 2-8
enabling console settings 2-10
enabling the management server 2-2
Exception Count 2-11
Free Heap 2-18
Free Memory 2-19
Garbage Collection System 2-21
Heap Usage chart 2-17, 2-18
hiding a disconnected connection 2-10
information tabs 2-16

Memory tab 2-17
Notification tab 2-22, 2-26
Processor tab 2-19
System tab 2-20



1-2 Using BEA JRockit Management Console

JRockit Uptime 2-21
JVM Process Load 2-20
Method Profiler 2-11
new connection 2-7
Number of Processors 2-20
parts of 2-4
Process Affinity 2-21
removing a connection 2-10
removing a folder 2-10
renaming a connection 2-9
renaming a folder 2-9
setting the operation mode 2-10
setting the port 2-4
setting up 2-6
starting 2-2
starting, stopping, and removing an 

exception count 2-37
status bar 2-6
System Properties 2-22
tabbed interface 2-5
thread stack dump 2-31

viewing 2-31
Time in GC chart 2-18
Total Heap 2-18
Total Memory 2-19
Used Heap 2-18
Used Heap gauge 2-17, 2-18
Used Memory 2-19
Used Memory gauge 2-18
Used Memory guage 2-17

management console
Developer mode 2-6

Method Profiling
Method Profiling Information List 2-33
settings 2-35
starting and stopping 2-34

Method Templates 2-31
adding a method 2-32
creating a new template 2-34
Method Profiling Information List 2-33
removing 2-34

removing a method 2-33

N
notification action 2-23

Application alert 2-23
creating a new rule 2-23
editing a rule 2-27
E-mail 2-23
Log to file 2-23
System out 2-23

notification constraint 2-23
notification trigger 2-22

O
operation mode 2-6, 2-10, 2-12

Developer mode 2-11

P
persistence value log 2-13
Processor tab

CPU Load 2-20
CPU Usage 2-20

T
thread stack dump

viewing 2-31


