

Oracle® WebLogic JSR-170 Adapter
Developer's Guide

10g Release 3 (10.3)
September 2008

Oracle WebLogic JSR-170 Adapter Developer’s Guide, 10g Release 3 (10.3)

Copyright © 2007, 2008, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or
display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and
technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December
2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including
applications which may create a risk of personal injury. If you use this software in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy,
and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

This software and documentation may provide access to or information on content, products and
services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents

Overview .. 1
Architecture... 2
Getting Started .. 3

Select a JSR-170 repository implementation...3
Deploy the JSR-170 repository ..3
Configure WebLogic Portal to access the JSR-170 repository..3

Working with JSR-170 within WebLogic Portal.. 5
Accessing Nodes..5
Reading Properties...6
Adding Nodes...6
Adding Properties...7
Assigning Node Types/Object Classes..7
Search ..8

Mapping Between Content Models.. 9
Workspaces..9
Nodes ...9
Node Types and Object Classes..9
Mixin Node Types...10
Unstructured Content ...10
Properties ...10
Property Types ...10
Transient Space ...10
Namespaces ..11

Oracle® WebLogic JSR-170 Adapter Developer's Guide iii

Overview

Overview
The JSR-170 Adapter is a feature of Oracle WebLogic Portal 9.x that provides access through the
WebLogic Portal content service provider interface (SPI) to any JSR-170-compliant repository.
This lets applications written to the WebLogic Portal content SPI access the JSR-170 repository
as well as allowing some repository administration functions to be performed through the
WebLogic Administration Portal.

This document shows you how to connect WebLogic Portal to a JSR-170-compliant content
repository. It also describes the basic repository functions available through the WebLogic
Administration Portal and the WebLogic Portal content SPI and how those are mapped to the
JSR-170 level.

Oracle® WebLogic JSR-170 Adapter Developer's Guide 1

Architecture

Architecture
The JSR-170 Adapter serves as bridge between the WebLogic Portal content SPI and a JSR-170-
compliant repository running either within WebLogic Server or externally (such as in a separate
JVM, either on the same machine or on a remote machine). The relationships between the various
elements is illustrated in the following diagram:

Oracle WebLogic
Administration Portal

Your Oracle Content
Application

Your JSR-170
Application

Oracle Content SPI

WLP Repository

JSR-170 Adapter

JSR-170 Repository

Applications running within WebLogic Portal Server

WebLogic Portal Server

2 Oracle® WebLogic JSR-170 Adapter Developer's Guide

Getting Started

Getting Started
Select a JSR-170 repository implementation
The first step to integrating a JSR-170 repository with WebLogic Portal is to select a repository
implementation.

A list of JSR-170 implementations with their TCK test results is available at www.day.com.

Two repositories currently available are Apache Jackrabbit
(http://incubator.apache.org/jackrabbit/) and Day CRX
(http://www.day.com/site/en/index/products/content-
centric_infrastructure/content_repository.html).

Deploy the JSR-170 repository
The JSR-170 Adapter supports two mechanisms for connecting to the repository:
Repositories running within the same JVM as the server are accessed through JNDI.
Repositories running in another JVM (possibly on a remote machine) are accessed
through RMI.
For information on deploying your repository, consult the application server documentation, as
well as that of the repository vendor. If you are deploying the repository on WebLogic Server,
deploy your repository implementation just like any other WebLogic application.

Configure WebLogic Portal to access the JSR-170 repository
Once the JSR-170 repository is deployed and running it must be connected to WebLogic Portal so
that it appears as part of its Virtual Content Repository. To add the JSR-170 repository:

1. Open the WebLogic administration portal.

2. In the Content Management tool, select the Repository page to view the repositories.

3. Click Virtual Content Repository at the top of the Repository List tree.

4. In the Editor pane to the right, click the Add Repository Connection button.

5. Fill-in the following information:

Field Entry

Name A name you choose

Connection Class To access an in-process repository:
com.day.content.spi.jsr170.JNDIRepository

To access an external repository:
com.day.content.spi.jsr170.RMIRepository

Username Your WebLogic user name

Password Your WebLogic password

Oracle® WebLogic JSR-170 Adapter Developer's Guide 3

http://www.day.com/
http://incubator.apache.org/jackrabbit/
http://www.day.com/site/en/index/products/content-centric_infrastructure/content_repository.html
http://www.day.com/site/en/index/products/content-centric_infrastructure/content_repository.html

Getting Started

Field Entry

Enable Library Services false

6. Now you must add custom properties specific to the JSR-170 Adapter.

The properties needed depend on whether you are using the JNDIRepository connection
class or the RMIRepository connection class (see point 6, above):

Click the Add Property button for each property you want to add, and fill-in the key-value
pairs as follows:

For the JNDIRepository connection class:

Key Value

jsr170.workspace The name of the workspace in the JSR-170 repository you want
to connect to. Most JSR-170 repositories have a default
workspace called default. Note that in Oracle terms, each JSR-
170 workspace becomes a separate "repository" within the
larger WLP Virtual Content Repository.

jsr170.jndi.name The JNDI name assigned to the JSR-170 repository web
application in its web.xml configuration file. Most JSR-170
repositories have a default JNDI name of repository.

For the RMIRepository connection class:

Key Value

jsr170.workspace The name of the workspace in the JSR-170 repository you want to
connect to. Most JSR-170 repositories have a default workspace
called default. Note that in Oracle terms, each JSR-170 workspace
becomes a separate "repository" within the larger WLP Virtual
Content Repository.

jsr170.rmi.hostname The name of the host machine on which the RMI-enabled JSR-170
repository is running. The default is localhost.

jsr170.rmi.port The port on the host machine through which the JSR-170 repository
is accessed. The default is 1099.

jsr170.rmi.boundname The RMI bound name of the JSR-170 repository. The default is
repository.

7. You can leave the Repository Cache Settings as is.

4 Oracle® WebLogic JSR-170 Adapter Developer's Guide

Working with JSR-170 within WebLogic Portal

8. Click Create. The new repository should appear in the tree on the left hand side.

Working with JSR-170 within WebLogic Portal
The sections below describe the main reading, writing and administration methods of the
WebLogic Portal content SPI and how the same functions are supported through the WebLogic
Administration Portal, through an example commercial JSR-170 repository (Day CRX, see
jcr.day.com) and (where applicable) through the example JSR-170 portlet.

For each WebLogic SPI method, the effect on the underlying JSR-170 repository is described and
the equivalent JSR-170 methods are explained. Where mismatches between the two content
models cause special behavior, this is explained as well.

Note: For a clearer understanding of how the WebLogic Portal content methods affect the JSR-
170 repository, use the Day CRX repository, which provides a graphical Content Explorer
interface through which changes to the JSR-170 repository made through the WebLogic Portal
content SPI can be viewed in real time from the JSR-170 viewpoint. See http://jcr.day.com.

The following section does not detail every method in the WebLogic Portal content SPI (and its
JSR-170 equivalent), but does cover the most important ones. For more details consult the
WebLogic Portal and JSR-170 Javadocs. The relevant interfaces in WebLogic Portal are found in
the package com.bea.content.spi. In JSR-170 they are in the package javax.jcr. Note that
WebLogic Portal also provides convenience methods in com.bea.content.Node and
com.bea.content.Property. Since these methods simply delegate to NodeOps, only the actual
core NodeOps methods are discussed. For information on the corresponding convenience classes,
consult the WebLogic Portal Javadoc.

Accessing Nodes

WebLogic Portal Method
in com.bea.content.spi

JSR-170 Method
in javax.jcr

NodeOps.getNode(ID nodeId) Session.getNodeByUUID(String uuid)

NodeOps.getNode(String path) Session.getItem(String absPath)
Returns an Item which must be cast to Node.
Alternatively, having already acquired a Node, one
can call Node.getNode(String relPath)
to get a descendant Node.

NodeOps.getNodeChildren(
 ID parentId, int type)

Session.getNodeByUUID(String uuid)
followed by
Node.getNodes() on the returned Node.

NodeOps.getNodes(
 ID[] nodeIds)

Multiple calls to
Session.getNodeByUUID(String uuid).

Accessing Nodes through the WebLogic Administration Portal is done by first clicking
the Content button in at the top of the page and then selecting Content in the drop-down

Oracle® WebLogic JSR-170 Adapter Developer's Guide 5

Working with JSR-170 within WebLogic Portal

menu above the tree view. Then one simply navigates through the tree and clicking on the
appropriate node.

Similarly when using Day CRX to access the JSR-170 repository directly, node access is
done by first entering the Content Explorer, then navigating through the tree and clicking
on the desired node tree.

In the example JSR-170 portlet, navigate the tree structure to access nodes.

Reading Properties

WebLogic Portal Method
in com.bea.content.spi

JSR-170 Method
in javax.jcr

NodeOps.getProperties(ID nodeId) Session.getNodeByUUID(String nodeId)
followed by Node.getProperties() on returned
Node.

NodeOps.getPropertyBytes(ID propertyId) Session.getItem(String absPath)
Returns an Item which must be cast to
Property, then read with Property.getStream().

Reading properties through both the WebLogic Administration Portal, CRX Content
Explorer and the example JSR-170 portlet is also done through tree navigation.

Adding Nodes

WebLogic Portal Method
in com.bea.content.spi

JSR-170 Method
in javax.jcr

NodeOps.createNode(
 ID parentId,
 String newNodeName,
 int type)

After getting the parent node (see above) call
Node.addNode(String name).

NodeOps.createNode(
 ID parentId,
 String newNodeName,
 int type,
 ID objectClassId,
 Property[] properties)

After getting the parent node (see above) call
Node.addNode(String name, String nodeTypeName)
then add the desired properties with
Node.setProperty(String name, Value value)

To add a node through the WebLogic Administration Portal navigate to the desired parent
node and then click Add Content in the blue area above the Edit Pane. This will bring up
a field where you can type in a name for the node. Then click Choose Type and select an

6 Oracle® WebLogic JSR-170 Adapter Developer's Guide

Working with JSR-170 within WebLogic Portal

object class (actually a JSR-170 node type). Keep in mind that node types with
mandatory child nodes cannot be created through this interface (or through the SPI) so
many of the node types built into the underlying JSR-170 implementations will cause an
error if chosen.

To add a node through the CRX Content Explorer navigate through the tree to the desired
parent node and click it. Click the "folder symbol in the top menu and select New Node.
In the upper right pane type the name of the new node and select its node type (note that
through direct access to the JSR-170 repository, all node types are available). Now you
can add subnodes and properties. You must add those subnodes and properties that are
required by the node type of the new node. Once your new node is properly populated
with subelements click Save All in the top menu to persist the changes.

Adding Properties

WebLogic Portal Method
in com.bea.content.spi

JSR-170 Method
in javax.jcr

NodeOps.addNodeContent(
 ID nodeId,
 ID objectClassId,
 Property[] properties)

After getting the parent node (see above) add the
desired properties with
Node.setProperty(String name, Value value)

NodeOps.updateProperties(
 ID nodeId,
 Property[] properties)

After getting the parent node (see above) add the
desired properties with
Node.setProperty(String name, Value value)

Unlike JSR-170, adding properties one-by-one is not done in WebLogic, instead a node's
object class fully defines the set of properties that a node has, and clicking on that node in
the Administration portal will reveal a table of those properties where you can edit the
values. Adding properties a node in WebLogic is essentially equivalent to assigning an
object class to that node. See the next section for information about how to do that.

In the CRX Content Explorer clicking on a node will similarly reveal an edit table with
properties defined by the node type already listed (though if they don not actually exist
yet, they will be grayed-out). These can be edited, the check-mark button clicked and the
change persisted by clicking Save All. In addition, if the node type of the node in
question allows unstructured properties (also called residual properties in JSR-170
terminology) these can be added as well in the edit pane, with the user choosing the
names.

 Assigning Node Types/Object Classes

WebLogic Portal Method
in com.bea.content.spi

JSR-170 Method
in javax.jcr

Oracle® WebLogic JSR-170 Adapter Developer's Guide 7

Working with JSR-170 within WebLogic Portal

NodeOps.addNodeContent(
 ID nodeId,
 ID objectClassId,
 Property[] properties)

The WebLogic Portal method allows the changing of a object
class of an existing node. In JSR-170 the primary node type
is assigned at node creation time with Node.addNode(String
name, String nodeTypeName).

Assigning a node type in through the WebLogic Administration Portal is one of the steps in the
creation of new node (see above), though unlike JSR-170, you can also remove and change the
object class of a node later in its life.

In the CRX Content Explorer choosing a node type is done in the drop down menu that appears in
the top right pane during the process of adding a node.

Search
Searching through the WebLogic SPI is done using the com.bea.content.spi.SearchOps
interface. For a description of the syntax of the WebLogic search syntax consult the javadoc for
com.bea.content.expression.ExpressionHelper.

Searching in JSR-170 is done through javax.jcr.query.QueryManager (again, see the Javadoc
for details). The syntax of the two available query languages (SQL and XPath) is described in the
JSR-170 specification.

In the CRX Content Explorer, search is accessed through the “magnifying glass” button in the
top menu. This opens a window where queries in either of the two supported languages can be
entered.

Alternatively, the example JSR-170 portlet includes a search function that accepts SQL queries.

8 Oracle® WebLogic JSR-170 Adapter Developer's Guide

Mapping Between Content Models

Mapping Between Content Models
The WebLogic Portal Content SPI and the JSR-170 API are based on different models. For this
reason, not all JSR-170 repository functionality is exposed through the WebLogic SPI and not all
Weblogic Portal functionality is available in the underlying JSR-170 repository. The following
section outlines the similarities and differences between the two models and how the adapter
maps these models to one another.

Workspaces
In JSR-170 a repository may consist of one or more workspaces, each of which contains a
hierarchy of content items. In WebLogic terminology, a single hierarchy of content items is
referred to as a repository. So, a WebLogic repository (one entry among possibly many within the
larger Virtual Content Repository) corresponds to a JSR-170 workspace. To connect more than
one workspace from a single JSR-170 repository to WebLogic, each workspace must be added as
a distinct WebLogic repository (it is for this reason that the workspace name property is required
in the configuration, see point#6 in section 1.4.3).

Nodes
In both the WebLogic Portal content SPI and JSR-170 a node is structural element in a hierarchy
at the API level. At the user interface level in WebLogic Portal, a content directory is called a
“folder” and a piece of content is called “content” or “content item.”

Node Types and Object Classes
JSR-170 node types are mapped to WebLogic Portal object classes. However, there are two
significant differences between the concepts:

1. A JSR-170 node type defines the properties and child nodes a particular node may (or must)
have. A WebLogic object class, governs only the properties a node may (or must) have.
Because of this, the methods of com.bea.content.ObjectClass and
com.bea.content.PropertyDefinition does not expose any additional constraints on child
nodes that their underlying JSR-170 node type may define. Nonetheless, the native
constraints of the node type (both property and child node) are still enforced by the
underlying JSR-170 repository even though these constraints are not visible through the
WebLogic SPI.

2. In WebLogic Portal, a node may have no object class. In JSR-170 a node always has a node
type. This constraint is still enforced when a JSR-170 repository is accessed though the
WebLogic SPI. Consequently, in WebLogic terms, adding a node without an object class is
not possible.

In WebLogic, there is also a separate concept of “node type” distinct from that of object class.
There are two such WebLogic node types: content and hierarchy. The combining rules between
them are simple: a hierarchy node can have child nodes of either type, while a content node can
only have child nodes of type content. Both types of nodes can be assigned object classes and
have properties. The JSR-170 adapter maps all JSR-170 nodes to WebLogic content nodes. This
means that to add a node to the JSR-170 repository through either the WebLogic Administration
Portal or the WebLogic SPI, you must add a WebLogic content node. An attempt to add a
WebLogic hierarchy node will fail.

Oracle® WebLogic JSR-170 Adapter Developer's Guide 9

Mapping Between Content Models

Mixin Node Types
JSR-170 distinguishes two types of node types: primary and mixin. Primary node types are the
type discussed above. They are assigned upon creation of a node and cannot be changed or
removed, short of removing the node itself and creating a new one. Mixin types are node types
that specify additional properties to an already-existing node. They can be added at any time in
the node's life cycle.

WebLogic Portal object classes are in some ways more similar to mixin types in that nodes can
have no object class at all and object classes can be added, removed, or changed during the life of
the node.

Because the WebLogic SPI exposes JSR-170 primary node types as WebLogic object classes, the
immutable nature of those node types restricts the operations that can be done on their
corresponding object class. In particular, once an object class reflecting an underlying JSR-170
node type is assigned, it cannot be removed.

Unstructured Content
In a JSR-170 repository a node may be assigned a node type that permits it to have any number of
properties and/or child nodes with any names and of any types.

In WebLogic Portal a node can have (subject to the hierarchy/content combination rule
mentioned above) any number of child nodes with any names. However, WebLogic Portal
requires that all the properties of a node be defined by name in its object class. As a result, the
WebLogic Portal content SPI does not currently support unstructured sets of properties. For
example, this means that through the WebLogic SPI, the JSR-170 node type nt:unstructured is
not fully supported (its unstructured child node aspect is, but not its unstructured property aspect).

Properties
In both models properties are name-value pairs attached to nodes that store the actual data in the
repository.

Property Types
Both models support the property types binary, boolean, calendar/date, double, long, string
and undefined. JSR-170 also supports the types reference, name and path.

Transient Space
In a JSR-170 repository, changes made to a node (adding or deleting child nodes; adding,
deleting, or changing the values of properties) are not immediately persisted. Instead, the client of
the API makes the required changes and once they are complete, calls save. At this point all the
changes are validated against node type restrictions and (if valid) persisted. This arrangement
system allows the state of a node to be temporarily invalid while it is "being worked on," and
only subject to validation once the "work" is finished.

In contrast, WebLogic Portal persists changes immediately upon the change method being called.
Consequently, if an object class specifies that a node must have a particular set of properties and
that object class is assigned to a node, all of its required properties must be added to the node at
the same time. WebLogic supports this through methods like
com.bea.content.spi.NodeOps.addNodeContent (see the WebLogic Portal Javadoc for details).

At the JSR-170 level, the adapter deals with this by implicitly performing a save for each
WebLogic SPI call that alters nodes or properties. As a result, nodes in JSR-170 that require one

10 Oracle® WebLogic JSR-170 Adapter Developer's Guide

Mapping Between Content Models

or more child nodes (as opposed to properties) cannot be created through the WebLogic Portal
content SPI. However nodes whose required child set consists only of properties can be created.

Namespaces
To support namespaces in WebLogic Portal, the adapter allows the client to use namespace
prefixes with in the names of nodes, properties, and node types. The only prerequisite is that these
prefixes must be mapped to URIs in the namespace registry of the JSR-170 repository underlying
the WebLogic repository. Consult the documentation of your JSR-170 implementation for more
details on setting namespace mappings. In Day CRX, for example, namespace mappings can be
added in the Node Type Administration Console.

Oracle® WebLogic JSR-170 Adapter Developer's Guide 11

	Reading Properties
	Adding Nodes
	Adding Properties
	 Assigning Node Types/Object Classes

