
Oracle® Tuxedo
Creating CORBA Client Applications

10g Release 3 (10.3)

January 2009

Tuxedo Creating CORBA Client Applications, 10g Release 3 (10.3)

Copyright © 1996, 2008, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Creating CORBA Client Applications iii

Contents

1. CORBA Client Application Development Concepts
Overview of Client Applications . 1-2

OMG IDL . 1-2

OMG IDL-to-C++ Mapping . 1-2

OMG IDL-to-Java Mapping . 1-2

OMG IDL-to-COM Mapping . 1-3

Static and Dynamic Invocation . 1-3

Client Stubs . 1-5

Interface Repository . 1-6

Domains . 1-6

Environmental Objects . 1-7

Bootstrap Object . 1-9

Factories and the FactoryFinder Object . 1-11

Naming Conventions and Oracle Tuxedo Extensions to the FactoryFinder Object . . .
1-12

InterfaceRepository Object . 1-14

SecurityCurrent Object . 1-14

TransactionCurrent Object . 1-15

NotificationService and Tobj_SimpleEventsService Objects 1-16

NameService Object . 1-17

2. Creating CORBA Client Applications
Summary of the Development Process for CORBA C++ Client Applications 2-2

iv Creating CORBA Client Applications

Step 1: Obtaining the OMG IDL File. 2-2

Step 2: Selecting the Invocation Type . 2-5

Step 3: Compiling the OMG IDL File . 2-5

Step 4: Writing the CORBA Client Application . 2-6

Initializing the ORB . 2-7

Establishing Communication with the Oracle Tuxedo Domain 2-7

Resolving Initial References to the FactoryFinder Object 2-8

Using the FactoryFinder Object to Get a Factory . 2-9

Using a Factory to Get a CORBA Object . 2-10

Step 5: Building the CORBA Client Application . 2-10

Server Applications Acting as Client Applications . 2-11

Using Java2 Applets. 2-11

3. Using the Dynamic Invocation Interface
When to Use DII. 3-2

DII Concepts. 3-3

Request Objects. 3-3

Options for Sending Requests. 3-4

Options for Receiving the Results of Requests. 3-4

Summary of the Development Process for DII . 3-5

Step 1: Loading the CORBA Interfaces into the Interface Repository 3-6

Step 2: Obtaining the Object Reference for the CORBA Object 3-7

Step 3: Creating a Request Object . 3-7

Using the CORBA::Object::_request Member Function . 3-7

Using the CORBA::Object::create_request Member Function. 3-8

Setting Arguments for the Request Object . 3-8

Setting Input and Output Arguments with the CORBA::NamedValue Member
Function . 3-8

Creating CORBA Client Applications v

Example of Using CORBA::Object::create_request Member Function 3-8

Step 4: Sending a DII Request and Retrieving the Results. 3-9

Synchronous Requests. 3-9

Deferred Synchronous Requests . 3-10

Oneway Requests . 3-10

Multiple Requests . 3-10

Step 5: Deleting the Request. 3-14

Step 6: Using the Interface Repository with DII . 3-14

4. Handling Exceptions
CORBA Exception Handling Concepts . 4-1

CORBA System Exceptions . 4-2

CORBA C++ Client Applications . 4-3

Handling System Exceptions. 4-5

User Exceptions. 4-5

vi Creating CORBA Client Applications

Creating CORBA Client Applications 1-1

C H A P T E R 1

CORBA Client Application Development
Concepts

This topic reviews the types of client applications supported by the CORBA environment in the
Oracle Tuxedo product and introduces the concepts that you need to understand before you
develop CORBA client applications.

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Java client and Oracle Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

This topic includes the following sections:

Overview of Client Applications

OMG IDL

Static and Dynamic Invocation

Client Stubs

Interface Repository

Domains

Environmental Objects

1-2 Creating CORBA Client Applications

Overview of Client Applications
The Oracle Tuxedo software supports the following types of client applications:

CORBA C++

This type of client application uses C++ environmental objects to access the CORBA
objects in an Oracle Tuxedo domain and the CORBA C++ Object Request Broker (ORB)
to process requests to CORBA objects. Use the Oracle Tuxedo development commands to
build CORBA C++ client applications.CORBA C++ client applications now support object
by value and the CORBA Interoperable Naming Service (INS).

Note: See Installing the Oracle Tuxedo System for the specific versions of supported
software.

OMG IDL
With any distributed application, the client/server application needs some basic information to
communicate. For example, the CORBA client application needs to know which operations it can
request, and the arguments to the operations.

You use the Object Management Group (OMG) Interface Definition Language (IDL) to describe
available CORBA interfaces to client applications. An interface definition written in OMG IDL
completely defines the CORBA interface and fully specifies each operation’s arguments. OMG
IDL is a purely declarative language. This means that it contains no implementation details.
Operations specified in OMG IDL can be written in and invoked from any language that provides
CORBA bindings. C++ and Java are two of the supported languages.

Generally, the application designer provides the OMG IDL files for the available CORBA
interfaces and operations to the programmer who creates the client applications.

OMG IDL-to-C++ Mapping
The Oracle Tuxedo software conforms to The Common Object Request Broker:Architecture and
Specification, Version 2.3. For complete information about the OMG IDL-to-C++ mapping, see
The Common Object Request Broker:Architecture and Specification, Version 2.3.

OMG IDL-to-Java Mapping
The Oracle Tuxedo software conforms to The Common Object Request Broker:Architecture and
Specification, Version 2.2. For complete information about the OMG IDL-to-Java mapping, see
The Common Object Request Broker:Architecture and Specification, Version 2.2.

Stat i c and Dynamic Invocat i on

Creating CORBA Client Applications 1-3

OMG IDL-to-COM Mapping
The Oracle Tuxedo software conforms to the OMG IDL to COM mapping as defined in the
Common Object Request Broker:Architecture and Specification, Version 2.3. For complete
information about the OMG IDL to COM mapping, see The Common Object Request
Broker:Architecture and Specification, Version 2.3.

Static and Dynamic Invocation
The CORBA ORB in the Oracle Tuxedo product supports two types of client/server invocations:
static and dynamic. In both cases, the CORBA client application performs a request by gaining
access to a reference for a CORBA object and invoking the operation that satisfies the request.
The CORBA server application cannot tell the difference between static and dynamic
invocations.

When using static invocation, the CORBA client application invokes operations directly on the
client stubs. Static invocation is the easiest, most common type of invocation. The stubs are
generated by the IDL compiler. Static invocation is recommended for applications that know at
compile time the particulars of the operations they need to invoke and can process within the
synchronous nature of the invocation. Figure 1-1 illustrates static invocation.

1-4 Creating CORBA Client Applications

Figure 1-1 Static Invocation

While dynamic invocation is more complicated, it enables your CORBA client application to
invoke operations on any CORBA object without having to know the CORBA object’s interfaces
at compile time. Figure 1-2 illustrates dynamic invocation.

Client Application
Static Invocation

Client Stub

Request

Server
Skeleton

Server Application

Object Request Broker

OMG IDL

IDL Compiler

Cl ien t Stubs

Creating CORBA Client Applications 1-5

Figure 1-2 Dynamic Invocation

When using dynamic invocation, the CORBA client application can dynamically build operation
requests for a CORBA object interface that has been stored in the Interface Repository. CORBA
server applications do not require any special design to be able to receive and handle dynamic
invocation requests. Dynamic invocation is generally used when the CORBA client application
requires deferred synchronous communication, or by dynamic client applications when the nature
of the interaction is undefined. For more information about using dynamic invocation, see Using
the Dynamic Invocation Interface.

Client Stubs

Client stubs provide the programming interface to operations that a CORBA object can perform.
A client stub is a local proxy for the CORBA object. Client stubs provide a mechanism for
performing a synchronous invocation on an object reference for a CORBA object. The CORBA
client application does not need special code to deal with the CORBA object or its arguments; the
client application simply treats the stub as a local object.

A CORBA client application must have a stub for each interface it plans to use. You use the idl
command (or your Java ORB product’s equivalent command) to generate a client stub from the

Client Application
Dynamic Invocation

Request

Server
Skeleton

Server Application

Object Request Broker

Interface
Repository

OMG IDL

1-6 Creating CORBA Client Applications

OMG IDL definition of the CORBA interface. The command generates a stub file and a header
file that describe everything that you need if you want to use the client stub from a programming
language, such as C++ or Java. You simply invoke a method from within your CORBA client
application to request an operation on the CORBA object.

Interface Repository
The Interface Repository contains descriptions of a CORBA object’s interfaces and operations.
The information stored in the Interface Repository is equivalent to the information defined in an
OMG IDL file, but the information is accessible programmatically at run time. CORBA client
applications use the Interface Repository for the following reasons:

CORBA client applications that use dynamic invocation use the Interface Repository to
learn about a CORBA object’s interfaces, and to invoke operations on the object.

CORBA client applications that use static invocation do not access the Interface Repository at
run time. The information about the CORBA object’s interfaces is included in the client stub.

You use the following Oracle Tuxedo development commands to manage the Interface
Repository:

The idl2ir command populates the Interface Repository with CORBA interfaces. This
command creates an Interface Repository if an Interface Repository does not exist. Also
use this command to update the CORBA interfaces in the Interface Repository.

The ir2idl command creates an OMG IDL file from the contents of the Interface
Repository.

The irdel command deletes CORBA interfaces from the Interface Repository.

For a description of the development commands for the Interface Repository, see the Oracle
Tuxedo Command Reference.

Domains
A domain is a way of grouping objects and services together as a management entity. An Oracle
Tuxedo domain has at least one IIOP Listener/Handler and is identified by a name. One CORBA
client application can connect to multiple Oracle Tuxedo domains using different Bootstrap
objects. For each Oracle Tuxedo domain, a CORBA client application can get objects which
correspond to the services (for example, transactions, security, naming, events) offered within the
Oracle Tuxedo domain. For a description of the Bootstrap object and the CORBA services
available in an Oracle Tuxedo domain, see Environmental Objects.

Env i ronmenta l Ob jec ts

Creating CORBA Client Applications 1-7

Note: Only one environmental object per service can exist at the same time and the
environmental objects must be associated with the same Bootstrap object.

Figure 1-3 illustrates how an Oracle Tuxedo domain works.

Figure 1-3 How an Oracle Tuxedo Domain Works

Environmental Objects
The Oracle Tuxedo software provides a set of environmental objects that set up communication
between CORBA client and server applications in an Oracle Tuxedo domain and provide access
to the CORBA services provided by the domain. The Oracle Tuxedo software provides the
following environmental objects:

Bootstrap

This object establishes communication between a CORBA client application and an Oracle
Tuxedo domain. It also obtains object references for the other environmental objects in the
Oracle Tuxedo domain.

1-8 Creating CORBA Client Applications

Note: Third-party client ORBs can also use the CORBA Interoperable Naming Service
(INS) to access the services within an Oracle Tuxedo domain. For more information,
see the “CORBA Bootstrap Object Programming Reference” topic in the CORBA
Programming Reference.

FactoryFinder

This CORBA object locates a factory, which in turn can create object references for
CORBA objects.

InterfaceRepository

This CORBA object contains interface definitions for all the available CORBA interfaces
and the factories used to create object references to the CORBA interfaces.

SecurityCurrent

This Oracle-proprietary object is used to log a CORBA client application into an Oracle
Tuxedo domain with the proper security credentials. The Oracle Tuxedo software provides
an implementation of the CORBAservices Security Service.

TransactionCurrent

This Oracle-proprietary object allows a CORBA client application to participate in a
transaction. The TransactionCurrent object provides an implementation of the
CORBAservices Object Transaction Service (OTS).

NotificationService

This CORBA object allows a CORBA client application to obtain a reference to the event
channel factory (CosNotifyChannelAdmin::EventChannelFactory) in the
CosNotification Service. In turn, the EventChannelFactory is used to locate the
Notification Service channel.

In addition, a Tobj_SimpleEventsService object is provided. This Oracle-proprietary
object allows a CORBA client application to obtain a reference to an Oracle-proprietary
events interface. The events interface passes standard, structured events as defined by the
CosNotification Service, however, the API has been simplified for easier use.

NameService

This CORBA object allows a CORBA client application to use a namespace to resolve
object references. The Oracle Tuxedo software provides an implementation of the
CORBAservices Name Service.

The Oracle Tuxedo software provides environmental objects for the following programming
environments:

Env i ronmenta l Ob jec ts

Creating CORBA Client Applications 1-9

C++

Java

Automation

Bootstrap Object
A CORBA client application creates a Bootstrap object which defines the address of an IIOP
Listener/Handler. The IIOP Listener/Handler is the access point to an Oracle Tuxedo domain and
the CORBA services provided by the domain. A list of IIOP Listener/Handlers can be supplied
either as a parameter or via the TOBJADDR environmental variable or a Java property. A single
IIOP Listener/Handler is specified as follows:

//host:port

For example, //myserver:4000

Once the Bootstrap object is instantiated, the resolve_initial_references method is
invoked, passing in a string ID, to obtain a reference to an available object. The valid values for
the string ID are FactoryFinder, Interface Repository, SecurityCurrent, TransactionCurrent,
NotificationService, TObj_SimpleEventsService, and NameService.

Figure 1-4 illustrates how the Bootstrap object works in an Oracle Tuxedo domain.

1-10 Creating CORBA Client Applications

Figure 1-4 How the Bootstrap Object Works

Third-party client ORBs can also use the CORBA Interoperable Naming Service (INS)
mechanism to gain access to an Oracle Tuxedo domain and its services. The Interoperable
Naming Service allows third-party client ORBs to use their ORB’s
resolve_initial_references() function to access CORBA services provided by the Oracle
Tuxedo domain and use stubs generated from standard OMG IDL to act on the instances returned
from the domain. For more information about using the Interoperable Naming Service, see the
CORBA Programming Reference.

Env i ronmenta l Ob jec ts

Creating CORBA Client Applications 1-11

Factories and the FactoryFinder Object
CORBA client applications get object references to CORBA objects from a factory. A factory is
any CORBA object that returns an object reference to another CORBA object and registers itself
with the FactoryFinder object.

To use a CORBA object, the CORBA client application must be able to locate the factory that
creates an object reference for the CORBA object. The Oracle Tuxedo software offers the
FactoryFinder object for this purpose. The factories available to CORBA client applications are
those that are registered with the FactoryFinder object by CORBA server applications at startup.

The CORBA client application uses the following sequence of steps to obtain a reference to a
CORBA object:

1. Once the Bootstrap object is created, the resolve_initial_references method is invoked
to obtain the reference to the FactoryFinder object.

2. CORBA client applications query the FactoryFinder object for object references to the desired
factory.

3. CORBA client applications then call the factory to obtain an object reference to the CORBA
object.

Figure 1-5 illustrates the CORBA client application interaction with the FactoryFinder object.

1-12 Creating CORBA Client Applications

Figure 1-5 How Client Applications Use the FactoryFinder Object

Naming Conventions and Oracle Tuxedo Extensions to the
FactoryFinder Object
The factories available to CORBA client applications are those that are registered with the
FactoryFinder object by the CORBA server applications at startup. Factories are registered using
a key consisting of the following fields:

The Interface Repository ID of the factory’s interface

An object reference to the factory

The FactoryFinder object used by the Oracle Tuxedo software is defined in the CORBAservices
Life Cycle Service. The Oracle Tuxedo software implements extensions to the
COS::LifeCycle::FactoryFinder interface that make it easier for client applications to locate
a factory using the FactoryFinder object.

The CORBAservices Life Cycle Service specifies the use of names as defined in the
CORBAservices Naming Service to locate factories with the
COS::LifeCycle::FactoryFinder interface. These names consist of a sequence of
NameComponent structures, which consist of ID and kind fields.

Env i ronmenta l Ob jec ts

Creating CORBA Client Applications 1-13

The use of CORBA names to locate factories is cumbersome for client applications; it involves
many calls to build the appropriate name structures and assemble the CORBA Name Service
name that must be passed to the find_factories method of the
COS::LifeCycle::FactoryFinder interface. Also, since the method can return more than one
factory, client applications must manage the selection of an appropriate factory and the disposal
of unwanted object references.

The FactoryFinder object is designed to make it easier for CORBA client applications to locate
factories by extending the interface with simpler method calls.

The extensions are intended to provide the following simplifications for the CORBA client
application:

Let the CORBA client application locate factories by ID, using a simple string parameter
for the ID field. This reduces the work needed by the CORBA client application to build
name structures.

Permit the FactoryFinder object to implement a load balancing scheme by choosing from a
pool of available factories.

Provide methods that return one object reference to a factory, instead of a sequence of
object references. This eliminates the need for CORBA client applications to provide code
to handle the selection of a single factory from a sequence, and then dispose of the
unneeded references.

The most straightforward application design can be achieved by using the
Tobj::FactoryFinder::find_one_factory_by_id method in CORBA client applications.
This method accepts a simple string for factory ID as input and returns one factory to the CORBA
client application. The CORBA client application is freed from the necessity of manipulating
name components and selecting among many factories.

To use the Tobj::FactoryFinder::find_one_factory_by_id method, the application
designer must establish a naming convention for factories that CORBA client applications can
use to easily locate factories for specific CORBA object interfaces. Ideally, this convention
should establish some mnemonic types for factories that supply object references for certain types
of CORBA object interfaces. Factories are then registered using these conventions. For example,
a factory that returns an object reference for Student objects might be called StudentFactory. For
more information about registering factories with the FactoryFinder object, see Creating CORBA
Server Applications.

It is recommended that you either use the actual interface ID of the factory in the OMG IDL file,
or specify the factory ID as a constant in the OMG IDL file. This technique ensures naming
consistency between the CORBA client application and the CORBA server application.

1-14 Creating CORBA Client Applications

InterfaceRepository Object
The InterfaceRepository object returns information about the Interface Repository in an Oracle
Tuxedo domain. The InterfaceRepository object is based on the CORBA definition of an
Interface Repository. It offers the proper set of CORBA interfaces as defined by the Common
Request Broker Architecture and Specification Version 2.2.

CORBA client applications that use the Dynamic Invocation Interface (DII) need to access the
Interface Repository programmatically. The exact steps taken to access the Interface Repository
depend on whether the CORBA client application is seeking information about a specific
CORBA interface or browsing the Interface Repository to find an interface. In either case, the
CORBA client application can only read to the Interface Repository, it cannot write to the
Interface Repository.

Before a CORBA client application using DII can browse the Interface Repository in an Oracle
Tuxedo domain, the CORBA client application needs to obtain an object reference for the
InterfaceRepository object in that domain. CORBA client applications using DII use the
Bootstrap object to obtain the object reference.

AFor information about using the InterfaceRepository object in CORBA client applications that
use DII, see Using the Dynamic Invocation Interface For a description of the InterfaceRepository
object, see the CORBA Programming Reference.

SecurityCurrent Object
CORBA C++ client applications use security to authenticate themselves to the Oracle Tuxedo
domain. Authentication is the process of verifying the identity of a client application. By entering
the correct logon information, the client application authenticates itself to the Oracle Tuxedo
domain. The Oracle Tuxedo software uses authentication as defined in the CORBAservices
Security Service and provides extensions for ease of use.

CORBA client applications use the SecurityCurrent object to log on to the Oracle Tuxedo domain
and pass security credentials to the domain. The SecurityCurrent object is an Oracle Tuxedo
implementation of the CORBAservices Security Service. The CORBA security model in the
Oracle Tuxedo product is based on authentication.

You use the SecurityCurrent object to specify the appropriate level of security for the domain.
The following levels of authentication are provided:

Env i ronmenta l Ob jec ts

Creating CORBA Client Applications 1-15

TOBJ_NOAUTH

No authentication is needed; however, the CORBA client application may still authenticate
itself, and may specify a username and a client application name, but no password.

TOBJ_SYSAUTH

The CORBA client application must authenticate itself to the Oracle Tuxedo domain and
must specify a username, client application name, and application password.

TOBJ_APPAUTH

In addition to the TOBJ_SYSAUTH information, the CORBA client application must
provide application-specific information. If the default Oracle Tuxedo authentication
service is used in the application configuration, the CORBA client application must
provide a user password; otherwise, the CORBA client application provides authentication
data that is interpreted by the custom authentication service in the application.

Note: If a CORBA client application is not authenticated and the security level is
TOBJ_NOAUTH, the IIOP Listener/Handler of the Oracle Tuxedo domain registers the
CORBA client application with the username and client application name sent to the
IIOP Listener/Handler.

In the Oracle Tuxedo software, only the PrincipalAuthenticator and Credentials properties on the
SecurityCurrent object are supported.

For information about using the SecurityCurrent object in client applications, see Using Security
in CORBA Applications. For a description of the SecurityLevel1::Current and
SecurityLevel2::Current interfaces, refer to the CORBA Programming Reference.

TransactionCurrent Object
The TransactionCurrent object is an Oracle Tuxedo implementation of the CORBAservices
Object Transaction Service. The TransactionCurrent object maintains a transactional context for
the current session between the CORBA client application and the CORBA server application.
Using the TransactionCurrent object, the CORBA client application can perform transactional
operations, such as initiating and terminating a transaction and getting the status of a transaction.

Transactions are used on a per-interface basis. During design, the application designer decides
which interfaces within a CORBA application will handle transactions. A transaction policy for
each interface is then defined in an Implementation Configuration File (ICF). The transaction
policies are:

1-16 Creating CORBA Client Applications

Never

The interface is not transactional. Objects created for this interface can never be involved
in a transaction. The Oracle Tuxedo software generates an exception
(INVALID_TRANSACTION) if an interface with this policy is involved in a transaction.

Optional

The interface may be transactional. Objects can be involved in a transaction if the request
is transactional.

Always

The interface must always be part of a transaction. If the interface is not part of a
transaction, a transaction will be automatically started by the TP framework.

Ignore

The interface is not transactional. The interface can be included in a transaction, however,
the AUTOTRAN policy specified for this interface in the UBBCONFIG file is ignored.

For information about using the TransactionCurrent object in CORBA client applications, see
Using CORBA Transactions. For a description of the TransactionCurrent object, see the CORBA
Programming Reference.

NotificationService and Tobj_SimpleEventsService Objects
The NotificationService and Tobj_SimpleEventsService objects provide access to a
CORBA event service. The event service in the CORBA environment of the Oracle Tuxedo
product offers similar capabilities to those of the EventBroker in the ATMI environment.
However, the CORBA event service offers a programming model and interface that is natural for
CORBA programmers.

The event service receives event posting messages, filters them, and distributes them to
subscribers. A poster is a CORBA application that detects when an event of interest has occurred
and reports (posts) it to the event service. A subscriber is a CORBA application that requests
some notification action to be taken when an event of interest is posted.

The CORBA event service provides two sets of interfaces:

The NotificationService object provides a minimal subset of the CORBA-based
Notification Service interfaces (referred to as the CosNotification Service interface).

The Tobj_SimpleEventsService object provides Oracle-proprietary interfaces designed
to be easy to use.

Env i ronmenta l Ob jec ts

Creating CORBA Client Applications 1-17

Both sets of interfaces pass standard, structured events as defined by the CORBA Notification
Service specification. The two sets of interfaces are compatible with each other; that is, events
posted using the NotificationService interfaces can be subscribed to by the
Tobj_SimpleEventsService interfaces and vice versa.

For information about using the NotificationServer and Tobj_SimpleEventsService objects, see
Using the CORBA Notification Service.

NameService Object
The NameService object provides access to a CORBA Name Service which allows CORBA
server applications to advertise object references using logical names. CORBA client
applications can then locate an object by asking the CORBA Name Service to look up the name.

The CORBA Name Service provides:

An implementation of the Object Management Group (OMG) Interoperable Name Service
(INS) specification.

Application programming interfaces (APIs) for mapping object references into an
hierarchical naming structure (referred to as a namespace).

Commands for displaying bindings and for binding and unbinding naming context objects
and application objects into the namespace.

For information about using the NameService object in a CORBA client application, see Using
the CORBA Name Service.

1-18 Creating CORBA Client Applications

Creating CORBA Client Applications 2-1

C H A P T E R 2

Creating CORBA Client Applications

This topic includes the following sections:

Summary of the Development Process for CORBA C++ Client Applications

Step 1: Obtaining the OMG IDL File

Step 1: Obtaining the OMG IDL File

Step 2: Selecting the Invocation Type

Step 3: Compiling the OMG IDL File

Step 4: Writing the CORBA Client Application

Step 5: Building the CORBA Client Application

Server Applications Acting as Client Applications

Using Java2 Applets

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA Java client
and Oracle Tuxedo CORBA Java client ORB text references, associated code samples, should
only be used to help implement/run third party Java ORB libraries, and for programmer
reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

2-2 Creating CORBA Client Applications

Summary of the Development Process for CORBA C++
Client Applications

The steps for creating a CORBA C++ client application are as follows:

Each step in the process is explained in detail in the following sections.

The Oracle Tuxedo development environment for CORBA C++ client applications includes the
following:

The idl command, which compiles the OMG IDL file and generates the client stubs required
for the CORBA interface.

The buildobjclient command, which constructs a CORBA C++ client application
executable.

The C++ environmental objects, which provide access to CORBA objects in an Oracle Tuxedo
domain and to the services provided by the CORBA objects.

Step 1: Obtaining the OMG IDL File
Generally, the OMG IDL files for the available interfaces and operations are provided to the client
programmer by the application designer. This section contains the OMG IDL for the Basic sample
application. Listing 2-1 shows the univb.idl file, which defines the following interfaces:

Step Description

1 Obtain the OMG IDL file for the CORBA interfaces used by the
CORBA C++ client application.

2 Select the invocation type.

3 Use the IDL compiler to compile the OMG IDL file. The client
stubs are generated as a result of compiling the OMG IDL.

4 Write the CORBA C++ client application. This topic describes
creating a basic client application.

5 Build the CORBA C++ client application.

Step 1 : Obta in ing the OMG IDL F i l e

Creating CORBA Client Applications 2-3

Listing 2-1 OMG IDL File for the Basic Sample Application

#pragma prefix "BEAsys.com"

module UniversityB

{

 typedef unsigned long CourseNumber;

 typedef sequence<CourseNumber> CourseNumberList;

 struct CourseSynopsis

 {

 CourseNumber course_number;

 string title;

 };

 typedef sequence<CourseSynopsis> CourseSynopsisList;

 interface CourseSynopsisEnumerator

 {

 CourseSynopsisList get_next_n(

 in unsigned long number_to_get,

 out unsigned long number_remaining

 };

 void destroy();

 };

Interface Description Operations

Registrar Obtains course information from the
course database.

get_courses_synopsis()

get_courses_details()

RegistrarFactory Creates object references to the Registrar
object.

find_registrar()

CourseSynopsisEnumerator Gets a subset of the information from the
course database, and iteratively returns
portions of that subset to the CORBA
client application.

get_next_n()

destroy()

2-4 Creating CORBA Client Applications

 typedef unsigned short Days;

 const Days MONDAY = 1;

 const Days TUESDAY = 2;

 const Days WEDNESDAY = 4;

 const Days THURSDAY = 8;

 const Days FRIDAY = 16;

 struct ClassSchedule

 {

 Days class_days; // bitmask of days

 unsigned short start_hour; // whole hours in military time

 unsigned short duration; // minutes

 };

 struct CourseDetails

 {

 CourseNumber course_number;

 double cost;

 unsigned short number_of_credits;

 ClassSchedule class_schedule;

 unsigned short number_of_seats;

 string title;

 string professor;

 string description;

 };

 typedef sequence<CourseDetails> CourseDetailsList;

 interface Registrar

 {

 CourseSynopsisList

 get_courses_synopsis(

 in string search_criteria,

 in unsigned long number_to_get, // 0 = all

 out unsigned long number_remaining,

 out CourseSynopsisEnumerator rest

);

 CourseDetailsList get_courses_details(in CourseNumberList

 courses);

Step 2 : Se l ec t ing the Invocat ion Type

Creating CORBA Client Applications 2-5

 interface RegistrarFactory

 {

 Registrar find_registrar(

);

 };

};

Step 2: Selecting the Invocation Type
Select the invocation type (static or dynamic) that you will use in the requests in the CORBA client
application. You can use both types of invocation in a CORBA client application.

For an overview of static and dynamic invocation, see Static and Dynamic Invocation.

The remainder of this topic assumes that you chose to use static invocation in your CORBA client
application. If you chose to use dynamic invocation, see Using the Dynamic Invocation Interface.

Step 3: Compiling the OMG IDL File
When creating CORBA C++ client applications, use the idl command to compile the OMG IDL file
and generate the files required for the interface. The following is the syntax of the idl command:

idl idlfilename(s)

The IDL compiler generates a client stub (idlfilename_c.cpp) and a header file
(idlfilename_c.h) that describe everything you need to have to use the client stub from the C++
programming language. You need to link these files into your CORBA client application.

In addition, the IDL compiler generates skeletons that contain the signatures of the CORBA object’s
operations. The generated skeleton information is placed in the idlfilename_s.cpp and
idlfilename_s.h files. During development of the CORBA client application, it can be useful to
look at the server header files and skeleton file.

Note: Do not modify the generated client stub or the skeleton.

For a complete description of the idl command and options, see the Oracle Tuxedo Command
Reference.

When creating CORBA client applications:

2-6 Creating CORBA Client Applications

If you are using JDK version 1.2, you can use the idltojava command to compile the OMG
IDL file. For more information about the idltojava command, see the documentation for the
JDK version 1.2.

If you are using Netscape version 3.0 and Java Development Kit (JDK) version 1.1.5, you need
to use that product’s IDL compiler to compile the OMG IDL.

The idltojava command or the IDL compiler generates the following:

The client stubs for each interface (_interfaceStub.java).

The CORBA helper class (interfaceHelper.java) and the CORBA holder class
(interfaceHolder.java) that describe everything you need to use the client stub from the
Java programming language.

Note that each OMG IDL defined exception defines an exception class and its helper and holder
classes. The compiled .class files must be in the CLASSPATH of your CORBA client application.

In addition, the idltojava command or the IDL compiler generates skeletons that contain the
signatures of the operations of the CORBA object. The generated skeleton information is placed in the
_interfaceImplBase file.

Step 4: Writing the CORBA Client Application
To participate in a session with a CORBA server application, a CORBA client application must be able
to get an object reference for a CORBA object and invoke operations on the object. To accomplish this,
the CORBA client application code must do the following:

1. Initialize the Oracle Tuxedo ORB.

2. Establish communication with the Oracle Tuxedo domain.

3. Resolve initial references to the FactoryFinder object.

4. Use a factory to get an object reference for the desired CORBA object.

5. Invoke operations on the CORBA object.

The following sections use portions of the client applications in the Basic sample application to
illustrate the steps. For information about the Basic sample application, see the Guide to the CORBA
University Sample Applications. The Basic sample application is located in the following directory
on the Oracle Tuxedo software kit:

drive:\tuxdir\samples\corba\university\basic

Step 4 : Wr i t ing the CORBA C l i ent App l i cat ion

Creating CORBA Client Applications 2-7

Initializing the ORB
All CORBA client applications must first initialize the ORB.

Use the following code to initialize the ORB from a CORBA C++ client application:

C++

CORBA::ORB_var orb=CORBA::ORB_init(argc, argv, ORBid);

Typically, no ORBid is specified and the default ORBid specified during installation is used. However,
when a CORBA client application is running on a machine that also has CORBA server applications
running and the CORBA client application wants to access server applications in another Oracle
Tuxedo domain, you need to override the default ORBid. This can be done by hard coding the ORBid
as BEA_IIOP or by passing the ORBid in the command line as _ORBid BEA_IIOP.

Establishing Communication with the Oracle Tuxedo
Domain
The CORBA client application creates a Bootstrap object. A list of IIOP Listener/Handlers can be
supplied either as a parameter, via the TOBJADDR Java property or applet property. A single IIOP
Listener/Handler is specified as follows:

//host:port

When the IIOP Listerner/Handler is provided via TOBJADDR, the second argument of the constructor
can be null.

The host and port combination for the IIOP Listener/Handler is defined in the UBBCONFIG file. The
host and port combination that is specified for the Bootstrap object must exactly match the ISL
parameter in the Oracle Tuxedo domain’s UBBCONFIG file. The format of the host and port
combination, as well as the capitalization, must match. If the addresses do not match, the call to the
Bootstrap object will fail and the following message appears in the log file:

Error: Unofficial connection from client at <tcp/ip address>/<portnumber>

For example, if the network address is specified as //TRIXIE::3500 in the ISL parameter in the
UBBCONFIG file, specifying either //192.12.4.6.:3500 or //trixie:3500 in the Bootstrap
object will cause the connection attempt to fail.

On UNIX systems, use the uname -n command on the host system to determine the capitalization
used. On Window 2000, use the Network Control Panel to determine the capitalization.

The following C++ and Java examples show how to use the Bootstrap object:

2-8 Creating CORBA Client Applications

C++

 Tobj_Bootstrap* bootstrap = new Tobj_Bootstrap(orb, “//host:port”);

Java Applet

 Tobj_Bootstrap bootstrap = new Tobj_Bootstrap(orb, “//host:port”, this);

where this is the name of the Java applet

An Oracle Tuxedo domain can have multiple IIOP Listener/Handlers. If you are accessing an Oracle
Tuxedo domain with multiple IIOP Listener/Handlers, you supply a list of Host:Port combinations
to the Bootstrap object. If the second parameter of the Bootstrap command is an empty string, the
Bootstrap object walks through the list until it connects to an Oracle Tuxedo domain. The list of IIOP
Listener/Handlers can also be specified in TOBJADDR.

If you want to access multiple Oracle Tuxedo domains, you must create a Bootstrap object for each
Oracle Tuxedo domain you want to access.

Note: Third-party client ORBs can also use the CORBA Interoperable Naming Service (INS)
mechanism to gain access to an Oracle Tuxedo domain and its services. CORBA INS allows
third-party client ORBs to use their ORB’s resolve_initial_references() function to
access CORBA services provided by the Oracle Tuxedo domain and use stubs generated from
standard OMG IDL to act on the instances returned from the domain. For more information
about using the Interoperable Naming Service, see the CORBA Programming Reference.

Resolving Initial References to the FactoryFinder Object
The CORBA client application must obtain initial references to the environmental objects that provide
services for the CORBA application. The Bootstrap object’s resolve_initial_references
operation can be called to obtain references to the FactoryFinder, InterfaceRepository,
SecurityCurrent, TransactionCurrent, NotificationService, Tobj_SimpleEventsService, and
NameService environmental objects. The argument passed to the operation is a string containing the
name of the desired object reference. You need to get initial references only for the environmental
objects you plan to use in your CORBA client application.

The following C++ and Java examples show how to use the Bootstrap object to resolve initial
references to the FactoryFinder object:

C++

//Resolve Factory Finder
CORBA::Object_var var_factory_finder_oref =
bootstrap.resolve_initial_references
 (“FactoryFinder”);

Step 4 : Wr i t ing the CORBA C l i ent App l i cat ion

Creating CORBA Client Applications 2-9

Tobj::FactoryFinder_var var_factory_finder_ref = Tobj::FactoryFinder::_narrow
 (factory_finder_oref.in());

Java

//Resolve Factory Finder
org.omg.CORBA.Object off = bootstrap.resolve_initial_references
 (“FactoryFinder”);
FactoryFinder ff=FactoryFinderHelper.narrow(off);

Using the FactoryFinder Object to Get a Factory
CORBA client applications get object references to CORBA objects from factories. A factory is any
CORBA object that returns an object reference to another CORBA object and registers itself as a
factory. The CORBA client application invokes an operation on a factory to obtain an object reference
to a CORBA object of a specific type. To use factories, the CORBA client application must be able to
locate the factory it needs. The FactoryFinder object serves this purpose. For information about the
function of the FactoryFinder object, see CORBA Client Application Development Concepts.

The FactoryFinder object has the following methods:

find_factories()

Returns a sequence of factories that match the input key exactly.

find_one_factory()

Returns one factory that matches the input key exactly.

find_factories_by_id()

Returns a sequence of factories whose ID field in the name component matches the input
argument.

find_one_factory_by_id()

Returns one factory whose ID field in the factory’s CORBA name component matches the input
argument.

The following C++ and Java examples show how to use the FactoryFinder
find_one_factory_by_id method to get a factory for the Registrar object used in the CORBA
client application for the Basic sample applications:

C++

CORBA::Object_var var_registrar_factory_oref = var_factory_finder_ref->
 find_one_factory_by_id(UniversityB::_tc_RegistrarFactory->id()
);

2-10 Creating CORBA Client Applications

UniversityB::RegistrarFactory_var var_RegistrarFactory_ref =
 UniversityB::RegistrarFactory::_narrow(
 var_RegistrarFactory_oref.in()
);

Java

org.omg.CORBA.Object of = FactoryFinder.find_one_factory_by_id
 (UniversityB.RegistrarFactoryHelper.id());
UniversityB.RegistrarFactory F = UniversityB.RegistrarFactoryHelper.narrow(of);

Using a Factory to Get a CORBA Object
CORBA client applications call the factory to get an object reference to a CORBA object. The CORBA
client applications then invoke operations on the CORBA object by passing it a pointer to the factory
and any arguments that the operation requires.

The following C++ and Java examples illustrate getting the factory for the Registrar object and then
invoking the get_courses_details() method on the Registrar object:

C++

UniversityB::Registrar_var var_Registrar = var_RegistrarFactory->
 find_Registrar();
UniversityB::CourseDetailsList_var course_details_list = Registrar_oref->
 get_course_details(CourseNumberList);

Java

UniversityB.Registrar gRegistrarObjRef = F.find_registrar();
gRegistrarObjRef.get_course_details(selected_course_numbers);

Step 5: Building the CORBA Client Application
The final step in the development of the CORBA client application is to produce the executable for the
client application. To do this, you need to compile the code and link against the client stub.

When creating CORBA C++ client applications, use the buildobjclient command to construct a
CORBA client application executable. The command combines the client stubs for interfaces that use
static invocation, and the associated header files with the standard Oracle Tuxedo libraries to form a
client executable. For the syntax of the buildobjclient command, see the Oracle Tuxedo
Command Reference.

Serve r App l i cat i ons Ac t ing as C l i ent App l i cat ions

Creating CORBA Client Applications 2-11

Server Applications Acting as Client Applications
To process a request from a CORBA client application, the CORBA server application may need to
request processing from another server application. In this situation, the CORBA server application is
acting as a CORBA client application.

To act as a CORBA client application, the CORBA server application must obtain a Bootstrap object
for the current Oracle Tuxedo domain. The Bootstrap object for the CORBA server application is
already available via TP::Bootstrap (for CORBA C++ client applications). The CORBA server
application then uses the FactoryFinder object to locate a factory for the CORBA object that can
satisfy the request from the CORBA client application.

Using Java2 Applets
The CORBA environment in the Oracle Tuxedo product supports Java2 applets as clients. To run Java2
applets, you need to install the Java Plug-In product from Sun Microsystems, Inc. The Java Plug-in
runs Java applets in an HTML page using Sun’s Java Virtual Machine (JVM).

Before downloading the Java Plug-in kit from the Sun Web site, verify whether or not the Java Plug-In
is already installed on your machine.

Netscape Navigator

In Netscape Navigator, choose the About Plug-Ins option from the Help menu in the browser window.
The following will appear if the Java Plug-In is installed:

application/x-java-applet;version 1.2

Internet Explorer

From the Start menu in Windows, select the Programs option. If the Java Plug-In is installed, a Java
Plug-In Control Panel option will appear.

If the Java Plug-In is not installed, you need to download and install the JDK1.2 plug-in
(jre12-win32.exe) and the HTML converter tool (htmlconv12.zip). You can obtain both these
products from java.sun.com/products/plugin.

You also need to read the Java Plug-In HTML Specification located at
java.sun.com/products/plugin/1.2/docs. This specification explains the changes Web page
authors need to make to their existing HTML code to have existing JDK 1.2 applets run using the Java
Plug-In rather that the brower’s default Java run-time environment.

Write your Java applet. Use the following command to intialize the ORB from the Java applet:

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init (this,null);

2-12 Creating CORBA Client Applications

To automatically launch the Java Plug-In when Internet Explorer or Netscape Navigator browses the
HTML page for your applet, use the OBJECT tag and the EMBED tag in the HTML specification. If you
use the HTML Converter tool to convert your applet to HTML, these tags are automatically inserted.
For more information about using the OBJECT and EMBED tags, see
java.sun.com/products/plugin/1.2/docs/tags.html.

Creating CORBA Client Applications 3-1

C H A P T E R 3

Using the Dynamic Invocation Interface

This topic includes the following sections:

When to Use DII

DII Concepts

Summary of the Development Process for DII

Step 1: Loading the CORBA Interfaces into the Interface Repository

Step 2: Obtaining the Object Reference for the CORBA Object

Step 3: Creating a Request Object

Step 4: Sending a DII Request and Retrieving the Results

Step 5: Deleting the Request

Step 6: Using the Interface Repository with DII

The information in this topic applies to CORBA C++client applications.

For an overview of the invocation types and DII, see Static and Dynamic Invocation.

For a complete description of the CORBA member functions mentioned in this topic, see the CORBA
Programming Reference.

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA Java client
and Oracle Tuxedo CORBA Java client ORB text references, associated code samples, should

3-2 Creating CORBA Client Applications

only be used to help implement/run third party Java ORB libraries, and for programmer
reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

When to Use DII
There are good reasons to use either static or dynamic invocation to send requests from the CORBA
client application. You may find you want to use both invocation types in the same CORBA client
application. To choose an invocation type, you need to understand the advantages and disadvantages
of DII.

One of the major differences between static invocation and dynamic invocation is that, while both
support synchronous and one-way communication, only dynamic invocation supports deferred
synchronous communication.

In synchronous communication, the CORBA client application sends a request and waits until a
response is retrieved; the CORBA client application cannot do any other work while it is waiting for
the response. In deferred synchronous communication, the CORBA client application sends the
request and is free to do other work. Periodically, the CORBA client application checks to see if the
request has completed; when the request has completed, the CORBA client application makes use of
the result of that request.

In addition, DII enables a CORBA client application to invoke a method on a CORBA object whose type
was unknown at the time the CORBA client application was written. This contrasts with static
invocation, which requires that the CORBA client application include a client stub for each type of
CORBA object the CORBA client application intends to invoke. However, DII is more difficult to
program (your code has to do the work of a client stub).

A CORBA client application can use DII to obtain better performance. For example, the CORBA client
application can send multiple deferred synchronous requests at the same time and can handle the
completions as they occur. If the requests go to different server applications, this work can be done in
parallel. You cannot do this when you are using synchronous client stubs.

Note: The client stubs have optimizations, that allow the client stubs to achieve quicker response
time than is achieved with DII when sending a single request and immediately blocking to get
the response for that request.

DII is purely an interface to the CORBA client application; static and dynamic invocations are
identical from a CORBA server application’s point of view.

DI I Concepts

Creating CORBA Client Applications 3-3

DII Concepts
DII frequently offers more than one way to accomplish a task, the trade-off being programming
simplicity versus performance. This section describes the high-level concepts you need to understand
to use DII. Details, including code examples, are provided later in this topic.

The concepts presented in this section are as follows:

Request objects

Request sending options

Reply receiving options

Request Objects
A request object represents one invocation on one method of a CORBA object. If you want to make two
invocations on the same method, you need to create two request objects.

To invoke a method, you need an object reference to the CORBA object that contains the method. You
use the object reference to create a request object, populate the request object with arguments, send
the request, wait for the reply, and obtain the result from the request.

You can create a request object in the following ways:

Use the CORBA::Object::_request member function.

Use the CORBA::Object::_request member function to create an empty request object
specifying only the interface name you intend to invoke in the request (for example,
get_course_details). Once the request object is created, the arguments, if there are any,
must be added before the request can be sent to the CORBA server application. You invoke the
CORBA::NVList::add_value member function for each argument required by the method
you intend to invoke.

You must also specify the type of the request’s result using the CORBA::Request::result
member function. For performance reasons, the messages exchanged between Object Request
Brokers (ORBs) do not contain type information. By specifying a place holder for the result
type, you give the ORB the information it needs to properly extract the result from the reply.
Similarly, if the method you are invoking can raise user exceptions, you must add a place holder
for exceptions before sending the request object.

Use the CORBA::Object::_create_request member function.

When you use the CORBA::Object:: _create_request member function to create a
request object, you pass all the arguments required to make the request and to specify the

3-4 Creating CORBA Client Applications

types of the result and user exceptions, if there are any, that the request may return. Using this
member function, you create an empty NVList, add arguments to the NVList one at a time, and
create the request object, passing the completed NVList as an argument to the request. The
potential advantage of the CORBA::Object::_create_request member function is
performance. You can reuse the arguments in multiple CORBA::ORB::_create_request
calls if you invoke the same method on multiple target objects.

For a complete description of the CORBA member functions, see the CORBA Programming
Reference.

Options for Sending Requests
Once you have created and populated a request object with arguments, a result type, and exception
types, you send the request to the CORBA object. There are several ways to send a request:

The simplest way is to call the CORBA::Request::invoke member function, which blocks
until the reply message is retrieved.

More complex, but not blocking, is to use the CORBA::Request::send_deferred member
function.

If you want to invoke multiple CORBA requests in parallel, use the
CORBA::ORB::send_multiple_requests_deferred member function. It takes a
sequence of request objects.

Use the CORBA::Request::send_oneway member function if, and only if, the CORBA
method has been defined as oneway in the OMG IDL file.

You can invoke multiple oneway methods in parallel with the ORB’s
CORBA::ORB::send_multiple_requests_oneway member function.

Note: When using the CORBA::Request::send_deferred member function, the invocation on
the request object acts synchronously when the target object is in the same address space as
the CORBA client application issuing the invocation. As a result of this behavior, calling the
CosTransaction::Current::suspend operation does not raise the
CORBA::BAD_IN_ORDER exception, because the transaction has completed.

For a complete description of the CORBA member functions, see the CORBA Programming
Reference.

Options for Receiving the Results of Requests
If you send a request using the invoke method, there is only one way to get the result: use the request
object’s CORBA::Request::env member function to test for an exception; and if there is not

Summary o f the Deve l opment P rocess fo r D I I

Creating CORBA Client Applications 3-5

exception, extract the NVList from the request object using the CORBA::Request::result
member function.

If you send a request using the deferred synchronous method, you can use any of the following member
functions to get the result:

CORBA::ORB::poll_response

This member function determines whether a request has completed and is ready to be
processed. This member function does not block. If the request is ready, the CORBA client
application has to use the get_response() or get_next_response() member functions
to process the response. Use this member function when you don’t care about the order in
which responses are processed, you want the CORBA client application to process other
requests while waiting for a specific response, or you want to impose a timeout.

CORBA::ORB::poll_next_response

This member function indicates whether a response for any outstanding request is ready to be
processed. If the request is ready, the CORBA client application has to use the
get_response() or get_next_response() member functions to process the response. Use
this member function when the order in which requests are processed is not important and you
want the CORBA client application to process other requests while waiting for a specific
response.

CORBA::ORB::get_response

This member function blocks until the response for the specific request is completed and
processed. Use this member function when you want to process the requests for outstanding
requests in a particular order.

CORBA::ORB::get_next_response

This member function blocks until a response for any outstanding requests are completed and
processed. Use this member function when the order in which requests are processed is not
important.

If you used the CORBA::Request::send_oneway member function, there is no result.

For a complete description of the CORBA member functions, see the CORBA Programming
Reference.

Summary of the Development Process for DII
The steps for using DII in client applications are as follows:

3-6 Creating CORBA Client Applications

The following sections describe these steps in detail and provide C++ code examples.

Step 1: Loading the CORBA Interfaces into the Interface
Repository

Before you can create CORBA client applications that use DII, the interfaces of the CORBA object
need to be loaded into the Interface Repository. If the interfaces of a CORBA object are not loaded in
the Interface Repository, they do not appear in the Oracle Application Builder. If a desired CORBA
interface does not appear in the Services window, use the idl2ir command to load the OMG IDL
that defines the CORBA object into the Interface Repository. The syntax for the idl2ir command is
as follows:

idl2ir [-f repositoryfile.idl] file.idl

Step Description

1 Load the CORBA interfaces into the Interface Repository.

2 Obtain an object reference for the CORBA object on which you
want to invoke methods.

3 Create a request object for the CORBA object.

4 Send the DII request and retrieve the results.

5 Delete the request.

6 Use the Interface Repository with DII.

Option Description

-f repositoryfile Directs the command to load the OMG IDL files for the CORBA
interface into the specified Interface Repository. Specify the name
of the Interface Repository in the Oracle Tuxedo domain that the
CORBA client application will access.

file.idl Specifies the OMG IDL file containing definitions for the CORBA
interface.

Step 2 : Obta in ing the Ob jec t Re fe rence fo r the CORBA Ob jec t

Creating CORBA Client Applications 3-7

For a complete description of the idl2ir command, see the Oracle Tuxedo Command Reference.

Step 2: Obtaining the Object Reference for the CORBA
Object

Use the Bootstrap object to get a FactoryFinder object. Then use the FactoryFinder object to get a
factory for the CORBA object you want to access from the DII request. For an example of using the
Boostrap and FactoryFinder objects to get a factory, see Step 4: Writing the CORBA Client Application.

Step 3: Creating a Request Object
When your CORBA client application invokes a method on a CORBA object, you create a request for
the method invocation. The request is written to a buffer and sent to the CORBA server application.
When your CORBA client application uses client stubs, this processing occurs transparently. Client
applications that want to use DII must create a request object and must send the request.

Using the CORBA::Object::_request Member Function
The following C++ code example illustrates how to use the CORBA::Object::_request member
function:

Boolean aResult;
CORBA::ULong long1 = 42;
CORBA::Any in_arg1;
CORBA::Any &in_arg1_ref = in_arg1;

in_arg1 <<= long1;

// Create the request using the short form
Request_ptr reqp = anObj->_request(“anOp”);

// Use the argument manipulation helper functions
reqp->add_in_arg() <<= in_arg1_ref;

// We want a boolean result
reqp->set_return_type(_tc_boolean);

// Provide some place for the result
CORBA::Any::from_boolean boolean_return_in(aResult);
reqp->return_value() <<= boolean_return_in;

// Do the invoke
reqp->invoke();

3-8 Creating CORBA Client Applications

// No error, so get the return value
CORBA::Any::to_boolean boolean_return_out(aResult);
reqp->return_value() >>= boolean_return_out;

Using the CORBA::Object::create_request Member Function
When you use the CORBA::Object::create_request member function to create a request object,
you create an empty NVList and you add arguments to the NVList one at a time. You create the request
object, passing the completed NVList as an argument to the request.

Setting Arguments for the Request Object
The arguments for a request object are represented with an NVList object that stores named/value
objects. Methods are provided for adding, removing, and querying the objects in the list. For a
complete description of CORBA::NVList, see the CORBA Programming Reference.

Setting Input and Output Arguments with the CORBA::NamedValue Member
Function
The CORBA::NamedValue member function specifies a named/value object that can be used to
represent both input and output arguments for a request. The named/value objects are used as
arguments to the request object. The CORBA::NamedValue pair is also used to represent the result
of a request that is returned to the CORBA client application. The name property of a named/value
object is a character string, and the value property of a named/value object is represented by a CORBA
Any.

For a complete description of the CORBA::NamedValue member function, see the CORBA
Programming Reference.

Example of Using CORBA::Object::create_request Member Function
The following C++ code example illustrates how to use the CORBA::Object::create_request
member function:

CORBA::Request_ptr reqp;
CORBA::Context_ptr ctx;
CORBA::NamedValue_ptr boolean_resultp = 0;
Boolean boolean_result;
CORBA::Any boolean_result_any(CORBA::_tc_boolean, &
boolean_result);
CORBA::NVList_ptr arg_list = 0;
CORBA::Any arg;

Step 4 : Sending a D I I Request and Re t r i ev ing the Resu l ts

Creating CORBA Client Applications 3-9

// Get the default context
orbp->get_default_context(ctx);

// Create the named value pair for the result
(void) orbp->create_named_value(boolean_resultp);
CORBA::Any *tmpany = boolean_resultp->value();
*tmpany = boolean_result_any;

arg.replace(CORBA::_tc_long, &long_arg, CORBA_FALSE)

// Create the NVList
orbp->create_list(1, arg_list);

// Add an IN argument to the list
arg_list->add_value(“arg1”, arg, CORBA::ARG_IN);

// Create the request using the long form
anObj->_create_request (ctx,
 “anOp”,
 arg_list,
 boolean_resultp,
 reqp,
 CORBA::VALIDATE_REQUEST);
// Do the invoke
reqp->invoke();

CORBA::NamedValue_ptrresult_namedvalue;
Boolean aResult;
CORBA::Any *result_any;
// Get the result
result_namedvalue = reqp->result();
result_any = result_namedvalue->value();

// Extract the Boolean from the any
*result_any >>= aResult;

Step 4: Sending a DII Request and Retrieving the Results
You can invoke a request in several ways, depending on what kind of communication type you want to
use. This section describes how the CORBA member functions are used to send requests and retrieve
the results.

Synchronous Requests
If you want synchronous communication, the CORBA::Request::invoke member function sends
the request and waits for a response before it returns to the CORBA client application. Use the
CORBA::Request::result member function to return a reference to a named/value object that

3-10 Creating CORBA Client Applications

represents the return value. Once the results are retrieved, you read the values from the NVList stored
in the request.

Deferred Synchronous Requests
The nonblocking member function, CORBA::Request::send_deferred, is also provided for
sending requests. It allows the CORBA client application to send a request and then use the
CORBA::Request::poll_response member function to determine when the response is
available. The CORBA::Request::get_response member function blocks until a response is
available.

The following code example illustrates how to use the CORBA::Request::send_deferred,
CORBA::Request::poll_response, and CORBA::Request::get_response member
functions:

request->send_deferred ();

if (poll)
{
 for (int k = 0 ; k < 10 ; k++)
 {
 CORBA::Boolean done = request->poll_response();
 if (done)
 break;

 }
}
request->get_response();

Oneway Requests
Use the CORBA::Request::send_oneway member function to send a oneway request. Oneway
requests do not involve a response from the CORBA server application. For a complete description of
the CORBA::Request::send_oneway member function, see the CORBA Programming Reference.

The following code example illustrates how to use the CORBA::Request::send_oneway member
function:

request->send_oneway();

Multiple Requests
When a sequence of request objects is sent using the
CORBA::Request::send_multiple_requests_deferred member function, the

Step 4 : Sending a D I I Request and Re t r i ev ing the Resu l ts

Creating CORBA Client Applications 3-11

CORBA::ORB::poll_response, CORBA::ORB::poll_next_response,
CORBA::ORB::get_response, and CORBA::ORB::get_next_response member functions can
be used to retrieve the response the CORBA server application sends for each request.

The CORBA::ORB::poll_response and CORBA::ORB::poll_next_response member
functions can be used to determine if a response has been retrieved from the CORBA server
application. These member functions return a 1 if there is at least one response available, and a zero
if there are no responses available.

The CORBA::ORB::get_response and CORBA::ORB::get_next_response member functions
can be used to retrieve a response. If no response is available, these member functions block until a
response is retrieved. If you do not want your CORBA client application to block, use the
CORBA::ORB::poll_next_response member function to first determine when a response is
available, and then use the CORBA::ORB::get_next_response method to retrieve the result.

You can also send multiple oneway requests by using the
CORBA::Request::send_multiple_requests_oneway member function.

The following code example illustrates how to use the
CORBA::Request::send_multiple_requests_deferred,
CORBA::Request::poll_next_response, and CORBA::Request::get_next_response
member functions:

CORBA::Context_ptr ctx;
CORBA::Request_ptr requests[2];
CORBA::Request_ptr request;
CORBA::NVList_ptr arg_list1, arg_list2;
CORBA::ULong i, nreq;
CORBA::Long arg1 = 1;
Boolean aResult1 = CORBA_FALSE;
Boolean expected_aResult1 = CORBA_TRUE;
CORBA::Long arg2 = 3;
Boolean aResult2 = CORBA_FALSE;
Boolean expected_aResult2 = CORBA_TRUE

try
{
 orbp->get_default_context(ctx);

 populate_arg_list (&arg_list1, &arg1, &aResult1);

 nreq = 0;

 anObj->_create_request (ctx,
 “Multiply”,
 arg_list1,

3-12 Creating CORBA Client Applications

 0,
 requests[nreq++],
 0);

 populate_arg_list (&arg_list2, &arg2, &aResult2);

 anObj->_create_request (ctx,
 “Multiply”,
 arg_list2,
 0,
 requests[nreq++],
 0);

// Declare a request sequence variable...
CORBA::ORB::RequestSeq rseq (nreq, nreq, requests, CORBA_FALSE);

orbp->send_multiple_requests_deferred (rseq);
for (i = 0 ; i < nreq ; i++)

{
 requests[i]->get_response();
}

// Now check the results

if (aResult1 != expected_aResult1)
{
 cout << “aResult1=” << aResult1 << “ different than expected: “ <<
expected_aResult1;
}

if (aResult2 != expected_aResult2)
{
 cout << “aResult2=” << aResult2 << “ different than expected: “ <<
expected_aResult2;
}

aResult1 = CORBA_FALSE;
aResult2 = CORBA_FALSE;

// Using the same argument lists, multiply the numbers again.
// This time we intend to poll for response...

orbp->send_multiple_requests_deferred (rseq);

// Now poll for response...

for (i = 0 ; i < nreq ; i++)
{

Step 4 : Sending a D I I Request and Re t r i ev ing the Resu l ts

Creating CORBA Client Applications 3-13

// We will randomly poll maximum 10 times...
 for (int j = 0 ; j < 10 ; j++)
 {
 CORBA::Boolean done = requests[i]->poll_response();

 if (done) break;
 }
}
// Now actually get the response...
for (i = 0 ; i < nreq ; i++)
{
 requests[i]->get_response();
}

// Now check the results
if (aResult1 != expected_aResult1)
{
 cout << “aResult1=” << aResult1 << “ different than expected: “ <<
expected_aResult1
}
if (aResult2 != expected_aResult2)
{
 cout << “aResult2=” << aResult2 << “ different than expected: “ <<
expected_aResult2;
}

aResult1 = CORBA_FALSE;
aResult2 = CORBA_FALSE;

// Using the same argument lists, multiply the numbers again.
// Call get_next_response, and WAIT for a response.
orbp->send_multiple_requests_deferred (rseq);

// Poll until we get a response and then use get_next_response get it...
for (i = 0 ; i < nreq ; i++)
 {
 CORBA::Boolean res = 0;

 while (! res)
 {
 res = orbp->poll_next_response();
 }
 orbp->get_next_response(request);
 CORBA::release(request);
 }
// Now check the results
if (aResult1 != expected_aResult1)
{
 cout << “aResult1=” << aResult1 << “ different than expected: “ <<

3-14 Creating CORBA Client Applications

expected_aResult1;
}
if (aResult2 != expected_aResult2)
{
 cout << “aResult2=” << aResult2 << “ different than expected: “ <<
expected_aResult2;
}

static void populate_arg_list (
CORBA::NVList_ptr ArgList,
CORBA::Long * Arg1,
CORBA::Long * Result)
{
CORBA::Any any_arg1;
CORBA::Any any_result;

(* ArgList) = 0;
orbp->create_list(3, *ArgList);

any_arg1 <<= *Arg1;
any_result.replace(CORBA::_tc_boolean, Result, CORBA_FALSE);

(*ArgList)->add_value(“arg1”, any_arg1, CORBA::ARG_IN);
(*ArgList)->add_value(“result”, any_result, CORBA::ARG_OUT);

return;

}

Step 5: Deleting the Request
Once you have been notified that the request has successfully completed, you need to decide if you
want to delete the existing request, or reuse portions of the request in the next invocation.

To delete the entire request, use the CORBA::Release(request) member function on the request
to be deleted. This operation releases all memory associated with the request. Deleting a request that
was issued using the deferred synchronous communication type causes that request to be canceled if
it has not completed.

Step 6: Using the Interface Repository with DII
A CORBA client application can create, populate, and send requests for objects that were not known
to the CORBA client application when it was built. To do this, the CORBA client application uses the

Step 6 : Us ing the In te r face Repos i to r y w i th D I I

Creating CORBA Client Applications 3-15

Interface Repository to retrieve information needed to create and populate the requests. The CORBA
client application uses DII to send the requests, since it does not have client stubs for the interfaces.

Although this technique is useful for invoking operations on a CORBA object whose type is unknown,
performance becomes an issue because of the overhead interaction with the Interface Repository. You
might consider using this type of DII request when creating a CORBA client application that browses
for objects, or when creating a CORBA client application that is an administration tool.

The steps for using the Interface Repository in a DII request are as follows:

1. Set ORB_INCLUDE_REPOSITORY in CORBA.h to the location of the Interface Repository file in
your Oracle Tuxedo system.

2. Use the Bootstrap object to obtain the InterfaceRepository object, which contains a reference
to the Interface Repository in a particular Oracle Tuxedo domain. Once the reference to the
Interface Repository is obtained, you can navigate the Interface Repository from the root.

3. Use the CORBA::Object::_get_interface member function to communicate with the
CORBA server application that implements the desired CORBA object.

4. Use CORBA::InterfaceDef_ptr to get the definition of the CORBA interface that is stored
in the Interface Repository.

5. Locate the OperationDescription for the desired operation in the
FullInterfaceDescription operations.

6. Retrieve the repository ID from the OperationDescription.

7. Call CORBA::Repository::lookup_id using the repository ID returned in the
OperationDescription to look up the OperationDef in the Interface Repository. This call
returns the contained object.

8. Narrow the contained object to an OperationDef.

9. Use the CORBA::ORB::create_operation_list member function, using the
OperationDef argument, to build an argument list for the operation.

10. Set the argument value within the operation list.

11. Send the request and retrieve the results as you would any other request. You can use any of
the options described in this topic to send a request and to retrieve the results.

3-16 Creating CORBA Client Applications

Creating CORBA Client Applications 4-1

C H A P T E R 4

Handling Exceptions

This topic describes how CORBA C++ client applications handle CORBA exceptions.

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA Java client
and Oracle Tuxedo CORBA Java client ORB text references, associated code samples, should
only be used to help implement/run third party Java ORB libraries, and for programmer
reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

CORBA Exception Handling Concepts
CORBA defines the following types of exceptions:

System exceptions, which are general errors, such as running out of memory and
communication failures. System exceptions include exceptions raised by the Object Request
Broker (ORB). The CORBA specification defines a set of system exceptions that can be raised
when errors occur in the processing of a request from a CORBA client application.

User exceptions, which are exceptions triggered by an object, where the exception contains
user-defined data. When you define your CORBA object’s interface in OMG IDL, you can specify
the user exceptions that the object may raise.

The following sections describe how each type of CORBA client application handles exceptions.

4-2 Creating CORBA Client Applications

CORBA System Exceptions
Table 4-1 lists the CORBA system exceptions.

Table 4-1 CORBA System Exceptions

Exception Name Description

BAD_CONTEXT An error occurred while processing context objects.

BAD_INV_ORDER Routine invocations are out of order.

BAD_OPERATION Invalid operation.

BAD_PARAM An invalid parameter was passed.

BAD_TYPECODE Invalid typecode.

COMM_FAILURE Communication failure.

DATA_CONVERSION Data conversion error.

FREE_MEM Unable to free memory.

IMP_LIMIT Implementation limit violated.

INITIALIZE ORB initialization failure.

INTERNAL ORB internal error.

INTF_REPOS An error occurred while accessing the Interface
Repository.

INV_FLAG Invalid flag was specified.

INV_IDENT Invalid identifier syntax.

INV_OBJREF Invalid object reference was specified.

MARSHAL Error marshaling parameter or result.

NO_IMPLEMENT Operation implementation not available.

NO_MEMORY Dynamic memory allocation failure.

NO_PERMISSION No permission for attempted operation.

CORBA C++ Cl ient App l i cat ions

Creating CORBA Client Applications 4-3

CORBA C++ Client Applications
Since both system and user exceptions require similar functionality, the SystemException and
UserException classes are derived from the common Exception class. When an exception is
raised, your CORBA client application can narrow from the Exception class to a specific
SystemException or UserException class. The C++ Exception inheritance hierarchy is shown
in Figure 4-1.

NO_RESOURCES Insufficient resources to process request.

NO_RESPONSE Response to request not yet available.

OBJ_ADAPTER Failure detected by object adapter.

OBJECT_NOT_EXIST Object is not available.

PERSIST_STORE Persistent storage failure.

TRANSIENT Transient failure.

UNKNOWN Unknown result.

Table 4-1 CORBA System Exceptions (Continued)

Exception Name Description

4-4 Creating CORBA Client Applications

Figure 4-1 C++ Exception Inheritance Hierarchy

The Exception class provides the following public operations:

copy constructor

destructor

_narrow

The copy constructor and destructor operations automatically manage the storage associated
with the exception.

The _narrow operation allows your CORBA client application to catch any type of exception and then
determine its type. The exception argument passed to the _narrow operation is a pointer to the
base class Exception. The _narrow operation accepts a pointer to any Exception object. If the
pointer is of type SystemException, the narrow() operation returns a pointer to the exception.
If the pointer is not of type SystemException, the narrow() operation returns a Null pointer.

Unlike the _narrow operation on object references, the _narrow operation on exceptions returns
a suitably typed pointer to the same exception argument, not a pointer to a new exception. Therefore,
you do not free a pointer returned by the _narrow operation. If the original exception goes out of
scope or is destroyed, the pointer returned by the _narrow operation is no longer valid.

Note: The Oracle Tuxedo CORBA sample applications do not use the _narrow operation.

Exception

UserException SystemException

User-Defined
Exceptions Standard Exceptions

CORBA C++ Cl ient App l i cat ions

Creating CORBA Client Applications 4-5

Handling System Exceptions
The CORBA C++ client applications in the Oracle Tuxedo sample applications use the standard C++
try-catch exception handling mechanism to raise and catch exceptions when error conditions occur,
rather than testing status values to detect errors. This exception-handling mechanism is also used to
integrate CORBA exceptions into CORBA client applications. In C++, catch clauses are attempted
in the order specified, and the first matching handler is called.

The following example from the CORBA C++ client application in the Basic sample application shows
printing an exception using the << operator.

Note: Throughout this topic, bold text is used to highlight the exception code within the example.

try{

//Initialize the ORB
CORBA::ORB* orb=CORBA::ORB_init(argc, argv, ORBid);

//Get a Bootstrap Object
Tobj_Bootstrap* bs= new Tobj_Bootstrap(orb, “//host:port”);

//Resolve Factory Finder
CORBA::Object_var var_factory_finder_oref = bs->
 resolve_initial_reference(“FactoryFinder”);
Tobj::FactoryFinder_var var_factory_finder_ref = Tobj::FactoryFinder::_narrow
 (var_factory_finder_oref.in());

catch(CORBA::Exception& e) {
 cerr <<e.get_id() <<end1;
}

User Exceptions
User exceptions are generated from the user-written OMG IDL file in which they are defined. When
handling exceptions, the code should first check for system exceptions. System exceptions are
predefined by CORBA, and often the application cannot recover from a system exception. For
example, system exceptions may signal problems in the network transport or signal internal problems
in the ORB. Once you have tested for the system exceptions, test for specific user exceptions.

The following C++ example shows the OMG IDL file that declares the TooManyCredits user
exception inside the Registar interface. Note that exceptions can be declared either within a
module or within an interface.

exception TooManyCredits
{

4-6 Creating CORBA Client Applications

 unsigned short maximum_credits;
};

interface Registrar

NotRegisteredList register_for_courses(
 in StudentId student,
 in CourseNumberList courses
) raises (
 TooManyCredits
);

The following C++ code example shows how a TooManyCredits user exception would work within
the scope of a transaction for registering for classes:

//Register a student for some course

try {
 pointer_registrar_reference->register_for_courses
 (student_id, course_number_list);

catch (UniversityT::TooManyCredits& e) {
 cout <<"You cannot register for more than"<< e.maximum_credits
 <<"credits."<<end1;
}

