
Oracle® WebLogic Portal
Interaction Management Guide

10g Release 3 (10.3)

September 2008

Oracle WebLogic Portal Interaction Management Guide, 10g Release 3 (10.3)

Copyright © 2007, 2008, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Oracle WebLogic Portal Interaction Management Guide iii

Contents

1. Introduction
Introducing Personalization . 1-1

Using Interaction Management Tools. 1-2

Understanding the Features . 1-3

Interaction Management in the Portal Life Cycle . 1-4

Architecture . 1-5

Development . 1-6

Staging . 1-7

Production. 1-7

Getting Started . 1-8

2. Planning an Interaction Strategy
Choosing the Type of Interaction Management to Develop . 2-1

Understanding Conditions . 2-4

Checklist for Planning Your User Interaction Strategy . 2-6

Checklist for Planning Your Campaign Strategy. 2-9

Planning Your Behavior Tracking Strategy. 2-11

Understanding When to Use a Predefined Event . 2-12

Understanding When to Create a Custom Event . 2-12

Understanding When to Create a Custom Event Listener . 2-13

Updating Interaction Management Features . 2-13

Upgrading Interaction Features from Portal 8.1 . 2-14

iv Oracle WebLogic Portal Interaction Management Guide

Part I. Architecture

3. Setting up Content
Adding Content . 3-1

Determining Content Priority . 3-2

Part II. Development

4. Creating a Property Set
Setting up a Property Set . 4-2

Creating a User Profile Property Set . 4-3

Creating a User Segment Property Set . 4-4

Creating a Session Property Set . 4-8

Creating a Request Property Set. 4-9

Creating a Community or Remote Portlet Property Set . 4-10

Creating an Event Property Set . 4-10

Creating a Catalog Property Set . 4-11

Adding Properties or Conditions to a Property Set . 4-12

Modifying Properties and Conditions . 4-14

Editing Properties . 4-14

Editing Property Values . 4-14

Retrieving Properties from External Data Stores . 4-15

Deleting a Property or a Property Set . 4-16

5. Creating a User Segment
Creating a User Segment . 5-1

Setting Dates and Times . 5-4

Modifying a User Segment . 5-4

Oracle WebLogic Portal Interaction Management Guide v

6. Creating a Content Selector
Setting Up Content to Display . 6-2

Creating a Content Selector . 6-2

Creating the Content Selector File . 6-4

Using a JSP Tag to Display a Content Selector File . 6-19

Using the <pz:div> Tag Instead of a Content Selector . 6-27

Deleting a Content Selector Query . 6-28

Deleting a Content Selector . 6-28

Modifying a Content Selector . 6-29

7. Creating a Placeholder
Selecting Content for a Placeholder. 7-2

Displaying Additional MIME Types in a Placeholder . 7-3

Adding Content to a Placeholder . 7-5

Creating a Placeholder . 7-6

Creating a Placeholder File. 7-6

Building a Content Query . 7-13

Determining Which Query and Content to Display . 7-14

Adding a Placeholder to a JSP . 7-15

Modifying a Placeholder . 7-16

Using the <ad:adTarget> Tag Instead of a Placeholder. 7-16

8. Building a Campaign
Performing the Prerequisite Tasks . 8-3

Building a Campaign . 8-3

Planning Your Campaign Logic . 8-4

Creating a Campaign File . 8-5

vi Oracle WebLogic Portal Interaction Management Guide

Adding a Scenario to a Campaign . 8-11

Adding an Action to a Scenario’s Rule . 8-12

Setting Up Automatic E-Mail Messages . 8-24

Targeting a Campaign to Tracked Anonymous Users . 8-33

Testing a Campaign . 8-34

Triggering a Campaign . 8-39

Troubleshooting Campaign Actions . 8-39

Turning Off a Campaign . 8-40

Resetting a Campaign . 8-40

Resetting a Campaign in the Development Environment . 8-41

Resetting a Campaign in the Production Environment . 8-42

9. Setting Up Events and Behavior Tracking
Choosing How to Handle Events. 9-2

Completing Your Behavior Tracking Strategy . 9-7

Planning the Deployment of Custom Events, Listeners, and Property Sets. 9-7

Using Predefined Events . 9-7

Using the SessionLoginEvent. 9-8

Using the SessionBeginEvent and SessionEndEvent. 9-9

Using the UserRegistrationEvent . 9-9

Using the AddToCartEvent . 9-9

Using the RemoveFromCartEvent . 9-9

Using the PurchaseCartEvent . 9-10

Using the Rule Events . 9-10

Using the DisplayCampaignEvent . 9-10

Using the CampaignUserActivityEvent . 9-11

Using the ClickCampaignEvent . 9-12

Using the ClickProductEvent . 9-12

Oracle WebLogic Portal Interaction Management Guide vii

Using the ClickContentEvent . 9-13

Generating Events for Content Clicks . 9-13

Using the ClickThroughEventFilter . 9-13

Generating Content Events . 9-15

Using the ContentConfigEvent . 9-15

Using the ContentCreateEvent . 9-15

Using the ContentDeleteEvent . 9-16

Using the ContentUpdateEvent . 9-16

Providing Event Attribute Values . 9-16

Enabling Behavior Tracking . 9-19

Enabling Behavior Tracking in the Administration Console 9-20

Configuring Behavior Tracking . 9-22

Adjusting Behavior Tracking for Optimal Performance. 9-23

Storing Behavior Tracking Data in Other Ways . 9-24

Creating a Separate Database for Behavior Tracking Events 9-24

Enabling Behavior Tracking in Workshop for WebLogic . 9-24

Creating Custom Events. 9-25

Creating the Event Class. 9-26

Creating an XML Schema for Behavior Tracking . 9-35

Creating Custom Event Listeners . 9-36

Dispatching Events . 9-40

Using Events in Campaigns . 9-41

Registering Events for Campaigns . 9-43

Debugging the Event Service. 9-44

Tracking Content Changes. 9-45

Disabling Behavior Tracking . 9-47

Unregistering the Behavior Tracking Listener . 9-47

Removing an Individual Event . 9-47

viii Oracle WebLogic Portal Interaction Management Guide

10. Creating Advanced Personalization with Rules
Using Rules in Portal Applications . 10-1

Choosing Personalization Components . 10-2

Understanding the Rules Service . 10-5

Creating a Rule . 10-8

Creating a Rule Set . 10-9

Deploying a Rule Set . 10-15

Adding Objects to Working Memory . 10-16

Invoking the Rules Service to Evaluate Objects . 10-18

Filtering the Results . 10-24

Using the Results in Your Application . 10-26

Rules Control Reference . 10-27

Part III. Staging

11. Modifying Property Set Values
Editing a Property Value . 11-2

Deleting a Property Value . 11-3

12. Modifying a User Segment
Modifying a User Segment . 12-5

Modifying a User Segment’s Properties . 12-6

Copying a User Segment . 12-7

Removing a User Segment . 12-7

13. Modifying a Content Selector
Modifying a Content Selector . 13-1

Deleting a Content Selector and Query . 13-3

Oracle WebLogic Portal Interaction Management Guide ix

14. Modifying a Placeholder
Changing Content for a Placeholder . 14-2

Modifying a Placeholder . 14-2

Deleting a Query or a Placeholder . 14-3

Managing Placeholders for Optimal Performance. 14-4

15. Managing a Campaign
Modifying a Campaign . 15-1

Changing a Campaign’s Description or Sponsor . 15-2

Changing a Campaign Start or Stop Date . 15-2

Activating and Deactivating a Campaign . 15-3

Turning Off a Campaign . 15-4

Resetting Campaign Settings . 15-5

Duplicating a Campaign . 15-5

Modifying a Rule . 15-6

Modifying a Content Action . 15-6

Modifying an E-Mail Action . 15-8

Modifying a Discount Action . 15-8

Previewing a Modified Campaign Action . 15-9

Managing a Campaign for Optimal Performance . 15-10

Part IV. Production

x Oracle WebLogic Portal Interaction Management Guide

Oracle WebLogic Portal Interaction Management Guide 1-1

C H A P T E R 1

Introduction

This guide describes how to set up personalized content to enhance how users interact with your
portal application.

Personalized content can include content or images targeted to specific users or audiences. For
example, you can create dynamic images or links that are personalized for each user. You could
dynamically guide users through a process (such as signing up for employee benefits or shopping
online) that takes them to different places based on their personal preferences or characteristics.

You can even record the path users take through your portal to gauge the effectiveness of the
portal, its design, or your process flows. This Behavior Tracking provides information that can
validate your strategies or help you make improvements.

This chapter includes the following sections:

Introducing Personalization

Interaction Management in the Portal Life Cycle

Getting Started

Introducing Personalization
This section contains the following topics:

Using Interaction Management Tools

Understanding the Features

In t roduct ion

1-2 Oracle WebLogic Portal Interaction Management Guide

Developers use Workshop for WebLogic to set up Personalization features, such as Campaigns,
Content Selectors, Placeholders, User Segments, and Rule Sets. Developers can also create rules
for Personalization and events for Behavior Tracking. Portal administrators use the WebLogic
Portal Administration Console to modify Campaigns, Content Selectors, Placeholders, and User
Segments to fit the needs of the portal’s audience.

Developing Interaction Management features often involves setting up related pieces. For
example, if you want to target users with personalized content in a Campaign, you have to add
content to WLP's Virtual Content Repository, create Placeholders that display the content, set up
properties (such as User Profile or session properties) that are used to define the conditions under
which users will be targeted with Campaign content, and finally, create the Campaign.

This chapter describes the tools you can use to create Interaction Management features and the
logic that drives the tools. Each tool uses a rules engine to match users with appropriate content.

Using Interaction Management Tools
You can use the following tools to create and maintain Interaction Management features in the
portal life cycle:

1. Oracle Workshop for WebLogic – Developers create the following items:

– User Segments, Property Sets, Content Selectors, Placeholders, Campaigns and
Behavior Tracking – Create these Personalization features and then use Java Server
Page (JSP) tags or controls to enable the feature in a Page Flow or JSP.

– JSP Tags – Use JSP tags to display personalized content to users. For example,
Campaigns show web content using a JSP tag called a Placeholder: <ph:placeholder
name=”myPlaceholder1”/>. You can add JSP Placeholder tags (identified by the
name attribute) anywhere in your portal’s JSPs. For more information on Java classes,
see the JSP Tag Javadoc.

– Java Controls – Use Java controls (predefined Java functionality) in your Page Flows
and Web Services to display personalized content. For example, you can use the Rules
Executor control to help determine a user’s path through a Page Flow based on specific
conditions, such as User Profile values or session properties. For more information on
controls, see the Javadoc.

2. Java API – Developers can also utilize a full API to programmatically develop Interaction
Management functionality.

3. WebLogic Portal Administration Console – Portal Administrators can modify values and
some properties for User Segments, Property Sets, Content Selectors, Placeholders, and

../javadoc/index.html
../javadocjsp/index.html

I n t roduc ing Personal i zat ion

Oracle WebLogic Portal Interaction Management Guide 1-3

Campaigns. They can also change the target audience that will see Personalization features,
or modify Campaign dates. Administrators can use the Administration Console to test the new
features you have developed and adjust the target audience. If you need to modify or fine tune
any of them, you can use Workshop for WebLogic to return to the Development phase and
make changes. You must redeploy your portal application to see the changes in the Staging
environment.

Understanding the Features
Workshop for WebLogic provides the following features to help you deliver personalized
content:

Property Sets – A Property Set Editor lets developers define User Profile properties,
request properties, session properties, and custom events to create conditions that uniquely
identify users. For example, you can create a NewHire property to target new users with
benefit enrollment information. An Employee property set could have an attribute (or
property) called NewHire, as well as HireDate.

User Segments – User Segments help you dynamically categorize users based on
conditions or criteria that define the target visitor. For example, you can define conditions
that dynamically identify gender, occupation, movie fans, or pet lovers.

Content Selectors – A Content Selector targets users with personalized web content from
the WLP Virtual Content Repository. For example, you can display a list of recommended
movies to users identified as movie fans.

Campaigns – Campaigns let you target specific users with a single piece of personalized
content, automatically send them a predefined e-mail, or provide a discount in a commerce
application. (You must add the commerce service to your portal application. Discount
actions are part of the Commerce API, which is deprecated with WebLogic Portal 10.0.
Campaigns run for a limited time and drive online behavior and Personalization to achieve
a specific business goal.

Placeholders – Campaigns use Placeholders to display personalized content on a portal
page. A Placeholder is a predefined location in a JSP that displays a single piece of web
content retrieved from the WLP Virtual Content Repository. A Placeholder uses queries to
retrieve and display content, and can rotate the content to display something different on
each browser refresh. Campaigns are targeted to Placeholders.

Events and Behavior Tracking – Events let you create actions that happen in a user’s
interaction with your portal, or respond to actions that occur. Events, such as a user
clicking a button or registering in your portal, can trigger a Campaign. You could generate
an event when a user logs in or logs out. You can also use a Campaign to respond in real

In t roduct ion

1-4 Oracle WebLogic Portal Interaction Management Guide

time to an event. For example, if a user clicks an image, an event is generated. You would
know which image is clicked and you can display other information in another portlet. For
example, you clicked a camera image and camera accessories display in another portlet.

See Chapter 2, “Planning an Interaction Strategy” for more details and examples of each type of
interaction.

The following terms are used in this guide:

Authentication – Registers (verifies) the user and logs the user into the portal.

Authorization – Determines what the user can access.

Interaction Management in the Portal Life Cycle
This section contains the following topics:

Architecture

Development

Staging

Production

The tasks in this guide are organized according to the portal life cycle. The portal life cycle
contains four phases: Architecture, Development, Staging, and Production. Adding
Personalization and user interaction to your portal is an important part of the portal life cycle. For
more information about the portal life cycle, see the WebLogic Portal Overview.

Figure 1-1 shows which Interaction Management tasks occur in each phase.

../overview/index.html

I n te rac t i on Management in the Por ta l L i f e Cyc le

Oracle WebLogic Portal Interaction Management Guide 1-5

Figure 1-1 Interaction Management Tasks in the Four Phases of the Portal Life Cycle

Architecture
In the Architecture phase, you plan the type of interaction that your portal users will experience.
Architects decide who to target, what type of personalized content users will see, how often the
content changes, and how to update the content. For more information about the portal life cycle,
see the WebLogic Portal Overview.

The following chapters provide guidance on Architecture tasks:

Chapter 2, “Planning an Interaction Strategy” describes when to use different types of
Personalization and explains the relationships between the Interaction Management
features.

Chapter 3, “Setting up Content” describes the properties you can add to content items in
the WLP Virtual Content Repository that support Interaction Management functionality.

4. Production – Roll
out your portal in a
Production environ-
ment, making
changes as needed 3. Staging – Use

the Administra-
tion Console to
update interac-
tion features and
test them in a
staging environ-
ment

2. Development –
Create property
sets, User Seg-
ments, Content
Selectors, Place-
holders, Cam-
paigns, and
Behavior Tracking

1. Architecture – Deter-
mine what type of user
interaction you want to
add to your portal

../overview/index.html

In t roduct ion

1-6 Oracle WebLogic Portal Interaction Management Guide

Development
In the Development phase, developers use Workshop for WebLogic to create user property sets
and properties, User Segments, Placeholders, Content Selectors, Campaigns, and Behavior
Tracking to add Personalization without custom coding. Developers can also work directly with
the Java API to add Personalization.

Personalization features allow you to target users with personalized web content, display a single
piece of web content retrieved from the WLP Virtual Content Repository, automatically send a
user a predefined e-mail, or provide a discount in a commerce application. Discount Actions are
part of the Commerce API, which is deprecated with WebLogic Portal 10.0.

Developers can also categorize users based on specific characteristics or criteria and then target
those User Segments.

Tools: Workshop for WebLogic and the Java API.

The following chapters provide instructions on Development tasks:

Chapter 4, “Creating a Property Set” provides instructions on how to set up conditions that
drive Interaction Management and the choices you need to make.

Chapter 5, “Creating a User Segment” describes how to dynamically group users based on
conditions you define.

Chapter 6, “Creating a Content Selector” describes Content Selectors and how to use them
to display multiple personalized content items from the virtual content repository.

Chapter 7, “Creating a Placeholder” describes Placeholders and how to use them to display
single content items from the Virtual Content Repository. This chapter describes how to
use Placeholders by themselves to display non-personalized content and how to use them
with Campaigns to display personalized content.

Chapter 8, “Building a Campaign” provides the setup steps and things to consider when
building a Campaign.

Chapter 9, “Setting Up Events and Behavior Tracking” describes the event framework and
when to use predefined Behavior Tracking events. The chapter also discusses when and
how to create regular events and custom events for Behavior Tracking, and how to use
events in a Campaign.

Chapter 10, “Creating Advanced Personalization with Rules” explains how to customize
rules to create advanced Personalization. This type of Personalization can help you do

I n te rac t i on Management in the Por ta l L i f e Cyc le

Oracle WebLogic Portal Interaction Management Guide 1-7

things like control each user’s path through a Page Flow or use runtime information to
determine conditional logic.

Staging
In the Staging phase, portal administrators use a browser to test the Content Selectors,
Placeholders, Campaigns, and so on that developers created in the Development phase. If any of
the functionality needs to change, you can use the Administration Console to make changes, or
return to the Development phase and use Workshop for WebLogic and make changes. Developers
can also utilize the Java API. Developers must redeploy the portal application to see the changes
in the Staging environment. The Development phase and the Staging phase often occur
simultaneously.

Tools: Administration Console.

The following chapters provide instructions on Staging tasks:

Chapter 11, “Modifying Property Set Values” shows how to change the values in your User
Profile property sets.

Chapter 12, “Modifying a User Segment” describes how to change User Segment
properties (conditions) to dynamically group users.

Chapter 13, “Modifying a Content Selector” provides the steps to edit a Content Selector
property, so that you can change the content that is displayed.

Chapter 14, “Modifying a Placeholder” shows how to manage the content that populates
Placeholders.

Chapter 15, “Managing a Campaign” gives instructions on making changes to a Campaign,
including the start or stop date and modifying the query user name.

Production
After developers test the portal application in the Staging phase, portal administrators use the
Production phase to fine-tune the live production environment. For example, in the Production
phase, administrators could use the Administration Console to modify Placeholders, Content
Selectors, or Campaigns. They can change a Campaign’s effective dates, update web content,
modify the discount offered in a catalog, or add a new User Segment to attract a different
audience.

WARNING: Shopping cart events, discounts, and catalogs are part of the Commerce API,
which is deprecated with WebLogic Portal 10.0.

In t roduct ion

1-8 Oracle WebLogic Portal Interaction Management Guide

If you need to change any of these features, developers can use Workshop for WebLogic to return
to the Development phase and make changes. Developers must redeploy the portal application to
see the changes in the Staging and Production environments.

Tools: Administration Console.

See Part IV: Production for guidance on Production tasks.

Getting Started
If you are new to portal development, see the WebLogic Portal Overview for more information
about the portal life cycle.

You can also consult the following information:

WebLogic Portal Overview

Security Guide

User Management Guide

../overview/index.html
../overview/index.html
../security/index.html
../users/index.html

Oracle WebLogic Portal Interaction Management Guide 2-1

C H A P T E R 2

Planning an Interaction Strategy

This chapter describes when to use different types of Personalization and explains the
relationships between the Interaction Management features.

This chapter includes the following sections:

Choosing the Type of Interaction Management to Develop

Checklist for Planning Your User Interaction Strategy

Checklist for Planning Your Campaign Strategy

Planning Your Behavior Tracking Strategy

Updating Interaction Management Features

Upgrading Interaction Features from Portal 8.1

Choosing the Type of Interaction Management to Develop
Use Table 2-1 to determine which type of Interaction Management to develop.

This section contains the following topic:

Planning an In te ract ion St rategy

2-2 Oracle WebLogic Portal Interaction Management Guide

Understanding Conditions
Table 2-1 Types of Interaction Management

If you want to ...do this

Display different graphics –
each time an employee visits the
Intranet portal, display a
different picture from the
company picnic.

This action displays a binary
property from a single content
item from the virtual content
repository that can change each
time a user visits your portal or
clicks Refresh.

• Create a generic rotation of content for all users by creating a
Placeholder and adding a default query for the Placeholder that
displays the range of content you want.

• Create a targeted rotation of content for each user based on each
user's characteristics by creating a Placeholder and a Campaign.

• Set up the Campaign with content actions that put different types of
content in the Placeholder for different types of users.

• Define the necessary conditions and rules to use in the Campaign.

You can also use the <ad:adTarget> JSP tag as an alternative to a
Placeholder to manually embed a content query in a JSP.

See Chapter 7, “Creating a Placeholder” for more information.

Display a graphic specific to the
user type – when a certain type
of user visits the portal, display a
graphic specific to the user type.

For example, if a manager user
views the portal, show the
manager the performance
review reminder graphic. If a
regular employee user views the
portal, show the employee the
benefits open enrollment
graphic.

This action displays a binary
property from a single content
node from the Virtual Content
Repository that shows the same
content node for each type of
user.

Target specific users differently by creating a Placeholder with a default
query for all users or a Placeholder used by a Campaign to target specific
users differently. Use one of the following ways to show the same content
node without content rotation:
• Set up your content with properties and values that can uniquely

identify each piece of content.
• Create highly focused content queries in the Placeholder or the

Campaign to retrieve those single unique content items.

See Chapter 7, “Creating a Placeholder” and Chapter 8, “Building a
Campaign” for more information.

placeholders.html
placeholders.html

Choos ing the T ype o f In te ract i on Management t o Deve lop

Oracle WebLogic Portal Interaction Management Guide 2-3

Show each user a unique list of
recommended books – the list is
based on the user's
characteristics.

This action displays multiple
content nodes and properties
from the virtual content
repository simultaneously.

Show multiple content nodes from the Virtual Content Repository
simultaneously by creating Content Selectors and adding them to your
JSPs.

See Chapter 6, “Creating a Content Selector” for more information.

Show content that matches a
user’s characteristics – provide
different sections of HTML
content in a JSP but show users
only the sections that match
their characteristics.

This action displays
personalized content from an
inline section of a JSP.

Display personalized inline JSP content by creating User Segments and
using the <pz:div> JSP tag to wrap personalized content.

You can also use the following JSP tags to display inline JSP content
based on the device that is viewing the content (for example, a handheld
device or a PC): <cscm:default>, <cscm:not-default>,
<cscm:recognized>, <cscm:not-recognized>,
<cscm:when>, and <cscm:when-not>. The cscm tags are Portal
Multichannel JSP tags. The are contained in the client_taglib.jar
file.

See Chapter 6, “Creating a Content Selector” and the JSP Tag Javadoc
for more information.

Send users automatic e-mails. Create and store e-mail message files and create a Campaign that uses an
e-mail action. See Chapter 8, “Building a Campaign.”

Table 2-1 Types of Interaction Management

If you want to ...do this

contentselectors.html
contentselectors.html
campaigns.html
../javadocjsp/index.html

Planning an In te ract ion St rategy

2-4 Oracle WebLogic Portal Interaction Management Guide

Understanding Conditions
Interaction Management uses a variety of conditions that identify users and what they are doing.

When you build Interaction Management functionality, you use conditions to perform the
following actions:

1. Specify the exact characteristics that identify the users you want to target

2. Define the actions that occur when users that match those conditions visit your portal

Figure 2-1 illustrates how personalized content is dynamically displayed to users with a Content
Selector. Conditions are captured, specific users are identified, and actions occur for those users.

Give users automatic discounts. Note: The Commerce API, which helps implement discounts,
shopping cart functionality, catalogs, and so on, is
deprecated with WebLogic Portal 10.0.

Perform the following tasks:
• Add commerce services to your portal application.
• Set up a shopping cart using the WebLogic Portal Commerce API.
• Create a catalog in the virtual content repository.
• Use the WebLogic Portal catalog classes in the Commerce API to

retrieve catalog items from the virtual content repository and identify
them with categories and SKU properties.

• Create discounts and use the Commerce API to view the discounts in
your shopping cart. You can also use the API to surface the discount's
description next to the discount amount displayed in the shopping cart.

Use rules in Page Flows and
Web Services to provide a
personalized user experience

Use the Rules Executor control in your Page Flows and Web Services.
See Chapter 10, “Creating Advanced Personalization with Rules”.

Table 2-1 Types of Interaction Management

If you want to ...do this

Choos ing the T ype o f In te ract i on Management t o Deve lop

Oracle WebLogic Portal Interaction Management Guide 2-5

Figure 2-1 Simple Example of Interaction Management Logic and Flow

A rules engine runs behind the scenes on a server in a portal domain, reads all available conditions
in memory, evaluates those conditions against the rules you created, and executes the actions you
defined if the conditions match your rules.

For example, the following list contains some of the conditions that a Campaign can use to
determine which users to target with personalized content:

Dynamically predefined groups of users (User Segments).

Properties in a User’s Profile (such as personal preferences).

Specific properties in the HTTP request or session.

An event that occurs (such as performing a click).

Date and time factors.

Items or value of items in a shopping cart. Shopping cart events, discounts, and catalogs
are part of the Commerce API, which is deprecated with WebLogic Portal 10.0.

Planning an In te ract ion St rategy

2-6 Oracle WebLogic Portal Interaction Management Guide

Checklist for Planning Your User Interaction Strategy
Adding Personalization to your portal can involve setting up several related pieces. The checklist
in Table 2-2 includes items that you should consider when planning a personalized portal.

Table 2-2 User Interaction Strategy Checklist

Check
box

Planning Item Description

1. Create content Determine the content you want to display, when it should
display, and set specific properties on your content items. For
example, you can use Workshop for WebLogic to add
properties to your content that can make an image clickable,
end a Campaign after a specific number of clicks, start a
movie, provide a clickable URL, and so on. See Chapter 3,
“Setting up Content” for instructions. You should also
consult the Content Management Guide for information on
creating and maintaining a virtual content repository.

2. Set up Property Sets
and properties

Property sets use properties to create conditions that uniquely
identify users. The properties you create in Workshop for
WebLogic are used in the conditions you define for your
Personalization logic. For example, you could create a NewHire
property set to target these users with benefit enrollment
information.

Workshop for WebLogic provides editors to help you define the
following properties to create conditions that identify users:
• User Profile properties determine which user information to

save. User Profile properties can also be used to define Visitor
Entitlement and Delegated Administration roles.

• Request properties capture and use specific HTTP request
information to trigger Personalization.

• Session properties capture and use specific HTTP session
information to trigger Personalization.

• Custom Events can trigger Personalization and Campaigns and
track user behavior.

Based on the logic conditions, each user is dynamically served
personalized, accurate web content, automatic e-mails, and
discounts. See Chapter 4, “Creating a Property Set” for instructions.

content.html
content.html
../cm/index.html

Check l is t f o r P lann ing Your Use r I n te rac t ion S t ra tegy

Oracle WebLogic Portal Interaction Management Guide 2-7

3. Set up users Access existing users in external databases or add new users to your
portal. For instructions on setting up and managing users, see the
User Management Guide.

4. Create User Segments You can create User Segments to dynamically categorize users
based on conditions or criteria that define the target visitor. Those
conditions can include characteristics, such as occupation, browser
type, User Profile values, or other user properties.

For example, you could classify all users who ordered more than
five on-demand movies in the last 30 days If visitors match the
defined characteristics, they automatically become members of that
User Segment and are shown specific web content with Content
Selectors or are targeted with Campaign Actions.

User Segments can be used over and over in Content Selectors,
Placeholders, and Campaigns. See Chapter 5, “Creating a User
Segment” for instructions.

5. Create Content
Selectors

A Content Selector lets you target specific groups of people with
content items from the WLP Virtual Content Repository. For
example, after you create a User Segment to trigger Personalization,
you can create a Content Selector that defines the content that is
shown to users in a specific User Segment. You could display a list
of recommended movies to users identified as movie fans. For
instructions, see Chapter 6, “Creating a Content Selector”.

6. Create Placeholders A Placeholder displays a single personalized content item on a JSP.
The content item is dynamically retrieved from the WLP Virtual
Content Repository.

A Placeholder uses queries to retrieve and display one piece of
content at a time. For example, if a user is identified as a bird lover,
a Placeholder in a Campaign can display an image of a bird with a
store discount. The image can change with a browser refresh to
show other birds as well. You can also use Placeholders by
themselves to display specific types of non-personalized content
that is not provided by a Campaign. See Chapter 7, “Creating a
Placeholder”.

Table 2-2 User Interaction Strategy Checklist (Continued)

Check
box

Planning Item Description

../users/index.html

Planning an In te ract ion St rategy

2-8 Oracle WebLogic Portal Interaction Management Guide

One of the most important benefits of using Interaction Management is that the logic is decoupled
from your source code. The files you create (Campaigns, Placeholders, Content Selectors, and so
on) contain the Personalization logic and content queries, and your code references those files.
For example, Campaigns show web content using a JSP tag called a Placeholder.

The next step is to define your Campaign to use the existing Placeholders, each of which can
display content unique to the Campaign and to the individual users. Campaigns can change and
new ones can be added, but you never have to change your JSP code. The Placeholders you need
in the JSPs stay the same.

7. Create Campaigns A Campaign lets you target specific users with a single piece of
personalized content at a time, automatically send them a
predefined e-mail, or provide a discount in a commerce application.
You must add commerce services to your portal application.

Note: Discount actions are part of the Commerce API, which is
deprecated with WebLogic Portal 10.0.

Campaigns run for a limited time and drive online behavior and
Personalization to achieve a specific business goal. Your Marketing
Department generally drives the content of a Campaign. For
instructions, see Chapter 8, “Building a Campaign”.

8. Set up Behavior
Tracking

You can use events to trigger Campaigns, persist event data in the
database, and other actions. Events are generated when users
interact with a web interface, such as logging in, clicking or viewing
a graphic, clicking a button, navigating to another page in a portal,
and so on. These events that occur in a user’s path through your
portal are logged to the database, so you can analyze the user
behavior in your portal. For example, you could determine how
many users have registered in a portal and then create a Campaign
that automatically sends each user a welcome e-mail when the
registration event occurs.

You can also be notified of custom events at runtime and respond
accordingly. You might decide to forward events to another system
or make runtime decisions on the basis of those events.

See Chapter 9, “Setting Up Events and Behavior Tracking” for
more information.

Table 2-2 User Interaction Strategy Checklist (Continued)

Check
box

Planning Item Description

Check l i s t fo r P lann ing Your Campaign S t ra tegy

Oracle WebLogic Portal Interaction Management Guide 2-9

Checklist for Planning Your Campaign Strategy
Campaigns provide a broad set of features for delivering personalized functionality, such as
displaying personalized web content, triggering email messages, and calculating dynamic
commerce discounts. For detailed information about campaigns, see Chapter 8, “Building a
Campaign.”

The following sample use cases illustrate some ways to use Campaigns to deliver personalized
content and functionality:

A company provides open benefits enrollment for its employees, where employees can
change their current benefits choices. In the internal Human Resources portal, the company
creates a Campaign that runs from November 1 - 30. During that time the Campaign
displays an Open Enrollment graphic in the portal header region and when employees
make changes to their benefits and click Submit, a confirmation e-mail is automatically
sent.

A large online retailer is running a holiday special for its external customers. The retailer
creates a Campaign that provides a one-time discount of 30% off the cost of books when
the total cost of books in any order is $100 or more.

A mobile devices ISP creates a Campaign that shows targeted add-on services that are
specific to each type of mobile device when users click the New Stuff! link.

Note: Campaigns and Behavior Tracking are not currently supported for anonymous,
non-trackable users. See the User Management Guide.

If you plan to use a Campaign in your portal, use the checklist in Table 2-3.

Table 2-3 Campaign Strategy Checklist

Check
box

Planning Item Notes

1. Create a Portal
application

See the WebLogic Portal Tutorials.

../tutorials/index.html
../users/index.html

Planning an In te ract ion St rategy

2-10 Oracle WebLogic Portal Interaction Management Guide

2. Set up content When you show personalized content with a Campaign (using a
content rule), the content is retrieved from the WLP Virtual
Content Repository and displayed in a Placeholder. There are
many properties you can add to your content that enable
necessary and helpful features for Campaigns For example, to
increase the chances of a specific content item being shown in a
Placeholder, create an adWeight property (as an Integer) for
your content items. The greater the adWeight number you enter
for a content item, the greater the chances that it will be
displayed in a Placeholder if it is retrieved by a query.

For more information on setting up content for use in Interaction
Management, see Chapter 3, “Setting up Content”.

3. Decide if you will use
Goal Setting

Goal Setting ends a Campaign based on the number of content
items displayed or clicked. For more information on Goal
Setting, see “Planning Your Campaign Logic” on page 8-4 and
“Setting Goal Definitions” on page 8-7.

4. Create Placeholders Campaigns use Placeholders to display personalized web
content. If you display personalized content through Campaigns,
create the Placeholders that will hold your Campaign queries
and display the web content.

For more information on Placeholders, see Chapter 7, “Creating
a Placeholder”.

5. Create User Segments If you want to trigger a Campaign based on users who are
grouped dynamically based on specific characteristics, create
User Segments. For more information on User Segments, see
Chapter 5, “Creating a User Segment”.

Table 2-3 Campaign Strategy Checklist (Continued)

Check
box

Planning Item Notes

P lanning Your Behav io r T rack ing S t ra tegy

Oracle WebLogic Portal Interaction Management Guide 2-11

Planning Your Behavior Tracking Strategy
WebLogic Portal’s event framework provides many options for generating and handling events,
to track the behavior of visitors to your portal. This section provides guidelines to help you
determine the pieces of the event framework you want to use to implement the functionality you
need.

This section contains the following topics:

Understanding When to Use a Predefined Event

Understanding When to Create a Custom Event

Understanding When to Create a Custom Event Listener

6. Create Property Sets If you plan to trigger a Campaign based on properties from
users, events, HTTP sessions, or HTTP requests, perform the
following relevant procedures:
• Create User Profile properties
• Register Custom Events
• Create Session Properties
• Create Request Properties

For more information on how these properties are used in
Interaction Management, see “Setting up a Property Set” on
page 4-2.

7. Set up e-mail messages You can send automatic e-mails in a Campaign. Follow the steps
in “Setting Up Automatic E-Mail Messages” on page 8-24.

8. Trigger the Campaign Set up a Regular or Behavior Tracking event that start your
Campaign. A commonly used event is SessionLoginEvent.
For instructions, see “Triggering a Campaign” on page 8-39.

See “Using Events in Campaigns” on page 9-41 and
“Registering Events for Campaigns” on page 9-43 for
instructions.

Table 2-3 Campaign Strategy Checklist (Continued)

Check
box

Planning Item Notes

Planning an In te ract ion St rategy

2-12 Oracle WebLogic Portal Interaction Management Guide

Understanding When to Use a Predefined Event
WebLogic Portal provides many predefined Behavior Tracking events you can use in your
applications, described in “Using Predefined Events” on page 9-7. Each event collects specific
attributes and structures those attributes as XML, and the Behavior Tracking listener puts the
XML in a buffer to insert into the BT_EVENT database table.

Most of the predefined events also have predefined event property sets in Workshop for
WebLogic, stored in the portal application’s /data/src/events directory. These property sets
let you use events in your Campaign definitions to trigger Campaign actions when the events
occur or when events have specific attribute values.

The following list explains when to use WebLogic Portal’s predefined events:

You want to store event data as XML in the BT_EVENT table

The predefined events capture specified attributes

The events capture the attributes you want, but you want to handle the events in a
customized way by creating your own event listener

You want to use the events in your Campaign

Understanding When to Create a Custom Event
If none of WebLogic Portal’s predefined events capture the specific combinations of attributes
you need, create a custom event. There are two types of custom events you can create: Behavior
Tracking events and regular events.

See Chapter 9, “Setting Up Events and Behavior Tracking” for instructions on setting up events.

Planning Behavior Tracking Events
Create a custom Behavior Tracking event when none of Portal’s predefined events captures the
event attributes you want and you want to use Portal’s Behavior Tracking framework to persist
event data as XML in the BT_EVENT table. You can use these events in Campaigns and create
a custom listener that performs special handling on the event, but unless you want to use the
Behavior Tracking framework to store event data as XML, you do not need to create a custom
Behavior Tracking event.

If you do not want to use the Behavior Tracking service, create a custom regular event.

Updat ing In te rac t i on Management Featu res

Oracle WebLogic Portal Interaction Management Guide 2-13

Planning Regular Events
Create a custom regular event when none of WebLogic Portal’s predefined events captures the
event attributes you want and you do not want to use the Behavior Tracking service for persisting
event data as XML in the BT_EVENT table.

The following list describes when to create a custom regular event:

You want to capture a specific set of attributes with an event and use that event to trigger
Campaigns

You want to capture a specific set of attributes with an event and execute custom
functionality when that event occurs (using a custom event listener)

Understanding When to Create a Custom Event Listener
WebLogic Portal provides two listeners: a Campaign listener and a Behavior Tracking listener.

The Campaign listener tells the Campaign service when an event has occurred (with the exception
of the ignored events in the wps.jar file’s listener.properties file). The Campaign service
reads the current request and executes Campaign actions if the request data matches the
conditions of any of your Campaigns. If your Campaign definitions include any event conditions,
which you were able to supply with event property sets, the Campaign service evaluates those as
well to determine if it must execute Campaign actions.

The Behavior Tracking listener listens for only the Behavior Tracking events that are registered
with the Behavior Tracking service. When it receives an event it is interested in, it moves the
XML document for that event into a buffer for later persistence into the BT_EVENT table at an
interval you determine.

Create a custom event listener if you want to execute functionality not provided by the Campaign
listener or the Behavior Tracking listener. For example, if you want to perform your own event
data persistence, modify a User Profile, redirect the user to another part of a Page Flow, or
provide any other type of real-time response to the event, create a custom event listener that
provides the functionality you want.

See Chapter 9, “Setting Up Events and Behavior Tracking” for more information.

Updating Interaction Management Features
After you create Property Sets, User Segments, Content Selectors, Placeholders, and Campaigns
in Workshop for WebLogic, you can modify the settings and queries for those components in the
WebLogic Portal Administration Console For instructions, see Chapter 11, “Modifying Property

Planning an In te ract ion St rategy

2-14 Oracle WebLogic Portal Interaction Management Guide

Set Values”, Chapter 12, “Modifying a User Segment”, Chapter 13, “Modifying a Content
Selector”, Chapter 14, “Modifying a Placeholder”, and Chapter 15, “Managing a Campaign”.

If you need to create new Interaction Management features or modify properties, use Workshop
for WebLogic and then iteratively push your updates to the running server. For more information,
see the Production Operations Guide.

Upgrading Interaction Features from Portal 8.1
When you run the Oracle WebLogic Upgrade Wizard, the wizard upgrades your WebLogic Portal
8.1 or 9.2 interaction features, such as Content Selectors, Placeholders, Campaigns, and so on.

When you run the Oracle WebLogic Upgrade Wizard and it detects your Portal 8.1 or 9.2
installation, you can select the Upgrade RDBMSAuthenticator option. Selecting this option
replaces the existing authentication provider with the new SQLAuthenticator authentication
provider and upgrades all content, including personalization features. You can also choose to
manually upgrade your personalization features from Portal 8.1 SP4, SP5, or SP6 to the Portal
10.0 RDBMS user store later. For step-by-step instructions on running the Oracle WebLogic
Upgrade Wizard, see the Upgrade Guide.

../prodOps/index.html
../prodOps/index.html
../upgrade/index.html

Oracle WebLogic Portal Interaction Management Guide

Part I Architecture

Part I includes the following chapters:

Chapter 2, “Planning an Interaction Strategy”

Chapter 3, “Setting up Content”

This section contains guidelines to help you plan the type of user interaction you will add to your
portal. Developing a user interaction strategy can save you time during the other phases of the
portal life cycle.

When you are planning how your users will interact with your portal, determine the following:

What type of personalized content to display

How to set up and store content

If content will be controlled by the type of user

How long to display each type of content

How to cycle through content

If you want to send automatic e-mails or give automatic discounts

Where to store the user information you gather

Part I contains instructions for planning your strategy for user interaction, Campaigns, and
Behavior Tracking in the Architecture phase. When you finish the Architecture phase, you can
proceed to the Development phase, and then on to the other phases.

For a description of the Architecture phase of the portal life cycle, see the WebLogic Portal
Overview. The portal life cycle is shown in the following graphic:

../overview/index.html
../overview/index.html
../overview/index.html

Oracle WebLogic Portal Interaction Management Guide 3-1

C H A P T E R 3

Setting up Content

Targeting users with personalized content is an important part of Interaction Management. You
can use Placeholders and Campaigns to control the type of content you display and how long the
content appears. The first step is to add content types and content to your WLP Repository.

This chapter includes the following sections:

Adding Content

Determining Content Priority

Adding Content
Use the Content Management Guide to learn how to add content to your WLP Repository. You
can set up a hierarchy of folders and add content types (each of which contain properties). Content
types determine the metadata you associate with a content file and how the content is retrieved in
a search.

You can create your own custom content types, or use the following five content types that ship
with WebLogic Portal:

Ad Content Type

Article Content Type

Book Content Type

Image Content Type

../cm/index.html

Se t t ing up Conten t

3-2 Oracle WebLogic Portal Interaction Management Guide

Message Content Type

Plan your content types carefully. You can add a property definition to the content type after you
have instances of the type. However, you cannot modify or delete existing property definitions of
the type. Content type properties describe the content and help you manage that content. The
more properties you associate with content items, the more granular your search results can be.

Adding specific properties to content items in your repository can make an image clickable, end
a Campaign after a specific number of clicks, start a movie, provide a clickable URL, and so on.
You can also perform repository management with content properties by viewing the date (a
Content Type property) that the item was added to the repository.

Content type properties can be any of the following data types: Boolean, Long Integer, Number
with a Decimal, String, Date/Time, Binary, Nested Content Type, or Link. See the Content
Management Guide for more information.

Tip: You should set up your content type properties before you create Placeholders and
Campaigns that access this content.

If you create Visitor Entitlements on a Content Management resource, these entitlements can
prevent a portal visitor from seeing content they would normally see according to Personalization
rules.

Determining Content Priority
A Placeholder—the JSP tag in a JSP that displays general content or personalized content for a Campaign—
displays one piece of content at a time. When a content query in a Placeholder (a default Placeholder query
or a query put in the Placeholder by a Campaign) returns multiple possible content items to a Placeholder,
the Placeholder determines which content item to display. Use a content type property called adWeight to
change the chance of displaying content in a Placeholder when the content items are retrieved with a query.

The adWeight property is an Integer property type. The higher the adWeight number you assign to a
content item, the better the chance it will display in the Placeholder. See Chapter 7, “Creating a
Placeholder” for instructions on using the adWeight property.

../cm/index.html
../cm/index.html

Oracle WebLogic Portal Interaction Management Guide

Part II Development

Part II includes the following chapters:

Chapter 4, “Creating a Property Set”

Chapter 5, “Creating a User Segment”

Chapter 6, “Creating a Content Selector”

Chapter 7, “Creating a Placeholder”

Chapter 8, “Building a Campaign”

Chapter 9, “Setting Up Events and Behavior Tracking”

Chapter 10, “Creating Advanced Personalization with Rules”

Developers use Workshop for WebLogic in the Development phase to create user property sets
and properties, User Segments, Placeholders, Content Selectors, Campaigns, and Behavior
Tracking. Portal administrators can use the WebLogic Portal Administration Console to update
some of these features’ properties and values.

Developers can use these property sets, User Segments, Placeholders, and Campaigns that they
create in the Development phase to personalize a portal by performing some of the following
tasks:

Target users with personalized web content (property sets and Content Selectors).

Display a single piece of web content retrieved from the WLP Virtual Content Repository
(Placeholders).

Send a user an automatic predefined e-mail (Campaign).

Provide a discount in a commerce application (Campaign). Discount Actions are part of the
Commerce API, which is deprecated with WebLogic Portal 10.0.

Categorize users based on specific characteristics or criteria and then target those segments
(User Segments).

The decisions you made during the Architecture phase shape what you do in the Development
phase. For example, you plan Content Selectors in the Architecture phase and create them in the
Development phase. A Content Selector is then tested in the Staging phase and fine-tuned in the
Production phase. Each feature can progress through the portal life cycle.

When you finish the Development phase you can proceed to the Staging phase. Consider setting
up a common development environment for the Development phase and the Staging phase. You
might move iteratively between these two phases, developing and then testing what you created.

If you moved on to the Architecture phase and then go back to make changes that affect the
Development phase, you must redeploy your portal application in order to view your changes.
The WLP Propagation Utility performs the redeployment; see the Production Operations Guide
for more information.

For a detailed description of the Development phase of the portal life cycle, see the WebLogic
Portal Overview. The portal life cycle is shown in the following graphic:

../prodOps/index.html
../overview/index.html
../overview/index.html
../overview/index.html

Oracle WebLogic Portal Interaction Management Guide 4-1

C H A P T E R 4

Creating a Property Set

Developing user interaction that uses Personalization and Campaigns can involve several steps.
For example, if you want to target users with personalized content in a Campaign, you will add
content to WLP's Virtual Content Repository, create Placeholders that display the content, set up
properties (such as User Profile or Session properties) that are used to define the conditions under
which users will be targeted with Campaign content, and then create the Campaign.

This chapter describes how to create these property sets that have conditions to identify users. The
properties are used in the conditions you define for your Personalization logic. Each user is
dynamically served personalized web content, automatic e-mails, or discounts based on the logic
conditions.

Workshop for WebLogic provides editors to help you define the following properties and events
to create conditions that identify and track users:

User Profile properties – Determine which user information to save. User Profile
properties can also be used to define Visitor Entitlement and Delegated Administration
roles.

Request properties – Capture and use specific HTTP request information to trigger
Personalization. Request properties are associated with a request and are not persisted
between requests. Request properties can also be used to define Visitor Entitlement and
Delegated Administration roles.

Session properties – Capture and use specific HTTP session information to trigger
Personalization. Session properties are associated with a session and are not persisted
between sessions. Session properties can also be used to define Visitor Entitlement and
Delegated Administration roles.

Creat ing a P rope r t y Se t

4-2 Oracle WebLogic Portal Interaction Management Guide

Custom Events – Trigger Personalization and Campaigns and track user behavior. You
must register custom events so that your application recognizes them.

Developers use Workshop for WebLogic to create property sets and properties. Portal
administrators can use WebLogic Portal Administration Console to update the values in the
property set. See “Checklist for Planning Your User Interaction Strategy” on page 2-6 for
information on designing a property set, and see Chapter 11, “Modifying Property Set Values” to
learn how to update property set values.

This chapter includes the following sections:

Setting up a Property Set

Adding Properties or Conditions to a Property Set

Modifying Properties and Conditions

Deleting a Property or a Property Set

For information on setting up and managing users that will use Interaction Management features,
see the User Management Guide.

Setting up a Property Set
You can use Workshop for WebLogic to create a property set in for a User Profile, User Segment,
HTTP session or request data, date and time condition, or an event.

For example, a User Profile consists of additional attributes you collect and store about a user.
Each piece of metadata in a User Profile is called a property. User properties can range from
statically-defined properties, such as a user’s phone number and e-mail address, to
dynamically-created and persisted properties (web site tracking information for the user, for
example).

You could create a property set called human resources that contains properties, such as
gender, hire date, and e-mail-address. User Profile properties appear as input fields in the
WebLogic Portal Administration Console when you edit a User Profile value. (You can also
assign Group Profile property values to groups.) The properties you create are also used to define
rules for Personalization, as well as Delegated Administration and Visitor Entitlement roles.
Users and groups can have multiple profiles, if a a profile equates to a property set. WebLogic
Portal provides a default User Profile property set called CustomerProperties.usr that
contains common properties.

../users/index.html

Set t ing up a P rope r t y Se t

Oracle WebLogic Portal Interaction Management Guide 4-3

There are specific properties you can set on content items to enhance Personalization in your
applications. See Chapter 6, “Creating a Content Selector” for more information. For general
information on Content Management, see the Content Management Guide.

After you create the necessary Personalization properties and conditions and set up users and
content, you can create Interaction Management functionality for your portal. For example, after
you create a User Segment to trigger Personalization, you can create a Content Selector that
defines the content that is shown to users in a specific User Segment.

The following section describes how to create a property set for a User Profile, User Segment,
HTTP Session or Request, event, Community, or remote portlet. Property sets are
application-scoped; any additional scoping or namespacing must be performed by the
application.

Property Sets and other Interaction Management features use a variety of conditions that identify
users and what they are doing. For more information on conditions, see “Understanding
Conditions” on page 2-4.

Note: The steps in this chapter refer to the data\src folder in the Package Explorer View.
Your data and src directories might be named differently.

This section contains the following topics:

Creating a User Profile Property Set

Creating a User Segment Property Set

Creating a Session Property Set

Creating a Request Property Set

Creating a Community or Remote Portlet Property Set

Creating an Event Property Set

Creating a Catalog Property Set

Creating a User Profile Property Set
Consult the “Checklist for Planning Your User Interaction Strategy” on page 2-6 for more details
on designing a property set.

Perform the following steps to create a property set for a User Profile:

../cm/index.html

Creat ing a P rope r t y Se t

4-4 Oracle WebLogic Portal Interaction Management Guide

1. In the Portal Perspective in Workshop for WebLogic, right-click the <data>\src\userprofiles
folder in the Package Explorer View and choose New > User Property Set.

2. In the New User Property Set window, enter a name for the User Profile property set in the
File name field. Keep the .usr file extension.

3. Click Finish. The User Profile Editor appears.

4. Add properties to the property set by following the instructions in “Adding Properties or
Conditions to a Property Set” on page 4-12.

Creating a User Segment Property Set
You can target visitors with web content, automatic e-mails, and discounts by defining and using
groups called User Segments (similar to segments of a population). User Segments dynamically
group users based on characteristics, such as group membership, browser type, profile values, and
other user properties. If users match the characteristics, they automatically and dynamically
become members of that User Segment. You can use User Segments in Content Selectors,
Placeholders, and Campaigns.

Perform the following steps to create a User Segment:

1. In the Portal Perspective in Workshop for WebLogic, right-click the <data>\src folder in the
Package Explorer View and choose New > User Segment.

2. In the New User Segment window, enter a name for the User Segment in the File name field.
Keep the .seg file extension.

3. Click Finish. The User Segment Editor appears.

4. In the Design Palette tab, drag the conditions you want to use into the User Segment Editor.
See Figure 4-2.

Set t ing up a P rope r t y Se t

Oracle WebLogic Portal Interaction Management Guide 4-5

Figure 4-2 This User Segment is Called birdlover.seg

5. When you add a condition to the User Segment, click the condition link to set the conditions.

For example, if you drag the condition The visitor has specific characteristics into the User
Segment Editor, click the link in the Editor to select the User Profile properties and their
values that make a user a member of the User Segment.

Properties for the user, HTTP session, and HTTP request conditions are based on the User
Profile, HTTP sessions, and HTTP request properties you create.

WARNING: Shopping cart events, discount actions, and catalogs are part of the Commerce
API, which is deprecated with WebLogic Portal 10.0.

Choose conditions based on the descriptions in Table 4-1.
Table 4-1 Conditions that Identify Users to Target and the Actions that Will Occur

Condition Description

Bind a variable If you pick a type and bind a variable to it, the action can invoke a method
where the bound variable is used as an argument.

Creat ing a P rope r t y Se t

4-6 Oracle WebLogic Portal Interaction Management Guide

Invoke an instance
method

You can use it as a condition to trigger an action. If you invokes an instance
method on a variable with specific arguments, then an action that you specify
occurs.

The visitor is a member of
a predefined User
Segment

If the visitor to your web site belongs to a predefined User Segment, execute
the specified action. For example, if the visitor belongs to the Gold Customer
User Segment, show the visitor a specific piece of web content (action).

The visitor has specific
characteristics

If a visitor's characteristics are compared to values you specify and those
comparisons evaluate as true, execute a specified action. For example, if the
visitor's salary (characteristic) is greater than or equal to (comparison) $50,000
(value), send the visitor an e-mail (action).

The visitor’s HTTP
request has specific
properties

If the HTTP request's properties are compared to values you specify and those
comparisons evaluate as true, execute a specified action.

The visitor’s HTTP
session has specific
properties

If the HTTP session's properties are compared to values you specify and those
comparisons evaluate as true, execute a specified action. An HTTP session is
information your organization might want to track to learn about a visitor's
browsing session on the web site.

An application property
has specific values

After you create an application-defined Property Set (see “Creating a
Community or Remote Portlet Property Set” on page 4-10) and some
properties, you can use the An application property has specific values
condition. You must have an existing property set in place to use this condition.

An event has specific
characteristics

If an event’s characteristics are compared to values you specify and those
comparisons evaluate as true, execute a specified action.

An event has occurred
(e.g., login, click, etc.)

After an event occurs (for example, a user logged into the portal or clicked a
link), an action occurs.

The date is If the current date is equal to the one you specify, execute a specified action.
For example, if the date is equal to July 22, 2006, send users an e-mail about an
upcoming sale (action). The current date refers to the date at the point that the
condition is evaluated for a user visiting the web site. For more information, see
“Setting Dates and Times” on page 4-8.

Table 4-1 Conditions that Identify Users to Target and the Actions that Will Occur (Continued)

Set t ing up a P rope r t y Se t

Oracle WebLogic Portal Interaction Management Guide 4-7

It is after a given date If the current date is after a date you specify, execute a specified action. For
example, if the date is after December 18, 2005, offer users a discount (action).
The current date refers to the date at the point that the condition is evaluated for
a user visiting the web site. For more information, see “Setting Dates and
Times” on page 4-8.

It is after a given date and
time

If the current date and time are after a date and time you specify, execute a
specified action. For example, if the date and time are after July 22, 2006 at 3
p.m., send users an e-mail about an upcoming sale (action). The current date
and time refer to the date and time at the point that the condition is evaluated
for a user visiting the web site. For more information, see “Setting Dates and
Times” on page 4-8.

It is between two times If the current time falls within a range of times you specify, execute a specified
action. For example, if the time is between 3 p.m. and 5 p.m., offer users a
discount (action). The current time refers to the time at the point that the
condition is evaluated for a given user visiting the web site. For more
information, see “Setting Dates and Times” on page 4-8.

It is between two dates If the current date falls within a range of dates you specify, execute the
specified action. For example, if the date is between December 18, 2005 and
December 18, 2006, show users a sale ad (action). The current date refers to the
date at the point that the condition is evaluated for a given user visiting the web
site. For more information, see “Setting Dates and Times” on page 4-8.

It is between two
date/times

If the current date and time fall within a range of dates and times you specify,
execute the specified action. For example, if the date and time is between July
22, 2005 at 3 p.m. and July 22, 2006 at 3 p.m., show users a sale ad (action).
The range of dates is inclusive. The current date and time refer to the date and
time at the point that the condition is evaluated for a user visiting the web site.
For more information, see “Setting Dates and Times” on page 4-8.

The visitor is selected in a
random sample

If the visitor to your web site is selected in a random sample, execute the
specified action. This condition applies only to Campaigns and Rule Sets.

The value of items in the
cart is a certain amount

If the total of all items in a shopping cart equals or exceeds a specific amount
of money, execute the specified action. This condition applies only to
Campaigns and Rule Sets.

Table 4-1 Conditions that Identify Users to Target and the Actions that Will Occur (Continued)

Creat ing a P rope r t y Se t

4-8 Oracle WebLogic Portal Interaction Management Guide

6. Save the User Segment file by choosing File > Save.

Setting Dates and Times
When you set date and time conditions, the dates and times represent the time in your region. For
example, if you are creating a Campaign action that will be triggered at 8 p.m., that means 8 p.m.
in your region. For a time zone that is two hours behind you, the action will be triggered at 6 p.m.
in that time zone.

This also affects dates you set. The date you set becomes effective at midnight in your time zone.
In a time zone that is six hours ahead of yours, that date becomes effective for that time zone at
6 p.m. your time the day before.

Time changes also affect time-triggered actions. For example, you created a Campaign that
begins October 1 at noon and ends October 31 at noon. If a change to standard time (one hour
earlier) occurs on October 29, the Campaign will actually end on October 31 at 11 a.m. If you
want the Campaign to end at noon on the new standard time, set the end time to 1 p.m.

Tip: Because of the different dates and times on which actions will be triggered around the
country or world, it is important to tell users that dates and times are effective for your
time zone. This type of information allows users to calculate when in their time zone they
can take advantage of your promotions.

Creating a Session Property Set
Session properties capture and use specific HTTP session information to trigger Personalization
and Campaigns. Session properties are associated with a session and are not persisted between
sessions. An example of a Session property set could be PortalA.

There is a specific item in
the shopping cart

If an item is added to the shopping cart, execute a specific action. This applies
to campaigns only. Shopping cart events, discount actions, and catalogs
are part of the Commerce API, which is deprecated with WebLogic
Portal 10.0.

There is an item from a
given category in the
shopping cart

If an item from a specific category is added to the shopping cart, execute a
specific action. This applies to campaigns only. Shopping cart events,
discount actions, and catalogs are part of the Commerce API, which is
deprecated with WebLogic Portal 10.0.

Table 4-1 Conditions that Identify Users to Target and the Actions that Will Occur (Continued)

Set t ing up a P rope r t y Se t

Oracle WebLogic Portal Interaction Management Guide 4-9

Perform the following steps to create a Session property set:

1. In the Portal Perspective in Workshop for WebLogic, right-click the <data>\src folder in the
Package Explorer View and choose New > Other.

2. Select the WebLogic Portal folder, the Property Sets folder, the Session Property Set
folder, and click Next.

3. Enter a name for the Session property set in the File name field. Keep the .ses file extension.

4. Click Finish. The Session Editor appears.

5. Add properties to the property set by following the instructions in “Adding Properties or
Conditions to a Property Set” on page 4-12.

Use code in a JSP or Java Page Flow to populate the session.

Creating a Request Property Set
Request properties capture and use specific HTTP request information to trigger Personalization.
Request properties are associated with a request and are not persisted between requests.

Request properties can also store values that are populated programmatically. For example, the
DefaultRequestPropertySet.req property set in the <project>\data\src\request\ directory is
included with every portal web project, and contains properties called User-Agent and Client
Classification. These properties are populated automatically when a device accesses a portal,
providing a key component of the framework that delivers appropriate web content to mobile
devices.

Perform the following steps to create a Request property set:

1. In the Portal Perspective in Workshop for WebLogic, right-click the <data>\src\request
folder in the Package Explorer View and choose New > Request Property Set

2. In the New Request Property Set window, enter a name for the Request property set in the File
name field with the .req file extension.

3. Click Finish. The Request Property Set Editor appears.

4. Add properties to the property set by following the instructions in “Adding Properties or
Conditions to a Property Set” on page 4-12.

Creat ing a P rope r t y Se t

4-10 Oracle WebLogic Portal Interaction Management Guide

Creating a Community or Remote Portlet Property Set
You can create an application-defined property set to store profile data for entities that are not
users or groups. These entities include Communities and remote portlets, or a custom entity
created by an application programmer.

Perform the following steps to create a property set for an Application-defined property set:

1. In the Portal Perspective in Workshop for WebLogic, right-click the <data>\src folder in the
Package Explorer View and choose New > Other.

2. In the New Select a Wizard window, expand the WebLogic Portal folder and expand the
Property Sets folder.

3. Select the Application-Defined Property Set and click Next.

4. Enter a name for the Community or remote portlet property set in the File name field. Keep
the .propset file extension.

5. Click Finish. The Application-Defined Property Set Editor appears.

6. Add properties to the property set by following the instructions in “Adding Properties or
Conditions to a Property Set” on page 4-12.

Creating an Event Property Set
You must register custom events that you create so that your portal application recognizes the
events. After you register your events, you can use them to trigger Personalization and
Campaigns and track user behavior in your portals.

Events need event listeners to listen for them. Register the event listeners for your custom event
in the <PORTAL_APP>\META-INF\wps-config.xml file.

Perform the following steps to create an Event property set:

1. In the Portal Perspective in Workshop for WebLogic, right-click the <data>\src folder in the
Package Explorer View and choose New > Other.

2. In the New Select a Wizard window, expand the WebLogic Portal folder and expand the
Property Sets folder.

3. Select Event Property Set and click Next.

4. Enter a name for the Event property set in the File name field, keeping the .evt file
extension.

Set t ing up a P rope r t y Se t

Oracle WebLogic Portal Interaction Management Guide 4-11

5. Click Finish. The Event Editor appears.

6. In the New Event Property Set window, enter a name for the Event property set in the File
name field. Keep the .evt file extension.

7. Click Finish. The Event Editor appears.

8. Add properties to the property set by following the instructions in “Adding Properties or
Conditions to a Property Set” on page 4-12.

Creating a Catalog Property Set
The Catalog Structure Editor in Workshop for WebLogic lets you add properties to a catalog.
After you add the properties, you must enable it in the WebLogic Portal Administration Console.

Catalog structure properties are name and value pairs that define the information you want to
enter about items in your catalog, such as SKU, Description, and Price.

Before you create a Catalog property set, you should enable Catalog Management, which
provides the Catalog tools that use the Catalog structure properties.

WARNING: Catalogs, shopping cart events, discounts, and so on are part of the Commerce
API, which was deprecated with WebLogic Portal 10.0.

Perform the following steps to create a Catalog property set:

1. In the Portal Perspective in Workshop for WebLogic, right-click the <data>\src\catalog
folder in the Package Explorer View and choose New > Other.

2. In the New Select a Wizard window, expand the WebLogic Portal folder and the Property
Sets folder.

3. Select Catalog Property Set and click Next.

4. In the New Catalog Property Set window, enter a name for the property set in the File name
field. Keep the .clg file extension.

5. Click Finish. The Catalog Structure Editor appears.

6. Add properties to the property set by following the instructions in “Adding Properties or
Conditions to a Property Set” on page 4-12.

Creat ing a P rope r t y Se t

4-12 Oracle WebLogic Portal Interaction Management Guide

Adding Properties or Conditions to a Property Set
After you create a property set for a User Profile, HTTP Session or Request, Community, or
WSRP, add the properties you want to it. The following steps assume you have created a property
set according to the instructions in “Setting up a Property Set” on page 4-2.

Perform the following steps to add a property to a property set:

1. In Workshop for WebLogic, open the property set file you created in “Setting up a Property
Set” on page 4-2.

2. In the Design Palette tab, drag one of property types into the Property Set Editor window, as
shown in Figure 4-3.

Figure 4-3 A Single Restricted Property Lets You Pick a Value From a List that You Define

The type defines the number of values that can be entered for the property. Following are
descriptions of each type.

– Single Unrestricted – A single unrestricted property can have only one value, but you
can enter any value. For example, date of birth.

Adding Proper t ies o r Cond i t ions to a P roper t y Set

Oracle WebLogic Portal Interaction Management Guide 4-13

– Single Restricted – A single restricted property can have only one value, and you are
restricted to selecting that value from a predefined list. For example, a Gender property
can be Male or Female.

– Multiple Unrestricted – A multiple unrestricted property can have multiple values,
and you can enter any value. Generally, this property is used for a single category, such
as names of your children. Other examples are a favorite color or preferred
browser.

– Multiple Restricted – A multiple restricted property can have multiple values, and you
are restricted to selecting the values from a predefined list. Other examples are city and
state. You could also use a check all that apply type data.

3. Select the Properties tab and enter the following:

– Click the drop-down list and select the Data Type for the property value. For example,
if you select Boolean, your property’s Values can be only true or false. (Properties
with a Boolean data type are automatically set to Single Restricted.)

– Enter a Description and a Property Name.

– In the Selection Mode and Value Range fields, you can change the property type. For
example, you can change a property from Single Unrestricted to Multiple Restricted.

Note: Any change to the Data Type, Selection Mode, or Value Range fields removes
anything previously entered in the Values field.

– Use the Values field to enter values for Restricted types or to set the default value for
Unrestricted types. Click the ellipsis icon (...) to enter values. (In the Enter Property
Value dialog box that appears for a Restricted type, enter a value and click Add after
each entry. Click OK after you enter all values.) See Figure 4-4.

Figure 4-4 This Property Has Three Possible Values

Creat ing a P rope r t y Se t

4-14 Oracle WebLogic Portal Interaction Management Guide

4. Save the properties by choosing File > Save.

WARNING: You can also use the Property control to create and manage properties. However,
properties created with this control do not appear in the WebLogic Portal
Administration Console. The properties must be modified and updated
programmatically.

Modifying Properties and Conditions
You can edit properties and values in Workshop for WebLogic or you can edit just the property
values in the WebLogic Portal Administration Console.

This section contains the following topics:

Editing Properties

Editing Property Values

Retrieving Properties from External Data Stores

Editing Properties
Perform the following steps in Workshop for WebLogic to modify properties or conditions and
their values for User Profiles, User Segments, HTTP session or request data, date and time
conditions, or events:

1. In Workshop for WebLogic, double-click the property set file.

2. In the Properties tab, change the property or its default value.

3. Save your change by choosing File > Save.

You can also use the <profile:setProperty> JSP tag in your JSPs or the Property control in
your Page Flows to modify existing property values for users.

Editing Property Values
Portal administrators can use the WebLogic Portal Administration Console to modify a
property’s value. For instructions, see “Editing a Property Value” on page 11-2.

Modi f y ing P rope r t ies and Cond i t ions

Oracle WebLogic Portal Interaction Management Guide 4-15

Retrieving Properties from External Data Stores
If you created a Unified User Profile (UUP) to access external user or group properties, you can
use those properties to define rules for Personalization, Delegated Administration, or Visitor
Entitlement.

After you create a UUP to access the properties stored in an external user store, such as an LDAP
server, you can access those external properties only through WebLogic Portal's JSP tags,
controls, or API. After you deploy a UUP, when the Administration Console focuses on the
associated property set, it will call on the UUP to read values. A UUP must implement writable
interfaces if you want to be able to write to the UUP properties.

If you want to use those external properties in defining rules for Personalization, Delegated
Administration, or Visitor Entitlement, you must retrieve those properties in the WebLogic Portal
Administration Console. Simply defining rules requires access only to the property set “schema”,
which you created in “Creating a User Profile Property Set” on page 4-3. When the rules are
evaluated, the actual values are fetched. You do not have to use the Administration Console.

Note: The properties you retrieve from an external user store may be read-only, and their values
cannot be updated in the WebLogic Portal Administration Console. To make those
properties writable, your custom UUP must implement writable properties.

A password is not considered a property.

Perform the following steps to retrieve user or group properties from an external data store:

1. Create a UUP for the external data store. See the User Management Guide for instructions.

2. To create the User Profile property set for the external data store, locate the name of the
property set to create. In your enterprise application root directory, inside the p13n_app.jar
file, copy the /META-INF/p13n-profile-config.xml file to your own application’s
/META-INF directory.

3. Modify the p13n-profile-config.xml file in the /META-INF directory of your own
application. See the instructions in the User Management Guide.

4. Add properties to the property set that exactly match the property names in the external store
you want to surface. If you are using the LDAP UUP provided by WebLogic Portal, the
property set might be named ldap.usr

5. Save the property set file.

../users/uup.html#wp1013605
../users/index.html

Creat ing a P rope r t y Se t

4-16 Oracle WebLogic Portal Interaction Management Guide

Deleting a Property or a Property Set
You can delete individual properties from a property set, and you can delete an entire property set.

Perform the following steps to delete a property from a property set:

1. In the Portal Perspective in Workshop for WebLogic, double-click the property set file.

2. In the Editor window, select the property. For example, a User Segment could contain the
condition The visitor has specific characteristics.

3. Right-click the property and choose Delete.

Perform the following steps to delete a property set:

1. In the Portal Perspective in Workshop for WebLogic, double-click the property set file.

2. Right-click the property set and choose Delete.

You can also use the <profile:removeProperty> JSP tag in your JSPs or the Property control
in your Page Flow to remove existing property values from a user’s profile.

Oracle WebLogic Portal Interaction Management Guide 5-1

C H A P T E R 5

Creating a User Segment

You can use User Segments to dynamically group users based on conditions you define. Instead
of creating groups of users, you can create groups of characteristics, such as gender, browser type,
and date or time. If a user matches the characteristics, the user automatically and dynamically
becomes a member of that User Segment. You can then target these groups with web content,
automatic e-mails, and discounts based on the User Segment.

You can define User Segment conditions that identify gender, occupation, movie fans, or pet
lovers. For example, you could classify all users who ordered more than five on-demand movies
in the last 30 days. After you identify and group users into User Segments, you can target
segments with personalized actions through Campaigns and Content Selectors.

Developers can use Workshop for WebLogic to create User Segments. Portal administrators can
use the WebLogic Portal Administration Console to change the User Segment conditions to
dynamically group users. Developer time is not required to update User Segments.

This chapter includes the following sections:

Creating a User Segment

Modifying a User Segment

Creating a User Segment
You can target visitors with web content, automatic e-mails, and discounts by defining and using
groups called User Segments (as in segments of a population). Instead of being groups of
hard-coded users, User Segments are groupings of characteristics, such as gender, the type of
browser being used, and date or time information. If users match the characteristics, they are

Creat ing a Use r Segment

5-2 Oracle WebLogic Portal Interaction Management Guide

automatically and dynamically members of that User Segment. When you use User Segments in
Content Selectors and Campaigns, users that belong to those User Segments are targeted with the
web content, e-mail, or discounts that you determine.

Note: The steps in this chapter refer to the data\src folder in the Package Explorer View.
Your data and src directories might be named differently.

Perform the following steps to create a User Segment:

1. Start the WebLogic server by choosing Run As > Run on Server in Workshop for WebLogic.
For instructions on configuring the WebLogic Server, see the Portal Development Guide.

2. In the Portal Perspective, right-click the <data>\src\segments\GlobalClassifications folder
in the Package Explorer View and choose New > User Segment.

3. In the New User Segment window, enter a name for the User Segment in the File name field
and use the .seg file extension.

4. Click Finish. The User Segment Editor appears.

5. In the Design Palette tab, drag the conditions you want to use into the User Segment Editor.
See Figure 5-1.

../portals/index.html

Creat ing a Use r Segment

Oracle WebLogic Portal Interaction Management Guide 5-3

Figure 5-1 Add a Condition to the User Segment

6. For each condition you add to the User Segment, click the condition link to set the conditions.

For example, if you drag the condition The visitor has specific characteristics into the User
Segment Editor, click the corresponding characteristics hyperlink in the User Segment
Editor. The Visitor Characteristics window lets you select the User Profile properties and
their values that will make a user a member of the User Segment. See Table 4-1.

Properties for the user, HTTP session, and HTTP request conditions are based on the User
Profile, HTTP session, and HTTP request properties you created. For more information on
conditions, see “Understanding Conditions” on page 2-4.

7. Save the file by choosing File > Save.

Note: You can use User Segments in Content Selectors and Campaigns.

This section contains the following topic:

Setting Dates and Times

Creat ing a Use r Segment

5-4 Oracle WebLogic Portal Interaction Management Guide

Setting Dates and Times
When you set date and time conditions, the dates and times represent the time in your region. For
example, if you are creating a Campaign action that will be triggered at 8 p.m., that means 8 p.m.
in your region. For a time zone that is two hours behind you, the action will be triggered at 6 p.m.
in that time zone.

The time zone also affects dates you set. The date you set becomes effective at midnight in your
time zone. In a time zone that is six hours ahead of yours, that date becomes effective for that time
zone at 6 p.m. your time the day before.

Time changes also affect time-triggered actions. For example, you created a Campaign that
begins October 1 at noon and ends October 31 at noon. If a change to standard time (one hour
earlier) occurs on October 29, the Campaign will actually end on October 31 at 11 a.m. So if you
want the Campaign to end at noon on the new standard time, set the end time to 1 p.m.

Tip: Because of the different dates and times on which actions will be triggered around the
country or world, it is important to tell users that dates and times are effective for your
time zone. This type of information allows users to calculate when in their time zone they
can take advantage of your promotions.

Modifying a User Segment
After you create a User Segment in Workshop for WebLogic, you can edit a User Segment using
the following methods:

Workshop for WebLogic – Developers can use Workshop for WebLogic to modify a User
Segment. See Chapter 12, “Modifying a User Segment” for instructions.

WebLogic Portal Administration Console – Portal administrators can use the
Administration Console to edit a User Segment’s value. See Chapter 12, “Modifying a
User Segment” for instructions.

Oracle WebLogic Portal Interaction Management Guide 6-1

C H A P T E R 6

Creating a Content Selector

Content Selectors use rules to target specific groups of people with content items from the WLP
Virtual Content Repository. Content Selectors return and display content. For example, if a user
logs in and is identified in the User Profile as a book fan, a Content Selector can display a list of
recommended books.

Developers can use Workshop for WebLogic to create and update Content Selectors and place
them in a JSP. Portal administrators use the Administration Console to make changes to the
Content Selectors that display content in your portal. You can retrieve both published and
versioned content in a content selector. For more information about publishing content, see
Adding Content to a WLP Repository in the Content Management Guide.

Users do not have to be authenticated (logged in) to be targeted by Content Selectors. For
example, the presence of specific HTTP request or session properties, or specific date and time
conditions can trigger content to be displayed. You can, for example, display targeted holiday
content to users who visit your portal in the month of December and view your portal with a
specific type of web browser.

However, authenticated users (as well as anonymous tracked users) have profile information
associated with them that you can use to target them with personalized content. A book fan is an
example of this type of User Profile data.

Note: The steps in this chapter refer to the data\src folder in the Package Explorer View.
Your data and src directories might be named differently.

This chapter includes the following sections:

Setting Up Content to Display

../cm/index.html

Creat ing a Content Se lec to r

6-2 Oracle WebLogic Portal Interaction Management Guide

Creating a Content Selector

Using the <pz:div> Tag Instead of a Content Selector

Deleting a Content Selector Query

Setting Up Content to Display
Content Selectors retrieve content properties, which are usually text or numeric values. For
example, you want your Content Selectors to retrieve information about books. Book content can
be assigned many properties, such as title, author, publication date, ISBN, and a URL to the
publisher’s web site. You may want your Content Selector to display a bulleted list of titles and
link each title to the publisher’s web site. This list and link is accomplished through using just the
text values of the content properties.

However, your book content could also have a binary property that stores an image of the book’s
cover. The Content Selector can also display that binary property—the actual image—using the
ShowProperty servlet, as described in “Creating a Placeholder File” on page 7-6. The type of
binary content that Content Selectors can display is dependent on the MIME types you have
configured. By default, WebLogic Portal provides MIME support for displaying images and
other types of files. See “Displaying Additional MIME Types in a Placeholder” on page 7-3 for
more information on other types.

Creating a Content Selector
Content Selectors are scoped to the enterprise application, so you can include a Content Selector
in any JSP within the enterprise application.

A Content Selector consists of the following two parts:

1. Content Selector file – The Content Selector file that you create in Workshop for WebLogic
contains the following parts:

a. Personalization rules – The conditions that define when the Content Selector runs its
query and displays the content. The following conditions can be used to trigger a Content
Selector:

• The visitor is a member of a predefined User Segment

• The visitor has specific characteristics (User Profile properties)

• Specific HTTP session or request properties exist

• Date and time conditions

Creat ing a Content Se lec to r

Oracle WebLogic Portal Interaction Management Guide 6-3

b. A content query that retrieves a specific set of content properties.

2. The <pz:contentSelector> JSP tag – This companion tag performs the processing and is also
created in Workshop for WebLogic. Content returned from Content Selectors is usually
displayed in portlets. When a user views a portlet or a portal desktop that contains a Content
Selector, the Content Selector's rules and logic look for a match of properties, such as User
Profile information. If the properties match the Content Selector rules, the Content Selector
runs a query and retrieves and displays all content matching the query.

Tip: During development, the rules files reload when they change (just like JSPs), so you can
quickly develop with Content Selectors. However, when the server is in production
mode, Content Selectors are loaded into the database (from the file-based definitions in
the application) where they can be modified in the WebLogic Portal Administration
Console without redeploying the application or restarting the server.

Use the following guidelines when you create Content Selectors.

Create a Content Selector for each audience you want to target. If you have five audiences
you want to target with content, create five Content Selectors, then add five
<pz:contentSelector> tags to your JSP, each of which references its own Content
Selector file.

When a Content Selector is triggered and runs its query, the results (node objects) are
returned to the <pz:contentSelector> JSP tag and stored in the tag’s id attribute. At
this point, you need other tags or code to process and display the content. The tags
described in Table 6-4 are useful tags for displaying retrieved content.

To display binary content retrieved by Content Selectors, use the ShowProperty servlet.
The following code example shows how to use the ShowProperty servlet:

<pz:contentSelector rule="classic" id="nodes"/>
<utility:notNull item="<%=nodes%>">

<utility:forEachInArray array="<%=nodes%>" id="node"
type="com.bea.content.Node">
<img src="<%=request.getContextPath() + "/ShowProperty" +
node.getPath()%>">
</utility:forEachInArray>

</utility:notNull>

The HTML tag’s source path is constructed to use the path to the content item in the
Virtual Content Repository. The path includes the ShowProperty servlet to render the binary
file. In the node.getPath() method, node is a specific content item stored by the

Creat ing a Content Se lec to r

6-4 Oracle WebLogic Portal Interaction Management Guide

<utility:forEachInArray> tag’s id attribute. If the <utility:forEachInArray> id
attribute value was foo, the method would look similar to the following: foo.getPath().

This section contains the following topics:

Creating the Content Selector File

Using a JSP Tag to Display a Content Selector File

Creating the Content Selector File
Perform the following steps to create a Content Selector file:

1. Start the WebLogic server by choosing Run As > Run on Server in Workshop for WebLogic.
For instructions on configuring the WebLogic Server, see the Portal Development Guide.

2. In the Portal Perspective, right-click the
<data>\src\contentselectors\GlobalContentSelectors folder in the Package Explorer View
and choose New > Content Selector.

3. Enter a name for the Content Selector in the File name field, using the .sel file extension,
as shown in Figure 6-1.

../portals/index.html

Creat ing a Content Se lec to r

Oracle WebLogic Portal Interaction Management Guide 6-5

Figure 6-1 Create a New Content Selector

4. Click Finish. The Content Selector Editor appears.

5. Select the Properties tab to change the description for the Content Selector.

6. Select the Design Palette tab to see the Available Conditions under which the Content
Selector will run. As you select conditions, corresponding links appear in the top of the Editor
window.

7. In the Content Selector Editor window, click the corresponding links to create the conditions
you selected, and enter the appropriate information.

8. In the Content Selector Editor window, click the query's empty content search link to define
the query. This requires a connection to WLP's Virtual Content Repository, which is set up in
the WebLogic Portal Administration Console.

9. You can define the query in advanced mode using WebLogic Portal's expression syntax (on
the Advanced tab) or in graphical mode (on the Query tab):

– Advanced mode – In the Content Search window, select the Advanced tab and build a
query using the instructions in “Building a Content Query with Expressions” on
page 6-8. The Advanced tab provides code coloring to highlight context errors in your
queries. You can reuse existing queries by pasting them into the Advanced tab.

Creat ing a Content Se lec to r

6-6 Oracle WebLogic Portal Interaction Management Guide

– Graphical mode – Use the following steps in the Query tab to build a content query
by selecting content properties, comparators, and values to retrieve content items.

a. In the Content Search window, select the Query tab.

b. Select a property set and a property within the content type, and click Add. One of the
default property sets is Standard Versioned, which retrieves versioned content. Use the
Standard Versioned properties to narrow your content search. For example, you can
retrieve only the latest version of a graphic by selecting the cm_latestVersion property.

Note: The properties you select are system content properties, rather than property set
properties like user profile or session properties.

c. In the Content Search Values window that appears, use one of the following tabs:

• Values tab – To define the query based on a comparison to a value you enter. For
example, the query could be set to retrieve content with an investorRiskLevel
property that is marked as high. You could also retrieve binary content with a name
of IRACampaign. See Figure 6-2 for an example and Table 6-1 for more details.

Figure 6-2 A Content Query that Retrieves a Binary File Called IRACampaign

Creat ing a Content Se lec to r

Oracle WebLogic Portal Interaction Management Guide 6-7

• Properties tab – To define the content query based on the property value that is
dynamically fed in from another type of property, such as a user profile property. For
example, instead of creating a query based on static content properties, you can
create a query that reads in the value of the current user's investorRiskLevel to
populate the query. The query would be different for each user.

d. Click Add. The query descriptor is added in the Content Search window.

e. You can add more value phrases to the query, then set the appropriate option in the For
multiple descriptors area at the bottom of the window.

10. Click OK in the Content Search window to add the query to the search.

11. You can preview the content that will be retrieved by the query by clicking the Content
Preview tab. If you defined the query to use values from a User Profile property, the retrieved
content will be different for each user, so you must enter the username of an existing user in
the Preview User field to see which content will be retrieved for that user. By default, you
preview published content. If you want to preview versioned content, click Controls whether
this will preview versioned or published content, as shown below. (Click the Menu icon
next to this icon to toggle between versioned content and published content.)

For more information about publishing content, see Adding Content to a WLP Repository
in the Content Management Guide.

12. Save the Content Selector file by choosing File > Save.

13. To use the Content Selector, add the <pz:contentSelector> tag to the relevant JSPs. See
“Using a JSP Tag to Display a Content Selector File” on page 6-24 for more information on
using the <pz:contentSelector> tag to display text content (including text binaries, such
as HTML files) and non-text binaries (graphics).

Tip: Content Selectors can display binary content, such as images. See the Content
Management Guide for instructions.

Figure 6-3 shows a Content Selector file called classic.sel. The condition that triggers the
Content Selector is a user with a property set of SalesRegion with a value of Americas. The
content that is retrieved is any content with a binary file name that contains IRACampaign.

../cm/index.html
../cm/index.html
../cm/index.html
../cm/index.html

Creat ing a Content Se lec to r

6-8 Oracle WebLogic Portal Interaction Management Guide

Figure 6-3 Content Selector File in Workshop for WebLogic

Tip: When library services (for example, versioning and workflow status) are enabled for a
WLP Repository, system properties are always available to queries unless the content
item has a retired status. You can search for both published and versioned content. If you
want to retrieve content based on its content type, you must use the cm_objectClass
system property in your content query. If your queries use only system properties, the
query retrieves all content items with matching system properties that are not retired.

Users do not have to be authenticated to be targeted by Content Selectors.

Building a Content Query with Expressions
You can use the WebLogic Portal Expression language in WebLogic Portal Administration
Console to build content queries. You can build queries with the Advanced Query window from
content-related JSP tags and when you are creating queries for Placeholders, Campaigns, and
Content Selectors.

The query compares a content property to a value that you enter. A query contains the following
three parts: <property><comparator><value>.

If the comparison is true, all matching content items are retrieved.

For example:

employee_type == 'manager' This query retrieves any content item from the WLP
Virtual Content Repository with a property called
employee_type that contains the exact (==) String
manager.

Creat ing a Content Se lec to r

Oracle WebLogic Portal Interaction Management Guide 6-9

Queries are often made up of multiple clauses using and (&&) and or (||) logic. For example:

This section contains the following topics:

Using Rules to Build a Query

Selecting Properties

Using Comparators

Supplying Values

Using Rules to Build a Query
Use the following rules when you build a query:

Queries are case sensitive.

Queries can be simple, one-clause queries, or they can be more complex, multi-clause
queries. In complex queries, parentheses control the order of evaluation for multiple query
clauses, and clauses are evaluated using and (&&) and or (||) logic.

In a Placeholder, only one content item can be displayed at a time. If you are using a
Placeholder to run queries from a Campaign (as well as its own default queries), you can
run several queries, but only one query at a time. The query is determined by the
Placeholder's weighting system. After the query runs, the query can return multiple content
items, but the Placeholder displays only one of the retrieved content items.

Tip: With your development server running, create a test Placeholder or Content Selector in
Workshop for WebLogic and construct queries for it using the Advanced tab in the
Content Search window. The retrieved content is displayed in the Content Preview tab.
If you utilize the userProperty() format to retrieve values for your query, you must

(genre == 'rock' || genre ==
'alternative') &&
platinum_records > 2

This query retrieves any content item with a genre
property that has an exact value of rock or (||)
alternative and (&&) with a platinum_records
property value greater than 2. The parentheses
separates one section of the query from the next,
controlling the order of evaluation.

(genre==’rock’ ||
genre==’country’) &&
artist==’dead’

This query retrieves any content item with a genre
property that has an exact value of rock or country
and an artist property value of dead.

Creat ing a Content Se lec to r

6-10 Oracle WebLogic Portal Interaction Management Guide

enter a user name in the Preview User field of the Content Preview tab to retrieve the
values for that user and display the retrieved content items.

Selecting Properties
The following two types of properties exist for content:

User-defined content properties.

System content properties. See Table 6-1 for a list of system content properties.

You can use both properties in a query.

User-defined content properties are stored in sets called types, which are defined in the WebLogic
Portal Administration Console. For example, you can create a type called Book and add
properties, such as title, author, pub_date, and isbn.

System content properties are automatically associated with all content items and are
automatically assigned values for a content item when the content item is added to the content
repository. System properties can be used to retrieve published content or versioned content.
These properties, which are also listed in the com.bea.content.expression.Search class,
include the items listed in Table 6-1.

Table 6-1 System Content Properties

Property API Type of
Content

Description

cm_uid Node.id.uid Published
and
Versioned

The unique ID for a content item.
You can view a content item's
unique ID by selecting the content
item in the Administration Console
and viewing its description.

cm_createdDate Node.createDate Published The date on which a content item
was created. You can view
Creation Date information for
content items by selecting their
content folder in the
Administration Console and
selecting the Summary tab.

Creat ing a Content Se lec to r

Oracle WebLogic Portal Interaction Management Guide 6-11

cm_createdBy Node.createdBy Published The user who created the content
item. You can view Created By
information for content items by
selecting the content folder in the
Administration Console and
selecting the Summary tab.

cm_modifiedDate Node.
modifiedDate

Published
and
Versioned

The date the content item was last
modified. You can view Modified
Date information for content items
by selecting their content folder in
the Administration Console and
selecting the Summary tab.

cm_modifiedBy Node.modifiedBy Published
and
Versioned

The user who last edited the
content.

cm_nodeName Node.name Published
and
Versioned

The name of the content item, as
shown in the Administration
Console.

cm_path Node.path Published The Virtual Content Repository
path to the content item. For
example,
/WLPRepository/
juvenilebooks/
TheCrazyAdventure.

cm_isHierarchy Node.type ==
Node.HIERARCHY

Published Identifies a content folder rather
than a content item. Content
folders can contain content items
and child content folders. When
using this property in queries,
compare it using a Boolean value
of true or false.

Table 6-1 System Content Properties (Continued)

Creat ing a Content Se lec to r

6-12 Oracle WebLogic Portal Interaction Management Guide

cm_isContent Node.type ==
Node.CONTENT

Published Identifies a content item rather
than a content folder. Content
items contain properties from the
type with which they are
associated. When using this
property in queries, compare it
using a Boolean value of true or
false.

cm_objectClass Node.
objectClass.
name

Published The content type associated with a
content item. You can view Type
information for content items by
selecting the Types tab in the
Administration Console and
selecting the Summary tab.

cm_objectClassInstance The instance of an
object class

Published Finds all instances of a given
object class and all of its children.

cm_value The value Published
and
Versioned

A metadata search for any property
with a given value. This property is
similar to a wildcard search.

cm_contentType BinaryValue.
contentType

Published
and
Versioned

The MIME type for content item
binary properties. For example,
image/jpeg. You can view the
MIME type of a content item by
selecting it in the Administration
Console and looking at the
Primary Property Data Type
field.

Table 6-1 System Content Properties (Continued)

Creat ing a Content Se lec to r

Oracle WebLogic Portal Interaction Management Guide 6-13

cm_binarySize BinaryValue.
size
(For Node Properties)

Published
and
Versioned

The size of the binary value of
content items. You can view the
size of a content item's binary
value by selecting the content item
in the Administration Console,
selecting the Properties tab, and
clicking Download File. Click
Save and right-click the displayed
binary file to view the file
properties.

When you use this property in a
query, specify binary size in bytes.

cm_binaryName BinaryValue.
name
(For Node Properties)

Published
and
Versioned

The file name of the binary value
of a content item. You can view the
name of a content item's binary
value by selecting the content item
in the Administration Console and
viewing the Name value in the
Summary tab.

cm_assignedToUser VirtualNode Versioned The user to which the node is
assigned. For example,
cm_assignedToUser =
‘joe’.

cm_checkedOut VirtualNode Versioned If the node is checked out. For
example, cm_checkedOut =
false.

cm_latestVersion N/A Versioned The latest version of the content.
For example,
cm_latestVersion = true.

cm_role VirtualNode Versioned The role to which the node is
assigned. For example, cm_role
= ‘Admin’.

Table 6-1 System Content Properties (Continued)

Creat ing a Content Se lec to r

6-14 Oracle WebLogic Portal Interaction Management Guide

When you construct a query, you can specify property names by themselves without quotes. For
example: title <comparator> <value>. However, if a property name contains spaces, double
quotes, or dashes, you must enclose the property name within a toProperty() format. For
example: toProperty('Favorite Author') <comparator> <value>.

The query looks for the property name in all content types and returns any content item with that
property value (if the content item meets the conditions of the query). However, you can also
isolate a property within a specific type. For example, if you have a books type and an articles
type that both contain a title property, you can retrieve content items with a specific title from
within only the book type using the cm_objectClass property.

For example: title likeignorecase '*Adventure' && cm_objectClass = 'books'

Using Comparators
Comparators provide the logic that compares a query's property to the value you enter. If a
content item meets the conditions of the query, the content item is returned. Table 6-2 contains a
list of the comparators you can use in your queries.

cm_version Version Versioned The version number of the content.
This value is a string. For example,
cm_version = ‘5’.

cm_versionComment Version Versioned Text describing the changes to the
version. For example,
cm_versionComment =
Includes updates from
Marketing.

Table 6-1 System Content Properties (Continued)

Table 6-2 Available Comparators

Comparator Description (Property Formats on Which the Comparator Can Act)

= or == Checks to see if a single-value property (including a single value containing a
list) is exactly equal to the case-sensitive value you enter (Boolean, date and
time, numeric, and string values). For example, genre == 'fantasy'
retrieves any content item that has case-sensitive fantasy as the value for the
genre property.

Creat ing a Content Se lec to r

Oracle WebLogic Portal Interaction Management Guide 6-15

!= Checks to see if a single-value property (including a single value containing a
list) is not equal to the case-sensitive value you enter (Boolean, date and time,
numeric, and string values). For example, genre != 'mystery' retrieves
any content item that does not have case-sensitive mystery as the value for
the genre property.

> Checks to see if a single-value property is greater than the value you specify
(date or time and numeric values). For example, pub_date >
toDate('MM-dd-yyyy', ‘01-01-2000') retrieves any content item
with a pub_date property set to a value later than January 1, 2006.

< Checks to see if a single-value property is less than the value you specify (date
or time and numeric values). For example, books in series < 3. Because
the property name contains spaces, you must use toProperty(), as shown
in toProperty('books in series') < 3 to retrieve any content item
with a value less than 3 for the books in series property.

>= Checks to see if a single-value property is greater than or equal to the value you
specify (date or time and numeric values). For example,
toProperty('books in series') >= 3 retrieves any content item
with a value greater than or equal to 3 for the books in series property. The
property value of the sample content item is 1.

<= Checks to see if a single-value property is less than or equal to the value you
specify (date or time and numeric values). For example,
toProperty('books in series') <= 3 retrieves any content item
with a value less than or equal to 3 for the books in series property.

like Checks to see if a single-value property is like the case-sensitive value you
enter. You can use wildcard characters * (one or more characters) or ? (single
character). For example, author like 'P?nm*' retrieves any content that
contains case-sensitive Penman, Panmen, or any other variation with a
different character between the P and the n and any characters after the m for
the author property.

Note: If you do not put the asterisk (*) at the end, the content item is not
retrieved, because more text follows the name Penman in the property
value.

Table 6-2 Available Comparators (Continued)

Creat ing a Content Se lec to r

6-16 Oracle WebLogic Portal Interaction Management Guide

Supplying Values
Values represent the content you want the query to return. By supplying values to a query, you
are telling the query which content to retrieve or ignore based on the values stored on the content
items.

For example, if you have a content type called book with a property called title, all content items
you associate with the book type have a title field. Each title value is unique, so in a query, you

likeignorecase Checks to see if a single-value property is like the value you enter. You can use
the wildcard characters * and ?. Character case is ignored. For example,
author likeignorecase 'pen*' retrieves any content with an author
value that begins with pen in any case combination, such as penman,
Penman, Penfield, and so on.

contains Checks to see if a multi-value property contains exactly the single value you
specify (date or time, numeric, and string values). In some implementations,
this comparator may also work against single-value properties. For example,
genre contains 'fantasy' retrieves any content containing an genre
property value of exactly fantasy.

containsall Checks to see if a multi-value property contains all of the exact values you
specify (date or time, numeric, and string values). For example, genre
containsall ('fantasy', 'children') retrieves any content that
contains genre property values of fantasy and children. In some
implementations, this comparator can also work against single-value
properties.

containsany Checks to see if a multi-value property contains any of the exact values you
specify (date or time, numeric, and string values). For example, genre
containsany ('fantasy', 'children', 'scifi') retrieves any
content that contains genre property values of fantasy, children, or
scifi. In some implementations, this comparator can also work against
single-value properties.

in Checks to see if a single-value property contains any of the values you enter.
If the value you enter is not a list of possible values (is a single value), in is
the same as = or == (date or time, numeric, and string values). For example,
isbn in ('pending', 'not_available') retrieves any content that
contains the isbn property value of pending or not_available.

Table 6-2 Available Comparators (Continued)

Creat ing a Content Se lec to r

Oracle WebLogic Portal Interaction Management Guide 6-17

can enter the unique value you want, resulting in the query retrieving a specific content item (or
ignoring the content item, depending on the comparator you use).

You can enter values in two ways:

1. Hard code values in the queries – Use hard-coded values so that you get predictability with
your queries. Hard-coded values let you pinpoint the specific content you want to retrieve.

2. Get values from User Profiles and other types of property sets (Session and Request) –
When you populate values from User Profile, session, or request property sets, the value in
each specified User Profile, session, or request property is inserted programmatically into the
query, letting you create personalized queries based on the current user's preferences or the
current session or request.

For example, in a query where a content property is author, you can get the value of the
user's FavoriteAuthor profile property to supply the value for the query, letting the query
retrieve content associated with the user's favorite author.

Use the following guidelines to build values in queries:

– Enclose string literal values in single quotes. For example: 'pending'.

– To supply a single or double quote, use a backslash for the quoting character (unicode
characters are not supported). For example, if a book title is stored with double quotes,
such as "The Crazy Adventure", enter the value like this: '\"The Crazy
Adventure\"'. If the title is stored with single quotes, enter the value like this: title
= '\'The Crazy Adventure\'' .

– Unicode (such as "\u6565"), octal (such as "\7", "\65", "\377"), and standard Java
escape sequences (such as "\n", "\r", "\b") are allowed in the string literals.

– Boolean literals are either the true or false keyword (lowercase, without quotes).

– Number literals are Java form (scientific notation is supported).

Date or time literals are presented in toDate('formatStr', 'dateStr') format,
where formatStr is the date and time format you want to use (such as 'MM/dd/yyyy')
and dateStr is the actual date and time you enter (such as '01/01/2006').

The formatStr must be a valid java.text.SimpleDateFormat string. If you omit
the formatStr, the toDate() expects the date and time you enter to be in the
following format: 'MM/dd/yyyy HH:mm:ss z' (where z is the time zone, such as
MDT). For example: toDate('12/01/2004 06:00:00 MDT').

To specify date values only, enter the format you want for the formatStr. For
example, for a date value only, specify toDate('MM/dd/yyyy', '12/01/2004').

Creat ing a Content Se lec to r

6-18 Oracle WebLogic Portal Interaction Management Guide

You can also specify only the month and year, such as 'MM-yyyy'.

Use the now keyword to specify the time at which the expression is being parsed at run
time.

– To supply query values from user, request, or session properties, use the following
format: <type>Property(<propertyset>, <propertyname>), where the type is
user, request, or session. For example: userProperty('userpreferences',
'FavoriteAuthor').

Creating Complex Queries
You can combine multiple independent query clauses, tying them together with and (&&) and
or (||) logic and controlling the order of evaluation with parentheses the way you would with
algebraic expressions. This lets you create more complex queries. You can also include not logic
(!) in complex queries by using the exclamation point in front of a parenthetical grouping.

See the Content Management Guide for more information about queries.

Using Sample Queries
Figure 6-4 shows the properties set on a book stored in WLP's Virtual Content Repository.

../cm/index.html

Creat ing a Content Se lec to r

Oracle WebLogic Portal Interaction Management Guide 6-19

Figure 6-4 Properties on a Book

The example queries in Table 6-3 use properties in the sample content item, and the description
for each sample query tells you if the query will retrieve the content item.

Table 6-3 Example Queries

Query Will
Retrieve
Sample?

Description

Creat ing a Content Se lec to r

6-20 Oracle WebLogic Portal Interaction Management Guide

genre == 'fantasy' Yes Retrieves any content item that has
case-sensitive fantasy as the value for the
genre property.

will_visit_schools == true Yes Retrieves any content item with the
will_visit_schools property set to true.
There are no single quotes around true, and
true is lowercase.

genre != 'mystery' Yes Retrieves any content item that does not have
case-sensitive mystery as the value for the
genre property.

pub_date >
toDate('MM-dd-yyyy',
'01-01-2005')

Yes Retrieves any content item with a pub_date
property set to a value later than January
1, 2005.

books in series < 3 No Because the property name contains spaces,
you must use toProperty(), as shown in
the next example.

toProperty('books in series')
< 3

Yes Retrieves any content item with a value less
than 3 for the books in series property.

toProperty('books in series')
>= 3

No Retrieves any content item with value greater
than or equal to 3 for the books in series
property. The property value of the sample
content item is 1.

toProperty('books in series')
<= 3

Yes Retrieves any content item with value less
than or equal to 3 for the books in series
property.

Table 6-3 Example Queries

Creat ing a Content Se lec to r

Oracle WebLogic Portal Interaction Management Guide 6-21

author like 'P?nm*' Yes Retrieves any content that contains
case-sensitive Penman, Panmen, or any other
variation with a different character between
the P and the n and any characters after the m
for the author property. Without an asterisk
(*) at the end, the content item would not be
retrieved, because more text follows the name
Penman in the property value.

author likeignorecase 'pen*' Yes Retrieves any content with an author value
that begins with pen in any case
combination, such as penman, Penman,
Penfield, and so on.

genre contains 'fantasy' Yes Retrieves any content containing an genre
value of exactly fantasy.

genre contains 'child*' No The contains comparator does not allow
wildcard characters.

genre containsall ('fantasy',
'children')

Yes Retrieves any content that contains genre
property values of fantasy and
children.

genre containsall ('fantasy',
'children', 'scifi')

No Retrieves any content that contains genre
property values of fantasy, children,
and scifi. The sample content item
contains fantasy and children, but not
scifi.

genre containsany ('fantasy',
'children', 'scifi')

Yes Retrieves any content that contains genre
property values of fantasy, children, or
scifi.

isbn in ('pending',
'not_available')

Yes Retrieves any content that contains the isbn
property value of either pending or
not_available.

Complex Queries

Table 6-3 Example Queries

Creat ing a Content Se lec to r

6-22 Oracle WebLogic Portal Interaction Management Guide

toProperty('books in series')
>= 3 &&
pub_date >
toDate('MM-yyyy','1-2005')

No Retrieves books that are part of a trilogy that
were published after January 2005.

(genre contains 'children' ||
keywords like '*children*') &&
will_visit_schools == true

Yes Retrieves books with a genre value set to
children or has *children* in the
keyword value; and whose author is available
to visit schools.

((genre contains 'children' ||
keywords like '*children*') &&
will_visit_schools == true) &&
isbn != 'pending'

No Retrieves books with a genre value set to
children or has *children* in the
keyword value; and whose author is available
to visit schools; and with an isbn value that
does not equal pending (meaning the book
is not yet published). The parenthetical
nesting controls the order of evaluation.

(title likeignorecase
'*adventure' || genre contains
'fantasy') && (pub_date >=
toDate('MM-yyyy', '01-2005')
|| isbn == 'pending')

Yes Retrieves books whose title contains
*adventure or whose genre contains
fantasy; and whose pub_date is after
January 2005 or whose isbn is still
pending (not yet published).

Table 6-3 Example Queries

Creat ing a Content Se lec to r

Oracle WebLogic Portal Interaction Management Guide 6-23

(genre containsany
userProperty('userpreferences'
, 'BookGenre') && (keywords
likeignorecase '*pixies')) ||
author likeignorecase
userProperty('userpreferences'
, 'FavoriteAuthor')

Depends Reads the User's Profile properties and uses
specific property values to supply the values
in the query. The query provides personalized
content retrieval, because retrieved content is
based on user preferences.

For example, if the current user has her
BookGenre property set to mystery and her
FavoriteAuthor set to Penman, Piper, this
query will return the sample content. Even
though the BookGenre value doesn't match
in the first clause, the FavoriteAuthor in the
or (||) second clause does match.

If you are using the Property control or the
setProperty JSP tag to set user property
sets and properties programmatically (rather
than creating property sets in Workshop for
WebLogic), you can still use
userProperty() in your queries.

Other Useful Queries (Not Related to the Sample Content)

language ==
userProperty('userpreferences'
, 'userPreferredLang')

This approach lets you serve language-appropriate content to
each user based on the user language preference
(userPreferredLang) stored in a property set. You
could also use sessionProperty() to get the language
preference from the session; or you could use
requestProperty('DefaultRequestPropertySet
', 'Locale'), which returns the user's locale string, such
as en-US.

((UserAge <= 35 && colors
contains 'red' ||
UserAge > 35 && !(colors
contains 'black')) &&
mimeType == 'text/html') &&
toProperty('Launch Date') <
now && !(expireDate >
toDate('MM-yyyy', '12-2004'))

This query uses not logic, as shown in the !(colors
contains 'black') clause.

Table 6-3 Example Queries

Creat ing a Content Se lec to r

6-24 Oracle WebLogic Portal Interaction Management Guide

Using a JSP Tag to Display a Content Selector File
After you have created a Content Selector file (see “Creating the Content Selector File” on
page 6-4), you must use the <pz:contentSelector> JSP tag to display the content. The
following JSP tag uses the classic Content Selector shown in Figure 6-3:

<pz:contentSelector rule=“classic” id=“nodes”/>

The JSP tag has two required attributes:

The rule attribute – Contains the name of the Content Selector file (without the file
extension). This attribute tells the JSP tag which personalization rules and query to use.

The id attribute – When a Content Selector runs its query, the content is retrieved from the
virtual content repository as an array of content properties. The id attribute, which is a
String you enter when you set up the JSP tag, serves as a container that holds the array. At
this point, you must use other JSP tags to handle the array and display the content. For
details on what you can do with the array of properties to display the content, see
“Displaying Additional MIME Types in a Placeholder” on page 7-3.

There are other attributes you can set on the <pz:contentSelector> tag. See the JSP Tag
Javadoc for more information on the class.

Adding a Content Selector to a JSP
After you create a Content Selector file in Workshop for WebLogic, you can use any of the
following three methods to add the Content Selector to a JSP in Workshop for WebLogic:

Drag a Content Selector from the Design Palette onto a page of an open portal file. See the
instructions in “Dragging a Content Selector to a Portal File” on page 6-25.

Open the JSP to which you want to add the Content Selector, and drag the Content Selector
file from the Design Palette into the JSP. The JSP tag is added automatically, the rule
attribute is automatically populated with the name of the Content Selector, and the id
attribute is included (without a value). The include statement for the tag library is
automatically added. See Figure 6-5.

../javadocjsp/index.html
../javadocjsp/index.html

Creat ing a Content Se lec to r

Oracle WebLogic Portal Interaction Management Guide 6-25

Figure 6-5 Adding a Content Selector to a JSP in Workshop for WebLogic

Drag the <pz:contentSelector> JSP tag from the JSP Design Palette window (in the
Portal Personalization category) into an open JSP and populate the tag’s attributes
manually. Get to the JSP Design Palette by choosing Window > Show View > Design
Palette. The include statement for the tag library is automatically added.

Dragging a Content Selector to a Portal File
Perform the following steps to drag a Content Selector to an open portal file:

1. In the Portal Perspective, locate a Content Selector file.

2. Drag a Content Selector from the Design Palette onto a page of an open portal file. When you
do this, three things occur:

a. The Portlet Wizard appears, letting you quickly create a portlet that will display the
Placeholder.

b. The resulting portlet is automatically added to the portal page.

c. A JSP file is automatically created for the Content Selector.

The JSP file contains the Content Selector JSP tag with the rule and id attributes
automatically populated, and the include statement for the tag library is automatically
added. Other JSP and HTML tags are also added automatically, as shown in Listing 6-1.

Creat ing a Content Se lec to r

6-26 Oracle WebLogic Portal Interaction Management Guide

Listing 6-1 JSP File with Other JSP and HTML Tags

<pz:contentSelector rule=”modern” id=”nodes”/>
<utility:notNull item=“<%nodes%”>

 <utility:forEachInArray array="<%=nodes%>" id="node"
 type="com.bea.content.Node">
 <cm:getProperty id="node" name="cm_nodeName"
 conversionType="html"/>
 </utility:forEachInArray>

</utility:notNull>

Table 6-4 describes the JSP tags you can use with a Content Selector.

Using More than One Content Selector
You can use multiple Content Selectors with conditional logic to get hierarchical personalized
content, where you try to match the most specific to the least specific, or for mutually exclusive
Content Selectors. Listing 6-2 demonstrates how to use multiple Content Selectors for
personalized content.

Table 6-4 JSP Tags for Content Selectors

JSP Tag Description

<utility:notNull> Checks to see if the array actually contains content.

 Provides a container for listing content items in a bulleted list.

<utility:forEachInArray> Iterates through the array and isolates each content item until
all items in the array have been processed. Each item is given
its own bullet.

<cm:getProperty> Takes each content item from
<utility:forEachInArray> and designates which
content property is going to be displayed.

Us ing the <pz :d iv> Tag Ins tead o f a Content Se lec to r

Oracle WebLogic Portal Interaction Management Guide 6-27

Listing 6-2 Using the <pz:contentSelector> JSP Tag for Multiple Content Selectors

<%@ taglib uri="content.tld" prefix="cm"%>

<%@ taglib uri="http://www.bea.com/servers/p13n/tags/utility"

prefix="utility"%>

<%@ taglib uri="http://www.bea.com/servers/portal/tags/ad" prefix="ad"%>

<%@ taglib uri="http://www.bea.com/servers/portal/tags/personalization"

 prefix="pz"%>

<pz:contentSelector rule="FemaleContent" id="nodes" sortBy="cm_nodeName

desc"/>

<% if (nodes == null || nodes.length <= 0) { %>

<pz:contentSelector rule="MaleContent" id="nodes" sortBy="cm_nodeName

desc"/>

<% }%>

<% if (nodes == null || nodes.length <= 0) { %>

 Sorry, you don't get a free lunch today.

<% }%>

 Found <%=nodes.length%> Node(s):

<dl>

<utility:forEachInArray array="<%=nodes%>" id="node"

 type="com.bea.content.Node">

<dt><cm:getProperty id="node" name="title" conversionType="html"/></dt>

<dd><ad:render id="node" /></dd>

</utility:forEachInArray>

</dl>

Using the <pz:div> Tag Instead of a Content Selector
The <pz:div> JSP tag can provide in-line HTML Personalization. You can populate a JSP with
sets of in-line content and wrap it with the tag. The tag uses a rule attribute that takes the name
of an existing User Segment. Only members of that User Segment can see the in-line content. For
example, you created a User Segment called bookfanUserSegment.seg in Workshop for
WebLogic that makes anyone a member who has a bookfan User Profile property set value set of
true. The following sample code illustrates this:

Creat ing a Content Se lec to r

6-28 Oracle WebLogic Portal Interaction Management Guide

<pz:div rule="bookfanUserSegment">

 <p>Only users who are book nerds will see this text!</p>

</pz:div>

User Segment rules (conditions) are the same as those available to Content Selectors, so the
<pz:div> tag provides a similar level of Personalization. The difference is that Content Selectors
retrieve their content from the virtual content repository, while the <pz:div> tag encloses its
content in-line in the JSP.

Tip: Content Selectors can display binary content, such as images. See the Content
Management Guide for instructions.

Deleting a Content Selector Query
Deleting a Content Selector query removes the query from the Content Selector in Workshop for
WebLogic and the Administration Console.

Note: The steps in this chapter refer to the <data>\src folder in the Package Explorer View.
Your data and src directories might be named differently.

Developers perform the following steps to remove a query in a Content Selector:

1. In the Portal Perspective, open the Content Selector file in the
<data>\src\contentselectors\GlobalContentSelectors folder in the Package Explorer View.

2. Click the query link in the Content Selector Editor.

3. Select the query in the Content Search dialog.

4. Click Remove.

5. Click OK.

Deleting a Content Selector
Removing a Content Selector removes it from Workshop for WebLogic and from the
Administration Console.

Perform the following steps to delete a Content Selector:

1. In the Portal Perspective, open the Content Selector file in the
<data>\src\contentselectors\GlobalContentSelectors folder in the Package Explorer View.

../cm/index.html
../cm/index.html

Modi f y ing a Content Se lec to r

Oracle WebLogic Portal Interaction Management Guide 6-29

2. Right-click the Content Selector and choose Delete.

3. Click Yes to confirm the deletion.

Tip: You should also delete any <pz:contentSelector> tags in your JSPs that reference the
Content Selector you deleted.

Modifying a Content Selector
You can use the following methods to edit the content that a Content Selector displays:

Workshop for WebLogic – Developers can use Workshop for WebLogic to modify a
Content Selector’s conditions and queries. For instructions, see Chapter 13, “Modifying a
Content Selector”.

Administration Console – Portal administrators can use the Administration Console to
edit a Content Selector’s properties or description. For instructions, see Chapter 13,
“Modifying a Content Selector”.

Creat ing a Content Se lec to r

6-30 Oracle WebLogic Portal Interaction Management Guide

Oracle WebLogic Portal Interaction Management Guide 7-1

C H A P T E R 7

Creating a Placeholder

A Placeholder is a predefined location in a JSP that displays a single piece of web content at a
time that is dynamically retrieved from the WLP Virtual Content Repository. If more than one
content query is registered for a Placeholder, the Placeholder uses predefined queries and logic
to determine which query to run and which content item to display. If a content query does not
return data, the Placeholder runs another registered query, if there is one. Each query has a
priority, or weight that determines the specific content to display.

For example, a Placeholder for a pet store could use a Campaign query to determine if the user is
a bird lover and then display a special bird offer, as shown in Figure 7-1.

Creat ing a P laceho lde r

7-2 Oracle WebLogic Portal Interaction Management Guide

Figure 7-1 Placeholders can Display Default Content and Campaign Content

A Placeholder is made up of two parts:

1. A Placeholder file you create in Workshop for WebLogic

2. A companion JSP tag that performs the processing

When you create a Placeholder, you select the content to display, choose a query for the
Placeholder, and then create the Placeholder itself.

This chapter includes the following sections:

Selecting Content for a Placeholder

Creating a Placeholder

Modifying a Placeholder

Using the <ad:adTarget> Tag Instead of a Placeholder

Selecting Content for a Placeholder
Placeholders use a document's MIME-type attribute to generate the appropriate HTML tags that
the browser requires. By default, Placeholders generate the appropriate HTML tags only for the
following MIME types:

Se lec t ing Content f o r a P laceho lder

Oracle WebLogic Portal Interaction Management Guide 7-3

Images – A Placeholder generates an tag with attributes that the browser needs to
display the image. If you want images to be clickable, you must specify the target URL
and other link-related information as ad attributes in your Content Management system.

Other types – A Placeholder passes the text directly to the JSP.

This section contains the following topics:

Displaying Additional MIME Types in a Placeholder

Adding Content to a Placeholder

Displaying Additional MIME Types in a Placeholder
To display content, Placeholders refer to a document's MIME type and then generate the HTML
tags that a browser requires for the specific document type. For example, to display an image-type
document, an ad placeholder must generate the tag that a browser requires for images. By
default, ad Placeholders can generate the appropriate HTML only for the MIME types listed in
the Selecting Content for a Placeholder section for images and other types of files.

Images – A Placeholder generates an tag with attributes that the browser needs to
display the image. If you want images to be clickable, you must specify the target URL
and other link-related information as content properties in the Virtual Content Repository.

Other types– A Placeholder passes the text directly to the JSP.

WARNING: The <EMBED> tags do not always work correctly in all browsers. The behavior
depends on the plug-ins you have configured.

If you are familiar with basic Java programming, you can write classes that enable Placeholders
to generate HTML for additional MIME types. A video clip is an example of an additional MIME
type.

Perform the following tasks to display additional MIME types in a Placeholder:

1. Create a utility or EJB project and add the Portal Web Application Services facet to the
project. For general instructions, see “Creating a Regular Event Class” on page 9-26.

2. Create and compile a Java class to generate HTML.

3. Register the new class.

Creat ing a P laceho lde r

7-4 Oracle WebLogic Portal Interaction Management Guide

Creating and Compiling a Java Class to Generate HTML
To generate the HTML that the browser requires to display the MIME type, use Workshop for
WebLogic to create a utility or EJB project, add the Portal Web Application Services facet to the
project with the web project’s Properties dialog. (You can also add this facet to an existing utility
or EJB project that is part of your EAR file.) The next steps is to create a Java class that
implements the com.bea.p13n.ad.AdRenderableContentProvider interface. For
information on this interface, see the Javadoc.

Registering the New Class
After you save the class in a directory that is in your CLASSPATH, you must notify WebLogic
Portal of its existence. You can do this manually or with the Administration Console. Choose
Method 1 or Method 2 to add the class to your CLASSPATH.

Method 1
Perform the following steps to manually add the class to your CLASSPATH:

1. To add the class manually, stop the WebLogic Server.

2. Create a backup copy of your application's META-INF\wps-config.xml file.

3. Open the wps-config.xml file in a text editor and find the <AdService> element.

4. Add the following as a sub-element of <AdService>:

<AdContentProvider
Name="MIME-type"
Provider="YourClass.class"
Properties="optional-properties-for-your-class"
>
</AdContentProvider>

Provide the following values for the attributes of the AdContentProvider element:

– Name – The name of the MIME type that you want to support.

– Provider – The name of the compiled Java file. If you saved the file below a directory
that your CLASSPATH environment variable names, you must include the file's path
name, starting one directory level below the directory in CLASSPATH.

– Properties – Any additional properties or parameters want to pass to your object.

For example, if you added <PORTAL_APP>/classes to the system CLASSPATH, save your
class to support AVI files as <PORTAL_APP>/classes/myclasses/MimeAvi.class. The
following code sample shows sample attribute values:

../javadoc/index.html

Se lec t ing Content f o r a P laceho lder

Oracle WebLogic Portal Interaction Management Guide 7-5

<AdContentProvider
Name="video/x-msvideo"
Provider="myclasses.MimeAvi"
Properties=""
>
</AdContentProvider>

5. Save your changes to the wps-config.xml file.

6. Restart the WebLogic Server.

You can also add the class to the CLASSPATH using the steps in Method 2.

Method 2
Rather than manually adding the class to your CLASSPATH and activating the content provider,
you can use the Administration Console to perform the following steps:

1. In Workshop for WebLogic, start the Administration Console by choosing Run > Open
Portal Administration Console.

2. In the Administration Console, choose Configuration & Monitoring > Service
Administration.

3. Select Interaction Management in the Resource Tree and click Ad Service in the Browse
tab.

4. In the Ad Content Providers section, click Add Ad Content Provider.

5. Enter a Description and a Name for the new content provider. In the Content Provider field,
specify the name of the class that generates the HTML elements that the browser requires to
display an ad of this MIME type. If you write your own class, it must implement the
com.bea.p13n.ad.adRenderableContentProvider interface.

WARNING: The Commerce API is deprecated with WebLogic Portal 10.0.

6. Click Update.

7. After you add the content provider, you can add additional properties.

Adding Content to a Placeholder
You can add specific properties to content items that support using content in Placeholders. See
Chapter 3, “Setting up Content”.

content.html

Creat ing a P laceho lde r

7-6 Oracle WebLogic Portal Interaction Management Guide

Creating a Placeholder
Creating a Placeholder involves two steps:

1. Create a Placeholder file in Workshop for WebLogic.

2. Use companion <ph:placeholder> JSP tags in any relevant JSPs. See the JSP Tag Javadoc
for more information on the Java class.

Each <ph:placeholder> JSP tag must use its name attribute to reference a Placeholder you
have created in Workshop for WebLogic.

This section contains the following topics:

Creating a Placeholder File

Building a Content Query

Determining Which Query and Content to Display

Adding a Placeholder to a JSP

Creating a Placeholder File
A Placeholder is a predefined location in a JSP that displays a single piece of web content
retrieved from the WLP Virtual Content Repository. A Placeholder uses queries to retrieve and
display content.

By default, Placeholders support the following MIME types: HTML, XML, plain text, and
images. To display additional MIME types in Placeholders, see Displaying Additional MIME
Types in a Placeholder.

Content returned from a Placeholder is displayed in a portlet. When a user views a portlet or a
portal desktop containing a Placeholder, the Placeholder's rules and back-end logic run a query,
retrieve zero or more pieces of content matching the query, and display one of the returned items.
If no content is retrieved, none is displayed.

The queries for a Placeholder originate from two different locations:

From the Placeholder itself – When you create a Placeholder in the Placeholder Editor,
you can also define default queries to run in the Placeholder. Default queries run for all
anonymous and authenticated visitors.

From a Campaign – When you create a Campaign in the Campaign Editor, one option is
to display targeted personalized content in a Placeholder for a specific type of visitor.

../javadocjsp/index.html

Creat ing a P laceho lder

Oracle WebLogic Portal Interaction Management Guide 7-7

Because a Placeholder can contain multiple queries, the Placeholder can display a different piece
of content each time a user accesses the JSP containing the Placeholder. The following procedure
includes a step that lets you set a query's priority to increase or decrease the chances that the query
is run instead of other queries present in the Placeholder.

Placeholders are scoped to the enterprise application, so you can include Placeholders in any JSPs
within the enterprise application.

Note: The steps in this chapter refer to the data\src folder in the Package Explorer View.
Your data and src directories might be named differently.

Perform the following steps to create a Placeholder:

1. Start the WebLogic Server in Workshop for WebLogic by choosing Run As > Run on Server.
For instructions on configuring the WebLogic Server, see the Portal Development Guide.

2. In the Portal Perspective, right-click the <data>\src\placeholders folder in the Package
Explorer View and choose New > Content Placeholder.

3. In the New Placeholder File window, enter a name for the Placeholder in the File name field.
Keep the .pla file extension.

4. Click Finish. The Placeholder Editor appears.

5. In the Design Palette tab, drag the New Query into the Placeholder Editor to define a default
query, as shown in Figure 7-2.

../portals/index.html

Creat ing a P laceho lde r

7-8 Oracle WebLogic Portal Interaction Management Guide

Figure 7-2 Define a Default Query by Dragging the New Query into the Placeholder Editor

Every query you add to the Placeholder in this way is a default query (non-Campaign).
Campaigns can also put queries in this Placeholder, but Campaign queries are not defined
in the Placeholders themselves. They are defined in the Campaigns.

Note: If you do not see the Design Palette tab, click Show List to see other tabs that are not
visible, as shown in Figure 7-3.

Figure 7-3 Click Show List to View Hidden Tabs

6. In the Property Editor window, set values for the following:

Show List button

Creat ing a P laceho lder

Oracle WebLogic Portal Interaction Management Guide 7-9

– Name – Enter a name for the query. The query name is used only for display purposes.

– Priority – Select the query’s priority relative to other queries. A query with a higher
priority is more likely to be run.

7. To define the query, click the empty content search link in the New Query item you added.
You can define the query using WebLogic Portal's expression syntax (on the Advanced tab)
or in graphical mode (on the Query tab).

– Advanced Mode – In the Content Search window, click the Advanced tab and build a
query using the instructions in “Building a Content Query with Expressions” on
page 6-8.

– Graphical Mode – Begin with Step a and build a content query by selecting content
properties, comparators, and values to retrieve content items.

a. In the Content Search window, select the Query tab.

b. Select a content type in the Property set field, select a content property in the Property
field, and click Add as shown in Figure 7-4. This example shows a content type of ad and
a property of adTargetUrl. The adTargetUrl property makes an image clickable and
provides a target for the clickthrough, expressed as a URL. See the Content Management
Guide for more information.

Figure 7-4 Choose a Content Type and a Content Property

Note: The properties you select are content properties (types) rather than property set
properties, such as User Profile or session properties.

c. In the Content Search Values window that appears, select one of the following tabs:

../cm/index.html
../cm/index.html

Creat ing a P laceho lde r

7-10 Oracle WebLogic Portal Interaction Management Guide

Values Tab – Define the query based on a comparison to a value you enter. For
example, the query could be set to retrieve content with an investorRiskLevel property
that is marked as high. The example in Figure 7-5 sets the query to retrieve an
adTargetUrl of a web site.

Properties Tab – To define the content query based on the property value that is
dynamically obtained from another type of property, such as a User Profile property.
For example, instead of creating a query based on static content properties, you can
create a query that reads the value of the current user's investorRiskLevel to populate
the query. The query would be different for each user.

Figure 7-5 Select an Item for the Comparison Field and Enter a Value

d. Click Add. The query descriptor is added to the Value Phrases section.

e. You can add more value phrases to the query and then set the appropriate option in the For
multiple value phrases section at the bottom of the window.

8. Click OK in the Content Search Values window.

Creat ing a P laceho lder

Oracle WebLogic Portal Interaction Management Guide 7-11

9. Create additional queries as needed in the Content Search window. You can add more value
phrases to the query in the Content Search window, and then set the appropriate option in the
For multiple descriptors section at the bottom of the window. Click OK when you are done.

10. Click OK on the Content Search dialog.

11. You can preview the content that will be retrieved by the query by selecting the Content
Preview tab below the Editor. If you defined the query to use values from a User Profile
property, the retrieved content will be different for each user, so you must enter the username
of an existing user, such as weblogic, in the Preview User field to see the content that will be
retrieved for that user.

The Content Preview window shows content that the query will retrieve. However, since a
Placeholder can show only one piece of content at a time, the single piece of content that is
displayed varies depending on which query is run (determined by the priority you set for a
query and the settings for Campaign queries) and the adWeight property setting on content.

You must add the adWeight property to a content type as a single-value Integer. Content with
a higher adWeight number has a higher likelihood of being selected for display in a
Placeholder.

12. Save the Placeholder file.

13. Add the Placeholder JSP tag called <ph:placeholder> to the relevant JSP. You must add the
Placeholder filename to the Placeholder tag and run the JSP to see the results.

Note: An alternative to using Placeholders is using the <ad:adTarget> JSP tag to hard-code a
content query within the tag. See “Using the <ad:adTarget> Tag Instead of a
Placeholder” on page 7-16 for more information.

Choosing the Type of Placeholder Query to Run
Placeholders can run two types of queries: default queries and Campaign queries.

Both types of queries have the same structure but originate from different places:

Default Query – When you create a Placeholder file in Workshop for WebLogic, you can
also add one or more queries to that Placeholder file that always remain with the
Placeholder (unless you change or remove the queries in Workshop for WebLogic). These
are called default queries. They return content from the virtual content repository
regardless of who is viewing the portlet or JSP in your portal.

A Placeholder can run a default query every time a user loads a page that includes the
Placeholder. For example, you define a header for a particular shell that contains a JSP file

Creat ing a P laceho lde r

7-12 Oracle WebLogic Portal Interaction Management Guide

with a Placeholder. If that Placeholder contains a default query, a user is likely to see
different content in the header each time the user visits or refreshes the desktop.

If a Campaign also targets the Placeholder, you can configure the Placeholder to show only
content from that Campaign, or integrate Campaign content along with default query
content.

Tip: You should create a default query for a Placeholder, because it ensures that a content
item always appears in the Placeholder.

Campaign Queries – When you create a Campaign in Workshop for WebLogic, one of the
things you might want to do is trigger Campaign-specific content to appear in a specific
place on the desktop. Campaigns use Placeholders to display personalized content. When
you define a content action in a Campaign, one of the steps is to select an existing
Placeholder to run the Campaign query you define. Campaign content queries are
dynamically placed by a Campaign when certain actions (events) occur. For example, a
user who belongs to a certain User Segment logs into the desktop.

You can set default queries to not run when a query placed by a Campaign is present in the
Placeholder.

Figure 7-6 shows the location on a page where the Placeholder displays an image, either from a
default query or a Campaign query. The image is retrieved from the WLP Virtual Content
Repository through a query. A Placeholder uses different factors to determine which query to run
and then which retrieved content item to display.

Creat ing a P laceho lder

Oracle WebLogic Portal Interaction Management Guide 7-13

Figure 7-6 Placeholders can Display Default Content or Campaign Content

Building a Content Query
You can use the WebLogic Portal Expression language in Workshop for WebLogic to build
content queries. The advanced query-building window is available from content-related JSP tags
and when building queries for Placeholders, Campaigns, and Content Selectors.

If more than one content query is registered for a Placeholder, for example, the Placeholder uses
predefined queries and logic to determine which query to run and which content item to display.
If a content query does not return data, the Placeholder runs another registered query, if there is
one. Each query has a priority, or weight that determines the specific content to display.

A query contains three parts: <property> <comparator> <value>.

Using Expressions
The following two types of properties are available for content, and you can use both in queries:

User-defined content properties

Explicit (system) content properties

See “Building a Content Query with Expressions” on page 6-8 for instructions and a list of
explicit content properties.

Creat ing a P laceho lde r

7-14 Oracle WebLogic Portal Interaction Management Guide

Using Comparators
Comparators provide the logic that compares a query's property to the value you enter. If a
content item meets the conditions of the query, the content item is returned. See “Using
Comparators” on page 6-14 for instructions.

Using Values
Values represent the content you want the query to return. By supplying values to a query, you're
telling the query which content to retrieve (or ignore) based on the values stored on the content
items. See “Supplying Values” on page 6-16 for instructions.

Following Guidelines for Complex Queries
You can combine multiple independent query clauses, tying them together with and (&&) and or
(||) logic and controlling the order of evaluation with parentheses the way you would with
algebraic expressions. This lets you create more complex queries. See the Content Management
Guide for instructions and a list of example queries.

Determining Which Query and Content to Display
Placeholders perform a two-step process to choose which content to display. This section
describes the following tasks:

1. How a Placeholder chooses which query to run

2. Once a query runs, how a Placeholder chooses which content item to display from the query

Choosing a Query to Run
When you add a default query to a Placeholder or create a Campaign query in Workshop for
WebLogic, you can assign each query a priority: highest, high, normal, low, or lowest. The
higher the priority, the higher the likelihood that the query will be run instead of other queries.

If a query does not find any documents, the Placeholder chooses another query and runs it.

You can also define default queries so that they do not run when Campaign queries are present.
For instructions, see Chapter 14, “Modifying a Placeholder”.

Choosing Which Content Item to Display
Depending on how broadly you define a query and on the number of documents in your Content
Management system, a query could return multiple content items. By default, a Placeholder

../cm/index.html
../cm/index.html

Creat ing a P laceho lder

Oracle WebLogic Portal Interaction Management Guide 7-15

randomly selects a content item to display. To make this selection less of a random choice, you
can add a property called adWeight to your content items, as described in “Determining Content
Priority” on page 3-2.

The higher the adWeight number you assign to a content item, the better the chance that the
content item will be displayed in a Placeholder when the content item is retrieved by a query.

Adding a Placeholder to a JSP
After you create a Placeholder file in Workshop for WebLogic, you can use any of the following
methods to add the Placeholder to a JSP in Workshop for WebLogic:

Drag a Placeholder from the Design Palette onto a page of an open portal file. When you
do this, three things happen:

a. The Portlet Wizard appears, letting you quickly create a portlet that displays the
Placeholder.

b. The resulting portlet is automatically added to the portal page.

c. A JSP file is automatically created for the Placeholder. The JSP file contains the
Placeholder JSP tag with the name attribute automatically populated with the name of the
Placeholder. The include statement for the tag library is automatically added.

Open the JSP where you want to add the Placeholder, and drag the Placeholder file from
the Design Palette into the JSP in either Design View or Source View. The JSP tag is added
automatically, the name attribute is automatically populated with the name of the
Placeholder, and the tag library include statement is automatically added.

Drag the <ph:placeholder> JSP tag from the JSP Design Palette (the Portal Content
Placeholder category) into an open JSP and populate the tag’s name attribute manually. (To
see the JSP Design Palette, choose Window > Open Perspective > Page Flow.) The tag
library include statement is added automatically. In Figure 7-7, the Placeholder file is
called foo, and the JSP tag references the Placeholder file.

content.html
content.html

Creat ing a P laceho lde r

7-16 Oracle WebLogic Portal Interaction Management Guide

Figure 7-7 The Two Parts of a Placeholder: a Placeholder File and a JSP Tag

Modifying a Placeholder
You can use either of the following two ways to modify a Placeholder:

Developers can use Workshop for WebLogic – For instructions on modifying
Placeholder properties or queries in Workshop for WebLogic, Chapter 14, “Modifying a
Placeholder”.

Portal administrators can use the WebLogic Portal Administration Console – For
instructions on modifying Placeholder values in Administration Console, see Chapter 14,
“Modifying a Placeholder”.

See “Managing Placeholders for Optimal Performance” on page 14-4 for information on
changing Placeholders to improve performance.

Using the <ad:adTarget> Tag Instead of a Placeholder
You can also use the <ad:adTarget> JSP tag to display a content item on a JSP. This tag does
not rely on a definition file like a Placeholder does. You simply add a query using the tag’s query
attribute. The query retrieves one or more content items (the same types of content items that
Placeholders can display), and the tag chooses which content item to display in the same manner
as the <ph:placeholder> tag. Campaigns do not put queries into an <ad:adTarget> tag, so the
tag cannot display personalized content. You can also use <pz:contentQuery> and
<cm:search> tags to execute runtime queries and return content that can be displayed.

Us ing the <ad:adTarget> Tag Ins tead o f a P laceho lder

Oracle WebLogic Portal Interaction Management Guide 7-17

Tip: You can get rotating banner-style content on your portal by picking one content item and
cycle through the matching items on subsequent requests. You can use the
<ad:adTarget> JSP tag, which uses the AdConflictResolver to pick which content to
show. That will get each node's adWeight property (converted to a number) as the
relative weight of each node and then use a random number to pick which content to use.
The higher the weight, the more likely the content is to be displayed. If the item doesn't
have an adWeight property, it assumes a value of 1.

For more information on the class for the <ad:adTarget> JSP tag, see the JSP Tag Javadoc.

The following code sample shows how to set up rotating banner-style content:

<%@ taglib uri="http://www.bea.com/servers/portal/tags/ad" prefix="ad"%>

<ad:adTarget query=" color == userProperty('GeneralInfo', 'FavoriteColor')

"/>

../javadocjsp/index.html

Creat ing a P laceho lde r

7-18 Oracle WebLogic Portal Interaction Management Guide

Oracle WebLogic Portal Interaction Management Guide 8-1

C H A P T E R 8

Building a Campaign

WebLogic Portal’s Campaigns help you accurately target visitors and trigger multiple actions—
or even simultaneous actions—in a browsing session. Campaigns deliver the right content to the
right user at the right time.

You can use Campaigns to personalize your portal in the following ways:

Display personalized web content – When you use a Campaign to display personalized
content, the content (for example, an image) is retrieved from the WLP Virtual Content
Repository through a query and displayed in a Placeholder on a JSP. The JSP can exist in a
portlet or in a desktop header region.

Send predefined e-mails automatically – The Campaign service reads User Profile
properties to obtain a user’s e-mail address, and then sends a predefined e-mail to that user.

Offer personalized discounts in a commerce application – Discount Actions are part of
the Commerce API, which is deprecated with WebLogic Portal 10.0. If you built a
commerce application with the necessary catalog and shopping cart functionality, you can
provide a variety of discount types to specific users. Discounts enable you to put
permanent or temporary price reductions on items, provide incentives to customers to buy
additional products, buy products by a particular date, or use other criteria to define the
discount. Discounts can run standalone or as the an action of a Campaign.

Marketing goals generally drive the content of a Campaign. For example, you might want people
who log in with a certain browser type at lunch time to view content related to lunch specials. A
bank might determine which portfolio to recommend, or a travel site would recommend a specific
hotel chain.

Bui ld ing a Campaign

8-2 Oracle WebLogic Portal Interaction Management Guide

Campaigns are flexible, because they let you create business logic without requiring code
changes. For example, Campaigns show web content using a JSP tag called a Placeholder that is
similar to the following: <ph:placeholder name=”myPlaceholder1”/>. Add JSP
Placeholder tags (uniquely identified by the name attribute) anywhere in your portal’s JSPs. Then
define your Campaigns to use the existing Placeholders, each of which can display content unique
to the Campaign and to the individual users. You can change and add new Campaigns, but you
never have to change your JSP code. The Placeholders you need stay the same.

In addition to providing flexibility and Personalization, Campaigns begin at a specific time and
end when their purpose has been fulfilled (when specific goals are achieved or a time deadline is
reached). Campaigns can even be set up to run only once for each visitor.

Note: A Campaign can also work for tracked anonymous users. See “Targeting a Campaign to
Tracked Anonymous Users” on page 8-33.

Structurally, a Campaign contains at least one scenario. Each scenario contains one or more
actions that show personalized content, send an automatic e-mail, or provide a personalized
discount. The advantage of scenarios as containers for actions is that you can use User Segments
to determine which users are eligible to be targeted with the actions in a scenario (but you are not
required to assign User Segments to scenarios). For example, you could create a Campaign with
two scenarios: one that targets its actions only to males and the other that targets its actions to
females. Table 8-1 shows how the logic works in a scenario for females.

The chapter includes the following sections:

Performing the Prerequisite Tasks

Building a Campaign

Testing a Campaign

Triggering a Campaign

Table 8-1 A Campaign Scenario that Targets Females Who Recently Visited the Web Site

Are You a Member of the Female User Segment and Have Not Visited the Site in the Last 30 Days?

Yes Your User Profile indicates that you are female and have visited the site in the last 30
days. If this Campaign is triggered, you are targeted with any of the actions in this
scenario that apply to you.

No Your User Profile indicates that you are a male. If this Campaign is triggered, you are
not targeted with any of the actions in this scenario.

Per fo rming the P re requ is i t e Tasks

Oracle WebLogic Portal Interaction Management Guide 8-3

Turning Off a Campaign

Resetting a Campaign

Performing the Prerequisite Tasks
Complete the following tasks before you create a Campaign:

1. Read the “Checklist for Planning Your Campaign Strategy” on page 2-9.

2. If you decided to use Session or Request properties to trigger Campaign actions, verify that
you performed the following tasks:

– In the JSP containing the event to be fired, get the request attribute through a variable
or set it directly in the JSP

– In the JSP containing the event to be fired, get or set any event properties you want to
use

– If you want to use session properties to trigger Campaign actions, verify that the firing
event is in the same session containing the session properties you want to use

For more information on Session or Request properties, see “Creating a Session Property
Set” on page 4-8 or “Creating a Request Property Set” on page 4-9.

3. Determine if you plan to use goal setting to end your Campaign. Goal Setting can end a
Campaign based on the number of content items displayed or clicked. See “Setting Goal
Definitions” on page 8-7 and “Adjusting Goal Definitions” on page 8-9 for instructions.

Building a Campaign
Developers create Campaigns and administrators use those Campaigns as templates to modify
Campaign characteristics and create new Campaigns with similar characteristics.

Building a Campaign requires that you plan your Campaign logic for scenarios and actions, create
a Campaign file, add then add the scenarios and actions.

This section contains the following topics:

Planning Your Campaign Logic

Creating a Campaign File

Adding a Scenario to a Campaign

Adding an Action to a Scenario’s Rule

Bui ld ing a Campaign

8-4 Oracle WebLogic Portal Interaction Management Guide

Setting Up Automatic E-Mail Messages

Targeting a Campaign to Tracked Anonymous Users

Planning Your Campaign Logic
A Campaign uses units called actions to perform specific Personalization tasks. Actions are
triggered by specific conditions you set, and the actions are grouped into scenarios.

For example, a Campaign Action can be triggered by the following conditions: When a user logs
in between January 1 and January 31, and that user is a member of the non-manager User
Segment, trigger the Campaign to do something. The action could then do the following: When
the Campaign is triggered, send an automatic e-mail reminding the user to complete an annual
performance review.

A Campaign can contain multiple scenarios, each of which can contain multiple actions. An
action is triggered when all of the following items are true:

An event is fired and the Campaign service is listening for it. See “Registering Events for
Campaigns” on page 9-43 for more information.

The conditions of the action are met, or a user belonging to a specific User Segment logs
in, which triggers a scenario to fire all of its actions.

The Campaign is set to active and has not expired (through a date deadline or if its goals
were met).

WARNING: Shopping cart events, discounts, and catalogs are part of the Commerce API,
which is deprecated with WebLogic Portal 10.0.

Table 8-2 shows Campaign Action rules that are created in Workshop for WebLogic.
Table 8-2 Campaign Action Rules

When all of the following conditions
apply:

An HTTP request has the following properties:
RequestPropertyOne is equal to success

Any of the following events has occurred: SessionLoginEvent

Do the following: Content Action, E-mail Action, or Discount Action

Bui ld ing a Campaign

Oracle WebLogic Portal Interaction Management Guide 8-5

This rule is evaluated only if an event occurs for which the Campaign service is listening. (This
event does not need to be used directly in the Campaign rule.) For example, if the Campaign
service is configured to listen for the Oracle-provided UserRegistrationEvent (which it is by
default), then when a UserRegistrationEvent occurs, the event takes a snapshot of the Request
object and the Campaign rules are evaluated.

The following list is the order in which the previous Campaign action rules are evaluated:

Is there a request property called RequestPropertyOne with a value of success?

Is this a SessionLoginEvent?

Are all of these conditions true?

Because a UserRegistrationEvent woke up the Campaign service and took a snapshot of the
request object, the Campaign Action is not triggered, because the rule requires that all of its
conditions evaluate to true. The SessionLoginEvent rule is false (because it was the
UserRegistrationEvent that woke up the Campaign service).

If the rule was defined differently so that any of the conditions evaluating to true would trigger
the action (rather than all conditions), the Campaign action fires if the request property evaluates
to true.

Creating a Campaign File
The steps in this chapter refer to the data\src folder in the Package Explorer View. Your data
and src directories might be named differently.

Perform the following steps to create a Campaign file and set Campaign properties:

1. Start the WebLogic Server in Workshop for WebLogic by choosing Run As > Run on Server.
For instructions on configuring the WebLogic Server, see the Portal Development Guide.

2. In the Portal Perspective, right-click the <data>\src\campaigns folder in the Package
Explorer View and choose New > Campaign.

3. Enter a name for the Campaign in the File name field, using the .cam file extension.

4. Click Finish. Select the Campaign in the Campaign Editor when it appears.

5. Select the Properties tab and set the following properties for the General property. These
properties help determine if the Campaign will run. Use the following description to set each
property:

../portals/index.html

Bui ld ing a Campaign

8-6 Oracle WebLogic Portal Interaction Management Guide

– Active – Set the value to true if you want the Campaign to be run. Set the value to
false if you do not want the Campaign to run.

– Description – Enter a detailed description of the Campaign. The description is
appended to the text in the Description window.

– Is Complete – Read-only value of true or false. If the conditions for the Campaign
are all complete, the Is Complete property is set to true. If the field is false, you
should check each action and scenario to determine which properties are missing.

– Name – Read-only. The name of the Campaign (the Campaign filename).

– Sponsor – Enter the name of the organization or person sponsoring the Campaign.

6. If you are displaying personalized content in a Campaign, expand the Goals property in the
Properties tab and set the following properties:

– Description – Enter a description about the goals that will end a Campaign prior to its
stop date. Click OK in the Property Text Editor dialog box when you are done.

– Goal Definitions – End a Campaign prior to the Campaign stop date when specific
images are viewed or clicked in a portal. Goal Setting can end a Campaign based on
the number of content items displayed or clicked. See Setting Goal Definitions for
instructions.

7. Expand the Timing property in the Properties tab and set the following properties:

– Start Date – Click the ellipsis icon [...] and set the month, day, and time (in your time
zone) you want the Campaign to start. Click OK.

– Stop Date – Click the ellipsis icon [...] and set the month, day, and time (in your time
zone) you want the Campaign to end. Click OK.

See Figure 8-1.

8. Choose File > Save to save your work.

Bui ld ing a Campaign

Oracle WebLogic Portal Interaction Management Guide 8-7

Figure 8-1 Sample Properties for a New Campaign

Setting Goal Definitions
Perform the following steps to define a Campaign goal:

1. In the Portal Perspective, select the Campaign you created in “Building a Campaign” on
page 8-3.

2. In the Properties tab, expand the Goals property.

3. In the Goal Definitions field, click the ellipsis button [...], as shown in Figure 8-2.

Figure 8-2 Click the Ellipsis Button to Get to the Edit Campaign Goals Window

The Edit Campaign Goals window appears.

4. In the Edit Campaign Goals window, click New.

5. In the Campaign Goals section, enter a number in the Count field for the number of times the
content item must be viewed or clicked to meet the goal.

Bui ld ing a Campaign

8-8 Oracle WebLogic Portal Interaction Management Guide

6. Select an item from the drop-down list in the Count Type field that determines whether the
content item must be viewed (Impressions) or clicked (Click-throughs).

Note: For a content item to use clickthrough functionality, it must have one of the following
properties set: adTargetUrl, adTargetContent, or adMapName. The property
value for any of these properties is a URL that, when clicked, takes the user to the
location you want. In a portal, URLs are relative to the portal Web project root
directory. See “Creating URLs to Portal Resources” on page 8-10 for more
information.

7. Select an item from the drop-down list in the Type field. The type determines if the content
impression or clickthroughs must be on content displayed by this Campaign (From this
Campaign only) or on the content displayed by the Campaign or outside of the Campaign
(From anywhere).

8. Select an item from the Logic field to determine if the count can be reached by adding the
impressions or clickthroughs for all selected content items (Summing the path counts) or
if it can be reached when any one content item in the list must reach the count number
(Against any one path).

9. In the Goal Paths section, add content items to use in the goal. To populate the Goal Paths list,
do one or both of the following:

– In the Add Path to Goal field, enter the repository path to a content item in WLP's
Virtual Content Repository, and click Add.

– In the Retrieve Query Paths field, select a content action you have already defined in
your Campaign. The content action has an associated query that will retrieve specific
content items from the Virtual Content Repository. Click Get to retrieve a list of
content items that the query will retrieve. Select the content items you want and click
Add.

10. Create additional goals as required. Each goal you add in the Campaign Goals section has
associated content items in the Goal Paths section. For example, you can add a goal that states,
If a piece of content is viewed (Impressions) three times (the Count), the goal is met.

11. If you create more than one goal, select the appropriate End the campaign option below the
Campaign Goals section.

12. Click OK in the Edit Campaign Goals window.

13. Save the Campaign by choosing File > Save.

14. After you save the Campaign, you are prompted to reset the Campaign by selecting options
in the Reset Campaign dialog box and clicking OK, as shown in Figure 8-3.

Bui ld ing a Campaign

Oracle WebLogic Portal Interaction Management Guide 8-9

Figure 8-3 You Can Reset a Campaign by Selecting the Reset All Options Check Box

Adjusting Goal Definitions
The following examples goals show how you can modify Goal Setting and the consequences:

Determine how frequently the Campaign service checks to see if goals have been met by
performing the following steps:

a. In the Administration Console, choose Configuration & Monitoring > Service
Administration.

b. In the Resource Tree, expand the Interaction Management folder and then select
Campaign Service.

c. In the Configure tab, click Configuration Settings for Campaign Service.

d. Set the Goal Check Time to the frequency you want. The default is 300000 milliseconds
(five minutes). Less-frequent goal checks improve performance, but the Campaign
service takes longer to determine if goals were met. For testing, set the value to 0 so that
there are no delays in checking for goals.

e. Click Update.

Determine how many impressions or clickthroughs occur before that number is written to
the database. In the database, the Campaign service compares the current count to the
impressions or clickthrough goal you set in the Campaign. Perform the following steps:

a. In the Administration Console, choose Configuration & Monitoring > Service
Administration.

b. In the Resource Tree, expand the Interaction Management folder and then select Ad
Service.

Bui ld ing a Campaign

8-10 Oracle WebLogic Portal Interaction Management Guide

c. In the Configure tab, click Configuration Settings for: Ad Service.

d. Set the Display Flush Size to the number you want. The default is 10. A larger flush size
improves performance, but the Campaign service takes longer to determine if goals were
met. For testing, set the flush size to a small number to ensure Campaigns end
immediately after your goals are met.

e. Click Update.

Creating URLs to Portal Resources
WebLogic Portal provides an extensible mechanism to create URLs to your portal resources in a
portal web project that can transfer from domain to domain without breaking, especially when
server names and port numbers change. This URL-creation mechanism also lets you switch
between secure and non-secure URLs (HTTP and HTTPS).

Use the following two items to create portable URLs:

The <render:*Url> JSP tags in the Portal Skeleton Rendering JSP tag library (see the
JSP Design Palette)

A portal web project's WEB-INF/beehive-url-template-config.xml file

The beehive-url-template-config.xml file contains multiple URL templates, each with a
unique name. These template URLs contain variables such as url:domain and url:port that
are read from the active server. The <render:*Url> JSP tags have a template attribute in which
you can specify the name of a URL template in the beehive-url-template-config.xml file.

The following examples show how the JSP tags use the templates to create URLs:

A sample URL template exists in the beehive-url-template-config.xml file:

<url-template name="secure-url">
 https://{url:domain}:{url:securePort}/{url:path}?{url:queryString}
</url-template>

The <render:resourceUrl> JSP tag creates a URL using the template:

<% String reportpath = "reports/report1.html"; %>
 <a href="<render:resourceUrl template="secure-url"
 path="<%=reportpath%>"/>">
View the Report

You can use any of the URL templates in the beehive-url-template-config.xml file
provided by WebLogic Portal, and you can add as many templates as you want to the file.

Bui ld ing a Campaign

Oracle WebLogic Portal Interaction Management Guide 8-11

You can use any of the following variables when you build a URL template:

The {url:domain} variable – Reads the name of the server from the current request.

The {url:port} variable – Reads the listen port number of the server from the current
request. See Troubleshooting the URLs.

The {url:securePort} variable – Reads the SSL port number of the server from the
current request. See Troubleshooting the URLs.

The {url:path} variable – Reads the name of the web application. The URLs to all
resources in a web application are relative to the web application directory.

The {url:queryString} variable – Reads a queryString variable for the URL.

Troubleshooting the URLs
If you are using a proxy server or you are switching between non-secure and secure ports, you
may find that URLs do not resolve if you use the {url:port} or {url:securePort} variables.
The URLs do not resolve because the variables for those values are read from the request. For
example, if a user in a non-secure port (port number 80) clicks a secure HTTPS link that was
created with a URL template that uses the {url:securePort} variable, the port number of the
request (80) is used for the {url:securePort} variable, which creates a secure request
(HTTPS) on an non-secure port. The same result could occur if a user on a proxy server (port 80)
clicks a link to a resource outside the proxy server (port 443).

In both cases, you should hard code port numbers in the URL templates to get URLs to resolve
correctly.

The beehive-url-template-config.xml file automatically created in a portal web project
also contains URL templates and variables for Web Service for Remote Portlets (WSRP). These
templates must remain in the file if you plan to be a WSRP producer. See the Federated Portals
Guide for more information.

Adding a Scenario to a Campaign
Campaigns contain actions that perform specific Personalization tasks and are triggered by
specific conditions you set. Actions are grouped into scenarios. A Campaign can contain multiple
scenarios; each scenario can contain multiple actions.

1. In the Portal Perspective in Workshop for WebLogic, select the Campaign you created in
“Building a Campaign” on page 8-3.

../federation/index.html
../federation/index.html

Bui ld ing a Campaign

8-12 Oracle WebLogic Portal Interaction Management Guide

2. Drag the New Scenario item from the Design Palette tab into the Campaign Editor. You can
use four scenario templates that contain predefined actions and conditions. If you drag one of
these scenarios into the Campaign Designer, see the Description window for details on each.

3. In the Properties tab, expand the General Property item and set the following properties:

– Active – Set the value to true if you want the Campaign to run. Set the value to false
if you do not want the Campaign to run.

– Description – Click the ellipsis icon [...] and enter a detailed description of the
scenario. Your description is appended to the text in the Description window.

– Is Complete – This field displays a read-only value of true or false. If the conditions
are all complete (the conditions for the Campaign, each scenario, and each action), the
Is Complete property is set to true. If the field is false, you should check each
action and scenario to determine which properties are missing.

– Name – Enter a name for the scenario.

– Segments – If you want all actions in the scenario to run if the user is a member of one
or more User Segments, click the ellipsis icon [...] and select the User Segments you
want to use. For example, BirdLovers.

Figure 8-4 shows these three fields in a Campaign designed to offer a 25% discount to
users who belong to the BirdLovers User Segment.

Figure 8-4 Campaign Property Editor

4. Add more scenarios as needed. For example, you could include an image of a parrot.

5. Save the Campaign by choosing File > Save.

Adding an Action to a Scenario’s Rule
You can add the following actions to the rule in your scenario:

Bui ld ing a Campaign

Oracle WebLogic Portal Interaction Management Guide 8-13

Adding a New Object Instance – Creates a new instance of an object and adds it to the
object available in the rule set. This new object can then trigger other rule conditions that
match and their actions that will be invoked.

Invoking a Static Method – Calls any static method on any available class.

Invoking an Instance Method – Calls a method on an available ruleset’s object.

Placing Content in a Placeholder – Retrieves web content from a content repository and
displays the selected content in a predefined placeholder.

Sending an E-Mail in a Campaign – Sends a predefined e-mail to a user in your Campaign.

Offering a Discount in a Campaign– Provides discounts on items, orders, or shipping.

You can add multiple actions to each rule in a scenario.

Adding a New Object Instance
The Add a new object instance rule action creates a new instance of an object and adds it to the
object available in the rule set. This new object can then trigger other rule conditions that match
and the actions that will be invoked.

Perform the following steps to add a new object instance to your Campaign:

1. In the Portal Perspective, select the Campaign you created in “Building a Campaign” on
page 8-3.

2. From the Design Palette tab, drag the Add a new object instance rule action onto the
appropriate scenario in the Campaign Editor. See Figure 8-5.

Bui ld ing a Campaign

8-14 Oracle WebLogic Portal Interaction Management Guide

Figure 8-5 Drag the Action to Your Scenario’s Rule

3. Select the Properties tab and enter a name for the action.

4. In the action, click the all link to toggle back and forth between any and all to determine
which conditions will trigger the action. The any choice means that only one of the conditions
must be true for the action to occur.

5. Click the [event] link to choose an available event that will trigger the action. Events can
include logging in, clicking a graphic, clicking a button, adding an item to a shopping cart,
navigating to another page in a portal, and so on. Some events are predefined or you can
define your own custom events (see “Creating Custom Events” on page 9-25). After you
select the event, click Add and then click OK.

6. Click the [java type] link. To see a list of all available Java types, enter **. Use these
guidelines to view the Java types:

– Enter * for any string and ? for any character. See Figure 8-6.

Bui ld ing a Campaign

Oracle WebLogic Portal Interaction Management Guide 8-15

Figure 8-6 Enter ** to See all Available Java Types

– You can also enter TZ, for example, for types containing T and Z as uppercase letters
in camel case notation. An example of this is java.util.TimeZone. You could enter
NuPoEx for types containing Nu, Po, and Ex as parts in camel case notation (for
example, java.lang.NullPointerException). The Matching types field displays
matches for the expression you type in the Select a type field.

After you select the Java type, click OK.

Tip: After you select a type, the bottom of the dialog box displays the type’s package and
JRE type.

7. Click the [no arguments] link to choose an argument to the method call. Click Add and
choose one of the following: String, Boolean, Integer, Long, Double, Float, Null
Argument, Property Reference, or Variable Reference. Enter the new value and click OK.
After you enter all the arguments, click Finish.

8. In the Available Conditions section in the Design Palette tab, select the conditions you want
to trigger the action. When you select a condition, a corresponding link appears in the action
area. Click the link to define the condition.

9. Save the Campaign file by choosing File > Save.

Bui ld ing a Campaign

8-16 Oracle WebLogic Portal Interaction Management Guide

Invoking a Static Method
The Invoke from static method rule action executes any static method from an available object
or class. This action also has the ability to use bound variables from the Conditions section of the
rule set as an argument in the static method, in addition to property references, standard Java type
(String, Boolean, and so on), and other types available in the project. The ability to call a Java
method and have several available actions makes multiple actions in rules a useful feature.

Note: Campaigns that invoke static or instance methods cannot be viewed or edited in the WLP
Administration Console. Use Workshop for WebLogic to view or edit these types of
Campaigns.

The Java class must be application-scoped. See the Workshop for WebLogic online help for
instructions on creating an application-scoped Java or utility project.

Perform the following steps to invoke a static method in your Campaign:

1. In the Portal Perspective, select the Campaign you created in “Building a Campaign” on
page 8-3.

2. From the Design Palette tab, drag the Invoke a static method rule action onto the
appropriate scenario in the Campaign Editor.

3. Select the Properties tab and enter a name for the action.

4. In the action, click the all link to toggle back and forth between any and all to determine
which conditions will trigger the action. The any choice means that only one of the conditions
must be true for the action to occur. See Figure 8-7.

Figure 8-7 Click the All Link to Determine What Will Cause the Action to Occur

5. Click the [event] link to choose an available event that will trigger the action. Events can
include logging in, clicking a graphic, clicking a button, adding an item to a shopping cart,
navigating to another page in a portal, and so on. Some events are predefined or you can

http://download.oracle.com/docs/cd/E12840_01/wlw/docs103/guide/ideuserguide/conProjectDependencies.html

Bui ld ing a Campaign

Oracle WebLogic Portal Interaction Management Guide 8-17

define your own custom events; see “Creating Custom Events” on page 9-25. After you select
the event, click Add and then click OK.

6. Click the [java type] link. To see a list of all available Java types, enter **. Use these
guidelines to view the Java types:

– Enter * for any string and ? for any character. See Figure 8-8.

Figure 8-8 Enter ** to See all Available Java Types

– You can also enter TZ, for example, for types containing T and Z as uppercase letters
in camel case notation. An example of this is java.util.TimeZone. You could enter
NuPoEx for types containing Nu, Po, and Ex as parts in camel case notation (for
example, java.lang.NullPointerException). The Matching types field displays
matches for the expression you type in the Select a type field.

After you select the Java type, click OK.

Tip: After you select a type, the bottom of the dialog box displays the type’s package and
JRE type.

7. Click the [method name] link and type the name of the method. For example, getAlias or
getUserName. Do not use special characters; the method name can contain only letters,
numbers, and underscores.

Bui ld ing a Campaign

8-18 Oracle WebLogic Portal Interaction Management Guide

8. Click the [no arguments] link to choose an argument to the method call. Click Add, and
choose one of the following: String, Boolean, Integer, Long, Double, Float, Null Argument,
Property Reference, or Variable Reference. Enter the new value and click OK. After you enter
all the arguments, click Finish.

9. In the Available Conditions section in the Design Palette tab, select the conditions you want
to trigger the action. When you select a condition, a corresponding link appears in the action
area. Click the link to define the condition.

10. Save the Campaign file by choosing File > Save.

Invoking an Instance Method
The Invoke an instance method action calls a method from any available type that is bound to
a variable. This variable may come from a condition, or it can be one that you define yourself in
the action. This action also has the ability to use bound variables from the Conditions section of
the rule set as an argument in the instance method, in addition to property references, standard
java types (String, Boolean, and so on), and other types available in the project.

Note: Campaigns that invoke static or instance methods cannot be viewed or edited in the WLP
Administration Console. Use Workshop for WebLogic to view or edit these types of
Campaigns.

The Java class must be application-scoped. See the Workshop for WebLogic online help for
instructions on creating an application-scoped Java or utility project.

Perform the following steps to invoke an instance method in your Campaign:

1. In the Portal Perspective, select the Campaign you created in “Building a Campaign” on
page 8-3.

2. From the Design Palette tab, drag the Invoke a static method rule action onto the
appropriate scenario in the Campaign Editor.

3. Select the Properties tab and enter a name for the action.

4. In the action, click the all link to toggle back and forth between any and all to determine
which conditions will trigger the action. The any choice means that only one of the conditions
must be true for the action to occur.

5. Click the [event] link to choose an available event that will trigger the action. Events can
include logging in, clicking a graphic, clicking a button, adding an item to a shopping cart,
navigating to another page in a portal, and so on. Some events are predefined or you can

http://download.oracle.com/docs/cd/E12840_01/wlw/docs103/guide/ideuserguide/conProjectDependencies.html

Bui ld ing a Campaign

Oracle WebLogic Portal Interaction Management Guide 8-19

define your own custom events; see “Creating Custom Events” on page 9-25. After you select
the event, click Add and then click OK.

6. Click the [variable name] link and enter a variable name. Click the ellipses button next to
Type, select a matching type, and click OK. Click OK on the Enter Variable dialog box.

7. Click the [java type] link. To see a list of all available Java types, enter **. Use these
guidelines to view the Java types:

– Enter * for any string and ? for any character.

– You can also enter TZ, for example, for types containing T and Z as uppercase letters
in camel case notation. An example of this is java.util.TimeZone. You could enter
NuPoEx for types containing Nu, Po, and Ex as parts in camel case notation (for
example, java.lang.NullPointerException). The Matching types field displays
matches for the expression you type in the Select a type field.

After you select the Java type, click OK.

Tip: After you select a type, the bottom of the dialog box displays the type’s package and
JRE type.

8. Click the [method name] link and type the name of the method. For example, getAlias or
getUserName. Do not use special characters; the method name can contain only letters,
numbers, and underscores.

9. Click the [no arguments] link to choose an argument to the method call. Click Add, and
choose one of the following: String, Boolean, Integer, Long, Double, Float, Null Argument,
Property Reference, or Variable Reference. Enter the new value and click OK. After you enter
all the arguments, click Finish.

10. In the Available Conditions section in the Design Palette tab, select the conditions you want
to trigger the action. When you select a condition, a corresponding link appears in the action
area. Click the link to define the condition.

11. Save the Campaign file by choosing File > Save.

Placing Content in a Placeholder
The Place content in a placeholder action retrieves web content from a content repository and
displays the selected piece of content in a predefined Placeholder on a JSP.

Perform the following steps to add content to a placeholder in your Campaign:

Bui ld ing a Campaign

8-20 Oracle WebLogic Portal Interaction Management Guide

1. In the Portal Perspective, select the Campaign you created in “Building a Campaign” on
page 8-3.

2. From the Design Palette tab, drag the Place content in a placeholder rule action onto the
appropriate scenario in the Campaign Editor.

3. Select the Properties tab and enter a name for the action.

4. In the action, click the all link to toggle back and forth between any and all to determine
which conditions will trigger the action. See Figure 8-9.

Figure 8-9 Click the All Link to Determine What Will Cause the Action to Occur

5. Click the [eventl] link to choose an available event that will trigger the action. Events can
include logging in, clicking a graphic, clicking a button, adding an item to a shopping cart,
navigating to another page in a portal, and so on. Some events are predefined or you can
define your own custom events; see “Creating Custom Events” on page 9-25. After you select
the event, click Add and then click OK.

6. To define the query, click the empty content search link. You can define the query in
Advanced mode using WebLogic Portal's expression syntax (on the Advanced tab) or in
Graphical mode (on the Query tab).

– Advanced mode – In the Content Search window, select the Advanced tab and build a
query using the instructions in “Building a Content Query with Expressions” on
page 6-8.

– Graphical mode – Use the following steps to build a content query by selecting
content properties, comparators, and values to retrieve content items.

a. In the Content Search window, select the Query tab.

Bui ld ing a Campaign

Oracle WebLogic Portal Interaction Management Guide 8-21

b. Click the drop-down list to select a property set and then select a property and click Add.
(The properties you select are content properties (types) rather than property set properties
such as User Profile or session properties.)

c. In the Content Search Values window that appears, select one of the following tabs:

• Values – To define the query based on a comparison to a value you enter. For
example, the query could be set to retrieve content with an investorRiskLevel
property that is marked as high.

• Properties – To define the content query based on the property value that is
dynamically fed in from another type of property, such as a User Profile property.
For example, instead of creating a query based on static content properties, you can
create a query that reads in the value of the current user's investorRiskLevel to
populate the query. The query would be different for each user.

d. Click Add. The query descriptor is added in the Content Search window, as shown in
Figure 8-10.

Figure 8-10 Base the Content Query on a Comparison to a Value You Enter

Bui ld ing a Campaign

8-22 Oracle WebLogic Portal Interaction Management Guide

e. You can add more value phrases to the query, then set the appropriate option in the For
multiple descriptors section.

7. Click OK in the Content Search window.

8. Click the [placeholder name] link in the action, and select the Placeholders that will display
content when the scenario is triggered.

9. Click Add to move the Placeholders to the Selected Placeholders section, enter text to
describe the Placeholder in the Description field, and click OK.

10. You can preview the content that will be retrieved by the query in the Content Preview
window below the Editor. If you defined the query to use values from a User Profile property,
the retrieved content will be different for each user, so you must enter the username of an
existing user (such as weblogic) in the Preview User field to see which content will be
retrieved for that user.

Note: The Content Preview window shows content that the query will retrieve. However,
since a Placeholder can show only one piece of content at a time, the single piece of
content that is displayed varies depending on which query is run (determined by the
priority you set for a query and the settings for Campaign queries) and the adWeight
property setting on content.

You must add the adWeight property to a content type as a single-value Integer. Content
with a higher adWeight number has a higher likelihood of being selected to display in a
Placeholder.

11. If you want the content to stop being displayed prior to the end of the Campaign, click the
campaign ends link to determine when the content will stop being displayed.

12. To increase the chances that content from the query will be displayed, click the Do not
remove any other content link and determine the existing content that will be removed from
the designated Placeholders when the action runs.

13. To set the priority that the query will be run compared to other queries that may exist in the
Placeholders, click the Normal link and select a priority. Higher priorities give the query a
greater chance of being run.

14. In the Available Conditions section, select the conditions you want to trigger the action. When
you select a condition, a corresponding link appears in the action area. Click the link to define
the condition.

15. Save the Campaign by choosing File > Save.

Bui ld ing a Campaign

Oracle WebLogic Portal Interaction Management Guide 8-23

Sending an E-Mail in a Campaign
The Send an email rule action sends a predefined e-mail to a user in your Campaign. You might
use an e-mail to alert users to specials that are customized to a specific User Segment.

Perform the following steps to add an E-Mail Action to your Campaign:

1. In the Portal Perspective in Workshop for WebLogic, select the Campaign you created in
“Building a Campaign” on page 8-3.

2. From the Design Palette tab, drag the Send an email rule action onto the appropriate scenario
in the Campaign Editor.

3. In the Properties tab, enter a name for the action.

4. In the action, click the all link to toggle back and forth between any and all to determine
which conditions will trigger the action. The any choice means that only one of the conditions
must be true for the action to occur.

5. Click the [server url] link to select the e-mail message to send. Choose URL, enter a Subject,
and an optional default e-mail address. Click Preview if you want to view the e-mail now.

6. Click OK.

7. In the Available Conditions section in the Design Palette tab, select the conditions you want
to trigger the action. When you select a condition, a corresponding link appears in the action
area. Click the link to define the condition.

8. Save the Campaign file by choosing File > Save.

Note: If you are using emails in your Campaign, you can choose to send the emails in batch
mode or real-time (batch mode is the default). In batch mode, when you run or test your
Campaign, e-mails are not sent. See “Setting Up Bulk E-Mail Messages” on page 8-27
to learn how to change the mailing behavior to real-time.

Offering a Discount in a Campaign
Discount actions give the user a discount on items, orders, or shipping. You can add the Offer a
discount to your Campaign.

WARNING: Discount Actions are part of the Commerce API, which is deprecated with
WebLogic Portal 10.0.

Perform the following steps before you create a Discount Action in your Campaign:

Bui ld ing a Campaign

8-24 Oracle WebLogic Portal Interaction Management Guide

1. Add commerce services to your portal application. The Commerce API is deprecated with
WebLogic Portal 10.0.

2. Set up a shopping cart using the WebLogic Portal Commerce API, which is deprecated.

3. Create a catalog in the virtual content repository.

4. Use the WebLogic Portal catalog classes in the commerce API to surface catalog items from
the Virtual Content Repository and identify them with categories and SKU numbers.

5. Create discounts and use the Commerce API to surface the discounts in your shopping cart.
You can also use the API to surface the discount's description next to the discount amount
displayed in the shopping cart.

Perform the following steps to add a Discount Action to your Campaign:

1. In the Portal Perspective of Workshop for WebLogic, select the Campaign you created in
“Building a Campaign” on page 8-3.

2. In the Design Palette tab, drag the Offer a discount rule action onto the appropriate scenario
in the Campaign Editor.

3. In the Property Editor tab, enter a name for the action.

4. In the action, click the all link to toggle back and forth between any and all to determine
which conditions will trigger the action.

5. Click the [discount] link and select the discounts you want to apply. You can choose to enter
an optional Discount Explanation that can appear in the shopping cart next to the displayed
discount.

6. Click OK.

7. In the Available Conditions section, select the conditions you want to trigger the action. When
you select a condition, a corresponding link appears in the Action section. Click the link to
define the condition.

8. Save the Campaign file by choosing File > Save.

Setting Up Automatic E-Mail Messages
Perform the following steps to send automatic e-mails as part of a Campaign:

1. Define an e-mail address property by create a property in a User Profile property set to store
the user e-mail address. For example, the default CustomerProperties.usr property set

Bui ld ing a Campaign

Oracle WebLogic Portal Interaction Management Guide 8-25

contains an Email property that can contain a single, unrestricted string value for an e-mail
address.

2. Set up the Campaign Service. You must tell the Campaign service where to get the e-mail
address when sending automatic e-mails to users.

a. In the Administration Console, choose Configuration & Monitoring > Service
Administration.

b. In the Resource Tree, expand the Interaction Management folder and select Campaign
Service.

c. Click Configuration Settings for: Campaign Service. Figure 8-11 shows you where to
enter the property set name and the name of the e-mail property you set up in the previous
step.

Figure 8-11 You Can Set Up Where to Get E-Mail Addresses for Automatic E-Mails

• Goal Check Time – The default is 300,000 milliseconds (five minutes). If you set
the Goal Check Time to 0, there is no time delay in the amount of time the
Campaign service checks to see if goals have been met. See “Setting Goal
Definitions” on page 8-7 for more information.

• Base Directory for Email Browsing – The default directory for storing e-mail files
is campaigns/emails. You must also change the <url-pattern> path in the

Bui ld ing a Campaign

8-26 Oracle WebLogic Portal Interaction Management Guide

web.xml file to secure the files in the new directory and redeploy the application
after you make these changes. See “Storing E-Mail Files in a Different Directory” on
page 8-32.

• Maximum URI Length – The maximum length of a deployable Campaign Uniform
Resource Identifier (URI).

• Default From Email Address – The default address that receives any replies from
email that the Campaign sends. In a standard mail header, this is the From address.
Each Campaign scenario can specify its own From address that overrides this default
property.

• Email Address Property Name – The name of the property that contains customer
email addresses.

• Property Set Name Containing Email Address Property – The name of the
property set that contains customer email properties.

• Email Opt In Property Name – The name of the property that specifies whether
customers want to receive Campaign-related email. You should define a User Profile
property with the single, restricted values of true and false.

• Property Set Name Containing Opt In Property – The name of the property set
that contains the customer’s opt-in property. Emails will not be sent to users who
have their property value set to false.

d. Click Update.

3. Set SMTP for outgoing mail by configuring the Simple Mail Transfer Protocol (SMTP) host
name for the Mail Service. Perform the following steps:

a. In the Resource Tree, select Interaction Management and then Mail Service.

b. Click Configuration Settings for Mail Service and use the SMTP Host Name field to
enter the host name for your e-mail server's outgoing mail.

c. If you use a Sybase database, select the Enable ORDER BY Workaround for Clobs
check box. This setting enables the Mail Service to work with Sybase since Sybase does
not support using a TEXT data type in an ORDER BY clause.

4. Create e-mail messages using a predefined e-mail message. E-mail messages can be in any of
the following formats: TXT, HTML, JSP, or XML (with style sheets). Store the e-mails in the
<PortalWebProject>/campaigns/emails directory. If you want to use a different
directory for storing e-mail files, see “Storing E-Mail Files in a Different Directory” on
page 8-32. If you want to send bulk e-mails, see “Setting Up Bulk E-Mail Messages” on
page 8-27.

Bui ld ing a Campaign

Oracle WebLogic Portal Interaction Management Guide 8-27

5. Set e-mail security. Prevent unauthorized access to e-mail messages by following the steps in
“Setting Up E-Mail Security” on page 8-31.

Setting Up Bulk E-Mail Messages
You must use a command to periodically send the batch e-mails that the JSPs store in the
WebLogic Portal data repository. You can also use the cron command or any other scheduler
that your operating system supports to issue the send-mail command.

For Windows, the send-mail command is located in a .bat file wrapper script. For UNIX, the
send-mail command is located in a .sh file. The following sections refer to the .bat file.
UNIX users should substitute .sh for .bat.

The send-mail wrapper script specifies the name and listen port of the WebLogic Portal host
that processes the send-mail request. By default, the wrapper script specifies localhost:7501
for the hostname and listen port. However, localhost:7501 is valid only when you run the
script while logged in to a WebLogic Portal host in a single-node environment (and only if you
did not modify the default listen port). If you use the send-mail script from any other
configuration, you must modify the script.

Modifying the Send-Mail Script to Work from a Remote Host
Perform the following steps to run the send-mail script from a remote host (a computer that is
not a WebLogic Portal host):

1. Open the following file in a text editor:

<WLPORTAL_HOME>\info-mgmt\bin\mailmanager.bat (Windows)
or
<WLPORTAL_HOME>/info-mgmt/bin/mailmanager.sh (UNIX)

2. In the mailmanager script, locate the SET HOST= line. Replace localhost with the name of a
WebLogic Portal host.

3. If the host uses a listen port other than 7501, replace 7501 in the SET PORT= line with the
correct listen port.

4. Save the mailmanager script.

Modifying the Send-Mail Script to Work in a Clustered Environment
If you work in a clustered environment, you must modify the send-mail wrapper script to
specify the name of a host in the cluster. The default localhost value is not valid for the Mail
Service in a clustered environment.

Bui ld ing a Campaign

8-28 Oracle WebLogic Portal Interaction Management Guide

Note: The following steps must be performed on each host that will run the script.

Perform the following steps on each host to use the send-mail script in a clustered environment:

1. Open the following file in a text editor:

<WLPORTAL_HOME>\info-mgmt\bin\mailmanager.bat (Windows)
<WLPORTAL_HOME>/info-mgmt/bin/mailmanager.sh (UNIX)

2. In the mailmanager script, replace localhost in the SET HOST= line with the name of a
WebLogic Portal host. Because each host in a cluster can access the data repository that stores
the e-mail messages, you can specify the name of any host in the cluster.

3. If the host uses a listen port other than 7501, replace 7501 in the SET PORT= line with the
correct listen port.

4. Save the mailmanager script.

Using the Mailmanager Commands
The mailmanager command is a wrapper script that uses the jav.com.bea.p13n.mail.
MailManager class. The mailmanager commands help you send and manage bulk e-mails.

Use the following command syntax:

mailmanager.bat [appName] [list | send | send-delete | delete]

batch-name] (mailmanager.sh on UNIX)

If you specify only the appName arguments, the mailmanager command prints to standard output
the names all e-mail batches in the application and the number of e-mails in each batch.

Table 8-3 contains a list of the command arguments.
Table 8-3 Mailmanager Command Arguments

Command Argument Description

 appName The name of the enterprise application that generated the e-mail batch.

list Prints to standard output the names of all e-mail batches in the data repository
and the number of e-mails in each batch.

list batch-name Prints to standard output the subject and recipients of all e-mails in the batch
that you specify.

Bui ld ing a Campaign

Oracle WebLogic Portal Interaction Management Guide 8-29

Table 8-4 contains examples of mailmanager commands.

Sending Bulk E-Mail Messages
Perform the following steps to send bulk e-mail from a shell that is logged into a WebLogic Portal
host:

1. Start the WebLogic Server by choosing Run As > Run on Server.

send batch-name Sends all e-mails in the batch that you specify.

send-delete
batch-name

Sends all e-mails in the batch that you specify and then deletes the batch from
the data repository.

delete batch-name Deletes e-mails in the batch that you specify.

batch-name The name of a batch that mailmanager list returns. This argument
does not support wildcards.

Table 8-3 Mailmanager Command Arguments

Command Argument Description

Table 8-4 Examples of Mailmanager Commands

Command Example Description

mailmanager.bat list Lists all available batches

mailmanager.bat wlcsApp list
/campaigns/campaign1.cam

Lists the contents of a batch named
/campaigns/campaign1.cam that the
wlcsApp application generated

mailmanager.bat wlcsApp send-delete
/campaigns/campaign1.cam

Sends the campaign1.cam batch and deletes it
afterwards

mailmanager.bat wlcsApp delete
/campaigns/campaign1.cam

Deletes the campaign1.cam batch

Bui ld ing a Campaign

8-30 Oracle WebLogic Portal Interaction Management Guide

2. To determine the names and contents of the e-mail batches in the data repository, enter the
following command:

mailmanager.bat appName list (Windows)

The appName is the name of the enterprise application that generated the e-mail batch. The
command prints to standard output. You can use shell commands to direct the output to
files.

3. To send a batch and remove it from the data repository, enter the following command:

mailmanager.bat appName send-delete batch-name

Note: If you are using e-mails in your Campaign, you can choose to send the e-mails in batch
mode or real-time (batch mode is the default). In batch mode, when you run or test your
Campaign, no e-mails will be sent. See “Setting Up Bulk E-Mail Messages” on
page 8-27” to learn how to send batch mode emails and how to change the mailing
behavior to real-time.

Scheduling Bulk E-mail Delivery
You can use a scheduling utility to send the e-mail batches in the data repository. Because you
must specify the name of a batch when you use the mailmanager command to send mail, you
must schedule sending mail for each Campaign scenario separately. The name of a batch
corresponds to the scenario’s containerId. The containerId specifies the ID of the Campaign to
which the scenario belongs.

For information in using a scheduling utility, refer to your operating system’s documentation.

Deleting E-Mail Batches
You can delete e-mail batches as you send them (See “Sending Bulk E-Mail Messages” on
page 8-29).

You can also perform the following steps to delete e-mail batches:

1. To determine the names and contents of the e-mail batches in the data repository, enter the
following command:

mailmanager.bat appName list

The appName is the name of the enterprise application that generated the e-mail batch. The
command prints to standard output. You can use shell commands to direct the output to
files.

2. To delete a batch, enter the following command:

Bui ld ing a Campaign

Oracle WebLogic Portal Interaction Management Guide 8-31

mailmanager.bat appName delete batch-name

Setting Up E-Mail Security
When a Campaign sends an automatic e-mail, it uses a predefined e-mail message stored on the
file system within your portal web project. By default, WebLogic Portal prevents unauthorized
access to those e-mail files when the files are stored in the <PortalWebProject>/campaigns/
emails directory.

The following deployment descriptors secure your e-mail files:

The <PortalApplication>/wps.jar/META-INF/weblogic-ejb-jar.xml descriptor file –
The following line in this file provides the name of a user who is in the global
PortalSystemAdministrator role:

<run-as-principal-name> portaladmin </run-as-principal-name>

Membership in the global PortalSystemAdministrator security role is defined in the
WebLogic Portal Administration Console at the server level. In a portal domain created
with the Configuration Wizard, the Administrators and PortalSystemAdministrators groups
that are provided by default are configured to be members of the global
PortalSystemAdministrator role. Because the portaladmin user (also provided by default in
a portal domain) is a member of the portal Administrators and PortalSystemAdministrators
groups, portaladmin is a member of the global PortalSystemAdministrator role.

The <PortalWebProject>/WEB-INF/web.xml file – The following line in this file
secures the e-mail files in <PortalWebProject>/campaigns/emails, allowing only the
Campaign service (through the PortalSystemAdministrator user defined in the previous
section) to access and send the e-mails:

<url-pattern>/campaigns/emails/*</url-pattern>

Perform the following steps to use a different user for e-mail security:

1. Back up the wps.jar file.

2. Un-jar the wps.jar file and change the name of the user in the weblogic-ejb-jar.xml file.

3. Verify that the user exists.

4. Verify that the user is a member of the global PortalSystemAdministrator security role; and

5. Re-jar and replace the old wps.jar and redeploy the application. If you enter the name of a user
in <run-as-principal-name> that does not exist, or if you delete the portaladmin user
without changing the <run-as-principal-name> entry, you will receive deployment errors
on the wps.jar file.

Bui ld ing a Campaign

8-32 Oracle WebLogic Portal Interaction Management Guide

Storing E-Mail Files in a Different Directory
Perform the following steps if you need to use a different directory to store e-mail files:

1. Change the <url-pattern> path in the web.xml file to secure the files in the new directory.

2. In the Administration Console, choose Configuration & Monitoring > Service
Administration.

3. In the Resource Tree, expand the Interaction Management folder and select Campaign
Service.

4. Click Configuration Settings for Campaign Service and change the directory in the Base
Directory for Email Browsing field. For example, campaigns/emails/q1, as shown in
Figure 8-12.

Figure 8-12 Change the E-mail Directory

5. Redeploy the application or restart the server during development in Workshop for
WebLogic.

Note: Using a wildcard character (*) in the URL pattern does not provide recursive directory
protection. The wildcard protects only the files in the last directory listed. For example,
if you want to store e-mail files in the /campaigns/emails/q1 directory, the
url-pattern information in the /campaigns/emails/* directory does not protect the

Bui ld ing a Campaign

Oracle WebLogic Portal Interaction Management Guide 8-33

e-mail files in the /q1 directory. To protect those e-mail files, the url-pattern
information must be in the /campaigns/emails/q1/* directory.

Targeting a Campaign to Tracked Anonymous Users
You can set Campaigns up to work with tracked anonymous users. A Campaign will not work
with completely anonymous users.

Perform the following steps to target a Campaign to tracked anonymous users:

1. Create a Campaign file and add goals, scenarios, and actions to it. Follow the instructions in
“Creating a Campaign File” on page 8-5.

2. Locate the web.xml file in the /WEB-INF directory of your portal web project.

3. Double-click the web.xml file so you can edit it in Workshop for WebLogic.

4. To override the settings from the shared library, add the following lines from Listing 8-1 to
the web.xml file. Adding this PortalServletFilter component turns on anonymous user
tracking in your Campaign.

Listing 8-1 Add this Section to the Web.xml File

<filter>
 <filter-name>PortalServletFilter</filter-name>
 <filter-class>com.bea.p13n.servlets.PortalServletFilter
 </filter-class>
 <init-param>
 <description>Option to track anonymous users, defaults to false
 if not set. 'createAnonymousProfile' is ignored if this is
 true</description>
 <param-name>enableTrackedAnonymous</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <description>Length in seconds visitor must be on site before we
 start tracking them. Defaults to 60 seconds if not set
 </description>
 <param-name>trackedAnonymousVisitDuration</param-name>
 <param-value>60</param-value>

 </init-param>

</filter>

Bui ld ing a Campaign

8-34 Oracle WebLogic Portal Interaction Management Guide

5. Change the trackedAnonymousVisitDuration parameter value to the number of seconds
before tracking begins. During testing, set the trackedAnonymousVisitDuration in
Listing 8-1 to a small number (for example, 5) so that your sessions quickly switch to tracked
sessions.

6. Create an event trigger for the Campaign. For the registered user, a login event triggers the
Campaign. For a tracked anonymous user, you must add code to generate the event on behalf
of the tracked anonymous user. The example below shows a ClickContentEvent that
triggers a Campaign.

try
{
 profile = SessionHelper.getProfile(session);
 if (profile != null && !profile.getType().equals
 (ProfileType.REGISTERED))
 {
 TrackingEventHelper.getEventService().dispatchEvent(new
 ClickContentEvent(session, httpReq, null, null));
 }
}
catch (Exception ex)
{
 //handle any exceptions dipatching the event
}

7. Save the changes to the web.xml file.

8. You can see more detail on the PortalServletFilter setting in Workshop for WebLogic
by right-clicking the web.xml file, choosing Compare With > J2EE Library Version, and
double-clicking p13n-web-lib in the Compare editor. The editor shows the p13n-web-lib
version in one of the panes.

Testing a Campaign
Use the following guidelines to test Campaigns on your development server in your development
environment:

1. Verify that the Campaign is complete. The entire Campaign, each scenario, and each action
have specific conditions for being complete. When you select each, the Is Complete property
in the Property Editor window displays a read-only value of true or false. If the Is
Complete property is false for any part of a Campaign, select the property in the Property
Editor window and read the Description to find out which properties are required.

2. Verify that the Campaign is active. With the Campaign selected (not a scenario or action), set
the Active property in the Property Editor window to true.

Tes t ing a Campaign

Oracle WebLogic Portal Interaction Management Guide 8-35

3. If you see the text Campaign is currently stopped just below the Campaign Editor window,
you must change the Start Date or Stop Date properties so that the current date falls between
the two. When the current date is within the Campaign date range, the Campaign is currently
stopped text disappears.

4. If your Campaign uses Goal Setting to end a Campaign based on content impressions or
clickthroughs, perform the following steps to modify the settings:

a. In the Administration Console, choose Configuration & Monitoring > Service
Administration.

b. In the Resource Tree, expand the Interaction Management folder and select Campaign
Service.

c. Click the Configuration Settings for Campaign Service link and set the Goal Check
Time to 0. This creates no time delay in the amount of time the Campaign service checks
to see if goals have been met. Click Update.

d. In the Resource Tree, select Ad Service and click the Configuration Settings for: Ad
Service link

e. Set the Display Flush Size field to 1, as shown in Figure 8-13.

Figure 8-13 Change the Display Flush Size to 1

This setting writes each impression or clickthrough to the database each time it occurs
and ends the Campaign on the exact number of impression or clickthrough counts you
have established. For example, if you want to end a Campaign on five impressions, but
your Display Flush Size was set to 10, you would need to see 10 impressions before
the that number is written to the database. At that point, the Campaign service would

Bui ld ing a Campaign

8-36 Oracle WebLogic Portal Interaction Management Guide

detect that the five impressions had already been met, effectively ending the Campaign
after 10 impressions rather than five.

You must restart the server for this change to take effect.

Note: Do not deploy your application into a production environment with these settings.
Performance will be adversely affected.

5. You can reset many aspects of Campaigns during testing, such as impression and clickthrough
counts that can end a Campaign and scenarios that run only once for each user. With a
Campaign file open in Workshop for WebLogic, choose Portal > Reset Campaign and reset
any aspect of the Campaign.

6. Test run once Content Actions by performing the following steps to test Content Actions that
you want to run only once per user:

a. With the Campaign open in Workshop for WebLogic, right-click in the Campaign Editor.

b. Choose Reset Campaign.

c. In the Reset Campaign dialog box, select the Reset all options check box, and click OK.

d. View the portal and run the Content Action by starting an event for which the Campaign
service is listening (such as logging in). Verify that the Campaign content is displayed.

e. Log out or click Back in the browser to return to where you can launch the event again.

f. Return to the Campaign in Workshop for WebLogic and select the Campaign.

g. Right-click the Campaign Editor space and choose Reset Campaign, as shown in
Figure 8-14.

Tes t ing a Campaign

Oracle WebLogic Portal Interaction Management Guide 8-37

Figure 8-14 Right-Click in the Campaign Editor to Reset the Campaign

h. Select the Remove previously placed content from rotation check box and click OK.
See Figure 8-15.

Figure 8-15 Reset a Campaign

7. To troubleshoot Campaign content in Placeholders, you should understand how Placeholders
handle default and Campaign queries. For example, default and Campaign queries have
priorities that help determine which query runs. Also, you can set default queries so that they
do not run when Campaign queries are present. For more information, see Chapter 7,
“Creating a Placeholder”.

Bui ld ing a Campaign

8-38 Oracle WebLogic Portal Interaction Management Guide

8. Improve performance by disabling, enabling, and flushing content caches that are used for
web content. With a Campaign open in Workshop for WebLogic, the Edit > Portal Content
Caches menu provides those options:

– Flush Content Caches

– Disable Content Caches

– Enable Content Caches

For more information on managing your caches, use the Run > Portal Cache Manager
menu and consult the Portal Development Guide for instructions.

The following caches are affected (you can view the caches in the Administration Console
by choosing Configuration & Monitoring > Service Administration and selecting
Personalization and then Cache Manager in the Resource Tree).

• The adBucketServiceCache – Reserved for future use.

• The searchCache – Caches the results of content searches for the virtual content
repository.

• The documentMetadataCache – Caches the results of document searches for the
DocumentManager. This setting is not used by the content repositories.

• The binaryCache.WLP Repository – Caches binary property values for the WLP
Repository.

• The documentContentCache – Caches the document bytes for the
DocumentManager. This setting is not used by the content repositories.

• The nodeCache.WLP Repository – Caches content for the WLP Repository.

• The documentIdCache – Caches the results of document searches (ids only) for the
DocumentManager. This setting is not used by the content repositories.

• The adServiceCache – Used by the ad service to cache the results of searches for
content rendering.

Tip: For optimal performance, enable these caches in your production environment. See
“Setting Campaign Content Caches” on page 8-42 for instructions.

../portals/index.html

T r igge r ing a Campaign

Oracle WebLogic Portal Interaction Management Guide 8-39

Triggering a Campaign
You must use a Regular or Behavior Tracking event to begin your campaign or trigger a
campaign action based on events and their values. A commonly used event is
SessionLoginEvent; see “Using the SessionLoginEvent” on page 9-8 for instructions.

Campaign scenario rules are evaluated only when a single event occurs for which the Campaign
service is listening.

Note: By default, the only events that cannot be used to trigger Campaigns are
DisplayContentEvent, DisplayProductEvent, BuyEvent, SessionBeginEvent,
and SessionEndEvent, as listed in the
<PortalApplication>/wps.jar/com/bea/campaign/internal/
listeners.properties file.)

If your Campaign conditions use request, session, or event properties, those properties are
captured when a listened-for event is triggered. The event takes a snapshot of the current session
properties, the single request property (contained in the session), and the event properties
(contained in the request). The snapshot taken by the event is in the form of a request object,
which the event passes to the Campaign service for evaluation. If the values in that snapshot
evaluate to true against any Campaign action rules, those Campaign actions are triggered.

Tip: If you trigger a Campaign to test e-mails, the e-mails are not sent real-time if the batch
flag default is still set to true. See “Setting Up Bulk E-Mail Messages” on page 8-27
for instructions on changing the mailing behavior to real-time.

This section contains the following topic:

Troubleshooting Campaign Actions

Troubleshooting Campaign Actions
When Campaign Actions are not triggered as expected using Session, Request, and Event
properties, one of the following items might be the problem:

The Campaign service was listening for events, but no event occurred

The session, request, or event properties contained in the Campaign rule were not part of
the request object snapshot taken when the event occurred

In Campaign rules that are defined so that all conditions must apply for the Campaign
action to be triggered, one or more of the conditions evaluated to false

Bui ld ing a Campaign

8-40 Oracle WebLogic Portal Interaction Management Guide

Turning Off a Campaign
You can remove the CampaignEventListener in order to turn off all Campaigns so that they do
not fire Campaign events.

Tip: The following steps in the Administration Console work for a portal that is deployed as
an exploded EAR file. If your portal is a compressed EAR file, you will need to do these
steps manually and then re-build and deploy the EAR file.

Perform the following steps to turn off Campaign events:

1. Start the Administration Console and choose Configuration & Monitoring > Service
Administration.

2. In the Resource Tree, expand the Personalization folder and select Event Service.

3. In the Browse tab, select the com.bea.campaign.internal.CampaignEventListener
check box and click Delete. Campaign events will not longer be fired, but if you set up other
Behavior Tracking or other event listeners, those events will continue to fire.

Note: If you want to turn on the Campaign later, add the CampaignEventListener as a
Synchronous Listener in the Browse tab.

Resetting a Campaign
You can reset different parts of your Campaigns. For example, you may want to do one or all of
the following:

Clear content from a Placeholder that had been previously put in the Placeholder. Doing
this ensures that the users who were supposed to see personalized content only once see it
only one time.

Clear from the database the number of times an image has been viewed or clicked so that
your Campaign does not reach its goals.

Give users a second chance on run once Campaign Actions that they have already
triggered.

Clear any e-mail messages waiting to be sent.

You can reset Campaigns in the development environment (for testing) or in the production
environment.

Reset t ing a Campaign

Oracle WebLogic Portal Interaction Management Guide 8-41

This section contains the following topics:

Resetting a Campaign in the Development Environment

Resetting a Campaign in the Production Environment

Resetting a Campaign in the Development Environment
Perform the following steps to automatically reset a Campaign in your development environment
after you make changes to it:

1. Open a Campaign file in the Portal Perspective in Workshop for WebLogic.

2. Choose Window > Preferences.

3. In the Preferences window, select WebLogic Portal.

4. Click Campaigns and select the Reset campaign after saving changes check box, as shown
in Figure 8-16.

Figure 8-16 You Can Automatically Reset a Campaign After You Edit It

5. Click OK.

For more information on using this feature for testing, see “Testing a Campaign” on page 8-34.

Bui ld ing a Campaign

8-42 Oracle WebLogic Portal Interaction Management Guide

Resetting a Campaign in the Production Environment
Perform the following steps to reset a Campaign in your production environment:

1. In Workshop for WebLogic, start the Administration Console by choosing Run > Open
Administration Console.

2. In the Administration Console, select Interaction > Campaigns.

3. In the Resource Tree, select the Campaign that you want to reset.

4. In the Campaign Details tab, click Reset Campaign.

5. Click OK.

Setting Campaign Content Caches
For optimal performance, enable content caches in your production environment. From
Workshop for WebLogic, you can disable, enable, and flush caches that are used for web content.

Perform the following steps to enable content caches:

1. In the Portal Perspective in Workshop for WebLogic, open a Campaign.

2. Choose Edit > Portal Content Caches > Flush Content Caches to clear each of the caches.
Select Edit > Portal Content Caches > Disable Content Caches to stop caching for all
caches. Select Edit > Portal Content Caches > Enable Content Caches to get the best
performance for your Campaign. See “Testing a Campaign” on page 8-34 for a list of content
caches.

3. You can view the affected caches in the WebLogic Portal Administration Console by
choosing Configuration & Monitoring > Service Administration.

4. In the Resource Tree, expand the Cache Manager folder.

5. Click a specific cache name to view its settings. You can click Flush to clear this cache item.

6. Click Configuration Settings for <cache name> and select the Enabled or Disabled check
box, as shown in Figure 8-17.

Reset t ing a Campaign

Oracle WebLogic Portal Interaction Management Guide 8-43

Figure 8-17 You Can Enable or Disable a Cache Setting

7. Click Update.

Tip: You can adjust your Campaign and caches to run faster in a production environment.

See “Managing a Campaign for Optimal Performance” on page 15-10 for information on
changing Campaigns to improve performance.

Bui ld ing a Campaign

8-44 Oracle WebLogic Portal Interaction Management Guide

Oracle WebLogic Portal Interaction Management Guide 9-1

C H A P T E R 9

Setting Up Events and Behavior
Tracking

An Event is generated when a user interacts with a web interface. Events can include logging in,
clicking or viewing a graphic, clicking a button, navigating to another page in a portal, and so on.

WebLogic Portal provides an events framework that lets you leverage events in many ways: to
trigger Campaigns, persist event data in the database, and provide other types of functionality
when events occur.

Note: Interaction Management events are different than portlet events, which provide a
framework for interportlet communication. See the Portlet Development Guide.

The following examples show functionality you can provide with the event framework:

Capture the number of times users access a portal page.

Determine how many users have registered in a portal. You could also create a
Campaign Action that automatically sends each user a welcome e-mail when the
registration event occurs.

Identify which pieces of content are viewed or clicked.

Determine which category of user logs in to your HR Intranet most often. Categories
of users could include managers and regular employees. You could also create a Campaign
Action that displays a specific graphic when managers log in and displays another graphic
when regular employees log in.

This chapter describes the components of the event framework, helps you plan an event strategy
by explaining the purpose and use of each piece of the framework, describes WebLogic Portal’s
predefined events, and provides guidance and instructions on using events in your applications.

../portlets/index.html

Se t t ing Up Events and Behav io r T rack ing

9-2 Oracle WebLogic Portal Interaction Management Guide

This chapter includes the following sections:

Choosing How to Handle Events

Completing Your Behavior Tracking Strategy

Using Predefined Events

Generating Events for Content Clicks

Generating Content Events

Providing Event Attribute Values

Enabling Behavior Tracking

Creating Custom Events

Creating Custom Event Listeners

Dispatching Events

Using Events in Campaigns

Debugging the Event Service

Tracking Content Changes

Disabling Behavior Tracking

Choosing How to Handle Events
Each Event is an instance of an Event object that is identified with a unique name, or type. Each
Event type can get and set specific attributes, depending on its function. In each of the previous
examples, the event must capture specific information. For example, to capture the number of
times users access a portal page, a ClickPage event might get and set the name of the page that
was clicked. To identify which pieces of content are viewed, a DisplayContent event might get
and set the ID and type of each displayed content item.

After events set their attribute values, you can persist those values in any desired way. WebLogic
Portal provides a default mechanism for persisting event attributes in a database as XML. When
event data is stored in the database, you can mine that data to perform analytics, run reports, or
even feed event data back into your applications. For example, you can create a portlet that runs
SQL queries against the database and returns the number of times each portal page was visited.

Choos ing How to Handle Events

Oracle WebLogic Portal Interaction Management Guide 9-3

You can also develop your own persistence functionality. For example, you can store event data
in a file, or you can write the data to database tables without structuring the data in XML.

Sometimes, events do not require attributes or persistence. Their only purpose could be to trigger
some other type of functionality. For example, if you want to determine how many times a
download link is clicked regardless of who clicked it, a ClickDownloadLink event (and an
accompanying event listener) can increment a database field value by 1.

You can also make Campaigns more powerful by using events in your Campaign definitions. For
example, you can send a user a predefined e-mail automatically when the user generates the
UserRegistration event by registering in a portal; or display a personalized piece of content
when an event with specific attribute values is generated.

Figure 9-1 shows the event framework, which gives you the flexibility to handle events in many
ways. Table 9-1 describes the pieces of the framework.

Se t t ing Up Events and Behav io r T rack ing

9-4 Oracle WebLogic Portal Interaction Management Guide

Figure 9-1 The Event Framework

Choos ing How to Handle Events

Oracle WebLogic Portal Interaction Management Guide 9-5

Table 9-1 The Event Framework

1 An event is an object that extends either the Event or TrackingEvent class. The event identifies
itself to the Event service with a unique name, or type, declares the attributes it will use, and passes the
event type and the attributes to the base class constructor.

Events can contain whatever type of attributes you want to capture. For example, you can capture the
name of a page or a portlet that is selected for viewing; you can capture the name of a JSP in a Page
Flow to gauge which JSPs are being visited most often. You can trigger a Campaign when a specific
JSP is viewed; you can capture information about content retrieved from the virtual content repository,
or you can capture product information when a user adds an item to a shopping cart.

Note: Shopping cart events, discounts, and catalogs are part of the Commerce API, which is
deprecated with WebLogic Portal 10.0.

Behavior Tracking events also declare the XML namespace and schema filename that the Event Service
uses to store event attribute values in the database as XML. For each custom Behavior Tracking event
you create, you should also create an XML schema.

2 Wherever you want to generate the event in your application (whether from a JSP, a Java class, or a
Page Flow), create an instance of the event. In your code, set the attribute values the event needs, and
pass them to the event as arguments in the order the event expects them. The argument order is defined
in the event class. Tell the Event Service to dispatch the event. Dispatching an event tells all the
interested event listeners that the event has occurred, causing them to perform their actions.

3 The Behavior Tracking listener listens for all events that extend the TrackingEvent class and are
registered with the Behavior Tracking service.

The Behavior Tracking listener’s function is to move the XML document of event attributes, created by
the event and the XML schema, to a buffer. The Behavior Tracking Service then moves the XML
document to the BT_EVENT table in the database in an interval you determine.

You can retrieve Behavior Tracking data from the database for reporting or analytical purposes, such
as determining the amount of traffic a page or portlet receives.

By default, the Behavior Tracking listener is not registered with the Event service. You must register
the Behavior Tracking listener to enable Behavior Tracking, as described in “Enabling Behavior
Tracking” on page 9-19.

Se t t ing Up Events and Behav io r T rack ing

9-6 Oracle WebLogic Portal Interaction Management Guide

4 The Campaign event listener listens for and handles all events, except excluded events listed in the
wps.jar file’s listeners.properties file. When an event occurs, the Campaign event listener
calls the Campaign service. The Campaign service takes a snapshot of the current HTTP request, and
evaluates the data in the request against any Campaigns you have created to see if any Campaign actions
need to be executed.

Campaigns are completely dependent on events. If no events occur, the Campaign service is never
called, and no Campaign actions are executed.

In addition to the basic function of calling the Campaign service with an event, you can also use events
within Campaign definitions by executing Campaign actions if a specific event occurs or if an event has
specific properties. For example, you can define a Campaign in the following ways:
• If MyEvent occurs, show a specific piece of content.
• If MyEvent has a published property with a value greater than 2004, show a specific piece of

content.

In order to use events and event properties in Campaign definitions, you must create an event property
set for each event you want to use in Campaigns (stored in your application’s /data/src/events
directory in Workshop for WebLogic). An event property set contains the exact names of the attributes
you are setting in your event. The Campaign Editor interface uses the event property set in drop-down
fields that you use to create the Campaign definition.

For information on Campaigns, see Chapter 8, “Building a Campaign”.

5 Create a custom event listener only if you want to perform custom functionality when an event occurs.
A custom listener tells the Event service which events to monitor (which events trigger it to perform its
custom functionality). For example, with a custom event listener, you can implement your own
persistence mechanism to store event attributes, or you can respond to an event in real time by
modifying a User Profile or displaying related products when a user clicks a product image.

The base class you implement, EventListener, provides two methods: getTypes(), which lets
the listener advertise which event types it is interested in, and handleEvent(), which lets you
perform your custom functionality.

A listener can listen for more than one event, whether the event is a custom event or any of WebLogic
Portal’s predefined events.

In performing custom event handling, you have access to the event properties with the event’s
getAttribute() method.

Table 9-1 The Event Framework

Comple t ing Your Behav io r T rack ing S t ra tegy

Oracle WebLogic Portal Interaction Management Guide 9-7

Completing Your Behavior Tracking Strategy
WebLogic Portal’s event framework provides many options for generating and handling events,
as described in the previous section. See the guidelines in “Planning Your Behavior Tracking
Strategy” on page 2-11 to determine the pieces of the event framework you need to implement.

This section contains the following topic:

Planning the Deployment of Custom Events, Listeners, and Property Sets

Planning the Deployment of Custom Events, Listeners, and
Property Sets
Creating custom events, listeners, and event property sets involves adding files to your
application and updating your application CLASSPATH. If you are adding events and property sets
to an application that is already deployed, these changes require application redeployment for the
events and CLASSPATH updates, and running the Propagation Utility to update the event
properties in the database. For deployment instructions, see the Production Operations Guide.

See Part IV Production for other deployment and production tasks.

Using Predefined Events
WebLogic Portal provides predefined Behavior Tracking events. The events capture different
attributes and use the Behavior Tracking listener and the Behavior Tracking Service to persist the
attributes as XML in the BT_EVENT table when they are generated, or dispatched. You must
enable Behavior Tracking to persist the event attributes (as described in “Enabling Behavior
Tracking” on page 9-19). You can also use these events to trigger Campaigns.

The following predefined events are provided for compatibility with legacy WebLogic Portal
commerce applications: AddToCartEvent, PurchaseCartEvent, and RemoveFromCartEvent.
If you want to dispatch these events in new commerce applications, you must create your own
code and Content Management properties to set and get the event property values, and you must
dispatch these events from your application code (for example, Page Flows and JSPs).

WARNING: Shopping cart events are part of the Commerce API, which is deprecated with
WebLogic Portal 10.0.

If you want to perform custom event handling when any of the predefined events is dispatched,
create a custom event listener, as described in “Creating Custom Event Listeners” on page 9-36.

This section contains the following topics:

../prodOps/index.html

Se t t ing Up Events and Behav io r T rack ing

9-8 Oracle WebLogic Portal Interaction Management Guide

Using the SessionLoginEvent

Using the SessionBeginEvent and SessionEndEvent

Using the UserRegistrationEvent

Using the AddToCartEvent

Using the RemoveFromCartEvent

Using the PurchaseCartEvent

Using the Rule Events

Using the DisplayCampaignEvent

Using the CampaignUserActivityEvent

Using the ClickCampaignEvent

Using the ClickProductEvent

Using the ClickContentEvent

Using the ClickThroughEventFilter

Using the ContentConfigEvent

Using the ContentCreateEvent

Using the ContentDeleteEvent

Using the ContentUpdateEvent

Using the SessionLoginEvent
Use the SessionLoginEvent to dispatch an event when a user logs into a portal and is
authenticated.

If Behavior Tracking is enabled, the event property values are written to the BT_EVENT table in
the database when the event is generated and the event is registered with the Behavior Tracking
Service as a persisted event, as shown in Figure 9-3.

Using P redef ined Events

Oracle WebLogic Portal Interaction Management Guide 9-9

Using the SessionBeginEvent and SessionEndEvent
The SessionBeginEvent and the SessionEndEvent are generated automatically. A
SessionBeginEvent is generated when a user accesses a web site running on WebLogic Portal.
A SessionEndEvent is generated when the session ends, such as when the user closes the
browser or the session times out.

If Behavior Tracking is enabled, the event property values are written to the BT_EVENT table in
the database when the events are generated and the event is registered with the Behavior Tracking
service as a persisted event, as shown in Figure 9-3.

The SessionBeginEvent and the SessionEndEvent do not have corresponding property sets
in a portal application. By default, the Campaign listener does not listen for these events, so they
cannot be used to trigger Campaigns. For more information on starting a Campaign, see
“Triggering a Campaign” on page 8-39.

Using the UserRegistrationEvent
Use the UserRegistrationEvent to dispatch an event when a user registers in a portal (when
the user is added to the user store programmatically with a registration portlet, for example).

If Behavior Tracking is enabled, the event property values (in particular the user ID) are written
to the BT_EVENT table in the database when the event is generated and the event is registered with
the Behavior Tracking service as a persisted event, as shown in Figure 9-3.

Using the AddToCartEvent
Use AddToCartEvent to dispatch an event when a user adds an item to a shopping cart. This
event lets you capture information such as currency type, quantity of the item being added, unit
list price, and SKU. These properties must be represented somehow in your shopping cart and
content type to use this event.

If Behavior Tracking is enabled, the event property values are written to the BT_EVENT table in
the database when the event is generated and the event is registered with the Behavior Tracking
service as a persisted event, as shown in Figure 9-3.

Using the RemoveFromCartEvent
The RemoveFromCartEvent generates an event when a user removes an item from a shopping
cart. This event lets you capture information such as currency type, quantity of the item being

campaigns.html#1001359

Se t t ing Up Events and Behav io r T rack ing

9-10 Oracle WebLogic Portal Interaction Management Guide

added, unit list price, and SKU. These properties must be represented somehow in your shopping
cart and content type to use this event.

If Behavior Tracking is enabled, the event property values are written to the BT_EVENT table in
the database when the event is generated and the event is registered with the Behavior Tracking
service as a persisted event, as shown in Figure 9-3.

Using the PurchaseCartEvent
The PurchaseCartEvent dispatches an event when a user makes a purchase. This event lets you
capture information such as currency type, order number, and total purchase price. These
properties must be represented somehow in your shopping cart to use this event.

If Behavior Tracking is enabled, the event property values are written to the BT_EVENT table in
the database when the event is generated and the event is registered with the Behavior Tracking
Service as a persisted event, as shown in Figure 9-3.

Using the Rule Events
WebLogic Portal provides a Rule Event control that lets you generate a Behavior Tracking event
whenever you fire a rule in a page flow using the Rules Executor control. The Rule Event control
gets all necessary properties, including the names of the rule set and the rule that was fired.

If Behavior Tracking is enabled, the event property values are written to the BT_EVENT table in
the database when the event is generated and the event is registered with the Behavior Tracking
service as a persisted event, as shown in Figure 9-3.

The Rule Event does not have a corresponding property set in a portal application. Rules are often
used instead of Campaigns, because they provide more flexibility and power; so creating a rule
event property set to trigger a Campaign when a rule is fired is not a likely scenario. However, if
you want to create a rule property set to trigger a Campaign when a rule is fired, create an event
property set called RuleEvent.evt and add the following single, unrestricted string properties:
ruleset-name and rule-name. For instructions on creating property sets, see Chapter 4,
“Creating a Property Set”.

For more information on using rules, see Chapter 10, “Creating Advanced Personalization with
Rules”.

Using the DisplayCampaignEvent
If Behavior Tracking is enabled, a DisplayCampaignEvent is automatically generated when a
Campaign places a content item in a Placeholder. The event property values are written to the

Using P redef ined Events

Oracle WebLogic Portal Interaction Management Guide 9-11

BT_EVENT table in the database when the event is generated and the event is registered with the
Behavior Tracking service as a persisted event, as shown in Figure 9-3.

Using the Display Content Event Control
Using the Display Content Event control with a
<BehaviorTracking:displayContentEvent/> JSP tag let you generate a Behavior Tracking
event when you display a piece of content in a JSP.

See Table 9-2 for details on how get the document-id and document-type properties.

If Behavior Tracking is enabled, the event property values are written to the BT_EVENT table in
the database when the event is generated and the event is registered with the Behavior Tracking
service as a persisted event, as shown in Figure 9-3.

A Display Content Event does not have a corresponding property set in a portal application. By
default, the Campaign service does not listen for these events, so they cannot be used to trigger
Campaigns. For more information, see “Triggering a Campaign” on page 8-39.

Using the Display Product Events JSP Tag
The <productTracking:displayProductEvent> JSP tag lets you generate a Behavior
Tracking event when you display a product from your catalog.

WARNING: Catalogs, shopping cart events, discounts, and so on are part of the Commerce
API, which is deprecated with WebLogic Portal 10.0.

See Table 9-2 for details on how get the application-name, category-id, document-id,
document-type, and SKU properties.

If Behavior Tracking is enabled, the event property values are written to the BT_EVENT table in
the database when the event is generated and the event is registered with the Behavior Tracking
service as a persisted event, as shown in Figure 9-3.

A Display Product Event does not have a corresponding property set in a portal application. By
default, the Campaign service does not listen for these events, so they cannot be used to trigger
Campaigns. For more information, see “Triggering a Campaign” on page 8-39.

Using the CampaignUserActivityEvent
The CampaignUserActivityEvent dispatches an event when a generic Campaign event occurs.
This event creates a new DisplayCampaignEvent and associates users with specific Campaign
and Scenario instances. These properties must be represented to use this event.

Se t t ing Up Events and Behav io r T rack ing

9-12 Oracle WebLogic Portal Interaction Management Guide

If Behavior Tracking is enabled, the event property values are written to the BT_EVENT table in
the database when the event is generated and the event is registered with the Behavior Tracking
Service as a persisted event, as shown in Figure 9-3.

Using the ClickCampaignEvent
Using the ClickCampaignEvent with the ClickThroughEventFilter generates an event
when a user clicks a content item displayed by a Campaign.

Perform the following steps to enable content clicking:

1. Include the appropriate entries in your portal web project’s web.xml and weblogic.xml
files, as described in “Generating Events for Content Clicks” on page 9-13.

2. Configure your content items with specific properties, as described in Chapter 3, “Setting up
Content”.

If Behavior Tracking is enabled, the event property values are written to the BT_EVENT table in
the database when the event is generated and the event is registered with the Behavior Tracking
service as a persisted event, as shown in Figure 9-3.

Using the ClickProductEvent
Use the ClickProductEvent with the ClickThroughEventFilter to generate an event when
a user clicks a product content item. Product content items typically exist in a catalog or shopping
cart.

WARNING: Shopping cart events, discounts, and catalogs are part of the Commerce API,
which is deprecated with WebLogic Portal 10.0.

The ClickProductEvent lets you capture information such as product category and SKU. Both
of those properties must be represented somehow in your content type to use this event.

To enable content clicking, include the appropriate entries in your portal web project’s web.xml
and weblogic.xml files, as described in “Generating Events for Content Clicks” on page 9-13.

If Behavior Tracking is enabled, the event property values are written to the BT_EVENT table in
the database when the event is generated and the event is registered with the Behavior Tracking
service as a persisted event, as shown in Figure 9-3.

Generat ing Events fo r Content C l i cks

Oracle WebLogic Portal Interaction Management Guide 9-13

Using the ClickContentEvent
Use the ClickContentEvent with the ClickThroughEventFilter to generate an event when
a user clicks any content item that was retrieved from the virtual content repository, but not as the
result of a Campaign.

To enable event generation on content clicking, include the appropriate entries in your portal web
project’s web.xml and weblogic.xml files, as described in “Generating Events for Content
Clicks” on page 9-13.

If Behavior Tracking is enabled, the event property values are written to the BT_EVENT table in
the database when the event is generated and the event is registered with the Behavior Tracking
service as a persisted event, as shown in Figure 9-3.

Generating Events for Content Clicks
WebLogic Portal provides predefined events that can be generated when a user clicks a content
item in a portal. In particular, the <BehaviorTracking:clickContentEvent> and the
<productTracking:clickProductEvent> JSP tags enable content click events. The
ClickCampaignEvent also generates content click events. To enable content to be clicked so
that an event is dispatched to the Event service, use the ClickThroughEventFilter, add the
EventService to the web.xml file and the weblogic.xml file, and enable Campaign
clickthroughs.

This section contains the following topics:

Using the ClickThroughEventFilter

Using the ClickThroughEventFilter
Use the ClickThroughEventFilter whenever you use /ShowBinary pattern in a URL.
ShowBinary (which is mapped to the ShowPropertyServlet) displays binary web content,
such as graphics. Use /ShowBinary in the content URL in your JSPs. After you map the
ClickThroughEventFilter to the /ShowBinary URL pattern, use /ShowBinary in your JSP
as part of the URL with a click event JSP tag. Then, when a user clicks the content, a click content
event is generated by the ClickThroughEventFilter.

To enable this capability, add the following filter and filter mapping to your portal web project’s
web.xml file:

<filter>

 <filter-name>ClickThroughEventFilter</filter-name>

Se t t ing Up Events and Behav io r T rack ing

9-14 Oracle WebLogic Portal Interaction Management Guide

 <filter-class>

 com.bea.p13n.tracking.clickthrough.ClickThroughEventFilter

 </filter-class>

</filter>

<filter-mapping>

 <filter-name>ClickThroughEventFilter</filter-name>

 <url-pattern>/ShowBinary/*</url-pattern>

</filter-mapping>

JSP Example
Assuming you have added the filter mapping to your web.xml file, the following JSP code
displays a content item from the virtual content repository (that has already been retrieved from
an iterator, not shown) and provides the mechanism for click content event generation:

<!-- The JSP tag gets the documentId of a content item, which provides

 the ClickThroughEventFilter with the parameters it needs to

 generate an event. The id attribute stores the data retrieved

 by the tag. This JSP tag alone does not generate the event. -->

<BehaviorTracking:clickContentEvent documentId="<%= node.getName() %>"

id="eventInfo" />

<!-- A URL variable uses /ShowBinary to provide the clickable link,

 which is mapped to the ClickThroughEventFilter. The eventInfo variable

 provides the ClickThroughEventFilter with the required event parameters

 when a user clicks the link. -->

<% String url = request.getContextPath() + "/ShowBinary"+node.getPath() +

"?" + eventInfo;%>

<!-- Now if the user clicks the link, a ClickContentEvent is generated by

 the ClickThroughEventFilter. The ShowBinary servlet displays the

 content from the virtual content repository in its binary form

 (such as a graphic). -->

<a href="<%= url %>"><img src="<%=request.getContextPath() + "/ShowBinary"

+ node.getPath()%>" >

Generat ing Content Events

Oracle WebLogic Portal Interaction Management Guide 9-15

Enabling Campaign Clickthroughs
To enable Campaign clickthroughs that trigger the predefined ClickCampaign Event, you must
configure your content items with specific properties, as described in Chapter 3, “Setting up
Content”.

Generating Content Events
Other predefined events track changes made to the virtual content repository or to the repository
configuration. The events capture different attributes and use the Behavior Tracking listener and
the Behavior Tracking Service to persist the attributes as XML in the BT_EVENT table when they
are generated, or dispatched. You must enable Behavior Tracking to persist the event attributes
(as described in “Enabling Behavior Tracking” on page 9-19).

The following events track repository changes: CampaignUserActivityEvent,
ContentConfigEvent, ContentCreateEvent, ContentDeleteEvent, and
ContentUpdateEvent.

If you want to perform custom event handling when any of the predefined events is dispatched,
create a custom event listener, as described in “Creating Custom Event Listeners” on page 9-36.

Using the ContentConfigEvent
The ContentConfigEvent dispatches a new event when a user makes a configuration change to
the virtual content repository. This event lets you capture information, such as the action that was
performed on the repository. The properties must be represented to use this event.

If Behavior Tracking is enabled, the event property values are written to the BT_EVENT table in
the database when the event is generated and the event is registered with the Behavior Tracking
Service as a persisted event, as shown in Figure 9-3.

Using the ContentCreateEvent
The ContentCreateEvent dispatches an event when a user adds content to the virtual content
repository. This event lets you capture information, such as the content type, the path where the
new content was created, the content’s status, and so on. The properties must be represented to
use this event.

If Behavior Tracking is enabled, the event property values are written to the BT_EVENT table in
the database when the event is generated and the event is registered with the Behavior Tracking
Service as a persisted event, as shown in Figure 9-3.

Se t t ing Up Events and Behav io r T rack ing

9-16 Oracle WebLogic Portal Interaction Management Guide

Using the ContentDeleteEvent
The ContentDeleteEvent dispatches an event when a user removes content from the virtual
content repository. This event lets you capture information, such as the content type, the path
where the content existed before it was removed, the content’s status, and so on. The properties
must be represented to use this event.

If Behavior Tracking is enabled, the event property values are written to the BT_EVENT table in
the database when the event is generated and the event is registered with the Behavior Tracking
Service as a persisted event, as shown in Figure 9-3.

Using the ContentUpdateEvent
The ContentDeleteEvent dispatches an event when a user changes content from the virtual
content repository. This event lets you capture information, such as the content type, the path
where the content existed before it was updated, the content’s status, and so on. The properties
must be represented to use this event.

If Behavior Tracking is enabled, the event property values are written to the BT_EVENT table in
the database when the event is generated and the event is registered with the Behavior Tracking
Service as a persisted event, as shown in Figure 9-3.

Providing Event Attribute Values
WebLogic Portal’s predefined events set many of their attribute values automatically. However,
there are attributes that you must set manually in your code. Table 9-2 describes the attributes
needed by the predefined events and shows you the methods you can use to set the attributes in
your code. You can also use these methods to set attributes in your custom events.

You can get some attributes from other generated events. For example, whenever a Campaign
displays a piece of content, a DisplayCampaignEvent is generated. The
DisplayCampaignEvent sets an attribute called placeholder-id. (It also sets other attributes.) If
you want to set the placeholder-id for a custom event, you can get the attribute from the
DisplayCampaignEvent using the getAttribute() method on that event. For example:
DisplayCampaignEvent.getAttribute(“aPlaceholderId”);

Prov id ing Event A t t r ibute Va lues

Oracle WebLogic Portal Interaction Management Guide 9-17

Table 9-2 Getting Attributes for Predefined Events

Event Attribute How to Get the Attribute

application-name The name of the enterprise application. All predefined events that use this attribute set
it automatically. To set this attribute manually in a custom event, use the following
method: com.bea.p13n.events.Event.getApplication().

campaign-id The unique ID of a Campaign. All predefined events that use this attribute set it
automatically. To set this attribute manually in a custom event, use the following
method: com.bea.campaign.CampaignInfo.getUniqueId().

category-id The category that an item in the catalog belongs to. You must set this attribute
manually. To get the category-id in the following way, your catalog must be built on
the WebLogic Portal catalog API: com.beasys.commerce.ebusiness.
catalog.service.category.CategoryManager.
getItemCategories(). If your catalog is built in any other way, get the
category-id attribute in the appropriate way.

Note: Catalog functionality was part of the Commerce API, which is deprecated
with WebLogic Portal 10.0.

currency Gets the type of currency on an item. You must set this attribute manually. To get the
currency, your commerce application must be built on the WebLogic Portal
Commerce API: com.beasys.commerce.axiom.units.
Money.getCurrency(). If your currency is set in any other way, get the currency
in the appropriate way.

Note: The Commerce API is deprecated with WebLogic Portal 10.0.

document-id The unique virtual content repository ID of the retrieved content item. You could also
get the unique document name. The Campaign events set this attribute automatically.
You must set it manually for all other events. Content events that have corresponding
JSP tags provide a tag attribute. After you have retrieved a content item from the
virtual content repository with a Content Selector, a Campaign, a Placeholder, or by
any other means, use one of the following to get the document-id:
com.bea.content.Node.getId() or getName()
or
Use the <cm:getProperty> JSP tag to get the cm_uid or cm_nodeName property.

Se t t ing Up Events and Behav io r T rack ing

9-18 Oracle WebLogic Portal Interaction Management Guide

document-type Type is the name of the virtual content repository type, not the MIME type. The
Campaign events set this attribute automatically. You must set it manually for all other
events. Content events that have corresponding JSP tags provide a tag attribute. After
you have retrieved a content item from the virtual content repository with a Content
Selector, a Campaign, a Placeholder, or by any other means, use
com.bea.content.Node.getType() to retrieve the content’s type.

order-id The unique ID of a customer’s order. To get the order-id, your commerce application
must use the WebLogic Portal order framework. Use the following method:
com.beasys.commerce.ebusiness.order. Order.getIdentifier().
If your commerce application is built in any other way, get the order-id in the
appropriate way.

Note: The Commerce API is deprecated with WebLogic Portal 10.0.

placeholder-id The unique ID of the content Placeholder displaying the content. The predefined
events that use this attribute set it automatically.

quantity The number of a specific items in a shopping cart. To get the quantity, your
commerce application must use the WebLogic Portal shopping cart framework. Use
the following method: com.beasys.commerce.ebusiness.
shoppingcart.ShoppingCartLine.getQuantity(). If your shopping cart
is built in any other way, get the quantity in the appropriate way.

Note: Shopping cart functionality was part of the Commerce API, which is
deprecated with WebLogic Portal 10.0.

scenario-id The unique ID of a Campaign scenario that contains the action that was executed. The
predefined events that use this attribute set it automatically. To set it manually in a
custom event, use the following method: com.bea.campaign.action.
Action.getScenarioId().

session-id The unique ID of the current session. This is retrieved automatically by the predefined
events, which extend the TrackingEvent class, which uses
javax.servlet.http.HttpSession.getId() and assigns the return value to
the session-id property.

Table 9-2 Getting Attributes for Predefined Events (Continued)

Event Attribute How to Get the Attribute

Enabl ing Behav io r T rack ing

Oracle WebLogic Portal Interaction Management Guide 9-19

Enabling Behavior Tracking
The default PointBase database in a WebLogic Portal domain (and the SQL scripts used to build
a portal database for other database types) include Behavior Tracking tables that are ready to use
for storing Behavior Tracking data. However, you must manually activate Behavior Tracking to
use Behavior Tracking events. You can use the Administration Console or Workshop for

sku The sku number of the catalog item. To get the sku, you must use the commerce
framework to set SKU numbers. Use the following method: com.bea.
commerce.ebusiness.tracking.tags.ProductEventTag.getSku(). If
your catalog is built in any other way, get the sku in the appropriate way.

Note: Catalog functionality was part of the Commerce API, which is deprecated
with WebLogic Portal 10.0.

total-price The total price of an order in a shopping cart. To get total-price, your commerce
application must use the WebLogic Portal shopping cart framework. Use the
following method: com.beasys.commerce.ebusiness.shoppingcart.
ShoppingCart.getTotalPrice(). If your shopping cart is built in any other
way, get the total-price in the appropriate way.

Note: Shopping cart functionality was part of the Commerce API, which is
deprecated with WebLogic Portal 10.0.

unit-price
unit-list-price

The unit price of an item in a shopping cart. To get unit-price or unit-list-price in the
following way, your commerce application must use the WebLogic Portal shopping
cart framework. Use the following method: com.beasys.commerce.
business.shoppingcart.ShoppingCartLine.getUnitPrice(). If your
shopping cart is built in any other way, get the unit-price or unit-list-price in the
appropriate way.

Note: Shopping cart functionality was part of the Commerce API, which is
deprecated with WebLogic Portal 10.0.

user-id The ID of the authenticated user. This is retrieved automatically by the predefined
events, which extend the TrackingEvent class, and the return value is assigned to
the user-id property. You can also use the following method to get the user-id from
the request: com.bea.p13n.usermgmt.SessionHelper.
getUserId(request).

Table 9-2 Getting Attributes for Predefined Events (Continued)

Event Attribute How to Get the Attribute

Se t t ing Up Events and Behav io r T rack ing

9-20 Oracle WebLogic Portal Interaction Management Guide

WebLogic to enable Behavior Tracking. The tool you choose to enable Behavior Tracking
depends on how you want to deploy your application.

Choose one of the following two ways to enable Behavior Tracking:

Administration Console – To make changes to your application at run-time, register the
Behavior Tracking Listener in the Administration Console. This configuration information
is written to the plan.xml deployment file. See “Enabling Behavior Tracking in the
Administration Console” on page 9-20 for instructions.

Workshop for WebLogic – To deploy your application to a new domain, enable Behavior
Tracking by updating the p13n-config.xml file for your application in Workshop for
WebLogic and placing it in your <EAR>/META-INF directory. (Workshop for WebLogic
does not create a plan.xml deployment file.) This configuration information is merged
and saved with other configuration files from other library modules when you deploy your
EAR file. See “Enabling Behavior Tracking in Workshop for WebLogic” on page 9-24 for
instructions.

This section contains the following topics:

Enabling Behavior Tracking in the Administration Console

Configuring Behavior Tracking

Adjusting Behavior Tracking for Optimal Performance

Storing Behavior Tracking Data in Other Ways

Creating a Separate Database for Behavior Tracking Events

Enabling Behavior Tracking in Workshop for WebLogic

Enabling Behavior Tracking in the Administration Console
Use the Administration Console to update the plan.xml deployment file for your application at
run-time. See the Production Operations Guide for more information on deployment plans.

If you are using a database other than PointBase, see the Database Administration Guide for
instructions on creating a separate database for Behavior Tracking events.

Perform the following steps to activate Behavior Tracking by registering the
BehaviorTrackingListener class with the Event service:

1. Start the Administration Console and log in as a system administrator.

2. Choose Configuration & Monitoring > Service Administration.

../prodOps/index.html
../db/index.html

Enabl ing Behav io r T rack ing

Oracle WebLogic Portal Interaction Management Guide 9-21

3. In the Resource Tree, expand the Personalization folder and select Event Service.

4. In the Synchronous Listeners section, click Add Synchronous Listener.

5. Enter the following class in the Class Name field:

com.bea.p13n.tracking.listeners.BehaviorTrackingListener

Note: Synchronous listeners receive events immediately. Asynchronous listeners use a
thread scheduler to receive events.

6. Click Update. The class appears in the Class Name list, and the plan.xml file is updated.
Behavior Tracking is activated, as shown in Figure 9-2. You do not need to restart the server
or redeploy your application.

Figure 9-2 The New Class Appears in the Class Name Field

Se t t ing Up Events and Behav io r T rack ing

9-22 Oracle WebLogic Portal Interaction Management Guide

Configuring Behavior Tracking
By default, Behavior Tracking data is not written to the database immediately when a Behavior
Tracking event occurs. The events are stored in a buffer. You can determine how often Behavior
Tracking data is moved to the database from the buffer.

Perform the following steps to determine how often Behavior Tracking data is moved to the
database:

1. Start the Administration Console and log in as a system administrator.

2. Choose Configuration & Monitoring > Service Administration.

3. In the Resource Tree, expand the Personalization folder and select Behavior Tracking
Service.

4. Click Configuration Settings for: Behavior Tracking Service. Figure 9-3 shows the
Configuration Setting dialog box.

5. Modify the settings, as described in Table 9-3. Leave the default values for Data Source
JNDI Name (the p13n.trackingDataSource) and Custom Persistence Classname (null).
These fields provide the default behavior for moving event data from the buffer to the
BT_EVENT table in the database. For alternative persistence, see “Storing Behavior Tracking
Data in Other Ways” on page 9-24. For information on the Persisted Event Types field, see
“Creating a Behavior Tracking Event Class” on page 9-29.

Figure 9-3 Configuring Behavior Tracking

Enabl ing Behav io r T rack ing

Oracle WebLogic Portal Interaction Management Guide 9-23

6. Click Update.

7. Restart the server for your changes to take effect.

Use Table 9-3 when you set your Behavior Tracking settings.

This section contains the following topics:

Adjusting Behavior Tracking for Optimal Performance

Storing Behavior Tracking Data in Other Ways

Creating a Separate Database for Behavior Tracking Events

Enabling Behavior Tracking in Workshop for WebLogic

Adjusting Behavior Tracking for Optimal Performance
In your development or testing environment, start with a set of baseline values for Maximum
Buffer Size, Buffer Sweep Interval, and Buffer Sweep Maximum. Try different values while
testing peak site usage with your web application until you find the ideal balance between the
number of database operations and the amount of data being stored.

Table 9-3 Behavior Tracking Settings

Maximum Buffer Size Determines the maximum number of events stored in the buffer before the
event data is written to the database. The default value is 100 events.

All events are stored in the buffer, but only the events listed in the
Persisted Event Types field are written to the database. All others are
flushed from the buffer.

Buffer Sweep Interval Determines how often the events buffer is checked to determine whether
the events in the buffer should be persisted to the database. Two conditions
trigger events to be moved from the buffer to the database: 1) The
maximum buffer size has been reached, or 2) The maximum time allowed
in the buffer (Buffer Sweep Maximum) has been exceeded. The default
value is 10 seconds.

Buffer Sweep Maximum
Time

Sets the maximum time in seconds before the events in the buffer are
written to the database (and the non-persisted event types are flushed from
the buffer). The default value is 120 seconds.

Se t t ing Up Events and Behav io r T rack ing

9-24 Oracle WebLogic Portal Interaction Management Guide

Tip: If you do not use Behavior Tracking, you should disable Event services. See “Disabling
Behavior Tracking” on page 9-47.

Storing Behavior Tracking Data in Other Ways
Behavior Tracking event data, by default, is stored in the database in the BT_EVENT table. If you
want to persist your event data in a different place or in a different way, such as to a different
database table or to a file, create a custom event listener that provides the alternative persistence
logic. For information on creating custom listeners, see “Creating Custom Event Listeners” on
page 9-36.

Creating a Separate Database for Behavior Tracking Events
If you are using Behavior Tracking, you can improve performance by storing Behavior Tracking
data in a separate database. The Database Administration Guide contains instructions for creating
a separate Behavior Tracking database for each type of database.

Enabling Behavior Tracking in Workshop for WebLogic
If you plan to deploy your application to a new domain, you should enable Behavior Tracking in
Workshop for WebLogic. This Behavior Tracking configuration information is merged with other
configuration files from other library modules. You can place the updated p13n-config.xml file
in source control to use when you deploy other applications. See the Production Operations
Guide for more information on deployment.

For example, you can add event types for the listener to the configuration file, as shown in
Listing 9-1. This technique accomplishes the same result as adding the event types through the
Administration Console, as explained in “Tracking Content Changes” on page 9-45. See also
“Generating Content Events” on page 9-15 for information on the content event types.

Listing 9-1 Adding Event Types to a P13N Configuration File

...

<behavior-tracking>

 <persisted-event-type>ClickContentEvent</persisted-event-type>

 <persisted-event-type>DisplayContentEvent</persisted-event-type>

 <data-source-jndi-name>p13n.trackingDataSource</data-source-jndi-name>

../db/index.html
../prodOps/index.html
../prodOps/index.html

Creat ing Custom Events

Oracle WebLogic Portal Interaction Management Guide 9-25

</behavior-tracking>

...

Perform the following steps to enable Behavior Tracking when deploying your application to a
new domain:

1. Start Workshop for WebLogic and create a p13n-config.xml file in your <EAR>/META-INF
directory or copy an existing file to your project.

2. Enter your configuration details and save the file. Saving the p13n-config.xml file
combines this information with your other library module configuration files. This appended
configuration file can be used when you deploy other applications.

If you want to redeploy to the same application, right-click the server in the Servers tab
and choose Publish.

3. Copy the p13n-config.xm.xml file into your source control system.

Tip: If you use Workshop for WebLogic to remove an application from a domain, the
deployment plan is also removed.

Creating Custom Events
If WebLogic Portal’s predefined events do not capture the specific combinations of attributes you
need, you can create your own custom events. You can create two types of custom events:
Behavior Tracking events and regular events.

For guidance on custom events and what type to create, see “Understanding When to Create a
Custom Event” on page 2-12 and “Understanding When to Use a Predefined Event” on
page 2-12. Creating a custom event involves creating the Event class and creating the XML
Schema.

This section contains the following topics:

Creating the Event Class

Creating an XML Schema for Behavior Tracking

Se t t ing Up Events and Behav io r T rack ing

9-26 Oracle WebLogic Portal Interaction Management Guide

Creating the Event Class
WebLogic Portal provides the two base event objects that work with the Event Service:
com.bea.p13n.events.Event and com.bea.p13n.tracking.events.TrackingEvent.
These base classes provide the necessary methods required by the Event Service. You can use
either of these classes as the superclass when creating your event class as described in step 2 .

When you create an event class you extend one of the base classes, declare the event attributes
you want, and pass the event data (such as the event type) to the base class constructor.

This section provides instructions on creating custom regular events and custom Behavior
Tracking events.

Creating a Regular Event Class
Create a custom regular event when none of WebLogic Portal’s predefined events capture the
event attributes you want, and you do not want to use the Behavior Tracking service for persisting
event data as XML in the BT_EVENT table. You can trigger Campaigns with custom regular events
and perform your own event handling if you create a custom event listener.

The steps involve creating am EJB or utility project, which is generally used to develop
general-purpose Java code that is not directly part of special entities.

The steps in this chapter refer to the \src folder in the Package Explorer View. Your src
directory might be named differently.

Perform the following steps to create a custom event class:

1. Create an EJB or utility project in Workshop for WebLogic by performing the following steps:

a. In the Portal Perspective, choose File > New > Project.

b. In the New Project - Select a Wizard window, expand the EJB folder and select WebLogic
EJB Project or expand the J2EE folder and select Utility Project. Click Next.

c. Enter a name for the EJB or utility project and ensure that the Use default check box is
selected. Select the Add project to an EAR check box and click Next, as shown in
Figure 9-4.

Creat ing Custom Events

Oracle WebLogic Portal Interaction Management Guide 9-27

Figure 9-4 Enter a Project Name

d. Select the facets (including Portal Application Services) that you want to enable and
click Finish.

Your new EJB or utility project is automatically associated with your EAR project. For
more information on EJB projects, see the Portal Development Guide.

2. Make a new Java class by performing the following steps:

a. Select your web project in Package Explorer View and choose File >New > Other.

b. In the New - Select a Wizard dialog, expand the Java folder, select Class, and click Next.

c. In the New Java Class - Java Class dialog, enter a Name for the new class and for the
Superclass. Select the Constructors from superclass check box and the Inherited
abstract methods check box and click Finish. See Figure 9-5.

../portals/index.html

Se t t ing Up Events and Behav io r T rack ing

9-28 Oracle WebLogic Portal Interaction Management Guide

Figure 9-5 Enter the Class Name and Superclass

The new class appears in the \src directory of your portal web project.

3. Perform the following steps to declare event attribute names and create the event object for
the new Java class:

a. Declare the event attribute names as keys that are passed back to the Event constructor.
For example:

public static final String FOO_ATTRIBUTE = "fooAttribute";
public static final String SESSION_ID = "session-id";
public static final String USER_ID = "user-id";

b. Create the event object. For example:

public MyEvent(
 String fooAttributeValue,
 String user_id,
 HttpServletRequest request,
 HttpSession session

Note: If you use events to trigger Campaigns, you must have a string called user-id
that contains the User’s Profile name. You must also have a request attribute of
type com.bea.p13n.http.Request. The request attribute, however can be

Creat ing Custom Events

Oracle WebLogic Portal Interaction Management Guide 9-29

added at runtime with the following code:
event.setAttribute("request", new Request(request, true));

c. Add a constructor, such as the one below, and pass the event type back to it:

super(TYPE);

d. Declare the event attributes with the following code:

setAttribute(FOO_ATTRIBUTE, fooAttributeValue);
setAttribute(SESSION_ID, session_id);
if(user_id != null)
 setAttribute(USER_ID, user_id);
else
 setAttribute(USER_ID, "unknown");
where fooAttributeValue is the variable that stores the value you
retrieved in your code (not shown here).

4. The Java files in the \src folder will be compiled the normal way and deployed as part of the
application. You can dispatch the event from a JSP, Java code, or a Page Flow, as described
in “Dispatching Events” on page 9-40. If you want to use the event in Campaign definitions,
create an event property set for the event, as described in “Registering Events for Campaigns”
on page 9-43. If you want to perform custom functionality when the event is generated, create
a custom event listener that listens for the event, as described in “Creating Custom Event
Listeners” on page 9-36.

Creating a Behavior Tracking Event Class
Create a custom Behavior Tracking event if none of WebLogic Portal’s predefined events
captures the event attributes you want, and you need to use WebLogic Portal’s Behavior Tracking
framework to persist event data as XML in the BT_EVENT table.

You can use these events in Campaigns and create a custom listener that performs special
handling on the event, but unless you want to use the Behavior Tracking framework to store event
data as XML, you do not need to create a custom Behavior Tracking event. If you do not want to
use the Behavior Tracking service, create a custom regular event as described on “Creating a
Regular Event Class” on page 9-26.

Your Behavior Tracking event works with its own XML schema to store the event data as XML
in the BT_EVENT database table. Information about that schema must be included in your event
class, as described in the following steps.

The steps involve creating a utility project, which is generally used to develop general-purpose
Java code that is not directly part of special entities, such as web services, controls, or EJBs.

Se t t ing Up Events and Behav io r T rack ing

9-30 Oracle WebLogic Portal Interaction Management Guide

The steps in this chapter refer to the src folder in the Package Explorer View. Your src directory
might be named differently.

Perform the following steps to create a Behavior Tracking event class:

1. Create an EJB project in Workshop for WebLogic by performing the following steps:

a. In the Portal Perspective, choose File > New > Project.

b. In the New Project - Select a Wizard window, expand the EJB folder and select WebLogic
EJB Project. Click Next.

c. In the New WebLogic EJB Project dialog, enter a name for the EJB project and ensure that
the Use default check box is selected. Select the Add project to an EAR check box and
click Next.

d. In the New Java Utility Module - Select Project Facets dialog, select the facets that you
want to enable and click Finish.

Your new EJB project is automatically associated with your EAR project. For more
information on EJB projects, see the Portal Development Guide.

2. Make a new Java class by performing the following steps:

a. Select your web project in Package Explorer View and choose File >New > Other.

b. In the New - Select a Wizard dialog, expand the Java folder, select Class, and click Next.

c. In the New Java Class - Java Class dialog, enter a Name for the new class and for the
Superclass. Select the Constructors from superclass check box and the Inherited
abstract methods check box and click Finish. See Figure 9-6.

../portals/index.html

Creat ing Custom Events

Oracle WebLogic Portal Interaction Management Guide 9-31

Figure 9-6 Enter the Class Name and Superclass

The new class appears in the \src directory of your portal web project.

3. Perform the following steps to declare event attribute names and create the event object for
the new Java class:

a. Declare the XML_NAMESPACE key. This is the namespace URL used by your Behavior
Tracking event’s XML schema to uniquely identify it. For example:

private static final String XML_NAMESPACE =
"http://www.yourdomain.com/myschemas/tracking/mytrackingschema";

b. Declare the name of the XML schema file. For example:

private static final String XSD_FILE = "mytrackingschema.xsd";

c. Declare the event attribute names as keys that are passed to the TrackingEvent
constructor. For example:

public static final String SESSION_ID = "session-id";
public static final String USER_ID = "user-id";
public static final String PAGE_LABEL = "pageLabel";

Se t t ing Up Events and Behav io r T rack ing

9-32 Oracle WebLogic Portal Interaction Management Guide

d. Declare the XML schema keys as an array. The schema keys are strings that are passed to
the base TrackingEvent constructor. These keys are used to get the Behavior Tracking
data that is put into the database. List the keys as an array of string objects.

private static final String localSchemaKeys[] =
{
 SESSION_ID, USER_ID, PAGE_LABEL
};

The localSchemaKeys order is important, because it corresponds to the order in
which the XML schema needs the event properties for the XML output. An XML file
will be invalid if elements are out of order.

The SESSION_ID and the USER_ID are data elements in the localSchemaKeys array
that are useful in implementing a tracking event. The SESSION_ID, which must not be
null, is the WebLogic Server session ID that is created for every session object. The
USER_ID is the username of the user who triggered the event.

e. Create the event object. For example:

public MyEvent(
 String fooAttributeValue,
 String user_id,
 HttpServletRequest request,
 HttpSession session

Note: If you use events to trigger Campaigns, you must have a string called user_id
that contains the User’s Profile name. You must also have a request attribute of
type com.bea.p13n.http.Request. The request attribute, however can be
added at runtime with the following code:
event.setAttribute("request", new Request(request, true));

f. Call the TrackingEvent constructor and pass the required arguments back to it in the
required order. For example:

{

super(
 TYPE,
 session,
 XML_NAMESPACE,
 XSD_FILE,
 localSchemaKeys,
 request);

g. Declare the event attributes. For example:

setAttribute(PAGE_LABEL, pageLabelValue);
setAttribute(SESSION_ID, session_id);

Creat ing Custom Events

Oracle WebLogic Portal Interaction Management Guide 9-33

if(user_id != null)
 setAttribute(USER_ID, user_id);
else
 setAttribute(USER_ID, "unknown");
}

The pageLabelValue is the variable storing the value you retrieved in your code (not
shown here).

4. Register the Behavior Tracking event with the Behavior Tracking service in the WebLogic
Portal Administration Console. This event tells the Behavior Tracking listener to handle this
type of event.

a. Start the Administration Console.

b. In the Administration Console, choose Configuration & Monitoring > Service
Administration.

a. In the Resource Tree, expand the Personalization folder and select Behavior Tracking
Service.

b. In the Configure tab click Configure Settings for: Behavior Tracking Service.

c. Enter the name of your Behavior Tracking class in the Custom Persistence Classname
field (such as behtrackingclass).

d. Click Update.

5. Create an XML schema that determines the structure of the XML document generated by the
Behavior Tracking event. See “Creating an XML Schema for Behavior Tracking” on
page 9-35. If you want to use the event in Campaign definitions, create an event property set
for the event, as described in “Registering Events for Campaigns” on page 9-43. If you want
to perform custom functionality when the event is generated, create a custom event listener
that listens for the event, as described in “Creating Custom Event Listeners” on page 9-36.

6. The Java files in the \src folder will be compiled the normal way and deployed as part of the
application. You can dispatch the event from a JSP, Java code, or a Page Flow, as described
in “Dispatching Events” on page 9-40. If you want to use the Behavior Tracking event in
Campaign definitions, create an event property set for the event, as described in “Registering
Events for Campaigns” on page 9-43. If you want to perform custom functionality when the
event is generated, create a custom event listener that listens for the event, as described in
“Creating Custom Event Listeners” on page 9-36.

Se t t ing Up Events and Behav io r T rack ing

9-34 Oracle WebLogic Portal Interaction Management Guide

Creating an Event With a Scriptlet
You can create an event without writing an event class by using a scriptlet in a JSP. This
technique is best suited for simple, Non-Behavior Tracking events that are used to trigger
Campaigns. Using this technique for complex events clutters your JSP. You should use this
technique in a JSP that has a form that can supply values to event properties.

Perform the following steps to create an event with a scriptlet:

1. In the Portal Perspective in Workshop for WebLogic, create an event property set. For
instructions, see “Registering Events for Campaigns” on page 9-43.

2. After you have created the event property set, open the JSP in which you want to create the
event.

3. Drag the event property set file into the JSP where you want the event to occur (for example,
after the Submit button on a form). The scriptlet is generated automatically.

For example, if you create an event property set called MyEvent.evt that contains a single,
unrestricted attribute called fooAttribute, the following scriptlet is generated when you
drag the property set file into a JSP:

<%
// Generate the Event object here.
// If you have a custom Event subclass for your event type,
// change this code to use it instead

com.bea.p13n.events.Event event = new
com.bea.p13n.events.Event("MyEvent");

// fooProperty should be a String

event.setAttribute("fooProperty", "");

// These attributes are standard to all Events.

event.setAttribute("request", new com.bea.p13n.http.Request(request,
true));

event.setAttribute("user-id",
com.bea.p13n.usermgmt.SessionHelper.getUserId(request));

// Dispatch the Event to the EventService.

com.bea.p13n.tracking.TrackingEventHelper.dispatchEvent(request,
event);

%>

Creat ing Custom Events

Oracle WebLogic Portal Interaction Management Guide 9-35

The scriptlet automatically gets the request and the user-id, which are required for
triggering Campaigns, and the code for dispatching the event. The dispatch code uses the
Behavior Tracking API, but it also dispatches regular events.

You must supply the value for fooProperty, which could come from the value of a form
field.

4. Save your work by choosing File > Save.

If you want to perform custom functionality when the event is generated, create a custom event
listener that listens for the event, as described in “Creating Custom Event Listeners” on
page 9-36.

Creating an XML Schema for Behavior Tracking
Behavior Tracking events, by default, store their property values in the database as XML. For
each type of Behavior Tracking event, the Event service uses a specific XML schema to create
the XML. When you create a custom Behavior Tracking event, you must also create an XML
schema for the Behavior Tracking service to use.

When creating an XML schema for a custom Behavior Tracking event, consider the following
connection points between the schema and your event class:

Filename – The value of the XSD_FILE key in your event class must match the name of
the actual XSD file.

Namespace – The value of the XSD_NAMESPACE key in your event class must match the
targetNamespace attribute value in your XSD file.

Property Order – The XSD file contains a list of event attributes you want to capture. The
order in which these properties are listed in the XSD must match the order they are listed
in your event class’s localSchemaKeys[] array.

For example, if your event class contains this list of schema keys, your XSD file must list
those properties in the same order:

private static final String localSchemaKeys[] =
{
SESSION_ID, USER_ID, PAGE_LABEL_KEY
};

When you use XSD, you need to change only the targetNamespace and xmlns= attribute values
to your namespace, and add your custom event attributes, in order.

You can view the XSDs for WebLogic Portal’s predefined events at the following location:
<BEA_HOME>\user_projects\workspaces\workshop\.metadata\.plugins\

Se t t ing Up Events and Behav io r T rack ing

9-36 Oracle WebLogic Portal Interaction Management Guide

com.bea.workshop.wls.core\libraries\p13n-app-lib_10.2.0_10.2.0\1\APP-INF\l

ib\p13n_app.jar.

A user might not be associated with an event. In such a case, use the minOccurs=”0” attribute
for the user-id attribute in the XSD file. For example:

<xsd:element ref="user-id" minOccurs="0"/>

Packaging the Schema
After you create the schema, add it to your portal application’s p13n_app.jar file using the
following steps.

1. Back up your p13n_app.jar file by creating a copy of it and naming it p13n_ejb.orig, for
example.

2. In your application directory, temporarily add the <yourschema>.xsd file to the
lib/schema/ directory.

3. Add the schema to the p13n_app.jar file. In a command window (that has the JAR utility
in the environment), switch to the application directory and run the following command:

jar uvf p13n_app.jar lib\schema\<yourschema>.xsd

The schema is added to the JAR file.

4. Redeploy the p13n_app.jar file.

Creating Custom Event Listeners
An event listener serves one purpose: when an event occurs for which the listener is listening, the
listener performs some type of programmatic functionality. WebLogic Portal provides the
following two listeners that handle events in specific ways:

CampaignEventListener – Listens for all events (except those it is told to ignore in the
listeners.properties file in the wps.jar file) and calls the Campaign service to
evaluate and trigger Campaign actions.

BehaviorTrackingListener – Listens for all events registered with the Behavior Tracking
service and puts data from Behavior Tracking events in a buffer, where it is later moved
into the BT_EVENT database table. (You must manually register this listener to activate
Behavior Tracking, as described in “Enabling Behavior Tracking” on page 9-19.) For
example, you could create a custom event listener that listens for the
SessionLoginEvent, SessionBeginEvent, and SessionEndEvent. You can add the
user-id field of these events to a list to keep track of who has logged in.

Creat ing Custom Event L is teners

Oracle WebLogic Portal Interaction Management Guide 9-37

If you create and register a custom Behavior Tracking event, that event is handled by the
BehaviorTrackingListener and the CampaignEventListener. If you create a custom
regular event, that event is handled by the CampaignEventListener.

However, there may be times when you want to provide more programmatic functionality when
events occur, whether the events are custom events or WebLogic Portal’s predefined events. For
example, you may want to persist event data to a file or another database table, show related
products when a user clicks a product image, or modify a User’s Profile when the user submits a
form. For these additional types of functionality, you must create custom event listeners.

WebLogic Portal provides a base event listener object called EventListener. This base class,
which you must implement in your custom listener, provides two methods for listening for and
responding to events:

The getTypes() method – Tells the Event service which types of events that interest the
listener.

The handleEvent() method – Lets you insert the custom functionality you want to
perform when the listener receives an event that interests it.

The steps to create a custom event listener involve creating a utility project, which is generally
used to develop general-purpose Java code that is not directly part of special entities, such as web
services, controls, or EJBs. Note that you can also use an EJB project (a new one or an existing
one).

Note: If you try to access a local EJB with an EventListener, the attempt will fail in the JNDI
lookup. For this scenario, use a Remote EJB interface instead.

The steps in this chapter refer to the \src folder in the Package Explorer View. Your src
directory might be named differently.

Perform the following steps to create a custom event listener for regular events or Behavior
Tracking events:

1. Create a utility project in Workshop for WebLogic by performing the following steps.

Note: You can also use an EJB project. You can either create a new EJB project or use an
existing one.

a. In the Portal Perspective, choose File > New > Project.

b. In the New Project - Select a Wizard window, expand the J2EE folder and select Utility
Project. Click Next.

Se t t ing Up Events and Behav io r T rack ing

9-38 Oracle WebLogic Portal Interaction Management Guide

c. In the New Java Utility Module - Utility Module dialog, enter a name for the utility project
and ensure that the Use default check box is selected. Select the Add project to an EAR
check box and click Next.

d. In the New Java Utility Module - Select Project Facets dialog, select the facets that you
want to enable and click Finish. (If you select the Portal Application Services and/or
Portal Customizations Framework facet, you can skip Step 2 and proceed to Step 3.)

Your new utility project is automatically associated with your EAR project. For more
information on utility projects, see the Portal Development Guide.

2. To ensure that the project sees the p13n classes as the server will see them, add the WebLogic
Portal Server and the p13n-app-lib library module CLASSPATH containers to the project.
Perform the following steps:

Note: It is unneceessary to perform Step 2 if you chose the Portal Application Services
and/or Portal Customizations Framework facet in Step 1-d.

a. In Package Explorer, right-click the portal utility project you created and choose
Properties.

b. In the Properties dialog, select Java Build Path and select the Libraries tab.

c. Click Add Library.

d. In the Add Library dialog, select Oracle WebLogic Portal Server as the library type and
click Next.

e. In the Add Library - Oracle WebLogic Portal Server dialog, configure the server
CLASSPATH entries by selecting All Configured entries and clicking Finish.

f. In the Properties dialog, click Add Library in the Libraries tab.

g. In the Add Library dialog, select WebLogic Library Module and click Next.

h. In the Add Library - Library Module dialog, click Browse and select p13n-app-lib and
click OK. The Specification Version, and Implementation Version fields are populated.
Select the Allow newer versions check box and click Finish.

i. In the Properties dialog, click OK.

3. Make a new Java class by performing the following steps:

a. Select your web project in Package Explorer View and choose File >New > Other.

b. In the New - Select a Wizard dialog, expand the Java folder, select Class, and click Next.

../portals/index.html

Creat ing Custom Event L is teners

Oracle WebLogic Portal Interaction Management Guide 9-39

c. In the New Java Class - Java Class dialog, enter a Name for the new class and for the
Superclass. For example, a class name could be MyEventListener. Select the
Constructors from superclass check box and the Inherited abstract methods check
box and click Finish.

The new class appears in the \src directory of your portal web project.

4. Perform the following steps to define the events for which the listener will listen, declare
event attribute names, and create the event object for the new Java class:

a. Your custom event listener must implement EventListener. For example:
public class MyEventListener
 implements EventListener
{

b. Define the events for which the listener will listen. For example:

private String[] eventTypes = {"MyEvent, ClickContentEvent"};

c. Pass the type of events listened for back to the base constructor. This tells the Event
service which events to send to this listener when the events occur:
public String[] getTypes()
{
 return eventTypes;
}

d. Override the handleEvent() method to provide the programmatic functionality you
want the listener to perform when the listened-for events occur:

 public void handleEvent(Event ev)
 {
 //Put your custom code here.
 //This code is executed when the events occur.
 }
}

5. The Java files in the \src folder will be compiled the normal way and deployed as part of the
application. You can dispatch the event listener from a JSP, Java code, or a Page Flow, as
described in “Dispatching Events” on page 9-40. If you want to use the event listener in
Campaign definitions, create an event property set for the event, as described in “Registering
Events for Campaigns” on page 9-43.

6. Register the listener with the Event service by performing the following steps.

Se t t ing Up Events and Behav io r T rack ing

9-40 Oracle WebLogic Portal Interaction Management Guide

a. In the Administration Console, choose Configuration & Monitoring > Service
Administration.

b. In the Resource Tree, expand the Personalization folder and select Event Service.

c. In the Browse tab, click Add Synchronous Listener or Add Asynchronous Listener.

d. Enter the fully qualified class name. For example:

com.bea.p13n.events.custom.listeners.MyEventListener

Note: Synchronous listeners receive events immediately. Asynchronous listeners use a
thread scheduler to receive events.

e. Click Update. The listener is registered with the Event service. You do not need to restart
the server.

Dispatching Events
With events and listeners in place, you can dispatch those events in your JSPs, Java code, and
Page Flows. Dispatching an event means that the Event service sends an event object to any
listeners interested in the event. Those listeners, in turn, handle the events in their own ways.

For example, a sample event called ResourceDisplayedEventBT, is dispatched from two portal
framework skeleton JSP files: book.jsp and page.jsp. The book.jsp skeleton is responsible
for rendering portal book and page navigation (such as tabs), and the page.jsp skeleton provides
the area for portlets to be displayed.

The code shown in Listing 9-2 is inserted in each of the book.jsp and page.jsp. files. This
example uses code from the page.jsp file. The code dispatches a ResourceDisplayEventBT
event when portlets are viewed on a page.

Listing 9-2 Dispatching an Event from a JSP Page

<%@ page import="com.bea.p13n.tracking.TrackingEventHelper,

 examples.events.ResourceDisplayedEventBT" %>

...

ResourceDisplayedEventBT rde;

...

ResourceDisplayedEvent rde = new ResourceDisplayedEvent(

 ppc.getLabel(),

 portletTitle,

Using Events in Campaigns

Oracle WebLogic Portal Interaction Management Guide 9-41

 "portlet",

 sessionID,

 userId,

 "true", // portlet is being displayed

 request,

 session);

// New mechanism for dispatching an event in 9.2:

EventService es = TrackingEventHelper.getEventService();

TrackingEventHelper.dispatchEvent(es, rde);

...

The code performs the following actions:

The file imports the custom event class and the TrackingEventHelper, which is used to
dispatch the event.

The event class is assigned to the rde variable.

An instance of the event is created, and the attributes retrieved from the JSP are passed in
as event arguments in the same order that the event expects them. It does not matter what
names are used in the arguments as long as they supply the type of information the event
needs.

The event is dispatched to the Event Service with the
TrackingEventHelper.dispatchEvent(rde) method.

The event is then sent to the listeners registered to receive it, and the listeners handle the event in
their own ways. Figure 9-1 illustrates the event life cycle, and in this example, the skeleton JSP
is Item 2 in the diagram.

“Creating an Event With a Scriptlet” on page 9-34 also describes how to dispatch an event for
which you have created no event class. Dispatching events when content is clicked requires
special instructions, as described in “Generating Events for Content Clicks” on page 9-13. Some
predefined events have their own dispatch methods. See “Using Predefined Events” on page 9-7.

Using Events in Campaigns
You can use events to activate the Campaign Service and to make your Campaigns more
powerful by triggering Campaign actions based on events and their attribute values.

Se t t ing Up Events and Behav io r T rack ing

9-42 Oracle WebLogic Portal Interaction Management Guide

When you use an event in a Campaign, you do not have to explicitly tell the Campaign service
about your events. The Campaign listener listens for all events that are not explicitly excluded in
the listeners.properties file in the wps.jar file.

When an event occurs for which the Campaign listener is listening, the listener calls the
Campaign service. The Campaign service takes a snapshot of the current request and evaluates
the request data against all the Campaign rules you have defined to see if any actions need to be
performed.

In addition, you can use events in Campaigns in another way: as part of a Campaign action. For
example, you can define a Campaign action that displays personalized content only if the user
clicks the Home page in a portal (triggered by some sort of click page event). To use events as
part of a Campaign definition, you must create an event property set, as described in “Registering
Events for Campaigns” on page 9-43.

An example of using an event in a Campaign definition is illustrated in Figure 9-7, where a
Campaign scenario is triggered if an event has specific property values (characteristics). When
you add An event has specific characteristics to your Campaign scenario and click the
characteristics link in the Campaign Editor, you can select the event properties and determine
which property values will trigger the Campaign Action to occur. The event property set you
created enabled the property selection.

Using Events in Campaigns

Oracle WebLogic Portal Interaction Management Guide 9-43

Figure 9-7 Using an Event to Trigger a Campaign Scenario

To control your Campaign, especially when you want personalized content to display, create
events that trigger Campaign actions at the key places in your application. For more information
on controlling personalized content, see “Managing Placeholders for Optimal Performance” on
page 14-4. For instructions on creating a Campaign, see “Building a Campaign” on page 8-1.

This section contains the following topic:

Registering Events for Campaigns

Registering Events for Campaigns
If you want to use a custom event to trigger a Campaign, you must create an event property set.
The properties you create for the event match the attribute names defined in your event class.

For example, the sample ResourceDisplayedEvent class uses the following properties:
resourceId, resourceLabel, resourceType, session-id, user-id, and resourceSelected. In your

Se t t ing Up Events and Behav io r T rack ing

9-44 Oracle WebLogic Portal Interaction Management Guide

event property set, you can define properties for any or all of those attributes, but the property
names must exactly match the event attribute names.

For instructions on creating event property sets, see “Creating Custom Events” on page 9-25. For
instructions on registering event property sets, see “Enabling Behavior Tracking” on page 9-19.

Changing Event Properties
If you create, modify, or delete event property sets after an application is deployed, you must
update those property set definitions in the database using the Propagation Utility. For more
information, see the Production Operations Guide.

Debugging the Event Service
You can debug the Event service and review the console output.

Perform the following steps to debug the event service:

1. To debug the Event service, create debug.properties in a directory similar to the
following: <BEA_HOME>\user_projects\domains\<myDomain>.

2. Add the following to the file and modify the settings accordingly. These settings provide
server console output for you to review:

usePackageNames: on
com.bea.p13n.cache: on
Turns on debug for all classes under events
com.bea.p13n.events: on
com.bea.p13n.events.internal.EventServiceBean: on
Turns on debug for all classes under
com.bea.p13n.tracking: on
com.bea.p13n.tracking.internal persistence: on
Selectively turn on classes
com.bea.p13n.mbeans.BehaviorTrackingListener: on
com.bea.p13n.tracking.listeners.BehaviorTrackingListener: on
com.bea.p13n.tracking.SessionEventListener: on

3. In Workshop for WebLogic, double-click the server in the Servers tab and uncheck the
Launch WebLogic server in Eclipse console check box. Close the Server Overview tab and
click Yes to save your changes. Right-click the server name and choose Restart to start the
server and run debugging from a command prompt.

Tip: Events will fire for a content repository that was upgraded to 10.2 (unless you turned
event tracking turned off at the repository level). Events can include repository

../prodOps/index.html

T rack ing Content Changes

Oracle WebLogic Portal Interaction Management Guide 9-45

configuration changes, as well as content updates, additions, and deletions to the
repository. See the Upgrade Guide for more information on performing an upgrade.

Tracking Content Changes
You can use content events to track content changes to your virtual content repository and
modifications to the repository’s configuration. Content changes include who added, updated, or
deleted content or content properties and the date and time the change was made in the repository.
You can also track who performed the changes (including the date and time the changes were
made) to the repository’s configuration, its content types, or content workflow. For more
information on these events, see “Generating Content Events” on page 9-15.

You could also configure a content event to watch for content changes and then perform an action.
For example, when a user adds a resume document to the content repository, an e-mail is sent to
the HR Director.

These content events are saved in the Behavior Tracking database for historical tracking. For
more information on content management, see the Content Management Guide.

Perform the following steps to track content changes:

1. Start the Administration Console.

2. Choose Configuration & Monitoring > Service Administration.

3. In the Resource Tree, expand the Personalization folder and select Event Service.

4. Click Add Synchronous Listener.

5. Enter the listener name in the Class Name field. To capture content repository changes, enter
com.bea.p13n.tracking.listeners.BehaviorTrackingListener. See Figure 9-8.

Figure 9-8 Identify the Behavior Tracking Listener

../upgrade/index.html
../cm/index.html

Se t t ing Up Events and Behav io r T rack ing

9-46 Oracle WebLogic Portal Interaction Management Guide

6. Click Update.

7. In the Resource Tree, select Behavior Tracking Service.

8. In the Configure tab, click Add Event Type, as shown in Figure 9-9.

Figure 9-9 Click Add Event Type

9. In the Persisted Event Type field, enter the events for the content change you want to track.
For example, you could add the ContentCreateEvent to determine new content that was
added to the content repository, who added it, and when.

10. Click Update.

Disab l ing Behav io r T rack ing

Oracle WebLogic Portal Interaction Management Guide 9-47

11. Refresh the display by clicking Refresh Tree in the Resource Tree.

Tip: To view the tracked changes to the content repository, you can create a log file of the
repository content changes that are contained in the Behavior Tracking database tables,
or you could enable listeners to provide specific logged output.

Disabling Behavior Tracking
You can disable the persistence of Behavior Tracking events by unregistering the Behavior
Tracking listener or removing individual events.

This section contains the following topics:

Unregistering the Behavior Tracking Listener

Removing an Individual Event

Unregistering the Behavior Tracking Listener
Perform the following steps to unregister the Behavior Tracking listener:

1. Start the Administration Console.

2. In the Administration Console, choose Configuration & Monitoring > Service
Administration.

3. In the Resource Tree, expand the Personalization folder and select Event Service.

4. In the Configure tab, locate the Behavior Tracking listener and select the Delete check box
next to it.

5. Click Delete.

6. Refresh the display by clicking Refresh Tree in the Resource Tree.

Note: Events could still be triggered to fire by the application, but they are not persisted to the
database table.

Removing an Individual Event
Perform the following steps to remove default events:

1. Start the Administration Console.

Se t t ing Up Events and Behav io r T rack ing

9-48 Oracle WebLogic Portal Interaction Management Guide

2. In the Administration Console, choose Configuration & Monitoring > Service
Administration.

3. In the Resource Tree, expand the Personalization folder and select Behavior Tracking
Service.

4. In the Configure tab, select the Delete check box for each event in the Persisted Event Types
section that you want to remove, as shown in Figure 9-10.

Figure 9-10 Select the Delete Check Box

5. Click Delete.

6. You must redeploy your application for the changes to take effect.

Oracle WebLogic Portal Interaction Management Guide 10-1

C H A P T E R 10

Creating Advanced Personalization
with Rules

Developing Personalization using User Segments, Campaigns, Placeholders, and Content
Selectors can be done with JSP tags with very little Java coding. There might be times, however,
when you want more flexibility in your Personalization.You can achieve this by creating and
deploying a rule set, which uses the Rules Controls and the RulesManager EJB.

This chapter contains the following sections:

Using Rules in Portal Applications

Creating a Rule

Rules Control Reference

The Rules service can help you create advanced Personalization features, which can help control
each user’s path through a Page Flow or using runtime information as dynamic input to
conditional logic in your code. You must possess a working knowledge of XML and schemas (an
advanced version of DTDs), as well as an intermediate understanding of Java development.

Using Rules in Portal Applications
WebLogic Portal provides a set of tools to personalize the user experience in your portal
applications. You have control over the content each user sees, the automatic e-mail messages
each receives, and, in a commerce application, the type of discounts each user gets.

WARNING: Discount actions are part of the Commerce API, which is deprecated with
WebLogic Portal 10.0.

Creat ing Advanced Pe rsona l i za t i on wi th Rules

10-2 Oracle WebLogic Portal Interaction Management Guide

 To achieve these Personalization results, you create User Segments, Content Selectors, and
Campaigns in Workshop for WebLogic. Developing Personalization with these tools involves
very little Java coding because you can use JSP tags. After this type of Personalization is
developed, portal administrators can use the WebLogic Portal Administration Console to modify
the behavior of the Personalization with no coding at all.

There may be times, however, when you want even more power and flexibility in the
Personalization you develop. For example, you may want to use Personalization to control each
user’s path through a Page Flow or use run-time information as dynamic input to conditional
logic in your code.

You can access the Rules Service by using the following two types of components:

The Rules Controls – The two rules controls (the Rules Executor Control and the Rules
Manager Control) are used in Page Flows or Web services, and provide a convenient way
to add rules functionality to your application without writing code. For example, using a
drag-and-drop interface, you can add a Rules Control to a Page Flow, select the methods in
the control you want to use, and configure the control in the Workshop for WebLogic
Property Editor. For more information, see the Javadoc.

The RulesManager EJB – The Rules Controls, which delegate calls to the underlying
RulesManager EJB, are the preferred way to interact with the Rules Service. However, if
you want to use the Rules Service somewhere besides a Page Flow or Web service, you
can use the RulesManager EJB directly in your code to access the Rules Service.

This overview section includes the following topics:

Choosing Personalization Components

Understanding the Rules Service

Choosing Personalization Components
Table 10-4 describes the personalization tools provided by WebLogic Portal. User Segments,
Campaigns, Content Selectors, and Personalization JSP tags are described only to highlight the
increased programmatic power you have by directly accessing the Rules Service.

../javadoc/index.html

Using Ru les in Po r ta l App l icat ions

Oracle WebLogic Portal Interaction Management Guide 10-3

The Input Objects and Action columns in Table 10-4 show the flexibility and power you have
with the rules controls and the RulesManager EJB.

Table 10-4 WebLogic Portal Personalization Components

Component Description Input Objects Action (if the input objects
match the rules criteria)

User Segments Dynamically assign users to a
grouping, or segment, when the
users meet specific conditions.

Segment rules are created in
Workshop for WebLogic with
the User Segment Editor. You
can modify rules in the
WebLogic Portal
Administration Console.

Segment rules can be
defined with User Profile
properties, HTTP
session or request
properties, and date or
time values and ranges.

One action: If all
conditions evaluate to true,
the user is considered a
member of the segment.
Segments can be used in
Campaigns, Content
Selectors, and in the
<pz:div> JSP tag.

Campaigns Trigger personalized actions to
occur for users who meet
specific conditions or perform
specific actions.

Campaign rules are created in
Workshop for WebLogicwith
the Campaign Editor. Rules are
modifiable in the WebLogic
Portal Administration Console.

Campaign rules can be
defined with User
Segments, User Profile
properties, HTTP
session or request
properties, event
characteristics, date or
time values and ranges,
shopping cart or catalog
conditions, and random
sampling.

Note: Shopping cart
events,
discounts, and
catalogs are part
of the
Commerce API,
which is
deprecated with
WebLogic
Portal 10.0.

Up to three types of
actions: Show a single
personalized content item,
automatically send a
predefined e-mail, provide
a discount.

Creat ing Advanced Pe rsona l i za t i on wi th Rules

10-4 Oracle WebLogic Portal Interaction Management Guide

Content Selectors Show specific content items to
users who meet specific
conditions.

Content Selector rules are
created in Workshop for
WebLogic with the Content
Selector Editor. You can modify
rules in the Administration
Console.

Content Selector rules
can be defined with User
Segments, User Profile
properties, HTTP
session or request
properties, and date or
time values and ranges.

One action: Show one or
more personalized content
items.

Personalization
(Interaction
Management) JSP
tags

Some of these tags are used to
render the results of segment,
Campaign, and Content Selector
rules.

Displayed content is
based on User Segment,
Campaign, or Content
Selector rules.

One action: Show
personalized content items.

Table 10-4 WebLogic Portal Personalization Components (Continued)

Component Description Input Objects Action (if the input objects
match the rules criteria)

Using Ru les in Po r ta l App l icat ions

Oracle WebLogic Portal Interaction Management Guide 10-5

Understanding the Rules Service
The Rules Service reads objects you have put into working memory and evaluating those objects
against a set of rules you have predefined in an XML file. (Working memory is the place where
objects are temporarily stored as the Rules Service is processing the rules.) If the objects in
memory match the conditions defined in the rule set (which can be made up of multiple rules),
the corresponding rule set actions are triggered. For example, if you put a user’s credit score into

Rules Controls The Rules Executor control lets
you evaluate any input objects
(such as a user’s profile
properties) against a predefined
set of rules (rule set). If the rules
evaluate to “true” based on the
input objects, any predefined
action(s) can be triggered (such
as assigning the user to a certain
classification). The Rules
Manager control lets you look
up information about rule sets.
The rules controls serve as an
interface to the RulesManager
EJB.

You add and configure rules
controls in your Page Flows or
Web services with a graphical
user interface in Workshop for
WebLogic. You create rules
manually in XML.

Unlimited types of input
objects: You can use the
rules you create in XML
to evaluate any object
put into working
memory (See “Invoking
the Rules Service to
Evaluate Objects” on
page 10-18).

Unlimited types of actions:
Can filter objects in
working memory (see
“Filtering the Results” on
page 10-24) and perform
any action defined in the
rule set XML.

RulesManager
EJB

Provides the same capabilities
as the rules controls in areas of
your application other than Page
Flows and Web services. Using
the RulesManager EJB to
access the Rules Service
involves Java coding.

Table 10-4 WebLogic Portal Personalization Components (Continued)

Component Description Input Objects Action (if the input objects
match the rules criteria)

Creat ing Advanced Pe rsona l i za t i on wi th Rules

10-6 Oracle WebLogic Portal Interaction Management Guide

working memory (from the User Profile, from the return of a Web service calculation, or any
other way), a rule in the rule set can be defined in XML to perform the following action: If the
user has a credit score equal to or greater than 10, classify that user as a ‘gold customer’.

You can use the results of this rule processing in your applications any way you choose. For
example, if you are developing a Page Flow, you can send a “gold customer” to the gold.jsp
and send all other customers to another JSP.

Rules Controls – WebLogic Portal provides two rules controls that you can use to invoke
the Rules Service from a Page Flow or Web service. The Rules Executor control lets you
evaluate objects in working memory against a rule or set of rules, filter the results, and
perform actions if the rules evaluate to true. The Rules Manager control provides methods
for getting rule set information.

Note: The Rules Manager control is most useful as a rules development debugging tool.

RulesManager EJB – The RulesManager EJB is the interface into the Rules Service. The
rules controls delegate calls to the RulesManager EJB. Use the RulesManager EJB if you
want to use the Rules Service in code outside of a Page Flow or Web service.

Using the Rules Service
The Rules Service is based on the Rete algorithm, which is optimized for forward chaining
reasoning. In the rule evaluation process outlined in the following steps, the Rules Executor
control is used as an example:

1. The Portal Rules Service is initialized, creating its working memory.

2. The Rules Executor control will identify which rule set to use, which rules to evaluate (the
default is all), and optionally, whether to filter the results. These are all parameters that can
be configured on the control.

3. The developer creates and adds objects to working memory. Example objects could include
the User's Profile, the Request, and so on. These parameters are passed in as an argument to
the rule control's evaluate*() method.

4. The Rules Service is invoked by the Rules Executor control and uses the following algorithm:

a. Match – Evaluates the left hand side (LHS) of the rules to determine which are satisfied
given the current contents of working memory.

b. Conflict resolution – Selects one rule with a satisfied LHS. If no rules satisfied the LHS,
the interpreter is stopped.

Using Ru les in Po r ta l App l icat ions

Oracle WebLogic Portal Interaction Management Guide 10-7

c. Act – Performs the actions in the right hand side (RHS) of the selected rule.

d. Repeat the process – Go to Step a.

5. The Rules Service fires repeatedly, executing rules according to the state of the input objects
and rule conditions. Only one rule can be fired at a time. As conditions are met and rules are
fired, more objects may be added to working memory for evaluation.

6. After the Rules Service has reached a state where no more rules will fire, it stops. In addition
to the original input objects, new objects created as a result of the rule evaluation may also be
in working memory.

7. Because the input objects are part of the results, you may choose to filter the results based on
a class. For example, you can specify that only results of Java class
com.bea.p13n.usermgmt.profile.ProfileWrapper are returned.

8. The objects are returned to the caller, who then decides what to do with the returned data. For
example, the user may be directed to a new page, or the User’s Profile might have its
properties updated.

Figure 10-11 provides a basic illustration of the rule evaluation process with the Rules Executor
control used in a Page Flow. The returned results from the Rules Service process are used to
determine the user’s path through the Page Flow. In the figure, natural language is used instead
of code for illustration purposes. (To see the actual parameterization and invocation of the control
in a Page Flow, see “Using the Control to Determine the User’s Path in the Page Flow” on
page 10-22.)

Creat ing Advanced Pe rsona l i za t i on wi th Rules

10-8 Oracle WebLogic Portal Interaction Management Guide

Figure 10-11 Using Rules to Control a Page Flow

Understanding the Advantages of Using the Rules Service
The Rules Service is more dynamic than a simple conditional in your code. After a Web
application or some other application component has been hard-coded with condition statements
(if/then), there is no way to change that without recompiling the code and re-deploying the
application. In comparison, rules can be changed and loaded as the Portal server is running. This
means the administrator may get the business logic from domain experts, formulate a rule to
reflect that logic, and load the rule into the application without ever having to stop the server.

Creating a Rule
This section shows you how to develop personalization using the rules controls and
RulesManager EJB. The following steps are involved and are described in this section:

Creating a Rule Set

Deploying a Rule Set

Adding Objects to Working Memory

Invoking the Rules Service to Evaluate Objects

Filtering the Results

Creat ing a Ru le

Oracle WebLogic Portal Interaction Management Guide 10-9

Using the Results in Your Application

Creating a Rule Set
Rule sets are sets of instructions written in XML that the Rules Service uses to evaluate objects
in working memory. A rule set determines if something in working memory meets certain
conditions and performs an action.

There are two methods you can use to create a rule set:

Create a rule set in Workshop for WebLogic

Create a rule set manually

Creating a Rule Set in Workshop for WebLogic
You can use Workshop for WebLogic to create and manage a .rls file that contains rules,
conditions, and actions.

Perform the following steps to create a rule set in Workshop for WebLogic:

1. Start the WebLogic Server in Workshop for WebLogic by choosing Run As > Run on Server.
For instructions on configuring the WebLogic Server, see the Portal Development Guide.

2. In the Portal Perspective, right-click the <data>\src folder in the Package Explorer View and
choose New > Rule Set.

3. Select the folder for the rule set and enter a name for the rule set in the File name field, using
the .rls file extension. A rule set can exist anywhere in your data directory.

4. Click Finish. The rule set appears in the folder you selected.

5. Select the rule set in the Rule Set Editor.

6. Select the Properties tab and enter a description for the rule set.

7. From the Design Palette tab, drag a rule action onto the Rule Set Editor. See “Adding an
Action to a Scenario’s Rule” on page 8-12 for more detail on each action.

8. In the action, click the all link to toggle back and forth between any and all to determine
which conditions will trigger this action. The any choice means that only one of the
conditions must be true for the action to occur. Rules can have more than one action.

9. Click other applicable links and define them.

../portals/index.html

Creat ing Advanced Pe rsona l i za t i on wi th Rules

10-10 Oracle WebLogic Portal Interaction Management Guide

10. In the Available Conditions section in the Design Palette tab, select the condition under
which the rule set will run and drag the condition to the action. Click the condition’s link to
define the condition and determine what will trigger the action. See Table 4-1 in Chapter 4,
“Creating a Property Set” for more information on conditions. See Figure 10-12 for an
example rule set.

Figure 10-12 A Rule Set that Uses The Visitor is a Member of a Predefined User Segment Condition

11. Save the file by choosing File > Save.

Creating a Rule Set Manually
You can create a rule set manually. Rule sets must conform to particular schema. (The rule set
schemas are located in the p13n_app.jar file. You can find this file in
<WLPORTAL_HOME>\p13n\lib\j2ee-modules\p13n-app-lib.ear.) The language of the
rules is actually a usage of the WebLogic Portal expressions package, extended to meet additional
requirements for the Rules Service. See the com.bea.p13n.expression.operator.*
packages in WebLogic Portal Javadoc for descriptions of the expressions you can use.

Rule set XML files, which must end in .rls, all contain the following required elements:

The <rule-set> – Includes all references to schema used in the rule set.

The <rule> – Contains the definition of the rule, which consists of at least one condition
and at least action. A rule set can have more than one <rule>.

The <conditions> and <actions> – Each <rule> contains its own if/then clauses that
consist of at least one <condition> (if) and one or more <action> (then). The Rules

../javadoc/index.html

Creat ing a Ru le

Oracle WebLogic Portal Interaction Management Guide 10-11

Service evaluates the objects in working memory against the conditions. If an object meets
a condition, the related actions are executed.

Listing 10-3 contains a simple rule set example that says, If the string ‘Make an Integer 10’ is in
working memory, add an Integer object ‘10’ to working memory.

Listing 10-3 Rule Set that Adds an Object to Working Memory

<?xml version="1.0" encoding="UTF-8"?>

<!-- edited with XMLSPY v5 rel. 4 U (http://www.xmlspy.com) by Your Name

(Your Company) -->

<rule-set xmlns="http://www.bea.com/servers/p13n/xsd/rules/core/2.1.1"

xmlns:exp="http://www.bea.com/servers/p13n/xsd/expression/expressions/2.1.

1"

xmlns:literal="http://www.bea.com/servers/p13n/xsd/expression/literal/1.0.

1"

xmlns:string="http://www.bea.com/servers/p13n/xsd/expression/string/1.0.1"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/servers/p13n/xsd/rules/core/2.1.1

rules-core-2_1_1.xsd" is-complete="true">

 <rule is-complete="true">

 <name>Add Integer</name>

 <description>Test Rule</description>

 <conditions>

 <exp:equal-to>

 <exp:variable>

 <exp:type-alias>java.lang.String</exp:type-alias>

 </exp:variable>

 <literal:string>Make an Integer 10</literal:string>

 </exp:equal-to>

 </conditions>

 <actions>

 <add-object>

 <exp:type-alias>java.lang.Integer</exp:type-alias>

 <exp:arguments>

 <literal:string>10</literal:string>

 </exp:arguments>

Creat ing Advanced Pe rsona l i za t i on wi th Rules

10-12 Oracle WebLogic Portal Interaction Management Guide

 </add-object>

 </actions>

 </rule>

</rule-set>

Unless you are adept at reading schemas and manually constructing valid XML according to the
schema’s rules, use an XML editor such as XMLSpy (which can be installed from the WebLogic
Platform product CD). An XML editor reads a schema, as well as all the schemas the schema
imports, and shows you elements and attributes that can be added to an XML document at any
location, showing you available elements and attributes and helping you create a valid XML rule
set.

Before you begin to create the rule set in XML, write out the rule in natural language to
understand all its pieces (conditions and actions) and types of data. What is being put into
working memory? What conditions do you want the objects to meet, and what should happen
(actions) when objects in working memory meet the conditions?

Use the following guidelines to create a rule set (or modify an existing rule set) with an XML
editor:

1. Extract the following schemas from the p13n_app.jar file in the
<WLPORTAL_HOME>\p13n\lib\j2ee-modules\p13n-app-lib.ear file into the same
directory where you will create your rule set:
lib/schema/expression*.xsd
lib/schema/rules*.xsd

2. Start a new document (or open an existing document) in your XML editor and associate the
document with the rules-core-2_1_1.xsd schema. This schema also includes imports of
other schemas, especially expression schemas, that are helpful in building rule sets.

In a new XML document, your XML editor should automatically insert the XML header,
automatically import any schemas listed for import, and insert required base elements, such
as <rule-set>, <rule>, <name>, <conditions>, and <actions>.

3. Select the <conditions> and <rules> elements and begin building (or modifying) the
conditions and rules.

Figure 10-13 shows a rule set being built in XMLSpy. With the
<exp:greater-than-or-equal-to> element selected, the Elements section shows which
elements can be added as children. The Attributes section shows the attributes that can be
set on the element.

Creat ing a Ru le

Oracle WebLogic Portal Interaction Management Guide 10-13

Figure 10-13 Building a Rule with an XML Editor

4. After you finish building the rule set, use the XML editor’s features to check them for being
well-formed. Then validate the rule set against the schema. (In XMLSpy, press F7 and F8 to
perform these steps.) See “Working with Invalid Rule Sets” on page 10-15 for instructions on
fixing invalid rule sets.

5. Save the rule set. (XMLSpy prompts you if you are trying to save an invalid rule set, but you
can still save it.)

6. Copy the rule set to your portal application’s datasync project directory, or to one of its
subdirectories. For example, create a myDatasyncProject/src/rulesets directory and
save the rule set there.

Using a Method in a Rule
Table 10-5 shows how an XML rule set uses a method to retrieve a User Profile property value
so it can be evaluated by the Rules Service.

Creat ing Advanced Pe rsona l i za t i on wi th Rules

10-14 Oracle WebLogic Portal Interaction Management Guide

Use the following information when working on the mapping between the XML and the method:

The <exp:type-alias> identifies the type of object the method will work on. For a list of
object type mappings defined in the parser-mapping-type.properties file in
p13n_app.jar, see “Using Type Mappings” on page 10-17.

The <exp:instance-method> indicates a method, and the <exp:name> provides the
name of the method.

Note: To invoke methods from a rule, the appropriate classes must be imported in the
calling code.

The <exp:argument> includes two <literal:string> elements that provide the String
arguments to the method.

Table 10-5 How an XML Rule Uses a Method

Condition

<exp:greater-than-or-equal-to>

 <literal:integer>10</literal:integer>

 <exp:instance-method>

 <exp:variable>

 <exp:type-alias>User</exp:type-alias>

 </exp:variable>

 <exp:name>getProperty</exp:name>

 <exp:arguments>

 <literal:string>CreditPropertySet</literal:string>

 <literal:string>CreditScore</literal:string>

 </exp:arguments>

 </exp:instance-method>

</exp:greater-than-or-equal-to>

Method to which the condition maps

The ProfileWrapper takes an Object of type User:

ProfileWrapper pw = SessionHelper.getProfile(request);

Object value = pw.getProperty(“CreditPropertySet”, “CreditScore”);

Creat ing a Ru le

Oracle WebLogic Portal Interaction Management Guide 10-15

The <literal:integer> identifies a value that the Rules Service uses. The evaluation of
the object in working memory (in this case the User Profile CreditScore value)
determines if the rule’s action is fired.

The result is that the rule’s condition (in XML) retrieves the value of the user’s
CreditScore. If the value is greater than or equal to 10, in this example, the associated
actions are fired.

Working with Invalid Rule Sets
If a rule set does not validate, you can see the invalid area. Perform the following steps to fix the
invalid rule set:

Verify that you imported all schemas referenced in the .rls file. Those schemas are listed
at the top of the *.rls file. The schemas must be in the same directory as the .rls file.

Ensure that the XML sections defined in your .rls file are valid according to the schema.
You can open the schema in XMLSpy to check your .rls against the schema definitions.
In XMLSpy, you can view the schema in Design view for a graphical representation of the
schema. You can view the .rls in Text view and Enhanced Grid view.

Note: There is no guarantee that a rule set validated in an XML editor will be validated in
the Rules Service.

Deploying a Rule Set
This section explains how to deploy a rule set in development (Workshop for WebLogic) and in
Staging or Production environments.

This section contains the following topics:

Deploying a Rule Set in Workshop for WebLogic

Deploying a Rule Set in a Staging or Production Environment

Deploying a Rule Set in Workshop for WebLogic
After you create a rule set and store it in your application’s datasync project directory (or in a
subdirectory you create, such as the myDatasyncProject/src/rulesets directory), the rule
set is automatically deployed if the server is running. If the server is not running, the rule set is
automatically deployed at server startup. (The datasync project directory also contains the User
Segments, Content Selectors, Campaigns, and other application metadata you have created.) Rule

Creat ing Advanced Pe rsona l i za t i on wi th Rules

10-16 Oracle WebLogic Portal Interaction Management Guide

sets must be deployed to the datasync project directory, and rule set file names must have an .rls
extension to be used by the Rules Service.

When you modify a rule set in the datasync project directory, the rule set is automatically
refreshed on the running server.

Deploying a Rule Set in a Staging or Production Environment
Perform the following steps to add, modify, or remove a rule set that exists in a deployed
application:

1. Modify the rule set in the Development environment and replace it in the deployed
application. If the application is in a compressed EAR file, you must recreate the EAR file to
include the updated rule set and then replace the EAR file on the server. When you replace
the EAR file on the server, you do not need to redeploy the application.

2. Update the rule set with the Propagation Utility. See the Production Operations Guide for
instructions.

Adding Objects to Working Memory
Rule sets must have objects in working memory to evaluate. For example, a rule set might contain
a rule that has the following condition: “If the user’s credit score is greater than 10.” This implies
there is either the credit score input, or there is a way to get at the credit score. We could add a
credit score to working memory in one of two ways:

Adding the credit score to memory from an integer

Adding the credit score to memory from a User Profile

Adding a Credit Score to Working Memory from an Integer
You could provide a credit score value in your code in the following ways:

Directly – For example, Integer value = new Integer(10);

Indirectly – For example, through a form input value:

Object [] inputObjects = { value }; (This is a required argument to the
evaluate*() methods.)

You could then create a rule condition that evaluates the value Integer.

../prodOps/index.html

Creat ing a Ru le

Oracle WebLogic Portal Interaction Management Guide 10-17

Adding a Credit Score to Working Memory from a User Profile
Retrieving a credit score from a User Profile is more flexible and dynamic. First, you would use
code to retrieve the User Profile and put it into working memory:

ProfileWrapper pw = SessionHelper.getProfile(request);

Object [] inputObjects = { pw }; (This is a required argument to the

evaluate*() methods.)

In your rule set, you would then create a condition that uses a method (getProperty) that
retrieves a specific property (CreditScore) from a specific property set (CreditPropertySet).
See the code example in Table 10-5. The condition in the code example checks to see if the
retrieved CreditScore is greater than or equal to the <literal:integer> value of 10.

Note: The User type is actually an alias for an object of class ProfileWrapper. This mapping
of User to ProfileWrapper, along with the mappings of other well-known types, are
defined in the parser-mapping-type.properties file in the p13n_app.jar file,
shown in “Using Type Mappings” on page 10-17.

Using Type Mappings
The following object type mappings are from the parser-mapping-type.properties file in
the p13n_app.jar file:

Using Mappings for <type-alias> Tags
Listing 10-4 shows mappings for <type-alias> tags.

WARNING: The Commerce API is deprecated with WebLogic Portal 10.0.

Listing 10-4 Mappings for <type-alias> Tags

User=com.bea.p13n.usermgmt.profile.ProfileWrapper

Classifier=com.bea.p13n.user.Classification

Capability=com.bea.p13n.entitlements.common.Capability

Role=com.bea.p13n.entitlements.common.Role

Context=com.bea.p13n.rules.internal.engine.Context

Email=com.bea.campaign.rules.MailActionDef

Placeholders=com.bea.campaign.rules.AddAdToPlaceholderActionDef

Discount=com.bea.commerce.ebusiness.campaign.AddUserDiscountActionDef

EndScenario=com.bea.campaign.rules.EndScenarioActionDef

CatalogQuery=com.beasys.commerce.ebusiness.catalog.rules.CatalogQueryWrapper

Creat ing Advanced Pe rsona l i za t i on wi th Rules

10-18 Oracle WebLogic Portal Interaction Management Guide

ContentQueryAdvice=com.bea.p13n.content.advislets.ContentQueryAdvice

ShoppingCartFacade=com.beasys.commerce.ebusiness.shoppingcart.ShoppingCartRu

lesFacade

The code examples in Listing 10-3 and Table 10-4 show the <type-alias> element with a User
type.

Mappings for <variable> Tags
Listing 10-5 shows mappings for <variable> tags.

Listing 10-5 Mappings for <variable> Tags

user=com.bea.p13n.usermgmt.profile.ProfileWrapper

request=com.bea.p13n.http.Request

session=com.bea.p13n.http.Session

event=com.bea.p13n.events.Event

randomNumber=java.lang.Number

classification=com.bea.p13n.user.Classification

date=com.bea.p13n.xml.schema.Date

time=com.bea.p13n.xml.schema.Time

timeInstant=com.bea.p13n.xml.schema.TimeInstant

role=com.bea.p13n.entitlements.common.Role

resource=java.lang.String

shoppingCart=com.beasys.commerce.ebusiness.shoppingcart.ShoppingCart

Invoking the Rules Service to Evaluate Objects
After you have created a rule set and you have objects in working memory, you can invoke the
Rules Service to evaluate the objects in working memory with the rules you created. This section
provides an example to show you how to invoke the Rules Service with the Rules Executor
control in a Page Flow.

Creat ing a Ru le

Oracle WebLogic Portal Interaction Management Guide 10-19

Using an Existing Rule Set
The example used throughout the Invoking the Rules Service to Evaluate Objects section
assumes that a rule set already exists in the /data/rulesets directory that classifies users as
“GoldCardMembers” or “SilverCardMembers” by reading a User’s Profile (similar to the
example used in “Adding a Credit Score to Working Memory from a User Profile” on
page 10-17). The Page Flow example in this section shows the User Profile being added to
working memory. Since the User’s Profile is needed in this example, you should assume the
Profile Control was added to an existing Page Flow to enable the getting and setting of User
Profile properties.

This sample also uses the User Login Control for authentication so that the Page Flow knows
which User Profile to retrieve.

For instructions on creating a Page Flow and adding a Portal Control to the Page Flow, see the
Javadoc.

Inserting the Control in the Page Flow
When you insert a control in a Page Flow (a .jpf file in Workshop for WebLogic), all the
Actions that are part of that control are available to use.

The Rules Executor Control contains two actions:

The evaluateRule Action – Lets you evaluate the objects in working memory against a
single rule in a rule set.

The evaluateRuleSet Action – Lets you evaluate the objects in working memory against
all rules in a rule set.

When you are looking at a Page Flow in Action View, you can select a control you have inserted
(by selecting the control’s border) and set properties on that control. The Property Editor is a
convenient way to send arguments to the RulesManager EJB (which interfaces directly with the
Rules Service) without writing Java code.

../javadoc/index.html

Creat ing Advanced Pe rsona l i za t i on wi th Rules

10-20 Oracle WebLogic Portal Interaction Management Guide

For example, Table 10-6 shows how the Rules Executor Control properties shown in
Figure 10-11 map to method and constructor arguments in the RulesManager EJB.

The RulesManager EJB has the same Actions contained in the Rules Executor Control:
evaluateRule() and evaluateRuleSet(). The difference is that the Rules Executor Control
Actions take only one argument—for example, evaluateRuleSet(Object[]
inputObjects)—and provide the rule and filter arguments through the control properties.

If you set the filterResults property to true on the Rules Executor Control, the EJB method
with the filter argument is used and the filtering properties you enter are automatically sent to
that argument.

The filterClassName and filterClassNames properties are different options for populating
the filter argument (with one or more types of filters). Set either filterClassName or
filterClassNames on the control, but do not set both.

Use the filterRuleName property to filter on the results of a specific rule in a rule set that has fired.
If you use this property, the RuleResultClassFilter constructor is called. Notice that the
constructor is overloaded to use either a single class filter (that you entered in the
filterClassName) property or multiple class filters (that you entered in the
filterClassNames) property. The result of using the filterRuleName property is that you not
only filter the results of a specific rule that has fired, you can also filter on specific data types.

Table 10-6 How Control Properties Map to Method and Constructor Arguments

Rules Executor Control
properties

RulesManager EJB methods (see com.bea.p13n.rules.manager)

rulesetUri

ruleName

filterResults

filterClassName

filterClassNames

evaluateRule(String ruleSetUri, String ruleName, Object[]
inputObjects)

evaluateRule(String ruleSetUri, String ruleName, Object[]
inputObjects, ObjectFilter filter)

evaluateRuleSet(String ruleSetUri, Object[] inputObjects)

evaluateRuleSet(String ruleSetUri, Object[] inputObjects,
ObjectFilter filter)

filterRuleName Filter constructors (see com.bea.p13n.rules.manager.RuleResultClassFilter)
RuleResultClassFilter(String ruleName, Class targetClass)

RuleResultClassFilter(String ruleName, Class[]
targetClassArray)

../javadoc/index.html
../javadoc/index.html

Creat ing a Ru le

Oracle WebLogic Portal Interaction Management Guide 10-21

Following are more detailed definitions of the control properties:

The rulesetUri (required) URI of the rule set to use – This URI is relative to the
application's datasync project directory. For example, if you created a rule set called
myruleset.rls and stored it in a myDatasyncProject/rulesets directory, the URI
would be /rulesets/myruleset.rls. Use the Rules Manger Control to list rule sets and
rules.

The ruleName (optional) Name of the rule to use –The rule must be contained in the
rule set specified in the rulesetUri property. If not specified, all the rules in the rule set are
evaluated. The default is null.

The filterResults (optional) – This property determines whether to filter the results after
the rules have been evaluated. If the value is false, all objects remaining in working
memory are returned. The default is false. For information on filtering, see Filtering the
Results.

The filterClassName (optional) – Enter the class name (for example,
java.lang.String) of the type of results to return. If this is left empty, results are not
filtered. Specify this or the filterClassNames, but not both.

The filterClassNames (optional) – Enter a comma-separated list of class names of the
types of results to return (for example, java.lang.String,java.lang.Integer). If this
is left empty, results are not filtered. Specify this or the filterClassName, but not both.

The filterRuleName (optional) – Filter the results of a specific rule that was fired. If this
is left empty, results from all rules will be returned. Otherwise, results from only this rule
are returned. This filter is applied with the Class filters, if those are specified.

Understanding the Benefits of Using the Control
Understanding how properties map to methods and constructors can help you understand the
benefits of using the Rules Executor control. Filling in property values provides the following
benefits:

You do not have to write Java code

If you are filtering the results, the filter is constructed automatically for you

For more information on the Rules Executor Control, see the Javadoc.

../javadoc/index.html

Creat ing Advanced Pe rsona l i za t i on wi th Rules

10-22 Oracle WebLogic Portal Interaction Management Guide

Using the Control to Determine the User’s Path in the Page Flow
After you add the Rules Executor Control to the Page Flow, set the properties on the control, and
select one of the control’s execute* actions to use, you should verify that all other prerequisite
details are in place (see Using an Existing Rule Set). Then you can add code to the Page Flow that
sends users to a different page depending on the classification they receive from the rule
evaluation process.

The sample Page Flow code in Listing 10-6 shows how a user is directed to a particular page
based on the results from the Rules Service.

Listing 10-6 Sample Code to Direct a User to a Page, Based on the Results of the Rules Service

public class Controller extends PageFlowController

{

 /**

 * @common:control

 */

 private com.bea.p13n.controls.login.UserLoginControl userLoginControl;

 /**

 * @common:control

 */

 private com.bea.p13n.controls.profile.ProfileControl myProfileControl;

// The Rules Executor control is added. Properties are configured

// in the Property Editor.

// This is all done in the Page Flow’s Action View.

 /**

 * @common:control

 * @jc:rules-executor filterClassName="com.bea.p13n.user.Classification"

filterResults="true" rulesetUri="/rulesets/myruleset.rls"

 */

 private com.bea.p13n.controls.rules.RulesExecutorControl

 myRulesExecutorControl;

 /**

 * @jpf:action

 * @jpf:forward name="default" path="default.jsp"

 * @jpf:forward name="goldCard" path="goldCard.jsp"

 * @jpf:forward name="silverCard" path="silverCard.jsp"

Creat ing a Ru le

Oracle WebLogic Portal Interaction Management Guide 10-23

 * @jpf:catch

type="com.bea.p13n.controls.exceptions.P13nControlException"

path="error.jsp"

 * @jpf:forward name="error" path="error.jsp"

 */

 protected Forward evaulateRuleSetAction(EvaluateRuleSetActionForm form)

 throws P13nControlException

 {

// Start with an empty list into which we add objects to populate

// the working memory of the Rules Service

 List wmObjects = new ArrayList();

 ProfileWrapper pw =

myProfileControl.getProfileFromRequest(this.getRequest());

 if (pw == null)

 {

 throw new P13nControlException("Undable to retrieve profile from

 request. " + "Make sure PortalServletFilter is configured

 in web.xml for an anonymous user, " + "or that a user

 has logged in.");

 }

// This one will be the condition that fires the rule

 Integer value = new Integer(6);

 myProfileControl.setProperty(pw, "FooPropertySet", "CreditScore",

value);

 wmObjects.add(pw);

// Evaulate all rules in the rule set. Parameters have been declared on the

// control in the Page Flow Property Editor (in Action View).

 Iterator iter =

myRulesExecutorControl.evaluateRuleSet(wmObjects.toArray());

 List results = new ArrayList();

// Let's say we're looking for GoldCardMembers

 Classification goldCardMembers = new

Classification("GoldCardMembers");

 Classification silverCardMembers = new

Classification("SilverCardMembers");

// And we'll direct them to a certain page depending

// on how the rule evaluates

Creat ing Advanced Pe rsona l i za t i on wi th Rules

10-24 Oracle WebLogic Portal Interaction Management Guide

 Classification classification = (Classification)iter.next();

// Now you would do something with that,

// like show them a different page

 if (classification.equals(goldCardMembers))

 {

// Direct them to high-price stuff

 return new Forward("goldCard");

 }

 else if (classification.equals(silverCardMembers))

 {

// Direct them to lower-price stuff

 return new Forward("silverCard");

 }

// Otherwise, it defaults. Something went wrong.

// Check the rule conditions or turn off filtering on the control

// to see what's in working memory

 }

 }

 return new Forward("default");

}

If you want to use only a specific type of object in working memory after the Rules Service has
stopped, you can filter the objects in working memory. Filtering is set using Java types. On the
Rules Executor Control, you can set the filter type in the Property Editor.

Get more information on the following subjects:

Filter Type – See Filtering the Results

The Rules Executor Control – See the Javadoc.

The RulesManager EJB – See the Javadoc.

Filtering the Results
When you execute the Rules Service to evaluate objects in working memory, as described in
“Invoking the Rules Service to Evaluate Objects” on page 10-18, you can filter the objects in

../javadoc/index.html
../javadoc/index.html

Creat ing a Ru le

Oracle WebLogic Portal Interaction Management Guide 10-25

working memory when the Rules Service has stopped running to return only the objects of a
specific type.

Objects exist in working memory as a result of one of the following actions:

The caller puts them there (in the inputObjects array)

A new object is instantiated in one of the rules’ actions

When the Rules Service has stopped, several objects might remain in working memory, including
those the user initially added. For example, your rule may instantiate a new Classification object
into working memory if the rule evaluates to true. Another example is that a rule action might
have updated the User’s Profile, so you need to retrieve the profile from working memory.

When the Rules Service’s API executes a rule, it returns an Iterator over the entire contents of
working memory unless you filter the results. If you are looking only for Classification objects,
then you can specify a filter that returns only Classification objects. You can design this filter
based on a single class name, multiple class names, or a given rule, as described in “Inserting the
Control in the Page Flow” on page 10-19.

When you implement the Rules Executor Control, the control takes care of constructing the filter
automatically. You need to specify whether to filter and the filter class names as control
properties. The filter is applied for you automatically by the control, if you specify this.

Filtering with the RulesManager EJB
Filtering with the RulesManager EJB is a more cumbersome than filtering with the Rules
Service, because you must design the filter yourself with the RulesManager EJB. Listing 10-7
shows how to design a filter.

Listing 10-7 Design a Filter with the RulesManager EJB

String filterRuleName = null;

Class filterClass = com.bea.p13n.user.Classification.class;

ObjectFilter filter = new RuleResultClassFilter(filterRuleName,

filterClass);

Class [] filterClasses = { java.lang.String.class,

com.bea.p13n.usermgmt.profile.ProfileWrapper.class};

ObjectFilter filter = new RuleResultClassFilter(filterRuleName,

filterClasses);

Creat ing Advanced Pe rsona l i za t i on wi th Rules

10-26 Oracle WebLogic Portal Interaction Management Guide

The filter can then be used as part of the RulesManager EJB, as shown in the following example:

public Iterator evaluateRule(String ruleSetUri, String ruleName, Object[]

inputObjects, ObjectFilter filter)

If you filtered the results, the Iterator should only contain results of the class types you specified.
The code sample in Listing 10-8 shows a Classification object of SilverCardMembers.

Listing 10-8 Sample Code that Retrieves Silver Card Members

while (iter.hasNext())

{

Classification c = (Classification)iter.next();

 if (c.equals(silverCardMembers))

 {

 // do something

 }

}

Using the Results in Your Application
The Rules Service makes decisions for you at run-time. The rules framework is more flexible than
hard-coding logic (if/then) into your components, because you can modify rules without
modifying your code.

Following are some examples of using rules and rule results:

If the time is between 8-5, direct users to pages that relate to brokerage services. If the time
is outside the range, direct users to pages related to investment research.

If the user lives in Boulder and is female, show her an advertisement for the Boulder Rock
Club.

If the user’s credit score is > 10, the User Profile (sets a property) to classify the user as a
Gold Member.

Rules Cont ro l Re fe rence

Oracle WebLogic Portal Interaction Management Guide 10-27

If the date is between December 1 and December 31, send the user to the New Year’s
promotional JSP.

Rules Control Reference
You can use the Rules Control elements to provide Personalization in your portal application.
Table 10-7 lists the control names and all possible values you can use to create rules.

Table 10-7 Rules Control Elements for the Rules Engine

Rules Control
Name

Description All Possible Values

rule-set The root element that contains
all of the rules.

rule

rule The definition of a rule using
conditions and actions, along
with an optional description.

name, description, conditions, actions

name The name of the rule. Any text

description Optional text describing the
rule.

Any text

conditions Expressions that the Rules
Service evaluates using the
objects in working memory.

variable, literal, branch, operator, method

variable Indicates the type of the
object being compared in an
expression.

N/A

Creat ing Advanced Pe rsona l i za t i on wi th Rules

10-28 Oracle WebLogic Portal Interaction Management Guide

type-alias A string specifying the kind
of a an object or variable

For variables, the value can be any type, such as
java.lang.String, or an alias to a variable type from the list
below:

user=com.bea.p13n.usermgmt.profile.ProfileWrapper
request=com.bea.p13n.http.Request
session=com.bea.p13n.http.Session
event=com.bea.p13n.events.Event
randomNumber=java.lang.Number
classification=com.bea.p13n.user.Classification
date=com.bea.p13n.xml.schema.Date
time=com.bea.p13n.xml.schema.Time
timeInstant=com.bea.p13n.xml.schema.TimeInstant
role=com.bea.p13n.entitlements.common.
Roleresource=java.lang.String
shoppingCart=com.beasys.commerce.ebusiness.
 shoppingcart.ShoppingCart

For objects, the value can be any type, such as java.lang.String,
or an alias to an object type from the list below:

User=com.bea.p13n.usermgmt.profile.ProfileWrapper
Classifier=com.bea.p13n.user.Classification
Capability=com.bea.p13n.entitlements.common.
 Capability
Role=com.bea.p13n.entitlements.common.Role
Context=com.bea.p13n.rules.internal.engine.Context
Email=com.bea.campaign.rules.MailActionDef
Placeholders=com.bea.campaign.rules.
 AddAdToPlaceholderActionDef
Discount=com.bea.commerce.ebusiness.campaign.
 AddUserDiscountActionDef
EndScenario=com.bea.campaign.rules.
 EndScenarioActionDef
CatalogQuery=com.beasys.commerce.ebusiness.
 catalog.rules.CatalogQueryWrapper
ContentQueryAdvice=com.bea.p13n.content.advislets.
 ContentQueryAdvice
ShoppingCartFacade=com.beasys.commerce.ebusiness.
 shoppingcart.ShoppingCartRulesFacade

Table 10-7 Rules Control Elements for the Rules Engine

Rules Control
Name

Description All Possible Values

Rules Cont ro l Re fe rence

Oracle WebLogic Portal Interaction Management Guide 10-29

literal Used to specify a particular,
unchanging value

boolean, character, decimal, double, float, integer, long, string

branch Controls the execution path
within a rule.

if

if Evaluates expressions to
control execution path within
a rule.

Any two or three other expressions that evaluate to true or
false.

operator Indicates what sort of
comparison will be made in
the expression.

and, equal-to, greater-than, greater-than-or-equal-to, less-than,
less-than-or-equal-to, multi-and, multi-or, not, not-equal-to, or

and To evaluate to true, both
expressions must evaluate to
true.

equal-to Evaluates to true when both
expressions are equivalent.

greater-than Evaluates to true when the
first expression is more than
the second expression.

greater-than-
or-equal-to

Evaluates to true when the
first expression is more than
or the same as the second
expression.

less-than Evaluates to true when the
first expression is less than
the second expression.

less-than-or-
equal-to

Evaluates to true when the
first expression is less than or
the same as the second
expression.

Table 10-7 Rules Control Elements for the Rules Engine

Rules Control
Name

Description All Possible Values

Creat ing Advanced Pe rsona l i za t i on wi th Rules

10-30 Oracle WebLogic Portal Interaction Management Guide

multi-and Evaluates to true when all of
the supplied expressions
evaluate to true.

multi-or Evaluates to true when any of
the supplied expressions
evaluate to true.

not Negates the logical value of
one expression.

not-equal-to Evaluates to true when both
expressions are not
equivalent.

or Evaluates to true when either
expression evaluates to true.

method An abstract, complex type. static-method, instance-method, new-instance, contains,
contains-all, abs, acos, add, asin, atan, atan2, ceil, cos, divide,
exp. floor, ieee-remainder, log, maximum, minimum,
multiply, pow, rint, round, sin, sqrt, subtract, tan, to-degrees,
to-radians, char-at, compare-to-ignore-case, concat,
ends-with, equals-ignore-case, length, like, replace,
starts-with, substring, to-lower-case, to-upper-case, trim

static-method Invokes the named method on
an object in working memory
of the type specified by the
type-alias, passing any
provided arguments to the
method.

type-alias, name, arguments

instance-
method

Invokes the named method on
an object in working memory
of the type specified by the
variable type-alias, passing
any provided arguments to the
method.

variable, name, arguments

Table 10-7 Rules Control Elements for the Rules Engine

Rules Control
Name

Description All Possible Values

Rules Cont ro l Re fe rence

Oracle WebLogic Portal Interaction Management Guide 10-31

new-instance Instantiates an object of the
type specified in the
type-alias. Arguments are
supplied as expressions, and
the type of each argument is
specified in the type-alias list
in the arguments- signature.

type-alias, arguments-signature, arguments

contains Returns a boolean indicating
if the first Collection object
contains the second object.

contains-all Returns a boolean indicating
if the first Collection object
contains the entire second
Collection object.

abs Absolute value operator,
accepting a number and
returning a number.

acos Arc cosine operator,
accepting a number and
returning a number.

add Addition operator, accepting
two numbers and returning
their sum.

asin Arc sine operator, accepting a
number and returning a
number.

atan Arc tangent operator,
accepting a number and
returning a number.

atan2 Cartesian to polar coordinates
operator, accepting two
numbers and returning a
number.

Table 10-7 Rules Control Elements for the Rules Engine

Rules Control
Name

Description All Possible Values

Creat ing Advanced Pe rsona l i za t i on wi th Rules

10-32 Oracle WebLogic Portal Interaction Management Guide

ceil Ceiling operator, accepting a
number and returning a
number.

cos Cosine operator, accepting a
number and returning a
number.

divide Division operator, accepting
two numbers and returning a
number.

exp Exponential operator,
accepting a number and
returning a number.

floor Floor operator, accepting a
number and returning a
number.

ieee-
remainder

IEEE 754 remainder operator,
accepting two numbers and
returning a number.

log Natural logarithm operator,
accepting a number and
returning a number.

maximum Maximum operator,
accepting two numbers and
returning a number.

minimum Minimum operator, accepting
two numbers and returning a
number.

multiply Multiplication operator,
accepting two numbers and
returning a number.

Table 10-7 Rules Control Elements for the Rules Engine

Rules Control
Name

Description All Possible Values

Rules Cont ro l Re fe rence

Oracle WebLogic Portal Interaction Management Guide 10-33

pow Power of operator, accepting
two numbers and returning a
number.

random-
number

Random number operator,
optionally accepts a lower and
upper bound and returns a
random number.

rint Round to next integer
operator, accepting a number
and returning a number.

round Round operator, accepting a
number and returning a
number.

sin Sine operator, accepting a
number and returning a
number.

sqrt Square root operator,
accepting a number and
returning a number.

subtract Subtraction operator,
accepting two numbers and
returning a number.

tan Arc tangent operator,
accepting a number and
returning a number.

to-degrees Radians to degrees operator,
accepting a number and
returning a number.

to-radians Degrees to radians operator,
accepting a number and
returning a number.

Table 10-7 Rules Control Elements for the Rules Engine

Rules Control
Name

Description All Possible Values

Creat ing Advanced Pe rsona l i za t i on wi th Rules

10-34 Oracle WebLogic Portal Interaction Management Guide

char-at Returns the character at the
given position within the
string, accepting a string and a
number then returning a
character.

compare-to-
ignore-case

String comparison operator
that ignores case, accepting
two strings and returning an
integer.

concat String concatenation
operator, accepting two
strings and returning a string.

ends-with Returns a boolean indicating
if the first string ends with the
second string.

equals-ignore
-case

Returns a boolean indicating
if the first string is the same as
the second string, ignoring
case.

length Accepts a string and returns
an integer representing the
number of characters in the
string.

like Returns a boolean indicating
if the second string is
contained in the first string,
ignoring case.

replace Accepts a string and two
characters, returning a string
that has the first character
replaced by the second.

Table 10-7 Rules Control Elements for the Rules Engine

Rules Control
Name

Description All Possible Values

Rules Cont ro l Re fe rence

Oracle WebLogic Portal Interaction Management Guide 10-35

starts-with Returns a boolean indicating
if the first string starts with
the second string.

substring Accepts a string and two
numbers, returning a string of
the characters that fall within
that number range from inside
the given string.

to-lower-case Accepts a string, returning
that same string converted to
lower case.

to-upper-case Accepts a string, returning
that same string converted to
upper case.

trim Accepts a string, returning
that same string but with any
leading or trailing whitespace
removed.

actions Instructions that are executed
if the conditions are met. A
group of zero or more action
tags.

action

action One instruction that is
executed if the conditions are
met.

action (nested), method (defined above), add-object

Table 10-7 Rules Control Elements for the Rules Engine

Rules Control
Name

Description All Possible Values

Creat ing Advanced Pe rsona l i za t i on wi th Rules

10-36 Oracle WebLogic Portal Interaction Management Guide

add-object Adds an object of the type
specified in the type-alias to
working memory. Arguments
are supplied as expressions,
and the type of each argument
is specified in the type-alias
list in the arguments-
signature. This is same
functional definition as add
instance above.

type-alias, arguments-signature, arguments

Table 10-7 Rules Control Elements for the Rules Engine

Rules Control
Name

Description All Possible Values

Oracle WebLogic Portal Interaction Management Guide

Part III Staging

Part III includes the following chapters:

Chapter 11, “Modifying Property Set Values”

Chapter 12, “Modifying a User Segment”

Chapter 13, “Modifying a Content Selector”

Chapter 14, “Modifying a Placeholder”

During the Staging phase, you test and modify the Property Sets, Content Selectors, User
Segments, Placeholders, and Campaigns that you created in the Development phase. This staging
environment simulates a production environment.

Consider setting up a common development environment for the Development phase and the
Staging phase. You might move iteratively between these two phases, developing and then testing
what you created.

When you move to a production environment in the Production phase, the Personalization files
you created from the staging phase are moved there with the Propagation Utility. The Propagation
Utility moves Content Selectors, Placeholders, User Segments, and Campaigns. See the
Production Operations Guide for more information on deployment and propagation.

For a description of the Staging phase of the portal life cycle, see the WebLogic Portal Overview.
The portal life cycle is shown in the following graphic:

../prodOps/index.html
../prodOps/index.html
../overview/index.html
../overview/index.html

Oracle WebLogic Portal Interaction Management Guide 11-1

C H A P T E R 11

Modifying Property Set Values

Developing user interaction that uses Personalization and Campaigns can involve setting up
properties (such as User Profile or Session properties) that are used to define the conditions under
which users will be targeted with personalized content.

User Profile property sets contain conditions that identify users. For example, you could classify
all users who ordered more than five on-demand movies in the last 30 days. If visitors match the
defined characteristics, they automatically become members of that User Segment and are shown
specific web content with Content Selectors or they are targeted with Campaign actions.

This chapter describes how to change the values in your User Profile property sets. The properties
are used in the conditions you define for your Personalization logic. Each user is dynamically
served personalized web content, automatic e-mails, or discounts based on the logic conditions.

Developers used Workshop for WebLogic when they created property sets and properties (see
Chapter 4, “Creating a Property Set” for instructions on creating property sets and properties).
Portal administrators can use the WebLogic Portal Administration Console to update property
values.

This chapter includes the following sections:

Editing a Property Value

Deleting a Property Value

For information on setting up and managing users that will experience Interaction Management
features, see the User Management Guide.

../users/index.html

Modi f y ing P rope r t y Se t Va lues

11-2 Oracle WebLogic Portal Interaction Management Guide

Editing a Property Value
Developers can edit property sets, properties, and conditions in Workshop for WebLogic. You
can edit the property values in the WebLogic Portal Administration Console.

Editing Properties in Workshop for WebLogic
Developers can use Workshop for WebLogic to modify properties or conditions and their values
for User Profiles, User Segments, HTTP session or request data, date and time conditions, or
events. For instructions, see “Modifying Properties and Conditions” on page 4-14.

When an attribute's value is requested for a particular user or group, and an attribute has not
explicitly been assigned, then any default value assigned when the property set attribute was
created is returned. Editing a value using the Administration Console or tags overrides that
default value, allowing personalization for that user or group.

Developers can use the <profile:setProperty> JSP tag in JSPs or the Property control in a
Page Flow to modify existing property values for users.

Editing Property Values in WebLogic Portal Administration Console
Perform the following steps to modify a property’s value:

1. Start the Administration Console.

2. Choose Users, Groups, & Roles > User Management.

3. Select a user store from the drop-down list above the Resource Tree.

4. Select the user in the Resource Tree.

5. Select the User Profile tab and use the drop-down list in the Profile Values for Property Set
field to select the property set containing the value you want to edit.

6. In the Property Name field, locate the property value you want to change and click Edit, as
shown in Figure 11-1.

De le t ing a P roper t y Va lue

Oracle WebLogic Portal Interaction Management Guide 11-3

Figure 11-1 Click Edit to Change the Property Value

7. Enter a new value in the Update Saved Value field and click Update. You can delete the
value that is currently saved by clicking the Delete Saved Value check box. If you delete the
saved value, a successor value is returned if one is defined. If a successor was not defined, the
default value is returned. If there is no defined successor value or a default value, the property
value is null.

Deleting a Property Value
You can use Workshop for WebLogic to delete individual properties from a property set, and you
can delete an entire property set. See “Deleting a Property or a Property Set” on page 4-16 for
instructions.

Perform the following steps to remove a property’s value in the WebLogic Portal Administration
Console:

1. Start the Administration Console.

2. Choose Users, Groups, & Roles > User Management.

3. Select a user store from the drop-down list above the Resource Tree.

4. Select the user in the Resource Tree.

Modi f y ing P rope r t y Se t Va lues

11-4 Oracle WebLogic Portal Interaction Management Guide

5. Select the User Profile tab and use the drop-down list to select the property set that contains
the value you want to remove.

6. In the Property Name field, locate the property value you want to remove and click Edit.

7. In the Edit Profile dialog box, select the Delete Saved Value check box to remove the value
that is currently saved. (If you do not delete the saved value, a successor value is returned if
one is defined. If a successor was not defined, the default value is returned. If there is no
defined successor value or a default value, the property value is null.)

8. Click Update to save the property set file.

Oracle WebLogic Portal Interaction Management Guide 12-5

C H A P T E R 12

Modifying a User Segment

User Segments let you dynamically group users based on conditions you define. You can modify
User Segments that you created in Chapter 5, “Creating a User Segment” by editing the
segment’s characteristics, such as gender, browser type, date or time, and so on. If a user matches
the characteristics of a bookfan, for example, the user automatically and dynamically becomes a
member of the bookfan User Segment. You can then target this User Segment group with web
content, automatic e-mails, and discounts based on the User Segment.

Developers use Workshop for WebLogic to create User Segments. Portal administrators can use
the Administration Console to change the User Segment properties (conditions) to dynamically
group users. Developer time is not required to update User Segment properties.

This chapter includes the following sections:

Modifying a User Segment

Modifying a User Segment’s Properties

Copying a User Segment

Removing a User Segment

Modifying a User Segment
Developers can use Workshop for WebLogic to change the conditions and characteristics that
determine how users are categorized with User Segments. Portal administrators use the
WebLogic Portal Administration Console to edit the properties for the User Segment.

Modi f y ing a Use r Segment

12-6 Oracle WebLogic Portal Interaction Management Guide

Note: The steps in this chapter refer to the data\src folder in the Package Explorer View.
Your data and src directories might be named differently.

Perform the following steps to edit a User Segment file in Workshop for WebLogic:

1. In the Portal Perspective in Workshop for WebLogic, double-click the User Segment .seg file
in the \<data>\src folder in the Package Explorer View.

2. Enter the changes in the User Segment Editor.

3. Save the file by choosing File > Save.

The changes will appear in the Administration Console.

Modifying a User Segment’s Properties
Portal administrators can edit individual properties in a User Segment with the Administration
Console.

Perform the following steps to edit a User Segment’s properties in the Administration Console:

1. Start the Administration Console.

2. Choose Interaction > Segments.

3. In the Resource Tree, select the User Segment you want to edit.

4. In the Segment Details tab, locate the segment property you want to change and click Edit,
as shown in Figure 12-1.

Figure 12-1 Click Edit to Change the User Segment Property

Copy ing a Use r Segment

Oracle WebLogic Portal Interaction Management Guide 12-7

5. Enter your changes and click Save.

Copying a User Segment
Portal Administrators can save time and avoid errors by making a copy of a User Segment and
then editing the properties in the new User Segment.

Perform the following steps in the Administration Console to duplicate a User Segment:

1. Start the WebLogic Portal Administration Console.

2. Choose Interaction > Segments.

3. Right-click a User Segment in the Resource Tree and choose Copy.

4. Enter a name and description for the new User Segment, and click OK.

The new User Segment now appears in the User Segments Resource tree. You can now modify
the User Segment’s properties; see “Modifying a User Segment” on page 12-5.

Tip: You can also duplicate a User Segment in Workshop for WebLogic.

Removing a User Segment
Deleting a User Segment removes it from Workshop for WebLogic and from the Administration
Console.

Note: The steps in this chapter refer to the data\src folder in the Package Explorer View.
Your data and src directories might be named differently.

Perform the following steps to remove a User Segment:

1. In the Portal Perspective in Workshop for WebLogic, select the User Segment .seg file in
the \<data>\src folder in the Package Explorer View.

2. Right-click the segment and choose Delete.

3. Click Yes in the Confirmation dialog box.

Modi f y ing a Use r Segment

12-8 Oracle WebLogic Portal Interaction Management Guide

Oracle WebLogic Portal Interaction Management Guide 13-1

C H A P T E R 13

Modifying a Content Selector

Developers can use Workshop for WebLogic to create Content Selectors and place them in a JSP.
Portal administrators use the WebLogic Portal Administration Console to make changes to the
Content Selectors that display content in the portal. Developer time is not required to update
Content Selectors.

This chapter includes the following sections:

Modifying a Content Selector

Deleting a Content Selector and Query

Modifying a Content Selector
Content Selectors allow you to define the content you want a particular type of visitor to see.
Modifying a Content Selector property allows you to change the content that is displayed.

Perform the following steps to modify a Content Selector property:

1. Start the Administration Console.

2. Choose Interaction > Content Selectors.

3. In the Resource Tree, select the Content Selector you want to edit.

4. Select the Content Selector property and click Edit, as shown in Figure 13-1.

Modi f y ing a Content Se lec to r

13-2 Oracle WebLogic Portal Interaction Management Guide

Figure 13-1 Edit a Content Selector Property

Depending on how the Content Selector was defined in Workshop for WebLogic, you can
edit the following properties:

– Whether any or all conditions apply

– If the visitor belongs to specific User Segments

– If the visitor has certain characteristics

– The visitor's HTTP session

– The visitor's HTTP request

– The current date

– The current date is after a particular date

– The current date and time is after a particular date and time

– The current time is between two particular times

– The current date is between two particular dates

– The current date and time is between two particular dates and times

– The result of the content search

5. Enter your change and click Save, as shown in Figure 13-2.

Dele t ing a Conten t Se l ec to r and Que ry

Oracle WebLogic Portal Interaction Management Guide 13-3

Figure 13-2 Change a Content Selector Property

6. To view your selections, click Show Previews.

Tip: The Content Selector gets results from the Search cache, which might contain outdated
Search results. Refreshing your browser does not clear the Search cache. You can flush
the Search cache in the Administration Console by choosing Configuration &
Monitoring > Service Administration. In the Resource Tree, expand Cache Manager.
Select searchCache (you might need to click Next to see all the caches) and click Flush.

Deleting a Content Selector and Query
Deleting a Content Selector or a Content Selector query removes the Content Selector or the
query from Workshop for WebLogic and the Administration Console. See “Deleting a Content
Selector Query” on page 6-28 and “Deleting a Content Selector” on page 6-28 for instructions.

Tip: You should also delete any <pz:contentSelector> tags in your JSPs that reference the
Content Selector you deleted.

Modi f y ing a Content Se lec to r

13-4 Oracle WebLogic Portal Interaction Management Guide

Oracle WebLogic Portal Interaction Management Guide 14-1

C H A P T E R 14

Modifying a Placeholder

Placeholders display a single content item on a JSP. The content item is dynamically retrieved
from the WLP Virtual Content Repository. A Placeholder retrieves content using predefined
queries that are put in the Placeholder. Placeholders do not use conditions. Each query has a
priority, or weight.

A Placeholder stores queries, runs one query at a time, and displays one of the content items
retrieved by the query. A Placeholder is made up of two parts: a Placeholder file you create in
Workshop for WebLogic and a companion JSP tag that performs the processing.

Developers can use Workshop for WebLogic to create Placeholders and place them in a JSP.
Portal administrators use the WebLogic Portal Administration Console to manage the content
that populates Placeholders by modifying the default Placeholder query or modifying a
Campaign. Developer time is not required to update Placeholders.

This chapter includes the following sections:

Changing Content for a Placeholder

Modifying a Placeholder

Deleting a Query or a Placeholder

Managing Placeholders for Optimal Performance

Modi f y ing a P laceho lder

14-2 Oracle WebLogic Portal Interaction Management Guide

Changing Content for a Placeholder
When a content query in a Placeholder (a default Placeholder query or a query put in the
Placeholder by a Campaign) returns multiple possible content items to a Placeholder, the
Placeholder determines which content item to display.

For more information on changing the content a Placeholder displays, see Chapter 3, “Setting up
Content” and the Content Management Guide.

Modifying a Placeholder
Placeholders allow you to target content to a desired user (also called a visitor). You use the tools
provided in the Administration Console to modify a Placeholder by editing the queries that
determine the content displayed in a Placeholder on a JSP.

Perform the following steps to modify a Placeholder:

1. Start the Administration Console.

2. Choose Interaction > Placeholders and select the Placeholder and content search item in the
Resource Tree, as shown in Figure 14-1.

Figure 14-1 Select the Placeholder and Content Item

content.html
../cm/index.html

Dele t ing a Quer y o r a P laceho lder

Oracle WebLogic Portal Interaction Management Guide 14-3

3. In the Query Details tab, change the descriptor in the Content Query Properties section by
clicking the bracketed text, as shown in Figure 14-2.

Figure 14-2 Change a Content Query

4. In the pop-up window, select a new value for the descriptor and click Save. This descriptor
governs what content is selected for display in the Placeholder. The value is based on a
property set definition; typically it is a User Profile property set.

5. To preview the modified content search for the Placeholder, click Show Previews.

The content search for the Placeholder has been modified.

Note: Developers might choose to modify a Placeholder in Workshop for WebLogic. Open the
Placeholder file by double-clicking it in the Design Palette, and select and modify the
appropriate query.

Deleting a Query or a Placeholder
Removing a Query or a Placeholder removes it from Workshop for WebLogic and from the
WebLogic Portal Administration Console.

Note: The steps in this chapter refer to the data\src folder in the Package Explorer View.
Your data and src directories might be named differently.

Perform the following steps to delete a query in a Placeholder:

Modi f y ing a P laceho lder

14-4 Oracle WebLogic Portal Interaction Management Guide

1. In the Portal Perspective, double-click the Placeholder file in the
<data>\src\placeholders folder in the Package Explorer View.

2. Select the query in the Editor window.

3. In the Content Search window, select the query and click Remove.

4. Click OK.

Perform the following steps to delete a Placeholder:

1. In the Portal Perspective, select the Placeholder file in the <data>\src\placeholders
folder in the Package Explorer View.

2. Right-click the Placeholder file and choose Delete.

3. Click Yes to confirm the Placeholder deletion.

Tip: You should also delete any <ph:placeholder> tags in your JSPs for the deleted
Placeholder.

Managing Placeholders for Optimal Performance
Placeholders can become crowded with many queries, especially if more than one Campaign uses
a Placeholder to display content. Campaign queries can remain in Placeholders indefinitely
unless something specific occurs to remove them.

Perform the following steps to remove unwanted queries and control the content that is displayed
in a Placeholder:

1. When you create default queries in a Placeholder, you can designate that default queries do
not run when a Placeholder contains Campaign queries:

a. In the Portal Perspective in Workshop for WebLogic, open a Placeholder file and select
the default query.

b. In the Properties tab, set the Mix Globals property to false. This setting suppresses
default queries when Campaign queries are present.

2. When you create a Content Action in a Campaign in Workshop for WebLogic, use the
Remove (all) existing content option to minimize the number of queries held in a
Placeholder at a given time.

Managing P laceho lders fo r Opt imal Per fo rmance

Oracle WebLogic Portal Interaction Management Guide 14-5

3. For Campaign content actions, set the Time to Live (duration) field to an appropriate time so
that the content action stops putting queries in the Placeholder when you want it to stop.
Locate the Time to Live field in the Administration Console by choosing Configuration &
Monitoring > Service Administration. Then select Personalization in the Resource Tree
and click Cache Manager in the Service List tab. Click a specific cache name to edit the
Time to Live field.

4. To control the Campaign content that is displayed in a Placeholder, create a content action for
each event that occurs. Use the previous recommendations to display a fresh rotation of
content in the Placeholder.

5. To stop events from firing and placing content in a Placeholder, reset the existing content as
described in “Turning Off a Campaign” on page 8-40.

Modi f y ing a P laceho lder

14-6 Oracle WebLogic Portal Interaction Management Guide

Oracle WebLogic Portal Interaction Management Guide 15-1

C H A P T E R 15

Managing a Campaign

Developers can use Workshop for WebLogic to create a Campaign and display it in a JSP. Portal
administrators use the WebLogic Portal Administration Console to make changes to the
Campaign, including the rules, start or stop date, the sponsor, and so on.

Developer time is not required to modify a Campaign. A Portal administrator can also duplicate
an existing Campaign and then modify the new Campaign.

This chapter contains the following sections:

Modifying a Campaign

Modifying a Rule

Managing a Campaign for Optimal Performance

Modifying a Campaign
Portal administrators can avoid creating new Campaigns by modifying existing Campaigns in the
following ways:

Changing a Campaign’s Description or Sponsor

Changing a Campaign Start or Stop Date

Activating and Deactivating a Campaign

Turning Off a Campaign

Resetting Campaign Settings

Managing a Campaign

15-2 Oracle WebLogic Portal Interaction Management Guide

Duplicating a Campaign

Changing a Campaign’s Description or Sponsor
You can change the text describing a Campaign; however, you cannot change the Campaign's
name. You can also edit the Sponsor field, which describes the purpose of the Campaign or who
it affects.

Perform the following steps to update a Campaign's description or sponsor:

1. Start the Administration Console.

2. Choose Interaction > Campaigns.

3. In the Resource Tree, select the Campaign whose description or sponsor you want to modify.

4. In the Campaign Details tab, click Name & Description.

5. Enter the new Description or Sponsor. The Sponsor field describe the purpose of the
Campaign or who it affects.

6. Click Save.

Changing a Campaign Start or Stop Date
Perform the following steps to change a Campaign start or stop date:

1. Start the Administration Console.

2. Choose Interaction > Campaigns.

3. In the Resource Tree, select the Campaign you want to modify.

4. In the Campaign Details tab, click Campaign Properties, as shown in Figure 15-1.

Modi f y ing a Campaign

Oracle WebLogic Portal Interaction Management Guide 15-3

Figure 15-1 Change a Campaign Property

5. Click the calendar icon next to the Start Date or Stop Date fields. Use the month and year
drop-down menus to select the month and year. You can also use the left and right arrows at
the top of the Calendar window to select the month and year. Select a number in the Date
section to select a day. Use the up and down arrows in the Time section to select a specific
time of day. You must click each field in the Time section before you can modify it and click
Done.

6. Click Save in the Edit Campaign Properties dialog to save the Campaign’s new start or stop
dates.

7. Click Reset Campaign for the new dates to take effect.

Activating and Deactivating a Campaign
Perform the following steps to start a Campaign:

1. Start the Administration Console.

2. Choose Interaction > Campaigns.

3. In the Resource Tree, select the Campaign you want to activate.

Managing a Campaign

15-4 Oracle WebLogic Portal Interaction Management Guide

4. In the Campaign Details tab, click Campaign Properties.

5. In the Edit Campaign Properties window, click the Status drop-down list, select Active, and
click Save, as shown in Figure 15-2.

Figure 15-2 Select Active to Start a Campaign

6. In the Campaign Details tab, click Reset Campaign for the new dates to take effect.

The Campaign is now active.

Perform the following steps to stop a Campaign:

1. Start the Administration Console.

2. Choose Interaction > Campaigns

3. In the Resource Tree, select the Campaign you want to deactivate.

4. In the Campaign Details tab, click Campaign Properties.

5. In the Edit Campaign Properties dialog, click the Status drop-down list, select Not Active,
and click Save.

6. In the Campaign Details tab, click Reset Campaign for the new dates to take effect.

The Campaign is no longer active. The targeted user will see default content rather than specific
Campaign content in the Campaign's Placeholder.

Turning Off a Campaign
To turn off a Campaign so that is does not fire Campaign events, you can remove the
CampaignEventListener.

Modi f y ing a Campaign

Oracle WebLogic Portal Interaction Management Guide 15-5

Tip: The following steps in the WebLogic Portal Administration Console work for a portal
that is deployed as an exploded EAR file. If your portal is a compressed EAR file, you
will need to do these steps manually and then re-build and deploy the EAR file.

Perform the following steps to turn off a Campaign:

1. Start the Administration Console.

2. Choose Configuration & Monitoring > Service Administration.

3. In the Resource Tree, expand the Personalization folder and select Event Service.

4. In the Browse tab, select the Delete check box next to the
com.bea.campaign.internal.CampaignEventListener class and click Delete.
Campaign events will no longer be fired, but if you set up other Behavior Tracking or other
event listeners, those events will continue to fire.

Note: If you want to activate the Campaign later, add the CampaignEventListener as a
Synchronous Listener in the Browse tab.

Resetting Campaign Settings
You can reset specific Campaign components.

1. Start the Administration Console.

2. Choose Interaction > Campaigns.

3. In the Resource Tree, select the Campaign you want to reset.

4. In the Campaign Details tab, click Reset Campaign.

5. In the dialog, click Reset Campaign to reset all of the Campaign components.

Duplicating a Campaign
You can save time and reduce errors by creating a copy of a Campaign and then making changes
to it.

Perform the following steps to duplicate a Campaign:

1. Start the Administration Console.

2. Choose Interaction > Campaigns

Managing a Campaign

15-6 Oracle WebLogic Portal Interaction Management Guide

3. In the Resource Tree, select the Campaign you want to copy.

4. Right-click the Campaign, and choose Copy.

5. In the Copy Campaign dialog, enter the name and a description for the new Campaign and
click OK.

The new Campaign appears in the Resource Tree.

Modifying a Rule
As an administrator, you can modify a content action within a Campaign to change the content
query, change the Placeholder, change the conditions, and so on.

Campaigns can include the following actions:

Modifying a Content Action

Modifying an E-Mail Action

Modifying a Discount Action

Previewing a Modified Campaign Action

Modifying a Content Action
Perform the following steps to modify a Content Action in a Campaign:

1. Start the Administration Console.

2. Choose Interaction > Campaigns.

3. In the Resource Tree, select the Campaign, the scenario, and the rule you want to modify.

4. In the Rule Details tab, click Edit next to the condition you want to change, as shown in
Figure 15-3.

Modi f y ing a Ru le

Oracle WebLogic Portal Interaction Management Guide 15-7

Figure 15-3 Click Edit to Change a Content Action

For example, you can change the following items:

– Bind a variable

– Invoke an instance method

– If the visitor has specific characteristics

– If the visitor is a member of a predefined User Segment

– The visitor's HTTP session has specific properties

– The visitor's HTTP request has specific properties

– An application property has specific values

– An event has specific characteristics

– An event has occurred

– The event characteristics

– The current date

– The current date is after a particular date

– The current date and time is after a given date and time

Managing a Campaign

15-8 Oracle WebLogic Portal Interaction Management Guide

– The current time is between two particular times

– The current date is between two particular dates

– The current date and time are between two particular dates and times

– A random number between one and 100 that falls between one and 100 (this defines
100 percent of the qualifying visitors)

5. Make the changes and click Save.

6. After you modify the Content Action characteristics, you can modify the Content Action
further by specifying the specific content to retrieve for the visitor and the specific
Placeholder for it. To modify the retrieved content, click Edit next to the property in the
Action Properties section in the Rule Details tab.

7. Make the changes and click Save.

Modifying an E-Mail Action
As an administrator, you can modify an E-mail Action within a Campaign to change the action
conditions, descriptions, User Segments, and so on.

Perform the following steps to modify an e-mail action:

1. Start the Administration Console.

2. Choose Interaction > Campaigns.

3. In the Resource Tree, select the Campaign, scenario, and e-mail action rule you want to
modify.

4. In the Rule Details tab, click ANY or ALL to determine if any or all conditions apply.

5. Click Edit next to a condition.

6. Make the changes and click Save.

7. Specify the e-mail action to perform by clicking Edit next to the action.

8. You can change the e-mail location, title, and sent by address and click Save.

Modifying a Discount Action
As an administrator, you can modify a Discount Action rule in a Campaign to change the action
conditions, descriptions, User Segments, and so on.

Modi f y ing a Ru le

Oracle WebLogic Portal Interaction Management Guide 15-9

WARNING: Discount Actions are part of the Commerce API, which is deprecated with
WebLogic Portal 10.0.

Perform the following steps to modify a Discount Action:

1. Start the Administration Console.

2. Choose Interaction > Campaigns.

3. In the Resource Tree, select the Campaign, scenario, and discount action rule you want to
modify

4. In the Rule Details tab, click ANY or ALL to determine if any or all conditions apply.

5. Click Edit next to a condition.

6. Make the changes and click Save.

7. Specify the discount action to perform by clicking Edit next to the property in the Action
Properties section.

8. Make the changes and click Save.

Previewing a Modified Campaign Action
Portal administrators can use the Administration Console to preview a modified Content Action,
E-mail Action, or Discount Action in a Campaign.

You can modify any of these actions in the Administration Console by changing the conditions
or content queries of these actions. After changing an action, you can preview it to verify the
change is correct.

Perform the following steps to preview a modified Campaign Action:

1. Start the Administration Console.

2. Choose Interaction > Campaigns.

3. In the Resource Tree, select the Campaign, scenario and action rule that you want to modify.

4. Modify the conditions and actions for the Discount, E-mail, or Content Action and save your
changes.

5. In the Resource Tree, select the modified rule to display in the Rule Details tab.

6. Click Show Previews. The modified content does not show in the preview until you refresh
the tree.

Managing a Campaign

15-10 Oracle WebLogic Portal Interaction Management Guide

7. Close the Resource Tree and then expand it to refresh it.

8. In the Resource Tree, select the Campaign and subsequent action you want to preview.

9. Click Show Previews to see the modified content.

Managing a Campaign for Optimal Performance
Placeholders can become crowded with many queries, especially if more than one Campaign uses
a Placeholder to display content. Campaign queries can remain in Placeholders indefinitely
unless something specific occurs to remove them.

Perform the following steps to remove unwanted queries and control the content that is displayed
in a Placeholder:

1. When you create default queries in a Placeholder, perform the following steps to designate
that default queries do not run when a Placeholder contains Campaign queries:

a. In the Portal Perspective in Workshop for WebLogic, open the Placeholder file in the
\<data>\src\placeholders folder in the Package Explorer View.

b. Select the default query by selecting the Placeholder Editor tab.

c. In the Properties tab, set the Mix Globals property to false. This setting suppresses
default queries when Campaign queries are present.

2. When you create a Content Action in a Campaign in Workshop for WebLogic, use the
Remove (all) existing content option to minimize the number of queries held in a
Placeholder at a given time.

3. For Campaign content actions, set the Time to Live (duration) field to an appropriate time so
that the content action stops putting queries in the Placeholder when you want it to stop.
Locate the Time to Live field in the Administration Console by choosing Configuration &
Monitoring > Service Administration. Select Cache Manager in the Resource Tree and
click a specific cache name to edit the Time to Live field.

4. To control the Campaign content that is displayed in a Placeholder, create a Content Action
for each event that occurs. Use the previous recommendations to display a fresh rotation of
content in the Placeholder.

5. To clear any content that has been put in a Placeholder, reset the previously placed content
using the reset feature as described in “Resetting Campaign Settings” on page 15-5.

Managing a Campaign fo r Opt imal Per fo rmance

Oracle WebLogic Portal Interaction Management Guide 15-11

6. Enable Campaign content caches by following the steps in “Setting Campaign Content
Caches” on page 8-42.

Managing a Campaign

15-12 Oracle WebLogic Portal Interaction Management Guide

Oracle WebLogic Portal Interaction Management Guide

Part IV Production

The Production phase allows you to update and change Personalization in your production
environment.

Some of the Interaction Management tasks you can perform in the Production phase could
include the following:

Change a Campaign to revise its end date – See “Modifying a Campaign” on page 15-1.

Edit a Placeholder or Content Selector to change the content they display – See
“Modifying a Placeholder” on page 7-16 or “Deleting a Content Selector Query” on
page 6-28.

Update property set properties to change your audience – See “Modifying Properties and
Conditions” on page 4-14.

Fine tune Content Selectors to change how often content is refreshed – See “Modifying a
Content Selector” on page 13-1.

Enable an audit trail of content changes to the virtual content repository – See “Tracking
Content Changes” on page 9-45.

Add custom events, listeners, and property sets to a deployed application – These changes
require application redeployment for the events and CLASSPATH updates, and you must run
the Propagation Utility to update the event properties in the database. See the Production
Operations Guide.

If you change Personalization features in your portal application in the Production phase, you
should return to the Staging phase to test the functionality. This staging environment should

../prodOps/index.html
../prodOps/index.html

simulate a Production environment. The one exception to this process is using the rules files.
During development, the rules files reload when they change (just like JSPs), so you can quickly
develop with Content Selectors. However, when the server is in production mode, Content
Selectors are loaded into the database (from the file-based definitions in the application) where
they can be modified in the WebLogic Portal Administration Portal without redeploying the
application or restarting the server.

The Production phase can be ongoing; you can move iteratively between the Staging phase and
the Production phase.

You might also modify other features, such as Delegated Administration and Visitor Entitlement
roles and assignments, in the Production phase. See the Security Guide for more information.

For a description of the Production phase of the portal life cycle, see the WebLogic Portal
Overview. The portal life cycle is shown in the following graphic:

../security/index.html
../overview/index.html
../overview/index.html

	Oracle® WebLogic Portal
	10g Release 3 (10.3)

	Oracle WebLogic Portal Interaction Management Guide, 10g Release 3 (10.3)
	Contents
	Introduction
	Introducing Personalization
	Interaction Management in the Portal Life Cycle
	Getting Started

	Planning an Interaction Strategy
	Choosing the Type of Interaction Management to Develop
	Checklist for Planning Your User Interaction Strategy
	Checklist for Planning Your Campaign Strategy
	Planning Your Behavior Tracking Strategy
	Updating Interaction Management Features
	Upgrading Interaction Features from Portal 8.1

	Part I Architecture
	Setting up Content
	Adding Content
	Determining Content Priority

	Part II Development
	Creating a Property Set
	Setting up a Property Set
	Adding Properties or Conditions to a Property Set
	Modifying Properties and Conditions
	Deleting a Property or a Property Set

	Creating a User Segment
	Creating a User Segment
	Modifying a User Segment

	Creating a Content Selector
	Setting Up Content to Display
	Creating a Content Selector
	Using the <pz:div> Tag Instead of a Content Selector
	Deleting a Content Selector Query
	Deleting a Content Selector
	Modifying a Content Selector

	Creating a Placeholder
	Selecting Content for a Placeholder
	Creating a Placeholder
	Modifying a Placeholder
	Using the <ad:adTarget> Tag Instead of a Placeholder

	Building a Campaign
	Performing the Prerequisite Tasks
	Building a Campaign
	Testing a Campaign
	Triggering a Campaign
	Turning Off a Campaign
	Resetting a Campaign

	Setting Up Events and Behavior Tracking
	Choosing How to Handle Events
	Completing Your Behavior Tracking Strategy
	Using Predefined Events
	Generating Events for Content Clicks
	Generating Content Events
	Providing Event Attribute Values
	Enabling Behavior Tracking
	Creating Custom Events
	Creating Custom Event Listeners
	Dispatching Events
	Using Events in Campaigns
	Debugging the Event Service
	Tracking Content Changes
	Disabling Behavior Tracking

	Creating Advanced Personalization with Rules
	Using Rules in Portal Applications
	Creating a Rule
	Rules Control Reference

	Part III Staging
	Modifying Property Set Values
	Editing a Property Value
	Deleting a Property Value

	Modifying a User Segment
	Modifying a User Segment
	Modifying a User Segment’s Properties
	Copying a User Segment
	Removing a User Segment

	Modifying a Content Selector
	Modifying a Content Selector
	Deleting a Content Selector and Query

	Modifying a Placeholder
	Changing Content for a Placeholder
	Modifying a Placeholder
	Deleting a Query or a Placeholder
	Managing Placeholders for Optimal Performance

	Managing a Campaign
	Modifying a Campaign
	Modifying a Rule
	Managing a Campaign for Optimal Performance

	Part IV Production

