
Oracle® WebLogic Integration
Using Integration Controls

10g Release 3 (10.3)

November 2008

Oracle WebLogic Integration Using Integration Controls, 10g Release 3 (10.3)

Copyright © 2007, 2008, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents
Using Controls in Business Processes
Adding Control Nodes to Your Business Process. 1-1

Designing the Communications for Control Nodes . 1-2

Using Integration Controls in Web Services or Page Flows. 1-3

Controls and Transactions

Dynamic Transformation Control
Overview: Dynamic Transformation Control . 3-2

Creating a New Dynamic Transformation Control . 3-3

Using a Dynamic Transformation Control . 3-6

Example: Dynamic Transformation Control. 3-7

ebXML Control
Overview: ebXML Control . 4-2

Creating an ebXML Control . 4-2

Using an ebXML Control . 4-8

Example: ebXML Control. 4-12

Email Control
Overview: Email Control . 5-2

Configuring an Email Control. 5-2

Creating a New Email Control . 5-4

Sample Email Messages . 5-6
Using Integration Controls iii

File Control
Overview: File Control. 6-2

Creating a New File Control . 6-2

Using a File Control . 6-6

Using File Control for SFTP . 6-11

Example: File Control . 6-34

Http Control
Creating a New Http Control . 7-3

Specifying Http Control Properties . 7-7

Using HTTP Methods to Set Properties . 7-7

Logging Debug Messages and Exceptions. 7-19

Http Control Caveats . 7-20

The HTTP Event Generator . 7-20

Message Broker Controls
Message Broker Publish Control . 8-2

Message Broker Subscription Control . 8-8

Using Event Generators to Publish to Message Broker Channels 8-16

MQSeries Control
Overview: MQSeries Control. 9-2

Prerequisites to Adding an MQSeries Control . 9-3

Creating and Configuring a New Instance of the MQSeries Control. 9-3

Using the MQSeries Control Exit Implementation . 9-10

Understanding Transaction Management. 9-12

Using Message Descriptors . 9-14

Sending and Receiving Messages . 9-25

Working with MQSeries Message Descriptor Format . 9-33
iv Using Integration Controls

Setting Dynamic Properties . 9-37

Configuring SSL In MQSeries Control . 9-40

Using the MQSeries Event Generator . 9-44

Process Control
Overview: Process Control . 10-2

Creating a New Process Control. 10-2

Process Control Methods . 10-7

Process Control Design Time Considerations . 10-9

Process Control Run-Time Considerations. 10-11

Maintaining Process Controls. 10-14

Using Dynamic Binding . 10-14

Notes on Process Controls Annotations . 10-15

RosettaNet Control
Overview: RosettaNet Control . 11-2

Creating a RosettaNet Control . 11-2

Using a RosettaNet Control . 11-5

Example: RosettaNet Control . 11-14

Service Broker Control
Overview: Service Broker Control . 12-2

Creating a New Service Broker Control . 12-3

Setting Service Broker Properties. 12-7

Service Broker Control Design Time Considerations . 12-9

Service Broker Control Run-Time Considerations. 12-12

Maintaining Service Broker Controls . 12-15

Using Dynamic Binding . 12-15

How the Service Broker Control Uses Dynamic Binding . 12-16
Using Integration Controls v

Notes on Service Broker Control Annotations. 12-21

OSB Control
Overview: OSB Control . 13-2

Creating an OSB Control . 13-2

OSB Control Annotations . 13-10

Example OSB Control . 13-16

TIBCO Rendezvous Control
Overview: Rendezvous Control . 14-2

Creating and Configuring a New Instance of the TIBCO Control. 14-2

The Java Files for a TIBCO Control . 14-5

Using Subject in a Message . 14-7

Sending and Receiving Messages . 14-8

Setting Dynamic Properties . 14-13

TPM Control
Overview: TPM Control. 15-2

Creating a TPM Control . 15-3

Using a TPM Control . 15-4

Example: TPM Control . 15-4

WLI JMS Control
Overview: Messaging Systems and JMS . 16-2

Messaging Scenarios Supported by the WLI JMS Control . 16-4

Messaging Scenarios Not Supported by the WLI JMS Control. 16-7

Creating a WLI JMS Control . 16-8

Worklist Controls
Overview: Worklist Controls . 17-2
vi Using Integration Controls

Creating a New Task Control . 17-4

Creating a New Task Batch Control . 17-6

Using Task and Task Batch Controls in Business Processes . 17-8

Example: Task Control . 17-8

WLI Timer Control
Overview: WLI Timer Control . 18-1

Creating a WLI Timer Control . 18-2

Using a WLI Timer Control . 18-2

Specifying Time on a WLI Timer Control . 18-4

 . 18-7

XML MetaData Cache Control
Overview: XML MetaData Cache Control. 19-2

Sharing Cache Data Within a Cluster . 19-3

Creating an XML MetaData Cache Control . 19-4

Understanding the XML MetaData Cache Control Get Method 19-5

Using the XML MetaData Cache Control in a Business Process. 19-6

Example: XML MetaData Cache Control . 19-8

Using MBean APIs to Manage an XML MetaData Cache. 19-9

Using Control Factories

Using Message Attachments
Using Integration Controls vii

viii Using Integration Controls

C H A P T E R 1
Using Controls in Business Processes
When you access a resource through a control, your interaction with the resource is greatly
simplified; the underlying control implementation takes care of most of the details for you. You
add an instance of a control to your business process project and then invoke its methods. All
controls expose Java interfaces that can be invoked directly from your business process.

Designing the business process interactions with resources via controls includes:

Adding Control Nodes to Your Business Process

Designing the Communications for Control Nodes

Using Integration Controls in Web Services or Page Flows

Adding Control Nodes to Your Business Process
You add Control nodes to your business process to represent points in the business process at
which you design interactions with resources via controls:

Control Send nodes represent points in business processes at which the business processes
send messages to resources via controls.

Control Receive nodes represent points in business processes at which the business
processes receive asynchronous messages from resources via controls. Business processes
wait at these nodes until they receive a message from the specified control.

Control Send with Return nodes handle synchronous exchange of messages between
business process and resources via controls.
Using Integration Controls 1-1

Using Cont ro ls i n Bus iness P rocesses
To learn how to add Control nodes to your business processes, see Create Control Nodes in Your
Business Process.

Designing the Communications for Control Nodes
Node builders provide task-driven interfaces that allow you to specify the logic required at the
nodes in your business process. Control nodes provide control-specific node builders. The tasks
you must complete to design the interaction with your resource depend on which control you use
and the methods it exposes.

Designing the communications between your business process and resources includes adding
instances of controls to your business process project, then designing the interaction with the
controls at the appropriate point in the business process. To learn how, see:

Adding Instances of Controls to Your Business Process Project

Configuring Control Nodes

To help you specify the communication with a given control, customized interfaces are provided
for controls. To learn about specific controls, see the following topics:

Integration controls:

– Dynamic Transformation Control

– ebXML Control

– Email Control

– File Control

– Http Control

– Message Broker Controls

– MQSeries Control

– Process Control

– RosettaNet Control

– Service Broker Control

– OSB Control

– TPM Control

– WLI JMS Control
1-2 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideControlsProperties.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideControlsProperties.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideControlsProperties.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideControlsProperties.html

Using In tegrat ion Cont ro ls in Web Serv ices o r Page F lows
– Worklist Controls

– WLI Timer Control

– XML MetaData Cache Control

Additional built-in controls:

– JDBC Control

– EJB Control

– JMS Control

– Timer Control

– Service Control

Using Integration Controls in Web Services or Page
Flows

You can use a subset of the integration controls in web services and page flows. If you are using
Oracle WebLogic Integration, you can use the following integration controls in a web service
(JWS) or page flow (JPF): ALSB, Email, File, Process, Task, and Task Worker controls.
Using Integration Controls 1-3

http://download.oracle.com/docs/cd/E12840_01/wlw/docs103/guide/controls/system/jdbc/navDatabaseControl.html
http://download.oracle.com/docs/cd/E12840_01/wlw/docs103/guide/controls/system/ejb/ejb3/navEJB3Control.html
http://download.oracle.com/docs/cd/E12840_01/wlw/docs103/guide/controls/system/jms/navJMSControl.html
http://download.oracle.com/docs/cd/E12840_01/wlw/docs103/guide/controls/system/timer/navTimerControl.html
http://download.oracle.com/docs/cd/E12840_01/wlw/docs103/guide/controls/system/service/navServiceControl.html

Using Cont ro ls i n Bus iness P rocesses
1-4 Using Integration Controls

C H A P T E R 2
Controls and Transactions
Business processes in Oracle WebLogic Integration are transactional in nature. Every step of a
process is executed within the context of a JTA transaction. To learn about how transactions work
within a business process, see Transaction Boundaries.

Some integration controls are transactional. This means that the control is able to participate in
transactions within a business process. Whether or not a control is transactional depends on both
the underlying resource and the specific control implementation. Also, transactional behavior
differs depending on whether the control call is synchronous or asynchronous. To learn about
synchronous or asynchronous operations in business processes, see Building Synchronous and
Asynchronous Business Processes.

For synchronous control calls:

If the control and associated resource are transactional, the resource participates in the
current process transaction

If the control and associated resource are not transactional, changes to the resource occur
outside the scope of the current transaction and changes are not rolled back in case of
failure

For asynchronous control calls:

The process transaction is never propagated to the resource

Asynchronous control calls are buffered by default

Asynchronous call to the resource are not enqueued until the transaction is committed

On rollback, asynchronous messages are de-queued
Using Integration Controls 2-1

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideTransaction.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideSync.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideSync.html

Cont ro ls and T ransac t ions
The Process control is a special case, since it involves processes calling subprocesses.

For synchronous operations:

 The transaction is always propagated to the subprocess

An un-handled exception in a subprocess causes the shared transaction to be marked as
rollback only. In this case, both the subprocess and the calling process are rolled back.

Setting the process property onSyncFailure=rethrow on the subprocess overrides this
behavior and results in the following:

– Failure does not force a rollback

– Subprocess throws an exception

– Calling process catches the exception, just as with any other control exception

For asynchronous operations

The transaction is not propagated to the subprocess

The message is buffered on the subprocess’ queue

The subprocess runs in its own transaction

The control call is successful if the message is properly enqueued on the subprocess’ queue

Failure of the subprocess is not communicated to the calling process. For example, an
unhandled exception causes the subprocess to fail but the caller process is not notified

The following integration controls are transactional:

ALSB

ebXML

Message Broker

MQSeries

Process (see the previously listed qualifications)

RosettaNet

WLI JMS

Worklist

The following integration controls are not transactional:
2-2 Using Integration Controls

File

Email

Http

Service Broker

TPM

Good Practice in Creating Web Service Controls for a
Business Process Application
When you call Web Service controls asynchronously from business processes, it is recommended
that you buffer the asynchronous call. After creating the Web Service control, specify that the
asynchronous calls from the business process to the control are buffered. By doing so, you ensure
that the message sent from the business process to the Web service is enqueued. An asynchronous
call to a resource marks the boundary of a transaction in your business process; a call to a resource
is not enqueued until the transaction is committed. In other words, by buffering the call to the
resource, you ensure that the transaction is committed before any response from the resource is
attempted. If you do not buffer the call, your business process must wait for the HTTP
acknowledgement to occur before the transaction is committed, leaving open the possibility that
the resource attempts to respond to the business process before the HTTP acknowledgement
occurs.

For an example of buffered asynchronous calls to Web Services, see how the taxCalculation,
priceProcessor, and availProcessor Web Service controls are used in Tutorial: Building Your
First Business Process.
Using Integration Controls 2-3

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/jpdtutorial/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/jpdtutorial/index.html

Cont ro ls and T ransac t ions
2-4 Using Integration Controls

C H A P T E R 3
Dynamic Transformation Control
A Dynamic Transformation control provides a business process with the ability to dynamically
select and implement a transformation during run time. Specifically, it provides the ability to
choose which XQuery, XSLT, or MFL file is invoked at run time. For example, if you have an
integration hub that receives documents from different regional offices, you can use the Dynamic
Transformation control to perform different transformations based on the area code of each
regional office.

For general information about using controls, see Chapter 1, “Using Controls in Business
Processes.”

Topics Included in This Section
Overview: Dynamic Transformation Control

Provides an overview of the Dynamic Transformation control.

Creating a New Dynamic Transformation Control
Describes how to create a new Dynamic Transformation control using the Oracle
Workshop for WebLogic graphical design interface.
Using Integration Controls 3-1

Dynamic T ransfo rmat ion Cont ro l
Overview: Dynamic Transformation Control
A Dynamic Transformation control provides a business process with the ability to dynamically
select which transformation is invoked at run time.

This control provides eight base methods and the ability to create custom methods for selecting
which file to use for your transformation. You can base the selection on the method context or
the content of the message. The dynamic selection of the transformation is done through setting
URIs that point to different transformation files. The available types of transformations are as
follows:

XQuery—contained in .xq files

XSL—contained in .xsl files

MFL—contained in .mfl files

The Dynamic Transformation control uses transformations that have already been created, such
as those created with the Transformation control. Be sure to test your transformation before
creating a Dynamic Transformation control. To learn more about Transformation controls and
transforming data, see Transformation Data Using XQuery.

Before calling a Dynamic Transformation control, in the process of developing your business
process, you need to design the logic that determines which transformation to run. You can use a
Decision node or other controls, such as the Database or XML Metadata controls, for this
purpose.

The Dynamic Transformation control provides the following methods:

Dynamic XQuery Transformation

– Method with HashMap. Use this base method to select the transformation when the
argument type and values are unknown at design time. This method requires that you
provide a HashMap with the variables and the types along with the XQuery file. The
XML documents can be either typed or untyped. Use a Perform node to specify these
values, as shown in the following:

public void perform() {
_map = new java.util.HashMap();
// The name should be the variable Name and the value the Document
passed
_map.add("CustomerDoc",customerDoc);
}
3-2 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/dtguide/dtguideMapper.html

Creat ing a New Dynamic T rans fo rmat i on Cont ro l
– Method with XmlObjects In XmlObjects Out. Use this base method to choose which
XQuery to use for transforming untyped XML documents to untyped XML documents.

– Custom method. When you know the input types (arguments) at design time, you can
define a custom method to choose which XQuery file to use for typed, untyped, or Java
class documents.

Dynamic XSLT Transformations

– Method with HashMap. Use this base method to select the transformation when the
argument type and values are unknown at design time. This method requires that you
provide a HashMap with the variables and the types along with the XSL file. The XML
documents can be either typed or untyped. Use a Perform node to specify these values.
See Dynamic XQuery Transformation.

– Custom method. When you know the input types (arguments) at design time, you can
define a custom method to choose which XSL file to use for untyped documents
(XmlObject).

MFL—Five base methods provide the ability to select which MFL is invoked at run time
based on the message context. Both binary-to-XML and XML-to-binary transformations
are supported.

Note: To learn about the available base methods, see Using the Base Methods in the Dynamic
Transformation Control.

Related Topics
Transformation Data Using XQuery

Creating a New Dynamic Transformation Control
This topic describes how to create a new Dynamic Transformation control.

For information on where to add control instances in a business process, see “Adding Instance of
Controls to Your Business Process Project”.

To Create a New Dynamic Transformation Control

Note: Before creating a Dynamic Transformation control, during design time, you need to
create or import and test your transformation files. To learn more, see Guide to Data
Transformation.

1. Open your Oracle WebLogic Integration application in Oracle Workshop for WebLogic.
Using Integration Controls 3-3

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/dtguide/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideControlsProperties.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideControlsProperties.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/dtguide/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/dtguide/index.html

Dynamic T ransfo rmat ion Cont ro l
2. In the Package Explorer pane, double-click the business process (Process.java file) to which
you want to add the Dynamic Transformation control. The business process is displayed in
the Design view.

3. Click on the Data Palette and from the drop-down list choose Integration Controls to
display the list of controls used for integrating applications.

Note: If the Data Palette is not visible, from the menu bar, click Window > Show View >
Data Palette.

4. Select Dynamic Transformation.

The Insert Control: Dynamic Transformation dialog box is displayed (see Figure 3-1).

Figure 3-1 Insert Control: Dynamic Transformation

5. In the Insert Control: Dynamic Transformation dialog box enter the following details:

– In the Field Name, type the variable name used to access the new Dynamic
Transformation control instance from your business process. The name you enter must
be a valid Java identifier.

– In the Insertion point, from the drop-down list select the insertion node, you want to
add the control.

– Decide whether you want to make this a control factory by selecting or clearing the
Make this a control factory that can create multiple instances at runtime check
box.

– Click Next.
3-4 Using Integration Controls

Creat ing a New Dynamic T rans fo rmat i on Cont ro l
The Create Control dialog-box appears.

6. In the Create Control dialog box enter the following details:

– In the Name field, type the name of your new control file.

– Decide whether you want to add comments as configured in the properties of the
current project and select or clear the Generate comments check box.

– Click Finish.

A new Dynamic Transformation control and an instance of it are created and the instance
of the control is displayed on the Controls tab in the Data Palette. The new file is
displayed in the Package Explorer pane in Oracle Workshop for WebLogic. (You can
double-click any control file to view or edit it in the Source view.)

7. To display the base methods provided on a Dynamic Transformation control, expand the
control instance by clicking the + beside its name on the Data Palette (see Figure 3-2).

Figure 3-2 Control Instances

8. After you create an instance of the Dynamic Transformation control in your business process,
you can do the following:

– Design the interaction of the business process with the Dynamic Transformation control
by simply dragging and dropping the base methods from the Data Palette onto the
Design view at the point in your business process at which you want to design the
interaction. To learn more, see Using the Base Methods in the Dynamic Transformation
Control.
Using Integration Controls 3-5

Dynamic T ransfo rmat ion Cont ro l
– View and edit the properties of the control type or the instance of that control type in
the JPD Configuration pane. The control type is represented as a Java file in the
Package Explorer pane and the instance is represented in the Data Palette. To learn
how to use the JPD Configuration pane for specifying properties for control types
versus control instances, see Setting Control Properties and Annotations.

Using a Dynamic Transformation Control
This section describes ways to use a Dynamic Transformation control. It contains the following
topic:

Using the Base Methods in the Dynamic Transformation
Control
Once you have created the Dynamic Transformation control, you can add a control instance to
your business process and invoke its base methods from within your application.

To learn about adding an instance of the Dynamic Transformation control to your business
process, see Create Control Nodes in Your Business Process.

The following methods are available:

XmlObject[] performXQuery(String xQueryName,HashMap inputList)

Executes an XQuery and the arguments that it operates on based on message context.

XmlObject performXQueryOnXmlObject(String xQueryName,XmlObject
inputDoc,String varName)

Executes an XQuery that takes an XmlObject in and XmlObject out.

XmlObject performXSLT(String xslTemplate,XmlObject source,HashMap
inputList)

Executes an XSLT and the arguments that it operates on based on message context.

XmlObject convertBytesToXML(byte[] data,String mflUrl)

Executes MFL transformations.

XmlObject convertInputStreamToXML(InputStream iStream,String mflUrl)

Executes MFL transformations.

XmlObject convertRawDataToXML(RawData rawData, String mflUrl)

Executes MFL transformations.
3-6 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideControlsProperties.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideControlsProperties.html

Example : Dynamic T ransfo rmat i on Cont ro l
byte[] convertXmlToBytes(XmlObject xmlObject,String mflURL)

Executes MFL transformations from XML data to non-XML data.

RawData convertXmlToRawData(XmlObject xmlObject,String mflURL)

Executes MFL transformations from XML data to non-XML data.

Note: If the xq or mfl resource is required to be accessible from a different application and
not your current application, the resource will have to be copied under WebContent
of the Web Project of your current application.

The @DynamicTransformationControl.Ddtf,
@DynamicTransformationControl.Xquery, @DynamicTransformationControl.Xsl
annotations control the behavior of these methods. Additional information is also available in the
Interface DynamicTransformation.

Related Topics
Creating Schema Projects

Example: Dynamic Transformation Control
To see an example of using a Dynamic Transformation control in a business process, see
WebLogic Integration Sample Code.
Using Integration Controls 3-7

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/dtguide/dtguideMapper.html
http://www.oracle.com/technology/sample_code/products/wli/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/DynamicTransformationControl.html

Dynamic T ransfo rmat ion Cont ro l
3-8 Using Integration Controls

C H A P T E R 4
ebXML Control
The ebXML protocol (Electronic Business using eXtensible Markup Language) is a modular
suite of specifications that enables enterprises of any size and in any geographical location to
conduct business over the Internet. It is sponsored by UN/CEFACT and OASIS. To learn about
ebXML, see http://www.ebXML.org.

The ebXML control enables Oracle Workshop for WebLogic business processes to exchange
business messages and data with trading partners via ebXML. The ebXML control supports both
the ebXML 1.0 and ebXML 2.0 messaging services. You use ebXML controls in initiator
business processes to manage the exchange of ebXML business messages with participants. For
an introduction to ebXML solutions, see Introducing Trading Partner Integration.

Topics Included in This Section
Overview: ebXML Control

Describes the ebXML control.

Creating an ebXML Control
Describes how to create and configure a ebXML control.

Using an ebXML Control
Describes how to use an ebXML control in a business process.
Using Integration Controls 4-1

http://www.ebXML.org

ebXML Cont ro l
Example: ebXML Control
Provides links to ebXML examples.

Related Topics
Introducing Trading Partner Integration

Trading Partner Management

Interface EBXMLControl

Building ebXML Participant Business Processes

Annotation Type EbXML

Annotation Type EbXML method

Overview: ebXML Control
You use ebXML controls in initiator business processes to exchange ebXML business messages
with participants. The ebXML control provides methods for sending and receiving business
messages, as described in Interface EBXMLControl. Callbacks handle ebXML messages,
acknowledgements, and errors received from the participant.

You should not use ebXML controls in participant business processes to respond to incoming
messages. Instead, you use Client Request nodes to handle incoming business messages from
the initiator and Client Response nodes to handle outgoing business messages to the initiator. To
learn about building participant business processes that use ebXML, see Building ebXML
Participant Business Processes. To learn about designing business processes that use ebXML, see
Introducing Trading Partner Integration.

At run-time, the ebXML control relies on trading partner and service information stored in the
TPM repository. To learn about the TPM repository, see Introducing Trading Partner
Integration.

To learn about adding or updating information in the TPM repository, see Trading Partner
Management in Using the Oracle WebLogic Integration Administration Console.

Creating an ebXML Control
This topic describes how to create a new ebXML control. Each ebXML control instance
represents a single ebXML conversation. For each separate ebXML conversation in a business
process, you must add a separate ebXML control instance.
4-2 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tpintro/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/EBXMLControl.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideEbXML.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/wli/jpd/EbXML.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/wli/jpd/EbXMLMethod.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/EBXMLControl.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideEbXML.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideEbXML.html

Creat ing an ebXML Cont ro l
To create a new ebXML control

1. In the Package Explorer pane, double-click the business process to which you want to add
the ebXML control. The business process is displayed in the Design view.

2. Click on the Data Palette and from the drop-down list choose Integration Controls to
display the list of controls used for integrating applications.

Note: If the Data Palette view is not visible in Oracle Workshop for WebLogic, click
Window > Show View > Data Palette from the menu bar.

3. Select Ebxml.

The Insert control: Ebxml dialog box appears as shown in Figure 4-1.

Figure 4-1 Insert control: Ebxml

4. In the Insert control: Ebxml dialog box enter the following details:

– In the Field Name, type the variable name used to access the new ebXML control
instance from your business process. The name you enter must be a valid Java
identifier.

– In the Insertion point: from the drop-down list select the point where you want the
field name to be inserted in the process file.

– Decide whether you want to make this a control factory and select or clear the Make
this a control factory that can create multiple instances at runtime check box.

– Click Next.

The Create Control wizard appears.
Using Integration Controls 4-3

ebXML Cont ro l
5. In the Create Control wizard enter the following details:

– In the Name field, type the name of your new control extension file.

– Decide whether you want to add comments as configured in the properties of the
current project and select or clear the Generate comments check box.

– Click Next.

The Insert control: Ebxml dialog box appears (see Figure 4-2).

Figure 4-2 Ebxml Wizard

6. In the Insert control: Ebxml dialog box, specify the following information as shown in
Table 4-1.
4-4 Using Integration Controls

Creat ing an ebXML Cont ro l
Table 4-1 Insert Control Properties

Field Description

from Optional. Business ID for the initiator in this conversation. One
of the following values:
• Empty—Uses the default trading partner.
• Static Value—Business ID of the initiating trading partner.

The specified business ID must be configured in the TPM
repository.

To specify the initiator business ID dynamically, use selectors or
use the setProperties method in a Control Send node, as
described in Dynamically Specifying Business IDs.

You can also obtain this value by using XQuery selectors on
process variables or method parameters in an incoming
message.

Note: If the value of the "from" trading partner is left
unspecified via the to attribute, to-selector attribute, or
via setProperties, the system will use the ID of the local
trading partner marked as "default" in the TPM console.

to Optional. Business ID for the participant in this conversation.
One of the following values
• Empty—Uses the default trading partner.
• Static Value—Business ID of the participating trading

partner. The specified business ID must be configured in the
TPM repository.

To specify the participant business ID dynamically, use
selectors or use the setProperties method in a Control
Send node, as described in Dynamically Specifying Business
IDs.

You can also obtain this value by using XQuery selectors on
process variables or method parameters in an incoming
message.

serviceName Required. Name of an ebXML service. For initiator and
participant business processes that participate in the same
conversation, the settings for ebxml-service-name must be
identical. This service name corresponds to the
eb:Service entry in the ebXML message envelope.
Using Integration Controls 4-5

ebXML Cont ro l
method-arg-type Required. Type of attachment. One of the following values:
• XmlObject—Default. Represents data in untyped XML

format. The XML data is not specified at design time.
• XmlObject[]—Array containing one or more XmlObject

elements.

Note: The XmlObject[] option is not available from the
drop-down menu on the control wizard window. It has
to be specified in source view, see Specifying
XmlObject and RawData Array Payloads.

• RawData—Represents any non-XML structured or
unstructured data for which no MFL file (and therefore no
known schema) exists.

• RawData[]—Array containing one or more RawData
elements.

Note: The RawData[] option is not available from the
drop-down menu on the control wizard window. It has
to be specified in source view, see Specifying
XmlObject and RawData Array Payloads.

• MessageAttachment[]—Array containing one or more
parts of an ebXML business message. Message parts can be
untyped XML data (XmlObject data type) or non-XML
data (RawData data type). Used when sending different
kinds of payloads (XML and non-XML) in the same
message. The actual number of message parts might not be
known until processed.

To learn about working with MessageAttachment objects,
see Using Message Attachments.

To learn more about data types, see Working with Data Types.

Table 4-1 Insert Control Properties
4-6 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideDataTypes.html

Creat ing an ebXML Cont ro l
7. Click Finish.

An ebXML control instance is displayed in the Controls tab.

After you create the control file, the name of the control file becomes available as a service on
the Services tab in the Oracle Workshop for WebLogic.

Specifying XmlObject and RawData Array Payloads
The XmlObject[] and RawData[] payload options are only available in source view. You can
configure your ebXML control to use these options after you have created it.

To Specify the Payload in Source View

1. Open your control definition file. You can do this by double-clicking on the file in the
Package Explorer pane.

ebxmlActionMode Action mode for this ebXML control. Determines the value
specified in the eb:Action element in the message header of
the ebXML message, which becomes important in cases where
multiple message exchanges occur within the same
conversation. One of the following values:
• default—Sets the eb:Action element to

SendMessage (default name).
• non-default—Sets the eb:Action element to the

name of the method (on the ebXML control) that sends the
message in the initiator business process. For sending a
message from the initiator to the participant, this name must
match the method name of the Client Request node in the
corresponding participant business process. For sending a
message from the participant to the initiator, the method
name in the callback interface for the client callback node in
the participant business process must match the method
name (on the ebXML control) in the control callback
interface in the initiator business process. Using
non-default is recommended to ensure recovery and
high availability.

If unspecified, the ebxml-action-mode is set to
non-default.

xQueryVersion Specify the version of the XQuery used.

Table 4-1 Insert Control Properties
Using Integration Controls 4-7

ebXML Cont ro l
2. Click the Source view tab.

3. In the request and response methods, change the payload specified to the payload type that
you want to use.

The following restrictions apply to payload specifications:

– If an array of any type is used, an argument of the same type cannot follow that array in
the argument list. In other words, an array must be the last argument specified of that
type.

– If a MessageAttachment[] type is one of your arguments, no other array (including a
MessageAttachment[]) is allowed in the argument list.

4. After you have applied your changes, save and close your control definitions file.

Note: The order of arguments which you used in the control definition file and the order of the
arguments in the node on the participant business process which is listening for your
message must match.

To learn more about the request and response methods, see Interface EBXMLControl.

Using an ebXML Control
All Oracle Workshop for WebLogic controls follow a consistent model. Many aspects of using
ebXML controls are identical or similar to using other Oracle Workshop for WebLogic controls.

After you have added an ebXML control to an initiator business process, you can use methods on
the control to exchange ebXML messages with participant trading partners. In the Design View,
you expand the node for the ebXML control in the Data Palette to expose its methods, and then
drag and drop the methods you want onto the business process. Common tasks include:

Sending Messages to Participants

Handling Responses from Participants

Dynamically Specifying Business IDs

To learn more about these methods, see Interface ebXML Control.

Sending Messages to Participants
To send an ebXML message to a participant, you use a send message method in a Control Send
node. By default, the control file instance includes a generated send method named request. To
add the Control Send node to a business process, you drag this method from the Data Palette onto
4-8 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/EBXMLControl.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/EBXMLControl.html

Us ing an ebXML Cont ro l
the business process. For business processes that involve multiple round-trips, you need to create
a separate Control Send node for each operation that involves sending an ebXML message to the
participant.

Note: The default return type for the request method is void. However, you can also specify
the return type to be XmlObject. If you use XmlObject as the return type, the content
the XmlObject is the ebXML envelope data.

After creating the Control Send node, you need to specify the payload parts and their Java data
types (see Table 4-2).

Attachments can also be typed XML or typed MFL data as long as you specify the corresponding
XML Bean or MFL class name in the parameter.

If you use arrays as attachment type, certain restrictions apply to the order of your arguments. For
more informations, see Specifying XmlObject and RawData Array Payloads.

You can specify business IDs statically (using the @EBXMLControl.EBXML Annotation) or
dynamically. To learn about specifying business IDs dynamically, see Dynamically Specifying
Business IDs.

Table 4-2 Data Types

Type Description

XmlObject Data in untyped XML format.

XmlObject[] An array containing one or more XmlObject elements.

RawData Any non-XML structured or unstructured data for which no MFL
file (and therefore no known schema) exists.

RawData[] An array containing one or more RawData elements

MessageAttachment
[]

Array containing one or more parts of an ebXML business
message. Message parts can be untyped XML data (XmlObject
data type) or non-XML data (RawData data type). Used when
sending different kinds of payloads (XML and non-XML) in the
same message. The actual number of message parts might not be
known until processed. To learn about working with
MessageAttachment[] objects, see Using Message
Attachments.
Using Integration Controls 4-9

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/EBXMLControl.EbXML.html

ebXML Cont ro l
Handling Responses from Participants
Participants can respond to initiator requests in the following ways:

acknowledge that the request was received

reply to the request

notify that an error occurred

To handle responses from participants, initiator business processes use the following callback
methods (see Table 4-3).

To receive an ebXML message from a participant, you use the appropriate method. To add the
method to a business process, you drag it from the Data Palette onto the business process, which
creates a Control Receive node. For business processes that involve multiple round-trips, you
need to create a separate Control Receive node for each operation that involves receiving an
ebXML message from the participant.

For the response method, if you specify non-default in the ebxml-action-node, you can
rename the Control Receive node to make it more descriptive, such as getInvoice. However,
if you specify default in the ebxml-action-node, you must use the default name (onMessage)
and the business process can have only one onMessage Control Receive node.

For the response method, after creating the Control Receive node, you need to specify the
payload parts and their Java data type for the incoming message. To learn about valid data types,
see Sending Messages to Participants.

The onError and onAck methods are system-level methods. Both use the EnvelopeDocument
argument, which will contain an ebXML envelope when the message is received. As they are
system-level methods, these arguments are not seen in the default control but you can drag them
onto the business process from the Data Palette. If your application contains a schema project

Table 4-3 Callback methods

Method Name Description

onAck Handles the acknowledgement of the message receipt from the
participant.

onError Handles an error sent by the participant.

response Handles the message reply sent by the participant.
4-10 Using Integration Controls

Us ing an ebXML Cont ro l
that includes the envelope.xsd file, and if the schema is already built, you can extract the values
you want by creating a query (in the XQuery language) using the mapper functionality of Oracle
Workshop for WebLogic. To learn about creating queries with the mapper functionality, see
Transforming Data Using XQuery.

You can retrieve the message envelope of an incoming ebXML message by using the envelope
annotation from the com.bea.control.EBXMLControl.EbXMLMethod based annotations. To
learn more about the envelope annotation, see EBXMLControl.EbxmlMethod Annotation.

Dynamically Specifying Business IDs
The ebXML control adds the capability of dynamically binding business IDs for the initiator
(from property) and the participant (to property) of the control. Dynamic binding of properties
can be achieved the following ways:

Using selectors

Using the setProperties() method

Order of Precedence
The hierarchy of property settings is as follows, starting with the approach having the highest
precedence:

1. Properties dynamically bound using selectors (see EBXMLControl.EbxmlMethod
Annotation) and the DynamicProperties.xml file

2. Properties set using the setProperties() method

3. Properties set at the control instance level using the Annotation EBXMLControl.EbXML in
the business process.

4. Properties set at control class level using Annotation EBXMLControl.EbXML in the
Dynamic selectors have a higher precedence than static selectors.

Using Selectors
Using a dynamic selector, ebXML controls allow you to decide at run time which one of multiple
trading partners to send a business message to. When you specify a dynamic selector, you build
and test an XQuery that retrieves the business ID you need.

To use a dynamic selector

1. In the Data Palette, select the ebXML control.
Using Integration Controls 4-11

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/EBXMLControl.EbxmlMethod.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/EBXMLControl.EbxmlMethod.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/EBXMLControl.EbXML.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/EBXMLControl.EbXML.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/dtguide/dtguideMapper.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/EBXMLControl.EbxmlMethod.html

ebXML Cont ro l
2. In the Properties pane, locate the from-selector or to-selector attributes.

3. Select an element from the schema to associate it with the control. The resulting query appears
in the XQuery area.

Using setProperties
The setProperties method accepts an ebXMLPropertiesDocument parameter. The
ebXMLPropertiesDocument type is an XML Beans class that is generated out of the
corresponding schema element defined in DynamicProperties.xsd. The
DynamicProperties.xsd file is located in the schemas/system folder, or in the utility folder of
the Process Applications.

If your application contains a schema project that includes the DynamicProperties.xsd file,
and if the schema is already built, you can extract the values you want by creating a query (in the
XQuery language) using the mapper functionality of Oracle Workshop for WebLogic. To learn
about creating queries with the mapper functionality, see Transforming Data Using XQuery.

To set business IDs dynamically using the setProperties method

1. Verify that your application contains a schema project that includes the
DynamicProperties.xsd file, and that the schema is already built.

2. Create a Control Send node in a business process.

3. From the Data Palette, drag the setProperties method and drop it onto the Control Send
node.

4. In the Send Data tab, select Transformation, specify variables that contain the to and from
values, and then create a transformation to map them to the corresponding elements in
ebXMLPropertiesDocument.

To display the current property settings, use the getProperties() method.

Example: ebXML Control
For examples of how to use the ebXML control, see Tutorial: Building ebXML Solutions.
4-12 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/dtguide/dtguideMapper.html

Example : ebXML Cont ro l
Using Integration Controls 4-13

ebXML Cont ro l
4-14 Using Integration Controls

C H A P T E R 5
Email Control
The Email control enables Oracle WebLogic Integration business processes to send e-mail to a
specific destination. To receive e-mail, you must use the Email Event Generator. Use the Oracle
WebLogic Integration Administration Console to create and manage event generators. To learn
about creating and managing event generators, see Event Generators in Using the Oracle
WebLogic Integration Administration Console.

For information on how to add control instances to business processes, see Using Controls in
Business Processes.

Topics Included in This Section
Overview: Email Control

Provides an overview of the Email control.

Configuring an Email Control
Describes how to configure an existing Email control.

Creating a New Email Control
Describes how to create and configure an Email control.

Sample Email Messages
Provides sample e-mail messages with different formats.
Using Integration Controls 5-1

Emai l Cont ro l
Overview: Email Control
The Email control enables Oracle Workshop for WebLogic web services and business processes
to send e-mail to a specific destination. The body of the e-mail message can be text (plain, HTML,
or XML) or can be an XML object. The control is customizable, allowing you to specify e-mail
transmission properties in an annotation or to use dynamic properties passed as an XML variable.

The Email control is flexible, allowing you to send a variety of content types and various
combinations of body and attachments. For examples of e-mail messages that can be sent using
the Email control, see Sample Email Messages.

Related Topics
EmailControl Interface

Email Control Annotations

Configuring an Email Control
When you add an Email control to your business process, you can use an existing Email control
extension file (.java) or create a new one. Depending on the data type of the message body you
select, the .java file includes one of the following sendEmail utility methods. (Note the
different body types in the two methods.) You can specify the values for the fields as class
annotations in the .java file.

Message Body with Data Type Text
@EmailControl.send to="{to}"
cc="{cc}"
bcc="{bcc}"
subject="{subject}"
body="{body}"
attachments="{attachments}"
content-type="text/plain"
void sendEmail(String to, String cc, String bcc, String subject,
 String body, String attachments);
5-2 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/EmailControl.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/EmailControl.Email.html

Conf igur ing an Emai l Cont ro l
Message Body with Data Type XML Object

@EmailControl.send to="{to}"
cc="{cc}"
bcc="{bcc}"
subject="{subject}"
body="{body}"
attachments="{attachments}"
content-type="text/xml"
void sendEmail(String to, String cc, String bcc, String subject,
 XmlObject body, String attachments);

Customizing an Email Control
Depending on the needs of your application, you can customize the base control. When extending
the base control, you can add a method that specifies e-mail transmission properties in the
annotation. The customized method does not require the user to supply as many parameters.

A custom Email control.
@EmailControl
smtp-address = "smtp.myorg.com:25"
from-address = "joe.user@myorg.com"
from-name = "Joe User"
reply-to-address = "reply@myorg.com"
reply-to-name = "Customer Service"
header-encoding=""
username=""
password=""
public interface MyEmailControl extends

EmailControl,com.bea.control.ControlExtension
@EmailControl.send to="{to}"
subject="Thanks for your order"
body="{body}"
attachments="/weblogic/samples/order.txt"
 public void sendOrderConfirmation(String to,
 String body);
Using Integration Controls 5-3

Emai l Cont ro l
Using Dynamic Properties for an Email Control
You can override class-level annotations for an Email control by using dynamic properties. To
use dynamic properties, pass an XML variable that conforms to the control’s dynamic-property
schema to the control’s setProperties() method. You can retrieve the current property
settings using the getProperties() method.

The setProperties() method accepts an EmailControlPropertiesDocument parameter. The
EmailControlPropertiesDocument type is an XML Beans class that is generated out of the
corresponding schema element defined in DynamicProperties.xsd. The
DynamicProperties.xsd file is located in the system folder of New Process Applications or in
the system folder of the Schemas project.

The following is an example of an XML variable used to set dynamic properties:

<EmailControlProperties>
 <smtp-address>myorg.mymailserver.com:25</smtp-address>
 <from-name>Joe User</from-name>
 <from-address>joe.user@myorg.com</from-address>
 <reply-to-address>reply@myorg.com</reply-to-address>
 <reply-to-name>Joe User</reply-to-name>
</EmailControlProperties>

Creating a New Email Control
This topic describes how to create a new Email control.

To learn about Oracle Workshop for WebLogic controls, see Using Controls in Business
Processes.

To create a new Email control:

1. In the Package Explorer pane, double-click the business process (Process.java file) to which
you want to add the Email control. The business process is displayed in the Design view.

2. Click on the Data Palette and from the drop-down list choose Integration Controls to
display the list of controls used for integrating applications.

Note: If the Data Palette view is not visible in Oracle Workshop for WebLogic, click
Window > Show View > Data Palette from the menu bar.

3. Select Email.
5-4 Using Integration Controls

Creat ing a New Emai l Cont ro l
The Insert control: Email dialog box appears.

Figure 5-1 Insert control: Email

4. In the Insert control: Email dialog box enter the following details:

– In the Field Name, type the variable name used to access the new Email control
instance from your business process. The name you enter must be a valid Java
identifier.

– In the Insertion point: from the drop-down list select the point where you want the
field name to be inserted in the process file.

– Decide whether you want to make this a control factory and select or clear the Make
this a control factory that can create multiple instances at runtime check box.

– Click Next.

The Create Control dialog-box appears.

5. In the Create Control dialog box enter the following details:

– In the Name field, type the class name of your new control extension file.

– Decide whether you want to add comments as configured in the properties of the
current project and select or clear the Generate comments check box.

– Click Next.

6. In the Insert control- Email dialog box enter the following name and address parameters:

– SMTP host—The address of the SMTP server in host:port or host form. If the port is
not specified, the standard SMTP port of 25 is used.
Using Integration Controls 5-5

Emai l Cont ro l
– From address—The originating e-mail address

– From name—The Display name for the originating e-mail address

– Body type—Select the type of data contained in the message body.

– Click Finish.

If you need to specify reply information (name and address) or SMTP authentication parameters
(username and password or password alias), assign values to the following optional parameters
using the Properties pane:

reply-to-address—The e-mail address to reply to

reply-to-name—The display name for the reply to address

header-encoding—A string specifying the encoding to be used for the mail headers as
specified by from-name, reply-to-name, to, bc, bcc, subject, and attachments. If no
header encoding is specified, the system default encoding is used.

username—The username for servers that require authentication to send.

password—The password associated with the smtp-username.

password-alias—The password alias associated with the smtp-username. The alias is
used to look up the password in the password store. This attribute is mutually exclusive
with the smtp-password attribute.

Note: If the Properties pane is not visible in Oracle Workshop for WebLogic, choose
Window > Show View > Properties from the menu bar.

Email Control Methods
To learn about the methods available on the Email control, see the EmailControl Interface.

Sample Email Messages
The following samples show what types of messages can be sent using the Email control.

Example 1: HTML Body, No Attachments
If the supplied String body is an HTML document, you can set the content-type annotation
attribute to generate the following e-mail.
5-6 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/EmailControl.html

Sample Emai l Messages
To: user@myorg.com
Subject: Thanks for your order
Content-Type: text/html

<html>
<head>
<title>Thanks for your order</title>
...

Example 2: Body with Attachments
For a message body with attachments, the Email Control generates a multipart/mixed message
with the message body as the first part. Attachments are added as MIME parts with content types
in accordance with their file name suffix. Table 5-1 lists commonly used file suffixes.

Attachments with unknown extensions receive the application/octet-stream MIME type.
The Email control also base64 encodes attachments which include binary data, as shown in the
following example:

Table 5-1 File Suffixes

Suffix Content-Type

.doc application/msword

.gif image/gif

.html text/html

.jar application/java-archive

.jpg image/jpeg

.pdf application/pdf

.txt text/plain

.xls application/msexcel

.xml application/xml or text/xml

.zip application/x-zip-compressed
Using Integration Controls 5-7

Emai l Cont ro l
To: user@myorg.com
Subject: Thanks for your order
Content-Type: multipart/mixed;
boundary="------------F141E40DDE2763DF92513DD4"

------------F141E40DDE2763DF92513DD4
Content-type: text/plain; charset=us-ascii

Dear Sir,

Please see the attached diagram and brochure.

Thanks,
Customer Service

------------F141E40DDE2763DF92513DD4
Content-type: image/jpeg;
 name="picture.jpg"
Content-Disposition: attachment; filename="picture.jpg"
Content-transfer-encoding: base64

/9j/4AAQSkZJRgABAgAAZABkAAD/7AARRHVja3kAAQAEAAAAPAAA/+4ADkFkb2JlA
...

------------F141E40DDE2763DF92513DD4
Content-Type: application/pdf;
 name="brochure.pdf"
Content-Transfer-Encoding: base64
Content-Disposition: inline;
 filename="brochure.pdf"

JVBERi0xLjIgDSXi48/TDQogDTEwIDAgb2JqDTw8DS9MZW5ndGggMTEgMCBSDS9Ga
...

------------F141E40DDE2763DF92513DD4
5-8 Using Integration Controls

Sample Emai l Messages
Example 3: No Body, One Attachment
An Email control send action with no body and one attachment does not generate an
multipart/mixed message. This supports interchange scenarios that require the XML
document to be in the message body.

To: inbox@myorg.com
Subject: new XML order
Content-Type: application/xml

<?xml version="1.0" ?>
<PurchaseOrder>
...

Exceptions and Errors
You can use an exception handler to catch and deal with any exceptions that are thrown by the
Email control.

If one or more of the To or cc recipients is determined to be invalid by the local mail server, an
exception may be thrown immediately. However, if the invalid recipients can only be detected by
the destination mail server, this is out of the scope of the Email control. We recommend that the
From address be a mailbox for handling messages bounced back to the sender.

If one or more of the attachment file names is not found, an exception is thrown.
Using Integration Controls 5-9

Emai l Cont ro l
5-10 Using Integration Controls

C H A P T E R 6
File Control
A File control makes it easy to read, write, or append to a file in a file system. The topics in this
section describe how to work with the File control. For information on how to add control
instances to business processes, see Using Controls in Business Processes.

Topics Included in This Section
Overview: File Control

Provides an overview of the File control.

Creating a New File Control
Describes how to create a new File control using the Oracle Workshop for WebLogic
graphical design interface.

Using a File Control

Describes how to use a File control in your business processes. Describes the default
methods and the methods you can customize.

Using File Control for SFTP
Describes how to use SSH File Transfer Protocol (SFTP) with your File control.

Service Provider Interface
Provides an example of a File control in the context of a business process.
Using Integration Controls 6-1

F i l e Cont ro l
Overview: File Control
A File control makes it easy to read, write, or append to a file in a file system. The files can be
one of the following types: XmlObject, RawData (binary), or String. When creating a File
control, select the file type that matches the files present in the specified directory.

In addition, the File control supports file manipulation operations such as copy, rename, and
delete. You can also retrieve a list of the files stored in the specified directory.

Creating a New File Control
A File control performs an operation on a file. Each File control is customized to perform certain
operations.

This topic describes how to create a new File control and provides an example of the File
control’s declaration in the java file.

For information on how to add control instances to business processes, see Using Controls in
Business Processes.

Creating a New File Control
You can create a new File control and add it to your business process. To define a new File
control:

1. In the Package Explorer pane, double-click the business process (Process.java file) to which
you want to add the File control. The business process is displayed in the Design view.

2. Click on the Data Palette and from the drop-down list choose Integration Controls to
display the list of controls used for integrating applications.

Note: If the Data Palette view is not visible in Oracle Workshop for WebLogic, click
Window > Show View > Data Palette from the menu bar.

3. Select File.

The Insert control: File dialog box appears.
6-2 Using Integration Controls

Creat ing a New F i le Cont ro l
Figure 6-1 Insert Control: File

4. In the Insert control: File dialog box enter the following details:

– In the Field Name, type the variable name used to access the new File control instance
from your business process. The name you enter must be a valid Java identifier.

– In the Insertion point: from the drop-down list select the point where you want the
field name to be inserted in the process file.

– Decide whether you want to make this a control factory and select or clear the Make
this a control factory that can create multiple instances at runtime check box.

– Click Next.

The Create Control dialog-box appears.

5. In the Create Control dialog box enter the following details:

– In the Name field, type the name of your new control extension file.

– Decide whether you want to add comments as configured in the properties of the
current project and select or clear the Generate comments check box.

– Click Next.

The Insert control -File dialog-box appears.

6. In the Insert control -File dialog-box enter the following.

– In the Directory Name field, enter the name of the directory where the File control
looks for files. Alternatively, you can click the Browse button to locate a directory on
your hard disk.
Using Integration Controls 6-3

F i l e Cont ro l
A directory name is the absolute path name for the directory; it includes the drive
specification as well as the path specification. For example, the following are valid
directory names:

C:\directory (Windows)

/directory (Unix)

\\servername\sharename\directory (Win32 UNC)

You can also enter a period (.), which specifies the current working directory. When
you enter a forward slash (/) in the Directory Name field, it is interpreted as follows:

• UNIX systems—the root directory

• Windows systems—the root of the user directory (for example, C: if the user
directory is C:\bea).

The Directory Name field is required. Leaving the Directory Name field empty
results in an error.

Note: When writing files locally, if the specified directory does not already exist, it is
created and the file is written into the new directory.

– In the File name filter field, enter the file name filter, either a file name or file mask.
Use file names for read, write and append operations. If the file name field contains a
wild-card character, such as an asterisk (*), it is treated as a file mask. A wild-card
character is specified to get the list of files in a directory. Wild-card characters are not
valid for any other operation.

The File name filter field is optional when inserting a control, but this property must
then be set dynamically before performing a file operation.

– Select the type of data contained in the file using the Type of Data menu. The file type
indicates the type of files present in the directory specified in the Directory Name
field. Based on this type, appropriate methods (such as write(String data) or
write(XmlObject data) or write(RawData data)) are generated for the File
control. For example, if the directory contains XML documents, the type should be set
to XmlObject so that read/write methods generated for the control will accept
XmlObject variables. The same is true for RawData and String types.

– If you are operating on a file of type String or XmlObject, you can optionally specify
the character set encoding by entering the character set code in the Encoding field.
This option can not be used with the large files option.

– If the specified directory contains files you want to read one line at a time, select the
button labeled The directory contains large files to be processed. The resulting
readLine() method is created with support for large files.
6-4 Using Integration Controls

Creat ing a New F i le Cont ro l
You can define a line by specifying either its record size or a delimiter string:

• If you enter a record size in the Record Size field, the file is read that number of
bytes at a time.

• If you are operating on a file of type String and you enter characters in the Delimiter
string field, the file is read by record with each record defined as being terminated
by that delimiter. Click Read file content including delimiter string to include the
delimiter in the record.

WARNING: If the specified delimiter string does not exist in a file being processed,
application behavior is unpredictable.

If no record size or string delimiter is specified, the file is processed one line at a time.
A line is considered to be terminated by any one of a line feed ('\n'), a carriage return
('\r'), or a carriage return followed immediately by a linefeed. This style of file
processing can be used with any size file.

Note: You cannot define a line by specifying both a record size and a string delimiter.

– Click Finish.

File Control Methods
To learn about the methods available on the File control, see the Interface FileControl.

Example: File Control Declaration
When you create a new File control, its declaration appears in the java file. The following code
snippet is an example of the File Control declaration:

package requestquote;

import com.bea.control.FileControl;

import org.apache.beehive.controls.api.bean.ControlExtension;

import
com.bea.wli.control.dynamicProperties.FileControlPropertiesDocument;

/*

 * A custom File control.

 */

@ControlExtension

@FileControl.FileInfo(directoryName = "C:/bea/")
Using Integration Controls 6-5

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/FileControl.html

F i l e Cont ro l
public interface FileCntrl extends com.bea.control.FileControl {

@FileControl.IOOperation(ioType = FileIOType.READLINE, delimiterString =
"")

String readline();

static final long serialVersionUID = 1L;

public FileCntrl create();

}

The actual attributes that are present on the @FileControl.FileInfo and
com.bea.control.FileControl.IOOperation annotations depend on the values you
entered in the Insert Control dialog.

The @FileControlannotation controls the behavior of the File control. All of the attributes of
the @FileControl annotation are optional and have default values.

To learn more, see FileControl Annotation.

The File control, named TaxControlFile in the example above, is declared as an extension of
FileControl. The com.bea.control.FileControl.IOOperation annotations indicate that
the file operation is readline (read tax_file.txt record by record) and specifies the record size.

Using a File Control
A File control performs operations on a file such as reading a file, writing a file, and appending
data to a file. You can also use the File control to copy, rename, and delete files.

You usually configure a separate File control for each file you want to manipulate. You can
specify settings for a File control in several different ways. One way is to set the File control’s
properties in Design view. Another way is to call the setProperties method of the
FileControl interface. You can change File control configuration properties dynamically. To
get the current property settings, use the getProperties() method.

The following sections describe how to configure the File control.

Setting Default File Control Behavior
You can specify the behavior of a File control in Design View by setting the control’s properties
in the Properties pane. These properties correspond to attributes of the @FileControl and
6-6 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/FileControl.html

Using a F i l e Cont ro l
@FileControl.Operation annotations, which identify the File control in your code. The
following attributes specify class- and method-level configuration attributes for the File control.

Table 6-1 Configuration

Annotation Attribute Description

@FileControl.FileInfo createMode Specifies whether a file is
overwritten or renamed when a
new file of the same name is
created.

Note: When you use
create-mode="ren
ame=old" to rename a
file, make sure that you
mention the
suffix-name and the
suffix-type
attributes for the new
file name. If the suffix
attributes are not
indicated, then the File
control overwrites the
old file, instead of
renaming it.

directory-name The absolute path name for the
directory. (When writing files
locally, if the specified directory
does not already exist, it is
created and the file is written
into the new directory.)

file-mask Either a file name or a file mask.

suffix-name Suffix to be used with a
timestamp or incrementing
index for creating file names.

suffix-type Specifies whether a timestamp
or an incrementing index should
be used as a suffix for file
names.
Using Integration Controls 6-7

F i l e Cont ro l
FileControl.FTP hostName Name of the FTP host, for
example,
ftp://ftp.bea.com.

localDirectory Directory used for transferring
files between the remote file
system and the local file system.
When reading a remote file, the
file is copied from the remote
system to the local directory and
then read. Similarly, when
writing to a remote file system,
the file is written to the local
directory and then copied to the
remote system.

Note: This is a temporary
working directory for
the File control. It
should not be treated as
a user-archive
directory. The contents
of
ftp-local-direct
ory are deleted after
the FTP operation is
performed.

password FTP user’s password. If you
specify this attribute, you
cannot specify the
ftp-password-alias
attribute.

passwordAlias Alias for a user’s password.
The alias is used to look up a
password in a password
store. If you specify this
attribute, you cannot specify
the ftp-password attribute.

Table 6-1 Configuration

Annotation Attribute Description
6-8 Using Integration Controls

Using a F i l e Cont ro l
For information on FileControl.SFtp annotation, see “File Control Annotations for SFTP”.

When you use the binary files for transferring using FtpToLocal() of file control, place the
annotation listed below in your Source view.
@Retention(RetentionPolicy.RUNTIME)

 @Target({ElementType.TYPE, ElementType.METHOD})

 @PropertySet(

 prefix = 'FileTransferMode',

 externalConfig = false,

 optional = true,

 hasSetters = false

)

 public @interface FileTransferMode

 {

 /**

 * This option specifes SFTP properties as a list of name/value
pairs

 */

 @FeatureInfo(shortDescription = 'File Transfer Mode when using

userName Name of the FTP user.

@FileControl.IOOperati
on

encoding Character set encoding of the
file.

fileContent Contents of the identified
variable which will be written to
the file.

ioType Type of file operation (read,
readline, write, or append).

recordSize Size of an individual record (in
bytes) within a file to be
processed record by record.

Table 6-1 Configuration

Annotation Attribute Description
Using Integration Controls 6-9

F i l e Cont ro l
SFTP/FTP')

 TransferMode value() default TransferMode.BINARY;

 }

Note: If you dont use the above annotation, the binary files will get corrupted. The above
procedure should also be followed while using SFTP.

To learn more about specifying default File control behavior with attributes of the
@FileControl annotation, see FileControl Annotation.

Using Methods of the FileControl Interface
Once you have declared and configured a File control, you can invoke its methods from within
your application to perform file operations and to change its configuration. For complete
information on each method, see the Interface FileControl.

Use the following methods of the FileControl interface to perform file operations and reconfigure
the File control.

The File control does not provide callbacks to wait for a file to appear. If the business process
needs to wait for a file to appear, use the File Event Generator functionality. The business process
can use the Message Broker Subscribe control to subscribe to a channel if it is interested in
processing the files in a given directory. A File Event Generator is then configured so that when

Table 6-2 Methods

Method Description

setProperties Sets the properties for the control

getProperties Gets the properties for the control

getFiles Returns the FileControlFileListDocument XML
Beans document defined in DynamicProperties.xsd

rename Renames the current file

delete Deletes the current file

copy Copies the current file to a different location

reset Reset the control by closing any operations in progress, such as
readLine, readRecord and append.
6-10 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/FileControl.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/FileControl.html

Using F i l e Cont ro l fo r SFTP
a file appears in that directory, it publishes a message to the associated channel containing the
contents of the file.

Error Handling When Reading Files
The File control invokes an error handler when exceptions are encountered in read() methods.
(Exceptions can occur when the contents of the file are invalid.) The error handler moves the file
to an error directory. However, if the error directory is not configured, the error handler throws
the following exception: File or Directory does not exist. To ensure that useful information about
the exception is available, the exception thrown by the error handler is logged and appears on the
Oracle WebLogic Server Console and the original exception is rethrown.

Using File Control for SFTP
SSH File Transfer Protocol (SFTP) is a communication protocol that provides secure and reliable
file transfer capabilities. It is generally used with the SSH-2 protocol.

File control provides support to read, write, and append to a file on the file system or the FTP
server. It supports copying, renaming, and deleting files on the file system and FTP server. In
addition, you can manipulate files on the SFTP server using file control.

SFTP includes a Service Provider Interface (SPI), which allows third-party client
implementations of SFTP to plug in to the file event generator and the file control. The default
SPI implementation that is provided with WLI uses the SFTP Client API (J2SSH) from
SSHTools. It supports both RSA and DSA key pairs.

The Default SFTP SPI implementation using J2SSH supports the following authentication
methods:

Password Authentication – In this method, users are authenticated based on the credentials
(username/password pair) provided by them. The username/password pair is sent over an
encrypted connection to the server, and the credentials are validated.

Host-based Authentication – In this method, users are authenticated based on the common
private host key. You must configure the SFTP server with all the managed servers and
their public keys within the cluster as the request for connection or authentication can
originate from any of the managed servers.

Public Key Authentication – In this method, users are authenticated based on their private
key. In a clustered environment, the private key that is configured to connect to the SFTP
server must be accessible from all the managed servers in the cluster.
Using Integration Controls 6-11

F i l e Cont ro l
Note: SPI can be extended to support any other authentication method.

Configuring File Control for SFTP
To configure file control for SFTP, complete the following steps:

1. Create a file Control, as described in Creating a New File Control.

2. Right-click the file control, and select Edit.

3. Add @FileControl.SFtp to the code in the Source view, and add the annotations, as
required (see Figure 6-2).

Figure 6-2 Adding SFTP to File Control

File Control Annotations for SFTP
File control supports the following annotations:

SFtpCustomProperty- You can use this annotation to specify any additional properties for authentication
and to define a name/value pair. The annotation looks like the following:
6-12 Using Integration Controls

Using F i l e Cont ro l fo r SFTP
@Retention(RetentionPolicy.RUNTIME)

@Target({ElementType.TYPE, ElementType.FIELD})

@PropertySet(

 prefix = "SFtpCustomProperty",

 externalConfig = false,

 optional = true,

 hasSetters = false

)

public @interface SFtpCustomProperty

{

 @FeatureInfo(shortDescription = "SFTP property name")

 @AnnotationMemberTypes.Text

 String name() default Constants.ANNOTATION_VAL_NOT_SPECIFIED;

 @FeatureInfo(shortDescription = "SFTP property value")

 @AnnotationMemberTypes.Text

 String value() default Constants.ANNOTATION_VAL_NOT_SPECIFIED;

}

The annotation attributes are as follows:

– name: The name of the property used for connecting or authenticating with the SFTP
server.

– value: The value for the property used for connecting or authenticating with the SFTP
server.

Note: This annotation must be used only when the @SFtp annotation is used.

SFtp- You can use this annotation to specify the properties of the SFTP server so that file
control can interact with the SFTP server using the properties in this annotation. This
annotation specifies the authentication method used to connect to the SFTP server, and the
local directory in which files downloaded from the SFTP server are copied. The annotation
looks like the following:

@Retention(RetentionPolicy.RUNTIME)

@Target({ElementType.TYPE, ElementType.FIELD})
Using Integration Controls 6-13

F i l e Cont ro l
@PropertySet(

 prefix = "SFtp",

 externalConfig = false,

 optional = true,

 hasSetters = false

)

public @interface SFtp {

 @FeatureInfo(shortDescription="specifies the name of the SFTP
host, for example, sftp://sftp.bea.com")

 @AnnotationMemberTypes.Text

 String hostName() ;

 @FeatureInfo(shortDescription = "specifies the SFTP server port
number")

 @AnnotationMemberTypes.Int

 int port() default 22;

 @FeatureInfo(shortDescription = "specifies the authentication
method to use for authenticating to SFTP server")

 SFtpAuthMethod authMethod() default
SFtpAuthMethod.PASSWORD_BASED_AUTHENTICATION;

 @FeatureInfo(shortDescription="specifies the login name of the
SFTP user")

 @AnnotationMemberTypes.Text

 String userName()default Constants.ANNOTATION_VAL_NOT_SPECIFIED;

 @FeatureInfo(shortDescription="the SFTP user's password in case
of PASSWORD_BASED_AUTHENTICATION")

 @AnnotationMemberTypes.Text

 String password() default Constants.ANNOTATION_VAL_NOT_SPECIFIED;

 @FeatureInfo(shortDescription="alias for a user's password")
6-14 Using Integration Controls

Using F i l e Cont ro l fo r SFTP
 @AnnotationMemberTypes.Optional

 @AnnotationMemberTypes.Text

 String passwordAlias()default
Constants.ANNOTATION_VAL_NOT_SPECIFIED;

 @FeatureInfo(shortDescription = "path to the user/host private
key file")

 @AnnotationMemberTypes.Text

 String privateKey() default
Constants.ANNOTATION_VAL_NOT_SPECIFIED;

 @FeatureInfo(shortDescription = "Passphrase for the private key")

 @AnnotationMemberTypes.Text

 String passphrase() default
Constants.ANNOTATION_VAL_NOT_SPECIFIED;

 @FeatureInfo(shortDescription = "alias for the private key's
passphrase")

 @AnnotationMemberTypes.Text

 String passphraseAlias() default
Constants.ANNOTATION_VAL_NOT_SPECIFIED;

 @FeatureInfo(shortDescription = "additional SFTP properties as a
list of name/value pairs")

 @AnnotationMemberTypes.Optional

 SFtpCustomProperties customProperties()default
@SFtpCustomProperties({});

 @FeatureInfo(shortDescription="local directory when transferring
files between remote file system and the local directory")

 @AnnotationMemberTypes.Text

 String localDirectory() ;

 }
Using Integration Controls 6-15

F i l e Cont ro l
The following annotation attributes appear in the Properties pane of Oracle Oracle Workshop
for WebLogic(see Figure 6-3):
6-16 Using Integration Controls

Using F i l e Cont ro l fo r SFTP
Figure 6-3 Properties Pane

Table 6-3 SFTP Configuration

Annotation Attribute Description

FileControl.SFtp authMethod Specifies the authentication
method for connecting to the
SFTP server. The supported
authentication methods are
password based, host based,
public key based and other.
The default authentication
method is password based.
Using Integration Controls 6-17

F i l e Cont ro l
customProperties Represents any additional
properties required for
authenticating with the
SFTP server. You can
specify these as a list of
name/value pairs by using
the annotation
@SFtpCustomProperties.
This attribute enables you to
use any other authentication
method that is not provided
in WLI, if authMethod is set
to
OTHER_AUTHENTICATION_M
ETHOD. If necessary, you can
specify additional properties
when authMethod is set to
either
HOST_BASED_AUTHENTICAT
ION or
PUBLIC_KEY_BASED_AUTHE
NTICATION.

hostName The name or IP address of
the SFTP server that the file
event generator or control
communicates with.

localDirectory The path to the directory on
the local file system in which
files downloaded from the
SFTP server are copied.

Table 6-3 SFTP Configuration

Annotation Attribute Description
6-18 Using Integration Controls

Using F i l e Cont ro l fo r SFTP
passphrase The pass-phrase for the
private key if the key is
protected with a pass-phrase.
If this attribute is specified,
then passphraseAlias
must not be specified. The
attribute is required only
when authMethod is set to
either
HOST_BASED_AUTHENTICAT
ION or
PUBLIC_KEY_BASED_AUTHE
NTICATION.

passphraseAlias The password alias for the
pass-phrase if the private key
is protected with a
pass-phrase. If this attribute
is specified, then the
passphrase attribute must
not be specified. The
attribute is required only
when the authMethod is set
to either
HOST_BASED_AUTHENTICAT
ION or
PUBLIC_KEY_BASED_AUTHE
NTICATION.

password The password used for
authenticating with the
SFTP server. If this attribute
is specified, then
passwordAlias must not be
specified. It is required only
when authMethod is set to
PASSWORD_BASED_AUTHENT
ICATION.

Table 6-3 SFTP Configuration

Annotation Attribute Description
Using Integration Controls 6-19

F i l e Cont ro l
passwordAlias The password alias for
authenticating with the
SFTP server. If this attribute
is specified, the password
must not be specified. It is
required only when
authMethod is set to
PASSWORD_BASED_AUTHENT
ICATION.

port The port number on which
the SFTP daemon is running.
The default port number is
22.

privateKey The path to the private key
file for authenticating with
the SFTP server. If the
authMethod attribute is set
to
HOST_BASED_AUTHENTICAT
ION, then this attribute
represents the host’s private
key. If authMethod is set to
PUBLIC_KEY_BASED_AUTHE
NTICATION, then this
attribute represents the
private key of the users. The
attribute is required only
when the authMethod is set
to either
HOST_BASED_AUTHENTICAT
ION or
PUBLIC_KEY_BASED_AUTHE
NTICATION.

Table 6-3 SFTP Configuration

Annotation Attribute Description
6-20 Using Integration Controls

Using F i l e Cont ro l fo r SFTP
Service Provider Interface
WLI provides a framework for SFTP, and you can plug in your own libraries. To install
SSHTools, do the following:

1. Download J2SSH 0.2.9, from the following location:
http://sourceforge.net/projects/sshtools to your local directory.

2. Copy the j2ssh-core-0.2.9.jar and j2ssh-common-0.2.9.jar to the following
directory: BEA_HOME\wli_10.3\lib directory.

Note: In this pathname, BEA_HOME represents the directory in which you installed Oracle
WebLogic Integration.

SPI includes the following enumeration types:

SFtpVersion
This enumeration represents the SSH version and defines the following constants:

– SSH_VERSION_1: SSH Version 1

– SSH_VERSION_2: SSH Version 2

– SSH_VERSION_OTHER: Any other version of SSH

SFtpAuthMethod
This enumeration represents the authentication method to be used with the SFTP server. It defines
the following constants:

– PASSWORD_BASED_AUTHENTICATION: This constant defines the password-based
authentication. The user must provide the username/password pair to use this
authentication method.

userName The user name used for
authenticating with the
SFTP server. This attribute is
required in all the
authentication methods that
are supported in WLI.

Table 6-3 SFTP Configuration

Annotation Attribute Description
Using Integration Controls 6-21

http://sourceforge.net/projects/sshtools

F i l e Cont ro l
– HOST_BASED_AUTHENTICATION: This constant defines the host-based authentication.
The user must provide the private key of the client computer, that is trying to connect
to the SFTP server.

– PUBLIC_KEY_BASED_AUTHENTICATION: This constant defines the public key based
authentication. The user must provide the private key of the user who is trying to
connect to the SFTP server.

– OTHER_AUTHENTICATION_METHOD: This constant defines any other authentication
method, which is not supported by WLI.

SFtpClientException
This class represents the SFTP client exception, a generic exception category that must be thrown
from the SPI implementation. When implementing SPI, you can throw any exception by
wrapping it SFtpClientException and throwing it to the upper level. The interface of this
exception is as follows:

– public SFtpClientException(): Default constructor

– public SFtpClientException(String message): Constructs the SFTP client
exception with the specified detail message

– public SFtpClientException(String message, Throwable cause):
Constructs the SFTP client exception with the specified detail message and the original
exception

– public SFtpClientException(Throwable cause): Constructs the SFTP client
exception given the original exception

SFtpFile
This enumeration represents the attributes of the file on the SFTP server. Table 6-4, lists the
interfaces in this enumeration.

Table 6-4 SFtp File Interface

Interface Description

public
SFtpFile()

Default constructor.

public
SFtpFile(Stri
ng
absolutePath)

Constructs the SFtpFile object based on the path of the file. If the abso-
lute path contains the file name, the file name is retrieved.
6-22 Using Integration Controls

Using F i l e Cont ro l fo r SFTP
public void
setAbsolutePa
th(String
absolutePath)

Sets the absolute path for the file represented by this SFtpFile object.
This method retrieves the file name from the given absolute path if the file
name is present.

public String
getAbsolutePa
th()

Returns the absolute path of the file represented by this object.

public String
getFilename()

Returns the name of the file represented by this object.

public void
setFileName(S
tring
filename)

Sets the name of the file represented by this object.

public void
setParent(Str
ing parent)

Sets the directory in which the file resides on the remote server.

public String
getParent()

Returns the directory in which the file resides on the remote server.

public void
setSize(long
size)

Sets the size of the file represented by this object.

public long
size()

Returns the size of the file represented by this object.

public void
setModifiedTi
me(long time)

Sets the modified time of the file represented by this object.

public long
getModifiedTi
me()

Returns the modified time of the file represented by this object.

public void
setFile(boole
an isFile)

Sets a flag to determine whether the file is a disk file.

Table 6-4 SFtp File Interface

Interface Description
Using Integration Controls 6-23

F i l e Cont ro l
public
boolean
isFile()

Returns a value to indicate whether the file is a disk file.

public
boolean
isDirectory()

Returns a value to indicate whether the file represented by this object is a
directory.

public void
setDirectory(
boolean
isDirectory)

Sets a flag to determine whether the file is a directory.

public
boolean
canRead()

Returns a value to indicate whether the file represented by this object can
be read.

public void
setRead(boole
an canRead)

Sets a flag to determine whether the file represented by this object can be
read.

public
boolean
canWrite()

Returns a value to indicate whether the file represented by this object can
be written.

public void
setWrite(bool
ean canWrite)

Sets a flag to determine whether the file represented by this object can be
written.

public
boolean
isLink()

Returns a value to indicate whether the file represented by this object is a
link.

public void
setLink(boole
an isLink)

Sets a flag to determine whether the file represented by this object is a link.

public
boolean
isSocket()

Returns a value to indicate whether the file represented by this object is a
socket.

Table 6-4 SFtp File Interface

Interface Description
6-24 Using Integration Controls

Using F i l e Cont ro l fo r SFTP
SFtpClient
This enumeration represents the SFTP client interface that users must implement to plug in any
third-party SFTP client implementation to file event generator and file control. This interface
provides methods for connecting and authenticating with the SFTP server, retrieving files, listing

public void
setSocket(boo
lean
isSocket)

Sets a flag to determine whether the file represented by this object is a
socket.

public
boolean
isOpen()

Returns a value to indicate whether the file represented by this object is
opened.

public void
setOpen(boole
an isOpen)

Sets a flag to determine whether the file represented by this object is
opened.

public void
setStageFilep
ath(String
filepath)

Sets the path whether the file is staged: that is, the path where the file is
copied to the local file system.

public String
getStageFilep
ath()

Returns the staging path for the file. This path is the location where the file
is copied locally.

public
boolean
equals(Object
object)

Checks whether two SFTP files are equal.

Table 6-4 SFtp File Interface

Interface Description
Using Integration Controls 6-25

F i l e Cont ro l
files, renaming or deleting files, and transferring files to the SFTP server. The interface is
described in Table 6-5:

Table 6-5 SFtp Client Interface

Interface Description

public void
setAuthentica
tionMethod(SF
tpAuthMethod
authMethod)

Sets the authentication method the client uses to connect to the SFTP serv-
er. For the list of authentication methods supported by the SPI, see SFtp-
AuthMethod.

public
SFtpAuthMetho
d
getAuthentica
tionMethod()

Returns the authentication method used by the client to connect to the
SFTP server.

public void
setSshVersion
(SFtpVersion
sshVersion)

Sets the SSH version that client uses to connect to the SFTP server. See
SFtpVersion, for the list of SSH versions supported by the SPI.

public
SFtpVersion
getSshVersion
()

Returns the SSH version the client uses to connect to the SFTP server.

public void
setAcceptUnkn
ownHostKeys(b
oolean
accept)

Sets whether public keys from unknown SFTP servers are accepted. You can use
this method to override the default behavior of accepting the public keys from un-
known SFTP servers and updating known host files.

public
boolean
acceptUnknown
HostKeys()

Accepts public keys from unknown SFTP servers and to update the known
host’s file.

public void
connect()
throws
SFtpClientExc
eption

Connects to the SFTP server, based on the authentication method config-
ured. If any exception is thrown by the actual SFTP client API (for exam-
ple J2SSH), that exception is wrapped in SFtpClientException and
thrown to the caller.
6-26 Using Integration Controls

Using F i l e Cont ro l fo r SFTP
public void
setUserName(S
tring
userName)

Sets the username for authenticating with the SFTP server. The username
is required for PASSWORD_BASED_AUTHENTICATION, and it is also required
for HOST_BASED_AUTHENTICATION and
PUBLIC_KEY_BASED_AUTHENTICATION.

public String
getUserName()

Returns the user name the client uses for authenticating with the SFTP
server.

public String
getHostname()

Returns the host name of the SFTP server to which the client is trying to
connect.

public int
getPort()

Returns the port number on which the SFTP daemon is running.

public void
setPassword(c
har[] pwd)

Sets the password used for authentication when the authentication method
is set to PASSWORD_BASED_AUTHENTICATION.

public void
setPassPhrase
(char[]
phrase)

Sets the pass phrase for the private key file if the private key is protected
by a password. This method is used only when the authentication method
is either HOST_BASED_AUTHENTICATION or
PUBLIC_KEY_BASED_AUTHENTICATION.

public void
setPrivateKey
File(String
path)

Sets the path of the private key file used for authentication when the au-
thentication method is either HOST_BASED_AUTHENTICATION or
PUBLIC_KEY_BASED_AUTHENTICATION.

public void
setCustomProp
erties(HashMa
p<String,
Object>
props)

Sets any additional properties that users may specify when authenticating
with the SFTP server. It provides a way to extend the SPI if the third-party
SFTP client requires any additional properties.

public
HashMap<Strin
g, Object>
getCustomProp
erties()

Returns the additional properties that users may use when authenticating
with the SFTP server.

Table 6-5 SFtp Client Interface

Interface Description
Using Integration Controls 6-27

F i l e Cont ro l
public String
pwd() throws
SFtpClientExc
eption

Returns the absolute path name of the current remote working directory. If
any exception is thrown, the exception must be wrapped in
SFtpClientException, and the exception is thrown back to the caller.

public void
cd(String
dir) throws
SFtpClientExc
eption

Changes the working directory on the SFTP server. If any exception is
thrown, the exception must be wrapped in SFtpClientException, and
the exception is thrown back to the caller.

public void
mkdir(String
dir) throws
SFtpClientExc
eption

Creates a directory on the SFTP server. If the directory already exists, this
method fails and an exception is thrown. The path can be either absolute
or relative to the current working directory. If any exception is thrown, the
exception must be wrapped in SFtpClientException, and the exception is
thrown back to the caller.

public void
mkdirs(String
dir) throws
SFtpClientExc
eption

Creates a directory or a set of directories recursively. For example, consid-
er a scenario where the path to the directory is /tmp/test/test1/test2.
If the tmp directory already exist, then this method creates the directories
test, test1, and test2. This method does not fail even if a directory al-
ready exists. The path can be either absolute or relative to the current
working directory. If any exception is thrown, the exception must be
wrapped in SFtpClientException, and the exception is thrown back to
the caller.

public void
rm(String
path) throws
SFtpClientExc
eption

Removes a file on the SFTP server. The path can be either absolute or rel-
ative to the current working directory. If any exception is thrown, the ex-
ception must be wrapped in SFtpClientException, and the exception is
thrown back to the caller.

public void
rmdir(String
path) throws
SFtpClientExc
eption

Removes a directory on the SFTP server. The path to the directory to be
removed can be absolute or relative to the current working directory. If any
exception is thrown, the exception must be wrapped in
SFtpClientException, and the exception is thrown back to the caller.

Table 6-5 SFtp Client Interface

Interface Description
6-28 Using Integration Controls

Using F i l e Cont ro l fo r SFTP
public void
rename(String
oldPath,
String
newPath)
throws
SFtpClientExc
eption

Renames a file on the SFTP server. The path can be either absolute or rel-
ative to the current working directory. If any exception is thrown, the ex-
ception must be wrapped in SFtpClientException, and the exception is
thrown back to the caller.

public
List<SFtpFile
> list(String
path) throws
SFtpClientExc
eption

Returns the list of files available on the SFTP server in the directory at the
specified path. If the path given represents a file, then this method returns
the details about that file. The user is expected to populate the SFtpFile
objects and return a list of SFtpFile objects. The path to the directory/file
to be listed can be absolute or relative to the current working directory. If
any exception is thrown, the user must wrap that exception in
SFtpClientException, and throw the exception back to the caller.

public
List<SFtpFile
> list()
throws
SFtpClientExc
eption

Returns the list of files available in the current working directory on the
SFTP server. The user must populate the SFtpFile objects and return a
list of SFtpFile objects. If any exception is thrown, the exception must
be wrapped in SFtpClientException, and the exception is thrown back
to the caller.

 public
abstract
InputStream
get(String s,
SFtpFileTrans
ferMode
sftpfiletrans
fermode)

throws
SFtpClientExc
eption;

Retrieves the file on the SFTP server as a stream. The path can be either
absolute or relative to the current working directory. If any exception is
thrown, the exception must be wrapped in SFtpClientException, and
the exception is thrown back to the caller.

Table 6-5 SFtp Client Interface

Interface Description
Using Integration Controls 6-29

F i l e Cont ro l
public
abstract void
get(String s,
String s1,
SFtpFileTrans
ferMode
sftpfiletrans
fermode)

throws
SFtpClientExc
eption;

Retrieves the file on the SFTP server and copy it to the local system on the
local file system. The path can be either absolute or relative to the current
working directory. If any exception is thrown, the exception must be
wrapped in SFtpClientException, and the exception is thrown back to
the caller.

 public
abstract void
get(String s,
OutputStream
outputstream,
SFtpFileTrans
ferMode
sftpfiletrans
fermode)

throws
SFtpClientExc
eption;

Retrieves a file on the SFTP server and copies the contents of the file to an
output stream. The path can be either absolute or relative to the current
working directory. If any exception is thrown, the exception must be
wrapped in SFtpClientException, and the exception is thrown back to
the caller.

 public
abstract void
put(String s,
String s1,
SFtpFileTrans
ferMode
sftpfiletrans
fermode)

throws
SFtpClientExc
eption;

Copies a file on the local file system to the remote SFTP server. The path
to the file on the SFTP server be a file or a directory. The path can be either
absolute or relative to the current working directory. If any exception is
thrown, the exception must be wrapped in SFtpClientException, and
the exception is thrown back to the caller.

Table 6-5 SFtp Client Interface

Interface Description
6-30 Using Integration Controls

Using F i l e Cont ro l fo r SFTP
In addition to implementing the above methods, the user must define the following constructors
in their implementation of SFtpClient:

– public XXXSFtpClient (String hostname): Constructs the SFTP client object,
when the host name with a default port number of 22 is provided.

– Public XXXSFtpClient(String hostname, int portnumber): Constructs the
SFTP client object, after the host name and port number are provided.

AbstractSFtpClient
This class implements the SFtpClient interface and provides a default implementation for all
the methods in the SFtpClient interface. Although many of these implemented methods do not
require any modifications, this class allows you to set properties, such as user name, password,
private key, pass-phrase, authentication method, and custom properties.

SFtpClientFactory
This class represents the factory class for SFtpClient. You can create instances of SFtpClient
by using this class. You must implement this class for adding any third-party SFTP client

public
abstract void
put(InputStre
am
inputstream,
String s,
SFtpFileTrans
ferMode
sftpfiletrans
fermode)

throws
SFtpClientExc
eption;

Copies the file contents from a stream on the remote SFTP server on the
SFTP server. The path to the file on the SFTP server can be a file or a di-
rectory. The path can be either absolute or relative to the current working
directory. If any exception is thrown, the exception must be wrapped in
SFtpClientException, and the exception is thrown back to the caller.

public void
disconnect()
throws
SFtpClientExc
eption

Disconnects from the SFTP server and to clean up any resources held by
this client. If any exception is thrown, the exception must be wrapped in
SFtpClientException, and the exception is thrown back to the caller.

Table 6-5 SFtp Client Interface

Interface Description
Using Integration Controls 6-31

F i l e Cont ro l
implementation to file event generator and file control by using the WLI console. For more
information, see “Configuring SPI”. If the implementation class is not configured, then the
default implementation of the SFtpClientFactory is used. The default implementation is
provided by com.bea.wli.sftp.j2ssh.impl.J2SSHSFtpClientFactory and relies on the
SFTP client implementation (J2SSH) from SSHTools.

– public static SFtpClientFactory newInstance(String factoryName)
throws SFtpClientException: This static method is used to create a new instance of
SFtpClientFactory. The new instance is created based on the SFTP client factory
class name that is configured through the Oracle WebLogic Integration administration
console. If this property is not configured, then the default implementation of the SFTP
client factory com.bea.wli.sftp.j2ssh.impl.J2SSHSFtpClientFactory is
returned.

– public abstract SFtpClient createSFtpClient(String hostName): This
method is used to create an instance of the SFtpClient given the host name and the
default port number of 22.

– public abstract SFtpClient createSFtpClient(String hostName, int
portNumber): This method is used to create a new instance of the SFtpClient, when
the host name and port number are provided.

Configuring SPI
To plug in third-party SFTP client implementation using SPI, complete the following steps:

1. Open a web browser, such as Internet Explorer, and enter following URL in the address bar
of the browser: http://adminserver:port/wliconsole.

Note: Here adminserver is the host name or IP address of the Oracle WebLogic
Integration Administrative server, and port is the server’s listening port. For example,
you can type the following to open the Oracle WebLogic Integration administration
console: http://localhost:7001/wliconsole.

2. Enter the username and password in the Console window.

The Oracle WebLogic Integration Administration Console home page is displayed.

Note: The Oracle WebLogic Integration administration console is password protected. You
must create a WLI domain using the Configuration Wizard before you start the
server. For more information about creating a domain using Configuration Wizard,
see Domain Configuration Wizard Guide.

3. Click System Configuration on the left pane.
6-32 Using Integration Controls

http://download.oracle.com/docs/cd/E12840_01/common/docs103/confgwiz/newdom.html

Using F i l e Cont ro l fo r SFTP
4. Click Configure on the left pane under SFTP.

The Current SFTP Settings page is displayed.

5. Click Configure, on the Current SFTP Settings page.

6. Enter the following properties:

– SFTP Client Factory: Specify the class name that represents the third-party
implementation of the SFTP client factory. If this property is not specified, then the
default implementation is used.

– Accept Server Keys: Set whether the public key sent by an unknown SFTP server
during handshake is accepted. By default, the implementation accepts the keys from the
unknown SFTP server, updates the known hosts file with this entry, and connects to
that SFTP server. If this behavior is turned off, then connection to any SFTP server is
established only if there is an entry for that server in the known hosts file.

Adding the SPI Implementation to the Server Class Path
To add the SPI implementation to the server class path, complete the following steps:

1. Edit the setDomainEnv.cmd\sh file located in \BEA_Home\DOMAIN_HOME\bin.

2. Add the jar file containing the SPI implementation to POST_CLASSPATH.

SFTP Reference Implementation
An SFTP reference implementation is available with WLI, which is available in the
\BEA_Home\wli_10.3\samples\sftp_ref_impl directory, and a default build script is
provided for building the source file. This reference implementation is based on the J2SSH (from
SSH Tools).

Build an SFTP Reference Implementation
To build an SFTP reference implementation, complete the following steps:

1. Run the commEnv.cmd script, which is located in the
\BEA_Home\wlserver_10.3\commom\bin directory.

2. Change the directory path to \BEA_Home\wli_10.3\samples\sftp_ref_impl.

3. Run ant clean to delete the generated artifacts.
Using Integration Controls 6-33

F i l e Cont ro l
4. To build the jar file, run ant deploy. The jar file is created in
\BEA_Home\wli_10.3\samples\sftp_ref_impl\build\ar.

5. To re-deploy the jar file, run ant redeploy.

6. Plug in the reference implementation, as described in Configuring SPI and Adding the SPI
Implementation to the Server Class Path.

Designing an Application to Test the Implementation
Here is an example of how you can design an application to test the SFTP implementation.

1. Create a business process (process.java) with file control.

2. Add @FileControl.SFtp to the file control in the Source view.

3. Build and deploy the application.

For information about business process, refer Guide to Building Business Process and Tutorial
Building your First Business Process.

Example: File Control
This section provides an example of a File control used in the context of a business process. In
this case, the File control instance writes a file to a specified location, triggered by a user request.
This example assumes that you have created a new business process containing a client request
node.

The business process is shown in the following figure:
6-34 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/jpdtutorial/index.html

Example : F i l e Cont ro l
Figure 6-4 Example File Control

The business process starts with a client request node, File Request, representing a point in the
process at which a client sends a request to a process. In this case, the client invokes the
fileRequest() method on the process to write a file with information on a new customer to the
file system.

Complete the following tasks to design your business process to write the requested file to your
file system:

To Create an Instance of a File Control in Your Project

To Design a Control Send Node in Your Business Process to Interact With Your File
Control

To Create an Instance of a File Control in Your Project
In this scenario, you add one instance of the File control to your business process.

1. Click on the Data Palette and from the drop-down list choose Integration Controls to
display the list of controls used for integrating applications.

2. Choose File.

The Insert Control: File dialog box is displayed.
Using Integration Controls 6-35

F i l e Cont ro l
3. In the Insert Control: File dialog box do the following:, enter myFile as the Field Name for
this control and click Next.

4. Enter MyFile in the Name field, and click Next.

5. In the Create Control, enter the following:

– Directory Name—Enter the location in which you want the File control to write the
file. You can use any location on your file system. In this case, the directory name is
C:/temp/customers.

– Type of Data—Select XmlObject from the drop-down list.

6. Click Finish.

An instance of a File control, named myFile, is created in your project and displayed in
the Data Palette.

7. Select File > Save to save your work.

To Design a Control Send Node in Your Business Process to Interact With Your File Control

1. Expand the myFile control instance in the Data Palette. Then click the following method:

FileControlPropertiesDocument write(XmlObject someData)

2. Drag the method from the Data Palette and drop it on your FileWrite business process in the
Design view, placing it immediately after the File Request node. The node is named write
by default.

3. Rename the node, replacing write with Write CustFile.

4. Double-click the Write CustFile node. Its node builder opens on the General Settings tab.

5. Confirm that myFile is displayed in the Control field and that the following method is
selected in the Method field:

FileControlPropertiesDocument write(com.bea.xml.XmlObject someData)

6. Click Send Data to open the second tab in the node builder. The Method Expects field is
populated with the data type expected by the write() method: XmlObject someData.

7. In the Select variables to assign field, click the arrow to display the list of variables in your
project. Then choose requestCustFile(InputDocument). If the variable does not already
exist, you can choose Create new variable... to create it now.

8. Click Close.
6-36 Using Integration Controls

Example : F i l e Cont ro l
9. Double click on the client request node (File Request) to open the node builder.

10. Click Receive Data to open the second tab on the node builder. The Method Expects field is
populated with the data type expected, in this case InputDocument CustFile. In the Select
variables to assign field, click the arrow to display the list of variables in your project. Then
choose requestCustFile(InputDocument).

11. Click Close.

This step completes the design of your File control node.

At run time, pass a variable of type XmlObject to the Client Request method. The customer
document is written to your file system in the location specified.
Using Integration Controls 6-37

F i l e Cont ro l
6-38 Using Integration Controls

C H A P T E R 7tx
Http Control
Hyper-Text Transfer Protocol (HTTP) is the globally-accepted method of communicating web
pages across the internet. It is a stateless, application-level protocol. The currently defined
version of HTTP is 1.1. HTTP protocol is a synchronous protocol, that is, each request message
sent from the client to a server is followed by a response message returned from the server to the
client.

The Http control’s purpose is to provide outgoing HTTP access to Oracle Workshop for
WebLogic clients. The Http control complements the other controls provided in Oracle
WebLogic Integration and can be used with Oracle Workshop for WebLogic and business
processes to work with HTTP requests and process responses. The Http control is built using the
features of the Oracle WebLogic Integration control architecture. The Http control source file is
a wrapper around the Jakarta Commons HttpClient package. The Http control conforms to
HTTP/1.1 specific features.

The Http control supports two types of request methods for data transfer, namely Get and Post.
By using the Get mode, you can send your business data along with the URL. By using Post
mode, you can send large amount of information like Binary, XML and String documents to the
server within the body of the request.

You can specify Http control properties in an annotation, or pass dynamic properties via an XML
variable. Inbound HTTP requests can be processed with the HTTP event generator. The HTTP
event generator is a servlet which takes an HTTP request, checks for the content type and then
Using Integration Controls 7-1

Http Cont ro l
publishes the message to the message broker. For more information on the HTTP event generator,
see The HTTP Event Generator.

Using the Http control, you can send an HTTP or HTTPS (Secure HTTP) request to a URL and
receive specific HTTP response header and body data, as follows:

Send Business data using HTTP Get and receive the HTTP response code and the message
corresponding to the response code in an XML document.

Set HTTP header values for the HTTP Post mode.

Send Binary, XML, and String type data using HTTP Post and receive the HTTP response
code and the message corresponding to the response code in an XML document.

Configure cookies for both the HTTP Get and HTTP Post modes.

Communicate via a secure HTTP (HTTPS) connection with both client-side and
server-side authentication enabled.

Use a proxy server for sending an HTTP or HTTPS request.

Receive response headers in an XML document conforming to a pre-defined schema.

Receive response body data of type Binary, XML or String.

Receive cookies in an XML document conforming to a pre-defined schema.

Topics Included in This Section
Creating a New Http Control

Describes how to create a new Http control

Using the Http Control in a Business Process
Describes how to create a new Http control and use it in a business process.

Specifying Http Control Properties
Describes Http control properties and the method to specify and edit these properties.

Using HTTP Methods to Set Properties
Describes the various HTTP methods used to specify header properties, cookies, and so
on.

Logging Debug Messages and Exceptions
Describes the method used to log debug messages.
7-2 Using Integration Controls

Creat ing a New Ht tp Cont ro l
Http Control Caveats
Lists out the known limitations and caveats of the Oracle WebLogic Integration Http
control.

The HTTP Event Generator
Describes the HTTP event generator briefly, with a link to a more detailed information
source.

Creating a New Http Control
This topic describes how to create a new Http control.

Creating a New Http Control
You can create a new Http control and add it to your business process. To define a new Http
control:

1. In the Package Explorer pane, double-click the business process (Process.java file) to which
you want to add the Http control. The business process is displayed in the Design view.

2. Click on the Data Palette and from the drop-down list choose Integration Controls to
display the list of controls used for integrating applications.

Note: If the Data Palette view is not visible in Oracle Workshop for WebLogic, click
Window > Show View > Data Palette from the menu bar.

3. Select Http.

The Insert control: Http dialog box appears.

4. In the Insert control: Http dialog box enter the following details:

– In the Field Name, type the variable name used to access the new HTTP control
instance from your business process. The name you enter must be a valid Java
identifier.

– In the Insertion point: from the drop-down list select the point where you want the
field name to be inserted in the process file.

– Decide whether you want to make this a control factory and select or clear the Make
this a control factory that can create multiple instances at runtime check box.

– Click Next.

The Create Control dialog-box appears.
Using Integration Controls 7-3

Http Cont ro l
5. In the Create Control dialog box enter the following details:

– In the Name field, type the name of your new control extension file.

– Decide whether you want to add comments as configured in the properties of the
current project and select or clear the Generate comments check box.

– Click Next.

The Insert control: HTTP dialog-box appears.

6. In the Insert control: HTTP dialog box enter the following details:

– In the URL field, specify the target URL for your Http control, for example,
http://www.bea.com, https://www.verisign.com or
http://localhost:7001/console.

– Select the HTTP mode that you want to use. You can select either the Get, or the Post
mode.

– From the Sending Body Data Type drop-down list, select the data type. You can send
your data as an XML object, String, or byte stream. This option is applicable only to
the HTTP Post mode.

– From the Receiving Body Data Type drop-down list, select the data type in which you
want to receive data. You can choose to receive data in a different format. For example,
if you select the Byte data type for sending data and you want to receive the data as an
XML object, you can do it.

– Click Finish. Alternatively, you may create a Http control java file manually. For
example, you may copy an existing Http control java file and modify the copy.

The Java file for the Http Control
When you create a new Http control, you create a new java control file in your project. The
following is an example of a java control file

package requestquote;

import org.apache.beehive.controls.api.bean.ControlExtension;

import com.bea.wli.control.httpParameter.ParametersDocument;

import com.bea.wli.control.httpResponse.ResponseDocument;

/*

 * A custom Http control.
7-4 Using Integration Controls

Creat ing a New Ht tp Cont ro l
 */

@ControlExtension

@com.bea.control.HttpControl.EndPoint(url = "http://www.bea.com")

public interface HttpControl extends com.bea.control.HttpControl {

@MethodType(method = METHOD.GET)

public ResponseDocument get(ParametersDocument parameters, String

charset);

@MethodType(method = METHOD.GETRESPONSE)

public byte[] getResponseData();

static final long serialVersionUID = 1L;

public HttpControl create();

}

The contents of the Http control's java file depend on the selections made in the Insert Http dialog.
The given example was generated in response to selection of byte[] from the Body Type
drop-down list.

Using the Http Control in a Business Process
The business process starts with a client request node, representing a point in the process at which
a client sends a request to a process. In this case, the client invokes the setProperties method
on the process to specify a dynamic property for your Http control.

Complete the following tasks to design your business process to send and receive data using your
Http control, using a dynamic property setting that specifies the target URL to send and receive
data.

Create an instance of the Http control, and call it MyHttpControl. Use the steps provided in
Creating a New Http Control.

Your new Http control will be visible under the Controls tab in the Data Palette. Expand
MyHttpControl to see the Http methods that you can use in your business process.
Using Integration Controls 7-5

Http Cont ro l
Design a Control Send Node in your business process and specify a dynamic property to be
used during run time.

To Design a Control Send Node in Your Business Process

1. Expand the MyHttpControl control instance in the Data Palette. Then click the following
method:

setProperties(HttpControlPropertiesDocument propsDoc)

2. Drag the method from the Data Palette and drop it on your business process in the Design
view, placing it immediately after the Client Request node.

3. Double-click the SetProperties node. Its node builder opens on the General Settings tab.

4. Confirm that MyHttpControl is displayed in the Control field and that the following method
is selected in the Method field:

setProperties(HttpControlPropertiesDocument propsDoc)

5. Click Send Data to open the second tab in the node builder. The Control Expects field is
populated with the data type expected by the setProperties method:
HttpControlPropertiesDocument.

6. In the Select variables to assign field, choose Create new variable... using the name
dynamicprop. Close the window.

7. Double click on the client request node to open the node builder.

8. Open the General Settings tab of the node builder and create a variable of type
com.bea.wli.control.dynamicProperties.HttpControlPropertiesDocument.

9. Open the Receive Data tab. The Client Sends field in this tab populated with the variables that
have been created in the General Settings tab, in this case,
HttpControlPropertiesDocument x0. In the Select variables to assign field, click the
arrow to display the list of variables in your project and choose dynamicprop as the variable
to assign.

This step completes the design of your Http control node.

At run time, the dynamic property that you defined will override the static property defined using
the Property Editor.
7-6 Using Integration Controls

Spec i f y ing Ht tp Cont ro l P roper t i es
Specifying Http Control Properties
Most aspects of a Http control can be configured from the Properties pane in Design View. You
can also specify run-time properties that define the way your Http control is used during run time.
For more information on how to use run time, or dynamic properties, see Setting Dynamic Http
Control Properties.

You can define the control properties in the Properties pane, or, you can change the properties in
the Source view of the Http control's java file. For more information on the java file for the Http
control, see The Java file for the Http Control.

When you modify properties for your Http control using the Properties pane, your changes are
reflected in the Source view of the control's java file, and vice versa. However, the properties that
you specify during run time override the properties set using the Property Editor in the Design
view. For more information on setting properties, see Using HTTP Methods to Set Properties.

Using HTTP Methods to Set Properties
You can specify the behavior of an Http control in Design View by setting the control’s properties
in the Properties pane. The following attributes specify class- and method-level configuration
attributes for the Http control.

This topic defines the various HTTP methods that you can use to specify properties. Each method
is described briefly in Http Control MethodsTable 7-1, and detailed in subsequent sections that
are referenced to the methods outlined in the table.

You can use the following methods with the Http control:
Using Integration Controls 7-7

Http Cont ro l
Table 7-1 Http Control Methods

Purpose of Method Description Method

Setting Dynamic Http
Control Properties.

This method sets the Http control
properties at run time. Dynamic
properties always override the static
properties set in the Properties pane.

void
setProperties(HttpControlP
ropertiesDocument
propsDoc)

Setting Connection
Time-out.

This method sets the connection time
out for an HTTP request. Set this
property to define the maximum time
you want your Http control to
establish a connection. A time-out
value of zero (zero is the default
value) indicates that the connection
time-out has not been used.

void
setConnectionTimeOut(int
timeoutInMilliSeconds)

Setting Connection Retry
Count.

This method defines the number of
times your Http control will try to
establish connection with the target.

void
setConnectionRetrycount(in
t retryCount)

Setting Cookie This method allows you to set cookies
for your Http control

void
setCookies(CookiesDocument
cookies)

Configuring Proxy
Settings.

This method allows you to specify
proxy settings such as String host,
initial port, String user name, and
String password.

void setProxyConfig
setProxyConfig (String
host, int port, String
userName, String password)

Configuring Server-side
SSL

This property allows you to configure
server-side Secure Socket Layer
authentication process.

void
setServerSideSSL(String
trustStoreLocation,
boolean
hostVerificationFlag)

Configuring Client-side
SSL

This property allows you to set
client-side authentication.

void
setClientSideSSL(String
keyStoreType, String
keyStoreLocation, String
keyStorePassword, String
keyPassword)
7-8 Using Integration Controls

Using HTTP Methods to Se t P roper t i es
Setting Dynamic Http Control Properties
Method: void setProperties(HttpControlPropertiesDocument propsDoc)

To use dynamic properties, pass an XML variable that conforms to the Http control's
dynamic-property schema to the Http control's setProperties() method.

Sending an HTTP Get
Request

This method allows you to send an
HTTP request using the HTTP Get
mode and receive the HTTP response
code from the server.

ResponseDocument
sendDataAsHttpGet(Paramete
rsDocument
parameters,String charset)

Setting Headers for HTTP
Post

This method allows you to set the
header properties for the HTTP Post
mode.

void
setHeadersForHttpPost(Head
erDocument headers)

Sending Data as HTTP
Post

This method allows you to send body
data as HTTP Post and receive the
response code.

Depending on the body data type that
you select while configuring the Http
control, the appropriate method is
populated in the java file.

ResponseDocument
sendDataAsHttpPost(String
bodyData)

ResponseDocument
sendDataAsHttpPost
(XmlObject bodyData)

ResponseDocument
sendDataAsHttpPost (byte[]
bodyData)

Recieving HTTP Response
Headers

This method allows you to get the
headers of an HTTP response.

HeadersDocument
getResponseHeaders()

Recieving Cookies From
the Server

This method allows you to receive
cookies from an HTTP response.

CookiesDocument
getCookies()

Recieving HTTP Body
Data

 Depending on the body data type that
you select while configuring the Http
control, the appropriate method is
populated in the java file.

String
getResponseBodyAsString()

XmlObject
getResponseBodyAsXML()

byte[]
getResponseBodyAsBytes()

Table 7-1 Http Control Methods (Continued)

Purpose of Method Description Method
Using Integration Controls 7-9

Http Cont ro l
Example of an XML Variable to Set Dynamic Properties
<?xml version="1.0" encoding="UTF-8"?>
<xyz:HttpControlProperties

xmlns:xyz="http://www.bea.com/wli/control/dynamicProperties">
<xyz:URLName>http://localhost:7001/console</xyz:URLName>
</xyz:HttpControlProperties>

Schema for Http Control Properties
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema

targetNamespace="http://www.bea.com/wli/control/dynamicProperties"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns="http://www.bea.com/wli/control/dynamicProperties"

elementFormDefault="qualified">
<xs:element name="HttpControlProperties">
<xs:complexType>
<xs:sequence>
<xs:element name="URLName" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

Setting Connection Time-out
Method: setConnectionTimeOut (int timeoutInMilliSeconds)

This method sets the connection time out for an HTTP request. The connection time-out is
maximum time that a control is allowed to establish a connection - the connection fails after this
time elapses. The parameter time-out is set in milliseconds. A time-out value of zero (zero is the
default value) indicates that the connection time-out has not been used.

Setting Connection Retry Count
Method: setConnectionRetrycount (int retryCount)

This method sets the retry count, that is, the number of times your application will retry for the
HTTP request. If this value is not specified, then the application will try to connect only once. If
a connection is not established in the first try, the second attempt is likely to succeed. It is
7-10 Using Integration Controls

Using HTTP Methods to Se t P roper t i es
recommended that you set this property so that your HTTP requests go through in the second
attempt, if not the first one.

Configuring Server-side SSL
Method: setServerSideSSL (String trustStoreLocation, boolean
hostVerificationFlag)

The Http control provides complete support for HTTP over Secure Sockets Layer (SSL) and
Transport Layer Security (TLS), by leveraging the Java Secure Socket Extension (JSSE). JSSE
is integrated into JDK1.4, which is shipped along with Oracle WebLogic Integration.

When you run this method, the configuration for server-side authentication is set. By default,
JSSE uses (jdk142_04\jre\lib\security\cacerts) as its Trust Store location, which
includes some well-known certificate authorities such as Verisign and CyberTrust. Therefore,
you do not need to specify any Trust Store locations for the certificates, which are issued by the
certification authority.

Additionally, you can provide a host-name verification flag that ensures that the SSL session’s
server host-name matches with the host name returned in the server certificates Common Name
field of the SubjectDN entry. By default this entry is set to False.

For example, if you specify https://www.verisign.com/ as the URL for authentication, you
do not have to specify the Trust Store location, as Verisign is a trusted authority in certificates of
JSSE.

To accept self-signed or SSL certificates that are not trusted, you need to import the server
certificates into its Trust Store Location. For more information on JSSE, see the Java Secure
Socket Extension (JSSE) Reference Guide at the following location:
http://java.sun.com/j2se/1.4.2/docs/guide/security/jsse/JSSERefGuide.html

The following example shows how to create a store, import a server certificate, and to specify the
parameters for this method:

1. Run the following Keytool command to create a new Keystore.
keytool -genkey -alias aliasname -keyalg rsa -keystore keystore name

The following is an example of the command, including user-input values:
keytool -genkey -alias teststore -keyalg rsa -keystore
c:\teststore.jks

For more information, see Creating a Keystore to Use with JSSE, at the following location:
Using Integration Controls 7-11

Http Cont ro l
http://java.sun.com/j2se/1.4.2/docs/guide/security/jsse/JSSERefGuide.ht
ml

2. Launch an HTTPS site to copy the certificate. For example, you can launch the Oracle
WebLogic Server Console of the localhost or any other machine using the
https://host:port/console format. When you are prompted for the server certificate,
click the View Certificate button, navigate to the Details tab, and then click Copy to File.

3. Import the certificate that you copied to the Keystore that you created in Step 1, using the
following command:

keytool -import -alias aliascertname -file certificatename -keystore keystore_name

For example:

keytool -import -alias testcer -file c:\test.cer -keystore c:\teststore.jks

4. In the setServerSideSSL method, specify the Trust Store location as C:\teststore.jks
and the URL to which you send a request as https://host:port/console. To verify the
host name, set the host-name verification flag as true.

Configuring Client-side SSL
Method: setClientSideSSL (String keyStoreType, String keyStoreLocation,
String keyStorePassword, String keyPassword)

This method sets the configuration for client-side authentication. You should use this method
when both server-side and client-side authentication are required. Before configuring this
method, you must configure Configuring Server-side SSL.

In this method, both the keyStoreType and keyPassword fields are optional. If you do not
specify the keyStoreType, the method uses the default Keystore type (which is specified in the
java.security file).

For some Keystores, the Keystore password differs from the key password. In such cases, you
must specify both the Keystore password and key password.

If you want both server-side and client-side configuration, the server certificate should be in the
Client Trust Store. Similarly, the client certificate should be in the Server Trust Store and the
client should specify the Keystore location and passwords appropriately.

Configuring Proxy Settings
Method: setProxyConfig (String host, int port, String userName, String
password)
7-12 Using Integration Controls

Using HTTP Methods to Se t P roper t i es
This method configures parameters for a proxy server. To send an HTTP request using a proxy
server, you must properly configure the host, port, user name, and password.

Note: The Http control supports the Basic Scheme protocol. It does not support NTLM
protocol. You need to configure your proxy settings accordingly.

Setting Cookie
Method: setCookies(CookiesDocument cookies)

The Http control allows you to manually set the cookies sent to the server. To send cookies to the
server with an HTTP request, you have to pass a XML variable that conforms to the Http control's
cookies document schema.

Example: XML Variable Used to Set Cookies
<?xml version="1.0" encoding="UTF-8"?>
<Cookies xmlns="http://www.bea.com/wli/control/HttpCookies">
<Cookie>
<Name>CookieName1</Name>
<Value>CookieValue1</Value>
</Cookie>
<Cookie>
<Name>CookieName2</Name>
<Value>CookieValue2</Value>
</Cookie>
</Cookies>

Schema for Setting Cookie
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns="http://www.bea.com/wli/control/HttpCookies"

elementFormDefault="qualified"

targetNamespace="http://www.bea.com/wli/control/HttpCookies">
<xs:element name="Cookies">
<xs:complexType>
<xs:sequence>
<xs:element name="Cookie" minOccurs="0"
maxOccurs="unbounded">
<xs:complexType>
Using Integration Controls 7-13

Http Cont ro l
<xs:sequence>
<xs:element name="Name" type="xs:string"
minOccurs="0"/>
<xs:element name="Value" type="xs:string" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

Setting Headers for HTTP Post
Method: setHeadersForHttpPost (HeadersDocument headers)

This method sets the request header for an HTTP Post. To set the request header, you have to pass
an XML variable that conforms to the Http control's headers document schema. You can
overwrite the default header’s values by specifying them in the following manner:

User-agent, Content-Type, and so on.

Example: XML Variable Used to Set the Headers
<?xml version="1.0" encoding="UTF-8"?>
<xyz:Headers xmlns:xyz="http://www.bea.com/wli/control/HttpHeaders">
<xyz:Header>
<xyz:name>Content-Type</xyz:name>
<xyz:value>text/*</xyz:value>
</xyz:Header>
<xyz:Header>
<xyz:name>header</xyz:name>
<xyz:value>h1</xyz:value>
</xyz:Header>
</xyz:Headers>

Schema for Setting HTTP Post Headers
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
7-14 Using Integration Controls

Using HTTP Methods to Se t P roper t i es
xmlns="http://www.bea.com/wli/control/HttpHeaders"

elementFormDefault="qualified"

targetNamespace="http://www.bea.com/wli/control/HttpHeaders">
<xs:element name="Headers">
<xs:complexType>
<xs:sequence>
<xs:element name="Header" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="name" type="xs:string" minOccurs="0"/>
<xs:element name="value" type="xs:string" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

Sending an HTTP Get Request
Method: ResponseDocument sendDataAsHttpGet(ParametersDocument
parameters,String charset)

Use this method when you want to send an HTTP Get request. The Get request is mostly used for
accessing static resources such as HTML documents from a Web Server and also can be used to
retrieve dynamic information by using additional parameters in the request URL.

With Get requests, the request parameters are transmitted as a query string appended to the
request URL. To include multi-byte character parameters in the URL, the Http control encodes
the parameters to the characters as defined by the charset field of this method. If you do not
specify any character set, then the Http control will send the parameter data URL encoded in
“UTF-8”. To send the parameters with a URL, you must pass the parameters in an XML variable
that conforms to the Http control's parameter document schema.

Example: XML Variable Used to Set Parameters in HTTP Get
<?xml version="1.0" encoding="UTF-8"?>
<xyz:Parameters xmlns:xyz="http://www.bea.com/wli/control/HttpParameter">

<xyz:Parameter>
Using Integration Controls 7-15

Http Cont ro l
<xyz:Name>Customer Id</xyz:Name>
<xyz:Value>1000</xyz:Value>
</xyz:Parameter>
<xyz:Parameter>
<xyz:Name>Customer Name</xyz:Name>
<xyz:Value>Robert</xyz:Value>
</xyz:Parameter>
</xyz:Parameters>

Schema for Sending Parameters for HTTP Get
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.bea.com/wli/control/HttpParameter"

elementFormDefault="qualified"

targetNamespace="http://www.bea.com/wli/control/HttpParameter">
<xs:element name="Parameters">
<xs:complexType>
<xs:sequence>
<xs:element name="Parameter" minOccurs="0"
maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="Name" type="xs:string"
minOccurs="0"/>
<xs:element name="Value" type="xs:string"
minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

Sending Data as HTTP Post
Method: ResponseDocument sendDataAsHttpPost (String/XmlObject/byte[]
bodyData)
7-16 Using Integration Controls

Using HTTP Methods to Se t P roper t i es
Use the HTTP Post method to post data to a server. The Http control allows you to post data of
three different data types: String, XmlObject, and byte.

The HTTP Post method returns the HTTP response, that is, the HTTP response code and
corresponding message in a ResponseDocument. The schema of the response document is the
same as described in Schema for Sending Parameters for HTTP Get.

HTTP Post requests are meant to transmit information that is request-dependent, and are used
when you need to send large amounts of information to the server. The Http control allows you
to post data of three different data types: String, XmlObject, and Byte stream.

In the HTTP protocol, servers and clients use MIME (Multipurpose Internet Mail Extensions)
headers to indicate the type of content present in requests and responses. Http control also uses
the MIME header(Content-Type), while transmitting data in body of the requests, to describe the
type of data being sent. So while posting String or XmlObject data type, you should set the
Content-Type header appropriately by using the Http control's setHeadersForHttpPost()
method. The Content-Type header contains a charset attribute that indicates the character set
of the message body.

If you do not set any charset attribute, then the Http control uses the default HTTP encoding
(ISO-8859-1) to encode the message.

The following examples provide more information on how to send data using the HTTP Post
mode:

Example 1 - Request body with String data-type
To post a string message of encoding Shift-JIS, you should set the charset attribute in the
Content-Type request header, by calling the Http control's setHeadersForHttpPost method,
as follows:
Content-type="text/*; charset=Shift-JIS"

Example 2 - Request body with XmlObject data type
While sending request messages of XML data type, you have to set the charset attribute in
Content-Type header appropriately.

If you do not specify the character encoding in the Content-Type header, then the Http control
uses the default encoding as specified in rfc3023.

For example, to post an XML document of encoding EUC-JP, you need to set the request type
header as follows:
Content-Type="text/xml; charset=EUC-JP"
Using Integration Controls 7-17

Http Cont ro l
If you do not specify any charset attribute in the request header, the Http control uses us-ascii
as default encoding to encode the message.

Note: To avoid garbling of body data while posting String or Xml data types, you should
always specify the charset attribute in the Content-Type header.

The HTTP Post method returns the HTTP response, that is, the HTTP response code and
corresponding message in a ResponseDocument. The schema of the response document is the
same as described in Schema for Sending Parameters for HTTP Get.

Recieving HTTP Response Headers
Method: HeadersDocument getResponseHeaders

Use this method to receive the HTTP response headers. The response headers are returned in an
XML variable of a pre-defined schema.

The schema for the response headers is same as request headers schema described in Setting
Headers for HTTP Post.

Recieving Cookies From the Server
Method: CookiesDocument getCookies

Use this method to receive the cookies from the server. The cookies are returned in an XML
document of a pre-defined schema.

The schema for the response cookies is same as the request cookies schema described in Schema
for Setting Cookie.

Recieving HTTP Body Data
Method: String getResponseBodyAsString / XmlObject getResponseBodyAsXml /
byte[] getResponseBodyAsBytes

In HTTP, in response to a HTTP request, the server sends the body content that corresponds to
the resource specified in the request. If you want to receive the response body data, then you
should use this method.

The Http control can return the response data in three different data types: String, XmlObject, and
Byte[]. You should set the response data type appropriately, depending upon the response data
that you expect from the server. If the response body is not available or cannot be read, the control
returns a null value.
7-18 Using Integration Controls

Logging Debug Messages and Except ions
Note: While parsing the response body of data type String or XmlObject, the Http control uses
the character encoding specified in the Content-Type response header. If character
encoding is not specified in the Content-Type header, the Http control uses the default
HTTP content encoding ISO-8859-1 for String and US-ASCII encoding for
XmlObject.

To avoid garbling of data, you should always set the charset attribute in the
Content-Type response header.

Logging Debug Messages and Exceptions
During run time, the Http control checks for different parameters, null value, and method return
types. If validation fails at any point, a control exception is thrown to the Business Process
Management (BPM). You can log debug messages, review them, and resolve exceptions if
required.

To log debug messages, edit the apache log properties file. You can find the apache log properties
file, apacheLog4jCfg.xml, in the BEA_HOME\wli_10.3\samples\domains\integration
folder.

To log all the debug statements for HttpControlImpl and HttpResource class files, add the
following lines to the appacheLog4jCfg.xml file:

<category name="com.bea.control.HttpControl">
<!-- NOTE: DO NOT CHANGE THIS PRIORITY LEVEL W/O WLI DEV APPROVAL -->
<!-- Debug-level log information is frequently the only tool available to
diagnose failures! -->
<priority value="debug"/>
<appender-ref ref="SYSLOGFILE"/>
<appender-ref ref="SYSERRORLOGFILE"/>
</category>
<category name="com.bea.control.HttpResource">
<!-- NOTE: DO NOT CHANGE THIS PRIORITY LEVEL W/O WLI DEV APPROVAL -->
<!-- Debug-level log information is frequently the only tool available to
diagnose failures! -->
<priority value="debug"/>
<appender-ref ref="SYSLOGFILE"/>
<appender-ref ref="SYSERRORLOGFILE" />
</category>
Using Integration Controls 7-19

Http Cont ro l
All debug statements are logged into workshop_debug.log file in the corresponding domain
where the application runs.

Http Control Caveats
The following are the known limitations of the Http control:

The Http control doesn't expose any specific method for posting a multi-part document.
However, you can write the code to construct a multi-part message and then convert it into
byte stream and use the sendDataAsHttpPost(byte[] bodyData) method to post data.

The Http control does not support Microsoft Proxy Server. This is because Microsoft Proxy
Server uses NT Lan Manager (NTLM) authentication, which is proprietary to Microsoft.

The HTTP Event Generator
The HTTP event generator is a servlet that takes an HTTP request, checks for the content type in
the HTTP request, and then appropriately publishes the message to the Message Broker.

The HTTP event generator supports two message data types (XML and binary). The data-type is
determined from the Content-Type header of the HTTP request, property name, and matching
values, as well as other handling criteria are specified in the channel rules of the event generator.

You need to configure event generator channels for different data types, using a Message Broker
channel name, which instructs that any HTTP request coming to that servlet will publish the
message to that channel.

To learn more, see Event Generators in Using the Oracle WebLogic Integration Administration
Console.
7-20 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/evntgen.html

C H A P T E R 8
Message Broker Controls
Messaging systems are often used in enterprise applications to communicate with legacy systems,
or for communication between software components. A client of a messaging system can send
messages to, and receive messages from, any other client.

The Message Broker resource provides a publish and subscribe message-based communication
model for Oracle WebLogic Integration business processes, and includes a powerful message
filtering capability.

The Message Broker provides typed channels, to which messages can be published, and to which
services can subscribe to receive messages. You can design a business process to subscribe to
specific channels, using XML Beans for type-safe methods.

Subscribers to Message Broker channels can filter messages on the channels using XQuery
filters. Oracle WebLogic Integration supports a powerful mapping tool that allows you to create
XQuery filters for channels. Business processes can filter documents on channels, based on
document type or document content. For example, you can design a filter that filters on stock
symbol documents, or one that filters on a specific purchase order number.

In addition to business processes that can publish messages to Message Broker channels, Oracle
WebLogic Integration supports event generators, which can publish external events to message
broker channels. Oracle WebLogic Integration provides native event generators, including Email,
File, HTTP, JMS, MQ, and Timer event generators. These event generators allow you to start or
continue a business process based on events, such as the receipt of email or a new file appearing
Using Integration Controls 8-1

Message Broker Cont ro ls
in a directory. To learn about creating and managing event generators using the Oracle WebLogic
Integration Administration Console, see Event Generators in Using the Oracle WebLogic
Integration Administration Console.

To learn more about channels, see:

Messge Broker in Using the Oracle WebLogic Integration Administration Console.

“Note About Static and Dynamic Subscriptions” in
@com.bea.wli.control.broker.MessageBroker.StaticSubscription.

You can customize Message Broker controls in several ways. You may modify the properties of
the control. These modifications is described in more detail in the sections that follow.

Topics Included in This Section
Message Broker Publish Control

Message Broker Subscription Control

Using Event Generators to Publish to Message Broker Channels

Message Broker Publish Control
Two Message Broker controls are available from your business processes: Publish and
Subscription. Your business process uses a Publish control to publish messages to Message
Broker channels. You bind the Message Broker channel to the Publish control when you declare
the control, but it can be overridden dynamically. You can add additional methods to your
extension (subclass) of the Message Broker Publish control.

For information on how to add control instances to business processes, see Using Controls in
Business Processes.

The following topics provide information about creating and using Message Broker Publish
controls:

To Create an Instance of a Message Broker Publish Control

Using Methods of the MB Publish Interface

Example Code for MB Publish Control
8-2 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/evntgen.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/msgbroker.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/wli/control/broker/MessageBroker.StaticSubscription.html

Message Broke r Publ i sh Cont ro l
To Create an Instance of a Message Broker Publish Control

1. In the Package Explorer pane, double-click the business process to which you want to add
the MB Publish control. The business process is displayed in the Design view.

2. Click on the Data Palette and from the drop-down list choose Integration Controls to
display the list of controls used for integrating applications.

Note: If the Data Palette view is not visible in Oracle Workshop for WebLogic, click Window
> Show View > Data Palette from the menu bar.

3. Select MB Publish.

The Insert Control: MB Publish dialog box appears (see Figure 8-1).

Figure 8-1 Insert Control: MB Publish

4. In the Insert Control: MB Publish dialog box enter the following details:

– In the Field Name, type the variable name used to access the new MB Publish control
instance from your business process. The name you enter must be a valid Java
identifier.

– In the Insertion point: from the drop-down list select the point where you want the
field name to be inserted in the process file.

– Decide whether you want to make this a control factory and select or clear the Make
this a control factory that can create multiple instances at runtime check box.

– Click Next.

The Create Control wizard appears.
Using Integration Controls 8-3

Message Broker Cont ro ls
5. In the Create Control dialog box enter the following details:

– In the Name field, type the name of your new control extension file.

– Decide whether you want to add comments as configured in the properties of the
current project and select or clear the Generate comments check box.

– Click Next.

6. In the Insert control- MB Publish dialog-box, enter one of the following details:

– Channel name—Select a channel to which you want your business process to publish.

Note: If no options are available in the channel-name field, you must create a channel file,
which defines the channels to which your business process can publish and subscribe.

– Message type—This read-only field displays the type of data published to the specified
channel.

– Metadata type—This read-only field displays the metadata type value if
qualifiedMetadataType is set in the channel definition.

– Click Finish.

An instance of a MB Publish control is created in your project and displayed in the Data
Palette.

Java File for Your MB Publish Control
When you create a new MB Publish control, you create a new Control java file in your project.
The following example Control java file is automatically created by the control wizard:

package requestquote;

import org.apache.beehive.controls.api.bean.ControlExtension;

/*

 * A custom Publish control.

 */

@ControlExtension

@com.bea.control.PublishControl.ClassPublish(channelName =

"/deadletter/rawData")

public interface MBPublish extends com.bea.control.PublishControl {
8-4 Using Integration Controls

Message Broke r Publ i sh Cont ro l
@com.bea.control.PublishControl.MethodPublish(body = "{value}")

void publish(com.bea.data.RawData value);

@com.bea.control.PublishControl.MethodPublish(metadata =

"{metadata}", body = "{value}")

void publishWithMetadata(org.apache.xmlbeans.XmlObject metadata,

com.bea.data.RawData value);

static final long serialVersionUID = 1L;

public MBPublish create();

}

Using Methods of the MB Publish Interface
This section describes the MB Publish control interface. Use the methods from within your
application to publish to Message Broker channels.

MB Publish Control Interface
package com.bea.control;

import

com.bea.wli.control.dynamicProperties.PublishControlPropertiesDocument;
import org.w3c.dom.Element;
import weblogic.jws.control.Control;

/**
 * Message Broker Publish control base interface
 */

public interface PublishControl extends Control {

 /**
 * Temporarily sets the message headers to use in the next publish

operation
 * @param headers headers to set
 */
Using Integration Controls 8-5

Message Broker Cont ro ls
 void setOutputHeaders(Element[] headers);

 /**
 * Sets the dynamic properties for the control
 * @param props the dynamic properties for the control
 */

 void setProperties(PublishControlPropertiesDocument props);
 /**
 * Sets the dynamic properties for the control
 * @return the current properties for the control
 */

 PublishControlPropertiesDocument getProperties();
}

The PublishControlPropertiesDocument XML Bean is defined in
DynamicProperties.xsd which is located in the Schemas folder of each process application.

To learn more about the methods available on the MB Publish control, see the Interface
PublishControl Javadoc.

Method Attributes
The following method attributes determine the behavior of the MB Publish control.

Class attributes include:

channel-name
The name of the Message Broker channel to which the MB Publish control publishes
messages.

message-metadata
By default, this XML header is included in messages published with this control. Valid
values include a string containing XML.

Method attributes include:

message-metadata
XML header to include in messages published with the control method to which it is
associated. Valid values include a string containing XML, or a method parameter in curly
braces. For example: {parameter1}.

message-body
Valid values include a string containing text that is used as the message body in the
published message, or a method parameter in curly braces. For example: {parameter2}.
8-6 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/PublishControl.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/PublishControl.html

Message Broke r Publ i sh Cont ro l
Example Code for MB Publish Control
The Publish control allows you to override class-level annotations with dynamic properties. To
do so, use an XML variable that conforms to the control’s dynamic property schema.

The following is an example of an XML variable you can use to specify the dynamic properties:

<PublishControlProperties>
 <channel-name>potopic</channel-name>
 <message-metadata>
 <custom-header>ACME Corp</custom-header>
 <message-metadata>
</PublishControlProperties>

The XML Schema for the MB Publish control dynamic properties is shown in the following
listing. You can obtain this schema by adding the WLI Schemas project template to you
application. You can get and set these properties using the getProperties and setProperties
methods.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.bea.com/wli/control/dynamicProperties"
xmlns="http://www.bea.com/wli/control/dynamicProperties"
elementFormDefault="qualified">
 <xs:element name="PublishControlProperties">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="channel-name" type="xs:string"
 minOccurs="0" maxOccurs="1" />
 <xs:element name="message-metadata" type="header"
 minOccurs="0" maxOccurs="1" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

<!-- The following complex-type represents any arbitrary sequence of XML content
-->

 <xs:complexType name="header">
 <xs:sequence>
 <xs:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded" processContents="lax" />
 </xs:sequence>
 </xs:complexType>
</xs:schema>
Using Integration Controls 8-7

Message Broker Cont ro ls
Example Code
MB Publish controls must be extended. The following is an example of how to code a MB Publish
control in your business process.

/*
 * @com.bea.control.PublishControl.ClassPublish

channel-name="/controls/potopic"
 */

public interface MBPublish extends com.bea.control.PublishControl{
 /**
 * @com.bea.control.PublishControl.MethodPublish
 * message-metadata="<custom-header>ACME Corp</custom-header>"
 * message-body="{myMsgToSend}"
 */

 void publishPO(XmlObject myMsgToSend);
}

/*
 * org.apache.beehive.controls.api.bean.Control
 */
private MyPublishControl pubCtrl;

// publish a message
void sendIt(XmlObject myMsgToSend) {
 pubCtrl.publishPO(myMsgToSend);
}

Message Broker Subscription Control
Two Message Broker controls are available from your business processes: Publish and
Subscription. Your business process uses a Subscription control to dynamically subscribe to
channels and receive messages. You bind the channel and optionally, an XQuery expression for
filtering messages, when you create an instance of the control for your business process. The
bindings cannot be overridden dynamically.

The Subscription control interface includes methods that allow your business process to
subscribe to and unsubscribe from the bound Message Broker channel.
8-8 Using Integration Controls

Message Broker Subscr ip t i on Cont ro l
Subscribe operations are part of the larger XA transaction, as with other business process
operations. This allows subscribe operations to be rolled back if the business process operation
fails. Because a subscription is in a transaction, you have to commit the transaction to make it
durable. If you’re doing non-transactional work, that is, if a subscribe operation must be
committed before performing an action that might trigger a return message, use
<transaction/> blocks in the flow to commit the current business process state, including the
subscription.

For information on how to add control instances to business processes, see Using Controls in
Business Processes.

The following topics provide information about creating and using Message Broker Subscription
controls:

To Create an Instance of a Message Broker Subscription Control

Using Methods of the MB Subscription Interface

Example Code for MB Subscription Control

Note About Static and Dynamic Subscriptions to Message Broker Channels

To Create an Instance of a Message Broker Subscription Control

1. In the Package Explorer pane, double-click the business process to which you want to add
the MB Subscription control. The business process is displayed in the Design view.

2. Click on the Data Palette and from the drop-down list choose Integration Controls to
display the list of controls used for integrating applications.

Note: If the Data Palette view is not visible in Oracle Workshop for WebLogic, click Window
> Show View > Data Palette from the menu bar.

3. Select MB Subscription.

The Insert Control:MB Subscription dialog box appears.
Using Integration Controls 8-9

Message Broker Cont ro ls
Figure 8-2 Insert Control: MB Subscription

4. In the Insert Control:MB Subscription dialog box enter the following details:

– In the Field Name, type the variable name used to access the new MB Subscription
control instance from your business process. The name you enter must be a valid Java
identifier.

– In the Insertion point: from the drop-down list select the point where you want the
field name to be inserted in the process file.

– Decide whether you want to make this a control factory and select or clear the Make
this a control factory that can create multiple instances at runtime check box.

– Click Next.

The Create Control dialog-box appears.

5. In the Create Control dialog box enter the following details:

– In the Name field, type the name of your new control extension file.

– Decide whether you want to add comments as configured in the properties of the
current project and select or clear the Generate comments check box.

– Click Next.

6. In the Insert Control:MB Subscription dialog box enter the following details:

– Channel-name—Select a channel to which you want your business process to
subscribe.

Note: If no options are available in the channel-name field, you must create a channel file,
which defines the channels to which your business process can publish and subscribe.
8-10 Using Integration Controls

Message Broker Subscr ip t i on Cont ro l
– Message type—This read-only field displays the type of data received from the
specified channel: String, XmlObject, RawData.

– Metadata type—This read-only field displays the metadata type value if
qualifiedMetadataType is set in the channel definition.

– Select the This subscription will be filtered check box if you want to subscribe using
filter values.

Note: If you choose the option "this subscription" will be filtered, it’s mandatory to provide
the filter value in SubscriptionControl annotation

– Click Finish.

An instance of a MB Subscription control is created in your project and displayed in the
Controls tab.

The control declaration is written to your Process.java file.
/**
 * org.apache.beehive.controls.api.bean.Control
 */
 private processes.mbSubscribe mbSubscribe;

Note: If a JPD has any in-line XQueries, while upgrading the JPD, either the XQueries are
upgraded, or the JPD is marked with @XQuery.Version=2002. If the JPD does not have
any XQueries, the version is not set to xquery=2004. If this JPD refers to a subscription
control that has XQuery set, the upgraded JPD version is xquery=2004, and the upgraded
subscription control version is xquery=2002. The XQuery prolog of the JPD is appended
to any XQueries in subscription controls used in the JPD while generating the compiled
artifacts (wli-subscriptions.xml). The version incompatibility makes the generated
XQuery invalid, as the XQuery is XQ2002 and its prolog is XQ2004.

The only solution is to ascertain that all xqueries in an upgraded application are either
version XQ2002 or XQ2004. The XQuery functions and namespaces declared in an
XQuery prolog in the JPD are not accessible to the XQueries in subscription control. This
is an unsupported case when mixing two different XQuery versions in the same
application.

Java File for Your MB Subscription Control
When you create a new MB Subscription control, you create a new Control java file in your
project. The following example Control java file is automatically created by the control wizard:
Using Integration Controls 8-11

Message Broker Cont ro ls
import com.bea.control.SubscriptionControl;
import com.bea.data.RawData;
import com.bea.xml.XmlObject;

package requestquote;

import com.bea.control.SubscriptionControl;

import org.apache.beehive.controls.api.bean.ControlExtension;

import org.apache.beehive.controls.api.events.EventSet;

/*

 * A custom Subscribe control.

 */

@ControlExtension

@SubscriptionControl.ClassSubscription(channelName = "/deadletter/string")

public interface MBSubscription extends com.bea.control.SubscriptionControl

{

@EventSet

interface Callback {

@SubscriptionControl.SubscriptionCallback(body =

"{message}")

void onMessage(String message);

}

static final long serialVersionUID = 1L;

public MBSubscription create();

}

You must select the This subscription will be filtered check box to ensure that the
subscribeWithFilterValue() method in included in the Control java file. The onMethod
method on the Calback interface uses the message type defined in the channel file.
8-12 Using Integration Controls

Message Broker Subscr ip t i on Cont ro l
Using Methods of the MB Subscription Interface
This section describes the MB Subscription control interface.The methods you can use to
subscribe to Message Broker channels are available from within your application.

Class Interface
package com.bea.control;

import weblogic.jws.control.Control;

/**
 * Message Broker Subscription control base interface
 */

public interface SubscriptionControl extends Control
{

/**
 * Subscribes the control to the message broker. If the subscription
 * uses a filter expression, then the default filter value will be
 * used. If no default filter value is defined in the annotations,
 * then a <tt>null</tt> filter value will be used, meaning that any
 * filter result will trigger a callback.
 */

 void subscribe();

 /**
 * Unsubscribes the control from the message broker, stopping
 * further events (messages) from being delivered to the control.
 */

 void unsubscribe();

 interface Callback {
 /**

 * Internal callback method used to implement user-defined callbacks.
 * JPDs cannot and should not attempt to implement this callback

method.
 *
 * @param msg the message that triggered the subscription
Using Integration Controls 8-13

Message Broker Cont ro ls
 * @throws Exception
 *
 void _internalCallback(Object msg) throws Exception;
 */
 }
}

Note: If the subscription uses a filter, you must define custom subscription methods to specify
the filter value to be matched at run time.

The Subscription control does not define callback methods for you. You must define a custom
callback to specify how the business process expects to receive the event messages. (Event
messages can be XML, raw data, or string.)

To learn more about the methods available on the MB Subscription control, see the Interface
SubscriptionControl Javadoc.

Method Attributes
This section describes the class and method attributes supported for the Subscription control.

Class attributes include:

channel-name
The name of the Message Broker channel to which the control subscribes. This is a
required class-level annotation that cannot be overridden.

xquery
The XQuery expression that is evaluated for each message published to a subscribed
channel. Messages that do not satisfy this expression are not dispatched to a subscribing
business process. This is an optional class-level annotation that cannot be overridden.

Method attributes include:

filter-value-match
The filter-value that the XQuery expression results must match for the message to be
dispatched to a subscribing business process. This is an optional method-level annotation.
Valid values for the filter-value-match annotation include a string constant that is
compared directly to the XQuery results, or a method parameter in curly braces. For
example: {parameter1}

Callback method attributes include:
8-14 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/SubscriptionControl.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/SubscriptionControl.html

Message Broker Subscr ip t i on Cont ro l
message-metadata
The name of a parameter in the callback method that receives the metadata from the
message that triggered the subscription. This parameter must be of type XmlObject (or a
typed XML Bean class).

message-body
The name of a parameter in the callback method that receives the body from the message
that triggered the subscription. This parameter must be of type XmlObject (or a typed
XML Bean class), String, RawData, or a non-XML MFL class (a subclass of
MflObject).

Example Code for MB Subscription Control
MB Subscription controls must be extended. The following is an example of a MB Subscription
control file.

package requestquote;

import org.apache.beehive.controls.api.bean.ControlExtension;

import org.apache.beehive.controls.api.events.EventSet;

import org.apache.xmlbeans.XmlObject;

/*

 * A custom Subscribe control.

 */

@ControlExtension

@SubscriptionControl.ClassSubscription(channelName = "/deadletter/xml")

public interface SubscriptionControl extends

com.bea.control.SubscriptionControl {

@SubscriptionControl.MethodSubscription(filterValueMatch =

"{value}")

void subscribeWithFilterValue(String value);

@EventSet

interface Callback {
Using Integration Controls 8-15

Message Broker Cont ro ls
@SubscriptionControl.SubscriptionCallback(body =

"{message}", metadata = "{metadata}")

void onMessage(XmlObject message, XmlObject metadata);

}

static final long serialVersionUID = 1L;

public SubscriptionControl create();

}

Note About Static and Dynamic Subscriptions to Message
Broker Channels
In addition to the dynamic subscriptions you design at Control nodes in your business process,
you can design static subscriptions at Start nodes to receive messages from Message Broker
channels.

To learn how to design static subscriptions to Message Broker channels at business process Start
nodes, see Designing Start Nodes.

Using Event Generators to Publish to Message Broker
Channels

Event generators publish messages to Message Broker channels. Oracle WebLogic Integration
supports the following event generators:

Email event generators

File event generators

HTTP event generators

JMS event generators

MQSeries event generators

Timer event generators
8-16 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideStartException.html

C H A P T E R 9
MQSeries Control
MQSeries is a middleware product from IBM that runs on multiple platforms. It enables message
transfer between applications; the sending application PUTs a message on a Queue, and the
receiving application GETs the message from the Queue. The sending and receiving applications
do not have to be on the same platform, and can execute at different times. MQSeries manages
all the storage, logging and communications details required to guarantee delivery of the message
to the destination queue.

Disclaimer
Use of the MQSeries control and event generator with Oracle WebLogic Integration in no manner
confers or grants the right to use MQSeries control including "dynamic libraries". In order to use
such IBM products, the user of the MQSeries control and event generator must obtain a valid
license from IBM.

Topics Included in This Section
Overview: MQSeries Control

Describes the function of the MQSeries control within Oracle WebLogic Integration.

Prerequisites to Adding an MQSeries Control
Describes the pre-requisite tasks for creating a new MQSeries control.
Using Integration Controls 9-1

MQSer ies Cont ro l
Creating and Configuring a New Instance of the MQSeries Control
Describes how to create and configure a new MQSeries control.

Using the MQSeries Control Exit Implementation
Describes how to implement the MQSeries control Exit functionality.

Understanding Transaction Management
Describes the modes of transaction management supported by the MQSeries control.

Using Message Descriptors
Describes how to set and retrieve the message descriptor attributes of the message.

Sending and Receiving Messages
Describes the methods used to send and receive messages.

Working with MQSeries Message Descriptor Format
Describes the method used to send messages of built-in MQSeries formats.

Setting Dynamic Properties
Describes how to modify the MQSeries control properties at run time.

Configuring SSL In MQSeries Control
Describes how to configure server-side and client-side authentication using SSL, for the
MQSeries control.

Using the MQSeries Event Generator
Describes how to migrate control files created using MQSeries control version 8.1 SP3,
to current release.

Using the MQSeries Event Generator
Describes the MQSeries Event Generator in brief, with a reference to more information.

Overview: MQSeries Control
The MQSeries control enables Oracle WebLogic Integration business processes to send and
receive messages using MQSeries queues. Using the MQSeries control, you can send and receive
Binary, XML, and String messages. You can specify MQSeries control properties while
configuring the MQSeries control or dynamically at run time. You can also set the transaction
boundaries for the MQSeries business operations.

The MQSeries control complements the other controls provided in Oracle WebLogic Integration,
and can be used with other Oracle WebLogic Integration business processes. For information on
how to add control instances to business processes, see Using Controls in Business Processes.
9-2 Using Integration Controls

Pre requ is i tes to Add ing an MQSer ies Cont ro l
The MQSeries Event Generator can be used for polling specific MQSeries queues for incoming
messages. For more information, see Using the MQSeries Event Generator.

Prerequisites to Adding an MQSeries Control
Before adding the MQSeries control to the Oracle Workshop for WebLogic, you must complete
the following tasks:

1. Install the WebSphere MQSeries client on your machine.

2. Add the com.ibm.mq.jar file from the MQSeries client installation to the system
environment CLASSPATH variable.

3. Optionally, enable MQSeries control logging by adding the following code to the
apacheLog4jCfg.xml file:
<category name=”com.bea.control.MQControl”>
<!-- NOTE: DO NOT CHANGE THIS PRIORITY LEVEL W/O WLI DEV APPROVAL -->
<!-- Debug-level log information is frequently the only tool available
to diagnose failures! -->
<priority value="warn"/>
<appender-ref ref="SYSLOGFILE"/>
<appender-ref ref="SYSERRORLOGFILE" />
</category>

The MQSeries control uses the Workshop debugger for logging messages.

Note: To change the log level, refer to the control documents.

4. In Oracle Workshop for WebLogic, import the com.ibm.mq.jar file from the MQSeries
client installation into the Libraries folder of the application where the MQSeries control is
used.

Now you can add a new MQSeries control to send and receive messages.

Creating and Configuring a New Instance of the MQSeries
Control

You can create and configure a new instance of the MQSeries control and add it to your business
process. This topic includes the following sections:

To Add a New MQSeries Control
Describes how to add a new MQSeries control.
Using Integration Controls 9-3

MQSer ies Cont ro l
To Specify MQSeries Control General Settings
Describes how to configure the general settings for the MQSeries control, such as pool
size, SSL, and so on.

To Specify MQSeries Control Connection Settings
Describes how to configure connection settings for the MQSeries control.

To Specify MQSeries Control Exits
Describes how to configure exits and how to use the MQSeries control exit
implementation. For more information, see Using the MQSeries Control Exit
Implementation.

To Add a New MQSeries Control
To add a new MQSeries control to Oracle WebLogic Integration, perform the following steps:

1. In the Package Explorer pane, double-click the business process (Process.java file) to which
you want to add the MQ Series control. The business process is displayed in the Design view.

2. Click on the Data Palette and from the drop-down list choose Integration Controls to
display the list of controls used for integrating applications.

Note: If the Data Palette view is not visible in Oracle Workshop for WebLogic, click Window
> Show View > Data Palette from the menu bar.

3. Select MQSeries Control.

The Insert Control: MQSeries dialog box is displayed (see Figure 9-1).

Figure 9-1 Insert Control: MQSeries
9-4 Using Integration Controls

Creat ing and Conf igur ing a New Ins tance o f the MQSer ies Cont ro l
Note: If you are creating the control for the first time, the Locate the MQ Series jar file
dialog box will is displayed. Browse for the com.ibm.mq.jar file located in the MQ
series installation folder and click Open.

4. In the Insert control: MQSeries dialog box enter the following details:

– In the Field Name, type the variable name used to access the new MQSeries control
instance from your business process. The name you enter must be a valid Java
identifier.

– In the Insertion point: from the drop-down list select the point where you want the
field name to be inserted in the process file.

– Decide whether you want to make this a control factory and select or clear the Make
this a control factory that can create multiple instances at runtime check box.

– Click Next.

5. In the Create Control wizard enter the following details:

– In the Name field, type the name of your new control extension file.

– Decide whether you want to add comments as configured in the properties of the
current project and select or clear the Generate comments check box.

– Click Next.

The Insert control: MQSeries dialog-box is displayed.

6. Configure the following settings in the Insert control: MQSeries dialog-box as mentioned
below:

– To configure the general settings for your MQSeries control, see To Specify MQSeries
Control General Settings

– To specify connection settings for your MQSeries control, see To Specify MQSeries
Control Connection Settings

– To specify connection settings for your MQSeries control, see To Specify MQSeries
Control Authorization Settings

– To use the MQSeries exit implementation, see To Specify MQSeries Control Exits

7. Click Finish.

To Specify MQSeries Control General Settings
To specify connection settings for the MQSeries control, perform the following tasks (see
Figure 9-2):
Using Integration Controls 9-5

MQSer ies Cont ro l
Figure 9-2 General

1. From the Connection Type drop-down list, select the type of connection that you want to
establish; a Bindings or TCP type connection. Using the Bindings connection type, you can
only get a connection to queue managers on the local system. Using the TCP connection type,
you can also get connections to remote queue managers.

2. In the MQ Pool Size text box, enter the number of MQSeries connections to be maintained
in the MQSeries connection pool.

3. In the Connection Time-out (Seconds) field, enter the number of seconds after which the
connection should time out.

4. From the Require MQ Authorization drop-down list, select either Yes or No. MQ
authorization is applicable only in TCP mode. To get MQ authorization, you must enter the
MQSeries user name and password in the Authorization tab.

5. The Implicit Transaction Required option is selected by default. When selected, the
MQSeries control handles transactions implicitly for each Put and Get individually, without
having to set an explicit transaction boundary. When this option is not selected, you must
explicitly set the transaction boundaries. For more information, see Understanding
Transaction Management.
9-6 Using Integration Controls

Creat ing and Conf igur ing a New Ins tance o f the MQSer ies Cont ro l
6. In the Default Queue Name field, enter the default queue name to be used by the MQSeries
control for sending and receiving messages.

7. Select Require SSL Authentication if you want to enable server-side authentication using
SSL (one way) for this instance of the MQSeries control.

8. Select Require Two way SSL if you want to enable client-side authentication also using SSL
(two way) for this instance of the MQSeries control.

To Specify MQSeries Control Connection Settings
To specify TCP/IP settings for the MQSeries control, perform the following tasks, in the
Connection tab (see Figure 9-3):

Figure 9-3 Connection

1. In the Connection tab, in the Queue Manager Name field, enter the name of the Queue
Manager for which the connection is being obtained.

Note: Specify TCP/IP settings only if you have set your connection type to TCP.

2. In the Host field, enter the name of the host machine containing the queue manager to which
you want to connect.

3. In the Port field, enter the port number on which the queue manager is available for
connection.
Using Integration Controls 9-7

MQSer ies Cont ro l
4. In the Channel field, enter the MQSeries server connection channel configured in the queue
manager.

5. In the CCSID field, enter the Coded Character Set to be used when a connection is
established. The CCSID is used mainly for internationalization support.

6. Click the Test Connection button to validate the values entered, and to check that you can
connect to the queue manager.

Note: The TCP Setting of Connection tab is enabled only when the TCP connection mode
is selected

WARNING: Do not click the Test Connection button when selecting the SSL option for your
control. Clicking this button will cause your connection to fail.

To Specify MQSeries Control Authorization Settings
In the Authorization tab (see Figure 9-4), specify user name and password for MQ authorization,
perform the following tasks:

Figure 9-4 Authorization

1. In the MQ User Name field, enter your MQ user name.

2. In the MQ User Password field, enter your MQ password.

To Specify MQSeries Control Exits
In the Exits tab (see Figure 9-5), specify MQSeries control exits, perform the following tasks:
9-8 Using Integration Controls

Creat ing and Conf igur ing a New Ins tance o f the MQSer ies Cont ro l
Figure 9-5 Exits

1. In the Exits tab, in the Send Exit Class field, enter the fully qualified name of the class
implementing the MQSeries MQSendExit interface.

2. In the Receive Exit Class field, enter the fully qualified name of the class implementing the
MQSeries MQReceiveExit interface.

3. In the Security Exit Class field, enter the fully qualified name of the class implementing the
MQSeries MQSecurityExit interface.

For more information, see Using the MQSeries Control Exit Implementation.

Note: The Exits tab is enabled only when TCP connection mode is selected. The fields in
this tab are not mandatory.

The Control File for an MQSeries Control
When you create a new instance of the MQSeries control, you create a new Control file in your
project. The following is a sample control file for an MQSeries control:

package requestquote;

import org.apache.beehive.controls.api.bean.ControlExtension;

/*

 * A custom MQ control.

 */

@ControlExtension
Using Integration Controls 9-9

MQSer ies Cont ro l
@com.bea.control.MQControl.Connection(type =

com.bea.control.MQControl.ConnectionType.TCP, QueueManager = "Manager",

authorization = false, implicitTransaction = true)

@com.bea.control.MQControl.ConnectionPool(poolSize = 20, timeout = 3600)

@com.bea.control.MQControl.TCPSettings(host = "10.12.45.89", port = "1234",

channel = "Host", ccsid = "1234", user = "", password = "", sendExit = "",

receiveExit = "", securityExit = "")

@com.bea.control.MQControl.SSLSettings(sslRequired = false, twoSSLRequired

= false)

public interface MQSeriesControl extends com.bea.control.MQControl {

static final long serialVersionUID = 1L;

public MQSeriesControl create();

}

The contents of the MQSeries control file depend on the selections made in the Insert MQSeries
dialog. The example above was generated based on selecting a TCP connection type.

Using the MQSeries Control Exit Implementation
The MQSeries control allows you to create your own send, receive, and security exits.

To implement an Exit, you must define a new Java class that implements the appropriate
interface. Three exit interfaces are defined in the WebSphere MQ package:

MQSendExit

The MQSeries MQSendExit interface allows you to examine and change the data sent to
the queue manager by the WebSphere MQ Client for Java.

MQReceiveExit

The MQSeries MQReceiveExit interface allows you to examine and change the data
received from the queue manager by the WebSphere MQ Client for Java.

MQSecurityExit
9-10 Using Integration Controls

Using the MQSer ies Cont ro l Ex i t Implementat i on
The MQSeries MQSecurityExit interface allows you to customize the security settings for
connecting to a queue manager.

Notes: User Exits are supported for TCP connections only; they are not supported for bindings
connections.

User Exits are used to modify the data that is transmitted between the MQSeries queue
manager and the MQSeries client application. This data is in the form of MQSeries
headers and does not involve the contents of the actual message being put and received
from the queue.

Implementing MQSeries Exits
To implement MQSeries Exits, perform the following tasks:

1. Create the Java class that implements the com.ibm.mq.MQSendExit,
com.ibm.mq.MQReceiveExit, and com.ibm.mq.MQSecurity interfaces for the send,
receive, and security exits, as shown in the following example:
package com.bea.UserExit;
import com.ibm.mq.*;
public class MQUserExit implements MQSendExit, MQReceiveExit,
MQSecurityExit {
public MQUserExit()
{
}
public byte[] sendExit(MQChannelExit channelExit,MQChannelDefinition
channelDefnition,byte[] agentBuffer)
{
return agentBuffer;
}
public byte[] receiveExit(MQChannelExit channelExit,MQChannelDefinition
channelDefnition,byte[] agentBuffer)
{
return agentBuffer;
}
public byte[] securityExit(MQChannelExit
channelExit,MQChannelDefinition channelDefnition,byte[] agentBuffer)
{
return agentBuffer;
}
}

You may implement these interfaces in a single class or in separate classes, as required.
Using Integration Controls 9-11

MQSer ies Cont ro l
For an MQSendExit, the agentBuffer parameter contains the data to be sent. For an
MQReceiveExit or an MQSecurityExit, the agentBuffer parameter contains the data just
received.

For the MQSendExit and the MQSecurityExit, your exit code should return the byte array
that you want to send to the server. For a Receive exit, your exit code must return the
modified data that you want WebSphere MQ Client for Java to interpret.

2. Bundle the given class in a Jar file, for example, mquserexits.jar.

3. Place the Jar file in the Oracle WebLogic classpath. Edit the setDomainEnv.cmd file located
in the Oracle WebLogic domain directory to append the Jar file name to the CLASSPATH. To
do this, find the following code in the setDomainEnv.cmd file:
set Pre_CLASSPATH=

and append the following line to it:
;%EXIT_DIR%\mquserexits.jar

Before you append the code containing the Jar file name to the CLASSPATH, you can
define the directory in which the Jar file resides, as follows:
set EXIT_DIR=D:\UserExits

Understanding Transaction Management
Two modes of transaction management are supported by the MQSeries control. They both use
the underlying MQSeries syncpoint feature. The two transaction management modes are:

Implicit Transaction Management

Explicit Transaction Management

Implicit Transaction Management
Implicit transaction management is selected by default. When this mode is on, the MQSeries
control handles the transaction for each MQSeries Get or Put function. The following diagram
describes how an implicit transaction is handled by the MQSeries control.
9-12 Using Integration Controls

Unders tanding T ransact ion Management
Using implicit transaction management prevents you from grouping several Get and Put
functions together as a part of a transactional unit. Each Get and Put are handled individually
within a transaction boundary.

Explicit Transaction Management
Explicit transaction management is enabled when you choose not to use implicit transaction
management while configuring the MQSeries control. In the explicit transaction mode, you must
set the transaction boundaries explicitly, using the Begin and Commit (or Rollback) MQSeries
control functions.

Figure 9-6 describes the process of creating a workflow using explicit transaction management.
Using Integration Controls 9-13

MQSer ies Cont ro l
Figure 9-6 Workflow using Explicit Transaction Management

Using Message Descriptors
A Message Descriptor is an attribute representing a property of the message that is either being
sent or received. Message properties can be the type of message, the message ID, and the message
priority. For a detailed list of all the message descriptors supported by the MQSeries control, see
Table 9-1, “Elements of the MQMDHeaders XML document”.

Using the MQSeries control you can set Message Descriptors for each message while sending the
message using the putMessage function. You can also get the message descriptors of the
messages retrieved from the queue. This facility is supported using the MQMDHeaders
document which is provided as an input to the putMessage and getMessage functions. The
MQMDHeaders document is represented using an XMLBean that conforms to the
MQMDHeaders schema present in the jpdpublic.jar file, located at
BEA_Home\wli_10.3\lib.

The following elements of the MQMDHeaders XML document can be set as part of the MQMD
parameters:
9-14 Using Integration Controls

Us ing Message Descr ip to rs
Table 9-1 Elements of the MQMDHeaders XML document

Element Name Description Permissible Values Relevance

MessageType Type of message 8-Datagram

1-Request

2-Reply

Other positive integers
are also accepted if they
are within the
Application or System
defined ranges specified
by MQSeries.

Put Request, Put Response,
Get Response

MessageId Id of message Hexadecimal string Put Request, Put Response,
Get Request, Get Response

CorrelationId Correlation Id of the
message

Hexadecimal string Put Request, Put Response,
Get Request, Get Response

GroupMessage This element is required
to send and receive group
messages.

Put Request, Put Response,
Get Request, Get Response

GroupId Group Id of the message Hexadecimal string Put Request, Put Response,
Get Request, Get Response

Priority Message priority 0-9 Put Request, Put Response,
Get Response

Format Message format String values
representing valid
built-in MQSeries
formats or user-defined
formats. The string
values are present in
MQC.MQFMT_*.

Put Request, Put Response,
Get Response

CharacterSet Character Set of the
message

Valid MQSeries
Character set

Put Request, Put Response,
Get Response
Using Integration Controls 9-15

MQSer ies Cont ro l
Persistence Persistence property of
the message

0- non-persistent
message.

1-persistent message

Put Request, Put Response,
Get Response

Segmentation Segmentation property of
the message

0- segmentation not
allowed.

1- segmentation allowed.

Put Request

Expiry Message expiration A positive integer or -1
(for unlimited expiration)

Get Request, Put Response,
Get Response

UserId User Id of the message A string Put Request, Put Response,
Get Response

MessageSequenceNumb
er

Message Sequence
Number of the message

A positive integer, not 0 Put Request, Put Response,
Get Request, Get Response

GroupOptions use this element in the Put
Request only if the
message being Put is a
group message. In the Get
Response, this element
appears only if the
message retrieved is a
group message.

Put Request, Get Response

IsLastMessage Identifies the last message
of a group message. This
element accepts boolean
values.

True or False Put Request, Get Response

ReportOptions Identifies the report
options to be set while
sending a message.

Put Request

Table 9-1 Elements of the MQMDHeaders XML document (Continued)

Element Name Description Permissible Values Relevance
9-16 Using Integration Controls

Us ing Message Descr ip to rs
COA Confirmation on Arrival.

COA Report options

COA - the COA report
without any original
message data.

COAWithData-the COA
report with the first 100
bytes of the original
message.

COAWithFullData - the
COA report with all the
original message data.

COA, COAWithData,
COAWithFullData,
None

Put Request

COD Confirmation of Delivery

COD Report options

COD - the COD report
without any data of the
original message.

CODWithData - the COD
report with the first 100
bytes of the original
message.

CODWithFullData - the
COD report with all the
original message data.

COD, CODWithData,
CODWithFullData,
None

Put Request

Table 9-1 Elements of the MQMDHeaders XML document (Continued)

Element Name Description Permissible Values Relevance
Using Integration Controls 9-17

MQSer ies Cont ro l
Exception Exception Report options

Exception - the Exception
report without any
original message data.

ExceptionWithData - the
Exception report with the
first 100 bytes of the
original message.

ExceptionWithFullData -
the Exception report with
all the original message
data.

Exception,
ExceptionWithData,
ExceptionWithFullData,
None

Put Request

Expiration Expiration Report options

Expiration - the
Expiration report without
any original message data.

ExpirationWithData - the
Expiration report with the
first 100 bytes of the
original message.

ExpirationWithFullData -
The expiration report with
all the original message
data.

Expiration,
ExpirationWithData,
ExpirationWithFullData,
None

Put Request

Feedback Message feedback A positive integer Put Request, Put Response,
Get Response

ReplyToQueueName The queue to which the
reports or the reply (used
only for a request
message) should be sent.

String representing a
valid queue name

Put Request, Put Response,
Get Response

ReplyToQueueManager The queue manager
containing the reply to
queue.

String representing a
valid queue manager
name

Put Request, Put Response,
Get Response

Table 9-1 Elements of the MQMDHeaders XML document (Continued)

Element Name Description Permissible Values Relevance
9-18 Using Integration Controls

Us ing Message Descr ip to rs
WaitInterval The lapse time (in
milliseconds) before
receiving a message.

A positive integer. -1 for
unlimited wait interval

Get Request

ApplicationIdData String value Put Request, Put Response
and Get Response.

ApplicationOriginData String value Put Request, Put Response
and Get Response.

PutApplType Put application type of the
message

Positive integer value Put Request, Put Response
and Get Response.

PutApplName Put application name of
the message

String value Put Request, Put Response
and Get Response.

PutDateTime Put date and time of the
message

String value Put Response and Get
Response

AccountingToken Accounting information
for the message

Byte array Put Request, Put Response
and Get Response.

Version Version information of
the message descriptor

2 or 1 Put Request, Put Response
and Get Response.

Table 9-1 Elements of the MQMDHeaders XML document (Continued)

Element Name Description Permissible Values Relevance
Using Integration Controls 9-19

MQSer ies Cont ro l
MessageConsumption Message consumption
option for the
getMessage function.

Browse - Retrieve the
message from the queue
(without deleting the
message).

Delete - Delete the
message from the queue
after retrieving it.

Browse, Delete Get Request

MQGMO_CONVERT Specifies whether data
conversion is required for
the message during a Get
operation.

This element must be set
to True to retrieve
messages of the EBCDIC
characterset.

True or False Get Request

Table 9-1 Elements of the MQMDHeaders XML document (Continued)

Element Name Description Permissible Values Relevance
9-20 Using Integration Controls

Us ing Message Descr ip to rs
Schema of the MQMDHeaders Document
<?xml version="1.0"?>
<xs:schema targetNamespace="http://www.bea.com/wli/control/MQMDHeaders"
xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns="http://www.bea.com/wli/control/MQMDHeaders"

elementFormDefault="qualified">
<xs:element name="MQMDHeaders">
 <xs:complexType>
 <xs:sequence>
<xs:element name="MessageType" type="xs:string" minOccurs="0"
maxOccurs="1"/>
<xs:element name="MessageId" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="CorrelationId" type="xs:string" minOccurs="0"

maxOccurs="1"/>
<xs:element name="GroupMessage" minOccurs="0" maxOccurs="1">

<xs:complexType>
 <xs:sequence>
<xs:element name="GroupId" type="xs:string" minOccurs="1" maxOccurs="1"/>

Table 9-2 Attributes of the MQMDHeaders document

Attribute Name Under Element Description Values Relevance

waitForAllMsgs GroupMessage Used while retrieving group messages to
specify that no message of the group
should be retrieved until all the messages
of the group are available in the queue.
This attribute is normally specified only
while retrieving the first message of the
group.

True or
False

Get Request and
Get Response

logicalOrder GroupMessage Used while retrieving group messages to
specify that the messages of the group
should be retrieved in the order of their
Message Sequence Number irrespective
of the order in the queue. This option is
specified while retrieving all the
messages of the group.

True or
False

Get Request and
Get Response
Using Integration Controls 9-21

MQSer ies Cont ro l
 </xs:sequence>
<xs:attribute name="waitForAllMsgs" type="xs:boolean" use="optional"/>
<xs:attribute name="logicalOrder" type="xs:boolean" use="optional"/>
 </xs:complexType>
 </xs:element>
<xs:element name="Priority" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="Format" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="CharacterSet" type="xs:string" minOccurs="0"
maxOccurs="1"/>
<xs:element name="Persistence" type="xs:string" minOccurs="0"

maxOccurs="1"/>
<xs:element name="Segmentation" type="xs:string" minOccurs="0"

maxOccurs="1"/>
<xs:element name="Expiry" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="UserId" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="MessageSequenceNumber" type="xs:string" minOccurs="0"
maxOccurs="1"/>
<xs:element name="GroupOptions" minOccurs="0" maxOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="IsLastMessage" type="xs:boolean"

minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
<xs:element name="ReportOptions" minOccurs="0" maxOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="COA" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="COD" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="Exception" type="xs:string" minOccurs="0"

maxOccurs="1"/>

 <xs:element name="Expiration" type="xs:string" minOccurs="0"

maxOccurs="1"/>

 </xs:sequence>
 </xs:complexType>
 </xs:element>
9-22 Using Integration Controls

Us ing Message Descr ip to rs
<xs:element name="Feedback" type="xs:int" minOccurs="0" maxOccurs="1"/>

<xs:element name="ReplyToQueueName" type="xs:string" minOccurs="0"

maxOccurs="1"/>
<xs:element name="ReplyToQueueManager" type="xs:string" minOccurs="0"

maxOccurs="1"/>
<xs:element name="WaitInterval" type="xs:string" minOccurs="0"

maxOccurs="1"/>
<xs:element name="ApplicationIdData" type="xs:string" minOccurs="0"

maxOccurs="1"/>
<xs:element name="ApplicationOriginData" type="xs:string" minOccurs="0"

maxOccurs="1"/>
<xs:element name="PutApplType" type="xs:int" minOccurs="0" maxOccurs="1"/>
<xs:element name="PutApplName" type="xs:string" minOccurs="0"

maxOccurs="1"/>
<xs:element name="PutDateTime" type="xs:string" minOccurs="0"

maxOccurs="1"/>
<xs:element name="AccountingToken" type="xs:base64Binary" minOccurs="0"

maxOccurs="1"/>
<xs:element name="Version" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="MessageConsumption" type="xs:string" minOccurs="0"

maxOccurs="1"/>
<xs:element name="MQGMO_CONVERT" type="xs:boolean" minOccurs="0"

maxOccurs="1"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

Sample of an MQMDHeaders Document
The following is a sample MQMDHeaders document that contains most of the message
descriptors you can set using the MQSeries control:

<?xml version="1.0"?>
<even:MQMDHeaders xmlns:even="http://www.bea.com/wli/control/MQMDHeaders">
<even:MessageType>8</even:MessageType>
<even:MessageId>1111</even:MessageId>

<even:CorrelationId>2222</even:CorrelationId>
<even:GroupMessage>
Using Integration Controls 9-23

MQSer ies Cont ro l
 <even:GroupId>3333</even:GroupId>
</even:GroupMessage>
<even:Priority>9</even:Priority>
<even:Format>MQSTR</even:Format>

<even:CharacterSet>819</even:CharacterSet>

<even:Persistence>1</even:Persistence>

<even:Segmentation>1</even:Segmentation>
<even:Expiry>5000</even:Expiry>
<even:UserId>WebLogic</even:UserId>

<even:MessageSequenceNumber>1</even:MessageSequenceNumber>

<even:GroupOptions>
 <even:IsLastMessage>true</even:IsLastMessage>
</even:GroupOptions>
<even:ReportOptions>
 <even:COA>COAWithFullData</even:COA>
 <even:COD>CODWithFullData</even:COD>
 <even:Exception>ExceptionWithFullData</even:Exception>
 <even:Expiration>ExpirationWithFullData</even:Expiration>

</even:ReportOptions>
<even:Feedback>1</even:Feedback>
<even:ReplyToQueueName>trial</even:ReplyToQueueName>

<even:ReplyToQueueManager>QM_itpl_025051</even:ReplyToQueueManager>

<even:ApplicationIdData>App_ID_025051</even:ApplicationIdData>

<even:ApplicationOriginData>Windows_app_025051</even:ApplicationOriginData

> <even:PutApplType>1</even:PutApplType>

<even:PutApplName>MQSeriesClient</even:PutApplName>

<even:Version>2</even:Version>
</even:MQMDHeaders>

Using XML Beans to Set the MQMDHeader Element Values
The MQSeries control MQMDHeaders document element values can be set, and the return values
can be retrieved, programmatically, using XML beans. The following is an example of setting the
MQMDHeader element values prior to calling the putMessage function:

headers =

com.bea.wli.control.mqmdHeaders.MQMDHeadersDocument.Factory.newInstance();

com.bea.wli.control.mqmdHeaders.MQMDHeadersDocument.MQMDHeaders header =

headers.addNewMQMDHeaders();
9-24 Using Integration Controls

Sending and Rece iv ing Messages
header.setMessageType(MQC.MQMT_DATAGRAM);
header.setPriority(8);
header.setExpiry(5000);
header.setPersistence(MQC.MQPER_PERSISTENT);
header.getReportOptions().setCOA("COA");

header.setReplyToQueueName("ReportQueue");

header.setApplicationIdData("Testing");

header.setApplicationOriginData("AAAA");
header.setPutApplName("Websphere MQ 2");

header.setPutApplType(MQC.MQAT_JAVA);

Sending and Receiving Messages
You can send and receive messages with the MQSeries control using the Put and Get functions.
Messages can be of the form Bytes, String, or XML data.

Sending Messages
To send a message, select a putMessage function based on the data type of the message that you
want to send:

MQMDHeadersDocument putMessageAsBytes (byte[] message,
java.lang.String queue, MQMDHeadersDocument mqmd) throws
ResourceException;

MQMDHeadersDocument putMessageAsString (String message,
java.lang.String queue, MQMDHeadersDocument mqmd) throws
ResourceException;

MQMDHeadersDocument putMessageAsXml (XmlObject message,
java.lang.String queue, MQMDHeadersDocument mqmd) throws
ResourceException;

The first parameter that is passed to the function is the message to be put into the queue. The
possible types for this parameter are byte[], XmlObject and String for sending Binary, XML and
plain text messages respectively.

The second parameter that is passed to the function is the queue to which the message is sent. If
a value is not provided at runtime, that is, if the value is null, the default queue name mentioned
in the control property is used.

The third parameter that is passed to the function is the XML bean representing the
MQMDHeadersDocument provided as an XML document during runtime, which conforms to
Using Integration Controls 9-25

MQSer ies Cont ro l
the MQMDHeaders schema. The values provided in this document are used for setting the
MQMD attributes of the message being sent. If the MQMDHeadersDocument parameter is not
provided, or if the parameter is null, the message is put into the queue with the default values for
the message descriptors.

The return value of the function is the MQMDHeadersDocument representing the MQMD
attributes of the message sent to the queue.

Using the putMessage Function In a Business Process
The following procedure describes how to add any MQSeries control putMessage function to a
business process.

1. Open the Client Request node.

2. In the General Settings tab, enter a name for the new method.

3. Click Add, then select MQMDHeadersDocument from the XML Types list. Enter a name
for the variable in the Name field. Click OK to add your selection to the Client Request node.
This represents the input MQMDHeaders document for the putMessage function.

4. Click Add again, then select String from the Java datatype list. Enter a name for the variable
in the Name field. Click OK to add your selection to the Client Request node. This
represents the queue name for the putMessage function.

5. Click Add again, then select String from the Java datatype list. Enter a name for the variable
in the Name field. Click OK to add your selection to the Client Request node. This
represents the message for the putMessage function.

6. In the Receive Data tab, create a new variable for each of the three parameters that you
created in the General Settings tab of the Client Request node. You must provide variable
names for all three variables. The variable type is pre-defined, based on the parameters to
which you are assigning the variable.

7. Close the Client Request node.

8. Drag and drop the putMessageAsString function from the Controls tab in the Data Palette
into your business process, just below the Client Request node.

9. Open the Send Data tab of the putMessageAsString function node. From the Select
variables to assign drop-down list, assign the variables that you created in the Receive Data
tab of the Client Request node, to the corresponding parameter of the putMessageAsString
function listed in the Control Expects column.
9-26 Using Integration Controls

Sending and Rece iv ing Messages
10. Open the Receive Data tab of the putMessageAsString function node. From the Select
variables to assign drop-down list, create a new variable in which to store the output of the
putMessageAsString function, the MQMDHeaders document, which represents the
attributes of the message that was sent.

You can use similar steps to send messages using the putMessageAsBytes or the
putMessageAsXml functions.

Sending Messages To a Remote Queue Manager
Using the MQSeries control you can add messages to a remote queue managed by a remote queue
manager. To do this, you must configure a transmission queue in the queue manager to which the
MQSeries control is connected. For more information on how to configure a transmission queue,
see the MQSeries documentation on http://www.IBM.com.

To add a message to a remote queue (managed by a remote queue manager) you must drag and
drop the following function, before the putMessage call in the workflow:
void setRemoteQueueManager(java.lang.String remoteQueueManager);

The parameter to this function is the name of the remote queue manager. To set the value for this
parameter, in the Design view, open the remoteQueueManager node. In the Send Data tab,
select or create a string variable, then enter the name of your remote queue manager as the default
value.

Once you’ve configured the remote queue manager, the putMessage functions following the
setRemoteQueueManager function add messages to the remote queue manager.

To revert to the default (local) queue manager to which your control is connected, in the Design
view you must drag and drop the setRemoteQueueManager again in your workflow. On doing
this, a default value, null, is passed as the parameter to this function. This null value or empty
string reverts control back to the default queue manager. messages are now automatically added
to the local queue.

Receiving Messages
To receive a message, select a get Message function based on the data type of the message that
you want to receive:

byte[] getMessageAsBytes(java.lang.String queue, MQMDHeadersDocument
mqmd) throws ResourceException;

String getMessageAsString(java.lang.String queue, MQMDHeadersDocument
mqmd) throws ResourceException;
Using Integration Controls 9-27

http://www.IBM.com

MQSer ies Cont ro l
XmlObject getMessageAsXml(java.lang.String queue, MQMDHeadersDocument
mqmd) throws ResourceException;

The first parameter of the function, java.lang.String queue, is the name of the queue from
which the message is to be received. If a value is not provided at runtime (the value is null) the
default queue name mentioned in the control property is used.

The second parameter of the function, MQMDHeadersDocument, is an XML bean. This represents
the MQMDHeadersDocument provided as an XML document at runtime, which conforms to the
MQMDHeaders schema. The values provided in this document are used to retrieve the message
corresponding to the MQMD attributes specified in the document. If the
MQMDHeadersDocument parameter is not provided, or if the parameter is null, the first message
present in the queue is retrieved. If the MQMDHeadersDocument parameter is not null, the
MQMD attributes of the message obtained from the queue are updated in this XML bean object
itself.

Note: If the MQMDHeadersDocument parameter to the getMessage function is null, you must
use the getMQMDHeaders function after the getMessage function in the workflow, to get
the MQMD attributes of the message retrieved from the queue. Also, if the
MQMDHeadersDocument parameter to the getMessage function is null, Delete is used
as the default MessageConsumption option.

The return value of the function is the message obtained from the queue. The data type of the
message depends on the getMessage function added. The values may be byte[], XmlObject, or
String, depending on whether the message obtained is to be processed as a Binary, XML, or plain
text message.

Using the getMessage Function In a Business Process
The following procedure describes how to add a MQSeries control getMessage function to a
business process.

1. Open the Client Request node.

2. In the General Settings tab, enter a name for the new method.

3. Click Add, then select MQMDHeadersDocument from the XML Types list. Enter a name
for the variable in the Name field. Click OK to add your selection to the Client Request node.
This represents the input MQMDHeaders document for the getMessage function.

4. Click Add again, then select String from the Java datatype list. Enter a name for the variable
in the Name field. Click OK to add your selection to the Client Request node. This represents
the queue name for the getMessage function.
9-28 Using Integration Controls

Sending and Rece iv ing Messages
5. In the Receive Data tab, create a new variable for each of the two parameters that you created
in the General Settings tab of the Client Request node. You must enter variable names for
the two variables. The variable type is pre-defined based on the parameters to which they are
assigned.

6. Close the Client Request node.

7. Drag and drop the getMessageAsString function from the Controls tab in the Data Palette
into your business process, just below the Client Request node.

8. Open the Send Data tab of the getMessageAsString function node. From the Select
variables to assign drop-down list, assign the variables that you created (in the Receive Data
tab of the Client Request node) to the corresponding parameter of the getMessageAsString
function listed in the Control Expects column.

9. Open the Receive Data tab of the getMessageAsString function node. From the Select
variables to assign drop-down list, create a new variable in which to store the output of the
getMessageAsString function. The output is a string representing the message that was
retrieved from the queue.

The Message Descriptor attributes of the message retrieved from the queue are updated in
the MQMDHeaders document. This document was provided as input to the
getMessageAsString function.

You can use a similar procedure to retrieve messages using the getMessageAsBytes or the
getMessageAsXml functions.

Sending Group messages
You can send group messages using the MQSeries control putMessage function within a loop.
The loop can be created using one of the following process nodes: While Do, Do while, and For
Each.

Provide the GroupOptions element in the MQMDHeadersDocument. You only provide this
element in the input MQMDHeaders XML document if a group message is to be sent.

In the MQMDHeaders document, set the IsLastMessage element within GroupOptions to
False, for all messages except the last message. For the last message, the IsLastMessage
element must be set to True.

If you specify a GroupID for the first message, then the MQSeries control assigns this ID to the
group message. If you do not specify a GroupID for the first message, the MQSeries queue
manager assigns a group ID to the first message. This ID is returned in the output MQMDHeaders
document of the putMessage function.
Using Integration Controls 9-29

MQSer ies Cont ro l
The Group Id assigned to the first message must be used for all the subsequent messages of the
group. The MessageSequenceNumber of the first message of the group should be 1; the
MessageSequenceNumber of the second message should be 2, and so on.

Retrieving Group Messages
You can retrieve group Messages using the MQSeries control getMessage function within a
loop. The loop can be created using one of the following process nodes: While Do, Do while, and
For Each.

Setting the logicalorder Attribute
You can retrieve group messages using the MQSeries control in a logical order. To configure the
MQSeries control to retrieve group messages in a logical order, set the logicalOrder attribute
of the GroupMessage element to True.

You can retrieve messages in a logical order only when you use explicit transaction mode. The
Figure 9-7 depicts a sample workflow for retrieving group messages in logical order:
9-30 Using Integration Controls

Sending and Rece iv ing Messages
Figure 9-7 Sample Workflow

The loop executes until the IsLastMessage element within the GroupOptions element is set to
True in the response MQMDHeaders document of the getMessage function.

Note: The GroupOptions element does not appear in the Get Response MQMDHeaders
document if the retrieved message is not a part of a group.

The logicalOrder attribute must be set to True in each call of the Get service, to retrieve the
messages of the group in their logical order (by message sequence number, beginning at one for
the first message).

Changing the logicalOrder attribute from True to False while getting group messages, when
its value was True in the previous Get service call, changes the logical ordering.
Using Integration Controls 9-31

MQSer ies Cont ro l
Setting the logicalOrder attribute to False or not providing this attribute in the Get request
document means that the control gets the first message of the group as it appears on the queue
irrespective of its message sequence number.

The following is an example of a Get Request MQMDHeaders document for retrieving group
messages in logical order, and also waits for all messages in the group:

<?xml version="1.0"?>
<even:MQMDHeaders xmlns:even="http://www.bea.com/wli/control/MQMDHeaders">

<even:GroupMessage waitForAllMsgs="true" logicalOrder="true">

<even:GroupId></even:GroupId>
</even:GroupMessage>
<even:MessageConsumption>Delete</even:MessageConsumption>
</even:MQMDHeaders>

Setting the waitForAllMsgs Attribute
You can configure the MQSeries control to wait for all messages of the group to be present in the
queue before retrieving any message within the group. To configure the MQSeries control to wait
for all messages, set the waitForAllMsgs attribute of the GroupMessage element to True.

Note: The waitForAllMsgs and the logicalOrder attribute are optional and can be set to
either True or False.

You can set the waitForAllMsgs to True while retrieving the first message of the group. After
you retrieve the first message in the group, you can set this attribute to True again, for retrieving
the other messages of the group, provided that you have also set the logicalOrder attribute to
True.

Setting the waitForAllMsgs attribute to False, or not providing this attribute in the Get
Request document means that the control can still get group messages from the queue even when
not all of the messages of the group are present in the queue.

Setting the GroupId element
GroupId is an optional element within the GroupMessage element. Its value may not be provided
if the hexadecimal group ID of the group message is not known. When there are multiple group
messages present in the queue, the first group message in the queue is retrieved. The GroupId
value may be specified, if known. If specified and there are multiple group messages in the queue,
the group message matching the group ID is retrieved.
9-32 Using Integration Controls

Work ing wi th MQSer ies Message Desc r ip to r Fo rmat
Setting the MessageSequenceNumber Element
Group Messages can also be retrieved by specifying the MessageSequenceNumber element and
the GroupId. Messages can be retrieved in this way only if the logicalOrder attribute value is
False or is not provided. When the MessageSequenceNumber and the GroupId are provided,
the message of the group matching the MessageSequenceNumber is retrieved. The group
messages can still be retrieved in a loop by providing the GroupId and incrementing the
MessageSequenceNumber by one in each Get function call in the loop, the
MessageSequenceNumber of the first message being one.

Working with MQSeries Message Descriptor Format
Format is a message descriptor attribute. Messages of a particular Format conform to a specific
structure which depends on the Format type. For example, CICS, IMS, MQRFH2, and so on. The
structure for each built-in MQSeries Format is different and is defined by MQSeries. For more
information on MQSeries Formats, see the online MQSeries documentation at the following
URL:

http://www.ibm.com

Using the MQSeries control you can send messages that correspond to built-in MQSeries formats
and user-defined formats. This can only be done using the putMessageAsBytes function.

To send a message that conforms to an MQSeries Format, you must add Java code to the business
process file. This is shown in the following examples.

Example: Sending a message that conforms to the CICS Format (using the putMessage function)

1. Declare a variable, for example, putin, in your business process file, as follows:

public com.bea.wli.control.mqmdHeaders.MQMDHeadersDocument putin;

This variable represents the input MQMDHeaders document XMLBean variable for the
putMessage function.

2. Drag and drop the Perform node from the Palette into the business process, just below the
Client Request node.

3. Open the Perform node in the Source View and add the following code.

public void perform() throws Exception
{
putin.getMQMDHeaders().setFormat(MQC.MQFMT_CICS);
bytmsg = getCICSHeader();
}
Using Integration Controls 9-33

http://www.ibm.com

MQSer ies Cont ro l
public byte[] getCICSHeader() throws Exception {
ByteArrayOutputStream bstream = new ByteArrayOutputStream();
DataOutputStream ostream = new DataOutputStream (bstream);
ostream.writeChars("CIH "); // Struct id

ostream.writeInt(1); // Version
ostream.writeInt(164); // StrucLength
ostream.writeInt(273); // Encoding
ostream.writeInt(819); // CodedCharSetId
ostream.writeChars(" "); // Format
ostream.writeInt(0); //Flags
ostream.writeInt(0); //ReturnCode
ostream.writeInt(0); //CompCode
ostream.writeInt(0); //Reason
ostream.writeInt(273); //UOWControl
ostream.writeInt(-2); //GetWaitInterval
ostream.writeInt(1); //LinkType
ostream.writeInt(-1); //OutputDataLength
ostream.writeInt(0); //FacilityKeepTime
ostream.writeInt(0); //ADSDescriptor
ostream.writeInt(0); //ConversationalTask
ostream.writeInt(0); //TaskEndStatus
ostream.writeBytes("\0\0\0\0\0\0\0\0"); //Facility
ostream.writeChars(" "); //Function
ostream.writeChars(" "); //AbendCode
ostream.writeChars(" "); //Authenticator
ostream.writeChars(" "); //Reserved1
ostream.writeChars(" "); //ReplyToFormat
ostream.writeChars(" "); //RemoteSysId
ostream.writeChars(" "); //RemoteTransId
ostream.writeChars(" "); //TransactionId
ostream.writeChars(" "); //FacilityLike
ostream.writeChars(" "); //AttentionId
ostream.writeChars(" "); //StartCode
ostream.writeChars(" "); //CancelCode
ostream.writeChars(" "); //NextTransactionId
ostream.writeChars(" "); //Reserved2
ostream.writeChars(" "); //Reserved3
ostream.writeChars("HelloWorld");
ostream.flush();
byte[] bArr = bstream.toByteArray();
return bArr;
}

This code sets the Format element in the input MQMD Headers document of the
putMessage function to MQC.MQFMT_CICS, represented by the String "MQCICS".

The getCICSHeader function writes the fields present in the CICS header to a byte array
output stream and returns an array of bytes. The field values given in this example can be
9-34 Using Integration Controls

Work ing wi th MQSer ies Message Desc r ip to r Fo rmat
modified as required. The actual message can be appended to the end of this byte array and
can be Put into the MQSeries queue. The byte array can be provided as the first parameter
to the putMessageAsBytes function, which is added to the process.java file after the
Perform node. For more information on the putMessage function, see Sending and
Receiving Messages.

Example: Sending a message that conforms to the IMS Format (using the putMessage function)

1. Declare a variable, for example, putin, in the business process file, as follows:

public com.bea.wli.control.mqmdHeaders.MQMDHeadersDocument putin;

This variable represents the input MQMDHeaders document XMLBean variable for the
putMessage function.

2. Drag and drop the Perform node from the Node Palette into the business process, just below
the Client Request node.

3. Open the Perform node in the Source view and add the following code.

public void perform() throws Exception
{
putin.getMQMDHeaders().setFormat(MQC.MQFMT_IMS);
bytmsg = getIMSHeader();
}
public byte[] getIMSHeader() throws Exception {
ByteArrayOutputStream bstream = new ByteArrayOutputStream();
DataOutputStream ostream = new DataOutputStream (bstream);

ostream.writeBytes("IIH "); // Struct id
ostream.writeInt(1); // Version
ostream.writeInt(84); // Length
ostream.writeInt(0); // Encoding
ostream.writeInt(0); // CodedCharacterSet
ostream.writeBytes(" "); // Format (8 characters)
ostream.writeInt(0); // Flags
ostream.writeBytes(" "); // LTermOverride
ostream.writeBytes(" "); // MFSMapName
ostream.writeBytes(" "); // ReplyToFormat
ostream.writeBytes(" "); // Authenticator
ostream.writeBytes("\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"); //
TransInstanceId
ostream.writeBytes(" "); //Transtate
ostream.writeBytes("1"); // CommitMode
ostream.writeBytes("F"); // Security Scope
ostream.writeBytes(" "); // Resrved
ostream.writeChars("HelloWorld");
ostream.flush();
byte[] bArr = bstream.toByteArray();
Using Integration Controls 9-35

MQSer ies Cont ro l
return bArr;
}

The previous lines of code set the Format element in the input MQMD Headers document
of the putMessage function to MQC.MQFMT_IMS, represented by the String "MQIMS ".

The getIMSHeader function writes the fields present in the IMS header structure to a byte
array output stream and returns an array of bytes. The values of the fields given in this
example can be modified as required. The actual message can be appended to the end of
the byte array and can be Put into the MQSeries queue. The byte array can be provided as
the first parameter to the putMessageAsBytes function, which is added to the business
process file after the Perform node. For more information on the putMessage function, see
Sending and Receiving Messages.

Example: Sending a message that conforms to the MQRFH2 Format (using the putMessage
function)

1. Declare a variable, for example, putin, in the business process file of your process project in
the application, as follows:

public com.bea.wli.control.mqmdHeaders.MQMDHeadersDocument putin;

This variable represents the input MQMDHeaders document XMLBean variable for the
putMessage function.

2. Drag and drop the Perform node from the Node Palette into the business process, just below
the Client Request node.

3. Open the Perform node in the Source view and add the following code.

public void perform() throws Exception
{
putin.getMQMDHeaders().setFormat(MQC.MQFMT_RF_HEADER_2);
bytmsg = getMQRFH2Header();
}
public byte[] getMQRFH2Header() throws Exception {
ByteArrayOutputStream bstream = new ByteArrayOutputStream();
DataOutputStream ostream = new DataOutputStream (bstream);
String strVariableData =
"<mcd><Msd>jms_text</Msd></mcd><jms><Dst>someplace</Dst></jms>";
int iStrucLength = MQC.MQRFH_STRUC_LENGTH_FIXED_2 +
strVariableData.getBytes().length;
while(iStrucLength % 4 != 0)
{
strVariableData = strVariableData + " ";
iStrucLength = MQC.MQRFH_STRUC_LENGTH_FIXED_2 +
strVariableData.getBytes().length;
}
9-36 Using Integration Controls

Set t ing Dynamic P roper t i es
ostream.writeChars(MQC.MQRFH_STRUC_ID);//StrucID
ostream.writeInt(MQC.MQRFH_VERSION_2);//Version
ostream.writeInt(iStrucLength);//StrucLength
ostream.writeInt(273);//Encoding
ostream.writeInt(1208);//CodedCharSetID
ostream.writeChars(MQSTR);//Format
ostream.writeInt(MQC.MQRFH_NO_FLAGS);//Flags
ostream.writeInt(1208);//NameValueCCSID
ostream.writeInt(strVariableData.getBytes().length);//NameValueLength
ostream.writeChars(strVariableData); //NameValueData
ostream.writeChars(“HelloWorld“);
ostream.flush();
byte[] bArr = bstream.toByteArray();
return bArr;
}

The previous code sets the Format element in the input MQMD Headers document of the
putMessage function to MQC.MQFMT_RF_HEADER_2,represented by the String "MQHRF2 ".

The getMQRFH2Header function writes the fields present in the MQRFH2 header structure
to a byte array output stream and returns an array of bytes. The values of the fields given
in this example can be modified as required. The actual message can be appended to the
end of the byte array and can be Put into the MQSeries queue. The byte array can be
provided as the first parameter to the putMessageAsBytes function, which is added to the
business process file after the Perform node. For more information on the putMessage
function, see Sending and Receiving Messages.

Setting Dynamic Properties
You can change the MQSeries control properties dynamically at runtime. The MQSeries control
properties that you can modify are specified in the MQDynamicProperties document. This
document conforms to the MQDynamicProperties schema which is available in the
jpdpublic.jar file, located at BEA_Home\wli_10.3\lib.

To change properties dynamically, perform the following tasks

1. Open the Client Request node. In the General Settings tab, add a variable of type
MQDynamicProperties document.

2. In the Receive Data tab, create a new variable for the parameter that you created in the
General Settings tab of the Client Request node by entering a name for the variable. The
variable type is already pre-defined based on the parameter to which you are assigning the
variable.
Using Integration Controls 9-37

MQSer ies Cont ro l
3. Drag and drop the setDynamicProperties function from the Controls tab of the Data
Palette, into your business process.

4. Open the Send Data tab of the setDynamicProperties function node. From the Select
variables to assign drop-down list, assign the variable that you created in the Receive Data
tab of the Client Request node to the corresponding parameter of the setDynamicProperties
function listed in the Control Expects column. All MQSeries Get and Put operations
following the setDynamicProperties function in the business process use the properties
that you specify in the MQDynamicProperties document.

5. While executing your business process at runtime, provide the MQDynamicProperties
document as input.

Caution: When you use Explicit Transaction mode, always call the setDynamicProperties
function before the Begin function or after the Commit or the Rollback functions. If
this sequence is not followed, the business process will throw an exception at runtime.

Schema of MQDynamicProperties
<?xml version="1.0"?>

<xs:schema xmlns="http://www.bea.com/wli/control/MQDynamicProperties"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.bea.com/wli/control/MQDynamicProperties"

elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="MQDynamicProperties">
<xs:complexType>
<xs:sequence>
<xs:element name="connectionType" type="connType" minOccurs="0"

maxOccurs="1"/>
<xs:element name="queueManager" type="xs:string" minOccurs="0"

maxOccurs="1"/>
<xs:element name="requireAuthorization" type="authType" minOccurs="0"

maxOccurs="1"/>
<xs:element name="host" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="port" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="channel" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="ccsid" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="user" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="password" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="sendExit" type="xs:string" minOccurs="0" maxOccurs="1"/>
9-38 Using Integration Controls

Set t ing Dynamic P roper t i es
<xs:element name="receiveExit" type="xs:string" minOccurs="0"

maxOccurs="1"/>
<xs:element name="securityExit" type="xs:string" minOccurs="0"
maxOccurs="1"/>
<xs:element name="defaultQueueName" type="xs:string" minOccurs="0"
maxOccurs="1"/>
<xs:element name="implicitTransactionRequired" type="transType"
minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:simpleType name="connType">
<xs:restriction base="xs:string">
<xs:enumeration value="Bindings"></xs:enumeration>
<xs:enumeration value="TCP"></xs:enumeration>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="authType">
<xs:restriction base="xs:string">
<xs:enumeration value="Yes"></xs:enumeration>
<xs:enumeration value="No"></xs:enumeration>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="transType">
<xs:restriction base="xs:string">
<xs:enumeration value="true"></xs:enumeration>
<xs:enumeration value="false"></xs:enumeration>
</xs:restriction>
</xs:simpleType>
</xs:schema>

Sample MQDynamicProperties Document
The following is a sample MQDynamicProperties document. You must provide this document at
runtime when you execute your business process:

<?xml version="1.0"?>
<even:MQDynamicProperties
xmlns:even="http://www.bea.com/wli/control/MQDynamicProperties">
Using Integration Controls 9-39

MQSer ies Cont ro l
<even:connectionType>TCP</even:connectionType>
<even:queueManager>newqm</even:queueManager>
<even:requireAuthorization>Yes</even:requireAuthorization>
<even:host>localhost</even:host>
<even:port>1869</even:port>
<even:channel>chn</even:channel>
<even:ccsid>437</even:ccsid>
<even:user>WebLogic</even:user>
<even:password>WebLogic</even:password>
<even:defaultQueueName>errqueue</even:defaultQueueName>
</even:MQDynamicProperties>

Configuring SSL In MQSeries Control
SSL functionality is available only if you selected TCP Connection mode while configuring an
MQSeries control. For more information on configuration options for the MQSeries control, see
Creating and Configuring a New Instance of the MQSeries Control.

This topic includes the following sections:

Setting the SSL Cipher Suite

Setting Server-side SSL Properties

Setting Client-side SSL Properties

Example: Configuring SSL Within a Workflow

Setting the SSL Cipher Suite
The cipher suite algorithm is used to encrypt and decrypt message communication between the
MQSeries server and the MQSeries client. If you selected either of the two SSL options while
creating a new MQSeries control, you must set the SSL cipher suite before you put or get
messages from the queue. This can be done using the following function:
void setSSLCipherSuite(java.lang.String cipherSuite);

The parameter to this function is the string representing the selected SSL cipher suite. You can
get the different values for the cipher suites from the final static variables of the
MQControlConstants class.
9-40 Using Integration Controls

Conf igur ing SSL In MQSer ies Cont ro l
Setting Server-side SSL Properties
After enabling either of the SSL options for your MQSeries control, you must set server-side SSL
properties before you put or get messages from the queue. You can do this using the following
function:
void setServerSideSSL(java.lang.String trustStoreLocation,
java.lang.String trustStoreType, java.lang.String trustStorePassword)
throws com.bea.control.ControlException;

The parameters to this function are:

trustStoreLocation

The path representing the location of the trust store. This parameter is optional, and if not
provided, takes the default trust store of the Oracle WebLogic JDK.

trustStoreType

The type of trust store, for example, JavaKeyStore (JKS). This parameter is optional, and if
not provided, takes the default trust store type.

trustStorePassword

The password for the trust store. This parameter is mandatory if the trustStoreLocation
parameter is provided.

Setting Client-side SSL Properties
After enabling two-way SSL for your MQSeries control, you must set server-side and client-side
SSL properties before you put or get messages from the queue. To set the client-side SSL
properties, use the following function:
void setClientSideSSL(java.lang.String keyStoreLocation, java.lang.String
keyStoreType, java.lang.String keyStorePassword, java.lang.String
keyPassword);

The parameters to this function are:

keyStoreLocation

The path representing the location of the key store. This parameter is mandatory.

keyStoreType

The type of key store, for example, JKS. This parameter is optional, and if not provided
takes the default key store type.

keyStorePassword
Using Integration Controls 9-41

MQSer ies Cont ro l
The password for the key store. This parameter is mandatory.

keyPassword

The password for the key. This parameter is optional, and if not provided, considers the
keyStorePassword as the keyPassword.

Example: Configuring SSL Within a Workflow
After selecting either of the two SSL options while creating a new MQSeries control, your
workflow must adhere to the order of MQSeries control function calls represented in Figure 9-8.
9-42 Using Integration Controls

Conf igur ing SSL In MQSer ies Cont ro l
Figure 9-8 Example: Configuring SSL Within a Workflow

WARNING: If the sequence represented in Figure 9-8 is not followed in the workflow when
SSL authentication is required, the MQSeries Control will throw an exception at
runtime.

For information on how to set up the Queue Manager for SSL connections, refer to the MQSeries
Product documentation at http://www.IBM.com. SSL support is available only from WebSphere
MQ version 5.3 onwards.
Using Integration Controls 9-43

http://www.IBM.com

MQSer ies Cont ro l
Using the MQSeries Event Generator
The MQSeries event generator polls the MQSeries queue for messages and publishes them to
Oracle WebLogic Message Broker channels. The MQSeries event generator supports three
different data types — Bytes, String, and XML.

You can configure event generator channels for different data types using a Message Broker
channel name, which instructs that any message coming into the specified MQSeries queue will
be published to that message broker channel.

Similar to the MQSeries control, the MQSeries event generator also provides two modes of
connections — TCP-IP and Bindings. You can also implement content-filters to filter messages
based on the specific content that you want. By doing this, you can ensure that you generate
events only for the messages that you require.

The MQSeries event generator can also spawn multiple threads of events. Each thread can
separately poll the MQSeries queue. You can configure the number of messages to be picked by
the event generator thread in each poll.

To learn more, see Event Generators.
9-44 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/evntgen.html

C H A P T E R 10
Process Control
The Process control is used to send requests to and receive callbacks from another business
process. The Process control is typically used to call a subprocess (child process) from a parent
process.

For information on how to add control instances to business processes, see Using Controls in
Business Processes.

Topics Included in This Section
Overview: Process Control

Describes the Process control

Creating a New Process Control
Describes how to create and configure a new Process control.

Process Control Methods
Introduces Process control methods and details how you set Process Control properties.

Process Control Design Time Considerations
Outlines some issues you should consider when designing your Process control.

Process Control Run-Time Considerations
Details some issues that affect Process control operation at run time.
Using Integration Controls 10-1

Process Cont ro l
Maintaining Process Controls
Outlines some Process control maintenance issues.

Using Dynamic Binding
Describes how to customize a Process control.

Notes on Process Controls Annotations
Details some annotations that have specific rules that you should follow when you use
them with Process controls.

Overview: Process Control
The Process control allows a Web service, business process, or pageflow to send requests to, and
receive callbacks from, a business process. Process control invocations are Java Remote Method
Invocation (RMI) calls.

The target business process must be hosted on the same Oracle WebLogic Server domain as the
caller. The Process control is typically used to call a subprocess (child process) from a parent
business process.

The first step in using a Process control is creating a Java file. The control java file can be
automatically generated from a target business process using Oracle Workshop for WebLogic, or
can be created using the control wizard. The methods and callbacks on the control java file
correspond to the operations and callbacks of the target business process. An instance of this java
file is used by a parent process to call the target process. Process control java files can have
selector annotations only on start methods or, for stateless target services, on any method.

To learn about creating a Process control, see Creating a New Process Control.

Creating a New Process Control
This topic describes how to create a new Process control.

You can create a Process control in two different ways, which are described in the following
sections:

Creating a New Process Control Using the Control Wizard

Generating a Process Control from a Process File
10-2 Using Integration Controls

Creat ing a New Process Cont ro l
Creating a New Process Control Using the Control Wizard
You can use the Insert Process dialog to create a new Process control and add it to your business
process. If you are not in the Design view, click the Design tab.

To create a new Process control:

1. In the Package Explorer pane, double-click the business process to which you want to add
the Process control. The business process is displayed in the Design view.

2. Click on the Data Palette and from the drop-down list choose Integration Controls to
display the list of controls used for integrating applications.

Note: If the Data Palette view is not visible in Oracle Workshop for WebLogic, click
Window > Show View > Data Palette from the menu bar.

3. Select Process.

The Insert control: Process dialog box appears (see Figure 10-1).

Figure 10-1 Insert control: Process

4. In the Insert control: Process dialog box enter the following details:

– In the Field Name, type the variable name used to access the new Process control
instance from your business process. The name you enter must be a valid Java
identifier.

– In the Insertion point: from the drop-down list select the point where you want the
field name to be inserted in the process file.
Using Integration Controls 10-3

Process Cont ro l
– Decide whether you want to make this a control factory and select or clear the Make
this a control factory that can create multiple instances at runtime check box.

– Click Next.

The Create Control wizard appears.

5. In the Create Control wizard enter the following details:

– In the Name field, type the name of your new control extension file.

– Decide whether you want to add comments as configured in the properties of the
current project and select or clear the Generate comments check box.

– Click Next.

6. In the Insert control: Process dialog box enter the following details (see Figure 10-2).

Figure 10-2 Insert Control - Process

– In the Process field, select the business process you want to access by selecting the
name of a business process file.Click Browse, choose from the available list and click
OK.

– Select a start method from the Start Method menu. Only those start methods contained
in the specified business process are displayed.

– To specify a dynamic selector, enter a query in the Query field or click the Query
Builder button to display the Dynamic Selector query builder.
10-4 Using Integration Controls

Creat ing a New Process Cont ro l
If you invoked the Dynamic Selector query builder, perform the following steps to
build and test a query:

• Select the type of lookup function for the query by choosing the LookupControl or
TPM radio button. Choose TPM to bind lookup values to properties in the TPM
repository. Choose LookupControl to bind lookup values to dynamic properties
specified in a domain-wide DynamicProperties.xml file. You should only edit the
DynamicProperties.xml file to bind lookup values to dynamic properties if the
domain is inactive. If the domain is active, it is recommended that you use the
Oracle WebLogic Integration Administration Console to bind lookup values.

For more information on binding lookup values to dynamic properties using the Oracle
WebLogic Integration Administration Console, see “Adding or Changing Dynamic
Control Selectors” in Process Configuration.

• In the Start Method Schema area, select an element from the schema to associate it
with the start method of the control. Only XML elements are displayed; non-XML
elements are not supported. The resulting query appears in the XQuery area.

• Click Create.

– Click Finish.

The Process control is created and displayed in the Package Explorer pane. An instance of
the control is also created and is added to the Data Palette.

For more information, see “Step 6: Invoke a Business Process Using a Process Control” in
Tutorial: Building Your First Business Process.

Generating a Process Control from a Process File
You can create a new Process control from an existing Process.java file.

Note: If the Package Explorer pane is not visible in Oracle Workshop for WebLogic, click
Window > Show View > Other > Java > Package Explorer from the menu bar.

To generate a Process control from a Process file:

1. Open the application that contains the business process for which you want to create the
Process control.

2. The Package Explorer pane displays the Process.java file for the process (see Figure 10-3).
Using Integration Controls 10-5

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/jpdtutorial/index.html

Process Cont ro l
Figure 10-3 Process.java file

l

3. Right-click on the Process file.

A menu appears displaying a list of options.

4. Select Generate > Process Control.

The Save As dialog box appears.

5. Enter the required details and click OK.

6. The Process control is created and displayed below the .java file in the Package Explorer
pane. The name is generated by appending PControl to the Process.java name. For example,
if you generate a Process control.java file from RequestQuote.java, the resulting java file
is named RequestQuotePControl.java.

Double-click the Process control java file in the Package Explorer pane to display the
control in Design view.

Alternatively, you may create a Process control file manually. For example, you may copy an
existing Process control file and modify the copy.
10-6 Using Integration Controls

Process Cont ro l Methods
Notes on XQueries
When you are using XQuery expressions and the XQuery Builder, it is important to remember:

If you create a new Process control and want to use the XQuery Builder to associate an
element in the schema with the start method for the new control, remember that XQuery
Builder will only declare namespaces for schemas used in argument 2. So, if argument 1
uses "schema1", but argument 2 does not use "schema1", it will not declare namespace
"schema1".

If you use the XQuery Builder to generate XQuery expressions that involve an optional
element, it is possible that you will have to manually edit the expression to generate a
correct XPath location

Some XQuery expressions are not supported when using complex Predicates.

Process Control Methods
To learn about the methods available on a Process control, see the Interface ProcessControl.

Example: Process Control Declaration
When you create a new Process control using the control wizard and drag a method from the
control onto a business process, its declaration appears in the process.java file. The following
code snippet is an example of what the declaration looks like:

@org.apache.beehive.controls.api.bean.Control

private proc2Control proc2Control1;

Setting Process Control Properties
The Process control possesses the capability of dynamically binding some properties of the
control. Dynamic binding of properties can be achieved:

Using selectors

Using the setProperties() API

Using setter methods for individual properties, such as setTargetURI().

To retrieve the current property settings, except for username and password, use the
getProperties() method.

Starting with the method with the highest precedence, the hierarchy of property settings is:
Using Integration Controls 10-7

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/ProcessControl.html

Process Cont ro l
1. Properties dynamically bound using the com.bea.wli.common.control.Selector tag
and the DynamicProperties.xml file

2. Properties set using the setProperties() method or other setter methods inherited from the
Process control (setConversationID, setTargetURI, setPassword, and setUsername)

3. Properties set using static annotations

The ProcessControlProperties type is an XML Beans class that is generated out of the
corresponding schema element defined in DynamicProperties.xsd. The
DynamicProperties.xsd file is located in the schemas/system folder or in the utility folder of
new Process Applications.

The setProperties() method uses this XML Bean class to set properties on a control instance.
A selector on a Process control method returns an XML document that conforms to the
ProcessControlProperties element. The following sample shows how to programmatically
set the username property for a control. You add the bold code lines to the code generated when
the control is created, overriding properties set using dynamic binding and static annotations:

import com.bea.wli.control.dynamicProperties.
ProcessControlPropertiesDocument;

import com.bea.wli.control.dynamicProperties.
ProcessControlPropertiesDocument.ProcessControlProperties;

 ProcessControlPropertiesDocument props= null;
 ProcessControlProperties sprops = null;

 public void sBC8InvokeSetProperties() throws Exception

 {

 props = ProcessControlPropertiesDocument.Factory.newInstance();
 sprops = props.addNewProcessControlProperties();

 sprops.setUsername("smith");

You construct the ProcessControlPropertiesDocument instance in the above section of code
through a Data Transformation method or through XMLBean APIs. For more information on
Data Transformations, see Guide to Data Transformation.

The following code provides a sample of a ProcessControlPropertiesDocument instance:

this.pcp = ProcessControlPropertiesDocument.Factory.newInstance();

this.pcp.addNewProcessControlProperties();
10-8 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/dtguide/index.html

Process Cont ro l Des ign T ime Cons iderat ions
this.pcp.getProcessControlProperties().setUsername("uname");

this.pcp.getProcessControlProperties().setPassword("pword");

this.pcp.getProcessControlProperties().setTargetURI("http://localhost:7001

/";);

Some control properties can be specified dynamically or in annotations (statically) on the control
file. For example, the Process control allows you to specify the target process in the
@com.bea.wli.common.control.Location(uri = <URL>)annotation at the top of the java
control file or dynamically using the TargetURI element in DynamicProperties.xml. In all
such cases, a dynamically bound value for the property takes precedence over the static
annotation.

If the domain is active, it is recommended that you use the Oracle WebLogic Integration
Administration Console to perform dynamic binding. For more information on binding lookup
values to dynamic properties using the Oracle WebLogic Integration Administration Console, see
“Adding or Changing Dynamic Control Selectors” in Process Configuration.

Dynamic properties can also be specified by calling setProperties on the control, or by calling
one of the setter methods, such as ProcessControl.setUsername().

Properties applied using selectors remained bound until one of the following conditions occurs:

A method marked finish on the java control file is invoked

A start method is invoked again

The property is programmatically set by calling setProperties or a setter method.

ProcessControl.reset() resets all configured selector values.

Process Control Design Time Considerations
This section outlines some of the issues you must consider when you are designing a process
control for your business process. The issues covered in this section are:

Using a Process Control in Stateless and Stateful Business Processes

Using Process Controls in Synchronous and Asynchronous Business Processes

Using a Process Control from the Parent Process

Process Control Location
Using Integration Controls 10-9

Process Cont ro l
Using a Process Control in Stateless and Stateful Business
Processes
The number of transactions contained in a business process determines whether the process is
stateless or stateful. For more information, see Building Stateless and Stateful Processes. This
section covers some of the issues you should consider when designing a Process control for
stateless and stateful business processes.

When designing your Process control, adhere to the following rules:

Whether you are designing a stateless or stateful business process, the Process control can
invoke any request or response node. However, for stateful processes, the first request must
be a start request.

The start method that invokes the call governs which continue methods may be called
during the call.

The order in which the methods on the control are called matters in a stateful process.

Process controls that refer to stateful processes only refer to one process at a time.

Using Process Controls in Synchronous and Asynchronous
Business Processes
Business processes can have both synchronous or asynchronous request methods. For more
information, see Building Synchronous and Asynchronous Business Processes. This section
covers some of the issues you should consider when designing a Process control for synchronous
and asynchronous business processes.

When designing your Process control, remember:

In a synchronous invocation, the input and response arguments are combined into a single
operation.

In an asynchronous invocation, one-to-one mapping takes place. Any response node
becomes a method within the callback interface.

Using a Process Control from the Parent Process
The Process control is typically used to call a subprocess from a parent business process. When
the Process control is invoked from the parent process, the control is invoked normally if the
subprocess is in the same application.
10-10 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideState.html
message URL http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideSync.html

Process Cont ro l Run-T ime Cons iderat ions
If the subprocess control is in a different application, you must copy the subprocess control into
the parent process control and change the location of the subprocess control so that it is the same
as the location of the parent process control, if you want the call to invoke normally.

Process Control Location
When you create a Process control, it is displayed in the Package Explorer pane and an instance
of the control is added to the Data Palette. The location of the Process control is displayed in the
JPD Configuration pane.

Note: If the JPD Configuration pane is not visible in Oracle Workshop for WebLogic, click
Window > Show View > JPD Configuration from the menu bar.

To view the location of the Process control:

1. Double-click the Process control file in the Package Explorer pane.

The Process control is displayed in the Design view and the JPD Configuration pane
displays the properties of the Process control.

The location of the Process control is displayed in the location section of the JPD
Configuration, in the uri field. The location is not an actual HTTP address, though it may
appear that it is. The uri actually displays the location of the object within the Java Naming
and Directory Interface (JNDI) tree.

Process Control Run-Time Considerations
This section outlines some of the run-time issues you must consider when you are invoking a
Process control in your business process. When you are invoking a Process control from a parent
business process, you are making a Java Remote Method Invocation (RMI) to the subprocess.
The transfer of information is governed by RMI rules and not by serialization rules.

The topics covered in this section are:

Run-Time Rules for Process Controls in Stateless and Stateful Business Processes

Run-Time Rules for Process Controls in Synchronous and Asynchronous Business
Processes

Security
Using Integration Controls 10-11

Process Cont ro l
Run-Time Rules for Process Controls in Stateless and
Stateful Business Processes
The number of transactions contained in a business process determines whether the process is
stateless or stateful. For more information, see Building Stateless and Stateful Processes. This
section covers some of the run-time issues you should consider when using a Process control in
stateless and stateful business processes.

The following rules govern the run-time operation of Process controls in stateless and stateful
business processes:

In a stateless business process, the invocation from the parent business process generically
picks any stateless subprocess and can call any method from the Process control on the
parent business process.

In a stateful business process the first instantiation has to be a start method.

In a stateful business process, the subprocess selected depends on the method specified by
the Process control. A new process instance is created based on the method specified by
the Process control and a new conversation ID is assigned to the process instance. You can
specify the conversation ID. If you don’t specify a conversation ID, the instance
automatically generates its own conversation ID. For more information on conversations,
see Designing Conversational Web Services. For more information on specifying the
conversation ID, see “Interface ProcessControl”.

In a stateful business process, once a call is invoked and a conversation ID generated, any
further continue methods that are invoked, interact with the original conversation ID. You
need to specify a new start method to invoke an interaction with a new conversation ID.

Run-Time Rules for Process Controls in Synchronous and
Asynchronous Business Processes
Business processes can have both synchronous or asynchronous request methods. For more
information, see Building Synchronous and Asynchronous Business Processes. This section
covers some of the run-time issues you should consider when using a Process control in
synchronous and asynchronous business processes.

The following rules govern the run-time operation of Process controls in synchronous and
asynchronous business processes:
10-12 Using Integration Controls

http://download.oracle.com/docs/cd/E12840_01/wlw/docs103/guide/async/converse/navMaintainingStatewithConversations.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/ProcessControl.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideState.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideSync.html

Process Cont ro l Run-T ime Cons iderat ions
A synchronous subprocess called through a Process control runs in the same transaction as
its caller (parent) process. Synchronous subprocesses behave differently than asynchronous
subprocesses, particularly when it comes to unhandled exceptions.

When an error occurs in synchronous business processes, exceptions are raised. An
unhandled exception in a subprocess causes the shared transaction to be marked as rollback
only, which causes the subprocess and parent processes to roll back. This is the default
behavior because it prevents a scenario in which one of the processes is rolled back,
leaving the other process in an inconsistent or uncompensated state. You can override this
default behavior by changing the value of the on sync failure property specified in the JPD
Configuration pane of the subprocess. The available options are rollback and rethrow. The
rethrow option returns an error to the parent process when an exception occurs. To
override the default behavior, change the on sync failure property from rollback to
rethrow.

In asynchronous business processes, the transaction is never propagated to the subprocess.
In other words, the subprocess runs in its own transaction. The parent business process
uses Java Message Service (JMS) to drop the messages into a JMS queue. Once the parent
process drops the message into the queue, it assumes that message delivery is successful. If
an error occurs on the subprocess, the parent process is not informed of the error. For
information on enhancing your business process so that you can detect failures, see
“Asynchronous Subprocesses” in Building Synchronous and Asynchronous Business
Processes.

In asynchronous business processes, the parent business process continues to execute until
the process finishes or until the process receives a callback from the subprocess. The
callback is always associated with the process instance initially created by the parent
business process.

In a synchronous business process, once the parent process invokes a message request to
the subprocess, through the Process control, it finishes.

In an asynchronous business process, once the parent process invokes a message request to
the subprocess, through the Process control, it continues to instantiate and make further
requests to the subprocess. If the subprocess does not have time to respond to the request
from the parent process before it receives a second request, the second request will be
dropped and the subprocess won’t receive it at all. For this reason, you should design the
parent process so that is blocks and waits for a callback from the subprocess before taking
further action. For an example of using an Event Choice node to perform this function, see
“Asynchronous Subprocesses” in Building Synchronous and Asynchronous Business
Processes.
Using Integration Controls 10-13

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideSync.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideSync.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideSync.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideSync.html

Process Cont ro l
The com.bea.control JwsContext interface provides access to container services that
support Web services (JWS files). For more information, see “com.bea.control JwsContext
Interface” in com.bea.control Package. The setCallbackLocation() method is not
supported for Process control callbacks.

Security
The Process control conforms to all standard security checks associated with Java Remote
Method Invocation (RMI). SSL is not supported. For more security information, see Security.

Maintaining Process Controls
In general, Process controls are utilized in situations where the parent process and subprocess are
in the same application, or in situations where the parent process and subprocess are in different
applications.

In both situations, if the Process control is changed on the subprocess side of the transaction, you
must regenerate the control on the parent side to insure that the control will operate normally. If
the subprocess and parent process are in different applications, and the Process control is changed
in any way (i.e. request/response removed, etc.), backward compatibility may be compromised.
If this happens, you must merge the Process control on the subprocess side and repropagate the
control back to the parent business process.

JAX-RPC Handlers
JPDs implicitly inherit all behavior from JWSs. This allows you to add JAX-RPC handlers to a
JPD to "intercept" messages sent to requests and responses before and/or after the request.

However, these handlers are not executed for JPD requests that come in via a Process control
execution. In other words, handlers are not executed for requests to/from Process control
invocations.

Using Dynamic Binding
In many cases, control attributes are statically defined using annotations. Some controls provide
a Java API to dynamically change certain attributes. Dynamic controls, including the Service
Broker and Process controls, provide the means to dynamically set control attributes. Attributes
are determined at runtime using a combination of lookup rules and lookup values, a process called
dynamic binding. Controls that support dynamic binding are called dynamic controls. The
business process developer specifies lookup rules using Oracle Workshop for WebLogic while
10-14 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/index.html
http://download.oracle.com/docs/cd/E12840_01/wlw/docs103/guide/security/navSecurity.html

Notes on P rocess Cont ro l s Annotat ions
the administrator specifies look-up values using the Oracle WebLogic Integration Administration
Console. This powerful feature means that control attributes can be completely decoupled from
the application and can be reconfigured for a running application, without redeployment.

To learn more about dynamic binding, see How the Service Broker Control Uses Dynamic
Binding.

Notes on Process Controls Annotations
This section outlines some rules that you should adhere to when using the following Process
control annotations:

@com.bea.control.annotations.MessageBuffer

@com.bea.wli.common.Conversation

@com.bea.control.annotations.MessageBuffer
The @com.bea.control.annotations.MessageBuffer annotation specifies that there
should be a queue between the component’s implementation code and the message transport wire
for the specified method or callback. For more information, see “@MessageBuffer Annotation”
in Java Control Annotations.

@com.bea.wli.common.Conversation
The @com.bea.wli.common.Conversation annotation specifies the role that a control’s
methods or callbacks play in a conversation. For more information, see
“@com.bea.wli.common.Conversation annotation” in Java Control Annotations.
Using Integration Controls 10-15

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/index.html

Process Cont ro l
10-16 Using Integration Controls

C H A P T E R 11
RosettaNet Control
RosettaNet is a consortium of major companies working to create and implement industry-wide,
open e-business process standards. These standards form a common e-business language,
aligning processes between supply chain partners on a global basis. RosettaNet is a subsidiary of
the Uniform Code Council, Inc. (UCC). To learn about RosettaNet, see
http://www.rosettanet.org.

The RosettaNet control enables Oracle Workshop for WebLogic business processes to exchange
business messages and data with trading partners via RosettaNet. You use RosettaNet controls
only in initiator business processes to manage the exchange of RosettaNet business messages
with participants. For an introduction to RosettaNet solutions, see Introducing Trading Partner
Integration.

Topics Included in This Section
Overview: RosettaNet Control

Describes the RosettaNet control.

Creating a RosettaNet Control
Describes how to create and configure a RosettaNet control.

Using a RosettaNet Control
Describes how to use a RosettaNet control in a business process.
Using Integration Controls 11-1

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tpintro/rosettanet.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tpintro/rosettanet.html

Roset taNet Cont ro l
Example: RosettaNet Control
Provides links to examples of how to use the RosettaNet control.

Related Topics
Introducing Trading Partner Integration

Trading Partner Management

Interface RosettaNet Control

Building RosettaNet Participant Business Processes

Overview: RosettaNet Control
You use RosettaNet controls in initiator business processes to exchange RosettaNet business
messages with participants. The RosettaNet control provides methods for sending and receiving
business messages, as described in the Interface RosettaNetControl Javadoc. Callbacks handle
RosettaNet messages, acknowledgements, rejections, and errors received from the participant.

You should not use RosettaNet controls in participant business processes to respond to incoming
messages. Instead, you use client request nodes to handle incoming business messages from the
initiator and client response nodes to handle outgoing business messages to the initiator. To learn
about building participant business processes that use RosettaNet, see Building RosettaNet
Participant Business Processes. To learn about designing business processes that use RosettaNet,
see Introducing Trading Partner Integration.

At run-time, the RosettaNet control relies on trading partner and service information stored in the
TPM repository. To learn about the TPM repository, see Introducing Trading Partner Integration.
To learn about adding or updating information in the TPM repository, see Trading Partner
Management in Using The Oracle WebLogic Integration Administration Console.

Creating a RosettaNet Control
This topic describes how to create a new RosettaNet control. You add one RosettaNet control per
public initiator business process. To learn more about public vs. private processes see, “Types of
Business Processes” in “Trading Partner Business Process Concepts” in Introducing Trading
Partner Integration. To learn about RosettaNet controls, see RosettaNet Control.
11-2 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/RosettaNetControl.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/RosettaNetControl.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tpintro/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideRosettaNetCustomizing.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/RosettaNetControl.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideRosettaNetCustomizing.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideRosettaNetCustomizing.html

Creat ing a Rose t taNet Cont ro l
To create a new RosettaNet control

1. In the Package Explorer pane, double-click the business process (Process.java file) to which
you want to add the Rosettanet control. The business process is displayed in the Design view.

2. Click on the Data Palette and from the drop-down list choose Integration Controls to
display the list of controls used for integrating applications.

Note: If the Data Palette view is not visible in Oracle Workshop for WebLogic, click
Window > Show View > Data Palette from the menu bar.

3. Select Rosettanet.

The Insert control:Rosettanet dialog box appears.

4. In the Insert control:Rosettanet dialog box enter the following details:

– In the Field Name, type the variable name used to access the new Rossatanet control
instance from your business process. The name you enter must be a valid Java
identifier.

– In the Insertion point: from the drop-down list select the point where you want the
field name to be inserted in the process file.

– Decide whether you want to make this a control factory and select or clear the Make
this a control factory that can create multiple instances at runtime check box.

– Click Next.

The Create Control dialog-box appears.

5. In the Create Control dialog box enter the following details:

– In the Name field, type the name of your new control extension file.

– Decide whether you want to add comments as configured in the properties of the
current project and select or clear the Generate comments check box.

– Click Next.

The Insert control: Rosettanet dialog-box appears (see Figure 11-1).
Using Integration Controls 11-3

Roset taNet Cont ro l
Figure 11-1 Insert Control: Rosettanet

6. In the Insert control: Rosettanet dialog box, specify the following information (see
Table 11-1).

Note: Where applicable, the values entered here must match their corresponding settings in
the TPM repository.

Table 11-1 Rosettanet Fields

Field Description

from Sender’s DUNS number. Must be defined in the TPM repository.

to Recipient’s DUNS number. Must be defined in the TPM repository.

rnif-version Version of the RNIF (RosettaNet Implementation Framework). One
of the following values:
• 1.1
• 2.0

pip RosettaNet PIP code, such as 3B2. Must be a valid PIP code as
defined in http://www.rosettanet.org.
11-4 Using Integration Controls

Us ing a Rose t taNet Cont ro l
7. Click Finish.

A RosettaNet control instance is displayed in the Controls tab.

Using a RosettaNet Control
All Oracle Workshop for WebLogic controls follow a consistent model. Many aspects of using
RosettaNet controls are identical or similar to using other Oracle Workshop for WebLogic
controls.

After you have added a RosettaNet control to an initiator business process, you can use methods
on the control to exchange RosettaNet messages with participant trading partners. In the Design

pip-version RosettaNet PIP version. Must be a valid version number associated
with the PIP.

from-role RosettaNet role name for the sender as defined in the PIP
specification, such as Buyer, Initiator, Shipper, and so on. A PIP
request might be rejected if an incorrect value is specified.

to-role RosettaNet role name for the recipient as defined in the PIP
specification, such as Seller, Participant, Receiver, and so on. A PIP
request might be rejected if an incorrect value is specified.

method-arg-type Required. Type of attachment. Includes the standard RNIF XML
parts. One of the following values:
• XmlObject—Default. Represents data in untyped XML

format. The XML data is not specified at design time.
• RawData—Represents any non-XML structured or

unstructured data and for which no MFL file (and therefore no
known schema) exists. Not recommended, as the payload
includes standard RNIF XML parts.

• MessageAttachment[]—Array containing one or more
parts of a business message. Message parts can be untyped XML
data (XmlObject data type) or non-XML data (RawData data
type). Used when sending different kinds of payloads (XML and
non-XML) in the same message. The actual number of message
parts might not be known until processed. To learn about
working with MessageAttachment objects, see Using
Message Attachments.

To learn more about data types, see Working with Data Types.

Table 11-1 Rosettanet Fields
Using Integration Controls 11-5

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideDataTypes.html

Roset taNet Cont ro l
View, you expand the node for the RosettaNet control in the Data Palette to expose its methods,
and then drag and drop the methods you want onto the business process. Common tasks include:

Sending Messages to Participants

Handling Messages from Participants

Retrieving Message Elements

Dynamically Specifying Business IDs

To learn more about these methods, see Interface RosettaNetControl.

Sending Messages to Participants
The RosettaNet control provides methods for sending the initial request message to a participant
and also for responding to the participant’s reply. To add the method to a business process, you
drag it from the Data Palette onto the business process, which creates a Control Send node.

Sending a Request Message
You use the sendMessage method to send a RosettaNet request message to participants. After
creating the Control Send node in the business process, you need to specify the payload parts
and their Java data types. Valid data types include:

Note: Attachments can also be typed XML or typed MFL data as long as you specify the
corresponding XML Bean or MFL class name in the parameter.

Table 11-2 Data Type

Type Description

XmlObject Data in untyped XML format.

RawData Any non-XML structured or unstructured data for which no MFL
file (and therefore no known schema) exists.

MessageAttachment Data in both untyped XML and non-XML format. To learn about
working with MessageAttachment objects, see Using
Message Attachments.
11-6 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/RosettaNetControl.html

Us ing a Rose t taNet Cont ro l
Responding to Participant Replies
After sending a RosettaNet message, the initiator business process awaits a response from the
participant. After receiving the participant’s response to the request, a business process can either
acknowledge and accept the response, reject the response, or notify the participant that an error
has occurred. The RosettaNet control provides the following methods for responding to
participant replies:

Handling Messages from Participants
Participants can respond to initiator requests in the following ways:

acknowledge that the request was received

reply to the request

notify that an error has occurred

To handle responses from participants, initiator business processes use the following callback
methods:

Table 11-3 Method Type

Method Name Description

sendAck Sends a RosettaNet acknowledgement of receipt to the participant.

sendError Sends a RosettaNet error to the participant.

sendReject Sends a RosettaNet rejection to the participant.

Table 11-4 Callback Methods

Method Name Description

onAck Handles the acknowledgement of the message receipt from the
participant.

onError Handles an error sent by the participant.

onMessage Handles the message reply sent by the participant.
Using Integration Controls 11-7

Roset taNet Cont ro l
To receive a RosettaNet message from a participant, you use the appropriate method. To add the
method to a business process, you drag it from the Data Palette onto the business process, which
creates a Control Receive node.

For the onMessage method, after creating the Control Receive node, you need to specify the
payload parts and their Java data types for the incoming message. To learn about valid data types,
see Sending Messages to Participants.

The onError and onAck methods are system-level methods. Both use the XmlObject argument,
which will contain a RosettaNet payload. These arguments are not seen in the default control but
you can drag them onto the business process from the Data Palette. If your application contains
a schema project that includes the Exception schema file (for RNIF2.0), and if the schema is
already built, you can extract the values you want by creating a query (in the XQuery language)
using the mapper functionality of Oracle Workshop for WebLogic. To learn about creating
queries with the mapper functionality, see Transforming Data Using XQuery.

Retrieving Message Elements
You can retrieve specific message elements from your RosettaNet messages by using the
RosettaNetContext XMLBean. The following message elements can be retrieved and are
returned as java.lang.string:

Table 11-5 Message Elements

Element Name Description

from Sender’s DUNS number.

to Recipient’s DUNS number.

pip RosettaNet PIP code specified for the message.

pip-version PIP version specified for the message.

from-role RosettaNet role name for the sender as defined
in the PIP specification. Examples include:
Buyer, Initiator, Shipper, and so on.

to-role RosettaNet role name for the recipient as
defined in the PIP specification. Examples
include: Seller, Participant, Receiver, and so on.
11-8 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/dtguide/index.html

Us ing a Rose t taNet Cont ro l
When you use the RosettaNetContext XMLBean, be sure to import the following classes:

com.bea.wli.control.rosettanetContext.RosettaNetContextDocument;
com.bea.wli.control.rosettanetContext.RosettaNetContextDocument.RosettaNet

Context;

The following are code examples of how to use RosettaNetContext:

Note: If you use the code samples provided in this section, remember to also modify the return
type of your corresponding methods in your RosettaNet control definition file (control

failure-report-administrator Trading partner id of the trading partner which
is specified to be the failure administrator. (In
Oracle WebLogic Integration, this is specified
in the sender trading partner’s binding).

global-usage-code Indicates whether the message was sent in test
or production mode.

debug-mode Returns true if the message was sent in debug
mode.

message-tracking-id Instance id of the action to which this message
is in reply.

protocol-name Name of the protocol used.

protocol-version Version of the protocol used.

conversation-id Id of the conversation.

process-instance-id Instance id of the receiving process.

process-uri URI of the receiving process.

business-action The business action of the message, such as:
Purchase Order Request, Purchase Order
Confirmation, etc.

document-datetimestamp The time and date the document was created.

proprietary-identifier A unique number which tracks the document.

Table 11-5 Message Elements

Element Name Description
Using Integration Controls 11-9

Roset taNet Cont ro l
file). In other words, public void sendMessage() needs to be changed to public
RosettaNetContextDocument sendMessage().

Initiator business process receiving a message:
public void rn_onMessage(RosettaNetContextDocument doc,
 XmlObject msg)
 {
 System.out.println(">>>>> ContextInitiator.rn_onMessage()");
 RosettaNetContextDocument.RosettaNetContext context =
 doc.getRosettaNetContext();
 System.out.println(" from=" + context.getFrom());
 System.out.println(" to=" + context.getTo());
 System.out.println(" pip=" + context.getPip());
 System.out.println(" failure-report-admin=" +
 context.getFailureReportAdministrator());
 }

Initiator business process sending a message:
public void rnSendMessage() throws Exception
 {
 String rnInfo = "Service Content";
 XmlObject xObj = XmlObject.Factory.parse(rnInfo);
 RosettaNetContextDocument doc = rn.sendMessage(xObj);
 System.out.println(doc.toString());
 }

Where Service Content is the service content of your RosettaNet message.

Participant business process receiving a message:
public void onMessage(RosettaNetContextDocument doc, XmlObject msg)
 {
 System.out.println(">>>>> ContextParticipant.onMessage()");
 RosettaNetContext context = doc.getRosettaNetContext();
 System.out.println(" from=" + context.getFrom());
 System.out.println(" to=" + context.getTo());
 System.out.println(" pip=" + context.getPip());
 System.out.println(" failure-report-admin=" +
 context.getFailureReportAdministrator());
 }
11-10 Using Integration Controls

Us ing a Rose t taNet Cont ro l
Participant business process interface for callbacks:
@CallbackInterface()

public interface Callback extends ServiceBrokerControl
{

/**

* com.bea.control.annotations.MessageBuffer enable="false"

*/

@com.bea.wli.common.MessageBuffer(enable = false)

public RosettaNetContextDocument sendReply(XmlObject msg);

/**

* com.bea.control.annotations.MessageBuffer enable="false"

*/

@com.bea.wli.common.MessageBuffer(enable = false)

public void sendReceiptAcknowledgement();

/**

* com.bea.control.annotations.MessageBuffer enable="false"

*/

@com.bea.wli.common.MessageBuffer(enable = false)

public void sendError(String msg);

}

@com.bea.wli.jpd.Callback()

public Callback callback;

Participant business process sending a reply:
public void reply()
 {
 XmlObject xObj = null;
 try {
 xObj = XmlObject.Factory.parse("Service Content");
 } catch (Exception e) {
Using Integration Controls 11-11

Roset taNet Cont ro l
 e.printStackTrace();
 }

 RosettaNetContextDocument doc= callback.sendReply(xObj);
 System.out.println(doc.toString());
 }

Where Service Content is the service content of your RosettaNet message.

Dynamically Specifying Business IDs
The RosettaNet control adds the capability of dynamically binding business IDs for the initiator
(from property) and the participant (to property) of the control. Dynamic binding of properties
can be achieved the following ways:

Using selectors

Using the setProperties() method

Order of Precedence
The hierarchy of property settings is as follows, starting with the approach having the highest
precedence:

1. properties dynamically bound using selectors (RosettaNetControl Annotation) and the
DynamicProperties.xml file

2. properties set using the setProperties() method

3. properties set at the control instance level using the RosettaNet Annotation in the Process.java
file.

4. properties set at Control file class level using RosettaNet Annotation in the Control file.

Dynamic selectors have a higher precedence than static selectors.

Using Selectors
Using a dynamic selector, RosettaNet controls allow you to decide at run time which one of
multiple trading partners to send a business message to. When you specify a dynamic selector,
you build and test an XQuery that retrieves the business ID you need.
11-12 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/RosettaNetControl.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/RosettaNetControl.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/RosettaNetControl.html

Us ing a Rose t taNet Cont ro l
To use a dynamic selector

1. Display the business process in Design view that contains the RosettaNet control for which
you want to specify a dynamic selector.

2. In Design view, select the RosettaNet control node in the Data Palette.

3. Locate the from-selector or to-selector property in the Properties pane and select the
associated xquery parameter. Click the button next to the xquery field indicated by three dots
(...). The Dynamic Selector query builder is displayed.

4. In the Start Method Schema area, select an element from the schema to associate it with the
start method of the control. The resulting query appears in the XQuery area.

5. Click OK.

Using setProperties
The setProperties method accepts a RosettaNetPropertiesDocument parameter. The
RosettaNetPropertiesDocument type is an XML Beans class that is generated out of the
corresponding schema element defined in DynamicProperties.xsd. The
DynamicProperties.xsd file is located in the system folder of New Process Applications or in
the system folder of the Schemas project.

If your application contains a schema project that includes the DynamicProperties.xsd file,
and if the schema is already built, you can extract the values you want by creating a query (in the
XQuery language) using the mapper functionality of Oracle Workshop for WebLogic. To learn
about creating queries with the mapper functionality, see Transforming Data Using XQuery.

To set business IDs dynamically using the setProperties method

1. Verify that your application contains a schema project that includes the
DynamicProperties.xsd file, and that the schema is already built.

2. Create a Control Send node in a business process.

3. From the Data Palette, drag the setProperties method and drop it onto the Control Send
node.

4. In the Send Data tab, select Transformation, specify variables that contain the to and from
values, and then create a transformation to map them to the corresponding elements in
RosettaNetPropertiesDocument.

To display the current property settings, use the getProperties() method.
Using Integration Controls 11-13

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/dtguide/dtguideMapper.html

Roset taNet Cont ro l
Example: RosettaNet Control
For examples of how to use the RosettaNet control, see Tutorials: Building RosettaNet Solutions.
11-14 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tptutorial/rosettanet.html

C H A P T E R 12
Service Broker Control
The Service Broker control allows a business process to send requests to and receive callbacks
from another business process, a Web service, or a Web service or business process defined in a
WSDL file.

The Service Broker control lets you dynamically set control attributes. This allows you to
reconfigure control attributes without having to redeploy the application.

For information on how to add control instances to business processes, see Using Controls in
Business Processes.

Topics Included in This Section
Overview: Service Broker Control

Describes the purpose of the Service Broker control.

Creating a New Service Broker Control
Describes how to create a new Service Broker control using the control wizard or by
automatically generating the control from a business process or Web service.

Setting Service Broker Properties
Provides an overview of how you set the Service Broker control properties.
Using Integration Controls 12-1

Se rv i ce Broker Cont ro l
Service Broker Control Design Time Considerations
Outlines some issues you should consider when designing your Service Broker control.

Service Broker Control Run-Time Considerations
Details some issues that affect Service Broker control operation at run time.

Maintaining Service Broker Controls
Outlines some Service Broker control maintenance issues.

Using Dynamic Binding
Describes how to dynamically set control attributes.

How the Service Broker Control Uses Dynamic Binding
Describes how to edit and test a dynamic selector for a Service Broker control.

Notes on Service Broker Control Annotations
Details some annotations that have specific rules that you should follow when you use
them with Service Broker controls.

Overview: Service Broker Control
The Service Broker control allows a business process to send requests to and receive callbacks
from another business process, a Web service, or a remote Web service or business process. The
Service Broker control is an extension of the Web Service control.

A remote Web service or business process is accessed using Web services and is described in a
Web Services Description Language (WSDL) file. A WSDL file describes the methods and
callbacks that a Web service implements, including method names, parameters, and return types.
You can generate a WSDL file for any business process by right clicking on a Process.java file
in the Package Explorer pane and choosing Generate WSDL File.

The first step in using a Service Broker control is creating a Control file. The Control can be
automatically generated from a target service (Web service, business process, or WSDL file)
using Oracle Workshop for WebLogic, or can be created using the Add function in the Controls
section of the Oracle Workshop for WebLogic Data palette. The methods and callbacks on the
Control file correspond to operations and callbacks of the target service. An instance of this
Control file is used by a parent service to call the target service and can also be used to get
callbacks from the target service. Service Broker control files can only have selector annotations
on start methods for stateful target services, whereas they can have selector annotations on any
method for stateless target services.
12-2 Using Integration Controls

Creat ing a New Serv i ce Broke r Cont ro l
Note: The parent process and the target process must both be configured to use the same
protocol. Protocol matching and enabling is not handled automatically.

To learn about creating a Service Broker control, see Creating a New Service Broker Control. For
more information on Service Broker Control methods, see Interface ServiceBroker Control.

Creating a New Service Broker Control
This topic describes how to create a new Service Broker control.

You can create a Service Broker control in two different ways, which are described in the
following sections:

Creating a New Service Broker Control Using the Control Wizard

Creating a Service Broker Control from a Business Process

Creating a New Service Broker Control Using the Control
Wizard
You can create a new Service Broker control and add it to your Web service or business process
by using the Insert Control - Service Broker dialog.

Notes: When creating a Service Broker control that references a business process (Process.java),
the business process must be in the current Oracle Workshop for WebLogic application.

If you are not in Design View, click the Design tab.

To create a new Service Broker control:

1. In the Package Explorer pane, double-click the business process to which you want to add
the Service control. The business process is displayed in the Design view.

2. Click on the Data Palette and from the drop-down list choose Integration Controls to
display the list of controls used for integrating applications.

Note: If the Data Palette view is not visible in Oracle Workshop for WebLogic, click Windows
> Show View > Data Palette from the menu bar.

3. Select Service Broker.

The Insert Control: ServiceBroker dialog appears.

4. In the Insert Control: ServiceBroker dialog box enter the following details:
Using Integration Controls 12-3

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/ServiceBrokerControl.html

Se rv i ce Broker Cont ro l
– In the Field Name, type the variable name used to access the new Service Broker
control instance from your business process. The name you enter must be a valid Java
identifier.

– In the Insertion point: from the drop-down list select the point where you want the
field name to be inserted in the process file.

– Decide whether you want to make this a control factory and select or clear the Make
this a control factory that can create multiple instances at runtime check box.

– Click Next.

The Create Control wizard appears.

5. In the Create Control wizard enter the following details:

– In the Name field, type the name of your new control extension file.

– Decide whether you want to add comments as configured in the properties of the
current project and select or clear the Generate comments check box.

– Click Next.

The Insert control: Service Broker dialog-box appears.

6. In the Insert control: Service Broker dialog box enter the following details:

– In the Process or WSDL field, select the business process you want to access by
selecting the name of a business process file.Click Browse, choose from the available
list and click OK.

– Select a start method from the Start Method menu. Only those start methods contained
in the specified business process are displayed.

– To specify a dynamic selector, enter a query in the Query field or click the Query
Builder button to display the Dynamic Selector query builder.

If you invoked the Dynamic Selector query builder, perform the following steps to
build and test a query:

• Select the type of lookup function for the query by choosing the LookupControl or
TPM radio button. Choose TPM to bind lookup values to properties in the TPM
repository. Choose LookupControl to bind lookup values to dynamic properties
specified in a domain-wide DynamicProperties.xml file. You should only edit the
DynamicProperties.xml file to bind lookup values to dynamic properties if the
domain is inactive. If the domain is active, it is recommended that you use the
Oracle WebLogic Integration Administration Console to bind lookup values.
12-4 Using Integration Controls

Creat ing a New Serv i ce Broke r Cont ro l
For more information on binding lookup values to dynamic properties using the Oracle
WebLogic Integration Administration Console, see “Adding or Changing Dynamic
Control Selectors” in Process Configuration.

• In the Start Method Schema area, select an element from the schema to associate it
with the start method of the control. Only XML elements are displayed; non-XML
elements are not supported. The resulting query appears in the XQuery area.

• Click Create.

7. Click Finish.

The Service Broker control is created and displayed in the Package Explorer pane. An
instance of the control is also created and is added to the Data Palette.

Creating a Service Broker Control from a Business Process
You can create a Service Broker control from an existing business process.

1. Right-click a business process in the Package Explorer pane and select Generate > Service
Broker Control.

The Dynamic Selector Generation (optional) dialog box is displayed (see Figure 12-1).

Figure 12-1 Dynamic Selector Generation

2. Select a start method from the Start Method menu. Only those start methods contained in the
specified business process are displayed.

3. To specify a dynamic selector, enter a query in the Query field or click the Query Builder
button to display the Dynamic Selector query builder (see Figure 12-2).
Using Integration Controls 12-5

Se rv i ce Broker Cont ro l
Figure 12-2 Dynamic Selector

If you invoked the Dynamic Selector query builder, perform the following steps to build
and test a query:

a. Select the type of lookup function for the query by choosing the LookupControl or TPM
radio button. Choose TPM to bind lookup values to properties in the TPM repository.
Choose LookupControl to bind lookup values to dynamic properties specified in a
domain-wide DynamicProperties.xml file. You should only use LookupControl to
bind lookup values to dynamic properties if the domain is inactive. If the domain is active,
it is recommended that you use the Oracle WebLogic Integration Administration Console
to bind lookup values.

For more information on binding lookup values to dynamic properties using the Oracle
WebLogic Integration Administration Console, see “Adding or Changing Dynamic
Control Selectors” in Process Configuration.

b. In the Start Method Schema area, select an element from the schema to associate it with
the start method of the control. The resulting query appears in the XQuery area.

c. Click OK.

4. A new control file is displayed, indented beneath the selected business process file. The
Service Broker control file is named using a prefix of SBControl to help distinguish it from
Service controls. For example, if the associated Business Process file is MyProcess.java,
the generated Service Broker control file is named MyProcessSBControl.java.

Note: Alternatively, you may create a Service Broker control file manually. For example, you
may copy an existing Service Broker control file and modify the copy.
12-6 Using Integration Controls

Set t ing Se rv i ce Broker P roper t i es
Notes on XQueries
When you are using XQuery expression and the XQuery Builder, it is important to remember:

If you create a new Process control and want to use the XQuery Builder to associate an
element in the schema with the start method for the new control, remember that XQuery
Builder will only declare namespaces for schemas used in argument 2. So, if argument 1
uses "schema1", but argument 2 does not use "schema1", it will not declare namespace
"schema1".

If you use the XQuery Builder to generate XQuery expressions that involve an optional
element, it is possible that you will have to manually edit the expression to generate a
correct XPath location.

Some XQuery expressions are not supported when using complex Predicates.

Setting Service Broker Properties
The Service Broker control adds the capability of dynamically binding some properties of the
control. Dynamic binding of properties can be achieved the following ways:

Using selectors

Using the setProperties() API

Using setter methods for individual properties, such as setEndPoint().

To retrieve the current properties settings, use the getProperties() method. Note that this
method does not return security-related settings such as username/password,
keyAlias/keyPassword, and keyStoreLocation/keyStorePassword.

Starting with the method with the highest precedence, the hierarchy of property settings is:

1. properties dynamically bound using the com.bea.wli.common.control.Selector
annotation and the DynamicProperties.xml file

2. properties set using the setProperties() method or other setter methods inherited from the
Service control (setConversationID, setEndPoint, setOutputHeaders, setPassword,
and setUsername)

3. properties set using static annotations

The ServiceBrokerControlProperties type is an XML Beans class that is generated out of
the corresponding schema element defined in DynamicProperties.xsd. The
Using Integration Controls 12-7

Se rv i ce Broker Cont ro l
DynamicProperties.xsd file is located in the system folder of New Process Applications or in
the system folder of the Schemas project.

Note: The ServiceBrokerControlProperties document's "password" field and associated
setPassword() method should contain the intended password alias, not the actual
password.

The setProperties() method uses this XML Beans class to set properties on a control
instance. A selector on a Service Broker control method returns an XML document that conforms
to the ServiceBrokerControlProperties element. The following sample shows how to
programmatically set the endpoint property for the control. You add the bold code lines to the
code generated when the control is created, overriding properties set using dynamic binding and
static annotations:

import com.bea.wli.control.dynamicProperties.
ServiceBrokerControlPropertiesDocument;

import com.bea.wli.control.dynamicProperties.
ServiceBrokerControlPropertiesDocument.ServiceBrokerControlProperties;

 ServiceBrokerControlPropertiesDocument props= null;
 ServiceBrokerControlProperties sprops = null;

 public void sBC8InvokeSetProperties() throws Exception

 {

 props =

ServiceBrokerControlPropertiesDocument.Factory.newInstance();
 sprops = props.addNewServiceBrokerControlProperties();

sprops.setEndpoint("http://localhost:7001/BVTAppWeb/ServiceBrokerControl
 /SBC8DynPropHierarchyChild_2.jpd");

You construct the ServiceBrokerControlPropertiesDocument instance in the above section
of code through a Data Transformation method or through XML Bean APIs. For more
information on Data Transformations, see Guide to Data Transformation.

The following code provides a sample of a ServiceBrokerControlPropertiesDocument
instance:

this.sbcp = ServiceBrokerControlPropertiesDocument.Factory.newInstance();

this.sbcp.addNewServiceBrokerControlProperties();
12-8 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/dtguide/index.html

Serv ice Broker Cont ro l Des ign T ime Cons iderat ions
this.sbcp.getServiceBrokerControlProperties().setEndpoint("http://localhos

t:7001/");

Some control properties can be specified dynamically or in annotations (statically) on the control
file. For example, the Service Broker control allows you to specify the http-url of the target
service in the @com.bea.wli.common.control.Location annotation at the top of the control,
or dynamically using the endpoint element in DynamicProperties.xml. In all such cases, a
dynamically bound value for the property takes precedence over the static annotation.

If the domain is active, it is recommended that you use the Oracle WebLogic Integration
Administration Console to perform dynamic binding. For more information on binding lookup
values to dynamic properties using the Oracle WebLogic Integration Administration Console, see
“Adding or Changing Dynamic Control Selectors” in Process Configuration.

Dynamic properties can also be specified by calling setProperties on the control, or by calling
one of the setter methods, such as ServiceBrokerControl.setEndPoint(). Properties
specified in this way take precedence over properties bound by selectors or annotations.

Properties applied using selectors remained bound until one of the following conditions occurs:

A method marked finish on the control file is invoked

A start method is invoked again

The property is programmatically set by calling setProperties or a setter method

ServiceControl.reset() is overwritten by the Service Broker control to reset all dynamically
set properties (in addition to all conversational states). Programmatically specified properties
remain bound until reset() is invoked.

Property values set by a developer who is using the control are stored as annotations on the
control's declaration in a JWS, JSP, or Process.Java file, or as annotations on its interface,
callback, or method declarations in a Control file.

Service Broker Control Design Time Considerations
This section outlines some of the issues you must consider when you are designing a Service
Broker control for your business process. The issues covered in this section are:

Using a Service Broker Control in Stateless and Stateful Business Processes

Using Service Broker Controls in Synchronous and Asynchronous Business Processes

Using a Service Broker Control from the Parent Process
Using Integration Controls 12-9

Se rv i ce Broker Cont ro l
Service Broker Control Location

Using a Service Broker Control in Stateless and Stateful
Business Processes
The number of transactions contained in a business process determines whether the process is
stateless or stateful. For more information, see Building Stateless and Stateful Processes. This
section covers some of the issues you should consider when designing a Service Broker control
for stateless and stateful business processes.

When designing your Service Broker control, adhere to the following rules:

Whether you are designing a stateless or stateful business process, the Service Broker
control can only be invoked by any method. However, you must always start a stateful
process with a start method before using any continue methods.

The start method that invokes the call governs which continue methods may be called
during the call.

The order in which the methods on the control are called matters in a stateful process.

Stateful processes deal with only one particular instance of the control at a time.

Using Service Broker Controls in Synchronous and
Asynchronous Business Processes
Business processes can have both synchronous or asynchronous request methods. For more
information, see Building Synchronous and Asynchronous Business Processes. This section
covers some of the issues you should consider when designing a Service Broker control for
synchronous and asynchronous business processes.

When designing your Service Broker control, remember:

In a synchronous invocation, the input and response arguments are combined into a single
argument.

In an asynchronous invocation, one-to-one mapping takes place. Any response node
becomes a method within the callback interface.
12-10 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideState.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideSync.html

Serv ice Broker Cont ro l Des ign T ime Cons iderat ions
Using a Service Broker Control from the Parent Process
The Service Broker control is typically used to call a subprocess from a parent business process.
When the Service Broker control is invoked from the parent process, the control is invoked
normally if the subprocess is in the same domain.

In cases where the parent process and subprocess are in different domains, or in the same domain
but in different applications, and you want to use the Service Broker control for the parent process
to communicate with the subprocess, you must create the Service Broker control in the
subprocess domain or application, then manually copy it to the parent process domain or
application, and then reference it as an existing control file.

Additionally, when the parent process and subprocess are in different applications, you will
manually have to change the JMS and/or HTTP location of the location attribute.

Service Broker Control Location
When you create a Service Broker control, it is displayed in the Package Explorer pane and an
instance of the control is added to the Data Palette. The location of the Service Broker control is
displayed in the JPD Configuration pane.

Note: If the JPD Configuration pane is not visible in Oracle Workshop for WebLogic, choose
Windows > Show View > Properties from the menu bar.

To view the location of the Service Broker control:

1. Double-click the Service Broker control file in the Package Explorer pane.

The Service Broker control is displayed in the Design view and the JPD Configuration
pane displays the properties of the Service Broker control (see Figure 12-3).
Using Integration Controls 12-11

Se rv i ce Broker Cont ro l
Figure 12-3 Service Broker Control Properties

The location of the Service Broker control is displayed in the location section of the JPD
Configuration pane. The location can contain a HTTP and/or JMS attribute. The HTTP
location is a true HTTP address and the JMS location is a JMS url.

Service Broker Control Run-Time Considerations
This section outlines some of the run-time issues you must consider when you are invoking a
Service Broker control in your business process.

The topics covered in this section are:

Run-Time Rules for Service Broker Controls in Stateless and Stateful Business Processes

Run-Time Rules for Service Broker Controls in Synchronous and Asynchronous Business
Processes

Security

Run-Time Rules for Service Broker Controls in Stateless
and Stateful Business Processes
The number of transactions contained in a business process determines whether the process is
stateless or stateful. For more information, see Building Stateless and Stateful Processes. This
section covers some of the run-time issues you should consider when using a Service Broker
control in stateless and stateful business processes.
12-12 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideState.html

Serv ice Broke r Cont ro l Run-T ime Cons ide rat ions
The following rules govern the run-time operation of Service Broker controls in stateless and
stateful business processes:

In a stateless business process, the parent process makes a Simple Object Access Protocol
(SOAP) or a non-SOAP invocation on the subprocess. The SOAP invocation is a generic
process and the invocation is not simply the method called. In fact, a Web Services
Description Language (WSDL) operation is what is actually invoked. For a non-SOAP
invocation, the Service Broker control can make FORM-POST and FORM-GET requests.

In a stateless business process, a WSDL file is used to communicate interface information
between the parent process and the subprocess. For more information on WSDL files, see
WSDL Files: Web Service Descriptions.

In a stateful business process, the subprocess selected depends on the method specified by
the Service Broker control. A new process instance is created based on the method
specified by the Service Broker control and a new conversation ID is assigned to the
process instance. You can specify the conversation ID. If you don’t specify a conversation
ID, the instance automatically generates its own conversation ID. For more information on
conversations, see Designing Conversational Web Services.

In a stateful business process, once a call is invoked and a conversation ID generated, any
further continue methods that are invoked, interact with the original conversation ID. You
need to specify a new start method to invoke an interaction with a new conversation ID.

Run-Time Rules for Service Broker Controls in Synchronous
and Asynchronous Business Processes
Business processes can have both synchronous or asynchronous request methods. For more
information, see Building Synchronous and Asynchronous Business Processes. This section
covers some of the run-time issues you should consider when using a Service Broker control in
synchronous and asynchronous business processes.

The following rules govern the run-time operation of Service Broker controls in synchronous and
asynchronous business processes:

In a synchronous business process, the Service Broker control allows a business process
(or Web service) to invoke and receive callbacks from another service using one of several
protocols. The most commonly used protocol is SOAP over HTTP. The target subprocess
must expose the particular binding in the WSDL interface that corresponds to the protocol
the client is using.
Using Integration Controls 12-13

http://download.oracle.com/docs/cd/E12840_01/wlw/docs103/guide/webservices/conWsdlFiles.html
http://download.oracle.com/docs/cd/E12840_01/wlw/docs103/guide/async/converse/navMaintainingStatewithConversations.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideSync.html

Se rv i ce Broker Cont ro l
In a synchronous business process, the transaction contexts are not propagated over the
Service Broker control calls because the transport used is HTTP or JMS.

In a synchronous business process, once a call is invoked, the parent process blocks and
waits for a response from the subprocess before continuing to execute.

In a synchronous business process, if a system level error is thrown in the transaction, a
SOAP fault is generated and returned to the parent process or a
com.bea.control.ServiceControlException is generated.

In asynchronous business processes, all calls are invoked by a Web service which dumps
the call instance into a Java Message Service (JMS) queue.

In asynchronous business processes, the transaction is never propagated to the subprocess.
In other words, the subprocess runs in its own transaction. The parent business process
uses Java Message Service (JMS) to drop messages into a JMS queue. Once the parent
process drops a message into the queue, it assumes that message delivery is successful. If
an error occurs on the subprocess, the parent process is not informed of the error. For
information on enhancing your business process so that you can detect failures, see
“Asynchronous Subprocesses” in Building Synchronous and Asynchronous Business
Processes.

In asynchronous business processes, the parent business process continues to execute until
the process finishes or until the process receives a callback from the subprocess. The
callback is always associated with the process instance initially created by the parent
business process.

In an asynchronous business process, once the parent process invokes a message request to
the subprocess, through the Service Broker control, it continues to instantiate and make
further requests to the subprocess. If the subprocess doesn’t have time to respond to the
request from the parent process before it receives a second request, the second request will
be dropped and the subprocess will not receive it at all. For this reason, you should design
the parent process so that it blocks and waits for a callback from the subprocess before
taking further action. For an example of using an Event Choice node to perform this
function, see “Asynchronous Subprocesses” in Building Synchronous and Asynchronous
Business Processes.

In a asynchronous business process, if a system level error is thrown in the transaction, the
error is not propagated back to the parent process.

The com.bea.control JwsContext interface provides access to container services that
support Web services (JWS files). For more information, see “com.bea.control JwsContext
Interface” in com.bea.control packages. The setUnderstoodInputHeaders() method of
12-14 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideSync.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideSync.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideSync.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideSync.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/package-frame.html

Mainta in ing Serv ice Broker Cont ro ls
the com.bea.control JwsContext interface is not supported for asynchronous
processes.

It is recommended that you do not use callback methods that have return values, since
Process files do not support return values on Service Broker Controls.

Security
The Service Broker control conforms to all standard security checks associated with JMS and
WSDL. SSI is not supported. For more security information, see Security.

If you want to configure security settings for your Service Broker control, it is recommended that
you use the Oracle WebLogic Integration Administration Console to configure these settings and
do not set them on the process. For more information, see “Updating Security Policies” in Process
Configuration in Using The Oracle WebLogic Integration Administration Console.

Maintaining Service Broker Controls
In general, Service Broker controls are utilized in situations where the parent process and
subprocess are in the same application, or in situations where the parent process and subprocess
are in different applications.

In both situations, if the Service Broker control is changed on the subprocess side of the
transaction, you must regenerate the control on the parent side to insure that the control will
operate normally. If the subprocess and parent process are in different applications, and the
Service Broker control is changed in any way (i.e. request/response removed, etc.), backward
compatibility may be compromised. If this happens, you must merge the Service Broker control
on the subprocess side and repropagate the control back to the parent business process.

Note: Much like the Service control, the Service Broker control can throw a
ServiceControlException class when a SOAP fault occurs. To access this SOAP fault,
use the JPD's JpdContext.ExceptionInfo interface to see if the offending cause is a
ServiceControlException. For more information on the ServiceControlException class,
see “ServiceControlException Class” in com.bea.control packages. For more
information on the JpdContext.ExceptionInfo interface, see “JpdContext.ExceptionInfo
Interface” in com.bea.jpd Package.

Using Dynamic Binding
In many cases, control attributes are statically defined using annotations. Some controls provide
a Java API to dynamically change certain attributes. Dynamic controls, including the Service
Using Integration Controls 12-15

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/package-frame.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/jpd/package-frame.html
http://download.oracle.com/docs/cd/E12840_01/wlw/docs103/guide/security/navSecurity.html

Se rv i ce Broker Cont ro l
Broker and Process controls, provide the means to dynamically set control attributes. Attributes
are determined at runtime using a combination of lookup rules and lookup values, a process called
dynamic binding. Controls that support dynamic binding are called dynamic controls. The
business process developer specifies lookup rules using Oracle Workshop for WebLogic while
the administrator specifies look-up values using the Oracle WebLogic Integration Administration
Console. This powerful feature means that control attributes can be completely decoupled from
the application and can be reconfigured for a running application, without redeployment.

How the Service Broker Control Uses Dynamic Binding
The following scenario shows how the Service Broker control uses dynamic binding.
POService.java needs to call an external service to obtain a quote on a specific item. Several
vendors offer this service. The administrator needs to be able to access multiple implementations
of the outside service without changing or redeploying POService.jpd.

Components Used in Dynamic Binding
This topic describes the capabilities that provide dynamic binding to the quote service using the
Service Broker control.

com.bea.wli.common.control.Selector Tag
The method-level annotation, com.bea.wli.common.control.Selector, allows dynamic definition
of certain properties of the control. The selector has an attribute, xquery, which is an XQuery
expression, as shown in the following example:

 /**
 * com.bea.wli.common.Conversation.Phase.Start
 * com.bea.wli.common.control.Selector xquery ::
 * lookupControlProperties($request/vendorID) ::
 */
 public void requestQuote(PurchaseRequest request);

The value of the selector’s XQuery expression is an XML document with a schema that contains
control property values. If you are accessing a TPM repository, the XQuery expression appears
as follows:

 /**
 * @com.bea.wli.common.Conversion(value =
com.bea.wli.common.Conversation.Phase.START)
 * @com.bea.wli.common.control.Selector(xquery=
"lookupControlProperties($request/vendorID)")
 * public void requestQuote(PurchaseRequest request);
12-16 Using Integration Controls

How the Serv ice Broke r Cont ro l Uses Dynamic B ind ing
When invoking a method on the control, the system looks for a selector annotation. If one is
present, the XQuery expression is evaluated, possibly binding arguments of the Java call to
arguments of the XQuery expression. The result of the XQuery expression is a String value that
defines dynamic properties for the control.

Built-In XQuery Functions
Two types of XQuery functions are supplied to help you write selector expressions:
lookupControlProperties and lookupTPMProperties. The lookupControlProperties
function looks up values for dynamic properties specified in a domain-wide
DynamicProperties.xml file. The lookupTPMProperties function looks up values from
properties in the TPM (Trading Partner Management) repository.

To learn about the TPM repository, see Introducing Trading Partner Integration. To learn about
adding or updating information in the TPM repository, see Trading Partner Management. The
TPM control provides Oracle Workshop for WebLogic business processes and Web services with
query (read-only) access to trading partner and service information stored in the TPM repository.
To learn about the TPM control, see TPM Control.

If the selector expression uses the lookupControlProperties function, the fully-qualified
class name of the control together with the result of evaluating the selector are used as a lookup
key into the DynamicProperties.xml file. If a match is found, the dynamic properties are
applied before making the call to the target service.

DynamicProperties.xml File
DynamicProperties.xml is an XML file managed through the Oracle WebLogic Integration
Administration Console. It contains mappings between values from the message payload (the
lookup key) and corresponding control properties. It is a domain-wide file shared by all Oracle
WebLogic Integration applications in the domain. This file allows you to administer dynamic
properties without redeploying the application. The file is located in a subdirectory of the domain
root named wliconfig. To learn about managing dynamic selectors, see Processes
Configuration.

DynamicProperties.xml contains a sequence of <control> elements, one for each dynamic
control control file. Each <control> element has a name attribute whose value is the
fully-qualified Java class name of a control file. Nested inside the <control> element is a
sequence of <key> elements which map string values that match the value of the parameter
passed into the lookupControlProperties within the caller’s selector to dynamic properties,
as shown in the following example:
Using Integration Controls 12-17

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html

Se rv i ce Broker Cont ro l
<DynamicProperties
 xmlns="http://www.bea.com/wli/control/dynamicProperties">

 <control name context-path="/sbcAppWeb"
 controlType="ServiceBrokerControl">
 <key value="QuoteCom">
 <ServiceBrokerControlProperties>
 <endpoint>http://www.quotecom.com/quotes/QuoteService</endpoint>
 </ServiceBrokerControlProperties>
 </key>

 <key value="WebQuote">
 <ServiceBrokerControlProperties>
<endpoint>http://www.webquote.com/quoteEngine/getQuote</endpoint>
 </ServiceBrokerControlProperties>
 </key>
 </control context-path>

 <control name context-path="quote.InternalQuote"
controlType="ProcessControl">
 <key value="OurQuote">
 <ProcessControlProperties>
 <targetURI>http://acme/myApp/PublicProcess.jpd</targetURI>
 </ProcessControlProperties>
 </key>
 </control context-path>
</DynamicProperties>

The Oracle WebLogic Integration Administration Console allows an administrator to view and
edit entries in the DynamicProperties.xml file.

Quote Processing Example
This section shows how dynamic controls and selectors can help to implement the quote
processing scenario. Figure 12-4 shows the components that participate in the dynamic binding:
12-18 Using Integration Controls

How the Serv ice Broke r Cont ro l Uses Dynamic B ind ing
Figure 12-4 Dynamic Binding

To achieve the required dynamic binding to the target service, the business process defined in
POService.java uses a Service Broker control, QuoteProcessor.java, to call the quote
service. Since the target is dynamically specified, the
com.bea.wli.common.control.Location tag is not used. The Service Broker control is
defined by the following control file:

import com.bea.control.ServiceBrokerControl;
import com.bea.control.ControlExtension;
import org.applications.PurchaseRequest;
import org.applications.PurchaseReply;

public interface QuoteProcessor
 extends ServiceBrokerControl, ControlExtension

{
 public interface Callback
 {
Using Integration Controls 12-19

Se rv i ce Broker Cont ro l
 public void infoReady (PurchaseReply reply);
 }

 /**
 * @com.bea.wli.common.Conversion(value =

com.bea.wli.common.Conversation.Phase.START)"
 * @com.bea.wli.common.control.Selector(xquery=

"lookupControlProperties($request/vendorID)")

public void requestQuote(PurchaseRequest request

}

At runtime, the control container needs to bind the proxy represented by the control to the proper
implementation. This is driven by a selector XQuery expression tagged on the start method of the
Service Broker control interface (com.bea.wli.common.control.Selector).

Note: For controls representing stateless components, each method can have a selector. For
methods without selectors, the default location defined in the annotation is used. If the
target location is not resolved after applying the selector, a runtime exception is raised.

The selector returns an XML fragment that contains the dynamic properties of the control. For
example:

<ServiceBrokerControlProperties>
 <endpoint>
 http://www.quotecom.com/quotes/QuoteService/endpointURI>
 </endpoint>
 <username>fred</username>
 <password>@$%&*</password>
</ServiceBrokerControlProperties>

In this example, the selector uses a standard XQuery function called
lookupControlProperties(). This function looks up the control properties from the
DynamicProperties.xml file based on the key passed to it. In the example, the key is the
vendor ID that is extracted from the payload. The result passed back by
lookupControlProperties() is a <ServiceBrokerControlProperties> element.

The key-attribute mapping information used by lookupControlProperties() is stored in the
DynamicProperties.xml file. The schema for the dynamic properties file can handle all the
attributes that are valid for dynamic controls. You can define selectors when you create the
control or by directly editing the control source code.
12-20 Using Integration Controls

Notes on Serv ice Broke r Cont ro l Annotat ions
An administrator can define the mapping between the selector value and the implementation
using the Oracle WebLogic Integration Administration Console. The Oracle WebLogic
Integration Administration Console allows an administrator to specify the following properties:

Endpoint URI

Protocol to use when making the call: http-soap, http-xml, jms-soap, jms-xml, form-get and
form-post. The default is http-soap.

Note: The parent process and the target process must both be configured to use the same
protocol. Protocol matching and enabling is not handled automatically.

Any credentials needed to make the call:

– User name and password to invoke the remote service (base authentication)

– Certificate alias and password, if the remote service requires SSL with two-way
authentication

– Certificate alias and password, if digital signature is required

– Keystore location, password and type, in case a client certificate is required

Notes on Service Broker Control Annotations
This section provides information on the Service Broker control specific behavior of the
following annotations:

@com.bea.wli.common.ParameterXml

@com.bea.wli.common.Conversation

@jc:parameter xml

@com.bea.wli.common.Protocol

@com.bea.wli.common.ParameterXml
The @com.bea.wli.common.ParameterXml annotation specifies that there should be a queue
between the component’s implementation code and the message transport wire for the specified
method or callback. For more information, see “@com.bea.wli.common.ParameterXml
Annotation” in Java Control Annotations.
Using Integration Controls 12-21

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/index.html

Se rv i ce Broker Cont ro l
When you generate a Service Broker control request method, do not edit any of the attributes of
the @common:message-buffer annotation. The @common:message-buffer annotation is
visible in the message-buffer section of the JPD Configuration pane.

@com.bea.wli.common.Conversation
The com.bea.wli.common.Conversation annotation specifies the role that a control’s
methods or callbacks play in a conversation. For more information, see
“com.bea.wli.common.Conversation annotation” in Java Control Annotations.

When you generate a Service Broker control, do not edit the phase attribute of the
com.bea.wli.common.Conversation annotation. The
com.bea.wli.common.Conversation annotation is visible in the conversation section of the
JPD Configuration pane.

@jc:parameter xml
The @jc:parameter-xml annotation specifies characteristics for marshaling data between
XML messages and the data provided to the parameters of a Web service operation. For more
information, see “@jc:parameter-xml Annotation” in Java Control Annotations.

It is recommended that you do not use this annotation when designing a Service Broker control.

@com.bea.wli.common.Protocol
The @com.bea.wli.common.Protocolannotation specifies which protocols and message
formats can be accepted by the Web service represented by a Web Service control, and by the
operations on that Web service. For more information, see “@com.bea.wli.common.Protocol
Annotation” in Java Control Annotations.

If you use the Service Broker control to call properties, do not use the http-xml attribute of
com.bea.control.ServiceControl.JmsSoapProtocol. This attribute is not supported for
use with the Service Broker control. This attribute is visible in the protocol section of the JPD
Configuration pane.
12-22 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/index.html

C H A P T E R 13
OSB Control
The OSB control allows your web service or business process to invoke an Oracle Service Bus
proxy service, and provides support for security and transaction context propagation.

Topics Included in this Section
Overview: OSB Control

Describes the OSB control.

Creating an OSB Control
Describes how to create and configure an OSB control.

OSB Control Annotations
Describes the OSB control annotations.

Example OSB Control
Shows an example of the OSB control.

Related Topics
Oracle Service Bus User Guide

Service Broker Control
Using Integration Controls 13-1

http://download.oracle.com/docs/cd/E13159_01/alsb/docs30/userguide/index.html

OSB Cont ro l
Overview: OSB Control
The OSB control allows a business process to invoke the Oracle Service Bus proxy services,
which have Service Bus Transport configured through RMI, and send requests to and receive
callbacks from a Web service, or a remote Web service or business process.

OSB control extends Service Broker control, and the functionality supported by the service
control is also supported by the OSB control. For more information on Service Broker Control,
see Service Broker Control.

OSB control does the following:

– It supports functionality of service control such as conversations, callbacks, message
and transport level security, SOAP (1.1 and 1.2), WS-Policy, and WS-Addressing.

– It supports security and transaction context propagation.

– It supports synchronous, one-way invocation of Oracle Service Bus proxy services,
which are configured with SB transport.

– It transports the SOAP, abstract SOAP, and abstract XML messages over RMI.

The first step is creating a OSB Control file. The Control can be automatically generated from a
target service (WSDL file) using Oracle Workshop for WebLogic, or can be created using the
Add function in the Controls section of the Oracle Workshop for WebLogic Data palette. The
methods and callbacks on the Control file correspond to operations and callbacks of the target
service. An instance of this Control file is used by a parent service to call the target service and
can also be used to get callbacks from the target service. OSB control files can only have selector
annotations on start methods for stateful target services, whereas they can have selector
annotations on any method for stateless target services.

Note: The parent process and the target process must both be configured to use the same
protocol. Protocol matching and enabling is not handled automatically.

Creating an OSB Control
You can create an OSB control:

– From an Oracle Service Bus proxy service using the proxy service’s WSDL file, see
Creating an OSB Control from a WSDL.

– From a proxy service in an existing Oracle Service Bus Project to a WLI project in the
same wokspace, see Creating an OSB Control Using the Service Consumption
Framework.
13-2 Using Integration Controls

Creat ing an OSB Cont ro l
Creating an OSB Control from a WSDL
You can create a new OSB control and add it to your Web service or business process by using
the Insert Control - OSB dialog.

Note: If you are not in Design view, click the Design tab.

To create a new OSB control:

1. In the Package Explorer pane, double-click the business process to which you want to add
the OSB control. The business process is displayed in the Design view.

2. Click on the Data Palette and from the drop-down list choose Integration Controls to
display the list of controls used for integrating applications.

If the Data Palette view is not visible in Oracle Workshop for WebLogic, click Window >
Show View > Data Palette from the menu bar.

3. Select OSB.

The Insert Control: OSB Control dialog appears (see Figure 13-1).

Figure 13-1 Insert Control : OSB Control

4. In the Insert Control:OSB dialog box enter the following details:

– In the Field Name, type the variable name used to access the new OSB control
instance from your business process. The name you enter must be a valid Java
identifier.

– In the Insertion point: from the drop-down list select the point where you want the
field name to be inserted in the process file.
Using Integration Controls 13-3

OSB Cont ro l
– Decide whether you want to make this a control factory and select or clear the Make
this a control factory that can create multiple instances at runtime check box.

– Click Next.

The Create Control wizard appears.

5. In the Create Control wizard enter the following details:

– In the Name field, type the name of your new control extension file.

– Decide whether you want to add comments as configured in the properties of the
current project and select or clear the Generate comments check box.

– Click Next.

The Insert control: OSB Control dialog-box appears (see Figure 13-2).

Figure 13-2 Insert Control: OSB Control

6. In the Insert control: OSB Control dialog box enter the following details:

– In the WSDL field do one of the following:

• Click Browse and select the WSDL file you want to access from the available list
and, click OK (see Figure 13-3).
13-4 Using Integration Controls

Creat ing an OSB Cont ro l
Figure 13-3 Select a WSDL

• Click Import, and in the Service Consumption dialog-box select a Artifact Folder
and the Service Resource from the drop-down list next to it, and click OK (see
Figure 13-4).

Note: An OSB Control cannot be created from a WSDL file located outside the current
Web project.

Figure 13-4 Service Consumption
Using Integration Controls 13-5

OSB Cont ro l
– Select a service name from the Service Name menu. Only those service name
contained in the specified business process are displayed.

– Select a start method from the Start Method menu. Only those start methods contained
in the specified business process are displayed.

– To specify a dynamic selector, enter a query in the Query field, by clicking the Query
Builder button to display the Dynamic Selector query builder.

If you invoked the Dynamic Selector query builder, perform the following steps to
build and test a query:

• Select the type of lookup function for the query by choosing the LookupControl or
TPM radio button. Choose TPM to bind lookup values to properties in the TPM
repository. Choose LookupControl to bind lookup values to dynamic properties
specified in a domain-wide DynamicProperties.xml file. You should only edit the
DynamicProperties.xml file to bind lookup values to dynamic properties if the
domain is inactive. If the domain is active, it is recommended that you use the
Oracle WebLogic Integration Administration Console to bind lookup values.

For more information on binding lookup values to dynamic properties using the Oracle
WebLogic Integration Administration Console, see “Adding or Changing Dynamic
Control Selectors” in Process Configuration.

• In the Start Method Schema area, select an element from the schema to associate it
with the start method of the control. Only XML elements are displayed; non-XML
elements are not supported. The resulting query appears in the XQuery area.

• Click Create.

– Click Next.

If the Oracle Service Bus bindings are not configured in your WSDL file, the Insert
Control: OSB Control dialog box appears (see Figure 13-5), do the following:
13-6 Using Integration Controls

Creat ing an OSB Cont ro l
Figure 13-5 Insert Control: OSB Control

• Check the Provide additional binding information to create OSB control
check-box.

• Enter the required information in the Service URI field.

• Enter the required information in the JNDI URL field.

• Click Next.

The No Existing Types Found dialog-box appears (see Figure 13-6).

Figure 13-6 No Existing Types Found

– Select one of the option and click Finish.
Using Integration Controls 13-7

OSB Cont ro l
The OSB control is created and displayed in the Package Explorer pane. An instance of
the control is also created and is added to the Data Palette.

Creating an OSB Control Using the Service Consumption
Framework
To create an OSB Control using the proxy service, you need to have an existing Oracle Service
Bus project.

1. In the Package Explorer pane, double-click the business process to which you want to add
the OSB control. The business process is displayed in the Design view.

2. Click on the Data Palette and from the drop-down list choose Integration Controls to
display the list of controls used for integrating applications.

3. Select OSB.

The Insert Control: OSB dialog appears

4. In the Insert Control:OSB dialog box enter the following details:

– In the Field Name, type the variable name used to access the new OSB control
instance from your business process. The name you enter must be a valid Java
identifier.

– In the Insertion point: from the drop-down list select the point where you want the
field name to be inserted in the process file.

– Decide whether you want to make this a control factory and select or clear the Make
this a control factory that can create multiple instances at runtime check box.

– Click Next.

The Create Control wizard appears.

5. In the Create Control wizard enter the following details:

– In the Name field, type the name of your new control extension file.

– Decide whether you want to add comments as configured in the properties of the
current project and select or clear the Generate comments check box.

– Click Next.

The Insert control: OSB dialog-box appears.

6. In the Insert control: OSB dialog-box, do the following:
13-8 Using Integration Controls

Creat ing an OSB Cont ro l
– In the WSDL field, click Import.

The Service Consumption dialog-box appears.

In the Service Consumption dialog-box do the following:

• Select an Artifact Folder.

• Decide whether you want to overwrite existing files, and select or clear the
Overwrite existing files check box.

• Select Workspace from the Service Resource drop-down list.

• Select Oracle Service Bus 10.3, as the Product Type.

• Select the Oracle Service Bus proxy service, from the Available Services (see
Figure 13-7).

Figure 13-7 Available Services

• Click Ok.

– Select a service name from the Service Name menu. Only those service name
contained in the specified business process are displayed.
Using Integration Controls 13-9

OSB Cont ro l
– Select a start method from the Start Method menu. Only those start methods contained
in the specified business process are displayed.

– To specify a dynamic selector, enter a query in the Query field, by clicking the Query
Builder button to display the Dynamic Selector query builder.

– Click Next.

The No Existing Types Found dialog-box appears.

– Select one of the option and click Finish.

The OSB control is created using a proxy service and displayed in your business process,
in the Package Explorer pane. An instance of the control is also created and is added to
the Data Palette.

OSB Control Annotations
OSB control extends Service Broker control. In addition to the annotations of the Service Broker
Control, other than those annotations it provides the following additional annotations depending
on the requirement:

RmiSoapProtocol

RmiSoap12Protocol

SBTransport

CustomHeader

CustomHeaders

RmiXmlProtocol

OneWay

Transaction Context Propagation

Security Context Propagation

See Notes on Service Broker Control Annotations, for more information on Service Broker
annotations.
13-10 Using Integration Controls

OSB Cont ro l Annotat ions
RmiSoapProtocol
This annotation is a marker annotation, specifies the OSB control supports SOAP 1.1 over RMI.
This annotation can only be specified at the class level. This annotation is used for supporting
SOAP over RMI. This annotation looks like the following:

@Retention(RetentionPolicy.RUNTIME)

@Target({ElementType.TYPE})

public @interface RmiSoapProtocol

{

}

Note: This annotation is auto generated based on the WSDL and, you should not modify this
annotation. When this annotation is specified, you should not specify service control
supported annotations like HttpSoapProtocol, HttpSoap12Protocol,
JmsSoapProtocol, and JmsSoapProtocol. Location which is a service control
annotation is optional. The service control annotation WSDL is required.

RmiSoap12Protocol
This annotation is a marker annotation, specifies the OSB control supports SOAP 1.2 over RMI.
This annotation can only be specified at the class level. This annotation is used for supporting
SOAP over RMI. This annotation looks like the following:

@Retention(RetentionPolicy.RUNTIME)

@Target({ElementType.TYPE})

public @interface RmiSoap12Protocol

{

}

Note: This annotation is auto generated based on the WSDL and, you should not modify this
annotation. When this annotation is specified, you should not specify service control
supported annotations like HttpSoapProtocol, HttpSoap12Protocol,
JmsSoapProtocol, and JmsSoapProtocol. Location, which is a service control
annotation is optional. The service control annotation WSDL is required.

SBTransport
This annotation is used to specify the RMI related parameters required for the SB Thin Client
API. This annotation can only be specified at the class level. This annotation is used for
Using Integration Controls 13-11

OSB Cont ro l
supporting SOAP, abstract SOAP, and abstract XML over RMI. This annotation looks like the
following:

@Retention(RetentionPolicy.RUNTIME)

@Target({ElementType.TYPE, ElementType.FIELD})

public @interface SBTransport

{

String serviceURI();

boolean execute() default true;

 String jndiURL() default “”;

Table 13-1 describes the fields within the SBTransport annotation.

Note: This annotation should only be specified along with the annotations RmiSoapProtocol
or RmiSoap12Protocol.Location, which is a service control annotation is optional.
The service control annotation WSDL is required.

Table 13-1 Fields in the SBTransport Annotation

Fields Description

serviceURI This specifies the URL of the Oracle Service Bus proxy service, which is
configured with SB transport and is required.

execute This specifies whether the invocation of the external service should
happen with in the same security context as the business process or not.
If the invocation is false, the invocation happens with in the security
context of the JNDI lookup. If true, the invocation happens with in the
same security context of the business process and JNDI lookup happens
in a different security context depending on whether the
principal/credential is set or not.

Note: The default value is true.

jndiURL This specifies the URL of the JNDI provider on the Oracle Service Bus
server. If the URL is not specified then the local JNDI provider would
be considered.
13-12 Using Integration Controls

OSB Cont ro l Annotat ions
CustomHeader
This annotation is used to specify the custom header to the SB Transport. This annotation can be
specified at the class level. This annotation is used for supporting SOAP over RMI. This
annotation looks like the following:

@Retention(RetentionPolicy.RUNTIME)

@Target({ElementType.TYPE})

public @interface CustomHeader

{

String name;

String value;

}

Table 13-2 describes the fields within the CustomHeader annotation.

Note: This annotation should only be specified along with the annotations RmiSoapProtocol
or RmiSoap12Protocol.

CustomHeaders
This annotation is used to specify the custom headers to the SB Transport. This annotation can
be specified at the class level. This annotation is used for supporting SOAP, abstract SOAP, and
abstract XML over RMI. This annotation looks like the following:

@Retention(RetentionPolicy.RUNTIME)

@Target({ElementType.TYPE})

public @interface CustomHeaders

{

CustomHeader[] headers;

}

Table 13-2 Fields in the CustomHeader Annotation

Fields Description

Name This specifies the header name.

Value Describes the value for the header specified through “name” attribute.
Using Integration Controls 13-13

OSB Cont ro l
The fields with in the annotation are headers, which represents an array of name value pairs.

Note: This annotation should only be specified along with the annotations RmiSoapProtocol
or RmiSoap12Protocol.

RmiXmlProtocol
This annotation is a marker annotation and used for specifying that the OSB control supports
abstract XML message over RMI. This annotation can only be specified at the class level. This
annotation is used for supporting abstract XML and abstract SOAP over RMI. This annotation
looks like the following:

@Retention(RetentionPolicy.RUNTIME)

@Target({ElementType.TYPE})

public @interface RmiXmlProtocol

{

}

Note: When you specify this annotation, do not specify RmiSoapProtocol,
RmiSoap12Protocol, and any service control supported annotations. You need to
specify the SBTransport annotation. In this case there should not be any callback
interface (with @EventSet annotation) with in the OSB control.

OneWay
This annotation is a marker annotation and is used to specify that the operation is one way. This
annotation can only be specified at the method level. This annotation is used for supporting
abstract XML, and abstract SOAP over RMI. This annotation looks like the following:

@Retention(RetentionPolicy.RUNTIME)

@Target({ElementType.METHOD})

public @interface OneWay

{

}

Note: This annotation should be specified only when RmiXmlProtocol is specified.

When this annotation is specified the method signature for:

– Sending the abstract XML over RMI looks like the following:

public void sendAbstractXml(XmlObject xmlMessage);
13-14 Using Integration Controls

OSB Cont ro l Annotat ions
– Transporting abstract SOAP messages over RMI looks like the following:

public void sendAbstractSoap(SOAPMessage soapMessage);

Transaction Context Propagation
OSB control supports transaction context propagation at method level within a business process,
where you can decide whether to propagate the transaction context for that method or not using
the Transactional annotation. This annotation also specifies the RMI invocation timeout, if
you are not propagating the transaction context.

If you specify the transaction annotation at the control level, it will be applicable for all the
methods with in the control and if specified at the method level, it will be applicable to the method
level.

This annotation looks like the following:

@Retention(RetentionPolicy.RUNTIME)

@Target({ElementType.TYPE, ElementType.METHOD})

public @interface Transactional

{

boolean value() default true;

 int timeout() default 60;

}

Table 13-3 describes the fields within the Transactional annotation.

Note: This annotation should only be specified along with the OSB control defined annotations
only. If this annotation is not specified, by default the transaction context would be
propagated to Oracle Service Bus.

Table 13-3 Fields in the Transactional Annotation

Fields Description

Value This determines whether to propagate the transaction context.

Time This specifies the timeout value for RMI invocation, when transaction context
is not propagated.
Using Integration Controls 13-15

OSB Cont ro l
Security Context Propagation
If you specify the principal and credentials as part of SBTransport annotation, those credentials
would be used to authenticate with remote JNDI provider. Depending on the value of the
execute attribute in SBTransport annotation, security context propagation happens
accordingly as explained below while transporting the message to Oracle Service Bus.

– If you specify true for the execute attribute, then the JNDI lookup happens with the
supplied principal/credential and the transporting the message/remote invocation
happens with in the context of the current authenticated subject.

– If you specify false for the execute attribute, then the JNDI lookup & transporting the
message/remote invocation happens with the supplied principal/credentials.

Example OSB Control
This section shows an example of OSB control:
package requestquote;

import com.bea.control.SbTransportControl;

import org.apache.beehive.controls.api.events.EventSet;

import org.apache.beehive.controls.api.bean.ControlExtension;

@SbTransportControl.SBTransport(serviceURI = "/MyAddProxy", jndiURL =
"t3://localhost:7001")

@SbTransportControl.RmiSoapProtocol

@SbTransportControl.SOAPBinding(style =
SbTransportControl.SOAPBinding.Style.DOCUMENT, use =
SbTransportControl.SOAPBinding.Use.LITERAL, parameterStyle =
SbTransportControl.SOAPBinding.ParameterStyle.WRAPPED)

@SbTransportControl.WSDL(path = "../requestquote/AddPro_proxy.wsdl",
service = "AddPro")

@ControlExtension

public interface ALSBControl extends SbTransportControl

{

 static final long serialVersionUID = 1L;

 public int addNumbers(int num1_arg,int num2_arg);

 /** This event set interface provides support for the onAsyncFailure
event.
13-16 Using Integration Controls

Example OSB Cont ro l
 */

 @EventSet(unicast=true)

 public interface Callback extends SbTransportControl.Callback {};

 public ALSBControl create(); }
Using Integration Controls 13-17

OSB Cont ro l
13-18 Using Integration Controls

C H A P T E R 14
TIBCO Rendezvous Control
TIBCO® Rendezvous™ (a product from TIBCO: www.tibco.com) enables exchange of data
across applications running on distributed platforms. TIBCO Rendezvous (TIBCO) Control in
Oracle WebLogic Integration enables seamless connection to, and transfer of data using the
Rendezvous daemon. It enables communication via many of the features provided by the TIBCO
Rendezvous product, including Certified Message Delivery, Distributed Queue and so on. The
sending and receiving applications can be on multiple platforms, as long as the Rendezvous
daemon is running on the host machine, or is remotely accessible to the host.

Disclaimer
Use of the TIBCO control and event generator with Oracle WebLogic Integration in no manner
confers or grants the right to use TIBCO Rendezvous including "dynamic libraries". In order to
use such TIBCO products, the user of the TIBCO control and event generator must obtain a valid
license from TIBCO. See http://www.tibco.com for information on how to obtain a licensed
copy of Rendezvous.

Topics Included in This Section
Overview: Rendezvous Control

Describes the function of the TIBCO control within Oracle WebLogic Integration.

Creating and Configuring a New Instance of the TIBCO Control
Describes how to create and configure a new TIBCO control.
Using Integration Controls 14-1

http://www.tibco.com

T IBCO Rendezvous Cont ro l
Using Subject in a Message
Describes how to set and retrieve the subject descriptor attributes of the message.

Sending and Receiving Messages
Describes the methods used to send and receive messages.

Setting Dynamic Properties
Describes how to modify the TIBCO control properties at run time.

Overview: Rendezvous Control
The TIBCO control enables Oracle WebLogic Integration business processes to send and receive
messages in the Rendezvous environment. In this environment, the messages are conveyed using
Rendezvous daemon (rvd) and Rendezvous agent (rva) transports.

Using the TIBCO control, you can send and receive messages in XML, String and TIBCO
proprietary Rendezvous Message (TibrvMsg) formats. You can specify TIBCO control
properties while configuring Rendezvous control or dynamically at run time. Following are some
of the other features of TIBCO control:

Sending a request message and waiting for a reply

Sending a reply for a message

Asynchronous callback facility to confirm delivery or failure of certified messages

Registration of anticipated listeners

The TIBCO control complements the other controls provided in Oracle WebLogic Integration,
and can be used with other Oracle WebLogic Integration business processes. To learn more, see
Using Controls in Business Processes in Using Integration Controls.

The TIBCO event generator listens on a subject, and publishes the received messages to the
Oracle WebLogic Integration message broker channels. For more information, see the TIBCO
Rendezvous Event Generator.

Creating and Configuring a New Instance of the TIBCO
Control

You can create and configure a new instance of the TIBCO control and add it to your business
process. This topic includes the following sections:

Describes how to add a new TIBCO control.
14-2 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tibcorv/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tibcorv/index.html

Creat ing and Conf igur ing a New Instance o f the T IBCO Cont ro l
To Specify TIBCO Control General Settings
Describes how to configure the general settings for the TIBCO control such as port id, host
name and so on.

To Specify TIBCO Control Advanced Settings
Describes how to configure Certified Message settings for the TIBCO control.

Prerequisites before creating Tibco Control
Before creating the TIBCO Control, perform the following:

1. Install and configure TibcoRV on your machine. Ensure that the installation directory should
be in server PATH.

2. Enter the tibjrv.jar in the CLASSPATH:
EXT_PRE_CLASSPATH=D:\Installs\TIBCO\TIBRV\lib\tibrvj.jar;%EXT_PRE_CLASS
PATH% .

3. TIBCO installation bin and lib folder should be there in PATH and LD_LIBRARY_PATH
respectively.
export LD_LIBRARY_PATH=/opt/tibco/tibrv/lib:$LD_LIBRARY_PATH

export PATH=/opt/tibco/tibrv/bin:$PATH

To Add a New TIBCO Control
To add a new TIBCO control to Oracle WebLogic Integration, perform the following steps:

1. In the Package Explorer pane, double-click the business process (Process.java file) to which
you want to add the Tibco control. The business process is displayed in the Design view.

2. Click on the Data Palette and from the drop-down list choose Integration Controls to
display the list of controls used for integrating applications.

Note: If the Data Palette view is not visible in Oracle Workshop for WebLogic, click
Window > Show View > Data Palette from the menu bar.

3. Select Tibco.

The Insert control: Tibco dialog box appears.

4. In the Insert control: Tibco dialog box enter the following details:

– In the Field Name, type the variable name used to access the new Tibco control
instance from your business process. The name you enter must be a valid Java
identifier.
Using Integration Controls 14-3

T IBCO Rendezvous Cont ro l
– In the Insertion point: from the drop-down list select the insertion node, you want to
add the control.

– To make this a control factory select the Make this a control factory that can create
multiple instances at runtime check box, otherwise clear the check box.

– Click Next.

The Create Control dialog-box appears.

5. In the Create Control dialog box enter the following details:

– In the Name field, type the name of your new control extension file.

– Decide whether you want to add comments as configured in the properties of the
current project and select or clear the Generate comments check box.

– Click Next.

The Insert control- Tibco dialog-box appears.

6. In the Insert control- Tibco dialog box enter the following details:

To Specify TIBCO Control General Settings

– In the Service field, enter the service name which the TIBCO RV daemon will use to
convey the message.

– In the Network field, enter the name of the network with which the TIBCO RV
daemon will communicate. If no network is specified, the default network interface will
be used.

– In the Daemon field, enter the location where the TIBCO RV daemon is running to
establish communication. If the TIBCO RV daemon is running on a different network,
specify the remote_host:port_id details in the Daemon field. For example,
beaserv1:1589 where beaserv1 is the remote host name and 1589 is the port id.

– Click Use CM to select the Certified Messaging option.

To Specify TIBCO Control Advanced Settings
To specify certified messaging settings for the TIBCO control, perform the following tasks in
Step 3 of the Insert Control - TIBCO dialog; the Advanced Settings tab, (see Figure 14-1)
below:
14-4 Using Integration Controls

The Java F i l es fo r a T IBCO Cont ro l
Figure 14-1 Insert TIBCO Control - Advanced Settings

– Click the Advanced tab, to display the advanced options for Certified Messaging. This
tab is applicable only if you have selected the CM radio button in the General tab.

– In the CM Name field, provide the CM transport name. The name identifies the CM
transport to other CM transports, and is par of the CM label that identifies outbound
messages from the CM transport.

– In the Ledger Name field, provide the ledger name with its location. Each CM
transport keeps a ledger, in which it records information about every unresolved
outbound certified message, every subject for which this CM transport receives
(inbound) certified messages, and other cooperating CM transports.

– Click Retain Unacknowledged Messages radio button to store any unacknowledged
messages as part of its decentralized architecture.

– Click Synchronize Ledger radio button to perform a synchronized update of the ledger
file. Each time the ledger is updated, the call does not return until data is safely written
to the storage medium.

The Java Files for a TIBCO Control
When you create a new instance of the TIBCO control, you create a new Java file in your project.
The contents of the TIBCO control's file depends on the selections made in the Insert Control -
TIBCO dialog.
Using Integration Controls 14-5

T IBCO Rendezvous Cont ro l
The two examples in this section depict control files created for a certified message and a
non-certified message.

Sample control File for a TIBCO Control Using Certified Messaging
package requestquote;

/*

 * An extended TibcoRV control.

 */

@org.apache.beehive.controls.api.bean.ControlExtension

@com.bea.control.TibcoRV.Transport(service="7500",network="beaserv1",daemo

n="beasever1:7500")

@com.bea.control.TibcoRV.CMTransport(cmname="new",ledgername="Ledger",requ

estold=true,syncledger=true)

@com.bea.control.TibcoRV.UseCM(true)

public interface TibcoRV extends com.bea.control.TibcoRV {

public void addListenerForCM(String cmName, String subject);

static final long serialVersionUID = 1L;

public TibcoRV create();

}

Sample control File for a TIBCO Control Without Certified Messaging
package requestquote;

/*

 * An extended TibcoRV control.

 */

@org.apache.beehive.controls.api.bean.ControlExtension

@com.bea.control.TibcoRV.Transport(service = "7500", network = "beaserv1",

daemon = "beasever1:7500")

@com.bea.control.TibcoRV.CMTransport(cmname = "", ledgername = "",

requestold = false, syncledger = false)

@com.bea.control.TibcoRV.UseCM(false)
14-6 Using Integration Controls

Using Sub jec t in a Message
public interface TibcoRV extends com.bea.control.TibcoRV {

static final long serialVersionUID = 1L;

public TibcoRV create();

}

Using Subject in a Message
This section provides details on construction of a subject name. Each message in the TIBCO
Rendezvous environment contains a subject name. An application creates a message and sends
it with a subject through the Rendezvous environment. Applications at the other end accept the
message by listening on the subject.

Subject Name Syntax
Subject name definitions have basic restrictions, for example, its length, structure and usage of
special characters. System designers and developers can set the conventions for subject names
keeping in mind the following:

Structure — A subject is a string of characters that is divided into elements by the dot (.)
character.

Length — The maximum allocated length of a subject (including dot separators) is 255
characters, some of which is reserved for internal use by Rendezvous.

Special Characters —

– Avoid underscore (_) character at the beginning of the subject name, except if the first
element name is _INBOX or _LOCAL.

– Avoid the dot (.) character as part of an element as it is the reserved delimiter.

– Greater-than (>) and Asterisk (*) characters are reservoir wildcard characters.

Caution: The restrictions and conventions are implemented by TIBCO Rendezvous and
information in this section is indicative only. Refer TIBCO Rendezvous product
documentation for more up-to-date information on restrictions, guidelines and
examples.

http://www.tibco.com
Using Integration Controls 14-7

http://www.tibco.com

T IBCO Rendezvous Cont ro l
Sending and Receiving Messages
You can send and receive messages with TIBCO control using any one of sendMessage,
sendReply or sendRequest functions, and the TIBCO Event Generator, respectively. Messages
can be in the form of Rendezvous proprietary data format, string and XML.

Sending Messages
This section provides information on the various functions available for sending messages. To
send a message, select a function based on the data type of the message that you want to send. All
these functions can send reliable and certified messages, as defined while creating the control.
Certified message functions will return sequence numbers while reliable message functions will
return zero.

The sendRequest function creates a listener that keeps listening for messages to the reply
subject and hence, it does not require explicit creation of listeners. The function returns an
instance of the TibrvMsg, which can be used for sending replies.

The sendRequest and sendReply functions are often used together as pairs. An example of such
an implementation is:

replymsg = sendRequest(msg, "send.Subject","reply.Subject",5.0);
sendReply(replyMsg, newMsg);

sendMessage ()
Used to send a message via RVDTransport, or a labelled message via CMTransport.

public long sendMessage(TibrvMsg msg , String subject, double timeout)

msg: the message that needs to be sent
subject: subject of the message
timeout: time limit for delivery of the message

sendMessageAsString ()
Used to send a string message via RVDTransport, or a labelled string message via CMTransport.

public long sendMessageAsString(String msg , String fieldName ,String

subject, double timeout)

msg: the string message that needs to be sent
fieldName: name of the TibRV field used to send the payload
subject: subject of the message
timeout: time limit for delivery of the message
14-8 Using Integration Controls

Sending and Rece iv ing Messages
sendMessageAsXML ()
Used to send an XML message via RVDTransport, or a labelled XML message via CMTransport.

public long sendMessageAsXML(XmlObject msg ,String fieldName ,String

subject, double timeout)

msg: the XML message that needs to be sent
fieldName: name of the TibRV field used to send the payload
subject: subject of the message
timeout: time limit for delivery of the message

sendRequest ()
Used to send a request message via RVDTransport, or a labelled request message via
CMTransport and wait for a reply.

public TibrvMsg sendRequest(TibrvMsg msg, String sendSubject, double

timeout)

msg: the request message that needs to be sent
sendSubject: the send subject of the message
timeout: amount of time to wait for the reply

sendRequestAsString ()
Used to send a request string message via RVDTransport, or a labelled request string message via
CMTransport and wait for a reply.

public TibrvMsg sendRequestAsString(String msg, String fieldName, String

sendSubject, double timeout)

msg: the request string message that needs to be sent
fieldName: name of the TibRV field used to send the payload
sendSubject: subject of the message
timeout: amount of time to wait for the reply

sendRequestAsXML ()
Used to send a request XML message via RVDTransport, or a labelled request message via
CMTransport and wait for a reply.

public TibrvMsg sendRequestAsXML(XmlObject msg, String fieldName,String

sendSubject, double timeout)

msg: the request XML message that needs to be sent
fieldName: name of the TibRV field used to send the payload
Using Integration Controls 14-9

T IBCO Rendezvous Cont ro l
sendSubject: subject of the message
timeout: amount of time to wait for the reply

sendReply ()
Used to send a reply via RVDTransport, or a labelled reply via CMTransport.

public long sendReply(TibrvMsg replyMsg, TibrvMsg sendMsg, double timeout)

replyMsg: the reply message
sendMsg: the request message
timeout: time limit for delivery of the message

sendReplyAsString ()
Used to send a string type reply via RVDTransport, or a labelled string type reply via
CMTransport.

public long sendReplyAsString(TibrvMsg replyMsg, String sendMsg, String

fieldName, double timeout)

replyMsg: the reply string message
sendMsg: the request string message
fieldName: the name of the TibRV field used to send the payload
timeout: time limit for delivery of the message

sendReplyAsXML ()
Used to send an XML type reply via RVDTransport, or a labelled XML type reply via
CMTransport.

public long sendReplyAsXML(TibrvMsg replyMsg, XmlObject sendMsg, String

fieldName, double timeout)

replyMsg: the reply XML message
sendMsg: the request XML message
fieldName: the name of the TibRV field used to send the payload
timeout: time limit for delivery of the message

setStringEncoding ()
Used to set the character encoding for converting between Java Unicode strings and wire format
strings.

void setStringEncoding(java.lang.String encoding) throws

java.io.UnsupportedEncodingException;

encoding: determines encoding
14-10 Using Integration Controls

Sending and Rece iv ing Messages
Additional Functions for Certified Messaging
You can include the following two functions when using the CMTransport.

onCMMessageReceipt ()
Used to define a callback method to receive confirmation for message sent. It can only be used
with sendMessage or sendReply functions. TIBCO control subscribes to two confirmation
advisories: _RV.INFO.RVCM.DELIVERY.COMPLETE.> and
_RV.ERROR.RVCM.DELIVERY.FAILED.>.

Note: A TIBCO control with certified messaging enabled must have an onCMReceipt()
method implemented in the process definition. Without this, a runtime exception will be
thrown.

public void onCMMessageReceipt(byte[] data);

data: message data

addListenerForCM ()
Used to pre-register an anticipated listener. When a sending application pre-registers listeners,
Rendezvous will store all outbound messages in the sender’s ledger. So, when the listener
requests certified delivery, it receives the backlogged messages. This function is the same as the
addListener method in Rendezvous. Refer TIBCO Rendezvous product documentation for
more details.

void addListenerForCM(String cmName, String subject);

cmName: the certified message name
subject: subject of the message

Using the sendMessage Function In a Business Process
The following procedure in an example that describes how to add any TIBCO control
sendMessage function to a business process.

1. Open the Client Request node.

2. In the General Settings tab, enter a name for the new method.

3. Click Add, and select the Java check box in the pop-up dialog.

4. Select String from the Java Types list and enter a name for the variable in the Name field.

5. Click OK to add your selection to the Client Request node. This represents the message for
the sendMessage function.
Using Integration Controls 14-11

T IBCO Rendezvous Cont ro l
6. Repeat steps 3 to 5 above to add two more variables to the list. The new variables represent
the field name and the subject name of the sendMessage function.

7. In the Receive Data tab, create a new variable for each parameter that you created in the
General Settings tab of the Client Request node. You must provide variable names for all
the parameters. The variable type is pre-defined, based on the parameters to which you are
assigning the variable.

8. Close the Client Request node.

9. Drag and drop the Perform node from the Process Nodes Palette and convert the message
data from String to TibrvMsg format. See sample code below:

// Generating a Tibrv message from the string data format
public void perform() throws Exception
{
 com.tibco.tibrv.TibrvMsg tibrvMsg = new com.tibco.tibrv.TibrvMsg();
 tibrvMsg.update(TibcoField,TibcoMessage);
}

10. Drag and drop the sendMessage function from the Controls tab in the Data Palette into your
business process, just below the Client Request node.

11. Open the Send Data tab of the sendMessage function node. From the Select variables to
assign drop-down list, assign the variables that you created in the Receive Data tab of the
Client Request node, to the corresponding parameter of the sendMessage function listed in
the Control Expects column.

12. Open the Receive Data tab of the sendMessage function note. From the Select variables to
assign drop-down list, create a new variable in which to store the sequence number provided
by the sendMessage function.

You can use similar steps to send messages using the sendMessageAsString or the
sendMessageAsXML functions. Ignore step 9 above as these functions do not require conversion
to TibrvMsg format.

Receiving Messages
To receive messages, use the TIBCO Event Generator utility. For details, refer to TIBCO
Rendezvous Event Generator.
14-12 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tibcorv/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tibcorv/index.html

Set t ing Dynamic P roper t i es
Setting Dynamic Properties
You can change the TIBCO control properties dynamically at runtime. The TIBCO control
properties that you can modify are specified in the TibRVDynamicPropertiesDocument type
document. This document conforms to the TIBCO Control Dynamic Properties schema, which is
available in the jpdpublic.jar file located in BEA_Home\wli_10.3\lib.

The following is an example on how to change properties dynamically.

1. Open the Client Request node.

2. In the General Settings tab, add a variable of type TibRVDynamicPropertiesDocument.

3. In the Receive Data tab, create a new variable for the parameter that you previously created
in the General Settings tab by entering a name for the variable. The variable type is already
pre-defined based on the parameter to which you are assigning the variable.

4. Drag and drop the setXMLProperties function from the Controls tab of the Data Palette,
into your business process.

5. Open the Send Data tab of the setXMLProperties function node. From the Select variables
to assign drop-down list, assign the variable that you created in the Receive Data tab of the
Client Request node to the corresponding parameter of the setXMLProperties function
listed in the Control Expects column. All TIBCO Control send message operations
(following the setXMLProperties function in the business process) using the properties you
specified in the TibRVControlDynamicPropertiesDocument.

6. While executing your business process at runtime, provide the
TibRVControlDynamicPropertiesDocument as input.

Schema of TIBCO Control Dynamic Properties
<?xml version="1.0"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.bea.com/wli/control/TibRVControlDynamicProperties.xsd

"
targetNamespace="http://www.bea.com/wli/control/TibRVControlDynamicPropert

ies.xsd"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xs:element name="TibRVDynamicProperties">
Using Integration Controls 14-13

T IBCO Rendezvous Cont ro l
 <xs:complexType>
 <xs:sequence>
 <xs:element name="service" type="xs:string" minOccurs="0"

maxOccurs="1"/>
 <xs:element name="network" type="xs:string" minOccurs="0"

maxOccurs="1"/>
 <xs:element name="daemon" type="xs:string" minOccurs="0"

maxOccurs="1"/>
 <xs:element name="useCM" type="xs:boolean" minOccurs="0"

maxOccurs="1"/>
 <xs:element name="cmName" type="xs:string" minOccurs="0"

maxOccurs="1"/>
 <xs:element name="ledgerName" type="xs:string" minOccurs="0"

maxOccurs="1"/>
 <xs:element name="requestOld" type="xs:boolean" minOccurs="0"

maxOccurs="1"/>
 <xs:element name="syncLedger" type="xs:boolean" minOccurs="0"

maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Sample TIBCO Control Dynamic Properties Document
The following is a sample TIBCO Control document. You must provide this document at runtime
when you execute your business process:

<tib:TibRVDynamicProperties>
 <!--Optional:-->
 <tib:service>7500</tib:service>
 <!--Optional:-->
 <tib:network>beaserv1</tib:network>
 <!--Optional:-->
 <tib:daemon>beaserv1:7500</tib:daemon>
 <!--Optional:-->
 <tib:useCM>true</tib:useCM>
 <!--Optional:-->
 <tib:cmName>cmname.runtime</tib:cmName>
14-14 Using Integration Controls

Set t ing Dynamic P roper t i es
 <!--Optional:-->
 <tib:ledgerName>c:/file.txt</tib:ledgerName>
 <!--Optional:-->
 <tib:requestOld>false</tib:requestOld>
 <!--Optional:-->
 <tib:syncLedger>false</tib:syncLedger>
 </tib:TibRVDynamicProperties>
Using Integration Controls 14-15

T IBCO Rendezvous Cont ro l
14-16 Using Integration Controls

C H A P T E R 15
TPM Control
The TPM (trading partner management) control provides Oracle Workshop for WebLogic
business processes and web services with query (read-only) access to trading partner and service
information stored in the TPM repository.

All Oracle Workshop for WebLogic controls follow a consistent model. Many aspects of using
TPM controls are identical or similar to using other Oracle Workshop for WebLogic controls.

Topics Included in This Section
Overview: TPM Control

Describes the TPM control.

Creating a TPM Control
Describes how to create a TPM control.

Using a TPM Control
Describes how to use an existing TPM control from within a business process or web
service.

Example: TPM Control
Provides an example of how to use the TPM control.
Using Integration Controls 15-1

TPM Cont ro l
Related Topics
Introducing Trading Partner Integration

Trading Partner Management

Interface TPMControl

Overview: TPM Control
The TPM control allows Oracle Workshop for WebLogic business processes and web services to
obtain the following trading partner and service information stored in the TPM repository:

trading partner by name or business ID

default trading partner

basic and extended trading partner properties

default bindings (ebXML or RosettaNet)

services, service profiles, and service profile bindings (ebXML, RosettaNet, or web service
bindings)

Note: Access to the TPM repository is restricted to active trading partners and active profile
services only. To learn about activating trading partners and services, see the Oracle
WebLogic Integration Administration Console Online Help.

You use methods on the TPM control to retrieve information stored in the TPM repository. These
methods return XML documents that conform to the TPM schema associated with importing and
exporting trading partner data in the Oracle WebLogic Integration Administration Console and
the Bulk Loader command line utility.

The TPM control provides read-only access to the TPM repository. Therefore, you cannot use
TPM controls to modify trading partner and service information. Instead, you must use the Oracle
WebLogic Integration Administration Console to modify trading partner and service information.
To learn more about modifying the TPM repository, see Trading Partner Management in Using
the Oracle WebLogic Integration Administration Console.

TPM controls cannot initiate transactions. To learn more about transactions in business
processes, see Transaction Boundaries.

For initiator business processes that use RosettaNet or ebXML to exchange business messages,
you can retrieve certain information from the TPM repository—settings for process time-out,
15-2 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/TPMControl.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/tpm.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideTransaction.html

Creat ing a TPM Cont ro l
retry count, and retry interval—using methods on the RosettaNet or ebXML control instead of
the TPM control. To learn about these methods, see RosettaNet Control and ebXML Control.

Creating a TPM Control
This topic describes how to create a new TPM control.

To create a new TPM control

1. In the Package Explorer pane, double-click the business process (Process.java file) to which
you want to add the TPM control. The business process is displayed in the Design view.

2. Click on the Data Palette and from the drop-down list select Integration Controls to
display the list of controls used for integrating applications.

Note: If the Data Palette view is not visible in Oracle Workshop for WebLogic, click
Windows > Show View > Data Palette from the menu bar.

3. Select TPM.

The Insert control: TPM dialog box appears (see Figure 15-1).

Figure 15-1 Insert control:TPM

4. In the Insert control: TPM dialog box enter the following details:

– In the Field Name, type the variable name used to access the new TPM control
instance from your business process. The name you enter must be a valid Java
identifier.

– In the Insertion point: from the drop-down list select the insertion node, you want to
add the control.
Using Integration Controls 15-3

TPM Cont ro l
– Decide whether you want to make this a control factory and select or clear the Make
this a control factory that can create multiple instances at runtime check box.

– Click Finish.

A TPM control instance is displayed in the Controls tab.

Using a TPM Control
After you have added a TPM control to a business process or web service, you can use methods
on the control to retrieve information in the TPM repository. For a description of the methods
available in the TPM control interface, see the Interface TPM Control.

To use methods in a TPM control

1. Verify that your application contains a schema project that includes the TPM.xsd file, and that
the schema is already built.

2. In the Design view, expand the node for the TPM control in the Data Palette to expose its
methods.

3. Drag and drop any methods you want onto the business process.

Each method you add becomes a Control Send with Return node, which will perform a
synchronous query request on the TPM repository.

4. Extract the values you want by creating a query (in the XQuery language) using the mapper
functionality of Oracle Workshop for WebLogic. To learn about creating queries with the
mapper functionality, see Transforming Data Using XQuery Mapper.

Example: TPM Control
For an example of how to use the TPM Control, see “Step 7: Using the TPM Control and
Callbacks” in Tutorial: Building ebXML Solutions.
15-4 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/dtguide/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/tptutorial/ebxml.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/TPMControl.html

Example : TPM Cont ro l
Using Integration Controls 15-5

TPM Cont ro l
15-6 Using Integration Controls

C H A P T E R 16
WLI JMS Control
JMS (Java Message Service) is a Java API for communicating with messaging systems.
Messaging systems are often packaged as products known as Message-Oriented Middleware
(MOMs). Oracle WebLogic Server includes built in messaging capabilities via Oracle WebLogic
JMS, but can also work with third-party MOMs. Messaging systems are often used in enterprise
applications to communicate with legacy systems, or for communication between business
components running in different environments or on different hosts.

The WLI JMS control enables Oracle Workshop for WebLogic business processes to easily
interact with messaging systems that provide a JMS implementation. A specific WLI JMS control
is associated with particular facilities of the messaging system. Once a WLI JMS control is
defined, business processes may use it like any other Oracle Workshop for WebLogic control.

The WLI JMS control provides additional features such as RawData message type support,
dynamic property configuration, and the ability to control whether to start a new transaction or
remain within the calling transaction. You can use the JMS Event Generator to poll for and
consume messages produced by the WLI JMS control.

For information on how to add control instances to business processes, see Using Controls in
Business Processes.

Topics Included in This Section
Overview: Messaging Systems and JMS

Describes messaging services in general and the Java Message Service in particular
Using Integration Controls 16-1

WLI JMS Cont ro l
Messaging Scenarios Supported by the WLI JMS Control
Describes appropriate scenarios in which the WLI JMS control may be used.

Messaging Scenarios Not Supported by the WLI JMS Control
Describes scenarios in which the WLI JMS control may not be used.

Creating a WLI JMS Control
Describes how to create and configure a WLI JMS control.

Overview: Messaging Systems and JMS
This topic describes the characteristics of messaging systems that are accessible via JMS (Java
Message Service), and therefore via the WLI JMS control.

To learn about the WLI JMS control, see WLI JMS Control.

To learn about specific messaging scenarios that are supported by the WLI JMS control, see
Messaging Scenarios Supported by the WLI JMS Control.

Messaging Systems
Messaging systems provide communication between software components. A client of a
messaging system can send messages to, and receive messages from, any other client. Each client
connects to a messaging server that provides facilities for sending and receiving messages. Oracle
WebLogic JMS, which is a component of Oracle WebLogic Server is an example of a messaging
server. Oracle WebLogic Server also supports third party messaging systems.

Messaging systems provide distributed communication that is asynchronous. A component sends
a message to a destination. A message recipient can retrieve messages from a destination. The
sender and receiver do not communicate directly. The sender only knows that a destination exists
to which it can send messages, and the receiver also knows there is a destination from which it
can receive messages. As long as they agree what message format and what destination to use,
the messaging system will manage the actual message delivery.

Messaging systems also may provide reliability. The specific level of reliability is typically
configurable on a per-destination or per-client basis, but messaging systems are capable of
guaranteeing that a message will be delivered, and that it will be delivered to each intended
recipient exactly once.

JMS supports two basic styles of message-based communications: point-to-point and publish and
subscribe.
16-2 Using Integration Controls

Overv i ew: Messag ing Sys tems and JMS
JMS Queues for Point-to-Point Messaging
Point-to-point messaging is accomplished with JMS queues. A queue is a specific named
resource that is configured in a JMS server.

A JMS client, of which the WLI JMS control is an example, may send messages to a queue or
receive messages from a queue. Point-to-point messages have a single consumer. Multiple
receivers may listen for messages on the same queue, but once any receiver retrieves a particular
message from the queue that message is consumed and is no longer available to other potential
consumers.

A message consumer acknowledges receipt of every message it receives.

The messaging system will continue attempting to resend a particular message until a
predetermined number of retries have been attempted.

JMS Topics for Publish and Subscribe Messaging
Publish and subscribe messaging is accomplished with JMS topics. A topic is a specific named
resource that is configured in a JMS server.

A JMS client, of which the WLI JMS control is an example, may publish messages to a topic or
subscribe to a topic. Published messages have multiple potential subscribers. All current
subscribers to a topic receive all messages published to that topic after the subscription becomes
active.

Connection Factories
Before a JMS client can send or receive messages to a queue or topic, it must obtain a connection
to the messaging system. This is accomplished via a connection factory. A connection factory is
a resource that is configured by the message server administrator. The names of connection
factories are stored in a JNDI directory for lookup by clients wishing to make a connection.

There is a default connection factory pre-configured in Oracle Workshop for WebLogic, named
cgConnectionFactory. This connection factory is used for all WLI JMS controls that do not
explicitly override it. If you use a connection factory other than the default connection factory,
the factory must have the following setting:

userTransactionsEnabled="true"
Using Integration Controls 16-3

WLI JMS Cont ro l
Message Components
The components of a JMS message are as follows: a set of standard header fields, a set of
application-specific properties, and a message body. Every JMS message contains a standard set
of header fields that is included by default and available to message consumers. Some fields can
be set by the message producers. The property fields of a message contain header fields added by
the sending application. The properties are standard Java name/value pairs. A message body
contains the content being delivered from producer to consumer. You can manipulate the content
of these components using the following annotations:

JMSHeader Annotation

JMSProperty Annotation

Messaging Scenarios Supported by the WLI JMS Control
This topic describes specific messaging scenarios that are supported by the WLI JMS control.

To learn more about JMS, the Java Message Service, see Overview: Messaging Systems and
JMS.

To learn more about the WLI JMS control, see WLI JMS Control.

Supported Messaging Scenarios
The JMS specification supports a wide variety of messaging scenarios. Some scenarios that are
possible in standalone applications are not possible in the Oracle Workshop for WebLogic
environment due to the nature of web services.

The messaging scenarios in the following sections are supported by the WLI JMS control. For
descriptions of messaging scenarios that are not supported by the WLI JMS control, see
Messaging Scenarios Not Supported by the WLI JMS Control.

Send Messages to a Queue
A business process, via a WLI JMS control, may send messages to a JMS queue. The business
process will not receive a reply. The queue must exist and be registered in the JNDI registry. The
administrator who configures the target JMS queue determines the delivery guarantee policies.

To implement this example scenario:

1. On the WLI JMS control, specify the name of the target JMS queue as the value of the
send-jndi-name attribute of the WLI JMS control's
16-4 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/wli/control/jms/JMSHeader.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/wli/control/jms/JMSProperty.html

Messaging Scenar ios Suppor ted by the WL I JMS Cont ro l
@com.bea.control.JMSControl.JMS annotation. Also, specify the sendtype attribute as
queue. To learn how to create a WLI JMS control, see Creating a WLI JMS Control.

2. From your web service, call the WLI JMS control's default method depending on the message
type selected when the control was created, or call a custom method you have defined for the
WLI JMS control. The default method by message type is as follows:

Two-Way Messaging with Queues
A business process, via a WLI JMS control, may send messages to one queue and receive reply
messages on another queue. A single WLI JMS control may have both send and receive queues
configured, and business processes may then send and receive via the same control.

Note: Two-way messaging requires correlation of every received messages with the instance of
the business process that sent the original outgoing message. The WLI JMS control
ensures that the conversation ID of the sender is sent on the
send_correlation_property of the outgoing message. To learn more about message
correlation, see the explanation of the send-correlation-property and
receive-correlation-property attributes in JMSControl.JMS Annotation.

To implement this example scenario:

1. On the WLI JMS control, specify the name of the JMS queue to which you want to send
messages as the value of the send-jndi-name attribute of the JMS control's @ annotation.
Also, specify the send-type attribute as queue.

2. Specify the name of the JMS queue from which you want to receive messages as the value of
the receive-jndi-name attribute of the WLI JMS control's
@com.bea.control.JMSControl.JMS annotations. Also, specify the receivetype
attribute as queue.

Table 16-1 Message Type

Message Type Default Method

Text/XMLBean sendTextMessage

Object sendObjectMessage

Raw Data sendBytesMessage

JMS Message sendRawMessage
Using Integration Controls 16-5

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/JMSControl.JMS.html

WLI JMS Cont ro l
3. From your web service, call the WLI JMS control's default method depending on the message
type selected when the control was created, or call a custom method you have defined for the
WLI JMS control. The default method by message type is as follows:

4. To be notified when messages are received on the receive queue, implement a callback
handler for the WLI JMS control’s callback (receiveTextMessage,
receiveBytesMessage, receiveObjectMessage or receiveRawMessage depending on
the message type selected when the control was created); or a custom callback you have
defined for the WLI JMS control.

Publish to a Topic
A business process, via a WLI JMS control, may publish messages to a JMS topic. The business
process will not receive a reply. The topic must exist and be registered in the JNDI registry.

To implement this example scenario:

1. On the WLI JMS control, specify the name of the target JMS topic as the value of the
send-jndi-name attribute of the WLI JMS control's
@com.bea.control.JMSControl.JMS annotation. Also, specify the sendtype attribute as
topic.

2. From your business process, call the WLI JMS control's default method (sendTextMessage,
sendBytesMessage, sendObjectMessage or sendRawMessage depending on the message
type selected when the control was created); or a custom method you have defined for the
WLI JMS control.

Table 16-2 Message Type (Two-Way Messaging)

Message Type Default Method

Text/XMLBean sendTextMessage

Object sendObjectMessage

Raw Data sendBytesMessage

JMS Message sendRawMessage
16-6 Using Integration Controls

Messaging Scenar ios No t Suppor ted by the WL I JMS Cont ro l
Subscribe to a Topic
A business process, via a WLI JMS control, may subscribe to messages on a JMS topic. The topic
must exist and be registered in the JNDI registry. Only messages sent after the business process
has subscribed to the topic will be received.

To implement this example scenario:

1. On the WLI JMS control, specify the name of the target JMS topic as the value of the
receivejndiname attribute of the WLI JMS control's
@com.bea.control.JMSControl.JMS annotation. Also, specify the receivetype
attribute as topic.

2. From your business process, call the WLI JMS control's subscribe method.

3. To be notified when messages are received on the receive topic, implement a callback handler
for the WLI JMS control’s callback (receiveTextMessage, receiveBytesMessage,
receiveObjectMessage or receiveRawMessage depending on the message type selected
when the control was created); or a custom callback you have defined for the WLI JMS
control.

4. To stop being notified when messages are received on the receive topic, call the WLI JMS
control’s unsubscribe method.

Messaging Scenarios Not Supported by the WLI JMS
Control

This topic describes specific messaging scenarios that are not supported by the WLI JMS control.

To learn more about the WLI JMS control, see WLI JMS Control.

Unsupported Scenarios
The JMS specification supports a wide variety of messaging scenarios. Some scenarios that are
possible in standalone applications are not possible in the Oracle Workshop for WebLogic
environment due to the nature of web services.

The messaging scenarios in the following section are not supported by the WLI JMS control. For
descriptions of messaging scenarios that are supported by the WLI JMS control, see Messaging
Scenarios Supported by the WLI JMS Control.
Using Integration Controls 16-7

WLI JMS Cont ro l
Receive Unsolicited Messages from a Queue
A business process may not, via a WLI JMS control, specify a receive queue and subsequently
receive unsolicited messages from that queue.

A business process must be performing work on behalf of a specific client and, in asynchronous
situations, as part of a specific conversation. When an unsolicited messages is received from a
queue, it is not possible for the WLI JMS control to determine the appropriate conversation or
client with which to correlate unsolicited incoming messages.

Note: You may receive unsolicited messages in a business process via the JMS Event Generator
and the Message Broker capabilities. To learn how to use the Message Broker controls
and the JMS Event Generator, see Message Broker Controls.

Creating a WLI JMS Control
This topic describes how to create a new WLI JMS control.

To learn about WLI JMS controls, see WLI JMS Control.

Creating a New WLI JMS Control
You can create a new WLI JMS control and add it to your business process. To define a new WLI
JMS control:

1. In the Package Explorer pane, double-click the business process (Process.java file) to which
you want to add the WLI JMS control. The business process is displayed in the Design view.

2. Click on the Data Palette and from the drop-down list choose Integration Controls to
display the list of controls used for integrating applications.

Note: If the Data Palette view is not visible in Oracle Workshop for WebLogic, click
Window > Show View > Data Palette from the menu bar.

3. Select WLI JMS.

The Insert control: WLI JMS dialog box appears (see Figure 16-1).
16-8 Using Integration Controls

Creat ing a WL I JMS Cont ro l
Figure 16-1 Insert Control: WLI JMS

4. In the Insert control: WLI JMS dialog box enter the following details:

– In the Field Name, type the variable name used to access the new WLI JMS control
instance from your business process. The name you enter must be a valid Java
identifier.

– In the Insertion point: from the drop-down list select the point where you want the
field name to be inserted in the process file.

– Decide whether you want to make this a control factory and select or clear the Make
this a control factory that can create multiple instances at runtime check box.

– Click Next.

The Create Control dialog-box appears.

5. In the Create Control dialog box enter the following details:

– In the Name field, type the name of your new control extension file.

– Decide whether you want to add comments as configured in the properties of the
current project and select or clear the Generate comments check box.

– Click Next.

The Insert control- JMS dialog-box appears (see Figure 16-2).
Using Integration Controls 16-9

WLI JMS Cont ro l
Figure 16-2 Insert Control - JMS

6. In the Insert control- JMS dialog box enter the following details:

– In the Message type drop-down list, select the type of message you want to process.
For more information about the types of messages, see Specifying the Format of The
Message Body.

– In the JMS send destination type drop-down list, select either Queue or Topic,
depending on the kind of messaging service you will be connecting to. For more
information about messaging services, see Overview: Messaging Systems and JMS.

– In the Name of Queue on which to send message field, type the name of the queue or
topic that will send messages. If you do not know the name, click Browse and choose
from the available list. You must specify the name of the send queue if the control is to
be used to send messages.

– In the JMS receive destination type drop-down list, select either Queue or Topic,
depending on the kind of messaging service you will be connecting to. For more
information about messaging services, see Overview: Messaging Systems and JMS.

– In the Name of queue on which to receive messages field, type the name of the queue
or topic that will receive messages. If you do not know the name, click Browse and
choose from the available list. You must specify the name of the receive queue if the
control is to be used to receive messages.
16-10 Using Integration Controls

Creat ing a WL I JMS Cont ro l
– In the connection-factory to create connections to the queue field, type the name of
the connection factory to create connections to the queue or topic. If you do not know
the name, click Browse and choose from the available list.

– Click Finish.

WLI JMS Control Methods
To learn about the methods available on the WLI JMS control, see the Interface WliJMSControl.

The Java File for a WLI JMS Control
When you create a new WLI JMS control, you create a new Java file in your project. The
following is an example Java file:

package requestquote;

@org.apache.beehive.controls.api.bean.ControlExtension

@com.bea.control.JMSControl.JMS(sendtype =

com.bea.control.JMSControl.Type.queue, sendjndiname = "l", receivetype =

com.bea.control.JMSControl.Type.queue, receivejndiname = "l",

connectionfactoryjndiname = "o")

public interface WLIJMSCntrl extends com.bea.control.WliJMSControl {

/**

 * this method will send a javax.jms.TextMessage to sendJndiName

 */

public void sendTextMessage(String payload);

/**

 * If your control specifies receiveJndiName, that is your JWS

expects to receive

 * messages from this control, you will need to implement callback

handlers.

 */

@org.apache.beehive.controls.api.events.EventSet(unicast = true)
Using Integration Controls 16-11

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/WliJMSControl.html

WLI JMS Cont ro l
interface Callback extends com.bea.control.WliJMSControl.Callback {

/**

 * Define only 1 callback method here.

 *

 * This method defines a callback that can handle text

messages from receiveJndiName

 */

public void receiveTextMessage(String payload);

}

static final long serialVersionUID = 1L;

public WLIJMSCntrl create();

}

The Java file contains the declaration of a Java interface with the name specified in the dialog.
The interface extends the control base interface. Invoking any method in the Java interface, other
than the callback, results in a JMS message being sent to the specified queue or topic.

The contents of the WLI JMS control's Java file depend on the selections made in the Insert WLI
JMS dialog. The example above was generated in response to selection of Text/XML Bean as
the Message type drop-down list.

Configuring the Properties of a JMS Control
Most aspects of a WLI JMS control can be configured from the JPD Configuration pane in Design
view. These properties are encoded in the JMS control's Java file as attributes of the
@com.bea.control.JMSControl.JMS annotations. To retrieve current parameter settings, use
the getControlProperties() method (this is a different method from the getProperties()
method on the base JMS control which is used to get the JMS properties of the last message
received.)
16-12 Using Integration Controls

Creat ing a WL I JMS Cont ro l
For more information about the JMSControl:JMS annotation and its attributes, see
JMSControl:JMS Annotation.

Two queues are configured when Oracle Workshop for WebLogic is installed, in order to support
WLI JMS control samples. These are named SimpleJmsQ and CustomJmsCtlQ. The connection
factory that provides connections to these queues has the JNDI name
weblogic.jws.jms.QueueConnectionFactory. These resources may be used for
experimentation.

Note: Every WLI JMS control deployed on a server should listen on a unique queue. If multiple
WLI JMS controls on the same server are simultaneously listening on the same queue,
the results may be unpredictable, for more information see “WLI JMS Control Caveats”.

Specifying the Format of The Message Body
Within a WLI JMS control, you may define multiple methods and one callback. All methods will
send or publish to the queue or topic named by send-jndi-name, if present.

JMS defines several message types that may be sent and or published. The WLI JMS control can
send the JMS message types TextMessage, ObjectMessage, BytesMessage, and JMSMessage.
The WLI JMS control dynamically determines which type of message to send based on the
configuration of the WLI JMS control method that was called. XML Object and XML typed
variables use the text/XMLBean message type.

Note: You can send or receive any message type through send and receive methods that take a
javax.jms.Message argument. (All message types extend javax.jms.Message.) To
send an ObjectMessage, for example, call myControl.getSession() to get the JMS
session, then call session.createObjectMessage(), and then send the message.

If the WLI JMS control method takes a single String or XMLObject argument, a
javax.jms.TextMessage is sent.

If the WLI JMS control method takes a single argument of type java.lang.Object, a
javax.jms.ObjectMessage is sent.

If the WLI JMS control method takes a single argument of type javax.jms.BytesMessage, a
javax.jms.BytesMessage is sent.

If the WLI JMS control method takes a single argument of type javax.jms.Message, a JMS
Message object is sent directly.
Using Integration Controls 16-13

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/JMSControl.JMS.html

WLI JMS Cont ro l
Specifying Message Headers and Properties
To edit the parameter list controlling the message headers and message properties, display the
control in the Design view, select a method, and edit the parameters using the JPD Configuration
pane. You can set parameters programatically using the setProperties() method. To display
current parameter settings, use the getControlProperties() method.

You can send additional properties using key-values pairs, using the annotation
@com.bea.control.JMSControl.JMS -property for each pair. You can also edit the
parameters directly in the Source view.

Accessing Remote JMS Resources
The JNDI names specified for send-jndi-name, receive-jndi-name and
connection-factory may refer to remote JMS resources. The fully specified form of a JMS
resource names is:

jms:{provider-host}/{factory-resource}/
{dest-resource}?{provider-parameters}

For example:

jms://host:7001/cg.jms.QueueConnectionFactory/
jws.MyQueue?URI=/drt/Bank.jws

or:

jms://host:7001/MyProviderConnFactory/
MyQueue?SECURITY_PRINCIPAL=foo&SECURITY_CREDENTIALS=bar

WLI JMS Control Caveats
Bear in mind the following caveats when you work with WLI JMS controls:

If you have multiple web services (multiple types, not instances) that reference the same
receive-jndi-name for a queue, you must use the receive-selector attribute such
that the web services partition all received messages into disjoint sets. If this is not handled
properly, messages for a particular conversation may be sent to a control instance that does
not participate in that conversation. Note that if you rename a web service that uses a JMS
control without undeploying the initial version, the initial version and the new version will
be using an identically configured WLI JMS control and will violate this caveat.
16-14 Using Integration Controls

Creat ing a WL I JMS Cont ro l
You may have only one callback defined for any WLI JMS control instance
(receiveTextMessage, receiveBytesMessage, receiveObjectMessage or
receiveJMSMesage, or a developer-defined callback).

Note the difference between the getControlProperties() method used to get WLI JMS
control properties and the getProperties() method on the base JMS control which is
used to get the JMS properties of the last message received.

If the underlying WLI JMS control infrastructure receives a message that it cannot deliver
to a control instance (e.g. no conversation ID for a control that listens to a queue), it will
throw an exception from the JMSControl.onMessage method. This will cause the current
transaction to be rolled back. The behavior after that depends on how the administrator set
up the JMS destination. Ideally, it should be set up to have a small retry count and an error
destination.

Note: If the destination is configured with a large (or no) retry count and no error destination,
the WLI JMS control infrastructure will continue attempting to process the the message
(unsuccessfully) forever. For information on setting the redelivery limit, see “
Programming Oracle WebLogic JMS”.
Using Integration Controls 16-15

http://download.oracle.com/docs/cd/E12840_01/wls/docs103/jms/index.html

WLI JMS Cont ro l
16-16 Using Integration Controls

C H A P T E R 17
Worklist Controls
Oracle WebLogic Integration Worklist provides the capability to direct the flow of work and
manage the routing of tasks to the people in an enterprise. Integral to the flow of work are actions
such as receiving, approving, modifying, and routing documents. The documents that accompany
work activities provide the information necessary for people to perform and complete tasks. The
Worklist enables people to collaborate in business processes including assigning tasks, tracking
the status of tasks, handling approvals, and other activities required to manage workflow.

To support the Worklist functionality, Oracle WebLogic Integration provides two controls in
Oracle Workshop for WebLogic, the Task control and the Task Batch control. These controls
expose Java interfaces that can be invoked directly from your business processes. The Task
control enables a business process to create a single Task instance, manage its state and data, and
provide callback methods that report status. The Task Worker control allows specified users to
acquire ownership of Tasks, work on them, and complete them. It also provides administrative
privileges, such as starting, stopping, deleting, and assigning. Access to the Task Worker control
can be done with a business process or through a user interface (UI).

Topics Included in This Section
Overview: Worklist Controls

Describes what Tasks are and provides an overview of the Worklist controls.
Using Integration Controls 17-1

Work l i s t Cont ro l s
Creating a New Task Control
Describes how to create a new Task control using the Oracle Workshop for WebLogic
graphical design interface.

Creating a New Task Batch Control
Describes how to create a new Task Worker control using the Oracle Workshop for
WebLogic graphical design interface.

Using Task and Task Batch Controls in Business Processes
Provides information about using the Worklist controls in business processes.

Example: Task Control
Provides a link to the Tutorial: Building a Worklist Application, which shows an example
of using a Task Control.

Related Topics
Interface TaskControl

Interface TaskWorkerControl

Control Annotations

Using the Worklist

Tutorial: Building a Worklist Application

Overview: Worklist Controls
Worklist controls enable the automated manipulation, creation, and management of Tasks. A
Task instance represents a unit of work that requires completion within a certain time period.
After the work is completed, you can use a Task instance to represent a detailed record of that
unit of work.

A Task instance is a particular object in the run-time Worklist system that represents a work
assignment in the real world. Task instances are part of the Oracle WebLogic Integration server
and exist independently of any controls or business processes. Multiple business processes can
interact with a Task throughout its lifecycle concurrently. Tasks remain in the run time
indefinitely, either until they are explicitly deleted or purged by the Oracle WebLogic Integration
purging process. You can create, delete, and manage Tasks through the following mechanisms:

The Task and Task Batch controls in Oracle Workshop for WebLogic

The Worklist area of the Oracle WebLogic Integration Administration Console
17-2 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/worklist.javadoc/com/bea/control/TaskControl.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/worklist.javadoc/com/bea/control/TaskWorkerControl.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/worklist.javadoc/com/bea/control/package-frame.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/worklisttutorial/index.html

Ove rv iew: Wo rk l i s t Cont ro ls
The public Worklist API, using Enterprise Java Beans, and Message Beans

Task instances, or simply Tasks, offer a variety of properties that describe the work to be done
and the state of the work. Task instance properties can describe the following:

Tasks have the following characteristics, qualities and behaviors that can be defined, configured
or used:

The following Worklist controls are provided for building a Worklist system with Oracle
WebLogic Integration:

Table 17-1 Task Instance Properties

Property Description

Assignees List The list of users and groups that have permission to claim the
task and work on it.

Completion Due Date The date the work is due.

Task Owner The user who manages the process of getting the work done.

Claimant The user who has claimed the Task and completes the work.

Request and response
documents

The records that describe the work to be done and the results.

Table 17-2 Task Characteristics

Characteristics Description

Task Due Dates Due dates can be set to track how long it should take for a Task
to get claimed by a user or for the claimant to actually complete
the task. Due dates can be set with actual dates, or using business
time with a business calendar.

Task States States can describe such things as whether a Task is complete,
started, or aborted.

Task Operations Tasks depend on users to invoke operations that make changes
to properties and states. For example, an operation could
indicate that a Task is complete or to assign a Task to a new user.
Using Integration Controls 17-3

Work l i s t Cont ro l s
Task Control—creates a single Task instance, manages its state and data, and provides
callback methods to report status of the Task. Each Task control operates on a single active
Task instance.

Task Batch Control—assumes ownership of Tasks, works on them, completes them, and
provides administrative privileges—starting, stopping, deleting, and assigning, among
other functions. Task Worker controls allow operations upon several Task instances at the
same time.

Worklist controls are extensible. Common extensions include implementing callback functions
and performing system queries. Extensibility is provided by Java annotations.

Creating a New Task Control
An instance of a Task control can create a single task instance. If multiple tasks need to be
created, use a factory type of Task control. See “Using Task Control Factories” in Advanced
Topics in Using the Worklist Tutorial.

A Task control instance can also interact with a task instance that already exists by setting its
active task ID. After creating or setting the active task ID, your control instance can get
information about that task or update that task in various ways.

You can customize Task controls for different business purposes, by adding new operations or
callbacks, or by altering the signatures of existing operations or callbacks.

To create a new Task control

1. Open your Oracle WebLogic Integration application in Oracle Workshop for WebLogic.

2. In the Package Explorer pane, double-click the business process (Process.java file) to which
you want to add the logic to integrate business users using the Worklist system. The business
process is displayed in the Design view.

3. Click on the Data Palette and from the drop-down list choose Integration Controls to
display the list of controls used for integrating applications.

Note: If the Data Palette view is not visible in Oracle Workshop for WebLogic, click
Window > Show View > Data Palette from the menu bar.

4. Select Task.

The Insert control: Task dialog box appears (see Figure 17-1).
17-4 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/worklisttutorial/customuipf.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/worklisttutorial/customuipf.html

Creat ing a New Task Cont ro l
Figure 17-1 Insert Control:Task

5. In the Insert control: Task dialog box enter the following details:

– In the Field Name, type the variable name used to access the new Task control instance
from your business process. The name you enter must be a valid Java identifier.

– In the Insertion point: from the drop-down list select the point where you want the field
name to be inserted in the process file.

– Choose whether you want to make this a control factory by selecting or clearing the
Make this a control factory that can create multiple instances at runtime check
box.

– Click Next.

The Create Control dialog-box appears.

6. In the Create Control dialog box enter the following details:

– In the Name field, type the name of your new control extension file.

– Click Next.

The Insert control- Task dialog-box appears.

7. In the Insert control- Task dialog box enter the following details:

– Enter a filename for the Task control in the Task Plan field, by clicking Browse to find
the Java file in your file system and click OK.

– Click Finish.
Using Integration Controls 17-5

Work l i s t Cont ro l s
A new Task control and an instance of it are created and the Insert Control dialog box
is closed.

A new Java file is created and displayed in the Package Explorer pane in Oracle
Workshop for WebLogic. (You can double-click any Java file to view or edit it in the
Design or Source view.) The instance of the control is displayed on the Controls tab of the
Data Palette.

8. To display the base methods provided on a Task control, expand the control instance by
clicking the + beside its name on the Data Palette.

9. After you create an instance of the Task control in your business process, you can design the
interaction of the business process with the Task control by simply dragging and dropping the
Task control methods from the Data Palette onto the Design view at the point in your business
process at which you want to design the interaction.

For examples of designing interactions between a business process and an instance of a
Task control, see Using Task and Task Batch Controls in Business Processes.

10. After you create a Task control in your business process, you can view and edit the properties
of the control type or the instance of that control type in the JPD Configuration pane. The
control type is represented as a java file in the Package Explorer pane and the instance is
represented in the Data Palette.

Task Instances have data values associated with them, many of which are set when the task
is created. You can use the JPD Configuration pane on a Task control to set the default
values for some of these data values. These values are used whenever that control instance
creates a new task. Note that the properties set on a factory type Task control propagate to
any Task control instances created from that factory.

Note: To learn how to use the JPD Configuration and Properties pane for specifying
properties for control types versus control instances, see Interacting With Resources
Using Controls.

Creating a New Task Batch Control
The Task Worker control allows specified users to acquire ownership of Tasks, work on them,
and complete them. It also provides administrative privileges, such as starting, stopping, deleting,
and assigning. Access to the Task Worker control can be done with a business process or through
a user interface (UI). You can customize each Task worker control for different business
purposes.

This topic describes how to create a new Task Worker control. Task Worker controls do not have
any properties to configure.
17-6 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideControlsProperties.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/bpguideControlsProperties.html

Creat ing a New Task Batch Cont ro l
1. In the Package Explorer pane, double-click the business process (Process.java file) to which
you want to add the logic to integrate business users using the Worklist system. The business
process is displayed in the Design view.

2. Click on the Data Palette and from the drop-down list choose Integration Controls to
display the list of controls used for integrating applications.

Note: If the Data Palette view is not visible in Oracle Workshop for WebLogic, click
Window > Show View > Data Palette from the menu bar.

3. Select Task Batch.

The Insert control: Task Batch dialog box appears.

4. In the Insert control: Task Batch dialog box enter the following details:

– In the Field Name, type the variable name used to access the new Task Batch control
instance from your business process. The name you enter must be a valid Java
identifier.

– In the Insertion point: from the drop-down list select the insertion node, you want to
add the control.

– Decide whether you want to make this a control factory and select or clear the Make
this a control factory that can create multiple instances at runtime check box.

– Click Next.

The Create Control dialog-box appears.

5. In the Create Control dialog box enter the following details:

– In the Name field, type the name of your new control extension file.

– Decide whether you want to add comments as configured in the properties of the
current project and select or clear the Generate comments check box.

– Click Next.

The Insert control: Task Batch dialog-box appears.

6. In the Insert control: Task Batch dialog box, select the Task Plan.

7. Click Finish.

When you click finish, the control java file is displayed in the Package Explorer pane. In
both Design and Source view, you can double-click any control java file to view or edit it.
The instance of the control is displayed on the Controls tab of the Data Palette.
Using Integration Controls 17-7

Work l i s t Cont ro l s
8. To display the base methods provided for the control instance, click the + beside its name on
the Data Palette. The following figure shows an example of a Task Worker control instance
displayed on the Controls tab in the Data Palette.

9. After you create an instance of the Task control in your business process, you can design the
interaction of the business process with the Task control by simply dragging and dropping the
Task control methods from the Data Palette onto the Design view at the point in your business
process at which you want to design the interaction.

For examples of designing interactions between a business process and an instance of a
Task control, see Using Task and Task Batch Controls in Business Processes.

Using Task and Task Batch Controls in Business
Processes

Before you begin working with the Task and Task Batch controls, you should be familiar with
the features and components of the Worklist. To learn more about the Worklist, see Using the
Worklist.

To design the interaction of a Task or Task Worker control with a business process, you must
decide which methods on the control you want to call from the business process to support the
business logic.

In the same way that you design the interactions between business processes and other controls
in the Oracle Workshop for WebLogic, you can bind the Worklist control method to the
appropriate control node in your business process (Control Send, Control Receive, and Control
Send with Return). You do this in the Design view by simply dragging a control method from
the Data Palette onto the business process at the point in your business process at which you want
to design the logic.

When you create task control, out of user properties like Integer and Float in the task plan, the
user properties argument become long and double instead of Integer and Float, this
change in input will not lead to data loss.

Example: Task Control
To see an example of using a Task control in a business process, see Tutorial: Building a Worklist
Application.
17-8 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/worklist/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/worklist/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/worklisttutorial/index.html
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/worklisttutorial/index.html

Example : Task Cont ro l
Using Integration Controls 17-9

Work l i s t Cont ro l s
17-10 Using Integration Controls

C H A P T E R 18
WLI Timer Control
A Timer Control notifies your application, when a specified period of time has elapsed or when
a specific absolute time has been reached.

Topics Included in this Section
Overview: WLI Timer Control

Provides a brief introduction to creating and configuring WLI Timer controls.

Creating a WLI Timer Control
Describes how to create and configure a WLI Timer control.

Using a WLI Timer Control
Explains how to configure a Timer control you've already created.

Specifying Time on a WLI Timer Control
Explains how to specify relative and absolute time when setting the attributes of a WLI
Timer control.

Overview: WLI Timer Control
Some transactions and events require a certain amount of time to complete. Others can run
indefinitely if not aborted, and eat up resources. Still others must occur at a specific time. The
Using Integration Controls 18-1

WLI T imer Cont ro l
Timer control provides the developer with a way to respond from code when a specified interval
of time has elapsed or when a specified absolute time has been reached.

Creating a WLI Timer Control
This topic describes how to create a WLI Timer control.

To create a WLI Timer control:

1. In the Package Explorer pane, double-click the business process to which you want to add
the WLI Timer control. The business process is displayed in the Design view.

2. Click on the Data Palette and from the drop-down list choose Integration Controls to
display the list of controls used for integrating applications.

Note: If the Data Palette view is not visible in Oracle Workshop for WebLogic, click
Window > Show View > Data Palette from the menu bar.

3. Select WLI Timer.

The WLI Timer control is created and appears in the Data Palette.

Using a WLI Timer Control
A Timer control notifies your application when a specified period of time has elapsed or when a
specified absolute time has been reached. For example, you can use a Timer control to run a
process at certain intervals throughout the day, or to cancel an operation that is taking too long.

The following sections describe how to configure the Timer control.

Setting Default Timer Control Behavior
You can specify the behavior of a Timer control in Design view by setting the control's timeout
and repeatsEvery properties in the Properties pane. A Timer control instance displays the
following annotations as shown in Figure 18-1.
18-2 Using Integration Controls

Using a WL I T imer Cont ro l
Figure 18-1 WLI JMS Properties Pane

These annotations correspond to attributes of the
com.bea.control.WliTimerControl.TimerSettings, which identifies the Timer control in
your code. The com.bea.control.WliTimerControl.TimerSettings has the following
attributes:

coalesceEvents- It specifies how the Timer control should behave if delivery of its
events is delayed.

jndiContextFactory- It specifies the JNDI context factory class.

jndiProviderURL- It specifies the JNDI provider URL.

repeatsEvery- It specifies how often the Timer control should fire after the first time

repeatsEverySeconds- It specifies the time in seconds until the timer control fires the
first time, once started (default: 0).

timeout- It specifies the time until the Timer control fires the first time, once started and
the default value is 0 seconds.

timeoutSeconds- It specifies the time in seconds until the timer control fires the first
time, once started. The default value is 0.

transaction- It specifies the timer’s participation in a transaction, the default value is
true.

.

Using Integration Controls 18-3

WLI T imer Cont ro l
You can set these attributes to specify relative time. Relative time is an interval of time in
relation to the present, such as three hours from now. You can also specify that the Timer
control fire at an absolute time, such as 3:00 AM, by calling the Timer control's
setTimeoutAt method. For more information see Interface WLiTimerControl.

Specifying Time on a WLI Timer Control
This topic describes how to specify relative and absolute time values for a Timer control. A
relative time value specifies an interval of time that is relative to the present, such as next
Thursday or twenty minutes from now. An absolute time value specifies time according to the
clock. For example, 5:00 PM is an absolute time.

Specifying Relative Time
You specify relative time when you want an event to fire at a time relative to the present. For
example, you might want to wait only 5 minutes for another system to respond. So your
application sets a timer with a relative timeout of 5 minutes and starts the timer. If the timer
expires (that is, calls its callback) before the system responds, the web service stops waiting and
continues with other operations.

To specify that the timer fires after an interval, set the timeout and, optionally, the repeats-every
attribute of the Timer control. You can set these attributes in the Properties pane or in source code,
or by calling the setTimeout or setRepeatsEvery methods of the TimerControl interface.

When relative time is expressed as a text string, it is formatted as integers followed by
case-insensitive time units. These time units can be separated by spaces. For example, the
following code sample is a valid duration specification that exercises all the time units, spelled
out fully:

/**

 * org.apache.beehive.controls.api.bean.Control

 * com.bea.control.WliTimerControl.TimerSettings ="99 years 11 months 13

days 23 hours 43 minutes 51 seconds"

 */

Timer almostCentury;

This example creates a Timer control whose default initial firing will occur in almost 100 years.
18-4 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc/com/bea/control/WliTimerControl.html

Spec i f y ing T ime on a WL I T imer Cont ro l
Units may also be truncated. For example, valid truncations of "months" are "month", "mont",
"mon", "mo", and "m". If both months and minutes are specified, use long enough abbreviations
to be unambiguous.

The string "p" (case insensitive) is allowed at the beginning of a text string. If it is present, then
single-letter abbreviations and no spaces must be used and parts must appear in the order y m d
h m s.

The following Timer control declaration is equivalent to the previous example, but uses the fully
truncated form:

/*

 * @control

 * @timer timeout="P99Y11Mo13D23H43M51S"

 */

Timer almostCentury;

Durations are computed according to Gregorian calendar rules, so if today is the 17th of the
month, 3 months from now is also the 17th of the month. If the target month is shorter and doesn't
have a corresponding day (for example, no February 31), then the closest day in the same month
is used (for example, February 29 on a leap year).

Specify Absolute Time
Absolute time is useful when you know the exact moment you want operations to begin and end.
For example, your application can have your web service send a reminder email to remind you
that someone's birthday is coming up.

You can configure a Timer control to fire at an absolute time by calling the setTimeoutAt method
of the TimerControl interface.

The setTimeoutAt method configures the timer to fire an event as soon as possible on or after
the supplied absolute time. If you supply an absolute time in the past, the timer will fire as soon
as possible.

If setTimeoutAt is called within a transaction, its effect (any work performed in the callback
handler) is rolled back if the transaction is rolled back, and its effect is committed only when the
transaction is committed.
Using Integration Controls 18-5

WLI T imer Cont ro l
If setTimeoutAt is called while the timer is already running, it will have no effect until the timer
is stopped and restarted.

The setTimeoutAt method takes as its argument a java.util.Date object. Other Java classes
that are useful when dealing with Date are java.util.GregorianCalendar and
java.text.SimpleDateFormat.

The getTimeoutAt method returns the time at which the timer is next scheduled to fire, if the
repeats-every attribute is set to a value greater than zero. If the repeats-every attribute is set to
zero, then the getTimeoutAt method returns the value set by the setTimeoutAt method or the
value set in the timeout attribute. If you call the getTimeoutAt method from within the
onTimeout callback handler, the first timeout has already fired, so getTimeoutAt will return
either the time of the next timeout or the time of the first timeout if the timer is not set to repeat.

The following example calls the setTimeoutAt method to specify that the first timeout fires at
thirty seconds past the current minute, then calls the setRepeatsEvery method to specify that the
timer subsequently fires every sixty seconds. The onTimeout event provides information about
the Timer control’s firing.

/**

 * @common:operation

 * @jws:conversation phase="start"

 */

public void StartTimer()

{

 Calendar cd = new GregorianCalendar();

 cd.set(cd.SECOND, 30);

 tTimer.setTimeoutAt(cd.getTime());

 tTimer.setRepeatsEvery(60);

 tTimer.start();

}

public void tTimer_onTimeout(long time)

{

 callback.FireTimeout("The timer was scheduled to fire at: " + new

Date(time)
18-6 Using Integration Controls

 + ". The current time is: " + new Date()

 + ". The timer will fire again at: " + tTimer.getTimeoutAt());

}

Using Integration Controls 18-7

WLI T imer Cont ro l
18-8 Using Integration Controls

C H A P T E R 19
XML MetaData Cache Control
The XML MetaData Cache is managed using the Oracle WebLogic Integration
Administration Console or the MBean API, which allows users to create their own NetUI
based consoles. This control can be used to retrieve XML metadata that is present in the
XML MetaData Cache.

Topics Included in This Section
Overview: XML MetaData Cache Control

Describes Oracle WebLogic Integration and its features.

Sharing Cache Data Within a Cluster
Describes how cached data is shared across a cluster and made available to requesting
nodes.

Creating an XML MetaData Cache Control
Describes how to create a new Oracle WebLogic Integration within Oracle WebLogic
Integration.

Understanding the XML MetaData Cache Control Get Method
Describes how to retrieve XML metadata using the get method of the Oracle WebLogic
Integration.
Using Integration Controls 19-1

XML MetaData Cache Cont ro l
Using the XML MetaData Cache Control in a Business Process
Describes how to use the Oracle WebLogic Integration in a business process.

Example: XML MetaData Cache Control
Describes a scenario in which the Oracle WebLogic Integration is used.

Overview: XML MetaData Cache Control
The XML MetaData Cache Control is used for fast access to a managed set of key-value pairs.
The keys are of type string and the value contains XML data. For more information on source that
uses the WebLogic Integration, see WebLogic Integration Sample Code.

Using the XML MetaData Cache Control in your business process flow you can retrieve XML
metadata from the XML MetaData Cache. The Oracle WebLogic Integration Administration
Console manages the entries in the cache (add, delete, update). Alternatively, a custom
application (such as a NetUI application) can be written to manage the cache. For more
information, see Sharing Cache Data Within a Cluster.

The XML MetaData Cache Control is intended to be used in a read-mostly environment. The
XML MetaData Cache should only be used for configuration metadata. It is used to cache runtime
xml data. Updating cache entries is expensive, as all cache entries in a cluster must be updated,
where as read operations are always in-memory operations. The size of an XML value in the
cache should typically be less than 100k bytes. Larger sizes will work, but with an increasing cost
of updates. The XML MetaData Cache is a global, domain-wide cache. Data from the cache is
made available on a permanent basis through file-based storage.

Figure 19-1 describes the XML MetaData Cache and Oracle WebLogic Integration
implementation.
19-2 Using Integration Controls

http://www.oracle.com/technology/sample_code/products/wli/index.html

Shar ing Cache Data Wi th in a C lus te r
Figure 19-1 Oracle WebLogic Integration Implementation Overview

Sharing Cache Data Within a Cluster
You can add XML metadata to the cache only through the node on which the Administration
Server is running. The Administration Server receives the input, and stores the key and the
associated XML metadata in a file, in the following format:
XMLMetatadaCache_<keyname>_.xml

For each XML document that is added to the cache, a new XML MetaData Cache file is created.
Once the file is created, the newly added XML document is propagated to all the nodes within
the cluster. This ensures that the data is immediately available to any requesting node.

When using the XML MetaData Cache Control in a cluster, if a server on the cluster is restarted
and a value changes while the server is offline, the server will receive the change notification
when it comes online again.

Note: You cannot modify the XML MetaData Cache when the Administration Server is down.

Figure 19-2 describes how data is shared within a cluster.
Using Integration Controls 19-3

XML MetaData Cache Cont ro l
Figure 19-2 Sharing Data Within a Cluster

Creating an XML MetaData Cache Control
You can create a new XML MetaData Cache Control and add it to your business process. To
create a new XML MetaData Cache Control:

1. In the Package Explorer pane, double-click the business process (Process.java file) to which
you want to add the XML MetaData Cache control. The business process is displayed in the
Design view.

2. Click on the Data Palette and from the drop-down list choose Integration Controls to
display the list of controls used for integrating applications.

Note: If the Data Palette view is not visible in Oracle Workshop for WebLogic, click
Window > Show View > Data Palette from the menu bar.

3. Select XML MetaData Cache.

The Insert Control: XML MetaData Cache dialog box appears (see Figure 19-1).
19-4 Using Integration Controls

Unders tanding the XML MetaData Cache Cont ro l Ge t Method
Figure 19-3 Insert control: XML MetaData Cache

4. In the Insert Control: XML MetaData Cache dialog box enter the following details:

– In the Field Name, type the variable name used to access the new XML MetaData
Cache control instance from your business process. The name you enter must be a valid
Java identifier.

– In the Insertion point: from the drop-down list select the point where you want the
field name to be inserted in the process file.

– Click Finish.

Note: Make this a control factory that can create multiple instances at runtime option
is not available for XML MetaData Cache Control, and the option is disabled.

Understanding the XML MetaData Cache Control Get
Method

The XML MetaData Cache Control includes the following method:
XmlObject get(String key)

Using this method, the get command uses the key of type String to access the XML Metadata
in the cache. For more information on how to use this method, see Using the XML MetaData
Cache Control in a Business Process.

You can get a document from the cache only if you previously added it to the cache using the
Administration Console. For more information on adding an XML document to the cache, see
XML Cache.
Using Integration Controls 19-5

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/adminhelp/xmlcache.html

XML MetaData Cache Cont ro l
Using the XML MetaData Cache Control in a Business
Process

Once created, you can use the new XML MetaData Cache Control in a business process.

The business process usually starts with a Client Request node. This node represents a request
made by a client to the process. In this case, the client invokes the get(String key) method on
the process to get an XML metadata key from the cache.

To set up your business process to get XML metadata from the cache, do the following:

Create an instance of the Oracle WebLogic Integration. Name it MyOracle WebLogic
Integration. Use the steps provided in Creating an XML MetaData Cache Control.

Your new XML MetaData Cache Control will be visible under the Controls tab in the
Data Palette. Expand the XML MetaData Cache Control you have created, to view the
XMLMetadata get method that you can use in your business process.

Design a Control Send Node in your business process, to prepare the control to get cache
data from the cache. For more information on how to do this, see To Prepare the Client
Node.

To Prepare the Client Node

1. Open the Client Request node. In the General Settings tab, enter NewXMLMetadata in the
Method Name field.

2. Click Add, then select String from the Java datatype list. Enter Key1 as the variable in the
Name field, then click OK to add your selection to the Client Request node. This indicates to
the client that the control expects the client to send and receive a value of type string. The
String represents the datatype used to define the key with which the XML metadata is
associated.

3. In the Receive Data tab, select a string as the variable that you want to assign to the tab of
the Client Request node. The variable type is pre-defined, based on the parameters to which
you are assigning the variable. The string represents the datatype used to define the value of
the key, which is the core aspect of the object.

4. Close the Client Request node. You can now add a get (String key) node to your business
process.
19-6 Using Integration Controls

Using the XML MetaData Cache Cont ro l i n a Bus iness P rocess
To Get an XML metadata Document
You can use the following property to get an XML metadata document using the Oracle
WebLogic Integration:
xmlObject get(String key)

The control uses this property to get a specific key from the XML MetaData Cache.

To get a key using the Oracle WebLogic Integration in a business process, perform the following
steps:

1. Drag the XmlObject get(String) method from the Data Palette and drop it below the
Client Request node in your business process.

2. Double-click the get node to display the General Settings tab of the Node Builder.

3. Confirm that MyOracle WebLogic Integration is displayed in the Control field and that the
following method is selected in the Method field:

get(String key)

4. Open the Send Data tab. In the Select variables to assign drop-down list, select
Key1(String).

5. Open the Receive Data tab. In the Select variables to assign list, create a new variable called
XML_1. The XMLObject datatype is selected by default. This step completes the get request
for the XML metadata.

6. Close the window.

The following code sample reflects the configuration of the add (String key) node.

public void get_metadataGet() throws Exception
{
//#START: CODE GENERATED - PROTECTED SECTION - you can safely add code above

this comment in this method. #//
// input transform
// return method call
this.XML_1 = get_metadata.get(this.Key_1);
// output transform
// output assignments
//#END: CODE GENERATED - PROTECTED SECTION - you can safely add code below

this comment in this method. #//
}

Using Integration Controls 19-7

XML MetaData Cache Cont ro l
Example: XML MetaData Cache Control
The following scenario describes how the XML MetaData Cache is deployed by business
processes in a workflow.

The following elements are involved:

The Router process: A business process that routes the flow of information between the
Seller and the client, and the Buyer and the client.

The Seller process: The Seller process communicates with the Router process, which in
turn communicates with other elements in the workflow.

The Buyer process: The Buyer process communicates with the Router process, which in
turn communicates with other elements in the workflow.

Auction client: The auction Website, with which both the Seller and the Buyer processes
interact via the Router.

The Seller puts up goods for sale on the auction client and the buyer bids for the goods. When the
bid is approved, the Seller requires the Buyer’s details to proceed with the sale. Communication
between the various elements of the workflow is handled by the Router process.

When the Buyer’s bid is approved, the following scenario takes place:

1. The Seller sends a request to the auction client for the Buyer’s metadata. This metadata can
include information such as the buyer’s name, address, telephone number and so on.

2. The Router examines the request and, based on the content of the request, pings the Buyer
process for the required metadata.

3. The buyer’s information is contained in an XML document, present in the global XML
MetaData Cache. The Router sends a request to the Buyer for the relevant key.

4. The Router retrieves the key from the Buyer and uses the XML MetaData Cache Control to
perform a get request for the required metadata. The retrieved XML metadata is returned to
the client. In this event, the Router process adds an XML MetaData Cache Control, and uses
the get (String key) method to retrieve the Buyer’s XML metadata. The XML MetaData
Cache Control, is in effect, added to the Router process. This allows for smooth data retrieval.

Note: To enable successful transfer of information, the Buyer’s metadata has to be present
in the cache, before the Router business process is deployed.
19-8 Using Integration Controls

Us ing MBean AP Is to Manage an XML MetaData Cache
Using MBean APIs to Manage an XML MetaData Cache
You can use the Configuration MBean APIs to create your own cache, and to add, get, and delete
data from the cache.

Retrieving the Singleton XMLCacheMBean
Use the following code to retrieve the singleton XMLCacheMBean:

Context ctx = new InitialContext();
MBeanHome home = (MBeanHome) ctx.lookup(MBeanHome.LOCAL_JNDI_NAME);

(XMLCacheMBean) xmlCacheMBean =

home.getMBean(XMLCacheMBean.SINGLETON_MBEAN_NAME,

XMLCacheMBean.MBEAN_TYPE);
String key = "key1";

Using the Configuration MBean API
The Configuration MBean API provides the following methods to add an entry to, or to get or
delete an entry from the XML MetaData Cache:

public XmlObject xmlObj = XmlObject.Factory.parse(new File(YourXmlFile))
//create an xmlObject

Use this method to create an XMLobject.

public xmlCacheMBean.add(key, xmlObj);
Use this method to add a key to the XML MetaData Cache.

public XmlObject xmlObject_get = xmlCacheMBean.get(key);
Use this method to get a key from the XML MetaData Cache.

public XmlObject newxmlObj = //create another xmlObject
Use this method to create a new XMLObject.

public xmlCacheMBean.update(key,newxmlObj);
Use this method to update an XML MetaData Cache.

public xmlCacheMBean.delete(key);
Use this method to delete a key from the XML MetaData Cache.

public boolean keyExists = xmlCacheMBean.keyExists(key);
Use this method to find out if a particular key exists within the XML MetaData Cache.

public String[] allKeys = xmlCacheMBean.getAllKeys();
Use this method to get a list of all keys within the XML MetaData Cache.
Using Integration Controls 19-9

XML MetaData Cache Cont ro l
19-10 Using Integration Controls

C H A P T E R 20
Using Control Factories
When creating some controls, you specify whether you want to make the control instance a
control factory. A control factory allows a single application to manage multiple instances of the
same control. File, Email, WLI JMS, TPM, and Worklist controls can be implemented as control
factories.

To make a control a control factory, select the Make this a control factory that can create
multiple instances at runtime check box when creating the control. When you add a control to
a business process, if the control is a factory, the first argument of the control receive method is
the controltype. This is displayed in the node builder assignment and mapping panel and you can
assign and map to it.
Using Integration Controls 20-1

Using Cont ro l Facto r ies
20-2 Using Integration Controls

C H A P T E R 21
Using Message Attachments
Business processes can exchange business messages with trading partners via ebXML or
RosettaNet. These business messages include one or more attachments containing XML or
non-XML data.

Note: For ebXML messages, each attachment represents a single payload in the ebXML
message.

Attachments can be any of the following Java types (see Table 21-1):

Table 21-1 Java Type

Type Description

XmlObject Represents untyped XML format data.

XmlObject[] Used for ebXML only—an array containing one or more
XmlObject elements.

RawData Represents any non-XML structured or unstructured data for
which no MFL file (and therefore no known schema) exists.

RawData[] Used for ebXML only—an array containing one or more
RawData elements

MessageAttachment[] Represents either untyped XML or non-XML data in a
message attachment. Used for payloads in business messages
that contain both untyped XML and non-XML data.
Using Integration Controls 21-1

Using Message A t tachments
Attachments can also be typed XML or typed MFL data as long as you specify the corresponding
XML Bean or MFL class name in the parameter.

If you use arrays as attachment type, certain restrictions apply to the order of your arguments. For
more informations, see “Specifying XmlObject and RawData Array Payloads” on page 4-7.

For business messages containing both untyped XML and non-XML data, the message payload
is represented as an array of MessageAttachment objects: MessageAttachment[]

The following APIs in the com.bea.data package provide access to individual
MessageAttachment objects within the array (see Table 21-2):

For more information about using the message attachment APIs, see the interfaces listed in the
com.bea.data package in the Javadoc.

Related Topics
Guide to Building Business Processes

Table 21-2 API Type

Object Description

MessageAttachment
Interface

Represents part of a message attachment in an ebXML or
RosettaNet business message. Provides methods for
retrieving untyped XML or non-XML data from an
attachment.

MessageAttachment.Factory
Class

Factory for creating MessageAttachment instances.
Provides methods for creating MessageAttachment
instances from untyped XML or non-XML data.
21-2 Using Integration Controls

http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/wli.javadoc
http://download.oracle.com/docs/cd/E13160-01/wli/docs10gr3/bpguide/index.html

	Oracle® WebLogic Integration
	10g Release 3 (10.3)

	Oracle WebLogic Integration Using Integration Controls, 10g Release 3 (10.3)
	Contents
	Using Controls in Business Processes
	Adding Control Nodes to Your Business Process
	Designing the Communications for Control Nodes
	Using Integration Controls in Web Services or Page Flows

	Controls and Transactions
	Good Practice in Creating Web Service Controls for a Business Process Application

	Dynamic Transformation Control
	Overview: Dynamic Transformation Control
	Creating a New Dynamic Transformation Control
	Using a Dynamic Transformation Control
	Using the Base Methods in the Dynamic Transformation Control

	Example: Dynamic Transformation Control

	ebXML Control
	Overview: ebXML Control
	Creating an ebXML Control
	Specifying XmlObject and RawData Array Payloads

	Using an ebXML Control
	Sending Messages to Participants
	Handling Responses from Participants
	Dynamically Specifying Business IDs
	Order of Precedence
	Using Selectors
	Using setProperties

	Example: ebXML Control

	Email Control
	Overview: Email Control
	Configuring an Email Control
	Customizing an Email Control
	Using Dynamic Properties for an Email Control

	Creating a New Email Control
	Email Control Methods

	Sample Email Messages
	Example 1: HTML Body, No Attachments
	Example 2: Body with Attachments
	Example 3: No Body, One Attachment
	Exceptions and Errors

	File Control
	Overview: File Control
	Creating a New File Control
	Creating a New File Control
	File Control Methods
	Example: File Control Declaration

	Using a File Control
	Setting Default File Control Behavior
	Using Methods of the FileControl Interface
	Error Handling When Reading Files

	Using File Control for SFTP
	Configuring File Control for SFTP
	File Control Annotations for SFTP
	Service Provider Interface
	SFtpVersion
	SFtpAuthMethod
	SFtpClientException
	SFtpFile
	SFtpClient
	AbstractSFtpClient
	SFtpClientFactory

	Configuring SPI
	Adding the SPI Implementation to the Server Class Path
	SFTP Reference Implementation
	Build an SFTP Reference Implementation
	Designing an Application to Test the Implementation

	Example: File Control

	Http Control
	Creating a New Http Control
	Creating a New Http Control
	The Java file for the Http Control
	Using the Http Control in a Business Process

	Specifying Http Control Properties
	Using HTTP Methods to Set Properties
	Setting Dynamic Http Control Properties
	Example of an XML Variable to Set Dynamic Properties
	Schema for Http Control Properties

	Setting Connection Time-out
	Setting Connection Retry Count
	Configuring Server-side SSL
	Configuring Client-side SSL
	Configuring Proxy Settings
	Setting Cookie
	Example: XML Variable Used to Set Cookies
	Schema for Setting Cookie

	Setting Headers for HTTP Post
	Example: XML Variable Used to Set the Headers
	Schema for Setting HTTP Post Headers

	Sending an HTTP Get Request
	Example: XML Variable Used to Set Parameters in HTTP Get
	Schema for Sending Parameters for HTTP Get

	Sending Data as HTTP Post
	Recieving HTTP Response Headers
	Recieving Cookies From the Server
	Recieving HTTP Body Data

	Logging Debug Messages and Exceptions
	Http Control Caveats
	The HTTP Event Generator

	Message Broker Controls
	Message Broker Publish Control
	Java File for Your MB Publish Control
	Using Methods of the MB Publish Interface
	Method Attributes

	Example Code for MB Publish Control

	Message Broker Subscription Control
	Java File for Your MB Subscription Control
	Using Methods of the MB Subscription Interface
	Class Interface

	Method Attributes
	Example Code for MB Subscription Control
	Note About Static and Dynamic Subscriptions to Message Broker Channels

	Using Event Generators to Publish to Message Broker Channels

	MQSeries Control
	Overview: MQSeries Control
	Prerequisites to Adding an MQSeries Control
	Creating and Configuring a New Instance of the MQSeries Control
	The Control File for an MQSeries Control

	Using the MQSeries Control Exit Implementation
	Implementing MQSeries Exits

	Understanding Transaction Management
	Implicit Transaction Management
	Explicit Transaction Management

	Using Message Descriptors
	Schema of the MQMDHeaders Document
	Sample of an MQMDHeaders Document
	Using XML Beans to Set the MQMDHeader Element Values

	Sending and Receiving Messages
	Sending Messages
	Using the putMessage Function In a Business Process

	Sending Messages To a Remote Queue Manager
	Receiving Messages
	Using the getMessage Function In a Business Process

	Sending Group messages
	Retrieving Group Messages
	Setting the logicalorder Attribute
	Setting the waitForAllMsgs Attribute
	Setting the GroupId element
	Setting the MessageSequenceNumber Element

	Working with MQSeries Message Descriptor Format
	Setting Dynamic Properties
	Schema of MQDynamicProperties
	Sample MQDynamicProperties Document

	Configuring SSL In MQSeries Control
	Setting the SSL Cipher Suite
	Setting Server-side SSL Properties
	Setting Client-side SSL Properties
	Example: Configuring SSL Within a Workflow

	Using the MQSeries Event Generator

	Process Control
	Overview: Process Control
	Creating a New Process Control
	Creating a New Process Control Using the Control Wizard
	Generating a Process Control from a Process File
	Notes on XQueries

	Process Control Methods
	Example: Process Control Declaration
	Setting Process Control Properties

	Process Control Design Time Considerations
	Using a Process Control in Stateless and Stateful Business Processes
	Using Process Controls in Synchronous and Asynchronous Business Processes
	Using a Process Control from the Parent Process
	Process Control Location

	Process Control Run-Time Considerations
	Run-Time Rules for Process Controls in Stateless and Stateful Business Processes
	Run-Time Rules for Process Controls in Synchronous and Asynchronous Business Processes
	Security

	Maintaining Process Controls
	JAX-RPC Handlers

	Using Dynamic Binding
	Notes on Process Controls Annotations
	@com.bea.control.annotations.MessageBuffer
	@com.bea.wli.common.Conversation

	RosettaNet Control
	Overview: RosettaNet Control
	Creating a RosettaNet Control
	Using a RosettaNet Control
	Sending Messages to Participants
	Sending a Request Message
	Responding to Participant Replies

	Handling Messages from Participants
	Retrieving Message Elements
	Dynamically Specifying Business IDs
	Order of Precedence
	Using Selectors
	Using setProperties

	Example: RosettaNet Control

	Service Broker Control
	Overview: Service Broker Control
	Creating a New Service Broker Control
	Creating a New Service Broker Control Using the Control Wizard
	Creating a Service Broker Control from a Business Process
	Notes on XQueries

	Setting Service Broker Properties
	Service Broker Control Design Time Considerations
	Using a Service Broker Control in Stateless and Stateful Business Processes
	Using Service Broker Controls in Synchronous and Asynchronous Business Processes
	Using a Service Broker Control from the Parent Process
	Service Broker Control Location

	Service Broker Control Run-Time Considerations
	Run-Time Rules for Service Broker Controls in Stateless and Stateful Business Processes
	Run-Time Rules for Service Broker Controls in Synchronous and Asynchronous Business Processes
	Security

	Maintaining Service Broker Controls
	Using Dynamic Binding
	How the Service Broker Control Uses Dynamic Binding
	Components Used in Dynamic Binding
	com.bea.wli.common.control.Selector Tag
	Built-In XQuery Functions
	DynamicProperties.xml File

	Quote Processing Example

	Notes on Service Broker Control Annotations
	@com.bea.wli.common.ParameterXml
	@com.bea.wli.common.Conversation
	@jc:parameter xml
	@com.bea.wli.common.Protocol

	OSB Control
	Overview: OSB Control
	Creating an OSB Control
	Creating an OSB Control from a WSDL
	Creating an OSB Control Using the Service Consumption Framework

	OSB Control Annotations
	RmiSoapProtocol
	RmiSoap12Protocol
	SBTransport
	CustomHeader
	CustomHeaders
	RmiXmlProtocol
	OneWay
	Transaction Context Propagation
	Security Context Propagation

	Example OSB Control

	TIBCO Rendezvous Control
	Overview: Rendezvous Control
	Creating and Configuring a New Instance of the TIBCO Control
	The Java Files for a TIBCO Control
	Using Subject in a Message
	Sending and Receiving Messages
	Sending Messages
	sendMessage ()
	sendMessageAsString ()
	sendReply ()
	sendReplyAsString ()
	sendReplyAsXML ()
	setStringEncoding ()
	Additional Functions for Certified Messaging
	Using the sendMessage Function In a Business Process

	Receiving Messages

	Setting Dynamic Properties
	Schema of TIBCO Control Dynamic Properties
	Sample TIBCO Control Dynamic Properties Document

	TPM Control
	Overview: TPM Control
	Creating a TPM Control
	Using a TPM Control
	Example: TPM Control

	WLI JMS Control
	Overview: Messaging Systems and JMS
	Messaging Systems
	JMS Queues for Point-to-Point Messaging
	JMS Topics for Publish and Subscribe Messaging
	Connection Factories
	Message Components

	Messaging Scenarios Supported by the WLI JMS Control
	Supported Messaging Scenarios
	Send Messages to a Queue
	Two-Way Messaging with Queues
	Publish to a Topic
	Subscribe to a Topic

	Messaging Scenarios Not Supported by the WLI JMS Control
	Unsupported Scenarios
	Receive Unsolicited Messages from a Queue

	Creating a WLI JMS Control
	Creating a New WLI JMS Control
	WLI JMS Control Methods
	The Java File for a WLI JMS Control
	Configuring the Properties of a JMS Control

	Specifying the Format of The Message Body
	Specifying Message Headers and Properties
	Accessing Remote JMS Resources
	WLI JMS Control Caveats

	Worklist Controls
	Overview: Worklist Controls
	Creating a New Task Control
	Creating a New Task Batch Control
	Using Task and Task Batch Controls in Business Processes
	Example: Task Control

	WLI Timer Control
	Overview: WLI Timer Control
	Creating a WLI Timer Control
	Using a WLI Timer Control
	Setting Default Timer Control Behavior

	Specifying Time on a WLI Timer Control
	Specifying Relative Time
	Specify Absolute Time

	XML MetaData Cache Control
	Overview: XML MetaData Cache Control
	Sharing Cache Data Within a Cluster
	Creating an XML MetaData Cache Control
	Understanding the XML MetaData Cache Control Get Method
	Using the XML MetaData Cache Control in a Business Process
	Example: XML MetaData Cache Control
	Using MBean APIs to Manage an XML MetaData Cache
	Retrieving the Singleton XMLCacheMBean
	Using the Configuration MBean API

	Using Control Factories
	Using Message Attachments

