
Oracle® Tuxedo
Programming an OracleTuxedo ATMI Application Using FML

10g Release 3 (10.3)

January 2009

Tuxedo Programming an OracleTuxedo ATMI Application Using FML, 10g Release 3 (10.3)

Copyright © 1996, 2009, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Programming an Oracle Tuxedo ATMI Application Using FML iii

Contents

1. Introduction to FML Programming
What Is FML? . 1-1

How Does FML Fit into the Oracle Tuxedo System?. 1-2

Oracle Tuxedo Typed Buffers. 1-2

FML Terminology. 1-2

2. FML and VIEWS Features
Dividing Records into Fields: Data Structures Versus Fielded Buffers 2-1

Using Structures to Divide Records into Fields. 2-2

Using Fielded Buffers to Divide Records into Fields . 2-3

How Fielded Buffers Are Implemented with FML. 2-3

FML Features . 2-4

What Is a Fielded Buffer? . 2-5

Supported Field Types . 2-5

Type int in VIEWS. 2-7

Type dec_t in VIEWS . 2-7

Field Name-to-Identifier Mappings . 2-7

Run Time: Field Table Files. 2-8

Compile Time: Header Files . 2-8

Fielded Buffer Indexes . 2-9

Multiple Occurrence Fields in a Fielded Buffer . 2-9

Boolean Expressions and Fielded Buffers . 2-9

iv Programming an Oracle Tuxedo ATMI Application Using FML

VIEWS Features. 2-10

Multiple Occurrence Fields in VIEWS. 2-12

Error Handling for FML Functions . 2-12

3. Setting Up Your Environment for FML and VIEWS
Environment Requirements for FML and VIEWS. 3-1

FML Directory Structure . 3-1

Environment Variables Used by FML and VIEWS. 3-2

VIEW32 Support for MBSTRING . 3-4

4. Defining and Using Fields
Preparing to Use FML and VIEWS . 4-1

Defining Fields for FML and VIEWS . 4-1

Defining Field Names and Identifiers . 4-2

Creating Field Table Files . 4-3

Field Table Example . 4-4

Mapping Field Names to Field IDs . 4-4

See Also . 4-5

Loading Field Tables . 4-5

See Also . 4-6

Converting Field Tables to Header Files . 4-6

Examples of Converting Field Tables to Header Files . 4-7

Example 1 . 4-7

Example 2 . 4-7

Example 3 . 4-7

Overriding Environment Variables to Run mkfldhdr . 4-7

Mapping Fields to C Structures and COBOL Records . 4-8

What Is the VIEWS Facility?. 4-8

Programming an Oracle Tuxedo ATMI Application Using FML v

Structure of VIEWS. 4-8

Creating Viewfiles . 4-9

Creating View Descriptions . 4-9

Specifying flag Options in a View Description . 4-11

Using NULL Values in VIEWS. 4-14

Compiling Viewfiles. 4-15

Using Header Files Compiled with viewc . 4-16

Using COBOL COPY Files Created by the View Compiler . 4-16

Displaying Viewfile Information After Compilation . 4-17

5. Field Manipulation Functions
About This Section . 5-2

FML and VIEWS: 16-bit and 32-bit Interfaces . 5-2

Definitions of the FML Function Parameters . 5-3

Field Identifier Mapping Functions . 5-4

Fldid. 5-4

Fname . 5-5

Fldno . 5-5

Fldtype . 5-5

Ftype . 5-6

Fmkfldid . 5-7

Buffer Allocation and Initialization . 5-7

Fielded . 5-8

Fneeded . 5-9

Fvneeded . 5-10

Finit . 5-10

Falloc . 5-10

Ffree. 5-11

vi Programming an Oracle Tuxedo ATMI Application Using FML

Fsizeof . 5-12

Funused . 5-13

Fused . 5-13

Frealloc . 5-13

Functions for Moving Fielded Buffers. 5-15

Fmove . 5-15

Fcpy. 5-16

Field Access and Modification Functions . 5-17

Fadd. 5-17

Fappend . 5-19

Fchg. 5-20

Fcmp . 5-22

Fdel . 5-23

Fdelall . 5-24

Fdelete . 5-24

Ffind . 5-25

Ffindlast. 5-26

Ffindocc. 5-27

Fget . 5-28

Fgetalloc . 5-29

Fgetlast . 5-30

Fnext . 5-31

Fnum . 5-32

Foccur . 5-33

Fpres . 5-33

Fvals and Fvall . 5-34

Buffer Update Functions . 5-35

Fconcat . 5-35

Programming an Oracle Tuxedo ATMI Application Using FML vii

Fjoin. 5-36

Fojoin. 5-36

Fproj. 5-37

Fprojcpy. 5-38

Fupdate . 5-38

VIEWS Functions . 5-39

Fvftos . 5-39

Fvstof . 5-41

Fvnull. 5-41

Fvsinit . 5-42

Fvopt . 5-42

Fvselinit . 5-43

Conversion Functions . 5-43

CFadd. 5-44

CFchg. 5-45

CFget . 5-46

CFgetalloc . 5-46

CFfind . 5-47

CFfindocc . 5-48

Converting Strings . 5-49

Ftypcvt . 5-50

Conversion Rules. 5-51

Converting FLD_MBSTRING Fields . 5-54

Fmbpack32 . 5-56

Fmbunpack32 . 5-57

tpconvfmb32 . 5-57

tpconvvmb32 . 5-57

Indexing Functions . 5-57

viii Programming an Oracle Tuxedo ATMI Application Using FML

Fidxused . 5-58

Findex . 5-58

Frstrindex . 5-58

Funindex . 5-59

Example of Sending a Fielded Buffer Without an Index 5-59

Input/Output Functions . 5-60

Fread and Fwrite . 5-60

Fchksum . 5-61

Fprint and Ffprint . 5-61

Fextread. 5-62

Boolean Expressions of Fielded Buffers . 5-63

Definitions of Boolean Expressions . 5-63

Field Names and Types . 5-65

Strings . 5-65

Constants . 5-65

How a Boolean Expression Is Converted for Evaluation. 5-66

Description of Boolean Primary Expressions . 5-66

Description of Boolean Expression Operators . 5-67

Unary Operators Used in Boolean Expressions . 5-67

Multiplicative Operators Used in Boolean Expressions . 5-68

Additive Operators Used in Boolean Expressions . 5-68

Equality and Match Operators Used in Boolean Expressions 5-69

Relational Operators Used in Boolean Expressions . 5-69

Exclusive OR Operator Used in Boolean Expressions . 5-70

Logical AND Operator Used in Boolean Expressions . 5-70

Logical OR Operator Used in Boolean Expressions. 5-70

Sample Boolean Expressions . 5-70

Boolean Functions . 5-71

Programming an Oracle Tuxedo ATMI Application Using FML ix

Fboolco and Fvboolco . 5-71

Fboolpr and Fvboolpr . 5-72

Fboolev and Ffloatev, Fvboolev and Fvfloatev . 5-73

VIEW Conversion to and from Target Format. 5-74

Fvstot, Fvftos and Fcodeset . 5-74

6. FML and VIEWS Examples
VIEWS Examples . 6-1

Sample Viewfile . 6-1

Sample Field Table . 6-2

Sample Header File Produced by viewc . 6-2

Sample Header File Produced by mkfldhdr . 6-3

Sample COBOL COPY File . 6-3

Sample VIEWS Program. 6-4

Example of VIEWS in bankapp . 6-7

See Also. 6-7

FML Examples in bankapp. 6-7

A. FML Error Messages

x Programming an Oracle Tuxedo ATMI Application Using FML

Programming an Oracle Tuxedo ATMI Application Using FML 1-1

C H A P T E R 1

Introduction to FML Programming

This topic includes the following sections:

What Is FML?

How Does FML Fit into the Oracle Tuxedo System?

Oracle Tuxedo Typed Buffers

FML Terminology

What Is FML?
Field Manipulation Language, or FML, is a set of C language functions for defining and
manipulating storage structures called fielded buffers, which contain attribute-value pairs in
fields. The attribute is the field’s identifier, and the associated value represents the field’s data
content.

Fielded buffers provide an excellent structure for communicating parameterized data between
cooperating processes, by providing named access to a set of related fields. Programs that need
to communicate with other processes can use the FML software to provide access to fields
without concerning themselves with the structures that contain them.

FML also provides a facility called VIEWS that allows you to map fielded buffers to C structures
or COBOL records, and vice-versa. The VIEWS facility lets you perform lengthy manipulations
of data in structures rather than in fielded buffers; applications run faster if data is transferred to
structures for manipulation. Thus the VIEWS facility allows the data independence of fielded
buffers to be combined with the efficiency and simplicity of classic record structures.

1-2 Programming an Oracle Tuxedo ATMI Application Using FML

Two interfaces are available for FML and the VIEWS facility:

FML and VIEWS accommodate 16-bit field identifiers, field lengths, field occurrences,
and record lengths.

FML32 and VIEW32 accommodate 32-bit field identifiers, field lengths, field occurrences,
and record lengths. The type definitions, header files, function names, and command names
used in this interface include a “32” suffix.

How Does FML Fit into the Oracle Tuxedo System?
Within the Oracle Tuxedo system, FML functions are used to manipulate fielded buffers in the
context of ATMI applications.

Data entry programs written for the core portion of the Oracle Tuxedo system use FML functions;
these programs use fielded buffers to forward user data entered at a terminal to other processes.
If you write ATMI applications that receive input in fielded buffers from data entry programs,
you will need to use FML functions.

Even if you choose to develop your own applications programs for handling user input and output
or if programs are written to pass messages between processes, you may still decide to use FML
to deal with fielded buffers passed between these programs.

Oracle Tuxedo Typed Buffers
Typed buffers is a feature of the Oracle Tuxedo system that grew out of the FML idea of a fielded
buffer. Two of the standard buffer types delivered with the Oracle Tuxedo system are FML typed
buffers and VIEW typed buffers. One difference between the two is that Oracle Tuxedo VIEW
buffers can be totally unrelated to an FML fielded buffer.

In this text we show how a VIEW is a structured version of an FML record. In other documents,
such as Programming an Oracle Tuxedo ATMI Application Using C, we present VIEW as one of
several available Oracle Tuxedo buffer types.

FML Terminology
Field Identifier

A field identifier (fldid) is a tag for an individual data item in an FML record or fielded
buffer. The field identifier consists of the name of the field (a number) and the type of data
in the field.

FML Te rmino logy

Programming an Oracle Tuxedo ATMI Application Using FML 1-3

Fielded Buffer
A fielded buffer is a data structure in which each data item is accompanied by an
identifying tag (a field identifier) that includes the type of the data and a field number.

Field Types
FML fields and fielded buffers are typed. They can be any of the standard C language
types: short, long, float, double, and char. The following types are also supported:
string (a series of characters ending with a NULL character), carray (a character
array), mbstring (a multibyte character array—available in Tuxedo release 8.1 or later),
ptr (a pointer to a buffer), fml32 (an embedded FML32 buffer), and view32 (an
embedded VIEW32 buffer). The mbstring, ptr, fml32, and view32 types are supported
only for the FML32 interface. The corresponding types in COBOL are COMP-5, COMP-1,
COMP-2, and PIC X with the following exceptions: currently, no corresponding types in
COBOL exist for mbstring, ptr, fml32, and view32. A C packed decimal type is also
supported in VIEWS for integration with COBOL COMP-3.

VIEWS
VIEWS is a facility of the Field Manipulation Language that allows the exchange of data
between fielded buffers and C structures or COBOL records, by specifying mappings of
fields to members of structures/records. If extensive manipulations of fielded buffer
information are to be done, transferring the data to structures will improve performance.
Information in a fielded buffer can be extracted from the fields in the buffer and placed in
a structure using VIEWS functions, manipulated, and the updated values returned to the
buffer, again using VIEWS functions. VIEWS can also be used independently of FML,
particularly in support of COBOL records.

1-4 Programming an Oracle Tuxedo ATMI Application Using FML

Programming an Oracle Tuxedo ATMI Application Using FML 2-1

C H A P T E R 2

FML and VIEWS Features

This topic includes the following sections:

Dividing Records into Fields: Data Structures Versus Fielded Buffers

How Fielded Buffers Are Implemented with FML

FML Features

VIEWS Features

Error Handling for FML Functions

Dividing Records into Fields: Data Structures Versus
Fielded Buffers

Except under unusual conditions where a data record is a complete and indivisible entity, you
need to be able to break records into fields to be able to use or change the information the record
contains. In an ATMI environment, records can be divided into fields through either of the
following:

C language data structures or COBOL records

Fielded buffers

2-2 Programming an Oracle Tuxedo ATMI Application Using FML

Using Structures to Divide Records into Fields
One common way of subdividing records is with a structure that divides a contiguous area of
storage into fields. The fields are given names for identification; the kind of data carried in each
field is shown by a data type declaration.

For example, if a data item in a C language program is to contain information about an
employee’s identification number, name, address, and gender, it could be set up with a structure
such as the following:

struct S {

 long empid;

 char name[20];

 char addr[40];

 char gender;

};

Here the data type of the field named empid is declared to be a long integer, name and addr are
declared to be character arrays of 20 and 40 characters respectively, and gender is declared to be
a single character, presumably with a range of m or f.

If, in your C program, the variable p points to a structure of type struct S, the references
p−>empid, p−>name, p−>addr and p−>gender can be used to address the fields.

The COBOL COPY file for the same data structure would be as follows (the application would
supply the 01 line):

05 EMPID PIC S9(9) USAGE IS COMP-5.

05 NAME PIC X(20).

05 ADDR PIC X(40).

05 GENDER PIC X(01).

05 FILLER PIC X(03).

If, in your COBOL program, the 01 line is named MYREC, the references EMPID IN MYREC, NAME
IN MYREC, ADDR IN MYREC, and GENDER IN MYREC can be used to access the fields.

Although this method of representing data is widely used and is often appropriate, it has two
major potential disadvantages:

Any time the data structure is changed, all programs using the structure have to be
recompiled.

How F i e lded Buf fe rs A re Implemented wi th FML

Programming an Oracle Tuxedo ATMI Application Using FML 2-3

The size of the structure and the offsets of the component fields are all fixed, which often
results in wasted space, since (a) not all fields always contain a value, and (b) fields tend to
be sized to hold the largest likely entry.

Using Fielded Buffers to Divide Records into Fields
Fielded buffers provide an alternative method for subdividing a record into fields.

A fielded buffer is a data structure that provides associative access to the fields of a record; that
is, the name of a field is associated with an identifier that includes the storage location as well as
the data type of the field.

The main advantage of the fielded buffer is data independence. Fields can be added to the buffer,
deleted from it, or changed in length without forcing programs that reference the fields to be
recompiled. To achieve this data independence, fields are:

Referenced by an identifier rather than the fixed offset prescribed by record structures.

Accessed only through function calls.

Fielded buffers can be used throughout the ATMI environment as the standard method of
representing data sent between cooperating processes.

How Fielded Buffers Are Implemented with FML
Fielded buffers are created, updated, accessed, input, and output via Field Manipulation
Language (FML). FML provides:

A convenient and standard discipline for creating and manipulating fielded buffers.

Data independence to programs that make use of fielded buffers.

FML is implemented as a library of functions and macros that can be called from C programs. It
provides a separate set of functions for:

Creating, updating, accessing, and manipulating fielded buffers.

Converting data from one type to another upon input to (or output from) a fielded buffer
structure.

Transferring data between fielded buffers and C structures or COBOL records.

The last set of functions listed above constitutes the FML VIEWS software. VIEWS is a set of
functions that exchange data between FML fielded buffers and structures in C or COBOL

2-4 Programming an Oracle Tuxedo ATMI Application Using FML

language application programs. When a program receives a fielded buffer from another process,
the program has the choice of:

Operating on the buffer data directly in the buffer using FML function calls (this is not
available in COBOL).

Transferring the data from the fielded buffer to a structure using VIEWS functions, and
then operating on the data in the structure using normal C or COBOL statements.

If you need to perform lengthy manipulations on buffer data, the performance of your program
can be improved by transferring fielded buffer data to structures or records, and operating on the
data using normal C or COBOL statements. Then you can put the data back into a fielded buffer
(again using VIEWS functions), and send the buffer off to another process.

Before you can use VIEWS, you must set up your program such that it can recognize the format
of incoming fielded buffer data. You can do this setup task by using a set of view descriptions
kept in a cache on your system.

A view description is created and stored in a source viewfile. The view description maps fields
in fielded buffers to members in C structures or COBOL records. The source view descriptions
are compiled, and can then be used to map data transferred between fielded buffers and C
structures or COBOL records in a program.

By keeping view descriptions cached in a central file, you can increase the data independence of
your programs; you only need to change the view description(s) and recompile them to effect
changes in data format throughout an application that uses VIEWS.

FML Features
This topic includes the following sections:

What Is a Fielded Buffer?

Supported Field Types

Field Name-to-Identifier Mappings

Fielded Buffer Indexes

Multiple Occurrence Fields in a Fielded Buffer

Boolean Expressions and Fielded Buffers

What Is a F ie lded Buf fe r?

Programming an Oracle Tuxedo ATMI Application Using FML 2-5

What Is a Fielded Buffer?
A fielded buffer is a data structure that provides associative access to the fields of a record.

Each field in an FML fielded buffer is labeled with an integer that combines information about
the data type of the accompanying field with a unique identifying number. The label is called the
field identifier, or fldid. For variable-length items, the fldid is followed by a length indicator.

A buffer can be represented as a sequence of fldid/data pairs, with fldid/length/data triples for
variable-length items, as shown in the following diagram.

Figure 2-1 Fielded Buffer

In the header file that is included (with #include) whenever FML functions are used (fml.h or
fml32.h), field identifiers are defined (with typedef) as FLDID (or FLDID32 for FML32), field
value lengths as FLDLEN (FLDLEN32 for FML32), and field occurrence numbers as FLDOCC
(FLDOCC32 for FML32).

Supported Field Types
The supported field types are short, long, float, double, char, string, carray (character
array), mbstring (multibyte character array—available in Tuxedo release 8.1 or later), ptr
(pointer to a buffer), fml32 (an embedded FML32 buffer), and view32 (an embedded VIEW32
buffer). The mbstring, ptr, fml32, and view32 types are supported only for the FML32
interface. These types are included as #define statements in fml.h (or fml32.h), as shown in
the following listing.

Listing 2-1 Definitions of FML Field Types in fml.h and fml32.h

#define FLD_SHORT 0 /* short int */

#define FLD_LONG 1 /* long int */

#define FLD_CHAR 2 /* character */

#define FLD_FLOAT 3 /* single-precision float */

#define FLD_DOUBLE 4 /* double-precision float */

fldid data len fldidfldid data data

2-6 Programming an Oracle Tuxedo ATMI Application Using FML

#define FLD_STRING 5 /* string - null terminated */

#define FLD_CARRAY 6 /* character array */

#define FLD_PTR 9 /* pointer to a buffer */

#define FLD_FML32 10 /* embedded FML32 buffer */

#define FLD_VIEW32 11 /* embedded VIEW32 buffer */

#define FLD_MBSTRING 12 /* multibyte character array */

FLD_STRING, FLD_CARRAY, and FLD_MBSTRING are all arrays, but differ in the following way:

A FLD_STRING is a variable-length array of non-NULL characters terminated by a NULL.

A FLD_CARRAY or FLD_MBSTRING is a variable-length array of bytes, any of which may be
NULL.

Functions that add or change a field have a FLDLEN argument that must be filled in when you are
dealing with FLD_CARRAY or FLD_MBSTRING fields. The size of a string or carray is limited to
65,535 characters in FML, and 2 billion bytes for FML32.

It is not a good idea to store unsigned data types in fielded buffers. You should either convert all
unsigned short data to long or cast the data into the proper unsigned data type whenever you
retrieve data from fielded buffers (using the FML conversion functions).

Most FML functions do not perform type checking; they expect that the value you update or
retrieve from a fielded buffer matches its native type. For example, if a buffer field is defined to
be a FLD_LONG, you should always pass the address of a long value. The FML conversion
functions convert data from a user specified type to the native field type (and from the field type
to a user specified type) in addition to placing the data in (or retrieving the data from) the fielded
buffer.

The FLD_PTR field type makes it possible to embed pointers to application data in an FML32
buffer. Applications can add, change, access, and delete pointers to data buffers. The buffer
pointed to by a FLD_PTR field must be allocated using the tpalloc(3c) call. The FLD_PTR field
type is supported only in FML32.

The FLD_FML32 field type makes it possible to store an entire record as a single field in an FML32
buffer. Similarly, the FLD_VIEW32 field type allows an entire C structure to be stored as a single
field in an FML32 buffer. The FLD_FML32 and FLD_VIEW32 field types are supported only in
FML32.

F ie ld Name-to- Ident i f i e r Mappings

Programming an Oracle Tuxedo ATMI Application Using FML 2-7

Type int in VIEWS
In addition to the data types supported by most FML functions, VIEWS indirectly supports type
int in source view descriptions. When the view description is compiled, the view compiler
automatically converts any int types to either short or long types, depending on your machine.
For more information, see “VIEWS Features” on page 2-10.

Type dec_t in VIEWS
VIEWS also supports the dec_t packed decimal type in source view descriptions. This data type
is useful for transferring VIEW structures to COBOL programs. In a C program using the dec_t
type, the field must be initialized and accessed using the functions described in decimal(3c) in
the Oracle Tuxedo ATMI C Function Reference. Within the COBOL program, the field can be
accessed directly using a packed decimal (COMP-3) definition. Because FML does not support a
dec_t field, this field is automatically converted to the data type of the corresponding FML field
in the fielded buffer (for example, a string field) when converting from a VIEW to FML.

Field Name-to-Identifier Mappings
In the Oracle Tuxedo system, fields are usually referred to by their field identifier (fldid), an
integer. (Refer to “Defining Field Names and Identifiers” on page 4-2 for a detailed description
of field identifiers.) This allows you to reference fields in a program without using the field name,
which may change.

Identifiers are assigned (mapped) to field names through one of the following:

Field table files (which are ordinary UNIX files)

C language header (#include) files

A typical application might use one, or both of the above methods to map field identifiers to field
names.

In order for FML to access the data in fielded records, there must be some way for FML to access
the field name/identifier mappings. FML gets this information in one of two ways:

At run time, through UNIX field table files, and FML mapping functions

At compile time, through C header files

Field name/identifier mapping is not available in COBOL.

2-8 Programming an Oracle Tuxedo ATMI Application Using FML

Run Time: Field Table Files
Field name/identifier mappings can be made available to FML programs at run time through field
table files. It is the responsibility of the programmer to set two environment variables that tell
FML where the field name/identifier mapping table files are located.

The environment variable FLDTBLDIR contains a list of directories where field tables can be
found. The environment variable FIELDTBLS contains a list of the files in the table directories that
are to be used. For FML32, the environment variable names are FLDTBLDIR32 and
FIELDTBLS32.

Within application programs, the FML function Fldid() provides for a run-time translation of a
field name to its field identifier. Fname() translates a field identifier to its field name (see
Fldid(3fml) and Fname(3fml)). (The function names for FML32 are Fldid32 and Fname32.)
The first invocation of either function causes space in memory to be dynamically allocated for
the field tables and the tables to be loaded into the address space of the process. The space can be
recovered when the tables are no longer needed. (Refer to “Loading Field Tables” on page 4-5
for more information.)

This method should be used when field name/identifier mappings are likely to change throughout
the life of the application. This topic is covered in more detail in “Defining and Using Fields” on
page 4-1.

Compile Time: Header Files
Use mkfldhdr() (or mkfldhdr32()) to make header files out of field table files. These header
files are included (with #include) in C programs, and provide another way to map field names
to field identifiers: at compile time. For more information on mkfldhdr, mkfldhdr32(1), refer
to Oracle Tuxedo Command Reference.

Using field header files, the C preprocessor converts all field name references to field identifiers
at compile time; thus, you do not need to use the Fldid() or Fname() functions as you would
with the field table files described in the previous section.

If you always know the field names needed by your program, you can save some data space by
including your field table header files (with #include). The space saving allows your program
to get to the task at hand more quickly.

Because this method resolves mappings at compile time, however, it should not be used if the
field name/identifier mappings in the application are likely to change. For more information, see
“Defining and Using Fields” on page 4-1.

F ie lded Buf fe r Indexes

Programming an Oracle Tuxedo ATMI Application Using FML 2-9

Fielded Buffer Indexes
When a fielded buffer has many fields, access is expedited in FML by the use of an internal index.
The user is normally unaware of the existence of this index.

Fielded buffer indexes do, however, take up space in memory and on disk. When you store a
fielded buffer on disk, or transmit a fielded buffer between processes or between computers, you
can save disk space and/or transmittal time by first discarding the index.

The Funindex() function enables you to discard the index. When the fielded buffer is read from
disk (or received from a sending process), the index can be explicitly reconstructed with the
Findex() function.

Note that these space savings do not apply to memory. The Funindex() function does not
recover in-core memory used by the index of a fielded buffer.

For more information, refer to Funindex, Funindex32(3fml) or Findex, Findex32(3fml)
in Oracle Tuxedo ATMI FML Function Reference.

Multiple Occurrence Fields in a Fielded Buffer
Any field in a fielded buffer can occur more than once. Many FML functions take an argument
that specifies which occurrence of a field is to be retrieved or modified. If a field occurs more
than once, the first occurrence is numbered 0, and additional occurrences are numbered
sequentially. The set of all occurrences makes up a logical sequence, but no overhead is
associated with the occurrence number (that is, it is not stored in the fielded buffer).

If another occurrence of a field is added, it is added at the end of the set and is referred to as the
next highest occurrence. When an occurrence other than the highest is deleted, all higher
occurrences of the field are shifted down by one (for example, occurrence 6 becomes occurrence
5, 5 becomes 4, and so on).

Boolean Expressions and Fielded Buffers
The next action taken by an application program is frequently determined by the value of one or
more fields in a fielded buffer received (by the application) from another source, such as a user’s
terminal or a database record. FML provides several functions that create boolean expressions on
fielded buffers or VIEWs and determine whether a given buffer or VIEW meets the criteria
specified by the expression.

2-10 Programming an Oracle Tuxedo ATMI Application Using FML

Once you create a Boolean expression, it is compiled into an evaluation tree. The evaluation tree
is then used to determine whether a fielded buffer or VIEW matches the specified Boolean
conditions.

For instance, a program may read a data record into a fielded buffer (Buffer A), and apply a
Boolean expression to the buffer. If Buffer A meets the conditions specified by the Boolean
expression, then an FML function is used to update another buffer, Buffer B, with data from
Buffer A.

VIEWS Features
The VIEWS facility is particularly useful when a program does a lot of processing on the data in
a fielded buffer, either after the program has received the buffer or before the program sends the
buffer to another program.

Under such conditions, you may improve processing efficiency by using VIEWS functions to
transfer fielded buffer data from the buffer to a C structure before you manipulate it. Processing
efficiency is improved because C functions require less processing time than FML functions for
manipulating fields in a buffer. When you finish processing the data in the C structure, you can
transfer that data back to the fielded buffer before sending it to another program.

The VIEWS facility has the following features:

You can create source view descriptions that specify C structure-to-fielded buffer
mappings or COBOL record-to-fielded buffer mappings, and make possible the transfer of
data between structures and buffers.

The viewc or viewc32 view compiler is used to generate object view descriptions
(stored in binary files) that are interpreted by your application programs at run time. The
compiler also generates header files that can be used in C programs to define the structures
used in view descriptions, and optionally generates COPY files that can be used in
COBOL programs to define the records used in the view descriptions. For more
information about these view compilers, see viewc, viewc32(1) in Oracle Tuxedo
Command Reference.

A view disassembler is provided to translate object view descriptions into readable form
(that is, back into source view descriptions). The output of the disassembler can be re-input
to the view compiler.

Data transfers from C structures or COBOL records to fielded buffers can be done in any
one of four modes: FUPDATE, FJOIN, FOJOIN, or FCONCAT. These modes are similar to the
ones supported by the following FML functions: Fupdate, Fupdate32(3fml),

V IEWS Featu res

Programming an Oracle Tuxedo ATMI Application Using FML 2-11

Fjoin, Fjoin32(3fml), Fojoin, Fojoin32(3fml), and
Fconcat, Fconcat32(3fml).

At run time object view descriptions are read into a viewfile cache on demand, and remain
there until the cache is full. When the cache is full and an object view description that is
not in the cache is needed, the least recently accessed object view description is removed
from the cache to make room for the new one.

All types supported by FML can be used in view descriptions with the exception of
FLD_PTR, FLD_FML32, and FLD_VIEW32. In addition, integer and packed decimal are
supported.

When transferring data between fielded buffers and structures, the source data is
automatically converted to the type of the destination data; for instance, if a string field is
mapped to an integer member, the string is converted to an integer using Ftypcvt()
automatically. For more information, refer to Ftypcvt, Ftypcvt32(3fml) in Oracle
Tuxedo ATMI FML Function Reference.

Multiple field occurrences are supported.

User-specified and default NULL values in view descriptions are supported.

Functions are available for compiling and evaluating Boolean expressions against
application data in a VIEW.

A source viewfile is an ordinary text file that contains one or more source view descriptions.
Source viewfiles are used as input to a view compiler—viewc or viewc32—which compiles the
source view descriptions and stores them in object viewfiles. For more information on the view
compiler, refer to viewc, viewc32(1) in Oracle Tuxedo Command Reference.

The view compiler also creates C header files for object viewfiles. These header files can be
included in application programs to define the structures used in object view descriptions.

The view compiler optionally creates COBOL COPY files for object viewfiles. These COPY files
can be included in COPY programs to define the record formats used in object view descriptions.

NULL values are used to indicate empty members in a structure, and can be specified by the user
for each structure member in a viewfile. If the user does not specify a NULL value for a member,
default NULL values are used.

Note that a structure member containing the NULL value for that member is not transferred
during a structure-to-fielded buffer transfer.

2-12 Programming an Oracle Tuxedo ATMI Application Using FML

It is also possible to inhibit the transfer of data between a C or COBOL structure member and a
field in a fielded buffer, even though a mapping exists between them. This is specified in the
source viewfile.

The FML VIEWS functions are Fvstof(), Fvftos(), Fvnull(), Fvopt(), Fvselinit(), and
Fvsinit(). For COBOL, the VIEWS facility provides two procedures: FVSTOF and FVFTOS.
Upon calling any view function, the named object viewfile, if found, is loaded into the viewfile
cache automatically. Each file specified in the environment variable VIEWFILES is searched in
order (see “Setting Up Your Environment for FML and VIEWS” on page 3-1). The first object
viewfile with the specified name is loaded. Subsequent object viewfiles with the same name, if
any, are ignored. For more information on the FML VIEWS functions, refer to Oracle Tuxedo
ATMI FML Function Reference.

Note that arrays of structures, pointers, unions, and typedefs are not supported in VIEWS.

Multiple Occurrence Fields in VIEWS
Because VIEWS is concerned with moving fields between fielded buffers and C structures or
COBOL records, it must deal with the possibility of multiple occurrence fields in the buffer.

To store multiple occurrences of a field in a structure, a member is declared as an array in C or
with the OCCURS clause in COBOL; each occurrence of a field occupies one element of the
array. The size of the array reflects the maximum number of field occurrences in the buffer.

When transferring data from fielded buffers to C structures or COBOL records, if the number of
elements in the receiving array is greater than the number of occurrences in the fielded buffer, the
extra elements are assigned the (default or user-specified) NULL value. If the number of
occurrences in the buffer is greater than the number of elements in the array, the extra occurrences
in the buffer are ignored.

When data is transferred from C structures or COBOL records to fielded buffers, array members
with the value equal to the (default or user-specified) NULL values are ignored.

Error Handling for FML Functions
When an FML function detects an error, one of the following values is returned:

NULL is returned for functions that return a pointer.

BADFLDID is returned for functions that return a FLDID.

-1 is returned for all others.

Erro r Hand l ing fo r FML Funct ions

Programming an Oracle Tuxedo ATMI Application Using FML 2-13

All FML function call returns should be checked against the appropriate value above to detect
errors.

In all error cases, the external integer Ferror is set to the error number as defined in fml.h.
Ferror32 is set to the error number for FML32 as defined in fml32.h.

The F_error() (or F_error32()) function is provided to produce a message on the standard
error output. It takes one parameter, a string. It prints the argument string, appended with a colon
and a blank, and then prints an error message, followed by a newline character. The error message
displayed is the one defined for the error number currently in Ferror, which is set when errors
occur.

To be of most use, the argument string to the F_error() (or F_error32()) function should
include the name of the program that incurred the error. Refer to F_error, F_error32(3fml)
in Oracle Tuxedo ATMI FML Function Reference.

Fstrerror, Fstrerror32(3fml) can be used to retrieve the text of an error message from a
message catalog; it returns a pointer that can be used as an argument to userlog(3c), or to
F_error() or F_error32().

For a description of the error codes produced by an FML function, see the entry for that function
in Oracle Tuxedo ATMI FML Function Reference.

2-14 Programming an Oracle Tuxedo ATMI Application Using FML

Programming an Oracle Tuxedo ATMI Application Using FML 3-1

C H A P T E R 3

Setting Up Your Environment for FML
and VIEWS

This topic includes the following sections:

Environment Requirements for FML and VIEWS

FML Directory Structure

Environment Variables Used by FML and VIEWS

Environment Requirements for FML and VIEWS
Before you can begin to work with FML fielded buffers, or to use the VIEWS functions that move
fields between structures and fielded buffers, you must set up your environment to accommodate
these methods by setting the necessary environment variables. This section provides instructions
for doing so.

FML Directory Structure
The FML software delivered with the Oracle Tuxedo system resides in a subtree of the local file
system. Several FML modules depend on the subtree structure described here. We assume that
you have set the TUXDIR environment variable to the full path name of the directory in which the
Oracle Tuxedo ATMI Server is installed.

The Oracle Tuxedo installation directory contains the following subdirectories:

include—contains header files needed by writers of C application code.

3-2 Programming an Oracle Tuxedo ATMI Application Using FML

cobinclude—contains COPY files needed by writers of COBOL application code. (This
directory is named cobinclu for operating systems with an 8.3 file name limitation.)

bin—contains the executable commands of FML.

lib—contains subroutine packages of FML. When compiling a program that uses FML
functions, you should include $TUXDIR/lib/libfml.suffix and
$TUXDIR/lib/libgp.suffix on the C compiler command line to resolve external
references. libfml32.suffix contains the FML32 and VIEW32 functions. (The suffix is
.a for POSIX operating systems without shared objects, .so.release for use of shared
objects, .lib for Windows; it is part of the Oracle Tuxedo system DLL for platforms that
use dynamic link libraries.)

C applications in which FML is used must include the following header files in the order shown:

#include <stdio.h>

#include “fml.h”

The file fml.h or fml32.h contains definitions for structures, symbolic constants, and macros
used by the FML software.

Environment Variables Used by FML and VIEWS
Several environment variables are used by FML and VIEWS.

The following variable is used in FML to search for system-supplied files:

– TUXDIR—this variable should be set to the topmost node of the installed Oracle Tuxedo
system software including FML.

The following variables are used throughout FML to access field table files:

– FIELDTBLS—this variable should contain a comma-separated list of field table files for
the application. Files given as full path names are used as is; files listed as relative path
names are searched for through the list of directories specified by the FLDTBLDIR
variable. FIELDTBLS32 is used for FML32. If FIELDTBLS is not set, then the single file
name fld.tbl is used. (FLDTBLDIR still applies; see below.)

– FLDTBLDIR—this variable specifies a colon-separated list of directories to be used to
find field table files with relative filenames. Its usage is similar to the PATH
environment variable. If FLDTBLDIR is not set or is NULL, then its value is taken to be
the current directory. FLDTBLDIR32 is used for FML32.

For details, see “Defining and Using Fields” on page 4-1.

Env i ronment Va r iab les Used by FML and V IEWS

Programming an Oracle Tuxedo ATMI Application Using FML 3-3

VIEWS functions use the same environment variables used by FML (namely, FLDTBLDIR
and FIELDTBLS) plus two other environment variables:

– VIEWFILES—this variable should contain a comma-separated list of object viewfiles for
the application. Files given as full path names are used as is; files listed as relative path
names are searched for through the list of directories specified by the VIEWDIR variable
(see the following list item). VIEWFILES32 is used for VIEW32.

– VIEWDIR—this variable specifies a colon-separated list of directories to be used to find
view object files with relative filenames. It is set and used in the same way that the
PATH environment variable is set and used. If VIEWDIR is not set or is NULL, then its
value is assumed to be the current directory. VIEWDIR32 is used for VIEW32.

The following variables are used in FML32 to support the FLD_MBSTRING field type:

– TPMBENC—this variable specifies the code-set encoding name that the application
server or client running Oracle Tuxedo 8.1 or later includes for an FLD_MBSTRING field
in an FML32 typed buffer. When an application server or client process allocates and
sends an FML32 buffer containing a FLD_MBSTRING field, the code-set encoding name
defined in TPMBENC is automatically used by Fmbpack32() if its enc argument is not
defined and its flag argument is not set to FBUFENC.

When the application server or client process receives an FML32 buffer that includes
an FLD_MBSTRING field, and assuming another environment variable named
TPMBACONV is set, the code-set encoding name defined in TPMBENC is automatically
compared to the code-set encoding name included for the FLD_MBSTRING field in the
received buffer; if the names are not the same, the FLD_MBSTRING field data is
automatically converted to the encoding defined in TPMBENC before being delivered to
the server or client process.

TPMBENC has no default value. For an application server or client using FLD_MBSTRING
fields, TPMBENC must be defined for automatic conversion to work.

Note: TPMBENC is used in a similar way for MBSTRING typed buffers.

– TPMBACONV—this variable specifies whether the application server or client running
Oracle Tuxedo 8.1 or later automatically converts the FLD_MBSTRING field data in a
received FML32 buffer to the encoding defined in TPMBENC. By default, the automatic
conversion is turned off, meaning that the FLD_MBSTRING field data is delivered to the
destination server or client process as is—no encoding conversion. Setting TPMBACONV
to any non-NULL value, say Y (yes), turns on the automatic conversion.

Note: TPMBACONV is used in a similar way for MBSTRING typed buffers.

For details, see “Converting FLD_MBSTRING Fields” on page 5-54.

3-4 Programming an Oracle Tuxedo ATMI Application Using FML

VIEW32 Support for MBSTRING
Starting with Tuxedo 9.0, VIEW32 supports MBSTRING typed buffers which correspond
to the FLD_MBSTRING field type in FML32.

Fmbpack32(3fml)prepares an MBSTRING field in a VIEW32 buffer for encoding and
Fmbunpack32(3fml)extracts it. TPMBENC and TPMBACONV environment variables are also
used in VIEW32.

Programming an Oracle Tuxedo ATMI Application Using FML 4-1

C H A P T E R 4

Defining and Using Fields

This topic includes the following sections:

Preparing to Use FML and VIEWS

Defining Fields for FML and VIEWS

Mapping Fields to C Structures and COBOL Records

Preparing to Use FML and VIEWS
Before you can begin to work with FML fielded buffers, or to use the VIEWS functions that move
fields between structures and fielded buffers, you must:

Define fields.

Make field definitions available to application programs (through field table files and
mapping functions at run time, or through C header files at compile time).

Compile source view descriptions into object view descriptions, and generate
corresponding C header files and COBOL COPY files.

These tasks and related activities are described here.

Defining Fields for FML and VIEWS
This topic includes the following sections:

Defining Field Names and Identifiers

4-2 Programming an Oracle Tuxedo ATMI Application Using FML

Creating Field Table Files

Mapping Field Names to Field IDs

Loading Field Tables

Converting Field Tables to Header Files

Defining Field Names and Identifiers
A field identifier (fieldid) is defined (with typedef) as a FLDID (FLDID32 for FML32), and is
composed of two parts: a field type and a field number. The number uniquely identifies the field.

A field number must fall in one of the following ranges:

For FML: between 1 and 8191, inclusive

For FML32: between 1 and 33,554,431, inclusive

Field number 0 and the corresponding field identifier 0 are reserved to indicate a bad field
identifier (BADFLDID). When FML is used with other software that also uses fields, additional
restrictions may be imposed on field numbers.

The Oracle Tuxedo system conforms to the following conventions for field numbers.

Applications should avoid using the reserved field numbers, although the Oracle Tuxedo system
does not strictly enforce applications from using them.

The mappings between field identifiers and field names are contained in either field table files or
field header files. If you are using field table files you must convert field name references in C
programs with the mapping functions described later in this section. Field header files allow the
C preprocessor (cpp(1) in UNIX reference manuals) to resolve name-to-field ID mappings when
a program is compiled.

The functions and programs that access field tables use the environment variables FLDTBLDIR
and FIELDTBLS to specify the source directories and field table files, respectively, that are to be

FML Field Numbers FML32 Field Numbers

Reserved Available Reserved Available

1-100 101-8191 1-10,000,
30,000,001-33,554,431

10,001-30,000,000

Creat ing F ie ld Tab le F i l es

Programming an Oracle Tuxedo ATMI Application Using FML 4-3

used. (FLDTBLDIR32 and FIELDTBLS32 are used for the same purpose with FML32.) You should
set these environment variables as described in “Setting Up Your Environment for FML and
VIEWS” on page 3-1.

The use of multiple field tables allows you to establish separate directories and/or files for
separate groups of fields. Note that field names and field numbers should be unique across all
field tables, since such tables are capable of being converted into C header files, and field
numbers that occur more than once may cause unpredictable results.

Creating Field Table Files
Field table files are created using a standard text editor, such as vi. They have the following
format:

Blank lines and lines beginning with # are ignored.

Lines beginning with a dollar sign ($) are ignored by the mapping functions but are passed
through (without the $) to header files generated by mkfldhdr. (Refer to
mkfldhdr, mkfldhdr32(1) in Oracle Tuxedo Command Reference.) The ability to have
lines ignored by the mapping functions is useful, for example, when an application passes
C comments, what strings, and so on, to the generated C header file.

Note: In COBOL applications, however, such lines are not passed through to the COBOL
copy files.

Lines beginning with the string *base contain a base for offsetting subsequent field
numbers. This optional feature provides an easy way to group and renumber sets of related
fields.

All other lines should have the form:

name rel-number type flag comment

where:

– name is the identifier for the field. It should not exceed the C preprocessor identifier
restrictions (that is, it should contain only alphanumeric characters and the underscore
character). Internally, the name is truncated to 30 characters, so names must be unique
within the first 30 characters.

– rel-number is the relative numeric value of the field. It is added to the current base, if
*base is specified, to obtain the field number of the field.

– type is the type of the field. It is specified as one of the following: short, long,
float, double, char, string, carray, mbstring, ptr, fml32, or view32.

4-4 Programming an Oracle Tuxedo ATMI Application Using FML

– The flag field is reserved for future use; use a dash (-) in this field.

– comment is an optional field that can be used for clarifying information.

Note that these entries must be separated by white space (blanks or tabs).

Field Table Example
The following is an example field table in which the base shifts from 500 to 700. The first field
in each group will be numbered 501 and 701, respectively.

Listing 4-1 System Field Table File

following are fields for EMPLOYEE service
employee ID fields are based at 500
*base 500
#name rel-number type flags comment
#---- ---------- ---- ------ -------
EMPNAME 1 string - emp name
EMPID 2 long - emp id
EMPJOB 3 char - job type
SRVCDAY 4 carray - service date
*base 700
all address fields are now relative to 700
EMPADDR 1 string - street address
EMPCITY 2 string - city
EMPSTATE 3 string - state
EMPZIP 4 long - zip code

Mapping Field Names to Field IDs
Run-time mapping is done by the Fldid() and Fname() functions, which consult the set of field
table files specified by the FLDTBLDIR and FIELDTBLS environment variables. (If FML32 is
being used, the Fldid32() and Fname32() functions reference the FLDTBLDIR32 and
FIELDTBLS32 environment variables.)

Fldid maps its argument, a field name, to a fieldid, as shown in the following code:

char *name;

extern FLDID Fldid();

FLDID id;

Load ing F i e ld Tab les

Programming an Oracle Tuxedo ATMI Application Using FML 4-5

...

id = Fldid(name);

Fname does the reverse translation by mapping its argument, a fieldid, to a field name, as
shown in the following code:

extern char *Fname();

name = Fname(id);

. . .

Identifier-to-name mapping is rarely used; it is rare that one has a field identifier and wants to
know the corresponding name. One situation in which the field identifier-to-field name mapping
can be used is in a buffer print routine designed to display, in an intelligible form, the contents of
a fielded buffer.

See Also
Fldid, Fldid32(3fml) in Oracle Tuxedo ATMI FML Function Reference

Fname, Fname32(3fml) in Oracle Tuxedo ATMI FML Function Reference

Loading Field Tables
Upon the first call, Fldid() loads the field table files and performs the required search.
Thereafter, the files are kept loaded. Fldid() returns the field identifier corresponding to its
argument on success, and returns BADFLDID on failure, with Ferror set to FBADNAME. (If FML32
is being used, Ferror32 is set, instead.)

To recover the data space used by the field tables loaded by Fldid(), you may unload all of the
files by calling the Fnmid_unload() function.

The function Fname() acts in a fashion similar to Fldid(), but it provides a mapping from a field
identifier to a field name. It uses the same environment variable scheme for determining the field
tables to be loaded, but constructs a separate set of mapping tables. On success, Fname() returns
a pointer to a character string containing the name corresponding to the fldid argument. On
failure, Fname() returns NULL.

Note: The pointer is valid only as long as the table remains loaded.

As with Fldid(), failure includes either the inability to find or open a field table (FFTOPEN), bad
field table syntax (FFTSYNTAX), or a no-hit condition within the field tables (FBADFLD). The table
space used by the mapping tables created by Fname() may be recovered by a call to the
Fidnm_unload() function.

4-6 Programming an Oracle Tuxedo ATMI Application Using FML

Both mapping functions and other FML functions that use run-time mapping require FIELDTBLS
and FLDTBLDIR to be set properly. Otherwise, defaults are used. (For the default values of these
environment variables, see “Setting Up Your Environment for FML and VIEWS” on page 3-1.)

See Also
Fldid, Fldid32(3fml) in Oracle Tuxedo ATMI FML Function Reference

Fnmid_unload, Fnmid_unload32(3fml) in Oracle Tuxedo ATMI FML Function
Reference

Fname, Fname32(3fml) in Oracle Tuxedo ATMI FML Function Reference

Fidnm_unload, Fidnm_unload32(3fml) in Oracle Tuxedo ATMI FML Function
Reference

Converting Field Tables to Header Files
The mkfldhdr (or mkfldhdr32) command converts a field table, as described earlier, into a
header file suitable for processing by the C compiler. Each line of the generated header file is of
the following form:

#define fname fieldid

where fname is the name of the field, and fieldid is its field-ID. The field-ID has both the field
type and field number encoded in it. The field number is an absolute number, that is, base plus
rel-number. The resulting file is suitable for inclusion in a C program.

It is not necessary to use the header file if the run-time mapping functions are used as described
in “Mapping Fields to C Structures and COBOL Records” on page 4-8.

The advantage of compile-time mapping of names to identifiers is speed and a decrease of data
space requirements. The disadvantage is that changes made to field name/identifier mappings
after, for instance, a service routine has been compiled, are not propagated to the service routine.
(Under such circumstances, the service routine uses the mappings it has already compiled.)

mkfldhdr translates each field table specified in the FIELDTBLS environment variable to a
corresponding header file, the name of which is formed by adding a .h suffix to the field table
name. The resulting files are created, by default, in the current directory. If you want your header
files to be created in another directory, you may specify that directory with the -d option on the
mkfldhdr command line. For more information, refer to mkfldhdr, mkfldhdr32(1) in Oracle
Tuxedo Command Reference.

Conver t ing F i e ld Tab les to Header F i l es

Programming an Oracle Tuxedo ATMI Application Using FML 4-7

Examples of Converting Field Tables to Header Files
Examples 1 and 2 show how to set your environment variables and run the mkfldhdr(1)
command so that three field table files—${FLDTBLDIR}/maskftbl, ${FLDTBLDIR}/DBftbl,
and ${FLDTBLDIR}/miscftbl—are processed, and three include files—maskftbl.h,
DBftbl.h and miscftbl.h—are generated in the current directory. For more information, refer
to mkfldhdr, mkfldhdr32(1) in Oracle Tuxedo Command Reference.

Example 1
FLDTBLDIR=/project/fldtbls

FIELDTBLS=maskftbl,DBftbl,miscftbl

export FLDTBLDIR FIELDTBLS

mkfldhdr

Example 2
FLDTBLDIR32=/project/fldtbls

FIELDTBLS32=maskftbl,DBftbl,miscftbl

export FLDTBLDIR32 FIELDTBLS32

mkfldhdr32

Example 3
Example 3 is the same as Example 1 with one exception: the output files—maskftbl.h,
DBftbl.h and miscftbl.h—are generated in the directory indicated by ${FLDTBLDIR}.

FLDTBLDIR=/project/fldtbls

FIELDTBLS=maskftbl,DBftbl,miscftbl

export FLDTBLDIR FIELDTBLS

mkfldhdr -d${FLDTBLDIR}

mkfldhdr -d${FLDTBLDIR}

Overriding Environment Variables to Run mkfldhdr
You may override the environment variables (or avoid setting them) when using mkfldhdr by
specifying, on the command line, the names of the field tables to be converted.

This method does not apply to run-time mapping functions, however. When run-time mapping
functions are being used, FLDTBLDIR is assumed to be the current directory and FIELDTBLS is

4-8 Programming an Oracle Tuxedo ATMI Application Using FML

assumed to be the list of parameters that the user specified on the command line. For example,
the command:

mkfldhdr myfields

converts the field table file called myfields to a field header file called myfields.h, and puts
the new file in the current directory.

 For more information, refer to mkfldhdr, mkfldhdr32(1) in Oracle Tuxedo Command
Reference.

Mapping Fields to C Structures and COBOL Records
This topic includes the following sections:

What Is the VIEWS Facility?

Creating Viewfiles

Creating View Descriptions

Compiling Viewfiles

Using Header Files Compiled with viewc

Using COBOL COPY Files Created by the View Compiler

Displaying Viewfile Information After Compilation

What Is the VIEWS Facility?
FML VIEWS is a mechanism that enables the exchange of data between fielded buffers and C
structures or COBOL records. This facility is provided because it is usually more efficient to
perform lengthy manipulations on C structures with C functions than on fielded buffers with FML
functions. VIEWS also provides a way for a COBOL program to send and receive messages with
a C program that handles FML fielded records.

This section explains how to use VIEWS to provide fielded buffer/structure mappings.

Structure of VIEWS
The following diagram shows the various components of VIEWS and how they relate to one
another.

Creat ing V iewf i l es

Programming an Oracle Tuxedo ATMI Application Using FML 4-9

Figure 4-1 Components of the VIEWS Facility

Creating Viewfiles
Source viewfiles are standard text files (created through any standard text editor, such as vi) that
contain one or more source view descriptions (the actual field-to-structure mappings).

The view compiler produces (among other things) object viewfiles containing the compiled
object view descriptions. These object viewfiles can be used, in turn, as input to the view
disassembler (viewdis or viewdis32), which translates the object view descriptions back into
their source format (for verification or editing). For more information, refer to
viewdis, viewdis32(1) in Oracle Tuxedo Command Reference.

You can create and edit source view descriptions, and edit the output of viewdis. You cannot
read compiled view descriptions (which are in binary format) directly.

Besides view descriptions, viewfiles may contain comment lines, beginning with # or $. Blank
lines and lines beginning with # are ignored by the view compiler, while lines beginning with $
are passed by the view compiler to any header files generated. This convention lets you pass C
comments, what strings, and so on, to C header files produced by the view compiler.

Note: This convention is not observed for COBOL; lines beginning with $ are not passed
through to the COBOL copy files.

Creating View Descriptions
Each source view description in a source viewfile consists of three parts:

viewfile.v

viewdis

viewc

viewfile.V viewfile.h

structured
record

description

COBOL
COPY file

view
description(s)

input to
contained in

produces
input to

produces

4-10 Programming an Oracle Tuxedo ATMI Application Using FML

A line beginning with the keyword VIEW (never with a 32 suffix), followed by the name of
the view description. This name may be composed of alphanumeric characters, including
an underscore. Although viewc accepts names of up to 33 characters, the practical limit in
most cases is 16 characters, since this is the maximum length for a subtype accepted by
tpalloc(3c).

A list of member descriptions.

A line beginning with the keyword END.

The first line of each view description must begin with the keyword VIEW, followed by the name
of the view description. A member description (or mapping entry) is a line with information about
a member in the C structure or COBOL record. A line with the keyword END must be the last line
in a view description.

The following listing shows the general structure of a source view description.

Listing 4-2 Source View Description

VIEW vname

 # type cname fbname count flag size null

 # ---- ----- ------ ----- ---- ---- ----

 --------------member descriptions-------------------

 .

 .

 .

 END

In the previous listing:

vname is the name of the view description, and should be a valid C identifier name, since it
is also used as the name of a C structure. Underscores are mapped automatically to dashes
in the COBOL COPY file.

type is the type of the member, and is specified as one of the following: int, short,
long, char, float, double, string, carray, or dec_t. If the value of type is “-”, the
default—the value of fbname—is used.

cname is the identifier for the structure member, and should be a valid C identifier name,
since it is the name of a C structure member. Internally, the cname is truncated to 30

Creat ing V iew Desc r ip t i ons

Programming an Oracle Tuxedo ATMI Application Using FML 4-11

characters, so cnames must be unique within the first 30 characters. Underscores are
mapped automatically to dashes in the COBOL COPY file.

fbname is the name of the field in the fielded buffer. This name must appear in a field table
file.

count is the number of elements to be allocated (that is, the maximum number of
occurrences to be stored for this member). The value of count must be less than or equal
to 65,535 for FML, and less than or equal to 2,147,483,647 for FML32.

flag is a comma-separated list of options or “-” (which means that no options are set). For
details, see “Specifying flag Options in a View Description” on page 4-11.

size is the size of the member if the type is string, carray, or dec_t. For other types,
“-” should be specified; the view compiler computes the size.

– For string or carray, the value of size must be less than or equal to 65,535 for FML
and less than or equal to 2,147,483,647 for FML32.

– For the dec_t type, the value of size must be two numbers separated by a comma.
The first number represents the number of bytes in the decimal value; it must be greater
than 0 and less than 10. The second number represents the number of decimal places to
the right of the decimal point; it must be greater than 0 and less than twice the number
of bytes minus one.

null is the user-specified NULL value or “-” to indicate the default NULL value for that
field. For details, see “Using NULL Values in VIEWS” on page 4-14.

Specifying flag Options in a View Description
The following options can be specified as the flag element of a member description in a view
description.

C

This option requests the generation of a structure member called the associated count
member (ACM), in addition to the structure member described in the member description.

When data is being transferred from a fielded buffer to a structure, each ACM in the
structure is set to the number of occurrences transferred to the associated structure member.

– A value of 0 in an ACM indicates that no fields were transferred to the associated
structure member

– A positive value indicates the number of fields actually transferred to the structure
member array.

4-12 Programming an Oracle Tuxedo ATMI Application Using FML

– A negative value indicates that there were more fields in the buffer than could be
transferred to the structure member array. (The absolute value of the ACM equals the
number of fields not transferred to the structure).

During a transfer of data from a structure member array to a fielded buffer, the ACM is
used to indicate the number of array elements that should be transferred. For example, if
the ACM of a member is set to N, the first N non-NULL fields are transferred to the
fielded buffer. If N is greater than the dimension of the array, it defaults to the dimension
of the array. In either event, after the transfer takes place, the ACM is set to the actual
number of array members transferred to the fielded buffer.

The type of an ACM in the C header file is declared to be short for FML and long for
FML32, and its name is generated as C_cname, where cname is the cname entry for which
the ACM is declared. For example, an ACM for a member named parts is declared as
follows:

short C_parts;

For a COBOL COPY file, the name is generated as C-cname and the type is declared as
follows:

– For FML: PIC S9(4) USAGE COMP-5

– For FML32: PIC S9(9) USAGE COMP-5

Note: It is possible for the generated ACM name to conflict with structure members with
names that begin with a C_ prefix. Such conflicts are reported by the view compiler,
and are considered fatal errors by the compiler. For example, the name C_parts for
a structure member conflicts with the name of an ACM generated for the member
parts.

F

Specifies one-way mapping from structure or record to fielded buffer. The mapping of a
member with this option is effective only when transferring data from structures to fielded
buffers. This option is ignored if the -n command-line option is specified.

L

This option is used only for member descriptions of type carray or string to indicate the
number of bytes transferred for these possibly variable length fields. If a carray or
string field is always used as a fixed length data item, then this option provides no
benefit.

The L option generates an associated length member (ALM) for a structure member of type
carray or string. When transferring data from a fielded buffer to a structure, the ALM is
set to the length of the corresponding transferred fields. If the length of a field in the

Creat ing V iew Desc r ip t i ons

Programming an Oracle Tuxedo ATMI Application Using FML 4-13

fielded buffer exceeds the space allocated in the mapped structure member, only the
allocated number of bytes is transferred. The corresponding ALM is set to the size of the
fielded buffer item. Therefore, if the ALM is greater than the dimension of the structure
member array, the fielded buffer information is truncated on transfer.

When data is being transferred from a structure member to a field in a fielded buffer, the
ALM is used to indicate the number of bytes to transfer to the fielded buffer, if it is a
carray type field. For strings, the ALM is ignored on transfer, but is set afterwards to
the number of bytes transferred. Note that because carray field may be of zero length, an
ALM of 0 indicates that a zero-length field should be transferred to the fielded buffer,
unless the value in the associated structure member is the NULL value.

An ALM is defined in the C header file as an unsigned short for FML and an unsigned
long for FML32, and has a generated name of L_cname, where cname is the name of the
structure for which the ALM is declared.

If the number of occurrences of the member for which the ALM is declared is 1 (or
defaults to 1), then the ALM is declared as:

unsigned short L_cname;

whereas if the number of occurrences is greater than 1, say N, the ALM is declared as:

unsigned short L_cname[N];

and is referred to as an ALM Array. In this case, each element in the ALM array refers to a
corresponding occurrence of the structure member (or field). For the COBOL COPY file,
the type is declared to be PIC 9(4) USAGE COMP-5 for FML and PIC 9(9) USAGE
COMP-5 for FML32, and its name is generated as L-cname. The COBOL OCCURS clause is
used to define multiple occurrences if the member occurs multiple times.

Note: It is possible for the generated ALM name to conflict with structure members with
names that begin with an L_ prefix. Such conflicts are reported by the view compiler,
and are considered fatal errors by the compiler. For example, the name L_parts for
a structure member conflicts with the name of an ALM generated for the member
parts.

N

Specifies zero-way mapping; no fielded buffer is mapped to the structure. This option can
be used to allocate fillers in C structures or COBOL records. It is ignored if the -n
command-line option is specified.

P

This option can be used to affect what VIEWS interprets as a NULL value for string and
carray type structure members. If this option is not used, a structure member is NULL if

4-14 Programming an Oracle Tuxedo ATMI Application Using FML

its value is equal to the user-specified NULL value (without considering any trailing
NULL characters).

If this option is set, however, a member is NULL if its value is equal to the user-specified
NULL value with the last character propagated to full length (without considering any
trailing NULL character).

A member whose value is NULL is not transferred to the destination buffer when data is
transferred from the C structure or COBOL record to the fielded buffer. For example, a
structure member TEST is of type carray[25] and a user-specified NULL value “abcde”
is established for it. If the P option is not set, TEST is considered NULL if the first five
characters are a, b, c, d, and e, respectively. If the P option is set, TEST is NULL if the first
four characters are a, b, c, and d, respectively, and the rest of the carray contains the
character “e” (that is, 21 e’s).

This option is ignored if the -n command-line option is specified.

S

Specifies one-way mapping from fielded buffer to structure or record. The mapping of a
member with this option is effective only when transferring data from fielded buffers to
structures. This option is ignored if the -n command line option is specified.

Using NULL Values in VIEWS
NULL values are used in VIEWS to indicate empty C structure or COBOL record members.
Default NULL values are provided; you may also define your own.

The default NULL value for all numeric types is 0 (0.0 for dec_t); for char types, it is “\0”;
and for string and carray types, it is “ “.

Escape convention constants can also be used to specify a NULL value. The view compiler
recognizes the following escape constants: \ddd (where d is an octal digit), \0, \n, \t, \v, \b,
\r, \f, \\, \’, and \”.

String, carray, and char NULL values may be enclosed in double or single quotes. Unescaped
quotes within a user-defined NULL value are not accepted by the view compiler.

Alternatively, an element is NULL if its value is the same as the NULL value for that element,
except in the following cases:

If the P option is set for the structure member, and the structure member is of string or
carray type; see the preceding section for details on the P option flag.

If a member is of type string, its value must be the same string as the NULL value.

Compi l ing V iewf i l es

Programming an Oracle Tuxedo ATMI Application Using FML 4-15

If a member is of type carray and the NULL value is of length N, then the first N
characters in the carray must be the same as the NULL value.

You can also specify the keyword “NONE” in the NULL field of a view member description,
which means there is no NULL value for the member.

The maximum size of default values for string and character array (carray) members is 2660
characters.

Note: Note that for string members, which usually end with a “\0”, a “\0” is not required as
the last character of a user-defined NULL value.

Compiling Viewfiles
viewc is a view compiler program for FML and viewc32 is used for FML32. It takes a source
viewfile and produces an object viewfile, which is interpreted at run time to effect the actual
mapping of data. At run time, a C compiler must be available for viewc. The command line looks
like the following:

viewc [-n] [-d viewdir] [-C] viewfile [viewfile . . .]

where viewfile is the name of a source viewfile containing source view descriptions. You may
specify one or more viewfiles on the command line.

If the -C option is specified, then one COBOL COPY file is created for each VIEW defined in
the viewfile. These copy files are created in the current directory.

The -n option can be used when compiling a view description file for a C structure or COBOL
record that does not map to an FML buffer.

By default, all views in viewfile are compiled and two or more files are created: an object
viewfile (suffixed with “.V”), and a header file (suffixed with “.h”) for each viewfile. For an
illustration of the VIEWS components, see the diagram titled “Components of the VIEWS
Facility” on page 4-9.

The name of the object viewfile is viewfile.V. It is created in the current directory. The -d option
can be used to specify an alternate directory. Header files are created in the current directory.

Note: For those operating systems that are not case-sensitive, such as Windows, the object
viewfile is given a .vv suffix.

For more information, refer to viewc, viewc32(1) in Oracle Tuxedo Command Reference.

4-16 Programming an Oracle Tuxedo ATMI Application Using FML

Using Header Files Compiled with viewc
You can use header files created by the view compiler (viewc) in any C application programs to
declare a C structure described by views. For example, the following view description:

VIEW test

#TYPE CNAME FBNAME COUNT FLAG SIZE NULL

int empid EMPID 1 - - -1

float salary EMPPAY 1 - - 0

long phone EMPPHONE 4 - - 0

string name EMPNAME 1 - 32 "NO NAME"

END

produces a C header file that looks like this:

struct test {

 long empid; /* null=-1 */

 float salary; /* null=0.000000 */

 long phone[4]; /* null=0 */

 char name[32]; /* null="NO NAME" */

};

For more information, refer to viewc, viewc32(1) in Oracle Tuxedo Command Reference.

Using COBOL COPY Files Created by the View Compiler
COBOL COPY files created by the view compiler with the -C option can be used in any COBOL
application programs to declare COBOL records described by views. For example, the COBOL
COPY file for the previous view description looks like the following in the file TEST.cbl:

* VIEWFILE: "test.v"

* VIEWNAME: "test"

05 EMPID PIC S9(9) USAGE IS COMP-5.

05 SALARY USAGE IS COMP-1.

05 PHONE OCCURS 4 TIMES PIC S9(9) USAGE IS COMP-5.

05 NAME PIC X(32).

Note that the COPY filename is automatically converted to uppercase by the view compiler. The
COPY file is included in a COBOL program as follows:

01 MYREC COPY TEST.

Disp lay ing V iewf i l e In fo rmat ion Af te r Compi lat i on

Programming an Oracle Tuxedo ATMI Application Using FML 4-17

For a more complete description of the output in the resulting COPY files, see Programming an
Oracle Tuxedo ATMI Application Using COBOL.

Displaying Viewfile Information After Compilation
The view disassembler, viewdis, disassembles an object viewfile produced by the view compiler
and displays view information in source viewfile format. In addition, it displays the offsets of
structure members in the associated structure.

The ability to view the information in this type of format is useful for verifying that an object view
description is correct.

To run the view disassembler, enter the following command:

viewdis objviewfile . . .

By default, objviewfile in the current directory is disassembled. If this file is not found in the
current directory, an error message is displayed. You can specify one or more view object files
on the command line.

The output of viewdis looks similar to the original source view description. It can be edited and
re-input to viewc. The order of the lines in the output of viewdis may be different from the order
of the lines in the original source view description, but this difference is irrelevant in determining
whether the object file is correct.

For more information, refer to viewdis, viewdis32(1) in Oracle Tuxedo Command
Reference.

4-18 Programming an Oracle Tuxedo ATMI Application Using FML

Programming an Oracle Tuxedo ATMI Application Using FML 5-1

C H A P T E R 5

Field Manipulation Functions

This topic includes the following sections:

About This Section

FML and VIEWS: 16-bit and 32-bit Interfaces

Definitions of the FML Function Parameters

Field Identifier Mapping Functions

Buffer Allocation and Initialization

Functions for Moving Fielded Buffers

Field Access and Modification Functions

Buffer Update Functions

VIEWS Functions

Conversion Functions

Converting Strings

Converting FLD_MBSTRING Fields

Indexing Functions

Input/Output Functions

Boolean Expressions of Fielded Buffers

5-2 Programming an Oracle Tuxedo ATMI Application Using FML

Boolean Functions

VIEW Conversion to and from Target Format

About This Section
This section describes all FML and VIEWS functions except the run-time mapping functions
described in “Defining and Using Fields” on page 4-1.

FML functions are not directly available for COBOL programs. A procedure called FINIT is
available to initialize a record for receiving FML data, and the FVSTOF and FVFTOS procedures
are available to convert a COBOL record into an FML buffer, and vice-versa. For detailed
descriptions of these procedures, see Programming an Oracle Tuxedo ATMI Application Using
COBOL. The COBOL interface is not described further here.

FML and VIEWS: 16-bit and 32-bit Interfaces
There are two variants of FML. The original FML interface is based on 16-bit values for the
length of fields and contains information identifying fields (hence FML16). FML16 is limited to
8191 unique fields, individual field lengths of up to 64K bytes, and a total fielded buffer size of
64K. The definitions, types, and function prototypes for this interface are in fml.h which must
be included in an application program using the FML16 interface; and functions live in -lfml.

A second interface, FML32, uses 32-bit values for the field lengths and identifiers. It allows for
about 30 million fields, and field and buffer lengths of about 2 billion bytes. The definitions,
types, and function prototypes for FML32 are in fml32.h; functions reside in -lfml32. All
definitions, types, and function names for FML32 have a “32” suffix (for example, MAXFBLEN32,
FBFR32, FLDID32, FLDLEN32, F_OVHD32, Fchg32, and error code Ferror32). Also the
environment variables are suffixed with “32” (for example, FLDTBLDIR32, FIELDTBLS32,
VIEWFILES32, and VIEWDIR32). For FML32, a fielded buffer pointer is of type “FBFR32 *”, a
field length has the type FLDLEN32, and the number of occurrences of a field has the type
FLDOCC32. The default required alignment for FML32 buffers is 4-byte alignment.

FML16 applications that are written correctly can easily be changed to use the FML32 interface.
All variables used in the calls to the FML functions must use the proper typedefs (FLDID, FLDLEN,
and FLDOCC). Any call to tpalloc(3c) for an FML typed buffer should use the FMLTYPE
definition instead of “FML”. The application source code can be changed to use the 32-bit
functions simply by changing the include of fml.h to inclusion of fml32.h followed by
fml1632.h. The fml1632.h contains macros that convert all of the 16-bit type definitions to
32-bit type definitions, and 16-bit functions and macros to 32-bit functions and macros.

Def in i t i ons o f the FML Funct ion Paramete rs

Programming an Oracle Tuxedo ATMI Application Using FML 5-3

Functions are also provided to convert an FML32 fielded buffer into an FML16 fielded buffer,
and vice-versa:

#include “fml.h”

#include “fml32.h”

int

F32to16(FBFR *dest, FBFR32 *src)

int

F16to32(FBFR32 *dest, FBFR *src)

F32to16 converts a 32-bit FML buffer to a 16-bit FML buffer. It does this by converting the
buffer on a field-by-field basis and then creating the index for the fielded buffer. A field is
converted by generating a FLDID from a FLDID32, and copying the field value (and field length
for string and carray fields).

dest and src are pointers to the destination and source fielded buffers, respectively. The source
buffer is not changed.

These functions can fail for lack of space; they can be re-issued after enough additional space to
complete the operation has been allocated. F16to32 converts a 16-bit FML buffer to a 32-bit
FML buffer. It lives in the fml32 library or shared object and sets Ferror32 on error. F32to16
lives in the fml library or shared object and sets Ferror on error. Note that both fml.h and
fml32.h must be included to use these functions; fml1632.h may not be included in the same
file.

The field types for embedded buffers (FLD_PTR, FLD_FML32, and FLD_VIEW32) are supported
only for FML32. Buffers containing FLD_PTR, FLD_FML32, FLD_MBSTRING, or FLD_VIEW32
fields cause F32to16 to fail with an FBADFLD error. There is no impact when F16to32 is called
for these functions.

Note: For the remainder of this section, we describe only the 16-bit functions, without
specifying the equivalent FML32 and VIEW32 functions.

Definitions of the FML Function Parameters
To simplify the specification of parameters for FML functions, a convention has been adopted
for the sequence of those parameters. FML parameters appear in the following sequence.

1. For functions that require a pointer to a fielded buffer (FBFR), this parameter is first. If a
function takes two-fielded buffer pointers (such as the transfer functions), the destination
buffer comes first, followed by the source buffer. A fielded buffer pointer must point to an
area that is aligned on a short boundary (or an error is returned with Ferror set to

5-4 Programming an Oracle Tuxedo ATMI Application Using FML

FALIGNERR) and the area must be a fielded buffer (or an error is returned with Ferror set to
FNOTFLD).

2. For I/O functions, a pointer to a stream follows the fielded buffer pointer.

3. For functions that need one, a field identifier (type FLDID) appears next (in the case of Fnext,
it is a pointer to a field identifier).

4. For functions that need a field occurrence (type FLDOCC), this parameter comes next. (For
Fnext, it is a pointer to an occurrence number.)

5. In functions in which a field value is passed to or from the function, a pointer to the beginning
of the field value is given next. (It is defined as a character pointer but may be cast from any
other pointer type.)

6. When a field value is passed to a function that contains a character array (carray, mbstring)
field, you must specify its length as the next parameter (type FLDLEN). For functions that
retrieve a field value, a pointer to the length of the retrieval buffer must be passed to the
function and this length parameter is set to the length of the value retrieved.

7. A few functions require special parameters and differ from the preceding conventions. These
special parameters appear after the above parameters. They are discussed in the descriptions
of individual functions.

8. The following NULL values are defined for the various field types:

– 0 for short and long

– 0.0 for float and double

– \0 for string (1 byte in length)

– A zero-length string for carray or mbstring

Field Identifier Mapping Functions
Several functions allow a programmer to query field tables or field identifiers for information
about fields during program execution.

Fldid
Fldid returns the field identifier for a given valid field name and loads the field name/field ID
mapping tables from the field table files, if they do not already exist.

F ie ld Ident i f i e r Mapping Funct ions

Programming an Oracle Tuxedo ATMI Application Using FML 5-5

FLDID

Fldid(char *name)

Here name is a valid field name.

The space used by the mapping tables in memory can be freed using the
Fnmid_unload, Fnmid_unload32(3fml) function. Note that these tables are separate from the
tables loaded and used by the Fname function.

For more information, refer to Fldid, Fldid32(3fml) in Oracle Tuxedo ATMI FML Function
Reference.

Fname
Fname returns the field name for a given valid field identifier and loads the field ID/name
mapping tables from the field table files, if they do not already exist.

char *

Fname(FLDID fieldid)

Here fieldid is a valid field identifier.

The space used by the mapping tables in memory can be freed using the
Fnmid_unload, Fnmid_unload32(3fml) function. Note that these tables are separate from the
tables loaded and used by the Fldid function. (Refer to the Oracle Tuxedo ATMI FML Function
Reference for more information.)

For more information, refer to Fname, Fname32(3fml) in Oracle Tuxedo ATMI FML Function
Reference.

Fldno
Fldno extracts the field number from a given field identifier.

FLDOCC

Fldno(FLDID fieldid)

Here fieldid is a valid field identifier.

For more information, refer to Fldno, Fldno32(3fml) in Oracle Tuxedo ATMI FML Function
Reference.

Fldtype
Fldtype extracts the field type (an integer, as defined in fml.h) from a given field identifier.

5-6 Programming an Oracle Tuxedo ATMI Application Using FML

int

Fldtype(FLDID fieldid)

Here fieldid is a valid field identifier.

The following table shows the possible values returned by Fldtype and their meanings.

For more information, refer to Fldtype, Fldtype32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Ftype
Ftype returns a pointer to a string containing the name of the type of a field given a field
identifier.

char *

Ftype(FLDID fieldid)

Table 5-1 Field Types Returned by Fldtype

Return Value Meaning Field Type Name in fml.h/ fml32.h

0 Short integer FLD_SHORT

1 Long integer FLD_LONG

2 Character FLD_CHAR

3 Single-precision float FLD_FLOAT

4 Double-precision float FLD_DOUBLE

5 Null-terminated string FLD_STRING

6 Character array FLD_CARRAY

9 Pointer FLD_PTR

10 Embedded FML32 buffer FLD_FML32

11 Embedded VIEW32 buffer FLD_VIEW32

12 Multibyte character array FLD_MBSTRING

Buf fe r A l l ocat ion and In i t ia l i za t i on

Programming an Oracle Tuxedo ATMI Application Using FML 5-7

Here fieldid is a valid field identifier. For example, the following code returns a pointer to one
of the following strings: short, long, char, float, double, string, carray, mbstring,
FLD_PTR, FLD_FML32, or FLD_VIEW32.

char *typename

. . .

typename = Ftype(fieldid);

For more information, refer to Ftype, Ftype32(3fml) in Oracle Tuxedo ATMI FML Function
Reference.

Fmkfldid
As part of an application generator, or to reconstruct a field identifier, it might be useful to make
a field identifier from a type specification and an available field number. Fmkfldid provides this
functionality.

FLDID

Fmkfldid(int type, FLDID num)

Here:

type is a valid type. (Specifically, it is an integer; see “Fldtype” on page 5-5 for details.)

num is a field number. (It should be an unused field number to avoid confusion with
existing fields.)

For more information, refer to Fmkfldid, Fmkfldid32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Buffer Allocation and Initialization
The functions described in this section are provided for writing stand-alone FML programs. If
you are using the Oracle Tuxedo ATMI functions, keep in mind that for tasks such as allocating
and freeing message buffers, you must call ATMI functions such as tpalloc(3c),
tprealloc(3c), and tpfree(3c), instead of FML functions such as
Falloc, Falloc32(3fml), Frealloc, Frealloc32(3fml), and Ffree, Ffree32(3fml).

Most FML functions require a pointer to a fielded buffer as an argument. The typedef FBFR is
available for declaring such pointers, as shown in the following example:

FBFR *fbfr;

5-8 Programming an Oracle Tuxedo ATMI Application Using FML

In this section, the variable fbfr refers to a pointer to a fielded buffer. Never attempt to declare
fielded buffers themselves; declare only pointers to fielded buffers.

When a server receives a request that contains an FML buffer, it allocates space for that FML
buffer and for any embedded views or buffers referenced by FLD_PTR fields. A pointer to the new
FML buffer is passed to the user-written code. Once the server processing is complete, all buffers
allocated when the message was received must be destroyed. The Oracle Tuxedo system checks
the FML buffer and all subsidiary buffers, and deletes any buffers to which it finds references.
As a programmer writing server code, you should be aware of the following situations:

If you add, change, or update a view or pointer field so that it references a buffer allocated
by the server, the newly allocated buffer is deleted during the cleanup triggered when the
tpreturn(3c) or tpforward(3c) function is called.

If you change, update, or delete a field so that a buffer is no longer referenced by the FML
buffer, the user-written code must free that buffer explicitly, using the tpfree(3c)
function. If the buffer is not explicitly freed, the server process leaks memory.

In some cases, the user-written code can allocate and return another buffer, rather than
simply call tpreturn(3c). If this is done, the FML buffer passed to tpreturn() is freed,
but any buffers referenced by FLD_PTR or FLD_VIEW32 fields are not freed.

The functions used to reserve space for fielded buffers are explained in the following text, but
first we describe a function that can be used to determine whether a given buffer is, in fact, a
fielded buffer.

Fielded
Fielded (or Fielded32) is used to test whether the specified buffer is fielded.

int

Fielded(FBFR *fbfr)

Fielded32 is used with 32-bit FML.

Fielded returns true (1) if the buffer is fielded. It returns false (0) if the buffer is not fielded but
does not set Ferror.

For more information, refer to Fielded, Fielded32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Buf fe r A l l ocat ion and In i t ia l i za t i on

Programming an Oracle Tuxedo ATMI Application Using FML 5-9

Fneeded
The amount of memory to allocate for a fielded buffer depends on the maximum number of fields
the buffer will contain and the total amount of space needed for all the field values. The function
Fneeded can be used to determine the amount of space (in bytes) needed for a fielded buffer; it
takes the number of fields and the space needed for all field values (in bytes) as arguments.

long

Fneeded(FLDOCC F, FLDLEN V)

Here:

F is the number of fields.

V is the space, in bytes, for field values.

The space needed for field values is computed by estimating the amount of space that is required
by each field value if stored in standard structures (for example, a long is stored as a long and
needs four bytes). For variable length fields, estimate the average amount of space needed for the
field. The space calculated by Fneeded includes a fixed overhead for each field; it adds that to
the space needed for the field values.

Once you obtain the estimate of space from Fneeded, you can allocate the desired number of
bytes using malloc(3) and set up a pointer to the allocated memory space. For example, the
following code allocates space for a fielded buffer large enough to contain 25 fields and 300 bytes
of values.

#define NF 25

#define NV 300

extern char *malloc;

. . .

 if((fbfr = (FBFR *)malloc(Fneeded(NF, NV))) == NULL)

 F_error("pgm_name"); /* no space to allocate buffer */

However, this allocated memory space is not yet a fielded buffer. Finit must be used to initialize
it.

For more information, refer to Fneeded, Fneeded32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

5-10 Programming an Oracle Tuxedo ATMI Application Using FML

Fvneeded
The Fvneeded function determines the amount of space (in bytes) needed for a VIEW buffer. The
function takes a pointer to the name of the VIEW as an argument.

long

Fvneeded(char *subtype)

The Fvneeded function returns the size of the VIEW in number of bytes.

For more information, refer to Fvneeded, Fvneeded32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Finit
The Finit function initializes an allocated memory space as a fielded buffer.

int

Finit(FBFR *fbfr, FLDLEN buflen)

Here:

fbfr is a pointer to an uninitialized fielded buffer.

buflen is the length of the buffer, in bytes.

A call to Finit to initialize the memory space allocated in the previous example looks like the
following code:

Finit(fbfr, Fneeded(NF, NV));

Now fbfr points to an initialized, empty fielded buffer. Up to Fneeded(NF, NV) bytes minus a
small amount (F_OVHD as defined in fml.h) are available in the buffer to hold fields.

Note: The numbers used in the malloc(3) call (as described in the previous section) and Finit
call must be the same.

For more information, refer to Finit, Finit32(3fml) in Oracle Tuxedo ATMI FML Function
Reference.

Falloc
Calls to Fneeded, malloc(3) and Finit may be replaced by a single call to Falloc, which
allocates the desired amount of space and initializes the buffer.

Buf fe r A l l ocat ion and In i t ia l i za t i on

Programming an Oracle Tuxedo ATMI Application Using FML 5-11

FBFR *

Falloc(FLDOCC F, FLDLEN V)

Here:

F is the number of fields.

V is the space for field values, in bytes.

A call to Falloc that provides the same functionality created by the calls to Fneeded, malloc(),
and Finit described in the previous three sections, must be written as follows:

extern FBFR *Falloc;

. . .

 if((fbfr = Falloc(NF, NV)) == NULL)

 F_error(“pgm_name”); /* couldn't allocate buffer */

Storage allocated with Falloc (or Fneeded, malloc(3), and Finit) should be freed with Ffree.
(See Ffree, Ffree32(3fml) in the Oracle Tuxedo ATMI FML Function Reference.)

For more information, refer to Falloc, Falloc32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Ffree
Ffree is used to free memory space allocated as a fielded buffer. Ffree32 does not free the
memory area referenced by a pointer in a FLD_PTR field.

int

Ffree(FBFR *fbfr)

Here fbfr is a pointer to a fielded buffer. Consider the following example:

#include <fml.h>

. . .

if(Ffree(fbfr) < 0)

 F_error("pgm_name"); /* not fielded buffer */

Ffree is preferable to free(3), because Ffree invalidates a fielded buffer, whereas free(3) does
not. It is necessary to invalidate fielded buffers because malloc(3) re-uses memory that has been
freed without clearing it. Thus, if free(3) is used, malloc can return a piece of memory that
looks like a valid fielded buffer, but is not.

5-12 Programming an Oracle Tuxedo ATMI Application Using FML

Space for a fielded buffer may also be reserved directly. The buffer must begin on a short
boundary. You must allocate at least F_OVHD bytes (defined in fml.h) for the buffer; if you do
not, Finit returns an error.

The following code is analogous to the preceding example but Fneeded cannot be used to size
the static buffer because it is not a macro:

/* the first line aligns the buffer */

static short buffer[500/sizeof(short)];

FBFR *fbfr=(FBFR *)buffer;

. . .

Finit(fbfr, 500);

Be careful not to enter code such as the following:

FBFR badfbfr;

. . .

Finit(&badfbfr, Fneeded(NF, NV));

This code is wrong: the structure for FBFR is not defined in the user header files. As a result, a
compilation error will be produced.

For more information, refer to Ffree, Ffree32(3fml) in Oracle Tuxedo ATMI FML Function
Reference.

Fsizeof
Fsizeof returns the size of a fielded buffer in bytes.

long

Fsizeof(FBFR *fbfr)

Here fbfr is a pointer to a fielded buffer. In the following code, for example, Fsizeof returns
the same number that Fneeded returned when the fielded buffer was originally allocated:

long bytes;

. . .

bytes = Fsizeof(fbfr);

For more information, refer to Fsizeof, Fsizeof32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Buf fe r A l l ocat ion and In i t ia l i za t i on

Programming an Oracle Tuxedo ATMI Application Using FML 5-13

Funused
Funused may be used to determine how much space is available in a fielded buffer for additional
data.

long

Funused(FBFR *fbfr)

Here fbfr is a pointer to a fielded buffer. Consider the following example:

long unused;

. . .

unused = Funused(fbfr);

Note that Funused does not indicate the location, in the buffer, of the unused bytes; only the
number of unused bytes is specified.

For more information, refer to Funused, Funused32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Fused
Fused may be used to determine how much space is used in a fielded buffer for data and
overhead.

long

Fused(FBFR *fbfr)

Here fbfr is a pointer to a fielded buffer. Consider the following example:

long used;

. . .

used = Fused(fbfr);

Note that Fused does not indicate the location, in the buffer, of the used bytes; only the number
of used bytes is specified.

For more information, refer to Fused, Fused32(3fml) in Oracle Tuxedo ATMI FML Function
Reference.

Frealloc
This function enables you to change the size of a buffer for which you have allocated space by
calling Falloc.

5-14 Programming an Oracle Tuxedo ATMI Application Using FML

If you have allocated space with tpalloc(3c), you must call tprealloc(3c) to reallocate that
space. Being able to resize the buffer can be useful if, for example, a buffer runs out of space
while a new field value is being added. Simply by calling Frealloc you can increase the size of
the buffer. In other situations you may want to call Frealloc to decrease the size of the buffer.

FBFR *

Frealloc(FBFR *fbfr, FLDOCC nf, FLDLEN nv)

Here:

fbfr is a pointer to a fielded buffer.

nf is the new number of fields or 0.

nv is the new space for field values, in bytes.

Consider the following example:

FBFR *newfbfr;

. . .

if((newfbfr = Frealloc(fbfr, NF+5, NV+300)) == NULL)

 F_error(“pgm_name”); /* couldn't re-allocate space */

else

 fbfr = newfbfr; /* assign new pointer to old */

In this case, the application needed to remember the number of fields and the number of value
space bytes previously allocated. Note that the arguments to Frealloc (as with its counterpart
realloc(3)) are absolute values, not increments. This example does not work if it is necessary
to re-allocate space several times.

The following example shows a second way of incrementing the allocated space:

/* define the increment size when buffer out of space */

#define INCR 400

FBFR *newfbfr;

. . .

if((newfbfr = Frealloc(fbfr, 0, Fsizeof(fbfr)+INCR)) == NULL)

 F_error(“pgm_name”); /* couldn't re-allocate space */

else

 fbfr = newfbfr; /* assign new pointer to old */

You do not need to know the number of fields or the value space size with which the buffer was
last initialized. Thus, the easiest way to increase the size is to use the current size plus the
increment as the value space. The previous example can be executed as many times as needed

Funct ions fo r Mov ing F ie lded Buf fe rs

Programming an Oracle Tuxedo ATMI Application Using FML 5-15

without remembering past executions or values. You do not need to call Finit after calling
Frealloc.

If the amount of additional space requested in the call to Frealloc is contiguous to the old buffer,
newfbfr and fbfr in the previous examples are the same. However, defensive programming
dictates that you should declare newfbfr as a safeguard in case either a new value or NULL is
returned. If Frealloc fails, do not use fbfr again.

Note: The buffer size can be decreased only to the number of bytes currently being used in the
buffer.

For more information, refer to Frealloc, Frealloc32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Functions for Moving Fielded Buffers
The only restriction on the location of fielded buffers is that they must be aligned on a short
boundary. Otherwise, fielded buffers are position-independent and may be moved around freely
in memory.

Fmove
If src points to a fielded buffer and dest points to an area of storage big enough to hold it, then
the following code might be used to move the fielded buffer:

FBFR *src;

char *dest;

. . .

memcpy(dest, src, Fsizeof(src));

The function memcpy, one of the C run-time memory management functions, moves the number
of bytes indicated by its third argument from the area pointed to by its second argument to the
area pointed to by its first argument.

While memcpy may be used to copy a fielded buffer, the destination copy of the buffer looks just
like the source copy. In particular, for example, the destination copy has the same number of
unused bytes as the source buffer.

Fmove acts like memcpy, but does not need an explicit length (which is computed).

int

Fmove(char *dest, FBFR *src)

Here:

5-16 Programming an Oracle Tuxedo ATMI Application Using FML

dest is a pointer to the destination buffer.

src is a pointer to the source fielded buffer.

In the following code, for example, Fmove checks that the source buffer is indeed a fielded buffer,
but does not modify the source buffer in any way.

FBFR *src;

char *dest;

. . .

if(Fmove(dest,src) < 0)

 F_error("pgm_name");

The destination buffer need not be a fielded buffer (that is, it need not have been allocated using
Falloc), but it must be aligned on a short boundary (4-byte alignment for FML32). Thus,
Fmove provides an alternative to Fcpy when you want to copy a fielded buffer to a non-fielded
buffer. Fmove does not, however, check to make sure there is enough room in the destination
buffer to receive the source buffer.

For values of type FLD_PTR, Fmove32 transfers the buffer pointer. The application programmer
must manage the reallocation and freeing of buffers when the associated pointer is moved. The
buffer pointed to by a FLD_PTR field must be allocated using the tpalloc(3c) call.

For more information, refer to Fmove, Fmove32(3fml) in Oracle Tuxedo ATMI FML Function
Reference.

Fcpy
Fcpy is used to overwrite one fielded buffer with another.

int

Fcpy(FBFR *dest, FBFR *src)

Here:

dest is a pointer to the destination fielded buffer.

src is a pointer to the source fielded buffer.

Fcpy preserves the overall buffer length of the overwritten fielded buffer and therefore is useful
for expanding or reducing the size of a fielded buffer. Consider the following example:

FBFR *src, *dest;

. . .

F ie ld Access and Modi f i cat i on Funct ions

Programming an Oracle Tuxedo ATMI Application Using FML 5-17

if(Fcpy(dest, src) < 0)

 F_error(“pgm_name”);

Unlike Fmove, where dest could point to an uninitialized area, Fcpy expects dest to point to an
initialized fielded buffer (allocated using Falloc). Fcpy also verifies that dest is big enough to
accommodate the data from the source buffer.

Note: You cannot reduce the size of a fielded buffer below the amount of space needed for
currently held data.

As with Fmove, the source buffer is not modified by Fcpy.

For values of type FLD_PTR, Fcpy32 copies the buffer pointer. The application programmer must
manage the reallocation and freeing of buffers when the associated pointer is copied. The buffer
pointed to by a FLD_PTR field must be allocated using the tpalloc(3c) call.

For more information, refer to Fcpy, Fcpy32(3fml) in Oracle Tuxedo ATMI FML Function
Reference.

Field Access and Modification Functions
This section discusses how to update and access fielded buffers using the field types of the fields
without doing any conversions. For a list of the functions that allow you to convert data from one
type to another upon transfer to or from a fielded buffer, see “Conversion Functions” on
page 5-43.

Fadd
The Fadd function adds a new field value to the fielded buffer.

int

Fadd(FBFR *fbfr, FLDID fieldid, char *value, FLDLEN len)

Here:

fbfr is a pointer to a fielded buffer.

fieldid is a field identifier.

value is a pointer to a new value. Its type is shown as char*, but when it is used, its type
must be the same type as the value to be added (see below).

len is the length of the value if its type is FLD_CARRAY or FLD_MBSTRING.

5-18 Programming an Oracle Tuxedo ATMI Application Using FML

If no occurrence of the field exists in the buffer, then the field is added. If one or more occurrences
of the field already exist, then the value is added as a new occurrence of the field, and is assigned
an occurrence number 1 greater than the current highest occurrence. (To add a specific
occurrence, Fchg must be used.)

Fadd, like all other functions that take or return a field value, expects a pointer to a field value,
never the value itself.

If the field type is such that the field length is fixed (short, long, char, float, or double) or
can be determined (string), the field length need not be given (it is ignored). If the field type is
a character array (FLD_CARRAY or FLD_MBSTRING), the length must be specified; the length is
defined as type FLDLEN. The following code, for example, gets the field identifier for the desired
field and adds the field value to the buffer.

FLDID fieldid, Fldid;

FBFR *fbfr;

. . .

fieldid = Fldid("fieldname");

if(Fadd(fbfr, fieldid, "new value", (FLDLEN)9) < 0)

 F_error("pgm_name");

It is assumed (by default) that the native type of the field is a character array so that the length of
the value must be passed to the function. If the value being added is not a character array, the type
of value must reflect the type of the value to which it points. The following code, for example,
adds a long field value.

long lval;

. . .

lval = 123456789;

if(Fadd(fbfr, fieldid, &lval, (FLDLEN)0) < 0)

 F_error("pgm_name");

For character array fields, null fields may be indicated by a length of 0. For string fields, the null
string may be stored since the NULL terminating byte is actually stored as part of the field value:
a string consisting of only the NULL terminating byte is considered to have a length of 1. For all
other types (fixed length types), you may choose some special value that is interpreted by the
application as a NULL, but the size of the value is taken from its field type (for example, a length
of 4 for a long), regardless of what value is actually passed. Passing a NULL value address
results in an error (FEINVAL).

F ie ld Access and Modi f i cat i on Funct ions

Programming an Oracle Tuxedo ATMI Application Using FML 5-19

For pointer fields, Fadd32 stores the pointer value. The buffer pointed to by a FLD_PTR field must
be allocated using the tpalloc(3c) call. For embedded FML32 buffers, Fadd32 stores the entire
FLD_FML32 field value, except for the index.

For embedded VIEW32 buffers, Fadd32 stores a pointer to a structure of type FVIEWFLD, which
contains vflags (a flags field, currently unused and set to 0), vname (a character array containing
the view name), and data (a pointer to the view data stored as a C structure). The application
provides the vname and data to Fadd32. The FVIEWFLD structure is as follows:

typedef struct {

 TM32U vflags; /* flags - currently unused */

 char vname[FVIEWNAMESIZE+1]; /* name of view */

 char *data; /* pointer to view structure */

} FVIEWFLD;

For more information, refer to Fadd, Fadd32(3fml) in Oracle Tuxedo ATMI FML Function
Reference.

Fappend
The Fappend function appends a new field value to the fielded buffer.

int

Fappend(FBFR *fbfr, FLDID fieldid, char *value, FLDLEN len)

Here:

fbfr is a pointer to a fielded buffer.

fieldid is a field identifier.

value is a pointer to a new value. Its type is shown as char *, but when it is used, its
type must be the same type as the value to be appended (see below).

len is the length of the value if its type is FLD_CARRAY or FLD_MBSTRING.

Fappend appends a new occurrence of the field fieldid with a value located at value to the
fielded buffer and puts the buffer into append mode. Append mode provides optimized buffer
construction for large buffers constructed of many rows of a common set of fields.

A buffer that is in append mode is restricted as to what operations may be performed on the
buffer. Only calls to the following FML routines are allowed in append mode: Fappend, Findex,
Funindex, Ffree, Fused, Funused and Fsizeof. Calls to Findex or Funindex end append
mode.

5-20 Programming an Oracle Tuxedo ATMI Application Using FML

The following example shows the construction, using Fappend, of a 500-row buffer with 5 fields
per row:

for (i=0; i 500 ;i++) {

 if ((Fappend(fbfr, LONGFLD1, &lval1[i], (FLDLEN)0) < 0) ||

 (Fappend(fbfr, LONGFLD2, &lval2[i], (FLDLEN)0) < 0) ||

 (Fappend(fbfr, STRFLD1, &str1[i], (FLDLEN)0) < 0) ||

 (Fappend(fbfr, STRFLD2, &str2[i], (FLDLEN)0) < 0) ||

 (Fappend(fbfr, LONGFLD3, &lval3[i], (FLDLEN)0) < 0)) {

 F_error("pgm_name");

 break;

 }

}

Findex(fbfr, 0);

Fappend, like all other functions that take or return a field value, expects a pointer to a field value,
never the value itself.

If the field type is such that the field length is fixed (short, long, char, float, or double) or
can be determined (string), the field length need not be given (it is ignored). If the field type is
a character array (FLD_CARRAY or FLD_MBSTRING), the length must be specified; the length is
defined as type FLDLEN.

It is assumed (by default) that the native type of the field is a character array so that the length of
the value must be passed to the function. If the value being appended is not a character array, the
type of value must reflect the type of the value it points to.

For character array fields, null fields may be indicated by a length of 0. For string fields, the null
string may be stored since the NULL terminating byte is actually stored as part of the field value:
a string consisting of only the NULL terminating byte is considered to have a length of 1. For all
other types (fixed-length types), you may choose some special value that is interpreted by the
application as a NULL, but the size of the value is taken from its field type (for example, the
length of 4 for a long), regardless of what value is actually passed. Passing a NULL value address
results in an error (FEINVAL).

For more information, refer to Fappend, Fappend32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Fchg
Fchg changes the value of a field in the buffer.

F ie ld Access and Modi f i cat i on Funct ions

Programming an Oracle Tuxedo ATMI Application Using FML 5-21

int

Fchg(FBFR *fbfr, FLDID fieldid, FLDOCC oc, char *value, FLDLEN len)

Here:

fbfr is a pointer to a fielded buffer.

fieldid is a field identifier.

oc is the occurrence number of the field.

value is a pointer to a new value. Its type is shown as char *, but when it is used, its
type must be the same type as the value to be added (see “Fadd” on page 5-17).

len is the length of the value if its type is FLD_CARRAY or FLD_MBSTRING.

For example, the following code changes a field of type carray to a new value stored in value:

FBFR *fbfr;

FLDID fieldid;

FLDOCC oc;

FLDLEN len;

char value[50];

. . .

strcpy(value, "new value");

flen = strlen(value);

if(Fchg(fbfr, fieldid, oc, value, len) < 0)

 F_error("pgm_name");

If oc is -1, then the field value is added as a new occurrence to the buffer. If oc is 0 or greater and
the field is found, then the field value is modified to the new value specified. If oc is 0 or greater
and the field is not found, then NULL occurrences are added to the buffer until the value can be
added as the specified occurrence. For example, changing field occurrence 3 for a field that does
not exist on a buffer causes three NULL occurrences to be added (occurrences 0, 1 and 2),
followed by occurrence 3 with the specified field value. Null values consist of the NULL string
“\0” (1 byte in length) for string and character values, 0 for long and short fields, 0.0 for float
and double values, and a zero-length string for a character array.

The new or modified value is contained in value. If it is a character array (FLD_CARRAY or
FLD_MBSTRING), its length is given in len (len is ignored for other field types). If the value
pointer is NULL and the field is found, then the field is deleted. If the field occurrence to be
deleted is not found, it is considered an error (FNOTPRES).

5-22 Programming an Oracle Tuxedo ATMI Application Using FML

For pointer fields, Fchg32 stores the pointer value. The buffer pointed to by a FLD_PTR field must
be allocated using the tpalloc(3c) call. For embedded FML32 buffers, Fchg32 stores the entire
FLD_FML32 field value, except the index.

For embedded VIEW32 buffers, Fchg32 stores a pointer to a structure of type FVIEWFLD, which
contains vflags (a flags field, currently unused and set to 0), vname (a character array containing
the view name), and data (a pointer to the view data stored as a C structure). The application
provides the vname and data to Fchg32. The FVIEWFLD structure is as follows:

typedef struct {

 TM32U vflags; /* flags - currently unused */

 char vname[FVIEWNAMESIZE+1]; /* name of view */

 char *data; /* pointer to view structure */

} FVIEWFLD;

The buffer must have enough room to contain the modified or added field value, or an error is
returned (FNOSPACE).

For more information, refer to Fchg, Fchg32(3fml) in Oracle Tuxedo ATMI FML Function
Reference.

Fcmp
Fcmp compares the field identifiers and field values of two fielded buffers.

int

Fcmp(FBFR *fbfr1, FBFR *fbfr2)

Here fbfr1 and fbfr2 are pointers to fielded buffers.

The function returns a 0 if the buffers are identical; it returns a -1 on any of the following
conditions:

The fieldid of a fbfr1 field is less than the field ID of the corresponding field of
fbfr2.

The value of a fbfr1 field is less than the value of the corresponding field of fbfr2.

fbfr1 is shorter than fbfr2.

The following criteria are used to determine whether pointers and embedded buffers are equal:

For pointer fields, two pointer fields are considered equal if the pointer values (addresses)
are equal.

F ie ld Access and Modi f i cat i on Funct ions

Programming an Oracle Tuxedo ATMI Application Using FML 5-23

For embedded FML32 buffers, two fields are considered equal if all field occurrences and
values are equal.

For embedded VIEW32 buffers, two fields are considered equal if the view names are the
same, and if all structure member occurrences and values are equal.

Fcmp returns a 1 if the opposite of any of these conditions is true. For example, Fcmp returns 1 if
the field ID of a fbfr2 field is less than the field ID of the corresponding field of fbfr1.

For more information, refer to Fcmp, Fcmp32(3fml) in Oracle Tuxedo ATMI FML Function
Reference.

Fdel
The Fdel function deletes the specified field occurrence.

int

Fdel(FBFR *fbfr, FLDID fieldid, FLDOCC oc)

Here:

fbfr is a pointer to a fielded buffer.

fieldid is a field identifier.

oc is the occurrence number.

For example, the following code deletes the first occurrence of the field indicated by the specified
field identifier:

FLDOCC occurrence;

. . .

occurrence=0;

if(Fdel(fbfr, fieldid, occurrence) < 0)

 F_error("pgm_name");

If the specified field does not exist, the function returns -1 and Ferror is set to FNOTPRES.

For pointer fields, Fdel32 deletes the FLD_PTR field occurrence without changing the referenced
buffer or freeing the pointer. The data buffer is treated as an opaque pointer.

For more information, refer to Fdel, Fdel32(3fml) in Oracle Tuxedo ATMI FML Function
Reference.

5-24 Programming an Oracle Tuxedo ATMI Application Using FML

Fdelall
Fdelall deletes all occurrences of the specified field from the buffer.

int

Fdelall(FBFR *fbfr, FLDID fieldid)

Here:

fbfr is a pointer to a fielded buffer.

fieldid is a field identifier.

Consider the following example:

if(Fdelall(fbfr, fieldid) < 0)

 F_error("pgm_name"); /* field not present */

If the field is not found, the function returns -1 and Ferror is set to FNOTPRES.

For pointer fields, Fdelall32 deletes the FLD_PTR field occurrence without changing the
referenced buffer or freeing the pointer. The data buffer is treated as an opaque pointer.

For more information, refer to Fdelall, Fdelall32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Fdelete
Fdelete deletes all occurrences of all fields listed in the array of field identifiers, fieldid[].

int

Fdelete(FBFR *fbfr, FLDID *fieldid)

Here:

fbfr is a pointer to a fielded buffer.

fieldid is a pointer to the list of field identifiers to be deleted.

The update is done directly to the fielded buffer. The array of field identifiers does not need to be
in any specific order, but the last entry in the array must be field identifier 0 (BADFLDID).
Consider the following example:

#include "fldtbl.h"

FBFR *dest;

FLDID fieldid[20];

. . .

F ie ld Access and Modi f i cat i on Funct ions

Programming an Oracle Tuxedo ATMI Application Using FML 5-25

fieldid[0] = A; /* field id for field A */

fieldid[1] = D; /* field id for field D */

fieldid[2] = BADFLDID; /* sentinel value */

if(Fdelete(dest, fieldid) < 0)

 F_error("pgm_name");

If the destination buffer has fields A, B, C, and D, this example results in a buffer that contains
only occurrences of fields B and C.

Fdelete provides a more efficient way of deleting several fields from a buffer than using several
Fdelall calls.

For pointer fields, Fdelete deletes the FLD_PTR field occurrence without changing the
referenced buffer or freeing the pointer. The data buffer is treated as an opaque pointer.

For more information, refer to Fdelete, Fdelete32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Ffind
Ffind finds the value of the specified field occurrence in the buffer.

char *

Ffind(FBFR *fbfr, FLDID fieldid, FLDOCC oc, FLDLEN *len)

Here:

fbfr is a pointer to a fielded buffer.

fieldid is a field identifier.

oc is the occurrence number.

len is the length of the value found.

In the previous declaration the return value to Ffind is shown as a character pointer data type
(char* in C). The actual type of the pointer returned is the same as the type of the value to which
it points.

The following code provides an example of how this function is used:

#include "fldtbl.h"

FBFR *fbfr;

FLDLEN len;

char* Ffind, *value;

5-26 Programming an Oracle Tuxedo ATMI Application Using FML

. . .

if((value=Ffind(fbfr,ZIP,0, &len)) == NULL)

 F_error("pgm_name");

If the field is found, its length is returned in len (if len is NULL, the length is not returned), and
its location is returned as the value of the function. If the field is not found, NULL is returned,
and Ferror is set to FNOTPRES.

Ffind is useful for gaining “read-only” access to a field. The value returned by Ffind should not
be used to modify the buffer. Field values should be modified only by the Fadd or Fchg function.
This function does not check for occurrences of the specified field in embedded buffers.

The value returned by Ffind is valid only so long as the buffer remains unmodified. The value
is guaranteed to be aligned on a short boundary but may not be aligned on a long or double
boundary, even if the field is of that type. (See the conversion functions described later in this
document for aligned values.) On processors that require proper alignment of variables,
referencing the value when not aligned properly causes a system error, as shown in the following
example:

long *l1,l2;

FLDLEN length;

char *Ffind;

. . .

if((l1=(long *)Ffind(fbfr, ZIP, 0, &length)) == NULL)

 F_error("pgm_name");

else

 l2 = *l1;

This code should be re-written as follows:

if((l1==(long *)Ffind(fbfr, ZIP, 0, &length)) == NULL)

 F_error("pgm_name");

else

 memcpy(&l2,l1,sizeof(long));

For more information, refer to Ffind, Ffind32(3fml) in Oracle Tuxedo ATMI FML Function
Reference.

Ffindlast
This function finds the last occurrence of a field in a fielded buffer and returns a pointer to the
field, as well as the occurrence number and length of the field occurrence.

F ie ld Access and Modi f i cat i on Funct ions

Programming an Oracle Tuxedo ATMI Application Using FML 5-27

char *

Ffindlast(FBFR *fbfr, FLDID fieldid, FLDOCC *oc, FLDLEN *len)

Here:

fbfr is a pointer to a fielded buffer.

fieldid is a field identifier.

oc is a pointer to the occurrence number of the last field occurrence found.

len is a pointer to the length of the value found.

In the previous declaration the return value to Ffindlast is shown as a character pointer data
type (char* in C). The actual type of the pointer returned is the same as the type of the value to
which it points.

Ffindlast acts like Ffind, except that you do not specify a field occurrence. Instead, both the
occurrence number and the value of the last field occurrence are returned. However, if you
specify NULL as the value of the occurrence when calling the function, the occurrence number
is not returned. This function does not check for occurrences of the specified field in embedded
buffers.

The value returned by Ffindlast is valid only as long as the buffer remains unchanged.

For more information, refer to Ffindlast, Ffindlast32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Ffindocc
Ffindocc looks at occurrences of the specified field on the buffer and returns the occurrence
number of the first field occurrence that matches the user-specified field value.

FLDOCC

Ffindocc(FBFR *fbfr, FLDID fieldid, char *value, FLDLEN len;)

Here:

fbfr is a pointer to a fielded buffer.

fieldid is a field identifier.

value is a pointer to a new value. Its type is shown as char*, but when it is used, its type
must be the same type as the value to be added (see “Fadd” on page 5-17).

len is the length of the value if its type is FLD_CARRAY or FLD_MBSTRING.

5-28 Programming an Oracle Tuxedo ATMI Application Using FML

For example, the following code sets oc to the occurrence for the specified zip code:

#include "fldtbl.h"

FBFR *fbfr;

FLDOCC oc;

long zipvalue;

. . .

zipvalue = 123456;

if((oc=Ffindocc(fbfr,ZIP,&zipvalue, 0)) < 0)

 F_error("pgm_name");

Regular expressions are supported for string fields. For example, the following code sets oc to
the occurrence of NAME that starts with “J”:

#include "fldtbl.h"

FBFR *fbfr;

FLDOCC oc;

char *name;

. . .

name = "J.*"

if ((oc = Ffindocc(fbfr, NAME, name, 1)) < 0)

 F_error("pgm_name");

Note: To enable pattern matching on strings, the fourth argument to Ffindocc must be
non-zero. If it is zero, a simple string compare is performed. If the field value is not
found, -1 is returned.

For upward compatibility, a circumflex (^) prefix and dollar sign ($) suffix are implicitly added
to the regular expression. Thus the previous example is actually interpreted as “^(J.*)$”. The
regular expression must match the entire string value in the field.

For more information, refer to Ffindocc, Ffindocc32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Fget
Use Fget to retrieve a field from a fielded buffer when the value is to be modified.

int
Fget(FBFR *fbfr, FLDID fieldid, FLDOCC oc, char *loc, FLDLEN *maxlen)

Here:

fbfr is a pointer to a fielded buffer.

F ie ld Access and Modi f i cat i on Funct ions

Programming an Oracle Tuxedo ATMI Application Using FML 5-29

fieldid is a field identifier.

oc is the occurrence number.

loc is a pointer to a buffer to copy the field value into.

maxlen is a pointer to the length of the source buffer on calling the function, and a pointer
to the length of the field on return.

The caller provides Fget with a pointer to a private buffer, as well as the length of the buffer. If
maxlen is specified as NULL, then it is assumed that the destination buffer is large enough to
accommodate the field value, and its length is not returned.

Fget returns an error if the desired field is not in the buffer (FNOTPRES), or if the destination
buffer is too small (FNOSPACE). For example, the following code gets the zip code, assuming it is
stored as a character array or string:

FLDLEN len;

char value[100];

. . .

len=sizeof(value);

if(Fget(fbfr, ZIP, 0, value, &len) < 0)

 F_error("pgm_name");

If the zip code is stored as a long, it can be retrieved by the following code:

FLDLEN len;

long value;

. . .

len = sizeof(value);

if(Fget(fbfr, ZIP, 0, value, &len) < 0)

 F_error("pgm_name");

For more information, refer to Fget, Fget32(3fml) in Oracle Tuxedo ATMI FML Function
Reference.

Fgetalloc
Like Fget, Fgetalloc finds and makes a copy of a buffer field, but it acquires space for the field
via a call to malloc(3).

char *

Fgetalloc(FBFR *fbfr, FLDID fieldid, FLDOCC oc, FLDLEN *extralen)

5-30 Programming an Oracle Tuxedo ATMI Application Using FML

Here:

fbfr is a pointer to a fielded buffer.

fieldid is a field identifier.

oc is the occurrence number.

extralen is a pointer to the additional length to be acquired on calling the function, and a
pointer to the actual length acquired on return.

In the declaration above the return value to Fgetalloc is shown as a character pointer data type
(char* in C). The actual type of the pointer returned is the same as the type of the value to which
it points.

On success, Fgetalloc returns a valid pointer to the copy of the properly aligned buffer field;
on error it returns NULL. If malloc(3) fails, Fgetalloc returns an error and Ferror is set to
FMALLOC.

The last parameter to Fgetalloc specifies an extra amount of space to be acquired if, for
instance, the value obtained is to be expanded before re-insertion into the fielded buffer. On
success, the length of the allocated buffer is returned in extralen. Consider the following
example:

FLDLEN extralen;

FBFR *fieldbfr

char *Fgetalloc;

. . .

extralen = 0;

if (fieldbfr = (FBFR *)Fgetalloc(fbfr, ZIP, 0, &extralen) == NULL)

 F_error("pgm_name");

It is the responsibility of the caller to free space acquired by Fgetalloc.

For more information, refer to Fgetalloc, Fgetalloc32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Fgetlast
Fgetlast is used to retrieve the last occurrence of a field from a fielded buffer when the value
is to be modified.

int
Fgetlast(FBFR *fbfr, FLDID fieldid, FLDOCC *oc, char *loc, FLDLEN *maxlen)

F ie ld Access and Modi f i cat i on Funct ions

Programming an Oracle Tuxedo ATMI Application Using FML 5-31

Here:

fbfr is a pointer to a fielded buffer.

fieldid is a field identifier.

oc is a pointer to the occurrence number of the last field occurrence.

loc is a pointer to a buffer to copy the field value into.

maxlen is a pointer to the length of the source buffer on calling the function, and a pointer
to the length of the field on return.

The caller provides Fgetlast with a pointer to a private buffer, as well as the length of the buffer.
Fgetlast acts like Fget, except that you do not specify a field occurrence. Instead, both the
occurrence number and the value of the last field occurrence are returned. However, if you
specify NULL for occ on calling the function, the occurrence number is not returned.

For more information, refer to Fgetlast, Fgetlast32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Fnext
Fnext finds the next field in the buffer after the specified field occurrence.

int
Fnext(FBFR *fbfr, FLDID *fieldid, FLDOCC *oc, char *value, FLDLEN *len)

Here:

fbfr is a pointer to a fielded buffer.

fieldid is a pointer to a field identifier.

oc is a pointer to the occurrence number.

value is a pointer of the same type as the value contained in the next field.

len is a pointer to the length of *value.

A fieldid of FIRSTFLDID should be specified to get the first field in a buffer; the field identifier
and occurrence number of the first field occurrence are returned in the corresponding parameters.
If the field is not NULL, its value is copied into the memory location addressed by the value
pointer.

The len parameter is used to determine whether value has enough space allocated to contain the
field value. If the amount of space is insufficient, Ferror is set to FNOSPACE. The length of the

5-32 Programming an Oracle Tuxedo ATMI Application Using FML

value is returned in the len parameter. If the value of the field is non-null, then the len parameter
is also assumed to contain the length of the currently allocated space for value.

When the field to be retrieved is an embedded VIEW32 buffer, the value parameter points to an
FVIEWFLD structure. The Fnext function populates the vname and data fields in the structure.
The FVIEWFLD structure is as follows:

typedef struct {

 TM32U vflags; /* flags - currently unused */

 char vname[FVIEWNAMESIZE+1]; /* name of view */

 char *data; /* pointer to view structure */

} FVIEWFLD;

If the field value is NULL, then the value and length parameters are not changed.

If no more fields are found, Fnext returns 0 (end of buffer) and fieldid, occurrence, and
value are left unchanged.

If the value parameter is not NULL, the length parameter is also assumed to be non-NULL.

The following example reads all field occurrences in the buffer:

FLDID fieldid;

FLDOCC occurrence;

char *value[100];

FLDLEN len;

. . .

for(fieldid=FIRSTFLDID,len=sizeof(value);

 Fnext(fbfr,&fieldid,&occurrence,value,&len) > 0;

 len=sizeof(value)) {

 /* code for each field occurrence */

}

For more information, refer to Fnext, Fnext32(3fml) in Oracle Tuxedo ATMI FML Function
Reference.

Fnum
Fnum returns the number of fields contained in the specified buffer, or -1 on error.

FLDOCC

Fnum(FBFR *fbfr)

F ie ld Access and Modi f i cat i on Funct ions

Programming an Oracle Tuxedo ATMI Application Using FML 5-33

Here fbfr is a pointer to a fielded buffer. The following code, for example, prints the number of
fields in the specified buffer:

if((cnt=Fnum(fbfr)) < 0)

 F_error("pgm_name");

else

 fprintf(stdout,"%d fields in buffer\n",cnt);

Each FLD_FML32 and FLD_VIEW32 field is counted as a single field, regardless of the number of
fields it contains.

For more information, refer to Fnum, Fnum32(3fml) in Oracle Tuxedo ATMI FML Function
Reference.

Foccur
Foccur returns the number of occurrences for the specified field in the buffer:

FLDOCC

Foccur(FBFR *fbfr, FLDID fieldid)

Here:

fbfr is a pointer to a fielded buffer.

fieldid is a field identifier.

Occurrences of a field within an embedded FML32 buffer are not counted.

Zero is returned if the field does not occur in the buffer and -1 is returned on error. For example,
the following code prints the number of occurrences of the field ZIP in the specified buffer:

FLDOCC cnt;

. . .

if((cnt=Foccur(fbfr,ZIP)) < 0)

 F_error("pgm_name");

else

 fprintf(stdout,"Field ZIP occurs %d times in buffer\n",cnt);

For more information, refer to Foccur, Foccur32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Fpres
Fpres returns true (1) if the specified field occurrence exists. Otherwise, it returns false (0).

5-34 Programming an Oracle Tuxedo ATMI Application Using FML

int

Fpres(FBFR *fbfr, FLDID fieldid, FLDOCC oc)

Here:

fbfr is a pointer to a fielded buffer.

fieldid is a field identifier.

oc is the occurrence number.

For example, the following code returns true if the field ZIP exists in the fielded buffer referenced
by fbfr:

Fpres(fbfr,ZIP,0)

Fpres does not check for occurrences of the specified field within an embedded buffer.

For more information, refer to Fpres, Fpres32(3fml) in Oracle Tuxedo ATMI FML Function
Reference.

Fvals and Fvall
Fvals works like Ffind for string values but guarantees that a pointer to a value is returned.
Fvall works like Ffind for long and short values, but returns the actual value of the field as a
long, instead of as a pointer to the value.

char*

Fvals(FBFR *fbfr,FLDID fieldid,FLDOCC oc)

char*

Fvall(FBFR *fbfr,FLDID fieldid,FLDOCC oc)

In both functions:

fbfr is a pointer to a fielded buffer.

fieldid is a field identifier.

oc is the occurrence number.

For Fvals, if the specified field occurrence is not found, the NULL string, \0, is returned. This
function is useful for passing the value of a field to another function without checking the return
value. This function is valid only for fields of type string; the NULL string is automatically
returned for other field types (that is, no conversion is done).

Buf fe r Update Funct ions

Programming an Oracle Tuxedo ATMI Application Using FML 5-35

For Fvall, if the specified field occurrence is not found, then 0 is returned. This function is useful
for passing the value of a field to another function without checking the return value. This
function is valid only for fields of type long and short; 0 is automatically returned for other field
types (that is, no conversion is done).

For more information, refer to Fvals, Fvals32(3fml) and Fvall, Fvall32(3fml) in
Oracle Tuxedo ATMI FML Function Reference.

Buffer Update Functions
The functions listed in this section access and update entire fielded buffers, rather than individual
fields in the buffers. These functions use, at most, three parameters:

dest is a pointer to a destination fielded buffer.

src is a pointer to a source fielded buffer.

fieldid is a field identifier or an array of field identifiers.

Fconcat
Fconcat adds fields from the source buffer to the fields that already exist in the destination
buffer.

int

Fconcat(FBFR *dest, FBFR *src)

Occurrences in the destination buffer are maintained (that is, they are retained and not modified)
and new occurrences from the source buffer are added with greater occurrence numbers than any
existing occurrences for each field. The fields are maintained in field identifier order.

Consider the following example:

FBFR *src, *dest;

. . .

if(Fconcat(dest,src) < 0)

 F_error("pgm_name");

If dest has fields A, B, and two occurrences of C, and src has fields A, C, and D, the resulting
dest has two occurrences of field A (destination field A and source field A), field B, three
occurrences of field C (two from dest and the third from src), and field D.

This operation fails if there is not enough space for the new fields (FNOSPACE); in this case, the
destination buffer remains unchanged.

5-36 Programming an Oracle Tuxedo ATMI Application Using FML

For more information, refer to Fconcat, Fconcat32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Fjoin
Fjoin is used to join two fielded buffers based on matching field ID/occurrence.

int

Fjoin(FBFR *dest, FBFR *src)

For fields that match on field ID/occurrence, the field value is updated in the destination buffer
with the value from the source buffer. Fields in the destination buffer that have no corresponding
field ID/occurrence in the source buffer are deleted. Fields in the source buffer that have no
corresponding field ID/occurrence in the destination buffer are not added to the destination
buffer. Thus

if(Fjoin(dest,src) < 0)

 F_error("pgm_name");

Using the input buffers in the previous example results in a destination buffer that has source field
value A and source field value C. This function may fail due to lack of space if the new values
are larger than the old (FNOSPACE); in this case, the destination buffer will have been modified.
However, if this happens, the destination buffer may be reallocated using Frealloc and the
Fjoin function repeated (even if the destination buffer has been partially updated, repeating the
function gives the correct results).

If joining buffers results in the removal of a pointer field (FLD_PTR), the memory area referenced
by the pointer is not modified or freed.

For more information, refer to Fjoin, Fjoin32(3fml) in Oracle Tuxedo ATMI FML Function
Reference.

Fojoin
Fojoin is similar to Fjoin, but it does not delete fields from the destination buffer that have no
corresponding field ID/occurrence in the source buffer.

int

Fojoin(FBFR *dest, FBFR *src)

Note that fields in the source buffer for which there are no corresponding field ID/occurrence
pairs in the destination buffer are not added to the destination buffer. Consider the following
example:

Buf fe r Update Funct ions

Programming an Oracle Tuxedo ATMI Application Using FML 5-37

if(Fojoin(dest,src) < 0)

 F_error("pgm_name");

Using the input buffers from the previous example, dest contains the source field value A, the
destination field value B, the source field value C, and the second destination field value C. As
with Fjoin, this function can fail for lack of space (FNOSPACE) and can be reissued again after
more space has been allocated to complete the operation.

If joining buffers results in the removal of a pointer field (FLD_PTR), the memory area referenced
by the pointer is not modified or freed.

For more information, refer to Fojoin, Fojoin32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Fproj
Fproj is used to update a buffer in place so that only the desired fields are kept. (The result, in
other words, is a projection on specified fields.) If updating buffers results in the removal of a
pointer field (FLD_PTR), the memory area referenced by the pointer is not modified or freed.

int

Fproj(FBFR *fbfr, FLDID *fieldid)

These fields are specified in an array of field identifiers passed to the function. The update is
performed directly in the fielded buffer. Consider the following example:

#include "fldtbl.h"

FBFR *fbfr;

FLDID fieldid[20];

. . .

fieldid[0] = A; /* field id for field A */

fieldid[1] = D; /* field id for field D */

fieldid[2] = BADFLDID; /* sentinel value */

if(Fproj(fbfr, fieldid) < 0)

 F_error("pgm_name");

If the buffer has fields A, B, C, and D, the example results in a buffer that contains only
occurrences of fields A and D. Note that the entries in the array of field identifiers do not need to
be in any specific order, but the last value in the array of field identifiers must be field identifier
0 (BADFLDID).

For more information, refer to Fproj, Fproj32(3fml) in Oracle Tuxedo ATMI FML Function
Reference.

5-38 Programming an Oracle Tuxedo ATMI Application Using FML

Fprojcpy
Fprojcpy is similar to Fproj but the desired fields are placed in a destination buffer. If updating
buffers results in the removal of a pointer field (FLD_PTR), the memory area referenced by the
pointer is not modified or freed.

int

Fprojcpy(FBFR *dest, FBFR *src, FLDID *fieldid)

Any fields in the destination buffer are first deleted and the results of the projection on the source
buffer are copied into the destination buffer. Using the above example, the following code places
the results of the projection in the destination buffer:

if(Fprojcpy(dest, src, fieldid) < 0)

 F_error("pgm_name");

The entries in the array of field identifiers may be rearranged; if the entries are not in numeric
order, the field identifier array is sorted.

For more information, refer to Fprojcpy, Fprojcpy32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Fupdate
Fupdate updates the destination buffer with the field values in the source buffer.

int

Fupdate(FBFR *dest, FBFR *src)

For fields that match on field ID/occurrence, the field value is updated in the destination buffer
with the value in the source buffer (like Fjoin). Fields on the destination buffer that have no
corresponding field on the source buffer are left untouched (like Fojoin). Fields on the source
buffer that have no corresponding field on the destination buffer are added to the destination
buffer (like Fconcat). Consider the following example:

if(Fupdate(dest,src) < 0)

 F_error("pgm_name");

If the src buffer has fields A, C, and D, and the dest buffer has fields A, B, and two occurrences
of C, the updated destination buffer contains: the source field value A, the destination field value
B, the source field value C, the second destination field value C, and the source field value D.

V IEWS Funct ions

Programming an Oracle Tuxedo ATMI Application Using FML 5-39

For pointers, Fupdate32 stores the pointer value. The buffer pointed to by a FLD_PTR field must
be allocated using the tpalloc(3c) call. For embedded FML32 buffers, Fupdate32 stores the
entire FLD_FML32 field value, except the index.

For embedded VIEW32 buffers, Fupdate32 stores a pointer to a structure of type FVIEWFLD,
which contains vflags (a flags field, currently unused and set to 0), vname (a character array
containing the view name), and data (a pointer to the view data stored as a C structure). The
application provides the vname and data to Fupdate32. The FVIEWFLD structure is as follows:

typedef struct {

 TM32U vflags; /* flags - currently unused */

 char vname[FVIEWNAMESIZE+1]; /* name of view */

 char *data; /* pointer to view structure */

} FVIEWFLD;

For more information, refer to Fupdate, Fupdate32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

VIEWS Functions

Fvftos
This function transfers data from a fielded buffer to a C structure using a specified view
description.

int

Fvftos(FBFR *fbfr, char *cstruct, char *view)

Here:

fbfr is a pointer to a fielded buffer.

cstruct is a pointer to a structure.

view is a pointer to a view name string.

If the named view is not found, Fvftos returns -1, and Ferror is set to FBADVIEW.

When data is being transferred from a fielded buffer to a C structure, the following rules apply:

If a field in the fielded buffer is not mapped to a C structure member, the field is ignored.

If a field is not in the fielded buffer, but appears in the view description and is mapped to a
structure member, the corresponding null value is copied into the member.

5-40 Programming an Oracle Tuxedo ATMI Application Using FML

If a field in the fielded buffer contains data of type string or carray, characters are
copied into the structure up to the size of the mapped structure member (that is, source
values that are too long are truncated). If the source value is shorter than the mapped
structure member, the remainder of the member value is padded with null (0) characters.
String values are always terminated with a null character (even if this means truncating the
value).

If the number of occurrences of a field in the buffer is equal to the number of mapped
structure members, then the fielded data is copied into the C structure.

If the number of occurrences of a field in the buffer is greater than the number of mapped
structure members, then the fielded data is ignored.

If the number of occurrences of a field in the buffer is less than the number of mapped
structure members, then the extra members are assigned the corresponding null value.

For example, the following code puts string1 into cust.action[0] and abc into
cust.bug[0]. All other members in the cust structure should contain null values.

#include <stdio.h>

#include "fml.h"

#include "custdb.flds.h"

#include "custdb.h"

struct custdb cust;

FBFR *fbfr;

. . .

fbfr = Falloc(800,1000);

Fvinit((char *)&cust,"custdb"); /* initialize cust */

str = "string1";

Fadd(fbfr,ACTION,str,(FLDLEN)8);

str = "abc";

Fadd(fbfr,BUG_CURS,str,(FLDLEN)4);

Fvftos(fbfr,(char *)&cust,"custdb");

. . .

View custdb is defined in “VIEWS Examples” on page 6-1.

For more information, refer to Fvftos, Fvftos32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

V IEWS Funct ions

Programming an Oracle Tuxedo ATMI Application Using FML 5-41

Fvstof
This function transfers data from a C structure to a fielded buffer using a specified view
description.

int

Fvstof(FBFR *fbfr, char *cstruct, int mode, char *view)

Here:

fbfr is a pointer to a fielded buffer.

cstruct is a pointer to a structure.

mode is one of the following: FUPDATE, FJOIN, FOJOIN, or FCONCAT.

view is a pointer to a view name string.

The transfer process obeys the rules listed under the FML function corresponding to the mode
parameter: Fupdate, Fjoin, Fojoin, or Fconcat.

If the named view is not found, Fvstof returns -1, and Ferror is set to FBADVIEW.

Note: Null values are not transferred from a structure member to a fielded buffer. That is,
during a structure-to-field transfer, if a structure member contains the (default or
user-specified) null value defined for that member, the member is ignored.

For more information, refer to Fvftos, Fvftos32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Fvnull
Fvnull is used to determine whether an occurrence in a C structure contains the null value for
that field.

int

Fvnull(char *cstruct, char *cname, FLDOCC oc, char *view)

Here:

cstruct is a pointer to a structure.

cname is a pointer to the name of a structure member.

oc is the index to a particular element.

view is a pointer to a view name string.

5-42 Programming an Oracle Tuxedo ATMI Application Using FML

Fvnull returns:

1 if an occurrence is null

0 if an occurrence is not null

-1 if an error occurred

For more information, refer to Fvnull, Fvnull32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Fvsinit
This function initializes all elements in a C structure to their appropriate null value.

int

Fvsinit(char *cstruct, char *view)

Here:

cstruct is a pointer to a structure.

view is a pointer to a view name string.

For more information, refer to Fvsinit, Fvsinit32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Fvopt
This function allows users to change flag options at run time.

int

Fvopt(char *cname, int option, char *view)

Here:

cname is the name of a structure member.

option is one of the options listed below.

view is a pointer to a view name string.

The following list describes possible values for the option parameter.

F_FTOS
Allows one-way mapping from fielded buffers to C structures. Similar to the S option in
view descriptions.

Convers i on Funct ions

Programming an Oracle Tuxedo ATMI Application Using FML 5-43

F_STOF
Allows one-way mapping from C structures to fielded buffers. Similar to the F option in
view descriptions.

F_BOTH
Allows two-way mapping between C structures and fielded buffers.

F_OFF
Turns off mapping of the specified member. Similar to the N option in view descriptions.

Note that changes to view descriptions are not permanent. They are guaranteed only until another
view description is accessed.

For more information, refer to Fvopt, Fvopt32(3fml) in Oracle Tuxedo ATMI FML Function
Reference.

Fvselinit
This function initializes an individual member of a C structure to its appropriate null value. It sets
the ACM of the element to 0, if the C flag is used in the view file; it sets the ALMs to the length
of the associated null value, if the L flag is used in the view file.

int

Fvselinit(char *cstruct, char *cname, char *view)

Here:

cstruct is a pointer to a structure.

cname is a pointer to the name of a structure member.

view is a pointer to a view name string.

For more information, refer to Fvselinit, Fvselinit32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Conversion Functions
FML provides a set of routines that perform data conversion upon reading or writing a fielded
buffer.

Generally, the functions behave like their non-conversion counterparts, except that they provide
conversion from a user type to the native field type when writing to a buffer, and from the native
type to a user type when reading from a buffer.

5-44 Programming an Oracle Tuxedo ATMI Application Using FML

The native type of a field is the type specified for it in its field table entry and encoded in its field
identifier. (The only exception to this rule is CFfindocc, which, although it is a read operation,
converts from the user-specified type to the native type before calling Ffindocc.) The function
names are the same as their non-conversion FML counterparts except that they include a “C”
prefix.

The following field types are not supported for conversion functions: pointers (FLD_PTR),
embedded FML32 buffers (FLD_FML32), and embedded VIEW32 buffers (FLD_VIEW32). If one
of these field types is encountered during the execution of an FML32 conversion function,
Ferror is set to FEBADOP.

CFadd
The CFadd function adds a user-supplied item to a buffer creating a new field occurrence within
the buffer.

int

CFadd(FBFR *fbfr, FLDID fieldid, char *value, FLDLEN len, int type)

Here:

fbfr is a pointer to a fielded buffer.

fieldid is the field identifier of the field to be added.

value is a pointer to the value to be added.

len is the length of the value if its type is FLD_CARRAY.

type is the type of the value.

Before the field addition, the data item is converted from a user-supplied type to the type
specified in the field table as the fielded buffer storage type of the field. If the source type is
FLD_CARRAY (character array), the length argument should be set to the length of the array.
Consider the following example:

if(CFadd(fbfr,ZIP,"12345",(FLDLEN)0,FLD_STRING) < 0)

 F_error("pgm_name");

If the ZIP (zip code) field were stored in a fielded buffer as a long integer, the function would
convert “12345” to a long integer representation, before adding it to the fielded buffer pointed to
by fbfr (note that the field value length is given as 0 since the function can determine it; the
length is needed only for type FLD_CARRAY). The following code puts the same value into the
fielded buffer, but does so by presenting it as a long, instead of as a string:

Convers i on Funct ions

Programming an Oracle Tuxedo ATMI Application Using FML 5-45

long zipval;

. . .

zipval = 12345;

if(CFadd(fbfr,ZIP,&zipval,(FLDLEN)0,FLD_LONG) < 0)

 F_error("pgm_name");

Note that the value must first be put into a variable, since C does not permit the construct
&12345L. CFadd returns 1 on success, and -1 on error, in which case Ferror is set appropriately.

For more information, refer to CFadd, CFadd32(3fml) in Oracle Tuxedo ATMI FML Function
Reference.

CFchg
The function CFchg acts like CFadd, except that it changes the value of a field (after conversion
of the supplied value).

int
CFchg(FBFR *fbfr, FLDID fieldid, FLDOCC oc, char *value, FLDLEN len, int type)

Here:

fbfr is a pointer to a fielded buffer.

fieldid is the field identifier of the field to be changed.

oc is the occurrence number of the field to be changed.

value is a pointer to the value to be added.

len is the length of the value if its type is FLD_CARRAY.

type is the type of the value.

For example, the following code changes the first occurrence (occurrence 0) of field ZIP to the
specified value, doing any needed conversion:

FLDOCC occurrence;

long zipval;

. . .

zipval = 12345;

occurrence = 0;

if(CFchg(fbfr,ZIP,occurrence,&zipval,(FLDLEN)0,FLD_LONG) < 0)

 F_error("pgm_name");

5-46 Programming an Oracle Tuxedo ATMI Application Using FML

If the specified occurrence is not found, then null occurrences are added to pad the buffer with
multiple occurrences until the value can be added as the specified occurrence.

For more information, refer to CFchg, CFchg32(3fml) in Oracle Tuxedo ATMI FML Function
Reference.

CFget
CFget is the conversion analog of Fget. The difference is that it copies a converted value to the
user-supplied buffer.

int
CFget(FBFR *fbfr, FLDID fieldid, FLDOCC oc, char *buf, FLDLEN *len, int type)

Here:

fbfr is a pointer to a fielded buffer.

fieldid is the field identifier of the field to be retrieved.

oc is the occurrence number of the field.

buf is a pointer to the post-conversion buffer.

len is the length of the value if its type is FLD_CARRAY.

type is the type of the value.

Using the previous example, the following code gets the value that was just stored in the buffer
(regardless of which format is being used) and converts it back to a long integer:

FLDLEN len;

. . .

len=sizeof(zipval);

if(CFget(fbfr,ZIP,occurrence,&zipval,&len,FLD_LONG) < 0)

 F_error("pgm_name");

If the length pointer is NULL, then the length of the value retrieved and converted is not returned.

For more information, refer to CFget, CFget32(3fml) in Oracle Tuxedo ATMI FML Function
Reference.

CFgetalloc
CFgetalloc is like Fgetalloc; you are responsible for freeing the space allocated with malloc
for the returned (converted) value with free.

Convers i on Funct ions

Programming an Oracle Tuxedo ATMI Application Using FML 5-47

char *
CFgetalloc(FBFR *fbfr, FLDID fieldid, FLDOCC oc, int type, FLDLEN *extralen)

Here:

fbfr is a pointer to a fielded buffer.

fieldid is the field identifier of the field to be converted.

oc is the occurrence number of the field.

type is the type to which the value is converted.

extralen on calling the function is a pointer to the extra allocation amount; on return, it is
a pointer to the size of the total allocated area.

In the declaration above, the return value to CFgetalloc is shown as a character pointer data type
(char* in C). The actual type of the pointer returned is the same as the type of the value to which
it points.

The previously stored value can be retrieved into space allocated automatically for you by the
following code:

char *value;

FLDLEN extra;

. . .

extra = 25;

if((value=CFgetalloc(fbfr,ZIP,0,FLD_LONG,&extra)) == NULL)

 F_error("pgm_name");

The value extra in the function call indicates that the function should allocate an extra 25 bytes
over the amount of space sufficient for the retrieved value. The total amount of space allocated is
returned in this variable.

For more information, refer to CFgetalloc, CFgetalloc32(3fml) in Oracle Tuxedo ATMI
FML Function Reference.

CFfind
CFfind returns a pointer to a converted value of the desired field.

char *

CFfind(FBFR *fbfr, FLDID fieldid, FLDOCC oc, FLDLEN len, int type)

Here:

5-48 Programming an Oracle Tuxedo ATMI Application Using FML

fbfr is a pointer to a fielded buffer.

fieldid is the field identifier of the field to be retrieved.

oc is the occurrence number of the field.

len is the length of the post-conversion value.

type is the type to which the value is converted.

In the previous declaration the return value to CFfind is shown as a character pointer data type
(char* in C). The actual type of the pointer returned is the same as the type of the value to which
it points.

Like Ffind, this pointer should be considered “readonly.” For example, the following code
returns a pointer to a long containing the value of the first occurrence of the ZIP field:

char *CFfind;
FLDLEN len;
long *value;
. . .
if((value=(long *)CFfind(fbfr,ZIP,occurrence,&len,FLD_LONG))== NULL)
 F_error("pgm_name");

If the length pointer is NULL, then the length of the value found is not returned. Unlike Ffind,
the value returned is guaranteed to be properly aligned for the corresponding user-specified type.

Note: The duration of the validity of the pointer returned by CFfind is guaranteed only until
the next buffer operation, even if it is non-destructive, since the converted value is
retained in a single private buffer. This differs from the value returned by Ffind, which
is guaranteed until the next modification of the buffer.

For more information, refer to CFfind, CFfind32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

CFfindocc
CFfindocc looks at occurrences of the specified field on the buffer and returns the occurrence
number of the first field occurrence that matches the user-specified field value after it has been
converted to the type of the field identifier.

FLDOCC
CFfindocc(FBFR *fbfr, FLDID fieldid, char *value, FLDLEN len, int type)

Here:

fbfr is a pointer to a fielded buffer.

Conver t ing St r ings

Programming an Oracle Tuxedo ATMI Application Using FML 5-49

fieldid is the field identifier of the field to be retrieved.

value is a pointer to the unconverted matching value.

len is the length of the unconverted matching value.

type is the type of the unconverted matching value.

For example, the following code converts the string to the type of fieldid ZIP (possibly a long)
and sets oc to the occurrence for the specified zip code:

#include "fldtbl.h"

FBFR *fbfr;

FLDOCC oc;

char zipvalue[20];

. . .

strcpy(zipvalue,"123456");

if((oc=CFfindocc(fbfr,ZIP,zipvalue,0,FLD_STRING)) < 0)

 F_error("pgm_name");

If the field value is not found, -1 is returned.

Note: Because CFfindocc converts the user-specified value to the native field type before
examining the field values, regular expressions work only when the user-specified type
and the native field type are both FLD_STRING. Thus, CFfindocc has no utility with
regular expressions.

For more information, refer to CFf indocc, CFfindocc32(3fml) in Oracle Tuxedo ATMI
FML Function Reference.

Converting Strings
The following set of functions is provided to handle the case of conversion to and from a user
type of FLD_STRING:

Fadds, Fadds32(3fml)

Fchgs, Fchgs32(3fml)

Ffinds, Ffinds32(3fml)

Fgets, Fgets32(3fml)

Fgetsa, Fgetsa32(3fml)

5-50 Programming an Oracle Tuxedo ATMI Application Using FML

These functions call their non-string-function counterparts, providing a type of FLD_STRING,
and a len of 0. Note that the duration of the validity of the pointer returned by Ffinds is the same
as that described for CFfind.

For descriptions of these functions, see Oracle Tuxedo ATMI FML Function Reference.

Ftypcvt
The functions CFadd, CFchg, CFget, CFgetalloc, and CFfind use the function Ftypcvt to
perform the appropriate data conversion. The Ftypcvt32 function fails for the FLD_PTR,
FLD_FML32, and FLD_VIEW32 field types. The synopsis of Ftypcvt usage is as follows (it does
not follow the parameter order conventions).

char *
Ftypcvt(FLDLEN *tolen, int totype, char *fromval, int fromtype, FLDLEN fromlen)

Here:

tolen is a pointer to the length of the converted value.

totype is the type to which to convert.

fromval is a pointer to the value from which to convert.

fromtype is the type from which to convert.

fromlen is the length of the from value if the from type is FLD_CARRAY.

Ftypcvt converts from the value *fromval, which has type fromtype, and length fromlen if
fromtype is type FLD_CARRAY (otherwise fromlen is inferred from fromtype), to a value of
type totype. Ftypcvt returns a pointer to the converted value, and sets *tolen to the converted
length, upon success. Upon failure, Ftypcvt returns NULL. Consider the following example, in
which the CFchg function is used:

CFchg(fbfr,fieldid,oc,value,len,type)
FBFR *fbfr; /* fielded buffer */
FLDID fieldid; /* field to be changed */
FLDOCC oc; /* occurrence of field to be changed */
char *value; /* location of new value */
FLDLEN len; /* length of new value */
int type; /* type of new value */
{
 char *convloc; /* location of post-conversion value */
 FLDLEN convlen; /* length of post-conversion value */
 extern char *Ftypcvt;

Conver t ing St r ings

Programming an Oracle Tuxedo ATMI Application Using FML 5-51

 /* convert value to fielded buffer type */
 if((convloc = Ftypcvt(&convlen,FLDTYPE(fieldid),value,type,len)) == NULL)
 return(-1);

 if(Fchg(fbfr,fieldid,oc,convloc,convlen) < 0)
 return(-1);
 return(1);
}

The user may call Ftypcvt directly to do field value conversion without adding or modifying a
fielded buffer.

For more information, refer to Ftypcvt, Ftypcvt32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Conversion Rules
In the following list of conversion rules, oldval represents a pointer to the data item being
converted, and newval, a pointer to the post-conversion value.

When both types are identical, *newval is identical to *oldval.

When both types are numeric, that is, if they are long, short, float, or double, the
conversion is done by the C assignment operator, with proper type casting. For example, a
short is converted to a float through the following code:

*((float *)newval) = *((short *) oldval)

When a numeric is being converted to a string, an appropriate sprintf is used. For
example, a short is converted to a string through the following code:

sprintf(newval,"%d",*((short *)oldval))

When a string is being converted to a numeric, the appropriate function (for example,
atof, atol) is used, with the result assigned to a typecasted receiving location, as shown
in the following example:

*((float *)newval) = atof(oldval)

When a type char is being converted to any numeric type, or when a numeric type is being
converted to a char, the char is considered to be a “shorter short.” For example, to
convert a char to a float, use the method shown in the following code:

*((float *)newval) = *((char *)oldval)

To convert a short to a char, use the method shown in the next example:

*((char *)newval) = *((short *)oldval)

5-52 Programming an Oracle Tuxedo ATMI Application Using FML

A char is converted to a string by appending a NULL character. In this regard, a char is
not a “shorter short.” If it were, assignment would be done by converting it to a short,
and then converting the short to a string via sprintf. In the same sense, a string is
converted to a char by assigning the first character of the string to the character.

The carray type is used to store an arbitrary sequence of bytes. In this sense, it can
encode any user data type. Nevertheless, the following conversions are specified for
carray types:

– A carray is converted to a string by appending the NULL byte to the carray. In this
sense, a carray can be used to store a string, less the overhead of the trailing NULL.
(This approach does not always save space, since fields are aligned on short boundaries
within a fielded buffer.) A string is converted to a carray by removing its
terminating NULL byte.

– When a carray is converted to any numeric, it is first converted to a string, and the
string is then converted to a numeric. Likewise, a numeric is converted to a carray,
by first being converted to a string, and then the string is converted to a carray.

– A carray is converted to a char by assigning the first character of the array to the
char. Likewise, a char is converted to a carray by assigning it as the first byte of the
array, and setting the length of the array to 1.

Note that a carray of length 1 and a char have the following differences:

– A char has only the overhead of its associated fieldid, while a carray contains a
length code, in addition to the associated fieldid.

– A carray is converted to a numeric by first becoming a string, and then undergoing
an atoi call; a char becomes a numeric by typecasting. For example, a char with
value ASCII ‘1’ (decimal 49) converts to a short of value 49; a carray of length 1,
with the single byte an ASCII ‘1’ converts to a short of value 1. Likewise a char ‘a’
(decimal 97) converts to a short of value 97; the carray ‘a’ converts to a short of
value 0 (since atoi (“a”) produces a 0 result).

When converting to or from a dec_t type, the associated conversion function as described
in decimal(3) is used (_gp_deccvasc, _gp_deccvdbl, _gp_deccvflt, _gp_deccvint,
_gp_deccvlong, _gp_dectoasc, _gp_dectodbl, _gp_dectoflt, _gp_dectoint, and
_gp_dectolong).

The following table summarizes the conversion rules presented in this section.

Conver t ing St r ings

Programming an Oracle Tuxedo ATMI Application Using FML 5-53

The following table defines the entries listed in the previous table.

Table 5-2 Summary of Conversion Rules

src type dest type

- char short long float double string carray dec_t

char - cast cast cast cast st[0]=c array[0]=c d

short cast - cast cast cast sprintf sprintf d

long cast cast - cast cast sprintf sprintf d

float cast cast cast - cast sprintf sprintf d

double cast cast cast cast - sprintf sprintf d

string c=st[0] atoi atol atof atof - drop 0 d

carray c=array[0] atoi atol atof atof add 0 - d

dec_t d d d d d d d -

5-54 Programming an Oracle Tuxedo ATMI Application Using FML

Converting FLD_MBSTRING Fields
The following set of functions is provided to handle code-set encoding conversion of data in user
type of FLD_MBSTRING:

Fmbpack32(3fml)

Fmbunpack32(3fml)

tpconvfmb32(3fml)

These functions prepare the encoding name and multibyte data information for an
FLD_MBSTRING field, extract the encoding name and multibyte data information from an
FLD_MBSTRING field, and convert the multibyte characters in an FLD_MBSTRING field to a named
target encoding. The following figure shows through example how encoding conversion works.

Table 5-3 Meanings of Entries in the Summary of Conversion Rules

Entry Meaning

- src and dest are the same type; no conversion required

cast Conversion done using C assignment with type casting

sprintf Conversion done using sprintf function

atoi Conversion done using atoi function

atof Conversion done using atof function

atol Conversion done using atol function

add 0 Conversion done by concatenating NULL byte

drop 0 Conversion done by dropping terminating NULL byte

c=array[0] Character set to first byte of array

array[0]=c First byte of array is set to character

c=st[0] Character set to first byte of string

st[0]=c First byte of string set to c

d decimal(3c) conversion function

Conver t ing FLD_MBSTRING F ie lds

Programming an Oracle Tuxedo ATMI Application Using FML 5-55

Figure 5-1 Encoding Conversion Using FML32 Buffers—Example

As indicated in the example, the FLD_MBSTRING field is capable of carrying information
identifying the code-set character encoding, or simply encoding, of its user data. In the example,
the client-request FLD_MBSTRING field holds Japanese user data represented by the Shift-JIS
(SJIS) encoding, while the server-reply FLD_MBSTRING field holds Japanese user data
represented by the Extended UNIX Code (EUC) encoding. The multibyte character encoding
feature reads environment variables TPMBENC and TPMBACONV to determine the source encoding,
the target encoding, and the state (on or off) of automatic encoding conversion.

TPMBENC
TPMBACONV

=
=

SJIS
Y

Workstation

Client Request

FML32Length ...

. . .

. . .Japanese SJIS-encoded data

Tuxedo

App
Server

TPMBENC
TPMBACONV

=
=

EUCJP
Y

Server Reply

FML32 Length ...

. . .

. . .Japanese EUCJP-encoded data

/WS
Handler

Encoding Conversion

Reply

SJIS EUCJP

Request

SJIS EUCJP

Encoding Conversion

Server Machine

/WS
Client

FLD_MBSTRING FML32 Header

FLD_MBSTRINGFML32 Header

EUCJP

SJIS

5-56 Programming an Oracle Tuxedo ATMI Application Using FML

As shown in the following figure, the FML32 typed buffer, itself, is capable of carrying
information identifying the character encoding of its user data.

Figure 5-2 Using Global Encoding

For an FML32 typed buffer holding many FLD_MBSTRING fields, using global encoding is a more
efficient way to transport multibyte user data via FML32 buffers than adding a character
encoding name to each FLD_MBSTRING field. Using the Fmbpack32() function, application
developers can choose global encoding or individual encoding for each FLD_MBSTRING field
created via Fmbpack32(). Only one global encoding name is allowed per FML32 buffer.

The encoding conversion capability enables the underlying Tuxedo system software to convert
the encoding representation of an incoming FLD_MBSTRING field to an encoding representation
supported by the machine on which the receiving process is running. The conversion is neither a
conversion between character code sets nor a translation between languages, but rather a
conversion between different character encodings for the same language.

Fmbpack32
This function prepares the encoding name and multibyte data information for an FLD_MBSTRING
field input to an FML32 typed buffer. Fmbpack32() is used before the FLD_MBSTRING field is
added to an FML32 buffer via FML32 APIs.

For more information about this function, refer to the Fmbpack32(3fml) function in Oracle
Tuxedo ATMI FML Function Reference.

Client Request

FML32SJISLength ...

. . .

. . .Japanese SJIS-encoded data

Server Reply

FML32 EUCJP Length ...

. . .

. . .Japanese EUCJP-encoded data

FLD_MBSTRING FML32 Header

FLD_MBSTRINGFML32 Header

I ndex ing Funct ions

Programming an Oracle Tuxedo ATMI Application Using FML 5-57

Fmbunpack32
This function extracts the encoding name and multibyte data information from an FLD_MBSTRING
field in an FML32 typed buffer. Fmbunpack32() is used after the FLD_MBSTRING field is
extracted from an FML32 buffer via FML32 APIs (Ffind32(), Fget32(), ...).

For more information about this function, refer to the Fmbunpack32(3fml) function in Oracle
Tuxedo ATMI FML Function Reference.

tpconvfmb32
This function converts the multibyte characters in an FLD_MBSTRING field in an FML32 typed
buffer to a named target encoding. Specifically, tpconvfmb32() compares the source encoding
name specified for the FLD_MBSTRING field with the target encoding name defined in
target_encoding; if the encoding names are different, tpconvfmb32() converts the
FLD_MBSTRING field data to the target encoding.

For more information about this function, refer to the tpconvfmb32(3fml) function in Oracle
Tuxedo ATMI FML Function Reference.

tpconvvmb32
This function converts the multibyte characters in an MBSTRING field in a VIEW32 typed buffer
to a named target encoding. Specifically, tpconvvmb32() compares the source encoding name
specified for the MBSTRING field with the target encoding name defined in target_encoding; if
the encoding names are different, tpconvvmb32() converts the MBSTRING field data to the target
encoding.

For more information about this function, refer to the tpconvvmb32(3fml) function in Oracle
Tuxedo ATMI FML Function Reference.

Indexing Functions
When a fielded buffer is initialized by Finit or Falloc, an index is automatically set up. This
index is used to expedite fielded buffer accesses and is transparent to you. As fields are added to
or deleted from the fielded buffer, the index is automatically updated.

However, when storing a fielded buffer on a long-term storage device, or when transferring it
between cooperating processes, it may be desirable to save space by eliminating its index and
regenerating it upon receipt. The functions described in this section may be used to perform such
index manipulations.

5-58 Programming an Oracle Tuxedo ATMI Application Using FML

Fidxused
This function returns the amount of space used by the index of a buffer.

long

Fidxused(FBFR *fbfr)

Here fbfr is a pointer to a fielded buffer.

You can use this function to determine the size of the index of a buffer, and whether significant
time or space can be saved by deleting the index.

For more information, refer to Fidxused, Fidxused32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Findex
The function Findex may be used at any time to index an unindexed fielded buffer.

int

Findex(FBFR *fbfr. FLDOCC intvl)

Here:

fbfr is a pointer to a fielded buffer.

intvl is the indexing interval.

The second argument to Findex specifies the indexing interval for the buffer. If 0 is specified,
the value FSTDXINT (defined in fml.h) is used. The user may ensure that all fields are indexed
by specifying an interval of 1.

Note that more space may be made available in an existing buffer for user data by increasing the
indexing interval, and reindexing the buffer. This represents a space/time trade-off, however,
since reducing the number of index elements (by increasing the index interval), means, in general,
that searches for fields will take longer. Most operations attempt to drop the entire index if they
run out of space before returning a “no space” error.

For more information, refer to Findex, Findex32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Frstrindex
This function can be used instead of Findex for cases in which the fielded buffer has not been
altered since its index was removed.

I ndex ing Funct ions

Programming an Oracle Tuxedo ATMI Application Using FML 5-59

int

Frstrindex(FBFR *fbfr, FLDOCC numidx)

Here:

fbfr is a pointer to a fielded buffer.

numidx is the value returned by the Funindex function.

For more information, refer to Frstrindex, Frstrindex32(3fml) in Oracle Tuxedo ATMI
FML Function Reference.

Funindex
Funindex discards the index of a fielded buffer and returns the number of index entries the buffer
had before the index was stripped.

FLDOCC

Funindex(FBFR *fbfr)

Here fbfr is a pointer to a fielded buffer.

For more information, refer to Funindex, Funindex32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Example of Sending a Fielded Buffer Without an Index
To transmit a fielded buffer without its index, complete a procedure such as the following:

1. Remove the index:

save = Funindex(fbfr);

2. Get the number of bytes to send (that is, the number of significant bytes from the beginning
of the buffer):

num_to_send = Fused(fbfr);

3. Send the buffer without the index:

transmit(fbfr,num_to_send);

4. Restore the index to the buffer:

Frstrindex(fbfr,save);

The index may be regenerated on the receiving side by the following statement:

Findex(fbfr);

5-60 Programming an Oracle Tuxedo ATMI Application Using FML

Note that the receiving process cannot call Frstrindex because it did not remove the index
itself, and the index was not sent with the file.

Note: The space used in memory by the index is not freed by calling Funindex. The Funindex
function only saves space on disk or when sending a buffer to another process. Of course,
you are always free to send a fielded buffer and its index to another process and avoid
using these functions.

Input/Output Functions
The functions described in this section support input and output of fielded buffers to standard I/O
or to file streams.

Fread and Fwrite
The I/O functions Fread and Fwrite work with the standard I/O library:

int Fread(FBFR *fbfr, FILE *iop)

int Fwrite(FBFR *fbfr, FILE *iop)

The stream to which—or from which—I/O is directed is determined by a FILE pointer argument.
This argument must be set up using the normal standard I/O library functions.

A fielded buffer may be written into a standard I/O stream with the function Fwrite, as follows:

if (Fwrite(fbfr, iop) < 0)

 F_error("pgm_name");

A buffer written with Fwrite may be read with Fread, as follows.

if(Fread(fbfr, iop) < 0)

 F_error("pgm_name");

Although the contents of the fielded buffer pointed to by fbfr are replaced by the fielded buffer
read in, the capacity of the fielded buffer (that is, the size of the buffer) remains unchanged.

Fwrite discards the buffer index, writing only as much of the fielded buffer as has been used (as
returned by Fused).

Fread restores the index of a buffer by calling Findex. The buffer is indexed with the same
indexing interval with which it was written by Fwrite. Fread32 ignores the FLD_PTR field type.

For more information, refer to Fread, Fread32(3fml) and Fwrite, Fwrite32(3fml) in
Oracle Tuxedo ATMI FML Function Reference.

I nput /Output Funct ions

Programming an Oracle Tuxedo ATMI Application Using FML 5-61

Fchksum
A checksum may be calculated for verifying I/O, as follows:

long chk;

. . .

chk = Fchksum(fbfr);

The user is responsible for calling Fchksum, writing the checksum value out, along with the
fielded buffer, and checking it on input. Fwrite does not write the checksum automatically. For
pointer fields (FLD_PTR), the name of the pointer field in the checksum calculation (rather than
the pointer or the data referenced by the pointer) is included.

For more information, refer to Fchksum, Fchksum32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Fprint and Ffprint
The Fprint function prints a fielded buffer on the standard output in text format.

Fprint(FBFR *fbfr)

Here fbfr is a pointer to a fielded buffer.

Ffprint is similar to Fprint, except that it sends text to a specified output stream, as in the
following line:

Ffprint(FBFR *fbfr, FILE *iop)

Here:

fbfr is a pointer to a fielded buffer.

iop is a pointer of type FILE to the output stream.

Each of these print functions prints, for each field occurrence, the field name and the field value,
separated by a tab and followed by a new line. Fname is used to determine the field name. If the
field name cannot be determined, then the field identifier is printed. Non-printable characters in
the field values for strings and character arrays are represented by a backslash followed by their
two-character hexadecimal value. Backslashes occurring in the text are escaped with an extra
backslash. A blank line is printed following the output of the printed buffer.

For values of type FLD_PTR, Fprint32 prints the field name or field identifier and the pointer
value in hexadecimal. Although this function prints pointer information, the Fextread32
function ignores the FLD_PTR field type. For values of type FLD_FML32, Fprint32 recursively

5-62 Programming an Oracle Tuxedo ATMI Application Using FML

prints the FML32 buffer, with leading tabs added for each level of nesting. For values of type
FLD_VIEW32, this function prints the VIEW32 field name and structure member name/value
pairs.

For more information, refer to Fprint, Fprint32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Fextread
Fextread may be used to construct a fielded buffer from its printed format, that is, from the
output of Fprint (hexadecimal values output by Fprint are interpreted properly).

int

Fextread(FBFR *fbfr, FILE *iop)

Fextread accepts an optional flag preceding the field name/field identifier specification in the
output of Fprint, as shown in the following table.

If no flag is specified, the default action is to Fadd the field to the buffer.

Field values may be extended across lines by beginning each overflow line with a tab (which is
later discarded). A single blank line signals the end of the buffer; successive blank lines yield a
null buffer. For embedded buffers FLD_FML32 and FLD_VIEW32, Fextread generates nested
FML32 buffers and VIEW32 fields, respectively. Fextread32 ignores the FLD_PTR field type.

If an error has occurred, -1 is returned, and Ferror is set accordingly. If the end of the file is
reached before a blank line, Ferror is set to FSYNTAX.

For more information, refer to Fextread, Fextread32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

Table 5-4 Fextread Flags

Flag Indicates

+ Field should be changed in the buffer

- Field should be deleted from the buffer

= One field should be assigned to another

Comment line; ignored

Boo lean Express ions o f F ie lded Buf fe rs

Programming an Oracle Tuxedo ATMI Application Using FML 5-63

Boolean Expressions of Fielded Buffers
This topic includes the following sections:

Definitions of Boolean Expressions

Field Names and Types

How a Boolean Expression Is Converted for Evaluation

Description of Boolean Primary Expressions

This section describes the functions available for evaluating Boolean expressions in which the
“variables” are the values of fields in a fielded buffer or a VIEW. Functions described in this
section allow you to:

Compile a Boolean expression into a compact form suitable for evaluation

Evaluate a Boolean expression against a fielded buffer or a VIEW, returning a true or false
answer

Print a compiled Boolean expression

A function is provided that compiles the expression into a compact form suitable for efficient
evaluation. A second function evaluates the compiled form against a fielded buffer to produce a
true or false answer.

Definitions of Boolean Expressions
This section describes, in detail, the expressions accepted by the Boolean compilation function,
and explains how each expression is evaluated.

The following standard C language operators are not supported:

Shift operators: << and >>

Bitwise “or” and “and” operators: || and &&

Conditional operator: ?

Prefix and postfix incrementation and decrementation operators: ++ and --

Address and indirection operators: & and *

Assignment operator: =

5-64 Programming an Oracle Tuxedo ATMI Application Using FML

Comma operator: ,

The following table shows the Backus-Naur Form definitions of the accepted Boolean
expressions.

Table 5-5 BNF Boolean Expression Definitions

Expression Definition

<boolean> <boolean> || <logical and> | <logical and>

<logical and> <logical and> && <xor expr> | <xor expr>

<xor expr> <xor expr> ^ <equality expr> | <equality expr>

<equality expr> <equality expr> <eq op> <relational expr> | <relational expr>

<eq op> == | != | %% | !%

<relational expr> <relational expr> <rel op> <additive expr> | <additive expr>

<rel op> < | <= | >= | > |

<additive expr> <additive expr> <add op> <multiplicative expr> | <multiplicative expr>

<add op> + | -

<multiplicative expr> <multiplicative expr> <mult op> <unary expr> | <unary expr>

<mult op> * | / | %

<unary expr> <unary op> <primary expr> | <primary expr>

<unary op> + | - | ~ | !

<primary expr> (<boolean>) | <unsigned constant> | <field ref>

<unsigned constant> <unsigned number> | <string>

<unsigned number> <unsigned float> | <unsigned int>

<string> ' <character> {<character>. . .} '

<field ref> <field name> | <field name>[<field occurrence>]

<field occurrence> <unsigned int> | <meta>

<meta> ?

F i e ld Names and Types

Programming an Oracle Tuxedo ATMI Application Using FML 5-65

The following sections describe Boolean expressions in greater detail.

Field Names and Types
The only variables allowed in Boolean expressions are field references. There are several
restrictions on field names. Names are made up of letters and digits; the first character must be a
letter. The underscore (_) counts as a letter; it is useful for improving the readability of long
variable names. Up to 30 characters are significant. There are no reserved words.

For a fielded buffer evaluation, any field that is referenced in a Boolean expression must exist in
a field table. This implies that the FLDTBLDIR and FIELDTBLS environment variables are set, as
described in “Setting Up Your Environment for FML and VIEWS” on page 3-1 before using the
Boolean compilation function. The field types used in Booleans are those allowed for FML fields:
short, long, float, double, char, string, and carray. Along with the field name, the field
type is kept in the field table. Thus, the field type can always be determined.

For a VIEW evaluation, any field that is referenced in a Boolean expression must exist as a C
structure element name, not the associated fielded buffer name, in the VIEW. This implies that
the VIEWDIR and VIEWFILES environment variables are set, as described in “Setting Up Your
Environment for FML and VIEWS” on page 3-1 before using the Boolean compilation function.
The field types used in Booleans are those allowed for FML VIEWS: short, long, float,
double, char, string, carray, plus int and dec_t. Along with the field name, the field type
is kept in the view definition. Thus, the field type can always be determined.

Strings
A string is a group of characters within single quotes. The ASCII code for a character may be
substituted for the character via an escape sequence. An escape sequence takes the form of a
backslash followed by exactly two hexadecimal digits. This convention differs from the C
language convention of using a hexadecimal escape sequence that starts with \x.

As an example, consider ‘hello’ and ‘hell\\6f’. They are equivalent strings because the
hexadecimal code for an ‘o’ is 6f.

Octal escape sequences and escape sequences such as \n are not supported.

Constants
Numeric integer and floating point constants are accepted, as in C. (Octal and hexadecimal
constants are not recognized.) Integer constants are treated as longs and floating point constants
are treated as doubles. (Decimal constants for the dec_t type are not supported.)

5-66 Programming an Oracle Tuxedo ATMI Application Using FML

How a Boolean Expression Is Converted for Evaluation
To evaluate a Boolean expression, the Boolean compiler performs the following conversions:

It converts short and int values to longs.

It converts float and decimal values to doubles.

It converts characters to strings.

To compare a non-quoted string within a field to a numeric, it converts the string to a
numeric value.

To compare a constant (that is, a quoted) string to a numeric, it converts the numeric to a
string, and does a lexical comparison.

To compare a long and a double, it converts the long to a double.

Description of Boolean Primary Expressions
Boolean expressions are built from primary expressions, which can be any of the following:

field name—a field name

field name[constant]—a field name and a constant subscript

field name[?]—a field name and the ‘?’ subscript

constant—a constant

(expression)—an expression in parentheses

A field name or a field name followed by a subscript is a primary expression. The subscript
indicates which occurrence of the field is being referenced. The subscript may be either an integer
constant, or ? indicating any occurrence; the subscript cannot be an expression. If the field name
is not subscripted, field occurrence 0 is assumed.

If a field name reference appears without an arithmetic, unary, equality, or relational operator,
then its value is the long integer value 1 if the field exists and 0 if the field does not exist. This
may be used to test the existence of a field in the fielded buffer regardless of field type. (Note that
there is no * indirection operator.)

A constant is a primary expression. Its type may be long, double, or carray, as discussed in the
conversion section.

Descr ip t ion o f Boo lean Pr imary Express ions

Programming an Oracle Tuxedo ATMI Application Using FML 5-67

A parenthesized expression is a primary expression for which the type and value are identical to
those of the unadorned expression. Parentheses may be used to change the precedence of
operators, which is discussed in the next section.

Description of Boolean Expression Operators
The following table lists the Boolean expression operators in descending order of precedence.

The operators classified as the same operator type have equal precedence. The following sections
discuss each operator type in detail. As in C, you can override the precedence of operators by
using parentheses.

Unary Operators Used in Boolean Expressions
The following unary operators are recognized:

Unary plus operator: +

Unary minus operator: -

The one’s complement operator: ~

Logical not operator: !

Table 5-6 Boolean Expression Operators

Type Operators

Unary +, -, !, ~

Multiplicative *, /, %

Additive +, -

Relational < , >, <=, >=, ==, !=

Equality and matching ==, !=, %%, !%

Exclusive OR ^

Logical AND &&

Logical OR ||

5-68 Programming an Oracle Tuxedo ATMI Application Using FML

Expressions in which unary operators are used group right-to-left:

+ expression

- expression

~ expression

! expression

The unary plus operator has no effect on the operand; it is recognized and ignored. The result of
the unary minus operator is the negative of its operand. The usual arithmetic conversions are
performed. Unsigned entities do not exist in FML and thus cause no problems with this operator.

The result of the logical negation operator is 1 if the value of its operand is 0, and 0 if the value
of its operand is non-zero. The type of the result is long.

The result of the one’s complement operator is the one’s complement of its operand. The type of
the result is long.

Multiplicative Operators Used in Boolean Expressions
The multiplicative operators—*, /, and %—group left-to-right. The usual arithmetic conversions
are performed:

expression * expression

expression / expression

expression % expression

The binary * operator indicates multiplication. The * operator is associative and expressions with
several multiplications at the same level may be rearranged by the compiler.

The binary / operator indicates division. When positive integers are divided, truncation is toward
0, but the form of truncation is machine-dependent if either operand is negative.

The binary % operator yields the remainder from the division of the first expression by the second.
The usual arithmetic conversions are performed. The operands must not be float or double.

Additive Operators Used in Boolean Expressions
The additive operators + and - group left-to-right. The usual arithmetic conversions are
performed:

expression + expression

expression - expression

Descr ip t ion o f Boo lean Pr imary Express ions

Programming an Oracle Tuxedo ATMI Application Using FML 5-69

The result of the + operator is the sum of the operands. The + operator is associative and
expressions with several additions at the same level may be rearranged by the compiler. The
operands must not both be strings; if one is a string, it is converted to the arithmetic type of
the other.

The result of the - operator is the difference of the operands. The usual arithmetic conversions
are performed. The operands must not both be strings; if one is a string, it is converted to the
arithmetic type of the other.

Equality and Match Operators Used in Boolean Expressions
These operators group left-to-right:

expression == expression

expression != expression

expression %% expression

expression !% expression

The == (equal to) and the != (not equal to) operators yield 0 if the specified relation is false and
1 if it is true. The type of the result is long. The usual arithmetic conversions are performed.

The %% operator takes, as its second expression, a regular expression against which it matches its
first expression. The second expression (the regular expression) must be a quoted string. The first
expression may be an FML field name or a quoted string. This operator yields a 1 if the first
expression is fully matched by the second expression (the regular expression). The operator
yields a 0 in all other cases.

The !% operator is the not regular expression match operator. It takes exactly the same operands
as the %% operator, but yields exactly the opposite results. The relationship between %% and !% is
analogous to the relationship between == and !=.

The regular expressions allowed are described on the tpsubscribe(3c) reference page in the
Oracle Tuxedo ATMI C Function Reference.

Relational Operators Used in Boolean Expressions
These operators group left-to-right:

expression < expression

expression > expression

expression <= expression

expression >= expression

5-70 Programming an Oracle Tuxedo ATMI Application Using FML

The operators < (less than), > (greater than), <= (less than or equal to) and >= (greater than or
equal to) all yield 0 if the specified relation is false and 1 if it is true. The type of the result is
long. The usual arithmetic conversions are performed.

Exclusive OR Operator Used in Boolean Expressions
The ^ operator groups left-to-right:

expression ^ expression

It returns the bitwise exclusive OR function of the operands. The result is always a long.

Logical AND Operator Used in Boolean Expressions
expression && expression

The && operator groups left-to-right. It returns 1 if both its operands are non-zero; otherwise, it
returns 0. The && operator guarantees left-to-right evaluation. However, it is not guaranteed that
the second operand is not evaluated if the first operand is 0; this is different from the C language.
The operands need not have the same type. The result is always a long.

Logical OR Operator Used in Boolean Expressions
The || operator groups left-to-right:

expression || expression

It returns 1 if either of its operands is non-zero; otherwise, it returns 0. The || operator guarantees
left-to-right evaluation. However, it is not guaranteed that the second operand is not evaluated if
the first operand is non-zero; this is different from the C language. The operands need not have
the same type, and the result is always a long.

Sample Boolean Expressions
The following field table defines the fields used for the sample Boolean expressions:

EMPID 200 carray

SEX 201 char

AGE 202 short

DEPT 203 long

SALARY 204 float

NAME 205 string

Boo lean Funct ions

Programming an Oracle Tuxedo ATMI Application Using FML 5-71

Boolean expressions always evaluate to either true or false. The following example is true if both
of the following conditions are true:

Field occurrence 2 of EMPID exists and begins with the characters “123.”

The age field (occurrence 0) appears and is less than 32.
"EMPID[2] %% '123.*' && AGE < 32"

This example uses a constant integer as a subscript to EMPID. In the following example, the ?
subscript is used, instead:

"PETS[?] == 'dog'"

This expression is true if PETS exists and any occurrence of it contains the characters “dog”.

Boolean Functions
The following sections describe the various functions that take Boolean expressions as
arguments.

Fboolco and Fvboolco
Fboolco compiles a Boolean expression for FML and returns a pointer to an evaluation tree:

char *

Fboolco(char *expression)

Here *expression is a pointer to an expression to be compiled. This function fails if any of the
following field types is used: FLD_PTR, FLD_FML32, or FLD_VIEW32. If one of these field types
is encountered, Ferror is set to FEBADOP.

Fvboolco compiles a Boolean expression for a VIEW and returns a pointer to an evaluation tree:

char *

Fvboolco(char *expression, char *viewname)

Here *expression is a pointer to an expression to be compiled, and *viewname is a pointer to
the view name for which the fields are evaluated.

Space is allocated using malloc(3) to hold the evaluation tree. For example, the following code
compiles a Boolean expression that checks whether the FIRSTNAME field is in the buffer, whether
it begins with ‘J’ and ends with ‘n’ (such as “John” or “Joan”), and whether the SEX field is equal
to ‘M’.

5-72 Programming an Oracle Tuxedo ATMI Application Using FML

#include "<stdio.h>"

#include "fml.h"

extern char *Fboolco;

char *tree;

. . .

if((tree=Fboolco("FIRSTNAME %% 'J.*n' && SEX == 'M'")) == NULL)

 F_error("pgm_name");

The first and second characters of the tree array form the least significant byte and the most
significant byte, respectively, of an unsigned 16-bit quantity that gives the length, in bytes, of the
entire array. This value is useful for copying or otherwise manipulating the array.

Because the evaluation tree produced by Fboolco is used by the Boolean functions described in
the following sections, it is not necessary to recompile the expression constantly.

Use the free(3) function to free the space allocated to an evaluation tree when the Boolean
expression will no longer be used. Compiling many Boolean expressions without freeing the
evaluation tree when it is no longer needed may cause a program to run out of data space.

For more information, refer to Fboolco, Fboolco32, Fvboolco, Fvboolco32(3fml) in
Oracle Tuxedo ATMI FML Function Reference.

Fboolpr and Fvboolpr
Fboolpr prints a compiled expression to the specified file stream. The expression is fully
parenthesized, as it was parsed (as indicated by the evaluation tree).

void

Fboolpr(char *tree, FILE *iop)

Here:

*tree is a pointer to a Boolean tree previously compiled by Fboolco.

*iop is a pointer of type FILE to an output file stream.

Fvboolpr prints a compiled expression to the specified file stream.

void

Fvboolpr(char *tree, FILE *iop, char *viewname)

Here:

*tree is a pointer to a Boolean tree previously compiled by Fvboolco.

Boo lean Funct ions

Programming an Oracle Tuxedo ATMI Application Using FML 5-73

*iop is a pointer of type FILE to an output file stream.

*viewname is the name of the view whose fields are used.

This function is useful for debugging.

Executing Fboolpr on the expression compiled above produces the following results:

(((FIRSTNAME[0]) %% ('J.*n')) && ((SEX[0]) == ('M')))

For more information, refer to Fboolpr, Fboolpr32, Fvboolpr, Fvboolpr32(3fml) in
Oracle Tuxedo ATMI FML Function Reference.

Fboolev and Ffloatev, Fvboolev and Fvfloatev
These functions evaluate a fielded buffer against a Boolean expression.

int Fboolev(FBFR *fbfr,char *tree)
double Ffloatev(FBFR *fbfr,char *tree)

Here:

fbfr is the fielded buffer referenced by an evaluation tree produced by Fboolco.

tree is a pointer to an evaluation tree that references the fielded buffer pointed to by fbfr.

The VIEW equivalents are as follows:

int

Fvboolev(FBFR *fbfr,char *tree,char *viewname)

double

Fvfloatev(FBFR *fbfr,char *tree,char *viewname)

Fboolev returns true (1) if the fielded buffer matches the Boolean conditions specified in the
evaluation tree. This function does not change either the fielded buffer or the evaluation tree.
Using the evaluation tree compiled above, the following code prints “Buffer selected”:

#include <stdio.h>

#include "fml.h"

#include "fldtbl.h"

FBFR *fbfr;

. . .

Fchg(fbfr,FIRSTNAME,0,"John",0);

Fchg(fbfr,SEX,0,"M",0);

if(Fboolev(fbfr,tree) > 0)

5-74 Programming an Oracle Tuxedo ATMI Application Using FML

 fprintf(stderr,"Buffer selected\n");

else

 fprintf(stderr,"Buffer not selected\n");

Ffloatev and Ffloatev32 are similar to Fboolev, but return the value of the expression as a
double. For example, the following code prints “6.6”:

#include <stdio.h>

#include "fml.h"

FBFR *fbfr;

. . .

main() {

 char *Fboolco;

 char *tree;

 double Ffloatev;

 if (tree=Fboolco("3.3+3.3")) {

 printf("%lf",Ffloatev(fbfr,tree));

 }

}

If Fboolev is used instead of Ffloatev in the previous example, a 1 is printed.

For more information, refer to Fboolev, Fboolev32, Fvboolev, Fvboolev32(3fml) and
Ffloatev, Ffloatev32, Fvfloatev, Fvfloatev32(3fml) in Oracle Tuxedo ATMI FML
Function Reference.

VIEW Conversion to and from Target Format
A VIEW can be converted to and from a target record format. The default target format is that of
IBM System/370 COBOL records.

Fvstot, Fvftos and Fcodeset
The following functions convert targets:

long

Fvstot(char *cstruct, char *trecord, long treclen, char *viewname)

long

Fvttos(char *cstruct, char *trecord, char *viewname)

VIEW Convers ion to and f rom Target Fo rmat

Programming an Oracle Tuxedo ATMI Application Using FML 5-75

int

Fcodeset(char *translation_table)

The Fvstot function transfers data from a C structure to a target record type. The Fvttos
function transfers data from a target record to a C structure. trecord is a pointer to the target
record. cstruct is a pointer to a C structure. viewname is a pointer to the name of a compiled
view description. The VIEWDIR and VIEWFILES environment variables are used to find the
directory and file containing the compiled view description.

To convert an FML buffer to a target record, complete the following procedure.

1. Call Fvftos to convert the FML buffer to a C structure.

2. Call Fvstot to convert to a target record.

To convert a target record to an FML buffer, complete the following procedure.

1. Call Fvttos to convert to a C structure.

2. Call Fvstof to convert the structure to an FML buffer.

The default target is that of IBM/370 COBOL records. The default data conversion is done as
shown in the following table.

5-76 Programming an Oracle Tuxedo ATMI Application Using FML

No filler bytes are provided between fields in an IBM/370 record. The COBOL SYNC clause
should not be specified for any data items that are a part of the structure corresponding to the
view. An integer field is converted to either a four-byte or two-byte integer, depending on the size
of integers on the machine on which the conversion is done. A string field in the view must be
terminated with a null when converting to and from the IBM/370 format. The data in a carray
field is passed unchanged; no data translation is performed.

Packed decimals exist in the IBM/370 environment as two decimal digits packed into one byte
with the low-order half byte used to store the sign. The length of a packed decimal may be 1 to
16 bytes with storage available for 1 to 31 digits and a sign. Packed decimals are supported in C
structures using the dec_t field type. The dec_t field has a defined size consisting of two
numbers separated by a comma. The number to the left of the comma is the total number of bytes
occupied by the decimal. The number to the right is the number of digits to the right of the
decimal point. The following formula is used for conversion:

dec_t(m, n) <=> S9(2*m-(n+1))V9(n)COMP-3

Decimal values may be converted to and from other data types (such as int, long, string,
double, and float) using the functions described in decimal(3c).

See the Fvstof, Fvstof32(3fml) for a description of the default character conversion of
ASCII to EBCDIC, and vice-versa.

Table 5-7 Data Conversion from a Structure to a Record

Struct Record

float COMP-1

double COMP-2

long S9(9) COMP

short S9(4) COMP

int S9(9) COMP or S9(4) COMP

dec_t(m, n) S9(2*m-(n+1))V9(n)COMP-3

ASCII char EBCDIC char

ASCII string EBCDIC string

carray Character array

VIEW Convers ion to and f rom Target Fo rmat

Programming an Oracle Tuxedo ATMI Application Using FML 5-77

An alternate character translation table can be used at run time by calling Fcodeset. The
translation_table must point to 512 bytes of binary data. The first 256 bytes of data are
interpreted as the ASCII-to-EBCDIC translation table. The second 256 bytes of data are
interpreted as the EBCDIC-to-ASCII table. Any data after the 512th byte is ignored. If the pointer
is NULL, the default translation is used.

For more information, refer to Fvstot, Fvttos(3fml) in Oracle Tuxedo ATMI FML Function
Reference.

5-78 Programming an Oracle Tuxedo ATMI Application Using FML

Programming an Oracle Tuxedo ATMI Application Using FML 6-1

C H A P T E R 6

FML and VIEWS Examples

This topic includes the following sections:

VIEWS Examples

FML Examples in bankapp

VIEWS Examples
The VIEWS examples provided in this section are unrelated to the example FML program that
appears later in this section.

Sample Viewfile
The following listing is a sample of a viewfile containing a source view description, custdb.

Listing 6-1 Sample Viewfile

BEGINNING OF VIEWFILE
VIEW custdb
/* This is a comment */
/* This is another comment */
#TYPE CNAME FBNAME COUNT FLAG SIZE NULL
carray bug BUG_CURS 4 - 12 "no bugs"
long custid CUSTID 2 - - -1
short super SUPER_NUM 1 - - 999
long youid ID 1 - - -1

6-2 Programming an Oracle Tuxedo ATMI Application Using FML

float tape TAPE_SENT 1 - - -.001
char ch CHR 1 - - "0"
string action ACTION 4 - 20 "no action"
END
#END OF VIEWFILE

Sample Field Table
The following listing is a sample of a field table needed to compile the view in the last section.

Listing 6-2 Sample Field Table

name number type flags comments

CUSTID 2048 long - -

VERSION_RUN 2055 string - -

ID 2056 long - -

CHR 2057 char - -

TAPE_SENT 2058 float - -

SUPER_NUM 2066 short - -

ACTION 2074 string - -

BUG_CURS 2085 carray - -

Sample Header File Produced by viewc
The following listing shows a header file produced by the view compiler. Assume that the
viewfile in the earlier section was used as input to viewc.

Listing 6-3 Sample Header File Produced by viewc

struct custdb {

char bug[4][12]; /* null="no bugs" */

long custid[2]; /* null=-1 */

short super; /* null=999 */

long youid; /* null=-1 */

float tape; /* null=-0.001000 */

V IEWS Examples

Programming an Oracle Tuxedo ATMI Application Using FML 6-3

char ch; /* null="0" */

char action[4][20]; /* null="no action" */

};

Sample Header File Produced by mkfldhdr
The following listing shows a header file produced from a field table file by mkfldhdr. Assume
that a field table file containing the definitions of the fields shown in the previous examples was
used as input to mkfldhdr.

Listing 6-4 Sample Header File Produced by mkfldhdr(1)

/* custdb.flds.h as generated by mkfldhdr from a field table: */
/* fname fldid */
/* ----- ----- */
#define ACTION ((FLDID)43034) /* number: 2074 type: string */
#define BUG_CURS ((FLDID)51237) /* number: 2085 type: carray */
#define CUSTID ((FLDID)10240) /* number: 2048 type: long */
#define SUPER_NUM ((FLDID)2066) /* number: 2066 type: short */
#define TAPE_SENT ((FLDID)26634) /* number: 2058 type: float */
#define VERSION_RUN ((FLDID)43015) /* number: 2055 type: string */
#define ID ((FLDID)10248) /* number: 2056 type: long */
#define CHR ((FLDID)18441) /* number: 2057 type: char */

Sample COBOL COPY File
The following listing shows the COBOL COPY file, CUSTDB.cbl, produced by viewc with the
-C option.

Listing 6-5 Sample COBOL COPY File

* VIEWFILE: "t.v"
* VIEWNAME: "custdb"
 05 BUG OCCURS 4 TIMES PIC X(12).
* NULL="no bugs"
 05 CUSTID OCCURS 2 TIMES PIC S9(9) USAGE IS COMP-5.
* NULL=-1

6-4 Programming an Oracle Tuxedo ATMI Application Using FML

 05 SUPER PIC S9(4) USAGE IS COMP-5.
* NULL=999
 05 FILLER PIC X(02).
 05 YOUID PIC S9(9) USAGE IS COMP-5.
* NULL=-1
 05 TAPE USAGE IS COMP-1.
* NULL=-0.001000
 05 CH PIC X(01).
* NULL='0'
 05 ACTION OCCURS 4 TIMES PIC X(20).
* NULL="no action"
 05 FILLER PIC X(03).

For a sample COBOL program that includes a COBOL COPY file produced by viewc -C, see
Programming an Oracle Tuxedo ATMI Application Using COBOL.

Sample VIEWS Program
The following program is an example of the use of VIEWS to map a structure to a fielded buffer.
The environment variables discussed in “Setting Up Your Environment for FML and VIEWS”
on page 3-1 must be properly set for this program to work.

Information on compiling FML programs can be found on the compilation(5) reference page
in Oracle Tuxedo File Formats, Data Descriptions, MIBs, and System Processes Reference.

Listing 6-6 Sample VIEWS Program

/* sample VIEWS program */
#include stdio.h>
#include "fml.h"
#include "custdb.flds.h" /* field header file shown in */
/* “Sample Header File Produced by viewc” listing */
#include "custdb.h" /* C structure header file produced by */
/* viewc shown in “Sample Field Table” listing */
#define NF 800
#define NV 400
extern Ferror;
main()
{
 /* declare needed program variables and FML functions */
 FBFR *fbfr,*Falloc();
 void F_error();

V IEWS Examples

Programming an Oracle Tuxedo ATMI Application Using FML 6-5

 char *str, *cstruct, buff[100];
 struct custdb cust;

 /* allocate a fielded buffer */
 if ((fbfr = Falloc(NF,NV)) == NULL) {
 F_error("sample.program");
 exit(1);
 }

 /* initialize str pointer to point to buff */
 /* copy string values into buff, and */
 /* Fadd values into some of the fields in fbfr */

 str = &buff;
 strcpy(str,"13579");
 if (Fadd(fbfr,ACTION,str,(FLDLEN)6) < 0)
 F_error("Fadd");
 strcpy(str,"act11");
 if (Fadd(fbfr,ACTION,str,(FLDLEN)6) < 0)
 F_error("Fadd");
 strcpy(str,"This is a one test.");
 if (Fadd(fbfr,BUG_CURS,str,(FLDLEN)19) < 0)
 F_error("Fadd");
 strcpy(str,"This is a two test.");
 if (Fadd(fbfr,BUG_CURS,str,(FLDLEN)19) < 0)
 F_error("Fadd");
 strcpy(str,"This is a three test.");
 if (Fadd(fbfr,BUG_CURS,str,(FLDLEN)21) < 0)
 F_error("Fadd");

 /* Print out the current contents of the fbfr */

 printf("fielded buffer before:\n"); Fprint(fbfr);

 /* Put values in the C structure */

 cust.tape = 12345;
 cust.super = 999;
 cust.youid = 80;
 cust.custid[0] = -1; cust.custid[1] = 75;
 str = cust.bug[0][0];
 strncpy(str,"no bugs12345",12);
 str = cust.bug[1][0];
 strncpy(str,"yesbugs01234",12);
 str = cust.bug[2][0];
 strncpy(str,"no bugsights",12);
 str = cust.bug[3][0];
 strncpy(str,"no bugsysabc",12);
 str = cust.action[0][0];

6-6 Programming an Oracle Tuxedo ATMI Application Using FML

 strcpy(str,"yesaction");
 str = cust.action[1][0];
 strcpy(str,"no action");
 str = cust.action[2][0];
 strcpy(str,"222action");
 str = cust.action[3][0];
 strcpy(str,"no action");
 cust.ch = '0';
 cstruct = (char *)&cust;

 /* Update the fbfr with the values in the C structure */
 /* using the custdb view description. */

 if (Fvstof(fbfr,cstruct,FUPDATE,"custdb") < 0) {
 F_error("custdb");
 Ffree(fbfr);
 exit(1);
 }

 /* Note that the following would transfer */
 /* data from fbfr to cstruct */
 /*
 if (Fvftos(fbfr,cstruct,"custdb") < 0) {
 F_error("custdb");
 Ffree(fbfr);
 exit(1);
 } */

 /* print out the values in the C structure and */
 /* the values in the fbfr */

 printf("cstruct contains:\en");
 printf("action=:%s:\n",cust.action[0][0]);
 printf("action=:%s:\n",cust.action[1][0]);
 printf("action=:%s:\n",cust.action[2][0]);
 printf("action=:%s:\n",cust.action[3][0]);
 printf("custid=%ld\n",cust.custid[0]);
 printf("custid=%ld\n",cust.custid[1]);
 printf("youid=%ld\n",cust.youid);
 printf("tape=%f\n",cust.tape);
 printf("super=%d\n",cust.super);
 printf("bug=:%.12s:\n",cust.bug[0][0]);
 printf("bug=:%.12s:\n",cust.bug[1][0]);
 printf("bug=:%.12s:\n",cust.bug[2][0]);
 printf("bug=:%.12s:\en",cust.bug[3][0]);
 printf("ch=:%c:\n\n",cust.ch);

 printf("fielded buffer after:\n");
 Fprint(fbfr);

FML Examples in bankapp

Programming an Oracle Tuxedo ATMI Application Using FML 6-7

 Ffree(fbfr);
 exit(0);

}

Example of VIEWS in bankapp
bankapp is a sample application distributed with the Oracle Tuxedo system. It includes two files
in which a VIEWS structure is used. The structure in the example is one that does not map to an
FML buffer, so FML functions are not used to get data into or out of the structure members.

$TUXDIR/apps/bankapp/audit.c is a client program that uses command-line options to
determine how to set up a service request in a VIEW typed buffer.

The code in the server $TUXDIR/apps/bankapp/BAL.ec accepts the service request and shows
the fields from a VIEW buffer being used to formulate ESQL statements.

See Also
viewc, viewc32(1) in Oracle Tuxedo Command Reference

mkfldhdr, mkfldhdr32(1) in Oracle Tuxedo Command Reference

FML Examples in bankapp
bankapp is a sample application distributed with the Oracle Tuxedo system. The servers

ACCT.ec

BTADD.ec

TLR.ec

show FML functions being used to manipulate data in FML typed buffers that have been passed
to the servers from bankclt, the bankapp client.

Note that in these servers the ATMI functions tpalloc(3c) and tprealloc(3c)—rather than
the FML functions Falloc, Falloc32(3fml) and Frealloc, Frealloc32(3fml)—are
used to allocate message buffers.

6-8 Programming an Oracle Tuxedo ATMI Application Using FML

Programming an Oracle Tuxedo ATMI Application Using FML A-1

A P P E N D I X A

FML Error Messages

The following table lists the error codes, numbers, and messages that you might see if an error
occurs during the execution of an FML program.

Table A-1 FML Error Codes and Messages

Error Code # Error Message

FALIGN 1 Fielded buffer not aligned

FNOTFLD 2 Buffer not fielded

FNOSPACE 3 No space in fielded buffer

FNOTPRES 4 Field not present

FBADFLD 5 Unknown field number or type

FTYPERR 6 Illegal field type

FEUNIX 7 UNIX system call error

FBADNAME 8 Unknown field name

FMALLOC 9 malloc failed

FSYNTAX 10 Bad syntax in Boolean expression

FFTOPEN 11 Cannot find or open field table

A-2 Programming an Oracle Tuxedo ATMI Application Using FML

FFTSYNTAX 12 Syntax error in field table

FEINVAL 13 Invalid argument to function

FBADTBL 14 Destructive concurrent access to field table

FBADVIEW 15 Cannot find or get view

FVFSYNTAX 16 Syntax error in viewfile

FVFOPEN 17 Cannot find or open viewfile

FBADACM 18 ACM contains negative value

FNOCNAME 19 cname not found

FEBADOP 20 Invalid field type

Table A-1 FML Error Codes and Messages (Continued)

Error Code # Error Message

