
Oracle® WebLogic Portal
Content Management SPI Development Guide

10g Release 3 (10.3)

September 2008

Oracle WebLogic Portal Content Management SPI Development Guide, 10g Release 3 (10.3)

Copyright © 2008, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Oracle WebLogic Portal Content Management SPI Development Guide iii

Contents

Introduction to Content Management SPI
Content Management SPI FAQ . 1-1

What is the CM SPI? . 1-1

Why Write an SPI?. 1-2

What are the Structures and Data Types that can be Exposed? 1-2

What is the Difference Between an SPI Implementation and a Repository?. 1-3

Who Uses the SPI?. 1-3

How is an SPI Implementation Packaged and Made Available to the VCR? 1-3

Where Does the SPI Implementation Run? . 1-4

Architecture Overview of an SPI Implementation . 1-4

What components are involved in the SPI? . 1-5

What is the Relationship of the VCR Repository Construct and the WebLogic Portal
Application? . 1-5

What Authentication Models are Available? . 1-5

How Does the VCR Interact With the SPI Implementation?. 1-6

SPI Data Model
About the Content Management Data Model . 2-1

Type Data Representation . 2-2

Node Data Representation. 2-3

SPI Capabilities and Versions
About SPI Capabilities . 3-1

iv Oracle WebLogic Portal Content Management SPI Development Guide

VCR Detection of the SPI Implementation Capabilities . 3-2

SPI Interface Versions . 3-2

SPI Implementation Creation
VCR SPI Implementation Interaction . 4-1

Primary Classes for a Basic SPI Implementation. 4-2

Repository Guidelines when Creating an SPI Implementation 4-3

Basic SPI Implementation . 4-4

Basic SPI Repository Implementation Code Example . 4-7

Basic SPI Ticket Implementation Code Example . 4-9

Optional SPI Interfaces Implementation . 4-11

Exposing an Optional SPI Interface . 4-11

SPI Interface Result Collections, Sorting, and Filtering . 4-13

Filtering and Sorting Results with the SPI . 4-13

Common SPI Interface Objects for Sorting and Filtering. 4-14

Interface Topics
NodeOpsV1 SPI Interface Topics . 5-1

What Types of Operations are Supported by the NodeOpsV1 SPI Interface? 5-2

What Type of Hierarchical Paths are Passed To and From the SPI layer? 5-2

How Should the SPI Implementation Create Node Data Objects to be Returned? 5-2

How Should the SPI Implementation Create Property Data Objects to be Returned5-3

What Should the SPI Implementation Do when Node Metadata is not Available? 5-3

How are the Node ID and Property ID related? . 5-4

What Node Names are Valid? . 5-4

Example – Creating a Node with no ObjectClass. 5-4

Example – Creating a Node with an ObjectClass and Property Values 5-5

ObjectClassOpsV1 SPI Interface Topics . 5-5

Oracle WebLogic Portal Content Management SPI Development Guide v

What are the Supported Operation Types? . 5-5

How Should the SPI Implementation Create ObjectClass Objects? 5-6

SearchOpsV1 SPI Interface Topics . 5-6

Indexing Content. 5-7

How Is Content Indexed? . 5-7

How Can an Event Listener Perform Content Indexing? . 5-7

SPI Testing Topics . 5-8

How to Configure a Repository for SPI Parameter and Response Data Checking . 5-8

How to Monitor Repository and Ticket Method Invocations and Performance . . . 5-9

How to Monitor SPI Operation Interface Method Invocations and Performance. . 5-9

vi Oracle WebLogic Portal Content Management SPI Development Guide

Oracle WebLogic Portal Content Management SPI Development Guide 1-1

C H A P T E R 1

Introduction to Content Management
SPI

This chapter introduces the Oracle WebLogic Portal Content Management (CM) Service
Provider Interface (SPI) by way of an FAQ. It contains the following sections:

Content Management SPI FAQ

Architecture Overview of an SPI Implementation

Content Management SPI FAQ
The following questions and answers provide an overview of the Content Management SPI.

What is the CM SPI?
SPI is an open extension point in the WebLogic Portal Content Management Virtual Content
Repository (VCR). It supports integrating data from an external system into the WebLogic Portal
VCR.

SPI implementations can be “plugged into” the VCR to enable data access and modification in
external stores of given type. This gives you the ability to use WebLogic Portal Interaction
Management, display templates, CM APIs, content search, WebLogic Portal Administration
Tools, and other WebLogic Portal VCR features with the external data. For example, you could
create SPI implementations for accessing SharePoint, file system, RSS, or database data.

The SPI is a group of CM interfaces supplied with WebLogic Portal. For example, there is a
Repository interface, a Ticket interface, and various optional operations interfaces, such as

Content Management SP I FAQ

1-2 Oracle WebLogic Portal Content Management SPI Development Guide

NodeOps, ObjectClassOps, and SearchOps. Some of these interfaces are required, others are
optional.

An SPI implementation is a group of classes that implements the SPI to support persisting and/or
storing data externally. The SPI is not tied to any particular architecture, protocol, or data source.
This means that it is applicable to a wide range of implementations, including database-centric,
file-system based, and network protocol-based systems. Some SPI implementations may delegate
to a remote server, while other implementations run in same JVM as WebLogic Server.

For example, you could create an SPI to access external syndicated feeds (RSS) and present the
feed data as VCR nodes and properties. The CM tags and display template features of WebLogic
Portal could be used to access and present the data.

The SPI is designed to support incremental SPI implementations. For example, you could start
with a simple read-only SPI implementation, and then later add search and read-write
capabilities.

Why Write an SPI?
The main reason to write an SPI is to expose data via the VCR.

Creating an SPI implementation enables the WebLogic Portal features built on the CM VCR to
be used with external system data. For example, content selectors, placeholders, WebDAV,
display templates, CM tags, syndicated feeds, and the WebLogic Portal Administration tools may
all run against external system data exposed by an SPI implementation. The exact capabilities
available from the VCR depend on which features the SPI implements.

The optional interface, optional method approach allows an SPI Implementation to be quickly
created and gracefully upgraded over time to support additional capabilities.

What are the Structures and Data Types that can be
Exposed?
The CM SPI supports exposing hierarchical data via a structured (typed) mechanism. If data can
be represented in a folder structure (including just a single folder level), it can be exposed via the
CM SPI.

Each node in the hierarchy has an implicit name (the name of the hierarchy position) and unique
ID. A node without a type has only a name and an ID. You can refer to a node either by its unique
hierarchical path from the repository root, such as /foo/bar/bas, or by direct access with its
unique (opaque) ID.

Content Management SP I FAQ

Oracle WebLogic Portal Content Management SPI Development Guide 1-3

If the node has an associated type (ObjectClass), the node can have additional metadata. The
allowable metadata depends on the type (ObjectClass) definition. For example, suppose there
is an ObjectClass named City, with a numerical property “population” and a binary property
“image”. A node “Denver” of type City can then have a “population” value as well as an “image”
value, in addition to its name and ID.

What is the Difference Between an SPI Implementation and
a Repository?
An SPI implementation is a way to interact with an external system of a given type. For example,
you could create one SPI implementation to access Documentum data, another SPI to access file
system data, and a third to access data stored in a database.

The VCR may have multiple named instances (repositories) of the same SPI implementation
running against different external data sources. For example, one “FileSystem” Repository may
represent data rooted in one directory tree and another “FileSystem” Repository may represent
data rooted in another directory tree, but both may use the file system SPI implementation classes,
and be deployed in the same enterprise application.

A repository has an associated RepositoryConfig object that contains a name, an SPI
implementation class name, and associated property configuration data.

Who Uses the SPI?
The CM VCR uses an SPI implementation on behalf of clients, such as WebLogic Portal
Administration tools.

Client code does not directly use the SPI implementation; all access occurs indirectly via the
VCR. WebLogic Portal administrators register SPI implementations with the VCR by creating or
updating a repository configuration, which lets the VCR know about an SPI implementation and
its associated configuration. In order to service VCR clients, the VCR uses the repository
configuration information to connect to the SPI implementation, which then connects to the
external system for accessing and modifying data.

How is an SPI Implementation Packaged and Made
Available to the VCR?
The SPI implementation classes are placed in one or more JARs. You can then place the JARs in
the system or application classpath. A WebLogic Portal administrator creates a repository
configuration to register and configure a Repository instance of a particular SPI implementation

Arch i tec ture Overv iew o f an SP I Implementa t ion

1-4 Oracle WebLogic Portal Content Management SPI Development Guide

using (for example) the WebLogic Portal Administration tools. The administrator specifies
various configuration settings, including the repository name, the SPI Repository implementation
class, a username and password (optional), and other properties.

Where Does the SPI Implementation Run?
The SPI implementation classes are loaded into the WebLogic Server’s enterprise application
classloader and run inside the WebLogic Portal server. The same SPI implementation may be
loaded multiple times into different applications in the same server.

The same SPI implementation may be loaded multiple times, into the same application with
different repository names and configurations.

Note: Because they are loaded into the WebLogic Server, they can also be clustered.

Architecture Overview of an SPI Implementation
Figure 1-1shows an architectural diagram of Content Management VCR-SPI implementation.

Figure 1-1 Content Management VCR-SPI Architecture

WLP

WLP

Arch i tec tu re Overv i ew o f an SP I Implementat ion

Oracle WebLogic Portal Content Management SPI Development Guide 1-5

What components are involved in the SPI?
Several interfaces in the com.bea.content.spi.flexpi package must be implemented by the
SPI, such as Repository and Ticket. These interfaces must have implementations for the SPI
to be loaded and provide a means for calling the SPI and for authenticating a user.

Additionally, some optional interfaces can be fully or partially implemented to support various
types of functionality. For example, to support Node operations, you can implement the
com.bea.content.spi.flexspi.ticket.NodeOpsV1 interface. Within this interface, you
could implement all the methods except those related to link properties.

Other components involved in SPI include SPI data, such as Id, Node, ObjectClass,
PropertyDefinition, QueryCriteria, and QueryResult, that are passed through the SPI
interfaces. They are located in either in com.bea.content or
com.bea.content.spi.flexspi.common.

What is the Relationship of the VCR Repository Construct
and the WebLogic Portal Application?
The VCR Repository construct is enterprise-application scoped. When a repository is registered
in an enterprise application with a name, an SPI Implementation class, and a set of configuration
properties, it is available (via the repository name) to all users in the same enterprise application.
In other words, all users in the enterprise application can access the same set of configured
repositories. The particular capabilities each WebLogic Portal user can have for a given
repository in the current enterprise application depend on the user’s entitlements. User capability
may range from none to full.

It is possible for multiple enterprise applications to duplicate a repository configuration, using the
same repository name and other configuration settings, to refer to the same external system data.

What Authentication Models are Available?
Three supported authentication models are provided. The exact behavior of the authentication
depends on which model is being use, as described in the following list:

No authentication – Some SPI implementations may not have a concept of authentication.
If this is the case, the repository configuration contains no user or password credentials,
and all VCR users in the same enterprise application have access to the repository.
WebLogic Portal CM entitlements can define the data each user is permitted to access.
From an SPI implementation perspective, the Repository.connect() methods should
always create and return a Ticket implementation object.

Arch i tec ture Overv iew o f an SP I Implementa t ion

1-6 Oracle WebLogic Portal Content Management SPI Development Guide

Enterprise application authentication – Some SPI implementations have a concept of
authentication, which means the enterprise application is essentially authenticated to the
repository. In this case, the repository configuration is configured with a username and a
password. All VCR users in the same enterprise application use the same shared SPI
credentials. WebLogic Portal CM entitlements can define which data each user can access.
From an SPI implementation perspective, the Repository.connect() methods should
check the application credentials before creating and returning a Ticket implementation
object. If authentication fails, the method should throw an AuthenticationException.

Per-user authentication – Some SPI implementations may additionally support the optional
feature of per-user authentication on top of either of the previously listed approaches. In
this model, individual WebLogic Portal users may “upgrade” their username and password
credentials from the global per-application credentials to credentials associated with their
username. When these users access the repository, the implementation uses their personal
credentials rather the global credentials. For users who do not have personal credentials,
the global credentials are used. From an SPI implementation perspective, the
Repository.connect() methods should check the passed credentials (which may be
application or user credentials) before creating and return a Ticket implementation object,
and throw an AuthenticationException if authentication fails.

How Does the VCR Interact With the SPI Implementation?
After you complete configuration, the VCR needs to connect to the SPI implementation before
any SPI implementation methods can be invoked.

The first time the VCR contacts the SPI implementation, the VCR usually:

1. Loads and instantiates the SPI class, which implements the Repository interface via
Class.forName() and Class.newInstance().

2. Queries the Repository object for its capabilities. For more information, see Chapter 3, “SPI
Capabilities and Versions.”

3. Calls Repository.connect(…) to authenticate credentials to a repository and receive a
Ticket object.

4. Queries the Ticket object for its capabilities.

After the initial setup is complete, future VCR access directly invokes the SPI methods.

For example, if the (optional) operation interface is supported and the capabilities also indicate
the method is supported, the VCR invokes the appropriate SPI operation method. To illustrate, if
the client calls INodeManger.getNodes(ContentContext, ID), the VCR may try to call

Arch i tec tu re Overv i ew o f an SP I Implementat ion

Oracle WebLogic Portal Content Management SPI Development Guide 1-7

the SPI method NodeOpsV1.getNodeChildrenWithQueryCriteria(ID, int,
QueryCriteria), (if the SPI implements this method).

Note: The VCR may cache data returned by the SPI or the SPI may use its own caches.

Arch i tec ture Overv iew o f an SP I Implementa t ion

1-8 Oracle WebLogic Portal Content Management SPI Development Guide

Oracle WebLogic Portal Content Management SPI Development Guide 2-1

C H A P T E R 2

SPI Data Model

This chapter describes the SPI data model. It includes the following sections:

About the Content Management Data Model

Type Data Representation

Node Data Representation

About the Content Management Data Model
External system data is represented by two primary types:

Type data—information about what data a node of a given type can contain.

Node data— information about the node itself.

To address and access data, both Nodes and ObjectClasses have a unique ID. The ID contains
both the repository name and an opaque repository-specific (String) UUID. Generally, from an
SPI implementor’s perspective, the UUID is the only field in the ID that should be examined and
all data should be tied to the repository-specific UUID rather than to the ID. However, you need
to construct the ID as the SPI needs to return data. The repository name is assigned by the VCR,
as it receives the object from the SPI.

Note: The UUID field must never be null, as this value is reserved for the repository root ID.

Nodes have a unique implicit hierarchical path from the repository root that ends with the node
name. You can retrieve nodes based on this path. For example, a node with name “foo” might be
available at repository path /someNode/anotherNode/foo.

Type Data Representat ion

2-2 Oracle WebLogic Portal Content Management SPI Development Guide

From an SPI implementor’s perspective, all paths start with the repository root node, that is /foo.
In contrast from a VCR client perspective, all paths start with the repository name, that is
/SomeRepo/foo. The VCR manages this path modification.

The special path “/” is reserved for representing the repository root and the special ID
UUID=null is reserved for repository root ID. The repository root is an artificial address construct
for retrieving the top-most nodes in a repository. You cannot directly fetch the root node, but you
can retrieve its children.

Figure 2-1shows an overview of the SPI data model.

Figure 2-1 Content Management Data Model Diagram

Type Data Representation
An ObjectClass defines the schema for a Node (that is, what kind of data a node of that type
can contain). Besides the schema, the ObjectClass contains a name and ID that uniquely

Node Data Representat ion

Oracle WebLogic Portal Content Management SPI Development Guide 2-3

identifies the Node within the repository, plus an array of property definitions that describe the
data (Properties) that a Node of that type can hold. For example, you could create a type “City”
with property definitions for “population” (String) and “image” (binary).

ObjectClasses support, but do not require, type-inheritance. A type City may inherit from type
Location, thus receiving property definitions from Location. Single inheritance is supported.
Additionally, ObjectClasses support, but do not require, type nesting, which is a containment
structure. This allows you to construct a hierarchy of Node data rather than a flat list of properties.

An ObjectClass contains a PropertyDefinition that defines the schema for a single
Property that can exist on a Node of that objectClass. This is actually the schema for a named
piece of data. The primary fields in it include:

Property name

Type (String, binary, boolean, and so on)

Single-valued or multi-valued

Read only

Mandatory (if it is required to have a value)

A PropertyDefinition may define a set of PropertyChoices that you can use to provide
some predefined values. For example, a String property may have a set of property choices, one
for each state.

A PropertyChoice can be demarcated as default. When a node is created, if the associated
property has no value, it is created with the default PropertyChoice value.

Node Data Representation
A Node represents a set of external system data. A Node has a name, and you can address a node
using a unique hierarchical path (ending with its name), or a unique ID.

If a node has a type, then you can include a set of Property values that hold external system data.
The set of Properties available depends on the node’s type (ObjectClass). For example, if
Node myNode is of type City, and City has PropertyDefinitions for size and image, the
myNode can have a property called size and another called image, with values for each of these
properties.

Nodes also have implicit system metadata including:

name

Node Data Representat ion

2-4 Oracle WebLogic Portal Content Management SPI Development Guide

ObjectClass

Creation date

Created by

Modified date

Modified by

Parent node ID (the ID of the node’s parent)

A Property represents a named piece of external system data. It exists as part of a Node object.
Each Node can have multiple properties providing its ObjectClass defines multiple properties.
A Property has a name that maps up to a PropertyDefinition on the node’s ObjectClass
with the same name.

Properties may have zero or more Values. The schema for the property values depends on the
associated PropertyDefinition. For example, if Node myNode is of type City, and City has
property definitions for size (String) and image (binary), then myNode can have a property called
“size” with a string value, and another called “image”, with a binary value.

A Value represents an unnamed piece of external system data. It exists as part of a Property
object. A Property may have multiple values if its PropertyDefinition is multi-valued. The
Value contains the real value of the data type specified on the property’s PropertyDefinition.
For example, if the “Person” ObjectClass has a “favoriteColors” PropertyDefinition (a
multi-valued String), a node of type “Person” can have a Property named “favoriteColors” that
contains zero or more string Values. Valid value types are:

binary (a binaryvalue object holds the data.)

boolean

calendar (date and time)

double

ID (a node address, also called a link)

Long

String

Property[] (used for nested ObjectClass values)

Node Data Representat ion

Oracle WebLogic Portal Content Management SPI Development Guide 2-5

A BinaryValue represents an unnamed piece of external system binary data. It exists as part of
a Value object. There can be only one BinaryValue object per Value object. In addition to an
InputStream, the BinaryValue also includes metadata:

Binary Name

Mime Type (Content Type)

Size

Checksum

BinaryValues are generally loaded on-demand for better performance.

Node Data Representat ion

2-6 Oracle WebLogic Portal Content Management SPI Development Guide

Oracle WebLogic Portal Content Management SPI Development Guide 3-1

C H A P T E R 3

SPI Capabilities and Versions

This chapter describes how an SPI implementation exposes the capabilities it supports to the
VCR. This chapter includes the following topics:

About SPI Capabilities

VCR Detection of the SPI Implementation Capabilities

SPI Interface Versions

About SPI Capabilities
The SPI implementation exposes the capabilities it supports to the VCR. For example, an SPI
implementation may report which methods it supports, and whether it supports Node creation.
This allows the VCR and VCR client code to customize behavior based on the capabilities of the
underlying SPI implementation. There are three types of capabilities:

Method capabilities

Feature capabilities

Repository defined capabilities

Method capabilities indicate which methods on an interface. These are exposed via:

Repository – Repository.getCapabilitySupport()

Ticket – Ticket.getCapabilitySupport()

SP I Capabi l i t i es and Vers ions

3-2 Oracle WebLogic Portal Content Management SPI Development Guide

Feature capabilities are exposed with Repository.getCapabilitySupport(). CM features
may span multiple methods. For example, NodeFeatureCapability.NodeUpdate affects
several methods and indicates the general ability to update a node.

Repository-defined capabilities are optional SPI implementation-specific functions. These
capabilities are exposed with Repository.getRepositoryDefinedCapabilities() and
report various (usually dynamic) abilities of the underlying repository to the VCR client code for
a specific SPI implementation. For example, you could use an SPI implementation to report to
client code that the SPI implementation is performing case-insensitive sorting. A basic SPI
implementation likely would not use this feature.

VCR Detection of the SPI Implementation Capabilities
For method and feature capabilities, the VCR passes the set of capabilities it is aware of to the
SPI. The SPI implementation must then report its capability support (supported or not supported)
for each capability passed. The SPI implementation must not report any additional capabilities
beyond those it was passed. If additional capabilities exist, the implementation should use
repository-defined capabilities for those capabilities.

For repository-defined capabilities, the VCR simply asks the repository for its repository defined
capabilities and associated support levels.

During the connection process, the VCR calls the methods:

Repository.getCapabilitySupport(…) – Defines how the SPI implementation reports
its feature capability support. If the Repository implements any optional repository
operation interfaces, such as RepositoryConfigOpsV1, it must report a
MethodCapability for each method in these interfaces.

Ticket.getCapabilitySupport(…) – If the Ticket implements any optional ticket
operation interfaces, such as NodeOpsV1, it must report a MethodCapability for each
method in these interfaces.

Repository.getRepositoryDefinedCapabilities() – Defines how the SPI
implementation can report any repository-defined capabilities.

SPI Interface Versions
The SPI model included in WebLogic Portal allows the VCR and SPI implementation to have
different versions of the SPI interfaces. For example, the VCR may use NodeOpsV3 while the SPI
implementation may be written to NodeOpsV2. This flexibility allows the SPI to expand over time

SPI In te r face Ve rs ions

Oracle WebLogic Portal Content Management SPI Development Guide 3-3

without breaking any existing SPI implementations and allow additional interfaces to be
introduced that expose additional functionality. The SPI version numbers are unrelated to the
WebLogic Portal product version; they are incremented anytime an interface change is made.

Note: Once an SPI interface version is released with WebLogic Portal, it will not change
because changing it may break any SPI implementations that implement its version.

Versioned interfaces exist for optional repository operation interfaces, such as
RepositoryConfigOpsV1 and optional ticket operation interfaces, such as NodeOpsV1. When
you create an SPI implementation, you write the implementation for specific versions of the SPI
interfaces.

For example, suppose that WebLogic Portal v11 includes NodeOpsV1, ObjectClassOpsV1, and
ObjectClassOpsV2 (among others) and you write an SPI implementation against WebLogic
Portal v11 to implement the latest versions: NodeOpsV1 and ObjectClassOpsV2. After a period
of time, when you use WebLogic Portal v12, which includes NodeOpsV1, NodeOpsV2,
ObjectClassOpsV1, ObjectClassOpsV2, and ObjectClassOpsV3, the SPI implementation, built
to earlier versions, works properly.

Tip: You should use the latest available versions of the interfaces for your SPI
implementations. Over time, SPI interface versions may be deprecated and eventually
removed, so it’s best to start with the latest available.

You do not need to implement all methods in the interfaces. For example, you could implement
only a single method in NodeOpsV1.

Some SPI Implementation methods report the interface version they implement. For example,
Repository.getAllInterfaces() and Ticket.getAllInterfaces() return a
Map<String, ISPIMarker>, which has a key with the interface version:
SPIRepositoryInterfaces.REPOSITORY_CONFIG_OPS_V1 or
SPITicketInterfaces.NODE_OPS_V1.

Note: You should not bundle the versioned SPI interface classes in the SPI JARs with your SPI
implementations; they are included with WebLogic Portal.

SP I Capabi l i t i es and Vers ions

3-4 Oracle WebLogic Portal Content Management SPI Development Guide

Oracle WebLogic Portal Content Management SPI Development Guide 4-1

C H A P T E R 4

SPI Implementation Creation

This chapter provides information about creating an SPI implementation. It contains the
following sections:

VCR SPI Implementation Interaction

Primary Classes for a Basic SPI Implementation

Repository Guidelines when Creating an SPI Implementation

Basic SPI Implementation

VCR SPI Implementation Interaction
When the VCR needs to access a specific repository from the set of application repository
configurations, the VCR loads and creates an instance of the configured SPI implementation
class, which implements the VCR SPI Repository interface. The VCR invokes methods on the
repository implementation to obtain objects, such as a Ticket, which implement other VCR SPI
interfaces.

The VCR invokes methods on the Repository and Ticket implementations to query the SPI
implementation for its capabilities. (Capabilities are what operations the implementation
supports.) The VCR then invokes methods to retrieve the operation interfaces, such as
NodeOpsV1, that the SPI exposes. Finally, the VCR invokes methods on the operation interfaces.

SP I Imp lementat ion C rea t ion

4-2 Oracle WebLogic Portal Content Management SPI Development Guide

Primary Classes for a Basic SPI Implementation
The two primary classes for an SPI implementation are:

Repository

Ticket

The Repository class is instantiated directly by the VCR. This class provides anonymous
repository access. For example, an SPI implementation can report its version and other basic
information. Most importantly, this is the entry point for authenticating to an SPI implementation
to obtain a Ticket. Only authenticated users can obtain a Ticket; the Ticket provides access to the
important repository operations.

The Ticket class provides authorized repository access, and provides access to the authorized
operations interfaces such as NodeOpsV1. Only authenticated users can obtain a Ticket; the
Ticket provides access to the important repository operations. This class is instantiated by
Repository.connect(…).

The Repository can optionally expose additional authorized ticket operations interfaces, such
as NodeOpsV1, SearchOpsV1, via its implementation of getAllInterfaces() and
getInterface().

The general flow at runtime is:

Connection process:

– VCR instantiates Repository class.

– VCR configures Repository object.

– VCR queries Repository object.

– VCR invokes Repository.getAllInterfaces() to retrieve all repository interfaces.

– VCR invokes Repository.connect() to obtain a Ticket.

– VCR invokes Ticket.getAllInterfaces() to retrieve all ticket interfaces.

Call process:

– VCR accesses the desired interface, such as NodeOps.

– VCR invokes method on the desired interface, such as NodeOpsV1.getNodeWithId(
ID).

Repos i to r y Gu ide l ines when Creat ing an SP I Implementat ion

Oracle WebLogic Portal Content Management SPI Development Guide 4-3

Repository Guidelines when Creating an SPI
Implementation

Use the following design guidelines when creating an SPI implementation:

Standalone – The SPI implementation should be standalone. The VCR calls into the SPI
implementation. The SPI implementation should not call into the VCR federated interfaces,
although it can use the VCR data objects.

Stateless – Generally, the SPI implementation should be stateless. All changes should be
propagated to the external system immediately.

There are several reasons for this. Primarily, because in a cluster scenario or multiple
enterprise applications on the same server, changes to external system data should be
persisted immediately. This allows the data to appear “live” regardless from which server
and enterprise application the data is accessed.

Object caching – The SPI implementation should not cache the data objects instances it
returns (Nodes, Properties, Values, ObjectClasses, PropertyDefinitions, and
PropertyChoices). The VCR and client code own these objects, which they can modify.
For example, the VCR may change the node path before returning the node to the client.

A safe approach is to cache the objects, then return a clone of these objects, which the SPI
implementation will not have references to.

Because the data object types are shared between the SPI implementation, VCR, and client
code, not all methods on these data objects are appropriate for each type of caller. (See the
WebLogic Portal Javadoc for clarification.) For example, new data objects, such as
Properties passed when creating a Node from the VCR to the SPI implementation do not
have UUID on the PropertyID. This happens because the UUID is assigned by the SPI
implementation and the new object has not yet been persisted by the SPI implementation.
The UUID is present only for data objects retrieved or returned by the SPI.

VCR Repository interface – SPI implementations must implement the VCR Repository
interface. Repositories are loaded dynamically by the VCR and require a public default
constructor. When the VCR loads the SPI implementation, it calls the
Repository.setName() and Repository.setProperties() methods before it calls the
connect() method.

Each Repository instance corresponds to a single repository configuration for a single
enterprise application and for use by a single user. At runtime, the VCR can create many
instances of Repositories for use by numerous current WebLogic Portal users. For this

../javadoc/index.html

SP I Imp lementat ion C rea t ion

4-4 Oracle WebLogic Portal Content Management SPI Development Guide

reason they should be relatively lightweight objects, as hundreds of these objects may
exist.

In an enterprise application for a given SPI implementation, there may be multiple active
repository configurations. For example, three repository configurations may exist for an
application that the VCR is managing, and each repository will have its own configuration
data and its own Repository instance that is created at runtime.

Exceptions – Anytime the SPI implementation is unable to perform an operation, it should
throw a RepositoryException. Several subclasses of RepositoryException are
defined, and these should be used when a good match exists. For example, if the SPI
implementation does not support an operation, it should throw a
UnsupportedRepositoryOperationException.

Ticket re-use – The Ticket object is cached and re-used by the VCR. Generally, it should
be stateless for concurrency reasons. The VCR associates the Ticket with a user on a
HTTPSession. If multiple requests on the same HTTPSession arrive for the same
repository, multiple operations on the same Ticket object can be performed
simultaneously. A stateless design will avoid issues in this situation.

Support for multiple repository instances of the SPI implementation – To work properly
when multiple repositories of your SPI implementation are used simultaneously, be careful
with static caches by ensuring that the data is tied to a specific repository name or instance.
One option is to incorporate the repository name in the data key when caching data.
Another option is to use named singletons to access cached data. By keeping the data
segregated by repository name, the SPI implementation should work properly in this
situation.

Performance – SPI caching is important; the SPI should generally cache data so it does not
need to consult the external system frequently. The SPI can lazy-load several settings to
boost performance, such as:

– Node properties – If the Node is created with a null Property[], the properties are
lazy-loaded.

– Node objectClass – If the Node is created with a null ObjectClass, but the
ObjectClassId assigned via setObjectClassId, the ObjectClass is lazily-loaded.

Binary property values – When the node’s properties (and values) are loaded, the binary
property inputstream can be returned as null to boost performance.

Basic SPI Implementation
To create a basic SPI implementation:

Basic SP I Implementat ion

Oracle WebLogic Portal Content Management SPI Development Guide 4-5

1. Create a Java class that implements the interface
com.bea.content.spi.flexspi.Repository.

This class is a required interface that must be implemented. It is included with WebLogic
Portal.

2. Create a public default constructor.

3. Implement setProperties() to store the repository configuration properties passed by the
VCR. Store in a local variable.

4. Implement setName() to store the repository configuration name passed by the VCR. Store
in a local variable.

5. Implement getProperties()and getName() to read the local variables.

6. Implement getDescription() to report the repository description data.

This is essentially a Properties bucket, with some well-defined keys in
SPIDescriptionKeys. It includes the vendor, version, and so on.

7. Implement getRepositoryDefinedCapabilities() to report which custom capabilities
the SPI implementation supports.

For a basic SPI implementation, just return Collections.emptySet().

8. Implement getAllInterfaces() to return all repository (not ticket) operations interfaces.

These are optional interfaces, such as RepositoryConfigOpsV1, that a Repository can
implement.

For a bare-bones SPI implementation, just return an empty HashMap.

9. Implement getInterface(String interfaceName) to be consistent with
getAllInterfaces().

For a bare-bones SPI implementation, just return null.

10. Implement getCapabilitySupport(Set<ICapabilityDefinition>) to report which
feature capabilities this SPI implementation supports.

It also report which method capabilities the repository supports across the optional
repository operation interfaces.

11. Implement connect(Credentials) and Connect(String username, String
password) to allow a caller to obtain a ticket.

SP I Imp lementat ion C rea t ion

4-6 Oracle WebLogic Portal Content Management SPI Development Guide

connect(username, password) is called if a username and password are available
(generally from the repository configuration data.)

connect(credentials) is called if no username/password are available. The
credentials includes the caller’s implicit identity.

For a basic SPI implementation, create and return a new Ticket instance. More advanced
implementations may authenticate the credentials, and only return a Ticket instance if
successful.

12. Implement any optional Repository operation interfaces, such as
RepositoryConfigOpsV1.

For any repository operation interfaces returned by Repository.getAllInterfaces():

a. Implement the interface.

Any methods that are not implemented should throw an
UnsupportedRepositoryOperationException and the getCapabilitySupport()
method should not report this method as supported.

b. Modify Repository.getAllInterfaces() and getInterface() to return the
interface implementation.

c. Modify Repository.getCapabilitySupport() to report the status (supported or
unsupported) of each method on the repository operation interface.

13. Create a Java class that implements the interface com.bea.content.spi.flexspi.Ticket
(supplied with WebLogic Portal)

a. Implement getAllInterfaces() to return all ticket operations interfaces. These are
optional interfaces, such as NodeOpsV1, which a Ticket can implement. For a basic SPI
implementation, return an empty HashMap.

b. Implement getInterface(String interfaceName) to be consistent with
getAllInterfaces(). For a basic SPI implementation, just return null.

c. Implement getCapabilitySupport(Set<ICapabilityDefinition>) to report
which method capabilities this ticket supports across the optional ticket operation
interfaces.

14. Implement any optional Ticket operation interfaces, such as NodeOpsV1.

For any ticket optional interfaces returned by Ticket.getAllInterfaces():

a. Implement the interface.

Basic SP I Implementat ion

Oracle WebLogic Portal Content Management SPI Development Guide 4-7

Any methods that are not implemented should throw an
UnsupportedRepositoryOperationException and the getCapabilitySupport()
method should not report this method as supported.

b. Modify Ticket.getAllInterfaces() and getInterface() to return the interface
implementation.

c. Modify Ticket.getCapabilitySupport() to report the status (supported or
unsupported) of each method on the ticket operation interface.

Basic SPI Repository Implementation Code Example
Listing 4-1shows a simple SPI Repository code example of a Repository with the following
limitations:

It does not authenticate.

It does not support any feature capabilities.

It does not support any optional repository operation interfaces, such as
RepositoryConfigOpsV1, and therefore does not support any method capabilities.

It does not provide any repository defined capabilities.

Listing 4-1 Basic SPI Implementation

import com.bea.content.spi.flexspi.Repository;
import com.bea.content.spi.flexspi.Ticket;
import com.bea.content.spi.flexspi.common.capability.ICapabilityDefinition;
import com.bea.content.spi.flexspi.common.capability.CapabilityLevel;
import
com.bea.content.spi.flexspi.common.capability.FeatureCapabilityDefinition;
import com.bea.content.spi.flexspi.common.ISPIMarker;
import com.bea.content.spi.flexspi.common.SPIRepositoryInterfaces;
import com.bea.content.spi.flexspi.common.SPIDescriptionKeys;
import com.bea.content.capability.NodeFeatureCapability;
import com.bea.content.*;
import java.util.*;
public class FlexRepositoryImpl implements Repository
{
 // VCR configures these before connect() is called
 private String repositoryName;
 private Properties props;

 // the description key/values

SP I Imp lementat ion C rea t ion

4-8 Oracle WebLogic Portal Content Management SPI Development Guide

 private Map<String, String> descMap = new HashMap<String, String>();
 public FlexRepositoryImpl()
 {
 // SPI implementation MUST have a public default ctor
 //standard keys
 descMap.put(SPIDescriptionKeys.VENDOR_KEY,
 "Some third party vendor");
 descMap.put(SPIDescriptionKeys. VERSION_KEY, "0.1.1");
 descMap.put(SPIDescriptionKeys. DESCRIPTION_KEY, "Simple SPI");

 //custom keys can also be added
 descMap.put("InternalVersion", "Build 31141");
 }
 public Ticket connect(Credentials credentials)
 throws AuthenticationException, RepositoryException
 {
 // this SPI does not perform authentication
 return new FlexTicketImpl(this);
 }
 public Ticket connect(String username, String password)
 throws AuthenticationException, RepositoryException
 {
 // this SPI does not perform authentication
 return new FlexTicketImpl(this);
 }
 public String getName() {
 return repositoryName;
 }
 public void setName(String name) {
 repositoryName = name;
 }
 public Properties getProperties() {
 return props;
 }
 public void setProperties(Properties properties) {
 props = properties;
 }
 public Set<ICapabilityDefinition> getRepositoryDefinedCapabilities() {
 return Collections.emptySet();
 }
 public Map<String, String> getDescription() {
 return descMap;
 }
 public Map<String, ISPIMarker> getAllInterfaces() {
 // no repository operation interfaces
 return new HashMap<String,ISPIMarker>();
 }
 public ISPIMarker getInterface(String interfaceName) {
 // no repository operation interfaces

Basic SP I Implementat ion

Oracle WebLogic Portal Content Management SPI Development Guide 4-9

 return null;
 }
 public Map<ICapabilityDefinition, CapabilityLevel>
 getCapabilitySupport(Set<ICapabilityDefinition> capabilities)
 {
 HashMap<ICapabilityDefinition, CapabilityLevel> capMap
 =new HashMap<ICapabilityDefinition, CapabilityLevel>();
 // start out with everything not supported; we will mark
 // individual feature capabilities as supported.
 for (ICapabilityDefinition capDef : capabilities) {
 capMap.put(capDef, CapabilityLevel.NotSupported);
 }
 // here we would override the unsupported value if we supported anything
 // but we don’t…

 // everything unsupported
 return capMap;
 }
}

Basic SPI Ticket Implementation Code Example
Listing 4-2 shows a simple SPI Ticket code example of a Ticket that does not support any
optional ticket operation interfaces, such as NodeOpsV1 and SearchOpsV1, and therefore does
not support any method capabilities

Listing 4-2 Ticket Implementation Code Example

import com.bea.content.spi.flexspi.Ticket;
import com.bea.content.spi.flexspi.Repository;
import com.bea.content.spi.flexspi.common.ISPIMarker;
import com.bea.content.spi.flexspi.common.SPITicketInterfaces;
import com.bea.content.spi.flexspi.common.capability.ICapabilityDefinition;
import com.bea.content.spi.flexspi.common.capability.CapabilityLevel;
import com.bea.content.spi.flexspi.common.capability.MethodCapabilityDefinition;

import java.util.*;

public class FlexTicketImpl implements Ticket
{
 Repository repository; // the repository this ticket was created from

 //1=flex interface name, 2=flex interface object
 private Map<String, ISPIMarker> advertisedInterfaces;

SP I Imp lementat ion C rea t ion

4-10 Oracle WebLogic Portal Content Management SPI Development Guide

 public FlexTicketImpl(Repository repository) {
 this.repository = repository;

 advertisedInterfaces= new HashMap<String,ISPIMarker>();
 // no interfaces yet
 }

 public Map<String, ISPIMarker> getAllInterfaces() {
 return advertisedInterfaces;
 }

 public ISPIMarker getInterface(String interfaceName) {
 return advertisedInterfaces.get(interfaceName);
 }

 public Map<ICapabilityDefinition, CapabilityLevel>
 getCapabilitySupport(Set<ICapabilityDefinition> capabilities)
 {
 // no interfaces, no methods, no capabilities; everything is unsupported

 HashMap<ICapabilityDefinition, CapabilityLevel> capMap
 =new HashMap<ICapabilityDefinition, CapabilityLevel>();

 // start out with everything not supported; we will mark
 // individual feature capabilities as supported.
 for (ICapabilityDefinition capDef : capabilities) {
 capMap.put(capDef, CapabilityLevel.NotSupported);
 }

 // here we would override the unsupported value if we supported anything
 // but we don’t…

 // everything unsupported
 return capMap;
 }
}

Opt iona l SP I In te r faces Implementat ion

Oracle WebLogic Portal Content Management SPI Development Guide 4-11

Optional SPI Interfaces Implementation
You use optional SPI interfaces to expose nodes and types to the VCR. Generally, client code has
certain assumptions about the capabilities of the repositories the code runs against, such as
read-only access to nodes. As the VCR delegates to the repository, the client code presumes that
certain VCR methods work properly.

The optional PSPI interfaces are:

Repository operation interfaces – The RepositoryConfigOpsV1 provides repository
callbacks as repository configurations that are modified by VCR clients (generally,
administrators). For example, createRepository(…), updateRepository(…), and
removeRepository(…).

Ticket operation interfaces – The following interfaces provide CRUD operations:

– Nodes – NodeOpsV1.

– Types – ObjectClassOpsV1.

– Operations for searching for nodes – SearchOpsV1.

– Workflows – WorkflowOpsV1.

Exposing an Optional SPI Interface
To expose an optional SPI interface such as NodeOpsV1.

1. Create a class to implement the SPI interface.

For example MyNodeOps implements NodeOpsV1. Generally, you should make this a
light-weight class, as many objects may be created.

2. Write implementations of the SPI interface methods.

Note: Any methods that are not implemented should throw an
UnsupportedRepositoryOperationException. Additionally, the
Ticket.getCapabilitySupport() method should report this method as not
supported.

3. Modify Ticket.getAllInterfaces() and getInterface() to return the interface
implementation.

SP I Imp lementat ion C rea t ion

4-12 Oracle WebLogic Portal Content Management SPI Development Guide

To reduce object creation, create the interfaces when the ticket is created, hold onto them,
and then return them in getAllInterfaces() and getInterface(). For example:

private Map<String,ISPIMarker> ifaces;
public FlexTicketImpl(Repository repository) {
 this.repository= repository;
//init interfaces
 ifaces= new HashMap<String,ISPIMarker>();
 ifaces.put(SPITicketInterfaces.NODE_OPS_V1,
 new MyNodeOps(…);
 . . .
}

public Map<String, ISPIMarker> getAllInterfaces() {
 return ifaces;
}

public ISPIMarker getInterface(String ifaceName) {
 return ifaces.get(ifaceName);
}

4. Modify Ticket.getCapabilitySupport() to report the status (supported or unsupported)
of each method on all the ticket operation interfaces. For example:

public Map<ICapabilityDefinition, CapabilityLevel>
 getCapabilitySupport(Set<ICapabilityDefinition> capabilities)
{
 Map<ICapabilityDefinition, CapabilityLevel> capMap
 =new HashMap<ICapabilityDefinition, CapabilityLevel>();

 // start out with everything not supported; we will mark
 // individual feature capabilities as supported.
 for (ICapabilityDefinition capDef : capabilities) {
 capMap.put(capDef, CapabilityLevel.NotSupported);
 }

 // now override the unsupported values where it makes sense
 final String[] supportedNodeOpsMethodNames = new String[] {
 NodeOpsV1.MethodName.getNodeChildren.toString(),
 NodeOpsV1.MethodName.getNodeChildrenAsNodeIds.toString(),
 NodeOpsV1.MethodName.getNodesWithIds.toString(),
 NodeOpsV1.MethodName.getNodeWithId.toString(),
 NodeOpsV1.MethodName.getNodeWithPath.toString(),
 };

 for (String methodName : supportedNodeOpsMethodNames) {
 ICapabilityDefinition capDef
 = new MethodCapabilityDefinition(
 SPITicketInterfaces.NODE_OPS, methodName
);
 if (capabilities.contains(capDef)) {

SPI In te r face Resul t Co l l ec t i ons , So r t ing , and F i l t e r ing

Oracle WebLogic Portal Content Management SPI Development Guide 4-13

 capMap.put(capDef, CapabilityLevel.FullySupported);
 }
 }

 return capMap;
}

SPI Interface Result Collections, Sorting, and Filtering
Optionally, the SPI implementation can include the ability to sort and/or filter results. The
collections of items returned by the SPI are returned in a QueryResult object (including an
ordered list of results) and a QueryCriteria object that describes how the returned collection is
sorted and filtered (if at all). For instance, a QueryResult<Node> may contains a collection of
nodes that are both sorted and filtered.

Filtering and Sorting Results with the SPI
Many of the methods that return results collections take a QueryCriteria parameter. This
parameter allows the caller to indicate how results should be sorted or filtered or both (if
possible). For example, the caller may request that the results be sorted by name. At present, the
caller can specify only one sort criteria and one filter criteria.

The SortCriteria contains a property (criteria) and an ascending or descending flag, such as
name ascending.

The FilterCriteria contains a property (criteria), a FilterMethod operand, such as
unfiltered, equals, not equals, contains, not contains, begins with, ends with, greater than, and less
than, and a value. For example, name contains 'foo'.

The sort and filter criteria set of properties are related to the JavaBean properties on the data
objects being used. For example, Node contains a JavaBean property for name because it has a
getName() method; for createdDate because it has a getCreatedDate() method; and so on.

Native sorting and filtering performs best. The VCR also supports mechanisms for sorting and
filtering in-memory if the SPI implementation is unable to service a sort or filter request. Client
code (and the VCR) can ask the SPI which properties it can natively sort and filter.

The SPI implementation reports its sorting and filtering capabilities (the properties it can sort and
filter on) to the VCR for objects on an interface by implementing methods such as
NodeOpsV1.getNativeSortableProperties() and
NodeOpsV1.getNativeFilterableProperties(). For example, the SPI may report that it
can sort nodes by name and createDate properties.

SP I Imp lementat ion C rea t ion

4-14 Oracle WebLogic Portal Content Management SPI Development Guide

The sorting and filtering capability reporting is currently done at the interface granularity. In
other words, a given interface such as NodeOpsV1 has a primary data object. The primary data
object, a Node for example, reports the capabilities for sorting and filtering across the results
collection methods in the interface.

Tip: If the SPI does not support native sorting or filtering, it should return an empty set, such
as Collections.emptySet() rather than null.

The SPI implementation may receive a QueryCriteria parameter that requests sorting or
filtering capabilities beyond what it can support. If this happens, the SPI implementation should
not throw an exception. Instead the SPI implementation should do its best to report how the
results are currently sorted and filtered. For example, the SPI implementation should create an
unsorted and/or unfiltered QueryResult to express what it was unable to sort and/or filter. If the
SPI implementation can perform one of the requests, it should do so and report the results
appropriately. For instance, if it can sort, the SPI implementation should report the results as
sorted, but unfiltered.

If necessary the VCR may sort/filter the query results in memory to ensure the query results are
sorted/filtered as the client requests.

Common SPI Interface Objects for Sorting and Filtering
Use the following objects for sorting and filtering:

QueryCriteria – Some methods pass a QueryCriteria object as a means for a caller to
request sorting and filtering of results. These methods include SortCriteria and
FilterCriteria objects. Currently, only a single SortCriteria or FilterCriteria
can be specified; multi-criteria sorting or filtering is not supported.

SortCriteria – Provides the ability for ascending or descending sorting on a specific
property (criteria). A sortResults flag indicates whether the results are sorted or
unsorted. SortCriteria also includes a property that is one of the JavaBean properties
on the data object.

FilterCriteria – Provides the ability to filter on a specific property (criteria). A
filterResults flag indicates whether the results are filtered or unfiltered.
FilterCriteria includes a property that is one of the JavaBean properties on the data
object, and a filterMethod that indicates the filter operation, such as begins with,
contains, equals, greater than, unfiltered, and so on.

SPI In te r face Resul t Co l l ec t i ons , So r t ing , and F i l t e r ing

Oracle WebLogic Portal Content Management SPI Development Guide 4-15

QueryResult – Represents a set of results returned by the SPI implementation.
QueryResult also includes a QueryCriteria object that describes how the results are
sorted and filtered (or neither), plus an ordered list of the data objects.

SP I Imp lementat ion C rea t ion

4-16 Oracle WebLogic Portal Content Management SPI Development Guide

Oracle WebLogic Portal Content Management SPI Development Guide 5-1

C H A P T E R 5

Interface Topics

This chapter provides useful information for writing an SPI implementation. It contains the
following sections:

NodeOpsV1 SPI Interface Topics

ObjectClassOpsV1 SPI Interface Topics

SearchOpsV1 SPI Interface Topics

Indexing Content

SPI Testing Topics

NodeOpsV1 SPI Interface Topics
The following FAQs provides useful information when implementing the NodeOpsV1 interface.
It contains the following questions, answers, and examples:

What Types of Operations are Supported by the NodeOpsV1 SPI Interface?

What Type of Hierarchical Paths are Passed To and From the SPI layer?

How Should the SPI Implementation Create Node Data Objects to be Returned?

How Should the SPI Implementation Create Property Data Objects to be Returned

What Should the SPI Implementation Do when Node Metadata is not Available?

How are the Node ID and Property ID related?

In te r face Top ics

5-2 Oracle WebLogic Portal Content Management SPI Development Guide

What Node Names are Valid?

Example – Creating a Node with no ObjectClass

Example – Creating a Node with an ObjectClass and Property Values

What Types of Operations are Supported by the NodeOpsV1
SPI Interface?
The NodeOpsV1 interface supports all the operations on nodes, properties, and values:

Creating nodes.

Retrieving nodes by ID or Path.

Reading groups of nodes by hierarchy positions and by link property location.

Updating nodes.

Deleting nodes.

Copying nodes.

Moving nodes.

Retrieving node properties.

Retrieving node binary values.

What Type of Hierarchical Paths are Passed To and From
the SPI layer?
The paths used in the SPI layer must start with a path delimiter (/) and extend based on the
repository path. For example, /foo/bar/bas. The repository name is not part of the path unlike
a VCR federated path. For example, /MyRepository/foo/bar/bas is not a valid SPI path, but
it is a valid VCR path.

How Should the SPI Implementation Create Node Data
Objects to be Returned?
The SPI implementation can directly instantiate the Node via a constructor such as:

NodeOpsV1 SP I In te r face Top ics

Oracle WebLogic Portal Content Management SPI Development Guide 5-3

new Node(Calendar createdDate, String createdBy, boolean hasChildren, ID

id, String modifiedBy, Calendar modifiedDate, ObjectClass objectClass, ID

parentId, String path, Property[] properties)

The Node ID needs a non-null UUID set; however, the Node ID does not need the
repositoryName set, as the VCR takes care of this function.

Previous versions of WebLogic Portal had a concept of “node type.” Starting with WebLogic
Portal 10.2, SPI implementations should use the node type of Node.CONTENT when a node type
is necessary.

If the node has an ObjectClass, you can create a Property on the Node for any
PropertyDefinition in the ObjectClass.

To optimize performance, the SPI implementation can optionally pass null for the Property[]
properties. This allows the properties to be lazy-loaded by the VCR when needed. Additionally,
the SPI implementation can optionally use a null ObjectClass and call setObjectClassId()
to set the ObjectClass identifier. This allows the objectClass to be lazy-loaded by the VCR
when needed.

You can use these approaches on a per-method basis. In general, use these approaches for
methods that may return a large collection of nodes. For methods returning a single node, it is
generally not advisable to lazy-load the properties.

How Should the SPI Implementation Create Property Data
Objects to be Returned
The SPI implementation can directly instantiate each Property via a constructor such as:

new Property(ID id, String name, int type, Value[] values)

The Property ID needs a non-null UUID set; it does not need the repositoryName set, as the
VCR takes care of the repository name.

What Should the SPI Implementation Do when Node
Metadata is not Available?
The SPI implementation requirements, when metadata (created by, modified date, and so on) is
not available, depends on what data the VCR clients use. For maximum flexibility with clients,
it is best for the SPI implementation to return constant values rather than null. For example, the
SPI could return system as the “created by” or “modified by” String, or return a constant Date
as the created date or modified date.

In te r face Top ics

5-4 Oracle WebLogic Portal Content Management SPI Development Guide

How are the Node ID and Property ID related?
The Property ID is a finer granularity than the Node ID; it represents data within a node. The
exact relationship depends on the back-end system and how it represents and can access node and
property data.

The Node UUID must uniquely identify the node within an implicit repository. You use the Node
UUID retrieve all the properties (and values) for a given node.

The Property UUID must uniquely identify a single property on a single node within an implicit
repository. You use the Property UUID to retrieve a single property on a node.

The Node UUID is not always supplied when the properties are retrieved. For example, with
NodeOpsV1.getPropertyBytes(ID propertyId) the Property UUID needs to be able to
“stand alone” and work on its own. One option for linking the IDs together is to have the
Property ID contain the Node ID. For example, if the Node UUID is “41431”, the Property
UUID could be “41431/stringProperty”.

What Node Names are Valid?
In general, the node name must be a non-empty string, must not contain forward or backslashes,
and the last token in a node’s hierarchical path must be the node name. For detailed information,
see the WebLogic Portal Javadoc.

Example – Creating a Node with no ObjectClass
Listing 5-1 shows an example of how to create a node without an ObjectClass.

Listing 5-1 Creating a Node with no ObjectClass

ID id = new ID(uid);
ID parentId = new ID(parentUid);
Node node = new Node(createDate, createdBy, false, id, createdBy,
 createDate, null /* no ObjectClass */, parentId, path, null);

../javadoc/index.html

Objec tC lassOpsV1 SP I In te r face Top ics

Oracle WebLogic Portal Content Management SPI Development Guide 5-5

Example – Creating a Node with an ObjectClass and
Property Values
Listing 5-2 shows an example of how to create a node with an ObjectClass and property values.

Listing 5-2 Creating a Node with an ObjectClass and Property Values

ID id = new ID(uid);
ID parentId = new ID(parentUid);
Property [] props = getPropertiesToUse();

Node node = new Node(createDate, createdBy, false, id, createdBy,

createDate, null /* lazy-load ObjectClass */, parentId, path, props);

ID ocId = new ID(objectClassUid);
node.setObjectClassId(ocId); //lazy-load ObjectClass

ObjectClassOpsV1 SPI Interface Topics
This section contains information about implementing ObjectClassOpsV1. It contains the
following sections:

What are the Supported Operation Types?

How Should the SPI Implementation Create ObjectClass Objects?

What are the Supported Operation Types?
The ObjectClassOpsV1 interface supports all the operations on ObjectClasses,
PropertyDefinitions, and PropertyChoices, which are:

Creating objectClasses and propertyDefinitions.

Retrieving an objectCass by ID or name.

Retrieving a propertyDefinition by ID.

Retrieving all propertyDefinitions by objectClass ID.

Updating an objectClass or property definition.

In te r face Top ics

5-6 Oracle WebLogic Portal Content Management SPI Development Guide

Deleting objectClasses and propertyDefinitions.

Renaming an objectClass.

Retrieving some or all objectClasses.

Retrieving property choice binary values.

To support type inheritance, objectClasses support a hierarchical structure. ObjectClasses
have a Name and an ID that are used for identification. They also have a path. When type
inheritance is used, the ObjectClass path indicates its relationship to other ObjectClasses.

How Should the SPI Implementation Create ObjectClass
Objects?
The SPI implementation can directly instantiate each ObjectClass using a constructor such as:

new ObjectClass(ID id, String name, PropertyDefinition
 primaryPropertyDefinition, PropertyDefinition[] propertyDefinitions,
 boolean hasPropertyDefinitions);

The hasPropertyDefinitions flag indicates whether PropertyDefinitions exist for this
type in the external system and supports lazy-loading of propertyDefinitions. For example,
propertyDefinitions may exist in the external system, but not be returned in the
ObjectClass.

To enhance performance, the SPI implementation can optionally pass null for the
PropertyDefinition[] propertyDefinitions. This allows the propertyDefinitions to
be lazy-loaded by the VCR when needed.

SearchOpsV1 SPI Interface Topics
The SearchOpsV1 interface supports node search and indexing operations. The following
operations are supported:

Searching for nodes matching criteria, either metadata search or full-text search.

Manually indexing or re-indexing a node tree by path.

Manually indexing or re-indexing all nodes with a specified ObjectClass.

The SearchOpsV1 interface supports the following search criteria:

I ndex ing Content

Oracle WebLogic Portal Content Management SPI Development Guide 5-7

System metadata – The JavaBean properties on the Node, such as name, ObjectClass
name, created by, and so on.

User metadata – The ObjectClass properties.

Indexing Content
Content indexing allows for fast lookups, especially for full-text searches. For example, when
nodes are created, data can be indexed into a full-text search engine for fast retrieval.

This section contains the following topics:

How Is Content Indexed?

How Can an Event Listener Perform Content Indexing?

How Is Content Indexed?
You can index content in two ways:

Synchronously, during node creation. To do this, use the SPI implementation of
NodeOpsV1.create methods or use a synchronous event listener that is registered to
listen to node create events.

Asynchronously, after node creation. To do this, use an asynchronous event listener that is
registered to listen to node create events controlled via an external timer or mechanism.

Use the index_cm_data script to re-index by path or content type.

The synchronous approach makes node creation slower, but supports immediate searches for the
data. The asynchronous approaches make node creation faster, but the data is not available
immediately.

Note: If you use event listeners, you can temporarily disable content indexing, then create a
group of nodes, re-enable content indexing, and then manually re-index the relevant data
tree with the index_cm_data script.

How Can an Event Listener Perform Content Indexing?
The event listener must implement the interface com.bea.p13n.events.EventListener. You
can register the event listener via a META-INF/p13n-config.xml file with an entry such as:

<?xml version="1.0" encoding="UTF-8"?>
<p13n-config xmlns="http://www.bea.com/ns/p13n/90/p13n-config">

In te r face Top ics

5-8 Oracle WebLogic Portal Content Management SPI Development Guide

 <event-service>
 <listener>com.xxx.ContentExporterListener</listener>
 </event-service>
</p13n-config>

The event listener should listen for the event type
ContentEventHelper.CONTENT_EVENT_BATCH_TYPE. The event listener’s handleEvent(
Event) method is called as content items are created, updated, or deleted. This method receives
events of type ContentEventBatch, which contains a group of events that have fired.

SPI Testing Topics
This section contains informations to aid in testing an SPI implementation. It contains the
following topics:

How to Configure a Repository for SPI Parameter and Response Data Checking

How to Monitor Repository and Ticket Method Invocations and Performance

How to Monitor SPI Operation Interface Method Invocations and Performance

How to Configure a Repository for SPI Parameter and
Response Data Checking
During testing, you can configure a repository to perform SPI parameter and response data
checking. The vcrValidation and repositoryValidation repository configuration settings
enable additional runtime checks on the data passed to and from the SPI. These settings catch
some of the common errors. By default, both settings are false (disabled) to maximize
performance.

To enable VCR validation, add these settings to your repository configuration:

Property name: 'vcrValidation'
Property value: 'true' (default is false)

Property name: 'repositoryValidation'
Property value: 'true' (default is false)

Alternatively, you can place this code snippet in your MTA-INF/content-config.xml file in
the appropriate section for your repository configuration:

<repository-property>
 <name>vcrValidation</name>

SPI Tes t ing Top ics

Oracle WebLogic Portal Content Management SPI Development Guide 5-9

 <value>true</value>
</repository-property>

<repository-property>
 <name>repositoryValidation</name>
 <value>true</value>
</repository-property>

How to Monitor Repository and Ticket Method Invocations
and Performance
To debug repository and ticket operations, add debug lines to your debug.properties file:

spi.com.bea.content.manager.internal.RepositoryHelper: ON
spi.com.bea.content.manager.internal.RepositoryManagerImpl: ON

To collect timing information, add:

timing.com.bea.content.manager.internal.RepositoryHelper: ON
timing.com.bea.content.manager.internal.RepositoryManagerImpl: ON

How to Monitor SPI Operation Interface Method Invocations
and Performance
To enable SPI invocation, add a debug line to your debug.properties file:

spi.com.bea.content.manager.internal.delegate: ON

To enable SPI method timing, add a debug line to your debug.properties file:

timing.com.bea.content.manager.internal.delegate: ON

	Oracle® WebLogic Portal
	10g Release 3 (10.3)

	Oracle WebLogic Portal Content Management SPI Development Guide, 10g Release 3 (10.3)
	Contents
	Introduction to Content Management SPI
	Content Management SPI FAQ
	What is the CM SPI?
	Why Write an SPI?
	What are the Structures and Data Types that can be Exposed?
	What is the Difference Between an SPI Implementation and a Repository?
	Who Uses the SPI?
	How is an SPI Implementation Packaged and Made Available to the VCR?
	Where Does the SPI Implementation Run?

	Architecture Overview of an SPI Implementation
	What components are involved in the SPI?
	What is the Relationship of the VCR Repository Construct and the WebLogic Portal Application?
	What Authentication Models are Available?
	How Does the VCR Interact With the SPI Implementation?

	SPI Data Model
	About the Content Management Data Model
	Type Data Representation
	Node Data Representation

	SPI Capabilities and Versions
	About SPI Capabilities
	VCR Detection of the SPI Implementation Capabilities
	SPI Interface Versions

	SPI Implementation Creation
	VCR SPI Implementation Interaction
	Primary Classes for a Basic SPI Implementation
	Repository Guidelines when Creating an SPI Implementation
	Basic SPI Implementation
	Basic SPI Repository Implementation Code Example
	Basic SPI Ticket Implementation Code Example

	Optional SPI Interfaces Implementation
	Exposing an Optional SPI Interface

	SPI Interface Result Collections, Sorting, and Filtering
	Filtering and Sorting Results with the SPI
	Common SPI Interface Objects for Sorting and Filtering

	Interface Topics
	NodeOpsV1 SPI Interface Topics
	What Types of Operations are Supported by the NodeOpsV1 SPI Interface?
	What Type of Hierarchical Paths are Passed To and From the SPI layer?
	How Should the SPI Implementation Create Node Data Objects to be Returned?
	How Should the SPI Implementation Create Property Data Objects to be Returned
	What Should the SPI Implementation Do when Node Metadata is not Available?
	How are the Node ID and Property ID related?
	What Node Names are Valid?
	Example - Creating a Node with no ObjectClass
	Example - Creating a Node with an ObjectClass and Property Values

	ObjectClassOpsV1 SPI Interface Topics
	What are the Supported Operation Types?
	How Should the SPI Implementation Create ObjectClass Objects?

	SearchOpsV1 SPI Interface Topics
	Indexing Content
	How Is Content Indexed?
	How Can an Event Listener Perform Content Indexing?

	SPI Testing Topics
	How to Configure a Repository for SPI Parameter and Response Data Checking
	How to Monitor Repository and Ticket Method Invocations and Performance
	How to Monitor SPI Operation Interface Method Invocations and Performance

