
Oracle® WebLogic Portal
Client-Side Developer’s Guide

10g Release 3 (10.3)

September 2008

Oracle WebLogic Portal Client-Side Developer’s Guide, 10g Release 3 (10.3)

Copyright © 2008, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Oracle WebLogic Portal Client-Side Developer’s Guide III

Contents

1. What’s in this Guide?
The Disc Framework . 1-1

Toolkit Integration . 1-2

Portlet Publishing. 1-2

The REST API . 1-2

The Dynamic Visitor Tools Sample Application. 1-2

2. Client-Side Development Technologies
Brief History of Client-Side Technology and the Portal . 2-1

JavaScript . 2-2

Ajax . 2-2

Disc JavaScript Framework . 2-3

Portal-Aware XMLHttpRequest . 2-3

Web-Based and REST Style Services . 2-3

JSON . 2-4

Ajax Toolkits . 2-4

3. The WLP Disc Framework
What is Disc? . 3-1

Enabling Disc . 3-2

What Enabling Disc Means . 3-3

Enabling Disc in Workshop for WebLogic . 3-4

Enabling Disc in the Administration Console . 3-4

IV Oracle WebLogic Portal Client-Side Developer’s Guide

Using Disc Outside of a Portal . 3-5

Using Portal-Aware XMLHttpRequest to Retrieve Data from a Non-Portal Source 3-5

Use Case . 3-5

Example . 3-5

Using Portal-Aware XMLHttpRequest to Update Portlets . 3-6

Use Cases . 3-6

Example . 3-7

Using Context Objects. 3-7

Using Context Objects . 3-8

The XMLHttpRequest Interaction Engine. 3-10

Event Handling . 3-10

Logging . 3-11

Example . 3-12

4. Configuring JavaScript Libraries in a Portal Web Project
Creating a Simple Portal Project with Dojo . 4-1

The Hello World JSP Portlet with Dojo . 4-2

Creating a Render Dependencies File . 4-4

The Importance of Render Dependencies . 4-4

Creating the Sample Render Dependencies File . 4-5

5. Portlet Publishing
What is Portlet Publishing? . 5-1

What is the Portlet Publishing Service? . 5-2

Asking the Portlet Publishing Service for Portlets . 5-2

Consuming a Published Portlet . 5-3

Portlet Publishing URL Forms . 5-4

Library Instance URL Form . 5-4

Oracle WebLogic Portal Client-Side Developer’s Guide V

Desktop Instance URL Form . 5-4

Consuming Published Portlets . 5-5

Inline Frame Integration . 5-5

Example Code . 5-6

Embedding Static Portlets . 5-7

Embedding Dynamic Portlets . 5-7

DOM Integration. 5-8

Basic JavaScript Coding Steps . 5-8

Finding Portlet Publishing Context. 5-10

Finding the Publishing Context for a Library Instance Portlet 5-10

Finding the Publishing Context for a Desktop Instance Portlet 5-10

Advanced Topics . 5-11

Using the Decoration Parameter . 5-11

Integrating Multiple Portlets into the DOM . 5-12

Integrating Portlets from Multiple Publishing Contexts. 5-13

Portlet Publishing vs. WSRP . 5-13

Limitations . 5-15

6. Client-Side Development Best Practices
Namespacing . 6-1

A Simple Dynamic Table Portlet . 6-2

Namespace Collisions. 6-4

The Mysterious Table Row. 6-6

Avoiding Namespace Collisions . 6-7

Using Ad Hoc Namespacing. 6-8

Using Rewrite Tokens. 6-10

Parameterizing Your JavaScript Functions . 6-14

Using the Disc APIs . 6-16

VI Oracle WebLogic Portal Client-Side Developer’s Guide

7. The WebLogic Portal REST API
What is REST? . 7-1

What is the WLP REST API? . 7-2

WLP REST API Reference Documentation. 7-2

REST API Use Cases . 7-2

REST Command Format . 7-2

Commonly Used REST Command Parameters . 7-3

The webapp Parameter . 7-3

The format Parameter . 7-4

The scope Parameter . 7-4

REST Command Example . 7-6

Disabling REST Commands . 7-6

Basic WLP REST API Examples . 7-8

Retrieving Information About a Single Portlet . 7-8

Changing the Title of a Portlet . 7-9

Moving a Book or Page . 7-9

Using REST and Disc . 7-10

Constructing a REST URL Using Disc Context Objects . 7-10

Open and Send an XHR Request . 7-12

Handle the REST Response . 7-12

Putting It All Together . 7-14

Oracle WebLogic Portal Client-Side Developer’s Guide 1-1

C H A P T E R 1

What’s in this Guide?

In a world of increasingly interactive and responsive web applications, WebLogic Portals need
to be designed and updated to keep pace with users’ expectations. Browser-based development
technologies such as Ajax, JavaScript, and JSON, web-based APIs for accessing data,
architectural patterns such as REST, and client-side development toolkits such as Dojo, enable
web developers to create web applications that approach the responsiveness of desktop
applications.

This guide is for WLP developers who want to integrate these client-side technologies into their
portals. This chapter introduces the client-side portal development topics and technologies that
are discussed in this guide.

The Disc Framework

Toolkit Integration

Portlet Publishing

The REST API

The Dynamic Visitor Tools Sample Application

The Disc Framework
Disc (Dynamic Interface SCripting) is a client-side JavaScript framework that handles the
asynchronous updating of portlets, portlet events, and the retrieval of portal context objects.

To get started using Disc, see Chapter 3, “The WLP Disc Framework.”

What ’s in th is Gu ide?

1-2 Oracle WebLogic Portal Client-Side Developer’s Guide

Toolkit Integration
Client-side developers using WLP can use their favorite toolkits for DHTML and JavaScript
browser programming. Dojo, for instance, works well for portlet development and for extending
the WLP rendering framework.

To get started using Dojo for WLP client-side development, see Chapter 4, “Configuring
JavaScript Libraries in a Portal Web Project.”

Portlet Publishing
Traditionally, portlets have been confined to use within a portal application. This traditional
model required an application server running a portal container to surface portlets. Portlet
Publishing makes portlets available to any web application over HTTP and allows portlets to be
surfaced in any web page. With Portlet Publishing, for example, you can render portlets within a
Struts or Spring application, or any other non-portal web page.

For detailed information on publishing your portlets, see Chapter 5, “Portlet Publishing.”.

The REST API
WebLogic Portal provides a set of web-based, REST-style APIs for retrieving, modifying,
creating and updating portal data dynamically from the client.

For detailed information on the REST API, see Chapter 7, “The WebLogic Portal REST API.”

The Dynamic Visitor Tools Sample Application
To get a feel for the possibilities of client-side portal development, we recommend that you run
the Dynamic Visitor Tools (DVT) sample application. This sample application shows what is
possible using the Disc and REST APIs to create a rich, interactive web application.

For detailed information on running the DVT sample, see the WLP Samples Guide.

Note: The DVT Sample is not supported for a production environment. The DVT sample
is intended to illustrate how the WLP client-side development technologies such as the
REST and Disc APIs and the external Dojo toolkit, can be used to enhance a portal’s
interactivity.

../samples/index.html

Oracle WebLogic Portal Client-Side Developer’s Guide 2-1

C H A P T E R 2

Client-Side Development Technologies

This chapter introduces technologies and techniques that enable you to create rich and interactive
WebLogic Portal applications. Rich and interactive portal web applications use a variety of
technologies such as Ajax, JavaScript, JSON, and patterns such as REST. These technologies and
patterns allow developers to create increasingly responsive and highly interactive web
applications.

This chapter includes these topics:

Brief History of Client-Side Technology and the Portal

JavaScript

Ajax

Portal-Aware XMLHttpRequest

Web-Based and REST Style Services

Disc JavaScript Framework

JSON

Ajax Toolkits

Brief History of Client-Side Technology and the Portal
Since version 9.2, WebLogic Portal has incorporated Ajax (Asynchronous JavaScript and XML)
technology to enable the asynchronous rendering of individual portlets. In version 10.0, the

Cl ient-S ide Deve lopment Techno log ies

2-2 Oracle WebLogic Portal Client-Side Developer’s Guide

asynchronous desktop feature was added, enabling portal administrators to enable asynchronous
rendering for an entire desktop, simply by setting a property on the portal desktop.

Table 2-1 summarizes the history of asynchronous capability in WebLogic Portal.

JavaScript
JavaScript is used to enable client-side interactivity. JavaScript is a compact, loosely typed
language that is commonly used by web developers. JavaScript has become widely adopted in
recent years largely because new frameworks and best practices have proliferated. The
emergence of JavaScript toolkits, such as Dojo, make client-side development easier while hiding
many of the problems surrounding cross-browser compatibility.

Ajax
Ajax refers to a collection of standards-based and open source browser technologies. While a
classic web application refreshes the entire web page with each response from the server, an
Ajax-enabled web application allows small amounts of data and UI markup to be returned from
the server and rendered in the browser without refreshing the entire page. To the user, an
Ajax-enabled web application responds more smoothly and quickly than a traditional web
application.

Table 2-1 History of Asynchronous Portals

WebLogic Portal Version Support for Asynchrony

9.2 Individual portlets can be rendered asynchronously by setting a portlet
property. You can select either IFrames or Ajax as the integration
technology. For details, see Asynchronous Portlet Content Rendering in
the Portlet Development Guide.

10.0 In addition to the 9.2 features, entire portal desktops could be rendered
asynchronously by setting the Asynchronous Mode of a desktop to
“enabled.” Desktop asynchrony uses Ajax technology. For details, see
Asynchronous Desktop Rendering in the Portal Development Guide.

10.2 and later versions Users can write their own asynchronous browser code using Ajax,
JavaScript, the WLP Disc framework, and related technologies, as
explained in this guide.

http://www.dojotoolkit.org
../portlets/performance.html#wp1027903
../portals/optimize.html#wp1001654

Disc JavaSc r ip t F ramework

Oracle WebLogic Portal Client-Side Developer’s Guide 2-3

At the heart of Ajax is the XMLHttpRequest object. Often referred to as XHR, XMLHttpRequest
is an HTTP request object that makes asynchronous (typically), incremental requests to the
server. The JavaScript API for XMLHttpRequest is a key component of Ajax-style web
applications. This object allows the browser to respond to user events without reloading the entire
page. For instance, a web application that allows users to explore folders in a content repository
can be designed so that only the explorer part of the interface refreshes each time the user opens
a folder.

As explained in “Portal-Aware XMLHttpRequest” on page 2-3, the standard XMLHttpRequest
object is not always the best solution in a portal environment.

Disc JavaScript Framework
Disc is a WLP-specific, public JavaScript API for portlet development and interaction with the
WLP rendering framework. Disc helps you write Ajax-enabled portlets and enable richly
interactive web application features for your portal. See Chapter 3, “The WLP Disc Framework.”

Portal-Aware XMLHttpRequest
When standard XHR objects are used in a portal environment, certain rendering, interportlet
communication, and other problems can occur. XHR calls are scoped to an entire portal, while
portal-aware XHR calls are scoped to individual portlets. A portal-aware XHR call retrieves some
portion of a portlet’s content and of any other portlets that are affected.

The Disc API class, bea.wlp.disc.io.XMLHttpRequest, is an extension of the standard
XMLHttpRequest class. WLP’s XMLHttpRequest allows you to make asynchronous,
incremental calls to the portal server, and supports portal features such as interportlet
communication and WSRP. For more information, see Chapter 3, “The WLP Disc Framework.”

Web-Based and REST Style Services
Representational State Transfer, or REST, is an architectural style for interacting with resources
at a given URL. A REST architecture is typically used to provide a simple HTTP interface to
resources published on the web. Although a simplistic analogy, you can think of REST services
as an easy-to-use equivalent to traditional web services.

The primary advantage of using REST style services with web applications, such as WebLogic
Portal, is that REST allows the web application to access web-addressed data and UI directly
from the browser interface. The REST model provides a loose coupling between the data and the
UI. REST services are easy to invoke using an HTTP request from a browser.

Cl ient-S ide Deve lopment Techno log ies

2-4 Oracle WebLogic Portal Client-Side Developer’s Guide

WebLogic Portal provides a REST framework that exposes WLP data and methods as REST
services. These services unlock data from a portal web application and allow the data to be shared
between applications. See Chapter 7, “The WebLogic Portal REST API” for details.

Tip: For a good general introduction to REST, refer to the Wikipedia article Representational
State Transfer.

JSON
JavaScript Object Notation (JSON) is a data exchange format based on JavaScript. JSON is
commonly used to pass objects between web clients and servers over HTTP. JSON objects are
easy to read and to manipulate using JavaScript. For details on JSON, refer to json.org.

Ajax Toolkits
You can use available JavaScript toolkits and frameworks with Disc. For example, Dojo is a
toolkit for DHTML and JavaScript browser programming. Dojo provides low-level IO
(XMLHttpRequest), an event framework, JavaScript extensions, and a rich set of interface
widgets such as buttons, lists, forms, and trees. Dojo works well for use in WLP portlets.

Dojo is discussed in Chapter 4, “Configuring JavaScript Libraries in a Portal Web Project.” The
Dojo website provides additional documentation: www.dojotoolkit.org.

http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/REST
http://www.json.org
http://www.dojotoolkit.org

Oracle WebLogic Portal Client-Side Developer’s Guide 3-1

C H A P T E R 3

The WLP Disc Framework

This chapter discusses the Dynamic Interface SCripting (Disc) framework. Sometimes used in
combination with the WLP REST API, Disc provides a client-side JavaScript API to assist with
developing rich, interactive portlets and portal applications. Disc helps you write Ajax-enabled
portlets that enable rich, interactive portal web application features.

This chapter includes these topics:

What is Disc?

Enabling Disc

Using Portal-Aware XMLHttpRequest to Update Portlets

Using Portal-Aware XMLHttpRequest to Retrieve Data from a Non-Portal Source

Using Context Objects

Event Handling

Logging

What is Disc?
Disc provides a client-side, JavaScript, object-oriented programming framework for handling
events, making asynchronous portlet updates, and for accessing portal context objects. Like their
Java-based WLP API counterparts, Disc context objects encapsulate descriptive portal
information, such as portlet positions within placeholders, titles, labels, and so on. The
information returned in context objects can be used as parameters to REST commands to modify

The WLP D isc F ramework

3-2 Oracle WebLogic Portal Client-Side Developer’s Guide

the portal. For instance, the WLP feature called placeable movement (drag and drop portlets) is
implemented using Disc and REST features (see Enabling Placeable Movement in the Portal
Development Guide).

Tip: Reference documentation for the Disc JavaScript API is provided on e-docs.

The Asynchronous Desktop Mode and DVT features both use Disc, as illustrated in Figure 3-1.
If you enable either Asynchronous Desktop Mode or DVT for a portal desktop, Disc is implicitly
enabled.

Figure 3-1 Features That Depend on Disc

The DVT flag enables the placeable movement (drag and drop portlets) feature for the portal
desktop. Asynchronous desktop rendering and placeable movement are both discussed in the
Portal Development Guide.

Enabling Disc
To use Disc in client-side portal code, you have to enable it first. You can enable Disc in
Workshop for WebLogic or in the WebLogic Portal Administration Console. You can also use
Disc outside the context of a portal.

This section includes these topics:

What Enabling Disc Means

Enabling Disc in Workshop for WebLogic

Enabling Disc in the Administration Console

Using Disc Outside of a Portal

Async Desktop DVT

Disc

../portals/develop_portals.html#wp1057635
../apidocDISC/index.html
../portals/index.html

Enab l ing D isc

Oracle WebLogic Portal Client-Side Developer’s Guide 3-3

What Enabling Disc Means
When Disc is enabled, you have access to the following WLP client-side development features:

Portal-Aware XHR (XMLHttpRequest) objects – If you are familiar with Ajax, then you
know that XMLHttpRequest (XHR) objects are used to make asynchronous requests to the
server. Because the browser’s native XHR object is designed to operate in the context of an
entire web page, it does not work well in a portal environment where the page is composed
of many separate portlets. Disc provides a portal-aware extension of XHR that makes
requests that allow portlet markup to be updated asynchronously. The term portal-aware
means that when the Ajax request is sent to the server from a portlet, the request can fire
events, if required, and render its own view for further processing on the client. See “Using
Portal-Aware XMLHttpRequest to Update Portlets” on page 3-6.

The portal-aware XHR object, bea.wlp.disc.io.XMLHttpRequest is described in detail in
the Disc API reference documentation on e-docs.

Context Objects – Disc lets you work with context objects that encapsulate information
about a portal, such as the portlet placeholder information, titles, labels, and so on. Context
objects are generally read-only, and let you obtain information that you can use to create
client-side interactivity and to pass to REST commands to update the portal.

The set of context objects in the bea.wlp.disc.context module are described in detail in the
Disc API reference documentation on e-docs.

XIE – The XHR Interaction Engine (XIE) provides the infrastructure for handling
asynchronous requests, interportlet communication, and event handling. For instance, when
asynchronous rendering is enabled for a desktop, XIE enables interportlet communication
(IPC) to work correctly. When a request is made from a portlet, markup is automatically
returned for that portlet and any portlet that is affected by the request through IPC.

The set of XIE objects in the bea.wlp.disc.xie module are described in detail in the Disc
API reference documentation on e-docs.

Event Handling – Disc provides event handling mechanisms that work as callback
functions and that can carry payloads. Events are tied to the “lifecycle” of asynchronous
portlet requests. This means you can use events to trap information before a request is sent
or before a response is processed by the client.

For detailed information on the Event object in the bea.wlp.disc.event module, see Disc
API reference documentation on e-docs.

../apidocDISC/index.html
../apidocDISC/index.html
../apidocDISC/index.html
../apidocDISC/index.html
../apidocDISC/index.html
../apidocDISC/index.html

The WLP D isc F ramework

3-4 Oracle WebLogic Portal Client-Side Developer’s Guide

Enabling Disc in Workshop for WebLogic
To enable Disc for a portal desktop in Workshop for WebLogic, set Disc Enabled to true in the
desktop Properties view, as shown in Figure 3-2.

Figure 3-2 Enabling Disc in Workshop for WebLogic

Note: Enabling either Asynchronous Mode or DVT implicitly enables Disc for a desktop.

Enabling Disc in the Administration Console
To enable Disc in the Administration Console:

1. In the Portal Resources tree, select Portals and navigate to a desktop.

2. Select the Details tab.

3. Click Advanced Properties (Figure 3-3) and use the dialog to set Enable Disc to true.

Figure 3-3 Enable Disc

Note: If you enable Asynchronous Mode or DVT, Disc is implicitly enabled.

Using Po r ta l -Aware XMLHt tpRequest to Ret r i eve Data f rom a Non-Por ta l Source

Oracle WebLogic Portal Client-Side Developer’s Guide 3-5

Using Disc Outside of a Portal
The WLP Portlet Publishing feature uses Disc outside of a portal. Portlet Publishing lets you
render portlets in any HTML page. For more information on Portlet Publishing, see Chapter 5,
“Portlet Publishing.”

Using Portal-Aware XMLHttpRequest to Retrieve Data
from a Non-Portal Source

The standard XMLHttpRequest object, familiar to Ajax developers, can be used to update
discrete amounts of data within a portlet. The Disc API class, bea.wlp.disc.io.XMLHttpRequest,
is an extension of the standard XMLHttpRequest class. WLP’s XMLHttpRequest allows you to
make asynchronous, incremental calls to the portal server, and supports portal features such as
interportlet communication and WSRP. However, you can also use the portal-aware XHR in the
same way you use a standard XHR. Like a standard XHR request, a portal-aware XHR request
can be used from any JSP portlet page to retrieve any arbitrary data, which can then be inserted
into the portlet.

Use Case
For an example use case, you could write a portlet that includes an auto-complete search form.
When a user types text in the search field, the portlet sends portal-aware XHR requests to the
server to retrieve suggestions for the user. In this process, the portlet UI does not refresh itself,
except for the suggestions shown in the text field.

Example
In Listing 3-1, a portal-aware XHR object is instantiated and used to asynchronously retrieve data
from a non-portal source. This code is intended to be embedded in a JSP page.

Listing 3-1 Using Portal-Aware XHR to Retrieve Data from a Non-Portal Source

<script type="text/javascript">

 var dataUrl = 'data.json';

 var xmlhttp = new bea.wlp.disc.io.XMLHttpRequest();

 xmlhttp.onreadystatechange = function() {

 if ((xmlhttp.readyState == 4) && (xmlhttp.status == 200)) {

 var data = eval('(' + xmlhttp.responseText + ')');

The WLP D isc F ramework

3-6 Oracle WebLogic Portal Client-Side Developer’s Guide

 var table = document.getElementById('data');

 for (var i = 0; i < data.length; i++) {

 // insert rows into "data" table by referencing properties of

// data[i] objects.

 }

 }

 }

 xmlhttp.open('GET', dataUrl, true);

 xmlhttp.send();

</script>

Using Portal-Aware XMLHttpRequest to Update Portlets
Portal-aware XMLHttpRequest allows client-side JavaScript code to interact with the portal
framework on the server on behalf of a portlet. When a portal-aware XHR call is made to the
server, the request is processed by the portal, which decides what to do with the request. The
portal may decide to invoke a given portlet and provide it with the appropriate context, such as
user properties, portlet preferences, and request and response objects. Because the portal manages
dependencies between portlets, interportlet communication is possible with portal-aware XHR.

Use Cases
Two use cases for using portal-aware XHR are:

A portlet wants to implement a multi-step wizard process, replacing the current form with
a new form after each form submission and without completely re-rendering the portlet.

When a user interacting with a portlet selects a check box for a product ID, the portlet fires
an event on the server side. Other portlets handle this event, fetch product related
information from a backend data source, and render that information.

As a developer, you have the option of using the WLP-specific XMLHttpRequest object
(bea.wlp.disc.io.XMLHttpRequest) to update portal-specific content. When you make a request
through this object, features such as IPC and WSRP are supported. For detailed information on
the portal-aware XHR class, see the Disc API reference documentation on e-docs.

To enable portal-aware XHR in Workshop for WebLogic, follow the instructions in the section
“Enabling Disc in Workshop for WebLogic” on page 3-4.

../apidocDISC/index.html

Using Contex t Ob jec ts

Oracle WebLogic Portal Client-Side Developer’s Guide 3-7

Example
Listing 3-2 is basically the same as Listing 3-1. The difference is that Listing 3-2 refers to a
portlet as the source of the data. This example code is expected to be embedded directly in a JSP
page.

Listing 3-2 Using Portal-Aware XHR to Update Portlets

<%@ taglib prefix="render"

uri="http://www.bea.com/servers/portal/tags/netuix/render" %>

<render:jspContentUrl contentUri="/path/to/portlet/data.jsp"

forcedAmpForm="false" var="dataUrl"/>

<script type="text/javascript">

 var dataUrl = '${dataUrl}';

 var xmlhttp = new bea.wlp.disc.io.XMLHttpRequest();

 xmlhttp.onreadystatechange = function() {

 if ((xmlhttp.readyState == 4) && (xmlhttp.status == 200)) {

 var data = eval('(' + xmlhttp.responseText + ')');

 var table = document.getElementById('data');

 for (var i = 0; i < data.length; i++) {

 // insert rows into "data" table by referencing properties

// of data[i] objects.

 }

 }

 }

 xmlhttp.open('GET', dataUrl, true);

 xmlhttp.send();

</script>

Using Context Objects
Disc lets you work with portal context objects on the client, using JavaScript. Context objects
encapsulate certain information about portal components. Context objects contain information
about the following portal components:

portlets

The WLP D isc F ramework

3-8 Oracle WebLogic Portal Client-Side Developer’s Guide

pages

books

layouts

themes

Disc content classes are loosely representative of the server-side PresentationContext classes and
serve a similar function in client-side programming. The set of context objects in the
bea.wlp.disc.context module are described in detail in the Disc API reference documentation on
e-docs.

Note: Only context objects for visible components are available; context objects for non-visible
components such as books peer to the current book or hidden portlets are not available
through the Disc APIs.

Using Context Objects
Disc context objects are generally available only after the entire HTML page has loaded. As a
best practice, do not attempt to use context objects from inline script blocks. Instead, register an
on-load handler that specifies interaction with context objects. For example, the code in
Listing 3-3, when placed inline in a portlet JSP, results in an error:

Listing 3-3 Wrong Way to Access a Context Object

//portlet will be null

var portlet = bea.wlp.disc.context.Portlet.findByLabel("myPortletLabel");

var title = portlet.getTitle(); // error

However, if you add the same code in a Dojo (for example) on-load function, the code works as
expected:

Listing 3-4 Recommended Way to Access a Context Object

dojo.addOnLoad(function() {

var portlet = bea.wlp.disc.context.Portlet.findByLabel("myPortletLabel");

var title = portlet.getTitle();

});

../apidocDISC/index.html

Using Contex t Ob jec ts

Oracle WebLogic Portal Client-Side Developer’s Guide 3-9

Listing 3-5 illustrates a simple debugging example. The best practice is to place this code in a
render dependencies file. See “Creating a Render Dependencies File” on page 4-4 for more
information.

Listing 3-5 Simple Debugging Example

dojo.addOnLoad(function() {

 var portlets = bea.wlp.disc.context.Portlet.getAll();

 for (var i = 0; i < portlets.length; i++) {

 bea.wlp.disc.Console.debug(portlets[i]);

 }

});

Listing 3-6 presents another example that uses context objects.

Resources from render dependencies files are always included for a portlet regardless of mode or
state (except for minimized, which is a special case). If a portlet has a general function that tries
to inject content into a portlet that always runs when loaded from a render dependencies file
(attached to an onload handler for example), the function should probably only try to do the
content injection when the portlet is in “normal view” mode. Listing 3-6 is intended to be loaded
from a render dependencies file.

Listing 3-6 Using Disc to Determine Portlet State

function createDataTables(label) {

var portlet = bea.wlp.disc.context.Portlet.findByLabel(label);

if (portlet.getWindowMode() == "view") {

// retrieve data and create corresponding tables...

if (portlet.getWindowState() == "maximized") {

// create table with extended details

}

else {

// create table with common details

}

The WLP D isc F ramework

3-10 Oracle WebLogic Portal Client-Side Developer’s Guide

}

}

The XMLHttpRequest Interaction Engine
The Disc module bea.wlp.disc.xie defines public APIs for Disc’s XMLHttpRequest Interaction
Engine (XIE). XIE is the client-side foundation for Ajax-driven interactions with WebLogic
Portal. XIE is also the platform on which various other Ajax-based, public Disc APIs are
implemented, including:

bea.wlp.disc.io.XMLHttpRequest and

bea.wlp.disc.publishing.PortletSource

The XIE API is divided into two main areas:

XIE Events – Located in bea.wlp.disc.xie.Events.*, these global events are fired when Ajax
requests are made to WLP and when subsequent responses are processed. These events
provide public access to the underlying client-server interaction lifecycle.

Async Request Overlay – Located in bea.wlp.disc.xie.AsyncRequestOverlay, this object
provides control over the blocking overlay introduced on a page by some XIE-driven
interactions.

For more information on this classes described in this section, see the Disc API documentation
on e-docs.

Event Handling
The bea.wlp.disc.xie.Events object contains the set of public, global events that are fired during
XIE's WLP interaction lifecycle. The interaction lifecycle involves setting up and executing an
Ajax request to the WLP server, receiving a response, and subsequently processing the response.
WLP Ajax responses are encoded in an internal JSON format (the form of which is reserved and
subject to change), and XIE manages the evaluation and handling of the body of these responses.
The suite of public XIE events provides public access to key moments of interest during this
lifecycle; listening code can use these event hooks to respond to or even influence the outcome
of the interaction. For more information on this class, see the Disc API documentation on e-docs.

../apidocDISC/index.html
../apidocDISC/index.html
../apidocDISC/index.html
../apidocDISC/index.html
../apidocDISC/index.html
../apidocDISC/index.html
../apidocDISC/index.html

Logg ing

Oracle WebLogic Portal Client-Side Developer’s Guide 3-11

1. OnPrepareUpdate – Fired when an interaction has been initiated, but before the request is
made. This event can be cancelled; cancellation terminates the interaction without making the
underlying request.

2. OnHandleUpdate – Fired immediately after XIE receives the response, but before
processing has begun.

3. OnRedirectUpdate – Fired if the server is forcing the client to perform a redirect; processing
will complete as soon as possible and then a client-side redirect is performed.

4. Then, for each piece of response markup returned by the server, the following events are fired:

a. OnPrepareMarkup – Fired before converting a response markup fragment into a DOM
subtree; this event fires once for each markup fragment that was returned in the response.

b. OnPrepareContent – Fired immediately after converting a markup fragment into a DOM
subtree, but before doing additional processing (such as rewriting anchor hrefs and form
actions); this event fires once for each markup fragment that was returned in the response.

c. OnInjectContent – Fired immediately after injecting the fully processed (for example,
rewritten) DOM subtree into the document, but before executing any scripts associated
with that content; this event fires once for each markup fragment that was returned in the
response.

5. OnCompleteUpdate – Fired after XIE has completed all response processing for the
interaction, including the execution of any scripts defined by the markup updated during the
interaction

6. OnError – Fired any time an error occurs during interaction processing; processing may or
may not continue once an OnError event has fired.

Each event delivers a payload object to its listeners when the event is fired. The type and
capabilities of each payload object differ from event to event. See the documentation for each
individual event for more information about specific event payloads in the Disc API
documentation on e-docs.

Logging
One way to implement logging is to use the Firebug logging model. For information on this
model, see http://getfirebug.com/logging.html. Both Firebug and Firebug Lite provide a global
Console object that you can use to monitor logging output.

../apidocDISC/index.html
../apidocDISC/index.html
http://getfirebug.com/logging.html

The WLP D isc F ramework

3-12 Oracle WebLogic Portal Client-Side Developer’s Guide

Disc provides a Console object (bea.wlp.disc.Console) that replicates the API found in the
Firebug Console object. You can use this object anytime Disc is available. For information on the
Disc Console object, refer to bea.wlp.disc.Console in the Disc API documentation on e-docs.

Example
Listing 3-7 shows a simple example of how to set up a listener and send messages through the
Console object. All messages logged to the Console are passed to each listener on the object. The
listener function can be passed the following arguments when the debug call is made:

This configuration will output the following line of HTML text into a div named
myConsoleOutput, which needs to have been previously defined somewhere on the page:

DEBUG: label=myPortlet

Listing 3-7 Simple Example: Setting Up a Console Listener

bea.wlp.disc.Console.addListener(function(op, args) {

var output = document.getElementById("myConsoleOutput");

output.appendChild(document.createElement("br"));

output.appendChild(document.createTextNode(op.toUpperCase() + ": " +

args.join(",")));

});

// Sometime later... Assume myPortlet.getLabel() returns "myPortlet"

bea.wlp.disc.Console.debug("label=", myPortlet.getLabel());

op “debug”

args [“label=”, “myPortlet”]

../apidocDISC/index.html

Oracle WebLogic Portal Client-Side Developer’s Guide 4-1

C H A P T E R 4

Configuring JavaScript Libraries in a
Portal Web Project

A wide variety of JavaScript libraries and toolkits exist today, many of which can be used to build
WebLogic Portal projects. For example, the Dojo Toolkit works well for client-side WLP
development. This section explains how to set up a WLP project that uses the Dojo Toolkit. You
can follow the same basic steps to integrate the JavaScript libraries of your choice into a project.

This chapter includes these topics:

Creating a Simple Portal Project with Dojo

The Hello World JSP Portlet with Dojo

Creating a Render Dependencies File

Creating a Simple Portal Project with Dojo
Dojo is a toolkit for DHTML and JavaScript browser programming. Dojo provides low-level I/O
(XMLHttpRequest), an event framework, JavaScript extensions, and a rich set of interface
widgets such as buttons, lists, forms, and trees. Dojo has a good set of features to use for
developing portals and portal components.

This section explains how to set up a WebLogic Portal project that includes the Dojo Toolkit.

1. Locate and download the Dojo Toolkit. The toolkit is available at www.dojotoolkit.org.

2. Unzip the download file.

3. In Workshop for WebLogic, create a Portal Web Project, a Portal EAR Project, a server, and
a domain. See the WebLogic Portal Tutorial for details on these tasks.

http://www.dojotoolkit.org
../tutorials/index.html

Conf igur ing JavaScr ip t L ib ra r i es in a Po r ta l Web Pro jec t

4-2 Oracle WebLogic Portal Client-Side Developer’s Guide

4. In the WebContent folder of the Portal Web Project, create a folder called resources. In that
folder, create a subfolder called js.

5. Import the Dojo Toolkit folder into the resources/js folder. To do this, right-click the
resources/js folder and select Import. In the wizard, select General > Filesystem. Import
both the dojo and dijit folders from the Dojo download directory. See Figure 4-1.

Figure 4-1 Adding the Dojo Toolkit to a Portal Project

With the Dojo Toolkit added to your portal project, you can now incorporate Dojo and other
JavaScript code into your portlets, as explained in the following sections.

The Hello World JSP Portlet with Dojo
This section describes a simple JSP portlet that displays a message in a pop up. The sample
demonstrates how to import the Dojo libraries and use a bit of JavaScript in a portlet.

1. Create a portlets folder under the WebContent folder of the web project.

2. In the portlets folder, create a new JSP portlet descriptor file, called dojotest.portlet. To
do this, right-click the folder and select New > Portlet. Use the portlet wizard to create a JSP
portlet. The wizard automatically creates both the portlet file and an empty JSP file called, by
default, dojotest.jsp.

3. Create a render dependencies file. This file will contain a reference to the Dojo Toolkit file,
dojo.js, a CSS file reference, and JavaScript function definitions used by the portlet. See
“Creating a Render Dependencies File” on page 4-4 for details.

The He l l o Wor ld JSP Po r t l e t w i th Do jo

Oracle WebLogic Portal Client-Side Developer’s Guide 4-3

4. Configure the portlet to refer to the render dependencies file. To do this, open the portlet in
the Portlet Editor view. Set the LAF Dependencies Path in the portlet Properties editor to
point to the dependencies file you created.

5. Add the code in Listing 4-1 to the JSP file. The sample code performs these tasks:

Imports a button dijit Button element or widget. This is a common pattern for importing
widgets. This code ensures that the Button’s JavaScript has been loaded before a Button
instance is declared.

Instantiates a button widget and configures an event handler for the button’s click event.
When the button is pressed, the event handler shows a JavaScript alert containing a
greeting and the portlet label.

Listing 4-1 Hello World with Dojo

<script type="text/javascript">

 // Load the Dojo Button widget

 dojo.require("dijit.form.Button");

</script>

<button dojoType="dijit.form.Button" id="helloButton">

 Hello World!

 <script type="dojo/method" event="onClick">

 alert('You pressed the button');

 </script>

</button>

6. Add the portlet to a portal and run it on the server. When you click the button in the portlet,
the popup displays the text defined in the callback.

Conf igur ing JavaScr ip t L ib ra r i es in a Po r ta l Web Pro jec t

4-4 Oracle WebLogic Portal Client-Side Developer’s Guide

Figure 4-2 Hello World JSP Portlet with Dojo

This section explained how to use a bit of Dojo code in a JSP portlet. In Chapter 6, “Client-Side
Development Best Practices,” we discuss specific problems related to using JavaScript code in
portlets and suggest best practices to avoid the problems.

Creating a Render Dependencies File
This section explains the purpose and importance of render dependency files and how to create a
render dependencies file.

The Importance of Render Dependencies
A render dependencies file is XML that defines page-level events and resources such as external
JavaScript and CSS that are needed by a portlet. In a non-portal web page, these are often
included inside the <head> tags of an HTML page; however, portlets should avoid using this
approach, as it can lead to a variety of problems in a portal or mashup environment including
creating pages that are not HTML/XHTML compliant and causing unexpected behavior when

Creat ing a Render Dependenc ies F i l e

Oracle WebLogic Portal Client-Side Developer’s Guide 4-5

WebLogic Portal’s Desktop Ajax feature is enabled. The render dependencies mechanism
addresses these problems by allowing portlets to declare resource references and to wire into
page-level events including load and unload. Blocks of JavaScript can even be included in a
render dependencies file, wrapped inside of the usual <script> element.

Creating the Sample Render Dependencies File
The simplest way to create a render dependencies file is to right-click a folder in your web
application and select New > Other > WebLogic Portal > Markup Files > Render
Dependencies. The resulting file looks like Listing 4-2.

Listing 4-2 Empty Render Dependencies File

<?xml version="1.0" encoding="UTF-8"?>

<window

 xmlns="http://www.bea.com/servers/portal/framework/laf/1.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.bea.com/servers/portal/framework/laf/1.0.0

laf-window-1_0_0.xsd">

</window>

Next, add a <render-dependencies> XML tag to the file. Include in the tag the path to the Dojo
toolkit, as shown in Listing 4-3. This listing includes certain elements that Dojo requires for this
example: the Tundra theme and the djConfig object, which is created when the page loads and
configures Dojo.

The <path-element> must be a relative reference from the render dependencies file to the
directory that contains the script sources referenced by the <script> tags.

Listing 4-3 Render Dependencies File Includes Dojo Toolkit

<?xml version="1.0" encoding="UTF-8"?>

<window

 xmlns="http://www.bea.com/servers/portal/framework/laf/1.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.bea.com/servers/portal/framework/laf/1.0.0

laf-window-1_0_0.xsd">

Conf igur ing JavaScr ip t L ib ra r i es in a Po r ta l Web Pro jec t

4-6 Oracle WebLogic Portal Client-Side Developer’s Guide

<render-dependencies>

<html>

<links>

<search-path>

<path-element>../resources/js</path-element>

</search-path>

<link href="dijit/themes/tundra/tundra.css" type="text/css"

rel="stylesheet"/>

</links>

<scripts>

<search-path>

<path-element>../resources/js</path-element>

</search-path>

<script type="text/javascript">

var djConfig = {parseOnLoad:true, isDebug:true};

</script>

<script src="dojo/dojo.js" type="text/javascript"/>

</scripts>

</html>

</render-dependencies>

</window>

Oracle WebLogic Portal Client-Side Developer’s Guide 5-1

C H A P T E R 5

Portlet Publishing

This chapter discusses Portlet Publishing, a feature that lets you surface portlets remotely over
HTTP.

This chapter includes these topics:

What is Portlet Publishing?

Portlet Publishing URL Forms

Consuming Published Portlets

Advanced Topics

Portlet Publishing vs. WSRP

Limitations

What is Portlet Publishing?
Portlet Publishing refers to a family of WebLogic Portal features that make portlets available over
HTTP. Once published through the WLP Portlet Publishing service, a portlet can be reused in a
variety of heterogeneous host environments. For example, you can embed published portlets in
an <iframe> tag or include the portlet into a non-portal web page using JavaScript.

This section includes these topics:

What is the Portlet Publishing Service?

Asking the Portlet Publishing Service for Portlets

Po r t l e t Pub l ish ing

5-2 Oracle WebLogic Portal Client-Side Developer’s Guide

Consuming a Published Portlet

What is the Portlet Publishing Service?
Portlets are published through the WLP Portlet Publishing service. The publishing service is a
REST-style service that runs in the WLP server. As shown in Figure 5-1, the Portlet Publishing
service serves individual portlet instances to remote consumers over HTTP. A remote consumer
simply uses a URL to request that the Portlet Publishing service return a portlet. The service then
returns the portlet markup to the consumer.

Figure 5-1 Portlet Publishing Service

Asking the Portlet Publishing Service for Portlets
You can ask the Portlet Publishing service to return a library instance of a portlet or a desktop
instance. The type of portlet instance you want determines the structure of the URL sent to the
service.

You can think of a library portlet instance as a non-customizable instance of a portlet. When you
use the Administration Console to add a library portlet to a page in a portal desktop, the added
portlet becomes a desktop instance, which makes it possible for each user of the portlet to have
their own customized version of it. You can see library and desktop portlets listed in the Portal
Resources Tree of the WebLogic Portal Administration Console.

You might decide to ask for a library instance of a portlet if you do not expect users to customize
it or if it was not designed to be customizable. For example, a simple mortgage calculator portlet

What i s Por t l e t Publ i sh ing?

Oracle WebLogic Portal Client-Side Developer’s Guide 5-3

might not require customization. You might choose to consume a desktop instance of a portlet,
on the other hand, if you do expect users to customize it. A stock quote portlet might allow users
to select their favorite stocks to display and then remember their individual choices.

As noted previously, the type of portlet you want the publishing service to return determines the
type of URL that you send to the service. The two Portlet Publishing URL patterns are explained
in “Portlet Publishing URL Forms” on page 5-4.

Consuming a Published Portlet
As explained previously, you formulate a specific kind of URL to ask the WLP publishing service
for a library instance or for a desktop instance of a portlet. The publishing service then returns the
portlet markup to the requesting consumer. The consumer can render the returned portlet markup
in three ways:

Render the portlet in an HTML inline frame tag (an <iframe> tag). This is by far the
simplest and safest technique. The <iframe> tag provides a loose coupling between the
portlet and the rest of your rendered web page. Portlets rendered in <iframe> tags are
effectively isolated from one another, reducing possible security risks and adverse
side-effects.

Use a JavaScript API to integrate the portlet into the DOM. WLP provides a Disc API
called PortletSource that lets you retrieve a portlet and render it directly into an HTML
<div> tag. This technique provides greater flexibility and control to the web developer. For
instance, integrated portlets can interact and affect each other. Greater care is required on
the part of the client-side developer to ensure that integrated portlets work and interoperate
properly and securely.

Use the <portalFacet> JSP tag. To surface a portlet in a JSP page, you can insert a
portalFacet tag into a JSP page. For example:
<%@taglib uri="http://www.bea.com/servers/portal/tags/netuix/render"
prefix="render"%>
...
<render:portalFacet label="_myportlet" path="/myPortlet.portlet" />

The web application includes a file called myPortlet.portlet. The label tag attribute
must be unique to all <portalFacet> tags on the page because it identifies the portlet
instance. At runtime, the <portalFacet> tag renders the specified portlet on the page. You
may include multiple portlets on a single page by inserting multiple <portalFacet> tags
with unique label attributes.

See also “Consuming Published Portlets” on page 5-5.

Po r t l e t Pub l ish ing

5-4 Oracle WebLogic Portal Client-Side Developer’s Guide

Portlet Publishing URL Forms
This section describes the two Portlet Publishing URL forms. The first form retrieves a library
instance of a portlet. The second form retrieves a desktop instance. The WLP Portlet Publishing
service processes these commands and returns the appropriate portlet to the consumer. Library
and desktop portlet instances are explained in more detail in “Asking the Portlet Publishing
Service for Portlets” on page 5-2.

Library Instance URL Form
To return a library instance of a portlet, use this URL form:
http://<domain_name>/<webapp_name>/<path_to_portlet>/<portlet_name>.portlet

For example:

http://foo.com/myWebapp/myPortlet.portlet

Note that the part of the URL that includes the web application name, the path to the portlet, and
the portlet name is called the publishing context. The publishing context can be used as a
parameter to certain Disc JavaScript API calls. See “DOM Integration” on page 5-8 for more
information. See also “Finding Portlet Publishing Context” on page 5-10.

Because a library instance is, by definition, not directly associated with a portal desktop, it does
not include certain look and feel and other information associated with a desktop instance. The
look and feel of a library instance consists of the default WLP look and feel and cannot be
changed.

Desktop Instance URL Form
The desktop instance URL form is somewhat more complicated than the form used for library
instances. The desktop instance URL is composed of these required parts and parameters:

Domain name and web application name:

For example: http://foo.com/myWebapp

WLP REST API namespace identifier:

bea/wlp/api

Portlet Publishing service command:

portlet/publish

Consuming Publ i shed Por t l e ts

Oracle WebLogic Portal Client-Side Developer’s Guide 5-5

Context parameter. The context parameter value is the path to a streaming portal desktop.
For information on obtaining the context path, see “Finding Portlet Publishing Context” on
page 5-10.

Tip: The difference between streaming and file-based portals is explained in more detail
in the WebLogic Portal Development Guide.

For example:

/myWebApp/appmanager/myPortal/myDesktop

Note that appmanager is a WLP servlet name that is part of every streaming desktop path.

Portlet parameter. This parameter specifies the instance label of the library portlet. You can
determine the instance label from either Workshop for WebLogic or from the WLP
Administration Console. For example, a portlet with instance identifier myPortlet_1
would appear as:

portlet=myPortlet_1

Putting it all together, here is an example URL to retrieve a desktop instance portlet from the
publishing service:
http://foo.com/myWebApp/bea/wlp/api/portlet/publish?

context=/myWebApp/appmanager/myPortal/myDesktop&portlet=myPortletInstanceLabel

There is one more optional parameter you can use in the desktop instance URL form. The
decoration parameter is explained in the section “Advanced Topics” on page 5-11.

Consuming Published Portlets
This section discusses two techniques for consuming published portlets: inline frame (<iframe>
tag) integration and DOM integration. This section includes these topics:

Inline Frame Integration

DOM Integration

Finding Portlet Publishing Context

Inline Frame Integration
The HTML <iframe> tag creates an inline frame that contains another HTML document. You can
use an inline frame to include a WLP portlet in an HTML page. The value of the tag’s src

../portals/index.html

Po r t l e t Pub l ish ing

5-6 Oracle WebLogic Portal Client-Side Developer’s Guide

parameter can be a Portlet Publishing URL of either the library instance or desktop instance form
as explained in “Portlet Publishing URL Forms” on page 5-4.

Figure 5-2 illustrates that inline frames are rendered as separate HTML documents within the
parent document. The loose coupling between the parent page and the inline frame pages makes
inline frames relatively secure. Inline frames are a good choice if you don’t trust a portlet to
interact securely with the rest of the page. Only limited interaction between the inline frame
portlets and the rest of the page is possible. Note that some portlets will not work properly if they
are embedded using the DOM integration technique, described in “DOM Integration” on
page 5-8. In these cases, inline frame integration is the best option.

Figure 5-2 Inline Frames Provide Separation Between Portlets and the Rest of the Page

Example Code
Listing 5-1 shows an inline frame tag that includes a library instance portlet. Listing 5-2 shows
an example that embeds a desktop instance of a portlet. The value of the <iframe> src parameter
is the Portlet Publishing URL of the appropriate form for a library instance and a desktop
instance. See also “Portlet Publishing URL Forms” on page 5-4.

Consuming Publ i shed Por t l e ts

Oracle WebLogic Portal Client-Side Developer’s Guide 5-7

Listing 5-1 Simple Inline Frame that Embeds a Library Instance Portlet

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<body>

<iframe src ="http://foo.com/myWebapp/myPortlet.portlet"> </iframe>

</body>

</html>

Listing 5-2 Simple Inline Frame that Embeds a Desktop Instance Portlet

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<body>

<iframe src ="http://foo.com/myWebApp/bea/wlp/api/portlet/publish/?

context=myWebApp/appmanager/myPortal/myDesktop&

portlet=myPortletInstanceLabel"> </iframe>

</body>

</html>

You can use inline frames to embed either static or dynamic portlets, as explained in the
following sections.

Embedding Static Portlets
Inline frames offer a relatively safe and easy way to integrate legacy portlets into newly
developed, static applications. Inline frames are ideal for portlets that use basic HTML, do not
make extensive use of JavaScript, post navigation commands back to the server, and contain logic
that is captured in Struts or Page Flow actions.

Embedding Dynamic Portlets
Dynamic portlets make use of rich user interface technology and asynchronous browser-server
communication. More and more sites are being built using mashups of content from one or more
providers that are often not known and possibly not trusted by one another. Inline frames provide

Po r t l e t Pub l ish ing

5-8 Oracle WebLogic Portal Client-Side Developer’s Guide

a convenient and relatively secure sandboxing mechanism in environments where rich widgets
and portlets must be integrated together without mutual trust.

DOM Integration
WLP provides a JavaScript API called Disc that lets you integrate portlets directly into the DOM
of an HTML page.

Tip: For a comprehensive introduction to Disc, see Chapter 3, “The WLP Disc Framework.”

DOM integration provides a level of integration and capability that exceeds the inherent
limitations of inline frame integration. DOM integration allows a portlet to be treated as if it were
a native part of the HTML page’s DOM tree. This added capability increases both security risks
and integration complexity. Portlets integrated using this approach have complete access to data
and UI that exist in other parts of the page. In addition, the developer must take care to prevent
collisions in the JavaScript global namespace. See also “Avoiding Namespace Collisions” on
page 6-7.

Basic JavaScript Coding Steps
The basic JavaScript coding steps for integrating a remote portlet into the DOM of an HTML
page follow a consistent pattern. This section lists and explains each step and then provides a
complete example.

1. Include the Disc Portlet Publishing JavaScript module in your page, as shown in the following
fragment:
<script type="text/javascript"

src="/<portal_web_app>/framework/scripts/bundles/disc-publishing.js">
</script>

This JavaScript module is contained in a WLP Shared J2EE Library, and is always
addressed by the web application-scoped path shown in the fragment. You only need to
include this module once per page, even if you are embedding portlets from several
different web applications.

2. Build a variable to hold the publishing context of the portlet. The publishing context is either
the path to a .portal file or a desktop of a streaming portal. See also “Finding Portlet
Publishing Context” on page 5-10.

For example, the following fragment specifies the context for a file-based portlet, where
<portal_web_app> and <portal_name> are the names of the WLP web application and

Consuming Publ i shed Por t l e ts

Oracle WebLogic Portal Client-Side Developer’s Guide 5-9

the portal that contain the portlet. The context for a file-based portlet is the physical path
from the web application root to the .portal file.
var publishingContext = "/<portal_web_app>/<portal_name>.portal";

To embed a desktop instance of a portlet from a streaming portal, you construct the context
variable as follows:
var publishingContext =

"/<portal_web_app>/appmanager/<portal_name>/<desktop_name>

See also “Portlet Publishing URL Forms” on page 5-4.

3. Use the Disc API to retrieve a PortletSource instance for the publishing context. Pass the
publishing context variable you constructed in Step 2 as the parameter in this call. For
example:
var source = bea.wlp.disc.publishing.PortletSource.get(publishingContext);

4. Call the PortletSource object’s render() function, passing it a JavaScript object with two
properties. The first property, portlet, specifies the instance label of the portlet you want to
embed. The second property, to, specifies the value of an id attribute for an HTML div tag in
which to embed the portlet. For example:
source.render({ portlet: "<portlet_instance_label>", to: "<div_id_value>" });

The render() method also accepts an array of JavaScript objects. See “Advanced Topics”
on page 5-11 for details.

5. Place the portlet in a <div> element on the HTML page. For example:
<div id=”div_id_value”></div>

Putting it all together, Listing 5-3 shows a complete example where a portlet library instance is
embedded into the DOM of an HTML page. In this example, most of the code is wrapped in a
JavaScript function called handleOnLoad() that is called when the page loads.

Tip: Note that the text “Loading...” appears in the <div> tag. This text provides a visual cue
to the user. “Loading...” appears momentarily in the page and is replaced by the portlet
after the portlet markup is received.

Listing 5-3 Example Code for Portlet DOM Integration

<html>

 <head>

 <title>My Portlet</title>

Po r t l e t Pub l ish ing

5-10 Oracle WebLogic Portal Client-Side Developer’s Guide

 <script type="text/javascript"

src="/myWebApp/framework/scripts/bundles/disc-publishing.js">

</script>

 <script type="text/javascript">

 function handleOnLoad() {

 var publishingContext = "/myWebApp/portals/main.portal";

 var source =

bea.wlp.disc.publishing.PortletSource.get(publishingContext);

 source.render({ portlet: "myPortlet_1", to: "myPortlet" });

 }

 </script>

 </head>

 <body onload="handleOnLoad();">

 <p>Basic tests for rendering portlets on a host page.</p>

 <div style="border: 1px solid black;">

 <div id="myPortlet">Loading...</div>

 </div>

 </body>

</html>

Finding Portlet Publishing Context
This section explains how to find the value of the context parameter for library and desktop
instance portlets.

Finding the Publishing Context for a Library Instance Portlet
To find the publishing context for library instance portlet, in Workshop for WebLogic, right-click
the .portal file and select Run As > Run On Server. The path shows up in the browser. For
example, if the full URL to the portal is:

http://foo.com/myWeb/portal-1.portal

then the publishing context is:

/myWeb/portal-1.portal

Finding the Publishing Context for a Desktop Instance Portlet
The easiest way to obtain the context path for a desktop instance portlet, is to look it up in the
WLP Administration Console. In the Portal Resources tree, navigate to the desktop and select it.

Advanced Top ics

Oracle WebLogic Portal Client-Side Developer’s Guide 5-11

The path shows up on the Details tab in the URL to Access Desktop field. A complete path looks
like this, where the context part is everything from <webapp_name> on.

http://<domain_name>/<webapp_name>/appmanager/<portal_name>/<desktop_name>

Here is an example desktop URL with the publishing context highlighted:

Advanced Topics
This section discusses several advanced topics of interest to developers.

Using the Decoration Parameter

Integrating Multiple Portlets into the DOM

Integrating Portlets from Multiple Publishing Contexts

Using the Decoration Parameter
The desktop instance URL form, discussed in “Desktop Instance URL Form” on page 5-4,
includes an optional decoration parameter. The decoration parameter lets you specify how
the look and feel of the portlet will be rendered. The possible values for the decoration portlet are:

light – (default) Only the content of the portlet is rendered. Light decoration does not
include a border or titlebar if they were part of the original desktop portlet instance. This
style portlet tends to blend in more with the surrounding web page elements.

full – This option renders the portlet almost exactly it appears in its original desktop
context. If defined in the original portlet, the border and title bar (with mode and state
buttons) will be rendered. Essentially, the portlet is rendered with the same look and feel as
the original portlet appeared in its host desktop.

For example:
http://foo.com/myWebApp/bea/wlp/api/portlet/publish/?
context=myWebApp/appmanager/myPortal/myDesktop&
portlet=myPortletInstanceLabel&decoration=full

Or, if you want to use a library instance, you can use this form. This form is similar to the Desktop
URL Form shown previously; however, with this option, the portlet must be placed in a .portal
file.

Publishing Context

http://foo.com/myWebApp/appmanager/myPortal/myDesktop

Po r t l e t Pub l ish ing

5-12 Oracle WebLogic Portal Client-Side Developer’s Guide

http://foo.com/myWebApp/bea/wlp/api/portlet/publish?context=myWebApp/<path

_to_portal>/my.portal&portlet=myPortletInstanceLabel&decoration=light

Or, you can specify a portlet directly using the Library Instance URL Form:

http://foo.com/myWebApp/<path_to_portlet>/my.portlet?_portlet.contentOnly=

true&_portlet.contentMode=FULL

Note: If you want to generate a decoration-free portlet URL from a JSP, use the
render:standalonePortletUrl tag, which has contentOnly and contentMode
attributes. If you want to generate the URL from a backing file, use the
StandalonePortletURL class. For information on this class, see the Javadoc.

For more information, see “Desktop Instance URL Form” on page 5-4.

Integrating Multiple Portlets into the DOM
“DOM Integration” on page 5-8 discussed how to use the Disc API to integrate a single portlet
into the DOM. If you want to integrate multiple portlets onto a page, you can pass the render()
function an array of {portlet: , to: } objects. In this case, Disc only makes one request to the server
to retrieve all of the portlets.

For example, Listing 5-4 illustrates how to integrate multiple desktop instances of portlets into
the DOM by passing an array of objects to the Disc render() function.

Listing 5-4 Embedding Multiple Portlets

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
 <head>
 <title>Portlet Publishing Example</title>
 <script type="text/javascript"

src="/publishingPortal/framework/scripts/bundles/disc-publishing.js">
</script>

 <script type="text/javascript">

 function handleOnLoad() {
 var publishingContext =

"/publishingPortal/appmanager/mainPortal/mainDesktop";
 var source =

bea.wlp.disc.publishing.PortletSource.get(publishingContext);

 source.render([{ portlet: "myPortlet_1", to: "portlet1Div" },
 { portlet: "myPortlet_2", to: "portlet2Div" },
 { portlet: "myPortlet_3", to: "portlet3Div" },

Po r t l e t Pub l ish ing vs . WSRP

Oracle WebLogic Portal Client-Side Developer’s Guide 5-13

 { portlet: "myPortlet_4", to: "portlet4Div" }]);
 }
 </script>
 </head>
 <body onload="handleOnLoad();">

<div style="border: 1px solid black;" id="portlet1Div">Loading...</div>
</br>
<div style="border: 1px solid black;" id="portlet2Div">Loading...</div>
</br>
<div style="border: 1px solid black;" id="portlet3Div">Loading...</div>
</br>
<div style="border: 1px solid black;" id="portlet4Div">Loading...</div>

 </body>
</html>

Integrating Portlets from Multiple Publishing Contexts
You can integrate portlets from more than one Portlet Publishing context into page. If you are
doing DOM integration, you must construct a separate PortletSource API call for each publishing
context. If you are using inline frame integration, just use the appropriate Portlet Publishing URL
form as the value of the <iframe> src tag.

Note that each PortletSource.render() call produces one interaction with the server. If you group
several portlets into one render() call, the function will not return until all of the portlets are
processed on the server. If one of the portlets requires excessive processing time on the server,
users might experience a delay in the rendering of the entire group of portlets. In this case,
consider placing the slower portlet in a separate render() call. This causes the portlet to be
rendered in a separate, asynchronous call to the server.

Portlet Publishing vs. WSRP
You can think of Portlet Publishing and WSRP (Web Services for Remote Portlets) as
complementary technologies. Both technologies allow you to consume portlets deployed in
remote portals.

In the case of WSRP, portlets from one or more portals, called producers, are aggregated into a
common, unified portal, called the consumer. The consumer communicates with producers over
a SOAP-based protocol. Because WSRP is an OASIS standard, the producers can use entirely
different vendor technologies. Also, because the consumer and producer communicate through
standard web services, UDDI registries and service busses can be used to locate portlets and route

Po r t l e t Pub l ish ing

5-14 Oracle WebLogic Portal Client-Side Developer’s Guide

traffic. Traditional WSRP portlets are closely tied to the producer portals in which they are
deployed.

Portlet Publishing, on the other hand, aggregates content (typically portlets) on the browser.
Client-side developers make inline frame (iframe) or XMLHttpRequest calls to the server to
retrieve content. Portlet Publishing is typically used to expose portlets in a non-portal
applications, although you can also use Portlet Publishing techniques in a portal.

Tip: The WSRP approach to creating federated portals is described in the Federated Portals
Guide.

Figure 5-3 illustrates the fundamental differences between Portlet Publishing and WSRP. Portlet
Publishing obtains content directly from a WLP application. WSRP aggregates content in a
consumer portal from one or more producers. Because WSRP is a standard, producers can be
from different vendors.

Figure 5-3 Portlet Publishing and WSRP

WL Portal

Static HTML Page

../federation/index.html
../federation/index.html

L imi tat i ons

Oracle WebLogic Portal Client-Side Developer’s Guide 5-15

Limitations
Portlet Publishing does not support server-side interportlet communication. Portlets that
implement IPC will not send or receive IPC events in the Portlet Publishing context. For
more information on IPC, see the Portlet Development Guide.

In some cases, the capabilities of the original host desktop will not be available to
published portlets. For example, the host desktop’s backing context will not be available.

In some cases, it is possible that some parts of the portal control tree are not available to
published portlets.

Desktops with URL compression enabled should not be published. URL compression is
discussed in the Portal Development Guide.

Disc context objects will not be available on the published page. See Chapter 3, “The WLP
Disc Framework.” for more information.

../portals/index.html
../portlets/index.html

Po r t l e t Pub l ish ing

5-16 Oracle WebLogic Portal Client-Side Developer’s Guide

Oracle WebLogic Portal Client-Side Developer’s Guide 6-1

C H A P T E R 6

Client-Side Development Best
Practices

This chapter discusses tips and best practices for developing client-side portal code. The chapter
includes these topics:

Namespacing

Avoiding Namespace Collisions

Note: Opening the same portal desktop in multiple browser windows that share the same
process (and, therefore, the same session) is not supported. For example, using the
render:pageURL tag or the JavaScript window.open function to open a portal desktop in
a new window is not supported and can result in unwanted side effects. For instance, if a
portlet is deleted in the new window, and then the user tries to interact with that portlet
in the main window, the interaction will fail.

Namespacing
If you are writing browser-based JavaScript code in a WLP environment, namespacing conflicts
can easily arise if you are not careful. This section illustrates the kind of JavaScript namespace
conflict that can occur when you place multiple portlets on a page.

A Simple Dynamic Table Portlet

Namespace Collisions

Cl ient-S ide Deve lopment Best P ract ices

6-2 Oracle WebLogic Portal Client-Side Developer’s Guide

A Simple Dynamic Table Portlet
The following example uses JavaScript to add rows to an HTML table dynamically. The Dojo
Toolkit is used to provide the primary UI element (a button) and the event handling mechanism.
As you will see, you will encounter problems if you intend to use code like this in a portlet/portal
context.

Note: The following code is designed according to the best, recommended practice of using a
render dependencies file for including toolkit references, CSS references, and JavaScript
functions in a portlet. For an introduction to this technique and step by step instructions
on creating and referencing a render dependencies file, see Chapter 4, “Configuring
JavaScript Libraries in a Portal Web Project.”

The render dependencies file is shown in Listing 6-1. A render dependencies file is XML that
defines page-level events and resources such as external JavaScript and CSS that are needed by
a portlet. The overall pattern of the file follows the pattern discussed in Chapter 4, “Configuring
JavaScript Libraries in a Portal Web Project.”

The JSP file is shown in Listing 6-2. It defines a JavaScript function that adds a row to an HTML
table and includes the Dojo button that fires the onClick event that calls the addRowsToTable()
function.

Listing 6-1 Render Dependencies File

<?xml version="1.0" encoding="UTF-8"?>

<window xmlns="http://www.bea.com/servers/portal/framework/laf/1.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/servers/portal/framework/laf/1.0.0

laf-window-1_0_0.xsd">

 <render-dependencies>

 <html>

 <links>

 <search-path>

 <path-element>../resources/js</path-element>

 </search-path>

 <link href="dijit/themes/tundra/tundra.css" type="text/css"

rel="stylesheet"/>

 </links>

 <scripts>

 <search-path>

 <path-element>../resources/js</path-element>

Namespac ing

Oracle WebLogic Portal Client-Side Developer’s Guide 6-3

 </search-path>

<script src="dojo/dojo.js" type="text/javascript"/>

 <script type="text/javascript">

var djConfig = {parseOnLoad:true, isDebug:true};

 </script>

 </scripts>

 </html>

 </render-dependencies>

</window>

Listing 6-2 JSP File

<script type="text/javascript">

 // Load the Dojo Button widget

 dojo.require("dijit.form.Button");

</script>

<script type="text/javascript" >

function addRowToTable() {

var tbl = document.getElementById("table_1");

var lastRow = tbl.rows.length;

var row = tbl.insertRow(lastRow);

//-- Update left cell

var cellLeft = row.insertCell(0);

var node1 = document.createTextNode(lastRow);

cellLeft.appendChild(node1);

//-- Update right cell

var cellRight = row.insertCell(1);

var node2 = document.createTextNode(lastRow);

cellRight.appendChild(node2); }

</script>

<button dojoType="dijit.form.Button" id="addRowButton">Add Row <script

type="dojo/method" event="onClick">

 addRowToTable();

 </script></button>

Cl ient-S ide Deve lopment Best P ract ices

6-4 Oracle WebLogic Portal Client-Side Developer’s Guide

<table border="1" id="table_1">

 <tr>

 <th colspan="3">Simple Dynamic Table</th>

 </tr>

 <tr>

 <td>Column 1</td>

 <td>Column 2</td>

 </tr>

</table>

Figure 6-1 shows the JSP portlet added to a portal page. Each time the Add Row button is clicked,
a new row is added to the table, and the row number is displayed in the new table cells.

Figure 6-1 Simple Dynamic Table Portal

The addRowToTable() JavaScript function retrieves the table element using the table’s ID. While
the portlet works perfectly well in this scenario, what happens if you add a second identical
portlet to the same portal page?

Namespace Collisions
Suppose you add the dynamic table portlet to the same page multiple times. For example,
consider the following portal (Figure 6-2), which contains three dynamic table portlets.

Namespac ing

Oracle WebLogic Portal Client-Side Developer’s Guide 6-5

Figure 6-2 Multiple Dynamic Table Portlets on a Page

The current configuration causes a JavaScript error to be thrown. After the event handler for the
first button on the page is registered, subsequent attempts to register it fail. The error message is
something like this:

Exception... "'Error: Tried to register widget with id==helloButton but that

id is already registered' ...

As a result of this error, only the first button is registered, and it is the only button that works.

When you understand why multiple dynamic table portlets fail to work properly in a portal page,
you can learn avoid many common browser-side programming problems encountered by portal
developers.

The reason why the dynamic table fails to function properly when the portlet is duplicated is clear
when you look at the HTML source code that is generated for the portal page. The portal
framework on the server returns exactly the same HTML markup for each portlet. Both the
JavaScript block and the HTML table code are duplicated verbatim three times in the same
HTML page, as illustrated in Figure 6-3. The WebLogic Portal framework assigns the portlets
themselves unique IDs; however, all of the JSP and HTML code is identical for each rendered
portlet.

Cl ient-S ide Deve lopment Best P ract ices

6-6 Oracle WebLogic Portal Client-Side Developer’s Guide

Figure 6-3 Source Code Repetition with Three Identical Portlets on a Page

The Mysterious Table Row
It is possible to assign the dijit button in Listing 6-2 a unique name, such as by prefixing it with
the portlet’s unique ID (see techniques discussed in “Using Ad Hoc Namespacing” on page 6-8).
Such a technique will avoid the error condition; however, assigning a unique name to the button
ID is insufficient to solve the namespacing problem.

Note that when a JavaScript function block is included multiple times, each time a duplicate
variable is declared, it is overwritten by subsequent variables with the same name. In this
example, the variable addRowButton is declared three times (because the script block is included

JavaScript Block

HTML Portlet Content Block

JavaScript Block

HTML Portlet Content Block

JavaScript Block

HTML Portlet Content Block

<html>

</html>

Portal Page

JavaScript blocks
are identical.

HTML portlet
 content blocks are
identical

Avo id ing Namespace Co l l i s ions

Oracle WebLogic Portal Client-Side Developer’s Guide 6-7

three times in the page). Therefore, whichever button you click will only affect (add rows to) the
first table, as illustrated in Figure 6-4.

Figure 6-4 Rows Mysteriously Added to the Wrong Table

Techniques for avoiding these namespace problems are discussed in the next section, “Avoiding
Namespace Collisions” on page 6-7.

Avoiding Namespace Collisions
This section discusses techniques and best practices for avoiding the kinds of namespace
collisions illustrated in “Namespace Collisions” on page 6-4. The techniques include:

Using Ad Hoc Namespacing

Using Rewrite Tokens

Parameterizing Your JavaScript Functions

Rows are added
to this table ...

When you click
this button.

Cl ient-S ide Deve lopment Best P ract ices

6-8 Oracle WebLogic Portal Client-Side Developer’s Guide

Using the Disc APIs

Using Ad Hoc Namespacing
One way to avoid namespace collisions in client-side browser code is to use ad hoc namespacing.
Ad hoc namespacing means giving a unique name to:

Global functions

Global variables

DOM IDs (for example: <table id=”someUniqueId”>)

DOM names (apply only to anchor and form tags)

References to all of the above

For example, the JSP listed in “Namespace Collisions” on page 6-4 can be rewritten so that all of
the global functions, variables, and IDs are unique and scoped to a specific portlet. One simple
technique for achieving this in a portlet is to append the portlet’s instance label to the appropriate
global JavaScript identifiers, as shown in Listing 6-3. Additions to this code sample are
highlighted. As you can see, the example relies on obtaining the portlet instance label from the
PortletPresentationContext object. This ID is unique for each portlet that appears in a portal. JSP
expressions are then used to append the portlet label to appropriate global identifiers. In this case,
we need to uniquely namespace the HTML table ID, the global function addRowToTable(), the
Button widget ID, and the Button widget variable.

Tip: JavaScript variables within functions are locally scoped, and therefore do not need to be
namespaced for the global context.

Listing 6-3 Dynamic Table JSP with Ad Hoc Namespacing

<%@ page

import="com.bea.netuix.servlets.controls.portlet.PortletPresentationContext"%>

<%

// Tip: you can also use the JSP tag <render:encodeName name="someName" .../>

// to accomplish the same task as this scriptlet (obtaining the portlet

// instance label.)

PortletPresentationContext portletCtx = (PortletPresentationContext)

PortletPresentationContext.getPortletPresentationContext(request);

Avo id ing Namespace Co l l i s ions

Oracle WebLogic Portal Client-Side Developer’s Guide 6-9

String portletId = portletCtx.getInstanceLabel();

pageContext.setAttribute("prefix", portletCtx.getInstanceLabel());

%>

<script type="text/javascript">

 // Load the Dojo Button widget

 dojo.require("dijit.form.Button");

</script>

<script type="text/javascript" >

 function ${prefix}_addRowToTable() {

 var tbl = document.getElementById("${prefix}_table_1");

 var lastRow = tbl.rows.length;

 var row = tbl.insertRow(lastRow);

 //-- Update left cell

 var cellLeft = row.insertCell(0);

 var node1 = document.createTextNode(lastRow);

 cellLeft.appendChild(node1);

 //-- Update right cell

 var cellRight = row.insertCell(1);

 var node2 = document.createTextNode(lastRow);

 cellRight.appendChild(node2);

 }

 </script>

<button dojoType="dijit.form.Button" id="${prefix}_helloButton"> Add Row

 <script type="dojo/method" event="onClick">

 ${prefix}_addRowToTable();

 </script>

</button>

<table border="1" id="${prefix}_table_1">

<tr>

<th colspan="3">Simple Dynamic Table</th>

</tr>

<tr>

<td>Column 1</td>

Cl ient-S ide Deve lopment Best P ract ices

6-10 Oracle WebLogic Portal Client-Side Developer’s Guide

<td>Column 2</td>

</tr>

</table>

If you generate a portlet from this JSP and add the portlet multiple times to a portal, you will see
that the portlets function independently and correctly, as shown in Figure 6-5.

Figure 6-5 Namespaced Portlet Code Functions Correctly

While ad hoc namespacing is an effective way to ensure that portlets with browser code function
properly, other techniques and best practices are examined in the following sections.

Using Rewrite Tokens
A well known best practice among JavaScript developers is to externalize functions into .js files.
An alternative approach to the ad hoc namespacing technique described in “Using Ad Hoc

The Add Row button
works as expected

Avo id ing Namespace Co l l i s ions

Oracle WebLogic Portal Client-Side Developer’s Guide 6-11

Namespacing” on page 6-8 is to externalize your JavaScript functions and use the WLP render
dependencies feature and the rewrite token to provide unique scoping of variables. For additional
information on the rewrite token, see the section Portlet Dependencies in the Portlet Development
Guide.

The first step is to place the JavaScript script blocks that require namespacing into an external .js
file. You then reference this file in the render dependencies file.

Tip: The trick to including the .js file is to include it with the <script content-uri ...>
tag rather than with the <script src ...> tag. Although the src tag is the most
standard mechanism, if you use it, the rewrite tokens will not be expanded. For
information on creating a dependency file and attaching a dependency file to a portlet,
see Portlet Dependencies in the Portlet Development Guide.

Listing 6-4 shows a sample render dependencies file. The included .js file is highlighted in bold
text.

Listing 6-4 Render Dependencies File

<?xml version="1.0" encoding="UTF-8"?>

<window xmlns="http://www.bea.com/servers/portal/framework/laf/1.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/servers/portal/framework/laf/1.0.0

laf-window-1_0_0.xsd">

 <render-dependencies>

 <html>

 <links>

 <search-path>

 <path-element>../resources/js</path-element>

 </search-path>

 <link href="dijit/themes/tundra/tundra.css" type="text/css"

rel="stylesheet"/>

 </links>

 <scripts>

 <search-path>

 <path-element>../resources/js</path-element>

 </search-path>

<script src="dojo/dojo.js" type="text/javascript"/>

 <script type="text/javascript">

../portlets/building.html#wp1073505
../portlets/building.html#wp1073505

Cl ient-S ide Deve lopment Best P ract ices

6-12 Oracle WebLogic Portal Client-Side Developer’s Guide

var djConfig = {parseOnLoad:true, isDebug:true};

 </script>

<script type=
"text/javascript" content-uri="dojotest.js"/>

 </scripts>

 </html>

 </render-dependencies>

</window>

The contents of the external .js file are shown in Listing 6-5. Note that wlp_rewrite_ is
appended to all of the function names and identifiers that require unique names within the page.

Listing 6-5 Contents of External dojotest.js File with Rewrite Tokens

 function wlp_rewrite_addRowToTable() {
var tbl = document.getElementById("wlp_rewrite_table_1");
var lastRow = tbl.rows.length;

var row = tbl.insertRow(lastRow);

//-- Update left cell

var cellLeft = row.insertCell(0);

var node1 = document.createTextNode(lastRow);

cellLeft.appendChild(node1);

//-- Update right cell

var cellRight = row.insertCell(1);

var node2 = document.createTextNode(lastRow);

cellRight.appendChild(node2);

 }

The portal framework takes care of replacing this token with the portlet’s instance label, which
is a unique identifier.

Avo id ing Namespace Co l l i s ions

Oracle WebLogic Portal Client-Side Developer’s Guide 6-13

Listing 6-6 shows the JSP file with the JavaScript function removed. Note that the .js file does
not have to be imported into the JSP file if it is included in a render dependencies file.
Namespacing of the dijit button id and the table id with the unique portlet id is still required in
the JSP.

Listing 6-6 JSP File

<%@ page

import="com.bea.netuix.servlets.controls.portlet.PortletPresentationContext"%>

<%

PortletPresentationContext portletCtx = (PortletPresentationContext)

PortletPresentationContext.getPortletPresentationContext(request);

String portletId = portletCtx.getInstanceLabel();

pageContext.setAttribute("prefix", portletCtx.getInstanceLabel());

%>

<script type="text/javascript">

 // Load the Dojo Button widget

 dojo.require("dijit.form.Button");

</script>

<button dojoType="dijit.form.Button" id="${prefix}_helloButton"> Add Row

 <script type="dojo/method" event="onClick">

 ${prefix}_addRowToTable();

 </script>

</button>

<table border="1" id="${prefix}_table_1">

<tr>

<th colspan="3">Simple Dynamic Table</th>

</tr>

<tr>

<td>Column 1</td>

<td>Column 2</td>

</tr>

</table>

Cl ient-S ide Deve lopment Best P ract ices

6-14 Oracle WebLogic Portal Client-Side Developer’s Guide

Parameterizing Your JavaScript Functions
This section discusses another version of the dynamic table example in which parameterized
JavaScript functions are factored out into a .js file. This external file is shown in Listing 6-7.
Note that both the addRow() and init() functions are parameterized. Note that it is a best practice
to include external .js files in a portlet using a render dependencies file. See “Creating a Render
Dependencies File” on page 4-4.

Listing 6-7 External JavaScript File (.js)

function addRow(id) {

var table = document.getElementById(id+"_table");

var numrows = table.getElementsByTagName("tr").length;

var row = table.insertRow(numrows);

//-- Add text to the row cells.

var cellLeft = row.insertCell(0);

var textLeft = document.createTextNode(numrows-1);

cellLeft.appendChild(textLeft);

var cellRight = row.insertCell(1);

var textRight = document.createTextNode(numrows-1);

cellRight.appendChild(textRight);

}

function initialize(id) {

var addHandler =

function() {

addRow(id);

};

 var addRowButton = dijit.byId(id+"_addRowButton");

 dojo.connect(addRowButton, 'onClick', addHandler);

}

Avo id ing Namespace Co l l i s ions

Oracle WebLogic Portal Client-Side Developer’s Guide 6-15

The JSP file from which the portlet is generated must be written so that the ID parameter is passed
to the init() function. Note that the addOnLoad() function is called by passing in an anonymous
function that returns the init() function. This technique is necessary, and allows the parameter
passed to init() to persist after the addOnLoad() function returns.

Listing 6-8 Modified JSP File

<%@ page

import="com.bea.netuix.servlets.controls.portlet.PortletPresentationContext"%>

<%

PortletPresentationContext portletCtx = (PortletPresentationContext)

PortletPresentationContext.getPortletPresentationContext(request);

pageContext.setAttribute("prefix", portletCtx.getInstanceLabel());

%>

<script type="text/javascript">

 // Load the Dojo Button widget

 dojo.require("dijit.form.Button");

</script>

<script type="text/javascript">

 dojo.addOnLoad(function() {

 initialize("${prefix}");

 });

</script>

<button dojoType="dijit.form.Button" id="${prefix}_addRowButton"> Add Row

</button>

<table border="1" id="${prefix}_table">

<tr>

<th colspan="3">Simple Dynamic Table</th>

</tr>

<tr>

<td>Column 1</td>

<td>Column 2</td>

</tr>

Cl ient-S ide Deve lopment Best P ract ices

6-16 Oracle WebLogic Portal Client-Side Developer’s Guide

</table>

In summary, the original dynamic portlet described in “A Simple Dynamic Table Portlet” on
page 6-2 has been redesigned to function in a portal/portlet environment. First, global variables
and functions were addressed with ad hoc namespacing to prevent namespace collisions. Second,
JavaScript code was externalized into a .js file. To accomplish this, we parameterized functions
and used techniques of closure and anonymous functions. Of course, externalizing JavaScript
code is always a best practice, as it allows for code reuse and reduces clutter in JSP or HTML
files.

Using the Disc APIs
You can use the Disc APIs to retrieve unique portlet labels that can be used to scope JavaScript
variables. The basic technique is similar to the one described in “Using Ad Hoc Namespacing”
on page 6-8. With Disc, you can get the portlet label from the portlet’s context object. For more
information, see “Using REST and Disc” on page 7-10.

Oracle WebLogic Portal Client-Side Developer’s Guide 7-1

C H A P T E R 7

The WebLogic Portal REST API

WebLogic Portal provides a set of web-based, REST-style APIs for retrieving, modifying, and
updating portal data dynamically from the client. This chapter discusses the WLP REST API and
provides use cases and examples.

Tip: See the WLP REST API Reference online for detailed information on each of the WLP
REST commands.

What is REST?
REST (REpresentational State Transfer) is an approach for building services that make specific
resources available at a URL. A REST service has well defined operations for manipulating the
resource. Typically, these operations include reading, writing, editing, and removing. In the case
of WLP, a resource might be a portlet, page, or book. For example, the following WLP REST
command retrieves a list of portlets in the specified web application:

http://localhost:7001/myWebApp/bea/wlp/api/portlet/list?webapp=myWebApp

Tip: For a good general introduction to REST, see the Wikipedia article “Representational
State Transfer” at http://en.wikipedia.org/wiki/Representational_State_Transfer.

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Representational_State_Transfer

The WebLog ic Po r ta l REST AP I

7-2 Oracle WebLogic Portal Client-Side Developer’s Guide

What is the WLP REST API?
The WLP REST API focuses on a number of straightforward use cases, such as “retrieving a list
of portlets” and “adding a page to a book.” Following the general pattern for REST APIs, the
WLP REST API provides commands that read, create, update, and delete portal artifacts. For
example, WLP REST commands exist for listing portlets, adding portlets, updating portlets, and
deleting portlets. The results of REST commands are persisted through the WLP customization
framework. The REST commands discussed in this chapter are not intended for portlet rendering.

Note: Some of the REST API commands only work with streaming portals. Generally, a
streaming portal is one that has been configured using the Portal Administration Console.
For more information, see File Based and Streaming Portals.

WLP REST API Reference Documentation
The REST API Documentation is available on e-docs.

REST API Use Cases
The WLP REST commands currently provide access to WLP data to support visitor
customization features of WLP. The commands allow browser-based tools to interact with and
modify a user’s desktop. For example, REST commands are used extensively by the placeable
movement feature as well as in the Dynamic Visitor Tool sample application (see Chapter 8, “The
Dynamic Visitor Tools Sample”). The commands provide services such as adding, removing, and
moving portlets on a page. In general, the WLP REST commands provide a more natural and easy
to use alternative to a web services approach.

Note: Some REST commands only return what is not currently visible on the desktop. This
supports the use case where users would not want or expect to see a list of, for instance,
portlets to add if they were already added to the desktop.

REST Command Format
The format of a WLP REST command is:
<protocol>://<host>:<port>/<webapp>/bea/wlp/api/<type>/<action>/<label>?<params>

Table 7-1 describes the parts of a WLP REST command:

../apidocREST/index.html
../portals/intro_to_portal_dev.html#wp1002092

What i s the WLP REST AP I?

Oracle WebLogic Portal Client-Side Developer’s Guide 7-3

Commonly Used REST Command Parameters
Each REST command takes a list of parameters that are described in the REST API reference
documentation on e-docs. This section describes three commonly used parameters in greater detail.

The webapp Parameter
The webapp parameter is always required. It specifies the name of the web application on which
you are calling the REST command. If you have more than one web application deployed in a
given EAR, this parameter lets you easily switch between them. The web application specified

Table 7-1 REST Command Format

Command Part Description

<protocol> The transport protocol, typically http.

<host> The IP host name, such as localhost.

<port> The port number, such as 7001

<webapp> The name of the web application hosting the services, such as
myWebApp. Note that all REST commands also require a
webapp parameter. The webapp parameter specifies the
specific web application for the command to operate on. The
web application specified in the parameter can be different
from the web application you post to, as long as it is deployed
in the same EAR file.

bea/wlp/api Standard namespace path used for all REST commands

<type> The type of portal artifact the command operates on, such as
desktop, book, page, portlet, lookandfeel, shell, menu, layout,
them.

<action> The specific action to take, such as list, delete, add, and get.

<label> The unique label of the object.

command-specific
parameters

A list of command-specific URL parameters. See the REST
API reference documentation on e-docs for a complete list for
each command. Commonly used parameters are described in
“Commonly Used REST Command Parameters” on page 7-3.

../apidocREST/index.html
../apidocREST/index.html

The WebLog ic Po r ta l REST AP I

7-4 Oracle WebLogic Portal Client-Side Developer’s Guide

with the parameter can be different web application you are posting to (that is, the application
specified in the base URL).

For example, in the following command, myWebApp is the application that receives the
command, and yourWebApp is the one for which the portlet list is retrieved. Both web
applications must be deployed in the same EAR.

http://localhost:7001/myWebApp/bea/wlp/api/portlet/list?webapp=yourWebApp

The format Parameter
The format parameter can be either xml or json. The default is xml. JSON is an object notation
for JavaScript, and is generally easier to work with in a browser environment with JavaScript. See
“JSON” on page 2-4 for more information For example:

http://localhost:7001/myWebApp/bea/wlp/api/portlet/list?webapp=yourWebApp&

format=json

The scope Parameter
The scope parameter lets you fine tune certain REST commands. This parameter can affect the
data retrieved as well as the data updated. The scope parameter can take one of these three values:

library – An object (book, page, or portlet) can exist in the library and not be referenced
by any desktop. A developer or administrator may create a page outside the context of a
desktop. This page can then be placed on a desktop at a later point in time. Changes made
to objects in the library are cascaded down through all desktops.

admin – The admin scope represents the “default desktop” this is where the administrator
makes changes to a individual desktop. So an admin or community leader can make
changes to a page and those changes are not reflected in the library or on other desktops.
Those changes may get cascaded down to the visitors view though.

visitor – (default) Visitors, or end users, are allowed to customize their desktop according
to their personal preferences. Changes made to one visitor’s view do not show up in the
default desktop nor do they show up in other visitor's views.

Note: If scope is not specified then the default value is visitor for regular non-privileged
users. If, however, the user has administrator’s rights, then the default values are read
from the session. This value can be set using the adminscope REST command.

Figure 7-2 shows the hierarchy of this scoping in a portal application, the direction of proliferated
changes and what tools are typically used to modify at the different levels.

What i s the WLP REST AP I?

Oracle WebLogic Portal Client-Side Developer’s Guide 7-5

Figure 7-1 Scoping Hierarchy

If the value of the scope parameter is set to visitor, then you can optionally specify a user name
if you have permissions to do so. WLS administrators, WLP administrators, and community
leaders may make changes to other user’s desktops; however, a regular user can only affect his
or her own desktop.

Example:

/bea/wlp/api/adminscope/item?webapp=mywebapp&portal=portalpath&desktop=

desktoppath&scope=visitor

This command puts a special token in the HttpSession. This same token is used when an
individual user makes a request for a desktop. So if the user “weblogic” logs into a desktop the
framework looks at this value to determine what view to bring back. If the value is admin then
bring back the default view, otherwise bring back the administrator’s personal view.

Tip: A best practice is to always specify the scope parameter instead of trying to rely on what
is in the session because the session can timeout at any point.

The WebLog ic Po r ta l REST AP I

7-6 Oracle WebLogic Portal Client-Side Developer’s Guide

REST Command Example
The following REST command retrieves a list of portlets from a portal web application called
myWeb that contains just two portlets.

http://localhost:7001/myWeb/bea/wlp/api/portlet/list?webapp=myWeb

Listing 7-1 shows an example of the type of XML data (the default format) returned by this REST
command. This portlet information (such as the portlet label) can then be parsed out and used as
input to another REST command, such as a command to add a portlet to a page.

Listing 7-1 Example Response from the List Portlets REST Command

<rsp>

 <portlet_summaries>

 <portlet_summary>

 <label>p1</label>

 <title>Portlet One</title>

 </portlet_summary>

 <portlet_summary>

 <label>p2</label>

 <title>Portlet Two</title>

 </portlet_summary>

</portlet_summaries>

</rsp>

Tip: By default, WLP REST commands return data in XML format. You can add the
parameter format=json to a command to return a JSON (JavaScript Object Notation)
object rather than XML to the client. It is easy to convert the JSON response to a
JavaScript object. Once the data is in object form, you can use JavaScript to iterate and
access values using familiar dot notation, such as item.title and item.markupName. See
also “JSON” on page 2-4.

Disabling REST Commands
You can disable specific REST commands by editing the config file wlp-restapi-config.xml.
To disable REST commands, do the following:

Disab l ing REST Commands

Oracle WebLogic Portal Client-Side Developer’s Guide 7-7

1. Select the Merged Projects view in Workshop for WebLogic.

2. Open the WEB-INF folder of the web application.

3. Right-click wlp-restapi-config.xml and select Copy To Project, as shown in Figure 7-2.
This copies the file from its library module to your project so that you can edit it.

Figure 7-2 Selecting the REST Config File

4. Open the file in the editor.

5. Locate the REST command and set the value of the <enable> element to false, as shown in
Listing 7-2.

Listing 7-2 REST Command Definition

<rest-handler>

<name>getPortlets</name>

<path>portlet/list</path>

<handler-class>com.bea.wlp.rest.portlet.command.GetPortlets

</handler-class>

<methods>

<method>

<name>get</name>

The WebLog ic Po r ta l REST AP I

7-8 Oracle WebLogic Portal Client-Side Developer’s Guide

<enable>false</enable>
</method>

</methods>

</rest-handler>

Basic WLP REST API Examples
This section gives examples of some WLP REST commands and their responses. For a more
complete example that includes using Disc to obtain portal information, see “Using REST and
Disc” on page 7-10.

Retrieving Information About a Single Portlet
The following REST command returns details on a single portlet with the label revenue_1 from
the web application called “banking.” This result is shown in Listing 7-3.
http://blaster:7041/banking/bea/wlp/api/portlet/details/revenue_1?webapp=dvt

Listing 7-3 Portlet Details

<rsp>

 <title>5 Largest Customers</title>

 <content_uri>/portlets/revenue/index.jsp</content_uri>

 <forkable>false</forkable>

<fork_render>false</fork_render>

<is_public>true</is_public>

<cacheable>false</cacheable>

<cache_expires>-1</cache_expires>

<portlet_file>/portlets/revenue/revenue.portlet</portlet_file>

<deleted>false</deleted>

<webapp>dvt</webapp>

<wsrp_user_properties_mode>3</wsrp_user_properties_mode>

<state_change_flag>0</state_change_flag>

<requires_url_templates>false</requires_url_templates>

<templates_stored_in_session>false</templates_stored_in_session>

<producer_offered_portlet>false</producer_offered_portlet>

<created_date>2007-10-31 15:54:19.0</created_date>

Bas ic WLP REST AP I Examples

Oracle WebLogic Portal Client-Side Developer’s Guide 7-9

<modified_date>2007-10-31 15:54:19.0</modified_date>

</rsp>

Tip: Each of the various portal artifacts (such as pages and books) can be queried to return
similar information. Refer to the REST API reference documentation on e-docs for the
appropriate command syntax.

Changing the Title of a Portlet
REST commands that update portal data require an HTTP POST method. Listing 7-4 shows a
simple script that uses the XMLHttpRequest.open method to post the REST URL.

Listing 7-4 Updating with a POST Method

<script type="text/javascript">

 var urlStem =

'http://localhost:7001/myWeb/bea/wlp/api/portlet/item/restTest_1';

 var params = "webapp=myWeb&title=New Title";

 var xmlhttp = new bea.wlp.disc.io.XMLHttpRequest();

 var url = urlStem + "?" + params;

 xmlhttp.open('POST', urlStem, true);

 xmlhttp.send(params);

</script>

Moving a Book or Page
The REST commands let you create, delete, and modify objects. Here is an example that
illustrates how to move a book from one page to another.
<protocol>://<hostname>:<port>/<webapp>/bea/wlp/api/<type>/<action>/<childtype>/

<label>?webapp=<webapp>&format=<format>

Where childtype is a child of the object specified by the type and with the label. For example,
moving a page within a book would have a URL such as:

../apidocREST/index.html

The WebLog ic Po r ta l REST AP I

7-10 Oracle WebLogic Portal Client-Side Developer’s Guide

http://mysite.com/flatweb/bea/wlp/api/book/move/bookorpage/mainbook_01

Where mainbook_01 is the label of the book to move the page on. The POST parameters would
look like the following:
webapp=flatweb

portal=flatirons

desktop=flatweb

scope=visitor

label=mypage

position=0

alignment=0

The label is the label of the page to move and the position is the position within the book to move
to. The scope can be specified as visitor, admin, or library, allowing an admin user to make
changes to default instances, library instances, and so on.

Note: The DOM does not automatically reflect changes. Use DHTML on the client to update
the page.

Using REST and Disc
REST commands by themselves are not sufficient to satisfy all use cases. You need to use the
Disc JavaScript API to retrieve portal context objects and the information they contain. This
information can then be added to a REST call to update the portal. For example, to move a portlet,
you need to use the Disc APIs to get information about the portlet’s current location and add this
information to the REST call. The Disc framework is discussed in Chapter 3, “The WLP Disc
Framework.”

The following example sections illustrate many of the key concepts around using REST and Disc
for client-side portal UI development.

The following sections discuss parts of a sample JSP portlet that is shown in its entirety in
“Putting It All Together” on page 7-14. The portlet lets the user change the page layout by
selecting a new layout from a drop down list. The list is populated by querying the portal with the
Disc API, and a user’s selection is communicated to the server with a REST command.

Constructing a REST URL Using Disc Context Objects
Using the information obtained from a Disc context object, you can call REST API commands to
update the portal. Most REST commands require parameters that can only be obtained from

Us ing REST and D isc

Oracle WebLogic Portal Client-Side Developer’s Guide 7-11

context objects. REST command parameters are listed and described in the WLP REST API
Documentation on e-docs.

The function in Listing 7-5 uses Disc context objects to obtain information from the portal that is
used to construct REST command parameters. The code is straightforward JavaScript. The REST
command requires such parameters as the portlet context, page context, portal path, desktop path,
and others. After the parameters are gathered, the REST command URL is constructed.

Listing 7-5 Constructing a REST Command

...

function ${uid}setLayout(layoutName) {

 // Get the canvas element to use for output

 var canvas = document.getElementById("${uid}canvas");

 // Get the portlet context from Disc

 var portletContext = bea.wlp.disc.context.Portlet.findByElement(canvas);

 // Get the parent page context for the portlet

 var pageContext = portletContext.getParentPage();

 // Get the application instance from Disc

 var appContext = bea.wlp.disc.context.Application.getInstance();

 // Create the parameters to pass to the REST command

 var params = "";

 params += "&portal=" + appContext.getPortalPath();

 params += "&desktop=" + appContext.getDesktopPath();

 params += "&webapp=" + appContext.getWebAppName();

 params += "&layout=" + layoutName;

 // Construct the URL for the REST command to change page attributes

 var url = "/" + appContext.getWebAppName();

 url += "/bea/wlp/api/page/item/" + pageContext.getLabel();

...

../apidocREST/index.html
../apidocREST/index.html

The WebLog ic Po r ta l REST AP I

7-12 Oracle WebLogic Portal Client-Side Developer’s Guide

Open and Send an XHR Request
After you construct a request to send a REST command, you need to send it to the server. The
recommended practice is to use an XHR object to send the command and retrieve the results.

Listing 7-6 shows a code sample that opens an XHR request using a URL and sends a parameter
list. The URL and parameter list could be constructed in a similar manner to the techniques
discussed in Listing 7-5.

Listing 7-6 Opening and Sending an XHR Request

...

// Get a portal-aware XMLHttpRequest from Disc

 var xmlHttpReq = new bea.wlp.disc.io.XMLHttpRequest();

 xmlHttpReq.onreadystatechange = function() {

 if (xmlHttpReq.readyState == 4) {

 if(xmlHttpReq.status == 200) {

 var msg = "Layout changed to " + layoutName + ".\n\n";

 msg += "Press OK to refresh desktop.";

 if (confirm(msg)) {

 window.location.reload();

 }

 } else {

 alert("Unable to change layout.");

 }

 }

 };

 xmlHttpReq.open('POST', url, true);

 xmlHttpReq.send(params);

 }

...

Handle the REST Response
Some REST commands return a simple status response. Other commands return additional data,
such as detailed information about a portlet. The code sample in Listing 7-7 shows how response
data from a REST command might be handled. In this case, the response is a list of available
portal layouts that were requested. The response data is passed to a function that parses the list

Us ing REST and D isc

Oracle WebLogic Portal Client-Side Developer’s Guide 7-13

and displays it in a drop down menu. Note that the REST command and its parameters are
constructed in a similar manner to that described previously in Listing 7-5.

Listing 7-7 Handling REST Response Data

...

// Get the application instance from Disc

 var appContext = bea.wlp.disc.context.Application.getInstance();

 // Construct the parameters for the REST command

 var params = "";

 params += "?portal=" + appContext.getPortalPath();

 params += "&desktop=" + appContext.getDesktopPath();

 params += "&webapp=" + appContext.getWebAppName();

 params += "&format=json";

 // Construct the URL for getting the list of layouts from REST

 var url = "/" + appContext.getWebAppName();

 url += "/bea/wlp/api/layout/list";

 url += params;

 // Get a porttal-aware XMLHttpRequest from Disc

 var xmlHttpReq = new bea.wlp.disc.io.XMLHttpRequest();

 xmlHttpReq.onreadystatechange = function() {

 if (xmlHttpReq.readyState == 4) {

 if (xmlHttpReq.status == 200) {

 // Get the data from the response

 var data = eval('(' + xmlHttpReq.responseText + ')');

 ${uid}displayLayouts(data)

 } else {

 alert("Unable to retrieve layouts.");

 }

 }

 };

 xmlHttpReq.open('GET', url, true);

 xmlHttpReq.send(null);

...

The WebLog ic Po r ta l REST AP I

7-14 Oracle WebLogic Portal Client-Side Developer’s Guide

Putting It All Together
Listing 7-8 shows a complete JSP file that uses REST and Disc to provide UI for changing the
layout of a portal. Note that all of the UI code is on the client-side. Disc is used to obtain
information from the portal, REST is used to update the portal, and XHR is used to make
asynchronous requests to the server. Figure 7-3 shows the Change Layout portlet in a portal. Note
that the portlet requires that the user be logged in.

Figure 7-3 Sample Change Layout Portlet

Listing 7-8 Sample Portlet JSP

<%-- Copyright (c) 2006-2008 by BEA Systems, Inc. All Rights Reserved. --%>

<jsp:root

 version="2.0"

 xmlns:jsp="http://java.sun.com/JSP/Page"

 xmlns:render="http://www.bea.com/servers/portal/tags/netuix/render"

>

 <jsp:directive.page session="false" />

 <jsp:directive.page isELIgnored="false" />

Us ing REST and D isc

Oracle WebLogic Portal Client-Side Developer’s Guide 7-15

 <render:encodeName name="" var="uid"/>

 <div id="${uid}canvas" style="display: none;">

 <div style="text-align: left; margin: 8px; white-space: normal;">

 Press the Change Layout button

 to display a list of layouts. The current layout for this page will

 be selected in the drop-down list, which may be changed by selecting

 a different layout. To view the changes click OK in the confirmation

 dialog to refresh the desktop.

 </div>

 <div style="text-align: center; margin: 8px;">

 <button name="changeLayout" onclick="${uid}getLayouts();">

 Change Layout

 </button>

 </div>

 <div

 id="layouts"

 style="text-align: center; margin: 8px; visibility: hidden;">

 Layouts:

 <select

 id="${uid}layoutSelect"

 onchange="${uid}setLayout(this.options[this.selectedIndex].value)">

 </select>

 </div>

 </div>

 <div id="${uid}message" style="text-align: center; padding: 16px;">

 Please enable Disc to use this portlet.

 Please use this portlet on a portal desktop.

 Please login to use this portlet.

 Please enable customization to use this portlet.

 </div>

 <script type="text/javascript">

 function ${uid}loadInit() {

 if (typeof bea == "undefined") {

The WebLog ic Po r ta l REST AP I

7-16 Oracle WebLogic Portal Client-Side Developer’s Guide

 document.getElementById("${uid}discMsg").style.display = "";

 } else {

 // Get the application instance from Disc

 var appContext = bea.wlp.disc.context.Application.getInstance();

 if (appContext.getDotPortal()) {

 // Inform the user that the portlet must be on a desktop

 document.getElementById("${uid}desktopMsg").style.display = "";

 } else if (!appContext.getUserName()) {

 // Inform the user that they must login go use the portlet

 document.getElementById("${uid}loginMsg").style.display = "";

 } else if (!appContext.getCustomizationEnabled()) {

 // Inform the user that Disc must be enabled

 document.getElementById("${uid}customizeMsg").style.display = "";

 } else {

 // Display the canvas div and hide the message div

 document.getElementById("${uid}canvas").style.display = "";

 document.getElementById("${uid}message").style.display = "none";

 }

 }

 }

 function ${uid}getLayouts() {

 // Get the application instance from Disc

 var appContext = bea.wlp.disc.context.Application.getInstance();

 // Construct the parameters for the REST command

 var params = "";

 params += "?portal=" + appContext.getPortalPath();

 params += "&desktop=" + appContext.getDesktopPath();

 params += "&webapp=" + appContext.getWebAppName();

 params += "&format=json";

 // Construct the URL for getting the list of layouts from REST

 var url = "/" + appContext.getWebAppName();

 url += "/bea/wlp/api/layout/list";

 url += params;

 // Get a porttal-aware XMLHttpRequest from Disc

 var xmlHttpReq = new bea.wlp.disc.io.XMLHttpRequest();

 xmlHttpReq.onreadystatechange = function() {

Us ing REST and D isc

Oracle WebLogic Portal Client-Side Developer’s Guide 7-17

 if (xmlHttpReq.readyState == 4) {

 if (xmlHttpReq.status == 200) {

 // Get the data from the response

 var data = eval('(' + xmlHttpReq.responseText + ')');

 ${uid}displayLayouts(data)

 } else {

 alert("Unable to retrieve layouts.");

 }

 }

 };

 xmlHttpReq.open('GET', url, true);

 xmlHttpReq.send(null);

 }

 function ${uid}displayLayouts(data) {

 // Get the select element to use for output

 var select = document.getElementById("${uid}layoutSelect");

 // Get the portlet context from Disc using the select element

 var portletContext = bea.wlp.disc.context.Portlet.findByElement(select);

 // Get the parent page context for the portlet

 var pageContext = portletContext.getParentPage();

 // Get the current layout for the page

 var layoutContext = pageContext.getLayout();

 // Get the markup name for the layout

 var layoutName = layoutContext.getMarkupName();

 // Set the visibilty of the parent div for the select

 var div = select.parentNode;

 div.style.visibility = "visible";

 // Clear the select box

 select.options.length = 0;

 // Get the layout details from the response data

 var layoutDetails = data.content.layouts;

 var layoutDetail = null;

The WebLog ic Po r ta l REST AP I

7-18 Oracle WebLogic Portal Client-Side Developer’s Guide

 // Iterate over the layoutDetails and create options for each layout

 for (var i = 0; i < layoutDetails.length; i++) {

 layoutDetail = layoutDetails[i];

 // Create a new option element for the layout details

 option = document.createElement("option");

 option.value = layoutDetail.markup_name;

 option.innerHTML = layoutDetail.title;

 // Compare the markup name to the current layout and select the match

 if (layoutDetail.markup_name == layoutName) {

 option.selected = "selected";

 }

 select.appendChild(option);

 }

 }

 function ${uid}setLayout(layoutName) {

 // Get the canvas element to use for output

 var canvas = document.getElementById("${uid}canvas");

 // Get the portlet context from Disc

 var portletContext = bea.wlp.disc.context.Portlet.findByElement(canvas);

 // Get the parent page context for the portlet

 var pageContext = portletContext.getParentPage();

 // Get the application instance from Disc

 var appContext = bea.wlp.disc.context.Application.getInstance();

 // Create the parameters to pass to the REST command

 var params = "";

 params += "&portal=" + appContext.getPortalPath();

 params += "&desktop=" + appContext.getDesktopPath();

 params += "&webapp=" + appContext.getWebAppName();

 params += "&layout=" + layoutName;

 // Construct the URL for the REST command to change page attributes

 var url = "/" + appContext.getWebAppName();

 url += "/bea/wlp/api/page/item/" + pageContext.getLabel();

Us ing REST and D isc

Oracle WebLogic Portal Client-Side Developer’s Guide 7-19

 // Get a portal-aware XMLHttpRequest from Disc

 var xmlHttpReq = new bea.wlp.disc.io.XMLHttpRequest();

 xmlHttpReq.onreadystatechange = function() {

 if (xmlHttpReq.readyState == 4) {

 if(xmlHttpReq.status == 200) {

 var msg = "Layout changed to " + layoutName + ".\n\n";

 msg += "Press OK to refresh desktop.";

 if (confirm(msg)) {

 window.location.reload();

 }

 } else {

 alert("Unable to change layout.");

 }

 }

 };

 xmlHttpReq.open('POST', url, true);

 xmlHttpReq.send(params);

 }

 // Add an onload function for this portlet

 var ${uid}oldonload = (window.onload) ? window.onload : function () {};

 window.onload = function () { ${uid}oldonload(); ${uid}loadInit(); };

 </script>

</jsp:root>

The WebLog ic Po r ta l REST AP I

7-20 Oracle WebLogic Portal Client-Side Developer’s Guide

	Oracle® WebLogic Portal
	10g Release 3 (10.3)

	Oracle WebLogic Portal Client-Side Developer’s Guide, 10g Release 3 (10.3)
	What’s in this Guide?
	The Disc Framework
	Toolkit Integration
	Portlet Publishing
	The REST API
	The Dynamic Visitor Tools Sample Application

	Client-Side Development Technologies
	Brief History of Client-Side Technology and the Portal
	JavaScript
	Ajax
	Disc JavaScript Framework
	Portal-Aware XMLHttpRequest
	Web-Based and REST Style Services
	JSON
	Ajax Toolkits

	The WLP Disc Framework
	What is Disc?
	Enabling Disc
	What Enabling Disc Means
	Enabling Disc in Workshop for WebLogic
	Enabling Disc in the Administration Console
	Using Disc Outside of a Portal

	Using Portal-Aware XMLHttpRequest to Retrieve Data from a Non-Portal Source
	Use Case
	Example

	Using Portal-Aware XMLHttpRequest to Update Portlets
	Use Cases
	Example

	Using Context Objects
	Using Context Objects

	The XMLHttpRequest Interaction Engine
	Event Handling
	Logging
	Example

	Configuring JavaScript Libraries in a Portal Web Project
	Creating a Simple Portal Project with Dojo
	The Hello World JSP Portlet with Dojo
	Creating a Render Dependencies File
	The Importance of Render Dependencies
	Creating the Sample Render Dependencies File

	Portlet Publishing
	What is Portlet Publishing?
	What is the Portlet Publishing Service?
	Asking the Portlet Publishing Service for Portlets
	Consuming a Published Portlet

	Portlet Publishing URL Forms
	Library Instance URL Form
	Desktop Instance URL Form

	Consuming Published Portlets
	Inline Frame Integration
	DOM Integration
	Finding Portlet Publishing Context

	Advanced Topics
	Using the Decoration Parameter
	Integrating Multiple Portlets into the DOM
	Integrating Portlets from Multiple Publishing Contexts

	Portlet Publishing vs. WSRP
	Limitations

	Client-Side Development Best Practices
	Namespacing
	A Simple Dynamic Table Portlet
	Namespace Collisions
	The Mysterious Table Row

	Avoiding Namespace Collisions
	Using Ad Hoc Namespacing
	Using Rewrite Tokens
	Parameterizing Your JavaScript Functions
	Using the Disc APIs

	The WebLogic Portal REST API
	What is REST?
	What is the WLP REST API?
	WLP REST API Reference Documentation
	REST API Use Cases
	REST Command Format
	Commonly Used REST Command Parameters
	REST Command Example

	Disabling REST Commands
	Basic WLP REST API Examples
	Retrieving Information About a Single Portlet
	Changing the Title of a Portlet
	Moving a Book or Page

	Using REST and Disc
	Constructing a REST URL Using Disc Context Objects
	Open and Send an XHR Request
	Handle the REST Response
	Putting It All Together

