Oracle® WebLogic Portal
Portlet Development Guide

10g Release 3 (10.3)

February 2011

ORACLE

Oracle WebLogic Portal Portlet Development Guide, 10g Release 3 (10.3)
Copyright © 2007, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or “commercial technical data” pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents

1. Introduction

POrtlEt OVEIVIEW 1-1
Portlet Development and the Portal LifeCycle............... 1-2
ArChItECIUNE . . 1-3
DEVElOPMENt. . o e 1-3
StAGING .« . ot 1-4
PrOdUCTION. .« . 1-4
Getting Started o 1-5
PrErgUISITES . . ot ittt e 1-5
Related GUIES 1-5

Part . Architecture
2. Portlet Planning

Portlet Development in a Distributed Portal Team 2-2
Portlets in a Non-Portal Environment i 2-2
Planning Portlet INStances 2-2
S U ottt 2-3
Interportlet Communication. 2-3
Performance Planning 2-4

3. Portlet Types

Java Server Page (JSP) and HTML Portlets, 3-2

Oracle WebLogic Portal Portlet Development Guide iii

Java Portlets (JSR 168)ot 3-2

Java Page Flow Portlets. 3-2
Struts Portlets . ..o 3-3
Java Server Faces (JSF) Portlets. 3-3
Browser (URL) Portlets e 3-4
Clipper Portlets 3-5
Remote Portlets. oo 3-5
Portlet Type Summary Table 3-5

Part 1. Development
4. Understanding Portlet Development

Portlet CompPoONentS.ot e 4-1
POrtlet Properties oot 4-2
Portlet Title Bar, Mode, and State it 4-3
Portlet Preferenceso 4-3

Resources for Creating Portlets. 4-4

Portlet ReNAering.ot 4-4
Render and Pre-Render Forking i 4-4
Asynchronous Portlet Content Rendering 4-5
Portlets as Popups (Detached Portlets) 4-5

JSP Tagsand ControlsinPortlets. e 4-6

Backing Files. 4-6

5. Building Portlets

Supported Portlet TYPES . ..ot 5-2

Portlets in J2EE Shared Librariest 5-3

Portlet Wizard Reference 5-4
Order of Creation - Resource or Portlet First.ot 5-4

iv Oracle WebLogic Portal Portlet Development Guide

Starting the Portlet Wizard 5-7

New Portlet Dialog.o 5-9
Select Portlet Type Dialogo oo 5-9
Portlet Details Dialogso 5-11
How to Build Each Type of Portlet. i, 5-11
JSPand HTML Portletsot e 5-11
Java Portlets . . .o 5-13
JavaPage Flow Portletso 5-19
JSF POrtletS. . oo 5-22
Browser Portlets 5-28
Clipper Portlets. 5-31
StrUtS POtIEtS . . o oo 5-31
Remote Portlets oo 5-34
Web Service Portlets.o 5-35
Detached Portlets. oo 5-35
Considerations for Using Detached Portlets. 5-36
Building Detached Portlets. 5-37
Working with Inlined Portlets. 5-37
Extracting Inlined Portlets 5-38
Setting the Theme of an Inlined Portlett 5-39
Extracting BookS and Pagesot 5-39
Portlet Propertieso 5-40
Editing Portlet Properties 5-40
Tips for Using the PropertieS View 5-42
Portlet Properties in the Portal Properties View. oo, 5-43
Portlet Properties in the Portlet Properties View, 5-44
Portlet Preferences.o 5-56
Specifying Portlet Preferences 5-57

Oracle WebLogic Portal Portlet Development Guide

vi

Using the Preferences API to Access or Modify Preferences 5-62

Portlet Preferences SPIL.o 5-67
Best Practices in Using Portlet Preferences. i, 5-70
Backing Files.o 5-71
How Backing Filesare Executed. 5-72
Thread Safety and Backing Files. i 5-74
Scoping and Backing Files. o 5-74
Backing File Guidelines. o 5-74
Portlet Appearance and Features.t e 5-76
Portlet Dependenciesot 5-77
POrtlet MOOES . . . o oo 5-85
Creating Custom MOdeS. oot 5-87
Portlet States. 5-94
Portlet Title Bar ICONSot 5-96
Portlet Height and Scrolling. 5-96
Getting Request Data in Page Flow Portlets.o it 5-99
JSP Tags and Controlsin Portlets. i s 5-100
Viewing Available JSP Tags 5-100
Viewing Available Controls. i 5-102
Portlet State Persistence 5-103
AddingaPortlettoaPortal. 5-104
Deleting Portletso o 5-106
Advanced Portlet Development with Tag Libraries 5-106
Adding ACLIVEMENUSot 5-106
Enabling Drag and Dropttt 5-118
Enabling Dynamic Contentttt 5-121
Using the User PiCKer e 5-124
Importing and Exporting Java Portlets 5-125

Oracle WebLogic Portal Portlet Development Guide

Importing Java Portlets. 5-125
Exporting Java Portlets. 5-128
Using the JSR168 Import Utility oo 5-131

6. Creating Clipper Portlets

INtrOdUCTION . . . oo 6-2
Creating a Clipper Portlet 6-2
Modifying Clipper Portlet Properties 6-4
Using the Properties EAitor 6-5
Setting Clipper Properties Manually as Preferences 6-5
Modifying the Appearance of a Clipper Portlet, 6-6
Authenticating a Clipper Portlet 6-8
Form-Based Authentication 6-8
Basic HTTP Authentication e 6-10
Configuring URL ReWriting oot e 6-11
Navigable Link Configurations i, 6-11
Resource URL Configurations. 6-11
URL Rewriting Configuration Techniques oo, 6-12
Clipper Portlets and HTTPS e 6-14
Certificates and WebLOGIC SErver. e 6-14
Resetting the Clipper Portlet 6-15
Using Backing Files with Clipper Portlets it 6-15
Updating Portlet Preferences While the Server isRunning. 6-16
Clipper Portlet Limitations i 6-16

/. Optimizing Portlet Performance

Performance-Related Portlet Properties i, 7-1
Portlet Cachingt e 7-2

Oracle WebLogic Portal Portlet Development Guide vii

Remote Portlets.o 7-2

Portlet FOrKing.o 7-3
Configuring Portlets for Forking 7-3
Architectural Details of Forked Portlets i 7-6
Best Practices for Developing Forked Portlets 7-10

Asynchronous Portlet Content Rendering.t 7-13
Implementing Asynchronous Portlet Content Rendering 7-14
Thread Safety and Asynchronous Rendering. oo, 7-16
Considerations for IFRAME-based Asynchronous Rendering 7-16
Considerations for AJAX-based Asynchronous Rendering. 7-17
Comparison of IFRAME- and AJAX-based Asynchronous Rendering 7-17
Comparison of Asynchronous and Conventional or Forked Rendering 7-18
Portal Life Cycle Considerations with Asynchronous Content Rendering 7-19
Asynchronous Content Renderingand IPC oL, 7-20

8. Monitoring and Determining Portlet Performance

INtrOTUCTION . . . o oo 8-1
USE CaS8 . . ottt ettt et e 8-2
Detecting a Misbehaving Portlet. 8-2
Disabling the Bad Portlet and Enabling an Alternative Portlet. 8-4

9. Local Interportlet Communication

viii

Definition Labels and Interportlet Communication 9-2
POrtlet EVENES . .. oo 9-2
EventHandlers. 9-2
EVENE TYPBS oot 9-4
EVENt ACHIONS. . . oo 9-5
Portlet Event Handlers Wizard Reference, 9-6

Oracle WebLogic Portal Portlet Development Guide

JOF BVENES . oot e 9-10

IPC EXaMpPIe . 9-12
Before You Begin - Environment Setup. 9-12
Basic IPCExample. 9-14

IPC Special Considerations and Limitations. 9-28
Using Asynchronous Portlet Renderingwith IPC 9-28
Generic Event Handler for WSRP 9-29
Consistency of the Listen ToField. i i 9-29

10.Adding the Content Presenter Portlet

Using the Content Presenter Example. et 10-1
Starting the Content Presenter Example. i i, 10-2
Performing Inline Editing in the Content Presenter Example 10-2
Enabling Inline Editing in Your Portlets 10-5

Configuring the Content Presenter Portlet in Your Portal. 10-6
Configuring the Content Presenter Portlet. 10-7

11.Adding a Third-Party Portlet

Using the Collaboration Portlets i 11-1
What Are Collaboration Portlets? i 11-2
Adding Collaboration Portlets To Your Portal 11-2
Configuring Collaboration Portlets for a Shared View 11-7
Using the Collaboration Portlets i i 11-8
Using the Collaboration Portlet Source Code 11-8

Third-Party Portlets 11-9
Autonomy Portlets 11-9
Documentum Portlets.o 11-10
MobileAware Portlets. 11-10

Oracle WebLogic Portal Portlet Development Guide ix

12 .Working With JSF Portlets

OVBIVIBW . o et e e e 12-2
Configuring JSF Within Weblogic Portal i 12-2
JSF Library Modules in WebLogic Server., 12-3
Installing the JSF Libraries into a Portal Web Project. 12-3
Configuring JSSF 1.2 InWLP 12-6
Creating JSF Portletso 12-7
JSF Configuration Settings 12-7
Native Bridge Architecture e 12-10
Container Architecture OVEIVIEWt 12-10
Container INteraCtions 12-12
Understanding WLP and JSF Rendering Life Cycles. 12-12
WLP and JSF Life Cycleso 12-12
Invocation Order of WLP and JSF Life Cycle Methods 12-12
Accessing WLP Context Objects from JSF Managed Beans 12-13
Understanding Scopes and JSF Portlets i i 12-14
Conceptual Scopes for Standard JSF Applications 12-15
Conceptual Scopes for Portal Applicationst 12-15
Implementation Patterns for Portal Scopes o i L. 12-16
State Sharing Patterns 12-18
State Sharing CoNCEPLSot 12-18
HttpSession Versus HttpServiletRequest oo, 12-19
Base Code for HttpSession Patterns. 12-20
Single Portlet Pattern 12-21
Multiple Portlet Patterns i 12-22
Using Common WLP Features With JSF Portlets 12-29
Portlet Container FEaturesttt 12-30

X Oracle WebLogic Portal Portlet Development Guide

Portal Container Features and JSF Portlets it 12-35

Understanding Navigation. e 12-36
Navigating Within a Portlet with the JSF Controller 12-36
Support for Redirects 12-37

Navigation Within a Portal Environment o .. 12-40
Programmatically Constructing JSF Portlet URLS. 12-40
Changing the Active Portal Page 12-41
Usingan Output Link. 12-41
Using a Command Link or Button With Events. 12-42
Changing the Active Portal Page Using the Navigation Controller and a Portal Event. .

12-42
Changing the Active Portal Page Programmatically 12-43

Interportlet Communication with JSF Portlets 12-44
Using Session and Request Attributes for IPC (Anti-pattern) 12-45
Using the WLP Event Facility for IPC with JSF Portlets 12-45
NOtITICAtIONS oo 12-50
Comparison of the IPC Approaches. i, 12-50

NAMESPACING .« o v ettt e e e e 12-51
Namespacing Managed Bean Names. 12-52
Client ID Namespacing with the View and Subview Components 12-52
Client ID Namespacing with the WLP NamingContainer................... 12-53

Using Custom JavaScript in JSF Portlets i, 12-56
DOM Manipulation withina JSF Portlet 12-56
Form Validation withinaJSF Portlet. it 12-60

Ajax Enablement 12-61
Ajax inJSFPortlets 12-61
Partial Page Rendering Pattern. i 12-61
Stateless APl Request Pattern 12-62

Oracle WebLogic Portal Portlet Development Guide Xi

Xii

Portlet Aware APl Request Pattern i, 12-63

Controlling the WLP Ajax Framework 12-69
Localizing JSF Portletso 12-71
Configuringthe JSF Locale o 12-71
Resource Bundles. i 12-71
Listing Locales in faces-config.xml. 12-72
Ensuring Parity in Configured WLP and JSF Locales. 12-73
Modularizing Resource Bundles i 12-73
Preparing JSF Portlets for Production. i 12-73
Configuration Tasksot t 12-74
Performance and Scalability 12-75
Securing JSF Portlets. 12-77
Tips for Logging, Iterative Development, and Debugging of JSF Portlets. 12-78
Enabling Logging. oo v 12-78
Using lterative Development for JSF Portlets. 12-79
DEbUGGING . . ot 12-80
Consolidated List of Best Practices.o i 12-81
Configuration oo 12-81
NAMESPACING .+« . o ettt e e e e e 12-81
Logging, Iterative Development, Debugging 12-82
CUStOM JAaVaSCIIPL . . . oo 12-82
Preparing JSF Portlets for Production i 12-82
Interportlet Communication. 12-82
SCOPES . it 12-83
State Sharing Patterns 12-83
Rendering Lifecycles. 12-83
Ajax Enablement 12-83
Login Portleto 12-83

Oracle WebLogic Portal Portlet Development Guide

Part lll. Staging
13.Assembling Portlets into Desktops

Portlet Library e 13-1
Managing Portlets Using the Administration Console 13-2
Copying aPortletinthe Library. i 13-3
Modifying Library Portlet Properties. i i, 13-3
Modifying Desktop Portlet Properties i, 13-4
Deletinga Portlet e 13-5
Managing Portletson Pages. e 13-5
Overview of Portlet Categories e 13-6
Overview of Portlet Preferences. i 13-8
Creating a Portlet Preference i e 13-9
Editing a Portlet Preference 13-10
Overview of Delegated Administration, 13-11
Overview of Visitor Entitlements. i i 13-11

14.Deploying Portlets

Deploying Portlets.ot 14-1

Part IV. Production
15.Managing Portlets in Production

Pushing Changes from the Library into Production 15-1

Transferring Changes from Production Back to Development.................... 15-2
Part V. Appendixes
A. Portlet Database Data

Database Structure for Portlet Data.t A-1

Oracle WebLogic Portal Portlet Development Guide Xiii

Removing Portlets from Production i A-2

Portlet Resources inthe Database.t A-2
Types of Database Tables. A-3
Management of Portlet Datat A-3
How the Database Shows Removed Portlets. A-4

B. JSF Portlet Development

Code EXampPIes . . .o B-1
The JSFPortletHelper Class.o B-1
Login Portlet Example.o B-16

Using Faceletso B-29
Introductionto Facelets B-30
Configuring Facelets Support B-30

Using Tomahawk B-32
What is Apache MyFaces Tomahawk? B-32
Support for Tomahawk inWLP B-33
Installing and Configuring Tomahawk. it B-34
Resolving the Duplicate ID ISSU€.o B-35
Referring t0 RESOUICES.ttt e B-39
forceld Attribute. o e B-45
FileUpload. B-46

Integrating Apache Beehive Pageflow Controller B-46
Apache Beehive Page Flow B-46
JSFand Page FIOWSo B-46
Configuring the JSF Integration with Page Flows. B-48

Building Unsupported JSF Implementations oo, B-48

Xiv Oracle WebLogic Portal Portlet Development Guide

Introduction

This chapter introduces Oracle WebLogic Portal portlet concepts and describes the content of this
guide.

This chapter includes the following sections:
o Portlet Overview

e Portlet Development and the Portal Life Cycle

Portlet Overview

Portlets are modular panes within a web browser that surface applications, information, and
business processes. Portlets can contain anything from static HTML content to Java controls to
complex web services and process-heavy applications. Portlets can communicate with each other
and take part in Java page flows that use events to determine a user’s path through an application.
A single portlet can also have multiple instances—in other words, it can appear on a variety of
different pages within a single portal, or even across multiple portals if the portlet is enabled for
Web Services for Remote Portlets (WSRP). You can customize portlets to meet the needs of
specific users or groups.

Figure shows an example portal desktop with its associated portlets outlined in red.

Oracle WebLogic Portal Portlet Development Guide 1-1

Introduction

Figure 1-1 Portal Desktop with Portlets

‘2 Avilek Financial - Microsoll Infernel Explorer
fle Edt Vew Faorkes Took Help ol

Que -
address |]

! ﬂ ﬂ p /.."'““*' Ypreeres) - i] - U"Q“’

Ll plrmtrusty i k= shosb_pagel sbei=hogn elements are

Red outlined
7 portlets

WebLogic Portal supports the development of portlets through Workshop for WebLogic
(Workshop for WebLogic), which is a client-based tool. You can develop portals without
Workshop for WebLogic through coding in any tool of choice such as JBuilder, VI or Emacs;
portlets can be written in Java or JSP, and can include JavaScript for client-side operations.
However, to realize the full development-time productivity gains afforded to the WebLogic
Portal customer, you should use Workshop for WebL ogic as your portal and portlet development
platform.

For a description of each type of portlet that you can build using WebLogic Portal, refer to
“Portlet Types” on page 3-1.

Portlet Development and the Portal Life Cycle

1-2

The tasks in this guide are organized according to the portal life cycle, which includes best
practices and sequences for creating and updating portals. For more information about the portal
life cycle, refer to the Oracle WebLogic Portal Overview. The portal life cycle contains four
phases: architecture, development, staging, and production. Figure 1-2 shows a sampling of
portlet development tasks that occur at each phase.

Oracle WebLogic Portal Portlet Development Guide

../overview/index.html

Portlet Development and the Portal Life Cycle

Figure 1-2 Portlets and the Four Phases of the Portal Life Cycle

Architecture —
Plan the basic configuration
of the portal

Architecture

Production —

Roll out your portlets,
either individually or
within the entire portal,
to a production
environment, making
changes as needed

Development —

Use Workshop for
WebLogic to create
portlets, pages, and
books

Development

=
=]
=1
o
=
H
o

Staging —
Use the WebLogic Portal
Administration Console to

create and configure desktops

Architecture

During the architecture phase, you plan the configuration of your portal. For example, you can
create a detailed specification outlining the requirements for your portal, the specific portlets you
require, where those portlets will be hosted, and how they will communicate and interact with one
another. You also consider the deployment strategy for your portal. Security architecture is
another consideration that you must keep in mind at the portlet level.

The chapters describing tasks within the architecture phase include:
e Chapter 2, “Portlet Planning”

e Chapter 3, “Portlet Types”

Development

Developers use Workshop for WebLogic to create portlets, pages, and books. During
development, you can implement data transfer and interportlet communication strategies.

Oracle WebLogic Portal Portlet Development Guide 1-3

Introduction

1-4

In the development stage, careful attention to best practices is crucial. Wherever possible, this
guide includes descriptions and instructions for adhering to these best practices.

The chapters describing tasks within the development phase include:

e Chapter 4, “Understanding Portlet Development”

Chapter 5, “Building Portlets”

Chapter 6, “Creating Clipper Portlets”

Chapter 7, “Optimizing Portlet Performance”

e Chapter 8, “Monitoring and Determining Portlet Performance”

Chapter 9, “Local Interportlet Communication”

Chapter 10, “Adding the Content Presenter Portlet”

Chapter 11, “Adding a Third-Party Portlet”
e Chapter 12, “Working With JSF Portlets”

Staging

Oracle recommends that you deploy your portal, including portlets, to a staging environment,
where it can be assembled and tested before going live. In the staging environment, you use the
WebLogic Portal Administration Console to assemble and configure desktops. You also test your
portal in a staging environment before propagating it to a live production system. In the testing
aspect of the staging phase, there is tight iteration between staging and development until the
application is ready to be released.

The chapters describing tasks within the staging phase include:
e Chapter 13, “Assembling Portlets into Desktops”
e Chapter 14, “Deploying Portlets”

Production

A production portal is live and available to end users. A portal in production can be modified by
administrators using the WebLogic Portal Administration Console and by users using Visitor
Tools. For instance, an administrator might add additional portlets to a portal or reorganize the
contents of a portal.

Oracle WebLogic Portal Portlet Development Guide

Getting Started

The chapter describing tasks within the production phase is:

e Chapter 15, “Managing Portlets in Production”

Getting Started

This section describes the basic prerequisites to using this guide and lists guides containing
related information and topics.

Prerequisites

In general, this guide assumes that you have performed the following prerequisite tasks before
you attempt to use this guide to develop portlets:

e Review the Related Guides and become familiar with the basic operation of the tools used
to create portals, portlets, and desktops,

e Review the Workshop for WebLogic tutorials and documentation to become familiar with
the Eclipse-based development environment and the recommended project hierarchy.

e Complete the tutorial Getting Started with WebLogic Portal.

Related Guides

Oracle recommends that you review the following guides:
e Oracle WebLogic Portal Overview

e Oracle WebLogic Portal Development Guide

Whenever possible, this guide includes cross references to material in related guides.

Oracle WebLogic Portal Portlet Development Guide 1-5

../overview/index.html
../portals/index.html
../tutorials/index.html

Introduction

1-6 Oracle WebLogic Portal Portlet Development Guide

Part | Architecture

Part I includes the following chapters:
e Chapter 2, “Portlet Planning”
e Chapter 3, “Portlet Types”

During the architecture phase, you plan the configuration of the portlets that comprise your portal.

For a view of how the tasks in this section relate to the overall portal life cycle, refer to the

WebLogic Portal Overview.

Production
Development

Oracle WebLogic Portal Portlet Development Guide

../overview/index.html

2-2 Oracle WebLogic Portal Portlet Development Guide

Portlet Planning

Proper planning is essential to portlet development. A properly planned portlet structure and
organizational model can provide a cohesive and consistent portal interface, flexible scalability,
and high performance without requiring frequent adjustments within your production system.

This chapter focuses on planning considerations and decisions that should precede the
development of your portlets. Global portal-wide planning information is provided in the Oracle
WebLogic Portal Overview, which summarizes the types of issues to consider in the architecture
phase across your portal environment. The various WebLogic Portal feature guides, such as the
Oracle WebLogic Portal Federated Portals Guide, describe architectural issues in detail for each
feature area.

This chapter includes the following sections:
e Portlet Development in a Distributed Portal Team

e Portlets in a Non-Portal Environment

Planning Portlet Instances

Security

Interportlet Communication

Performance Planning

Oracle WebLogic Portal Portlet Development Guide 2-1

message URL ../overview/index.html
../federation/index.html

Portlet Planning

Portlet Development in a Distributed Portal Team

If you will be creating portlets within an environment that includes a remote (distributed)
development team, you must carefully plan your implementation. Considerations for team
development include:

e Using shared resources — You can have common portlets, such as the login portlet.

e Sharing a common domain — You can have a common domain among team members
with different Oracle home directories.

e Integrating remotely developed portlets into the portal — You need to manage settings
that are common to the portal application, which must match across the entire development
project.

Team development of a WebLogic Portal web site revolves around well-designed source control
and a correctly configured shared domain for development. For detailed instructions on setting
up your development environment, refer to the Team Development chapter of the Production
Operations Guide.

Portlets in a Non-Portal Environment

In some cases, you might want to expose portlets in a web page even though that web application
is not based on WebL ogic Portal. For example, you might want to expose portlets with WSRP
from a producer environment that does not include any WebL ogic Portal components. You might
be running a Struts web application in a basic WebLogic Server domain, or a Java page flow
application in a basic Workshop for WebLogic domain. In either case, WebLogic Portal is not
part of the server configuration. The exposed portlets can then be consumed by remote portlets
running in a regular WebLogic Portal domain.

For more information on developing portlets for a non-WebLogic Portal environment, refer to the
Federated Portals Guide.

Planning Portlet Instances

2-2

In the Development phase, you use Workshop for WebLogic to create portlets and place them
onto a portal. In the Staging phase, you use the Administration Console to add portlets to portal
desktops. Each time you add a portlet to a desktop, you create an instance of that portlet. Portlet
instances allow for multiple variations of the same portlet definition. By using portlet instances,
portal users and administrators can configure multiple views of the same portlet through the use
of portlet preferences, and reduce the overall number of distinct portlets; this portlet reuse

Oracle WebLogic Portal Portlet Development Guide

../federation/index.html
../prodOps/index.html
../prodOps/index.html

Security

improves portal performance and management efficiency. A common example of portlet
instances is a stock watch portlet in which there is a single or multi-valued preference for ticker
symbols such as ORCL, which would configure the portlet to display Oracle stock information.

Try to plan your portal hierarchy to reuse portlets when practical. For more information about
portlet instances and how portlet instances are related to portlets in the Administration Console’s
portlet library, refer to “Portlet Library” on page 13-1.

Security

You can control access to portlet resources for two categories of users:

e Portal visitors — You control access to portal resources using visitor entitlements. Visitor
access is determined based on visitor entitlement roles.

e Portal administrators — You control portal resource management capabilities using
delegated administration. Administrative access is determined based on delegated
administration roles.

During the architecture phase, you plan how to organize security policies and roles, and how that
fits into your system-wide security strategy. You implement your security plans by setting up
delegated administration and visitor entitlements using the WebLogic Portal Administration
Console.

For an overall look at managing security for your portal environment, refer to the Security Guide.
Specific security considerations for feature areas are contained in those documents; for example,
recommendations for security in WSRP-enabled environments are contained in the Federated
Portals Guide.

Interportlet Communication

Interportlet communication (IPC) allows multiple portlets to use or react to data. You can use
interportlet communication within a single portal web application, or within federated portal
applications.

For more information on interportlet communication within a single portal web application, refer
to Chapter 9, “Local Interportlet Communication.” For more information on interportlet
communication within federated portal applications, refer to the Federated Portals Guide.

Oracle WebLogic Portal Portlet Development Guide 2-3

../security/index.html
../federation/index.html
../federation/index.html
../federation/index.html

Portlet Planning

Performance Planning

2-4

Try to plan for good performance within your portlet architecture to minimize the fine-tuning that
is required in a production environment.

Here are some examples of performance optimizations that you can plan into your overall portal
strategy:

e Portlet caching — You can cache the portlet within a session instead of retrieving it each
time it recurs during a session (on different pages, for example).

e Remote portlets — With remote portlets, any portal controls within the application (portlet)
that you are retrieving are rendered by the producer and not by your portal. The expense of
calling the control life cycle methods is borne by resources not associated with your portal.
You must balance this advantage against the delay that might be caused by network latency
issues.

e Customized portlet properties — Customizing your portlet settings can help you improve
performance; for example, you can set process-expensive portlets to be processed in a
multi-threaded (forkable) environment.

e Asynchronous portlet rendering - Asynchronous portlet rendering allows you to render
the content of a portlet independently from the surrounding portal page. You can use either
AJAX technology or IFRAME technology to implement asynchronous rendering.

Plan your performance optimizations before you begin developing portlets so that you can
implement any pre-requisites that are required. For detailed instructions on developing
high-performance portlets, refer to Chapter 7, “Optimizing Portlet Performance.” For
post-development WebL ogic Portal performance recommendations, refer to the Performance
Tuning Guide.

Oracle WebLogic Portal Portlet Development Guide

Portlet Types

As part of your portlet implementation plan, Oracle recommends that you examine the different
types of portlets that are available in WebLogic Portal and decide which types are best suited for
the tasks that you want to accomplish. For example, if you are looking for a way to interface with
Java controls, use Struts-based infrastructure, and deliver rich navigation elements, then you
might choose to implement Java Page Flow or Struts portlets. If you are looking for a simple
portlet or you want to convert an existing JSP page into a portlet, you might consider using a JSP
portlet. If you work for an independent software company or other enterprise that is concerned
with portability across multiple portal vendors, then you might choose to use JSR 168-compliant
Java portlets whenever possible. If you want to implement asynchronous portlet rendering in your
portal, you can use nearly any of the portlet types described in this chapter.

This chapter differentiates the various portlet types to help you in your decision-making process.
This chapter contains the following sections:

e Java Server Page (JSP) and HTML Portlets
e Java Portlets (JSR 168)

e Java Page Flow Portlets

Java Server Faces (JSF) Portlets

Browser (URL) Portlets

Clipper Portlets

e Struts Portlets

Oracle WebLogic Portal Portlet Development Guide 3-1

Portlet Types

e Remote Portlets

e Portlet Type Summary Table

Java Server Page (JSP) and HTML Portlets

JSP portlets and HTML portlets point to JSP or HTML files for their content. These portlets can
be simple to implement and deploy, and they provide basic functionality quickly. However, this
type of portlet does not enforce separation of business logic and the presentation layer. As the
application grows, the portlet often becomes harder to maintain as you try to update the web
application and share code. JSP portlets are not well-suited for advanced portlet navigation.

When using JSP pages as part of a page flow portlet, you must make sure that requests adhere to
WebLogic Portal scoping requirements. For more information about JSP portlets and page flow
scoping, refer to the Portal Development Guide.

For instructions on building JSP portlets, see “JSP and HTML Portlets” on page 5-11.

Java Portlets (JSR 168)

JSR 168 (Java Portlet) is a Java specification that aims at establishing portability between portlets
and portals. One of the main goals of the specification is to define a set of standard Java APIs for
portal and portlet vendors. These APIs cover areas such as presentation, aggregation, security,
and portlet life cycle.

A Java portlet is expressed as a Java class. This type of portlet accommodates portability across
platforms, and does not require the use of portal server-specific JSP tags. The behavior is similar
to a servlet. Java portlets produced using WebLogic Portal can be used universally by any other
vendor’s application server container that supports JSR 168.

For instructions on building Java portlets, refer to “Java Portlets” on page 5-13.

Java Page Flow Portlets

3-2

A Java page flow portlet uses Apache Beehive page flows to retrieve its content. This portlet type
allows you to separate the user interface code from navigation control and other business logic,
and provides the ability to implement both simple and advanced portlet navigation.

The Page Flow framework that is recommended for portlet application development is built on
top of the Struts application framework. The Struts framework is a popular, reliable standard that
is widely used to quickly create robust and navigable web applications. The page flow framework

Oracle WebLogic Portal Portlet Development Guide

../portals/index.html

Struts Portlets

adds valuable data binding facilities to the Struts standard, and the portal framework provides a
scoping capability for page flow portlets so that multiple page flows can be supported in a single
portal. You can use resources such as Java controls and web services.

Java page flow portlets are best suited for an environment where more advanced features are
required—not for static, single-view portlets.

For instructions on building Java page flow portlets, refer to “Java Page Flow Portlets” on
page 5-19.

Struts Portlets

Struts portlets are based on the Struts framework, which is an implementation of the
Model-View-Controller (MVC) architecture. The MVC architecture provides a model for
separating the different components and roles of the application logic. This development
framework helps you create portlets that are easier to maintain over time.

Typically, native Struts development requires management and synchronization of multiple files
for each action, form bean, as well as the Struts configuration file. Even in the presence of tools
that help edit these files, developers are still exposed to all the underlying plumbing, objects, and
configuration details. The Page Flow implementation provides a simpler, single-file
programming model that allows developers to focus on the code they care about, see a visual
representation of the overall application flow, and navigate between pages, actions, and form
beans.

If you are developing a portal application from scratch, Oracle recommends using a Page Flow
implementation; if your goal is to aggregate an existing Struts application, then using Struts
portlets can meet your needs.

For instructions on building Struts portlets, refer to “Struts Portlets” on page 5-31.

Java Server Faces (JSF) Portlets

The Java Server Faces (JSF) specification, JSR 127, defines a user interface framework that
simplifies development and maintenance of Java applications that run on a server and are
displayed and used from a client.

According to the Java Server Faces Specification, available from the Java Community Process
web site:

JSF’s core architecture is designed to be independent of specific protocols and markup. However
it is also aimed directly at solving many of the common problems encountered when writing

Oracle WebLogic Portal Portlet Development Guide 3-3

http://jcp.org/aboutJava/communityprocess/final/jsr127/index2.html

Portlet Types

applications for HTML clients that communicate via HTTP to a Java application server that
supports servlets and JavaServer Pages (JSP) based applications. These applications are typically
form-based, and are comprised of one or more HTML pages with which the user interacts to
complete a task or set of tasks. JSF tackles the following challenges associated with these
applications:

e Managing Ul component state across requests
e Supporting encapsulation of the differences in markup across different browsers and clients
e Supporting form processing (single multi-page form, or more than one form per page)

e Providing a strongly typed event model that allows the application to write server-side
handlers (independent of HTTP) for client generated events

e Validating request data and providing appropriate error reporting

e Enabling type conversion when migrating markup values (Strings) to and from application
data objects (which are often not Strings)

e Handling error and exceptions, and reporting errors in human-readable form back to the
application user

e Handling page-to-page navigation in response to Ul events and model interactions.

For instructions on building Java Server Faces portlets, refer to “JSF Portlets” on page 5-22.

Browser (URL) Portlets

3-4

Browser portlets display HTML content from an external URL. Unlike other portlet types that are
limited to displaying data contained within the portal project, browser portlets display URL
content that is external from the portal project.

An advantage of browser portlets is that no development tasks are required to implement it, either
from the Workshop for WebLogic workbench or from the WebLogic Portal Administration
Console. However, keep in mind that WebLogic Portal does not provide a mechanism to develop
content for this type of portlet; the definition of the portlet merely contains the external URL to
display. For example, no mechanisms exist to dynamically influence the external content’s URL;
no support exists for portlet preferences, portlet modes, and so on. Browser portlets do not track
the URL through the user’s interaction with remote content — page refreshes cause the content of
the URL specified in the portlet definition to be displayed.

Oracle WebLogic Portal Portlet Development Guide

Clipper Portlets

WebLogic Portal implements a browser portlet using an IFRAME. You can override the default
implementation mechanism using more advanced development techniques.

The content of the browser portlet is completely disconnected from the portal. The embedded
application must manage the navigational state of the portlet.

For instructions on building Browser portlets, refer to “Browser Portlets” on page 5-28.

Clipper Portlets

Clipping is an easy technique for including content in your portal. You can clip all or part of
another web site. Users can effectively view and interact with content from another web site
without leaving the portal. For detailed information on creating clipper portlets, see Chapter 6,
“Creating Clipper Portlets.”

Remote Portlets

WebLogic Portal supports the Web Services for Remote Portlets (WSRP) standard, a product of
the OASIS standards body. Portlets that are written to meet this standard, which includes a
WSDL portlet description, can be hosted within a producer application, and surfaced in a
consumer application. Moreover, the WebLogic Portal Administration Console facilitates access
to WSRP producer applications in a local portal.

WebLogic Portal can act as either a WSRP remote producer or as a consumer. When acting as a
consumer, WebLogic Portal’s remote—or proxy—portlets are WSRP-compliant. These portlets
present content that is collected from WSRP-compliant producers, allowing you to use external
sources for portlet content, rather than having to create its content or its structure yourself.

Because setting up a remote portlet is a fundamental task in creating a federated portlet
environment, the task of creating a remote portlet is described in detail within the Federated
Portals Guide.

Portlet Type Summary Table

Table 3-1 summarizes the characteristics of each portlet type so that you can quickly determine
the advantages and disadvantages of each type.

Oracle WebLogic Portal Portlet Development Guide 3-5

../federation/index.html
../federation/index.html

Portlet Types

Table 3-1 Portlet Type Summary Table

Type

Advantages

Disadvantages

JSP/HTML

Simple to implement and deploy.

Provides basic functionality without
complexity.

Does not enforce separation of business logic
and presentation layer.

Not well-suited for advanced portlet
navigation.

Java (JSR 168)

Accommaodates portability across
platforms.

Does not require the use of portal
server-specific JSP tags.

Behavior is similar to a servlet

Lack of advanced portlet features that are
available with some other portlet types.

Requires a deeper understanding of the J2EE
programming model.

Java Page Flow

Allows separation of the user interface
code from navigation control and other
business logic.

Provides the ability to implement both
simple and advanced portlet navigation.

Allow you to quickly leverage Java
controls, web services, and business
processes.

Provides a visual environment to build
rich applications based on struts.

Implementation is more complex.

Advanced page flow features are not necessary
for static or simple, one view portlets.

JSF

Allows component-based development of
pages that can handle their own intra-page
events.

Simplifies separation of the user interface
code from navigation control and other
business logic.

Provides the ability to implement both
simple and advanced portlet navigation.

Allow you to quickly leverage Java
controls, web services, and business
processes.

All postbacks to a JSF application are expected
to be done using a POST; the GET method is
not supported.

3-6 Oracle WebLogic Portal Portlet Development Guide

Table 3-1 Portlet Type Summary Table (Continued)

Portlet Type Summary Table

Type Advantages Disadvantages

Browser Allows a portlet to display content froma Less control over formatting.
URL that is outside the portal project. Lacks certain features of other portlet types,
Provides a “no development needed” such as Content Path and Error Path.
portlet for quick implementation. No interportlet communication support.

Clipper Lets you subset or modify the contents Clipped content is included directly in the
of a remote web page. The portal can portal page, allowing the potential for
potentially access the clipper portlet’s overalapping with other parts of the portal.
content.

Struts Provides a flexible control layer based on Not quite as robust as page flow portlets, which
standard technologies like Java Servlets, are based on Beehive. For new development,
JavaBeans, ResourceBundles, and XML. page flow portlets provide a better solution.
Provides a more structured approach for
creating and maintaining complex
applications.
Useful for importing existing applications.

Remote Allows you to functionally and Implementation is more complex.

operationally de-couple applications
within your portal.

Allows you to leverage external sources
for portlet content.

Depending on the environment, might
improve performance.

Your application’s features might not be able to
be as robust; for example, some Javascript
might not perform correctly.

Depending on the environment, might have a
performance cost. For more about performance
with remote portlets, refer to “Remote Portlets”
on page 7-2.

Oracle WebLogic Portal Portlet Development Guide 3-7

Portlet Types

3-8 Oracle WebLogic Portal Portlet Development Guide

Part Il Development

Part Il includes the following chapters:
e Chapter 4, “Understanding Portlet Development”
e Chapter 5, “Building Portlets”
e Chapter 6, “Creating Clipper Portlets”
e Chapter 7, “Optimizing Portlet Performance”
e Chapter 8, “Monitoring and Determining Portlet Performance”
e Chapter 9, “Local Interportlet Communication”
e Chapter 10, “Adding the Content Presenter Portlet”
e Chapter 11, “Adding a Third-Party Portlet”

e Chapter 12, “Working With JSF Portlets”

During the development phase, you use Workshop for WebLogic to create portlets, pages, and
books. During development, you can implement federation and interportlet communication
strategies. In the development stage, careful attention to best practices is crucial.

For a view of how the tasks in this section relate to the overall portal life cycle, refer to the
WebLogic Portal Overview.

Oracle WebLogic Portal Portlet Development Guide

../overview/index.html

Architecture

e
-
T
3

]

2
[

Staging

4-2 Oracle WebLogic Portal Portlet Development Guide

CHAPTERa

Understanding Portlet Development

This chapter provides conceptual and reference information that you might find useful as you
begin to develop portlets with WebLogic Portal. For a detailed description of the components that
are involved in portlet design, refer to the Portal Development Guide. For instructions on how to
create each type of portlet, refer to “How to Build Each Type of Portlet” on page 5-11.

This chapter contains the following sections:
e Portlet Components
e Resources for Creating Portlets

e Portlet Rendering

JSP Tags and Controls in Portlets

Backing Files

Portlet Components

Portlets are modular panes within a web browser that surface applications, information, and
business processes. Portlets can contain anything from static HTML content to Java controls to
complex web services and process-heavy applications. Within a portal application, a portlet is
represented as an XML file with a . portlet file extension. As you build portlets using
Workshop for WebLogic, the XML elements and attributes are automatically built.

Figure 4-1 shows the components that make up a portlet, which are located in the . portlet file.
Obijects shown in gray text are described in more detail within the Portal Development Guide.

Oracle WebLogic Portal Portlet Development Guide 4-1

../portals/index.html
../portals/index.html

Understanding Portlet Development

42

Figure 4-1 Portlet Components

partlet file

1
I

I

I

| I

e Har gressesmssmsnmne oy -

i Portlat types: .
i ISP il

. i L

il

il

il

I

I

I

I

| i Java
[JPF
State Button(s) hode Button(s) i JSF
Minimize Edilt | Browser
Madmiza & H
Float l:usp:nrn Struts H
Delate i Remote (proxy) |

This section includes the following topics:
o Portlet Properties
e Portlet Title Bar, Mode, and State

Portlet Preferences

Render and Pre-Render Forking

Asynchronous Portlet Content Rendering

e Portlets as Popups (Detached Portlets)
For more information about Look & Feel components, refer to the Portal Development Guide.

Portlet Properties

Portlet properties are named attributes of the portlet that uniquely identify it and define its
characteristics. Some properties—such as title, definition label, and Content URI—are required;
many other optional properties allow you to enable specific functions for that portlet such as
scrolling, presentation properties, pre-processing (such as for authorization) and multi-threaded

Oracle WebLogic Portal Portlet Development Guide

../portals/index.html

Portlet Components

rendering. The specific properties that you use for a portlet vary depending on your expected use
for that portlet.

For detailed information on portlet properties and how to set them, refer to “Portlet Properties”
on page 5-40

Portlet Title Bar, Mode, and State

When you create a portlet, you can choose whether or not it should have a title bar. Also, all
portlets created with WebLogic Portal support modes and states. Modes affect the portlet’s
content; edit, help, float, and custom modes are available. States affect the rendering of the
portlet; minimize, maximize, normal, float, and delete states are available.

You must enable the title bar on a portlet if you want to set modes and states for that portlet.

In certain situations your selection of a mode and state for a portlet might affect your ability to
set up other portlet features, such as interportlet communication. For example, if you are setting
up an event handler that listens to a portlet, you can select to execute the event handler only if the
portlet to which it is listening is in a window that is not minimized, and is in view mode.

For detailed instructions on setting portlet modes and states, refer to “Portlet Appearance and
Features” on page 5-76.

Portlet Preferences

Portlets are distinct applications that you can reuse in a given portal. Once you create a portlet,
you can instantiate it several times.

Along with the ability to create multiple instances of portlets, WebLogic Portal allows you to
specify preferences for portlets. You use preferences to cause each portlet instance to behave
differently yet use the same code and user interface. Portlet preferences provide the primary
means of associating application data with portlets; this feature is key to personalizing portlets
based on their usage.

Plan a portlet implementation that allows portlets to be as reusable as possible; planning for reuse
simplifies your development and testing efforts because you can differentiate generic portlets by
setting unique preferences.

For detailed instructions on setting portlet preferences, refer to “Portlet Preferences” on
page 5-56

Oracle WebLogic Portal Portlet Development Guide 4-3

Understanding Portlet Development

Resources for Creating Portlets

Although the Portlet Wizard provides an easy way to create portlets, you might find that it is not
your primary means of creating them. You can create a portlet in many ways, such as duplicating
existing portlets or generating a portlet based on an existing JSP or struts module. Many resources
can provide the raw material for a portlet, including the following:

e Portlets in J2EE Shared Libraries — Portlets are provided with WebLogic Portal, which
you can copy into your project and modify for your use. For example, you can add the
Collaboration Portlets (pre-built portlets that are supplied with WebL ogic Portal) to your
Portal Web Project, and have access to Calendar, Task, Address Book, Discussion, and
Mail portlets. For more information on the Collaboration portlets, including installation
instructions, see “Using the Collaboration Portlets” on page 11-1.

e Third-party portlets — Special-purpose portlets provided as separate products by partner
companies.

e Existing JSPs, Struts modules, and Page Flows — Existing resources that you can drag
onto a portal page to automatically generate a portlet.

You can find detailed instructions on how to use these resources as the basis for a portlet in
Chapter 5, “Building Portlets.”

Portlet Rendering

Portlet rendering consists of two processes:

e Pre-rendering — The background work to obtain necessary data or to perform
pre-processing

e Rendering — The actual drawing of the portlet onto the portal page

General rendering topics are covered in the Portal Development Guide. This section contains the
following portlet-specific rendering topics:

e Render and Pre-Render Forking

e Asynchronous Portlet Content Rendering

Render and Pre-Render Forking

By default, pre-rendering and rendering for each portlet on a page is performed in sequence, and
the portal page is not displayed until processing is complete for every portlet. This sequence can

4-4 Oracle WebLogic Portal Portlet Development Guide

../portals/index.html

Portlet Rendering

cause a noticeable delay in displaying the web page and might cause a user to think there is a
problem with the web site. To prevent this situation, you can set up your portlets so that they
perform pre-rendering and rendering tasks in parallel using multi-threaded forked processing.

Forking portlets at the rendering stage is supported for all portlet types. Pre-render forking is
supported for the following portlet types:

e JSP
e Page flow
e Java (JSR168)

e WSRP (consumer portlets only)
For detailed instructions on implementing forked portlets, refer to “Portlet Forking” on page 7-3.

Asynchronous Portlet Content Rendering

Asynchronous portlet rendering allows the content of a portlet to be rendered independently of
the surrounding portal page. When using asynchronous portlet rendering, a portlet is rendered in
two phases. The first phase is the normal portal page request during which the portlet's
non-content areas, such as the title bar, are rendered; a second request causes the portlet's content
to render in place.

For detailed instructions on implementing asynchronous content rendering, refer to
“Asynchronous Portlet Content Rendering” on page 7-13.

Tip: You can also enable asynchronous rendering for an entire portal desktop by setting a
portal property in either Workshop for WebLogic or the WebLogic Portal Administration
Console. For more information on asynchronous desktop rendering, see the WebLogic
Portal Development Guide.

Portlets as Popups (Detached Portlets)

WebLogic Portal supports the use of detached portlets. Detached portlets provide popup-style
behavior. You can see examples of detached portlets within WebLogic Portal in the GroupSpace
Message Center and in the Administration Console wizards.

For detailed instructions on using detached portlets, refer to “Building Detached Portlets” on
page 5-37.

Oracle WebLogic Portal Portlet Development Guide 4-5

../portals/index.html
../portals/index.html

Understanding Portlet Development

JSP Tags and Controls in Portlets

WebLogic Portal provides JSP tags that you can use within JSPs. Portlets can use JSPs as their
content nodes, enabling reuse and facilitating personalization and other programmatic
functionality. When you use the Palette view in Workshop for WebL ogic, you can view available
JSP tags and then drag them into the Source View of your JSP, and use the Properties view to edit
elements of the code.

JSP tag libraries appear in the Design Palette whenever the JSP editor is open. If you do not see
this palette, select Window > Show View > Design Palette. Select Tag Libraries from the
palette’s drop down menu to show only the tag libraries.

WebLogic Portal also provides custom Java controls that make it easy for you to quickly add
pre-built modules to your portal; custom Java controls exist for event management, Visitor Tools,
Community management, and so on. For example, most user management functionality can be
easily exposed with a User Manager Control on a page flow.

Note: The term control is also used to refer to the portal (netuix) framework controls, such as
desktop, book, page, and so on. These controls are referred to in the text as portal
framework controls.

For information about the classes associated with WebLogic Portal’s JSP tags, refer to the
Javadoc.

For more information about using controls within portlets, see “JSP Tags and Controls in
Portlets” on page 5-100.

Backing Files

4-6

The most common means of influencing portlet behavior within the control life cycle is to use a
portlet backing file. A portlet backing file is a Java class that can contain methods corresponding
to Portal control life cycle stages, such as init() and preRender(). You can use a portlet’s backing
context, an abstraction of the portlet control itself, to query and alter the portlet’s characteristics.
For example, in the init() life cycle method, a request parameter might be evaluated, and
depending on the parameter’s value, the portlet backing context can be used to specify whether
the portlet is visible or hidden.

Backing files can be attached to portals either by using Workshop for WebLogic or coding them
directly into a . portlet file.

For detailed instructions on implementing backing files, refer to “Backing Files” on page 5-71.

Oracle WebLogic Portal Portlet Development Guide

../javadoc/index.html

Building Portlets

This chapter describes the most common ways to create portlets, including the Portlet Wizard and
the use of out-of-the-box portlets. This chapter also contains instructions for building each type
of portlet that is supported by WebL ogic Portal.

Before you begin, be sure you are familiar with the concepts associated with creating portlets, as
described in Chapter 4, “Understanding Portlet Development.”

This chapter contains the following sections:
e Supported Portlet Types
e Portlets in J2EE Shared Libraries
e Portlet Wizard Reference
e How to Build Each Type of Portlet
o Detached Portlets
e Working with Inlined Portlets
e Extracting Books and Pages
e Portlet Properties
e Portlet Preferences
e Backing Files

e Portlet Appearance and Features

Oracle WebLogic Portal Portlet Development Guide 5-1

Building Portlets

Getting Request Data in Page Flow Portlets

JSP Tags and Controls in Portlets
e Portlet State Persistence

e Adding a Portlet to a Portal

Deleting Portlets

Advanced Portlet Development with Tag Libraries

Importing and Exporting Java Portlets

Supported Portlet Types

The following portlet types are supported by WebLogic Portal:

e Java Server Page (JSP) and HTML Portlets - JSP portlets and HTML portlets point to JSP
or HTML files for their content.

e Java Portlets (JSR 168) - Java portlets produced using WebLogic Portal can be used
universally by any vendor’s application server container that supports JSR 168.

e Java Page Flow Portlets - Java page flow portlets use Apache Beehive page flows to
retrieve their content.

e Java Server Faces (JSF) Portlets - JSF portlets produced using WebLogic Portal conform to
the JSR 127 specification.

e Browser (URL) Portlets - Browser portlets display HTML content from an external URL;
no development tasks are required to implement them.

e Clipper Portlets — A clipper portlet is a portlet that renders content from another web site.
A clipper portlet can include all or a subset of another web site’s content using a process
called “web clipping.” Clipper portlets are discussed in Chapter 6, “Creating Clipper
Portlets.”

e Struts Portlets - Struts portlets are based on the Struts framework, which is an
implementation of the Model-View-Controller (MVC) architecture.

e Remote Portlets - WebLogic Portal’s remote portlets conform to the WSRP standard; they
can be hosted within a producer application, and surfaced in a consumer application.

For a detailed discussion of each portlet type, refer to Chapter 3, “Portlet Types.”

5-2 Oracle WebLogic Portal Portlet Development Guide

Portlets in J2EE Shared Libraries

Portlets in J2EE Shared Libraries

You can copy portlets or other resources from a J2EE Shared Library into your portal application
and modify them as needed. A portlet existing in your project will supersede a portlet of the same
name in a J2EE Shared Library. To see a list of available portlets, you can use the Merged
Projects View of the workbench; resources contained in J2EE Shared Libraries are shown in italic
print. You can expand the tree to see the resources that are stored in the various modules. For a
reference list of all the J2EE Libraries and their locations on your file system, you can select
Window > Preferences > WebL ogic > J2EE Libraries.

After you locate a portlet that you want to use, you can right-click the portlet in the Merged
Projects View and select the Copy to Project option. Figure 5-1 shows an example of a J2EE
Shared Library portlet in the Merged Projects view with the Copy to Project option selected.

Caution: If you copy J2EE Shared Library resources into your project, keep in mind that with
future updates to the WebL ogic Portal product, you might have to perform manual
steps in order to incorporate product changes that affect those resources. With any
future patch installations, WebLogic Portal supports only configurations that do not
have copied J2EE library resources in the project.

Figure 5-1 Portlet Being Copied to a Project from Merged Projects View

ol
= [2= wisitorTools

+- [colors
= communities
= confenés
= arrors

F-[- [

[E] w
+- 22 WEB-INF
+- 2 i

|2 index.jsp =

{&=1) myPartal.portal

B et ge | AL

X| s meErp wi bi Refresh F5

X| s o v fu

K| sy wemrn w11 fH Properties Alt+Enter

For more information about J2EE Shared Libraries, refer to the Portal Development Guide.

Oracle WebLogic Portal Portlet Development Guide 5-3

../portals/index.html

Building Portlets

Portlet Wizard Reference

5-4

An important tool that you can use to create portlets from scratch is the WebLogic Portal Portlet
Wizard. The following sections describe the Portlet Wizard in detail:

o Order of Creation - Resource or Portlet First
e Starting the Portlet Wizard
e Select Portlet Type Dialog

e Portlet Details Dialogs

In general, you choose the portlet type on the first dialog of the wizard; when generating a portlet
based on an existing resource, the Portlet Wizard automatically detects the portlet type whenever
possible.

Order of Creation - Resource or Portlet First

This section provides an overview of the two methods you can use to begin creating a portlet—
creating the portlet resource information/file first or creating the portlet itself first.

Creating the Resource First

You might already have a JSP file, for example, that you want to use as the basis for a portlet. (In
addition to JSP files, you can drag other resources onto the portal (such as content selectors) to
automatically start the portlet wizard.)

If you have an existing resource that you want to use as the basis of a portlet, follow these steps:
1. Create or open a portal's .portal file in Workshop for WebLogic.

2. Drag the resource, such as a JSP file, into one of the portal's placeholder areas in the design
view in the editor.

Workshop for WebLogic prompts you with a dialog similar to the example in Figure 5-2.

Oracle WebLogic Portal Portlet Development Guide

Portlet Wizard Reference

Figure 5-2 Portlet Wizard Prompt Following Drag and Drop of a Resource

W Create Portlet?

2 ‘Would you like ko create a portlet out of this resource?
_‘/ wisitorwindow, jsp

If you click Yes, the Portlet Wizard uses information from the resource file to begin the
process of creating a portlet, and displays the Portlet Details dialog. Figure 5-3 shows an
example:

Figure 5-3 Example Portlet Wizard Details Dialog Following Drag and Drop of a Resource

M Portlet Wizard - Portlet Details fgl

stees: | Portlet Details

1. Select Portlet Type

y Please Fill in the general details For the portlet.
2. Portlet Details

Title : | visitorwindow |
Content Path : | [visitor Tools|visitorWindow, jsp | ij"y Bl'owse...]
Error Page Path : | | ij"y Bl'owse...]
Has TitleBar
State : Available Modes
[] Floatable
[] Deletable

Create the Portlet First

If you do not have an existing source file to start with, you can create the portlet using the New
Portlet dialog and the Portlet Wizard. To do so, right-click a folder in your portal web project and
select New > Portlet. Figure 5-4 shows an example of the New Portlet dialog.

Oracle WebLogic Portal Portlet Development Guide 5-5

Building Portlets

Figure 5-4 Portlet Wizard New File Dialog

W New Portlet

m(Ed]

New Portlet

The file' name is empty,

Enter or select the parent folder:

| myPortalwebProjectfwebContent/portlets

+-122 myData
+- =k myPortalEAR
= 'bd myPortalwebProject
= .apt_src
= .settings
+-[= build
= src
= [>= WebContent
(= META-INF
= portlets
+- 22 WEB-INF

File name: |

Advanced =

| Cancel |

After you confirm or change the parent folder, name the portlet, and click Finish, the Portlet
Wizard begins and displays the Select Portlet Type dialog. Figure 5-5 shows an example dialog.

Detailed instructions for creating each type of portlet are contained in “How to Build Each Type
of Portlet” on page 5-11.

5-6 Oracle WebLogic Portal Portlet Development Guide

Portlet Wizard Reference

Figure 5-5 Portlet Wizard - Select Portlet Type Dialog

i Select Portlet Type
lSelect Portlet Type Select the type of portlet you want to include in your portal,

(3) JSPHTML Portlet

() Java Portlet

(O Java Page Flow Portlet
() Browser (URL) Portlet
() Web Clipper Portlet
() Struts Portlet

() Remote Portlet

[] show All Portlet Types

Starting the Portlet Wizard

Workshop for WebLogic invokes the Portlet Wizard any time you perform one of these
operations:

e Select File > New > Portlet from Workshop for WebLogic's top-level menu, or right-click
a folder in your web application, and select New > Portlet. After you name the portlet and
click Create, the Portlet Wizard starts.

e Drag and drop a resource such as a JSP from the Package Explorer view onto a placeholder
area of an open portal (in other words, a portal_name.portal file is open in the editor
view of the workbench.) Workshop for WebLogic prompts you with a dialog similar to the
example in Figure 5-6.

Oracle WebLogic Portal Portlet Development Guide 5-1

Building Portlets

Figure 5-6 Portlet Wizard Prompt Following Drag and Drop of a Resource

W Create Portlet?

2 ‘Would you like ko create a portlet out of this resource?
_‘/ wisitorwindow, jsp

If you click Yes, the Portlet Wizard uses information from the resource file to begin the
process of creating a portlet.

e Right-click an existing resource such as a JSP file, a page flow, a portal placeholder, or a
portal content selector; then select Generate Portlet from the context menu. The Portlet
Wizard displays the Portlet Details dialog. Figure 5-7 shows an example of a dialog after
right-clicking a JSP file.

Figure 5-7 Portlet Wizard - Portlet Details Example for JSP Resource

H Portlet Wizard - Portlet Details rz|
. .
R Portlet Details
1. Select Portlet Type Please Fill in the general details For the portlet.
2. Portlet Details
Title : | visitorwindow |
Content Path : | [visitor Tools|visitorWindow, jsp | ij"y Bl'owse...]
Error Page Path : | | ij"y Bl'owse...]
Has TitleBar
State : Available Modes
[] Floatable
[] Deletable

5-8 Oracle WebLogic Portal Portlet Development Guide

Portlet Wizard Reference

New Portlet Dialog

When you use File > New > Portlet to create a new portlet, a New Portlet dialog displays before
the Portlet Wizard begins. Figure 5-4 shows an example of the New Portlet dialog.

The parent folder defaults to the location from which you selected to add the portlet.

This dialog requires that you select a project and directory for the new portlet, and provide a
portlet file name. (The file name appears in the Package Explorer view after you create the
portlet.) The Finish button is initially disabled; the button enables when you select a valid
project/directory and portlet name. If you select an invalid portal project in the folder tree on this
dialog, an error message appears in the status area near the top of the dialog explaining that the
project is not a valid portal project. You cannot continue until you have selected a valid project
(if one is available).

Note: With WebLogic Portal Version 9.2 and later versions, the option to convert a non-portal
project to a portal project is not offered. For information on how to integrate portal J2EE
Shared Libraries into an already existing project, see the Portal Development Guide.

Select Portlet Type Dialog

When the Portlet Wizard starts, it determines the valid portlet types to offer on the Select Portlet
Type dialog, based on the type of project that you are working in.

For example, if you are working within a Portal Web Project that has only the WSRP-Producer
feature (and its required accompanying features) installed, it does not have the full set of portal
libraries. In this case, only the JPF, JSF, Browser, and Struts portlet types are valid selections; the
other portlet types are not included in the Select Portlet Type dialog.

If no valid portlet types exist based on the project type, an informational message displays.

Figure 5-8 shows an example of the Select Portlet Type dialog.

Oracle WebLogic Portal Portlet Development Guide 5-9

../portals/index.html

Building Portlets

5-10

Figure 5-8 Portlet Wizard - Select Portlet Type Dialog
- [x]]

Steps: Select Portlet Type
1. Select Portlet Type

A

Select the type of portlet you want to include in your portal,

(3) JSPHTML Portlet

() Java Portlet

(O Java Page Flow Portlet
() Browser (URL) Portlet
() Web Clipper Portlet
() Struts Portlet

() Remote Portlet

[] show All Portlet Types

Tip: The Java Server Faces (JSF) Portlet selection only appears by default if you have added
the JSF Project facet to you portal web project. In some cases, you may wish to manaully
install the modules that are required to create JSF portlets. Although this method is not
recommended, if you manually install the appropriate modules, you can force the JSF
portlet option to appear in the dialog by selecting Show All Portlet Types. For more
information on JSF portlets, see “JSF Portlets” on page 5-22. .

The Show All Portlet Types option forces all portlet types to appear in the Select Portlet Type
dialog even if their modules were not installed. For example, the Java Server Faces (JSF) Portlet
selection only appears by default if you have added the JSF Project facet to your portal web
project. In some cases, you may wish to manaully install the modules that are required to create
JSF portlets. Although this method is not recommended, if you manually install the appropriate
modules, you can force the JSF portlet option to appear in the dialog by selecting Show All
Portlet Types. For more information on JSF portlets, see “JSF Portlets” on page 5-22.

Oracle WebLogic Portal Portlet Development Guide

How to Build Each Type of Portlet

WARNING: Ifyou create and publish portlets that require modules that have not been properly
installed, unexpected behavior and server runtime errors can occur.

Portlet Details Dialogs

The Portlet Details dialogs that display after you select a portlet type vary according to the type
of portlet you are creating. The portlet-building tasks that are described in “How to Build Each
Type of Portlet” on page 5-11 contain detailed information about each data entry field of the
portlet details dialogs.

How to Build Each Type of Portlet

The following sections describe how to create each type of portlet supported by WebLogic Portal:
e JSP and HTML Portlets

e Java Portlets

Java Page Flow Portlets
e JSF Portlets

Browser Portlets

Clipper Portlets

Struts Portlets

e Remote Portlets

e \Web Service Portlets

JSP and HTML Portlets

JSP portlets are very similar to simple JSP files. In most cases you can use existing JSP files to
build portlets from them. JSP portlets are recommended when the portlet is simple and doesn’t
require the implementation of complex business logic. Also, JSP portlets are ideally suited for
single page portlets.

There are several ways to invoke the Portlet Wizard, as explained in the section “Starting the
Portlet Wizard” on page 5-7. This description assumes that you create a portlet based on an
existing JSP file.

To create a JSP portlet, follow these steps:

Oracle WebLogic Portal Portlet Development Guide 5-11

Building Portlets

1. Right-click a JSP file and select Generate Portlet from the menu.

The Portlet Wizard displays the Portlet Details dialog; Figure 5-9 shows an example.

Figure 5-9 Portlet Wizard - JSP Portlet Details Dialog

M Portlet Wizard - Portlet Details fgl

Steps:

1. Select Portlet Type
2. Portlet Details

Portlet Details

Please Fill in the general details For the portlet.

Title : | visitorwindow |
Content Path : | [visitor Tools|visitorWindow, jsp | ij"y Bl'owse...]
Error Page Path : | | ij"y Bl'owse...]
Has TitleBar
State : Available Modes :
[] Floatable
[] Deletable

2. Specify the values you want for this portlet, following the guidelines shown in Table 5-1.

Table 5-1 Portlet Wizard - JSP Portlet Data Entry Fields

Field Description

Title The value for the Title might already be filled in.You can change the value
if you wish.

Content Path The value for the Content URI (location of the JSP) is probably already

filled in. You can change this value if you wish either by entering the path
to a JSP or browsing to it. You can also create a new JSP on the fly either
by entering a name in the field or by choosing the New button.

5-12 Oracle WebLogic Portal Portlet Development Guide

How to Build Each Type of Portlet

Table 5-1 Portlet Wizard - JSP Portlet Data Entry Fields

Field

Description

Error Page Path

To designate a default error page to appear in case of an error, check the
box and indicate the path to the desired URI. You can also create a new JSP
on the fly either by entering a name in the field or by choosing the New
button.

Has Titlebar If you want your portlet to have a title bar, check this box. The displayed
title matches the value in the Title field. In order for a portlet to have
changeable states or modes, the portlet must have a title bar.

State Select the desired check boxes to allow the user to minimize, maximize,

float, or delete the portlet. For a more detailed description of portlet states,
refer to “Portlet States” on page 5-94.

Available Modes

You can enable access to Help from the portlet or you can allow the user to
edit the portlet.

To enable an option, select the desired check box and provide the path to
the JSP page that will provide the appropriate function. For a more detailed
description of portlet modes, refer to “Portlet Modes” on page 5-85.

3. Click Create.

The Workshop for WebLogic window updates, adding the Portlet_Name.portlet file to the
display tree; by default, Workshop for WebLogic places the portlet file in the same
directory as the content file.

Java Portlets

Java portlets are based on the JSR 168 specification that establishes rules for portlet portability.
Java portlets are intended for software companies and other enterprises that are concerned with
portability across multiple portlet containers.

WebLogic Portal provides capabilities for Java portlets beyond those listed in the JSR168 spec.
For example, you can set threading options, use a backing file, and so on. To implement these
additional features, WebLogic Portal uses a combination of the typical .portlet file—which
you create in the same way that you create other portlet types—as well as the standard
portlet.xml file and the weblogic-portlet.xml file.

Oracle WebLogic Portal Portlet Development Guide 5-13

Building Portlets

Building a Java Portlet
To create a Java portlet, follow these steps:

1. Right-click the folder where you want to store the portlet and select New > Portlet.
The New Portlet dialog displays.

2. Enter a name for the portlet and click Create.

The Portlet Wizard displays the Select Portlet Type dialog.

3. Select the Java Portlet radio button and click Next.

The Java Portlet Details dialog displays. Figure 5-10 shows an example.

Figure 5-10 Portlet Wizard - Java Portlet Details Dialog

Ml Portlet Wizard - Java Portlet Details @

Steps : Java Portlet Details

1. Select Partlet Type Please fill in the details for the java (JSR 168 compliant) portlet,
2. Java Portlet Details

(% New Portlet :

Title : [

Definition Label : |
Class Name : | ﬂ

™ Existing Portlet :

Select From List : | J
Title :
Class Name :

Previous | | Create | Cancel |

4. ldentify whether you want to create a new portlet or update an existing portlet (as an entry in
the portlet.xml file) by selecting the appropriate radio button.

If you are creating a new portlet, WebLogic Portal uses the information that you enter in
the wizard to perform these two tasks:

— Create a new .portlet file

5-14 Oracle WebLogic Portal Portlet Development Guide

How to Build Each Type of Portlet

— Either create a new portlet.xml file (if this is the first Java portlet that you are
creating in the project), or add an entry in the portlet.xml file, which is located in
the WEB-INF directory.

If you choose to refer to an existing portlet in the wizard, the wizard displays a selection
for every entry in the portlet.xml file, allowing you to create a new .portlet file and
associate it with an existing entry in the portlet.xml file.

5. Specify the values you want for this portlet, following the guidelines shown in Table 5-2. All
fields are required.

Table 5-2 Portlet Wizard - Java Portlet Data Entry Fields

Field Description

New Portlet — The value for the Title maps to the <title> element in the file portlet.xml.

Title The title in the . portlet file takes priority over the one in the portlet.xml
file.

New Portlet — This value acts as the definition label for any portlet; more importantly, the value

Definition Label maps to the <portlet-name> element in the portlet.xml deployment

descriptor. This value must be unique.

New Portlet — Enter a valid class name or click Browse to navigate to the location of a Java class.
Class Name This value maps to the <portlet-class> element.

If you enter a javax.portlet.Portlet class that does not currently exist, the wizard
will create the corresponding .java file when you click Create.

Existing Portlet — The dropdown menu is populated from the portlet.xml file and contains the
Select From List values from the <portlet-name> elements.

When you select an existing portlet, the Title and Class Name display in read-only
fields.

Note: If you import an existing Java portlet into Workshop for WebLogic, you
do not need to add an entry in the web . xm1 file for the WebLogic Portal
implementation of the JSR-168 portlet taglib; this taglib is declared
implicitly. Be sure to use http://java.sun.com/portlet as the
taglib URI in your JSPs.

6. Click Create.

Based on these values that you entered, the Wizard creates a .portlet file, and adds an
entry to /WEB-INF/portlet.xml, if it already exists, or creates the file if needed.

Oracle WebLogic Portal Portlet Development Guide 5-15

Building Portlets

Workshop for WebLogic displays the newly created portlet and its current properties.

Figure 5-11 shows an example of a Java portlet’s appearance and properties.

Figure 5-11 Java Portlet Appearance and Properties

5-16

[iil myPartal.portal D Samplelsries.portlst &2 =0 m =1 :‘=:¢> & v =%
Property Yalue T
Sample Java Portlet l;‘ @ = Backable Properties i
Portlet Backing File +
General =| Genetal Portlet Properties P
Async Conkent Rendering nane
Name SR Cache Expires (seconds) &0 ;
Description Cache Render Dependencies true *
Class samplesr 168.Sample ISR 1 68Portet Client Jlassifications Mo Classifications I
Default Minimized False
Cache Expiration 0 Definition Label Sample]SR16E_2 "
Description
. Event Handlers Mo event handlers 1
4Gk Event Handlers: Mo event handlers Forkable false -
Fork Pre-Render False b
Supported Mime Types Fork Pre-Render Timeout h
text/heml Fork Render False <
States: minimized, maximized o RendeniTimeouk j
Fark Timeouk L
Modes: view LAF Dependendies Path b
Orienkation default {
Packed false ¥
Portlet Deployment Descriptor Files < >
(Click Link to View) &% workshop Palstte 23 =D g
Standard: IWEB-INF/portlet. xml Showr &l - :,
Weblogic: IWEB-INF fweblogic-portlet, xml o
2 Portlet Editor Controls 3
Portlet Modes (g Modes
Portlet Preferences [standard Modes)
[i] Custom Modes
Partlet Init-Params =[G Preferences _’)
PR =t - R 3 e —) P For=mr— - " F p—_ =

The portlet-name attribute in the portlet.xml file matches the definitionLabel property
in the _portlet file.

After you create the portlet, you can modify its properties in the Properties view, or double-click
the portlet in the editor to view and edit the generated Java class.

Note: Ifyou delete a .portlet file, the corresponding entry remains in the portlet.xml file.

You might want to clean up the portlet.xml file periodically; these extra entries do not
cause problems when running the portal but do result in error messages in the log file.

Java Portlet Deployment Descriptor

The separate portlet.xml deployment descriptor file for Java portlets is located in the WEB- INF
directory. In addition, the weblogic-portlet.xml file is an optional Oracle-specific file that
you can use to inject some additional features.

Listing 5-1 shows an example of how entries might look in the portlet._xml file:

Oracle WebLogic Portal Portlet Development Guide

How to Build Each Type of Portlet

Listing 5-1 Example of a portlet.xml file for a Simple Hello World Java Portlet

<?xml version="1.0" encoding="UTF-8"?>
<portlet-app version="1.0"
xmIns="http://java.sun.com/xml/ns/portlet/portlet-app_1 0.xsd"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'>
<portlet>
<description>Description goes here</description>
<portlet-name>hel loWorld</portlet-name>
<portlet-class>aJavaPortlet._HelloWorld</portlet-class>
<portlet-info><title>Hello World!</title></portlet-info>
<supports>
<mime-type>text/html</mime-type>
<portlet-mode>view</portlet-mode>
</supports>
<portlet-info><title>new Java Portlet</title></portlet-info>
</portlet>
</portlet-app>

Importing and Exporting Java Portlets for Use on Other Systems

WebLogic Portal produces Java portlets that conform to the JSR 168 specification and can be
used universally across operating systems. Workshop for WebL ogic lets you export Java portlets
to a supported archive file (WAR, JAR, or ZIP) that can be deployed on any supported server.
You can also use the Import feature to import archive files containing Java portlets into your
Workshop for WebLogic workspace. For details, see “Importing and Exporting Java Portlets” on
page 5-125.

Customizing Java Portlets Using weblogic-portlet.xml

WebLogic Portal allows you to add more functionality to java portlets than you can obtain using
the standard JSR 168 specification. You can use the optional weblogic-portlet.xml file to
inject some additional features. The following sections provide some examples.

Floatable Java Portlets

If you want to create a floatable Java portlet, you can do so by declaring a custom state in
weblogic-portlet.xml as shown in the following example code:

<portlet>

Oracle WebLogic Portal Portlet Development Guide 5-11

Building Portlets

<portlet-name>fooPortlet</portlet-name>

<supports>
<mime-type>text/html</mime-type>
<window-state>

<name>float</name>

</window-state>

</supports>

</portlet>

Adding an Icon to a Java Portlet

To add an icon to a Java portlet, you need to edit the weblogic-portlet.xml file, as described
in this section.

1. Place the icon in the images directory of the skin that the portal is using. For example, if the
skin name is avitek, icons must be placed in:

myPortal/skins/avitek/images

2. Inthe Application panel, locate and double-click the weblogic-portlet.xml file to open it.
This file is located in the portal's WEB-INF folder, for example:

myPortal /WEB-INF/weblogic-portlet._xml

3. Add the following lines to the weblogic-portlet.xml file:

<portlet>
<portlet-name>myPortlet</portlet-name>
<supports>
<mime-type>text/html</mime-type>
<titlebar-presentation>
<icon-url>mylcon.gif</icon-url>
</titlebar-presentation>
</supports>
</portlet>

4. Make these substitutions:
— Change myPortlet to the name of the portlet that is specified in WEB-INF/portlet.xml
— Be sure the mime-type also matches the mime-type found in WEB-INF/portlet.xml

— Change mylcon.gif to the name of the icon you wish to add

5-18 Oracle WebLogic Portal Portlet Development Guide

How to Build Each Type of Portlet

Portlet Init-Params

The init-param element contains a name/value pair as an initialization parameter of the portlet.
You can use the getlnitParameterNames and getInitParameter methods of the
javax.portlet.PortletConfig interface to return these initialization parameter names and values in
your portlet code. Init-params are described in the JSR168 specification.

You can add init-params to your Java portlet by dragging a New Init-Param icon from the
Design Palette onto the Java portlet in the portlet editor. Then, click on the init-param section of
the portlet to display the parameter’s properties in the Property view. In the Property view, you
can enter the following init-param data:

e Description
e Name

e Value

For example, if you created an init-param called “Color” and set the default value to “green,” the
following entry will be made in the portlet.xml file:

<init-param>
<description>My init param</description>
<name>Color</name>
<value>green</value>

</init-param>

Java Page Flow Portlets

You can use the Portlet Wizard to built a portlet that uses Apache Beehive Page Flows to retrieve
its content.

To create a page flow portlet, follow these steps:

1. Right-click the folder where you want to store the page flow portlet. (The folder must be
within the WebContent directory.)

2. Select New > Portlet.
The New Portlet dialog displays.

3. Enter a name for the portlet and click Create.

The Portlet Wizard displays the Select Portlet Type dialog.

Oracle WebLogic Portal Portlet Development Guide 5-19

Building Portlets

4. Select the Java Page Flow Portlet radio button and click Next.

The Portlet Wizard displays the Portlet Details dialog; Figure 5-12 shows an example.
Figure 5-12 Portlet Wizard - JPF Portlet Details Dialog

M Portlet Wizard - Portlet Details le

stees: | Portlet Details

1. Select Portlet Type

y Please Fill in the general details for the portlet.
2. Portlet Details

Title : | Page Flow Portlet |
Content Path : | IController. jpf | ij"y Bl'owse...]
Error Page Path | | ij"y Bl'owse...]
Has TitleBar
State : Available Modes :
[] Floatable
[] Deletable

5. Specify the values you want for this portlet, following the guidelines shown in Table 5-3.

5-20 Oracle WebLogic Portal Portlet Development Guide

How to Build Each Type of Portlet

Table 5-3 Portlet Wizard - JPF Portlet Data Entry Fields

Field

Description

Title

The title for this portlet, which displays in the title bar if you select to
include one.

Content Path

The Page Flow Request URI. You can type a value here, or click the
Browse button | to open a class picker and select the appropriate class.

If you use the class picker to choose a page flow class, this fully-qualified
class name is converted to a URI path of a JPF. The JPF does not reside in
the project, but is referred to by the .portlet file when the portlet is
created.

If you enter or navigate to a - java that has no corresponding class in the
project or J2EE Shared Libraries, the Portlet Wizard creates the . java
file for the page flow. If multiple project source directories exist, then the
wizard prompts you to store the new . java file in the source directory of
your choice.

Error Page Path

To designate a default error page to appear in case of an error, check the
box and indicate the path to the desired URI.

Has Titlebar If you want your portlet to have a title bar, check this box. The displayed
title matches the value in the Title field. In order for a portlet to have
changeable states or modes, the portlet must have a title bar.

State Select the desired check boxes to allow the user to minimize, maximize,

float, or delete the portlet. For a more detailed description of portlet states,
refer to “Portlet States” on page 5-94.

Available Modes

You can enable access to Help from the portlet or you can allow the user to
edit the portlet.

To enable an option, select the desired check box and provide the path to
the JSP page or page flow that will provide the appropriate function. For a
more detailed description of portlet modes, refer to “Portlet Modes” on
page 5-85.

6. Click Create.

Oracle WebLogic Portal Portlet Development Guide 5-21

Building Portlets

5-22

The Workshop for WebLogic window updates, adding the Portlet_Name.portlet file to
the display tree; by default, Workshop for WebLogic places the portlet file in the same
directory as the content file.

In order to fully understand the process of creating a page flow portlet, you should be familiar
with the concept of Page Flows. For more information on using page flows with WebLogic
Portal, refer to the Portal Development Guide.

If you want to create a page flow portlet that calls a web service, refer to “Web Service Portlets”
on page 5-35.

JSF Portlets

You can create JSF portlets for a WSRP producer or a web application that has the JSF facet
installed (the JSF facet is selected when creating the portal web project).

Note: The Java Server Faces (JSF) Portlet selection only appears in the Portlet Wizard if you
have added the JSF Project Facet to the portal web project. To add the JSF Project Facet,
right-click the portal web project in the Package Explorer. In the Properties dialog, select
Project Facets in the tree on the left. Click Add/Remove Project Facets, select JSF in
the Project Facets dialog, and click Finish.

A JSF portlet will ask for a content path. This is usually a JSF enabled JSP. So, before we can
create a JSF Portlet, we begin by creating a new JSF JSP.

To create a simple JSF view:
1. Right-click the WebContent folder of the Portal Web Project, and navigate to New > JSP.

2. Enter a file name, click Next.

If you select New JSF JSP, this will bring in the appropriate JSF taglibs. However, it also
brings in head and body tags that you will need to remove to work within a portlet.

The above JSP is a very simple example of a JSF view. It contains a single line of text ("Simplest
JSF Portlet") and a form with a Submit button that simply posts back to the portlet. This is a very
simplistic example, but showcases the basics of writing a JSF view. The namingContainer
component will be explained later. This component is basically used to namespace each portlet
so that multiple instances of a JSF portlet can exist on the same page.

To create a JSF portlet, follow these steps:

Oracle WebLogic Portal Portlet Development Guide

../portals/index.html

How to Build Each Type of Portlet

1. Right-click in the Package Explorer view, within the Web Content directory, and select File
> New > Portlet from the menu.

The New Portlet dialog displays. Figure 5-15 shows an example of the New Portlet dialog.
Figure 5-13 Portlet Wizard - New Portlet Dialog

W New Portlet g|
=

New Portlet

Create a new portlet, A portlet is a container For a piece of content in & portal,

Enter or select the parent folder:

| myDyniwebProject TolmportwebContent/portlets

+-122 myData
= b‘J myDyniwebProject Talmport
= .apt_src
= .settings
+-[= build
= src
= [>= WebContent
(= META-INF
= portlets
= wisitorTools
+- [WEB-INF
+- =k my'WebEAREo Import

File narne: | portlet_name

Advanced =

Finish | Cancel |

The parent folder defaults to the location from which you selected to add the portlet.

2. Edit the parent folder field if needed to indicate the project and directory for the new portlet.

The Finish button is initially disabled; the button enables when you select a valid parent
folder and portlet name. If you select an invalid portal project in the folder tree on this
dialog, an error message appears in the status area near the top of the dialog explaining that
the project is not a valid portal project.

3. Type a file name for the new portlet.

4. Click Next to continue.

The Portlet Wizard displays the Select Portlet Type dialog.

Oracle WebLogic Portal Portlet Development Guide 5-23

Building Portlets

5. Click Java Server Faces (JSF) Portlet and then click Next. If this option is not available,
the JSF facet was not added to the web project (see above instructions).

The Portlet Wizard displays the Portlet Details dialog; Figure 5-14 shows an example.

Figure 5-14 Portlet Wizard - JSF Portlet Details Dialog

H Portlet Wizard - Portlet Details g|
St H i
stees: | Portlet Details
1. Select Portlet Type Please Fill in the general details For the portlet.
2. Portlet Details
Title : J5F Portlet
Error Page Path :
Has TitleBar
State : Available Modes
Minimizable [JHelp =
Maximizable
Edit >
[] Floatable [edi 4
[] Deletable

6. Specify the values you want for this portlet, following the guidelines shown in Table 5-4.

Table 5-4 Portlet Wizard - JSF Portlet Data Entry Fields

Field Description
Title The value for the portlet title, which displays in the title bar if enabled.
Content Path The value for the Content URI; this value should point to a JSF-enabled

- Jsp file, like the one created in the previous section.

Error Page Path Every portlet can have a configured error page. This must be a standard JSP
and not a JSF JSP. For details on configuring an error page, see “Portlet
Properties.”

5-24 Oracle WebLogic Portal Portlet Development Guide

How to Build Each Type of Portlet

Table 5-4 Portlet Wizard - JSF Portlet Data Entry Fields (Continued)

Field Description

Has Titlebar If you want your portlet to have a title bar, check this box. The displayed
title matches the value in the Title field. In order for a portlet to have
changeable states or modes, the portlet must have a title bar.

State Select the desired check boxes to allow the user to minimize, maximize,
float, or delete the portlet. For a more detailed description of portlet states,
refer to “Portlet States.”.

Available Modes You can enable access to Help from the portlet or you can allow the user to
edit the portlet.

To enable an option, select the desired check box and provide the path to
the file that will provide the appropriate function. For a more detailed
description of portlet modes, refer to “Portlet Modes.” Only the view mode
supports JSF-JSP files. The other modes must be JSP or HTML files.

7. Click Next to Assign Supporting Files such as render dependencies and backing files.

8. Click Create to generate your new portlet.

The Workshop for WebL ogic window updates, adding the Your_Portlet_Name.portlet
xml file to the display tree.

Because JSF portlets are native portlet types in WLP, JSF portlets can be consumed in any
.portal or streaming desktop just like any other portlet type.

The Artifacts

The portlet generated will have a <netuix: facesContent> element in the .portlet xml file.
Listing 5-2 shows an example.

Listing 5-2 The <netuix:facesContent> Element in the .portlet XML File of a Newly Created JSF Portlet

<?xml version="1.0" encoding="UTF-8"?>

<portal:root

xmIns:netuix="http://www._bea.com/servers/netuix/xsd/controls/netuix/1.0.0"

Oracle WebLogic Portal Portlet Development Guide 5-25

Building Portlets

xmIns:portal="http://www.bea.com/servers/netuix/xsd/portal/support/1.0.0"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalLocation="http://www.bea.com/servers/netuix/xsd/portal/support/1
.0.0 portal-support-1_0_0.xsd">

<netuix:portlet
definitionLabel="myFirstJsfPortlet"
title="Myfirstjsfportlet'>

<netuix:titlebar>

</netuix:titlebar>
<netuix:content>
<netuix:facesContent contentUri="/myFirstJSFJsp.faces"/>
</netuix:portlet>

</portal :root>

WLP accomplished the JSF portlet capability by implementing a JSF bridge that connects the
WLP portlet container to a standard implementation of JSF (specifically, the Sun Reference
Implementation) which does the actual rendering of the JSF portlet. If there are multiple JSF
portlets on the same page, each portlet is rendered as its own JSF view in isolation of the other
portlets.

JSF Portlet Views

WebLogic Portal JSF portlets are simply JSF applications composed of one or more views. The
technology used to create the view can vary based on needs.

View Technologies
JSF portlets can render with the following technologies:

e HTML or XHTML — The portlet developer can output either, but take care that the outer
portal is rendering the same format.

5-26 Oracle WebLogic Portal Portlet Development Guide

How to Build Each Type of Portlet

e JSP 1.0 or 2.0 (XML) — The portlet developer can implement JSF portlet views in JSP,
using either XML 1.0 or 2.0.

e Facelets — A declarative view technology that can be used instead of JSP.

Document Structure

Each JSF view contains components such as text, form fields, and buttons. These elements must
be place inside a properly constructed JSF view that adheres to certain rules. These rules differ
when the JSF view appers inside of a portlet. This section dicusses those differences.

f:view Tag

The JSF standard f:view tag is required for each JSF portlet. The WebLogic Portal framework
properly handles the existence of multiple f:view components on the portal page, and uses each
as a JSF naming container. The f:view tag contributes the root id namespace for the generated
identifiers for the components within the portlet (at runtime, this namespace happens to be the
portlet instance label). For information on identifiers and naming containers, see “Namespacing”
on page 12-51.

f:subview Tag

The JSF standard f:subview tag is supported within the portlet, but it cannot replace f:view as the
root component.

HTML Document Tags
The following HTML page tags should be avoided within a body of a portlet, since a portlet does
not own the entire web page.

e <html>

o <head>

e <body>

Using JSPs in JSF Portlets

If you are using JSPs in your JSF portlets, be aware that you will only see your JSP edits when
you view the portlet in a new session. A simple page refresh is not sufficient. This behavior differs
from typical JSP development behavior, where changes are compiled and made available after a
page refresh. Normally, JSPs are handled by the servlet container, which checks for updated JSPs.
JSF, on the other hand, uses JSPs as a source for the component tree, which typically is loaded
only once per session, depending on how the JSF implementation handles or does not handle

Oracle WebLogic Portal Portlet Development Guide 5-27

Building Portlets

5-28

changed JSP source. To see your JSP changes reflected in a JSF portlet, you must view the portlet
in a new session. Typically, you can do this by opening a new browser to view the portal.

To learn more about developing JSF Portlets, see Chapter 12, “Working With JSF Portlets.”

Browser Portlets

Browser portlets, also called Content URI portlets, are basically HTML portlets that use URLS to
retrieve their content. Unlike other portlet types that are limited to displaying data contained
within the portal project, browser portlets can display URL content that is outside from the portal
project.

Tip: Aclipper portlet also lets you include remote web content in a portal page. For
information on clipper portlets and how they differ from browser portlets, see Chapter 6,
“Creating Clipper Portlets.”

There are several ways to invoke the Portlet Wizard, as explained in the section “Starting the
Portlet Wizard” on page 5-7. This description assumes that you right-click in the Package
Explorer view tree within a portal project and select New > Portlet from the menu.

To create a browser portlet, follow these steps:

1. Right-click in the Navigation tree within a portal project and select New > Portlet from the
menu.

The New Portlet dialog displays. Figure 5-15 shows an example of the New Portlet dialog.

Oracle WebLogic Portal Portlet Development Guide

How to Build Each Type of Portlet

Figure 5-15 Portlet Wizard - New Portlet Dialog

W New Portlet g|
5

New Portlet

Create a new portlet, A portlet is a container For a piece of content in & portal,

Enter or select the parent folder:

| myDyniwebProject TolmportwebContent/portlets

+-122 myData
= b‘J myDyniwebProject Talmport
= .apt_src
= .settings
+-[= build
= src
= [>= WebContent
(= META-INF
= portlets
= wisitorTools
+- [WEB-INF
+- =k my'WebEAREo Import

File narne: | portlet_name

Advanced =

Finish | Cancel |

The parent folder defaults to the location from which you selected to add the portlet.

2. Edit the parent folder field if needed to indicate the project and directory for the new portlet.

The Finish button is initially disabled; the button enables when you select a valid parent
folder and portlet name. If you select an invalid portal project in the folder tree on this
dialog, an error message appears in the status area near the top of the dialog explaining that
the project is not a valid portal project.

3. Type a file name for the new portlet.

4. Click Finish to continue.

The Portlet Wizard displays the Select Portlet Type dialog.

5. Click Browser (URL) Portlet and then click Next.
The Portlet Wizard displays the Portlet Details dialog; Figure 5-16 shows an example.

Oracle WebLogic Portal Portlet Development Guide 5-29

Building Portlets

5-30

Figure 5-16 Portlet Wizard - Browser Portlet Details Dialog

M Portlet Wizard - Portlet Details

Steps:

1. Select Portlet Type
2. Portlet Details

Portlet Details
Please Fill in the general details For the portlet.
Title : Untitled
Content URL :
Has TitleBar
State : Available Modes
[] Minimizable []Help =
[] Maximizable [it =
[] Floatable
[] Deletable

6. Specify the values you want for this portlet, following the guidelines shown in Table 5-5.

Table 5-5 Portlet Wizard - Browser Portlet Data Entry Fields

Field

Description

Title

The title for the portlet. This value appears in the title bar of the portlet in
the editor view of the Workshop for WebLogic workbench.

Content URL

The value for the Content URL (external URL) that the portlet should use
to retrieve its information.

A validator checks the format of the URL that you enter, and a message
notifies you if the URL is not properly formatted. You can either change
the URL or ignore the warning and continue with the URL as is.

Has Titlebar

If you want your portlet to have a title bar, check this box. The displayed
title matches the value in the Title field. In order for a portlet to have
changeable states or modes, the portlet must have a title bar.

Oracle WebLogic Portal Portlet Development Guide

How to Build Each Type of Portlet

Tahle 5-5 Portlet Wizard - Browser Portlet Data Entry Fields (Continued)

Field Description

State Select the desired check boxes to allow the user to minimize, maximize,
float, or delete the portlet. For a more detailed description of portlet states,
refer to “Portlet States” on page 5-94.

Available Modes You can enable access to Help from the portlet or you can allow the user to
edit the portlet.

To enable an option, select the desired check box and provide the path to
the JSP page that will provide the appropriate function. For a more detailed
description of portlet modes, refer to “Portlet Modes” on page 5-85.

7. Click Create.

The Workshop for WebLogic window updates, adding the Portlet_Name.portlet file to the
display tree; by default, Workshop for WebLogic places the portlet file in the same
directory as the content file.

Note: The internal implementation of Browser portlets depends on asynchronous portlet
content rendering; because of this, the portlet attribute Async Content displayed in the
Properties view is set to none and is read-only. For more information about asynchronous
content rendering, refer to “Asynchronous Portlet Content Rendering” on page 7-13.

Clipper Portlets

A clipper portlet is a portlet that renders content from another web site. A clipper portlet can
include all or a subset of another web site’s content using a process called “web clipping.” Clipper
portlets are discussed in Chapter 6, “Creating Clipper Portlets.”

Struts Portlets

Use the Portlet Wizard to generate a portlet based on a Struts module, as explained in this section.

Before you can create a Struts portlet, you must first integrate your existing Struts application into
your portal web application. For detailed information on integrating Struts applications into
WebLogic Portal, refer to the Portal Development Guide.

Tip: Itis highly recommended that you fully develop and test a Struts application before
attempting to host it within a portal. This helps to separate the complexities of developing

Oracle WebLogic Portal Portlet Development Guide 5-31

../portals/index.html

Building Portlets

a working Struts application from the additional issues involved in putting the Struts
application into a portlet.

To create a Struts portlet, follow these steps:

1. Right-click the Struts application module’s XML configuration file located in the WEB- INF
directory of the portal web application.

2. Select Generate Portlet from the menu. The wizard automatically collects and displays the
module path and configuration file name(s) in the Struts Config File dialog. An example is
shown in Figure 5-17. Use the Browse and Add buttons to locate and add additional
configuration files, if applicable.

Figure 5-17 Struts Config File Dialog

M Portlet Wizard - Struts Config File g|
Steps: H H
i Struts Config File
L. Select Portlet Typ!e Please specify the struts module path and the location of the configuration file(s) for the
_2' itrl.:ts_l::.mﬁg File struts module, Add each file ko the list box below.
3. Struts Actions
Module Path : [struts/moduleSwitching2
Configuration File : | JWEB-INF/struts-auto-config-struts-moduleSwitching2, xml
WEB-INF/struts-auto-config-struts-moduleSwitching2 . xml

3. Click Next.

4. Inthe Struts Actions dialog, specify an action for the Struts portlet. The actions that appear in
the drop-down menu are based on entries in the configuration file(s) that were added
previously.

5-32 Oracle WebLogic Portal Portlet Development Guide

How to Build Each Type of Portlet

Figure 5-18 Struts Actions Dialog

H Portlet Wizard - Struts Actions E|
et Struts Actions
1. Select Portlet Type
2, Struts Config File Action : |start v

3. Struts Actions Attributes :

type=org.apache.struts. actions . ForwardAction
parameter=|struts/moduleSwitching2 fmoduleSwitchingStartPage2. jsp

Previous Create Cancel

5. Click Create.

The Workshop for WebLogic window updates, adding the Portlet_Name.portlet file to the
display tree; by default, Workshop for WebL ogic places the portlet file in the directory that you
specified in the Struts Module Path dialog of the wizard.

Configuring Multi-Part Form Data Support for a Struts Portlet

You can configure your Struts portlet to handle a multi-part struts action form after a server
request has been posted.

Before you can create a Struts portlet, you must first integrate your existing Struts application into
your portal web application. For detailed information about integrating Struts applications into

WebLogic Portal, see "Integrating an Existing Web Application into Workshop for WebLogic"
in the Portal Development Guide.

To add the multi-part form data support to a struts portlet:

1. In Oracle Enterprise Pack for Eclipse, in your portal web application, create a module for the
Struts portlet, as described earlier in this section.

Oracle WebLogic Portal Portlet Development Guide 5-33

../portals/index.html

Building Portlets

2. Inyour portal web application, create a JSP page that contains an action form with the
attribute enctype= "multipart/form-data'.

3. Open the Strut module's XML configuration file, struts-auto-config.xml, located in the
WEB-INF directory of your portal web application.

4. Configure your struts module to point to the newly created JSP page, and save
struts-auto-config.xml.

5. In struts-auto-config-upload.xml, add the following entries: <controller
inputForward="true"
processorClass="com.bea.struts.adapter.action.AdapterRequestProcessor"
multipartClass="
com.bea.struts.adapter.action.ScopedMultipartRequestHandler"/>

6. Save struts-auto-config-upload.xml.

7. To access the struts application directly, open the browser and use the following URL:

http://localhost:port/struts_webapp/module.do

Where, localhost:port are the host name and port number where WebLogic Portal is deployed,
struts_webapp is the name of your portal web application containing the struts module, and
module.do is the module in which you want to implement the multi-part form data support. For
example:

http://1ocalhost:7001/StrutsUploadWebl13/upload.do

Note: If you want to run the struts portlet through WebLogic Portal, make sure your portlet
points to the WebLogic Portal tag library, which is specified in the import statements at
the beginning of a JSP file. If you do not use WebL ogic Portal's HTML tab library, the
page gets redirected outside of the portal page. As a result, the strut portlet's JSP page
takes over the entire page.

Remote Portlets

Because remote portlet development is a fundamental task in a federated portlet environment, the
task of creating remote portlets is described in detail within the Oracle WebLogic Portal
Federated Portals Guide.

The following types of portlets can be exposed with WSRP inside a WebLogic portal:
e Page flow portlets

e JavaServer Pages (JSP) portlets

5-34 Oracle WebLogic Portal Portlet Development Guide

../federation/index.html

Detached Portlets

e Struts portlets
e Java portlets (JSR168; supported only for complex producers)

e JavaServer Faces (JSF) portlets

Web Service Portlets

A web service portlet is a special type of page flow portlet, allowing you to call a web service.
You create web service portlets using the features of Workshop for WebLogic and WebLogic
Portal.

Before you can create a portlet that calls a web service, you must perform the following
prerequisite tasks:

1. Create a Java control from a web service.

2. Call the Java control from a page flow.
Instructions on performing these tasks are contained in Workshop for WebLogic.

After you have performed the setup tasks, you can create a web service portlet by following these
steps:

1. In Workshop for WebL ogic, navigate to the page flow that you want to use as the basis for
the portlet.

2. Follow the instructions for creating a Java Page Flow portlet, as described in “Java Page Flow
Portlets” on page 5-19.

Detached Portlets

WebLogic Portal supports the use of detached portlets, which provide popup-style behavior.
Technically, a detached portlet is defined as anything outside of the calling portal context. Any
portlet type supported by WebLogic Portal can be rendered as a detached portlet.

Note: Opening the same portal desktop in multiple browser windows that share the same
process (and, therefore, the same session) is not supported. For example, using the
render:pageURL tag or the JavaScript window.open function to open a portal desktop in
a new window is not supported and can result in unwanted side effects. For instance, if a
portlet is deleted in the new window, and then the user tries to interact with that portlet
in the main window, the interaction will fail.

Oracle WebLogic Portal Portlet Development Guide 5-35

Building Portlets

5-36

Considerations for Using Detached Portlets

Keep the following considerations in mind as you implement detached portlets:

e Detached portlets are never referenced from within a portal; there is no portlet instance in

the portal associated with a detached portlet.

Detached portlets can be streamed but generally cannot be entitled or customized; the
library instance can be entitled, but portlet instances that are de-coupled from the portlet
library cannot. For more information about library portlet instances and de-coupling, refer
to the Production Operations Guide.

Detached portlet are not visible or accessible from the WebLogic Portal Administration
Console portlet library.

In a streamed portal, the primary instance of the portal is used. In some cases, the primary
instance cannot be determined; for example, you might have set entitlements on the
primary instance to make it not viewable, or you could have set up a configuration that
excludes portlets from the scanner and poller so that they are not streamed into the
database. If the primary instance cannot be determined, a static version of the portlet is
used (the portlet will be served in file mode). In these cases, some features related to a
streamed portal (such as a community context) will not be available, and applications
might be required to implement workarounds.

Although technically a detached portlet can be implemented to use asynchronous
rendering, this is not a best practice and is not recommended.

No presentation mechanism is provided as part of the detached portlet feature; the
application must define how to actually present the portlet. For example, a floated portlet
will automatically be popped up in a separate window; detached portlets have no such
mechanism, so your application must handle popping up the window.

When developing detached portlets, you can place them anywhere in the hierarchy of your
portal web application; the portal references the absolute path to the portlet. A good
example of a detached portlet is the GroupSpace member list portlet.

The framework for standalone portlets creates a “dummy” control tree above the portlet,
including desktop, book, and page controls. The context objects associated with such
controls reflect the state of the dummy controls, and not of the main control tree; for
example, if a portlet tries to get information about its current book or page, the Book/Page
Presentation/Backing Context objects will not reflect the actual structure of the portal.
There might also be cases where the dummy control tree does not support certain backing

Oracle WebLogic Portal Portlet Development Guide

../prodOps/index.html

Working with Inlined Portlets

context APIs. When developing your portal, you need to keep this artificial control tree
structure in mind.

Building Detached Portlets

You use the standalonePortletUrl class or associated JSP tag to create URLS to detached
portlets.

To create a detached portlet URL from a JSP page, you use the render:standalonePortletUrl JSP
tag or class; the following example shows the syntax of the JSP tag:

<render:standalonePortletUrl
portletUri="/absolute_path/detached_portlet_name.portlet"” ./>

To create a detached portlet URL from Java code, use the following example as a guide:

StandalonePortletURL detachedURL =
StandalonePortletURL.createStandalonePortletURL(request, response);
detachedURL.setPortletUri(“/path/to/detached.portlet”);

Working with Inlined Portlets

A file-based portlet can exist either as a stand-alone .portlet file or as an inlined portlet.
Typically, within the Workshop for WebLogic portal editing framework, .portlet files are
included in portals by reference. For instance, when you drag a - portlet file onto a portal, page
or book, a reference is created to the portlet file inside the portal, page, or book. On the other
hand, an inlined portlet’s entire XML definition is embedded directly in a page or book.

Inlined portlets are created under the following circumstances:

e If you create a remote book or page that contains portlets, those portlets will be inlined in
the _book or .page file. For detailed information on creating remote books and pages, see
the Federated Portals Guide.

e |If you use the Export/Import Utility to extract a -book or .page file that contains portlets,
those portlets will be inlined if they were originally inlined. If the original page contained
referenced portlets, they will be referenced when the page is extracted. For detailed
information on the Export/Import Utility, see the Production Operations User Guide.

You can drag and drop, cut, copy, and paste inline portlets from one page or book to another from
within the portal editor.

Figure 5-19 shows a remote page that contains an inlined portlet and a referenced portlet. Note
that the icon used in an inlined portlet is distinct from a referenced portlet.

Oracle WebLogic Portal Portlet Development Guide 5-37

../prodOps/index.html
../federation/index.html

Building Portlets

Figure 5-19 Inlined Portlet in the Portlet Editor

[0l myPortal. portal

Page: Proxy Page

Inlined Portlet —f—— [Proxy Portlet

Referenced Portlet —f——— [l UserPicker Portlet

Tip: You can edit the properties of inlined portlets exactly like file-based portlets; however,
portlet states and modes are not editable for inlined portlets.

Extracting Inlined Portlets

You can export an inlined portlet to a . portlet file. When you do this, the resulting .portlet
file is functionally equivalent to any other _portlet file. When you extract an inlined portlet,
the inlined portlet XML code is automatically removed from the source file (a page or book) and
replaced with a reference to the newly created -portlet file.

Note: After you extract an inlined portlet, you can undo the operation (re-inline the portlet).
However, note that the _portlet file that was created during the extraction will not be
deleted from your system. The source document will simply not reference the . portlet
file any longer.

To extract an inlined portlet, do the following:

1. Right-click the inlined portlet in the Book or Page Editor and select Extract Portlet to New
File, as shown in Figure 5-20.

5-38 Oracle WebLogic Portal Portlet Development Guide

Figure 5-20 Extract Portlet to New File

4 Remote Portlet

b Servers B2

Erver

1 ‘hea BEA Weblogic Server v10.0 [p

Problems | Tasks | ¢

Extracting Books and Pages

References

1
Theme » '
4
-
+
of Cuk
=| Copy
Extract Portlet ko New File...
¥ Delete k f’
Validate _r
Team » 1;
Compare With] tl
Replace With] 4\:
]
F

e ——

2. In the Save As dialog, enter a name for the new portlet.

Tip: If you receive errors after extracting a portlet, be sure to save the source file and run the

Project > Clean command.

Setting the Theme of an Inlined Portlet

You can set the theme of an inlined portlet exactly as you would for a referenced portlet. To set
the theme, right-click the inlined portlet in the book or page editor, and pick a theme from the
Theme menu. The theme is retained for that portlet as long as it remains referenced in the page

or book.

Extracting Books and Pages

You can extract any book or page in a portal to a .book or .page file. Once a book or page is
extracted, you are free to use it in another portal within the same portal web application if you

wish.

The procedure for extracting books and pages is similar to the procedure for extracting inlined
portlets, described in “Extracting Inlined Portlets” on page 5-38. To extract a book or page, do

the following:

1. Right-click border of the book or page in the Portal Editor and select Extract Book (or Page)

to New File.

Oracle WebLogic Portal Portlet Development Guide

5-39

Building Portlets

2. Inthe Save As dialog, enter a name for the new book or page file.

Tip: Any theme applied to a book or page is retained for an extracted book or page as long as
the book or page remains referenced in the portal.

Portlet Properties

5-40

Portlet properties are named attributes of the portlet that uniquely identify it and define its
characteristics. Some properties—such as title, definition label, and content URI—are required;
many optional properties allow you to enable specific functions for the portlet such as scrolling,
presentation properties, pre-processing (such as for authorization) and multi-threaded rendering.
The specific properties that you use for a portlet vary depending on your expected use for that
portlet.

During the development phase of the portal life cycle, you generally edit portlet properties using
the Workshop for WebL ogic interface; this section describes properties that you can edit using
Workshop for WebLogic.

During staging and production phases, you typically use the WebLogic Portal Administration
Console to edit portlet properties; only a subset of properties are editable at that point. For
instructions on editing portlet properties from the WebLogic Portal Administration Console, refer
to “Modifying Library Portlet Properties” on page 13-3 and “Modifying Desktop Portlet
Properties” on page 13-4.

For a detailed description of all portlet properties, refer to “Portlet Properties in the Portal
Properties View” on page 5-43 and “Portlet Properties in the Portlet Properties View” on
page 5-44.

This section contains the following topics:
e Editing Portlet Properties
e Tips for Using the Properties View
e Portlet Properties in the Portal Properties View

e Portlet Properties in the Portlet Properties View

Editing Portlet Properties

To edit portlet properties, follow these steps:

Oracle WebLogic Portal Portlet Development Guide

Portlet Properties

1. Navigate to the location of the portlet whose properties you want to edit, and double-click the
.portlet file to open it in the workbench editor.

2. Click the border of the desired portlet component to display the properties for that component
in the Properties view.

The displayed properties vary according to the active area that you select. If you click the
outer border, properties for the entire portlet appear; if you click the inner border,
properties for the content of the portlet appear, and so on.

3. Navigate to the Properties view to view the current values for the portlet properties.
Figure 5-21 shows a segment of a JSP portlet’s Properties view:

Figure 5-21 Editing Portlet Properties - JSP Portlet Properties View Example

=

5 BB

Property | Value -~
= Backable Properties

Partlet Backing File
= Content

Content Path Iportletsfisp_portlet. jsp

Error Page Path
= General Portlet Properties

Async Content Rendering none

Cache Expires (seconds) &0

Cache Render Dependencies true

Client Classifications

Default Minimized false

Definition Label jsp_portlet_1
Description

Event Handlers 1 event handler
Farkable false

N fork_Pre-Ren_c!x‘e; . .;alge ot o

4. Double-click the field that you want to change.
If you click on a property field, a description of that field displays in the status bar.
Values for some portlet properties are not editable after you create the portlet.

In some cases, from the property field you can view associated information pertaining to
that portlet property; for example, the Java portlet Class Name property contains a
read-only value with an Open button to view the associated Java file. For more
information about options available in the Properties view, refer to “Tips for Using the
Properties View” on page 5-42.

Oracle WebLogic Portal Portlet Development Guide 5-41

Building Portlets

5-42

Tips for Using the Properties View

The behavior of the Properties view varies depending on the type of field you are editing. The
following tips might help you as you manipulate the content of the data fields in the Properties
view.

o Ifafile is associated with a portlet property, the Properties view includes an Open button
in addition to a Browse button; you can click Open to display the appropriate Eclipse
editor/view for the file type.

o If you want to edit the XML source for a portlet, you can right-click the .portlet file in
the Package Explorer view and choose Edit with > XML Editor to open the file using the
basic XML editor that Eclipse provides.

Caution: The Eclipse XML editor has limited validation capabilities. Oracle recommends
the use of a robust validation tool to ensure that your hand-edited XML is valid.

e The book, page, and portlet actions in the palette display properties in the Properties view
when you select them in the palette. The cell editor for the content file property is read
only, and includes an Open button; clicking Open displays the Eclipse editor/view for the
applicable file type.

e For page flow portlets, a property editor is available for page flow content paths when
displaying a page flow portlet in the editor. The property editor is a dialog cell editor that
allows you to type in the URI of the page flow directly, or you can click the ellipses
button -1 to launch the page flow class picker dialog. If you open the dialog, the page
flow class name is converted to a URI when you leave the dialog. WebL ogic Portal stores
the URI in the .portlet file when you save the portlet. The property editor validates the
page flow URI specified and warns you if you choose a URI that has no corresponding
page flow class. You can choose to proceed anyway and store an invalid URI; you should
create a valid class later so that the portlet works correctly.

e For page flow portlets, while in the portlet editor you can double-click the portlet content
view to launch the corresponding Java element specified in the portlet content path. This
consists of the page flow source if the source is available in the project or attached to the
JAR containing the class. If the source cannot be located, then the disassembled class
browser is displayed showing the contents of the class.

e Due to a limitation in Eclipse, some long property descriptions are truncated in the Status
bar. To display the entire description, while the property is highlighted click the Show
Property Description button in the menu. A popup window displays the full text of the
property's description. Click outside the window to close it.

Oracle WebLogic Portal Portlet Development Guide

Portlet Properties

Portlet Properties in the Portal Properties View

The properties described in this section are contained within the . portal file and are editable
using the Workshop for WebLogic workbench. The values you enter here override the
corresponding value in the . portal file, if a value exists there.

To display the portlet properties that display in the Properties view for a portal, follow these steps:
Note: These steps assume that you have an existing portal that contains portlets.

1. Double-click the .portal file of the portal for which you want to view portlet instance
properties.

A WYSIWYG view of the portal appears in the editor.
2. Click a portlet to highlight it.

An orange border appears around the outside edge of the portlet.

The Properties view displays the properties of the portlet instance; Figure 5-22 shows an
example.

Figure 5-22 Portlet Instance Properties in the Portal Properties View

s consumerPortal.portal ™ @ Administration Portal ﬂ browser.portlet =A== Properties 54 Annokations S &
Mew Portal Desktop Property ‘ Value -
= Portlet Instance Properties !
) Default Minimized False
Header

Instance Label browser_1_1 {

. Orientation default -

Book: Main Page Book: Partlet URT fportlet_type_examplesfbros
] Page 1 Theme o Theme 1
Title: browser portlet L4
Page: Page 1 4
BEA: Racing! browser partlet j

4

L

«

| Footer 4
- - . o .y

Table 5-6 describes these properties and their values.

Oracle WebLogic Portal Portlet Development Guide 5-43

Building Portlets

5-44

Tahle 5-6 Portlet Instance Properties in the Properties View

Property

Value

Default Minimized

Optional. Select true for the portlet to be minimized when it is rendered. The
default value is false. Change the value for this property only if you want to
override the default value provided by the _portlet file.

Instance Label

Required. A single portlet, represented by a . portlet file, can be used multiple
times in a portal. Each use of that portlet is a portlet instance, and each portlet
instance must have a unique 1D, or Instance Label. A default value is entered
automatically, but you can change the value. Instance labels help WebLogic Portal
manage the runtime state of multiple instances of portlets independently of each
other on the server. WebLogic Portal also uses instance labels during URL
rewriting and scoping of various HTML controls such as names of forms, and 1D
attributes.

Orientation

Optional. Hint to the skeleton to position the portlet title bar on the top, bottom,
left, or right side of the portlet. You must build your own skeleton to support this
property. The allowable values are: default, top=0, left,=1 right=2, bottom=3.

Enter a value for this property only if you want to override the orientation
specified in the _portlet file. Selecting default removes the orientation
attribute from the portlet, book, and/or portlet instance; use this value if you want
to revert to the framework default setting for this attribute.

Portlet URI

Required. The path (relative to the project) of the parent . portlet file. For
example, if the file is stored in Project\myportlets\my.portlet, the
Portlet URI is /myportlets/my.portlet.

Theme

Optional. Select a theme to give the portlet a different Look & Feel than the rest
of the desktop.

Title

Enter a title if you want to override the default title specified in the .portlet
file. The title is used in the portlet title bar.

Portlet Properties in the Portlet Properties View

The properties described in this section are contained within the . portlet file and are editable
using the Workshop for WebLogic workbench. The values you enter here override the
corresponding value in the .portlet file, if a value exists there.

Oracle WebLogic Portal Portlet Development Guide

Portlet Properties

When you select the outer border of a portlet instance in the editor, a related set of properties
appears in the Properties view. The displayed properties vary according to the type of portlet that
you are viewing. Figure 5-1 shows a portion of the Properties view for a portlet.

Figure 5-1 Properties View Example Showing Portlet Properties

Er R BT
Property | Value -~
= Backable Properties
Partlet Backing File
= Content
Content Path Iportletsfisp_portlet. jsp

Error Page Path

= General Portlet Properties
Async Content Rendering none
Cache Expires (seconds) &0
Cache Render Dependencies true
Client Classifications

Default Minimized false
Definition Label jsp_portlet_1
Description
Event Handlers 1 event handler
Farkable false
N fork_Pre-Ren_c!x‘e; . .;alge PO

Table 5-7 describes these properties and their values.

Table 5-7 Properties in the Portlet Properties View

Property Value

Backable Properties

Portlet Backing File Optional. If you want to use a class for preprocessing (for example,
authentication) prior to rendering the portlet, enter the fully qualified name of
that class. That class should implement the interface
com.bea.netuix.servlets.controls.content.backing.JspBacking or extend
com.bea.netuix.servlets.controls.content.backing.AbstractispBacking. From the
data field you can choose to browse to a class or open the currently displayed
class.

Content

Oracle WebLogic Portal Portlet Development Guide 5-45

Building Portlets

Tahle 5-7 Properties in the Portlet Properties View (Continued)

Property Value

Content Path Required. The path (relative to the project) to the file/class to be used for the
portlet's content. From the data field you can choose to browse to a file (or class
for page flow portlets) or open the currently displayed file/class. For example, if
the content is stored in Project/myportlets/my. jsp, the Content URI is
/myportlets/my.jsp.

Error Page Path Optional. The path (relative to the project) to the JSP or HTML file to be used
for the portlet's error message if the main content cannot be rendered. For
example, if the error page is stored in Project/myportlets/error.jsp,
the Content URI is /myportlets/error. jsp.

General Portlet Properties

Async Content Allows you to specify whether to use asynchronous content for a given portlet

Rendering and the implementation to use. An editable dropdown menu provides the
selections none, ajax, iframe, and i frame_unwrapped. Portlet files that
do not contain the asyncContent attribute appear with the initial value none
displayed.

For more information, refer to “Asynchronous Portlet Content Rendering” on
page 7-13.

Note: The iframe_unwrapped value is used for interoperability with
WebCenter 10g ADF Faces portlets. You must use the
iframe_unwrapped value if you are consuming (through WSRP) a
WebCenter 10g ADF Faces portlet in a WebLogic Portal. Using this
value prevents potential rendering problems by wrapping the ADF
Faces portlet in an IFrame, while explicitly excluding WebLogic
Portal-specific markup from rendering within the IFrame. For more
information on WSRP interoperability between WebCenter and
WebLogic Portal, see the Federated Portals Guide.

Tip: You can also enable asynchronous rendering for an entire portal
desktop by setting a portal property in either Workshop for WebLogic
or the WebLogic Portal Administration Console. For more information
on asynchronous desktop rendering, see the WebLogic Portal
Development Guide.

Cache Expires Optional. When the Render Cacheable property is set to true, enter the
(seconds) number of seconds after which the portlet cache expires.

5-46 Oracle WebLogic Portal Portlet Development Guide

../federation/index.html
../portals/index.html
../portals/index.html

Portlet Properties

Tahle 5-7 Properties in the Portlet Properties View (Continued)

Property

Value

Cache Render
Dependencies

This instance-scoped boolean property appears in the Properties view whenever
a window portlet or proxy portlet is loaded, allowing render dependencies to be
cached. See also “Portlet Dependencies” on page 5-77.

The value defaults to true if the attribute is not already included in the
-portlet file. The value is read-only for proxy portlets and editable for all
other portlet types. For proxy portlets, the value is initialized from th e producer
whenever a proxy portlet is generated from the portlet wizard.

This property does not affect posts targeted to the portlet.

Client Classifications

Optional. Select the multichannel devices on which the portlet can be viewed.
The list of displayed devices is obtained from the file
Project_Path\WEB-INF\client-classifications.xml. You must
create this file to map clients to classifications in your portal web project.
For more information about this task, refer to the Portal Development
Guide.

In the Manage Portlet Classifications dialog:
1. Select whether you want to enable or disable classifications for the portlet.

2. Move the client classifications you want to enable or disable from the
Available Classifications to the Selected Classifications.

3. Click OK.

When you disable classifications for a portlet, the portlet is automatically
enabled for the classifications that you did not select for disabling.

Default Minimized

Required. Select true if you want the portlet to be minimized when it is
rendered. The default value is false.

Definition Label

Required. Each portlet must have a unique value within the web project. For Java
portlets, you type the desired value when creating the portlet; for the remaining
portlet types, a value is generated automatically when you create the portlet.
Definition labels can be used to navigate to portlets. Also, components must
have Definition Labels for entitlements and delegated administration.

As a best practice, you should edit this value in Workshop for WebLogic to
create a meaningful value. This is especially true when offering portlets
remotely, as it makes it easier to identify them from the producer list.

Note: When you create a portlet instance on a desktop using the WebLogic
Portal Administration Console, the generated definition label is not
editable.

Oracle WebLogic Portal Portlet Development Guide 5-47

../portals/index.html
../portals/index.html

Building Portlets

5-48

Tahle 5-7 Properties in the Portlet Properties View (Continued)

Property

Value

Description

Optional. A short text description of the portlet. The description is displayed in
the Administration Console and Visitor Tools areas, and is sent from a WSRP
producer where applicable.

Event Handlers

Optional. Use this value to configure interportlet communication using portlet
events. The defaultisNo event handlers. To select or add an event handler,
click Browse in the Properties view. You an also click the Event Handlers link
in the portlet editor. Both of these methods bring up the Portlet Event Handlers
dialog box.

Forkable

For details on this property, refer to “Portlet Forking” on page 7-3.

Fork Pre-Render

For details on this property, refer to “Portlet Forking” on page 7-3.

Fork
Pre-RenderTimeout
(seconds)

For details on this property, refer to “Portlet Forking” on page 7-3.

Fork Render

For details on this property, refer to “Portlet Forking” on page 7-3.

Fork Render Timeout
(seconds)

For details on this property, refer to “Portlet Forking” on page 7-3.

Orientation

Optional. Hint to the skeleton to position the portlet title bar on the top, bottom,
left, or right side of the portlet. You must build your own skeleton to support this
property in the .portal file. Following are the numbers used in the .portal file for
each orientation value: top=0, left=1, right=2, bottom=3.

You can override the orientation in each instance of the portlet (in the Properties
view).

Packed

Optional. Rendering hint that can be used by the skeleton to render the portlet in
either expanded or packed mode. You must build your own skeleton to support
this property.

When packed="false” (the default), the portlet takes up as much horizontal space
as it can.

When packed="true,” the portlet takes up as little horizontal space as possible.

From an HTML perspective, this property is most useful when the window is
rendered using a table. When packed="false,” the table's relative width would
likely be set to “100%.” When packed="true,” the table width would likely
remain unset.

Oracle WebLogic Portal Portlet Development Guide

Portlet Properties

Tahle 5-7 Properties in the Portlet Properties View (Continued)

Property

Value

Render Cacheable

Optional. To enhance performance, set to true to cache the portlet. For
example, portlets that call web services perform frequent, expensive processing.
Caching web service portlets greatly enhances performance.

Do not set this to true if you are doing your own caching.
For more information, refer to “Portlet Caching” on page 7-2.

Required User
Properties Mode

Optional. Possible values are none, all, or specified. If the value is
speci fied, then you must enter a list of property names in the field Required
User Properties Names field.

Required User
Properties Names

Optional. Use this field if you entered a value of specified in the Required
User Properties Mode field; enter a comma-delimited list of property names.

Title

Required. Enter the title for the portlet's title bar. You can override this title in
each instance of the portlet (in the portal editor, as described in “Portlet
Properties in the Portal Properties View” on page 5-43).

Page Flow Content

Listen To

(Deprecated) The comma-separated list of instance labels of the portlets whose
actions should also be called in the selected page flow portlet. This functionality
has been replaced with the more complete interportlet communication
mechanism.

Page Flow Action

Optional. The initial action to be executed in a page flow. If not specified, the
begin action is used.

Page Flow Refresh
Action

Optional. The action to be executed in the page flow when the page is refreshed
but the portlet is not targeted. This is equivalent to using portlet event handlers
configured on the onRefresh portal event to invoke the page flow action.

Oracle WebLogic Portal Portlet Development Guide 5-49

Building Portlets

5-50

Tahle 5-7 Properties in the Portlet Properties View (Continued)

Property

Value

Request Attribute
Persistence

Optional. Possible values are none, session, and transient-session.
This attribute controls attribute persistence for Page Flow, JSF, and Struts
portlets. The default is session, where request attributes populated by an
action are persisted into a collection class that is placed into a session attribute
so that the portal framework can safely include the forwarded JSP on subsequent
requests without re-running the action. Using the value session can cause
session memory consumption and replication that would not otherwise occur in
a standalone Page Flow, JSF, or Struts application. The value
transient-session places a serializable wrapper class around a HashMap
into the session. The value none performs no persistence operation.

JPF or Struts portlets that have the transient-session value applied
generally have the same behavior as existing portlets; however, in failover cases,
the persisted request attributes disappear on the failed-over-to server. In the
failover case, you must write forward JSPs to handle this contingency gracefully
by, at a minimum, not expecting any particular request attribute to be populated;
ideally you should include the ability to either repopulate automatically or
present the user with a link to re-run the last action to repopulate the request
attributes. For non-failover cases, request attributes are persisted, providing a
performance advantage for non-postback portlets identical to default session
persistence portlets.

Portlets that have the none value applied will never have request attributes
available on refresh requests; you must write forward JSPs to assume that they
will not be available. You can use this option to completely remove the
framework-induced session memory loading for persisted request attributes.

Java Server Faces (JSF) Content

Faces Events

(Optional) Lets you add name/action pairs to a JSF portlet. The name field is
simply an alias. Event handlers (and the Event Handler dialog) can simply
reference this name. The action is a reference to a JSF view ID, such as
myfaces/foo . face. For more information on adding event handlers, see
“Portlet Events” on page 9-2.

Request Attribute
Persistence

Refer to the description in the Page Flow Content section.

Portlet Properties

Oracle WebLogic Portal Portlet Development Guide

Portlet Properties

Tahle 5-7 Properties in the Portlet Properties View (Continued)

Property

Value

Content Presentation
Class

A CSS class that overrides any default CSS class used by the component’s
skeleton.

For proper rendering, the class must exist in a cascading style sheet (CSS) file in
the Look and Feel’s selected skin, and the skin’s skin.xml file must reference the
CSS file.

Sample: If you enter “my-custom-class”, the rendered HTML from the default
skeletons looks like this:

<div class="my-custom-class">

The properties you enter are added to the component's parent <div> tag. This

property also applies to books and pages. For more information, refer to the
Portal Development Guide.

Content Presentation
Style

Optional. The primary uses are to allow content scrolling and content
height-setting.

For scrolling, enter the following attributes:

« overflow:auto — Enables vertical and horizontal scrolling
For setting height, enter the following attribute:

e height:200px

where 200px is any valid HTML height setting.

You can also set other style properties for the content as you would using the
Presentation Style property. The properties are applied to the component's
content/child <div> tag.

Offer as Remote

Optional. Defines whether the portlet is accessible using the WSRP producer.
The default is true, which allows the portlet to be accessed. For more
information about entitling remote portlets, refer to the Federated Portals Guide.

JSP Content

Content Backing File

Optional. If you want to use a backing file for content prior to rendering the
portlet, enter the fully qualified name of the appropriate class. That class should
implement the interface
com.bea.netuix.servlets.controls.content.backing.JspBacking or extend
com.bea.netuix.servlets.controls.content.backing.AbstractJspBacking.

Oracle WebLogic Portal Portlet Development Guide 5-51

../federation/index.html
../portals/index.html

Building Portlets

5-52

Tahle 5-7 Properties in the Portlet Properties View (Continued)

Property

Value

Thread Safe

Optional. Performance setting for books, pages, and portlets that use backing
files.

When Thread Safe is set to true, an instance of a backing file is shared among
all books, pages, or portlets that request the backing file. You must synchronize
any instance variables that are not thread safe.

When Thread Safe is set to false, a new instance of a backing file is created
each time the backing file is requested by a different book, page, or portlet.

Portlet Title Bar

Can Delete

Optional. If set to true the portlet can be deleted from a page.

Can Float

Optional. If set to true the portlet can be floated into a separate window. For
instructions on creating a floatable Java portlet, which requires editing the
weblogic-portlet.xml file, in “Customizing Java Portlets Using
weblogic-portlet.xml” on page 5-17.

Can Maximize

Optional. If set to true the portlet can be maximized.

Can Minimize

Optional. If set to true the portlet can be minimized.

Edit Path Optional. The path (relative to the project) to the portlet's edit page.
Help Path Optional. The path (relative to the project) to the portlet's help file.
Icon Path Optional. The path (relative to the project) to the graphic to be used in the portlet

title bar. You must create a skeleton to support this property.

Mode Properties (available when you add a mode to a portlet)

Content Path

Required. The path (relative to the project) to the JSP, HTML, or . java file to
be used for portlet's mode content, such as the edit page. For example, if the
content is stored in Project/myportlets/editPortlet.jsp, the Content URI is
/myportlets/editPortlet.jsp.

Although a Browse button appears for this property, if you want to point to a
page flow you must manually enter the path to the . java.

Oracle WebLogic Portal Portlet Development Guide

Portlet Properties

Tahle 5-7 Properties in the Portlet Properties View (Continued)

Property Value

Error Path Optional. The path (relative to the project) to the JSP, HTML, or . java file to
be used for the error message if the portlet's mode page cannot be rendered. For
example, if the error page is stored in Project/myportlets/errorPortletEdit.jsp, the
Content URI is /myportlets/errorPortletEdit.jsp.

Although a Browse button appears for this property, if you want to point to a
page flow you must manually enter the path to the . java.

Portlet Backing File Optional. If you want to use a class for preprocessing (for example,
authentication) prior to rendering the portlet's mode page (such as the edit page),
enter the fully qualified name of that class. That class should implement the
interface com.bea.netuix.servlets.controls.content.backing.JspBacking or
extend com.bea.netuix.servlets.controls.content.backing.AbstractispBacking.

Visible Optional. Makes the mode icon (such as the edit icon) in the title bar or menu
invisible (False) or visible (true). Set Visible to fal se when, for example,
you want to provide an edit URL in a desktop header.

Mode Toggle Button Properties

Name Optional. Displayed when you select an individual mode. An optional name for
the mode, such as Edit.

Presentation Properties

Presentation Class This property is described in the Portal Development Guide.
Presentation ID This property is described in the Portal Development Guide.
Presentation Style This property is described in the Portal Development Guide.
Properties Optional. A comma-delimited list of name-value pairs to associate with the

object. This information can be used by skeletons to affect rendering.

Skeleton URI This property is described in the Portal Development Guide.

Proxy Portlet Properties

Connection Optional. The number of milliseconds after which this portlet will time out when
Establishment establishing an initial connection with its producer.
Timeout

Oracle WebLogic Portal Portlet Development Guide 5-53

../portals/index.html
../portals/index.html
../portals/index.html
../portals/index.html

Building Portlets

5-54

Tahle 5-7 Properties in the Portlet Properties View (Continued)

Property

Value

Connection Timeout

Optional. The number of milliseconds after which this portlet will time out when
communicating with its producer, after the physical connection has been
established. If not specified here, the default value contained in the file

WEB- INF/wsrp-producer-registry.xml is used.

Group 1D

Optional. This value is assigned by the producer and is not editable. Portlets with
the same Group ID from the same producer can share sessions. The Group 1D
value is meaningful only to the producer and not manipulated by WebLogic
Portal.

Invoke Render
Dependencies

This boolean property allows the consumer to obtain render dependencies from
the producer during the pre-render life cycle of a proxy portlet.

When a portlet on a producer has a lafDependenciesUri value, the
producer exposes the invokeRenderDependencies boolean in the portlet
description. For more information on this attribute, refer to “Portlet
Dependencies” on page 5-77.

Note: Provide an absolute path for the lafDependenciesUri attribute,

rather than a relative path.

The value defaults to false if the attribute is not included in the .portlet
file. The value is read-only, and is initialized from the producer whenever a
proxy portlet is generated from the portlet wizard.

Portlet Handle

Required. The producer’s unique identifier for the portlet that this proxy
references. The value is not editable.

Producer Handle

Required. The producer’s unique identifier.

Templates Stored in
Session

Indicates whether the producer stores URL templates in the user's session on the
producer side. This boolean is meaningful only when URL Template Processing
boolean is set to true.

URL Template
Processing

Indicates whether the producer uses URL templates to create URLS. If true, the
consumer supplies URL templates. If false, the producer rewrites URLS using
special rewrite tokens.

Oracle WebLogic Portal Portlet Development Guide

Portlet Properties

Tahle 5-7 Properties in the Portlet Properties View (Continued)

Property

Value

User Context Stored
In Session

Required. The purpose of this value is to cut down on network traffic by sending
the user's context (including the profile) only once per session. For WebLogic
Portal producers it will always be true. For third party producers it can be true
or false, depending on the response from GetServiceDescription. If it is
false, the entire user context will be sent on every getMarkup and
performBlockinglnteraction request. If true it will be sent only once per
producer session.

This boolean value defaults to false if the attribute is not included in the
-portletfile.

The value is read-only, and is initialized from the producer whenever a proxy
portlet is generated from the portlet wizard.

Struts Content

Listen To

(Deprecated) Allows this portlet to invoke an action when another portlet
invokes the same action. This functionality has been replaced with the more
complete interportlet communication mechanism. For more information on
interportlet communication, refer to Chapter 9, “Local Interportlet
Communication.”

Request Attribute
Persistence

Refer to the description in the Page Flow Content section.

Struts Action

The begin action that this struts portlet should invoke on the first request to the
portlet.

Struts Module

The struts module that is associated with this struts portlet.

A “struts module” is a means of scoping a particular set of struts actions to a
group called a module, which generally maps to a single subdirectory of web
resources and a separate struts-config.xml file.

Struts Refresh Action Optional. The action to be performed in the struts module when the page

is refreshed but the portlet itself is not targeted.

Uri Content (Browser portlet properties)

Content Url

Required. The content control takes a URI that is expected to be a URL
for a standalone application or web page, and embeds the URL as portlet
content.

Oracle WebLogic Portal Portlet Development Guide 5-595

Building Portlets

Portlet Preferences

5-56

Portlet preferences provide the primary means of associating application data with portlets. This
feature is key to personalizing portlets based on their usage. This section describes portlet
preferences in detail.

After you create a portlet, you can instantiate it several times. Because you can create several
instances of a portlet, it is natural to expect each instance to behave differently yet use the same
code and user interface. For instance, consider a typical portlet to display a Stock Portfolio. Given
a list of stock symbols, this portlet retrieves quotes from a stock quote web service periodically,
and displays the quotes in the portlet window. By letting each user change the list of stock
symbols and a time interval to reload the quote data, you can let each user customize this portlet.

The portlet needs to be able to store the list of stock symbols and the retrieval interval persistently,
and update these values whenever a user customizes these values. In particular, the following data
must be persistently managed:

e Default Values — Your portlet may specify a default list of stock symbols and a reasonable
retrieval interval. These values are applicable to all usages of the portlet no matter who the
user is. The user could even be anonymous.

e Customized Values — Your portlet also needs to be able to store these values when a user
updates the values for a given portlet instance. Note that your portlet should also scope this
data to an instance, such that other instances of this portlet are not affected by this
customization.

Technically, a portlet preference is a named piece of string data. For example, a Stock Portfolio
portlet could have the following portlet preferences:

e A preference with name “stockSymbols” and value “ORCL, MSFT”

e Another preference with name “refreshinterval” and value “600” (in seconds).

You can associate several such preferences with a portlet. WebLogic Portal provides the
following means to manage portlet preferences:

e Specify portlet preferences during the development phase

When you are building a portlet using the Workshop for WebLogic workbench, you can
specify the names and default values of preferences for each portlet. All portlet instances
derived from this portlet will, by default, assume the values specified during development.

e L et administrators modify portlet preferences

Oracle WebLogic Portal Portlet Development Guide

Portlet Preferences

WebLogic Portal allows portal administrators to modify preferences for a given portlet
instance.This task occurs during the staging phase and uses the WebLogic Portal
Administration Console.

e Let portlets access and modify preferences at request time

At request time, your portlets can programmatically access and update preferences using a
javax.portlet.PortletPreferences object. You can create an edit page for your
portlet to let users update preferences, or you can automatically update preferences as part
of your normal portlet application flow.

This section contains the following topics:
e Specifying Portlet Preferences
e Using the Preferences API to Access or Modify Preferences
e Portlet Preferences SPI

e Best Practices in Using Portlet Preferences

Specifying Portlet Preferences

The steps to associate preferences with a portlet depend on the type of portlet you are building.
If you are using the Java Portlet API, described in “Getting and Setting Preferences for Java
Portlets Using the Preferences API” on page 5-63, the steps follow those specified in the Java
Portlet Specification. For other kinds of portlets, such as those using Java Page Flows, Struts, or
JSPs, you can use the Workshop for WebLogic workbench to add preferences to a portlet.

You can also allow the administrator to create new preferences using the Administration Console.
However, because the portlet developer is more likely to be aware of how portlet preferences are
used by the portlet, it is generally better to create portlet preferences during the development
phase.

Specifying Preferences for Java Portlets in the Deployment Descriptor

For portlets using Java Portlet API, you can specify preferences in the portlet deployment
descriptor according to the specification. For all portlets in a web project, the deployment
descriptor is portlet.xml, found in the WEB- INF directory of the web project. Listing 5-3
provides an example.

Oracle WebLogic Portal Portlet Development Guide 5-57

Building Portlets

Listing 5-3 Specifying Portlet Preferences in portlet.xml with a Single Value

<portlet>
<description>This portlet displays a stock portfolio.</description>
<portlet-name>portfolioPortlet</portlet-name>
<portlet-class>portlets.stock.PortfolioPortlet </portlet-class>
<supports>
<mime-type>text/html</mime-type>
<portlet-mode>edit</portlet-mode>
</supports>
<portlet-info>
<title>My Portfolio</title>
</portlet-info>
<portlet-preferences>
<preference>
<name>stockSymbols</name>
<value>0ORCL, MSFT</value>
</preference>
<preference>
<name>refreshlnterval</name>
<value>600</value>
</preference>
</portlet-preferences>
</portlet>

This snippet deploys the portfolio portlet with two preferences: a preference with name
stockSymbols and value ORCL, MSFT, and another preference refreshinterval with value 600.

Instead of specifying a single value for the stockSymbols preference, you can declare each
symbol as a separate value as shown in Listing 5-4 below, with the value elements shown in bold.

Listing 5-4 Specifying Portlet Preferences with Values Specified Separately

<portlet>
<description>
This portlet displays a stock portfolio.

5-58 Oracle WebLogic Portal Portlet Development Guide

Portlet Preferences

</description>
<portlet-name>portfolioPortlet</portlet-name>
<portlet-class>portlets.stock.PortfolioPortlet </portlet-class>
<supports>
<mime-type>text/html</mime-type>
<portlet-mode>edit</portlet-mode>
</supports>
<portlet-info>
<title>My Portfolio</title>
</portlet-info>
<portlet-preferences>
<preference>
<name>stockSymbols</name>
<value>0ORCL</value>
<value>MSFT</value>
</preference>
<preference>
<name>refreshlnterval</name>
<value>600</value>
</preference>
/portlet-preferences>
</portlet>

If you prefer that portlets should not be allowed to programmatically update any given
preference, you can mark the preference as read-only. Listing 5-5 shows an example of
preventing a portlet from changing the refreshinterval.

Listing 5-5 Specifying a Read-0Only Portlet Preference Value

<portlet>
<description>
This portlet displays a stock portfolio.
</description>
<portlet-name>portfolioPortlet
<portlet-class>portlets.stock.PortfolioPortlet
<supports>

Oracle WebLogic Portal Portlet Development Guide

5-59

Building Portlets

<mime-type>text/html</mime-type>
<portlet-mode>edit</portlet-mode>
</supports>
<portlet-info>
<title>My Portfolio</title>
</portlet-info>
<portlet-preferences>
<preference>
<name>stockSymbols</name>
<value>0ORCL</value>
<value>MSFT</value>
/preference>
<preference>
<name>refreshlnterval</name>
<value>600</value>
<read-only>true</read-only>
</preference>
</portlet-preferences>
</portlet>

Note that by marking a preference read-only, you are preventing the portlet from changing the
current value only at request time. Portal administrators can always change the value(s) of a
preference using the Administration Console.

Specifying Preferences for Other Types of Portlets using Workshop for
WebLogic

If you are building other kinds of portlets (such as those using Java Page Flows, Struts, or simple
JSPs), you can add preferences using Workshop for WebLogic.

To add a preference, follow these steps:
1. Click to select the portlet for which you want to add a preference.

2. Inthe Outline view for the portlet, right-click Preferences and in the context menu click Add
Preference. Figure 5-23 shows an example of the preferences context menu.

5-60 Oracle WebLogic Portal Portlet Development Guide

Portlet Preferences

Figure 5-23 Portlet Preferences Context Menu

== Outline X alle |l m =
== window Partlet
] Titlebar
Modes
Content 1
- o = y
] idPreference , I
Refre References p |
Run 4s ¥ I
Debug As b
Team 3 r
Compare With — »
Replace With 3 r,
|Upgrade 3 ’j
Y i ST F

A new preference is added to the tree hierarchy with the name New Preference Preference.
3. Click the new item to display its properties in the Properties view.

4. Edit the values in the Properties view. Figure 5-24 shows an example of the fields in the
Properties view.

Figure 5-24 Portlet Preferences Properties View

= Properties &2 Annotations 1
Property | Walue »
= Mew Preference Portlet Preference 1
Maodifiable krue P
Multi Yalued true ;
Preference Description Stack symbol pref
Preference Mame StockSymbols £
Freference Yalue EEAS, MSFT)
P — - - e RN J__f

Table 5-8 describes the attributes for portlet preferences as shown in the Properties view.

Oracle WebLogic Portal Portlet Development Guide 5-61

Building Portlets

5-62

Tahle 5-8 Portlet Preference Properties
Field Value

Modifiable Indicates whether the preference is read-only or can be modified by
the user. The default is true.

Multi Valued Indicates whether the preference can have multiple values. The
default is true.

To specify multiple values for a preference, create multiple
preferences with the same name.

Description A brief description of the preference.
Name Name of the preference.
Value Each preference can have one or more values. Each value is of type

java.lang.String.

Using the Preferences APl to Access or Modify Preferences

At request time, portlet preferences for a given portlet are represented as instances of the
javax.portlet.PortletPreferences interface. This interface is part of the Java Portlet API.
This interface specifies methods to access and modify portlet preferences.

Getting Preferences Using the Preferences API
Table 5-9 describes methods that allow a portlet to access its preferences.

Tahle 5-9 Methods that Allow a Portlet to Access its Preference Values

Method Purpose

String getvalue(String name, Use this method to get the first value of a preference.
String default)

String[] getvalues(String name, se this method to get all the values of a preference.
String[] defaults)

boolean isReadOnly(String name) se this method to determine whether a given
preference is read-only.

Oracle WebLogic Portal Portlet Development Guide

Portlet Preferences

Tahle 5-9 Methods that Allow a Portlet to Access its Preference Values (Continued)

Method Purpose

Enumeration getNames() Use this method to get an enumeration of the names of
all preferences.

Map getMap() Use this method to get a map of preferences. The keys
in this map are the names of all the preferences, and
the values are the same as those returned by
getValues(String name, String[] defaults)

Setting Preferences Using the Preferences API
Table 5-10 describes methods that allow a portlet to change preference values.

Table 5-10 Methods that Allow a Portlet to Change Preference Values

Method Purpose

void setvalue(String name, Use this method to set the value of a preference
String value)

void setvalues(String name, Use this method to set several values for a preference
String[] values)

void store() Use this method to commit the changes made to preferences
for a portlet.

void reset(String name) Use this method to reset the value of a preference to its
default, or remove the preference if there is no default

After modifying preferences by calling setValue(), setValues() and reset() methods, you must call
store() explicitly to make the changes permanent; otherwise, changes will not be made
permanent.

Getting and Setting Preferences for Java Portlets Using the Preferences API

For portlets written using the Java Portlet API, you can obtain an instance of
javax.portlet.PortletPreferences object from the incoming portlet request —
javax.portlet.RenderRequest within the processAction() method, or
jJavax.portlet.ActionRequest within the render() method.

Oracle WebLogic Portal Portlet Development Guide 5-63

Building Portlets

In Listing 5-6, the portlet displays a form to edit the current values of portlet preferences in a JSP
page included from the doEdit() method of the portfolio portlet.

Listing 5-6 Portlet Displays a Form to Edit Preferences

<%@ taglib uri="http://java.sun.com/portlet"” prefix="portlet"%>
<%@ page import="javax.portlet_PortletPreferences" %>

<portlet:defineObjects/>

<%
PortletPreferences prefs = renderRequest.getPreferences();
String refreshinterval = prefs.getValue("'refreshinterval’™, "600™);
String symbols = prefs.getValue("'stockSymbols'™, "ORCL, MSFT');

%>

<form method="POST" action=""">
<table>
<tr>
<td>Symbols</td><td><input name="'symbols"
value=""<%=symbols>"/></td>

</tr>

<tr>
<td>Refresh Interval</td><td><input name="refreshinterval
value="<%=refreshinterval>"/></td>

</tr>

<tr>
<td></td>
<td><input type="submit" value="Submit"/></td>

</tr>

</table>
</form>

The portlet updates the preferences in its processAction() method, as shown in Listing 5-7.

5-64 Oracle WebLogic Portal Portlet Development Guide

Portlet Preferences

Listing 5-7 Portlet Updates the Preferences in the processAction() Method

public class PortfolioPortlet extends GenericPortlet

{
{

public void doEdit(RenderRequest renderRequest, RenderResponse
renderResponse)
throws I0Exception, PortletException

{

}

public void processAction(ActionRequest actionRequest, ActionResponse
actionResponse)
throws PortletException

{

String refreshinterval =
actionRequest.getParameter(“refreshlnterval™);
String symbols = actionRequest.getParameter (“stockSymbols™);

PortletPreferences prefs = actionRequest.getPreferences();
prefs._setValue(“refreshinterval”, refreshinterval);
prefs._setValue(“stockSymbols”, symbols);
try
{

prefs._store();
T
catch(SecurityException se) {
// Thrown when the user does not have enough privileges to store
// preferences. Make sure that the user logged into the portal.

}

catch(catch(10Exception ioe) {
// There is an error storing preferences

}

Oracle WebLogic Portal Portlet Development Guide 5-65

Building Portlets

5-66

During processAction(), this portlet uses the javax.portlet.ActionRequest object to
obtain preferences.

Getting and Setting Portlet Preferences Using the APl for Other Portlet Types

Portlet preferences can be accessed and updated from other kinds of portlets too. The main
difference is in the way your portlets obtain an instance of the
javax.portlet.PortletPreferences object.

e Before rendering, portlets can use
com.bea.netuix.servlets.controls.portlet.PortletBackingContext to obtain
portlet preferences; for example, in a page flow action, or in the handlePostbackData()
method of the backing file associated with the portlet.

e During the render phase portlets can use
com.bea.netuix.servlets.controls._portlet.PortletPresentationContext to
obtain portlet preferences; for example, in a JSP associated with a page flow.

Both these classes provide a method getPortletPreferences(HttpServletRequest req)
that takes javax.servlet._HttpServletRequest as an argument and return an object of type
Jjavax.portlet.PortletPreferences.

JSP Tags for Getting Portlet Preferences

WebLogic Portal provides a JSP tag library for setting up portlet preferences. Table 5-11
describes the applicable JSP tags.

Tahle 5-11 JSP Tags for Getting Portlet Preferences

Method Purpose
getPreference Use this tag to get the value of a portlet preference.
getPreferences Use this tag to get all the values of a portlet preference.

This tag can also used to write multiple values to the
output separated by a separator.

forEachPreference Use this tag to iterate through all the preferences of a
portlet. You can nest other tags (getPreference,
getPreferences, ifModifiable and Else) inside this tag.

Oracle WebLogic Portal Portlet Development Guide

..//javadoc/com/bea/netuix/servlets/controls/portlet/PortletPresentationContext.html#getPortletPreferences(javax.servlet.http.HttpServletRequest)

Portlet Preferences

Table 5-11 JSP Tags for Getting Portlet Preferences

Method Purpose

ifModifible Use this tag to include the body of this tag if the given
portlet preference is not read-only.

else Use this tag in conjunction with the ifModifiable tag to
include the body of this tag if the given portlet preference
is read-only

For more information on the Java classes associated with these tags, refer to the Javadoc.

Portlet Preferences SPI

In WebLogic Portal, the framework includes a default implementation that manages portlet
preferences in the built-in PF_PORTLET _PREFERENCE and
PF_PORTLET_PREFERENCE_VALUE database tables. If desired, you can replace this
implementation with your own.

You can use the Portlet Preferences SP1 to allow portal applications to manage portlet preferences
outside framework-managed database tables. For example, you can store preferences along with
other application data in another back-end system or a different set of database tables.

When propagating a portal, the preferences SPI participates in the propagation process. When
you exporting data for the propagation, the SPI is called to obtain the preferences, and when you
are importing data, the SPI is called to store the preferences.

The following sections describe how to use the Portlet Preferences SPI.

Implement the SPI

You specify the SPI using the interface com.bea. portlet.prefs. IPreferenceAppStore. An
implementation of this class must be deployed as a EJB jar file.

Listing 5-8 provides an example.

Listing 5-8 Implementing the SPI Using the Interface IPreferencesAppStore

public interface IPreferenceAppStore extends EJBObject

{
/**

Oracle WebLogic Portal Portlet Development Guide 5-67

../javadoc/index.html

Building Portlets

5-68

Returns preferences for a portlet entity with the given uniqueld.

The returned java.util_.Map contains
com._bea.netuix.application.prefs.Preference
objects keyed against their names.</p>

@param uniqueld unique 1D
@return preferences

% % ok X % o X

*/
public Map getPreferences(PortletPreferencesld uniqueld) throws
RemoteException, PreferenceAppStoreException;

/**

* Writes the preferences to the underlying persistence.

*

* This method should be implemented to be atomic. That is, the
* implemenation should guarantee that either all preference
* values are persisted or none at all.

*

* The java.util_Map argument should contain

* com.bea.netuix.application.prefs.Preference

* objects keyed against their names.

*

* @param uniqueld unique ID

*

@param preferences preferences

*/

public void storePreferences(PortletPreferencesld uniqueld,

Map preferences) throws RemoteException, PreferenceAppStoreException;

/**

* Clear all preferences for the given unique ID from the

* underlying persistence store.

*

* @param uniquelds unique IDs

*/

public void removePreferences(PortletPreferencesld[] uniquelds) throws
RemoteException, PreferenceAppStoreException;

Using the SPI

To cause the framework to use a new SPI in place of the default SPI, you must update the EJB
named PreferencePersistenceManager in the ejb-jar.xml file within netuix.jar. The

Oracle WebLogic Portal Portlet Development Guide

Portlet Preferences

value BEA_netuix.DefaultStore must be changed to the name of the SP1 EJB as specified in
its deployment descriptor (ejb-jar.xml). The value
com.bea.portlet.prefs.provider.Defaul tStoreHome must be changed to the home
interface of the SPI implementation.

Caution: To edit the ejb-jar.xml file you need to copy the J2EE library resources into your
project. Keep in mind that with future updates to the WebLogic Portal product, you
might have to perform manual steps in order to incorporate product changes that
affect those resources.

The code segment in Listing 5-9 shows the default entries, which you must change to use the SPI.

Listing 5-9 Example Code Showing Default Entries that Must be Changed

<session>
<ejb-name>PreferencePersistenceManager</ejb-name>
<home>com.bea.portlet.prefs.PreferencePersistenceManagerHome</home>
<remote>com.bea.portlet.prefs._PreferencePersistenceManager</remote>
<ejb-class>com.bea.portlet.prefs.PreferencePersistenceManagerimpl
</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
<env-entry>
<env-entry-name>prefs-spi-jndi-name</env-entry-name>
<env-entry-type>java. lang.String</env-entry-type>
<env-entry-value>BEA_netuix.DefaultStore</env-entry-value>
</env-entry>
<env-entry>
<env-entry-name>prefs-spi-home-class-name</env-entry-name>
<env-entry-type>java. lang.String</env-entry-type>
<env-entry-value>com._bea.portlet_prefs._provider.Defaul tStoreHome
</env-entry-value>
</env-entry>
<!-- Snip -->
</session>

Oracle WebLogic Portal Portlet Development Guide 5-69

Building Portlets

5-70

Best Practices in Using Portlet Preferences

Desktop Testing of Portlet Preferences

In order to view and test the preferences that you have created, you must use a desktop view from
the WebL ogic Portal Administration Console rather than Workshop for WebLogic’s Open on
Server view.

Portlets accessed from . portal files cannot store preferences. If you update a preference using
a .portal file, your portlet encounters a java. lang . UnsupportedOperationException
error.

Users Must be Authenticated

You must provide a means for users to log in before they can update preferences; users who are
updating portlet preferences must first be authenticated. If an anonymous user attempts to update
a portlet, a java. lang.SecurityException error occurs.

Note that portlets can always get portlet preferences whether or not the user is anonymous or
whether the portlet is accessed via a . portal file.

Do Not Store Arbitrary Data as Preferences

It is tempting to store arbitrary application data as portlet preferences. For example, if you have
a portlet that allows users to upload and store documents on the server, it might seem appropriate
to store those documents as portlet preferences. This is not a good practice. The purpose of portlet
preferences is to associate some properties for a portlet instance without having to be aware of
any implementation-specific portlet instance IDs. These properties allow customization of the
portlet’s behavior. The underlying implementation of portlet preferences is not designed for
storing arbitrary application data.

The following steps outline an alternative implementation that can meet the needs of the portlet:

Perform setup steps:

1. Add a preference to your portlet. This preference acts as the primary key to your portlet’s
application data. Assign a default value for this preference.

2. Create tables in your database to store application data with the value of the preference as the
primary key.

Oracle WebLogic Portal Portlet Development Guide

Backing Files

Set up preferences in your portlet:

1. When you want to associate application data with the current portlet instance, check the value
of the preference. If the value is the default, generate a new value (for example, using a
sequence number generator), and set this as the value of the preference, and store the
preference.

2. If the value of the preference is not the default, you do not need to generate a new value.

3. Store your application data using the value of the preference as the primary key.
This procedure ensures that your application data is always scoped to portlet instances.

Do Not Use Instance IDs Instead of Preferences

The portal framework maintains instance identity using internally generated instance 1Ds.
Portlets can access their instance IDs using getlnstanceld() methods on
com.bea.netuix.servlets.controls._portlet.PortletPresentationContext and
com.bea.netuix.servlets.controls.portlet.PortletBackingContext.

Storing data directly in the database using portlet instance IDs does not work, for the following
reasons:

e The portal framework generates instance IDs, and portlets have no control over when and
how those instance IDs are generated.

e Instance IDs might change at any time without the portlet’s knowledge. For example, as
the user or administrator customizes a desktop using Visitor Tools or the Administration
Console, the framework can create new instances or change the instance ID of a portlet. If
the instance 1D changes, your portlet cannot load the data from your database; the primary
key has changed without your portlet being aware of it.

Backing Files

The most common means of influencing portlet behavior within the control life cycle is to use a
portlet backing file. A portlet backing file is a Java class that can contain methods corresponding
to portal control life cycle stages, such as init() and preRender(). A portlet’s backing context, an
abstraction of the portlet control itself, can be used to query and alter the portlet’s characteristics.
For example, in the init() life cycle method, a request parameter might be evaluated, and
depending on the parameter’s value, the portlet backing context can be used to specify whether
the portlet is visible or hidden. For more information about backing contexts, refer to the Portal
Development Guide.

Oracle WebLogic Portal Portlet Development Guide 5-1

../portals/index.html
../portals/index.html

Building Portlets

5-12

Backing files can be attached to portals either by using Workshop for WebLogic or coding them
directly into a - portlet file.

Backing files are simple Java classes that implement the
com.bea.netuix.servlets.controls.content.backing.JspBacking interface or extend
the com.bea.netuix.servlets.controls.content._backing.AbstractJspBacking
interface abstract class. The methods on the interface mimic the controls life cycle methods
(refer to “How Backing Files are Executed” on page 5-72) and are invoked at the same time the
controls life cycle methods are invoked.

The following portal controls support backing files:
e Desktops

e Books

e Pages

e Portlets

e JspContent controls

The interportlet communication example in Chapter 9, “Local Interportlet Communication” uses
backing files.

This section contains the following topics:
e How Backing Files are Executed
e Thread Safety and Backing Files
e Backing File Guidelines

e Adding a Backing File Using Workshop for WebLogic

How Backing Files are Executed

All backing files are executed before and after the JSP is called. Inits life cycle, each backing file
calls these methods:

e initQ

e handlePostBackData()
e preRender()

e dispose()

Oracle WebLogic Portal Portlet Development Guide

Backing Files

Figure 5-25 illustrates the life cycle of a backing file.

Figure 5-25 Backing File Life Cycle

Init()
v

loadState()

o handlePostBackData()

if nfpb=true

UlControls o ° raiseChangeEvents()
Look-and-Feel PEE—

"

° o o preRender()

saveState()

dispose()

On every request, the following sequence occurs:

Note: In the following steps, the methods are called unless items on inactive pages have been
“optimized away” if tree optimization is enabled. For example, if tree optimization is
enabled and items on an inactive page are not included on the resulting partial control
tree, then the method is not called.

1. All init() methods are called on all backing files in depth-first order (that is, in the order
they appear in the tree). This method is called whether or not the control (the portal, page,
book, or desktop) is on an active page.

2. If the _nfpb parameter is set to true, all handlePostbackData() methods are called.

— If the _nfpb parameter is set to true in the request parameter of any called
handlePostbackData() methods, raiseChangeEvents() is called. This method
causes events to fire, which is necessary if the backing file tries to make any state or
mode changes.

Tip: You can use the method AbstractJspBacking. isRequestTargeted(request) to
determine if a request is for a particular portlet.

— If the backing file’s handlePostbackData() method returns true, the
raiseChangeEvents() method is called.

Oracle WebLogic Portal Portlet Development Guide 5-73

Building Portlets

5-14

3. All preRender () methods are called for all portal framework controls on an active (visible)
page.

4. The JSPs are called and rendered on the active page.

5. The dispose() method is called on each backing file.

Thread Safety and Backing Files

A new instance of a backing file is created per request, so you do not have to worry about thread
safety issues. New Java VMs are specially tuned for short-lived objects, so this is not the
performance issue it was in the past. Also, JspContent controls support a special type of backing
file that allows you to specify whether or not the backing file is thread safe. If this value is set to
true, only one instance of the backing file is created and shared across all requests.

Scoping and Backing Files

The difference between having a backing file as part of <netuix: portlet backingfile
=some_value> or part of <netuix: jspContent backingfile=some_value> is related to
scoping.

For example, if you have the backing file on the portlet itself, you can actually stop the portlet
from rendering. If the backing file is at the jspContent level, the portlet portion of the control tree
has already run; you use this implementation to run processes that are specifically for the JSP in
the portlet.

Backing File Guidelines

Follow these guidelines when creating a backing file:

e Ensure netuix_servlet._jar is included in the in the project classpath; otherwise,
compilation errors occur.

e When implementing the init() method, avoid any heavy processing.

Listing 5-10 shows an example backing file.In this example, the AbstractJspBacking class is
extended to provide the backing functionality required by the portlet. The example uses a session
attribute because of the volatility of the HTTPRequest object; Oracle recommends that you pass
data between life cycle methods using the session rather than the request object.

Oracle WebLogic Portal Portlet Development Guide

Backing Files

Listing 5-10 Backing File Example

package backing;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.http.HttpSession;

import com.bea.netuix.events_Event;

import com.bea.netuix.events.CustomEvent;

import
com.bea.netuix.servlets.controls.content.backing.AbstractJspBacking;

public class ListenCustomerName extends AbstractJspBacking
{
public void listenCustomerName(HttpServletRequest request,
HttpServletResponse response, Event event)
{
CustomEvent customEvent = (CustomEvent) event;
String message = (String) customEvent.getPayload();
HttpSession mySession = request.getSession();
mySession.setAttribute(*'customerName', message);

Adding a Backing File Using Workshop for WebLogic

You can add a backing file to a portlet either from within Workshop for WebLogic or by coding
it directly into the file to which you are attaching it. Simply specify the backing file in the
Backing File field of the Properties view, as shown in Figure 5-26. You need to specify the
backing directory and, following a dot-separator, only the backing file name. Do not include the
backing file extension; for example enter this:

backing.ListenCustomerName

Not this:

backing.ListenCustomerName. java

For the preceding example, if you include the file extension, the application interprets it as the

file name—nbecause the file path is specified by a dot-separator—and looks for a non-existent file
called java in a non-existent directory called ListenCustomerName.

Oracle WebLogic Portal Portlet Development Guide 5-75

Building Portlets

Figure 5-26 Adding a Backing File Using Workshop for WebLogic

Annotations E }:D B B ¥ =0
Property | Walue ~

—| Backable Properties
Paortlet Backing File backing. ListenCustomertame] | o=+
= Conkent
_Congentgath I J'Dnrtlefs,l'lspjjortlet.]‘s"p - — »

Adding the Backing File Directly to the .portlet File

To add the backing file by coding it into a . portlet file, use the backingFi e parameter within
the <netuix: jspContent> element, as shown in Listing 5-11.

Listing 5-11 Adding a Backing File to a .portlet File

<netuix:content>
<netuix:jspContent
backingFile="portletToPortlet.pageFlowSelectionDisplayOnly.menu.
backing.MenuBacking"
contentUri="/portletToPortlet/pageFlowSelectionDisplayOnly/menu/
menu. jsp*'/>
</netuix:content>

Portlet Appearance and Features

5-76

Some aspects of portlet appearance are controlled by default at the portal level, such as colors,

layouts, and themes. Appearance/rendering characteristics and portlet-specific features include
the use of title bars and associated states (minimize, maximize, float, and delete) and modes that
affect portlet content (edit mode, help mode, and custom modes).

The following sections describe how to work with portlet-specific appearance/content features
and modes:

e Portlet Dependencies
o Portlet Modes

e Creating Custom Modes

Oracle WebLogic Portal Portlet Development Guide

Portlet Appearance and Features

e Portlet States
e Portlet Title Bar Icons

e Portlet Height and Scrolling

Portlet Dependencies

In arendered HTML page, the proper place to include most types of resources, such as script files
or style sheet references, is in the header of the document. Portlets sometimes need to specify
resources that are required for rendering the portlet in the page. In the past, methods for making
required elements available on the page included placing elements into the skeleton, which is not
recommended because this creates a coupling between the skeleton and the portlet; or putting
references directly in the portlet content, leading to the possibility of creating invalid HTML.

The problem was exacerbated in a federated (WSRP) environment because remote portlets are
potentially included in several places and there was no way for one of these portlets to indicate
that it relies on, for example, a piece of a CSS that resides in an external file.

WebLogic Portal now provides an explicit way to handle this requirement, using the portlet
dependencies feature.

The concepts related to skin and skeleton resource dependencies are more formally known as
render dependencies and script dependencies. Typical examples of such dependencies are CSS
files and JavaScript files.

Both skins and skeletons can now specify such dependencies as well as associated search paths
to be used for resolving these dependencies. Additionally, mechanisms exist to eliminate
redundancy and to provide a reliable ordering for dependencies related to skins, skeletons, and
theme skin and skeletons. These same capabilities are now available for portlets as well as
portals, so that a portlet can specify necessary dependencies in a standards-compliant way; you
identify these dependencies using appropriate elements located in the head section of the
rendered page. The other advantages of the Look & Feel dependencies framework are also
realized at a portlet level, such as reliable ordering and redundancy elimination.

This section contains the following topics:
o Identifying Portlet Dependencies
e Creating and Editing a Dependency File
e Example Dependency Files

e Considerations and Limitations

Oracle WebLogic Portal Portlet Development Guide 5-77

Building Portlets

5-18

e Scoping JavaScript Variables and CSS Styles

e Rewriting Resource URLS

Identifying Portlet Dependencies

The configuration of portlet dependencies shares the same mechanisms as the standard Look &
Feel—you use an XML configuration document conforming to a standard Look & Feel schema.
This XML document is referenced from a . portlet file using an attribute on the portlet element.

As with a Look & Feel’s render dependencies, you can resolve a portlet’s render dependencies
utilizing a set of application search paths. Additionally, the search paths of the Look & Feel skin,
or any appropriate Theme skin, are used before the portlet’s own search paths to resolve a
portlet’s render dependencies.

You can specify a portlet’s dependencies configuration file in the Workshop for WebLogic
Properties view by entering the value in LAF Dependencies Path field. Alternatively, you can add
the attribute 1afDependenciesuUri to the portlet element in a . portlet file, as shown in the
following example:

<netuix:portlet definitionLabel="myPortlet" title="My Portlet"”
lafDependenciesUri="/portlets/example/myPortlet._dependencies">

By convention, you should adhere to the following guidelines when setting up a portlet’s
dependencies configuration file:

o Give the file the same name as the .portlet file.
e Assign the file a .dependencies extension.

e Locate the file at the same level in the file hierarchy as the .portlet file.

Although the guidelines listed here are not required, deviating from them can lead to unexpected
behavior. For more information, refer to “Considerations and Limitations” on page 5-82.

The portlet dependencies configuration file uses standard types from the standard Look & Feel
schemas and looks similar to the example shown in Listing 5-12.

Listing 5-12 Portlet Dependencies Configuration File Example

<?xml version="1.0" encoding="UTF-8"?>

<p:window
xmlns:p="http://www._bea.com/servers/portal/framework/laf/1.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

Oracle WebLogic Portal Portlet Development Guide

Portlet Appearance and Features

Xxsi:schemaLocation="http://www.bea.com/servers/portal/framework/l1af/1.0.0
laf-window-1 0 O.xsd ">
<p:render-dependencies>
<p:html>
<p:links>
<p:search-path>
<p:path-element>.</p:path-element>
</p:search-path>
<p:link rel="stylesheet" type="text/css" href="my.css"/>
</p:links>
</p:html>
</p:render-dependencies>
</p:window>

The configuration file shown in Listing 5-12 causes a CSS file to be included in the rendered page
output (as a link element in the HTML head section). First, the search occurs for the CSS file
relative to the Look & Feel or Theme skin search paths for the links element. If the CSS file is
not found, then the search path in the configuration file is used. Relative search paths use the
directory of the configuration file as a base.

The default behavior is to look first in the Look & Feel or Theme—-specified search paths. This
behavior allows a Look & Feel/Theme the ability to properly skin portlet resources. However,
portlet-level resources should not be placed in the Look & Feel/Theme directories. If a situation
arises when you do not want to use this behavior, you can disable it by specifying a value of
false for the use-skin-paths attribute on the render-dependencies element.

Creating and Editing a Dependency File

You can use Workshop for WebL ogic to create a valid dependency file that you can then
complete using Workshop for WebLogic’s XML editor.

Tip: For example dependency files, see Listing 5-12, Listing 5-13, and Listing 5-14.

The simplest way to create a dependency file is to select File > New > Other > Markup Files >
Render Dependencies. The .dependencies file must reside in a WebLogic Portal framework
project, within the web content folder (typically named WebContent).

You can also create a dependency file as follows:

Oracle WebLogic Portal Portlet Development Guide 5-719

Building Portlets

1. Select File > New > Other.

In the New dialog, open the XML folder and select XML. The New XML File wizard opens.
Choose Create XML From XML Schema File and click Next.

Enter a name for the XML file in the XML File Name dialog and click Next.

o & w0 N

In the Select XML Schema File dialog, choose Select XML Catalog Entry and in the Key
column select 1af-window-1_0_0.xsd as the schema. Click Next.

S

In the Select Root Element dialog, choose the root element window.

~

Optionally check the boxes that add optional attributes/elements to your new XML file.

®©

Click Finish.

Rename the generated file’s extension from .xml to .dependencies.

You can use the Workshop for WebLogic XML editor to add elements and attributes to the
dependency file. Right-click on an element and use the menu to select child elements and add
attributes. As shown in Figure 5-27, valid choices based on the schema file are automatically
populated in the menu.

Figure 5-27 Editing a Dependencies File

72 xml wersion="1,0" encoding="UTF-&" L
= (8] piwindow !
wmlns:p http:,l’,l’www.bea.c0m,l’servers,l’portal,fframewor_.
wmlns:xsi hikkp: f v w3, 0rg/ 2001 fXMLSchema-instance
xsitschemalocation http:,l’,l’www.bea.com,l’servers,l’portal,fframewoﬂ
= [&] p:render-dependencies }
8] p:html
Remave -
&dd DTD Infarmation. .. 1
Edit Mamespaces, .. {
@ s p.
Add Before 3 & p:meta p
Add After . 1
[&] p:scripts -
(8] pistyles L
- Comment (f
727 Add Processing Instruction P
Jp——— » ol - A . » » » " - — ’/J

Tip: The standard Eclipse hover-window help is available for XML schema elements in the
Source view of the XML editor. Simply hover the mouse pointer over the element and a

5-80 Oracle WebLogic Portal Portlet Development Guide

Portlet Appearance and Features

help pop-up appears. Also, in the Source view, you can click in an element and press F2
to display the help pop-up.

Example Dependency Files
This section includes the following examples:

e Including JavaScript in a Render Dependencies File
e Including Meta and Style Elements in a Render Dependencies File
Including JavaScript in a Render Dependencies File

Listing 5-13 illustrates how to include both an external JavaScript file as well as an embedded
script.

Listing 5-13 Including JavaScript

<p:window
xmlns:p="http://www.bea.com/servers/portal/framework/laf/1.0.0"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
Xsi:schemalLocation="http://www.bea.com/servers/portal/framework/1af/1.0.0
laf-window-1_0 O.xsd *>
<p:render-dependencies>
<p:html>
<p:scripts>
<p:search-path>
<p:path-element>.</p:path-element>
</p:search-path>
<p:script type="text/javascript® src="my.js"/>
<p:script type="text/javascript">
alert("hello world®);
</p:script>
</p:scripts>
</p:html>
</p:render-dependencies>
</p:window>

Oracle WebLogic Portal Portlet Development Guide 5-81

Building Portlets

Including Meta and Style Elements in a Render Dependencies File

Listing 5-14 shows the use of both the metas and styles elements. The metas element lets you
specify HTML meta tags, and the styles element lets you embed HTML style tags.

Listing 5-14 Use of Meta and Styling Elements

<p:window
xmlns:p="http://www.bea.com/servers/portal/framework/laf/1.0.0"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
Xsi:schemalLocation="http://www.bea.com/servers/portal/framework/1af/1.0.0
laf-window-1_0 0O.xsd ">
<p:render-dependencies>
<p:html>
<p:metas>
<p:meta name="keywords®" content="pirate, ninja“"/>
</p:metas>
<p:styles>
<p:style type="text/css">
div.myClass {
background-color: red;
}
</p:style>
</p:styles>
</p:html>
</p:render-dependencies>
</p:window>

Considerations and Limitations

At this time, Workshop for WebL ogic does not provide editing capabilities for portlet render
dependencies configuration files; you can use the included Eclipse-based XML file editor for this
purpose.

Oracle recommends that you not share a single .dependencies file across several portlets.
Although WebLogic Portal does not prevent this usage, sharing a single file might lead to
confusion when coordinating updates to the file later.

5-82 Oracle WebLogic Portal Portlet Development Guide

Portlet Appearance and Features

Scoping JavaScript Variables and CSS Styles

Whenever you place multiple instances of a portlet on a page, you can encounter scoping
problems with JavaScript variables and CSS styles. For example, if a portlet includes inlined
JavaScript and you place two instances of that portlet on a page, it is possible that changing a
JavaScript variable in one portlet will affect the other portlet.

To ensure that JavaScript and CSS styles are scoped to a specific portlet instance, add the token
wlp_rewrite_ to the front of the variable or style class name. When the portlet is rendered, this
token is replaced by the portlet instance label, which is unique for each portlet instance.

For example, to ensure portlet instance-level scoping of a JavaScript variable called stockQuote
that is defined in a - js file that is referenced from a .dependencies file, you need to append
wlp_rewrite_ to the front of the variable name:

var wlp_rewrite_stockQuote

To ensure portlet instance-level scoping of a CSS class name called portlet_bg that is defined
in a _css file that is referenced from a .dependencies file, you need to append wlp_rewrite_
to the front of the class name. For example:

-wlp_rewrite_portlet_bg { background_color:white; }

In both of these cases, the wip_rewrite_ token is replaced by the portlet’s instance label, which is
a unique identifier.

Note: The scoping mechanism described in this section only works for .css and . js files that
are referenced with the content-uri dependency file attribute. Files linked with the src
attribute or the Link tag will not be rewritten.

Rewriting Resource URLs

WebLogic Portal also has the ability to rewrite URLS contained in the content of files referenced
in a <script> or <style> section of a .dependencies file. The URLSs are rewritten based on
the standard Look and Feel URL Templating mechanism using the window-resource
url-template-ref, as described in the section Optional Look And Feel URL Templates in the
WebLogic Portal Development Guide.

For example, if your .dependencies file specifies:

<p:styles>

<p:search-path>

Oracle WebLogic Portal Portlet Development Guide 5-83

../portals/develop_portals.html#wp1024430

Building Portlets

<p:path-element>styles</p:path-element>
</p:search-path>
<p:style content-uri="my-style.css" type="text/css"/>

</p:styles>

and the contents of my-style.css look like this:

-my_portlet_bg
{

background-image: url("wlp_rewrite?/images/picture.gif/wlp_rewrite);

}

then when the portlet is rendered, the value of Zimages/picture.gif will be templatized based
on the standard Look and Feel URL Templating mechanism.

In a non-WSRP case, this value can take one of two forms:

e If awindow-resource url-template-ref is found, the value returned will be
templatized accordingly. Using the example from the section Optional Look And Feel URL
Templates in the WebLogic Portal Development Guide, this value would be
http://my.domain.com/resources/laf/images/picture.gif.

e If no window-resource url-template-ref is found, the value returned in this case will
be http://host:port/context/images/picture.gif.

When the portlet that specifies the .dependencies file is being accessed remotely through a
WLP remote (WSRP) portlet, then this rewritten URL also takes one of two forms:

e Ifawindow-resource url-template-ref is found on the producer, the value returned
will be templatized accordingly. Using the example from the section Optional Look And
Feel URL Templates in the WebLogic Portal Development Guide, this value would be
http://my.domain.com/resources/laf/images/picture.gif. In this case, the
resulting URL may or may not be rewritten to be proxied via the ResourceProxyServlet; it
is up to the URL template developer to ensure that resources are serviced appropriately.

e If no window-resource url-template-ref is found on the producer, the value returned
in this case will be templatized based on the resource url-template-ref (see the section
URL Templates and Web Services for Remote Portlets (WSRP) in the WebLogic Portal
Development Guide. In this way, the resource URL will be wrapped in a
ProxyResourceServlet URL, so that it can be served by the producer from the consumer.

5-84 Oracle WebLogic Portal Portlet Development Guide

../portals/develop_portals.html#wp1024430
../portals/develop_portals.html#wp1024430
../portals/develop_portals.html#wp1024430
../portals/develop_portals.html#wp1024430
../portals/develop_portals.html#wp1014563

Portlet Appearance and Features

Note: The rewriting mechanism described in this section only works for files that are referenced
with the content-uri dependency file attribute. Files linked with the src attribute or
the link tag will not be rewritten.

Portlet Modes

All portlets created with WebLogic Portal support the use of modes. Modes allow you to affect
the end user’s ability to edit the portlet or display Help for the portlet. You add icon buttons to a
portlet’s title bar to indicate the availability of a mode.

The following pre-defined modes exist for WebLogic Portal:

e Edit — Lets you specify a custom file that lets users modify the portlet's content when they
click the Edit button.

e Help — Lets you specify a custom file that shows users help content for the portlet when
they click the Help button.

You can also create your own custom portlet modes using WebLogic Portal.

Buttons for the selected modes appear in the portlet’s title bar. Figure 5-28 shows an example of
the default buttons for the portlet modes when displayed in the editor; Figure 5-29 shows the
appearance of the mode icons in a running portlet.

Figure 5-28 Portlet Mode and State Buttons in Editor

Minimize Maximize Delete Float Help Edit

Simple JSP Fortlet

,_?j Event Handlers: Mo event handlers

Portlet Modes

Portlet Preferences

Oracle WebLogic Portal Portlet Development Guide 5-85

Building Portlets

Figure 5-29 Portlet Mode and State Buttons in a Running Portlet

Minimize Maximize Delete Float Edit Help

18P Portlet Title Bari-Hd EIE]3]

Simple JSP Portlet

When you use the Portlet Wizard to create a portlet, mode and state settings are available on the
Portlet Details dialog. These settings can also be edited in the portlet’s Properties view: The
following sections describe possible methods of performing these tasks.

Adding or Removing a Mode for an Existing Portlet
To add or remove the Help or Edit mode from the title bar, follow these steps:

1. Display the portlet for which you want to add or remove a mode.

2. Right-click the title bar of the displayed portlet to display the context menu. Figure 5-30
shows an example of the title bar context menu.

Figure 5-30 Available Portlet Modes - Title Bar Context Menu

Simple J5P Portlet ¥ Minimizable g b
v Maximizable w
;Q_f Event Handlers: No event handler " Floatable ;
v Deletable :
-
Available Modes P 1
Add Custom Mode f
Validate L
Team b (
c e With]
Portlet Modes empare T ¢
Replace With » 3
Portlet Preferences References » <
F
L » s - F 2

3. Click Available Modes.

Checkmarks on the submenu indicate the available modes for this portlet, which were
determined when you created it. Figure 5-31 shows an example of the submenu.

5-86 Oracle WebLogic Portal Portlet Development Guide

Portlet Appearance and Features

Figure 5-31 Portlet Mode - Available Modes Submenu

Simple 5P Partlet " Minimizable ®]
v Maximizable

40k Event Handlers: Mo event handler. _# Floatable
v Deletable

o e

Add Custom Mode v Edit
Validate
Team
Compare With

Replace With
Portlet Preferences)
References

- - pr = e —

Partlet Modes

\""L-"‘-'\""\. & "‘-\‘ e, T

B v v w

4. Click the mode for which you want to change the availability status. For example, in

Figure 5-31, the Help mode is checked (available); when you click Help, the Help button
disappears from the title bar.

5. Select File > Save to save your changes.

Properties Related to Portlet Modes

You can view and edit the mode's property details in the Properties view. For example, you can
edit the Portlet Backing File property if you want to perform preprocessing before rendering the
portlet's mode page (such as the edit page).

To display the mode properties for the portlet, click the expand/contract toggle button [#] in the
Portlet Mode area of the portlet. Edit mode properties and Help mode properties display in the
Properties view.

For descriptions of the mode properties, refer to Table 5-7.

Creating Custom Modes

A custom mode is a portlet mode that you implement. Like with the help and edit modes, a custom
mode is activated with a button that appears in the portlet’s title bar. To implement a custom
mode, you need to supply a display part, typically a JSP, and a backing file. This section includes
an example that explains how to create a simple custom mode that lets a user add or remove the
Maximize button from a portlet. Once you understand the basic principles involved in writing a
custom mode, you can create a custom mode to perform the specific tasks you want.

Oracle WebLogic Portal Portlet Development Guide 5-87

Building Portlets

5-88

Figure 5-32 shows the example portlet and the portlet’s custom mode view. When the user clicks
the custom mode button in the example portlet on the left, the portlet display changes to the
custom mode view on the right. In this example, the custom mode offers a way for the user to add
or remove the portlet’s Maximize button.

Figure 5-32 Selecting a Custom Mode

Example Portlet Custom Mode

Custom Mode Test *—+

Click Toggle Off to
remove the
Maximize button
from the portlet.
Click Toggle On to

Custom Mode restore it.
Button

L Y W e

l

1. Create a JSP portlet in which to embed the custom mode. For information on JSP portlets, see
“JSP and HTML Portlets” on page 5-11. For this example, any JSP portlet will suffice.

2. Create a JSP page to display the custom mode view when a user clicks the custom mode
button. For example, Listing 5-15 shows a JSP for a custom mode that lets a user add or
remove the Maximize button from a portlet. The code to execute this action is in a backing
file, which is discussed next. In this example, the JSP is called togglebutton_jsp.

Listing 5-15 Sample Custom Mode JSP

<%@ page import="‘com.bea.portlet.PostbackURL"%>
<%
PostbackURL url = PostbackURL.createPostbackURL(request, response);
%>
<TABLE CELLSPACING="10" I1D="toggleButtonsTable">
<TH>Using a Button and Backing File</TH>
<TR>

Oracle WebLogic Portal Portlet Development Guide

Portlet Appearance and Features

<TD>
Click Toggle Off to remove the Maximize button from the portlet.

Click Toggle On to restore it.
</TD>
</TR>
<TR>
<TD>
<FORM method="post" name="Toggle" action="<%=url.toString(Q%>"">
<INPUT ID="toggle off" TYPE="SUBMIT" NAME='toggle off" VALUE="Toggle
off">
<INPUT ID="do_nothing" TYPE="'SUBMIT" NAME="do_nothing" VALUE="Toggle
on"'>
</FORM>
</TD>
</TR>

</TABLE>

Create a backing file for the custom mode. Listing 5-16 implements the JspBacking interface
and implements the preRender() method of that interface. In this example, the preRender()
method removes the Maximize button from the portlet in response to a request. Refer to
Javadoc for details on the API used in this example.

Listing 5-16 Sample Backing File

package modes;

import javax.servlet._http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import com.bea.netuix.servlets.controls.content.backing.JspBacking;

import com.bea.netuix.servlets.controls.portlet.backing.PortletBackingContext;
import com.bea.netuix.servlets.controls.window.WindowCapabilities;

import com.bea.pl3n.util.debug.Debug;

public class MyMode implements JspBacking {

public void dispose() {
}

Oracle WebLogic Portal Portlet Development Guide 5-89

../javadoc/index.html

Building Portlets

public boolean handlePostbackData(HttpServletRequest argO,
HttpServletResponse argl) {
return true;

}

public void init(HttpServletRequest arg0, HttpServletResponse argl) {
b

public boolean preRender(HttpServletRequest request, HttpServletResponse
response) {
PortletBackingContext pbc =
PortletBackingContext.getPortletBackingContext(request);
if (request.getParameter('toggle_off'") != null)
{
try
{
pbc.setCapabilityVisible(WindowCapabilities MAXIMIZED.getName(),
false);
¥

catch (NullPointerException npe)

{
//
}
}

return true;

4. Add a new custom mode to the portlet by dragging the New Custom Mode icon from the
Design Palette to the portlet, as shown in Figure 5-33. You will be prompted to enter a name
for the mode. You can enter a name now, or accept the default and change the name later.

5-90 Oracle WebLogic Portal Portlet Development Guide

Portlet Appearance and Features

Figure 5-33 Adding a New Custom Mode
Custom Mode Test g@

{0f Event Handlers: No event handlers

[, palette &2 4

g h
Portlet Modes H
Custom Mode -
Portlet Preferences 3_ /
F

N

F.

F

4

» » e P

5. Open the Properties view for the custom mode. To do this, click in the Custom Mode region
of the portlet in the portlet editor, as shown in Figure 5-34. The properties for the custom
mode appear in the Properties view.

Figure 5-34 Displaying Mode Properties
Custom Mode Test I;I @

{0f Event Handlers: No event handlers

Click here to Partlet Modes
dlsplay mode ———— Custom Mode
properties Portlet Preferences

6. Inthe Properties view, enter the path of the custom mode JSP in the Content Path field. This
is the JSP that is displayed when the mode is activated. You can find the Content Path field in
the Mode Properties section of the Properties view, as shown in Figure 5-35.

7. Inthe Properties view, enter the name of the backing file class, including the full package
name. You can find the Portlet Backing File field in the Mode Properties section of the
Properties view, as shown in Figure 5-35.

Oracle WebLogic Portal Portlet Development Guide 5-91

Building Portlets

Figure 5-35 Specifying a Content File and a Backing File

=] Properties £3 Annokations

Y
Property Value :
(= Maode Properties @ Custom Mode 4 .
Content Path ftoggleButton jsp —=———————— JSP file
Error Path lerror.jsp ¢))
Portlet Backing File modes.MyMode —%————— Bac kin g File
Visible true

“\'.\

[=) Presentation Properties
Presentation Class
Presentation ID

- j.resanta_tionstﬁ T, R

ol e

Tip: The Properties view lets you set many other custom mode properties, such as an
image for the custom mode button, a rollover image, button text, alternate text, and
others. Refer to Table 5-12 at the end of this section for information on each of the
custom mode properties.

8. Test the custom mode by placing the example portlet in a portal and running it on the server.
Select the portlet’s custom mode button, as shown previously in Figure 5-32, to display the
custom mode view. Click Toggle Off to remove the Maximize button, as shown in
Figure 5-36.

Figure 5-36 Testing the Example

I--- I

Custom Mode Test

Maximize button

Click Toggle Off to removed

remove the
Maximize button
from the portlet.
Click Toggle On to
restore it.

i PR L A T P

Table 5-12 briefly describes each of the custom mode properties:

5-92 Oracle WebLogic Portal Portlet Development Guide

Portlet Appearance and Features

Table 5-12 Custom Mode Properties

Property

Value

Mode Properties

Content Path

Required. The path (relative to the project) to the file/class to be
used for the custom mode portlet's content. From the data field
you can choose to browse to a file (or class for page flow portlets)
or open the currently displayed file/class. For example, if the
content is stored in Project/myportlets/my. jsp, the
Content URI is /myportlets/my. jsp.

Error Path

Optional. The path (relative to the project) to the JSP, HTML, or
page flow file to be used for the error message if the portlet’s
mode page cannot be rendered. For example, if the error page is
in project/myportlets/errorPortletEdit. jsp, the
Content URI is /myportlets/errorPortletEdit. jsp.

Portlet Backing File

Optional. If you want to use a class for preprocessing (for
example, authentication) prior to rendering the portlet, enter the
fully qualified name of that class. That class should implement
the JspBacking interface or extend AbstractJspBacking. From
the data field you can choose to browse to a class or open the
currently displayed class.

Visible

Optional. Makes the mode icon in the title bar or menu invisible
(False) or visible (true). Set Visible to fal se when, for
example, you want to provide an custom mode URL in a desktop
header.

Presentation Properties

Presentation Class

This property is described in the Portal Development Guide.

Presentation ID

This property is described in the Portal Development Guide.

Presentation Style

This property is described in the Portal Development Guide.

Properties Optional. A comma-delimited list of name-value pairs to
associate with the object. This information can be used by
skeletons to affect rendering.

Skeleton URI This property is described in the Portal Development Guide.

Oracle WebLogic Portal Portlet Development Guide

5-93

../portals/index.html
../portals/index.html
../portals/index.html
../portals/index.html

Building Portlets

Table 5-12 Custom Mode Properties

Property

Value

Toggle Button Properties

Activate Alternate Text

Popup text that appears when the mouse pointer hovers over the
custom mode button.

Activate Image

An image for the button that activates the custom mode. Place the
image in the images directory of the skin that your portal uses.

Activate Rollover Image URI

Provides a rollover image for the custom mode button. Place the
image in the images directory of the skin that your portal uses.

Active

Not generally used, but available for use by custom skeletons.

Alternate Text

Not generally used, but available for use by custom skeletons.

Deactivate Alternate Text

Popup text that appears when the mouse pointer hovers over the
custom mode button.

Deactivate Image URI

An image for the button that deactivates the custom mode. Place
the image in the images directory of the skin that your portal
uses.

Deactivate Rollover Image Ul

Provides a rollover image for the button that deactivates the
custom mode. Place the image in the images directory of the skin
that your portal uses.

Image

Not generally used, but available for use by custom skeletons.

Name

The name of the custom mode. If specified, the name appears in
the Portlet editor view, Outline view, and Properties view. If no
name is supplied, a default name is used.

Rollover Image

Not generally used, but available for use by custom skeletons.

Portlet States

States determine the end user’s ability to affect the rendering of a portlet. WebLogic Portal

supports these portlet states:

Normal - the typical rendered appearance of the portlet.

Oracle WebLogic Portal Portlet Development Guide

Portlet Appearance and Features

Minimize — Collapses the portlet, leaving only the title bar, when the user clicks the
Minimize button.

o Maximize — Makes the portlet take up the entire desktop area (not including the desktop
header and footer) when the user clicks the Maximize button.

Float — Displays the portlet in a popup window when the user clicks the Float button.

Delete — Removes the portlet from the desktop when the user clicks the Delete button.

When you use the Portlet Wizard to create a portlet, state and mode settings are available on the
Portlet Details dialog. These settings can also be edited in the portlet’s Properties view: The
following sections describe possible methods of performing these tasks.

Modifying Portlet States in Workshop for WebLogic

You can select which of the states you want to include with the portlet by following these steps:

1. Right-click the portlet title bar.

A context menu showing applicable states appears. Figure 5-37 shows an example of the
title bar context menu showing all states as available.

Figure 5-37 Portlet State - Title Bar Context Menu

Simple J5P Portet v Minimizable] ¥
v Maximizablz w
4k Event Handlers: Noevent handler # Flaatable ;
v Deletable :
-
Available Modes P 1
Add Custom Mode f
Validate L
Team b (
c e With]
Portlet Modes LR F
Replace With » 3
Portlet Preferences) F
References b r
- FT . » - » Jr

2. Click to select the state that you want to change.

Selecting a state adds it to the portlet, while deselecting the state removes it from the
portlet. For example, in Figure 5-37, all four states are selected, and appear in the title bar.

If you click to deselect Deletable, the Delete button [>< on the portlet disappears.

Oracle WebLogic Portal Portlet Development Guide 5-95

Building Portlets

5-96

3. Select File > Save to save your changes.

Minimizing or Maximizing a Portlet Programmatically

You can minimize or maximize a portlet either in the portlet file or in a portlet’s backing file. The
actual code is the same for both. Here is an example of maximizing a (Java page flow) portlet:

PortletBackingContext context =
PortletBackingContext.getPortletBackingContext(request);
context.setupStateChangeEvent(WindowCapabilities MAXIMIZED.getName());

You can put this code in an action method of the Java page flow or in the
handlePostbackData method of the backing file. When using the backing file, in order to get
the handlePostbackData method to be called, you must have *_nfpb=true"” in the URL.

These mechanisms do not work if asynchronous content rendering is enabled for the portlet.

Portlet Title Bar Icons

The default state and mode icons used in portlet title bars are stored in the
wlp-lookandfeel-web-lib J2EE Shared Library; you can view them in Merged Projects view in
the various subdirectories of framework/skins.

Portlet Height and Scrolling

All portlets created with WebLogic Portal support height and scrolling.
e Height affects the portlet’s displayed height on the portlet page.

e Scrolling affects whether or not the portlet is scrollable.
You can control the height of portlets and determine whether or not their contents scroll.

Portlet height and scrolling is controlled by the following CSS style attributes:
e overflow: auto — Enables vertical and horizontal scrolling

e height: 200px (where 200px is any valid HTML setting)
You can set these attributes on a portlet that is open in the workbench editor.

To set these properties, follow these steps:
1. Open a portlet in the workbench editor.

2. Click the outer border of the portlet to display the portlet properties in the Properties view.

Oracle WebLogic Portal Portlet Development Guide

Portlet Appearance and Features

3. In the Properties view, set one of the following properties:

— Presentation Style - Enter any of the previously listed attributes for this property. You
can use overflow and height. Separate the values with a semicolon.

— Presentation Class - Enter the name of a style sheet class that contains the height or
scrolling attributes that you want to use.

— Content Presentation Style - Enter any of the previously listed attributes for this
property. You can use overflow and height. Separate the values with a semicolon.

— Content Presentation Class - Enter the name of a style sheet class that contains the
height or scrolling attributes that you want to use.

Note:

The distinction between Presentation Style and Content Presentation Style, for

example, is the location where the styling is applied (portlet or content). The use of
one or the other depends on the specifics of what the specific styling is trying to

accomplish.

Figure 5-38 shows an example of a height property, set using Content Presentation Style.

Figure 5-38 Portlet Height and Scrolling Presentation Properties Example

=08

Browser Portlet

Portlet Modes

Portlet Preferences

e e b am

v

.

{0f Event Handlers: No event handlers

O

=

E Properties 2 =
Property Yalue ot
Fark Timeout ¥
LAF Dependencies Path *
Origntation default b
Packed false "

Render Cacheable false E
Title Browser Portlet o

= Portlet Properties {
onkent Presentation Class f

Content Presentation Style {height:200p:x} f
= Portlet Titlebar ()

Can Delete false

Can Float false k]

on ™ Can Mavikite, L aa 4PN e }

Based on the entries shown in Figure 5-38, the result looks similar to the example in

Figure 5-39.

Oracle WebLogic Portal Portlet Development Guide

5-97

Building Portlets

Figure 5-39 Portlet Height and Scrolling—Portlet Appearance Results

Browser Portlet = ==&
e
o
2hea
Think liguid.”

Solutions Products Services Support

Go _

< b4

If you use the Presentation Class property instead of the Presentation Style property, you
must have the corresponding style class defined in a CSS file.

For example, if you use the value .portlet-scroll in the Content Presentation Class field,
you must have the following style class definition already set up in your CSS file:

-portlet-scroll

{

overflow:auto;
height:250px;
b

4. Select File > Save to save your changes.

Making All Portlets Scroll

To provide portlet height and scrolling automatically, you can specify an additional rule for the
standard portlet content CSS class. For example, you can do one of the following:

e Add a <style> element to the skin.xml file for your Look & Feel containing this rule:

-bea-portal-window-content

{
height: 250px;
overflow: auto;

}

o Alternatively, you can place the above rule in a custom CSS file and create a <style> or
<link> element in the skin.xml file that references the custom CSS file.

5-98 Oracle WebLogic Portal Portlet Development Guide

Getting Request Data in Page Flow Portlets

For more information on portal skins, themes, and skeletons, refer to the Portal Development
Guide.

Getting Request Data in Page Flow Portlets

A page flow stores information in the requests. If you have a portal page with multiple page flow
portlets, you need a way for each page flow to individually store and retrieve that information.
For example, the request object for a page might have a variable car_type, with a value of x.
When the page flow runs, it obtains this value and uses it in some way. If you have another page
flow portlet with a car_type value of z, and if only one request exists for the whole page, the two
page flow portlets might interfere with each other. To prevent this problem, WebLogic Portal
essentially makes a copy of the outer (portal) request to make separate scoped requests, one for
each portlet. This gives each page flow portlet its own unique request to use to store its
information.

In some cases, you might want to use information that is stored at the outer request rather than
within the scoped request.

For example, if you use regular HTML tags within Netui form tags, you might have something
similar to this:

<netui:form action=""myAction">
<input type="'check box" name="test'/>
<netui:button value="myAction"></netui :button>
</netui:form>

Based on the tags used above, you might typically use a regular getParameter request like this:
<%request.getParameter(''test')%>
However, to get that HTML input value from the outer request, use the following:

<%@page
import="org.apache.beehive._netui.pageflow.scoping.ScopedServietUtils"%>
<%
HttpServletRequest outerRequest = ScopedServiletUtils.getOuterRequest
(request);
%>
test: <%=outerReq.getParameter('test')%>

Oracle WebLogic Portal Portlet Development Guide 5-99

../portals/index.html
../portals/index.html

Building Portlets

JSP Tags and Controls in Portlets

WebLogic Portal provides JSP tags that you can use within JSPs. You can view available JSP
tags in the Design Palette and then drag them into the Source View of your JSP, and use the
Properties view to edit elements of the code.

WebLogic Portal also provides custom Java controls that make it easy for you to quickly add
pre-built modules to your portal; custom Java controls exist for event management, Visitor Tools,
Community management, and so on. For example, most user management functionality can be
easily exposed with a User Manager Control on a page flow.

Note: The term control is also used to refer to the portal (netuix) framework controls, such as
desktop, book, page, and so on. These controls are referred to in the text as portal
framework controls.

Viewing Available JSP Tags

When you open a JSP in Workshop for WebLogic, you can use the Design Palette to display all
the JSP tags currently loaded and available; Figure 5-40 shows a portion of the display.

5-100 Oracle WebLogic Portal Portlet Development Guide

JSP Tags and Controls in Portlets

Figure 5-40 Design Palette Showing Available JSP Tags

4
0

<

MNM{JL{HH S vy

|Tag Libraries

£ Tag Libraries
If" ActiveMenus
DragDrop

[+ DynamicContent
1§ b

[HTHL

I 5P

15, 35TL Care

[, I5TL Formatting

If" naming

I} nested

If" MetL

I}" MetUI Data Binding

I}" MetUI Template

Portal Authentication and Entitlernent Authorization
[+]E= Portal Behavior Tracking
Portal Client-specific Content
If" Fortal Contkent

[E Portal Content Localizakion
Portal Content Placehalder

FIEE Powal ConeePenderinge s w0 g wm L

To use a tag, drag it into the editor, use the Source View to edit the code directly, and use the
Properties view to set properties, as shown in Figure 5-41:

Oracle WebLogic Portal Portlet Development Guide 5-101

Building Portlets

Figure 5-41 Dragging a JSP Tag into the Design View — Properties for Add User JSP Tag

EPmperties = Annokaktions = :=:l> ~ =0

Property | Walue
= Attributes

aknProvider

doPostProcess

fireEvent

login

password

result

saveAnonyYmous

Username

For information about the Java class associated with each JSP tag, refer to the Javadoc.

Viewing Available Controls

To view the available custom controls provided by WebLogic Portal when viewing a page flow:

1. Open an existing page flow (. java file) or create a new page flow.

For information about creating page flows using Workshop for WebL ogic, refer to the
Oracle Workshop for WebLogic User’s Guide.

2. If you are not already using the Page Flow Perspective, Workshop for WebLogic asks if you
want to switch to it. Do so.

3. Right-click in the source view for the Page Flow and select Insert > Control, as shown in
Figure 5-42.

Figure 5-42 Insert > Control Menu Selection

Paste Chrl-y
Source Alt+shift+5 ¥ i
| Refactor ple+shift+7 ¥ Web Methad _z
Local History 3 Callback, '.
Conkral Event Handler ... -
References g _j

'\‘\

Declarations » M
* NcoMrenoggin Bl e i EEE T el TR

The Select Control dialog box displays, as shown in Figure 5-43.

5-102 Oracle WebLogic Portal Portlet Development Guide

../javadoc/index.html
http://download.oracle.com/docs/cd/E12840_01/wlw/docs103/guide/index.html

Portlet State Persistence

Figure 5-43 Select Control Dialog

W Select Control

Available Contrals:

+-[*= Existing Project Controls
+-[= Existing Application Controls
== Mew System Control

(@] EXE Contral

@) IDBC Control

[M3 Cantrol

f4] Timer Contral

Portal Controls
(= Portal Event Controls
= Portal GroupSpace Search Cantrols
7= Portal Yisitor Tools Cantrals
(== Portal Tool Cantrols
[z= Portal GroupSpace Controls

]]

| Cancel |

4. Expand the desired folder to view the custom Java controls for WebLogic Portal that you can
choose from.

After you add a custom WebLogic Portal control, all the methods in the control become available
to your Page Flow.

For more information about the custom controls provided by WebLogic Portal, refer to the Portal
Development Guide. For details about each control, refer to the Javadoc. (Links to the Javadoc
for each of the controls packages are conveniently listed in the Javadoc Overview frame.)

Portlet State Persistence

You can control portlet state persistence using the persistence-enabled attribute in the
netuix-config.xml file, which is located by default in the WEB-INF directory. Using this
attribute causes the state to be saved in the WebLogic Portal database. The attribute is set to
false by default.

The following code segment shows an example of the attribute syntax:

<control-state-location>
<session persistence-enabled=""true"/>
</control-state-location>

Oracle WebLogic Portal Portlet Development Guide 5-103

../javadoc/index.html
../portals/index.html
../portals/index.html

Building Portlets

WebLogic Portal places an entry for the control tree state in the PROPERTY_KEY table, with
the following PROPERTY_SET_NAME value:

e BEA_PORTAL_FRAMEWORK_CONTROL_TREE_STATE

Adding a Portlet to a Portal

In the development phase of the portal life cycle, you add portlets to a portal using the Workshop
for WebLogic workbench.

Note: A page must have a layout before you can add a portlet to it. The vertical or horizontal
placement of portlets in a placeholder is determined by the selected layout for the page.

Follow these steps:

1. Inthe Package Explorer view, double-click the portal (. portal file) to which you want to
add the portlet.

The portal displays in the editor.
2. If your portal has multiple pages, click the desired page to select it.

3. From the Design Palette view, drag the portlet (the .portlet file) onto the portal page at the
desired location.

Figure 5-44 shows an example of this step.

5-104 Oracle WebLogic Portal Portlet Development Guide

Adding a Portlet to a Portal

Figure 5-44 Dragging a Portlet from the Palette onto a Portal Page in Editor View

Header

-

Book: Main Page Book *
[3) Home Page -
-

Page: Home Page 3
)

-

E

1

= = =1

& workshop Palette X H B |

Browser Portlet Shiow 4l hs

U R %2 Portal Editor Controls
ShowTime Portlet —| 5] Porkal UL Contrals

[Boak.

[Page
—||[E] Available Portlets
Browser Portlet
Custom Mode Test
indes
Motepad Portlet
Portlet Mot Found |
Producer Portlet
Producer Partlst
ShowTime Portlet
Simple 15P Portlet
TornsBookmarkPartlet
& WeatherPortlet]

Footer

&b servers 2 Prablems | Tasks | Search Javadoc Console =g
—| [Available Page Content Files

B A = = o

S > Y S S P —— P s b B

With the portlet selected, you can use the Properties view to customize desired portlet properties.
For detailed information about portlet properties, refer to “Portlet Properties” on page 5-40.

When you add a portlet to a page in the workbench editor, a reference to that portlet is added to
the _portal file. You can use the .portal file as a template for creating desktops in the
WebLogic Portal Administration Console. When a portal administrator creates a desktop based
on that template, the portlet is added to the portal resource library where it can be added to pages
in streaming desktops. For an overview of file-based portals compared with streaming portals,
refer to the Portal Development Guide.

In the Staging phase of the portal life cycle, you use the WebLogic Portal Administration Console
to configure portlets on desktops. A single portlet definition can be associated with one or more
portals (desktops) by creating instances of the portlet. Each of these portlet instances can have its
own “personality” and behavior as specified by a variety of different configuration options.

For details in adding a portlet to a portal desktop in the WebL ogic Portal Administration Console,
refer to “Managing Portlets on Pages” on page 13-5.

Oracle WebLogic Portal Portlet Development Guide 5-105

../portals/index.html

Building Portlets

Deleting Portlets

To remove a portlet from a portal without deleting the portlet from your portal web project,
right-click the portlet in the Workshop for WebLogic workbench editor and click Delete.

To delete a portlet from your portal web project, right-click the portlet in the Package Explorer
view and choose Delete.

To remove a portlet after you have assembled portlet instances into portal desktops using the
Administration Console, refer to “Deleting a Portlet” on page 13-5.

Advanced Portlet Development with Tag Libraries

5-106

During the Development phase, you can use tag libraries to add features to a GroupSpace
Community, a custom Community, or a portal web application. This section discusses the
following tag libraries:

e The ActiveMenus JSP tag library
e The DragDrop JSP tag library
e The DynamicContent JSP tag library

e The UserPicker JSP tag library
See the Communities Guide for additional information.

Adding ActiveMenus

You can add the ActiveMenus JSP tag library to a GroupSpace Community, a custom
Community, or a portal web application.

The ActiveMenus JSP tag library lets you set up a popup menu that displays when the mouse
hovers over specific text. An activemenus-config.-xml file controls the contents of each
menu. The activemenus_taglib.jar file contains the ActiveMenus tag library.

By default, a GroupSpace Community has ActiveMenus enabled, so you only need to configure
the ActiveMenus tag (see “Configuring the ActiveMenus Tag” on page 5-109). See Figure 5-45
for an example of the ActiveMenus tag in a GroupSpace Community.

Oracle WebLogic Portal Portlet Development Guide

../communities/index.html

Advanced Portlet Development with Tag Libraries

Figure 5-45 ActiveMenus in the GS Issue Portlet

Title & Status
2 Trarking Project Status % Edit Issue
Delete Issue
Copy to QuickLinks

You can tie a user’s capability to the ActiveMenu that you see when you hover your mouse over
an item (an Issue, for example) and hover over the arrow that appears. In this example, if your
assigned capabilities include the ability to delete items, you will see the Delete choice, as shown
in Figure 5-45.

Tip: You do not need to perform the following steps if you have a GroupSpace Community;

ActiveMenus are enabled by default for GroupSpace Communities.

Perform the following steps to enable ActiveMenus in a custom Community:

1.

In Workshop for WebL ogic, make the activemenus_taglib. jar file available to your
portal web project. When you create your portal web project, you must enable the
GroupSpace facets by selecting the WebL ogic Portal Collaboration check boxes.

Add the activemenus-config.xml file to your /WEB- INF directory in your portal web
project. Add the file by right-clicking the activemenus-config.xml file and choosing
Copy To Project. Configure the file by follow the instructions in Configuring the
ActiveMenus Tag to edit the activemenus-config.xml file.

Register the GetActiveMenusResourceServlet by adding the servlet and servlet-mapping
to the web.xml file in the /WEB- INF directory in your portal web project. You can edit the
file in Workshop for WebLogic by double-clicking the web . xml file. Right-click the
web-app line in the file and choose Add Child > message-destination - welcome-file-list >
servlet. Add GetActiveMenusResourceServlet to the servlet-name line. Add
com.bea.apps.groupspace.servlets.GetActiveMenusResourceServlet to the
servlet-class line. See Figure 5-46 to view the edited file in Workshop for WebLogic.

Oracle WebLogic Portal Portlet Development Guide 5-107

Building Portlets

5-108

Figure 5-46 Editing the web.xml File in Workshop for WebLogic

Fil= Edit Source Refackor Source Mavigate Search Project Rum XML Window Help
(] & F-0-U- @5 | ¥o o - 28 BE [Epartal
2 Merged Projects 22 % =0 =5ww™ =g
= <)=={> wrninstsi Bkt f v, w3, orgf 2001 (XMLSchema-instance ~ -
=l g WEB-INF = xsi:schemalocation http:ffiava.sun.comfzmifnsfji2ee http: (fiava, sun.comfxmlins/iZeefweb-: PR
. [&] display-name denaPortalwebProject =+
= ackivemenuTypes R
[&] welcome-file-list Prop.., | Valug
#- (= dlasses . "
= b # [g] Filker = Atk
ie o « [e] fiter ic
: Lot i # [&] Fiter-mapping
\=- fagw # [e] Fiker-mapping
X| activemenus-config.aml ® [e] Fiter-mappin
B sodivorauiortoont 8l
| beehive-netur valtator-ruies e Fllr-m\n
¥] beehive-urttemplate-config L
LICENSE El 5
. . # [e] listener
x| metuiz-config,xml & o] sorvet
X| neful-extenzion. xmi = \:‘ serviet
X] poedt o 3 \:I servlet-mappin
i Ropidspalied. it + \:I servlet—mapping s
) sty ol o [§] savismepora _ -
K] vadstor.suss. X/ & \:I sarvlet-mapuing I = |
¥] web.xl = Lt
blogic <l = =
gl we ﬂglF o [e] servlet-name GetactiveMenusResourceServist
X| webiagic-extension. xm’ Th t
. X [€] servlet-class com.bea.apps.groupspace. servlsts FetActiveMenusResourceServist & Curren
X| weblogic-webservices. xmf servlet-magping document has no
X| weblogic-webzervicas-policy. - style information,
| webservicas. v [&] serviet freMERUstesourceServiet
P . = [€] url-pattern GethActiveMenusResourceServiet
< > o]
~ Design | Source

»

The code sample in Listing 5-1 shows the new information you added.

Listing 5-1 Code Sample of GetActiveMenusResourceServiet

<I-- ActiveMenus Servlet Mappings -->
<servlet>

<servlet-name>GetActiveMenusResourceServlet</servlet-name>

<servlet-class>

com.bea.apps.groupspace.servlets.GetActiveMenusResourceServiet

</servlet-class>
</servlet>
<servlet-mapping>

<servlet-name>GetActiveMenusResourceServlet</servlet-name>
<url-pattern>GetActiveMenusResourceServlet</url-pattern>

</servlet-mapping>

4. Redeploy the application for the changes to take effect.

After you enable the ActiveMenus, you must configure the ActiveMenus tag.

Oracle WebLogic Portal Portlet Development Guide

Advanced Portlet Development with Tag Libraries

Configuring the ActiveMenus Tag

To use the ActiveMenus tag, you must set up the activemenus-config.xml file (the XSD that
defines this config file is located in the activemenus_taglib_jar file as
activemenus-config.xsd). Thisactivemenus-config.xml fi le file must exist in your web
application's /WEB- INF directory. Multiple menus can be set up that consist of completely
different items, styles, and icons.

Use the following sections to configure the activemenus-config.xml File file:
e Using The Typelnclude tag
e Using The Type Tag
e Using The TypeDefault Tag

e Using The menultem Tag

Using The Typelnclude tag

Use the type Include tag to keep your configuration file clean. Rather than adding the type tag
(see Using The Type Tag) you can add this tag and point its href attribute to an XML file
(relative to the web application) that contains all of the type information. An example of the
typelnclude tag is:

<typelnclude xhref="/WEB-INF/activemenuTypes/username.xml"/>.

You can also use the type tag with the typelnclude tag in the configuration file. See the code
sample in Listing 5-2.

Listing 5-2 You Can Use the typelnclude Tag with the Type Tag in the activemenus-config.xml File

<typelnclude xhref="/WEB-INF/activemenuTypes/username.xml"/>
<type>
<menultem>
<param name="linkld"/>
<action action="editLink">
<il8nNamebundleName=""com.bea.apps.groupspace. links.
LinksPopupMenu™ key="edit.link"/>
</action>

Oracle WebLogic Portal Portlet Development Guide 5-109

Building Portlets

5-110

</menultem>
</type>

When you point to another XML file, ensure that you namespace it correctly, as shown in
Listing 5-3.

Listing 5-3 Pointing to Another XML File Called username.xml

<type name="‘username"
xmIns="http://www.bea.com/servers/apps/groupspace/ui/
activemenus-config/9.0"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xxsi:schemaLocation="http://www.bea.com/servers/apps/groupspace/ui/
activemenus-config/9.0">

</type>

Using The Type Tag

The type tag defines the individual menus to use within the web application. The name attribute
must be unique for each menu, because the name is how the menu is referenced when you use the
ActiveMenus tag. Following is an example of the type tag:

<type name=""foo0"'>
</type>

Note: The TypeDefault and Menultem tags must be contained within the type tag.

Using The TypeDefault Tag

The typeDefaul t tag defines what displays in the browser where the ActiveMenus tag is used.
You can control the text that displays, the style of the text, and the image that appears on the
mouseover of that text (which denotes the menu itself).

The following items display within the browser where you used the ActiveMenus tag:

e The displayText Attribute — Defines the actual text that displays. If the displayText is
not defined, whatever text is placed in the display attribute of the ActiveMenus tag

Oracle WebLogic Portal Portlet Development Guide

Advanced Portlet Development with Tag Libraries

appears. However, if you want to display other text, you can specify a class and a method
within that class that returns a String to display. The following example shows how to
display other text.

GetUserNameFromProfile.java

public class GetUserNameFromProfile

{
public static String getName(String userName)
{
return "XXX-"" + username + ""-XXX'';
}
}

If you use this code, the configuration defined above, and the following ActiveMenus tag:
<activemenus display="UserName" type="fo0"/>, the following displays in the
browser: XXX-UserName-XXX.

This example allows you to use the information entered in the body of the ActiveMenus
tag to look up other information to display. For instance, a username can be used to look
up a user's full name to display. The only rules surrounding this action is that the method
used for the display text is public, static, takes in a String, and returns a String. No other
information can be passed into that method.

e The displayTextStyle Attribute — Defines the CSS style or class that stylizes the display
text. In order for the class attribute to work correctly, the class must be defined on the
page (or the CSS file that defines the class must be imported).

e The displayMenulmage Attribute — Defines the image that appears when the display text
is passed over with the mouse. If this tag is not defined, the default image is used. This
image is in the activemenus_taglib. jar file and is called menu_default.gif.

e The menuStyle Attribute — Defines the CSS style or class that stylizes the menu itself,
which can include the border or background color. For the class attribute to work
correctly, the class must be defined on the page (or the CSS file that defines the class must
be imported).

Note: The TypeDefault and Menultem tags must be contained within the type tag.

Using The menultem Tag

The menultem tag defines the individual items within the popup menu. Listing 5-4 shows a code
sample using the menultem tag.

Oracle WebLogic Portal Portlet Development Guide 5-111

Building Portlets

Listing 5-4 The menultem Tag

<menultem>
<param name="userld"/>
<xmlHttp url="GetFirstNameServilet"/>
<row class="menuRow" style="backround-color:red"/>
<text class="menuText" style="color:#000000"/>
<rowRollover class="menuRowRollover" style="background-color:green'/>
<textRollover class="menuTextRollover" style="color:#FFFFFF"/>
</menultem>
<menultem>
<javascript>
<name>Testing</name>
<script>testing(this);</script>
</javascript>
</menultem>
<menultem default="true" showMenultem="false">
<param name="q" value="foo0"/>
<link url="http://www.google.com">
<name>Google</name>
</link>
</menultem>
<menultem>
<showMenultem className="com.foo.CheckUserRights"™ methodName=
""doesUserHaveRights'>
<rights name="'can_view"/>
<rights name="'can_edit"/>
</showMenultem>
<al lParams/>
<action action="addEditLink" disableAsync=""true">
<il8nName bundleName="'com.foo.LinksPopupMenu" key="edit.link"/>
</action>
</menultem>
<menultem>
<al lParams/>
<dcAction action="showFeedData" dcContainerld="feedDataContainer">
<il18nName bundleName=""com.foo.LinksPopupMenu" key="show.
feedData'/>

5-112 Oracle WebLogic Portal Portlet Development Guide

Advanced Portlet Development with Tag Libraries

</dcAction>
</menultem>

The menultem tag defines the individual items within the popup menu with the following four
types:

e The javascript Element — This element can be any JavaScript that you want to run when
the user clicks this menu item. To make this more useful, you can retrieve the values that
you specify in the param tag (see the code sample below) through custom parameters that
are added to the menu item. Following is a basic example of how to implement JavaScript.

<activeMenus:activemenus display="Foo Link" type="link">
<param name="linkld" value="${fooLink.id}"/>
<param name="linkParent" value="${foolLink.parent}"/>
</activeMenus:activemenus>

The next step is to define the custom JavaScript in your configuration file. The JavaScript
must pass in the code shown in Listing 5-5.

Listing 5-5 The activemenus-config.xml File

<type name="link">
<menul tem>
<allParams/>
<javascript>
<name>Testing</name>
<script>fooTest(this);</script>
</javascript>
</menultem>
</type>

The last step in implementing the JavaScript element is to access the values in your
JavaScript function, as shown in the following code sample.

Oracle WebLogic Portal Portlet Development Guide 5-113

Building Portlets

5-114

<script>
function fooTest(object)

{
var linkld = object.getAttribute("linkld™");

var linkParentName = object.getAttribute("'linkParent');

</script>

e The xmIHttp Element — The xmIHttp references a servlet (which must follow all standard

servlet configuration). Whatever the servlet outputs is shown in that row of the menu. If **
or null is returned from the xmIHttp servlet, the menu item row does not appear in the
menu. The information is retrieved through an xmlHttp request, which allows the
information to be updated without refreshing the page. For example, you could show a
user’s online status that would update without having to make a full post. The two rules
that surround writing your servlet for this is that all the processing must happen in the
servlet's doPost() method. The second rule is that the defined parameters are passed in as
request parameters. Following is an example of getting the query parameters:

String userName = request.getHeader("linkld");

The Nink Element — This static URL opens a new browser window pointed to the defined
URL. This tag can take in either a name tag or an i18nName tag (defined below) that is
displayed within the menu itself. Any defined parameters are added to the end of the link
as regular request parameters.

The action Element — This action name must be available to the page or portlet that
contains the ActiveMenus tag. This element runs the action within the current browser, so
you can use forwards to control your page flow. This tag can take in a name tag or an
i18nName tag (defined below) that will appear within the menu itself. Any defined
parameters passed in are available on the request as parameters. Following is an example
of retrieving these values from a page flow:

String linkld = getRequest().getParameter("'linkld™);

You can also use an attribute called disableAsync within AJAX-enabled portlets. If you
want your menu item action to submit outside of the AJAX framework (so the page makes
a full post), set this attribute to true. By default, the attribute is set to false.

The dcAction Element — If you have a Dynamic Content container set up within your
page, you can set up a menu item to call an action and have it update the Dynamic Content
container. This works the same as an action menu item, and takes in the action name to
execute. The only difference is you must specify the dcContainerld and it must

Oracle WebLogic Portal Portlet Development Guide

Advanced Portlet Development with Tag Libraries

correspond to a dcContainerld that is defined within a
<dc:executeContainerAction> tag on the page.

e Other attributes and elements that you might use include the following:

— The showMenultem Element — Add this element if you need to conditionally show the
menu item (for example, based on a set of rights for the current user). You define a
class name and a method name that determines if the menu item should be shown. You
can use multiple showMenul tem tags, each using different classes, methods, or rights.
If you use more than one tag, all cases must be satisfied in order for the menu item to
appear. For example, if the user passes nine of 10 cases, the menu item does not appear
because all cases were not passed. Listing 5-6 shows how you can use the
showMenultem tag.

Listing 5-6 The CheckUserRights.java Class with the showMenultem Tag

public class CheckUserRights
{

public static boolean doesUserHaveRights(HttpServletRequest request,
String[] rights)

{
for(int i=0;i<rights.length;i++)
{
if(lcheckAccess(request, rights[i]))
{
return false;
}
}
return true;
}
}

— The default Attribute — When this attribute is used in a menultem tag and set to
true, the display text anchor's href will be the link or action. Use this attribute when
you want a default action to occur when clicking the main link, and you also want to
display the action for consistency purposes. The default value for this attribute is
false.

Oracle WebLogic Portal Portlet Development Guide 5-115

Building Portlets

5-116

— The showMenultem Attribute — When this attribute is used in a menul tem tag and set

to false, the menu item does not appear in the ActiveMenu. Use this attribute when
you want a default action to occur when you click the main link, but you do not want to
display the action. The default value for this attribute is true.

Note: Do notwrap an ActiveMenus tag in an anchor tag because you can get undesired
results. Instead, use the default and showMenu I tem attributes to control the
ActiveMenu display text link

The al IParams Element — This element specifies that all of the parameters defined on
the tag (see Using the ActiveMenus Tag) are set up on this menu item. If this element is
not used (and the param element is not used), then parameters are not set up on the
menu item.

The param Element — This element sets the specified parameters on the menu item. The
param element has a name attribute that must match the name attribute on a param
element that is set within the ActiveMenu tag (see Using the ActiveMenus Tag). This
also has a value attribute that can be used to hard code a value at configuration time. If
this value attribute has been set, but a value was also specified at run-time (for
example, using the param tag within the ActiveMenu tag), the run-time value takes
precedence over the hard-coded value. Also, if just the hard-coded value is to be used,
the param tag does not have to be specified when you use the ActiveMenus tag.

The name Element — This element displays only the static name defined within the tag
as the menu item.

The i18nName Element — This element has both a bundleName attribute, which must
map to an available .properties file, and a key attribute. The bundleName attribute
uses the standard Java ResourceBundle convention. The key attribute defines the key to
grab within the specified bundle. The text that relates to this key within this bundle is
what appears in the menu item.

The img Element — This element adds the specified image to the left column as an icon.
You must specify the path to the image file in relation to your web application.

The bgiImg Element — This element replaces the background image used in the left
column with the specified image. You must specify the path to the image file in relation
to your web application.

The row Element — This element defines the CSS style or class that stylizes the row of
the menu item. For the class attribute to work correctly, the class must be defined on
the page (or the CSS file that defines the class must be imported).

Oracle WebLogic Portal Portlet Development Guide

Advanced Portlet Development with Tag Libraries

— The text Element — This element defines the CSS style or class that stylizes the text of
the menu item. For the class attribute to work correctly, the class must be defined on
the page (or the CSS file that defines the class must be imported).

— The rowRol lover Element — This element defines the CSS style or class that stylizes
the row of the menu item when it is rolled over. For the class attribute to work
correctly, you must define the class on the page (or the CSS file that defines the class
must be imported).

— The textRol lover Element — This element defines the CSS style or class that stylizes
the text of the menu item when it is rolled over. For the class attribute to work
correctly, you must define the class on the page (or the CSS file that defines the class
must be imported).

Note: The TypeDefault and Menultem tags must be contained within the type tag.

Using the ActiveMenus Tag

The taglib.tld file is located in the activemenus_taglib. jar file.

You can use the following attributes and elements with the ActiveMenus tag:

e The display Attribute — This attribute defines what appears in place of the tag itself. If
you use the displayText attribute, this is the value that is passed to the method defined in
the displayText tag.

e The type Attribute — This required attribute defines what is in the menu and must match a
type defined in the activemenus-config.xml file.

e The href Attribute — This optional attribute can override the default anchor href for the
display text of the tag.

e The newwindow Attribute — This optional href attribute specifies the link to open in a new
browser window. This is a Boolean attribute, and you set it to true or false.

e The class Attribute — This optional attribute defines a CSS class for the display text.

e The style Attribute — This optional attribute defines a CSS style to place on the display
text.

e The rightClick Attribute — This Boolean attribute turns the menu into a right-click menu,
rather than a rollover menu. The default is false. If this attribute is set to true, you
right-click the display text to bring up the menu. The menu appears under the mouse.

e The escapeXml Attribute — This attribute is the same as escapeXml within the JSTL tags.
If you set it to true, characters are converted to their corresponding character entity codes.

Oracle WebLogic Portal Portlet Development Guide 5-117

Building Portlets

5-118

e The param Element — This element sets up parameters that can be passed in and used for
the different menu items. The following two attributes are both required:

— The name Attribute — This is the parameter name and must match the name attribute (if
used) when defining a menu item in the activemenus-config.xml file. The name
attribute also references the parameter within your menu item code. You can use a
runtime expression.

— The value Attribute — This is the parameter value, and you can use a runtime
expression.

Notes: If a class is specified on the tag, the default class specified in the
activemenus-config.xml file is overridden and the default style is not placed on the
activename. If a style is specified on the tag, the default class is placed on the
activename. Ifa class="""is specified on the tag, the default class is not placed on the
activename.

Enabling Drag and Drop

You can use the DragDrop JSP tag library to enable drag and drop functionality in a GroupSpace
Community, a custom Community, or a portal web application. You must identify draggable
objects that are displayed on a JSP, and identify drop zones that are configured to react to a
dropped draggable object. The drop zones react by triggering Page Flow actions, calling
JavaScript functions, or posting data to a servlet.

Perform the following actions before you use the DragDrop tag library:
e Include the dragdrop_taglib. jar file in the web application’s CLASSPATH

e Place the code shown in Listing 5-17 into your web.xml file

Listing 5-17 Code Entry in the web.xml File

<servlet>
<servlet-name>DragDropResourceServilet</servlet-name>
<servlet-class>com.bea.apps.communities.servilets.

GetDragDropResourceServiet

</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>DragDropResourceServilet</servlet-name>

Oracle WebLogic Portal Portlet Development Guide

Advanced Portlet Development with Tag Libraries

<url-pattern>DragDropResourceServilet</url-pattern>
</servlet-mapping>

Using the DragDrop Tags

Three tags are defined in the DragDrop tag library. Following are descriptions of how each tag is
used, along with sample JSP code:

e The dragDropScript Tag — This tag includes the necessary DragDrop JavaScript libraries
in the page. The logic embedded into the tag ensures that these libraries are included only
once per request.

e The draggableResource Tag — This tag identifies a draggable resource on the page.

e The resourceDropZone Tag — This tag identifies an area on the page that reacts when a
draggable resource is dropped.

Using the dragDropScript Tag

You must include the dragDropScript tag before you use any other DragDrop tags on the page.
This tag ensures that the appropriate JavaScript libraries are included. The dragDropScript tag
does not take any attributes.

The following example shows how to use the dragDropScript tag:
<dragdrop:dragDropScript/>.

Using the draggableResource Tag

The draggableResource tag specifies a draggable resource on the page. The tag takes the
following attributes:

e The resourceld Attribute — The unique identifier of the resource that is being dragged.
This identifier should be an ID that can be used by the underlying business logic to
uniquely identify the resource.

e The resourceName Attribute — The representative name of the resource being dragged.

The draggableResource tag performs a search for a child img tag that has a dragdrop: image
attribute. This image becomes the image that is displayed while performing the drag operation.
The image must have an absolute height and width attribute.

The resourceld value is accessible through the JavaScript function getSourceld(), when the
value is dropped onto a resourceDropZone. The resourceld value is also available as a

Oracle WebLogic Portal Portlet Development Guide 5-119

Building Portlets

5-120

parameter in the request named sourceld, when it is dropped onto a resourceDropZone that
triggers a POST action. See Listing 5-7.

Listing 5-7 The sourceld Request Dropped onto a resourceDropZone

<dragdrop:draggableResource imageld="0" resourceld="${id}"resourceName=
"${name}"">

${name}
</dragdrop:draggableResource>

Using the resourceDropZone Tag
The resourceDropZone tag identifies an area where draggable resources can be dropped.

The tag takes the following attributes:

e The targetld Attribute — The unique identifier of the drop zone object. This identifier can
be an ID that can be used by the underlying business logic to uniquely identify which
object received the drop action.

e The jsFunctionCall Attribute — A JavaScript function that executes when a
draggableResource is dropped on this resourceDropZone.

e The pageFlowAction Attribute — A valid Page Flow action that is initiated when a
draggableResource is dropped on this resourceDropZone.

e The formAction Attribute — A valid JSP or servlet that receives a POST action when a
draggableResource is dropped on this resourceDropZone.

Only one of the following attributes is required: jsFunctionCall, pageFlowAction, or
formAction. The jsFunctionCall takes precedence, then pageFlowAction, and finally
formAction.

The targetld value is accessible through the JavaScript function getTargetild() when a
draggable resource is dropped. It is also available as a parameter in the targetld request when
a draggable resource is dropped that triggers a POST action. The following code shows how this
works:

Oracle WebLogic Portal Portlet Development Guide

Advanced Portlet Development with Tag Libraries

<dragdrop:resourceDropZone targetld="${id}" pageFlowAction=""movelssue">
lssues Folder
</dragdrop:resourceDropZone>

Listing 5-8 demonstrates how the move Issue action can be coded in a file called
IssuesPageFlowController.java.

Listing 5-8 Coding the movelssue Action

@Jpf.Action(forwards={ @Jpf.Forward(name = "success", path =

"displaylssuesTree.do')})

protected Forward movelssue() {
Forward forward = new Forward(‘'success™);
String sourceld = getRequest().getParameter(*'sourceld™);
String targetld = getRequest().getParameter(*'targetld™);
move(sourceld, targetld);
return forward;

Enabling Dynamic Content

You can use the DynamicContent tag library to quickly update parts of a JSP page in a
GroupSpace Community, a custom Community, or a portal web application.

The DynamicContent tags let you use an AJAX request to update part of a JSP page within a
Page Flow-based portlet. The tags allow parts of the page to be updated without performing a full
portal request. These AJAX requests are smaller and faster than full portal requests, and therefore
provide a more responsive user experience when interacting with a portal application.

These tags are easy to incorporate into standard Page Flow-based portlet development and can
help create advanced user interface features that improve a user’s portal experience.

Note: The DynamicContent tags are not related to Asynchronous Portlet Content Rendering.
Asynchronous portlets allow for the entire portlet content to be rendered independently
of the portal. The DynamicContent tags are designed to affect small parts of a JSP page
within a portlet.

Oracle WebLogic Portal Portlet Development Guide 5-121

Building Portlets

5-122

Understanding the DynamicContent Tags
This section describes the main tags in the DynamicContent tag library.

The Container Tag

The Container tag designates a place on the JSP page that contains the HTML output from the
execution of a Page Flow action. The only required attribute for this tag is a container id. This id
is referenced by other DynamicContent tags to identify the container. The following code shows
how this tag is used: <dc:container dcContainerld="outputContainer'/>.

The Container Action Script Tag

This tag is a child of the Container tag and identifies a Page Flow action that can be executed
and whose HTML output is placed inside the parent container. The containerActionScript
tag takes the following attributes:

e The action attribute — The Page Flow action name.

e The initial attribute — Designates an action in the container as the initial action. This is
the action that initially populates the container.

e The async attribute — Specifies if the action is performed synchronously or
asynchronously. The default is synchronous.

e The onErrorcCal Iback Attribute — A user-defined JavaScript function that is called if a
client-side error occurs during the AJAX request creation and processing.

Only the action attribute is required. The following code sample shows how this tag is used in
the parent Container tag:

<dc:container dcContainerld="outputContainer'>
<dc:containerActionScript action="resetDynamicContentContainer"
initial="true"/>
<dc:containerActionScript action="showServerTime"/>
<dc:container/>

The Execute Container Action Tag

The Execute Container Action tag is used to create a call to a specific action inside a container.
This tag takes the following attributes:

e The dcContainerld attribute — The id of the container in which the action is defined.

e The action attribute — The Page Flow action name.

Oracle WebLogic Portal Portlet Development Guide

Advanced Portlet Development with Tag Libraries

e The async attribute — This specifies if the action is performed synchronously or
asynchronously. The default is synchronous.

e The var attribute — A request attribute variable that holds a reference to the action
JavaScript call.

The dcContainerld and action attributes are required. Following is a sample of how this tag
is used:
<dc:executeContainerAction action="showServerTime" dcContainerld=

"outputContainer"

var="showServerTimeVar'/>

In the previous example, the call to the specified action is stored in the variable
showServerTimeVar. This variable can then be referenced, as shown in the following HTML
code:

<form>
<input type="button" onclick="${showServerTimeVar}" value="Show Server
Time'/>
</form>

When the user clicks a button, an AJAX request is created that executes the showServerTime
action and places the HTML output generated by that action into the container with the id of
outputContainer.

The Parameter Tags

The DynamicContent tags also include tags for parameters that are passed into the action
through the request. You can define parameters within the executeContainerAction tag or the
containerActionScript tag. These parameters are then accessible in the Page Flow action by
calling the request.getParameter() method.

Using the DynamicContent Tags

Some critical limitations are associated with the DynamicContent tags. The AJAX requests used
to trigger the Page Flow actions are not processed through the main portal servlet. These requests
go through a special servlet that performs some processing to ensure that the proper Page Flow
instance is used. Many key elements that are normally available in the request are not accessible
from these AJAX requests. For example, in Community-based portal applications, the
CommunityContext object is not accessible from the AJAX request. The lack of access to some
of these framework elements could have an impact on things like entitlements and security.

Oracle WebLogic Portal Portlet Development Guide 5-123

Building Portlets

5-124

Because of these limitations, the DynamicContent tags are best suited for specific uses that
involve small amounts of processing, with few dependencies on larger framework services. The
following use cases could benefit from the DynamicContent tags:

e Update a small location on a JSP page to display frequently updated data obtained through
periodic client-side polling. For example, you could notify users of unread mail or display
the number of users logged onto a system.

e Use the tags as a pagination mechanism for tabled data presented across multiple pages.

e Send multiple requests to the server to obtain successive images to navigate through a
series of images in a photo gallery. The DynamicContent tags provide a tool to avoid an
expensive portal request to view each photo.

e Obtain remote data, such as stock quotes or weather information from remote sites. The
obtained data can be displayed in a designated area on the page without updating other
parts of the page.

Using the User Picker

During the Development phase, you can use the UserPicker tag library to add a form button to
a JSP page in a GroupSpace Community, a custom Community, or a portal web application.

The UserPicker:popupButton tag provides the developer with the ability to add a form button
to a JSP page which opens a popup window that displays a list of current users. You can select a
user from this list. The name of the selected user is populated into a specified form field on the
parent window.

Using the UserPicker Tags
This section describes the UserPicker :popupButton tag in a custom Community and how to
use the following attributes:

e The inputld Tag — The id of the HTML form input element that is populated with the
selected user’s name. This tag is optional.

e The inputTagld Tag — The tagld of the netui-based form input element that is populated
with the selected user’s name. If the inputld tag is provided, the inputTagld tag is
ignored. This tag is optional.

e The buttonlImage Tag — The src path to the image for the popup button. This tag is
required.

Oracle WebLogic Portal Portlet Development Guide

Importing and Exporting Java Portlets

e The atnProviderName Tag — The Authentication Provider name. If an atnProviderName
is supplied, there is no provider drop-down box in the popup window. If an
atnProviderName is not supplied, the default provider is used. If you have configured
multiple Authentication Providers, a drop-down box appears in the popup window to allow
you to specify a provider. This tag is optional.

Tip: When the UserPicker :popupButton tag is used in a Community, the Community
members are listed, rather than users.

Importing and Exporting Java Portlets

Workshop for WebLogic lets you import and export Java (JSR168) portlets. You can import Java
portlets from a Web Archive (WAR), Java Archive (JAR), or ZIP file directly into your
workspace. Workshop for WebLogic automatically creates . portlet files for all imported Java
portlets, making them available for immediate use in your portal. You can also export Java
portlets from your workspace to a supported archive file.

Note: Throughout this section, supported archive files refer to WAR, JAR, and ZIP files.

By default, Workshop for WebLogic imports and exports the portlet.xml, any Java class files
required by the portlet, and any Java source files. Also, if any class or source Java files are found
withina JAR or ZIP archive, that archive is also imported or exported. You can optionally specify
additional files to be imported or exported. Once exported, a Java portlet contained in a supported
archive file can be used with any compatible web server.

Tip: You can use the JSR168 Import utility to deploy a Java portlet contained in a supported
archive file directly to a WebLogic Server instance. Once deployed with this utility, the
portlets can be available to consumers through WSRP. For more information on this
utility, see “Using the JSR168 Import Utility” on page 5-131.

Importing Java Portlets

To import Java portlets packaged in a supported archive file into your Workshop for WebLogic
workspace:

1. Select File > Import. You can also right-click in the Project Explorer and select Import >
Import...

2. In the Import dialog, open the Other folder and select Portlet(s) from Archive.

Oracle WebLogic Portal Portlet Development Guide 5-125

Building Portlets

3. Inthe Select Project dialog, select the web project in which to place the imported Java
portlets. Select the Overwrite existing resources without warning checkbox to force the
import tool to overwrite duplicate files automatically, as shown in Figure 5-47.

Figure 5-47 Select Project Dialog

VW Import Portlet Wizard

Select Project
Choose the target project for importing 1SR 168 portlet(s), D E
Selected web —} =
application
Options
OV erwr | te —4— Overwrite existing resources without warning
option

4. Inthe Select Archive dialog, select from your system a supported archive file (WAR, JAR, or
ZIP) containing Java portlets, and click Next. The Select Portlet(s) dialog appears, as shown

in Figure 5-48.

Note: If the selected archive does not contain any Java portlets, then no standard artifacts
will be selected. This is because the default archive format plugin does not recognize
the archive as a Java portlet archive. In this case, the wizard allows you to select an
archive format and allows you to select files manually to import. This is not a typical

use case.

5-126 Oracle WebLogic Portal Portlet Development Guide

Importing and Exporting Java Portlets

Figure 5-48 Select Portlet(s) to Import Dialog

VW Import Portlet Wizard

Select Portlet(s)

Select the ISR 168 portlet(s) to impoRrom the archive, Override one or more D E
default target project paths {Optional); e

BookmarkPortIet celect Al
[E) 15PPortlet
NotepadPortIet Deselect Al

Select portlets to import
from the archive file.

B [E] MotFoundrortlet
[E sample1sr 168
[E] WeatherPortlet

Target Path: | [

(3] [< Back][Mext = H Finiish H Cancel]

5. If you have more than one archive format plugin. If you have multiple plugins installed that
recognize the archive file as a Java portlet archive, then the Select Format dialog appears. Use
this dialog to pick the archive format plugin you wish to use.

6. Inthe Select Portlet(s) dialog, select the portlets to import. You must select at least one portlet.
The Target Path specifies where, relative to the WebContent root, to place the portlet(s).

Tip: You can create a new folder for your imported portlets simply by typing the folder
name in the Target Path field. For example, if you enter /portlets, then the folder
WebContent/portlets will be created and the portlet(s) will be placed in that
folder. You can assign a specific target path to one or more portlets simply by
selecting the portlet(s) and entering a target path. The Reset button restores the
original path. You can multi-select a group of portlets and assign a target path to the
selected group.

7. Click Next.

Oracle WebLogic Portal Portlet Development Guide 5-1217

Building Portlets

5-128

8. (Optional) If the supported archive file contains any optional files to that you want to import,
select them and specify a target path relative to the WebContent root.

Tip: Optional files are any files in the supported archive file that were not specified as
required in the Import Template. The default Import Template requires the archive to
contain a portlet.xml file and any class files required by the portlet.

Tip: If you develop your own custom import plugin, it will also show up in the dropdown
list of formats in the Select Format dialog. You can create a custom portlet import
plugin if you want to specify the format of the imported archive and the default format
is not sufficient. To create the plugin, you need to implement the
PortletimporterPlugin interface. For more information, refer to the Javadoc on this
interface.

9. Click Finish. The portlet files are imported from the supported archive file, and -portlet
files are created automatically in your workspace.

Tip: If you encounter problems with the import, it is possible that the a conflict exists with
artifacts that already exist in your project workspace. In this event, use the Back button
to change the target paths of conflicting artifacts, or select the wizard option on the Select
Project dialog that forces the wizard to overwrite existing resources (see Figure 5-47).

Exporting Java Portlets

You can export Java portlets to a new or existing supported archive file (WAR, JAR, or ZIP). To
export Java portlets to a supported archive file:

1. Select File > Export. You can also right-click in the Project Explorer and select Export >
Export...

2. In the Export dialog, open the Other folder and select Portlet(s) to Archive.

3. Inthe Select Portlets dialog, select the web project that contains the Java portlet(s) you want
to export. You can select the parent folder that contains the portlet(s) or drill down to select
individual portlets, as shown in Figure 5-49. Any portlets and/or parent folders that were
selected in the Project Explorer will be pre-selected by default.

Select the Overwrite existing resources without warning checkbox to force the export
tool to overwrite duplicate files automatically.

Oracle WebLogic Portal Portlet Development Guide

Importing and Exporting Java Portlets

Note: All selected portlets must exist within the same Web project. You cannot select
portlets for export across different Web projects.

Figure 5-49 Select Portlet(s) to Export Dialog

¥ Export Portlet Wizard

Select Portlet(s)

Choose the 1SR 168 portletis) or parent portlet folder{s) for exporting to the

external archive.

= algd myieh
- (= webCantent
E‘B jsrportlets1
b WeatherPortlet. portlet
E‘B jsrportletsz

Select portlets in your
workspace to export.

Overwrite
option

4. Click Next. The Edit Title(s) dialog appears, as shown in Figure 5-50.

BookmarkPortlet, portlet
ISPPartlet. portlet
MotFoundPortlet, portlet
MotepadPortlet. portlet
SamplelSR 168, portlet
= portlets

Options

— |:| Overwrite existing resources without warning

Finish

Cancel

Oracle WebLogic Portal Portlet Development Guide 5-129

Building Portlets

5-130

Figure 5-50 Edit Title(s) Dialog

5.

W Export Portlet Wizard

Edit Title(s)
Edit the table of default portlet title(s) and {optional) portlet descriptionis) for each exported portlet, D E
Partlet Title Description
WebContent/jsrportlets2 (BookmarkPortlet . portlet - TomsBookmarkPortlet This is the changed one
@ [< Back][Mext =] [Finish] [Cancel]

In the Edit Title(s) dialog, you can add or modify the Title and/or Description of an exported
portlet. These fields are written to the exported portlet’s portlet.xml file. Click Next to
continue.

Note: A Title is required for each portlet. If any Title field is blank, the Next button is
disabled until you supply a title.

In the Select Archive dialog enter a full path and name for the archive file, or use the Browse
button to specify the path, and click Next. If the archive does not exist, the wizard will prompt
you to create it.

In the Select Format dialog, pick the archive format that you want to use and click Next. A
default format is provided.

Tip: If you develop your own custom export plugin, it will also show up in the dropdown
list of formats in the Select Format dialog. You can create a custom portlet export
plugin if you want to specify the format of the exported archive and the default format
is not sufficient. To create the plugin, you need to implement the
PortletExporterPlugin interface. For more information, refer to the Javadoc on this
interface.

Oracle WebLogic Portal Portlet Development Guide

Importing and Exporting Java Portlets

8. In the Select Files dialog, select any optional supporting files, such as JSPs, that you wish to
include in the supported archive file. Any files that are included in the selected archive format
(such as portlet.xml) are automatically selected in the dialog. You can associate a Target
Path path with any selected files. Those files will be placed in the specified target path within
the archive file. By default, all files are stored relative to the root directory of the archive.

9. Click Finish. The archive file is created in the location you specified.

Using the JSR168 Import Utility

WebLogic Portal provides a utility for automatically deploying JSR-168 portlets that are
packaged in JSR-168 WAR files. This utility lets you import JSR-168 WAR files containing
JSR-168 portlets, and expose the portlets in WSRP producers. For detailed information on this
utility, see the chapter “Deploying Portal Applications” in the Production Operations Guide.

Oracle WebLogic Portal Portlet Development Guide 5-131

../prodOps/index.html

Building Portlets

5-132 Oracle WebLogic Portal Portlet Development Guide

Creating Clipper Portlets

A clipper portlet is a portlet that renders content from another web site. A clipper portlet can
include all or a subset of another web site’s content using a process called “web clipping.” This
chapter explains how to create and configure clipper portlets.

This chapter includes these topics:
o Introduction
e Creating a Clipper Portlet
e Modifying Clipper Portlet Properties
e Modifying the Appearance of a Clipper Portlet
e Authenticating a Clipper Portlet
e Configuring URL Rewriting
e Clipper Portlets and HTTPS
e Certificates and WebLogic Server
e Resetting the Clipper Portlet
e Using Backing Files with Clipper Portlets

e Updating Portlet Preferences While the Server is Running

Clipper Portlet Limitations

Oracle WebLogic Portal Portlet Development Guide 6-1

Creating Clipper Portlets

Introduction

Clipping is an easy technique for including content in your portal. You can clip all or part of
another web site. Users can effectively view and interact with content from another web site
without leaving the portal.

Note that another WLP feature, the browser portlet, also lets you include remote web page
contents in a portal. For information on browser portlets, see “Browser Portlets” on page 5-28. A
clipper portlet differs from a browser portlet in the following ways:

e A browser portlet uses an IFrame, while a clipper portlet includes the content of the
clipped web page into the same page as the rest of the portal. An advantage of using an
IFrame is that it isolates the remote content, preventing it from overlapping other parts of
the portal. Disadvantages are that the portal cannot access the IFrame’s content and portal
and IFrame sessions are maintained separately.

e A browser portlet returns the entire remote page, while a clipper portlet lets you subset or
modify the contents of a remote web page.

Creating a Clipper Portlet

6-2

You create a clipper portlet using the Portlet Wizard. The steps are similar to those of creating
other types of portlets.

Note: No post-processing is performed on the text of a clipped web page, unless a
clipCustomClass preference is specified as described in “Modifying the Appearance of a
Clipper Portlet” on page 6-6. Clipped text is written verbatim to the response. If the
original web page contains syntax errors, the errors may also appear in the consumer
browser when the clipper portlet is rendered.

1. [Ifitis not currently open, open the Portal Perspective.
2. Select File > New > Portlet.

3. Inthe New Portlet dialog, enter a name for the portlet, and click Finish. The Portlet Wizard
opens.

4. In the Portlet Wizard, select Web Clipper Portlet, as shown in Figure 6-1 and click Next.

Oracle WebLogic Portal Portlet Development Guide

Creating a Clipper Portlet

Figure 6-1 Selecting Web Clipper Portlet

M Portlet Wizard - Select Portlet Type le
Steps: Select Portlet Type
L. Select Portlet Type Select the type of portlet you want to include in your portal,
A

() JSPHTML Portlet

() Java Portlet

() Java Page Flow Portlet
() Browser (URL) Portlet
(3) Web Clipper Portlet

C}I%ruts Portlet

() Remote Portlet

[[] show All Portlet Types

Create a portlet which clips a portion of web content returned
by a Uniform Resource Locator (URL).

5. Inthe Portlet Details dialog, enter a title for the portlet and enter the URL of the web site you
want to clip in the Remote URL field, as shown in Figure 6-2.

Oracle WebLogic Portal Portlet Development Guide 6-3

Creating Clipper Portlets

Figure 6-2 Specifying the URL of a Remote Web Site

M Portlet Wizard - Portlet Details g|
R Portlet Details
1. Select Portlet Type Please Fill in the general details for the portlet,
2. Portlet Details
Title : BEA Clipper Portlet
Remote URL : http: [jwww.bea.com — 1 URL Of
e T Remote Web Site
State : Available Modes :
[] Minimizable []Help =
[] Maximizable [Edt =
[] Floatable
[] Deletable

6. Click Create to create the new clipper portlet.

7. Modify the clipper portlet, if you want, by adding and editing preferences, as explained in
“Modifying Clipper Portlet Properties” on page 6-4.

Note: By default, the entire web site is included in the clipper portlet’s contents, including the
<HEAD> element of the remote site.

Modifying Clipper Portlet Properties

By setting certain portlet properties, you can change the appearance of a clipper portlet, subset
the content of a web page that appears in a clipper portlet, and provide authentication. There are
two primary ways to modify a clipper portlet’s properties: through the Properties editor and
manually.

This section includes these topics:
e Using the Properties Editor

e Setting Clipper Properties Manually as Preferences

6-4 Oracle WebLogic Portal Portlet Development Guide

Modifying Clipper Portlet Properties

Using the Properties Editor

You can use the Properties editor to edit the common set of portlet properties, such as the title bar
and presentation properties. Clipper portlets share most of these properties with other types of
portlets, and the procedure for changing them is the same. See “Portlet Properties” on page 5-40
for detailed information on editing portlet properties through the Properties editor.

Setting Clipper Properties Manually as Preferences

Clipper portlets also include a set of properties that do not appear in the Properties editor and
which must be set manually. The easiest way to modify clipper portlet properties manually is to
add and set them as portlet preferences.

Tip: WLP provides preferences for controlling the extent of a clipped page and for
authentication. See “Modifying the Appearance of a Clipper Portlet” on page 6-6 and
“Authenticating a Clipper Portlet” on page 6-8 for specific information on those tasks.

To set portlet preferences, do the following:

1. Open the Portlet editor for the clipper portlet. To do this, right click the portlet name in the
Project Explorer and select Open With > Portlet Editor.

2. Right click the Portlet Preferences bar in the portlet editor and select Add Preference. The
Portlet Preferences bar is shown in Figure 6-3.

Figure 6-3 Portlet Preferences Bar

[E] myClipper. partlet 52 =0

BEA Clipper Portlet

{0k Event Handlers: No event handlers

Portlet Modes
Portlet Preferences ————————— Portlet Preferences
Bar remotelr|

B

Oracle WebLogic Portal Portlet Development Guide 6-5

Creating Clipper Portlets

3. In the Properties editor, enter the Preference Name and Preference Value in the appropriate
fields, as shown in Figure 6-4.

Figure 6-4 Preference Name and Value Fields

= x BB EBEYTH
Property Value
= Mew Preference

Modifiable true

Multi Y¥alued

Preference Description Preference description goes-tete
Preference Name Mew Preference
Preference Yalue

Preference Name and
Value Fields

For more information on setting portlet preferences, see “Portlet Preferences” on page 5-56

Modifying the Appearance of a Clipper Portlet

You can set portlet preferences to specify which portion of a web page to clip. You can also
modify the text that is clipped by implementing a Java class and specifying it as a portlet
preference. Table 6-1 lists and describes the set of clipper portlet preferences that you may set
manually to accomplish these tasks. For details on how to set preferences, see “Modifying
Clipper Portlet Properties” on page 6-4.

Note: The preferences clipXPath, clipStartText/clipEndText, and clipCustomClass (listed in
Table 6-1) are exclusive. The system looks for clipCustomClass first. If that class is not
present, the system looks for clipXPath. If clipXPath is not present, the system looks for
clipStartText/clipEndText.

6-6 Oracle WebLogic Portal Portlet Development Guide

Modifying the Appearance of a Clipper Portlet

Tahle 6-1 Preferences for Determining the Text to Clip

Property Name

Property Value

clipXPath

(Optional) An XPath that is applied to the remote page. The remote page is
required to be well-formed XML. If you set this option, the system will apply
the XPath to the remote page and put the text of the first node found in the
clipper portlet output.

This option provides a convenient way to clip a specific chunk of text. For
example, suppose this preference value is html/body[1], which is an XPath
expression that selects the <body> element of the web page’s text.

You can also use this option to specify div elements to clip. For example,
/ldiv[@id="barracuda”] clips out a <div id="barracuda”> element.

clipStartText,
clipEndText

(Optional) Specifying regular expressions that are used to locate the beginning
and the end of the web page text to clip. For example, if the page you want to
clip looks like:

Some web site text... <abc> text to clip </abc> Some more web site text...

and you want to clip the text between <abc> and </abc> inclusive, enter the
following properties and values:

clipStartText = <abc>
clipEndText = </abc>

The left angle bracket needs to be escaped if you enter the values directly in the
XML .portlet file. For example:

<netuix:preference name="clipStartText" value="&aIt;abc>"
modifiable="false"/>

<netuix:preference name="clipEndText" value="&It;abc>"
modifiable="false"/>

clipCustomClass

(Optional) This preference specifies the name of a class that implements
com.bea.netuix.clipper.IClipStrategy. This interface lets you define your own
clipping logic. The interface has one method to implement:

String clip(String markup);

Your implementation must have a no-argument constructor. The
clipCustomClass preference registers your implementation with the portlet.

An IClipStrategy class can be used to selectively rewrite a web page; for
example, you can substitute text in the page, or suppress certain elements.

Oracle WebLogic Portal Portlet Development Guide 6-7

Creating Clipper Portlets

Authenticating a Clipper Portlet

6-8

This section explains how to configure authentication for a clipper portlet. Once configured,
clipper portlet authentication is automatic. WebL ogic Portal supports two kinds of clipper portlet
authentication:

e Form-based authentication

e Basic HTTP authentication

Both of these methods are described in this section.

Form-Based Authentication

Form-based authentication is performed through a server-side form request on the remote site.
You configure this type of authentication by setting preferences on the portlet. The procedure for
setting preferences is described in “Modifying Clipper Portlet Properties” on page 6-4.

Note: There are current security limitations associated with form-based authentication. See
“Clipper Portlet Limitations” on page 6-16.

To set up form-based authentication:

1. Set the preference: authenticationType = Form. This preference enables form-based
authentication.

2. Tell the server how to build up the HTTP request that performs the authentication by setting
the preferences listed in Table 6-2.

3. Provide the authentication credentials by setting the preferences listed in Table 6-3.

Table 6-2 HTTP Request Preferences

Preference Name Preference Value

loginFormUrl (Required) The ACTION attribute in the HTML <FORM> element.
This is the URL to which the authentication request is made.

loginFormMethod (Required) The METHOD attribute in the HTML <FORM> element.
The value must be either GET or POST.

loginFormUserParam (Required) The name of the request parameter that holds the login
name.

Oracle WebLogic Portal Portlet Development Guide

Authenticating a Clipper Portlet

Tahle 6-2 HTTP Request Preferences

Preference Name

Preference Value

loginFormPasswordParam

(Required) The name of the request parameter that holds the login
password.

loginFormExtraParams

(Optional) A string to append to the request query. Use this string to
specify custom parameters that might need to be set. For example, if
the form also has COLOR and SHAPE parameters, you can set them
with:

loginFormExtraParams= COLOR=PURPLE&SHAPE=DIAMOND

The following preferences are used to provide the authentication credentials.

Table 6-3 Authentication Credential Preferences

Preference Name

Preference Value

groupUsername

Specifies shared user name.

groupPassword

Specifies the password for the shared user name.

personalUsername

Specifies a username on a per-user basis. Ignored if groupUsername is
set.

personalPassword

Specifies the password on a per-user basis. Ignored if groupUsername is
set.

Listing 6-1 shows example preferences for form-based authentication.

Listing 6-1 Example Form-Based Authentication Preferences

<netuix:preference name="remoteUrl" value="http://some.site.com"

modifiable="false"/>

<netuix:preference name="loginFormUrl" value=""http://some.site.com/login.action"

modifiable=""false'"/>

<netuix:preference name="authenticationType" value="Form" modifiable="false'"/>

<netuix:preference name="loginFormMethod"” value="POST" modifiable="false"/>

Oracle WebLogic Portal Portlet Development Guide 6-9

Creating Clipper Portlets

<netuix:preference name="loginFormUserParam"” value="o0s_username"
modifiable="false"/>

<netuix:preference name="loginFormPasswordParam” value="o0s_password"
modifiable="false"/>

<netuix:preference name="loginFormExtraParams"™ value="0s_destination=abc"
modifiable="false"/>

<netuix:preference name="groupUsername" value="your_username"
modifiable="false"/>

<netuix:preference name="groupPassword" value="your_password"
modifiable="false"/>

Basic HTTP Authentication

To set up basic HTTP authentication:

1. Set the preference: authenticationType = BasicHTTP. This preference enables form-based
authentication.

2. Provide the authentication credentials by setting the preferences listed in Table 6-3.

Tahle 6-4 Authentication Credential Preferences

Preference Name Preference Value

groupUsername Specifies shared user name.

groupPassword Specifies the password for the shared user name.

personalUsername Specifies a username on a per-user basis. Ignored if groupUsername is
set.

personalPassword Specifies the password on a per-user basis. Ignored if groupUsername is
set.

Listing 6-2 shows example basic HTTP authentication preferences.

6-10 Oracle WebLogic Portal Portlet Development Guide

Configuring URL Rewriting

Listing 6-2 Example Basic HTTP Authentication Preferences

<netuix:preference name="authenticationType" value="BasicHTTP" modifiable="false"/>
<netuix:preference name="groupUsername" value="your_username" modifiable="false"/>

<netuix:preference name="groupPassword” value="your_password" modifiable="false"/>

Configuring URL Rewriting

This section explains how to configure the way clipper portlets rewrite navigable links and
resource URLs.

This section includes these topics:
e Navigable Link Configurations
e Resource URL Configurations

e URL Rewriting Configuration Techniques

Navigable Link Configurations

Navigable links, such as anchor links, can be configured as follows:
e Rewrite the link so that the resulting page displays in the portlet. This is the default.

e Do not rewrite the link. In this case, if you click the link, the linked page opens in another
browser window, not in the portlet.

e Block the link. Because a clipper portlet embeds the URL that defines a page to clip in the
portal request, it is possible to manually change the URL so the portlet clips an arbitrary
web page. This presents a security risk, because a user could browse web pages from the
WLP server, which may be behind a firewall and thus allow access to pages that aren’t
authorized for the given user. Clipper portlets can be configured to block this security risk.

See “URL Rewriting Configuration Techniques” on page 6-12 for more information.

Resource URL Configurations

Resource URLS point to images, stylesheets, scripts, and so on. You can configure a clipper
portlet so that it either does or does not rewrite resource links so that they are proxied through the
WLP server.

Oracle WebLogic Portal Portlet Development Guide 6-11

Creating Clipper Portlets

6-12

By default, resources are proxied, because cookies for clipped pages are stored on the WLP
server. For example, if you clip a page behind a firewall, your browser will not have access to
resources on the remote page. In this case, it is necessary to route resource requests through the
WLP server. However, this proxying can affect WLP server performance; therefore, you have the
option to turn proxying off if you don’t need it.

See “URL Rewriting Configuration Techniques” on page 6-12 for more information.

URL Rewriting Configuration Techniques

You can configure the way URLSs are rewritten by implementing a Java class called
IClipperUrlFilter or by setting portlet preferences.

Implementing IClipperUrlFilter

The SPI interface com.bea.netuix.clipper.IClipperUrlFilter is available for you to define your link
rewriting rules. This interface has three methods, listed in Listing 6-3. Your implementation must
have a no-argument constructor. You register your implementation with the portlet by using the
urlFilter portlet preference. For example:

<netuix:preference name="urlFilter" value="my.package_ MyUrlFilterimpl"
modifiable="false"/>

For more information on setting portlet preferences, see “Setting Clipper Properties Manually as
Preferences” on page 6-5 and see Portlet Preferences in the Portlet Development Guide.

Listing 6-3 IClipperUrIFilter Methods

/** Should the url be reachable from the clipper portlet?
* 1T this method returns false, rewritten links containing this url will have
* empty values (for example, a link
* would be rewritten to , and a request to clip this url would
* receive a 404 response.
*/
boolean allowUrl(String url);

/**
* Should the url be rewritten to stay within portal context? If this methods
* returns false, clicking on a link
* to this url will take the user straight to the target url, which will render
* the new page in the full browser, and not inside the clipper portlet.

Oracle WebLogic Portal Portlet Development Guide

../portlets/building.html#wp1073114

Configuring URL Rewriting

*

* This method applies to navigable urls only: links in anchors, form actions,
* etc.

*/

boolean rewriteClickableUrl(String url);

/**

* For resource urls only, e.g. image, script, and style tags.

*

* Should the resource be proxied through the wlp server, or should the resource
* link point

* directly to the original resource in the remote page?

*/

boolean rewriteResourceUrl(String url);

Using Portlet Preferences

If you don’t want to define your own class to control link rewriting, you can use these portlet
preferences. For more information on setting portlet preferences, see “Setting Clipper Properties
Manually as Preferences” on page 6-5 and see Portlet Preferences in the Portlet Development
Guide.

o allowedUrlIRegex — Set the value of this portlet preference to a regular expression. WLP
tries to match URLSs against this expression, and if the match fails, the link will be blocked.
For example:

<netuix:preference name="allowedUrlRegex" value=".*allowedlink.*"
modifiable="false"/>

e proxyResourceUrls — If this portlet preference is set to false, resource URLs will not be
rewritten to run through the WLP server. The default value is true. The following example
turns off rewriting for resource links:

<netuix:preference name="'proxyResourceUrls" value="false*"
modifiable="false"/>

Suppose the clipped page has an image tag . If the
proxyResourceUrls preference value is false, then the clipper page will have the exact
same image link:

But if the value is set to true, the link will look like this:

Oracle WebLogic Portal Portlet Development Guide 6-13

../portlets/building.html#wp1073114

Creating Clipper Portlets

Clipper Portlets and HTTPS

This section discusses how to handle clipper portlets with HTTPS URLSs.
When an HTTPS link is clipped, the link shows up as an HTTPS link in the portal page.

If you click on a clipped link that causes a redirect on the remote site from an HTTP URL to an
HTTPS URL, the portal request is redirected from an HTTP URL to an HTTPS URL, as
expected. However, note the following exception to this case: the initial request to the portal for
a given browser session is never redirected to HTTPS. The following cases illustrate this
exception:

The page www . xyz . com has a link to xyz.com/mail. This link points to
http://mail.google.com/mail, and clicking that link redirects you to
https://www.google.com/accounts/ServicelLogin.

If you clip http://www.xyz.com into your portal at http://myportal . com, start your
browser, and click the mail link in your clipped portal, the portal request will be redirected to
https://myportal .com. The clipped page will be redirected to, for example,
https://www.Xxyz.com/accounts/ServiceLogin, and you will see that page.

If you clip http://mail .xyz.com/mail, and you start your browser and open the portal, then
you will not be redirected to HTTPS. The clipped page will still follow the redirect to, for
example, https://www.zyz.com/accounts/Servicelogin, so the page contents will look
fine, but the route from the browser to the WLP server will not use HTTPS. Note that the “Sign
In” form on that page has an HTTPS action URL, so the action for the clipped form will point to
https://myportal.com.

Likewise, if you clip https://www.xyz.com/accounts/ServicelLogin, and you start your
browser and go to http://myportal . com, then you will not be redirected to HTTPS on that
initial request.

Certificates and WebLogic Server

6-14

For WLS to make an HTTPS request to a site, it must have a certificate for that site in its keystore.
If the certificate is not available, you will see exceptions such as:

[Security:090477]Certificate chain received from aaa.bbb.com - 10.123.45.67
was not trusted causing SSL handshake failure.

Oracle WebLogic Portal Portlet Development Guide

Resetting the Clipper Portlet

For detailed information on configuring SSL in WLS, see the WLS document Configuring
Identity and Trust on e-docs. The basic steps to configure a clipper portlet to use HTTPS correctly
are:

1. Obtain a security certificate for the site you are trying to clip.

Tip: One way to obtain the certificate is to use the Firefox plugin called “Cert Viewer
Plus.” This plugin lets you view and save the security certificate.

Open a command shell and navigate to the root directory of your domain.
Locate the trust keystore; for example, DemoTrust.jks.

Obtain the password for the keystore.

a ~ w N

Use the Java keytool program to import the key. For example:
keytool -import -file my_certificate_file -keystore DemoTrust.jks -alias some_unique_alias

The alias value is an alias unique to that .jks file. You can view the aliases with the
command:

keytool -list -keystore DemoTrust.jks

Resetting the Clipper Portlet

If you click on links in a clipped web page, the only way to restore the original clipped URL is to
restart your browser.

Using Backing Files with Clipper Portlets

The clipper portlet comes with its own backing file. For detailed information on backing files, see
Backing Files in the Portlet Development Guide.

To add your own backing file to a clipper portlet, do the following:
e Create your own backing class that extends com.bea.netuix.clipper.ClipperBacking.
e For any of the backing file methods you override, call the super class on that method.

e Set the backingFile attribute in your .portlet file to your backing class.

Oracle WebLogic Portal Portlet Development Guide 6-15

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secmanage/identity_trust.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/secmanage/identity_trust.html

Creating Clipper Portlets

Updating Portlet Preferences While the Server is
Running

If you change the preferences for a clipper portlet in the _portlet file, the changes are not picked
up at runtime unless you set the following attribute in the WEB- INF/netuix-config.xml file:

<propagate-preferences-on-deploy propagate-to-instances="true"
master="file"/>

Preference changes that are made in the Administration Console are picked up automatically.

Clipper Portlet Limitations

6-16

The following are known limitations on the clipper portlet feature. These limitations may or may
not apply to future releases.

e Authentication preferences are not encrypted.

e JavaScript in remote pages is not fully supported. Sites with that use JavaScript may work,
but it is not guaranteed.

e Persistent cookies are not supported. Remote cookies only last as long as the main portal
session.

e The current remote URL for a clipper portlet is stored in the session. This means that to
reset your clipper window, you need to close and restart your browser.

Oracle WebLogic Portal Portlet Development Guide

CHAPTERa

Optimizing Portlet Performance

The process of optimizing your portlets for the best possible performance spans all phases of
development. You should continually monitor performance and make appropriate adjustments.

This chapter describes performance optimizations that you can incorporate as you develop
portlets.

This chapter contains the following sections:
e Performance-Related Portlet Properties
e Portlet Caching
e Remote Portlets
e Portlet Forking

e Asynchronous Portlet Content Rendering

Performance-Related Portlet Properties

Customizing performance-related portlet properties can help you improve performance. For
example, you can set process-expensive portlets to pre-render or render in a multi-threaded
(forkable) environment. If a portlet has been designed as forkable (multi-threaded) you have the
option of adjusting that setting when building your portal.

The following portlet properties are performance related:

e Render Cacheable/Cache Expires

Oracle WebLogic Portal Portlet Development Guide 1-1

Optimizing Portlet Performance

e Forkable/Fork Render/Fork Render Timeout
e Fork Pre-Render/Fork Pre-Render Timeout

e AsyncContent

“Portlet Properties” on page 5-40 includes descriptions of these properties. If you design your
portlets to allow portal administrators to adjust cache settings and rendering options, you can
modify those properties in the Administration Console.

Portlet Caching

You can cache the portlet within a session instead of retrieving it each time it recurs during a
session (on different pages, for example). Portlets that call web services perform frequent,
expensive processing; caching web service portlets greatly enhances performance. Portlet
caching is well-suited to caching personalized content; however, it is not well suited to caching
static content that is presented identically to all users and that rarely expires.

The ideal use case of the portlet cache is for content that is personalized for each user and expires
often. In other situations, it might be more beneficial to use other caching alternatives such as
using the wl - cache tag or the portal cache.

For a detailed examination of the Render Cacheable property and a discussion of when you
should or should not use it, refer to the article Portlet Caching by Gerald Nunn, available the
Oracle Technology Network.

Remote Portlets

1-2

Remote portlets are made possible by Web Services for Remote Portlets (WSRP), a web services
standard that allows you to “plug-and-play” visual, user-facing web services with portals or other
intermediary web applications. WSRP allows you to consume applications from
WSRP-compliant Producers, even those far removed from your enterprise, and surface them in
your portal.

While there might be a performance boost related to the use of remote portlets, it is unlikely that
you would implement them for this reason. The major performance benefit of remote portlets is
that any portal framework controls within the application (portlet) that you are retrieving are
rendered by the producer and not by your portal. The expense of calling the control life cycle
methods is borne by resources not associated with your portal.

Implementations using remote portlets also have limitations; for example:

Oracle WebLogic Portal Portlet Development Guide

http://www.oracle.com/technology/pub/articles/dev2arch/2005/01/portlet_caching.html

Portlet Forking

e Fetching data from the producer can be expensive. You need to decide if that expense is
within reason given the resources locally available.

e Some features, such as customizations, are unavailable to the remote portlet.

If the expense of portal rendering sufficiently offsets the expense of transport and the other
limitations described above are inconsequential to your application, using remote portlets can
provide some performance boost to your portal.

For more information on implementing remote portlets with WSRP, refer to the Federated
Portals Guide.

Portlet Forking

Portlet forking allows portlets to be processed on multiple threads. Depending on the available
server resources, this means that the portal page will refresh more quickly than if all portlets were
processed sequentially. Forking is supported for JSP, Page Flow, Java, and WSRP portlets
(consumer portlets only).

Note: Although using this feature might reduce the response time to the user in most situations,
on a heavily loaded system it can actually decrease overall throughput as more threads
are being used on the server/JVM for each request—adding to contention for shared
resources.

This section includes these topics:
e Configuring Portlets for Forking
e Architectural Details of Forked Portlets

e Best Practices for Developing Forked Portlets

Configuring Portlets for Forking

Forking is easy to enable — you just set properties using the portlet Properties editor in Workshop
for WebL ogic, as shown in Figure 7-1. The available forking properties are described in this
section. For detailed information on the Portlet Properties editor, see “Portlet Properties” on
page 5-40.

Oracle WebLogic Portal Portlet Development Guide 1-3

../federation/index.html
../federation/index.html

Optimizing Portlet Performance

Figure 7-1 Forking Properties

& —
|5 B4

= =B

Property Value b

= General Portlet Properties

Async Content Rendering
Cache Expires (seconds)
Cache Render Dependencies
Client Classifications

Default Minimized

Definition Label

Description
7ent Handlers

Farkable

Fork Pre-Render

Fark Pre-Render Timeout
Faork Render

none

&0

true

Mo Classifications
false

simple

syent handlers

false

false

Fork Render Timeout
AF-Dependencies Path
Origntation

default

Table 7-1 Portlet Forking Properties

Property

Value

Forkable

This property must be set to true if you want the portlet to be forked. This
property identifies the portlet as safe to run forked. If this attribute is false (the
default), the portlet will not be forked regardless of the settings of the other two
forking properties. See “Best Practices for Developing Forked Portlets” on
page 7-10 for tips on developing forked portlets.

When set to true, a portal administrator can use the Run the Portlet in a
Separate Thread property. If set to false, that property is not available to
administrators. See the Portal Development Guide for information on using the
Administration Console to edit portlet properties.

Fork Pre-Render

Enables forking (multi-threading) in the pre-render life cycle phase. For an
overview of the portal life cycle, see “Architectural Details of Forked Portlets”
on page 7-6. See also “How the Control Tree Affects Performance” in the Portal
Development Guide for more information about the control tree life cycle.

Setting Fork Pre-Render to true indicates that the portlet’s pre-render phase
should be forked. See “Dispatching Pre-Render Forked Portlets to Threads” on
page 7-9 for more information on the pre-render phase.

1-4 Oracle WebLogic Portal Portlet Development Guide

../portals/index.html
../portals/index.html
../portals/index.html

Portlet Forking

Table 7-1 Portlet Forking Properties (Continued)

Property

Value

Fork Pre-Render
Timeout (seconds)

If Fork Pre-Render is set to true, you can set an integer timeout value, in
seconds, to indicate that the portal framework should wait only as long as the
timeout value for each fork pre-render phase. The default value is -1 (no
timeout). If the time to execute the forked pre-render phase exceeds the timeout
value, the portlet itself times out (that is, the remaining life cycle phases for this
portlet are cancelled), the portlet is removed from the page where it was to be
displayed, and an error level message is logged that looks something like the
following example.

<May 26, 2005 2:04:05 PM MDT> <Error> <netuix>

<BEA-423350> <Forked render timed out for portlet

with id [t_portlet_1_1]. Portlet will not be included in
response.>

Fork Render

Setting to true tells the framework that it should attempt to multi-thread render
the portlet. This property can be set to true only if the Forkable property is set
to true. See “Dispatching Render Forked Portlets to Threads” on page 7-9 for
more information on the render phase.

Fork Render Timeout
(seconds)

If Fork Render is set to true, you can set an integer timeout value, in seconds,
to indicate that the portal framework should wait only as long as the timeout
value for each fork render portlet. The default value is -1 (no timeout). When a
portlet rendering times out, an error is logged, but no markup is inserted into the
response for the timed-out portlet.

Selecting a value of O or -1 removes the timeout attribute from the portlet; use
this value if you want to revert to the framework default setting for this attribute.

The forking properties, if set, appear as XML elements a .portlet file. Listing 7-9 shows a sample
of a portlet configured for both pre-render and render forking:

Listing 7-9 Forking Properties Set in a .portlet File

<netuix:portlet title="Forked Portlet"
definitionLabel="forkedPortletl"
forkable=""true"
forkPreRender=""true"
forkRender="true">
<netuix:content>

Oracle WebLogic Portal Portlet Development Guide 1-5

Optimizing Portlet Performance

1-6

<netuix:jspContent contentUri="/portlets/forked.jsp"
backingFile="backing.PreRenderBacking"/>
</netuix:content>
</netuix:portlet>

Architectural Details of Forked Portlets

Generally, forking is easy to understand and to enable. However, with a deeper understanding of
how forking works, you can avoid potential problems and unwanted side effects. This section
discusses the architectural design of forked portlets. For specific implementation tips, see “Best
Practices for Developing Forked Portlets” on page 7-10.

This section includes these topics:
e Understanding Request Latency and the Portal Life Cycle
e Queuing and Dispatching Forked Portlets for Processing
e Threading Details and Coordination

e Forking Versus Asynchronous Rendering

Understanding Request Latency and the Portal Life Cycle

For most requests to the portal, the total time to process the request, or request latency, is roughly
related to the time needed to run through the portal life cycle phases successively for all the
portlets. Each life cycle phase is performed by walking through a tree of objects, called the
control tree, that make up the portal. Each phase is essentially a depth-first walk over the tree,
where the root of the tree is the desktop, and the leaves of the tree are the books, pages, portlets,
and other so-called controls. Figure 7-2 illustrates the general structure of a portal control tree.

Oracle WebLogic Portal Portlet Development Guide

Portlet Forking

Figure 7-2 Simple Portal Schematic Example

. Desktop
‘l. Shell

Main
Book

Q) E2)) D D, ()
() Q)) () ())) () ()) ()
AWAVAW AN AWAYV AV AN AY AV AW AW AW AP AW AW AW LV LAY AW AW LAY AWAN
) Books
P‘w
/\ Portiets

%

Figure 7-3 illustrates the successive phases of the portal rendering life cycle. During the first
traversal of the control tree, the init() method is called on each control. On the second traversal,
loadState() is called, and so on, until every control is processed.

Typically, portlet processing time is dominated by the execution of business logic, especially if
the portlets must access remote resources such as databases or web services, or if they are
computationally intensive. Forking allows you to parallelize some of these longer running portlet
operations to decrease the overall request latency. If forking is enabled, these operations are
collected in a queue and dispatched to multiple threads for processing. Depending on your
server’s resource availability, forking can theoretically reduce request latency to the maximum
latency of any of the forked portlets.

Oracle WebLogic Portal Portlet Development Guide 1-1

Optimizing Portlet Performance

Figure 7-3 Flow of Portal Life Cycle Methods
init()

}

loadState()
if _nfpb=true

v

handlePostBackData()

if handlePostBack-
Data() = true

A

v

If handlePostBackData() = false

v
raiseChangeEvents()

r

preRender()

l

saveState()

}

render()

!

dispose()

Queuing and Dispatching Forked Portlets for Processing

During the pre-render phase of the portal life cycle, all portal controls are iterated and
pre-rendering operations are executed. Any portlets that are marked for either pre-render or
render forking are identified during this pass and, if they are marked for forking, they are placed
in separate queues: a pre-render queue and a render queue. (See “Configuring Portlets for
Forking” on page 7-3 for details on how to mark portlets for pre-render and render forking.)

1-8 Oracle WebLogic Portal Portlet Development Guide

Portlet Forking

At the appropriate times, these queues are dispatched to threads and processed, as explained in
the following sections. See also “Threading Details and Coordination” on page 7-9.

Dispatching Pre-Render Forked Portlets to Threads

In the pre-render phase of the portal life cycle, portlets typically perform business logic, typically
by handling postback data or by calling a backing file method, such as the
AbstractJSPBacking.preRender() method.

During normal pre-render processing of the portal, any portlet that is marked for pre-render
forking is placed into a queue and the pre-render processing is skipped. After the entire pre-render
phase has been performed, the queue is inspected. If it is not empty, the queue is dispatched and
the portlets in the queue are assigned to a worker thread. After the queue is fully dispatched, the
main portal thread waits until either all the worker threads are completed or timed out.

Dispatching Render Forked Portlets to Threads

In some cases, business logic is performed during the render phase of the portal life cycle,
typically when JSP scriptlets are used.

Before running through the render life cycle, the render queue is examined. If it is not empty, the
queue is dispatched and any portlets in the queue are assigned to worker threads. As with
pre-render forking, the main portal thread waits until all of the render threads are either completed
or timed out. The resulting buffered response from each thread is saved for each completed forked
portlet. At this point, the actual render life cycle phase is run. When a portlet is encountered that
was marked for forking, the render processing is skipped and the saved buffered response data
for the portlet is written to into the response.

Some types of portlets, notably Struts or Page Flow portlets, provide a mapping between the
underlying application technology and the portal life cycle model. Usually in these cases, actions
are provided to handle business logic during the handle postback or pre-render phases of the life
cycle.

Threading Details and Coordination

The worker threads used by the forking feature are implemented as WLS WorkManager classes.
WebLogic Portal does not directly allocate any threads; rather, a WorkManager is identified by
its INDI name. If found, the WorkManager is used to dispatch the worker threads (Work
instances). The default WorkManager for dispatching forked portlets is called
wm/forkedRenderQueueWorkManager, with a default called wm/Default. If you need to
customize the WorkManager for any reason, you can specify an alternate instance through the

Oracle WebLogic Portal Portlet Development Guide 1-9

Optimizing Portlet Performance

1-10

weblogic.xml or weblogic-config.xml file by associating the alternate instance with the JNDI
name wm/forkedRenderQueueWorkManager. See also “Consider Thread Safety” on page 7-11.

The framework uses a ForkedL ifecycleContext object to coordinate between the mainline life
cycle thread and the forked Worker instances. During initialization of a Worker, the
ForkedLifecycleContext is created and registered with the forking dispatch queue. When the
Work instance has completed, the ForkedLifecycleContext is set to completed and the waiting
mainline thread is notified. Alternately, if the waiting mainline thread determines that the forked
Work instance is taking too long and should be timed out, the ForkedL.ifecycleContext is marked
as timed out and the Work instance is removed from the dispatch queue. Note that in this case,
the Work item is not aborted, and will keep running until the portlet code being run for either the
pre-render or render phase is completed. You can obtain the current ForkedPreRenderContext or
ForkedRenderContext using a utility method on those classes from the request. You can then
check if a timeout has been set to detect cases where the Worker thread was timed out by the
portal framework and should be aborted.

Forking Versus Asynchronous Rendering

Regardless of whether or not you use render forking, the portal does not render until all portlets
complete rendering. If you want portlets to render individually, you can use asynchronous portlet
rendering.

Asynchronous portlet content rendering refers to page processing that occurs on the client
browser; multiple threads are spawned, using AJAX or IFRAME technology. Asynchronous
portlet rendering allows the contents of a portlet to render independently from the surrounding
portal page. This can provide a significant performance boost; for example, when a portal visitor
works within a portlet, only that individual portlet needs to be redrawn.

WARNING: Using forked rendering with asynchronous portlet content rendering is
unnecessary, is not recommended, and could result in unexpected behavior.

For details on asynchronous rendering, see “Asynchronous Portlet Content Rendering” on
page 7-13. For a comparison of portlet forking and asynchronous rendering, see “Comparison of
Asynchronous and Conventional or Forked Rendering” on page 7-18.

Best Practices for Developing Forked Portlets

This section discusses three primary issues you need to consider when developing forked portlets:
thread safety, runtime environment, and interportlet communication issues.

Oracle WebLogic Portal Portlet Development Guide

Portlet Forking

Consider Thread Safety

Although the portal framework handles thread safety issues that affect the framework itself, any
code you write that is intended to be used in forked portlets should be written in a threadsafe
manner.

e Only mark thread-safe portlets as forkable. This helps to ensure that administrators do not
incorrectly enable forking for portlets that were not written with thread safety in mind.

e Cautiously evaluate interactions between your code and portal framework constructs. For
example, do not unwrap the request and response objects. They are used specifically to
isolate the request and response. For certain types of portlets, particularly Page Flow and
Struts portlets, an additional wrapper is put in place, so one level of unwrap may work, but
unwrapping to the root request or response will cause threading issues.

e Avoid using portal-managed objects, such as the request and response, for your own code
synchronization. These objects are used by the portal framework for synchronization. If
you use them for that purpose, out of order lock acquisition and deadlocks can occur.

Consider the Runtime Environment for Forked Portlets

When designing forked portlets, try to maximize their independence from other constructs in the
portal (such as BackingContext) and from other portlets. Such dependencies create problems for
forked portlets because forked portlets are inherently isolated from the runtime environment.

Isolation of Forked Portlets from the Runtime Environment

The primary difference between the runtime environment for forked portlets and non-forked
portlets is in their level of isolation. This difference occurs because of the way that forked portlets
are collected and dispatched outside of the life cycle execution for the main portal control tree.

Each life cycle iteration of the control tree results in a life cycle method being called for that
control. In this way, each control has the opportunity to perform life cycle specific business logic.
Additionally, each life cycle method invocation involves both a begin and end operation, which
enables setup and teardown for controls that require such functionality.

Enabling preRender or render forking moves the execution of a portlet’s life cycle processing
from occurring within the main portal control tree walk to outside of it. The main side effects of
this are:

o The forked portlet is essentially isolated from any stateful setup that its placement in the
control tree provided.

Oracle WebLogic Portal Portlet Development Guide 1-11

Optimizing Portlet Performance

1-12

e Forked portlets are executed out of order, both in terms of other nodes in the control tree
and even amongst other sibling portlets. For the preRender phase, controls deeper in
depth-first order will be executed ahead of forkPrerender portlets. For the render phase, all
forkRender portlets will be executed before any other control in the tree processes its
render phase.

As a developer of forked portlets, be aware that code meant to be executed in a forked portlet
should be as stand-alone as possible. Avoid relying on interaction with other portlets, other
controls higher in the control tree, or state provided by other controls in the control tree.

Do not rely on any processing done during the same life cycle in other portlets, because forking
a portlet both takes it out of order with respect to control tree execution and applies an arbitrary
ordering among forked portlets in the dispatch queue.

BackingContext and Pre-Render Forked Portlets

For preRender forked portlets, one of the main areas of concern for forked portlets is the
BackingContext framework. This framework is managed in part by a stack-based implementation
involving the request, which depends on Backable controls in the control tree to push and pop
their BackingContext instances onto and off of the request. All of these activities happen during
the pre-render life cycle phase. When writing a portlet that expects a particular BackingContext
stack environment, problems can occur with Fork Pre-Render mode. Any access to
BackingContexts through the request will result in that BackingContext not being available while
forked.

To work around this BackingContext issue, you can use non-contextual methods to obtain
BackingContexts for other presentation controls in the control tree, but these generally involve
explicit walking of the context tree, and some contexts may be unavailable because the context
in question has already been cleaned up by the control that manages it in preRender.

Use Caution with Interportlet Communication and Forked Portlets

Interportlet communication (IPC) is another area of concern for forked portlets. Again, the more
you can isolate a portlet’s logic, the more successfully it will run in a forked environment.

IPC is performed in several different life cycles. When an IPC scenario is enabled that results in
an IPC call initiated during preRender, and a portlet is also enabled for forking, that IPC will not
be performed, since the actual dispatch of the IPC event queue happens immediately following
the main execution of preRender() over the control tree. This is of primary concern to portlets that
raise IPC events in a backing file preRender() method, from a Page Flow, a Struts begin action,
or from a JSF beginning view root.

Oracle WebLogic Portal Portlet Development Guide

Asynchronous Portlet Content Rendering

Asynchronous Portlet Content Rendering

Asynchronous portlet rendering allows you to render the content of a portlet independently from
the surrounding portal page. This can provide a huge performance boost; for example, when a
portal visitor works within a portlet, only that individual portlet needs to be redrawn.

Note: The Collaboration portlets, such as the Calendar portlet, will not operate correctly when
the desktop or portlet asynchronous mode is enabled. Async mode is not supported for
Collaboration portlets. For information on Collaboration Portlets, see “Using the
Collaboration Portlets” on page 11-1.

Tip: You can also enable asynchronous rendering for an entire portal desktop. Both
portlet-specific (as discussed in this section) and desktop asynchronous rendering offer
quicker response times than synchronous rendering. Note that the portlet-specific and
desktop options for asynchronous rendering are mutually exclusive features. For more
information on asynchronous desktop rendering and tips on deciding which method to
choose, see the chapter “Designing Portals for Optimal Performance” in the WebLogic
Portal Development Guide.

You can use either AJAX technology or IFRAME technology to implement asynchronous
rendering for individual portlets. When using asynchronous portlet rendering, a portlet renders in
two phases. The normal portal page request process occurs first; during this process, the portlet's
non-content areas, such as the title bar, are rendered. Rather than rendering the actual portlet
content, a placeholder for the content is rendered. A subsequent request process displays the
portlet content.

This section contains the following topics:

Implementing Asynchronous Portlet Content Rendering

Considerations for IFRAME-based Asynchronous Rendering

Considerations for AJAX-based Asynchronous Rendering

e Comparison of IFRAME- and AJAX-based Asynchronous Rendering

Comparison of Asynchronous and Conventional or Forked Rendering

Asynchronous Content Rendering and IPC

Oracle WebLogic Portal Portlet Development Guide 1-13

../portals/index.html
../portals/index.html

Optimizing Portlet Performance

1-14

Implementing Asynchronous Portlet Content Rendering

The portlet property asyncContent in the Properties view allows you to specify whether to use
asynchronous rendering, and to select which technology to use. An editable drop-down menu
provides the selections none, ajax, and iframe. If you want to create a customized
implementation of asynchronous rendering, you can do so by editing the _portlet file to set this
up.

Portlet files that do not contain the asyncContent attribute appear with the initial value none
displayed in the Properties view. Any changes to the setting are saved to the .portlet file.

Note: Although Browser portlets use an internal implementation that appears similar to that of
an asynchronous portlet and both portlet types use IFRAME HTML elements, the actual
implementations are quite different. Browser portlets are merely displaying static
embedded documents, but asynchronous IFRAME portlets are managed by the
framework.

Keep the following global considerations in mind for any asynchronous rendering
implementation:

e As a best practice, do not depend on the built-in navigation features (Back and Forward
buttons) of a browser. Build navigation into your portlets so that navigation is handled at
that level of interaction.

If navigation is handled by the browser, the behavior of a portlet will vary according to the
type of asynchronous rendering technology used, and this inconsistency can be confusing
to the end user. For example, with IFRAME technology each portlet interaction is tracked,
but this interaction does not update the “view” from the server’s perspective; if the user
clicks the Back button, the server takes the user to a state preceding the interaction with the
portlet.

e The initial (completion of) page load for an asynchronously rendered portlet page will be
longer because, for example, loading a page containing five asynchronous portlets entails
six requests to the server. However, because the portal page begins to load quickly, the user
might perceive a faster load time even if the completion takes more time overall.

e You should pre-define portlet sizes using Look & Feel settings; otherwise, as the page
loads, the portlets might resize several times as they adjust to their arrangement on the
page.

e Portlet backing files are run twice: once for the outer (portal) request and another for the
inner (content) request. You can use the set of framework APIs in the
PortletBackingContext class to distinguish between these two requests; for more
information, refer to the Javadoc information for these APIs:

Oracle WebLogic Portal Portlet Development Guide

Asynchronous Portlet Content Rendering

com.bea.netuix.servlets.controls.portlet.PortletPresentationContext.isAsyncContent()
com.bea.netuix.servlets.controls.portlet.PortletPresentationContext.isContentOnly()
com.bea.netuix.servlets.controls.portlet.backing.PortletBackingContext.isAsyncContent()
com.bea.netuix.servlets.controls.portlet.backing.PortletBackingContext.isContentOnly()

e Asynchronous portlet rendering can be used with control tree optimization. Most of the
best practices for control tree optimization also apply to the design of asynchronous
rendering. For more information on control tree optimization, refer to the Portal
Development Guide.

e Interportlet communication is not supported when asynchronous content rendering is
enabled; however, you can temporarily disable asynchronous rendering in specific
situations if needed. For details, refer to “Asynchronous Content Rendering and IPC” on
page 7-20. If you require interportlet communication, consider using asynchronous desktop
rendering, as described in the chapter “Designing Portals for Optimal Performance” in the
Portal Development Guide.

e HTTP redirects are not supported when asynchronous content rendering is enabled;
however, you can temporarily disable asynchronous rendering using the same mechanisms
as those described in “Asynchronous Content Rendering and IPC” on page 7-20.

e Using forked pre-rendering or forked rendering in an asynchronous portlet is unnecessary
and in any case is not recommended, and although this is not an error condition, it could
result in unexpected behavior.

e Using PostbackURLs (not derived types) within an asynchronous portlet (or a floated
portlet) causes the portlet to lose various aspects of its state, including the results of render
caching. Additionally, multiple instances of such portlets will begin to share state. To avoid
this issue, you can use one of these workarounds:

— Use alternative mechanisms for generating URLSs more appropriate to the portlet type,
such as <render : jspContentUrl> or <netui :anchor>.

— Add GenericURL.WINDOW_LABEL_PARAM directly to the PostbackURL with the value
returned from PortletPresentationContext.getLabel () or
PortletBackingContext.getLabel ().

e WebLogic Portal allows portlets to change the current window state or mode of a portlet
either programmatically, or using parameters added to URLs. When you enable
asynchronous rendering for a portlet, these mechanisms will not provide a consistent view
to the end user; for example, the title bar rendered above the portlet will not immediately
reflect the change in the mode or state.

Oracle WebLogic Portal Portlet Development Guide 1-15

../portals/index.html
../portals/index.html

Optimizing Portlet Performance

1-16

e In addition to the issues described in “Asynchronous Content Rendering and IPC” on
page 7-20, you must carefully consider the implications whenever a portlet tries to
communicate with the portal (or the portal communicates with the portlet). For example,
suppose a portlet or JSP places data in the request for the doobie portlet to process; if
portlet doobie is asynchronous, it is running on a different request and will never see the
data. Because of this behavior, there will be cases when you should not use asynchronous
portlets in your implementation.

Thread Safety and Asynchronous Rendering

If you use asynchronous portlet content rendering, be sure that your code (for example, in backing
files) is thread safe. The portal framework handles the major issues outside of a developer's
control, such as concurrent access to the request and response; and it manages coordination of
issues such as waiting for all async operations to finish and assembling the results in the correct
order. But the portlet developer has the responsibility for ensuring that the user code is thread
safe.

This consideration also applies to parallel (forked) portlet processing. See “Portlet Forking” on
page 7-3.

Considerations for IFRAME-based Asynchronous Rendering

Some special considerations associated with IFRAME-based asynchronous rendering include:

e IFRAME rendering varies depending on the browser. Making an IFRAME implementation
seamless to an end user involves several factors, such as proper skin/skeleton development
conventions, cross-browser development, and so on.

e [f the content is larger than the IFRAME region, horizontal and/or vertical scrolling will be
enabled. Be careful of content which itself contains scrolling regions, as it can be difficult
to manipulate all scrolling regions to view all embedded content.

e IFRAME rendering might complicate other aspects of portal development, such as
cross-portlet drag and drop.

e IFRAME rendering works whether or not Javascript is enabled.

e You can disable asynchronous portlet content rendering for certain operations by using the
<render :context> tag or the AsyncContentContext class as described in “Disabling
Asynchronous Rendering for a Single Interaction” on page 7-20; however, these
mechanisms do not work correctly when IFRAME-based asynchronous rendering is used.

Oracle WebLogic Portal Portlet Development Guide

Asynchronous Portlet Content Rendering

To avoid this issue, turn off asynchronous rendering or use AJAX-based asynchronous
rendering.

Considerations for AJAX-based Asynchronous Rendering

Some special considerations associated with Asynchronous JavaScript and XML (AJAX)-based
asynchronous rendering include:

e AJAX technology relies on Javascript. If users disable Javascript in their browser,
AJAX-based portlets will be broken (the content will never render).

e This mechanism might not be compatible with other AJAX mechanisms, such as those that
might typically be used by content authors to dynamically populate forms, for example.
Generally speaking, a best practice is to either let WebLogic Portal manage AJAX at the
portal level, or turn off AJAX for a portlet if you intend to incorporate AJAX behaviors
into your portlet.

e The current AJAX implementation does not support XHTML. The implementation
performs DOM operations that are known not to work in some browsers when using an
XHTML content type. This problem arises when a Look & Feel skeleton is configured to
use an XHTML content type.You can avoid this problem by doing one of two things:

— Use an HTML content type for the portal
— Use the IFRAME-based implementation of async portlet rendering

Comparison of IFRAME- and AJAX-based Asynchronous
Rendering

Table 7-2 summarizes the advantages and disadvantages of IFRAME- and AJAX-based
asynchronous rendering. Oracle recommends AJAX as a more robust implementation.

Oracle WebLogic Portal Portlet Development Guide 1-11

Optimizing Portlet Performance

1-18

Table 7-2 IFRAME-based and AJAX-based Asynchronous Portlet Summary Table

Type Advantages Disadvantages

IFRAME Works with Javascript enabled or Generally perceived as providing a less
disabled intuitive user experience
Support for embedded media Can complicate more full-featured portlet
(non-HTML) files development tasks, such as cross-portlet

drag and drop

Supports XHTML.

AJAX Generally perceived as providingamore Works only with Javascript enabled

intuitive user experience

Provides a single document for
full-featured portlet development tasks,
such as cross-portlet drag and drop

Provides better Look & Feel integration

Does not currently support XHTML

Comparison of Asynchronous and Conventional or Forked
Rendering

The following table compares some of the behavior and features of conventional or forked
rendering and asynchronous portlet content rendering.

Table 7-3 Comparison of Behaviors - Forked/Conventional Rendering and Asynchronous Rendering

Behavior/Feature

Forked or Gonventional Rendering

Asynchronous Rendering

Completed

rendering of page

Page does not render until all
portlet processing is complete

Page, and portlet frames, render
immediately; individual portlet content
renders as processing completes

HTML page No changes between conventional ~ Page uses AJAX or IFRAME for
rendering and forked rendering rendering.

Rendering Requires only one request. Requires n + 1 requests

requests (where n is the number of asynchronous

portlets)

True only for page requests; when
interacting with an individual portlet,
only one request is required.

Oracle WebLogic Portal Portlet Development Guide

Asynchronous Portlet Content Rendering

Tahle 7-3 Comparison of Behaviors - Forked/Conventional Rendering and Asynchronous Rendering

Behavior/Feature Forked or Conventional Rendering Asynchronous Rendering

Refresh Entire page refreshes when Refresh required only for an individual
interaction occurs on any portlet portlet.

IPC Support IPC supported IPC not supported, although some
workarounds exist for AJAX
asynchronous portlets.

Page Server response to page request Portal page does not include portlet

request/response includes content of page content (less information needs to be
returned by the server); page starts
loading faster

Portal Life Cycle Considerations with Asynchronous
Content Rendering

This section provides more information about life cycle and control tree implications associated
with using asynchronous content rendering.

For the initial request for a portal page, backing files attached to the portlet will run in the context
of a full portal control tree. However, portlet content—such as Page Flows, managed beans, JSP
pages, and so on—will not run for this initial request.

The values for the above-referenced APIs will be:

PortletBackingContext. isAsyncContent() = true
PortletBackingContext.isContentOnly() = false

For the subsequent content requests, backing files attached to the portlet, and the portlet content
itself—such as Page Flows, managed beans, JSP pages, and so on—uwill run in the context of a
“dummy” control tree.

The values for the above-referenced APIs will be:

PortletBackingContext.isAsyncContent() = true

PortletBackingContext. isContentOnly() = true

PortletPresentationContext. isAsyncContent() = true
PortletPresentationContext. isContentOnly() = true

An important consequence of this model is that when asynchronous content rendering is enabled
for portlets, the portlet content will run in isolation from the rest of the portal. Such portlets

Oracle WebLogic Portal Portlet Development Guide 1-19

Optimizing Portlet Performance

1-20

therefore cannot expect to have direct access to other portal controls such as books, pages,
desktops, other portlets, and so on.

Asynchronous Content Rendering and IPC

Although IPC is not supported when asynchronous content rendering is enabled, WebLogic
Portal provides some features that allow these two mechanisms to coexist in your portal
environment. In addition, you can disable asynchronous rendering for single requests using the
mechanisms described in this section.

This section also applies to HTTP redirects.

Note: The techniques described in this section do not currently work with IFRAME portlets.

Tip: If you enable asynchronous rendering at the portal/desktop level, you can use IPC
without restrictions. For more information on asynchronous portal/desktop rendering,
see the WebLogic Portal Development Guide.

File Upload Forms

For forms containing file upload mechanisms, the WebLogic Portal framework automatically
causes page refreshes without the need for any workarounds.

Disabling Asynchronous Rendering for a Single Interaction

Generally, if a portlet needs to disable asynchronous content rendering for a single interaction
(such as a form submission, link click, and so on), you should use the mechanism described in
this section.

Tip: When you use these mechanisms to disable asynchronous rendering, the portlet’s
action/rendering will be performed using two requests. The portlet’s action is performed
in the page request, while the portlet’s rendering is performed on a subsequent request.
Ensure that your action does not use request attributes to pass information to your JSP

page.

From a JSP page, use the <render: context> tag as follows. You can find this tag in the Design
Palette under Tag Libraries > Portal Framework Rendering > Context.

<render:context asyncContentDisabled=""true">

Oracle WebLogic Portal Portlet Development Guide

../portals/index.html

Asynchronous Portlet Content Rendering

Form, anchor, etc. would appear here
(that is, <netui:form action="submit”.))

</render:context>

From Java code:

try {
AsyncContentContext.push(request).setAsyncContentDisabled(true);
// Code that generates a URL would appear here

} finally {

AsyncContentContext.pop(request)

}

URL Compression

URL compression interferes with some of the AJAX-specific mechanisms for page refreshes.
Because of this, URL compression must also be disabled whenever asynchronous content
rendering is disabled to force page refreshes. WebL ogic Portal disables URL compression
automatically except when file upload forms are used; in this situation, you must explicitly
disable it. Use the following examples as a guide:

From a JSP page:

<render:controlContext urlCompressionDisabled=""true">

Form, anchor, etc. would appear here
(that is, <netui:form action="submit”.))

</render:controlContext>

From Java code:

try {

UrlCompressionContext.push(request) .setUrlCompressionDisabled(true);
// Code that generates a URL would appear here

} finally {

UrlCompressionContext.pop(request)

}

For more information about implementing URL compression, refer to the Portal Development
Guide.

Oracle WebLogic Portal Portlet Development Guide 1-21

../portals/index.html
../portals/index.html

Optimizing Portlet Performance

1-22 Oracle WebLogic Portal Portlet Development Guide

CHAPTERa

Monitoring and Determining Portlet
Performance

Oracle WebLogic Portal supports the collection of analytics. You can use these analytics to
deliver information to other products such as Oracle WebCenter Analytics or they can be
consumed locally via custom code. These analytics are exposed through a public WebLogic
Portal APl in the com.bea.netuix.servlets.controls.analytics package. For more
information, see the WebLogic Portal Javadoc.

This chapter focusses on deriving and using these metrics for uses such as monitoring Service
Level Agreements (SLAS), triggering a warning if a specific portlet’s response time is excessive,
and replacing a misbehaving portlet with an alternate portlet.

This appendix contains the following sections:
e Introduction
e Use Case
e Detecting a Misbehaving Portlet

e Disabling the Bad Portlet and Enabling an Alternative Portlet

Introduction

Portals aggregate content and applications. Portals encapsulate these applications or content into
subcomponents called portlets. Portlets are then brought together into a unified view that can be
managed in one place. What happens when one of these portlets misbehaves or becomes
unavailable? WebLogic Portal has many options for dealing with these scenarios. A few common
ones are Web Service for Remote Portlets (WSRP) timeouts, interceptors, caching, threading,

Oracle WebLogic Portal Portlet Development Guide 8-1

../javadoc/index.html

Monitoring and Determining Portlet Performance

and AJAX enabled portlets. Each of these solutions deals with the problem in a different way and
each has their own set of advantages and disadvantages. Using the public API
com.bea.netuix.servlets.controls._analytics package, you can provide a more
comprehensive way of dealing with this problem.

Use Case

Supposed that you have a portal that brings together different applications (portlets) into a single
portal. Each of these applications (portlets) is mission critical in their own right and if one goes
down it is mandatory that it not disrupt the other applications. Additionally, if one application
goes down, an alternate (backup) application must be displayed in its place. After the original
application resumes normal service levels, it should be brought back online to replace the
temporary application.

The first challenge is determining when an a portlet is not meeting a particular Service Level
Agreement (SLA). The second challenge is providing the ability to bring certain portlets online
or offline based on logic applicable the SLA.

Note: The other previously mentioned methods for dealing with these types of issues can be
used in conjunction with the method described here. For simplicity, this example does
not include any other mechanisms.

The solution to portlet failure and replacement uses two features available in WebL ogic Portal.
The first feature deals with detecting when a portlet is not meeting a particular SLA. The second
feature deals with disabling the poorly behaving portlet and enabling a temporary portlet in its
place. Each of these features are useful by themselves but when combined provide a more
comprehensive solution to the problem.

Detecting a Mishehaving Portlet

8-2

To capture analytic events, you use the same hook that Oracle WebCenter Analytics uses to
capture all of its events. However, rather than using that hook to provide the rich set of reporting
capabilities provided by Oracle WebCenter Analytics, you can use the hook to simply determine
when a portlet is misbehaving.

The first step is to implement the AnalyticEventHandler interface. One ore more
implementations of this interface are called by the server whenever a portlet or page completes
its processing. This means any implementation must be extremely efficient, as it may get called
50 or more times per request.

Oracle WebLogic Portal Portlet Development Guide

Detecting a Misbehaving Portlet

Listing 8-1 Portlet Rendering Time Detection

public class MyAnalyticEventHandlerImpl implements AnalyticEventHandler

{

private final static long SLA = 5000000000L; // Five seconds (nano time)

/**
* <p>Implementation class may perform any one-time initializations here. If
* this method fails (throws an exception) the event handler will not be
* registered and no event handling will take place.</p>
*/
public void init(Q) {
System.out.printin("'My Analytic Event Handler Initialized™);
}

/**
* <p>This method is called by the container at the end of each page"s and
* portlet®s run. It is invoked for every page and portlet on every request.
* Since this method is called so frequently the implementation must be
* extremely efficient, or the entire portal”"s performace will suffer.</p>
* @param analyticEvent the event to be logged.
*
/
public void log(AnalyticEvent analyticEvent)
{
/7 1gnore all but portlet events.
ifT (analyticEvent._getAnalyticEventObject().equals
(AnalyticEvent._AnalyticEventObject.PORTLET))

ifT (analyticEvent._getTotalTime() > SLA)

{

System.out.printIn(""WARNING: portlet " +
analyticEvent.getDefinitionLabel() + " is exceeding SLA of " +
String.valueOF(SLA / 1000000000L) + ** seconds.™);

¥
}
}
/**

* <p>Implementation class may perform cleanup operations here.
* Note: there is no guarantee this method will be called.

* </p>

*/

public void dispose() {

}

Oracle WebLogic Portal Portlet Development Guide 8-3

Monitoring and Determining Portlet Performance

The main method of interest is the log(AnalyticEvent analyticEvent) method. This
method is invoked for every page and portlet on every request. The AnalyticEvent class
contains a variety of information including the times for various lifecycle phases of the portlet.

The AnalyticEventObject has three attributes or methods that provide the functionality to
detect a mishehaving portlet:

e getAnalyticEventObject()— Reports what type of object this event is for, such as a
portlet or a page.

e getDefinitionLabel () or getlnstancelLabel () — Provides the unique identifiers for
the portlet.

e getTotalTime() — Provides the total time it takes for the portlet to run through all of its
lifecycles.

If the total time for a portlet to render exceeds 5 seconds, an error message is logged to the
console. Note that times returned by these methods are in nanoseconds. As illustrated in the next
section, you can use the ServivelLeve IManager service to disable the portlet an enable another
portlet.

Generally, you should package the service provider in a JAR file. The JAR should consist of any
necessary classes (including the AnalyticEventHandler), and file named
META-INF/services/com_bea.netuix.servlets.controls.analytics.AnalyticEvent
Handler. This services file must contain one and only one class name and must be a concrete
AnalyticEventHandler implementation.

The service provider JAR or JARs should then be deployed with the application by including the
JAR in the web application’s WED- INF/ 1 ib directory. Provider JARs may also be included in the
application or system classpath, although this changes the scoping of the provider class objects,
and causes the provider implementations to be shared by multiple web applications.

Disabling the Bad Portlet and Enabling an Alternative
Portlet

8-4

The ServiceLevelManager service allows you to enable and disable portlets based on a variety
of identifiers. You can either disable a specific instance of a portlet or all instances of the portlet
definition. In this example, all instances of the portlet definition are disabled. This choice is based
on the assumption that if a portlet definition is poorly behaving, then all instances of that portlet
are behaving poorly. You can just as easily disable one offending instance.

Oracle WebLogic Portal Portlet Development Guide

Disabling the Bad Portlet and Enabling an Alternative Portlet

Alternatively, you can call the ServicLevelManger interface from an administration JSP. If you
are using this approach, the administration JSP would list all the poorly behaving portlets and an
administrator would have to manually disable the misbehaving portlets and re-enable the good
ones.

In the scenario described in “Use Case” on page 8-2, you create an alternate portlet that could
display a message saying the service is down, or provide a cached set of results, or get information
from an alternate source. Regardless of what the alternate portlet does, it goes in the same
placeholder as the misbehaving portlet.

As illustrated in Listing 8-2, the alternate portlet is disabled on startup. When a portlet goes
amiss, the alternate portlet is enabled and the bad portlet is disabled.

Listing 8-2 Enabling an Alternate Portlet and Disabling a Mishehaving Portlet

/** Service-provider interface for {@link AnalyticEventHandler}
implementations.
* <p/>
* An analytic event handler is a concrete subclass of this interface that
* has a public no-argument constructor and implements the interface methods
* gspecified below.
* <p/>
* An AnalyticEventHandler implementer should generally package their
* provider in a jar. That jar should consist of any necessary classes
*(including, of course, an implementation of AnalyticEventHandler), as well
* as a file named <tt>META-INF/services/com.bea_netuix.servlets.controls.
* analytics.AnalyticEventHandler<tt>. That services file must contain one
* and only one class name which must be a concrete AnalyticEventHandler
* implementation.
* <p/>
* The provider jar(s) should then be deployed with the application by
* including the jar in the webapp®s <tt>WED-INF/lib</tt> directory.
* Provider jars may also be included in the application or system classpath,
* although this changes the scoping of the provider class objects, and
*causes the provider implementations to be shared by multiple web apps.
* <p/>
* On initialization, the {@link com.bea.netuix.servlets.controls.
* analytics.AnalyticEventDispatcher} will load such provider. 1d the

Oracle WebLogic Portal Portlet Development Guide 8-5

Monitoring and Determining Portlet Performance

* Dispatcher fails to load or initialize the event handler a error message
* will be logged and no event handling will take place.

* <p/>

* NOTE: Implementations of the interface methods must be safe for use by
* multiple concurrent threads.

* <p/>

*/

public class MyAnalyticEventHandlerImpl implements AnalyticEventHandler
{

private final static long SLA = 5000000000L; // Five seconds (nhano time)

/**
* <p>Implementation class may perform any one-time initializations here.
* 1f this method fails (throws an exception) the event handler will not
* be registered and no event handling will take place.</p>
*/
public void initQ {

System.out.printin("'"My Analytic Event Handler Initialized™);

// Disable alternate portlet

ServicelLevelManagerFactory servicelLevelManagerFactory =
ServicelLevelManagerFactory.getlnstance();

ServicelLevelManager servicelLevelManager =
servicelLevelManagerFactory.getServicelLevelManager(*'/portal_1");

servicelLevelManager.setServicelLevelForDefinitionLabel (PortletService
Level .suspended, "alternate_pdl');

}

/**

* <p>This method is called by the container at the end of each page®"s
* and portlet®s run. It is invoked for every page and portlet on every
* request. Since this method is called so frequently the implementation
* must be extremely efficient, or the entire portal®s performace will
* suffer.</p>

* @param analyticEvent the event to be logged.

*/

public void log(AnalyticEvent analyticEvent)

{
// l1gnore all but portlet events.

8-6 Oracle WebLogic Portal Portlet Development Guide

Disabling the Bad Portlet and Enabling an Alternative Portlet

ifT (analyticEvent._getAnalyticEventObject().equals
(AnalyticEvent._AnalyticEventObject.PORTLET))
{
// This will disable any portlet that has a response time > then
// the SLA
it (analyticEvent._getTotalTime() > SLA)
{
System.out.printIn(""WARNING: portlet " +
analyticEvent_getDefinitionLabel() + " is exceeding SLA of "
+ String.valueOf(SLA /7 1000000000L) + " seconds.');

ServicelLevelManagerFactory servicelevelManagerFactory =
ServicelLevelManagerFactory.getinstance();

System.out.printIn(*'Servlet context path: " +
analyticEvent.getServletContextName());

// Note: service level manager is scoped to the context path
// (request._getContextPath()). Before 10.2 this has to be known,
// in 10.2, you can retrieve it from the AnalyticEvent using
// String getWebappContextPath();

ServicelLevelManager servicelLevelManager =
servicelLevelManagerFactory.getServicelLevelManager(*'/portal_1");

PortletServicelLevel portletServicelLevel =
servicelLevelManager .getServicelLevelForDefinitionLabel
(analyticEvent._getDefinitionLabel ());

System.out._printIn(*'Suspending Portlet: " +
analyticEvent.getDefinitionLabel());
servicelLevelManager.setServicelLevelForDefinitionLabel
(PortletServicelLevel .suspended,
analyticEvent.getDefinitionLabel());

// Activating alternate portlet
System.out.printIn(""Activating Alternate Portlet ");

servicelevelManager.setServicelLevelForDefinitionLabel (PortletServicelLevel.
active, "alternate_pdl');

}
}

Oracle WebLogic Portal Portlet Development Guide 8-7

Monitoring and Determining Portlet Performance

}

/**

* <p>Implementation class may perform cleanup operations here.
* Note: there is no guarantee this method will be called.

* </p>

*/

public void dispose() {

}

8-8

To get a reference to the ServiceLevelManager, you need to access it through the service level
factory. ServiceLeve IManagers are scoped to the web application. As such the factory requires
the webapp context path. The method of interest is:

servicelLevelManagerFactory.getServicelLevelManager (*'/mywebapp™) ;

To disable (or enable) a particular portlet, set the PortletServiceLevel on the selected portlet.
In Listing 8-2, the following code disables the alternate portlet:

servicelLevelManager.setServicelLevelForDefinitionLabel (PortletServicelevel.
suspended, analyticEvent.getDefinitionLabel());

The alternate portlet is enabled by the same method:

servicelLevelManager.setServicelLevelForDefinitionLabel (PortletServicelevel.
active, "alternate_pdl'™);

In this example, the bad portlet is not disabled until it has actually run because you do not know
it is bad until it takes more then 5 seconds to run. In an actual application, you would probably
use timeouts for a better implementation. Also, the alternate portlet does not go online until the
next request, as this request has already finished. If you want to have the alternate portlet run as
part of this request, you could perform a redirect that picks up the new portlet.

In WebLogic Portal 10.0, you had to hard code the web application context path:

ServicelLevelManager servicelLevelManager =
servicelLevelManagerFactory.getServicelLevelManager(*'/portal_1");

In WebLogic Portal 10.2 and later versions, you can get this path from the analytic event using:
String getWebappContextPath();

Oracle WebLogic Portal Portlet Development Guide

CHAPTERa

Local Interportlet Communication

Interportlet communication (IPC)—also called portlet-to-portlet communication—allows
multiple portlets to use or react to data. For example, you might want to use IPC in a self-service
or sales implementation where common data elements, such as order ID or customer 1D, are used
across multiple projects. All portlet types supported by WebLogic Portal can implement IPC.
Examples of IPC include:

e A page flow portlet talks to a non-page flow portlet using the page flow’s outer (portal)
request.

e A non-page flow portlet talks to a page flow portlet, using the ActionResolver class.

IPC in WebLogic Portal is based on the use of event handlers—objects that listen for predefined
events on other portlets in the portal and fire actions when that event occurs. You can set up
interportlet communication in two ways: using the Workshop for WebLogic interface, or using
the WebLogic Portal API.

This chapter includes a tutorial-based example of establishing interportlet communications using
an out-of-the-box portal event handler (“Basic IPC Example” on page 9-14). This example will
familiarize you with event handlers and show you some of their common uses.

This example is specific to interportlet communications within a single portal web project. For
information on establishing IPC with federated portals (WSRP), refer to the Federated Portals
Guide.

Note: If you wantto use asychronous rendering with IPC, consider using asynchronous desktop
rendering, as discussed in the chapter “Designing Portals for Optimal Performance” in
the Portal Development Guide. Note that IPC is not compatible with asynchronous

Oracle WebLogic Portal Portlet Development Guide 9-1

../federation/index.html
../federation/index.html
../portals/index.html

Local Interportlet Communication

portlet rendering, as discussed in “Asynchronous Content Rendering and IPC” on
page 7-20, but workarounds exist for some use cases.

This chapter includes the following sections:
e Definition Labels and Interportlet Communication
e Portlet Events
e |IPC Example

e |PC Special Considerations and Limitations

Definition Labels and Interportlet Communication

IPC behavior is based on portlet definition labels; that is, all portlet instances of a given .portlet
file respond to the same events. You can use the event handler options Only If Displayed and
From Self Instance Only to discriminate among the instances of the same .portlet file. For a
description of these options, refer to “Portlet Event Handlers Wizard - Add Handler Field
Descriptions” on page 9-8.

Portlet Events

Portlet events (not to be confused with page flow events) allow portlets to communicate. One
portlet can create an event and other portlets can listen for that event. A portlet event can also
carry accompanying data called a payload, where the payload is a serializable Java object.

This section contains the following topics:
e Event Handlers
e Event Types

Event Actions

Portlet Event Handlers Wizard Reference

JSF Events

Event Handlers

Event handlers listen for events raised on subscribed portlets and fire one or more actions when
a specific event is detected. An event handler tag is a child of the <portlet> tag, and a portlet

9-2 Oracle WebLogic Portal Portlet Development Guide

Portlet Events

can have any number of events associated with it. Table 9-1 lists the event handlers that are
available on the Add Handler menu of the Portlet Event Handlers wizard:

Tahle 9-1 Event Handlers

Event Description

Handle Generic Event Allows you to set up an event that will fire in
several possible situations. For details, see
Generic Event Handlers below.

Handle Portal Event Responds to a portal framework event on a
portlet by firing an action.

Handle Custom Event Responds to an event that you define.

A custom event handler is triggered by an event
and can pass a developer-defined payload or fire
any predefined action. Custom event handlers
can be triggered declaratively or they can be
based on a methods called in a backing file. You
can specify that an event should be handled by a
method in a backing file.

Handle PageFlow Event Fires an action when an event occurs on that portlet.

You can define a page flow event handler (on
that portlet) that responds to these events and
performs actions, such as to notify other portlets
(that is, raise a custom event) or invoke a
backing file call-back method, and so on.

Handle Struts Event Responds to an event on a portlet by firing a
struts action.

Handle Faces Event Responds to an event on a JSF portlet by firing a
JSF action.

Generic Event Handlers

The generic event handler, with an event attribute value of myEvent, will be triggered on the
following conditions:

e A custom event with event=myEvent is fired within the portal.

Oracle WebLogic Portal Portlet Development Guide 9-3

Local Interportlet Communication

9-4

e A page flow action with name myEvent is raised by a portlet within the portal.

e The same conditions to which the <handlePortalEvent event=myEvent> handler
would react.

e A generic event (see below) with event=myEvent is fired within the portal.

Using a generic event handler allows you to more effectively decouple your portal design,
because your application does not need to know the source or type of an event. You can change
the portlet type (for example, from a page flow portlet to a JSP portlet, with a backing file firing
custom events) without affecting how you events are processed.

Event Types

An event action depends upon the type of event being raised. Except for portal events, all other
events can be identified in the Events field on the Portlet Event Handlers Wizard, as described in
“Portlet Event Handlers Wizard Reference” on page 9-6. Events available with the portal event
handler are listed in Table 9-2.

Table 9-2 Events Available to a Portal Event Handler

This event... Fires an action when the portlet...
onActivation Becomes visible

onDeactivation Ceases to be visible

onMinimize Is minimized

onMaximize Is maximized

onNormal Returns to its normal state from either a maximized or minimized state
onDelete Is deleted from the portal

onHelp Enters the help mode

onEdit Enters the edit mode

onView Enters the view mode

onRefresh Is refreshed

Oracle WebLogic Portal Portlet Development Guide

Portlet Events

Tahle 9-2 Events Available to a Portal Event Handler

onlnit

The onlnit event is broadcast once per portal request. Use this event if
you want to define an event handler that is always executed on every
portal request.

onLookAndFeelReinit

This event is fired when a Look & Feel is re-initialized. This happens
whenever the Look & Feel is dynamically changed, such as when any
of the reinit() methods on a PortalLookAndFeel object are called. See
the PortalLookAndFeel class Javadoc for more information about the
reinit() methods.

For instance, if you capture information about the Look & Feel, you
need to know when the Look & Feel changes so that you can refresh it
with the captured information. This event provides that notification.

OnNCustomEvent

Mode change to the custom mode CustomEvent
Refer to “Event Handlers” on page 9-2.

Event Actions

Event handlers fire an action on the host portlet when that handler detects an event from another
portlet in the application (or possibly the same portlet, for example in the case of a page flow
portlet). For example, when the user minimizes the appropriate portlet, a portal event called
onMinimize might cause the handler listening for it to fire an action that invokes an attached

backing file.

Table 9-3 lists the event actions available for portlets.

Tahle 9-3 Event Actions

This action...

Has this effect...

Change Window Mode

Changes the mode from its current mode to a user-specified mode; for
example, from help mode to edit mode.

Change Window State

Changes the state from its current state to a user-specified state; for
example, from maximized to delete state.

Activate Page

Opens the page on which the portlet currently resides.

Fire Generic Event

Fires a user-specified generic event.

Oracle WebLogic Portal Portlet Development Guide 9-5

../javadoc/index.html

Local Interportlet Communication

Tahle 9-3 Event Actions

This action... Has this effect...

Fire Custom Event Fires a user-defined custom event.

Invoke BackingFile Runs a method in the backing file attached to the portlet. For more
Method information on backing files, refer to “Backing Files” on page 5-71.

Portlet Event Handlers Wizard Reference

The Portlet Event Handlers wizard included in Workshop for WebLogic allows you to implement
several types of event handlers and actions without programming. The following steps
summarize the process of setting up an event handler using the wizard:

1. Select a type of event handler to create.
2. Determine the portlets to which that handler will listen.
3. Select an event for which the handler will listen.

4. Select and configure an action to fire when the event occurs.

The following sections describe the dialogs of the wizard and provide information about the
information required in each field of the dialogs.

For a specific procedural example of how to use the event handler wizard, refer to “Basic IPC
Example” on page 9-14.

Portlet Event Handlers Wizard Dialogs
You can open the Portlet Event Handlers wizard in two ways:

e The wizard opens when you open a portlet in Workshop for WebLogic and click the
ellipsis button 1 next to Event Handlers in the Properties view. Alternatively, you can
click the Event Handlers link in the portlet editor.

e The wizard opens when you click the Event Handlers link in the portlet editor.

Note: If noevent handlers have been added, the Event Handler field indicates that. If any event
handlers have been added, the field indicates the number that currently exist.

The wizard appears, as shown in Figure 9-1.

9-6 Oracle WebLogic Portal Portlet Development Guide

Portlet Events

Figure 9-1 Portlet Event Handlers Wizard

M Portlet Event Handlers E]

Events:

el

Select an item in the list.,

Add Handler... | |

Ok Cancel

When you click Add Handler, the event handler drop-down menu allows you to select a handler;
to add an action, click Add Action to open the event action drop-down menu.

Based on your selection, the dialog box expands, displaying additional fields that you can use to
set up the handler or action. Figure 9-2 shows an example of the expanded dialog for adding an
event handler.

Figure 9-2 Expanded Event Handlers Dialog

M Portlet Event Handl‘irs E]
Events: Handle Portal Event
ko Handle Portal Event Event Label: |handIePo|'taIE\rent1

+
3 Description: |
[Only IF Displayed
x|

[~ From Self Instance Only

Listen To (wildcard): |Selected Portlets j

Listen To (portlets):

Portlet: Add oo

Add Handler... | Add Action... | Event: k’”REF"ESh ﬂ

Ok Cancel

Oracle WebLogic Portal Portlet Development Guide 9-7

Local Interportlet Communication

9-8

Portlet Event Handlers Wizard - Add Handler Field Descriptions

Table 9-4 explains the fields in the Add Handler dialog and how your selections affect the
behavior of the event.

Note: WebLogic Portal attempts to validate the settings of the Event Handlers dialog. You will
receive an error message if any problems are detected. For detailed information on the
WebLogic Portal validation framework, see the WebLogic Portal Development Guide.

Table 9-4 Portlet Event Handlers Wizard - Add Handler

Field Description

Event Label Required. This identifier can be used by the <fi I terEvent> tag in the
portal file to distinguish multiple event handlers in the same portlet.

Description Optional.

Only If Displayed check Optional. Indicates that the portlet to receive the event must be on the

box current page and not minimized or maximized—the portlet’s content must
be currently in a rendered state. (Remember that the user must also be
entitled to see the portlet.) The default is true.

Note: If the event is <handlePortalEvent event="onMinimize”
fromSelfinstanceOnly="true"> then it is logically impossible for
this event to fire if onlylfDisplayed="true".

From Self Instance Only Optional. Defines whether the handler for a given portlet instance is
checkbox invoked only when the source event originates from that instance. The
default is false.

If From Self instance Only is set to true, any Listen To values are ignored.

Listen To (wildcard) Identifies the portlet(s) that this portlet can listen to. The values include:
e Any - Listens to events fired from any portlet in the portal.
e This — Listens to events fired from the currently selected portlet.

e Selected Portlets — (default) Listens to events fired from selected
portlets only. Click the ... button in the Listen To (portlets) part of the
dialog to select portlets.

e This and Selected Portlets — Listens to events fired from the currently
selected portlet and portlets selected in the Listen To (portlets) part of
the dialog.

Oracle WebLogic Portal Portlet Development Guide

../portals/index.html

Portlet Events

Tahle 9-4 Portlet Event Handlers Wizard - Add Handler (Continued)

Field

Description

Listen To (portlets)

Optional. Allows you to specify the portlets that this portlet can listen to.
You can choose a - portlet file from the file system by clicking the ...
button). When you select a - portlet file and click OK, the portlet is
added to the Listen To list. This part of the dialog is only enabled if you
chose either the Selected Portlets or This and Selected Portlets option in the
Listen To (wildcard) menu.

Caution: The values that you enter here are not validated. A typo in either
an event name or a definition label can be very difficult to resolve later.

Portlet

You can type a portlet name in the field and click Add, or click the browse
button to navigate to the portlet for which you want to listen.

Event or Action

Depending on the event handler you added, you will choose an event or an
action for which the portlet will listen. For example, if you added the
HandlePortalEvent handler, you can use the Event drop-down menu
to select portal events, such as the onRefresh event. If you choose a
handler that exposes actions, type the name of the action in the Action field.
For example, if you chose HandlePageF lowEvent, you could type
submitReport. The submitReport action of the page flow is now
visible in the Action drop-down menu.

Portlet Event Handlers Wizard - Add Action Field Descriptions

The available fields for the action depend on the type of action that you select. Table 9-5 explains
the possible fields in the expanded Add Action dialog and how your selections affect the behavior

of the action.

Table 9-5 Portlet Event Handlers Wizard - Add Action

Field

Description

Change Window Mode

Enter the value of the new window mode.

Change Window State

Enter the value of the new window state; possible values are normal,
minimized, maximized.

Oracle WebLogic Portal Portlet Development Guide

Local Interportlet Communication

9-10

Tahle 9-5 Portlet Event Handlers Wizard - Add Action

Field

Description

Activate Page

This action activates the page on which the portlet
<portlet_def_id> currently resides. This action will fire only when
triggered during the handlePostBack life cycle.

Do not select the Activate Page action if the Only If Displayed check box
is selected. Logically, if the portlet is responding to the event only if it is
displayed, the page that it is on must be active anyway.

Invoke Struts Action

Use this selection to cause a struts action to be raised. The value must be
an unqualified name of a struts action defined in the embedded content.
This action is only available on the menu for struts portlets.

Fire Generic Event

Use this selection to cause a generic event to be raised.
Enter the name of the generic event.

Fire Custom Event

Use this selection to cause a custom event to be raised.
Enter the name of the custom event.

Invoke BackingFile
Method

Use this selection to cause a backing file method to run. Enter the name
of the method that you want to invoke. This action is only available on
the menu if a backing file is configured for the portlet.

Invoke Page Flow Action

Use this selection to cause a page flow action to be raised. This action is
only available on the menu for page flow portlets.

Invoke Faces Action

Use this selection to cause a JSF action to be raised. This action is only
available on the menu for JSF portlets.

JSF Events

This section explains how to add JSF events and listeners to portlets.

To add a faces event to a JSF portlet:

1. Inthe Property view of the portlet, select Java Server Faces (JSF) Content > Faces Events.

2. In the Faces Events dialog, add an name/action pair. The Event Name identifies the event to
event listeners. Note that events are referenced by name, not by path. The action specifies the
Faces viewroot ID of the action. Workshop for WebLogic adds tags to the portlet similar to
those shown in Listing 9-1.

Oracle WebLogic Portal Portlet Development Guide

Portlet Events

Listing 9-1 Sample facesEvent Tag

<netuix:content>
<netuix:facesContent contentUri="/portlets/myJsf.faces"
requestAttrPersistence=""none">
<netuix:facesEvents>
<netuix:facesEvent action="/portlets/bar.faces" eventName="bar"/>
</netuix:facesEvents>
</netuix:facesContent>
</netuix:content>

To handle a faces event and invoke an action, use the Portlet Event Handlers wizard as discussed
in “Portlet Event Handlers Wizard Reference” on page 9-6. When specifying the Event to listen
to, use the event name specified in the facesEvent tag in the JSF portlet (the eventName attribute
of the facesEvent tag). For example, in Listing 9-1 the eventName is bar.

Listing 9-2 shows the handleFacesEvent tag that is created when you add a Faces event handler
to a JSF portlet. The event handler is listening for an event called bar. (Note that you can use
eventName="*"to handle any Faces event that is fired.) The event handler then invokes a JSF
action.

Listing 9-2 Faces handleFacesEvent Tag

<netuix:handleFacesEvent eventLabel="handleFacesEventl" eventName="bar"
fromSelflnstanceOnly="false" onlylfDisplayed=""true"
sourceDefinitionLabels="myJsf">
<netuix:invokeFacesAction action="/portlets/myportlet.faces'/>
</netuix:handleFacesEvent>

When working with JSF events, note the following:
e Faces events are named with an alias.
e Faces event handlers reference the event alias.

e Faces actions are invoked by the viewroot ID, as shown in Listing 9-2.

Oracle WebLogic Portal Portlet Development Guide 9-11

Local Interportlet Communication

e In a Faces event handler, you can use eventName=">*" to handle any Faces event that is
fired.

IPC Example
This section contains the following topics:
e Before You Begin - Environment Setup

e Basic IPC Example

Before You Begin - Environment Setup

Before you use the interportlet communication example in this chapter, you must have an existing
portal development environment, consisting of adomain, Portal EAR project, Portal Web project,
Datasync project, and portal. To complete the pre-requisite tasks, perform the tasks described in
the Getting Started with WebLogic Portal tutorial, using the information in Table 9-6 to enter the
necessary values.

1. Create a Portal domain (server).
Create a Portal EAR project.
Associate the EAR project with the server.

Create a Portal web project.

a c w N

Create a portal.

Table 9-6 IPC Example - Environment Setup Values

Setup Information Notes/Values

Domain Configuration Wizard - Welcome Create a new WebLogic domain (the default)

Domain Configuration Wizard - In the Generate a domain configured automatically to
Select Domain Source support the following Oracle products list, select
WebLogic Portal.

When you do this, other components are selected
automatically; keep all of them selected.

9-12 Oracle WebLogic Portal Portlet Development Guide

../tutorials/index.html

IPC Example

Tahle 9-6 IPC Example - Environment Setup Values (Continued)

Setup Information

Notes/Values

Domain Configuration Wizard -
Configure Administrator Username and
Password

User name: weblogic
User password: weblogic
Confirm user password: weblogic

Domain Configuration Wizard -
Configure Server Start Mode and JDK

Development Mode (the default)
JRockit SDK

Domain Configuration Wizard -
Customize Environment and Services
Settings

No (the default)

Domain Configuration Wizard -
Create WebLogic Domain

Domain name: ipcDomain

Domain location: Accept the default, or specify another
directory on your system.

Portal EAR Project Wizard

EAR Project Name: ipcEAR

Switch to the Portal Perspective if you are not already
using it.

Servers view

Right-click the server in the Servers view and select Add
and Remove Projects

Associate the i pcEAR project with the portal domain
ipcDomain.

Portal Web Project Wizard

Web Project Name: ipcTestWebProject

In the Add project to an EAR checkbox: Check the box
and add to ipcEAR

Portal Wizard

Right-click the ipcWebProject/WebContent
folder and select New > Portal

Portal Name: ipcPortal

With a development environment set up, you can complete the steps described in this section:

e Basic IPC Example

Oracle WebLogic Portal Portlet Development Guide 9-13

Local Interportlet Communication

9-14

In this exercise, you create individual page flows, portlets, JSPs, and backing files to establish
interportlet communications within the portal project. You then add these portlets to a portal and
test the project to ensure that communication is successful.

Basic IPC Example

This section describes the process of setting up interportlet communications between two portlets
by using the Portal Event Handlers wizard in Workshop for WebLogic. This is a simple example
in which minimizing one portlet changes the text string in another portlet in the portal.

You should become familiar with the Portal Event Handlers Wizard and backing files before
attempting to replicate this example. For more information about the wizard, refer to “Portlet
Event Handlers Wizard Reference” on page 9-6. For more information on backing files, refer to
“Backing Files” on page 5-71.

This exercise includes five main tasks:
1. Create the Portlets

Create the Backing File

Attach the Backing File

Add the Event Handler to bPortlet

o &~ w D

Test the Project

Create the Portlets

In this section, you create two JSP files and the JSP portlets that surface these files. You also
create a backing file that contains the instructions necessary to complete the communication
between the two portlets, and you add an event handler to one of the portlets. After you have
created the portlets and attached the backing file, you test the project in your browser.

Note: Before continuing with this procedure, ensure that Workshop for WebLogic is running
and the ipcWebProject node is expanded.

Create the JSP Files and Portlets
To create the JSP files that the portlets will surface, do the following:

1. Under the ipcWebProject node, double-click index- jsp.

index. jsp opens in the workbench editor, displaying the source code.

Oracle WebLogic Portal Portlet Development Guide

IPC Example

2. Replace the body text with the phrase Minimize Me! as shown in figure

Figure 9-3 index.jsp after Editing the Body Text in the Workbench Editor

ipcPortal. portal 3
<%[page language="java™ contentTvpe="text/html:charset=UTF—8"%§
<sftaglibh uri="http://beehive.apache.org/necui/ tags—html-1.0" pi
<%Etaylibh uri="http://beehive.apache.org/netui/ tags—databinding
<3ftaylibh uri="http:/ /beehive.apache.org/netui/tags—template-1.19

o
<netui:htmls J
<head>

<netui:hase/> f
</ head:> 4
<netuil:body title=s"" cext="": f
<prMinimize Me!</p> r
(

</netuithody:
</netui:htmls> S

B opmmtit g e = o B P —

—

3. Save the file as aPortlet. jsp

4. Right-click aPortlet.jsp in the Package Explorer view and select Generate Portlet from
the context menu.

The Portal Details dialog appears (Figure 9-4). with aPortlet. jsp in the Content Path
field.

Figure 9-4 Portal Details Dialog Box for a Portlet

I Portlet Wizard - Portlet Details

Steps: Portlet Details

1. Select Portlet Type
2. Portlet Details

Please fill in the general details for the portlet,

Title : aPortlst

Content Path : |,|'aPort|et.ji/)

Errar Page Path : |

[v Has TitleBar

\»*\Mm Bl B Boges e #

B o e A [CAvglghle Mt

L
w
N

5. Select Minimizable and Maximizable and click Create.

Oracle WebLogic Portal Portlet Development Guide 9-15

Local Interportlet Communication

aPortlet.portlet appears in the ipcwebProject/WebContent folder in the Package
Explorer view.

6. In the same directory, make a copy of aPortlet.jsp and give the name bPortlet._jsp to the
copy.

7. Open bPortlet.jsp in the workbench editor if it is not already open.

The XML code for the JSP file appears.

8. Copy the code from Listing 9-10 into the JSP, replacing everything from <netui -html>
through </netui :html>. This code displays event handling from the backing file that you
will create and attach in a subsequent step.

Listing 9-10 New JSP Code for bPortlet.jsp

<netui:html>
<% String event = (String)request.getAttribute(*minimizeEvent') ;%>
<head>
<title>
Web Application Page
</title>
</head>
<body>
<p>
Listening for portlet A minimize event:<%=event®h>
</p>
</body>
</netui:html>

The source should look like the example in Figure 9-5.

9-16 Oracle WebLogic Portal Portlet Development Guide

IPC Example

Figure 9-5 Updated bPortlet JSP Source

ipcPortaI.pnrtaI aPortlet, jsp B brortlet.jsp X ¥
%[page language="java" contentType="text/html:charset=UTF-3"%>
<iftaglib uri="http://beehive.apache.org/netui/cags-html-1.0" prefix="necui's:> ,
<%ftaglib uri="http://beehive.apache.org/netui/tags—databinding-1.0" prefix="netui—da&
<%ftaglibh uri="http://beehive.apache.org/netui/tags—template—-1.0" prefix="netui—templ?
<netui:html> f
<% Btring event E= [String) request.getliccribute ("minimizeEvent™) 25> b
<head:> 1
<titlex :
Wekb Application Page
<ftitles J
</ head>
<hody= 1
<p> g
Li=stening for portlet 4 minimize event:<i=events:> o«
</ pr 1
</ hodys
</netuirhtmls> f
R) ,—" A - AR A J - —— — - AP W -

9. Save the file.

10. Following the same steps you used previously, generate a portlet from the bPortlet. jsp
file.

Checkpoint: At this point the ipcwebProject/WebContent folder contains these files:
aPortlet.jsp, aPortlet.portlet, bPortlet. jsp, and bPortlet.portlet.

Create the Backing File

To create the backing file, do the following:

1. InipcTestWebProject, select the Java Resources/src folder and select File > New >
Folder from the main menu.

The Create New Folder dialog box appears.

2. Create a folder called backing.

The folder backing will appear under ipcTestWebProject/src, as shown in Figure 9-6.

Oracle WebLogic Portal Portlet Development Guide 9-17

Local Interportlet Communication

Figure 9-6 New Backing File Folder in Package Explorer View

Mavigator | Merged Projects View 4

+-1=2 jpcData
+-y=r ipcEAR
= IE‘J ipciebProject
=[5 sre
+-H3 (default package)

g, ~» ““H..r

=g backing
+-B4, JRE Sywstem Library [BEA WeblLogic +9.2 JRE] j
+-m), BEA WeblLogic w9.2 [BEA Products (BEAHOME 2] 2
+- B, Enterprise Application Libraries [ipcEAR] s
+-2, Library Module [jstl-1.1]
b gt brary jlle-dede: Duda gl sghintbnet® 2o,

3. Right-click the backing folder and select New > Other.

4. Inthe New — Select a wizard dialog, select Java > Class, and click Next.

The New Java Class dialog appears, as shown in Figure 9-7. The Source folder field
auto-fills with the default path; leave it as is. The Package field auto-fills with backing;
leave it as is.

Figure 9-7 New Java Class Dialog

W New Java Class @

Jawva Class

Create a new Java class,

Source Folder: | myPortalwebProject/src Browse, ..

Package: \"l backing] Browse. ..

[Enclosing type: |

e

Mame: | Liskening
Modifiers: + public " default -
™ abstract [final r

j

Superclass: | java.lang. Object Browse, ..

Interfaces: J
— - —_

e
N

:
—

R Y TNy SR

5. In the Name field, enter Listening and click Finish.

The new Java class appears in the editor.

9-18 Oracle WebLogic Portal Portlet Development Guide

IPC Example

Delete the entire default contents of Listening. java, and copy the code from Listing 9-3
into the file. Figure 9-8 shows the top portion of the Listening. java file as it should look
after you paste the code into it.

When you’re finished, save the file.

Listing 9-3 Backing File Code for Listening.java

package backing;

import com.bea.netuix.servlets.controls.content._backing.AbstractJspBacking;
import com.bea.netuix.servlets.controls._portlet.backing.PortletBackingContext;
import com.bea.netuix.events._Event;

import javax.servlet_http._HttpServletRequest;

import javax.servlet_http_HttpServletResponse;

public class Listening extends AbstractJspBacking

{

static final long serialVersionUID=1L;
public void handlePortalEvent(HttpServletRequest request,
HttpServletResponse response, Event event)

{
String attributeld= this.getPortletlnstancelLabel (request) +
" _minimizeEventHandled";
// NB: Use the HttpSession to pass data between lifecycle phases
// (that is, to the pre-render phase). Passing data between
// backing file callback methods using the HttpRequest or static
// instance variables should be avoided.
// The portlet instance label is used to create a unique
// attribute name for the session attribute.
request.getSession().setAttribute(attributeld, "minimized!");
b

public boolean preRender(HttpServletRequest request, HttpServletResponse
response)

{
String attributeld= this.getPortletlnstancelLabel (request) +
"_minimizeEventHandled";

if (request.getSession().getAttribute(attributeld) != null)
{

Oracle WebLogic Portal Portlet Development Guide 9-19

Local Interportlet Communication

// Reset the session flag
request.getSession().removeAttribute(attributeld);

// Pass minimize event notification to the JSP via the request.
request.setAttribute('minimizeEvent”, "Minimize event handled™);

}
else
{
request.setAttribute(minimizeEvent”, null);
}
return true;
b
private String getPortletlinstancelLabel (HttpServletRequest request)
{
PortletBackingContext context=
PortletBackingContext.getPortletBackingContext(request);
return context.getlnstancelLabel();
3

9-20 Oracle WebLogic Portal Portlet Development Guide

IPC Example

Figure 9-8 Listening.java with Updated Backing File Code

ipcPortal. portal @ MWew Portal Desktop

package backing: ~
“import com.bea.netuix.servlets.controls.content.backing. AbstractJspBacking:

import com.bea.netuix.servlets.controls.portlet.backing.PortletBackingContext:

import com.bea.netuix.events.Event;

import jswvax.servlet.http.HttpServletReguest:

import jawvax.servlet.http.HttpServletResponse:
“public class Listening extends AbstractdspBacking

i

static final long serialVersionUID=1L;

“public woid handlePortalEwvent (HttpSerwvletRequest regquest,
HttpServletResponse response, Event ewvent)
{
ftring attributeld= this.getPortletInstancelsbel (reguest) + " _minimizeEventHandled":

// WB: Use the Http3ession to pass data kbetween lifecycle phases

£ [i.e. to the pre-render phase). Passing data hetween backingfile
£ callback methods using the HbtpRequest or static instance
Iy wvariables should be avoided.
Ix The portlet instance lshel is used to create & unigue attribute
L name for the session attribute.
reguest.get3ession() .setdttribute (attributeld, "minimised!");

i

ke public boolean preRender (HbtpServletRequest reqguest, HttpServletResponse
response]

i

L L Atring §_§§1§Eg§e¥i=‘;his.gE';Part{EEInitaBﬁEI‘shel (F_g\aue_s_p + _"_.in_:'lrylmi%E_Eyergzl{_ar_lgilsg}':

Attach the Backing File

Now you will attach the backing file created in the previous section to bPortlet.portlet.
Perform the following steps:

1. In the Package Explorer, double-click bPortlet.portlet to open it.

2. Click on the portlet in the editor, if needed, to display the portlet’s properties. You should see
an orange border around the outside of the portlet, as shown in Figure 9-9.

Oracle WebLogic Portal Portlet Development Guide 9-21

Local Interportlet Communication

Figure 9-9 bPortlet with Outer Border Selected to Display Properties

[0l myPortal. portal @ Mew Portal Deskhop bPortlet.portlet 23 ! =

“am

Click here to
display all
properties

bPortlet

L]
(0]

{0f Event Handlers: No event handlers

LW R W

Portlet Modes

Portlet Preferences

\H*‘_‘_

)
3
3
|

»
3
v

]

\

'

Tip: The Properties view is a default view in the Portal perspective. If it is not visible,
select Window > Show View > Properties.

3. In the Properties view, enter backing.Listening into the Backable Properties > Portlet
Backing File field, as shown in Figure 9-10.

Figure 9-10 Attaching the Backing File in the Properties View

Annotations ERrRE 4
Property Yalue |

k

4

= Administration Properties (
Definition ID 1

Iarkiup Marme 1

-| Backable Properties :’
-

r,

L

Partlet Backing File acking, Listening o | =
= Conkent

Conkent Path IbPortlet. jsp
L PIgePath) | et s B ot o

4. Save the portlet file.

Add the Event Handler to bPortlet

You now add the event handler to bPortlet.portlet. This handler will be set up so that it will
listen for an event on a specific portlet and fire an action in response to that event. To add the
event handler, perform the following steps:

9-22 Oracle WebLogic Portal Portlet Development Guide

IPC Example

Note: bPortlet.portlet should be displayed in the Workshop for WebLogic editor. If it
isn’t, locate it in the ipcTestWebProject/WebContent folder in the application panel
and double-click it.

1. Click on the portlet in the editor if needed to display its properties.

1. Inthe Properties view, click in the Value column of the Event Handlers property. A browse
button 7 appears, as shown in Figure 9-11.

Figure 9-11 Event Handlers Button

Annotations | Outline = :=:€> B B =
Property Walue |

Content Path IbPartlet. jsp
Error Page Path
= General Portlet Properties
Async Content Rendering none
Cache Expires (seconds) 60
Cache Render Dependencies true
Client Classifications

e Do S T

Default Minimized false
Definition Label bPortlet_1
Description
Event Handlers Mo evert handlers] Event Handlers Button
Farkable false
Faork Render false
Faork Render Timeout i
| Bark@eaut NP e '/

2. Click the ellipsis button =1 to display the Portlet Event Handlers dialog, as shown in
Figure 9-12.

Figure 9-12 Portlet Event Handlers Dialog Box

I Portlet Event Handlers E

Ewents:
_* |
_ |
Select an ikem in the list,
_x |
[Add Handler... ‘ ‘
[o]4 Cancel

3. Click Add Handler to open the Event Handler drop-down list.

Oracle WebLogic Portal Portlet Development Guide 9-23

Local Interportlet Communication

4. From the drop down list, select Handle Portal Event.

The Portlet Event Handlers dialog box expands to allow entry of more details, as shown in
Figure 9-13.

Figure 9-13 Event Handler Dialog Box Expanded

M Portlet Event Handl‘irs @
Events: Handle Portal Event
ko Handle Portal Event Event Label: |handIePo|'taIE\rent1

[Only IF Displayed

_* |
3 Description: |
x|

[~ From Self Instance Only

Listen To (wildcard): |Selected Portlets j

Listen To (portlets):

Portlet: Add oo
8 add Handler... |] add Action... | Event: k’”REF"ESh ﬂ
Ok Cancel

5. Accept the defaults for all fields except Portlet.

6. Inthe Portlet field, click the ellipses button ... |.
The Please Choose a File dialog appears.

7. Click aPortlet.portlet and click OK.

The dialog box closes and aPortlet_1 appears in the Listen to (portlets): list and in the
Portlet field, as shown in Figure 9-14. The label aPortlet_1 is the definition label of the
portlet to which the event handler will listen.

9-24 Oracle WebLogic Portal Portlet Development Guide

IPC Example

Figure 9-14 Adding portlet_1

Listen To (wildcard): |Selected Portlets - |¥

Listen To (portlets): f

aPortlet_1_1 - aPortlet .r

{
Portlet: |) - _-n.dd . % ":}

—— »F — r—

8. Click the Event drop-down control to open the list of portal events that the handler can listen
for and select onMinimize, as shown in Figure 9-15.

Figure 9-15 Event Drop-down List

Listen To (portlets):

aPortlet_1_1 - aPortlet

Portlet: | Add oo

Event: bnReFresh|

9. Click Add Action to open the action drop-down list and select Invoke BackingFile Method.

The Invoke BackingFile selection will not appear unless a backing file is detected by
WebLogic Portal.

10. In the Method field, enter handlePortalEvent, as shown in Figure 9-16.

The dropdown menu for this field displays the last several values that you entered, if
applicable.

Oracle WebLogic Portal Portlet Development Guide 9-25

Local Interportlet Communication

Figure 9-16 Adding the Backing File Method

Invoke BackingFile Method
r Method: P‘uandlePortalEvent ﬂ
¢
4
-w ™ h P N R Y

11. Click OK.

The event handler is added. Note that the Value field of the Event Handlers property now
indicates 1 Event Handler.

Test the Project

Test the communication between your portlets by following these steps:
Note: Before you begin, ensure that all files are saved.
1. Select ipcPortal .portal to display it in the workbench editor.

2. Drag both aPortlet.portlet and bPortlet.portlet from the Package Explorer view
onto the portal layout, as shown in Figure 9-17.

9-26 Oracle WebLogic Portal Portlet Development Guide

IPC Example

Figure 9-17 Portal Layout with aPortlet and bPortlet Added

m Liskening. java E *bPortlet, portlet *ipcLocal.portal 28 i = Q
Mew Portal Desktop)
Header)
3
) k.
Book: Main Page Book: J
El Page 1 l J
Page: Page 1 "
4
aPortlet bPortlet 3
-
-
| Footer |5
PEEr——_ = e >y > 2T = o F o ¥ o= ot

3. Save the portal.

4. Run the portal. To do this, right-click ipcPortal . portal in the Package Explorer view and
select Run As > Run on Server.

5. Atthe Run On Server — Define a New Server dialog, click Finish.

Wait while the server starts and the application is published to the server. The portal will
render in your browser (Figure 9-18).

Figure 9-18 ipcLocal Portal in Browser

&) ipcPortal. portal [J] Listening java = brortlet.portlet New Portal Deskiop X

f=] O] ¢§° |httn:,l’,l’localhost:?DDIJ‘incTastWabProjectJ‘ipcPortaI.portaI?,nfpb=true&,wwndowLabe\=aPortIat717]ﬂ B

bPortlet

aPortlet

Minimize Me! Listening for portlet & minimize event:null

6. Click the minimize button to minimize aPortlet.

Note the content change in bPortlet, as shown in Figure 9-19.

Oracle WebLogic Portal Portlet Development Guide 9-21

Local Interportlet Communication

Figure 9-19 ipcPortal Showing the Effect of Minimizing aPortlet

ipcPortal. portal m Liskening. java E bPartlet. portlet #: New Portal Desktop X =0

=] O} Q:><h |http:,l’,l’localhost:?DD1,l’ipcTestWebProject,l’ipcPortaI.portaI?_nFpb=true&_windowLabeI=aP0rtIet_1_1j =3

bPortlet (=il

Listening for portlet A minimize event;minimize event handled

|aP|:|rtIet (=]

Portlet text changed

Summary

In this example, you set up your environment and you added two JSP portlets to a local portal.
One portlet, aPortlet, was fairly simple, while the second portlet, bPortlet, surfaced a more
complex JSP file, used a backing file, and contained a portal event handler. When you tested the
communication between the portlets, you observed how the bPortlet changed when an event
occurred on aPortlet. This is called local interportlet communication.

IPC Special Considerations and Limitations

9-28

The following sections describe special considerations that you should keep in mind as you
implement interportlet communications.

This section contains the following topics:
e Using Asynchronous Portlet Rendering with IPC
e Generic Event Handler for WSRP

e Consistency of the Listen To Field

Using Asynchronous Portlet Rendering with IPC

Although IPC is not supported when asynchronous content rendering for specific portlets is
enabled, WebLogic Portal provides some features that allow these two mechanisms to coexist in
your portal environment. In addition, you can disable asynchronous rendering for single requests
using the mechanisms described in “Asynchronous Content Rendering and IPC” on page 7-20.

Oracle WebLogic Portal Portlet Development Guide

IPC Special Considerations and Limitations

Tip: If you enable asynchronous rendering at the portal/desktop level, you can use IPC
without restrictions. For more information on asynchronous portal/desktop rendering,
see the WebLogic Portal Development Guide.

Generic Event Handler for WSRP

Use a generic event handler to work with WebL ogic Portal WSRP. To do this, first select Generic
Event Handler, then select Add Action and select Window Mode|State. Then manually type in
the event name—for example, onMinimize.

Consistency of the Listen To Field

Pay attention to the Listen To field when you set up the listener portlet. The portlet definition you
use on the consumer must match the WSRP portlet’s portlet definition. For example, if you have
“portlet_2” listening to “portlet_1", the WSRP portlet corresponding to “portlet_1"—the proxy
on the consumer—must also have its portlet definition label set to “portlet_1”. For more
information on using IPC with WSRP, refer to the Federation Guide.

Oracle WebLogic Portal Portlet Development Guide 9-29

../federation/index.html
../portals/index.html

Local Interportlet Communication

9-30 Oracle WebLogic Portal Portlet Development Guide

CHAPTERm

Adding the Content Presenter Portlet

The Content Presenter portlet allows users to retrieve and display different kinds of content in a
portal in real time, without assistance from your IT Department or software developers. For
example, you might want to display a list of the most recent Press Releases so users can browse
them and click one to read the entire Press Release. You can place images (a photograph or a
chart, for example) or add textual content on a portal page. You can also segregate content by
subject matter to target different audiences.

In the Content Presenter Example, you can perform inline editing to quickly change the content
that displays in the portlet.

Tip: The Content Presenter portlet works only with streamed portals.

This chapter includes these sections:
e Using the Content Presenter Example

e Configuring the Content Presenter Portlet in Your Portal

Using the Content Presenter Example

WebLogic Portal includes a Content Presenter Example, and allows you to perform inline editing
on a Content Presenter portlet to modify the portlet’s content. Editing the portlet’s content also
changes the content in the content repository. The Example’s Content Presenter portlet uses the
public Dojo rich text editor.

This section contains the following topics:

Oracle WebLogic Portal Portlet Development Guide 10-1

Adding the Content Presenter Portlet

10-2

Starting the Content Presenter Example

Performing Inline Editing in the Content Presenter Example

Enabling Inline Editing in Your Portlets

e Configuring the Content Presenter Portlet

Starting the Content Presenter Example

Note: You must install the Portal Examples before you perform these steps. See “Installing the
Sample Applications and Domain” in the WebLogic Portal Release Notes for details.

To start the Content Presenter sample:

1. From the Windows Start Menu, start the WebLogic sample server. (You can also double-click
the startWebLogic.cmd file located in the
<WLPORTAL_HOME>/samples/domains/portal/bin directory.)

2. After the server starts, from the Windows Start Menu choose Oracle Products > WebL ogic
Portal > Examples > Visit Portal Examples.

3. On the WebLogic Portal Sample Domain, select Go to the Content Presenter demo. (You
can also launch the Content Presenter Example in a browser at
http://1ocalhost:7041/contentpresenter/).

4. Enter your username and password (for example, weblogic/weblogic) and click Login.

See Performing Inline Editing in the Content Presenter Example for instructions on how to
perform inline edits to the content in a portlet in the Content Presenter Example.

Performing Inline Editing in the Content Presenter Example

The Content Presenter Example is the only portal where you can perform inline HTML content
editing without doing additional setup tasks. By default, the Content Presenter Example lets you
immediately edit the content in the Letter from the CEO Portlet, or you can enable the Training
Announcement Portlet for inline editing. Inline editing in the Content Presenter Example works
only on single-item portlets.

The Letter from the CEO portlet in the Content Presenter Example is already configured for inline
editing because it uses the template view with inline editing enabled and has the appropriate
entitlement rights. To configure the Training Announcement portlet for inline editing,
see“Enabling Inline Editing for the Training Announcement Portlet” on page 10-4.)

Oracle WebLogic Portal Portlet Development Guide

../relnotes/index.html

Using the Content Presenter Example

This section contains the following topics:
e Entering Inline Edits

e Enabling Inline Editing for the Training Announcement Portlet

Entering Inline Edits
To enter inline edits to the Letter from the CEO portlet:

1. Follow the steps in Starting the Content Presenter Example to start the Content Presenter
Example and log in.

2. After you log in, click Edit HTML in the Letter from the CEO portlet, as shown in
Figure 10-1. The Content Presenter Configuration Wizard appears.

Figure 10-1 Click the Edit HTML Button that Appears in the Text of the Portlet

Letter from the CEO =]

(Edit HTML D

s P
Lette om the CEO to Employees

3. Enter your edits or insert a link to other content or graphics outside your content management
system. For example, before the signature line, type Sincerely, as shown in Figure 10-2.

Oracle WebLogic Portal Portlet Development Guide 10-3

Adding the Content Presenter Portlet

Figure 10-2 Enter Text in the Signature Line

Letter from the CEO =]
<h> By &@a®m - Bl US| s|eES|PD == == fomat— v

[Letter from the CEO to Employees

To all Employees,

(Congratulations on a great year!

[We just announced our performance for Q4 and the fiscal year, We are very pleased to have reported strong results. In this
fiscal year, we reported total revenues increased 53% owver the prior year. We saw revenue increase in several regions

including the Mortheast and Canada. We contiwe to lead the fnancial services market and Avitel Financial is very well-
ositioned for future growth and execution on our vision.

[Continued Focus on Customer Service

[There is no doubt that we continue to lead the mdustry with the most customer-focused service available, Avitek has always
focused on customer service and we will continue to do so going forward.

[To further reinforce our commitment to customer experience, Wark Wong, our VP of Customer Relations, will now report
lto me directly. Ilock forward to worling with Mark to contime to keep Awitel rated #1 in customer satisfaction

[Finally, I would like to tale this opportunity to thanlk you all for your hard work and commitment over the past year, and to
lask for your cngeing suppott as we contirie to grow our company, mamntan our leaderstup and keep up the momentum.

ey

4. Click Save. Your changes appear in the portlet and are saved to the CM Repository.

Tip: You can perform inline editing on two portlets in the Content Presenter Example. Inline
editing is not available for the Content Presenter portlets in your portal.

Enabling Inline Editing for the Training Announcement Portlet

One other portlet in the Content Presenter Example, the Training Announcement portlet, allows
inline editing. Inline editing is turned off by default for this portlet, so you must first enable the
inline editing capability by choosing a different content display template view.

To enable inline editing for the Training Announcement portlet:

1. Follow the instructions in “Starting the Content Presenter Example” on page 10-2 to log into
the Content Presenter Example.

2. Inthe Training Announcement portlet in the Content Presenter Example, click Edit in the
portlet’s title bar, as shown in Figure 10-3.

10-4 Oracle WebLogic Portal Portlet Development Guide

Using the Content Presenter Example

Figure 10-3 Click Edit to Enable Inline Editing for this Portlet

9.

Training Announcement E]

New Training Opportunities

In response to employee demand, Avitek
Human Resources has added 12 new online

In the Content Presenter Configuration Wizard’s Single or Multiple Items window, click
Next. (If you use the wizard to change this portlet to allow multiple content items, rather than
a single item, you cannot enable inline editing. For more information on configuring the
portlet, see “Configuring the Content Presenter Portlet” on page 10-7.)

In the wizard’s Select Content window, click Next.

In the wizard’s Select Template & View window, select Single Item View with Inline Edit
and click Next.

In the wizard’s Portlet Properties window, click Next.

In the wizard’s Finish window, click Save. The Edit HTML button appears in the Training
Announcement portlet. If you do not see the Edit Content button, you might not have the
correct entitlement. See the Security Guide for instructions on setting entitlements.

Click Edit HTML to change the content in the portlet or insert a link to other content or
graphics outside your content management system.

Click Save. Your changes are saved to the CM Repository.

Enabling Inline Editing in Your Portlets

You can use the three sample JSP files that ship with WLP to enable inline HTML editing in your
own Content Presenter portlets. Inline editing does not work with library services enabled,
because library services support versioning.

Edit the files in the order listed below. The files are located in the following directories:

1.

Display Template (Outer Template) —
<WLPORTAL_HOME>\samples\applications\portalApp\
contentPresenterSampleWeb\samplePresenterTemplates\
inlineEditExamplePresenterTemplate. jsp

Oracle WebLogic Portal Portlet Development Guide 10-5

../security/index.html

Adding the Content Presenter Portlet

2. CM Display Template (Inner Template) That Displays the Content —
<WLPORTAL_HOME>\samples\applications\portalApp\contentPresenterSampleWe
b\sampleCMTemplates\inlineEditExampleCMTemplate.jsp

3. JSP File that Performs Other Work —
<WLPORTAL_HOME>\samples\applications\portalApp\contentPresenterSampleWe
b\sampleCMTemplates\saveNode. jsp

The files include detailed comments to help you customize them for your portlets. For example,

you might want to replace the DOJO rich text editor with your own rich text editor. You might

want to change the entitlements on the portlets or their look and feel.

Configuring the Content Presenter Portlet in Your Portal

10-6

The Content Presenter portlet ships with WebLogic Portal. You must configure the portlet before
you can use it.

Tip: To see a sample web application built with the Content Presenter portlet, download a
demo at http://wlp.bea.com.

The Content Presenter portlet uses a portlet framework that is based on Content Management,
metadata, and templates that let business users step through a wizard to quickly retrieve and
display content that is appropriate to the audience. The framework allows WebLogic Portal
customers to easily publish content in a variety of ways to almost any site.

The Content Presenter portlet can read content from any configured content provider. Content
providers can be any repository that implements the WebLogic Portal Content Management
Service Provider Interface, including third-party Content Management vendor products, file
systems, or other database systems.

When you plan your Content Presenter portlet, determine who will view your content and if you
plan to re-use the portlet later for a different audience. Plan entitlements to determine who can
choose content to display in the Content Presenter portlet. If a logged-in user has Delegated
Administration rights, the user can edit the content in the Content Presenter portlet.

You must be a member of the Portal System Administrators role or the Content Presenter
Administrators role to configure the Content Presenter portlet. Portal System Administrators and
Content Presenter Administrators have edit and delete capabilities on the Content Presenter
portlet itself, and edit capabilities on any page where the portlet is placed.

If you plan to have a group of users (for example, a subset of the Portal System Administrators
role) edit the Content Presenter portlet, this subgroup must have edit and delete capabilities for

Oracle WebLogic Portal Portlet Development Guide

http://wlp.bea.com

Configuring the Content Presenter Portlet in Your Portal

the Content Presenter portlet itself and edit capabilities for the page that contains the portlet. If
the group does not have edit and delete capabilities to the portlet, the group’s members will not
be able to see the Edit icon in the portlet.

See the Security Guide for more information on setting entitlements and creating roles and
groups. Portal System Administrators and Content Presenter Administrators can also turn a
portlet off by disabling the activation flag in the portlet’s preferences in the Administration
Console.

WARNING: If you add or modify your Content Presenter portlet using the Visitor Tools (rather
than the Administration Console), the portlet is no longer configurable in your
desktop. You should add or modify your Content Presenter portlet in the
Administration Console.

If you use Portlet Publishing to configure a Content Presenter portlet, some features are not
available. See “Using Portlet Publishing to Expose a Content Presenter Portlet” on page 10-19
for more information.

This section contains the following topic:

e Configuring the Content Presenter Portlet

Configuring the Content Presenter Portlet

The Content Presenter portlet ships with WebLogic Portal. You must add the Content Presenter
facet in Workshop for WebL ogic when you set up your portal web project. By default, your portal
administrator has the ability to administer the Content Presenter portlet (to move portlets, turn a
portlet off, and so on) in the Administration Console.

In a desktop, use the Content Presenter's Configuration Wizard to determine the content you want
to display, and how to display it (through templates and template views). The Content Presenter
portlet stores those choices as portlet preferences for each portlet instance.

Perform the following steps to configure the Content Presenter portlet:

1. In Workshop for WebL ogic, create and deploy a Portal EAR project, web project, a portal, and
a method to authenticate users (such as a login portlet) according to the instructions in the
Getting Started With WebLogic Portal tutorial. You should also create a Datasync project if
you plan to use Content Selectors to display content in the Content Presenter portlet.

Oracle WebLogic Portal Portlet Development Guide 10-7

../tutorials/index.html
../security/index.html

Adding the Content Presenter Portlet

Tip: When you create your Portal Web Project, you must select the Content Presenter
Framework facet in the WebL ogic Portal (Optional) directory in order to view and
use the Content Presenter portlet.

2. Start the Administration Console and choose Portal > Portal Management.

3. Create a page and a desktop (you can choose to create a desktop from a desktop template,
library resources, or a .portal file) according to the instructions in Getting Started With
WebLogic Portal tutorial.

4. Select the page you created in step 3 in the Portal Management tree in the Library/Pages
directory (or wherever you saved it). Add the Content Presenter portlet to the page by clicking
Add Page Contents. Click Add Contents in the appropriate column, select the check boxes
next to the Content Presenter portlet and a login portlet (if that is the method you are using to
authenticate users), and click Save. (If you do not see a list of portlets in the Add Books and
Portlets to Placeholder page, click the drop-down box and select Portlets, and click Show
all.)

5. In the Portal Management tree, select the Portals directory, the portal you created, and your
desktop.

6. With the desktop selected, click View Desktop.

7. In the new browser window, log into the desktop and click Open Configuration Wizard in
the Content Presenter portlet. A new unconfigured Content Presenter portlet does not appear
until you log in, and only if you have rights to edit it.

8. In the Content Presenter Configuration Wizard, select one of the following in the Single or
Multiple Items window:

— Multiple Content Items — Pick more than one content item and display them. You can
create a custom list of content, choose all content in a specific folder, use the results of
a Content Selector, or run a search to find content. The result is a list of content items
in the portlet.

— Single Content Item — Browse or search for one item. The item can be an image,
article, link to a file, link to a URL, and so on. The result is the content item displaying
inline in the portlet.

See Figure 10-4. Click Next after you select an option.

10-8 Oracle WebLogic Portal Portlet Development Guide

../tutorials/index.html
../tutorials/index.html

Configuring the Content Presenter Portlet in Your Portal

Figure 10-4 Determine How Much Content You Want to Display

Content Presenter Configuration Wizard

1. Single or Multiple Items | 2. Select Content | | 3. Select Template & View | 4. Title & Theme | 5. Preview & Save

How many Content Items would you like to display?

Multiple Content Items
Display multiple Content Ttems in a repeating view, such as a list or thle.

Single Content Item
Display & single specific Content It such a5 an image, an HTML
fragrment, a link to download a file, o & surrmary view of the iter.

[Gicers J ¢ [$ua]

[coc o P

9. The choice you made in step 8 in this section determines which wizard pages you see and
what you choose next.

a.

If you chose Single Content Item in step 8, you can select Browse in the wizard’s Select
Content window to navigate through the repository tree to locate content, select the item,
and click Next.

You can also select Search to find content by keyword or content type. (If you have
multiple content repositories configured, you can also search by repository.) By default,
all content types are listed in the Content Type field. If you want to control which
content types appear in the Content Type field, you can set entitlements by user. In
order to have these entitlements by user evaluated, override the
com.bea.content.ui.framework.AllowObjectClassViewRights context
parameter in the web.xml file. If you change the setting to false, the entitlements set on
the content types determine the content types that are listed in the Content Type field. If
you change the setting to true, or you omit the context parameter altogether, all content
types appear for all users.

See the Security Guide for instructions on setting up users and roles in the
Administration Console, and adding view capabilities so users can see the object
classes in the Content Type field. Click Update Search Results to view the results.
Adjust the Items per Page field to determine how many search results to display in the
wizard. Select an item; see Figure 10-6. Click Next.

Oracle WebLogic Portal Portlet Development Guide 10-9

../security/index.html

Adding the Content Presenter Portlet

10-10

Figure 10-5 Narrow Your Search with a Keyword

Content Presenter Configuration Wizard
1. Single or Multipls Items | 2. Select Content | 3. Select Template & View | 4. Title & Theme || 5. Preview & Save
[&% Cancel] [@ Previous I [& Mext I
Browse or Search for the Content Item to display?
O Browse
© Sgarch
Search for a Content Item Content Item to Display
Keywords: Letter [CL] ok
o Update Search Results e
o 3 L) LetterFromcEn.htm
. In /Shared Content
Repository: Shared Content Repository % Repository/HR/
Messages,’
P advanced Search Query Options ontent Type s
htmiContent
Modified May 22, 2007 by
weblogic
Search Results: MNumber of Results: 0 Created May 22, 2007 by
weblogic
&) view Conterit,..
No ftems Matched the Search Criteria .
| Edit Cantent,..
Item Details
Please seject an fem to wew s detais,
[Zcancel | [@ Pravious I [P Next I

b.

If you chose Multiple Content Items in step 8 of this section, select one of the following
in the wizard’s Select Content window to specify your content items:

— Custom List of Specific Content Items — This type of content retrieval is not a live

search; it displays content from a list that you create. Click Browse for Content Items
to navigate through the repository tree to locate content.

You can also click Search for Content Items, enter a keyword, and click Update
Search Results to retrieve content by keyword. If you have multiple content
repositories configured, you can also search within a specific repository. To search your
repository, you must configure it and make it searchable. The repository that ships with
a WebLogic Portal for a new domain is not automatically indexed for searching. See
the Content Management Guide for instructions on indexing your repository.

Figure 10-6 shows that after you retrieve multiple items and click Browse for Content
Items, you can select an item and click Add Item to List. The custom list lets you
control the order in which the content displays by selecting the check box next to the
item and clicking Move Up or Move Down. Moving content to the top of the list
ensures that a certain content item displays first. See Figure 10-7.

Oracle WebLogic Portal Portlet Development Guide

../cm/index.html

Configuring the Content Presenter Portlet in Your Portal

Figure 10-6 Custom List of Specific Content Items

Tontent Presenter Donfiguration Wizard

1. Single or Multiple Items | 2. Select Content | 3. Select Template & View | | 4. Tite 8 Theme | | 5. Preview 5 Save

[€2cancel | | ©Frevious | [% Next
what would you like Content Presenter to display?
&) custom List of Specific Content Thems
) Results of a Search Query
© Cantents of a Folder
Results of 2 Content Selectar
select and Add Content Items Content Items to Display
) Browse for Content Tems B Trainingannouncement bt (@) (] [G]
O gearch for Content Items b LetterFromCED htm == &
=+ Content Repositories == Refresh Tree
=) Community_Repository
=-E shared Content Repository
B HR

EHES Messages
i BT Trainingsnnouncerment.htm
-] LetterFromCEQ. hitm
EHES Press Releases
&= Resources
£ Images

Item Details

ke

|J;_> LetterFromCEO.htm

In /Shared Gontent Repository/HR/
Messages,’

Content Type is htmiContent

Modified May 22, 2007 by weblogic
Created May 22, 2007 by weblogic

@9 view Content...
&1 Edit Content...

You can also verify that you selected the correct content by clicking View Content to
preview the content you selected. The actual content and other details appear in a
separate window. If you selected an image, the image also appears. You can also click
Edit Content to change the property values of the item. If the item is a binary file, you
can download the item, upload new values, or change the property values.

After you determine the order of the content, click Next.

— Results of a Search Query — Locate content by entering a keyword or selecting a
content type (such as an image or a book) and clicking Preview Query Results. You
can enter multiple keywords (separated by a space) and the or connector is assumed.
For example, if you search for IRA retirement, results will include the keyword IRA or
retirement. If you have multiple content repositories configured and you are entitled to
view them, you can also search by repository.

You can click Advanced Search Query Options to create a query filter or a sort filter.
Clicking Create New Query Filter applies a filter to your query, such as property
name, an operator, and a value to narrow down your search results. For example, you
can search for content created after 1/1/07 by selecting the Creation Date property,
selecting After, and then entering a date. Click Add Filter and the new filter appears in
the Query Filters section, as shown in Figure 10-7.

Oracle WebLogic Portal Portlet Development Guide 10-11

Adding the Content Presenter Portlet

Tip: The Similar operator retrieves results that contain words that are similar to the
keyword (for example, the word might be misspelled).

You can click Create New Sort Filter to determine how to display the search results.
For example, you can display the most recently-modified content by selecting the Last
Modified Date property, selecting Descending, and clicking Add Sort Filter. The new
sort filter appears in the Sort Filters section. See Figure 10-7 to see how you can
display the most recently-modified content first (descending order). You can change the
order in which the results are sorted by clicking the up or down arrow to move the
items in the sort filter up or down in the list (from ascending to descending, for
example.)

Figure 10-7 Query Filter and Sort Filter

Create a Search Query

Keywords: investors
Content Type: PressRelease v
Repository: Shared Content Repository %

% Advanced Search Query Options

Query Filters: Creation Date Before 2007-6-13:0:0:0 I Remove Filter

[4 Create Mew Query Filter]

Sort Filters: There are mo Sort Sifters currenty gopliss,

Sort Property Sort Direction

Creation Date vl ® Ascending 4 add Sort Filter 5% Cancel

O Descending

Results Preview: | Q preview Query Results |

Title
AyitekFuturelnvestorsPrograrm.btm
BoardiMemberAnnouncement.bitm
DividendsAnnouncerment htrm
NewRewardsCreditCard.hitm

MNurnber of Results: 4

Items per Page: 500

10-12 Oracle WebLogic Portal Portlet Development Guide

Configuring the Content Presenter Portlet in Your Portal

Click Preview Query Results to view the results of the search query. The search query
searches both property values and binary content. Adjust the Items per page field to
determine how many search results to display in the wizard (it does not affect the final
display). Each time someone visits the Content Presenter portlet, the search is re-run.
Since content in the repository can change, the results might be different the next time
the portlet renders. Click Next.

Tip: Running a search query is more resource intensive than retrieving content from a
specific node or retrieving the contents of a specific folder. When possible, try to
retrieve specific content, rather than running a search.

— Contents of a Folder — Navigate through the repository tree to locate a content folder,
click Select this Item, and click Next. Each time a user views this portlet, the most
current content items in the selected folder are retrieved. Any content can behave like a
folder; therefore, you can select any child items under that content.

— Results of a Content Selector — Select a Content Selector that you created in
WebLogic for Workshop, and click Select this Item. Content Selectors use rules to
target specific groups of people with content items from the WLP Virtual Content
Repository. See the Interaction Management Guide for more information. Each time
the portlet renders, the most current Content Selectors are retrieved. Click Next after
you locate the Content Selector you want to display.

10. In the wizard’s Select Template & View window, select an item from the Template
Category field, and then select a template. A template category helps you organize your
templates and template views. You can have as many template categories as you need, but you
should plan your organization strategy early, so that you do not have to update the preference
values of existing Content Presenter portlet instances. A template is similar to a folder and is
used to organize content. The default template that appears is based on the single or multiple
content choice you made in step 8 in this section.

WebLogic Portal ships with the following two default templates:

— Default Single Item Template — Lets you view a single item and a single property.
See Figure 10-8. This template appears because you chose Single Content Item in
step 8.

— Default Multiple Items Template — Lets you view multiple items and properties in a
bulleted list. This template appears because you chose Multiple Content Items in
step 8.

Oracle WebLogic Portal Portlet Development Guide 10-13

../interaction/index.html

Adding the Content Presenter Portlet

10-14

You should create your own custom template based on the content you want to display.
The custom templates you create appear in the wizard. See the Content Management Guide
for instructions on creating custom templates and views.

Select an item in the Template Views field. A template view controls the layout and
formatting of the content in the portlet. For example, you might create a template for your
company’s Press Releases. You could then create several custom template views that
display the content in the following ways: a summary of the Press Release, the full text of
the press release, details of the Press Release, and so on.

If you chose the Default Single Item Template in step 10 in this section (which displays a
single piece of content), or a custom template that you created that does not contain views,
select Default Single Item View for the template view. If you chose the Default Multiple
Items Template in step 10 in this section, select Default Multiple Items View for the
template view. If you created a custom template view as described in the Content
Management Guide, that template view also appears here.

For templates or views that support pagination of multiple content items, set the Items per
Page value to the maximum number of items you want to display at one time on the
template. With the appropriate pagination JSP tags on the template or view, users can
navigate large numbers of items while viewing only a manageable few.

Note: You can customize how templates and views paginate in the Content Presenter
Configuration Wizard. For more information on the pagination tags, see the CM JSP
Tag Javadoc.

Click Next after you select a template and view. See Figure 10-8.

Oracle WebLogic Portal Portlet Development Guide

../cm/index.html
../cm/index.html
../cm/index.html
../javadocjsp/content/index.html

Configuring the Content Presenter Portlet in Your Portal

Figure 10-8 Select a Template and View

3. Select Template & View
1. Single or Multiple Iterns | | 2. Select Content elect Template & Vie 4. Title & Theme | | 5. Preview 8 Save
e
573 Cancel 4 Previous S Next

Default Template Category Lg_

Template

Title: Default Multiple Items Template

i
- | Description: This is the default template for a bulleted list
of items.

© & Default Multiple flems Femplate (Defaut}
= Default Multiple Items Yiew

Default Multip
Default Multipls

Title: Default Multiple Items Yiew

Description: This is the default view for a bulleted kst of
items.

& Previous

11. In the wizard’s Title & Theme window, enter a title (which appears as the portlet’s title in the
titlebar and the Administration Console) and description for the portlet. Select a theme from
the Portlet Theme field and click Next. See Figure 10-9. The borderless theme presents your
content with no background or border, so the content looks as if it is inline. If you choose the
borderless theme, the Edit icon (discussed in step 12) appears only when you mouse over the
top of the portlet.

Figure 10-9 Enter a Description for the Portlet and Pick a Theme

4. Title & Theme
1. Single or Multiple Items | | 2. Select Content | 2. Select Template & View | 4 e & Theme | 5. Preview & Save
L
$3% cancel < Previous % Mext

Letter from the CEO

IMost recent communication from the 5|
Avitek Financial CEO.

!

$2 Cancel < Previous

12. In the portlet’s Preview & Save window, you can click View Content or Edit Content. Click
Save to save your changes to this page and to shared portlets in the library. Click Preview
Changes in Portlet to view the changes in the portlet. Only you can see this version of this

Oracle WebLogic Portal Portlet Development Guide 10-15

Adding the Content Presenter Portlet

portlet. When previewing the portlet, you can click Edit to make changes to it. (If someone
is authorized to make changes to your portlet and does so while you are previewing the portlet,
you can no longer preview your version of the portlet. If this occurs, click Continue to see
the newer version of the portlet.)

Tip: Clicking Preview Changes in Portlet puts the portlet into a "preview state". The
portlet will remain in its preview state until you click Cancel or Save in the wizard.
The preview state is maintained even if you log out or close your browser window. If
you make changes in other steps of the wizard, you must click Preview Changes in
Portlet to update the preview with your changes, or click Save to make the changes
public.

You can also click Advanced Options and select Save to Current Page (to save your
changes to the current page only) or select Save to Shared Portlet in Library, to save
changes to this shared portlet in the library. Saving changes at the library level globally
affects everywhere the shared portlet was placed. You see this option enabled only if you
clicked Create New Shared Portlet. When you click Create New Shared Portlet, you
use these settings to create a new portlet in the library. The new portlet is available to all
entitled users of this web application and can be placed on any page. The current page is
updated to use this new portlet, rather than the current portlet. The new portlet also appears
in the Administration Console in the \Library\Portlets\ directory. Inheritance rules
apply to shared portlets in the library. See the Portal Development Guide for more
information on inheritance. Figure 10-10 shows the Finish window.

Note: Content Presenter portlets that are configured on pages in the library will remain on
the page in the library, even if the page has been customized on the desktop. The only
way to make Content Presenter configurations local to a desktop is to add a
configured or unconfigured Content Presenter portlet directly to the desktop, or
customize the portlet on the desktop by changing or adding localizations to the portlet
on the desktop using the Administration Console.

When you finish previewing the portlet, click Return to Wizard or click the Edit icon to
return to this step in the wizard and make any additional changes. If you want to save your
changes, click Save.

Tip: To be able to use the Create New Shared Portlet button in the Advanced Options, you
must have edit rights on the page and delete rights on the portlet, in addition to the rights
needed to configure a Content Presenter portlet.

10-16 Oracle WebLogic Portal Portlet Development Guide

../portals/index.html

Configuring the Content Presenter Portlet in Your Portal

Figure 10-10 Preview or Save the Portlet

Content Presenter Configuration Wizard
1. Single or Multiple Items | | 2. Select Content | | 3. Select Template & Yiew | | 4. Title & Theme | 5. Preview & Save
[22 cancal | [<P Previous] | B save |
1. Single or Multiple tems | Multiple Content Items
2. Select Content Content Iterms matching the following Sea;’ch Query will be displayed:
Keywords: investors
Content Type: all
Repository: Shared Content Repository
Query Filters: creation Date Before Septernber 10, 2007
Creation Date Before Septernber 10, 2007
3. Select Template 8 Yiew Template Category: Default Template Category
Selected Template: Default Multinle Items Template
Selected Template Yiew: Default Multiple Items Yiew
4. Title & Theme Portlet Title: Letter from the CEO
Portlet Description: Most recent communication from the Avitek Financia...
Portlet Theme: MNone
5. Preview & Save [Freview Changes in Portlet < |
Preview current settings in the Portlet,
¥ Advanced Options
[23 cancal | [<P Previous] [Bl save |

The new content displays in the Content Presenter portlet. Figure 10-11 shows an example
of content that is an advertisement for a college savings account.

Figure 10-11 A Single Content Item Displayed in the Content Presenter Portlet

Content Presenter This Portlet is in Preview Mode.
Configuration Wizard [@ Return to \Wizard]

Open your
College
Savings
Account today.

[Click here for more details |

You can use a custom template or template view to change the look of the Content
Presenter portlet. See Displaying Content with the Content Presenter Portlet in the Content
Management Guide for instructions.

Oracle WebLogic Portal Portlet Development Guide 10-17

../cm/index.html
../cm/index.html
../cm/developCM.html#wp1090812

Adding the Content Presenter Portlet

10-18

Tip: The Content Presenter portlet uses error logging to catch exceptions and displays an
error message in the portlet if you have rights to configure the portlet. For example,
you might receive an error message if content your portlet is referencing was deleted,
or a template or view the portlet is using was removed. The error message instructs
you to reconfigure the Content Presenter portlet to fix the errors. You must have edit
and delete capabilities in order to configure the portlet.

This section also contains the following topics:

e Changing How Much Content Appears in the Portlet

e Using Portlet Publishing to Expose a Content Presenter Portlet

Changing How Much Content Appears in the Portlet

You can change the amount of content that a portlet displays. Use the Content Presenter Example
to edit the Avitek - In the News portlet to display three specific press releases, rather than a list
of all press releases.

Perform the following steps to change how much content appears in a portlet:

1.

Follow the instructions in “Starting the Content Presenter Example” on page 10-2 to log into
the Content Presenter Example.

In the Avitek - In the News portlet in the Content Presenter Example, click Edit in the portlet’s
title bar.

In the Content Presenter Configuration Wizard, click 2. Select Content.
Select Custom L.ist of Specific Content Items to display content from a list that you create.

Navigate through the repository tree to locate content in the Shared Content Repository folder
and select the HR > Press Releases folder.

Select the AvitekFuturelnvestorsProgram.htm press release and click Add Item to List.
Repeat these steps for two additional press releases: DividendsAnnouncement.htm and
NewRewardsCreditCard.htm. This step will control what displays in the portlet- rather than
all press releases appearing, only these three will appear.

If you want user to see the DividendsAnnouncement press release first in the list, select the
check box next to it and click Move Up.

Click Next to save your changes.

Oracle WebLogic Portal Portlet Development Guide

Configuring the Content Presenter Portlet in Your Portal

9. Inthe Select Template & View window, click Next.

10. In the Portlet Properties window, click Next.

11. In the Finish window, click Preview Changes in Portlet.

12. The three press releases now appear. Click Return to Wizard.

13. Click Save.

Using Portlet Publishing to Expose a Content Presenter Portlet

You must be entitled to use Portlet Publishing to expose a Content Presenter portlet. If you use
Portlet Publishing to expose your Content Presenter portlet, some features are not available.

The following list describes features that are not part of a Content Presenter portlet exposed with
Portlet Publishing:

e Advanced options are not available when you expose a Content Presenter portlet through
Portlet Publishing. You can save the portlet’s configuration only at its current location (for
example, a desktop or a page in a library).

e There is no Title Bar, so you cannot click Edit in the portlet’s title bar. You can edit the
portlet configuration only by rolling your mouse over the top portion of the portlet, which
enables the edit button on the top right of the portlet.

e Themes do not apply in portlets exposed through Portlet Publishing. Therefore, you cannot
change the currently selected theme of the Content Presenter portlet.

Tip: When you use Portlet Publishing, work with only one Content Presenter portlet on a page
at a time. If you work on more than one Content Presenter portlet on a page, an error
appears. Close one of the Content Presenter wizards to continue working.

For more information on Portlet Publishing, see the Portlet Guide.

Oracle WebLogic Portal Portlet Development Guide 10-19

../portlets/index.html

Adding the Content Presenter Portlet

10-20 Oracle WebLogic Portal Portlet Development Guide

Adding a Third-Party Portlet

This chapter discusses special-purpose portlets that are provided by WebLogic Portal partner
companies that you can easily incorporate into your portal.

This chapter includes these sections:
e Using the Collaboration Portlets

e Third-Party Portlets

Using the Collaboration Portlets

WebLogic Portal provides a set of portlets for adding collaborative features to your portal. You
can use these collaboration portlets in any WebLogic Portal desktop.

Note: The Collaboration portlets will not operate correctly when desktop or portlet
asynchronous mode is enabled. Async mode is not supported for Collaboration portlets.
For information on portlet async mode, see “Asynchronous Portlet Content Rendering”

on page 7-13. For information on desktop async mode, see the WebLogic Portal Portal
Development Guide.

This section includes these topics:
e \What Are Collaboration Portlets?
e Adding Collaboration Portlets To Your Portal
e Configuring Collaboration Portlets for a Shared View

e Using the Collaboration Portlets

Oracle WebLogic Portal Portlet Development Guide 111

../portals/index.html
../portals/index.html

Adding a Third-Party Portlet

11-2

e Using the Collaboration Portlet Source Code

What Are Collahoration Portlets?

WebLogic Portal provides the following collaboration portlets that you can use in any WebLogic
Portal desktop.

Note: User portlets are portlets that store data on a per-user basis. Common area portlets store
data in a common location that can be viewed by all users. The Calendar, Address Book,
and Tasks portlets are user portlets by default. In some cases, you might want to
reconfigure them to be common area portlets. For example, you might want to configure
a corporate events calendar where all users see the same data. See “Configuring
Collaboration Portlets for a Shared View” on page 11-7 for details.

e Calendar Portlet — (User portlet) Lets you create and schedule appointments.

e Mail Portlet — (User portlet) Allows you send and receive personal e-mail. This portlet
supports IMAP and POP.

e Address Book Portlet — (User portlet) Lets you view and manage names, addresses, phone
numbers, e-mail addresses, and other information in a personal address book.

e Tasks Portlet — (User portlet) Allows you to create and track Community items or
personal items on a To Do list.

e Discussion Portlet — (Common area portlet) Lets you post and monitor topics of interest.

Tip: The collaboration portlets are also available for use in communities, such as a
GroupSpace Community. For detailed information on creating communities, see the
WebLogic Portal Communities Guide. A GroupSpace Community is a community
created using the Workshop for WebLogic GroupSpace Template. For information on
the WebL ogic Portal GroupSpace Community, see the WebLogic Portal GroupSpace
Guide. The instructions in this chapter are intended for use of the collaboration portlets
outside of a groupspace enabled community.

Adding Collaboration Portlets To Your Portal

This section explains how to add collaboration portlets to your portal and configure them
properly. The basic steps are:

e Step 1. Add Collaboration Facets

Oracle WebLogic Portal Portlet Development Guide

../communities/index.html
../groupspace/index.html
../groupspace/index.html

Using the Collaboration Portlets

Step 2: Add Collaboration Repository to Your Domain

Step 3: Create a Role for Collaboration Portlet Users

Step 4. (Optional) Configure a Repository

e Step 5. Entitle the Collaboration Data Repository

Step 6. Add Users to the New Role

Step 7. Configure the Collaboration Portlets

Step 8. Add Collaboration Portlets to Your Desktop

Step 1. Add Collaboration Facets

You must add the appropriate facets to both the portal EAR projects and the portal Web projects
in which the collaboration portlets will be used.

1. Add the relevant collaboration portlet facets to your portal EAR project.
a. Inthe Navigator view, right-click your portal EAR project and choose Properties.
b. In the Properties view, select Project Facets, and click Add/Remove Project Facets.

c. Inthe Add/Remove window, expand WebLogic Portal Collaboration and select both
Collaboration Portlets Application Libraries and Collaboration API.

d. Click Finish, then OK.
2. Add the Collaboration Portlets facet to your portal web project.

a. Perform the same sub-steps above, selecting the WebLogic Portal Collaboration >
Collaboration Portlets facet.

After you add the collaboration portlet facets, collaboration portlets themselves must be
configured properly, as explained in the following steps. After configuration, they are available
to add to a portal desktop.

Step 2: Add Collaboration Repository to Your Domain

If you have not done so, you need to create or extend a domain to includes the Collaboration
Repository components.

1. If you have an existing server and it is running, stop the server.

Oracle WebLogic Portal Portlet Development Guide 11-3

Adding a Third-Party Portlet

11-4

2. Start the Configuration Wizard. From the Windows Start menu, choose Oracle Products >
WebLogic Server 10.x > Tools > Configuration Wizard.

3. Inthe Configuration Wizard, select Create for a new domain or Extend for an existing
domain, and click Next.

4. If you selected Create in step 3, select WebLogic Portal Collaboration Repository check
box and click Next. If you are extending an existing domain, select the domain root directory,
and click Next.

5. Complete the remaining wizard windows.

6. Restart the server.

Step 3: Create a Role for Collaboration Portlet Users

Users of the collaboration portlets must be entitled to use the repository in which collaboration
data is stored. This section explains how to create an new user role.

1. Start the WebLogic Portal Administration Console and log in.

2. Create a new enterprise application-scoped visitor entitlement. To do this, select Users,
Groups, & Roles > Visitor Entitlement > Browse Roles.

3. Settherole scope. In the Browse Roles from panel, click Update to bring up the Update Role
Scope dialog. In the dialog, select Enterprise Application Scope, and click Update.

4. Select Visitor Roles > Browse Roles > Create New Role. Enter a name for the new role and
save it.

Step 4. (Optional) Configure a Repository

Data generated by collaboration portlets is stored in a content repository. By default,
collaboration portlets are configured to store data in the repository subfolder
/Communities_Repository/Collaboration.

If you wish, you can use any WLP content repository for storing collaboration portlet data. Note
that library services must be disabled for the repository. Collaboration portlet data is not
supported for third party repositories, such as Documentum repositories. See the Content
Management Guide for detailed information on content repositories. It is a good practice to create
a subfolder in the repository in which to store the data, as explained in this section.

Oracle WebLogic Portal Portlet Development Guide

../cm/index.html
../cm/index.html

Using the Collaboration Portlets

Tip: A general best practice is to create a custom repository for collaboration data. See
Configuring Additional WLP Repositories in the Content Management Guide for details.

To create a subfolder in which to store collaboration portlet data, do the following:
1. Select Content > Content Management. In the Repository View, select your repository.

2. Click Add Folder and add a new folder to the repository of your choice.

In a later step, you will configure individual collaboration portlets to point to the repository folder
of your choice, which is an option if the default location is not desirable.

Step 5. Entitle the Collaboration Data Repository

You must properly entitle the repository folder in which collaboration portlet data will be stored.
Only entitled users can use the collaboration portlets.

1. Select the subfolder you created or targeted to store collaboration data.
2. Select the Entitlements tab for the subfolder.

3. Click Add Role and add the new user role you created for the collaboration portlets. Entitle
the role with the capabilities Create, View, Update, and Delete.

Step 6. Add Users to the New Role

You must add any users who will use the collaboration portlets to the new role. Select the role
and click Add Users to Role. Use the dialog to add users to the role.

Tip: Besuretoadd any new users to the role if you want them to use the collaboration portlets.
To create new users, select Users, Groups, & Roles > User Management. After you
create a new user, add it to the role.

Step 7. Configure the Collaboration Portlets

Configure the collaboration portlets so that they are aware of the repository that you configured.
To do this, you edit certain portlet preferences.

1. Select Portal > Portal Management.

2. Expand the Portal Resources > Library > Portlets folder.

Oracle WebLogic Portal Portlet Development Guide 11-5

../cm/filesystemArchCM.html#wp1074118

Adding a Third-Party Portlet

3. For each collaboration portlet that you wish to use, do the following:

a. Select a portlet to configure. For example, click Discussion to configure the Discussion
portlet.

b. Click Portlet Preferences.

c. Edit collaboration.personal_repository.path and set its value to the designated
collaboration data folder in your repository. For example, if you created a folder named
MyCollaborationData in the repository called MyCollaborationRepository, set the value
to: /MyCol laborationRepository/MyCol laborationData.

d. Edit collaboration.personal_repository.name and set its value to the name of the
repository you are using for collaboration data. For example, if you are using a repository
called MyCollaborationRepository, set the value to MyCol laborationRepository.

Step 8. Add Collaboration Portlets to Your Desktop

Now that you have configured your collaboration portlets, you can add them to a desktop.

Note: Collaboration portlets only work if the user is authenticated. Your desktop must include
a login portlet. For more information on authentication, see the Security Guide.

If you configured everything properly, authorized users can access the collaboration portlets after
logging in. Folders will be created in the collaboration repository as they are needed. For
example, Figure 11-1 shows the repository structure for an example discussion forum on
beekeeping.

Figure 11-1 Repository Structure for a Discussion Forum

Home = Content > Conkent Management

Manage: Content | Types | Repositories

% Refresh Tree

Repository Yiew

E|l5 Yirtual Content Repository

EEE BEA Repository

- ED collabData

L] Forums

1] Paskeaping

=1 Hive Managameant
2] Honey Extraction
2 Used Equipment
=5 Community_Repository

11-6 Oracle WebLogic Portal Portlet Development Guide

../security/index.html

Using the Collaboration Portlets

Configuring Collaboration Portlets for a Shared View

This section explains how to reconfigure user portlets to be common area portlets. User portlets
restrict the portlet’s data to individual users, while common area portlets allow entitled users to
share a the same view of the portlet’s data.

Overview of User and Common Area Portlets

Collaboration portlets fall into two categories: common area portlets and user portlets: Typically,
common area portlets are recommended for use cases where all users need to share the same view
of the portlet’s data. For example, you could create a calendar that displays corporate events to

all users. In this case, you would need to configure the Calendar portlet (which is a user portlet

by default) to be a common area portlet.

e Common area portlets write data to a shared repository that is accessible to all entitled
users. By default, the Discussion portlet is a common area portlet.

e User portlets write data to a user-specific repository location that is accessible only to the
currently logged in user. A user portlet’s repository location is based on the root repository
location specified by the portlet preference (see “Step 7. Configure the Collaboration
Portlets” on page 11-5). For example, if the Calendar portlet preference is set to be
/MyRepository/Collaboration/calendar, and if the Calendar portlet is configured as a user
portlet, it will write to the location /MyRepository/Collaboration/calendar/<username>.
The Calendar, Address Book, Tasks, and Mail portlets are user portlets by default.

Configuring a Common Area Portlet

This section explains how to reconfigure user portlets to be common area portlets. Note that by
default, the Calendar, Address Book, Tasks, and Mail portlets are user portlets.

Tip: Because mail is usually intended to be used by specific users rather than shared among
many users, it is typically not necessary to reconfigure the Mail portlet to be a common
area portlet.

1. Copy the portlets you want to configure to your local project. To do this:

a. Openthe Merged Projects View in Workshop for WebLogic. (To open the Merged Projects
view, select Window > Show View > Merged Projects.)

Oracle WebLogic Portal Portlet Development Guide 1-1

Adding a Third-Party Portlet

11-8

2.
3.

5.

b. Right-click each portlet (located in the portlets/collaboration folder) and select Copy to
Project. See “Portlets in J2EE Shared Libraries” on page 5-3 for information on the Copy
to Project feature.

Rename each copied portlet. For example, change Tasks.portlet to Tasks-Team.portlet.

In a text editor, open each .portlet file and change the definition label and title. For
example:
Before:

<netuix:portlet definitionLabel="task™ title="My Task"
lafDependenciesUri="/portlets/collaboration/col laboration.dependencies'>

After:
<netuix:portlet definitionLabel=""task_team" title="Team Task"
lafDependenciesUri="/portlets/col laboration/col laboration.dependencies'>

Also in the text editor, for each portlet, change the <netuix:meta> tag containing the
AccountListenerImpl to use the CmAccountListener instead of the Personal AccountL.istener.
For example:

Before:

<netuix:meta name="collaboration.portlet.AccountListenerimpl"
content="portlets.collaboration.common.clln.PersonalAccountListener'/>

After:

<netuix:meta name="collaboration.portlet.AccountListenerimpl"
content=""portlets.collaboration.common.clln.CmAccountListener'/>

Save each .portlet file.

Using the Collaboration Portlets

For detailed information on how to use the collaboration portlets, see the “Using the GroupSpace
Portlets” chapter of the WebLogic Portal GroupSpace Guide. All of the collaboration portlets
listed previously in this section are described in that chapter.

Using the Collaboration Portlet Source Code

Source code for the collaboration portlets is available to WebL ogic Portal developers, as
explained in this section.

Oracle WebLogic Portal Portlet Development Guide

../groupspace/index.html

Third-Party Portlets

Copying the Source Code to Your Project

To use the source code, you must first copy it from a J2EE Shared Library to your workspace.

Source code for the collaboration portlets is located in the J2EE Shared Library
wlp-collab-portlets-web-11ib. To use this source code, you need to copy it from the shared
library to your project workspace. See “Portlets in J2EE Shared Libraries” on page 5-3 for
information on the Copy to Project feature.

Java source code for the collaboration portlets is copied to WEB- INF/src/portlets. Javadoc for
the collaboration portlet code is copied to WEB-INF/src/javadoc.zip.

Source Code Disclaimers

If you modify any of the source code for the collaboration portlets, be aware of the following
disclaimers:

o |f you modify the source code and discover a bug, you must either reproduce the problem
using the original collaboration portlet code or provide a simple code sample that
illustrates that a bug exists in the WebLogic Portal API bug.

o If you change the original copy of the collaboration portlet source code and later apply a
software patch to WebLogic Portal, be you must copy the updated source code from its
library module to your workspace and reapply the changes you made to the original source
code.

Third-Party Portlets

WebLogic Portal partner companies create special-purpose portlets that you can easily
incorporate into your portal; these companies include Autonomy, Documentum, and
MobileAware.

The following sections provide more information about third-party portlets:
e Autonomy Portlets
e Documentum Portlets

o MobileAware Portlets

Autonomy Portlets

WebLogic Portal includes an embedded license of Autonomy-based search capabilities. You can
use these capabilities to integrate enterprise-class search into your portal; common use cases

Oracle WebLogic Portal Portlet Development Guide 11-9

Adding a Third-Party Portlet

11-10

include integration with content management systems, relational databases, and external web
sites. You can expose these sources of information for searches using portlets that some with
WebLogic Portal, and developers can use Autonomy APIs as they author new portlets and
business logic for integrating search into your portal as well.

In WebLogic Portal 9.2, the proprietary search APIs were deprecated; we recommend that you
use Autonomy APIs to implement search capabilities.

For more information about Autonomy, see Integrating Search.

Documentum Portlets

EMC Documentum has partnered with Oracle to offer EMC Documentum Content Services for
Oracle Weblogic Portal. This product provides a packaged set of Documentum functionality
exposed through the Oracle WebLogic Portal infrastructure, allowing users to access and interact
with all types of enterprise content including web pages, documents, and rich media such as audio
and video.

From a portlet development perspective, a key feature of this product is the inclusion of
Documentum portlets—application components that expose standardized, enhanced content
management user functions through the portal interface.

Documentum portlets expose four key applications:
e Content management portlets allow users to manage any type of content.
e \Web Publisher portlets permit casual users to publish content to web sites and portals.

e eRoom portlets provide dashboard views into EMC Documentum eRooms and allow
multiple project management.

e The Enterprise Content Integration (ECI) Services portlet enables continuous access to
content in other repositories, databases, and Web sites.

See the Documentum web site for more information on Documentum portlets for WebLogic
Portal

MobileAware Portlets

Oracle Communication and Mobility Server provides a standards-based, non-proprietary
environment that extends Oracle WebLogic deployments to offer multichannel mobile services
in significantly reduced time frames. Enterprises can broaden the effectiveness of

Oracle WebLogic Portal Portlet Development Guide

../search/index.html
http://software.emc.com/products/product_family/documentum_family.htm

Third-Party Portlets

business-critical systems for employees and customers, and mobile carriers can rapidly deploy
new, data-centric services, without the need for re-training and re-tooling.

For more information about Oracle Communication and Mobility Server and how to use it with
WebLogic Portal, see the product documentation on the e-docs web site.

Oracle WebLogic Portal Portlet Development Guide 1-1

../index.html

Adding a Third-Party Portlet

11-12 Oracle WebLogic Portal Portlet Development Guide

Working With JSF Portlets

This chapter provides an in-depth discussion on procedures and best practices for developing and

configuring JSF portlets.

This chapter includes the following sections:
e Overview
e Configuring JSF Within Weblogic Portal
e Creating JSF Portlets
o Native Bridge Architecture
e Understanding WLP and JSF Rendering Life Cycles
e Understanding Scopes and JSF Portlets
e State Sharing Patterns
e Using Common WLP Features With JSF Portlets
e Portal Container Features and JSF Portlets
e Understanding Navigation
e Navigation Within a Portal Environment
e Interportlet Communication with JSF Portlets

e Namespacing

Oracle WebLogic Portal Portlet Development Guide 1241

Working With JSF Portlets

Using Custom JavaScript in JSF Portlets

Ajax Enablement

Localizing JSF Portlets

Preparing JSF Portlets for Production

Tips for Logging, Iterative Development, and Debugging of JSF Portlets

Consolidated List of Best Practices

Note: For information about JSF portlet development, see Appendix B, “JSF Portlet
Development.”

Overview

Oracle WebLogic Portal has supported the use of JSF portlets starting with WLP 9.2, and this
support has been enhanced through the current release. JSF is supported as a specific portlet type
within WebL ogic Portal. Portlets implemented with JSF can leverage all of the powerful features
of WLP.

This chapter provides a developer with a comprehensive guide for building JSF portlets in Oracle
WebLogic Portal 10.3.0. It covers a wide variety of portlet development topics necessary to know
to build JSF portlets.

Configuring JSF Within Weblogic Portal

12-2

This section discusses how to configure JSF within WLP. These configuration settings are
specified in files such as web.xml and weblogic.xml. All of these files are scoped to the entire
Web Project. Therefore, Faces configuration is also scoped to the entire web application.

This section contains the following topics:
e JSF Library Modules in WebLogic Server
e Installing the JSF Libraries into a Portal Web Project
e Configuring JSF 1.2 in WLP
e Creating JSF Portlets

e JSF Configuration Settings

Oracle WebLogic Portal Portlet Development Guide

Configuring JSF Within Weblogic Portal

JSF Library Modules in WebLogic Server

WebLogic Server provides a packaging feature called library modules that package up one or
more jar files as a deployable feature. JSF support for a web application is one such usage of the
library module packaging feature.

Table 12-1 lists the JSF library modules included in WebLogic Server 10gR3 (and therefore also
WebLogic Portal 10gR3). This list is obtainable via the Manage WebL ogic Shared Libraries link
on the JSF library configuration dialog, or by inspecting the config.xml file for your domain.

Tahle 12-1 Supported JSF Implementations for WebLogic Server 10gR3

Library Module Name Implementation Version Supported in WLP?
Jsf Sun Reference 1232 Yes, caveats

Jsf-ri Sun Reference 111 Yes

Jsf-myfaces MyFaces 1.1.3 No

Jsf-myfaces MyFaces 111 No

For a Web Project, including WebLogic Portal Web Projects, you must choose just one version
of JSF to use amongst the supported set. For WLP 10gR3, only the Sun Rl implementations are
officially supported. While it is possible to manually create a new JSF library module for a
different JSF implementation, WebLogic Portal only officially supports the set provided in the
installer. It is also possible to copy JSF implementation jar files directly into the WEB-INF/1ib
folder. This also is not officially supported with WLP.

The JSF portlet support in WebLogic Portal uses the same integration code regardless of the JSF
implementation in use. However, Oracle has found the Sun RI to work best within WLP, and
there are known issues with using MyFaces. Therefore, only the Sun RI is supported.

Caution: Workshop for WebLogic will by default configure an unsupported MyFaces JSF
implementation. See the next section for instructions on changing it to Sun RI.

Installing the JSF Libraries into a Portal Web Project

For a WebLogic Portal Web Project to support JSF portlets, JSF itself must be installed into the
project. JSF support is not enabled by default.

Oracle WebLogic Portal Portlet Development Guide 12-3

Working With JSF Portlets

A plugin called Web Tools Project (WTP) is available for the Eclipse IDE which aids in building
web applications. To help developers manage their web application libraries, WTP provides a
feature called facets. A facet is a feature that is provisioned in a web application, like JSF for
example. When a facet is added to a Web Project, WTP will add in the necessary libraries, files,
and configuration artifacts. When deploying to WebL ogic Server, a Facet often will configure the
Web Project to use one or more library modules.

There are several paths to installing JSF in a Portal Web Project:

e Enabling the JSF facet in Workshop for WebL ogic when creating the project. The facet
selection dialog appears during the web project creation process.(Figure 12-1)

e Adding the JSF facet in Workshop for WebLogic after creating the project. Access the
dialog via Project > Properties > Project Facets > Modify Project.

Figure 12-1 Facet Selection Dialog

e

Project Facets

Select the Facets that should be enabled for this Sl
project.

Configurations: §<custom> v

| Project Facet Wersion sl
“[]*% Hibernate 3z - |
)& dava 6.0 -
i &_IJ Java Annokation Processir 5.0
8 s 1.0
[y 1R 1.1 v
[l =1
18 orade kodo
-] 4 spring
-[¥]%s Struts
-] @0 Web Services
[|5 webDoclet (%Doclet) 1.2:3 - ~
._:‘:7:.1 Bac Tt [Firish] [Cancel]

Once you have navigated to the facet selection dialog, follow these steps:

1. Click the JSF facet checkbox to select it.

12-4 Oracle WebLogic Portal Portlet Development Guide

Configuring JSF Within Weblogic Portal

2. Choose the desired version of JSF by clicking on the dropdown in the Version column.
Selecting JSF 1.1 will eliminate the dependency errors. For the steps to configure JSF 1.2, see
Configuring JSF 1.2 in WLP.

3. Click Next. Do not click Finish. Caution: Clicking Finish on the facets selection dialog will
result in an unsupported JSF implementation being deployed into the Web Project.

4. You will be prompted to provide the specific library module version for some of the facets,
including JSF. Click Next until you reach the JSF panel. On the JSF panel, you must choose
the Sun RI, as shown in Figure 12-2.

5. Click Finish.

The wizard will update your web project descriptors to include the appropriate JSF library
module (see WEB-INF/weblogic.xml). It will also update web.xml with default Faces
configuration settings, and insert a new faces-config.xml into your project.

Figure 12-2 New Portal Weh Project Dialog

© New Portal Web Project

BET
@

Configure J5F Settings.

Libraties
() Use MyFaces WebLogic J2EE Library

Manage Weblogic Shared Libraries
() Use Sun RI WebLogic JZEE Library
Library name: | jsf-ri
Version: 1.1 "?,o
Manage Weblogic Shared Libraties
() Download and Copy JARs inta WEE-INF/lib

Edit 15F Libraries

@ < Back “ Mexk = H Finish H Cancel

Oracle WebLogic Portal Portlet Development Guide 12-5

Working With JSF Portlets

12-6

Caution:

o It is not officially supported for WebLogic Portal to choose the first or third options in the
library module configuration dialog. You must select Sun RI.

e Click on the Manage WebL ogic Shared Libraries link to get a list of the installed library
modules.

Configuring JSF 1.2 in WLP

Of the four JSF implementations installed with WebLogic Server, only one implements JSF 1.2.
That implementation is the Sun RI. Normally, it would suffice to select the 1.2 version (which is
actually the default) in the facet selection dialog. However, due to a dependency issue,
configuring JSF 1.2 for a Portal Web Project using the facet selection dialog is not currently
possible.

The core issue is that the Apache Beehive web framework has an integration with JSF (see
Integrating Apache Beehive Pageflow Controller) which does not work correctly with JSF 1.2.
In all releases through WLP 10gR3, Portal Web Projects have a hard dependency on Apache
Beehive. Therefore, the facet selection dialog does not allow JSF 1.2 to be enabled.

However, for Portal Web Projects that do not use the Apache Beehive integration, this is an
unnecessary limitation. Oracle offers limited support for JSF 1.2 when the Beehive Page Flow
integration is not being used in the web application. Follow these instructions to work around the
issue.

1. Launch Workshop for WebL ogic.

2. Create a Portal Web Project. Add the JSF 1.1 facet, which will populate the project with the
default JSF files.

Navigate to Project > Properties > Java Build Path and select the Libraries tab.
Remove the JSF 1.1 library from the list.

Click Add Library and then WebLogic Shared Library.

Choose the JSF 1.2 library from the list, and click OK.

Open WEB-INF/weblogic.xml.

Remove the entry for the JSF 1.1 library module, if it exists.

© © N o 0 ~ ©w

Add an entry for the JSF 1.2 library, as shown in Listing 12-1.

Oracle WebLogic Portal Portlet Development Guide

Configuring JSF Within Weblogic Portal

10. Update the entry for JSTL to take version 1.2, not 1.1.

11. Remove the PageFlowApplicationFactory configuration artifact from
WEB- INF/facesconfig.xml (see Installing the JSF Libraries into a Portal Web Project).
This avoids a problem that occurs with using Apache Beehive with Sun R1 1.2.3.2.

12. Clean and rebuild, then redeploy.

Listing 12-1 The weblogic.xml Entry for Using JSF 1.2

<wls:library-ref>
<wls:library-name>jsf</wls: library-name>
<wls:specification-version>1.2</wls:specification-version>
<wls:implementation-version>1.2.3.2</wls:implementation-version>

</wls:library-ref>

Creating JSF Portlets

Once Faces is configured in WLP, then a JSF portlet can be created by the Portlet wizard in
Oracle Enterprise Pack for Eclipse. See Chapter 5, “Building Portlets” to learn how to create your
first JSF portlet.

JSF Configuration Settings

In general, WebLogic Portal is agnostic to the various JSF configuration settings that can be
manipulated. This section discusses how various JSF configuration choices are manifested when
JSF is running within WebLogic Portal.

Client or Server State Storage

JSF is a stateful web framework - it maintains state for a user in between HTTP requests. JSF
offers two state management options for JSF applications: client and server. It is configured
in web.xml with the javax.faces.STATE_SAVING_METHOD context parameter.

While client state management with the JSF portlet native bridge works in most cases, Oracle
only supports the server state management option. There are known issues, particularly when
interportlet communication (IPC) is at work on the page, where client state management will
cause the wrong portlet JSF view to be rendered. This is due to the fact that a single HTTP request

Oracle WebLogic Portal Portlet Development Guide 12-1

Working With JSF Portlets

12-8

may cause multiple JSF portlets to be invoked if IPC is in use. The HTTP request carries only the
state of the targeted JSF portlet, and thus the listening JSF portlet(s) will use the wrong client state
during restoration. For more information about IPC, see Interportlet Communication with JSF
Portlets.

Also, there are several drawbacks with using client state saving in general:
e Increased network bandwidth costs
e Increased processing costs per request to re-establish the view state

e Security concerns, as the user may tamper with the client side state (MyFaces has an
encryption feature for this)

Oracle therefore only supports the use of server state saving with WebLogic Portal. This mode
works properly with IPC. Also, the WLP portal framework itself retains portal state for each
active user session on the server, and thus the server state option for JSF portlets is more
consistent with the behavior of the WLP framework.

Caution: Unfortunately, Workshop configures the STATE_SAVING_METHOD value as
client by default. Developers need to manually change this value in web . xml to
server after creating the Portal Web Project (Listing 12-2).

Listing 12-2 Supported State Storage Configuration in web.xml

<context-param>
<param-name>javax.faces.STATE_SAVING_METHOD</param-name>
<param-value>server</param-value>

</context-param>

Prefix or Suffix Servlet Mapping

There are two servlet mapping schemes for the Faces servlet.
o Suffix - maps the Faces servlet to a file suffix, such as *. jsf or *.faces

o Prefix - maps the Faces servlet to a URL path, such as /faces/*

When deploying JSF portlets, the JSF portlet container invokes the Faces infrastructure directly.
Therefore, WLP does not rely on any servlet mapping being configured. If you wish to have the

Oracle WebLogic Portal Portlet Development Guide

Configuring JSF Within Weblogic Portal

portlets also available to direct access (i.e. not as a portlet), you can choose to use either JSF suffix
or prefix mapping as with a normal JSF web application.

Listing 12-3 shows the prefix servlet mapping configuration in web . xml .

Listing 12-3 Prefix Servlet Mapping Configuration in web.xml

<servlet-mapping>
<servlet-name>faces</servlet-name>
<url-pattern>*_jsf</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>faces</servlet-name>
<url-pattern>*_faces</url-pattern>

</servlet-mapping>

Other Settings

The STATE_SAVING_METHOD and servlet mapping settings are the most important, but they are
far from the only settings available. The Sun RI currently has dozens of extra settings that can be
configured. In general, these settings are completely independent of WLP, and so can be set at
your discretion. However, due to the number of implementations and number of settings in each,
WLP does not certify the integration with the non-default options.

Listing 12-4 shows a partial list of settings in the Sun Rl v1.2.8 (see WebConfiguration.java in
the source code).

Listing 12-4 Partial Listing of Additional Configuration Options for the Sun RI

com.sun. faces.managedBeanFactoryDecoratorClass
Jjavax.faces.CONFIG_FILES
Jjavax.faces.LIFECYCLE_ID

com.sun.faces.numberOfViewslInSession

Oracle WebLogic Portal Portlet Development Guide 12-9

Working With JSF Portlets

com.sun.faces.numberOfLogicalViews
com.sun.faces.injectionProvider,
com.sun.faces.serializationProvider
com.sun. faces.responseBufferSize
com.sun.faces.clientStateWriteBufferSize,
com.sun. faces.expressionFactory
com.sun.faces.clientStateTimeout
com.sun. faces.compressViewState

com.sun. faces.compressJavaScript

com.sun. faces.externalizeJavaScript

Native Bridge Architecture

12-10

This section provides an architectural overview of how WebLogic Portal's JSF native portlet
bridge operates. It shows the relationship between the different components in the
implementation. This explanation is intended as an overview to help you understand how to best
architect and debug your portlet when using this bridge.

This section contains the following topics:
e Container Architecture Overview

e Container Interactions

Container Architecture Overview

Figure 12-3 depicts the logical relationship of the containers involved: Servlet, WLP Rendering,
and JSF portlet containers. The containers have these properties:

Servlet Container
o |s defined by the Servlet specification.

o Represents a classloader scope, and so all of the containers within it exist within a
singleclassloader (and thus JVM).

e The HttpSession is scoped to this container.
WebLogic Portal Rendering Container

Oracle WebLogic Portal Portlet Development Guide

Native Bridge Architecture

e Is provided by WebLogic Portal.

e |s responsible for rendering the WLP control tree, which describes the structure of the
portal.

Portlet JSF Container
e |s provided in WLP by the JSF native portlet bridge.
e One instance of this container exists for each portlet instance on the page.

e The JSF implementation (Sun RI) runs within this container.

Figure 12-3 shows a logical view of how the containers are related. Solid lines depict boundaries
between containers, and dotted lines demark logical elements and objects within a container.

Figure 12-3 Logical Container Architecture of WebLogic Portal and JSF Portlet Native Bridge

Servlet Container

IBacking [Portlet 1
i JSF Container

Portlet 2
JSF Container

Note: This discussion applies specifically to local JSF portlets. A JSF portlet that is remote
(i.e.via WSRP) has a different relationship to the parent containers.

Oracle WebLogic Portal Portlet Development Guide 12-11

Working With JSF Portlets

Container Interactions

The following are some general principles to understand regarding interactions between
containers:

e Custom code deployed in a container can access objects of parent containers. However, as
will be covered in the Understanding WLP and JSF Rendering Life Cycles section, not all
objects of the parent container are available at all times.

e Custom code deployed in a container cannot invoke objects of child or sibling containers.
For example, a portlet backing file deployed in the WLP container cannot access objects in
the portlet's JSF container.

e The HttpSession is available to code in all containers, and is thus an available lowest
common denominator approach for passing objects between containers.

Understanding WLP and JSF Rendering Life Cycles
This section explains WLP and JSF rendering life cycles. It contains the following topics:
e WLP and JSF Life Cycles
e Invocation Order of WLP and JSF Life Cycle Methods

e Accessing WLP Context Objects from JSF Managed Beans

WLP and JSF Life Cycles

Both WebL ogic Portal and JSF frameworks support the concept of component trees that define
the rendering of the HTML page. Both also rely on the concept of rendering life cycles. Each
component tree is walked multiple times during the execution of the request. Each traversal is
called a life cycle or phase.

When developing JSF portlets, it is helpful to understand how those life cycles interact. For more
information on the phases of the portal life cycle, see "Understanding Portal Development™ in the
see the Portal Development Guide.

Invocation Order of WLP and JSF Life Cycle Methods

The following represents the merged life cycle execution order across the WLP and JSF
containers:

e PortalContainer:init

12-12 Oracle WebLogic Portal Portlet Development Guide

../portals/index.html

Understanding WLP and JSF Rendering Life Cycles

— PortletBackingFile.init
e PortalContainer:handlePostbackData (if the request is a portal postback)
— PortletBackingFile.handlePostbackData for all portlets on active pages

 Last chance to invoke PortletBackingContext.sendRedirect()
— Then, if the JSF portlet is the target of the request:

+ JSFContainer:RestoreView

» JSFContainer:ApplyRequestValues

+ JSFContainer:ProcessValidations

» JSFContainer:UpdateModelValues
 JSFontainer:InvokeApplication

+ JSFContainer:invoke Action Listeners

» JSFContainer:invoke Action method
e PortalContainer:raiseEvents

e PortalContainer:preRender
— PortletBackingFile.preRender

e PortalContainer:render
— JSFContainer:RestoreView (only on first render of portlet instance)
— JSFContainer:RenderResponse

Note:

e It is important to see that the JSF action/action listeners are invoked before the Portal
Framework's raiseEvents life cycle. This enables a JSF portlet to raise an event that
changes the Portal Framework control tree, such as activating a different page. For details
on IPC, see Chapter 9, “Local Interportlet Communication”.

e FacesContext.getCurrentinstance() returns the context only while the JSFContainer is in
scope.

Accessing WLP Context Objects from JSF Managed Beans

To enable portlets to programmatically interact with the portal framework, a set of context objects
is available.

Oracle WebLogic Portal Portlet Development Guide 12-13

Working With JSF Portlets

Table 12-2 shows what portlet context objects are in scope for different managed bean methods
for different JSF life cycles. This chart is useful when implementing a managed bean that needs
to obtain WLP context information. The key point is that property getters and setters need to be
coded so that they work properly with either context object.

Tahle 12-2 Scope of Portlet Context Objects

JSF Life Cycle Managed Bean Portlet Backing Portlet Portal Use Case
Method Context Presentation
Context
PROCESS_VA get property Yes No Portlet receives a
LIDATIONS postback, inputis
being validated.
PROCESS_VA set property Yes No Portlet receives a
LIDATIONS postback, inputis
being validated.
UPDATE_MO set property Yes No Portlet receives a
DEL_VALUE postback, input
S has been
validated.
INVOKE_APP action method Yes No Portlet is the
LICATION target of a
postback.
RENDER_RE get property No Yes Portlet is being
SPONSE rendered.
RENDER_RE set property No Yes Portlet is being
SPONSE rendered.

Understanding Scopes and JSF Portlets

This section covers several scoping topics that apply to JSF portlets.

12-14

e Conceptual Scopes for Standard JSF Applications

e Conceptual Scopes for Portal Applications

e Implementation Patterns for Portal Scopes

Oracle WebLogic Portal Portlet Development Guide

Understanding Scopes and JSF Portlets

Conceptual Scopes for Standard JSF Applications

The standard JSF scopes are interpreted differently in a portal environment. This section
discusses the differences.

JSF Standard Scopes

JSF managed beans have well-defined scopes as defined in the JSF specification. The JSF 1.1 and
1.2 specifications provides three scopes for managed beans:

e Application - Bean state is accessible by all users in the web application.

e Session - Bean state is accessible to any view for the given user, across the life span of all
requests within the session.

e Request - Bean state is accessible for the duration of a single request.

In addition to these, several additional scopes exist. Specifically, JSF 2.0 adds a View scope, and
many web frameworks provide a Pageflow scope, as described below.

View Scope

View scope has been added to the JSF 2.0 specification. It enables managed beans to be attached
to a specific view across multiple HTTP requests. Once a user navigates to a different view, the
bean state is destroyed. This is a helpful pattern for scoping state to a single instance of a view
for a user.

Pageflow/Conversation Scope

A Pageflow (also called a conversation) is a subset of the views and controller logic within a web
application that pertains to a logical task or business process. Multiple Pageflows can exist within
aweb application, and each one usually carries state that should only be scoped to that Pageflow.
With Pageflow scope, managed bean state is accessible across the life span of all requests within
the session, limited to the time in which a user is interacting with the set of views within that
Pageflow.

Conceptual Scopes for Portal Applications

Because of the composite nature of a portal user interface, there are more conceptual scopes for
portals than for standard JSF applications.

The list of portal scopes includes:

Oracle WebLogic Portal Portlet Development Guide 12-15

Working With JSF Portlets

12-16

Application - Bean state is accessible by all users in the web application.

e Global Session - Bean state is accessible to any portlet for the given user, across the life
span of all requests within the web application.

e Portlet Group Session - Bean state is accessible to any view within a group of portlet
instances or definitions for the given user, across the life span of all requests within the
web application. This use case is important for interportlet communication.

e Portlet Instance Session - Bean state is accessible to any view within a single portlet
instance for the given user, across the life span of all requests within the web application.

e Pageflow - Bean state is accessible to any view within a Pageflow within a single portlet
instance for the given user, across the life span of all requests within the Pageflow.

e View - Bean state is accessible for as long as the user is interacting with the current view
across multiple requests within a single portlet instance. And, if the user is interacting with
another portlet, the bean state is retained.

e Portal Aware Request - Bean state is accessible with the portlet instance for the duration of
a single request. And, if the user is interacting with another portlet instance, the bean state
is retained until the next request in which the user interacts with the portlet.

Implementation Patterns for Portal Scopes

Table 12-3 describes how the standard JSF scopes map to the WLP scopes, and how the
unrepresented JSF scopes are supported. Details about these implementation strategies are
explained in the following sections.

Tahle 12-3 Managed Bean Scope Implementation Strategies

Portal Managed Bean Scope Implementation Strategy for JSF Portlets
Application faces-config.xml scope = application

Global Session faces-config.xml scope = session, plus custom code
Portlet Group Session faces-config.xml scope = session, plus custom code
Portlet Instance Session faces-config.xml scope = session

Pageflow Use an alternate navigation controller

Oracle WebLogic Portal Portlet Development Guide

Understanding Scopes and JSF Portlets

Table 12-3 (Continued)Managed Bean Scope Implementation Strategies

Portal Managed Bean Scope Implementation Strategy for JSF Portlets
View Supported with JSF 2.0
Portal Aware Request faces-config.xml scope = request

Reinterpretation of the JSF Session and Request Scopes

Table 12-4 compares JSF managed bean scoping levels between a JSF application and a WLP
JSF portlet.

Table 12-4 Comparison of Scoping Levels

Faces-Config.xml Scope Conceptual Scope for JSF Conceptual Scope for JSF
Label Application Portlet

Application Application Application

Session Global Session Portlet Instance Session
Request HttpRequest Portal Aware Request

Because a managed bean declared with session scope in faces-config.xml is interpreted as
Portlet Instance Session scoped with the portlet bridge, it is possible to put multiple instances of
that portlet on a page and not have conflicts. Each portlet instance that uses the managed bean
will be provisioned with a distinct instance of the bean.

Also, the different interpretation of request scope prevents a JSF portlet from breaking if the user
interacts with a second portlet while interacting with the first JSF portlet.

Pageflow Scope

The standard JSF navigation controller does not support the notion of a Pageflow scope.
However, other controllers can be plugged into the JSF runtime to provide such a capability. For
example, you can integrate an Apache Beehive Page Flow controller. For details, see Integrating
Apache Beehive Pageflow Controller.

Oracle WebLogic Portal Portlet Development Guide 12-17

Working With JSF Portlets

Global Session and Portlet Group Session Scopes

The remaining scopes for managed beans cannot be expressed in faces-config.xml alone.
However, using code patterns involving the HttpSession, the remaining scopes can be achieved.
For details, see section “State Sharing Patterns.”

State Sharing Patterns

12-18

This section contains the following topics:

e State Sharing Concepts

HttpSession Versus HttpServiletRequest

Base Code for HttpSession Patterns

Single Portlet Pattern

Multiple Portlet Patterns

State Sharing Concepts

JSF managed beans are intended to be the storage containers for application state within a JSF
application. In general, this works well even within a portal environment. However, this standard
JSF pattern is not sufficient. There are cases where state needs to be shared with something
outside of the JSF portlet. For example:

e The portlet instance's backing file.
o A different portlet instance's JSF managed bean.
e A portlet instance in a remote servlet container via WSRP.

e A non-portal object, such as a servlet or servlet filter.
But there are limitations that must be heeded when working within the JSF container:

e A JSF managed bean may not invoke any method on any portlet instance's backing file,
including its own.

e A JSF managed bean may not invoke any method on a JSF managed bean in another
portlet instance.

e A portlet backing file may not invoke any method on any portlet instance's JSF managed
bean.

Oracle WebLogic Portal Portlet Development Guide

State Sharing Patterns

This section discusses patterns that work despite these limitations.

HttpSession Versus HttpServletRequest

Some of the patterns in this section make use of the HttpSession. They set state into the
HttpSession as attributes. The first issue to cover is why the HttpSession? In some cases is the
HttpServletRequest a better place to store this state? While in certain cases the
HttpServletRequest is suitable, in general it is a best practice to use the HttpSession rather than
HttpServletRequest. This section explains why.

Store State in the HttpSession

In short, the use of the HttpSession is preferred because of simplicity. In a portal environment,
the lifecycle of the request is not always straightforward.

o WSRP uses two requests — When a user interacts with a portlet that is being consumed
using WSRP, the handling of that interaction and the render of the portlet can occur over
two requests. Therefore, attributes set into the request may not be around as long as they
need to be.

e Scoped requests — When executing code within a portlet, that portlet often does not have
access to the actual HttpServletRequest. Usually, it is a scoped object. Attributes set into a
scoped request are not visible to other portlets. This makes sharing state between portlets
not feasible using the request.

Drawbacks of Using the HttpSession

Use of the HttpSession does not come for free. There are several drawbacks to be aware of:

e Must be Serializable — Attributes set into the HttpSession must be Serializable. Not all
objects are easily Serializable, so this may be an issue.

o Will be replicated — The reason HttpSession attributes need to be Serializable is for session
replication within a cluster. WebLogic Server distributes or stores the attributes by
serializing the attributes. Adding more attributes to the HttpSession creates higher
overhead for the replication facility.

e Removing the attribute — If an attribute is appropriate only for the current request, the
HttpSession attribute must be removed by the managed bean after it is finished with it.

e Multiple portlets — When used for multiple portlet patterns, the approach is fragile. This is
discussed in more detail in Multiple Portlet Patterns.

Oracle WebLogic Portal Portlet Development Guide 12-19

Working With JSF Portlets

12-20

A possible solution to the first two of these drawbacks is to mark some or all of the stored state
as transient. Transient objects in Java are not serialized, and so it can be used to mitigate both of
the issues.

Base Code for HttpSession Patterns

Some of the patterns below rely on scoping data in the HttpSession. The best approach is to
provide a namespace for the attribute name used to set the attribute into the session. The patterns
differ in how that namespace is computed. Since these patterns share common code aside from
the namespace generation, the following base code is assumed for each of the patterns.

JSFPortletHelper

The code samples below rely on a common class called JSFPortletHelper. It provides a number
of helper methods that are useful with a managed bean used in a JSF portlet. For source code, see
The JSFPortletHelper Class.

SearchBeanBase (For HttpSession Patterns)

Listing 12-5 shows the code that serves as the base managed bean for illustrating the HttpSession
based patterns.

Listing 12-5 The Base Managed Bean for the Examples

public abstract class SearchBeanBase {
// Gets the search string from the HttpSession
public String getSearchText() {
HttpSession session = JSFPortletHelper.getSession();
String namespace = getAttributeNamespace();

return
(String)session.getAttribute(namespace+"_searchText");

}
// Sets the search string into the HttpSession

public void setSearchText(String search) {

HttpSession session = JSFPortletHelper.getSession();

Oracle WebLogic Portal Portlet Development Guide

State Sharing Patterns

String namespace = getAttributeNamespace();
session.setAttribute(namespace+'_searchText", search);
}
// Each pattern below implements this method differently

abstract public String getAttributeNamespace();

}

Single Portlet Pattern

When sharing state amongst components of a single portlet instance, the pattern is
straightforward. There is only one pattern necessary.

Portlet Instance Session Scoped Data (uses HttpSession)

In this pattern, the state is to be shared only with other components affiliated with the portlet
instance. The state is set into the HttpSession. The best namespace for this use case is the portlet's
instance label. This pattern is most often used when sharing data between a portlet's JSF managed
bean and the portlet's backing file. Both of those components have easy access to the portlet
instance label via the PortletBackingContext or PortletPresentationContext objects, which
provide access to the instance label.

Figure 12-4 shows an illustration of how a JSF managed bean and WLP backing file from the
same portlet instance can share a stateful object.

Oracle WebLogic Portal Portlet Development Guide 12-21

Working With JSF Portlets

12-22

Figure 12-4 JSF Managed Bean and WLP Backing File from the Same Portlet Instance Sharing a Stateful
Object

Servlet Container

HTTP Session

WebLogic Portal Rendering Con

Portler 1 Instance Pfftlet 2 Instalee
B'.i(_‘kiﬂ!_'\. Portlet 1 Backjhe Portle§2
‘Context ' | JSF Container Conglxt | JSE Contdfper
: : .\.u\-;u.- i Ve S iew] | Manded
i Backing - ... Dean ' Backing : |*. i Bea
File View 2 11 (P IIA File View 2 PZiA

WLP Event System

The namespace is based simply off of the portlet’s instance label. Listing 12-6 shows the code
that gets the namespace for the HttpSession attribute using the instance label.

Listing 12-6 Getting Namespace for the HttpSession Attribute using the Instance Label

public class SearchBean extends SearchBeanBase {
public String getAttributeNamespace() {

return JSFPortletHelper.getinstanceLabel();

}

Multiple Portlet Patterns

These patterns support cases in which multiple portlets are sharing state. Several patterns are
offered. Two use the HttpSession for state sharing, and one uses the WLP event mechanism.
There are benefits and drawbacks to each:

Using the HttpSession (not recommended)

Oracle WebLogic Portal Portlet Development Guide

State Sharing Patterns

e Benefit — simple to implement

e Drawback — the order in which the portlets get and set state into the HttpSession will
depend in some cases on the layout of the portal. Since users can move portlets on the
page, the pattern may not work reliably.

e Drawback — it will break if one of the portlets is moved to a remote server via WSRP
Using Events (best practice)

e Benefit — is layout independent

o Benefit — will work with WSRP

e Drawback — incurs greater overhead

e Drawback — may get complicated to implement if a single request requires multiple portlets
to update the same object

The section contains the following topics:
e Pattern: Global Session Scoped Data (uses HttpSession)
e Pattern: Portlet Group Session Scoped Data (uses HttpSession)

e Pattern: Portlet Group Session Scoped Data (uses Events)

Pattern: Global Session Scoped Data (uses HttpSession)

In this pattern, the state is to be shared with any other component within the web application. All
portlets, backing files, JSPs, and other objects need to have access to the same stateful object. In
this pattern, the object is set into the HttpSession with an attribute name that is not namespaced.
The object is truly global in scope.

Figure 12-5 shows an illustration of how Global Session scoped data is accessible to all
components.

Oracle WebLogic Portal Portlet Development Guide 12-23

Working With JSF Portlets

12-24

Figure 12-5 Global Session Scoped Data Being Accessible to all Components

Servlet Container

Portler 1 Instag

ortler 1

ISE Container

: Backing :
 Conrex;

: View 1 : - Managec
e Backing -

i Backing - |°..
: View 3 12 2PEGAL i File :| View2

File

WLP Event System

Note: Because it uses the HttpSession, this pattern may be sensitive to the order in which
portlets are placed on the page.

Listing 12-7 shows the code that avoids any namespacing of the HttpSession attribute.

Listing 12-7 Code that Avoids any Namespacing of the HttpSession Attribute

public class SearchBean extends SearchBeanBase {

public String getAttributeNamespace() {

return :

}

Pattern: Portlet Group Session Scoped Data (uses HttpSession)

This pattern applies when a group of portlets need to share a stateful object. This pattern employs
the HttpSession to enable multiple portlet instances to share a reference to a stateful object. This
pattern can also be made to work with a group of portlet definitions — simply replace the instance
label pattern with a definition label. With this pattern there are two approaches to generating the
namespace for the session attribute: instance label pattern or preference. Both are shown below.

Oracle WebLogic Portal Portlet Development Guide

State Sharing Patterns

Figure 12-6 shows how multiple portlets can share state via the HttpSession.

Figure 12-6 Multiple Portlets Sharing State via HttpSession

Servlet Container

: Backing :
: Contex;

‘ Backing

File

WLP Event System

SF

...

wriler 1
Container

> - Managec
Bean

File

Backing - |!.."

Note:

Because it uses the HttpSession, this pattern may be sensitive to the order in which

portlets are

placed on the page.

Instance Lahel Pattern

In this pattern, all of the portlets in the group have an instance label that follow a particular
pattern. The label pattern contains the attribute namespace in it. For example, the namespace may
follow the last underscore character in the instance label. So portlets in the group have labels such
as: master_scopel, detail_scopel, links_scopel. Portlets in another group of the same types of
portlets would have instance labels like: master_scope2, detail_scope2, links_scope?2.

Listing 12-8 shows the code for computing the HttpSession namespace from the portlet’s
instance label.

Listing 12-8 Computing the HttpSession Namespace from Portlet’s Instance Label

public class SearchBean extends SearchBeanBase {

// looks for a namespace in the instance label

// assumes whatever is found after a trailing _ is the namespace

public String getAttributeNamespace() {

Oracle WebLogic Portal Portlet Development Guide

12-25

Working With JSF Portlets

12-26

String label = JSFPortletHelper.getPortletlnstancelLabel();
String namespace = JSFPortletHelper.splitNamespaceFromLabel (
label, "_");

return namespace;

}

Portlet Preference

Another approach is to use a portlet preference to establish the namespace. Every portlet in the
group must then use the same value for the preference.

Listing 12-9 shows the code for retrieving a namespace from a portlet preference.

Listing 12-9 Retrieving a Namespace from a Portlet Preference

public class SearchBean extends SearchBeanBase {
// Assumes a portlet preference called ''state_namespace"
// has been defined on each portlet in the group,
// and contains the namespace key
public String getAttributeNamespace() {
PortletPreferences prefs = JSFPortletHelper.getPreferencesObject();

return JSFPortletHelper.getPreference(prefs, ''state_namespace",

}

Pattern: Portlet Group Session Scoped Data (uses Events)

WebLogic Portal supports an event mechanism that can carry custom payloads of state from the
triggering portlet to any number of listening portlets. This works in a predictable way, and is
supported across WSRP. It is a best practice to use this pattern.

There are two sides to this pattern — the trigger and the listeners. The trigger fires a custom event
programmatically with the stateful object as the payload. Listener portlets receive the event, and

Oracle WebLogic Portal Portlet Development Guide

State Sharing Patterns

each stores the state in the HttpSession in a portlet instance scoped attribute. A JSF managed bean
in that portlet instance can then read the stateful object out of the HttpSession (Figure 12-7).

Figure 12-7 Multiple Portlets Sharing State through Events

Trigger Portlet

Servlet Container

HTTP Session

: Backing : Portlet 1 Backiff
Conrext : | JSF Container Cor

i Backing

View 1 = : Managed :

File

File

WLP Event System

When a portlet instance needs to write the state object, it must trigger an event with the custom
payload. This is easily done in either a portlet backing file or a JSF managed bean. The example
below is a managed bean action method.

The code in Listing 12-10 shows how to trigger a WLP event from a JSF managed bean.

Listing 12-10 Triggering a WLP Event from a JSF Managed Bean

/**

public

* Action method

return null;

String doSearch() {

invoked when the user hits the "Search' button

// searchText is a String that was entered on the search form

JSFPortletHelper.fireCustomEvent(*'doSearch', searchText);

Oracle WebLogic Portal Portlet Development Guide 12-27

Working With JSF Portlets

12-28

}

Listener Portlets

For any portlet that wishes to listen for the event and receive the stateful object, a portlet backing
file must be implemented. It must have an event listener method. The job of the listener method
is to set the stateful object into the HttpSession scoped to the single portlet pattern shown above.
This implies that there is an HttpSession entry for every portlet instance listening for the event.

Listing 12-11 shows a backing file method for handling a WLP event and writing the payload into
the HttpSession.

Listing 12-11 A Backing File Method for Handling a WLP Event and Writing the Payload into the HttpSession

public void handleSearchEvent(HttpServletRequest request,
HttpServletResponse response, Event event) {
try {
String searchText = (String)event._getPayload();
String namespace =
JSFPortletHelper._getPortletlnstancelLabel (request);
String attributeName = namespace+"_search_query";

request.getSession().setAttribute(attributeName,
searchText);

} catch (Exception e) {

e.printStackTrace();

}

Now, any component of the portlet instance, like a JSF managed bean, can access that state, as
shown in Listing 12-12.

Listing 12-12 A JSF Managed Bean Reading the Event Payload out of the HttpSession

public String getSearchText() {

Oracle WebLogic Portal Portlet Development Guide

Using Common WLP Features With JSF Portlets

String namespace = JSFPortletHelper.getPortletinstancelLabel();

searchText = (String)JSFPortletHelper.getSession().
getAttribute(namespace+'_search_query');

return searchText;

}

To bring it all together, the listening portlet must be configured to listen for the event. This is done
in the portlet editor. The portlet must listen for the custom event, and have an "Invoke
BackingFile Method" handler defined (Figure 12-8).

Figure 12-8 Configuring a Portlet to Listen for an Event and Invoke a Backing File Method

Po rent Handle
Events: Invoke BackingFile Method
Handle Custom Event
E ance tustom tven » Method: |handleSearchEvent v
BackingFile Makhod
E Activate Page
add Handler...

Using Common WLP Features With JSF Portlets

This section describes how commonly used WebL ogic Portal features are used in an environment
with JSF portlets.

e Portlet Container Features

o Portal Container Features and JSF Portlets

Oracle WebLogic Portal Portlet Development Guide 12-29

Working With JSF Portlets

12-30

Portlet Container Features

This section discusses these portlet container features:
e Support for Modes in JSF Portlets
e Portlet Error Page

o Portlet Preferences

Support for Modes in JSF Portlets

When creating a new JSF Portlet, only the view mode supports JSF JSPs. The other modes
require basic JSP or HTML pages. For more information on portlet modes, see Portlet Modes.

Portlet Error Page

A best practice is to configure an error page for every portlet. You set an error page using the
portlet Error Page Path property. For all portlet types, including JSF portlets, this error page must
be a standard JSP not a JSF JSP. For details on configuring an error page, see Portlet Properties.

Portlet Preferences

Portlet preferences provide the primary means of associating application data with portlets.
Portlet preferences are accessible through the WLP portlet context objects. For detailed
information on portlet preferences, see Portlet Properties.

In the context of a JSF portlet, note that after setting preferences values for the portlet, store()
must be called. This call is best accomplished by setting preferences in JSF managed bean
property setters, and then calling store() in an action method.

To illustrate this technique, consider a JSF portlet that lets a user get a stock quote. The last quote
the user obtains is persisted using portlet preferences. The JSF view is shown in Listing 12-13.
The view retrieves portlet preference values from a JSF managed bean. The managed bean,
shown in Listing 12-14, sets and gets the preference values from WLP.

Listing 12-13 A JSF View

<%@ page language="java' contentType=""text/html;charset=UTF-8"%>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

<%@ taglib uri="http://java.sun.com/jst/html"” prefix="h" %>

Oracle WebLogic Portal Portlet Development Guide

Using Common WLP Features With JSF Portlets

<%@ taglib uri="http://bea.com/faces/adapter/tags-naming-”
prefix="jsf-naming® %>

<f:view>
<jsf-naming:namingContainer id="prefs">
<h:panelGrid columns="4" width="100%">
<h:form id="stockForm">
<h:panelGroup>
<h:outputText value="Stock Quote:"/>
</h:panelGroup>
<h:panelGroup>
<h:inputText id="ticker" value="#{WLPPrefsRequestBean.ticker}"
required=""true"/>
</h:panelGroup>
<h:panelGroup>
<h:inputText id="shares" value="#{WLPPrefsRequestBean.shares}"
required=""true"/>
</h:panelGroup>
<h:panelGroup>
<h:outputText value="#{WLPPrefsRequestBean.currentValue} "/>

</h:panelGroup>

<h:panelGroup></h:panelGroup>

<h:panelGroup></h:panelGroup>

<h:panelGroup>
<h:commandButton action="#{WLPPrefsRequestBean.getQuote}"
id=""quote" value="Get Quote'/>

</h:panelGroup>

<h:panelGroup>

Oracle WebLogic Portal Portlet Development Guide 12-31

Working With JSF Portlets

12-32

<h:commandButton action="#{WLPPrefsRequestBean.resetQuote}"
id="reset” value="Reset'/>
</h:panelGroup>
</h:form>
</h:panelGrid>
</jsf-naming:namingContainer>

</f:view>

The managed bean is listed in Listing 12-14.

Note: Listing 12-14 uses a utility class JSFPortletHelper. You can find a complete listing and
description of this class in the section, The JSFPortletHelper Class.

Listing 12-14 The JSF Managed Bean

package oracle.samples.wlp.jsf;

import java.io.Serializable;

import javax.faces.context.FacesContext;
import javax.portlet.PortletPreferences;
import javax.servlet.http_HttpServletRequest;

import
com.bea.netuix.servlets.controls.portlet._PortletPresentationContext;

import
com.bea.netuix.servlets.controls.portlet.backing.PortletBackingContext;

/**
* An example that shows how to use WLP preferences with a JSF managed bean.

* This example makes the following assumptions for the preference writes to
work properly:

Oracle WebLogic Portal Portlet Development Guide

Using Common WLP Features With JSF Portlets

* 1. The bean is request scoped

* 2. The user is authenticated

* 3. The portal is a streaming desktop, not a .portal

*/

public class WLPPrefsRequestBean implements Serializable {
private static final long serialVersionUID = 1L;
private static final String TICKER = "ticker";
private static final String TICKER_DEF = "ORCL";
private static final String SHARES = "shares";

private static final String SHARES_DEF = "1000";

/**
* The request scoped preferences object.
*/

private PortletPreferences prefs;

/**

* Constructor. Initializes the preference object.
*/

public WLPPrefsRequestBean () {

prefs = JSFPortletHelper._getPreferencesObject();
}

// ACTION METHODS

/**

* Updates the preference values set by the user.

Oracle WebLogic Portal Portlet Development Guide 12-33

Working With JSF Portlets

* @return always null, to retain the same JSF view

*/

public String getQuote() {

// all the setting work is done in the setters

// what is left is to store the new prefs into the database
JSFPortletHelper.storePreferences(prefs);

return null;

}

[

* Resets the preferences back to their defaults.

* @return always null, to retain the same JSF view

*/

public String resetQuote() {
JSFPortletHelper.setPreference(prefs, TICKER, TICKER_DEF);
JSFPortletHelper.setPreference(prefs, SHARES, SHARES_DEF);
JSFPortletHelper.storePreferences(prefs);

return null;

// GETTERS AND SETTERS

public String getShares() {

return JSFPortletHelper.getPreference(prefs, SHARES, SHARES DEF);

public void setShares(String shares) {

12-34 Oracle WebLogic Portal Portlet Development Guide

Using Common WLP Features With JSF Portlets

JSFPortletHelper.setPreference(prefs, SHARES, shares);

public String getTicker() {

return JSFPortletHelper.getPreference(prefs, TICKER, TICKER_DEF);

public void setTicker(String ticker) {

JSFPortletHelper.setPreference(prefs, TICKER, ticker);

public int getCurrentValue() {
// convert the String preference into an integer
String sharesStr = getShares();
int shares = 0;
try { shares = Integer.parselnt(sharesStr); }

catch (Exception e) {}

// compute some bogus value

return shares * 52;

Portal Container Features and JSF Portlets

This section discusses the following portal container features:

e LocaleProvider

Oracle WebLogic Portal Portlet Development Guide 12-35

Working With JSF Portlets

e Skeleton Files

LocaleProvider

WebLogic Portal by default defers to the HttpServletRequest getLocales() method to
determine the preferred list of locales for the user. JSF implementations do the same.

However, in some cases the portal may have better information about the user's preferred locale.
It may use a user profile property for example to store the user's locale preference. In such cases,
a developer would implement a WLP LocaleProvider to programmatically find the preferred
locale in the user profile. In a similar way, with JSF the preferred locale calculation is pluggable.
The ViewHandler interface has a method calculateLocale() that performs the same logic.

When working with JSF portlets, keep these mechanisms in sync. If you implement a custom
LocaleProvider, use the same code in a custom ViewHandler implementation. This ensures that
the user sees a portal rendered in a consistent locale.

Skeleton Files

Skeleton files control the rendering of each component of the WLP page. They are implemented
as JSPs. The use of JSF components in these JSPs is not supported. The WLP framework renders
the skeletons using standard JSP technology. For more information on skeletons, see the Portal
Development Guide.

Understanding Navigation

12-36

This section discusses navigation within a JSF portlet and within the WLP portal environment
when JSF portlets are used.

e Navigating Within a Portlet with the JSF Controller

e Support for Redirects

Navigating Within a Portlet with the JSF Controller

This section discusses the use case in which a user interacts with a portlet, triggering an update
to that portlet.

It is standard to use Command Buttons and Command Links tied to actions to control navigation
through the JSF application (see Listing 12-15 and Listing 12-16). With the standard JSF
navigation controller, there are three approaches to defining the action attribute on a Command
Button or Command Link:

Oracle WebLogic Portal Portlet Development Guide

../portals/index.html
../portals/index.html

Understanding Navigation

e The action attribute is not specified on the component. This indicates that the navigation is
a postback to the same view.

e The action attribute is a hard-coded name of a navigation path to follow; this name is
mapped in the controller configuration in the faces-config.xml file to an actual view
(see Listing 12-15).

e The action attribute contains Expression Language (EL) that invokes a backing bean
method that evaluates to a navigation path or null to indicate postback.

Each of these approaches is valid when a JSF application is operating as a JSF portlet. The JSF
portlet bridge makes sure the URLSs are written properly to maintain correct behavior within a
portal. JSF components consult the JSF ExternalContext object when constructing action URLSs.
WLP has implemented an ExternalContext that is portal aware, and it properly rewrites the URLSs.

Listing 12-15 Navigation Configuration in faces-config.xml

<navigation-rule>
<from-view-id>/portlets/sample/page?2. jsp</from-view-id>
<navigation-case>
<from-outcome>gotoPagel</from-outcome>
<to-view-id>/portlets/sample/pagel. jsp</to-view-id>
</navigation-case>
</navigation-rule>

Listing 12-16 Command Button That Uses the Navigation Rule

<h:commandButton action="gotoPagel" id=""gotoPagelButton"
value=""Goto Page 1'">

</h:commandButton>

Support for Redirects

The JSF navigation controller supports HTTP redirect as an annotation on a navigation case. The
JSF controller issues an HTTP redirect to the client for the target page of the navigation case if

Oracle WebLogic Portal Portlet Development Guide 12-37

Working With JSF Portlets

12-38

configured to do so. Listing 12-17 illustrates a redirect in a navigation case. Note the use of the
explicit <redirect/> element to indicate a redirect.

Listing 12-17 Redirect in a Navigation Case

<navigation-rule>
<from-view-id>/portlets/redirect/page2. jsp</from-view-id>
<navigation-case>
<from-outcome>gotoPagel</from-outcome>
<to-view-id>/portlets/redirect/pagel. jsp</to-view-id>
<redirect/>
</navigation-case>
</navigation-rule>

The navigation case does not work properly when the redirect configuration is used within a JSF
portlet in WLP. Depending on the context, the navigation case will not be followed or it will send
the user to the target page via a redirect taking the user out of the portal context because the
redirect URL is not rewritten to remain within the portal environment.

If you must use a redirect and cause the user to remain in the portal, it is possible to achieve using
the sendRedirect() method on the PortletBackingContext.

The last chance to invoke this method is in the handlePostbackData() method of a portlet
backing file. As discussed in "Understanding WLP and JSF Rendering Life Cycles, remember
that all of the JSF phases for a portlet are processed after handlePostbackData(). Therefore,
the backing file must decide when to do the redirect before the user interaction is processed by
the JSF container. Unfortunately, this means that a redirect cannot be triggered based on the
outcome of a JSF form validation.

Listing 12-18 shows a sample code for a backing file that always redirects when the user interacts
with the portlet.

Listing 12-18 A Backing File that Redirects when a User Interacts with a Portlet

package oracle.samples.wlp.jsf;
import javax.servlet.http_HttpServletRequest;

import javax.servlet.http_HttpServletResponse;

Oracle WebLogic Portal Portlet Development Guide

Understanding Naviga

import
com.bea.netuix.servlets.controls.content.backing.AbstractJspBacking;

import
com.bea.netuix.servlets.controls.portlet._backing.PortletBackingContext;

import com.bea.portlet._PageURL;

public class RedirectBackingFile extends AbstractJspBacking {
private static final long serialVersionUID = 1L;
@Override
public boolean handlePostbackData(HttpServletRequest request,
HttpServiletResponse response) {
// As per the design, this portlet will ALWAYS redirect
// back to the same portal page
// if the user interacts with the portlet.
if (isRequestTargeted(request)) {
PageURL url = PageURL.createPageURL(request, response);
// make sure the URL uses the proper ampersands...
url.setForcedAmpForm(false);
// ...and is encoded with a session token if necessary

String redirectUrl =
Response.encodeRedirectURL(url.toString());

PortletBackingContext pbc =
PortletBackingContext.getPortletBackingContext(request);
pbc.sendRedirect(redirecturl);

}

return super.handlePostbackData(request, response);

Oracle WebLogic Portal Portlet Development Guide

tion

12-39

Working With JSF Portlets

Navigation Within a Portal Environment

12-40

The previous section discussed navigation techniques within a portlet. This sections covers
navigations within the portal environment. It contains the following topics:

Programmatically Constructing JSF Portlet URLS

Changing the Active Portal Page

Using an Output Link
e Using a Command Link or Button With Events

Changing the Active Portal Page Using the Navigation Controller and a Portal Event

Changing the Active Portal Page Programmatically

Programmatically Constructing JSF Portlet URLs

For most cases, WLP will automatically handle the construction of URLSs that postback to a JSF
portlet via the Command Link and Button capability discussed above. But there are use cases in
which the portlet developer needs to construct URLs programmatically. The code snippet in
Listing 12-19 shows how to do this.

Listing 12-19 Programmatically Constructing a Portlet Postback URL in a JSF Managed Bean

public String getJSFPortletPostbackURL() {
HttpServletRequest request = JSFPortletHelper.getRequest();
HttpServletResponse response = JSFPortletHelper.getResponse();
String webapp = request.getContextPath();

// Create base URL, which includes parameters to target current
portlet

WindowURL url = WindowURL.createWindowURL(request, response);

// provide URL to the JSF page. Include webapp context root on the
front

Oracle WebLogic Portal Portlet Development Guide

Navigation Within a Portal Environment

url _addParameter(""_nffvid" ,webapp+"/portlets/javascript/myJSFPage.faces™);
// make sure the toString() method writes "&" and not "&"
url _setForcedAmpForm(false);

return url_toString(Q);
}

Changing the Active Portal Page

The term "page" has many meanings within a portal environment. There is the (X)HTML
document that is returned to the browser (the "browser page"), and there is a set of tabs rendered
on the browser page, each representing a logical page (a "portal page™). The current visible portal
page is called the "active" page.

Within WebLogic Portal, portal pages reside in a container called a book. There is always a main
book, which contains the top level portal pages. But note that books can be nested inside of pages,
thus creating the ability to create deeply nested user interfaces. This is important to understand in
the context of this section because there can be multiple "active™ portal pages (in different visible
books) rendered in a single browser page.

Using an Output Link

The Output Link component is a perfect for creating link that unconditionally changes the active
page. It is simpler to use an Output Link for this task as opposed to the solutions provided with
the Command Button and Link. It does require some code to programmatically generate the
correct URL.

The first step is to create a managed bean with a property that generates the URL to the
appropriate page using a WLP API - the PageURL (Listing 12-20).

Listing 12-20 A Managed Bean Method for Creating a URL to Navigate to a Portal Page

// Creates a property ‘'searchPageURL"™ that dynamically retrieves
// the right URL to change the page to my search page

public String getSearchPageURL() {

Oracle WebLogic Portal Portlet Development Guide 12-41

Working With JSF Portlets

HttpServletRequest request = JSFPortletHelper.getRequest();
HttpServletResponse response = JSFPortletHelper.getResponse();
// create the URL to the page with definition label "my_search_page"

return PageURL.createPageURL(request, response,
"my_search_page') .toString(Q);

}

Second, simply add an Output Link component to the JSF portlet. Using JSF EL, bind the
managed bean URL to the component (Listing 12-21).

Listing 12-21 Binding the Dynamic URL into a JSF OutputLink

<h:outputLink value="#{PortletlRequestBean.searchPageURL}">
<h:outputText value="'Change to Search Page'/>

</h:outputLink>

Using a Command Link or Button With Events

The Command Link and Command Button components also offer rich capabilities for changing
the active page. These features are of particular use when the page change is conditional on server
logic.

Changing the Active Portal Page Using the Navigation
Controller and a Portal Event

This use case is covered in Interportlet Communication with JSF Portlets. It allows users to
implicitly cause a page change based on how they have navigated within a JSF portlet. This
produces a loosely coupled approach to the page activation pattern. It is accomplished with the
following configuration:

1. The JSF portlet with the Command Button/Link uses standard navigation to change the
current JSF view.

2. The JSF portlet is configured to emit an event when that new view is rendered.

12-42 Oracle WebLogic Portal Portlet Development Guide

Navigation Within a Portal Environment

3. Locate a listener portlet (it need not be implemented with JSF) that is on the page that is to be
activated.

4. That listener portlet is configured to listen for the event triggered by the JSF portlet.

5. An Activate Page action is defined on the handler for the event.

Changing the Active Portal Page Programmatically

Changing the page programmatically with the Command Button and Link is useful when the page
change is a conditional decision based on values entered in the accompanying form. There are
two approaches.

Solution 1: Fire a Custom Event Programmatically

1. Configure the JSF portlet with the Command Button/Link to use an action listener or method
when the button or link is clicked.

2. Implement the method such that it fires a custom event using the PortletBackingContext.

3. Configure a listener portlet for the page to be activated, like in the previous use case.

Listing 12-22 shows how to fire a WLP event from a managed bean that will cause a listener
portlet to activate a hidden page.

Listing 12-22 A WLP Event from a Managed Bean that Cause a Listener Portlet to Activate a Hidden Page

// Action Listener implemented in a managed bean
public void changeThePage(ActionEvent event)
{
// fTire the event
// the second parameter can be used to pass arbitrary data

JSFPortletHelper.fireCustomEvent(*'changeThePage",
mySerializableObject);

}

Solution 2: Invoke a Page Change Programmatically

Oracle WebLogic Portal Portlet Development Guide 12-43

Working With JSF Portlets

1. Configure JSF portlet with the Command Button/Link to use an action listener or method
when the button or link is clicked.

2. In the method, obtain a reference to the PortletBackingContext.

3. Invoke the setupPageChangeEvent() method on the PortletBackingContext, passing the
definition label of the page to be activated.

The code snippet in Listing 12-23 shows how to directly trigger a page change event from a
managed bean.

Listing 12-23 Triggering a Page Change Event from a Managed Bean

public void changeThePage(ActionEvent event) {
HttpServletRequest request = JSFPortletHelper.getRequest();
PortletBackingContext pbc =
PortletBackingContext.getPortletBackingContext(request);
// fire the page change event
// my_search_page is the definition label for the page

pbc.setupPageChangeEvent("'my_search_page');

Interportlet Communication with JSF Portlets

12-44

Most portal implementations employ the pattern known as Interportlet Communication (IPC).
IPC refers to the use case in which a portlet needs to notify another portlet, which may or may
not be on the visible page, when a user has interacted with it. JSF portlets may participate in both
sides of this mechanism, and this section explains how.

WLP provides several facilities for accomplishing IPC — events and notifications, in addition to
the basic capability possible with HttpSession and HttpServletRequest attributes. Table 12-5,
available at the end of the section, highlights the differences in capabilities in approaches.
Developers are also free to use other approaches beyond what is offered in WLP — JMS for
example.

Oracle WebLogic Portal Portlet Development Guide

Interportlet Communication with JSF Portlets

Note: Before proceeding, a clarification must be made. Within WLP, there are two facilities
referred to as "events". The first, the one discussed here, operates entirely within the
context of the portal rendering framework. It is exposed during portlet configuration and
when programmatically interacting with the portal framework context objects. The
second, which is not discussed in this chapter, supports the personalization features of
WLP, such as Behavior Tracking and Campaigns. That event system is hot normally used
for IPC.

This section contains the following topics:
e Using Session and Request Attributes for IPC (Anti-pattern)
e Using the WLP Event Facility for IPC with JSF Portlets
e Notifications

e Comparison of the IPC Approaches

Using Session and Request Attributes for IPC (Anti-pattern)

In some basic IPC use cases, it may appear sufficient to use a simple approach of passing state

via the HttpSession and HttpServletRequest. Many developers starting with WLP will use this

approach as a first step. However, this technique has many limitations and is not recommended.
The drawbacks with this approach are explained in State Sharing Patterns.

Using the WLP Event Facility for IPC with JSF Portlets

This section shows how JSF portlets can participate in the eventing facility provided by the WLP
portal framework. Events are extremely well integrated into the WLP portal framework.
Therefore, in almost every IPC case, events are the favored approach. More advanced use cases
for triggering and receiving events are covered in State Sharing Patterns.

Triggering a Portal Framework Event from a JSF Portlet

This section shows the simplest way in which a JSF portlet can trigger a WLP framework event.
Use case: A search box JSF portlet contains a Command Button that the user presses after
entering a search term. The Command Button invokes a navigation rule that changes the view

from searchBox.jsp to searchBoxIssued.jsp being rendered. The Command Button must also
raise a WLP event when clicked.

Solution: The following procedure shows how to trigger an event when a user clicks on a JSF
Command Link or Button:

Oracle WebLogic Portal Portlet Development Guide 12-45

Working With JSF Portlets

1. Create your JSF view for the portlet, which includes an h:form (e.g.
/search/searchBox. jsp).

2. Add a Command Link or Button, with its action defined as a hardcoded logical navigation
path (showResults") or an EL expression that will return one ("#{mybean.mymethod}").

3. Create a navigation rule and case in faces-config.xml for that navigation path, directing
towards a different JSF view (searchBoxlIssued. jsp).

4. Using the portlet editor, click on the button in the Faces Events property.
For information about portlet editor, see the “Developing Portlets” chapter available here:
http://download.oracle.com/docs/cd/E15919_01/wlp.1032/e14244/configure.htm

5. Declare that the portlet raises the showResults event like the following: (Figure 12-9)
Action: /search/searchBoxIssued. faces

eventName: showResults

6. Click OK.

Figure 12-9 The IDE dialog for Declaring an Event to be Triggered from a JSF Portlet

© Faces Events §|

Event Mame Action
showR esults search/searchBaxIssued.Faces

[OFK H Cancel]

Listing 12-24 shows the .portlet file for a JSF portlet that triggers an event.

Listing 12-24 The .portlet File for a JSF Portlet that Triggers an Event

<portal:root>
<netuix:portlet backingFile="wlp.samples._portal.SearchBackingFile"
definitionLabel="searchBox" title="Search Box'>

<netuix:titlebar/>

12-46 Oracle WebLogic Portal Portlet Development Guide

http://download.oracle.com/docs/cd/E15919_01/wlp.1032/e14244/configure.htm

Interportlet Communication with JSF Portlets

<netuix:content>

<netuix:facesContent
contentUri="/search/searchBox. faces'>

<netuix:facesEvents>

<netuix:facesEvent
action=""/search/searchBoxlssued. faces"

eventName=""showResults"/>
</netuix:facesEvents>
</netuix:facesContent>
</netuix:content>
</netuix:portlet>
</portal :root>

The event will now be triggered in this scenario:
e The user has navigated to a portal page that contains this portlet.
e The portlet's current view contains the Command Button (or Link).

e The user clicks on the button.

e The action method, if specified, returns the correct navigation path to trigger the navigation
case to render an alternate view.

Notes:

o If aview has been configured to fire an event when accessed, and it receives a postback,
the event is still fired even if form validation fails. This behavior may not be what you
want.

e The use of the word “action” as a property key in the event trigger can be confusing. The
value of the action property is always the path to a view, and not an action method in a
managed bean. The suffix used (.jsp, -faces, etc.) is not significant.

e When defining the "action" property in the event definition, it may not be clear which view
is to be specified. It is in fact the destination view that the user will arrive at, not the source

view.

Oracle WebLogic Portal Portlet Development Guide 12-47

Working With JSF Portlets

12-48

Listening for a Portal Framework Event in a JSF Portlet

The previous section detailed how to trigger an event from a JSF portlet. This section explains
how to listen for an event.

Use case: In a Master-Detail relationship, the Master is a search box portlet, and the Detail is a
JSF search results portlet. When the user enters a query into the search box, the portlet triggers a
“showResults” event as shown in the previous section. The search results Detail portlet must be
notified such that it can change the view from the default "No Results" page to a view that
displays the results.

Solution: A JSF portlet can declaratively listen for portal framework events, which can be used
to change the view in the JSF application. This example shows how a portlet can listen for the
showResults event from the search box portlet. If the search results portlet receives such an event,
it changes the view to a different JSP.

The process of configuring a portlet to listen for an event is as follows:
1. Open the portlet in the Workshop portlet editor.

2. Click on the Event Handlers property, and click the button to display the configuration
dialog.

Click the Add Handler button and choose Custom Event.
Give the name of the event to listen for (e.g. showResults).
Click the Add Action button, and select Invoke Faces Action.

Browse to the JSF view that should be displayed upon receiving the event.

N o g &~ W

Click OK.

Listing 12-25 shows an example .portlet for a JSF search results portlet that listens for an
event and changes the JSF view in response.

Listing 12-25 A JSF Search Results Portlet that Listens for an Event and Changes the JSF View in Response

<portal:root>

<netuix:portlet definitionLabel="searchResults"™ title="Search
Results'>

<netuix:handleFacesEvent

Oracle WebLogic Portal Portlet Development Guide

Interportlet Communication with JSF Portlets

eventLabel="doSearchEvent"
eventName=""showResults"
fromSelflnstanceOnly=""false"
onlylfDisplayed=""false"

sourceDefinitionLabels="searchBox""

<netuix:activatePage/>

<netuix:invokeFacesAction
action="/search/searchResults.faces'/>

</netuix:handleFacesEvent>
<netuix:titlebar>
<netuix:maximize/>
</netuix:titlebar>
<netuix:content>

<netuix:facesContent
contentUri="/search/searchResults_none.faces'/>

</netuix:content>
</netuix:portlet>
</portal :root>

Notes:

e This example does not show how the search results portlet can get the search text from the
search box portlet. Receiving such data in a listening JSF portlet is covered in State
Sharing Patterns.

e WLP supports a rich set of actions, beyond Invoke Faces Action, that could also be used in
response to an event.

e The listening portlet has additional options for filtering events. See Chapter 9, “Local
Interportlet Communication”.

Oracle WebLogic Portal Portlet Development Guide 12-49

Working With JSF Portlets

12-50

Notifications

WebLogic Portal provides another facility for IPC — notifications. Notifications differ from
events in that they are persisted to the database. This allows notifications to persist beyond a
user's HttpSession. A notification also differs from an event in that it can be targeted to more than
just the user that triggered it. This enables notifications to be used in cases such as sending
announcements, advertising a change to a document, broadcasting system-wide messages, and
more.

However, notifications do not have the ability to invoke portlet logic (like a backing file method)
or activate a portlet's page like an event can. Also, notifications cannot support framework
features such as Desktop Async and Portlet Render Cacheable (described below). In cases where
those features are important, using a combination of notifications and events can provide the right
solution.

Also, the persistence and broadcast features of notifications come at a performance cost. Due to
the extra processing required to handle a notification, they are intended to be used sparingly. In
short, the event mechanism is normally the correct facility for IPC, but notifications can also be
helpful for certain use cases.

Comparison of the IPC Approaches

To make the differences in approaches more clear, Table 12-5 highlights the features supported
with each approach:

Table 12-5 A Comparison of Several Implementation Approaches for IPC

FEATURE SESSION/REQUEST EVENTS NOTIFICATION
ATTRIBUTES

Recommended? No Yes In moderation
Subscribe or Poll Poll Subscribe Poll

Layout Independent No Yes No

Render Caching No Yes No

Async Desktop No Yes No

WSRP No Yes No

Oracle WebLogic Portal Portlet Development Guide

Namespacing

Tahle 12-5 A Comparison of Several Implementation Approaches for IPC

FEATURE SESSION/REQUEST EVENTS NOTIFICATION
ATTRIBUTES
Payload Type Serializable Serializable String
Persistent No No Yes
Legend

This section describes the rows of the table.
e Recommended — Events and notifications are recommended, attributes are not.

e Subscribe or Poll — Events allow a portlet to subscribe to an event, attributes and
notifications must poll to detect an event.

e Layout Independent — Depending on certain factors, attributes and notifications may
behave differently depending on the order of the master and detail portlets on the page.

e Render Caching — Render caching improves performance by allowing a portlet to cache its
rendered view. But the portal framework must invalidate the cached view if a listening
portlet has updated itself. The invalidation will only happen if using event based IPC.

e Async Desktop — Enabling the asynchronous desktop feature allows WLP to selectively
update only those portlets on a page that need to be updated. This only works for event
based IPC.

e WSRP — Portlets can be distributed across different web applications using WSRP. This
will not work for attribute or notification based IPC. Events are properly distributed when
WSRP is in use.

e Payload — Specifies the Java type that can be used as a payload for the IPC event.
Serializable is always recommended, even though Object is technically supported for
events and attributes.

e Persistent — Notifications can outlast a session.

Namespacing

This section discusses several namespacing issues that must be addressed when building JSF
portlets. It is important to remember in a portal environment, the portlet does not own the entire
web page. Therefore, collisions in names can occur if the portlet developer is not careful.

Oracle WebLogic Portal Portlet Development Guide 12-51

Working With JSF Portlets

12-52

e Namespacing Managed Bean Names
e Client ID Namespacing with the View and Subview Components

e Client ID Namespacing with the WLP NamingContainer

Namespacing Managed Bean Names

With JSF, it is necessary to register each JSF managed bean used in the web application in
facesconfig.xml. Each bean is given a name, which must be unique to the web application.
Since multiple JSF portlets will be brought together into a single web application, it is possible
for a naming collision to occur (Listing 12-26).

Listing 12-26 An Example of a Problematic Managed Bean Name

<managed-bean>
<managed-bean-name>Val idationBean</managed-bean-name>
<managed-bean-class>samples.ValidationBean</managed-bean-class>
<managed-bean-scope>request</managed-bean-scope>

</managed-bean>

It is a possibility for multiple portlets to define a bean named ValidationBean. A better name
would be something like SearchBoxValidationBean, or some other name very specific to the
portlet.

This can especially be an issue when aggregating multiple portlets from disparate development
teams. It is therefore a best practice to include the portlet's definition label (or some similar
pattern) in the managed-bean-name to create an informal namespace for the bean name.

Note that JSF does support dividing faces-config.xml into multiple configuration files, but
this does not provide any namespacing capability and so the problem remains.

Client ID Namespacing with the View and Subview
Components

When a JSF portlet is rendered onto a portal page, it can coexist with other JSF portlets on that
same page. In JSF, like other web frameworks, it is critical that the id attribute on each element

Oracle WebLogic Portal Portlet Development Guide

Namespacing

of the X/HTML browser page be unique. JSF has the concept of a naming container, which
provides an id namespace to all components that exist within it. The most common naming
container is the View component (the f:view tag), but it also provides the Subview component
(the F:subview tag).

By virtue of the fact that all JSF portlets must contain an f:view tag as the root component, the
WLP framework for most cases can correctly introduce a namespace for all component ids in
each portlet. The framework uses the portlet's instance label as the namespace for the f:view.
This works automatically, and for most use cases is sufficient.

Client ID Namespacing with the WLP NamingContainer

For the native JSF portlet bridge, WLP provides a NamingContainer component to strengthen
scoping within the portal. Oracle recommends that you use this component whenever you are
using the native JSF portlet bridge.

The purpose of the NamingContainer component is to provide a WLP integrated naming
container as well as to expose a haming container instance that can be accessed through an EL
expression for use in custom id rewriting in backing beans or input to other components.

Add the NamingContainer to the JSF view as a direct child of the £:view tag. This component
takes an id attribute for use in EL expressions, which need not be unique across portlets.
NamingContainer Use Cases illustrates several use cases that demonstrate the
NamingContainer component.

NamingContainer Use Cases

This section presents several use cases that demonstrate the use of the NamingContainer
component in JSF views.

Use Case 1: Multiple Portlet Instances on a Page with Desktop Asynchronous Mode
Enabled

In general, the F:view tag is sufficient for scoping components in a portlet instance. However, if
the Desktop Asynchronous Mode feature is enabled on the . portal or desktop, the
NamingContainer is required if multiple instances of the same portlet is on the page. Failing to
use the NamingContainer in this case can cause form submissions to be targeted to the wrong
instance. Listing 12-27 illustrates the use of the NamingContainer component. For more
information on Asynchronous Mode, see "Asynchronous Desktop Rendering" in the Portal
Development Guide.

Oracle WebLogic Portal Portlet Development Guide 12-53

../portals/index.html
../portals/index.html

Working With JSF Portlets

12-54

Listing 12-27 Use of the WLP NamingContainer Component

<%@ page language="java'" contentType=""text/html;charset=UTF-8"%>

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<%@ taglib uri="http://bea.com/faces/adapter/tags-naming-”

prefix="jsf-naming® %>

<f:view>

<jsf-naming:NamingContainer id="zipcodeScope'>

<h:form>

<h:outputLabel value="Enter zip code:" for="zipcode"/>
<h:inputText id="zipcode" required="false"

value="#{ZipcodeRequestBean.zipcode}" size="10"/>

<h:commandButton action="#{ZipcodeRequestBean.submitZipcode}"
id=""submitter"”™ value="Submit"/>

</h:form>

</jsf-naming:NamingContainer>

</f:view>

Use Case 2: Using EL to Connect Multiple Components on a Page

A case when the NamingContainer id attribute is significant is one in which the portlet view has
components that must be connected using JSF EL expressions. In this case, the value binding
expression needs to have access to the fully scoped name of the other component. The
NamingContainer id attribute is referenced for this use case. The id maps to a binding context
that is mapped for EL expressions. The binding context provides access to other component ids

within the NamingContainer

For example, consider a pair of custom components that are configured in master/detail
relationship. The detail component needs to have a reference to the master component, but in such
a way that will work even if multiple instances of the portlet are on the same page. Listing 12-28
illustrates this use case. Notice the EL expression used by the detail component to refer to the

master. The EL expression resolves at runtime to a properly namespaced identifier.

Oracle WebLogic Portal Portlet Development Guide

Namespacing

Listing 12-28 JSF EL interacts with the NamingContainer Component

<%@ taglib uri=http://bea.com/faces/adapter/tags-naming"
prefix="jsf-portlet" %>
<f:view>
<jsf-portlet:NamingContainer id="masterDetailScope’>
<a:myCustomMasterComponent id="masterComponent"/>
<a:myCustomDetai lComponent id="detailComponent"
myMaster ID="#{masterDetai IScope.scopedld["masterComponent®].string
y />
</jsf-portlet:NamingContainer>
</f:view>

Use Case 3: Generating DOM Element IDs for Custom JavaScript

The NamingContainer is also required in cases where custom JavaScript needs access to the
client id of a JSF component to perform dynamic DOM updates. See Using Custom JavaScript
in JSF Portlets for a detailed example.

Best Practice: Always Use the NamingContainer

The specific use cases identified in this section require the NamingContainer, but it may not be
easy to remember when exactly it is needed. There is no harm in adding the NamingContainer
component to a portlet. Therefore, it is a best practice to simply add the NamingContainer to
every portlet. This provides an assurance that users won't experience strange namespacing
collisions while navigating the portal, regardless the combination of portlets on the page.

NamingContainer in EL Expressions
When used in an EL expression, the NamingContainer is accessed following this pattern:

<NamingContainer id>.scopedld[<quoted-string-target-component-id>].string

Terminate the JSF value binding expression with .string to yield the constructed scoped
identifier. For advanced use cases, additional capabilities are available to decorate the generated
id. Additional strings may be added to the beginning or end of the generated id:

e _prefix[<quoted-string>]

e _suffix[<quoted-string>]

Oracle WebLogic Portal Portlet Development Guide 12-55

Working With JSF Portlets

For example, this JSF value binding expression

myPortletNamespace.scopedld[*worldMap®] -prefix["mytoken_"7].string

might produce an identifier like this on the client:
mytoken_worldMapPortlet_1:worldMap

Using Custom JavaScript in JSF Portlets

12-56

This section presents examples and discusses best practices for developing custom JavaScript for
JSF portlets.

This section includes these topics:
e DOM Manipulation within a JSF Portlet

e Form Validation within a JSF Portlet

Tip: For asummary of general considerations when writing client-side portal code, see
"Client-Side Development Best Practices” in the Client-Side Developer’s Guide. That
chapter discusses best practices like using a render dependencies file to specify .js files
used by the portlet, using the wlp_rewrite_ token for namespacing, and other techniques.

DOM Manipulation within a JSF Portlet

This section demonstrates how to rewrite discrete pieces of the HTML page using client-side
code.

e Introduction to the Use Case

e DOM Manipulation Use Case

Introduction to the Use Case

The need to rewrite pieces of HTML on the client is often called DOM manipulation. It is
accomplished by writing custom JavaScript that locates an element on the rendered HTML page
(a DOM element), and then programmatically changes that element. The key challenge for this
use case for a JSF portlet is determining the target id of the element to be manipulated. DOM
Manipulation Use Case shows how to do this.

Oracle WebLogic Portal Portlet Development Guide

../clientdev/index.html

Using Custom JavaScript in JSF Portlets

Note: Itis not generally advisable to manipulate a JSF component's client state via JavaScript,
as it fails to properly update the view state stored on the server. But, for custom
components or simple components this can be a useful technique.

DOM Manipulation Use Case

This sample shows how to build a simple JSF portlet that contains an Output Link and an Output
Text component. The goal is to rewrite the text in the Output Text component when the Output
Link is clicked. This happens entirely on the client using JavaScript with no server round trips.

The example starts with the JavaScript. Listing 12-29 shows a sample JavaScript file used by a
JSF portlet. It contains very simple logic to find an HTML <div> element on the page and update
the text. Note the tag wlp_rewrite. This tag is rewritten at runtime to the portlet's instance label,
which namespaces the JavaScript function. For more information on wlp_rewrite, see Scoping
JavaScript Variables and CSS Styles.

Listing 12-29 JavaScript File

// javascript.js

function wlp_rewrite_updateTarget(divid) {
var theDiv = document.getElementByld(divid);
theDiv.innerHTML = "Target updated.";

Next, the JSF portlet’s Render Dependencies property is set to a .dependencies file. An
example _dependencies file is shown in Listing 12-30. For more information on render
dependencies, see Portlet Dependencies.

Listing 12-30 Sample .dependencies File

<?xml version="1.0" encoding="UTF-8"?>
<I-- Contents of javascriptPortlet.dependencies file ->
<window xmIns="http://www._bea.com/servers/portal/framework/laf/1.0.0"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://www.bea.com/servers/portal/framework/laf/1.
0.0 laf-window-1 0 0O.xsd">
<render-dependencies><html>
<scripts>

Oracle WebLogic Portal Portlet Development Guide 12-57

Working With JSF Portlets

12-58

<script type="text/javascript® content-uri="javascript.js" />
</scripts>
</html></render-dependencies>
</window>

Next, the JSF portlet has a backing bean that provides the portlet instance label, as shown in
Listing 12-31. This bean must be registered in faces-config.xml (not shown).

Tip: Forinformation about the JSFPortletHelper helper class, see The JSFPortletHelper Class.

Listing 12-31 The JSF Managed Bean

package oracle.samples.wlp.jsf.javascript;
public class JavaScriptPortletRequestBean {
private String instancelLabel;

public String getlnstancelLabel() {
if (instanceLabel == null) {
instancelLabel = JSFPortletHelper.getinstancelLabel();
}

return instancelLabel;

}

The JSF JSP file shown in Listing 12-32 completes the example. Notice how it uses the backing
bean to retrieve the portlet instance label. It also uses the NamingContainer EL expression
capability introduced in Namespacing.

The onclick() function is the most important component in the code and performs these
functions:

e Prepends the JavaScript call with the portlet instance label (to resolve the function
namespaced with the wlp_rewrite token in the . js file)

e Uses the NamingContainer EL expression to find the associated OutputText component's
 element to update.

Oracle WebLogic Portal Portlet Development Guide

Using Custom JavaScript in JSF Portlets

Listing 12-32 The JSF JSP That Invokes the JavaScript Function

<%@ page language="java' contentType=""text/html;charset=UTF-8"%>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

<%@ taglib uri="http://bea.com/faces/adapter/tags-naming”
prefix="jsf-naming® %>

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<f:view>

<jsf-naming:namingContainer id="javascriptPortletNC">

<h:form>

<h:outputLink value="#"
onclick="#{JavaScriptPortletRequestBean.portletlnstanceLabel} updateTarget
("#{JavascriptPortletNC.scopedld[“outputLinkTarget®].string}"); return
false;">

<h:outputText value="Click to Update OutputLink Target'/>
</h:outputLink>

</h:form>

<h:outputText id="outputLinkTarget" value="OutputLink Target'/>

<%@ page language="java' contentType=""text/html;charset=UTF-8"%>

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

<%@ taglib uri="http://bea.com/faces/adapter/tags-naming”
prefix="jsf-naming® %>

<%@ taglib uri="http://java.sun.com/jst/html" prefix="h" %>

<f:view>

<jsf-naming:namingContainer id="javascriptPortletNC">
<h:form>

<h:outputLink value="#
onclick="#{JavaScriptPortletRequestBean.portletlnstanceLabel} updateTarget
("#{JavascriptPortletNC.scopedld[“outputLinkTarget®].string}"); return
false;">

<h:outputText value="Click to Update OutputLink Target'/>

</h:outputLink>

</h:form>

<h:outputText id="outputLinkTarget" value="OutputLink Target'/>
</jsf-naming:namingContainer>

Oracle WebLogic Portal Portlet Development Guide 12-59

Working With JSF Portlets

12-60

</f:view>

Working together, these files create a portlet that works properly by itself, even if multiple
instances of the same portlet are on the page.

Form Validation within a JSF Portlet

This use case shows how to accomplish client-side form validation. This case is a common
JavaScript use case. This use case follows a similar pattern to the previous use case in DOM
Manipulation within a JSF Portlet

Note: This example is for demonstration purposes only. Oracle recommends that you use the
form validation facilities provided by JSF whenever possible.

To start, define the JavaScript function in a . js file that performs the validation (Listing 12-33).
Assume the form object is passed in as an argument to the function.

Listing 12-33 The Form Validation JavaScript Function

function wlp_rewrite_validateForm(myform) {
it (myform.elements[0].value.length < 4) {
alert(""The username must be longer than 3 characters.');
return false;

}

return true;

Using the Render Dependencies technique shown in the previous use case (DOM Manipulation
Use Case):

1. Linkthe . js file to the portlet using a .dependencies file.

2. Create the JSF backing bean to accept the form parameters when the form is submitted to the
server, as with any standard JSF form. The backing bean must provide the portlet instance
label, as shown previously. For brevity, the backing bean is omitted here.

3. Create the JSP JSF page that is the view for the portlet, shown in Listing 12-34. The form
element in the JSP triggers client-side form validation. Notice how it uses the same technique
used in the previous use case for calling the namespaced JavaScript function.

Oracle WebLogic Portal Portlet Development Guide

Ajax Enablement

Listing 12-34 The Form Element in the JSF JSP

<h:form id="sampleForm"

onsubmit="return
#{JavaScriptPortletRequestBean.portletinstanceLabel} validateForm(this);">
<h:inputText id="username" value="#{JavaScriptPortletRequestBean.name}"
size="40"/>
<h:commandButton id="submitter" value="Submit"/>
</h:form>

Ajax Enablement

This section contains the following topics:

e Ajax in JSF Portlets

Partial Page Rendering Pattern

Stateless API Request Pattern

Portlet Aware APl Request Pattern

Controlling the WLP Ajax Framework

Ajax in JSF Portlets

Many websites are Ajax enabled to provide a rich user experience. Ajax allows the browser to
emulate the interactivity of traditional desktop applications. There are three primary patterns for
using Ajax in a Portal. This section describes each, and explains how to implement the pattern
with JSF portlets on WebLogic Portal.

Partial Page Rendering Pattern

The Partial Page Rendering (PPR) is the case in which an XmIHttpRequest is issued to the server,
and the server responds with visual markup (XHTML or HTML). This markup is written directly
into the browser page, updating the content that the user sees. There are several challenges for
this capability:

e The Ajax request must enter through a proper Portal entry point, so that state such as
portlet preferences and previous view state can be honored.

Oracle WebLogic Portal Portlet Development Guide 12-61

Working With JSF Portlets

12-62

e It requires the server to be able to return a subset of the markup for the visible page.

e Some portal-like interactions, like interportlet communication, require the server to respond
with more markup than the client expected (e.g. markup for multiple portlets).

Because of these complex issues, WLP supports official techniques for implementing PPR with
WLP portlets — Asynchronous Desktop and Asynchronous Portlet modes. These facilities are
available to all portlet types, and are transparent to the portlet developer. Thus, any JSF portlet
can utilize any of these facilities without changes to the portlet implementation. These modes are
configured using simple configuration settings.

Asynchronous Desktop Mode

Asynchronous Desktop mode causes all portlets on the portal to become asynchronous. The WLP
framework rewrites all URLSs on the portal pages such that they invoke Ajax requests
(XMLHttpRequests). This facility supports all WLP framework features, including interportlet
communication. This setting is either on or off for the entire desktop.

For more information, see the “Asynchronous Desktop Rendering” section in the Portal
Development Guide.

Asynchronous Portlet Mode — Ajax or IFrame

Asynchronous Portlet mode is similar to Asychronous Desktop mode except that it is configured
at the portlet level. This allows more fine-grained configuration of what is Ajax-enabled by the
framework. This mode can also be configured to use IFrames instead of Ajax. The primary
limitation with this mode is that interportlet communication is not supported.

For more information, see the Asynchronous Portlet Content Rendering.

Stateless APl Request Pattern

Some use cases work better when the server does not serve up presentation markup, but raw data.
In these cases, the client has the necessary code to process that data, and render the presentation
markup appropriately.

The first type of this pattern is that of a stateless API. Such an API is not specific to the portal or
even portlet; it is a general purpose API. In these cases, the XmIHttpRequest must pass all of the
necessary information for the server to process the request. The classic example of this type of
API is a search box autocomplete API. In this use case, after a user types a character in a search
box, and XmlHttpRequest is sent to the server with the contents of the search box. The server

Oracle WebLogic Portal Portlet Development Guide

../portals/index.html
../portals/index.html

Ajax Enablement

responds with a list of possible matches, and JavaScript on the client renders them in a drop down
list.

Such an API need not be aware of any portal context to fulfill the request. Therefore, any
WebLogic Portal portlet (JSF or otherwise) may use such an APl without restriction. The Ajax
invocation in this case is fulfilled outside the context of the portal environment, and thus there
aren't any unique issues related to WLP. For this reason, an example is not provided here. There
are many examples available on the web. Searches for "javascript autocomplete example" will
yield many results. Figure 12-10 shows an example of autocomplete.

Figure 12-10 An Example of Autocomplete

IQ + | weblogic portal

weblogic portal expart ... T
weblogic portal express. ..

weblogic portal visitar £...

J5F Pan

weblogic portal tutorial

weblogic portal server

weblogic portal 10,3

weblogic portal 10.2

weblogic portal 9.2

weblagic portal docume. ..

weblogic portal 10,2 do. .. v

Portlet Aware APl Request Pattern

The third pattern is for Ajax requests that target data service APIs that have access to the portlet
context. The service may need access to the portlet instance's preferences, for example. For these
cases, WebL ogic Portal's framework must be involved in the request processing. In support of
this use case, WebLogic Portal must provide the following:

e Instancing support — The ability to differentiate which portlet instance on the client issued
the request.

e Context support — The ability to provide portlet instance context, such as its instance label
or preferences.

e |PC awareness — If the Ajax invocation changes the state of the portlet, other portlets might
also need to be updated.

WebLogic Portal implements a wrapper for the standard XmlIHttpRequest to provide these
features. Portlet Aware Data APl Example demonstrates its use.

Oracle WebLogic Portal Portlet Development Guide 12-63

Working With JSF Portlets

12-64

Portlet Aware Data APl Example

This example shows how to invoke an API via Ajax that operates within the JSF portlet's context.
Meaning, the APl implementation has access to portlet instance context such as preferences. The
API can return the data in any textual format it chooses, with JSON, XML or simple text being
common choices. To keep the example concise, the example as shown will not appear to do
anything meaningful. Instead, the example shows how to bring the data back to the browser, and
the DOM manipulation is left as an exercise to the reader. See Using Custom JavaScript in JSF
Portlets.

Figure 12-11 shows the example. The example consists of a simple portlet with just a link.
Clicking on the link on the portlet will cause an Ajax request to target a data APl implemented in
the JSF portlet. The data can best be seen in a browser debugger like Firebug or a network monitor
that shows the response body.

Caution: Using Ajax within a portlet is problematic when that portlet is being offered over
WSRP. The 1.0 specification made no allowance for Ajax capabilities, and thus there
is no standard approach to solving this problem. Therefore, this example assumes that
WSRP is not in use.

Figure 12-11 A View of the Example Portlet

JavasScript Portlet | v
Invoke Portlet Data API wia Ajax

Note: This chapter will not explain render dependencies or the wlp_rewrite_ token. The
example assumes you have already read about JavaScript and render dependencies in
section Portlet Dependencies.

Step 1: Create the JavaScript function that issues the Ajax request using the WLP
XmlHttpRequest wrapper. Allow the caller to pass in the URL into the function, as generating the
proper URL in JavaScript is not easy.

Listing 12-35 shows the JavaScript function that invokes the WLP specific XMLHttpRequest.

Listing 12-35 Invoking the WLP Specific XMLHttpRequest

// ajaxPortlet._js

function wlp_rewrite_issueAjax(dataurl) {

Oracle WebLogic Portal Portlet Development Guide

Ajax Enablement

var xmlhttp = new bea.wlp.disc.io.XMLHttpRequest();
xmlhttp.onreadystatechange = function() {
i ((xmlhttp.readyState == 4) && (xmlhttp.status == 200)) {
var data = xmlhttp.responseText;

// MODIFY: do something with the data, like DOM
manipulation.

// This example will appear to do nothing, but the data

// available at this point.

}
xmlhttp.open("GET", dataUrl, true);
xmlhttp.send();

}

Step 2: Create the JSF JSP. The URL that is invoked in the Ajax request is retrieved from a JSF
backing bean via the EL expression #{JavaScriptPortletSessionBean.ajaxDataURL}. The
backing bean implementation will be covered next. The portlet instance label is prepended to the
function due to the use of the wlp_rewrite_ token in the JavaScript file.

The code in Listing 12-36 shows the JSF JSP that triggers the Ajax call using an onclick handler.

Listing 12-36 A JSF JSP Triggering the Ajax Call Using an onclick Handler

<%@ page language="java' contentType=""text/html;charset=UTF-8"%>
<%@ taglib uri="http://java.sun.com/jsf/core"” prefix="f" %>
<%@ taglib uri="http://java.sun.com/jst/html" prefix="h" %>

<%@ taglib uri="http://bea.com/faces/adapter/tags-naming”
prefix="jsf-naming® %>

<f:view>

<jsf-naming:namingContainer id="javascriptPortletNC">

Oracle WebLogic Portal Portlet Development Guide 12-65

Working With JSF Portlets

<h:outputLink value="#"

onclick="#{JavaScriptPortletSessionBean.portletlnstanceLabel} issueAjax("#
{JavaScr

iptPortletSessionBean.ajaxDataURL}"); return false;">
<h:outputText value="Invoke Portlet Data APl via Ajax'/>

</h:outputLink>

</jsf-naming:namingContainer>

</F:view>

Step 3: Implement a backing bean that provides the core logic for implementing the Ajax
solution. The getPortletlinstanceLabel () method can remain unchanged, but the
getAjaxDataURL() and getJSONData() methods need to be modified to suit your needs.

Listing 12-37 shows the JSF managed bean that provides the Ajax data API.

Listing 12-37 The JSF Managed Bean that Provides the Ajax Data API

package oracle.samples.wlp.jsT;

import javax.faces.context.FacesContext;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import com.bea.portlet_WindowURL;

import
com.bea.netuix.servlets.controls.portlet._PortletPresentationContext;

import
com.bea.netuix.servlets.controls.portlet._backing.PortletBackingContext;

public class JavaScriptPortletSessionBean {

// PORTLET INSTANCE LABEL

12-66 Oracle WebLogic Portal Portlet Development Guide

Ajax Enablement

private String portletlnstancelLabel;
public String getPortletinstancelLabel() {

return JSFPortletHelper.getlnstancelLabel();

}

// AJAX DATA API1 URL
public String getAjaxDataURL() {
HttpServletRequest request = JSFPortletHelper.getRequest();

HttpServletResponse response =
JSFPortletHelper.getResponse();

String webapp = request.getContextPath();

// Create the base URL, which includes parameters

// to target the current portlet

WindowURL url = WindowURL.createWindowURL(request, response);
// provide the URL to the data JSF page, include the

// webapp context root

url _addParameter(*"_nffvid",
webapp+"'/portlets/javascript/dataJSF.faces);

// make sure the toString() method writes "&" and not "'&"’
url _setForcedAmpForm(false);

return url_toString(Q);

// AJAX DATA APl SERVICE IMPLEMENTATION
public String getJSONData() {
// Could return any text format, like JSON, XML, simple text

// Data is hardcoded in this example, but could easily be
dynamic.

Oracle WebLogic Portal Portlet Development Guide 12-67

Working With JSF Portlets

12-68

// The service may access the portlet instance context, using
// a WLP context object like the PortletBackingContext.

// JSON payload = {"menu™: {"id": "Ffile", "value™: "File"}}
return "{\"menu\": {\"id\": \"File\", \"value\": \"File\"}}";

}

Step 4: Create the data API, which must be implemented using JSF. The example below uses a
single OutputText component that obtains the JSON data from the backing bean. Take note that
the contentType has been set properly because this API returns JSON, which is a good practice.

Listing 12-38 shows the code for the degenerate JSF view that provides the simple data API.

Listing 12-38 The Degenerate JSF View that Provides the Simple Data API

<%@ page language="java' contentType="application/json;charset=UTF-8"%>
<%@ taglib prefix="f" uri="http://java.sun.com/jsf/core"%>

<%@ taglib uri="http://java.sun.com/jst/html"” prefix="h" %>

<f:view>

<h:outputText value="#{JavaScriptPortletSessionBean.JSONData}'"/>
</f:view>

Step 5: Create the portlet (. portlet file) using the New Portlet wizard. See JSF Portlets.

Step 6: Create the portlet dependencies file (.dependencies) to link in the JavaScript file. See
Portlet Dependencies.

Step 7: Add the portlet to a portal (.portal file) and run. This portal must have DISC enabled.
DISC can be enabled in the portal property sheet in the IDE for .portal files, or in the Portal
Administration Tool for streaming desktops.

Oracle WebLogic Portal Portlet Development Guide

Ajax Enablement

Controlling the WLP Ajax Framework

Forcing a Non-Targeted Portlet to Render

This section pertains to cases in which Desktop or Portlet Asynchronous Modes are enabled, or
when the WLP specific XmIHttpRequest wrapper is in use. There are cases in which portlets that
are not the target of the Ajax request need to be refreshed. If IPC is in use, this will happen
automatically. If a user interacts with a portlet and that portlet emits an event that is handled by
another portlet, both portlet's will be refreshed as a result of the Ajax interaction. The WLP
XmlHttpRequest wrapper ensures this behavior.

However, there are cases where IPC is not being used, yet the same behavior is desired. There is
an additional feature of the framework to solve this use case. It requires invoking the
setRenderOnAjaxRequest() method on the PortletBackingContext during the WLP init or
handlePostback lifecycles. This can be done either from a portlet backing file or a JSF portlet's
managed bean. See the Understanding WLP and JSF Rendering Life Cycles section for more
information on invoking context objects, portlet backing files, and WLP lifecycle methods.

The code snippet in Listing 12-39 shows the backing file method, which would be implemented
on the portlet that is NOT the target of the Ajax request.

Listing 12-39 A Backing File that Causes the Portlet to Always he Processed if any Portlet Issues a WLP
Ajax Request

public void init(HttpServletRequest request, HttpServletResponse response)

{
PortletBackingContext pbc =
PortletBackingContext.getPortletBackingContext(request);
pbc.setRenderOnAjaxRequest(true);

super.init(request, response);

Disabling Partial Page Rendering Ajax for a Request

This section applies to cases in which Desktop or Portlet Asynchronous Modes are enabled.
While it is useful to allow the framework to automatically rewrite all links and forms to use Ajax,

Oracle WebLogic Portal Portlet Development Guide 12-69

Working With JSF Portlets

12-70

there are times when a classic page request should be made. For JSF portlets implemented with
JSP technology, it is possible to signal to the framework to disable the Ajax rewriting for the
components on the portlet view. For more information, see Asynchronous Content Rendering and
IPC. The documentation shows how the <render : context> tag can be used for this purpose.
The way this works within a JSF page is best understood by looking at the following example.
The render:;context tag on the page has disabled the Ajax feature for the JSF form.

The code snippet in Listing 12-40 shows how to disable the Ajax feature for section of a JSF
view.

Listing 12-40 Disabling the Ajax Feature for Section of a JSF View

<f:view>

<jsf-naming:namingContainer id="ajaxPortletNC">

<render:context asyncContentDisabled=""true">
<h:form id="sampleForm">
<h:inputText id="username" size="40"
value="#{JavaScriptPortletSessionBean.name}" />
<h:inputText id="city" size="40"
value="#{JavaScriptPortletSessionBean.city}" size="40"/>
<h:commandButton id="submitter™ value="Submit"
action="#{JavaScriptPortletSessionBean.submitForm}"/>
</h:form>

</render:context>

</jsf-naming:namingContainer>

</f:view>

Oracle WebLogic Portal Portlet Development Guide

Localizing JSF Portlets

Localizing JSF Portlets

This section discusses best practices and techniques for localizing JSF portlets. It contains the
following topics:

e Configuring the JSF Locale

e Resource Bundles

e Listing Locales in faces-config.xml

e Ensuring Parity in Configured WLP and JSF Locales

e Modularizing Resource Bundles

Configuring the JSF Locale

By default, the WLP portal framework and JSF implementation compute the user's locale in the
same way. They both call the HttpServletRequest getLocales() method to obtain a list of the
user's preferred locales, in descending order of desirability. Then, both frameworks find the best
match using the localized resource bundles defined for each user interface element.

Resource Bundles

In WebL ogic Portal, the resource bundles are called localizations, and are defined using the WLP
Administration Console. Localizations cannot be defined when serving a portal from afile (a
.portal file). The portal must be a streaming desktop that is configured in the database to
support localization. For more information on the difference between file based portals and
streaming desktops, see "File-Based Portals and Streaming Portals" in the Portal Development
Guide.

Each element of the portal framework can have one or more localized titles. Figure 12-12 shows
how multiple localized titles for a portlet can be configured in the WLP Administration Console.

Oracle WebLogic Portal Portlet Development Guide 12-1

../portals/index.html
../portals/index.html

Working With JSF Portlets

Figure 12-12 Defining Multiple Localized Titles for a Portlet

Le Portlet des Preferences
Details | Portlet Preferences | @ Title & Description Entitlements | Delegated Admin
I Help Topics v
—Localized Titles 8 Descriptions
« | Showing of 1 @ Previous | Next @ Items per page m
7| | |Locale Title Description Edit | Delete
en_lUS Preferences Portlet Q O
fr Le Portlet des Preferences 2 Pl
o &dd Lecalized Title
Showing of 1 ® Previous | Next @ Items per page m

For more information on localizing artifacts in WebLogic Portal, see "Managing Portal
Desktops" in the Portal Development Guide.

Listing Locales in faces-config.xml

In JSF, each supported locale must be listed in faces-config.xml, as illustrated in
Listing 12-41. The views must use an f: loadBundl e tag to load a resource bundle, as shown in
Listing 12-42. That bundle must have a properties file for each supported locale.

Listing 12-41 faces-config.xml Showing Multiple Configured Locales

<application>
<locale-config>
<default-locale>en</default-locale>
<supported-locale>en</supported-locale>
<supported-locale>fr</supported-locale>
</locale-config>
</application>

12-72 Oracle WebLogic Portal Portlet Development Guide

../portals/index.html

Preparing JSF Portlets for Production

Listing 12-42 Using an f:loadBundle Tag to Load a Resource Bundle

<f:loadBundle basename="oracle.samples.wlp.jsf.login_portlet"” var="il8n"
/>

Ensuring Parity in Configured WLP and JSF Locales

Because both WLP and JSF compute the desired locale in the same way, the titles written by the
portal framework are always in the same locale as the messages written by the JSF
implementation. This assumes that WLP localizations and JSF resource bundles support the same
locales.

It is a best practice to make sure WLP and JSF are both configured with the same set of locales.
This ensures a consistent localized experience for a rendered page.

Modularizing Resource Bundles

JSF portlets support the standard JSF localization facility of resource bundles to provide a
localized user experience.

In a portal environment, you need to consider modularizing the resource bundles. In typical JSF
applications, one large bundle is created for the entire application. When developing JSF portlets,
it is a best practice to create a bundle for each individual portlet definition. Or, if several portlets
are always to be used together, a resource bundle can be shared between a group of portlets. This
enables portlets to be reused more easily across portal projects.

Preparing JSF Portlets for Production

This section discusses best practices to follow before deploying a JSF portlet into a production
environment.

e Configuration Tasks
e Performance and Scalability

e Securing JSF Portlets

Oracle WebLogic Portal Portlet Development Guide 12-13

Working With JSF Portlets

12-74

Configuration Tasks

This section discusses configuration tasks to perform before deploying a JSF portlet to a
production environment.

Configuring URL Templates for Proxy Servers

WLP is responsible for generating URLSs that properly stay within the context of the portal. WLP
does this for page tabs and also for portlet links. Understanding Navigation describes how WLP
rewrites links for JSF Command Button and Link components automatically.

In production, the URL that a user enters to navigate to a WebLogic Portal instance must not
target the machine hosting that instance. Instead, route the user through a proxy server or load
balancer. This is a best practice for scalability and for security. WLP provides a configuration
facility for configuring URLS properly in such an environment. The JSF link rewriting honors this
facility, and so there is nothing JSF-specific about this configuration.

For more information on the WLP URL template facility, see "Working with URLs" in the Portal
Development Guide.

The steps for configuring URLSs to make use of a proxy server are:
1. Go to the Merged Resources view of your Portal Web Project in Eclipse.

2. Find WEB-INF/beehive-url-template-config.xml, rightclick on it, and choose Copy to
Project.

3. Go to the Project Navigation view and double-click the copied file.

4. Add the URL template entry shown in Listing 12-43, replacing the IP address with the IP
address of the proxy server or load balancer.

5. Configure your proxy server to forward to WebL ogic Portal.

Listing 12-43 Configure URL Generation That Refers to a Proxy Server

<url-template>
<name>defaul t</name>
<value>http://192.168.0.5:{url :port}/{url:path}?{url:queryString}{url:curr
entPage}</value>
</url-template>

Oracle WebLogic Portal Portlet Development Guide

../portals/index.html
../portals/index.html

Preparing JSF Portlets for Production

If using Weblogic Server as your proxy server, see Oracle WebLogic Server proxy plug-in
documentation otherwise consult your vendor's proxy server documentation. See the Oracle
WebLogic Server proxy plug-in documentation here:

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/plugins/index.html

JSF Portlets with WSRP

When developing portlets with JSF, the WSRP capabilities of WLP work correctly. JSF portlets
can be exposed as WSRP portlets, just as with any other portlet type. For detailed information on
WSRP portlets, see Federated Portals Guide.

Caution: Itis not recommended to attempt to implement Ajax features within any portlet, JSF
or otherwise, that will be offered over WSRP.

Defining Error Pages

A Dbest practice is to make sure each portlet has a configured error page. This allows the portal
framework to provide a user friendly error screen in case of a problem.

A portlet error page is configured as the Error Page Path property in the portlet editor. For more
information, see “Portlet Properties in the Portlet Properties View.”

Performance and Scalability

This section discusses best practices for developing JSF portlets that perform well and are
scalable.

e JSF Portlets in a Clustered Environment

e Portlet Render Caching

JSF Portlets in a Clustered Environment

WebLogic Portal runs on WebLogic Server, which includes industry-leading clustering
technology. Clustering provides for both load balancing and failover capabilities. For the most
part, WebLogic Server achieves both transparently. You do not need to know about the
underlying clustering capabilities.

However, for failover to work properly, WebLogic Server must replicate a user's HttpSession to
a secondary node in the cluster. This enables the user to have a seamless experience if one node
were to fail. But in order for an HttpSession to be replicated without loss of data, the objects set
as attributes within it must be Serializable. For more information, see "Failover and Replication

Oracle WebLogic Portal Portlet Development Guide 12-15

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/plugins/index.html
../federation/index.html

Working With JSF Portlets

12-76

in a Cluster"” in the Oracle Fusion Middleware Using Clusters for Oracle WebLogic Server guide
available here:

http://download.oracle.com/docs/cd/E12839_01/web.1111/e13709/toc.htm

For JSF portlets to work well in a failover use case, all of the JSF portlet state must be in the
HttpSession and be Serializable. As discussed in Tips for Logging, Iterative Development, and
Debugging of JSF Portlets, even request-scoped managed beans are written into the HttpSession
in a portal environment. Therefore, it is a best practice for all managed beans, even those that are
request scoped, to be Serializable.

Portlet Render Caching

The WLP portal framework provides an easy solution for improving portlet rendering
performance. When a portlet is not the target of a user interaction or does not handle an
interportlet communication event during the request, the portlet's markup can be served from
cache. By default, a portlet's rendered markup is not cached. To enable portlet caching, set the
following values in the Portlet Properties view (see Figure 12-13).

e Set the Render Cacheable property to true.

e Set the Caches Expires property to the number of seconds to cache the portlet markup.

Note: When a JSF portlet's markup is rendered from cache, none of the JSF life cycle methods
are invoked during the request.

Oracle WebLogic Portal Portlet Development Guide

http://download.oracle.com/docs/cd/E12839_01/web.1111/e13709/toc.htm

Preparing JSF Portlets for Production

Figure 12-13 Portlet Cache Configuration

= General Portlet Properties

Async Content Rendering
Cache Expires (seconds)
Cache Render Dependencies
Client Classifications
Default Minimized
Definition Label

Description

Ewent Handlers

Forkable

Fork Pre-Render

Fork Pre-Render Timeout
Fork Render

Fork Render Timeout
Orignkation

Packed

Render Cacheable

Render Dependencies Path
Tikle

= Java Server Faces {J5F) Content

Ezrac Fuarks

Securing JSF Portlets

This section discusses best practices for securing JSF portlets.

= X BB E -0
Property Yalue %5
= Backable Properties
Partlet Backing File
= Content
Conkent Path ftomahawk/swapImagestart
Error Page Path

nione

25

true

Mo Classifications
false

swapl

Mo event handlers
False

false

False

default

False

true b

Tomahawk Image Swap Por

e Deny Direct Access to the Portlet Views

e Session Timeouts

Deny Direct Access to the Portlet Views

It is common for developers to develop JSF portlets as standalone JSF applications, in isolation
of the portal framework. For this development technique, the Faces servlet must be mapped in
web .xml, as shown in Listing 12-44.

Listing 12-44 Prefix Servilet Mapping in web.xml

<servlet-mapping>
<servlet-name>faces</servlet-name>

Oracle WebLogic Portal Portlet Development Guide 12-717

Working With JSF Portlets

<url-pattern>*_jsf</url-pattern>
</servlet-mapping>
<servlet-mapping>
<servlet-name>faces</servlet-name>
<url-pattern>*_faces</url-pattern>
</servlet-mapping>

Note that these mappings exist in web.xml only to support the direct access use case. Generally,
in production it is not recommended to allow users to target the JSF views directly. It is better to
force users to navigate to those views through the portal user interface. This can be enforced by
removing the prefix and suffix mappings to the Faces servlet in web.xml.

Session Timeouts

It is always a good idea to test the behavior of a web application for the request immediately
following an HttpSession timeout. JSF portlets behave the same as traditional JSF applications —
the former state of the portlet is forgotten and the user is taken back to the initial state of the JSF
portlet.

Tips for Logging, Iterative Development, and Debugging
of JSF Portlets

12-78

This section includes these topics:
e Enabling Logging
e Using Iterative Development for JSF Portlets

e Debugging

Enabling Logging

For WebLogic Portal Web Projects the integration of logging is pre-configured. The WebLogic
Integrated Commons Logging facet is a required facet for any Portal Web Project. Follow these
steps to increase the log sensitivity level to enable Debug messages to be output to the console:

1. Log on to the WebLogic Console, usually at a URL like
http://localhost:7001/console.

2. Navigate to the Servers > AdminServer > Logging tab.

Oracle WebLogic Portal Portlet Development Guide

Tips for Logging, Iterative Development, and Debugging of JSF Portlets

Click the Advanced link to get the full set of controls.
In the Log file section, set the Severity Level to Debug.
In the Standard out section, set the Severity Level to Debug.

Click Save.

N o g ~ W

On the next request to a portal page that contains JSF portlets, you will see debug output on
the server console window.

It may also be beneficial to enable logging for the Sun Reference Implementation of JSF in order
to access the JSF debugging messages. The Sun RI of JSF uses Commons Logging for its logging
functionality. WebLogic Server has general instructions on integrating Commons Logging into
the WebLogic Server. Those instructions can be found at:

http://edocs.beasys.com/wls/docs103/logging/config_logs.html

Using Iterative Development for JSF Portlets

This section discusses techniques for iterative development of JSF portlets.

Testing Outside of the Portlet Container

It is often possible to test a JSF portlet outside of the portlet container. Meaning, it is possible to
target the view file directly as with a standard JSF application. In cases where this is possible, this
is a good way to develop the portlet. It isolates the JSF container from the portlet container, and
so aids in identifying where to look for a solution to a problem. (See also Securing JSF Portlets)

The NamingContainer tag does work correctly outside of the portlet container. But if the portlet
relies on features such as backing files or events to work correctly, this approach may not be
viable. NamingContainer is discussed in Namespacing.

Using Application Republish

WebLogic Server automatically republishes changes to JSP files; however, changes to source
code or deployment descriptors however require an explicit republish in Eclipse (if auto
publishing is disabled). This can be done from the Server pane in Eclipse, among other ways. This
process is not specific to Portal Web Projects.

HttpSession Caching

JSF caches the user's views in the HttpSession. Therefore, while WebLogic Server detects that a
JSP has been updated, any existing session will contain an out of date copy of the view. It is

Oracle WebLogic Portal Portlet Development Guide 12-19

http://edocs.beasys.com/wls/docs103/logging/config_logs.html

Working With JSF Portlets

12-80

therefore necessary to begin a new HttpSession after modifying a JSF JSP. This issue is not
specific to Portal Web Projects.

Handling Out0fMemory Errors

Unfortunately, certain implementations of JSF have memory leaks that occur during a web
application redeploy. During long development sessions across many redeployments, the server
may fail with an OutOfMemoryException. Unfortunately, there is no solution for this issue — a
server restart is required. This issue is not specific to Portal Web Projects.

Debugging

This section discusses how to use the Eclipse debugger to troubleshoot JSF portlets. See the
Eclipse documentation for information on enabling the Eclipse debugger. This section discusses
topics specific to JSF portlets.

Usually the best place to start when debugging a portlet is to set breakpoints in all of the code that
you have written. This includes managed bean methods and backing file methods.

But sometimes you need to look into the portal framework. The JSF bridge invokes the JSF
implementation, which in turn processes and renders the portlet. For this reason, it’s typically best
to set break points in the JSF implementation. This is fortunate, as source code is available for the
JSF implementations, whereas with the WLP framework source code is not available.

Step 1: Attaching Source

You can investigate resources on the web that explain how to attach source code to the JAR files
in your project (for example, you can search for “eclipse attach source™). The main issue for JSF
development is locating the proper source files for the JSF implementation used in your web
project.

You can download the Sun reference implementation (R1) code from the Mojarra project site at
https://javaserverfaces.dev.java.net.

Step 2: Suggested JSF Framework Break Points

The following list provides some JSF implementation break points to get started (assumes Sun
RI):

e com.sun.faces. lifecycle.Lifecyclelmpl.execute() — The front door to all JSF
processing, a good place to start.

Oracle WebLogic Portal Portlet Development Guide

https://javaserverfaces.dev.java.net

Consolidated List of Best Practices

e com.sun.faces. lifecycle.RestoreViewPhase.execute() — Restores the correct
view; useful if the portlet is rendering the wrong view.

e com.sun.faces. lifecycle. InvokeApplicationPhase.execute() — Invokes an
action; useful when diagnosing issues invoking action methods.

Consolidated List of Best Practices

This section provides a consolidated list of best practices. It contains the following topics:
e Configuration
e Namespacing
e Logging, Iterative Development, Debugging
e Custom JavaScript
e Preparing JSF Portlets for Production
e Interportlet Communication
e Scopes
e State Sharing Patterns
e Rendering Lifecycles
e Ajax Enablement

e Login Portlet

Configuration

e Use a Sun RI JSF implementation.
e Always use server STATE_SAVING_METHOD.

e Do not use a JSF 1.2 implementation if using the Apache Beehive Page Flow integration.

Namespacing

e Namespace or fully qualify managed bean names in faces-config.xml.

e Always add the NamingContainer component to a view.

Oracle WebLogic Portal Portlet Development Guide 12-81

Working With JSF Portlets

Logging, Iterative Development, Debugging
e Configure WebL ogic Server to output JSF debug logging messages during development.
e Test JSF applications standalone before testing as portlets.

e Set breakpoints in the JSF implementation when debugging JSF portlets.

Custom JavaScript

e Make use of the WLP Render Dependencies feature when implementing custom
JavaScript.

Preparing JSF Portlets for Production

e Configure the URL templates to properly account for the production network
configuration.

e Define an error page for each JSF portlet just in case a problem occurs in production.
e Make all managed beans Serializable to ensure failover works correctly.
e Configure portlet render caching to improve performance.

e Remove mappings to the Faces servlet so that users cannot target a JSF application outside
of the portal.

e Test the behavior of the application after the session times out.
e Make sure the supported locales are the same in the JSF and WLP configurations.

e Modularize the localization resource bundles to ensure portlets can be easily reused in
other projects.

Interportlet Communication

e Use the WLP event facility to accomplish interportlet communication.

e Use the WLP notification facility if events need to survive across sessions.

12-82 Oracle WebLogic Portal Portlet Development Guide

Consolidated List of Best Practices

Scopes

e The standard JSF scopes are interpreted differently in a portal environment, be sure to
understand the differences.

State Sharing Patterns

e Learn the set of patterns for sharing state between a JSF portlet and other components in
the portal.

Rendering Lifecycles

e Understand how the JSF and WLP lifecycles work together.

e Be sure to heed the limitation of redirect — they must be triggered in a portlet backing file,
not a JSF managed bean.

e Managed beans must be careful accessing the PortletBackingContext and
PortletPresentationContext objects. They fall in and out of scope during the JSF lifecycles.

Ajax Enablement

e Rely on WLP's Asynchronous Desktop feature for partial page rendering use cases. It
works automatically.

Login Portlet

e Implementing a login portlet is an expert task. The example provided in Login Portlet
Example is one way in which this could be implemented.

Oracle WebLogic Portal Portlet Development Guide 12-83

Working With JSF Portlets

12-84 Oracle WebLogic Portal Portlet Development Guide

Part lll Staging

Part 111 includes the following chapters:
e Chapter 13, “Assembling Portlets into Desktops”

e Chapter 14, “Deploying Portlets”

Oracle recommends that you deploy your portal, including portlets, to a staging environment,
where it can be assembled and tested before going live. In the staging environment, you use the
WebLogic Portal Administration Console to assemble and configure desktops. You also test your
portal in a staging environment before propagating it to a live production system.

For a view of how the tasks in this section relate to the overall portal life cycle, refer to the

WebLogic Portal Overview.

Production

Staging

Development

Oracle WebLogic Portal Portlet Development Guide

../overview/index.html

13-2 Oracle WebLogic Portal Portlet Development Guide

cHAPTER@

Assembling Portlets into Desktops

You perform the tasks described in this chapter to prepare the individual portlets that are part of
your portal application for public consumption. After you add portlets to desktops, you can
configure and test the application as a whole, and then deploy it to the production environment
when it is ready for public access.

Before you perform the tasks described in this chapter, use the Portal Development Guide to
create the framework into which you will add the portlets— this includes the portal and its menus,
layouts, the Look & Feel components for the overall portal, and the framework of the actual
desktop. Also, you must have already created the set of portlets in the portlet library, from which
you will choose the portlets to add to the desktop.

The primary tools used in this chapter are the WebLogic Portal Administration Console, the
WebLogic Portal Propagation Utility (to move database and LDAP data between staging,
development, and production), WebL ogic Server application deployment tools, and any external
content or security providers that you are using.

This chapter contains the following sections:
e Portlet Library

e Managing Portlets Using the Administration Console

Portlet Library

The WebLogic Portal Administration Console organizes portal resources in a tree that consists of
Library resources and desktop resources. Understanding the relationship between Library and
desktop resources helps you to understand the effects and consequences of propagation.

Oracle WebLogic Portal Portlet Development Guide 13-1

../portals/index.html

Assembling Portlets into Desktops

The following text describes the relationships between the following instances of portal assets:

e Primary instance — Created in Workshop for WebL ogic and stored in a .portal or
.portlet file.

e Library instance — Created or updated in the Administration Portal, and displayed in the
Portal Resources tree under the Library node.

e Desktop instance — Created or updated in the Administration Portal, and displayed in the
Portal Resources tree under the Portals node.

e Visitor instance — Created or updated in the Visitor Tools.

For more details on portlets in libraries and in desktops, refer to the Production Operations
Guide.

Managing Portlets Using the Administration Console

This section contains instructions for performing portlet-related tasks using the WebLogic Portal
Administration Console.

This section contains the following topics:
e Copying a Portlet in the Library
e Modifying Library Portlet Properties
e Modifying Desktop Portlet Properties
e Deleting a Portlet
e Managing Portlets on Pages
e Overview of Portlet Categories
e Overview of Portlet Preferences
e Creating a Portlet Preference
e Editing a Portlet Preference
e Overview of Delegated Administration

e Overview of Visitor Entitlements

13-2 Oracle WebLogic Portal Portlet Development Guide

../prodOps/index.html
../prodOps/index.html

Managing Portlets Using the Administration Console

Copying a Portlet in the Library

You can use this feature of the WebLogic Portal Administration Console to duplicate an existing
portlet and use it as a template for a “new” portlet.

Perform these steps:

1. Expand the Library node in the Portal Resources tree and navigate to the portlet that you want
to copy.

2. Click Copy Portlet. The Copy Portlet dialog displays.
3. Enter a title and description for the copied portlet.

4. Click OK. The portlet is added at the bottom of the portlet list.

You can now customize the copied portlet by modifying its properties and preferences.

Modifying Library Portlet Properties

Portlet properties include all of the features and elements that make up the portlet. As a portal
administrator, you can modify some of these properties from the Details tab. You can also edit
the title, description, and locale information from the Title & Description tab, as described below.

To modify the properties of a portlet that resides in the library, perform these steps:

1. Expand the Library node in the Portal Resources tree and navigate to the portlet that you want
to modify.

2. From the Details tab, select the type of property that you want to change. Use the table below
for guidance.

Table 13-1 Modifying Library Portlet Properties

Title and Description

Change title and 1. Click Title & Description.
description of the portlet 5 cjick the locale (for example, en) in the Locale cell; the Add a
in the current locale Localized Title & Description dialog displays.
3. Enter a new Title and/or Description.
Click Update.

Oracle WebLogic Portal Portlet Development Guide 13-3

Assembling Portlets into Desktops

Table 13-1 Modifying Library Portlet Properties (Continued)

Add a localized title for 1. Click Title & Description.

the portlet 2. Click Add Localized Title; the Add a Localized Title &
Description dialog appears.

3. Enter a Language and Country identifier, Variant if applicable,
Title, and a Description for the localized title.

4. Click Create.

Portlet Preferences Refer to “Creating a Portlet Preference” on page 13-9 and “Editing a
Portlet Preference” on page 13-10.

Portlet Theme 1. Click Appearance; the Edit Appearance dialog displays.
From the drop-down menu, select a Theme.
Click Update.
Render caching and 1. Click Advanced Properties.
timeout 2. In the Render Caching Enabled drop-down menu, select True or

False.

3. If you selected True, enter a cache expiration value in the Cache
Expiration field.

4. Click Update.

Modifying Desktop Portlet Properties

Portlet properties include all of the features and elements that make up the portlet. As a portal
administrator, you can modify some of these properties from the Details tab. You can also edit
the title, description, and locale information from the Title & Description tab, as described below.

To modify the properties of a portlet that resides on a desktop, perform these steps:

1. Expand the Portals node in the Portal Resources tree and navigate to the portlet that you want
to modify.

2. From the Details tab, select the type of property that you want to change. Use the table below
as a guide.

13-4 Oracle WebLogic Portal Portlet Development Guide

Managing Portlets Using the Administration Console

Table 13-2 Modifying Desktop Portlet Properties

Title and Description ~ YOu must edit these values within the Library resource tree.
Expand the Library node, select the portlet that you want to edit,
and follow the instructions in “Modifying Library Portlet
Properties” on page 13-3.

Portlet Preferences Refer to “Creating a Portlet Preference” on page 13-9 and
“Editing a Portlet Preference” on page 13-10.

Portlet Theme 1. Click Appearance; the Edit Appearance dialog displays.
2. From the drop-down menu, select a Theme.

3. Click Update.

Deleting a Portlet

You can delete portlets from the Administration Console only if they were created there; for
example, if you used the Copy Portlet feature to duplicate the portlet. Portlets created in
Workshop for WebLogic cannot be deleted using the Administration Console.

Perform these steps:

1. Expand the Library node in the Portal Resources tree and navigate to the portlet that you want
to delete.

2. Click Delete Portlet.

Managing Portlets on Pages

The contents of a page include portlets and books. You can view the portlets that are already on
your page, and add and remove portlets to construct your page.

Adding Portlets to a Page

Library: To add a content to a page, perform these steps:

1. In the Portal Resource tree, expand the Library node and navigate to a page. The Details tab
displays.

2. Click Page Contents. The Edit Contents tab displays.
3. Click Add Contents. The Add Books and Portlets to Placeholder dialog displays.

Oracle WebLogic Portal Portlet Development Guide 13-5

Assembling Portlets into Desktops

13-6

4. Display the pages that you want to choose from, using the Search area if needed.
5. Choose the portlets that you want to add by selecting the desired check boxes, and click Add.
6. When finished, click Save.

Desktop: To add a portlets to a page, perform these steps:

1. Inthe Portal Resource tree, expand the Portals node and navigate to a page. The Details tab
displays.

2. Click Page Contents. The Edit Contents tab displays.
3. Click Add Contents; search for existing portlets if needed, then select the portlets that you
want, and click Add. When finished, click Save.

Positioning Elements on a Page

The page layout is the grid structure of a page that holds placeholders for portlets and books on
the page. You can select a layout for your portlets/books, and drag and drop them between the
placeholders to customize the layout of each page.

Perform these steps:

1. Inthe Portal Resource tree, expand either the Library node or the Portals node as applicable,
and select a page. The Details tab displays.

2. Click Page Contents. The Edit Contents tab displays.
3. If you want to change to a different layout, select a layout in the Layout drop-down menu.

4. Select the method that you want to use to position the elements on the page by selecting an
option in the Position Elements area. The default is Drag & Drop.

5. Move portlets or books between placeholder columns.

6. If you want to prevent users from moving or deleting elements from a placeholder, select the
Lock Placeholder check box.

7. When finished, click Save Changes.

Overview of Portlet Categories

Portlet categories provide for the classification of portlets, which is useful when organizing a
large collection of portlets into meaningful groupings. The portlet categories are similar to other
hierarchical structures in that parent “folders” can contain child folders and/or portlets. You must

Oracle WebLogic Portal Portlet Development Guide

Managing Portlets Using the Administration Console

first create a portlet category, and then you can manage portlets by adding them to a category or
moving them between categories.

Creating a Portlet Category

To create a portlet category:

1. Inthe Portal Resources tree, expand the Library folder and select Portlet Categories. The
Browse Category tab displays.

2. Click Create New Category.
3. Type a title and description for the new category in the pop-up window.

4. Click Create.

Modifying Portlet Category Properties

Portlet category properties include all of the features and elements that make up the category. As
a portal administrator, you can modify some of these properties from the Summary tab. You can
also edit the title, description, and locale information from the Titles & Descriptions tab, as
described below.

Perform these steps:
1. In the Portal Resources tree, expand the Library node and navigate to a portlet category.

2. From the Summary tab, select the type of property that you want to change. Use the table
below as a guide.

Table 13-3 Modifying Portlet Category Properties

Title and Description

Change title and 1. Click Title & Description.

description of the 2. Click the locale (for example, en) in the Locale cell; the Add a
;:ateglz]ory in the current Localized Title & Description dialog displays.

ocale

3. Enter a new Title and/or Description.
Click Update.

Oracle WebLogic Portal Portlet Development Guide 13-1

Assembling Portlets into Desktops

Table 13-3 Modifying Portlet Category Properties (Continued)

Add a localized title for 1. Click Title & Description.

the category 2. Click Add Localized Title: the Add a Localized Title &
Description dialog appears.

3. Enter a Language and Country identifier, Variant if applicable,
Title, and a Description for the localized title.

4. Click Create.

Portlets in Category Refer to “Adding Portlets to a Portlet Category” on page 13-8.

Categories in Category 1. Click Categories In Category; the Browse Category tab displays.

Click Create New Category; the Create New Category dialog
displays.

3. Enter a Title and Description for the new category.

Click Create. The category is created and added to the currently
selected category.

Adding Portlets to a Portlet Category

To add portlets into a category:

1. Expand the Library node in the Portal Resources tree and navigate to a portlet category. The
Summary tab displays.

2. Click Portlets In Category.
3. Click Add Portlets.

4. Inthe Available Portlets area, select the portlets that you want to add, and click Add to include
them in the Selected Portlets area.

5. Click Save.

Overview of Portlet Preferences

A portlet preference is a property in a portlet that can be customized by either an administrator or
a user. Your portlet might already have preferences, but if you have the appropriate Delegated
Administration rights you can create additional portlet preferences.

13-8 Oracle WebLogic Portal Portlet Development Guide

Managing Portlets Using the Administration Console

Creating a Portlet Preference

To create a portlet preference, perform these steps:

1. Expand the Portals node or the Library node in the Portal Resources tree, as appropriate, and
navigate to the portlet for which you want to create a preference. The Details tab displays.

2. Click Add Portlet Preference.

3. Fillin the information in the fields. Use the table below as a guide.

Table 13-4 Creating a Portlet Preference

For this field: Enter this information:

Name The name you want to give this preference.
Description A description of this preference.

Value(s) A value for a preference.

Is Modifiable? (checkbox) Select this check box if you want to allow end users to modify this

preference.
Is Multi-Valued? Select this check box if you want to enter multiple values for the
(checkbox) preference. If you select this box, an additional data entry field

displays for you to enter additional values. Click Add Another Value
after entering each value, until you are finished.

4. Click Save.

For library instances of portlets, when you add a preference it automatically proliferates to
library page instances and desktop page instances if the instances have not been decoupled.

5. If you want to force proliferation of this preference to every instance of this portlet, click
Propagate to Instances; WebLogic Portal overwrites all desktop instance's preferences with
the library preferences are. When complete, a message appears at the top of the
Administration Console.

Here are some tips related to portlet preferences that you might find useful:

e When desktop instances of a portlet have no preferences, they automatically inherit the
preferences from the library instance of the portlet.

Oracle WebLogic Portal Portlet Development Guide 13-9

Assembling Portlets into Desktops

13-10

e When desktop instances of a portlet have their own preferences set, they will not

automatically inherit preferences from the library instance.

If a desktop instance of a portlet has its own preferences set and these preferences are
removed, it will automatically inherit all preferences from the library instance.

If a desktop instance of a portlet has inherited preferences from the library instance and the
desktop instance of this preference has been modified, it will no longer automatically
inherit new preferences from the library or updates made to the library portlet's instance of
this preference.

If a desktop instance of a portlet has inherited the preferences from the library instance and
no desktop instance specific preferences have been set, and the inherited preferences have
not been modified in the desktop instance, the desktop instance will inherit all updates to
the library preferences.

Editing a Portlet Preference

If you have the appropriate Delegated Administration rights, you can edit a portlet's preferences
to change the way a portlet behaves.

To edit a portlet preference:

1.

Expand the Portals node or the Library node in the Portal Resources tree, as appropriate, and
navigate to the portlet for which you want to edit a preference. The Details tab displays.

Click Portlet Preferences.
Select the portlet preference by clicking its name in the Name column.

Edit the information in the fields. Use the table below as a guide.

Table 13-5 Editing a Portlet Preference

For this field: Enter this information:

Name The name you want to give this preference.
Description A description of this preference.

Value(s) A value for a preference.

Oracle WebLogic Portal Portlet Development Guide

Managing Portlets Using the Administration Console

Table 13-5 Editing a Portlet Preference (Continued)

For this field: Enter this information:

Is Modifiable? (checkbox) Select this check box if you want to allow end users to modify
this preference.

Is Multi-Valued? Select this check box if you want to enter multiple values for the

(checkbox) preference. If you select this box, an additional data entry field
displays for you to enter additional values. Click Add Another
Value after entering each value, until you are finished.

5. Click Save.

For library instances of portlets, when you edit a preference it automatically proliferates to
library page instances and desktop page instances if the instances have not been decoupled.

6. If you want to force proliferation of this change to every instance of this portlet, click
Propagate to Instances. When complete, a message appears at the top of the Administration
Console.

Overview of Delegated Administration

In your organization, you typically want individuals to have different access privileges to various
administration tasks and resources. For example, a system administrator might have access to
every feature in the WebLogic Portal Administration Console. The system administrator might
then create a portal administrator role that can manage instances of portal resources in specific
desktop views of your portal, and a library administrator role that can manage your portal
resource library. Other delegated administration roles only have access to resources if that access
has been explicitly granted.

For more information about using delegated administration as a part of your security strategy, see
the Security Guide on e-docs.

Overview of Visitor Entitlements

Visitor entitlements allow you to define who can access the resources in a portal application and
what they can do with those resources. This access is based on the role assigned to a portal visitor,
allowing for flexible management of the resources.

For more information about using visitor entitlements as a part of your security strategy, see the
Security Guide on e-docs.

Oracle WebLogic Portal Portlet Development Guide 13-11

../security/index.html
../security/index.html

Assembling Portlets into Desktops

13-12 Oracle WebLogic Portal Portlet Development Guide

Deploying Portlets

Deploying Portlets

Generally speaking, a WebLogic Portal application consists of an EAR file, an LDAP repository,
and a database. The EAR file contains application code, such as JSPs and Java classes, and portal
framework files that define portals, portlets, and datasync data. The embedded LDAP contains
security-related data, such as entitlements, roles, users, and groups. The database contains
representations of portal framework and datasync elements used by the portal runtime in
streaming mode.

Portlet data can fall into the following two categories:

e Portal Framework Data — Refers to desktops, books, pages, and other portal framework
elements that are created with the WebL ogic Portal Administration Console.

e EAR Data — Refers to the final product of Workshop for WebLogic development—a J2EE
EAR file. The EAR must be deployed to a destination server using the deployment feature
of the WebLogic Server Administration Console.

When you deploy or redeploy a portal application EAR file to a server in production mode,
.portlet files are automatically loaded into the database.

The primary tools you use to perform portlet deployment are the WebLogic Portal propagation
tools and the deployment feature of the WebLogic Server Administration Console. For detailed
instructions on deploying a portal and its portlets, refer to the Productions Operations Guide.

Oracle WebLogic Portal Portlet Development Guide 141

../prodOps/index.html

Deploying Portlets

14-2 Oracle WebLogic Portal Portlet Development Guide

Part [V Production

Part IV includes the following chapter:

e Chapter 15, “Managing Portlets in Production”

A production portal is live and available to end users. A portal in production can be modified by
administrators using the WebLogic Portal Administration Console and by users using Visitor
Tools. For instance, an administrator might add additional portlets to a portal or reorganize the
contents of a portal.

For a view of how the tasks in this section relate to the overall portal life cycle, refer to the

WebLogic Portal Overview.

Development

Production

Oracle WebLogic Portal Portlet Development Guide

../overview/index.html

15-2 Oracle WebLogic Portal Portlet Development Guide

cHAPTER@

Managing Portlets in Production

During the life cycle of a WebLogic Portal application it moves back and forth between
development, staging, and production environments. This chapter contains information about
managing portlets that are on a production system.

This chapter contains the following sections:
e Pushing Changes from the Library into Production

e Transferring Changes from Production Back to Development

Pushing Changes from the Library into Production

Proliferation is the process by which changes made to the Library instance of a portal asset are
pushed into user-customized instances of that asset. For example, if a portal administrator deletes
a portlet from a desktop, that change must be reflected into user-customized instances of that
desktop.

The WebLogic Portal Administration Console includes a configuration setting for Proliferation
under Configuration Settings > Service Administration > Portal Resources. The proliferation
settings include synch, asynch, and off.

For more information on proliferation, refer to the Production Operations Guide.

Oracle WebLogic Portal Portlet Development Guide 15-1

../prodOps/index.html

Managing Portlets in Production

Transferring Changes from Production Back to
Development

15-2

WebLogic Portal utilities such as the propagation tools and the Export/Import Utility allow you
to reliably move and merge changes between environments. The Export/Import Utility allows a
full round-trip development life cycle, where you can easily move portals from a production
environment back to your Workshop for WebLogic development environment.

For instructions on using the propagation tools and Export/Import Utility, refer to the Production
Operations Guide.

Oracle WebLogic Portal Portlet Development Guide

../prodOps/index.html
../prodOps/index.html

Part V. Appendixes

Part V includes the following appendixes:
e Appendix A, “Portlet Database Data”
e Appendix B, “JSF Portlet Development”

Oracle WebLogic Portal Portlet Development Guide

16-2 Oracle WebLogic Portal Portlet Development Guide

Portlet Database Data

This appendix describes how portlet data is managed by databases, and contains the following
sections:

e Database Structure for Portlet Data

e Portlet Resources in the Database

Database Structure for Portlet Data

When a portlet’s data is loaded into the database, the portlet XML is parsed and a humber of
tables are populated with information about the portlet, including PF_PORTLET_DEFINITION,
PF_MARKUP_DEFINITION, PF_PORTLET_INSTANCE, PF_PORTLET_PREFERENCE,
L1ON_RESOURCE, and L1ON_INTERSECTION.

PF_PORTLET_DEFINITION is the master record for the portlet and contains columns for
properties that are defined for the portlet, such as the definition label, the forkable setting, edit
URI, help URI, and so on. The definition label and web application name are the unique
identifying records for the portlet. Portlet definitions refer to the rest of the actual XML for the
portlet that is stored in PF_MARKUP_DEF.

In the Development phase, you use Workshop for WebLogic to create portlets and place them
onto a portal. In the Staging phase, you use the Administration Console to add portlets to portal
desktops. Each time you add a portlet to a desktop, you create an instance of that portlet. Portlet
instances allow for multiple variations of the same portlet definition.

The following four types of portlet instances are recorded in the database for storing portlet
properties:

Oracle WebLogic Portal Portlet Development Guide A-1

Portlet Database Data

e Primary — Properties defined in development and stored in the .portlet file.

e Library — Properties defined in the Portal Library, which may be changed using the
WebLogic Administration Portal.

e Admin — A customized instance of the portlet in a desktop. This allows you to customize a
portlet in a particular way for a desktop without affecting other instances of the portlet in
other desktops.

e User — User-customized instances of the portlet defined in the Visitor Tools.

PF_PORTET_INSTANCE contains properties for the portlet for attributes such as
DEFAULT_MINIMIZED, TITLE_BAR_ORIENTATION, and PORTLET_LABEL.

If a portlet has portlet preferences defined, those are stored inthe PF_PORTLET_PREFERENCE
table.

Finally, portlet titles can be internationalized. Those names are stored in the L1ION_ RESOURCE
table which is linked using LION_INTERSECTION to PF_PORTLET_DEFINITION.

Removing Portlets from Production

If a portlet is removed from a newly deployed portal application and it has already been defined
in the production database, it is marked as IS_ PORTLET_FILE_DELETED in the
PF_PORTLET_DEFINITION table. It displays as grayed out in the WebLogic Administration
Portal, and user requests for the portlet, if it is still contained in a desktop instance, return a
message indicating that the portlet is unavailable.

Portlet Resources in the Datahase

A-2

During the development phase, the .portlet files for portal web projects are stored as XML in
the portal web application. As a developer creates new .portlet files, a file polling thread
monitors changes and loads the development database with the .portlet information. When a
portlet’s data is loaded into the database, the portlet XML is parsed and a number of tables are
populated with information about the portlet. Changes that you make using the WebLogic Portal
Administration Console are directly reflected in the database.

This section contains the following sections:
e Types of Database Tables

e Management of Portlet Data

Oracle WebLogic Portal Portlet Development Guide

Portlet Resources in the Database

How the Database Shows Removed Portlets

Types of Database Tables

Separate database tables store information about portlet resources, including the following:

Definitions — Portlet definition properties including creation date, content URI, whether
the portlet is forkable or cacheable, whether it has a backing file, and so on.

Instances (including a subset of tables for WSRP) — Instance properties indicate whether
the portlet is minimized by default, title bar orientation (top, left, right, bottom), the parent
portlet instance if applicable, and so on.WSRP portlet properties include proxy portlet
instance values.

Categories — Portlet categories provide for the classification of portlets, which is useful
when organizing a large collection of portlets into meaningful groupings. The database
stores values for the category ID and creation/modification dates.

Category definitions — The database stores values for the category ID and
creation/modification dates, parent category, and so on.

Preferences — Preference properties, such as whether or not the preference can be
multi-valued or whether it is modifiable, are stored in this table.

Preference values — The database stores the actual value of portlet preferences.

User properties — The database table maintains values of portlet user properties for WSRP
user profile propagation.

Tip: The tool you use to manipulate these resources varies according to the resource, and the

phase of development you are in; for example, you can change portlet preferences using
either Workshop for WebL ogic or the WebLogic Portal Administration Console, but you
must use the Administration Console to create portlet categories.

Management of Portlet Data

When a portlet is loaded into the database, the portlet XML is parsed and a number of tables are
populated with information about the portlet, including PF_PORTLET_DEFINITION,
PF_MARKUP_DEFINITION, PF_PORTLET_INSTANCE, PF_PORTLET_PREFERENCE,
L1ON_RESOURCE, and L10ON_INTERSECTION.

Oracle WebLogic Portal Portlet Development Guide A-3

Portlet Database Data

A-4

PF_PORTLET_DEFINITION is the master record for the portlet and contains rows for properties
that are defined for the portlet, such as the definition label, the forkable setting, edit URI, help
URI, and so on. The definition label and web application name are the unique identifying records
for the portlet. Portlet definitions refer to the rest of the actual XML for the portlet that is stored
in PF_MARKUP_DEF.

PF_MARKUP_DEF contains stored tokenized XML for the .portlet file. This means that the
.portlet XML is parsed into the database and properties are replaced with tokens. For example,
the following code fragment shows a tokenized portlet:

<netuix:portlet $(definitionLabel) $(title) $(renderCacheable)
$(cacheExpires)>

These tokens are replaced by values from the master definition table in
PF_PORTLET_DEFINITION, or by a customized instance of the portlet stored in
PF_PORTLET_INSTANCE.

The following four types of portlet instances are recorded in the database for storing portlet
properties:

e Primary — Properties defined in development and stored in the .portlet file.

e Library — Properties defined in the Portal Library, which you can change using the
WebLogic Portal Administration Console.

e Admin — A customized instance of the portlet in a desktop. This allows you to customize a
portlet in a particular way for a desktop without affecting other instances of the portlet in
other desktops.

e User — User-customized instances of the portlet defined in the Visitor Tools.

PF_PORTET_INSTANCE contains properties for the portlet for attributes such as
DEFAULT_MINIMIZED, TITLE_BAR_ORIENTATION, and PORTLET_LABEL.

If a portlet has portlet preferences defined, those are stored in the PF_PORTLET_PREFERENCE
table.

Finally, portlet titles can be internationalized. Those names are stored in the LLON_ RESOURCE
table which is linked using LLON_INTERSECTION and PF_PORTLET_DEFINITION.

How the Database Shows Removed Portlets

If a portlet is removed from a deployed portal project, and it has already been defined in the
production database, the portlet is marked as IS PORTLET _FILE_DELETED in the

Oracle WebLogic Portal Portlet Development Guide

Portlet Resources in the Database

PF_PORTLET_DEFINITION table. The portlet displays as grayed out in the Administration
Console, and user requests for the portlet (if it is still contained in a desktop instance) return a
message indicating that the portlet is unavailable.

For detailed information about the content of WebL ogic Portal database tables, refer to the
Database Administration Guide.

Oracle WebLogic Portal Portlet Development Guide A-5

../db/index.html

Portlet Database Data

A-6 Oracle WebLogic Portal Portlet Development Guide

JSF Portlet Development

This appendix provides information on specific use cases, development tips, and code examples.
It contains the following sections:

e Code Examples

e Using Facelets

e Using Tomahawk

e Integrating Apache Beehive Pageflow Controller

e Building Unsupported JSF Implementations

Note: For information about procedures and best practices for developing and configuring JSF
portlets, see Chapter 12, “Working With JSF Portlets.”

Code Examples

This section includes the following topics:
e The JSFPortletHelper Class

e Login Portlet Example

The JSFPortletHelper Class

This section provides sample code for a helper class that could be used in JSF portlets. It provides
helpful methods for developing managed beans that need to have access to WLP context.

Oracle WebLogic Portal Portlet Development Guide B-1

JSF Portlet Development

B-2

Listing B-1 A Comprehensive Helper Class for JSF Portlets

package oracle.samples.wlp.jsT;

import java.io.Serializable;
import java.security.Principal;

import java.util.ResourceBundle;

import javax.faces.context.FacesContext;
import javax.portlet.PortletPreferences;
import javax.servlet_http.HttpServletRequest;
import javax.servlet_http.HttpServletResponse;

import javax.servlet.http.HttpSession;

import weblogic.servlet.security.ServletAuthentication;

import
com.bea.netuix.servlets.controls.portlet._PortletPresentationContext;

import
com._bea.netuix.servlets.controls._portlet.backing.PortletBackingContext;

import com.bea.netuix.servlets._manager.AppContext;

[
* A helper class with many useful methods for JSF portlets. These

* methods are expected to be called from JSF managed beans primarily,

* but some may also be useful in the portlet backing files of JSF portlets.
*/

public class JSFPortletHelper {

Oracle WebLogic Portal Portlet Development Guide

Code Examples

// STANDARD CONTEXT

/**
* Gets the HttpServletRequest from the FacesContext.

* Must only be called from a JSF managed bean.

*

* @return a HttpServletRequest implementation, which is actually a

FacesRequest object
*/
static public HttpServletRequest getRequest() {

FacesContext fc = FacesContext.getCurrentinstance();

return
(HttpServletRequest)fc.getExternalContext() .getRequest();
}
/**

* Gets the HttpSession from the FacesContext.

* Must only be called from a JSF managed bean.

*

* @return a HttpSession implementation

*/

static public HttpSession getSession() {
HttpServiletRequest request = getRequest();
return request.getSession();

}

/**

* Gets the HttpServletResponse from the FacesContext.

* Must only be called from a JSF managed bean.

Oracle WebLogic Portal Portlet Development Guide

B-3

JSF Portlet Development

*

* @return a HttpServletResponse implementation, which is actually a
FacesResponse object

>/
static public HttpServletResponse getResponse() {

FacesContext fc = FacesContext.getCurrentinstance();

return
(HttpServletResponse)fc.getExternalContext() .getResponse();
}
/**

* Gets the localized resource bundle using the passed bundle name
* Must only be called from a JSF managed bean.

*

* @param bundleName the String name of the bundle

* @return the ResourceBundle containing the localized messages for
the view

=/

static public ResourceBundle getBundle(String bundleName) {
FacesContext context = FacesContext.getCurrentinstance();
ResourceBundle bundle = ResourceBundle.getBundle(bundleName,

context.getViewRoot() .getLocale());

return bundle;

}

[

* Gets the localized message using the passed bundle name and message
key.

* Must only be called from a JSF managed bean.

*

B-4 Oracle WebLogic Portal Portlet Development Guide

Code Examples

* @param bundleName the String name of the bundle

* @param messageKey the String key to be found in the bundle
properties file

* @return the String containing the localized message

*/

static public String getBundleMessage(String bundleName, String

messageKey) {

}

String message = ""';
ResourceBundle bundle = getBundle(bundleName);
if (bundle !'= null) {

message = bundle.getString(messageKey);

}

return message;

// PORTAL ENVIRONMENT

/**

*

*

*/

Gets the PortletBackingContext object. This method will return null
if called during the RENDER_RESPONSE JSF lifecycle.

Must only be called from a JSF managed bean.

@return the active PortletBackingContext, or null

static public PortletBackingContext getPortletBackingContext() {

FacesContext fc = FacesContext.getCurrentinstance();

HttpServletRequest request =

(HttpServletRequest)fc.getExternalContext() -.getRequest();

return

PortletBackingContext.getPortletBackingContext(request);

Oracle WebLogic Portal Portlet Development Guide B-5

JSF Portlet Development

}
/**

* Gets the PortletPresentationContext object. This method will return
null

* §f NOT called during the RENDER_RESPONSE JSF lifecycle.

* Must only be called from a JSF managed bean.

* @return the active PortletPresentationContext, or null
*/

static public PortletPresentationContext
getPortletPresentationContext() {

FacesContext fc = FacesContext.getCurrentinstance();

HttpServletRequest request =
(HttpServletRequest) fc.getExternalContext() .getRequest();

return
PortletPresentationContext.getPortletPresentationContext(request);
}
/**

* Returns true if the user can make customizations

* (preferences, add/move/remove portlets, add pages) to the portal.
* This is based on factors such as: is the user authenticated,

* is it a streaming portal (not a .portal file),

* and customization is enabled in netuix-config.xml.

* Can be called from any web application class.

*

* @return a boolean, true if it is possible for the user to make
customizations

*/

static public boolean isCustomizable() {

B-6 Oracle WebLogic Portal Portlet Development Guide

Code Examples

return AppContext. isCustomizationAl lowed(getRequest());
}
// AUTHENTICATION
/**
* Is the current user authenticated?
* Must only be called from a JSF managed bean.
*
* @return true if the user is authenticated, false if not
*/
static public boolean isAuthenticated() {

Principal principal =
FacesContext.getCurrentinstance() .getExternalContext() .getUserPrincipal(Q;

return principal != null;
}
/**
* Get the current user®s username from the container.
* Must only be called from a JSF managed bean.
*
* @return the user name, null if the user is not authenticated
*/
static public String getUsername() {
String username = null;

Principal principal =
FacesContext.getCurrentinstance() .getExternalContext() .getUserPrincipal();

if (principal = null) {
username = principal.getName();

}

return username;

Oracle WebLogic Portal Portlet Development Guide B-7

JSF Portlet Development

}
/**

* Get the current user®s username for display. If the user is not
authenticated, it

* will return the name passed as the anonymousUsername parameter. DO
NOT use this method

* for anything other than display (e.g. access control, auditing,
business logic),

* as the passed anonymous name may conflict with an actual username
in the system.

* Must only be called from a JSF managed bean.

*

* @param anonymousUsername a String localized name to use for an
anonymous user, like "Guest"

* @return the user name
*/

static public String getUsernameForDisplay(String anonymousUsername)

String username = anonymousUsername;

Principal principal =
FacesContext.getCurrentinstance() .getExternalContext() .getUserPrincipal();

if (principal !'= null) {
username = principal.getName();

}

return username;

}
// USER AUTHENTICATION ROUTINES

/**

* Authenticate the user with WebLogic Server

B-8 Oracle WebLogic Portal Portlet Development Guide

Code Examples

* Can be called from any web application class.

* @param username the String username

* @param password the String password as provided by the user
* @return true if the login was successful, false if not

*/

static public boolean authenticate(String username, String password)

HttpServletRequest request = getRequest();
HttpServletResponse response = getResponse();

int result = ServletAuthentication.weak(username, password,
request, response);

return result 1=
ServletAuthentication.FAILED_AUTHENTICATION;

T

// NAMESPACES AND LABELS

/**

* Gets the current portlet™s instance label.

* Must only be called from a JSF managed bean.

*

* @return the String instance label

*/

static public String getlnstancelLabel() {
return getlnstancelLabel (getRequest());

T

/**

* Gets the current portlet"s instance label.

* Can be called from any web application class.

Oracle WebLogic Portal Portlet Development Guide B-9

JSF Portlet Development

*

* @param the HttpServletRequest object

* @return the String instance label

>/

static public String getlnstanceLabel (HttpServletRequest request) {
String label = "_global™;

PortletBackingContext pbc =
PortletBackingContext.getPortletBackingContext(request);

if (pbc '= null) {

label = pbc.getlnstancelLabel();
}
else {

PortletPresentationContext ppc =
PortletPresentationContext.getPortletPresentationContext(request);

if (ppc '= null) {

label = ppc.getlnstancelLabel();

}

return label;
}
/**
* Gets the current portlet"s definition label.

* Must only be called from a JSF managed bean.

* @return the String definition label
=/
static public String getDefinitionLabel() {

return getDefinitionLabel(getRequest());

B-10 Oracle WebLogic Portal Portlet Development Guide

Code Examples

}

/**

* Gets the current portlet®s definition label.
* Can be called from any web application class.
*

* @param the HttpServletRequest object

* @return the String definition label

*/

static public String getDefinitionLabel (HttpServletRequest request)

String label = "_global";

PortletBackingContext pbc =
PortletBackingContext.getPortletBackingContext(request);

if (pbc = null) {

label = pbc.getDefinitionLabel();
}
else {

PortletPresentationContext ppc =
PortletPresentationContext.getPortletPresentationContext(request);

if (ppc '= null) {
label = ppc.getDefinitionLabel();

}

return label;

}
/**
* Finds a namespace embedded in a portlet instance

* or definition label. This namespace is intended to

Oracle WebLogic Portal Portlet Development Guide

B-11

JSF Portlet Development

* be used as a prefix for attributes set into the
* HttpSession as a way to share state between portlet
* instances. See the State Sharing Patterns section.
* <p>
* This method expects to find the namespace at the end
* of the label, following the passed delimiter.
* <p>
* For example:
* label = "myportlet_groupl™
* delimiter = " "
* return = “groupl”
*
* @param label the String instance or definition label
* @param delimiter the
* @return the String namespace
*/
static public String splitNamespaceFromLabel(String label,
String delimiter) {
String namespace = label;
int lastindex = label.lastlndexOf(delimiter);
if (lastlndex > -1) {
// namespaced
namespace = label_substring(lastindex);
}
else {

// not namespaced, noop

B-12 Oracle WebLogic Portal Portlet Development Guide

Code Examples

return namespace;
}
// PORTAL EVENTS
/**
* Fires a custom portal event with a payload.

* Must only be called from a JSF managed bean.

* @param eventName the String name of the event
* @param payload the Serializable payload
* @return true i1if the event was fired, false if it could not be
*/
static public boolean fireCustomEvent(String eventName, Serializable
payload) {
boolean fired = false;
PortletBackingContext pbc = getPortletBackingContext();
if (pbc = null) {
pbc.FfireCustomEvent(eventName, payload);
fired = true;
}
return fired;
}
// WLP PORTLET PREFERENCE OPERATIONS
Jx*
* Gets an instantiated preferences object for the portlet;
* it must be obtained once per request.

* Must only be called from a JSF managed bean.

* @return the PortletPreferences object for the request

Oracle WebLogic Portal Portlet Development Guide B-13

JSF Portlet Development

*/
static public PortletPreferences getPreferencesObject() {
PortletPreferences prefs = null;
PortletBackingContext pbc = getPortletBackingContext();
HttpServletRequest request = getRequest();
if (pbc = null) {
prefs = pbc.getPortletPreferences(request);

} else {

PortletPresentationContext ppc =

PortletPresentationContext.getPortletPresentationContext(request);

set

if (ppc '= null) {

prefs = ppc.getPortletPreferences(request);

}

return prefs;
}
/**

* Gets the single value preference.

* @param name the String name of the preference

* @param value the String default value to use if the preference isn"t

* @return the String value
*/

static public String getPreference(PortletPreferences prefs, String

name, String value) {

B-14

it (prefs 1= null) {

value = prefs._getvalue(name, value);

Oracle WebLogic Portal Portlet Development Guide

change

name,

atomic

Code Examples

}

return value;
}
/**
* Sets a single value preference into the preferences object.

* storePreferences() must be called subsequently to persist the

*

* @param name the String name of the preference
* @param value the String value of the preference
*/

static public void setPreference(PortletPreferences prefs, String
String value) {

if (prefs I= null) {
try {
prefs._setValue(name, value);
} catch (Exception e) {

e.printStackTrace();

}
/**
* After setting updated values into the preferences object, call this

* method so they can be stored in the persistent store in a single

* operation.

* @param prefs the PortletPreferences to be persisted

Oracle WebLogic Portal Portlet Development Guide B-15

JSF Portlet Development

B-16

* @return a boolean, true if the store succeeded
>/
static public boolean storePreferences(PortletPreferences prefs) {
if (lisCustomizable()) {
return false;
}

try {
prefs._store();

} catch (Exception e) {
e.printStackTrace();

return false;

}

return true;

}

Login Portlet Example

This section provides one example of how a Login portlet may be implemented with JSF in order
to demonstrate a few key concepts already discussed. Each situation may be different, but this
example provides an illustration to help explain details of what can be a complex topic.

This section includes the following topics:
e Login Portlet Motivation
e Login Portlet Design

e Login Portlet Implementation

Login Portlet Motivation

WebLogic Portal does not provide a Login portlet out of the box. It has assumed that each
developer has custom login requirements, and therefore needs to implement a custom login
portlet. While this is true, often the first portlet that a developer attempts to build is a Login

Oracle WebLogic Portal Portlet Development Guide

Code Examples

portlet. Unfortunately, a Login portlet is not the easiest task to start from, and many improperly
designed Login portlets have been created for WLP.

This section, in recognition of this history, provides a working Login portlet implemented with
JSF that is both a useful resource to deploy, but also demonstrates a few key concepts already
discussed. It also presents solutions to several unique challenges that are encountered when
implementing a login/logout portlet.

Login Portlet Design

The login portlet is implemented in JSF. It uses a single view that toggles the visibility of the
login/logout controls based on the authenticated state of the user. In summary, the login portlet
offers the following features:

Implemented as a JSF portlet.

e A single view with two forms — one for login and one for logout.

Uses a managed bean to perform the authentication logic.

Employs the JSF localization facility.

Figure B-1 The Login Portlet When the User is Not Authenticated
JSF Login —

Username: |scott
Password,; [eeee]

Figure B-2 The Login Portlet When the User is Authenticated

JSF Login -

It appears to be a straightforward form driven JSF portlet. However, as stated in the introduction,
a login portlet has more complexities than a typical portlet. Upon logging into or out of a portal,
the portal framework must recompute the view that the user has of the portal to take into account
that user's authorization and customizations. When login is implemented as a standalone page

Oracle WebLogic Portal Portlet Development Guide B-17

JSF Portlet Development

B-18

within a WLP web application, this is not an issue. But when the login/logout facility is itself a
portlet, there are several problems.

This section includes the following topics:
e Redirects

e Invalidating the Session

Redirects

By the time a user becomes authenticated, the portal framework is already in the middle of
processing the rendered page. It is too late for the framework to recompute the page. Therefore,
the solution is to force a redirect after the user is authenticated or logged out with the login portlet.
As covered in Native Bridge Architecture, there are some constraints that must be observed to
accomplish a redirect:

e Processing of the JSF login form with username and password is done in the JSF Invoke
Application lifecycle, naturally.

e The last chance for a portlet to redirect is in a WLP portlet backing file's
handlePostbackData() method.

e All of the JSF lifecycles, including Invoke Application, occur after the backing file's
handlePostbackData() method.

This leads to the design requirement that the portlet has both a JSF managed backing bean and a
portlet backing file. The backing file is responsible for the redirect, and the managed bean handles
the form processing and authentication. However, these aren't executed in the right order. Ideally,
the redirect would only occur on a successful authentication or log out. The solution offered in
this login portlet is to always redirect whenever a user interacts with the portlet. This causes the
browser to redirect even for failed login attempts, but that is a minor concession.

Invalidating the Session

A second issue must also be addressed. The WLP JSF portlet native bridge has a limitation in that
a user's HttpSession cannot be invalidated in the middle of processing the JSF lifecycles. This
best location for the logout logic is in the backing file.

Login Portlet Implementation
This section includes the following topics:

e JSF Login View

Oracle WebLogic Portal Portlet Development Guide

Code Examples

e JSF Managed Backing Bean
o faces-config.xml

e Backing File

e Resource Bundle

e Portlet Definition File

JSF Login View

The login_jsp page contains two forms — one for login and one with a button to logout. Only
one form is visible at a time, and the visibility is controlled by a flag that indicates whether the

user is authenticated. Otherwise, this JSF view is straightforward.

Listing B-2 The JSF JSP for the Login Portlet

<%@ page language="java' contentType="text/html; charset=1S0-8859-1"

pageEncoding=""1S0-8859-1"%>
<%@ taglib prefix="f" uri="http://java.sun.con/jsf/core"%>
<%@ taglib prefix="h" uri="http://java.sun.com/jst/html" %>

<%@ taglib uri="http://bea.com/faces/adapter/tags-naming”
prefix="jsf-naming® %>

<f:loadBundle
basename="oracle.samples.wlp.jsf.portlets.login.loginportlet"

var="i118n" />
<f:view>

<jsf-naming:namingContainer id="login_portlet">

<h:form id="loginBeanForm"

rendered="#{1JSFLoginPortletRequestBean.authenticated}">

Oracle WebLogic Portal Portlet Development Guide

B-19

JSF Portlet Development

style="background-color: azure;">
<h:panelGroup id="titleLine">
<h:outputText value="#{il18n._login_intro}:"
style="color: cornflowerblue; font-size: medium"/>

</h:panelGroup>

<h:panelGroup id="errorMessage'>
<h:messages layout=""table" style="color: red; font-weight:

</h:panelGroup>

<h:panelGroup id="formFields">

<h:panelGrid columns="2" width="60%"
style="background-color: azure'>

<h:panelGroup style=""text-align: right">

<h:outputText value="#{i18n.login_username}:"'/>

</h:panelGroup>

<h:panelGroup style=""text-align: left">
<h:inputText id="username" required=""true"
value="#{JSFLoginPortletRequestBean.username}" />

</h:panelGroup>

<h:panelGroup style=""text-align: right'>
<h:outputText value="#{i18n.login_password}:"'/>

</h:panelGroup>

<h:panelGroup style=""text-align: left'">
<h:inputSecret id="password" required="true"

value="#{JSFLoginPortletRequestBean.password}" />

B-20 Oracle WebLogic Portal Portlet Development Guide

bold"/>

Code Examples

</h:panelGroup>

<h:panelGroup/>
<h:panelGroup style="text-align: left'">
<h:commandButton id="loginButton” immediate="false"
action="#{JSFLoginPortletRequestBean.authenticate}"
value="#{i18n.login_button}"/>
</h:panelGroup>
</h:panelGrid>
</h:panelGroup>
</h:panelGrid>

</h:form>

<h:form id="logoutForm"
rendered="#{JSFLoginPortletRequestBean.authenticated}'>

<h:commandButton action="#{JSFLoginPortletRequestBean.userLogout}"
id=""logoutButton" value="#{i118n.logout_button}"/>
</h:form>
</jsf-naming:namingContainer>

</f:view>

JSF Managed Backing Bean

The JSF managed backing bean contains the core logic for logging the user in. There is nothing
tricky about this code. It does contain the WebL ogic specific code for authenticating a user, but
is otherwise standard code. For information about the referenced JSFPortletHelper class, see The
JSFPortletHelper Class.

Listing B-3 The JSF Managed Bean for the Login Portlet

package oracle.samples.wlp.jsf.portlets.login;

Oracle WebLogic Portal Portlet Development Guide B-21

JSF Portlet Development

B-22

import java.io.Serializable;

import javax.faces.application.FacesMessage;

import javax.faces.context.FacesContext;

import oracle._samples.wlp.jsf.JSFPortletHelper;

public class JSFLoginPortletRequestBean implements Serializable {
private static final long serialVersionUID = 1L;

private static final String BUNDLE_NAME =
"oracle_samples.wlp.jsf.portlets.login.loginportlet";

private String username;

private String password;

// ACTION METHODS

[

* Action method called during logout

*/

public String userLogout() {
// Due to a limitation iIn the bridge, logout must NOT
// be done in the middle of the JSF lifecycles.
// Therefore logout is actually done prior to the JSF
// lifecycles in the request, in the handlePostbackData()
// method of the JSFLoginPortletBacking backing file.
return null;

}

[

* Action method for the login CommandButton

*

Oracle WebLogic Portal Portlet Development Guide

* @return

*/

Code Examples

public String authenticate() {

errorText);

be

bean,

// perform the actual authentication call

boolean success = JSFPortletHelper.authenticate(

username, password);

// Handle the result

if (Isuccess) {

else {

// Login failed

// Add an error message to indicate login failure

String errorText = JSFPortletHelper.getBundleMessage(
BUNDLE_NAME, "login_error™);

// Add the message to the context

FacesContext fc = FacesContext.getCurrentinstance();

FacesMessage msg = new FacesMessage(

FacesMessage.SEVERITY_ERROR, errorText,

fc.addMessage(null, msg);

// Login succeeded

// Wipe out the password, just in case someone

// is tempted to make this bean Session scoped (should

// Request) By keeping this password around in the

// it is open to temptation for abuse

Oracle WebLogic Portal Portlet Development Guide B-23

JSF Portlet Development

password = "invalidated";

}

return null;
}
// GETTERS AND SETTERS
/**
* @return true if the user is authenticated
>/
public boolean isAuthenticated() {

return JSFPortletHelper.isAuthenticated();
}
/**
* @return the user name
>/
public String getUsername() {

return JSFPortletHelper.getUsernameForDisplay('"");
}
/**
* @param username the user name to be authenticated
>/
public void setUsername(String username) {

this.username = username;

/**
* Retrieves a placeholder for the password. We never

* want to display back the actual password to the user,

B-24 Oracle WebLogic Portal Portlet Development Guide

}

Code Examples

* so just return an empty string
* @return an empty String

*/

public String getPassword() {

return '';

/**

* @param password the password to be used for authentication
*/

public void setPassword(String password) {

this._password = password;

faces-config.xml

The managed bean needs to be wired into the application. The following XML element must be
added to faces-config.xml.

Listing B-4 Registering the Login Managed Bean in faces-config.xml

<managed-bean>

<description>Handles authentication for the Login

portlet.</description>

<managed-bean-name>JSFLoginRequestBean</managed-bean-name>
<managed-bean-class>

oracle._samples.wlp.jsf.JSFLoginPortletRequestBean
</managed-bean-class>

<managed-bean-scope>request</managed-bean-scope>

Oracle WebLogic Portal Portlet Development Guide

B-25

JSF Portlet Development

B-26

</managed-bean>

Backing File
The backing file is where the redirect happens. In this example, the redirect is directed at the page

on which the login portlet resides. This is important because the login credentials passed by the
user may be incorrect, so redirecting to the same page allows the user to see if the login failed.

In addition, the WLP JSF portlet native bridge does not work properly if the user's HttpSession
is invalidated during the middle of the JSF lifecycles. Therefore, logout cannot happen in the JSF
managed bean. It must happen before the JSF lifecycles are invoked, which should be done in a
backing file.

Listing B-5 Implementation of the Backing File that Performs the Redirect for the Login Portlet

package oracle.samples.wlp.jsf.portlets.login;

import javax.servlet_http._HttpServletRequest;
import javax.servlet_http._HttpServletResponse;
import javax.servlet_http_HttpSession;

import oracle._samples.wlp.jsf.JSFPortletHelper;

import
com._bea.netuix.servlets.controls.content.backing.AbstractJspBacking;

import
com._bea.netuix.servlets.controls._portlet.backing.PortletBackingContext;

import com.bea.portlet.PageURL;

public class JSFLoginPortletBacking extends AbstractJspBacking {
private static final long serialVersionUID = 1L;
@0verride
public boolean handlePostbackData(HttpServletRequest request,

HttpServletResponse response) {

Oracle WebLogic Portal Portlet Development Guide

if the

Code Examples

// As per the design, the login portlet will ALWAYS redirect

// user interacts with the portlet.

if (isRequestTargeted(request)) {

// 1T the user is authenticated, a form POST

// to this portlet signals a logout.

// Logout must be done before the JSF lifecycles start

// (bridge limitation).

if (("POST".equals(request.getMethod())) &&
isAuthenticated(request)) {

HttpSession session =

request.getSession(false);

response);

session.invalidate();

}

// redirect back to the same portal page

PageURL url = PageURL.createPageURL(request,

// make sure the URL uses the proper ampersands...

url_setForcedAmpForm(false);

// ...and is encoded with a session token if necessary

String redirectUrl =

response.encodeRedirectURL(url . toString());

PortletBackingContext pbc =

PortletBackingContext.getPortletBackingContext(request);

pbc.sendRedirect(redirecturl);

return super.handlePostbackData(request, response);

Oracle WebLogic Portal Portlet Development Guide B-27

JSF Portlet Development

B-28

/**

* Is the current user authenticated?

*

* @return true if the user is authenticated, false if not

*/

protected boolean isAuthenticated(HttpServletRequest request) {

return JSFPortletHelper.isAuthenticated(request);

}

Resource Bundle

As per best practices, create a resource bundle for the login portlet. This one should be located in
a file oracle/samples/wlp/jsf/portlets/login/loginportlet.properties in the Java Resources/src
folder.

Listing B-6 The Localizable Resource Bundle for the Login Portlet

login_jsp

login_title=Login Page

login_imageAlt=Login

login_intro=Please enter your username and password
login_username=Username

login_password=Password

login_button=Login

logout_button=Logout

login_error=The username or password are invalid.

Portlet Definition File

Finally, the _portlet file ties everything together. Most important is the backing file reference.
You will not normally create this file as XML — use the portlet editor.

Oracle WebLogic Portal Portlet Development Guide

Using Facelets

Listing B-7 The Portlet Definition File for the Login Portlet

<?xml version="1.0" encoding="UTF-8"?>
<portal:root

xmIns:netuix="http://www.bea.com/servers/netuix/xsd/controls/netuix/1.0.0"

xmIns:portal="http://www.bea.com/servers/netuix/xsd/portal/support/1.0.0"

xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xxsi:schemalLocation="http://www.bea.com/servers/netuix/xsd/portal/support/1
.0.0 portal-support-1_0_0.xsd">

<netuix:portlet
backingFile="oracle.samples.wlp.jsf._portlets.login.JSFLoginPortletBacking"

definitionLabel="login" title="Login'">
<netuix:titlebar>

<netuix:minimize/>
</netuix:titlebar>
<netuix:content>

<netuix:facesContent
contentUri="/portlets/login/login.faces"/>

</netuix:content>
</netuix:portlet>

</portal :root>

Using Facelets

This section contains the following topics:
e Introduction to Facelets

e Configuring Facelets Support

Oracle WebLogic Portal Portlet Development Guide B-29

JSF Portlet Development

B-30

Introduction to Facelets

Intermixing JSF components with JSP tags can cause problems. While JSP is the default
technology in which to implement JSF views, there are issues in how the two technologies work
together. There are many references to these problems available in articles and blog posts on the
internet.

An alternate view technology called Facelets has been created by the JSF community which
avoids the problems seen with JSPs. It offers an XML grammar for declaratively wiring up a JSF
view. It more cleanly separates the view definition from the programming logic. As an assertion
of the strength of this approach, JSF 2.0 has adopted Facelets as the preferred view technology.
This section explains how to configure a Portal Web Project with Facelets.

Note: Before committing to Facelets, be sure to understand the IDE impact. The Workshop IDE
only supports Facelets configuration with JSF 1.1. For more details, see Chapter 12,
“Working With JSF Portlets.”

Configuring Facelets Support

Follow these steps to configure Facelets within a Portal Web Project:

1. Start with a Web Project that is properly configured to support JSF JSPs, including a prefix
or suffix mapping if you wish to support access to the views outside of portlets.

Download a Facelet implementation library (see https://facelets.dev.java.net/).
Copy the library into the Web Project's WEB- INF/1ib directory.
Add the Facelets view handler to faces-config.xml. (see Listing B-8).

Change the default suffix for Faces to be .xhtml. (see Listing B-9).

© o~ w N

Create a new Facelet file with suffix .xhtml. (Source code is provided in Listing B-10).

7. Test the configuration by targeting the Facelet directly. The URL will depend on how you
have configured prefix or suffix mapping for Faces. http://localhost/jsfweb/mytest.jsf

8. Create a new portlet, selecting JSF as the type, and the .xhtml file as the content. Note: You
will have to enter the path by hand as the wizard does not allow you to select an .xhtml file.

9. Add the portlet to a portal, and republish the web application.

Note: The current JSF portlet support (native bridge) cannot support both JSP and Facelets JSF
portlets in the same web application. You must choose one or the other. The standard
workaround for combining both JSPs and Facelets in the same web application, the

Oracle WebLogic Portal Portlet Development Guide

Using Facelets

VIEW_MAPPINGS technique, is not possible with the WLP native bridge. WSRP could

be used as a workaround for this issue.

Listing B-8 The view-handler Element in faces-config.xml

<application>

<I-- tell JSF to use Facelets ->

<view-handler>com.sun.facelets.FaceletViewHandler</view-handler>

</application>

Listing B-9 Change the Default Suffix for Faces Requests in web.xml

<context-param>
<param-name>javax.faces.DEFAULT_SUFFIX</param-name>
<param-value>.xhtml</param-value>

</context-param>

Listing B-10 Create a Basic facelet .xhtml File in the WebhContent Folder

<html xmlns="http://www.w3.0rg/1999/xhtml""
xmIns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

<head>

<meta http-equiv=""Content-Type"
content=""text/html; charset=i1s0-8859-1" />

<title>My First Facelet</title>

</head>

<body>
<I-- body content goes here ->

Hello #{param.name}!

Oracle WebLogic Portal Portlet Development Guide

B-31

JSF Portlet Development

</body>

</html>

Using Tomahawk

B-32

This section includes the following topics:

e What is Apache MyFaces Tomahawk?

Support for Tomahawk in WLP

Installing and Configuring Tomahawk

Installing and Configuring Tomahawk

Resolving the Duplicate ID Issue

Referring to Resources

forceld Attribute

e File Upload

What is Apache MyFaces Tomahawk?

Apache MyFaces Tomahawk is an open source component library that provides an enhanced set
of JSF components that go beyond the basic set provided by the core JSF specification.
Tomahawk enhances the standard components, and provides more than 40 additional
components not included in the standard set. This section covers how to use Tomahawk
components within WLP JSF portlets.

Official documentation and project information can be found at these locations:

e Tomahawk Official Site —

http://myfaces.apache.org/tomahawk/index.html

e Tomahawk Official Wiki —
http://wiki.apache.org/myfaces/Tomahawk

The enhancements to the standard set include:

Oracle WebLogic Portal Portlet Development Guide

http://myfaces.apache.org/tomahawk/index.html
http://wiki.apache.org/myfaces/Tomahawk

Using Tomahawk

e User-role Awareness — renders the component visible and/or enabled based on the
user-roles of the current user.

e DisplayValueOnly — toggles between output/input mode.

o forceld — do not let JSF generate an assembled id of the ids of the component and its
parents, instead use the provided id.

e ExtendedMessagesSupport — automatically replaces the id of the message with the
corresponding label or column header.

The additional components offered include a calendar, a data grid, a tree, a tabbed pane, and many
more.

Support for Tomahawk in WLP

The JSR-286 and JSR-329 standards bodies are ensuring that JSF applications work properly in
a portal environment. In addition, the component libraries such as Tomahawk continue to change
to support the new portal requirements. In general, the Tomahawk components work properly.
But WLP does not certify Tomahawk or officially support it, so issues may be found in certain
use cases.

Use Tomahawk 1.1.7 and Later

Note that some of the work that the Tomahawk team implemented for JSR-301 and JSR-329 will
help even when using WebL ogic Portal versions that do not support JSR-329. For example,
Tomahawk version 1.1.7 obviated the need for the MyFaces Extensions Filter, which is
problematic in a portal environment, to help support JSSR-329. This change fortunately also
benefits WLP 10.3.

Tomahawk 1.1.8 was the version used in these examples. Because of ongoing work to support
JSR-329, it is beneficial to look at the latest available version of Tomahawk. It is not
recommended to adopt a version prior to 1.1.7.

Portlet Scoping

The Namespacing section covered the WLP specific NamingContainer component. This aids in
preventing conflicts when the same portlet is placed on a portal page multiple times. One case in
which this is necessary is when a component uses JavaScript. Since Tomahawk components are
typically JavaScript-enabled, remember to add a NamingContainer to any portlet that uses a
Tomahawk component.

Oracle WebLogic Portal Portlet Development Guide B-33

JSF Portlet Development

B-34

However, not all Tomahawk components work properly when they appear in multiple portlets on
the same page, even when the NamingContainer is used. Oracle recommends explicitly testing
all Tomahawk components to determine if they suffer from this issue. Check with the Tomahawk
documentation for more information on this topic. Later versions may be less problematic.

Ajax Enablement

Tomahawk components are not Ajax enabled. However, the WLP asynchronous desktop and
portlet features described in the Ajax Enablement section do work properly with the Tomahawk
components. This provides the user with the Ajax responsiveness usually only found in Ajax
enabled component libraries such as Apache MyFaces Trinidad.

Installing and Configuring Tomahawk

Tomahawk is not included in a WebLogic Portal installation. It is necessary to download
Tomahawk and install and configure it into the WLP web application.

Follow these steps:
1. Download the Tomahawk JAR file, like tomahawk-1.1.8_ jar or later.
2. Copy the JAR file into WEB-INF/1ib.

3. Add the following entries in web.xml in the appropriate places.

Listing B-11 weh.xml Settings for Tomahawk

<I-- Make two entries that explicitly enable the portal-friendly changes
introduced with v1.1.7 ->

<context-param>

<param-name>org.apache.myfaces.CHECK_EXTENSIONS_FILTER</param-name>

<param-value>false</param-value>

</context-param>

<context-param>

<param-name>

org.apache.myfaces.DISABLE_TOMAHAWK FACES_CONTEXT_WRAPPER

</param-name>

Oracle WebLogic Portal Portlet Development Guide

Using Tomahawk

<param-value>false</param-value>
</context-param>

<I-- Configure the mechanism for bringing in resources (.JS, -CSS).

<context-param>
<param-name>org.apache.myfaces.ADD_RESOURCE_CLASS</param-name>

<param-value>

org.apache.myfaces.renderkit_html_util .NonBufferingAddResource

</param-value>
</context-param>
<I-- Map the resource loading capability of Tomahawk ->
<servlet-mapping>
<servlet-name>faces</servlet-name>
<url-pattern>/faces/myFacesExtensionResource/*</url-pattern>

</servlet-mapping>

Resolving the Duplicate ID Issue

Some Tomahawk components, when used in a portlet environment will emit a Duplicate Id
Exception. To handle this case, the CleanupPhaseListener Class is a recommended workaround.

CleanupPhaselistener Class

This class is a solution to a Duplicate ID issue found with the use of some Tomahawk
components. The JSF specification allows custom components to be marked transient, which
means they must be discarded at the end of the HttpRequest. Some component libraries, such as
Tomahawk, rely on this behavior.

This PhaseL.istener is a solution to the problem. Listing B-12 shows the code for the
PhaseL.istener.

Oracle WebLogic Portal Portlet Development Guide B-35

JSF Portlet Development

B-36

Listing B-12 The CleanupPhaseListener Source Code

package oracle.samples.wlp.jsT;

import java.util _ArraylList;
import java.util.lterator;

import java.util.List;

import javax.faces.component.UlComponent;
import javax.faces.component.UlViewRoot;
import javax.faces.context.FacesContext;
import javax.faces.event.PhaseEvent;
import javax.faces.event.Phaseld;

import javax.faces.event.PhaseListener;

Jx*
* This PhaseListener must be employed when using the WLP JSF portlet native
* bridge with certain component libraries like Tomahawk. The native bridge
* by default does not correctly handle UlComponent™s that are marked as

* transient via the UlComponent interface.

* <p>

* This PhaseListener implementation corrects that by clearing out all

* transient UlComponents at the end the request lifecycle.

* <p>

* @version Affects all WLP releases 10.x (10.0, 10.2, 10gR3)

*/

public class CleanupPhaseListener implements PhaselListener {

Oracle WebLogic Portal Portlet Development Guide

view.

Using Tomahawk

Jr*
* This phases listener is only executed after all JSF phases
* are run. Therefore this method returns Phaseld.RENDER_RESPONSE
*/
@Override
public Phaseld getPhaseld() {
return Phaseld.RENDER_RESPONSE;
}
Jr*

* After RENDER_RESPONSE, purges any transient UlComponent from the

*/
@override
public void afterPhase(PhaseEvent event) {
FacesContext context = event.getFacesContext();
UlViewRoot root = context.getViewRoot();
purgeTransientFromTree(context, root, '"'");
}
Jx*
* Walks the component tree, clearing out any transient component.
*/

protected void purgeTransientFromTree(FacesContext context,

UlComponent component, String parentindent) {

UlComponent child;
List<UIComponent> children = component.getChildren();

Iterator<UlComponent> childrenlterator =

children.iterator();

List<UIComponent> transients = new ArrayList<UlIComponent>();

Oracle WebLogic Portal Portlet Development Guide B-37

JSF Portlet Development

while (childrenlterator.hasNext()) {
child = childrenlterator.next();
if (child.isTransient()) {
transients.add(child);
} else {
purgeTransientFromTree(context, child,

parentindent+" ');

}

// now remove the children we found to be transient
childrenlterator = transients.iterator();
while (childrenlterator.hasNext()) {

child = (UlComponent) childrenlterator.next();

children.remove(child);

}

@Override
public void beforePhase(PhaseEvent event) {}

private static final long serialVersionUID = 1L;

It must be registered in faces-config.xml, as shown in Listing B-13.

Listing B-13 Registering the CleanupPhaseListener in faces-config.xml

<lifecycle>
<I-- The CleanupPhaseListener corrects an issue in the native bridge

implementation only seen with custom components. This phase

B-38 Oracle WebLogic Portal Portlet Development Guide

Using Tomahawk

listener can always be used, but is needed specifically when
Tomahawk components are used.

->

<phase-listener>

oracle.samples.wlp.jsf.CleanupPhaseListener

</phase-listener>

</lifecycle>

Referring to Resources

Most web applications require JavaScript and CSS files. JSF portlets will often have such a
requirement, and the Using Custom JavaScript in JSF Portlets section explained how to
accomplish this with WLP for the general JSF case. Most Tomahawk components require
resources to be loaded to function properly. This section explains the options when Tomahawk
components are present.

Tomahawk has a pluggable mechanism for inserting references to JavaScript and CSS files into
a page containing Tomahawk components. There are three implementations that are included in
the library, each with benefits and drawbacks. WLP offers an additional option, Render
Dependencies, that should also be considered. This section will explain several options.

The pluggable resource handling interface within Tomahawk is AddResource, and the three
implementations are:

o DefaultAddResource
e NonBufferingAddResource

e StreamingAddResource

The chosen implementation is configured in web . xml, shown in .

This section includes the following topics:
e Using DefaultAddResource (Not recommended)
e Using NonBufferingAddResource (Simplest)
e Using a Static WLP Render Dependencies File (Most correct, but tedious)

Oracle WebLogic Portal Portlet Development Guide B-39

JSF Portlet Development

e Using Dynamic WLP Render Dependencies (Not possible, for reference only)

Using DefaultAddResource (Not recommended)

The DefaultAddResource buffers the entire response, and inserts any needed resources into
<HEAD> before returning the response to the client. The primary benefit is that the resources are
included in the proper location in the HTML document (HEAD). The downside is that the entire
response must be buffered, which can consume significant server memory.

When using this option with JSF portlets within WLP, there is an additional drawback. The
DefaultAddResource implementation works by locating the HEAD element in the markup
rendered by the JSF view. In a portal, each JSF portlet contains a JSF view and thus its own
DefaultAddResource instance. Because of this fact, each portlet must contain a HEAD element into
which its DefaultAddResource instance will write the resource references. However, it is a best
practice to not render HTML document elements (HTML, HEAD, BODY) in portlets as it creates
invalid HTML.

Another drawback in a portal environment is that this approach cannot eliminate duplicate
resource references. This is due to each portlet having its own DefaultAddResource instance.
Each portlet will have references to the resources it needs, even if another portlet has already
included it.

When the DefaultAddResource is operating outside of a portal environment, its chief advantage
is that is renders valid HTML. Within a portal, it does not have this advantage. There are several
additional drawbacks with this approach:

e Each portlet's response is buffered, which will consume server memory.
e Resources may be referenced multiple times in the same page.

e It requires a HEAD element per portlet within the BODY element of the HTML document.
This is invalid HTML.

e The portlet developer must remember to include a HEAD element in each JSF view.
Omitting it will cause failures.

Listing B-14 shows an example portlet JSP that will work properly with DefaultAddResource.
Notice the required HEAD element, which will be populated at runtime with the necessary resource
references.

B-40 Oracle WebLogic Portal Portlet Development Guide

Using Tomahawk

Listing B-14 A JSP Using Tomahawk with DefaultAddResource

<%@ page language="java' contentType=""text/html;charset=UTF-8"%>
<%@ taglib prefix="f" uri="http://java.sun.com/jsf/core"%>
<%@ taglib uri="http://myfaces.apache.org/tomahawk" prefix="t" %>

<%@ taglib uri="http://bea.com/faces/adapter/tags-naming”
prefix="jsf-naming® %>

<head><!-- required for Tomahawk, do not remove -></head>

<f:view>

<jsf-naming:namingContainer id="swaplmage'>
<t:panelGroup id="'swaplmagePanel''>
<t:swaplmage id="image" value="/tomahawk/images/MyFaces_logo.jpg"

swap ImageUr1=""/tomahawk/ images/MyFaces_logo_inverse2.jpg''/>

</t:panelGroup>

</jsf-naming:namingContainer>

</f:view>

Using NonBufferingAddResource (Simplest)

The NonBufferingAddResource implementation does not buffer the response. Instead, it writes
resource references directly into the Tomahawk component's markup within the BODY element
of the HTML document. This is technically invalid HTML, as the resource references should be
in the HEAD element. However modern browsers can handle this markup properly.

The advantage of this approach is it is simpler and does not buffer the response. Also, the portlet
developer does not need to remember to add an empty HEAD element. There are several drawbacks
with this approach:

e Resources may be referenced multiple times in the same page, as with the
DefaultAddResource.

e It writes resource references into the BODY element of the HTML document. This is invalid
HTML.

Oracle WebLogic Portal Portlet Development Guide B-41

JSF Portlet Development

B-42

Listing B-15 A JSP of a Portlet that Works Properly with NonBufferingAddResource

<%@ page language="java" contentType="text/html;charset=UTF-8"%>
<%@ taglib prefix="f" uri="http://java.sun.com/jsf/core" %>
<%@ taglib uri="http://myfaces.apache.org/tomahawk™ prefix="t" %>

<%@ taglib uri="http://bea.com/faces/adapter/tags-naming”
prefix="jsf-naming® %>

<f:view>
<jsf-naming:namingContainer id="swaplmage'>
<t:panelGroup id="swaplmagePanel"'>
<t:swaplmage id="image" value="/tomahawk/images/MyFaces_logo.jpg"
swapImageUr1=""/tomahawk/ images/MyFaces_logo_inverse2.jpg'/>
</t:panelGroup>
</jsf-naming:namingContainer>

</f:view>

Using a Static WLP Render Dependencies File (Most correct, but tedious)

WLP provides a general facility for solving the resource inclusion problem that works across all
portlet types and the various WLP asynchronous modes. It generates valid HTML, and eliminates
duplicate resource references. It is a best practice to use this facility. The Render Dependencies
facility is covered in Using Custom JavaScript in JSF Portlets.

As an example, this is a .dependencies file for a JSF portlet that contains a Tomahawk Tree2
component. Notice how it explicitly references the Tomahawk scripts that it needs.

Listing B-16 Using the WLP Render Dependencies Mechanism to Include Tomahawk Resources

<?xml version="1.0" encoding="UTF-8"?>
<window

xmIns="http://www.bea.com/servers/portal/framework/l1af/1.0.0"

Oracle WebLogic Portal Portlet Development Guide

Using Tomahawk

xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

Xxsi:schemaLocation="http://www.bea.com/servers/portal/framework/1af/1.0.0
lafwindow-1_0 O.xsd">

<render-dependencies>
<html>
<scripts>

<script type="text/javascript"
src=""/wlpJSF/faces/myFacesExtensionResource/org.apache.myfaces.renderkit.h
tml.util _MyFacesResourcelLoader/12306184/tree2 _HtmlTreeRenderer/javascript/
tree_js" />

<script type="text/javascript"
src="/wlpJSF/faces/myFacesExtensionResource/org.apache._myfaces.renderkit.h
tml _util _MyFacesResourcelLoader/12306184/tree2_HtmlTreeRenderer/javascript/
cookielib_js" />

</scripts>
</html>
</render-dependencies>

</window>

However, there are several issues with this approach.

First, the developer must assemble the list of scripts that are needed by all of the Tomahawk
components within all views of the portlet. This is a manual process, and must be kept up to date
as the portlet implementation changes. One way to assemble the list is to use one of the other
approaches covered above during development, and look into the HTML document to determine
what scripts were referenced.

Second, when using WLP Render Dependencies mechanism to write the resource references, it
is important to make sure that a Tomahawk AddResource implementation doesn't also write
resource references into the response. But Tomahawk does not provide an AddResource
implementation that never writes resources to the response. One way to achieve this with the
standard Tomahawk distribution is to use the DefaultAddResource implementation and ensure

Oracle WebLogic Portal Portlet Development Guide B-43

JSF Portlet Development

B-44

that all portlets do not include a HEAD element. Another option would be to implement a custom
AddResource implementation that does not write resource references.

Using Dynamic WLP Render Dependencies (Not possible, for reference only)

This section documents an approach that will not work. This is provided to illuminate boundaries
as to what is possible.

The previous section described how a static Render Dependencies file could be used to include
the resource references. There are drawbacks with that approach in that the list of references must
be known at development time, and must be maintained as the portlet implementation changes.
Another approach would be to attempt to write a new AddResource implementation that would
invoke the WLP Render Dependency mechanism to dynamically add the references. This would
be ideal, as it would eliminate the drawbacks discussed with the previous approach.

The documentation for the dynamic render dependencies facility is available here:

e DynamicHtmIRenderDependencies JavaDoc

Unfortunately, the Tomahawk AddResource mechanism operates during the JSF Render
lifecycle. As seen in the Understanding WLP and JSF Rendering Life Cycles section, the JSF
Render lifecycle is invoked within the WLP Render lifecycle. This is a problem because the
dynamic Render Dependencies must be established before the WLP Render lifecycle. Therefore,
this approach will not work.

Here is an example of how an AddResource method might be implemented, but unfortunately
does not work because of the timing of the lifecycles.

Listing B-17 shows a non-working example of how WLP can be dynamically notified of render
dependencies using the Tomahawk AddResource mechanism.

Listing B-17 Using the Tomahawk AddResource Mechanism to Dynamically Notify WLP of Render
Dependencies

@Override

public void addJavaScriptHerePlain(FacesContext context, String uri)
throws I0Exception {

HttpServletRequest request =

(HttpServletRequest)context.getExternalContext() -.getRequest();

Oracle WebLogic Portal Portlet Development Guide

http://download.oracle.com/docs/cd/E13155_01/wlp/docs103/javadoc/com/bea/netuix/laf/DynamicHtmlRenderDependencies.html

Using Tomahawk

PortalLookAndFeel laf = PortallLookAndFeel .getlnstance(request);
DynamicHtmlRenderDependencies injector =
laf_getDynamicHtmlRenderDependencies();

injector.addScript(*'text/javascript”, null, null, uri, null);

}

forceld Attribute

Tomahawk provides an attribute named forceld for many Tomahawk components. This attribute
indicates that the component's client id should be exactly what is specified in the component's id
attribute. This feature short circuits any namespacing provided by the enclosing JSF naming
containers (f:view, f:subview, WLP NamingContainer). This feature helps in cases in which
JavaScript cannot cope with the scoped client ids.

However, as noted in the Namespacing section and in JSF texts, namespacing client ids is
sometimes critical. In the case of WebLogic Portal, when the same portlet is placed on a portal
page multiple times, the client id scoping is needed to prevent certain collisions. For better or for
worse, the Tomahawk forceld attribute does exactly what it promises, even in a WLP
environment. It eliminates any scoping added for components in portlet instances. Be careful
using this attribute, especially when the same portlet may be added to a page more than once.

Listing B-18 shows the use of forceld. When this JSP is used as a portlet, the HTML id for the
<div> that is written for the panelGroup component is exactly "swaplmagePanel”. It is not
namespaced with the portlet instance label.

Listing B-18 An Example Showing the Use of the Tomahawk forceld Attribute

<%@ page language="java' contentType=""text/html;charset=UTF-8"%>
<%@ taglib prefix="f" uri="http://java.sun.com/jsf/core"%>
<%@ taglib uri="http://myfaces.apache.org/tomahawk” prefix="t" %>

<%@ taglib uri="http://bea.com/faces/adapter/tags-naming”
prefix="jsf-naming® %>

<f:view>

<jsf-naming:namingContainer id="swaplmage'>

Oracle WebLogic Portal Portlet Development Guide B-45

JSF Portlet Development

<t:panelGroup id="swaplmagePanel” forceld="true">

<t:swaplmage id="image"
value=""/tomahawk/images/MyFaces_logo.jpg"

swap ImageUr 1=""/tomahawk/ images/MyFaces_logo_inverse.jpg'/>
</t:panelGroup>
/jsf-naming:namingContainer>

</f:view>

File Upload

Tomahawk offers a File Upload component that enables a developer to easily create a web page
that allows a user to upload a document. Unfortunately, this component does not function
properly within a WLP portal. The only workaround currently is to implement File Upload in a
non-JSF portlet.

Integrating Apache Beehive Pageflow Controller

B-46

This section includes the following topics:
e Apache Beehive Page Flow
e JSF and Page Flows

e Configuring the JSF Integration with Page Flows

Apache Beehive Page Flow

The Apache Beehive project supports a full featured controller technology called Page Flows.
Page Flows are annotated Java class files that provide navigation control, state management, form
validation and more. Page Flows are built on top of the Struts controller.

The use of the Page Flow controller is only recommended for customers that have existing assets
written in Apache Beehive.

JSF and Page Flows

Beehive Page Flows use regular JSPs as the view technology. However, the Beehive project built
an integration with JSF such that JSF JSPs can be used. This integration combines the full JSF

Oracle WebLogic Portal Portlet Development Guide

Integrating Apache Beehive Pageflow Controller

rendering framework (with lifecycles and managed beans) with the power of the Beehive Page
Flow controller. This integration was built independently of WebLogic Portal and it works
equally well both inside and outside of WLP JSF portlets.

The integration provides the following features:
Actions
e Allows a JSF action to be wired to a Beehive Page Flow action.

e Ability to map a Page Flow action result to Jpf_NavigateTo.previousPage and
Jpf.NavigateTo.currentPage, and the correct JSF view will be restored.

Backing Beans
o Defines a base class for Page Flow aware JSF backing beans — FacesBackingBean.

e Manages the lifecycle of the JSF backing bean for a page. It provides what the JSF 2.0
specification calls "View" scope.

e Does not require an entry for the backing bean in faces-config.xml; it is wired using an
annotation.

JSF Expression Language Binding Contexts
e Maps the view scoped backing bean into the 'backing' context.
e Maps the Netui pagelnput into the 'pagelnput’ context.
e Maps the current Page Flow into the 'pageFlow' context.

e Maps shared Page Flows into the 'sharedFlow' context.

The integration works by plugging a custom ViewHandler and NavigationHandler into the JSF
implementation. There are several places to go for more information about the JSF-Beehive
integration:

e Integrating JavaServer Faces with Beehive Page Flow Article —

http://www.oracle.com/technology/publ/articles/dev2arch/2005/12/integrating-jsfbeehive.html

o Official Beehive Documentation —
http://beehive.apache.org/docs/1.0/netui/sample_jpf_jsf_integration.html

e Tutorial: JavaServer Faces / NetUI Integration —

Oracle WebLogic Portal Portlet Development Guide B-41

http://www.oracle.com/technology/pub/articles/dev2arch/2005/12/integrating-jsfbeehive.html
http://beehive.apache.org/docs/1.0/netui/sample_jpf_jsf_integration.html

JSF Portlet Development

http://edocs.bea.com/wlw/docs103/guide/webapplications/jsf/jsf-integrationtutorial/tutJSFintro.
html

Configuring the JSF Integration with Page Flows

The JSF integration is built directly into the Apache Beehive library. Since all Portal Web
Projects currently require the Apache Beehive facet, this integration is provisioned with every
WLP web application. There aren't any configuration changes necessary for the integration to
work within a WLP portlet.

PageFlowApplicationFactory

After creating a Portal Web Project with the JSF facet enabled, the default faces-config.xml
will contain this configuration artifact:

Listing B-19 The Beehive PageFlowApplicationFactory Configuration in faces-config.xml

<application-factory>
org.apache.beehive.netui.pageflow.faces.PageFlowApplicationFactory
</application-factory>

This configuration is not coming from a WebLogic Portal facet — it is added by the Apache
Beehive Netui facet. It enables the Apache Beehive Page Flow integration with JSF. If the
integration is not needed for the web project, it can be removed.

Note that the Page Flow integration is currently only certified with JSF 1.1.

Building Unsupported JSF Implementations

B-48

It is not officially supported by Oracle to use a JSF implementation outside of the set provided in
the box. However, there are times when it is helpful to experiment with different versions of an
implementation when troubleshooting an issue. The exact steps may vary depending on what
implementation and version is in use.

1. Extract the closest existing JSF library module from
BEA_HOME/WL_HOME/common/deployable-libraries into an empty folder.

2. Update META-INF/manifest.mf to the new implementation version.

Oracle WebLogic Portal Portlet Development Guide

http://edocs.bea.com/wlw/docs103/guide/webapplications/jsf/jsf-integrationtutorial/tutJSFIntro.html

Building Unsupported JSF Implementations

. Copy in the new implementation JARs into the lib folder.

. Create a new WAR file with the updated contents, updating the filename with the new version
number.

. Copy the WAR file into BEA_HOME/WL_HOME/common/deployable-libraries.

In Workshop, navigate to Project > Properties > Java Build Path > Libraries > Add>
Manage WebL ogic Shared Libraries > Add... and locate the new library module.

. Navigate to weblogic.xml in your web application, and set the JSF librarylmplementation
\fersion to exactly the version you just added.

. Republish the application.

. Some JSPs may throw an exception when rendered after the above changes. In these cases,
go to Workshop and drag and drop any JSF tag to the page and then remove it. This will clear
out the old compiled view.

Oracle WebLogic Portal Portlet Development Guide B-49

JSF Portlet Development

B-50 Oracle WebLogic Portal Portlet Development Guide

	Oracle® WebLogic Portal
	Contents
	Introduction
	Portlet Overview
	Portlet Development and the Portal Life Cycle
	Architecture
	Development
	Staging
	Production

	Getting Started
	Prerequisites
	Related Guides

	Part I Architecture
	Portlet Planning
	Portlet Development in a Distributed Portal Team
	Portlets in a Non-Portal Environment
	Planning Portlet Instances
	Security
	Interportlet Communication
	Performance Planning

	Portlet Types
	Java Server Page (JSP) and HTML Portlets
	Java Portlets (JSR 168)
	Java Page Flow Portlets
	Struts Portlets
	Java Server Faces (JSF) Portlets
	Browser (URL) Portlets
	Clipper Portlets
	Remote Portlets
	Portlet Type Summary Table

	Part II Development
	Understanding Portlet Development
	Portlet Components
	Portlet Properties
	Portlet Title Bar, Mode, and State
	Portlet Preferences

	Resources for Creating Portlets
	Portlet Rendering
	Render and Pre-Render Forking
	Asynchronous Portlet Content Rendering
	Portlets as Popups (Detached Portlets)

	JSP Tags and Controls in Portlets
	Backing Files

	Building Portlets
	Supported Portlet Types
	Portlets in J2EE Shared Libraries
	Portlet Wizard Reference
	Order of Creation - Resource or Portlet First
	Starting the Portlet Wizard
	New Portlet Dialog
	Select Portlet Type Dialog
	Portlet Details Dialogs

	How to Build Each Type of Portlet
	JSP and HTML Portlets
	Java Portlets
	Java Page Flow Portlets
	JSF Portlets
	Browser Portlets
	Clipper Portlets
	Struts Portlets
	Remote Portlets
	Web Service Portlets

	Detached Portlets
	Considerations for Using Detached Portlets
	Building Detached Portlets

	Working with Inlined Portlets
	Extracting Inlined Portlets
	Setting the Theme of an Inlined Portlet

	Extracting Books and Pages
	Portlet Properties
	Editing Portlet Properties
	Tips for Using the Properties View
	Portlet Properties in the Portal Properties View
	Portlet Properties in the Portlet Properties View

	Portlet Preferences
	Specifying Portlet Preferences
	Using the Preferences API to Access or Modify Preferences
	Portlet Preferences SPI
	Best Practices in Using Portlet Preferences

	Backing Files
	How Backing Files are Executed
	Thread Safety and Backing Files
	Scoping and Backing Files
	Backing File Guidelines

	Portlet Appearance and Features
	Portlet Dependencies
	Portlet Modes
	Creating Custom Modes
	Portlet States
	Portlet Title Bar Icons
	Portlet Height and Scrolling

	Getting Request Data in Page Flow Portlets
	JSP Tags and Controls in Portlets
	Viewing Available JSP Tags
	Viewing Available Controls

	Portlet State Persistence
	Adding a Portlet to a Portal
	Deleting Portlets
	Advanced Portlet Development with Tag Libraries
	Adding ActiveMenus
	Enabling Drag and Drop
	Enabling Dynamic Content
	Using the User Picker

	Importing and Exporting Java Portlets
	Importing Java Portlets
	Exporting Java Portlets
	Using the JSR168 Import Utility

	Creating Clipper Portlets
	Introduction
	Creating a Clipper Portlet
	Modifying Clipper Portlet Properties
	Using the Properties Editor
	Setting Clipper Properties Manually as Preferences

	Modifying the Appearance of a Clipper Portlet
	Authenticating a Clipper Portlet
	Form-Based Authentication
	Basic HTTP Authentication

	Configuring URL Rewriting
	Navigable Link Configurations
	Resource URL Configurations
	URL Rewriting Configuration Techniques

	Clipper Portlets and HTTPS
	Certificates and WebLogic Server
	Resetting the Clipper Portlet
	Using Backing Files with Clipper Portlets
	Updating Portlet Preferences While the Server is Running
	Clipper Portlet Limitations

	Optimizing Portlet Performance
	Performance-Related Portlet Properties
	Portlet Caching
	Remote Portlets
	Portlet Forking
	Configuring Portlets for Forking
	Architectural Details of Forked Portlets
	Best Practices for Developing Forked Portlets

	Asynchronous Portlet Content Rendering
	Implementing Asynchronous Portlet Content Rendering
	Thread Safety and Asynchronous Rendering
	Considerations for IFRAME-based Asynchronous Rendering
	Considerations for AJAX-based Asynchronous Rendering
	Comparison of IFRAME- and AJAX-based Asynchronous Rendering
	Comparison of Asynchronous and Conventional or Forked Rendering
	Portal Life Cycle Considerations with Asynchronous Content Rendering
	Asynchronous Content Rendering and IPC

	Monitoring and Determining Portlet Performance
	Introduction
	Use Case
	Detecting a Misbehaving Portlet
	Disabling the Bad Portlet and Enabling an Alternative Portlet

	Local Interportlet Communication
	Definition Labels and Interportlet Communication
	Portlet Events
	Event Handlers
	Event Types
	Event Actions
	Portlet Event Handlers Wizard Reference
	JSF Events

	IPC Example
	Before You Begin - Environment Setup
	Basic IPC Example

	IPC Special Considerations and Limitations
	Using Asynchronous Portlet Rendering with IPC
	Generic Event Handler for WSRP
	Consistency of the Listen To Field

	Adding the Content Presenter Portlet
	Using the Content Presenter Example
	Starting the Content Presenter Example
	Performing Inline Editing in the Content Presenter Example
	Enabling Inline Editing in Your Portlets

	Configuring the Content Presenter Portlet in Your Portal
	Configuring the Content Presenter Portlet

	Adding a Third-Party Portlet
	Using the Collaboration Portlets
	What Are Collaboration Portlets?
	Adding Collaboration Portlets To Your Portal
	Configuring Collaboration Portlets for a Shared View
	Using the Collaboration Portlets
	Using the Collaboration Portlet Source Code

	Third-Party Portlets
	Autonomy Portlets
	Documentum Portlets
	MobileAware Portlets

	Working With JSF Portlets
	Overview
	Configuring JSF Within Weblogic Portal
	JSF Library Modules in WebLogic Server
	Installing the JSF Libraries into a Portal Web Project
	Configuring JSF 1.2 in WLP
	Creating JSF Portlets
	JSF Configuration Settings

	Native Bridge Architecture
	Container Architecture Overview
	Container Interactions

	Understanding WLP and JSF Rendering Life Cycles
	WLP and JSF Life Cycles
	Invocation Order of WLP and JSF Life Cycle Methods
	Accessing WLP Context Objects from JSF Managed Beans

	Understanding Scopes and JSF Portlets
	Conceptual Scopes for Standard JSF Applications
	Conceptual Scopes for Portal Applications
	Implementation Patterns for Portal Scopes

	State Sharing Patterns
	State Sharing Concepts
	HttpSession Versus HttpServletRequest
	Base Code for HttpSession Patterns
	Single Portlet Pattern
	Multiple Portlet Patterns

	Using Common WLP Features With JSF Portlets
	Portlet Container Features
	Portal Container Features and JSF Portlets

	Understanding Navigation
	Navigating Within a Portlet with the JSF Controller
	Support for Redirects

	Navigation Within a Portal Environment
	Programmatically Constructing JSF Portlet URLs
	Changing the Active Portal Page
	Using an Output Link
	Using a Command Link or Button With Events
	Changing the Active Portal Page Using the Navigation Controller and a Portal Event
	Changing the Active Portal Page Programmatically

	Interportlet Communication with JSF Portlets
	Using Session and Request Attributes for IPC (Anti-pattern)
	Using the WLP Event Facility for IPC with JSF Portlets
	Notifications
	Comparison of the IPC Approaches

	Namespacing
	Namespacing Managed Bean Names
	Client ID Namespacing with the View and Subview Components
	Client ID Namespacing with the WLP NamingContainer

	Using Custom JavaScript in JSF Portlets
	DOM Manipulation within a JSF Portlet
	Form Validation within a JSF Portlet

	Ajax Enablement
	Ajax in JSF Portlets
	Partial Page Rendering Pattern
	Stateless API Request Pattern
	Portlet Aware API Request Pattern
	Controlling the WLP Ajax Framework

	Localizing JSF Portlets
	Configuring the JSF Locale
	Resource Bundles
	Listing Locales in faces-config.xml
	Ensuring Parity in Configured WLP and JSF Locales
	Modularizing Resource Bundles

	Preparing JSF Portlets for Production
	Configuration Tasks
	Performance and Scalability
	Securing JSF Portlets

	Tips for Logging, Iterative Development, and Debugging of JSF Portlets
	Enabling Logging
	Using Iterative Development for JSF Portlets
	Debugging

	Consolidated List of Best Practices
	Configuration
	Namespacing
	Logging, Iterative Development, Debugging
	Custom JavaScript
	Preparing JSF Portlets for Production
	Interportlet Communication
	Scopes
	State Sharing Patterns
	Rendering Lifecycles
	Ajax Enablement
	Login Portlet

	Part III Staging
	Assembling Portlets into Desktops
	Portlet Library
	Managing Portlets Using the Administration Console
	Copying a Portlet in the Library
	Modifying Library Portlet Properties
	Modifying Desktop Portlet Properties
	Deleting a Portlet
	Managing Portlets on Pages
	Overview of Portlet Categories
	Overview of Portlet Preferences
	Creating a Portlet Preference
	Editing a Portlet Preference
	Overview of Delegated Administration
	Overview of Visitor Entitlements

	Deploying Portlets
	Deploying Portlets

	Part IV Production
	Managing Portlets in Production
	Pushing Changes from the Library into Production
	Transferring Changes from Production Back to Development

	Part V Appendixes
	Portlet Database Data
	Database Structure for Portlet Data
	Removing Portlets from Production

	Portlet Resources in the Database
	Types of Database Tables
	Management of Portlet Data
	How the Database Shows Removed Portlets

	JSF Portlet Development
	Code Examples
	The JSFPortletHelper Class
	Login Portlet Example

	Using Facelets
	Introduction to Facelets
	Configuring Facelets Support

	Using Tomahawk
	What is Apache MyFaces Tomahawk?
	Support for Tomahawk in WLP
	Installing and Configuring Tomahawk
	Resolving the Duplicate ID Issue
	Referring to Resources
	forceId Attribute
	File Upload

	Integrating Apache Beehive Pageflow Controller
	Apache Beehive Page Flow
	JSF and Page Flows
	Configuring the JSF Integration with Page Flows

	Building Unsupported JSF Implementations

