Oracle® Tuxedo
Introducing Oracle Tuxedo ATMI
10g Release 3 (10.3)

January 2009

ORACLE

Tuxedo ntroducing Oracle Tuxedo ATMI, 10g Release 3 (10.3)
Copyright © 1996, 2009, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software"” or “commercial technical data” pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents

1. Oracle Tuxedo System Fundamentals

What Is the Oracle Tuxedo System?.t e 1-1
Architectural Features 1-2
Administrative Features.ot 1-2
Programming FeaturesS.o ou it et e 1-3

Anatomy of the Client/Server Model i, 1-4
Characteristics of Client/Server Architecture 1-4
Differences Between 2-Tier and 3-Tier Client/Server Architectures. 1-5
Client/Server Variations to Suit Your Needs, 1-6

How the Oracle Tuxedo System Fits into the Client/Server Model 1-7

What Is an Oracle Tuxedo Client? i 1-9

What Is an Oracle TUXedo SErvVer? 1-9

Application Processing Services Provided by the Oracle Tuxedo System.......... 1-10

Administrative Services Provided by the Oracle Tuxedo System 1-10

2. Oracle Tuxedo ATMI Architecture

Basic Architecture of the Oracle Tuxedo ATMI Environment. 2-2

What You Can Do Usingthe ATMI 2-4

What Are the Oracle Tuxedo ATMI Messaging Paradigms?..................... 2-9
Request/Response Communicationt 2-10
Conversational Communication. i 2-11
Message Queuing Communicationcouiiiiiiiii . 2-12

Introducing BEA Tuxedo ATMI iii

Unsolicited Communication 2-15
What Are Nested and Forwarded Requests?o 2-17
Nested REQUESES . . . oottt 2-17
Forwarded REqUESESo 2-19
How Does Oracle Tuxedo Process Messages?.o vvviveii e 2-20
Benefits of Service Request Processingooviiiiineinenn... 2-21
What Are Typed BUffers? 2-22
Characteristics of Buffer Types. 2-23
What Is Data COmMPression?.ottt e 2-23
What Is Data-Dependent Routing?. 2-24
Uses of Data-Dependent Routingt 2-24
Example of Data-Dependent Routing with a Horizontally Partitioned Database. 2-25
Example of Data-Dependent Routing with Rule-Based Servers 2-26
Example of Data-Dependent Routing with a Distributed Application......... 2-27
What Are Encoding and Decodingof Data?o 2-28
What Is Data ENCryption?t 2-28
What Is Load Balancing?.t 2-29
What Is Message Prioritization?. i 2-30
What Is Meant by Naming? 2-31
NaMING SEIVICES . . . oottt 2-31
Naming EVENES oo 2-32

3. Oracle Tuxedo System Administration and Server Processes

Oracle Tuxedo ATMI Infrastructure e 3-1
Oracle Tuxedo DOMAIN.ot tee 3-2
Oracle Tuxedo Configuration File i, 3-3
Oracle Tuxedo Master Machine i 3-4

Introducing BEA Tuxedo ATMI

Oracle Tuxedo TUXDIR Environment Variable. 3-5
Oracle Tuxedo Bulletin Board.t 3-5
Oracle Tuxedo Administration ProCesses. oot 3-5
What Is the Role of the Bulletin Board?, 3-6
What Is the Role of the Bulletin Board Liaison?. 3-7
What Is the Distinguished Bulletin Board Liaison (DBBL)? 3-7
Oracle Tuxedo Workstation Servers.t 3-8
What is the Role of the Workstation Listener? 3-9
What is the Role of the Workstation Handler? 3-9
Oracle Tuxedo Authentication SErver, 3-10
Oracle Tuxedo Transaction Management Server.c..cooviininnn .. 3-10
Coordinating Operationsottt 3-11
Tracking Participants with a Transaction Log.ooo... 3-11
Oracle Tuxedo Message QUEUING SEIVEISttt 3-12
What is the Role of the TMQUEUE Server?, 3-12
What is the Role of the TMQFORWARD Server?, 3-12
Oracle Tuxedo Publish-and-Subscribe Servers 3-13
Oracle Tuxedo Domains (Multiple-Domain) Servers 3-14
What is the Role of the DMADM Server?, 3-17
What is the Role of the GWADM Server? 3-17
What is the Role of the Domain Gateway Servers? 3-17

System Services Available to Different Types of Oracle Tuxedo Configurations. . .. 3-18

4. Oracle Tuxedo Management Tools

Oracle Tuxedo Tool ArchiteCture. ottt e 4-1
Tool Interfaces withthe MIB. i e 4-2
MIB Interfaces with Other System Components.c.coiiun... 4-3

Introducing BEA Tuxedo ATMI

vi

Management Operations Using the Oracle Tuxedo Administration Console 4-3

Benefits of Using the Oracle Tuxedo Administration Console. 4-4
Browser ReqQUIFEMENLSt 4-5
Limitationso 4-5
Exploring the Main Menu of the Oracle Tuxedo Administration Console 4-5
Understanding the Tree VIeW oo e 4-7
Using the Configuration Tool 4-7
Usingthe Toolbar e 4-8
Managing Operations Using Command-Line Utilities 4-9
Configuring Your Application Using Command-Line Utilities 4-9
Operating Your Application Using Command-Line Utilities................ 4-10
Administering Your Application Queues Using Command-Line Utilities. 4-11
Administering Your Domains Application Using Command-Line Utilities. 4-11
Managing Operations Usingthe MIB it 4-12
AdMINAPL . . 4-13
Types Of MIB USEIS . ..ottt e e 4-14
Classes, Attributes, and Statesinthe MIB 4-14
Managing Events Using EventBroker i 4-15
Differences Between Application-Defined and System-Defined Events. 4-15
Preparing an Application for Event Monitoring. 4-16
Subscribing to EVENtSot 4-16

Introducing BEA Tuxedo ATMI

CHAPTERa

Oracle Tuxedo System Fundamentals

The following sections provide an overview of the Oracle Tuxedo programming environment:

What Is the Oracle Tuxedo System?

Anatomy of the Client/Server Model

How the Oracle Tuxedo System Fits into the Client/Server Model

What Is an Oracle Tuxedo Client?

e What Is an Oracle Tuxedo Server?
e Application Processing Services Provided by the Oracle Tuxedo System

e Administrative Services Provided by the Oracle Tuxedo System

What Is the Oracle Tuxedo System?

The Oracle Tuxedo system is a middleware product that distributes applications across multiple
platforms, databases, and operating systems using message-based communications and, if
desired, distributed transaction processing.

Middleware is used with client/server applications to distribute processing among multiple
servers, manage distributed transactions, and integrate multiple database platforms. Middleware
systems are sometimes known as online transaction processing (OLTP) systems.

The Oracle Tuxedo system is a mature product based on over 20 years of development from a
diverse group of technology companies including AT&T, UNIX System Laboratories (USL),

Introducing OracleTuxedo ATMI 1-1

Novell, BEA Systems and Oracle. It is both a development platform and an execution platform.
The Oracle Tuxedo system serves as an extension to the operating system.

The Oracle Tuxedo system provides the following:

e An industry standard for the creation and central administration of distributed online
transaction applications in a heterogeneous client/server environment.

e Ease of use for application developers, who do not need to know all the details about
server locations, routing, or platforms used. In an Oracle Tuxedo application, these aspects
of a program are transparent.

e The fundamental underpinnings for creating, managing, and maintaining reliable, high
performance, easily managed distributed systems.

Architectural Features

The Oracle Tuxedo system offers many features to accommodate the architectural aspects of an
ATMI application:

e Distributed services—allow transparent access to application and/or system services
located on different hardware platforms.

e Fast, connectionless communications—clients connect to a bulletin board rather than to
servers, thus improving system performance.

e Server transparency—the directory of services on the bulletin board maps service names to
servers; clients do not need to be aware of server identity.

e Scalability—application designers can quickly scale their Oracle Tuxedo applications to
match varying system load demands because services and servers can be replicated and
distributed easily. Designers can set thresholds programmatically to enable the Oracle
Tuxedo system to spawn new servers or to shut down servers automatically.

Administrative Features

The Oracle Tuxedo system offers many features to accommodate the administrative aspects of an
ATMI application:

e Password security and access control security—password security allows application
designers to control access by requiring passwords at initialization time (authentication).
Further control is available through authorization, a means of restricting access to certain
application services to clients that have been given explicit permission and that have
authenticated identities.

1-2 Introducing OracleTuxedo ATMI

What Is the Oracle Tuxedo System?

Application-specific and system events notification—the Oracle Tuxedo system provides
details about application and system events, such as servers unexpectedly terminating and
networks failing. When an event is posted by clients or servers, the Oracle Tuxedo
publish-and-subscribe component looks up all the subscribers to that event and takes
appropriate actions, as determined by each subscription.

Management information base (MIB)—an administrative interface that enables
administrators to monitor, configure, and tune their applications through their own
programs. It is an implementation-independent management database defined as a set of
Field Manipulation Language (FML) attributes, which allows administrators to query or
change information.

Web-based administration—a graphical user interface, available through the World Wide
Web, for the configuration and control of Oracle Tuxedo applications.

Programming Features

The Oracle Tuxedo system offers many features to accommodate the programming aspects of an
ATMI application:

Communication techniques—the application programming interface (API) for the Oracle
Tuxedo system is a superset of X/Open’s XATMI interface called the
Application-to-Transaction Monitor Interface, or ATMI. The Oracle Tuxedo ATMI is a rich
set of communication techniques for writing distributed applications.

Distributed Transaction Processing (DTP)—allows work being done throughout a
distributed application to be atomically completed, an essential characteristic of any OLTP
system.

Typed buffers—provide transparent handling of application data across heterogeneous
platforms.

X/Open XA compliance—the Oracle Tuxedo system conforms to the X/Open interface
standard for transaction database systems (called resource managers). As a result,
application designers can mix and match databases within an application while maintaining
data integrity.

X/Open TX compliance—the Oracle Tuxedo system conforms to the X/Open interface
standard for transaction demarcation. Oracle Tuxedo also offers its own ATMI interface for
transaction demarcation.

Introducing OracleTuxedo ATMI 1-3

Anatomy of the Client/Server Model

1-4

In client/server architecture, clients—programs that represent users who need services—and
servers—programs that provide services—are separate logical objects that communicate over a
network to perform tasks together. A client makes a request for a service and receives a reply to
that request. A server receives and processes a request, and sends back the required response.

Characteristics of Client/Server Architecture

The client/server architecture has the following characteristics:

e Asymmetrical protocols—a many-to-one relationship between clients and a server. Clients
always initiate a dialog by requesting a service. Servers wait passively for requests from
clients.

e Encapsulation of services—the server is a specialist: when given a message requesting a
service, it determines how to get the job done. Servers can be upgraded without affecting
clients as long as the published message interface used by both is unchanged.

o Integrity—the code and data for a server are centrally maintained, which results in
inexpensive maintenance and the protection of shared data integrity. At the same time,
clients remain personal and independent.

e Location transparency—the server is a process that can reside on the same machine as a
client process or on a different machine across a network. Client/server software usually
hides the location of a server from clients by redirecting service requests. Clients should
not have to be aware of the location of servers.

e Namespace transparency—clients should be able to use the same naming conventions (and
namespace) to locate any server on the network.

e Message-based exchanges—clients and servers are loosely-coupled processes that can
exchange service requests and replies using messages.

e Modular, extensible design—the modular design of a client/server application enables that
application to be fault-tolerant. In a fault-tolerant system, failures may occur without
causing a shutdown of the entire application. In a fault-tolerant client/server application,
one or more servers may fail without stopping the whole system as long as the services
offered on the failed servers are available on servers that are still active. Another advantage
of modularity is that a client/server application can respond automatically to increasing or
decreasing system loads by adding or shutting down one or more services or servers.

Introducing OracleTuxedo ATMI

Anatomy of the Client/Server Model

e Platform independence—the ideal client/server software is independent of hardware or
operating system platforms, allowing the mixing of client and server platforms. Clients and
servers can be deployed on different hardware using different operating systems,
optimizing the type of work each performs.

e Reusable code—service programs can be used on multiple servers.

o Scalability—client/server systems can be scaled horizontally or vertically. Horizontal
scaling means adding or removing client workstations with only a slight performance
impact. Vertical scaling means migrating to a larger and faster server machine or adding
server machines.

e Separation of client/server functionality—client/server is a relationship between processes
running on the same or separate machines. A server process is a provider of services. A
client is a consumer of services. Client/server provides a clean separation of functions.

e Shared resources—one server can provide services for many clients at the same time, and
regulate their access to shared resources.

Differences Between 2-Tier and 3-Tier Client/Server
Architectures

Every client/server application contains three functional units:
e Presentation logic or user interface (for example, ATM machines)

e Business logic (for example, software that enables a customer to request an account
balance)

e Data (for example, records of customer accounts)

These functional units can be part of the client program or part of the one or more server programs
in your application. Which of the many possible variations you choose depends on how you split
the application and which middleware you use to communicate between the tiers, as illustrated in
the following figure.

Introducing OracleTuxedo ATMI 1-5

Figure 1-1 2-Tier and 3-Tier Client/Server Models

Clients

-Presentation logic
-Buginess logic
-Database access (S0L)

Business Logic Middleware
Barviaz A
Borvies B
Eorvion |
RDBMS]
Server
Business logic in the
form of stored
rocedures
P RDBMS
Server
Z2-TIER CLIENT/SERVER 3-TIER CLIENT/SERVER
Two or more operating systems Multiple operating systems
One or more programming One or more programming
languages languages
Local and remote databases Local and remote databases

Hetworking/communication issues Hetworking/communication issues

Inter-program communications Inter-program communications
Mes=age routing

In 2-tier client/server applications, the business logic is buried inside the user interface on the
client or within the database on the server in the form of stored procedures. Alternatively, the
business logic can be divided between the client and server. File servers and database servers with
stored procedures are examples of 2-tier architecture.

In 3-tier client/server applications, the business logic resides in the middle tier, separate from the
data and user interface. In this way, processes can be managed and deployed separately from the
user interface and the database. Also, 3-tier systems can integrate data from multiple sources.

Client/Server Variations to Suit Your Needs

Client/server architecture can accommodate the needs of each of the following situations:

e Small shops and laptops—the client, the middleware software, and most of the business
services operate on the same machine. Oracle recommends this approach for one-person

1-6 Introducing OracleTuxedo ATMI

How the Oracle Tuxedo System Fits into the Client/Server Model

businesses such as a dentist’s office, a home office, and a business traveler who frequently
works on a laptop computer.

e Small businesses and corporate departments—a LAN-based single-server application is
required. Users of this type of application include small businesses, such as a medical
practice with several doctors, a multi-department corporation, or a bank with several
branch offices. In this type of application, multiple clients talk to a local server.
Administration is simple: security is implemented at the machine level and failures are
detected easily.

o Large enterprises—multiple servers that offer diverse functionality are required. Multiple
servers can reside on corporate networks, intranets, and the Internet, all of which are highly
scalable. Servers can be partitioned by function, resources, or databases, and can be
replicated for increased fault tolerance or enhanced performance. This model provides a
great amount of power and flexibility. How well you architect your application is critical to
this client/server model. You may need to partition work among servers, or design servers
to delegate work to other servers.

How the Oracle Tuxedo System Fits into the Client/Server
Model

The Oracle Tuxedo system fits into the middle of the client/server model. In an Oracle Tuxedo
application, clients log in and request services offered by an application. The Oracle Tuxedo
system offers these services through a transparent bulletin board. The bulletin board provides a
global directory advertising service.

For example, in the following sample banking application, the bulletin board advertises deposit,
withdrawal, and inquiry services. The Oracle Tuxedo system then finds a server at the appropriate
branch or district office that can provide the requested services.

Introducing OracleTuxedo ATMI 1-1

Figure 1-2 Clients and Servers in a Sample Banking Application

Cash Branch
Machines Server
Replies Feature: Deposit
gequenst Distributed Withiclray
o Sernvices IFcuiiry
Middleware
Cash Replies Reguests
Machines Bulletin Board Directory]
- “ of Services Feature:
E0jLE o
> ; -
WWithdr awval Depozt Branch Scalabilty-Add
servers as needed

CLIENTS Ll ey SERVERS
Ingquiry Branch

Ingquiry District

Bank Tramsfer District District
Tellers] Server
Feplies Requests

E:gﬁ?&t Transfer
Incjuiry I8
Featre:

Service Transparency-no
knowledge of server
location

The sample banking application shows the primary building blocks of an Oracle Tuxedo
application:

e Clients—programs that collect input from users, send requests through the Oracle Tuxedo
system to servers, and deliver server replies to users.

e Servers—programs that encapsulate the business logic into a set of services that define the
application.

o Middleware—comprises all the distributed software needed to support interactions between
clients and servers. It is the medium that enables a client to obtain a service from a server.
Middleware includes (1) API functions used by the client—to issue requests and receive
replies—and the server—to issue replies—and (2) messaging paradigms used to transmit
client requests and server responses over a network. Middleware does not include the client
user interface, the application logic, or the services provided by the servers.

In the sample Oracle Tuxedo banking application, clients (cash machines and tellers) make
requests, and servers (at branch and district offices) provide services and responses. For example,
a customer may use a cash machine to find out how much money is available in his personal

Introducing OracleTuxedo ATMI

What Is an Oracle Tuxedo Client?

checking account. The cash machine (a client) calls the server to get the balance. The server
receives the request, retrieves the balance, and sends the information to the cash machine.

What Is an Oracle Tuxedo Client?

A client is a program that collects a request from a user and passes that request to a server capable
of fulfilling it. It can reside on a PC or workstation as part of the front end of an application. It
can also be embedded in software that reads a communication device such as an ATM machine
from which data is collected and formatted before being processed by Oracle Tuxedo servers.

To be a client, a program must be able to invoke the Oracle Tuxedo libraries of functions and
procedures known collectively as the Application-to-Transaction-Monitor Interface, or ATMI.
The ATMI is supported in several language bindings.

A client joins an Oracle Tuxedo application by calling the ATMI client initialization routine.
Once it has joined an application, a client can define transaction boundaries and call ATMI
functions that enable it to communicate with other programs in the application. The client leaves
the application by issuing an ATMI termination function. By joining an application only when
necessary and leaving it once the appropriate task is complete, a client frees Oracle Tuxedo
system resources for use by other clients and servers.

When building a distributed application, you must determine how information is gathered and
presented to your business for processing. You have complete control over where and when to
call ATMI functions, depending upon your business logic and rules. Your program can join one
Oracle Tuxedo application, perform some tasks and leave, and then join a different Oracle
Tuxedo application to perform another task. If you are using a multicontexted application, your
client can perform tasks in more than one application without leaving any of them.

What Is an Oracle Tuxedo Server?

An Oracle Tuxedo server is a process that oversees a set of services, dispatching them
automatically for clients that request them. A service, in turn, is a function within a server
program that performs a particular task needed by a business. A bank, for example, might have
one service that accepts deposits and another that reports account balances. A server at this bank
might receive requests from clients for both services. The server is responsible for dispatching
each request to the appropriate service.

Service functions implement business logic through calls to database interfaces such as SQL and,
possibly, calls to the ATMI to access additional services, queues, and other resources. The servers
on which these services reside then reply to the clients or send the client requests to a new service.

Introducing OracleTuxedo ATMI 1-9

Application Processing Services Provided by the Oracle
Tuxedo System

The Oracle Tuxedo system provides services that enable application developers to implement the
following functionality in their applications:

e Data compression

Data-dependent routing

Data encoding

Data encryption

Data marshalling

Load balancing
e Message prioritization

e Service and event naming

For descriptions of the Oracle Tuxedo application processing services, see “Oracle Tuxedo
ATMI Architecture” on page 2-1.

Administrative Services Provided by the Oracle Tuxedo
System

The Oracle Tuxedo system provides services that enable application administrators to perform
the following administrative tasks:

e Startup and shutdown of an application
e Centralized application configuration
e Distributed application management

e Dynamic application reconfiguration

o Workstation management

e Security management

o Transaction management

1-10 Introducing OracleTuxedo ATMI

Administrative Services Provided by the Oracle Tuxedo System

e Message queuing management

e Event management
For descriptions of the Oracle Tuxedo system administration processes that provide the
administrative services, see “Oracle Tuxedo System Administration and Server Processes” on
page 3-1and “Oracle Tuxedo Management Tools” on page 4-1. For detailed instructions on using
the administrative services, see Setting Up an Oracle Tuxedo Application and Administering an
Oracle Tuxedo Application at Run Time.

Introducing OracleTuxedo ATMI 1-1

1-12 Introducing OracleTuxedo ATMI

CHAPTERa

Oracle Tuxedo ATMI Architecture

The following sections describe the basic architectural elements of an Oracle Tuxedo ATMI
environment:

e Basic Architecture of the Oracle Tuxedo ATMI Environment
e What You Can Do Using the ATMI

e What Are the Oracle Tuxedo ATMI Messaging Paradigms?
e What Are Nested and Forwarded Requests?

e How Does Oracle Tuxedo Process Messages?

e What Are Typed Buffers?

e What Is Data Compression?

e What Is Data-Dependent Routing?

e What Are Encoding and Decoding of Data?

e What Is Data Encryption?

e What Is Load Balancing?

e What Is Message Prioritization?

e What Is Meant by Naming?

Introducing Oracle Tuxedo ATMI 2-1

Basic Architecture of the Oracle Tuxedo ATMI

Environment

The following figure illustrates the basic architectural elements of an Oracle Tuxedo ATMI
environment: external interfaces to the environment, the ATMI layer, the MIB, Oracle Tuxedo
system services, and the environment’s interface with standards-compliant resource managers.

Figure 2-1 The Oracle Tuxedo ATMI Basic Architecture

Toals for App Applications that

3rd Party BEA Administration

Development use BEA TUXEDD Managerment Tools Console

AT fApplication to Transaction Monitor Interface)

Messading Paradigms

Data compression
Data-dependent routing

Data encoding Application
Data encryption processing
Data marshalling sapsfces
Load balancing

mMessage prioritization

Maming services

Transaction management

XA Open Praotocal

MIBs (ACL, Care, Events,
12, Wyarkstation)

Administrative
services

Centralized application

configuration

Distributed application management
Cynamic recanfiguration

Event management

Security management

Starting up and shutting down
Warkstation management

- External
Interface Laver
| ATMI Layer
BEA TUXEDO
-+ System Services
L ayer

Resoltce Manager

Interface with any
standards-based
Resource Manager

As shown in this illustration, the Oracle Tuxedo ATMI environment contains the following

components:

2-2 Introducing Oracle Tuxedo ATMI

Basic Architecture of the Oracle Tuxedo ATMI Environment

Architectural Part

Description

External interface layer

This layer consists of interfaces between the user and the
environment. It includes both tools for application development
and administration, such as the Oracle Tuxedo Administration
Console. The Administration Console can interact with standard
management consoles. Thus a user can manage an Oracle Tuxedo
ATMI environment and a network configuration from one
console. In addition, application architects and developers can
build their own administrative tools or application- or
market-specific tools on top of the MIB.

ATMI—Application-to-
Transaction Monitor
Interface

The interface between an application and the Oracle Tuxedo
ATMI environment. The ATMI and the Oracle Tuxedo
environment implement the X/Open DTP model of transaction
processing. An abstract environment, the ATMI supports
location transparency and hides implementation details. As a
result, programmers are free to configure and deploy Oracle
Tuxedo applications to multiple platforms without modifying the
application code.

Messaging paradigms

Different models of transferring messages between a client and a
server. The Oracle Tuxedo ATMI messaging paradigms include
request/response, conversations, queuing, publish-and-subscribe,
and unsolicited notification.

MIB—Management
Information Base

The MIB is an interface that enables users to program and
administer an Oracle Tuxedo ATMI environment easily. MIB
operations enable users to perform all management tasks
(monitoring, configuring, tuning, and so on). The MIB allows
users to perform one task to one object at a time or to build
toolkits with which to batch tasks and/or objects. For information
about the MIB and the MIB interface, see “Oracle Tuxedo
Management Tools” on page 4-1.

Introducing Oracle Tuxedo ATMI 2-3

Architectural Part Description (Continued)

Oracle Tuxedo Services Services and/or capabilities provided by the Oracle Tuxedo
(application processing ATMI environment infrastructure for developing and
services and administering applications.

administrative Services) e anplication processing services available to Oracle Tuxedo

developers include data compression, data-dependent routing,
data encoding, data encryption, data marshalling, load balancing,
message prioritization, and service and event naming. These
services are described in the discussions that follow.

The administrative services available to Oracle Tuxedo
administrators include startup and shutdown of an application,
centralized application configuration, distributed application
management, dynamic application reconfiguration, workstation
management, security management, transaction management,
message queuing management, and event management.

The system administration processes that provide the
administrative services are described in “Oracle Tuxedo System
Administration and Server Processes” on page 3-1 and “Oracle
Tuxedo Management Tools” on page 4-1.

Resource Manager A software product in which data is stored and available for
retrieval through application-based queries. The resource
manager (RM) interacts with the Oracle Tuxedo ATMI
environment and implements the XA standard interfaces. The
most common example of a resource manager is a database.
Resource managers provide transaction capabilities and
permanence of actions; they are the entities accessed and
controlled within a global (distributed) transaction.

What You Can Do Using the ATMI

The Application-to-Transaction Monitor Interface (ATMI), the Oracle Tuxedo AP, is an
interface for communications, transactions, and management of data buffers that works in all
environments supported by the Oracle Tuxedo system. It provides the connection between
application programs and the Oracle Tuxedo system. The ATMI is a simple interface for a
comprehensive set of capabilities. It implements the X/Open DTP model of transaction
processing.

2-4 Introducing Oracle Tuxedo ATMI

What You Can Do Using the ATMI

Figure 2-2 Using the ATMI

Toaols Languages (C, C++, COBOL, Java)
ATl
BEA TUXEDO Clientt Mame Management - Distributed EUEE
o il And Connectivity Transaction wanagar | MB
Administration FProcessing g

System-Level (Hardware, Operating System, Metwork)

The ATWI zupports the following tazks:
-Client initialization

-Zerver naming

-System messaging

-Managing transactions

-Dizpatching of services

-Managing buffers

The ATMI library offers you a variety of functions (routines, verbs) for defining and controlling
global transactions in an Oracle Tuxedo ATMI application. Global transactions enable you to
manage exclusive units of work spanning multiple programs and resource managers in your
distributed application. All work in a single transaction is treated as a logical unit, so that if any
one program cannot complete its task successfully, no work is performed by programs in the
transaction.

The ATMI functions knit together distributed programs by enabling them to send and receive
data. All ATMI functions send or receive data in typed buffers.

The following table presents a list of ATMI functions for C and COBOL bindings, and the tasks
they perform. The functions are grouped by task.

Introducing Oracle Tuxedo ATMI 2-5

Table 2-1 Using the ATMI Functions

Forataskrelatedto. Use this C Or this COBOL function . . .
function . .. To...
Client membership tpchkauth(3c) TPCHKAUTH(3cbl) Check whether
authentication is required
tpinit(3c) TPINITIALIZE(3cbl) Have a client join an
application
tpterm(3c) TPTERM(3cbl) Have a client leave an
application
Buffer management tpalloc(3c) N/A Create a message buffer
tprealloc(3c) N/A Resize a message buffer
tpfree(3c) N/A Free a message buffer
tptypes(3c) N/A Get a message type and
subtype
Message priority tpgprio(3c) TPGPRIO(3cbl) Get the priority of the last
request
tpsprio(3c) TPSPRI0(3chl) Set the priority of the next
request
Request/response tpcall(3c) TPCALL(3cbl) Initiate a synchronous
communications request/response to a service
tpacal 1 (3c) TPACALL(3cbl) Initiate an asynchronous
request (fanout)
tpgetrply(3c) TPGETRPLY (3cbl) Receive an asynchronous
response
tpcancel (3c) TPCANCEL (3cbl) Cancel an asynchronous

request

2-6 Introducing Oracle Tuxedo ATMI

Table 2-1 Using the ATMI Functions (Continued)

What You Can Do Using the ATMI

For atask relatedto. Use this C Or this COBOL function . . .
function . .. To...
Conversational tpconnect(3c) TPCONNECT (3cbl) Begin a conversation with a
communications service
tpdiscon(3c) TPDISCON(3chbl) Abnormally terminate a
conversation
tpsend(3c) TPSEND(3cbl) Send a message in a
conversation
tprecv(3c) TPRECV(3cbl) Receive a message in a
conversation
Message queuing tpenqueue(3c) TPENQUEUE(3chbl) Engueue a message to a
communications message queue
tpdequeue(3c) TPDEQUEUE(3cbl) Dequeue a message from a
message queue
Publish-and-subscribe tpnotify(3c) TPNOTIFY(3cbl) Send an unsolicited message
communications to a client
tpbroadcast(3c) TPBROADCAST (3cbl) Send messages to several
clients
tpsetunsol (3c) TPSETUNSOL (3cbl) Set unsolicited message
call-back
tpchkunsol (3c) TPCHKUNSOL (3cbl) Check the arrival of
unsolicited messages
N/A TPGETUNSOL (3cbl) Get an unsolicited message
tppost(3c) TPPOST(3chbl) Post an event message
tpsubscribe(3c) TPSUBSCRIBE(3cbl) Subscribe to event messages
tpunsubscribe(3c) TPUNSUBSCRIBE(3cbl) Unsubscribe to event

messages

Introducing Oracle Tuxedo ATMI 2-1

Table 2-1 Using the ATMI Functions (Continued)

Forataskrelatedto. Use this C Or this COBOL function . . .
function . .. To...
Transaction tpbegin(3c) TPBEGIN(3chbl) Begin a transaction
management (see note
at end of table) tpcommit(3c) TPCOMMIT(3cbl) Commit the current
transaction
tpabort(3c) TPABORT(3cbl) Roll back the current
transaction
tpgetlev(3c) TPGETLEV(3cbl) Check whether in transaction
mode
tpsuspend(3c) TPSUSPEND(3cbl) Suspend the current
transaction
tpresume(3c) TPRESUME(3cbl) Resume a transaction
Service entry and tpsvrinit(3c) TPSVRINIT(3cbl) Initialize a server
return
tpsvrdone(3c) TPSVRDONE(3cbl) Terminate a server
tpservice(3c) N/A Prototype for a service entry
point
N/A TPSVCSTART(3cbl) Get service information
tpreturn(3c) TPRETURN(3cbl) End a service function
tpforward(3c) TPFORWAR(3cbl) Forward request
Dynamic tpadvertise(3c) TPADVERTISE(3cbl) Advertise a service name
advertisement
tpunadvertise(3c) TPUNADVERTISE(3cbl) Unadvertise a service name
Resource tpopen(3c) TPOPEN(3chbl) Open a resource manager
management
tpclose(3c) TPCLOSE(3chl) Close a resource manager
Note: The use of the Oracle Tuxedo ATMI transaction management functions is optional.

Because Oracle Tuxedo also supports the X/Open TX transaction management functions,
you may want to use those functions for transaction management.

2-8 Introducing Oracle Tuxedo ATMI

See Also

What Are the Oracle Tuxedo ATMI Messaging Paradigms?

e “Using ATMI to Handle System and Application Errors” in Administering an Oracle
Tuxedo Application at Run Time

What Are the Oracle Tuxedo ATMI Messaging Paradigms?

Besides managing an application’s server processes and managing transactions, Oracle Tuxedo
ATMI also manages client/server communications, that is, allows clients (and servers) to invoke
an application service using any of the messaging paradigms identified in the following table.

Oracle Tuxedo ATMI Messaging
Paradigm

Description

Request/response
communication

A simple type of dialogue involving a single client request
and a single response from the called request/response
server. Request/response transactions usually involve
people and thus require immediate attention; they run in
high-priority mode.

Conversational communication

A state-preserving connection—context kept from
message to message—between a client and the called
conversational server. Conversational transactions also
usually involve people and thus require immediate
attention; they run in high-priority mode.

Message queuing
communication

Time-independent communication among clients and
servers. Queued transactions can run as high-priority or
low priority messages. The Oracle Tuxedo system
includes its own bundled version of recoverable queues
called /Q.

Publish-and-subscribe
communication

Asynchronous routing of events among the clients and
servers in an Oracle Tuxedo ATMI application.
Publish-and-subscribe transactions usually run as
high-priority messages. The Oracle Tuxedo system has a
transactional publish-and-subscribe system called
EventBroker.

Unsolicited notification
messaging

Communication from any client or server to any clients
that were not requested or expected by those clients.
Unsolicited notifications are handled by EventBroker.

Introducing Oracle Tuxedo ATMI 2-9

2-10

Request/Response Communication

To implement request/response communication between ATMI clients and servers, the Oracle
Tuxedo system uses interprocess communication (IPC) message queues. Queues are the key to
connectionless communication. Each server is assigned an IPC message queue called a request
queue, and each client is assigned a reply queue. Therefore, rather than establishing and
maintaining a connection with a server, a client application can send requests to the server by
putting those requests on the server’s queue, and then check and retrieve messages from the
server by pulling messages from its own reply queue.

The request/response model is used for both synchronous and asynchronous service requests.

Synchronous Messaging

In a synchronous call, a client sends a request to a server, which performs the requested action
while the client waits. The server then sends the reply to the client, which receives the reply.

Figure 2-3 Synchronous Request/Response Communication

CLIENT SERVER
-

|- ==: tpcalll)

Asynchronous Messaging

In an asynchronous call, the Oracle Tuxedo client does not wait for a service request it has
submitted to finish before undertaking other tasks. Instead, after issuing a request, the client
performs additional tasks (which may include issuing more requests). When a reply to the first
request is available, the client retrieves it.

Introducing Oracle Tuxedo ATMI

What Are the Oracle Tuxedo ATMI Messaging Paradigms?

Figure 2-4 Asynchronous Request/Response Communication

= SERVER
CLIEMT = SERVER
= SERVER

L

|
E| tpacall () “I“mnl
tpgetreplyi) =] o,

Conversational Communication

Conversational communication is the Oracle Tuxedo system implementation of a human-like
paradigm for exchanging messages between ATMI clients and servers. In this form of
communication, a virtual connection is maintained between the client and server. Just as in a
conversation between two people, a number of messages pass back and forth between the two
entities until a conclusion is reached. Over the course of the communication, both sides
“remember” the point (or state) of the conversation so that relatively long operations, such as ad
hoc queries, reports, and file transfers, can be supported. By default, conversational servers are
available, but more can be spawned automatically if needed.

The Oracle Tuxedo system provides an API that can be used to create conversations in
applications; specifically, to connect clients to servers, to send and receive messages, and to end
the conversation.

Introducing Oracle Tuxedo ATMI 2-11

Figure 2-5 Conversational Communication

SERVER

CLIENT

|- —1" ThCoonnmnect()
E—| tpasend()

threcwv(]

AFYY

Conversations can be nested but performance may be degraded as a result of doing so.
Conversations may contain either transactions or service requests as appropriate. Although a
conversational service can make service calls and establish conversations, those service calls and
conversations cannot be forwarded. A conversation can be within the scope of—and controlled
by—a transaction.

Message Queuing Communication

The Oracle Tuxedo system offers a queue-based architecture known as /Q for ATMI applications
that require persistent storage of data. The /Q component allows any client or server to store
messages or service requests in queues and guarantees that any stored request is sent through the
transaction protocol to ensure safe storage.

Oracle Tuxedo system queues can be ordered as last in, first out (LIFO) or first in, first out
(FIFO), or on the basis of time or priority. A collection of queues is administered and referred to
as a single entity known as a queue space.

2-12 Introducing Oracle Tuxedo ATMI

What Are the Oracle Tuxedo ATMI Messaging Paradigms?

Figure 2-6 Queue-Based Messaging

CLIENT W SERVER
|

tpendguenes ()

tpdequens ()

QUEVE

Application queues are appropriate if you must communicate in a time-independent fashion.
Time-independence is a characteristic of programs that operate independently from one another
and do not need to synchronize their communications simultaneously. Time-independent
programs synchronize by leaving messages for each other in application queues. Messages can
be dequeued in any of several ordering schemes, such as FIFO order, priority order, or time-based
order. Oracle Tuxedo client and server programs can enqueue messages and dequeue messages
from queues. More than one client and server can access the same queue.

To use an application queue, your program must name the queue to be accessed and the queue
space in which it resides. Your application can use more than one queue space and each space can
contain more than one message queue.

Because application queues reside on a disk, the availability of stored messages is guaranteed
even after machine failures. To determine when the use of application queues is appropriate, you
need to determine when time-independent synchronization occurs in your business, for example,
in filling orders. Orders can be enqueued to disk and depending on specific order criteria, such as
items or shipment location, placed in different queue spaces. Within each queue space, you can
determine additional criteria, such as cost, state, and so on.

Publish-and-Subscrihe Communication

The Oracle Tuxedo publish-and-subscribe component, known as EventBroker, provides a
communication paradigm in which an arbitrary number of suppliers can post messages for an
arbitrary number of subscribers. ATMI client and server processes using EventBroker
communicate with one another based on a set of subscriptions. EventBroker acts like a newspaper
delivery person who delivers newspapers only to customers who have paid for a subscription.

Introducing Oracle Tuxedo ATMI 2-13

2-14

Figure 2-7 Posting and Subscribing to an Event

Event Fvent
Subscription Posting i
Client or Server ——————» Event = | Client or Server
Broker
B T —
Event
Hotification

Event generators (either clients or servers) inform EventBroker of changes and problems as they
occur. This process is called posting an event. EventBroker then matches the name of the event
to an event name associated with a list of subscribers, and notifies each subscriber on the list of
the event.

Types of Events Reported

The Oracle Tuxedo system supports two different types of event reports:

e Application-defined event reports—allow application programs to post events when certain
criteria are met. A banking application, for example, might post an event for withdrawals
over a certain limit.

e System event reports—provide details about Oracle Tuxedo system events, such as server
and network failures. When an event is posted by clients or servers, EventBroker matches
the posted event’s name to subscriber’s of the same events and takes appropriate action
determined by each subscription.

How Events Are Reported

A process registers a subscription with EventBroker, indicating interest in a particular event.
Subsequently, whenever EventBroker is notified by another process that the specified event has
occurred, EventBroker reports the occurrence to any process that has subscribed for this event.

Introducing Oracle Tuxedo ATMI

What Are the Oracle Tuxedo ATMI Messaging Paradigms?

Figure 2-8 Event-based Messaging

EventBroker

- -
tpsubscribe ()

N_otif;r a
tlient Write to
userlog

Ihwoke a service | Engueue Execute a
to queues cammand

tppost()

EventBroker uses several mechanisms for publishing (that is, issuing notices of) events:
e Disk-based queuing
e Asynchronous service calls
e User log entries
e Unsolicited messages

e System commands

Unsolicited Communication

The Oracle Tuxedo system offers a powerful communication paradigm called unsolicited
notification. When unsolicited notification occurs, an ATMI client receives a message that it has
never requested. This capability, which is managed by EventBroker, makes it possible for
application clients to receive notification of application-specific events as they occur, without
having to request notification explicitly in real time.

Unsolicited messages can be sent to client processes by name (tpbroadcast) or by an identifier
received with a previously processed message (tpnotify). Messages sent via tpbroadcast can
originate either in a service or in another client. You can target a narrow or wide audience. You
can send a message with or without guaranteed delivery to an individual client through
point-to-point notification (tpnotify), or you can send information to a group of clients
(tpbroadcast). For example, a server may alert a single client that the account about which the

Introducing Oracle Tuxedo ATMI 2-15

2-16

clientis inquiring has been closed. Or, a server may send a message to all the clients on a machine
to remind the users that the machine will be shut down for maintenance at a specific time.

Figure 2-9 Unsolicited Notification Messaging

CLENT 2

'n

— .
E_ tpnotify ()
—| tpbroadcasti)

Any process that wants to be notified about a particular event (such as a machine being shut down
for maintenance) can register a request, with the system, to be notified automatically. Once
registered, a client or server is informed whenever the specified event occurs. This type of
automatic communication about an event is called unsolicited notification.

Because there is no limit to the number of clients and servers that may generate events and receive
unsolicited notification about such events, the task of managing this category of communication
can become complex.

See Also

e “Using the Request/Response Model (Synchronous Calls)” in Tutorials for Developing
Oracle Tuxedo ATMI Applications

e “Using Conversational Communication” in Tutorials for Developing Oracle Tuxedo ATMI
Applications

e “Oracle Tuxedo Message Queuing Servers” on page 3-12
e “Administering Your Application Queues Using Command-Line Utilities” on page 4-11

e “Using Queue-based Communication” in Tutorials for Developing Oracle Tuxedo ATMI
Applications

Introducing Oracle Tuxedo ATMI

What Are Nested and Forwarded Requests?

e “Oracle Tuxedo Publish-and-Subscribe Servers” on page 3-13
e “Managing Events Using EventBroker” on page 4-15

e “Using Event-based Communication” in Tutorials for Developing Oracle Tuxedo ATMI
Applications

e “Using Unsolicited Notification” in Tutorials for Developing Oracle Tuxedo ATMI
Applications

What Are Nested and Forwarded Requests?

Nested and forwarded service requests allow Oracle Tuxedo services to act as ATMI clients and
call other services.

Nested Requests

Nesting is limited to two levels, which works particularly well in a 3-tier client/server
architecture, that is, a system that comprises a presentation logic layer, a business logic layer, and
a database layer. In such a system, the presentation layer is used to formulate a request for a
particular business function that involves one or more queries to a database. Because nesting is
limited to two levels, it does not degrade performance.

Introducing Oracle Tuxedo ATMI 2-11

2-18

Figure 2-10 Nested Service Requests

SERVER

CLIENT

[]

Benefit of Nested Requests

One benefit of using nested requests is that doing so enables you to keep your code small and
reusable, such that each piece performs a limited task. However, if the services in your system
are distributed across several servers, nested requests can lead to poor performance. While a
nested request is being processed, the original service (that is, the service that issued the nested
request) must wait for a response before continuing. Until a response is received, the original
service cannot process another request. As a result, messages can get backed up in the request
queue for the server on which this service resides.

Example of a Nested Service Request

A customer uses a cash machine to transfer money from his or her savings account to her
checking account. An Oracle Tuxedo application performs the work necessary to transfer the
money. First, on behalf of the customer, the client issues a request for a service called TRANSFER,
and the request is placed on a queue for a server that provides that service. Next, the TRANSFER
service requests two other services, WI THDRAW and DEPOSIT, which are processed by a second
server. The WITHDRAW and DEPOSIT services return responses to the TRANSFER service. Finally,

Introducing Oracle Tuxedo ATMI

What Are Nested and Forwarded Requests?

TRANSFER sends a response to the client’s response queue. When the client retrieves the response
from the queue, the system displays a message on the screen of the cash machine, notifying the
customer that the transfer is complete.

Forwarded Requests

One alternative to nesting service requests is called request forwarding. Instead of processing a
client’s request, a service can pass the request to another service. The second service, also, can
either process the request or pass it to another service.

Figure 2-11 Forwarded Service Requests

SERVER

CLIENT
=
D tpforward()l
|' E—E-l| SERVER

e

There is no limit to the number of times a request can be forwarded. Because a service that
forwards a request does not need to wait for a reply from the service receiving the request,
forwarding, unlike nesting requests, does not block servers. Forwarding, however, is not
supported by the X/Open protocol X/ATMI, which may be a problem in some applications.

See Also

e “Using Nested Calls” in Tutorials for Developing Oracle Tuxedo ATMI Applications

Introducing Oracle Tuxedo ATMI 2-19

e “Using Forwarded Calls” in Tutorials for Developing Oracle Tuxedo ATMI Applications

How Does Oracle Tuxedo Process Messages?

2-20

All communication within the Oracle Tuxedo ATMI environment is accomplished by
transferring messages. The Oracle Tuxedo system passes service request messages between
ATMI clients and servers through operating system (OS) interprocess communications (IPC)
message queues. System messages and data are passed between OS-supported, memory-based
queues of clients and servers in buffers. In the Oracle Tuxedo ATMI environment, messages are

packaged in typed buffers, buffers that contain both message data and data identifying the types
of message data being sent.

Figure 2-12 Processing a Request

AT
TYPESWIS!
SYSTEM SOFTWARE

CLIENT Reply Queue Request Queue SERVER
t??i‘[fc"f@) Mt TUXEDC riain receiving
i huffer
tocalif3)
decompress
TErvice processing
; decode
-nEme mapping - -
type validation - 22 recen.'e.
-zervice priortization dispatch service
-routz() tpsenice 3]
load balancing tewetirng3)
presend(] prese nd(]
encode/decode { encdec) encode.decode (encdec)
Compress data] compress data
zend 2 zend
postsendi] postsendi)

A client uses an ATMI function to request a service by name. A naming facility is used to check
the MIB to determine whether the specified service is currently available.

The Oracle Tuxedo system uses data-dependent routing, which is an automatic routing option to
map messages that meet specific criteria (message value) to a specific server. If messages use

Introducing Oracle Tuxedo ATMI

How Does Oracle Tuxedo Process Messages?

data-dependent routing, the system uses the data in the buffer for the routing algorithm. This
algorithm provides a method of selecting a group of servers that can process the service request.

To avoid burdening a few servers with many requests while leaving other servers that advertise
the same services idle, the Oracle Tuxedo system maintains a set of metrics in the MIB that help
it distribute service requests evenly across all servers. This practice is called load balancing.

A local service request may be prepared for a selected server and enqueued on that server’s queue
with a predefined priority. This practice is called service prioritization. Once the service request
is on the server, the run-time system retrieves the message in priority order. The message is
dispatched to the appropriate service and processed. Then the results are returned to the client
queue.

Oracle Tuxedo system-provided software offers features that an application can automatically
and routinely use during message processing. These features include data encoding and decoding,
data compression and decompression, transactional context setting, and security processing, to
name a few. In addition, the Oracle Tuxedo system software invokes application business logic
by dispatching a service function and passing it to the appropriately preprocessed buffer.

The service routine is executed and returns a reply (also a typed buffer). The run-time system
prepares the reply for the client by encoding the message automatically: it packages the data in
such a way that it can be transmitted between machines on which different types of byte ordering
are used, allowing data to cross network and platform boundaries. The system then sends the
message to the client. This process is called data encoding. The run-time system on the client
retrieves the reply message, decodes it if necessary, and delivers the Field Manipulation
Language (FML) buffers (or buffers of another message buffer type) to package the application
data. Type validation, encoding, routing, and load balancing are performed as required. Service
requests can be performed synchronously or asynchronously.

Remote requests travel through the local bridge to the remote machine, where the remote bridge
simply acts as a client and the request is processed as if the client and server were on the same
machine. The bridge provides standard data encoding/decoding and uses standard network
transports to communicate. Bridges look like ordinary local servers to clients and servers.

Benefits of Service Request Processing

The benefits of service request processing include:

e Connectionless processing—this processing, coupled with direct client/server
communication, reduces the overhead associated with establishing a connection.

Introducing Oracle Tuxedo ATMI 2-21

e Reduced network traffic—service requests invoke potentially complex services on remote
machines, sending only the minimum data required and receiving minimal results.

See Also

e “What Are the Oracle Tuxedo ATMI Messaging Paradigms?” on page 2-9

e “What Are Typed Buffers?” on page 2-22

What Are Typed Buffers?

2-22

All ATMI functions send or receive data using typed buffers. The Oracle Tuxedo system handles
translations and data conversions between dissimilar machines. By using buffers, Oracle Tuxedo
programs avoid the need to translate data that crosses different platforms with different data
representations.

A buffer is a memory area that serves as a logical container for data. When a buffer contains no
metadata (that is, no information about itself), it is an untyped buffer. When a buffer includes
metadata such as information that can be stored in it (for example, a type and subtype, or string
names that characterize a buffer), it is a typed buffer.

Typed buffers can be transmitted over any network, on any operating system, with any protocol
supported by the Oracle Tuxedo system. They can also be used on platforms with different data
representations. As a result, the use of typed buffers facilitates the tasks of translation and data

conversion between dissimilar machines.

The Oracle Tuxedo system supports five sorts of typed buffers:
e STRING
o VIEW
e CARRAY
e FML
o XML

e MBSTRING

You assign buffer types in the ENVFILE parameter defined in the MACHINES section of the Oracle
Tuxedo (UBBCONFIG) configuration file. Assigning or overriding them in the ENVFILE parameter
in the SERVERS section of the Oracle Tuxedo configuration file can make them unavailable to
processes that require them.

Introducing Oracle Tuxedo ATMI

What Is Data Compression?

Definitions of the various types of message buffers are provided in the description of tm_typesw
in tuxtypes(5) in the Oracle Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference.

Characteristics of Buffer Types

When you use ATMI communication functions, your application must first use tpalloc to get a
buffer from the system, specifying its size, type, and optionally subtype. The Oracle Tuxedo
system recognizes and processes the buffer type, so that your data is transmitted over any type of
network, protocol, and operating system supported by the Oracle Tuxedo system. For
descriptions of the different types of Oracle Tuxedo buffers, see “Managing Typed Buffers” in
Programming a Oracle Tuxedo ATMI Application Using C.

See Also

o tuxtypes(5), typesw(5), and UBBCONFIG(5) in Oracle Tuxedo File Formats, Data
Descriptions, MIBs, and System Processes Reference.

What Is Data Compression?

Data compression is the process of shrinking an application buffer so that it can be transmitted
more quickly across a network or to a remote domain. By setting a maximum size for an
application buffer, you can make sure that compression is triggered automatically for application
buffers that match or exceed a specified size. When the buffer arrives at its destination, its data is
decompressed, that is, restored to its original size.

Data compression, performed before files are shipped between machines, improves network
performance. The process of compression enhances security slightly because it involves
scrambling the data.

Note: Data compression also occurs frequently during encryption.

Figure 2-13 Data Compression

Compress Decompress

Introducing Oracle Tuxedo ATMI 2-23

What Is Data-Dependent Routing?

2-24

The Oracle Tuxedo system uses an operation called data-dependent routing to enable a client to
send requests for the same service to multiple copies of that service. Which copy of the service
eventually accepts and processes the request is determined by the data in the request message.
Once an administrator has set up data-dependent routing for an application, client requests can be
routed automatically to servers based on the data in the requests.

When an application includes multiple copies of the same service, each copy is assigned a unique
purpose, just as the first volume of a multivolume encyclopedia contains entries that begin with
the letter “A.” A list of all copies of the service, along with identifying information about the
purpose of each, is kept in a set of routing tables in the Oracle Tuxedo bulletin board (the dynamic
part of the MIB). When the system receives a client request, it finds an identifying string in the
request message and searches the routing tables in the bulletin board for the same string. On the
basis of this match, the system identifies the appropriate server to which it can forward the client
request.

Note: The bulletin board routing tables can be modified as necessary.

Uses of Data-Dependent Routing

Data-dependent routing is useful when clients issue service requests to:

e Horizontally partitioned databases
e Rule-based servers

e Distributed applications

A horizontally partitioned database is an information repository that has been divided into
segments, each of which is used to store a different category of information. This arrangement is
similar to a library in which each shelf of a bookcase holds books for a different category (for
example, biography, fiction, and so on).

A rule-based server is a server that determines whether service requests meet certain,
application-specific criteria before forwarding them to service routines. Rule-based servers are
useful when you want to handle requests that are almost identical by taking slightly different
actions for business reasons.

A distributed application consists of one or more local or remote clients that communicate with
one or more servers on several machines linked through a network. A client (or server acting as
aclient) issues a request for a particular service. The address of the request is determined by data

Introducing Oracle Tuxedo ATMI

What Is Data-Dependent Routing?

(carried in the same buffer that conveys the request), identifying the server that can fulfill the
request. More than one server may be able to do so. The Oracle Tuxedo system selects a server
to receive the request by matching the data to the routing criteria provided in the bulletin board.

Example of Data-Dependent Routing with a Horizontally
Partitioned Database

Suppose two clients in a banking application issue requests for the current balance in two
accounts: Account 3 and Account 17. If data-dependent routing is being used in the application,
then the Oracle Tuxedo system performs the following actions:

1. Gets the account numbers for the two service requests (3 and 17).

2. Checks the routing tables on the Oracle Tuxedo bulletin board that show which servers handle
which range of data. (In this example, server 1 handles all requests for Accounts 1 through
10; server 2 handles all requests for Accounts 11 through 20.)

3. Sends each request to the appropriate server. Specifically, the system forwards the request
about Account 3 to server 1, and the request about Account 17 to server 2.

The following figure illustrates this process.

Figure 2-14 Data-Dependent Routing with a Horizontally Partitioned Database

Machine
Server1 ;| Server 2
Datahasze Databasze
Acct1-10 ™ Service A 0 Service & ™ mcct11-20
Ireake Imvake
Acct=3 Acct=17
Cliert or
Server

Introducing Oracle Tuxedo ATMI 2-25

Example of Data-Dependent Routing with Rule-Based
Servers

A banking application includes the following rules:
e Customers can withdraw up to $500 without entering a special password.

e Customers must enter a special password to withdraw more than $500.

Two clients issue withdrawal requests: one for $100 and one for $800. If data-dependent routing
is enabled to support the withdrawal rules, the Oracle Tuxedo system performs the following
actions:

1. Gets the amount specified for withdrawal in the two service requests ($100 and $800).

2. Checks the routing tables on the Oracle Tuxedo bulletin board that show which servers handle
request for the amount being requested. (In this example, server 1 handles all requests to
withdraw amounts up to $500; server 2 handles all requests to withdraw amount over $500.)

3. Sends each request to the appropriate server. Specifically, the system forwards the request for
$100 to server 1 and the request for $800 to server 2.

The following figure illustrates this process.

Figure 2-15 Data-Dependent Routing with Rule-Based Servers

Machine
Server 1 Server 2
Databasze Databasze
Accts <5500 Accts =Fa00
wyithiout - Service & 1 | Service & - pEEsard-
passyword recuired
Withlrswe $100 Withdramwe $500
Cliert or
Server

2-26 Introducing Oracle Tuxedo ATMI

What Is Data-Dependent Routing?

Example of Data-Dependent Routing with a Distributed
Application

The following diagram shows how client requests are routed to servers in a distributed
application. In this example, a banking application called bankapp uses data-dependent routing.
bankapp has three server groups (BANK1, BANK2, and BANK3) and two routing criteria (Account
ID and Branch D). The services WITHDRAW, DEPOSIT, and INQUIRY are routed using the
Account_ID field; the services OPEN and CLOSE are routed using the Branch_1D field.

Figure 2-16 Sample Banking Application Using Routing Criteria

bankapp - Sample Banking Application

Bank? - Branch_ID: 5.7

Bank1 - Branch_ID: 14
Account_ID: 50000-79999

Account_ID: 1000049999

DBBL BBL BBL
Client SE?ET:EF Client Server
o BE — BEA
Application g e — Application BB TUXEDD
Code ervers Code
; ATMI Servers Pt
ATMI Services - AThil Senvices ;
BEA Wlthdra.w BEA Wifithdrauv
TUXEDD Depolsﬂ TUXEDRD Deposit
Inquing Inquiny
Bridge Bridge
Network
Bank3 - Branch_ID: §-10
Account_ID: 60000-109999
BEL
Bridge
. BB
Client Server
Servers BEA
Application :
P o Senices | Tuxgpo
ATHI ATHI
BEA Wiithdrau
TUXEDD e
Inquiny

In the preceding figure, requests are routed as indicated in the following table.

Introducing Oracle Tuxedo ATMI 2-21

Withdrawals, Deposits, Inquiries, and Openings or Closings of Are Routed to. ..
the Following Accounts . ..

Numbers 10000-49999 for branches 1-4 Bank1
Numbers 50000-79999 for branches 5-7 Bank?2
Numbers 80000-109999 for branches 8-10 Bank3

What Are Encoding and Decoding of Data?

Encoding and decoding enable messages with different data representations (for example, byte
ordering or character sets) to be transferred between machines. The Oracle Tuxedo system
encodes and decodes data to a machine-independent representation for transmission to other
machines involved in an Oracle Tuxedo application.

The Oracle Tuxedo system employs, by default, the External Data Representation (XDR)
algorithm, which can be customized by replacing the Oracle Tuxedo system functions with
user-written functions. Encoding and decoding are used only between machines and only when
a remote machine uses a data representation other than the one used on the local machine.
Encoding and decoding allow machines with different data architectures to operate within a
heterogeneous Oracle Tuxedo system. Programmers can manage data in representations natural
to their own environments.

The Oracle Tuxedo system uses buffer types to determine the type of fields contained in a
message, and to perform the mapping required for coding tasks. This mapping is not performed
by unstructured buffer types such as X_OCTET and CARRAY. Thus, developers using X_OCTET and
CARRAY buffers are free to deploy in mixed-machine environments.

What Is Data Encryption?

2-28

Encryption is the act of converting a message into a coded format that is unintelligible to all users
except the user for which the message is intended. When an encrypted message arrives at its
destination, it is decrypted, that is, converted back to its original format.

Introducing Oracle Tuxedo ATMI

What Is Load Balancing?

Figure 2-17 Data Encryption

Cliert or Server 1 Client or Server 2
"hell" "hella"

Encrypt — Decrypt
"helo" = "ifrimgp" "ifnmp" = "hello”

Encryption does not increase the number of bits in the data, but it adds processing time to the task
of sending a message. Because data is compressed during encryption, however, lost processing
time may be bought back, since less data is being sent across the network. When data is
compressed, there is also a moderate boost to security, because the data is somewhat scrambled
during compression.

What Is Load Balancing?

Load balancing is a technique used by the Oracle Tuxedo system for distributing service requests
evenly among servers that offer the same service. Load balancing avoids overburdening some
servers while leaving others idle or infrequently used. Before sending a request to a service
routine, the Oracle Tuxedo system identifies all servers capable of handling the request and
selects the one most appropriate for maintaining a balanced load across all the servers in the
configuration.

Load refers to a number assigned to a service request based on the amount of time required to
execute that service. Loads are assigned to services so that the Oracle Tuxedo system can
understand the relationship between requests. To keep track of the amount of work, or total load,
being performed by each server in a configuration, the administrator assigns a load factor to every
service and service request. A load factor is a number indicating the amount of time needed to
execute a service or a request. On the basis of these numbers, statistics are generated for each
server and maintained on the bulletin board on each machine. Each bulletin board keeps track of
the cumulative load associated with each server, so that when all servers are busy, the Oracle
Tuxedo system can select the one with the lightest load.

You can control whether a load-balancing algorithm is used on the system as a whole. Such as
algorithm should be used only when necessary, that is, only when a service is offered by servers
that use more than one queue. Services offered by only one server, or by multiple servers in a

Introducing Oracle Tuxedo ATMI 2-29

Multiple Server, Single Queue (MSSQ) do not need load balancing. The LDBAL parameter for
these services should be set to N. In other cases, you may want to set LDBAL to Y.

To determine how to assign load factors (in the SERVICES section of UBBCONFIG), run an
application for a long period of time and note the average time it takes to perform each service.
Assign a LOAD value of 50 (LOAD=50) to any service that takes roughly the average amount of
time. Any service taking longer than average should have a LOAD>50; any service taking less than
the average should have a LOAD<50.

Figure 2-18 Load Balancing

Bulletin Board Site 1
Current Load
Client Server 1 Load = 300
client application Server 2 Load = 400
huffer Load Factors Server 1 Server 2
Deposit Add 30 ;s .
AThl Withdrawy Add TS Service A Service A
MEming Deposit Deposit
type validation Wt g Wt g

data-dependent routing
load balancing
data marzhalling Bridge
zend message

Hetwork

What Is Message Prioritization?

2-30

Priorities determine the order in which service requests are dequeued by a server. Priority is
assigned by a client to individual services and can range from 1 t0100, where 100 represents the
highest priority.

All services are assigned a starting priority of 50. A server’s starting priority can be changed
during application configuration. After you have defined your set of services, you can assign the
appropriate priorities to them. For example, your business may require that some services have a
relatively high priority of 70, which means those services are dequeued before those with the
lower priority of 50. In the following illustration, a server offers services A (with a priority of 50),
B (with a priority of 50), and C (with a priority of 70).

Introducing Oracle Tuxedo ATMI

What Is Meant by Naming?

Figure 2-19 Prioritization of Messages

Order of Degueueing

T o P e m iy g ‘.
ERERRIER RN

Server

Clignt ar
Server

A request for service C is always dequeued before a request for A or B due to the higher priority
of C. Requests for A and B have equal priority. This feature is useful in applications in which not
all requests are equally urgent or important.

A “starvation prevention” mechanism prevents low-priority messages from waiting endlessly on
the queue. Every tenth message is dequeued in first in, first out (FIFO) order regardless of
priority; the first through the ninth messages are dequeued in order of priority.

What Is Meant by Naming?

The Oracle Tuxedo system uses three naming devices: service names, message queue names, and
event names. Names can be any words or alphanumeric strings, as long as they do not begin with
aperiod (.). Because administrative servers use the Oracle Tuxedo system infrastructure, system
and application resources must be clearly distinguished.

Naming Services

When services are named, an application component can locate another component through a
name. Names can be simple words (such as “deposit”) or alphanumeric strings (such as
“deposit2”). Names should be selected on the basis of the scope of the application and a map that
contains the global picture of the relationships among application components. These maps or
services are like the pages in a telephone book for application components.

When an Oracle Tuxedo system server is activated, the bulletin board advertises the names of its
services. Service names are associated with a server’s physical address so that requests can be
routed to that server. Names that programmers use in their applications are completely location
transparent. When a client program asks for a service by name, the Oracle Tuxedo system

Introducing Oracle Tuxedo ATMI 2-31

2-32

consults its name registry in the bulletin board. The name registry provides the information
necessary to convert the string name (for example, TICKET) to a machine name and the physical
address of a server that advertises that service. The Oracle Tuxedo system then sends the request
to the appropriate server.

Figure 2-20 Locating a Service by Name

Looks up name Maming Service

J etz name

Client or Server

- Service &
Invokes a zervice

Naming Events

The Oracle Tuxedo system offers a publish-and-subscribe mechanism: clients and servers can
dynamically register or unregister a standing request to receive alerts (or messages) when a
particular event occurs. Other clients and servers post user-defined or system events as they occur
in the application. When a client or server no longer needs to be notified about a particular event,
the relevant subscription can be cancelled.

See Also

e “Publish-and-Subscribe Communication” on page 2-13

Introducing Oracle Tuxedo ATMI

What Is Meant by Naming?

Introducing Oracle Tuxedo ATMI 2-33

2-34 Introducing Oracle Tuxedo ATMI

CHAPTERa

Oracle Tuxedo System Administration
and Server Processes

The following sections describe the core Oracle Tuxedo system administration and server
processes that together form the infrastructure for ATMI applications built on the Oracle Tuxedo
system:

e Oracle Tuxedo ATMI Infrastructure
e Oracle Tuxedo Administration Processes

Oracle Tuxedo Workstation Servers

Oracle Tuxedo Authentication Server

e Oracle Tuxedo Transaction Management Server

e Oracle Tuxedo Message Queuing Servers

e Oracle Tuxedo Publish-and-Subscribe Servers

e Oracle Tuxedo Domains (Multiple-Domain) Servers

e System Services Available to Different Types of Oracle Tuxedo Configurations

Oracle Tuxedo ATMI Infrastructure

The following categories of Oracle Tuxedo system processes provide an infrastructure for the
efficient routing, dispatching, and management of application service requests, application
queues, and event postings and notifications for ATMI applications:

Introducing Oracle Tuxedo ATMI 3-1

3-2

e Oracle Tuxedo administration processes

Oracle Tuxedo Workstation server processes

Oracle Tuxedo authentication server process

e Oracle Tuxedo transaction management server process
e Oracle Tuxedo message queuing server processes

e Oracle Tuxedo publish-and-subscribe server processes

e Oracle Tuxedo Domains (multiple-domain) server processes

Before exploring these categories of Oracle Tuxedo system processes, you should have a good
understanding of the following important Oracle Tuxedo terms and concepts.

Oracle Tuxedo Domain

An Oracle Tuxedo domain, also known as an Oracle Tuxedo application, is a set of Oracle
Tuxedo system, client, and server processes administered as a single unit from a single Oracle
Tuxedo configuration file. An Oracle Tuxedo domain consists of many system processes, one or
more application client processes, one or more application server processes, and one or more
computer machines connected over a network.

The following figure presents a high-level view of an Oracle Tuxedo domain.

Figure 3-1 High-Level View of an Oracle Tuxedo Domain

Introducing Oracle Tuxedo ATMI

Oracle Tuxedo ATMI Infrastructure

Oracle Tuxedo Domain

Oracle Tuxedo Server Machine 1 Oracle Tuxedo Server Machine 2

Native
Client

Native
Client

[] workstation Network Workstation ||
[Client Connection Client ==l

In Oracle Tuxedo terminology, a domain is the same as an application—a business application;
both terms are used as synonyms throughout the Oracle Tuxedo user documentation. Examples
of business applications currently running on Oracle Tuxedo are airline and hotel reservation
systems, credit authorization systems, stock-brokerage systems, banking systems, and automatic
teller machines.

The application processes running on the client side of an Oracle Tuxedo client/server application
are usually referred to as application clients or simply clients. The application processes running
on the server side of an Oracle Tuxedo client/server application are usually referred to as
application servers.

Note: Often, the term domain, or application, is intended to mean the server-side software of
an Oracle Tuxedo client/server application.

Oracle Tuxedo Configuration File

Each Oracle Tuxedo domain is controlled by a configuration file in which installation-dependent
parameters are defined. The text version of the configuration file is referred to as UBBCONFIG,
although the configuration file may have any name, as long as the content of the file conforms to
the format described on reference page UBBCONFIG(5)in Oracle Tuxedo File Formats, Data

Introducing Oracle Tuxedo ATMI 3-3

3-4

Descriptions, MIBs, and System Processes Reference. Typical configuration filenames begin
with the string ubb, followed by a mnemonic string, such as simple in the filename ubbsimple.

The UBBCONFIG file for an Oracle Tuxedo domain contains all the information necessary to boot
the application, such as lists of its resources, machines, groups, servers, available services, and

so on. It consists of nine sections, five of which are required for all configurations: RESOURCES,
MACHINES, GROUPS, SERVERS, and SERVICES.

The binary version of the UBBCONFIG file is referred to as TUXCONFI1G. As with UBBCONFIG, the
TUXCONFIG file may be given any name; the actual name is the device or system filename
specified in the TUXCONFIG environment variable.

Oracle Tuxedo Master Machine

The master machine, or master node, for an Oracle Tuxedo domain is a server machine containing
the domain’s UBBCONFIG file, and is designated as the master machine in the RESOURCES section
of the UBBCONFIG file. Starting, stopping, and administering the one or more server machines in
an Oracle Tuxedo domain is done through the master machine.

The master machine for an Oracle Tuxedo domain also contains the master copy of the
TUXCONFIG file. Copies of the TUXCONFIG file are propagated to every other server machine—
referred to as non-master machines—in an Oracle Tuxedo domain whenever the Oracle Tuxedo
system is booted on the master machine.

In a multiple-machine domain running different releases of the Oracle Tuxedo system software,
the master machine must run the highest release of the Oracle Tuxedo system software in the
domain.

Oracle Tuxedo TUXCONFIG Environment Variable

The TUXCONFIG environment variable defines the location on the master machine where the
tmloadcf(1) command loads the binary TUXCONFIG file. It must be set to an absolute pathname
ending with the device or system filename where TUXCONFIG is to be loaded.

The TUXCONFIG pathname value is designated in the MACHINES section of the UBBCONFIG file. It
is specified for the master machine and for every other server machine in the Oracle Tuxedo
domain. When copies of the binary TUXCONFIG file are propagated to non-master machines
during system boot, the copies are stored on the non-master machines in accordance to the
TUXCONFIG pathname values.

Introducing Oracle Tuxedo ATMI

Oracle Tuxedo Administration Processes

Oracle Tuxedo TUXDIR Environment Variable

The TUXDIR environment variable defines the installation directory of the Oracle Tuxedo system
software on the master machine. It must be set to an absolute pathname ending with the name of
the installation directory.

The TUXDIR pathname value is designated in the MACHINES section of the UBBCONFIG file. It is
specified for the master machine and for every other server machine in the Oracle Tuxedo
domain.

Oracle Tuxedo Bulletin Board

The Oracle Tuxedo system uses the TUXCONFIG file to set up a bulletin board (BB) on each server
machine in an Oracle Tuxedo domain. When an Oracle Tuxedo server process becomes active, it
advertises the names of its services in the bulletin board. Some information in the bulletin board
is global and is replicated on every server machine in the Oracle Tuxedo domain (for example,
the names and locations of all servers offering a particular service). Other information is local and
is visible only on the local bulletin board (for example, the actual number and type of client
requests currently waiting on a local server request queue).

The bulletin board provides location and namespace transparency within an Oracle Tuxedo
domain. Location transparency means that Oracle Tuxedo client and server processes do not have
to be aware of the location of a resource within the Oracle Tuxedo domain. Namespace
transparency means that Oracle Tuxedo client and server processes can use the same naming
conventions (and namespace) to locate any resource in the Oracle Tuxedo domain.

See Also

e “How to Create a Configuration File” in Setting Up an Oracle Tuxedo Application

e “Creating the Configuration File for a Distributed ATMI Application” in Setting Up an
Oracle Tuxedo Application

Oracle Tuxedo Administration Processes

The Oracle Tuxedo administration processes automate most of the management tasks for a
distributed application, including:

e Starting up and shutting down an application

e Dynamically reconfiguring an application

Introducing Oracle Tuxedo ATMI 3-5

This discussion focuses only on the administration processes that set up and manage the bulletin
board in an Oracle Tuxedo single-machine or multiple-machine application (domain):

e Single-machine application—one or more local or remote application clients
communicating with one or more application servers that reside on the same server
machine and belong to an Oracle Tuxedo domain.

e Multiple-machine application—one or more local or remote application clients
communicating with one or more application servers that reside on multiple server
machines and belong to an Oracle Tuxedo domain. Oracle Tuxedo Bridge processes send
and receive service requests between the server machines, and route requests to locally
running system or application server processes.

For a description of the administration processes used to start up, shut down, and dynamically
reconfigure an Oracle Tuxedo application, see “Oracle Tuxedo Management Tools” on page 4-1.

What Is the Role of the Bulletin Board?

The bulletin board (BB) is a memory segment in which all the application configuration and
dynamic processing information is held at run time for an Oracle Tuxedo application. It provides
the following functionality:

e Assigns service requests to specific servers. When a service is called, the bulletin board
looks up servers that offer the requested service. Based on this information, and any
data-dependent routing criteria, the bulletin board places the request data on the request
queue of a valid server.

e Maintains dynamic information about the state of an application, such as how many
requests are waiting on a given server’s queue and how many requests have been
processed.

e Provides server location transparency, allowing an application to be developed
independently of deployment. Therefore, development and deployment costs are
minimized.

e Supports service name aliases, allowing multiple names to be assigned to the same service.
This capability is useful for constructing interpreters, such as gateways.

Each server machine in an Oracle Tuxedo application contains a bulletin board.

3-6 Introducing Oracle Tuxedo ATMI

Oracle Tuxedo Administration Processes

What Is the Role of the Bulletin Board Liaison?

The Bulletin Board Liaison (BBL) is an Oracle Tuxedo administration process running on each
server machine in an Oracle Tuxedo application that coordinates changes to the local bulletin
board and verifies the sanity of the software programs that are active on the local machine. There
is one and only one BBL running on each server machine—including the master machine—in an
Oracle Tuxedo domain.

Figure 3-2 Bulletin Board and Bulletin Board Liaison

Bulletin Board
Liaison

ULoG Bulletin Board
Directory of Services

Wiithd ranw
Client Inquiry Server
Application Replies Requests BEA TUXEDD
Cade | ATHI
ATMI T Withdraw
BEA TUXEDD Inquiry

Wonkstation Weisiciton

Handler Listener

What Is the Distinguished Bulletin Board Liaison (DBBL)?

The Distinguished Bulletin Board Liaison (DBBL) is the Oracle Tuxedo administration process
that makes it possible to distribute an application across multiple server machines. The DBBL
ensures that the Bulletin Board Liaison (BBL) server on each server machine is alive and
functioning correctly. The DBBL runs on the master machine of an application and
communicates directly with all administration facilities.

The DBBL ensures that configuration and service addressing information is replicated to the
bulletin board on each server machine in the configuration. Servers located on remote machines
are accessed through the Bridge process running on the local machine. Servers on the local
machine are accessed directly. All local communications are performed through high

Introducing Oracle Tuxedo ATMI 3-7

performance operating system message queues. Remote communications are performed in two
phases. First, service requests are forwarded to a remote machine through the (local) Bridge.
Second, when a request reaches the remote machine, operating system messages are used to send
the request to the appropriate server process.

Note: An Oracle Tuxedo single-machine application may or may not have a DBBL process
running, depending on the value of the MODEL parameter in the RESOURCES section of the
UBBCONFIG file. If MODEL=SHM, no DBBL process is running; if MODEL=MP, a DBBL
process and a Bridge process are running. The advantage of having a DBBL is that it
periodically checks the health of the BBL and restarts it if it terminates. The disadvantage
is that two additional system processes are running: the DBBL and the Bridge.

See Also

e “Distributing ATMI Applications Across a Network” in Setting Up an Oracle Tuxedo
Application

e “Setting Up the Network for a Distributed Application” in Setting Up an Oracle Tuxedo
Application

e “Managing the Network in a Distributed Application” in Administering an Oracle Tuxedo
Application at Run Time

Oracle Tuxedo Workstation Servers

3-8

The Oracle Tuxedo Workstation server processes allow Workstation clients—remote ATMI
clients—to reside on a remote machine that does not have a full Oracle Tuxedo server-side
installation, that is, a machine that does not support Oracle Tuxedo administration servers or a
bulletin board. All communication between a Workstation client and the Oracle Tuxedo server
application takes place over the network.

Workstation clients need enough of the Oracle Tuxedo system software to package the
information associated with a request. They can then send that information to a pair of
Workstation Listener (WSL) and Workstation Handler (WSH) server processes running in an
Oracle Tuxedo application that supports all the Oracle Tuxedo system software, including ATMI
functions and networking software. The following figure shows how the WSL and WSH
processes connect Workstation clients to the Oracle Tuxedo server application.

Introducing Oracle Tuxedo ATMI

Oracle Tuxedo Workstation Servers

Figure 3-3 Handling Workstation Clients

BEA Tuxedo Application Site 1

Windows Workstation BEL
Mative

Yyarkstation Cligrit .
Client T Server 1
Board -
Wiokkstation
Cliert /

BRIDGE
, Mative
Client
Site 2
UNIX Workstation BRIDGE BEL e
Wiarkatation e [
Clierit Bulletin

WSH Board | — Server 2
Workstation s

Clert \ WSH /:E (

What is the Role of the Workstation Listener?

The Workstation Listener (WSL) is an Oracle Tuxedo listening process, running on an Oracle
Tuxedo server machine, that accepts connection requests from Workstation clients and assigns
connections to a Workstation Handler also running on the server machine. It also manages the
pool of Workstation Handler processes, starting and stopping them in response to load demands.

An administrator can define several WSLs in an Oracle Tuxedo domain to distribute and balance
the workstation communication load across multiple server machines.

What is the Role of the Workstation Handler?

The Workstation Handler (WSH) is an Oracle Tuxedo gateway process, running on the Oracle
Tuxedo server machine, that handles communications between Workstation clients and the
Oracle Tuxedo server application. A WSH process resides within the administrative domain of
the application and is registered in the local Oracle Tuxedo bulletin board as a client.

Each WSH process can manage multiple Workstation clients. A WSH multiplexes all requests
and replies with a particular Workstation client over a single connection.

Introducing Oracle Tuxedo ATMI 3-9

See Also

e Using the Oracle Tuxedo ATMI Workstation Component
e “Administering Security” in Using Security in ATMI Applications

e UBBCONFIG(5), WS_MIB(5), and WSL(5)in Oracle Tuxedo File Formats, Data
Descriptions, MIBs, and System Processes Reference

Oracle Tuxedo Authentication Server

The Oracle Tuxedo authentication server, named AUTHSRV, allows system administrators to
configure the additional security needed to authenticate and authorize Workstation clients.
AUTHSVR provides a single service, which verifies whether the user has the correct authentication
level.

Administrators can configure Oracle Tuxedo applications with incremental levels of
authentication and authorization. Administrators can configure an application so that all servers
except AUTHSVR have restricted access to shared resources, such as shared memory and message
queues.

Application designers can replace AUTHSVR with an authentication server that implements logic
specific to their application. For example, a company may want to develop a custom
authentication server so that it can use the popular Kerberos mechanism for authentication.

See Also

e “Administering Security” in Using Security in ATMI Applications

e AUTHSVR(5)in Oracle Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference

Oracle Tuxedo Transaction Management Server

3-10

The Oracle Tuxedo transaction management server, named TMS, is responsible for coordinating
global transactions, on behalf of Oracle Tuxedo ATMI applications, from their point of origin—
typically on the client—across one or more server machines, and then back to the originating
client. TMS tracks transaction participants and supervises a two-phase commit protocol, ensuring
that transaction commit and rollback are properly handled at each site.

Introducing Oracle Tuxedo ATMI

Oracle Tuxedo Transaction Management Server

Figure 3-4 Transaction Manager Servers at Work

Yes T Mo
Eﬁ‘—ﬁ?'—"/ TLOG — ’}93“/-"

Transaction T i
W oor M7 ransactian v oor M7
Manager :—Fm hi== Manager SO e s

MA \%
Commit the e Roll Back the

Transaction Transaction

==

Coordinating Operations

To coordinate all the performed operations and all the modules affected by a transaction, TMS
directs the actions of one or more resource managers, such as relational databases, hierarchical
databases, filesystems, document stores, message queues, and other back-end services. Together,
TMS and the resource managers maintain the atomicity of a transaction, but it is TMS that actually
manages the two-phase commit protocol and the recovery (if needed) for the transaction.

Tracking Participants with a Transaction Log

In the transaction log (TLOG), TMS logs a global transaction only after receiving all “yes” replies
from the global transaction participants at the end of the first phase of a two-phase commit. A
TLOG record indicates that a global transaction should be committed; no TLOG record indicates
that the transaction should be rolled back. Each server machine in an Oracle Tuxedo domain
should have its own TLOG.

See Also

e “Configuring Your ATMI Application to Use Transactions” in Setting Up an Oracle
Tuxedo Application

e “Using Transactions” in Tutorials for Developing Oracle Tuxedo ATMI Applications

e TM_MIB(5)in Oracle Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference

Introducing Oracle Tuxedo ATMI 3-11

Oracle Tuxedo Message Queuing Servers

3-12

The Oracle Tuxedo message queuing servers provide for time-independent communication
among clients and servers in an Oracle Tuxedo ATMI application. They make it possible for an
application, within a global transaction, to store client and server generated messages to stable
storage for processing later. A client or server process involved in message queuing
communications decides when it wants to retrieve a message off its queue.

The Oracle Tuxedo message queuing servers consist of a “message queue manager” server
named TMQUEUE and a “message forwarding” server named TMQFORWARD.

What is the Role of the TMQUEUE Server?

The TMQUEUE server stores (enqueues) and retrieves (dequeues) messages on behalf of clients and
servers. The following figure shows how TMQUEUE works.

Figure 3-5 Queuing Messages Using TMQUEUE

TMQUEUE

R eadél'u'l.l'rite

masdages
CLIENT ‘ SERVER

tpenqueue M Quedal™)

Quened tpdequeue::("llueueﬂ

REFLYQ

What is the Role of the TMQFORWARD Server?

The TMQFORWARD server dequeues messages and forwards them to the appropriate servers for
processing. TMQFORWARD is needed only if queued messages require a service call. For example,
a queue may be used (on an Oracle Tuxedo client or server) for interprocess communication in
which one process places the message on the queue and another removes it. The following figure
shows how TMQFORWARD works.

Introducing Oracle Tuxedo ATMI

Oracle Tuxedo Publish-and-Subscribe Servers

Figure 3-6 Storing and Forwarding Messages Using TMQFORWARD

ThWQUELE ThSFCRWARD
v, A
All enusues TResdiwrite poll Queuet forréquests " Synchranous cal
degueLes mEssages Pt replies or REPLY
cLent ¥ % SERVER
A s SERVICE Queuet
tpengueus MGueue1™ 1
tpdequeus ("REPLYQ™) Queuel tpreturni)
Queus2 i
Queusl
REPL%'Q@

See Also

e “Administering Your Application Queues Using Command-Line Utilities” on page 4-11
e Using the ATMI /Q Component
e tpenqueue(3c)and tpdequeue(3c)in Oracle Tuxedo ATMI C Function Reference

e APPQ MIB(5), TMQUEUE(5), TMQFORWARD(5), and UBBCONFIG(5)in Oracle Tuxedo File
Formats, Data Descriptions, MIBs, and System Processes Reference

Oracle Tuxedo Publish-and-Subscribe Servers

The Oracle Tuxedo publish-and-subscribe servers provides asynchronous routing of application
and system events among the processes running in an Oracle Tuxedo ATMI application. An event
is a state change or other occurrence in an application program or the Oracle Tuxedo system that
may be of interest to an administrator, an operator, or the software. Examples of events are “a
stock traded at or above a specified price” or “a network failure occurred.”

The Oracle Tuxedo publish-and-subscribe servers consist of an “application event” server named
TMUSREVT and a “system event” server named TMSYSEVT. The TMUSREVT server handles
application events on behalf of clients and servers, and the TMSYSEVT server handles system
events on behalf of clients and servers. The following figure shows how TMUSREVT and TMSYSEVT
work.

Introducing Oracle Tuxedo ATMI 3-13

Figure 3-7 Handling Events Using TMUSREVT and TMSYSEVT

EventBroker

-
tpsubscribe ()

Motify
clisnt Wirite to
userlog

Invoke a service | Enqueus Execute a
to queue command

tpposti)

See Also

e “Managing Events Using EventBroker” on page 4-15
e “About the EventBroker” in Administering an Oracle Tuxedo Application at Run Time

e tppost(3c), tpsubscribe(3c), and tpunsubscribe(3c)in Oracle Tuxedo ATMI C
Function Reference

e EVENTS(5), EVENT_MIB(5), TMSYSEVT(5), TMUSREVT(5), and UBBCONFIG(5) in Oracle
Tuxedo File Formats, Data Descriptions, MIBs, and System Processes Reference

Oracle Tuxedo Domains (Multiple-Domain) Servers

The Oracle Tuxedo Domains (multiple-domain) server processes extend the Oracle Tuxedo
system client/server model to provide transaction interoperability across transaction processing
(TP) domains. This extension preserves the model and the ATMI interface by making access to
services on the remote domain (or accepting service requests from a remote domain) transparent
to both the application programmer and the end-user.

The Oracle Tuxedo Domains server processes consist of a “Domains administrative” server
named DMADM, a “gateway administrative” server named GWADM, and one of several types of
“domain gateway” servers—for example, the TDomain gateway server, implemented by the
GWTDOMAIN process. The following figure shows how DMADM, GWADM, and GWTDOMAIN work.

3-14 Introducing Oracle Tuxedo ATMI

Oracle Tuxedo Domains (Multiple-Domain) Servers

Figure 3-8 Interdomain Communication Using the TDomain Gateway Group

Oracle Tuxedo Application (Local Domain)
Client Server

i
8 i
@*‘}@ﬁ R

Domains
Administrative
Gateway Grou
e p Server
AT ¥
- Db 200
Domsinz o
TLOG T DO AR
BOMZOMFIG
dmeonfig
Remote Retmote
Domain Cromsin

Oracle Tuxedo Application Oracle Tuxedo Application
(Remote Domain 1) (Remote Domain 2)

Here is another figure demonstrating the connectivity in a Domains configuration.

Introducing Oracle Tuxedo ATMI

3-15

3-16

Figure 3-9 Domains Configuration

EEATUXEDO Domai

n (Dormain 1)
Machine 1 [Master]

DEEL EBEL
Client Server
Application EE BEA
Cade Servers TUXEDRD
ATMI Services ATMI
BEA Wfithd raw
Eiri dh | i
TUXEDD ridge ngquiny Machine 3
Het K Cliert
ar Application EE BEL
. " Cod Sarvers
bachine 2 |/1 ﬁ\’_\ Eridge A'Ic"MeI Services
BEL IERE BEA .
Client Server Server . TUXEDD Domainz
Applization EE BEA EA Gateway Group Administrative
Code Servars TUXEDO TUXEDO T & ateray
Services AT
ATMI AThl
i Withdraw [Lomains gl
BEA Mfith draw ' SUTDOMAIN l
TUXEDD Inguiny Inquiry TLaG BOMCONFIG
BEA TUXKEDO Domain [(Domain 2]
kachine 1 [Master)
OBEL EEL
Client Server
Application . EE BEA
Code Srvers TUXEDD Machine 2
ATMI Services AT : L
BEA With draw E= el il
TUXEDD Bridge Inqui EES Applicatian EEL
o Ja TUXEDD Code
AThdl ATMI
Hetwork Wfithdraw BEA
Machine 2 v Ly TUXEDRD Domains
- S ateway Grou ini i
BEL Eridge Bridge v P Ad;nl:lstratme
Client Server G\{f\—_—_ﬁmld'——h—ﬁi ateway
Application EE BEA EE - - —— ™ DMADM
Code Servers | TUXEDO Servers MM G TDOMAIN L
ATMI Services ATHI Services TLOG BLMCONFIG
BEA iith drawe
TUXEDDO Inquiny

Introducing Oracle Tuxedo ATMI

EEA TUXEDO Domain [Domain 3]

atemway Group
GANAD A

Domains

TLOG | SWTDOMAIN

Domains
Administrative
Fateway

Db AL
ElDMClﬂNFIG

Metwork

/

Eridge

N\

Eridge

Oracle Tuxedo Domains (Multiple-Domain) Servers

What is the Role of the DMADM Server?

The DMADM server provides a registration service for gateway groups. This service is requested by
GWADM servers as part of their initialization procedure. The registration service downloads the
configuration information required by the requesting gateway group. The DMADM server maintains
a list of registered gateway groups, and propagates to these groups any changes made to the
Domains configuration file (BDMCONFIG).

How multiple domains are connected and which services they make accessible to one another are
defined in Domains configuration files, the text and binary versions of which are known as
DMCONF1G and BDMCONF1G, respectively. Each Oracle Tuxedo domain involved in a Domains
configuration requires its own Domains configuration file.

What is the Role of the GWADM Server?

The GWADM server registers with the DMADM server to obtain the configuration information used by
the corresponding gateway group. GWADM accepts requests from DMADM for run-time statistics or
changes in the run-time options of the specified gateway group.

What is the Role of the Domain Gateway Servers?

Domain gateways are highly asynchronous, multitasking server processes that handle outgoing
and incoming service requests to or from remote domains. They make access to services across
domains transparent to both the application programmer and the application user.

As shown in the following figure, the Oracle Tuxedo system supports several types of domain
gateways, to allow an Oracle Tuxedo application to communicate with other Oracle Tuxedo
applications or with applications running on other TP systems.

Introducing Oracle Tuxedo ATMI 3-17

Figure 3-10 Domain Gateway Types

BEA TUXEDD Application

BEA elink for| | BEA eLink BEL, eLink

TOomain Wiginframe - | [for Mainframe | for Mainframe
OZ-TP - Sha LU G2 || - TCPIP for
/ / / ’ h
Another cIes \
BE& TUXKEDOD APPS / Clcs .
Application
WS AS800 i

See Also

e “Administering Your Domains Application Using Command-Line Utilities” on page 4-11
e Using the Oracle Tuxedo Domains Component

e DMADM(5), DMCONFIG(5), GWADM(5), GWTDOMAIN(5), and UBBCONFIG(5) in Oracle
Tuxedo File Formats, Data Descriptions, MIBs, and System Processes Reference

System Services Available to Different Types of Oracle
Tuxedo Configurations

The following table lists the Oracle Tuxedo system services available for an Oracle Tuxedo
single-machine, multiple-machine (distributed), and Domains application. The single-machine
and multiple-machine applications are Oracle Tuxedo domain configurations. The Domains
application is an Oracle Tuxedo Domains configuration consisting of two or more Oracle Tuxedo
domains communicating with one another via TDomain (GWTDOMAIN) gateways.

3-18 Introducing Oracle Tuxedo ATMI

System Services Available to Different Types of Oracle Tuxedo Configurations

Table 3-1 Capabilities Available in Different Types of Oracle Tuxedo Configurations

Availahle Capability Single-Machine Multiple-Machine Domains
Application Application Application

ATMI X X X

Messaging paradigms X X X

Administration parts:

UBBCONFIG, TUXCONFIG, X X X
Bulletin Board (BB), X X X
Bulletin Board Liaison (BBL), X X X
Distinguished Bulletin Board

Liaison (DBBL), See Note atend of table X X
ULOG, TLOG, X X X
Bridges X X
Administrative processes:

tmloadcf, tmunloadcf, X X X
tmboot, tmadmin, ... X X X
For an overview of Oracle Tuxedo

administrative processes, see

“Managing Operations Using

Command-Line Utilities” on

page 4-9.

Domains parts:

DMCONF1G, BDMCONFIG, X
DMADM, GWADM, GWTDOMAIN, X
DMTLOG X
Domains administrative processes:

dmloadcf, dnunloadcf, X
dmadmin X

For an overview of the Oracle
Tuxedo Domains administrative
processes, see “Administering Your
Domains Application Using
Command-Line Utilities” on

page 4-11.

Introducing Oracle Tuxedo ATMI 3-19

Tahle 3-1 Capabilities Available in Different Types of Oracle Tuxedo Configurations (Continued)

Availahle Capability Single-Machine Multiple-Machine Domains
Application Application Application

Application processes:
clients, servers, and services

Workstation client management

Security management

Transaction management

X| X| X| X| X

Message queuing management

X | X| X| X| X| X
X | X| X| X| X| X

Event management

Note: An Oracle Tuxedo single-machine application may or may not have a DBBL process
running, depending on the value of the MODEL parameter in the RESOURCES section of the
UBBCONFIG file. If MODEL=SHM, no DBBL process is running; if MODEL=MP, a DBBL
process and a Bridge process are running. The advantage of having a DBBL is that it
periodically checks the health of the BBL and restarts it if it terminates. The disadvantage
is that two additional system processes are running: the DBBL and the Bridge.

3-20 Introducing Oracle Tuxedo ATMI

CHAPTERa

Oracle Tuxedo Management Tools

The following sections describe the Oracle Tuxedo administration processes available to users
for managing Oracle Tuxedo applications:

e Oracle Tuxedo Tool Architecture

Management Operations Using the Oracle Tuxedo Administration Console

Exploring the Main Menu of the Oracle Tuxedo Administration Console

Managing Operations Using the MIB

Managing Operations Using Command-Line Utilities

Managing Events Using EventBroker

Oracle Tuxedo Tool Architecture

As shown in the following figure, the Oracle Tuxedo administration processes used to manage an
Oracle Tuxedo application encompass a variety of tools constructed around the Oracle Tuxedo
management information base (MIB).

Introducing Oracle Tuxedo ATMI 4-1

42

Figure 4-1 Tools to Administer Your Oracle Tuxedo Application

/1 m—w\
Administration Comm_a}nd-Llne MIB AP EventBroker
Console Utilities

Oracle Tuxedo Management Information Base
(TM_MIB, WS_MIB, ACL_MIB, APPQ_MIB, EVENT_MIB, DM_MIB)

TUXCONFIG TLOG ULOG

The Oracle Tuxedo MIB contains all the information necessary for the operation of an Oracle
Tuxedo application. It contains the TM_MIB, which is common to all applications, and the
following component MIBs, each of which describes a subsystem of the Oracle Tuxedo system:

Bulletin
Board

¢ WS_MIB—used to manage Workstation groups and processes associated with them

e ACL_MIB—used to administer access control lists (ACLS)

e APPQ_MIB—used to administer application stable-storage queues

e EVENT_MIB—used to control event notification and the subscription request database

e DM_MIB—used to administer an Oracle Tuxedo Domains (multiple-domain)
configuration

The MIB reference pages (TM_MIB(5), generic reference page MIB(5), ...) are defined in Oracle
Tuxedo File Formats, Data Descriptions, MIBs, and System Processes Reference.

Tool Interfaces with the MIB

The Oracle Tuxedo administration tools, briefly described in the following list, provide different
types of interfaces to the MIB:

Introducing Oracle Tuxedo ATMI

Management Operations Using the Oracle Tuxedo Administration Console

e Oracle Tuxedo Administration Console—a Web-based GUI application used to monitor an
Oracle Tuxedo application and to dynamically configure it.

e Command-line utilities—a set of commands used to activate, deactivate, configure, and
manage an Oracle Tuxedo application.

e Oracle Tuxedo MIB application programming interface—a set of functions for accessing
and modifying information in the MIB.

e EventBroker—an Oracle Tuxedo component that provides asynchronous routing of
application events among the client and server processes running in an Oracle Tuxedo
application, and distributes system events—typically faults or exceptional happenings—to
whichever application processes want to receive them.

MIB Interfaces with Other System Components

The MIB accesses the following Oracle Tuxedo system components:

e TUXCONFIG file—binary version of an Oracle Tuxedo application’s configuration
(UBBCONFIG) file. Every server machine in an Oracle Tuxedo application stores a copy of
the TUXCONFIG file. The MIB updates the TUXCONFIG file and reads information from the
TUXCONFIG file.

o Bulletin board—a memory segment in which all the configuration and dynamic processing
information for an Oracle Tuxedo application is held at run time. Every server machine in
an Oracle Tuxedo application has a bulletin board. The MIB updates the bulletin board and
reads information from the bulletin board.

e ULOG—a user log file in which Oracle Tuxedo system and application messages—error
messages, warning messages, information messages, and debugging messages—are stored.
Every server machine in an Oracle Tuxedo application should have a ULOG. The MIB
gathers information from the ULOG.

e TLOG—a transaction log file in which records of committed global transactions are stored.
Every server machine in an Oracle Tuxedo application should have a TLOG. The MIB
gathers information from the TLOG.

Management Operations Using the Oracle Tuxedo
Administration Console

Based on Java and Web technology, the Oracle Tuxedo Administration Console lets you operate
your Oracle Tuxedo applications from virtually anywhere—even from home, given security

Introducing Oracle Tuxedo ATMI 4-3

authorization. The Administration Console is a Java-based applet that you can download into
your Web browser and use to remotely manage Oracle Tuxedo applications.

The Administration Console simplifies many of the system administration tasks required for
managing multiple-tier systems. It lets you monitor system events, manage system resources,
create and configure administration objects, and view system statistics.

Benefits of Using the Oracle Tuxedo Administration Console

e Authentication—the Administration Console forces users to identify themselves. It prompts
the administrator for a username and password. This information is communicated in an
encrypted fashion between the browser and the server, where the user’s identity is then
verified. Much of the server setup is done during installation, when server components of
the Oracle Tuxedo Administration Console are installed and made available to the Web
server.

e Context-sensitive help—context-sensitive help is available for all Administration Console
windows and tools. You can request information about any field or area of a window
simply by dragging a question mark icon to that field or any area and clicking.

e Encryption—the data transferred between the server side and the browser is compressed
(56-bit or 128-bit encryption) so that no one can read it. Encryption makes the system
resistant to anyone trying to inject false administrative protocol messages into the stream.

o Firewall readiness—the port on which the Oracle Tuxedo Administration Console server
listens and interacts with the browser is well defined and configurable; you can configure it
to match ports that you want to allow through your firewall. This capability enables you to
do Console-based administration through your firewall, if necessary.

e lcons—the icons used in the Administration Console show state (for example, not active)
or represent particular objects in the Oracle Tuxedo application, for example, machines or
servers.

e Java-capable browser—the Java browser supports the Java virtual machine that runs the
applets and enables communication.

e No client-side installation—no installation is required on your machine. Point your browser
to the URL for a machine in your Oracle Tuxedo application on which the Console server
components reside, then initiate a download of Java applets. The applets implement the
Oracle Tuxedo Administration Console and establish communication with the server.

e Universal secure access—from any Java-capable browser, you can access the system from
anywhere in the world with confidence that security mechanisms are already in place.

4-4 Introducing Oracle Tuxedo ATMI

Exploring the Main Menu of the Oracle Tuxedo Administration Console

Browser Requirements

Each release of the Oracle Tuxedo system supports the currently available browsers. For
information about browsers currently supported by the Oracle Tuxedo Administration Console,
see “Starting the Oracle Tuxedo Administration Console” in Installing the Oracle Tuxedo
System.

Limitations

The Oracle Tuxedo Administration Console has not been updated to support any new features
introduced after Oracle Tuxedo release 7.1.

See Also

e Oracle Tuxedo Administration Console Online Help
e “Exploring the Main Menu of the Oracle Tuxedo Administration Console” on page 4-5

e “Ways to Monitor Your Application” in Administering an Oracle Tuxedo Application at
Run Time

e “Starting the Oracle Tuxedo Administration Console” in Installing the Oracle Tuxedo
System

Exploring the Main Menu of the Oracle Tuxedo
Administration Console

When you first bring up the Web and invoke the Oracle Tuxedo Administration Console, the
following main window appears.

Introducing Oracle Tuxedo ATMI 4-5

46

Figure 4-2 Main Menu of the Oracle Tuxedo Administration Console

Configuration Tool Tabbed Pages

% Orade Administration Console

nu Bar paman Sstrge Coolr kel
¢ H®) [4
‘oolbar 515 ﬁ '(.j n_ 4; al = b ?
ReTesh | Searzh | 4cthate Deact Irigrata | Loj Statz Sefiirgs | CEHelp Help
U s2simpasp Cl Comaurator Tao T MAGHINE
E="g b ach e
General | ystecrian: | zecuste | Lmes | 1vansactor Log | swaboucs 1| e
Relre Mame: JC-Dnon.oon
Log cal Waching Ha~w simpae
T TPCOREE i sy -
ZPCURER IMCaET Queues M Iiane ~ypv.
1 oJTansachors, LLOS Pres
::;C‘I i Tusedu Rual Direrlury ;=u | =4l i
Lie 623
] m'mi‘mw SpuLes Apclizatizn Divectory Ful =at): UMy N
3 JE Lisior ore applicatinn =-nfig natinn Sile =l = at) CoAMyd 2 Bzont @
1 \'Ic b
g; L:.andb * [rwir=rire -t ile
L2
—&sevea Jotaurs ObjzeiCrate: LAZTINE
| [ﬂ Ch:ngel Ca sl | Plew.. | Diglee |
{fF [TV Appret vinaow
Tree View Configuration Tool Pane

The main window is divided into four major areas:
e Menu bar—menus that provide access to all actions.

e Toolbar—nbuttons that provide shortcuts to frequently used action or administrative tools.
The toolbar buttons and some menu items are not fully displayed unless you are connected
to an Oracle Tuxedo application.

e Tree View—a hierarchical representation of the administrative class objects (such as
servers and clients) in an Oracle Tuxedo application.

e Configuration Tool—a set of tabbed pages on which you can display, define, and modify
the attributes of objects, such as the name of a machine.

Introducing Oracle Tuxedo ATMI

Exploring the Main Menu of the Oracle Tuxedo Administration Console

Understanding the Tree View

The Tree View pane appears in the left column of the main GUI window. The tree is a hierarchical
representation of the administrative objects in a single Oracle Tuxedo application. The GUI
graphically depicts the relationship between each object and the others by showing its nesting
level and parent objects. You can choose to view a complete tree (comprising all configurable
objects of all types in the Oracle Tuxedo application) or a subset of objects.

After you have set up and activated an application, the Tree is populated with labeled icons,
representing the administrative class objects in your application.

The Tree View contains multiple roots, one root for each administrative object. The first root
consists of the Oracle Tuxedo application. The next root displays the object classes defined in the
Oracle Tuxedo TM_MIB. Each set of object classes is a part of an Oracle Tuxedo application.
The third level represents an instance of an object belonging to an object class.

For example, suppose your application includes two machines (both at SITE1) named romeo and
juliet. Since both machines are objects, they are listed in the Tree below the name of the object
class to which they belong: Machines. Therefore, they will be listed as follows:

Machines
SITE1/romeo
SITE1/juliet

The name of each object in the Tree View is preceded by an icon. Each machine, for example, is
represented by a computer; each client, by a human figure.

Using the Configuration Tool

The Configuration Tool is a utility that lets you set or change the attributes for a selected class of
Oracle Tuxedo system objects. When you select an object in the Tree, the Configuration Tool
Pane for that object is displayed on the right side of the main window.

The tabbed pages in the Configuration Tool area are electronic forms that display and solicit
information about the attributes of an administrative object. A set of tabbed pages is provided for
each administrative class of objects (such as machines and servers). The number of attributes
associated with a class varies greatly, depending on the class. Therefore, anywhere from one to
eight folders may be displayed when you invoke the Configuration Tool by selecting an object in
the tree.

When the Configuration Tool area is populated, another row of buttons is displayed below the
tabbed pages. These four buttons allow you to control the configuration work done in the pages.

Introducing Oracle Tuxedo ATMI 4-1

Using the Toolbar

The toolbar is a row of 12 buttons that allow you to invoke tools for frequently performed
administrative operations. They are labeled with both icons and names. The following table
describes each button.

Button Description

Stop Interrupts the current operation and returns control to the
administrator (who can then request a new operation).

Refresh Updates the Tree View and configuration tool pane with the
most up-to-date data.

Search Searches for a particular administrative object class or objectin
the expanded Tree.

Activate Activates all or part of an Oracle Tuxedo application.
Deactivate Deactivates all or part of an Oracle Tuxedo application.
Migrate Migrates a server group or machine to another location, or

swaps the master and backup machines.

Log file Displays the ULOG file from a particular machine in the active
Oracle Tuxedo application.

Event Displays a window for monitoring system-generated events.

Stats Displays the tabbed pages that allow you to view a graphical
presentation of Oracle Tuxedo application activity.

Settings Provides the option to set the following default settings for the
Administration Console session:

e The location of your Oracle Tuxedo online documentation
» The method for sorting your data (by state or name)
* Your default work mode (view-only or edit mode)

CS Help Invokes context-sensitive help. Click a field or a specific area
of the console to get information about the selected item.

Help Opens the Administration Console Online Help in a separate
Web browser.

4-8 Introducing Oracle Tuxedo ATMI

Managing Operations Using Command-Line Utilities

See Also

e Oracle Tuxedo Administration Console Online Help

e “Ways to Monitor Your Application” in Administering an Oracle Tuxedo Application at
Run Time

e “Starting the Oracle Tuxedo Administration Console” in Installing the Oracle Tuxedo
System

Managing Operations Using Command-Line Utilities

Oracle Tuxedo provides a set of commands for managing different parts of an application built
on the Oracle Tuxedo system. The commands enable you to access common administrative
utilities. These utilities can be used for the following tasks:

e Configuring your application using command-line utilities
e Operating your application using command-line utilities
e Administering your application queues using command-line utilities

e Administering your Domains application using command-line utilities

Configuring Your Application Using Command-Line Utilities

You can configure your application by using command-line utilities. Specifically, you can use a
text editor to create and edit the configuration file (UBBCONF1G) for your application, and then use
the command-line utility named tmloadcf to translate the text file (UBBCONFIG) to a binary file
(TUXCONFIG). You are then ready to boot your application.

The following list identifies common command-line utilities that you can use to configure your
application:

e tmloadcf(1)—a command, run on the master machine, that allows you to compile your
application’s UBBCONFIG file into the binary TUXCONFIG file. The tmloadcf command
loads the binary file to the location defined by the TUXCONFIG environment variable.

e tmunloadcf(1)—a command, run on the master machine, that allows you to translate the
binary TUXCONFIG file back to a text version, so that the UBBCONFIG and TUXCONFIG files
can be synchronized. The tmunloadcf command prints the text version to standard output.

Introducing Oracle Tuxedo ATMI 4-9

Note: Dynamically updating the binary TUXCONFIG file does not update the text UBBCONFI1G
file.

e tpusradd(l), tpusrdel (1), tpusrmod(1)—a set of commands that allow you to create
and manage a user database for authorization purposes.

e tpgrpadd(l), tpgrpdel (1), tpgrpmod(1)—a set of commands that allow you to create
and manage user groups by using access control lists to authorize access to services,
queues, and events.

e tpacladd(l), tpaclcvt(1), tpacldel (1), and tpaclImod(1)—a set of commands that
allow you to create or manage access control lists for applications. These commands
enable the use of security-related authorization features.

Operating Your Application Using Command-Line Utilities

After you have configured your application successfully, you can use the following
command-line utilities to operate your application:

e tmboot(1)—a command, run on the master machine, that allows you to centrally start up
your application servers. The tmboot command reads the TUXCONFIG environment
variable to locate your application’s TUXCONFIG file. The tmboot command loads
TUXCONFIG into shared memory to establish the bulletin board, propagating the changes to
the remote server machines in a multiple-machine domain.

e tmadmin(1)—an interactive meta-command, typically run on the master machine, that
enables you to run subcommands to configure, monitor, and tune your application. You
can use the tmadmin command before your application is booted (in configuration mode)
or when your application is running.

e tmconfig(l)—another interactive meta-command, typically run on the master machine,
that enables you to run subcommands to configure, monitor, and tune your application.
You can use the tmconfig command only when your application is running. The
tmconfig command is more powerful but less user friendly than the tmadmin command.

e tmshutdown(1)—a command, run on the master machine, that allows you to centrally
shut down your application servers. The tmshutdown command reads the TUXCONFIG
environment variable to locate your application’s TUXCONFIG file.

4-10 Introducing Oracle Tuxedo ATMI

Managing Operations Using Command-Line Utilities

Administering Your Application Queues Using
Command-Line Utilities

You use the command-line utility gmadmin(1) to perform all administration functions for the
application queues in your application. Like the tmadmin and tmconfig commands, gmadmin is
an interactive meta-command that enables you to run many subcommands.

In an Oracle Tuxedo application, you can have multiple application queue devices, and you can
run application queues on multiple server machines. Each machine has its own queue device, so
you can run gmadmin to monitor and manage a particular application queue device on each server
machine.

Administering Your Domains Application Using
Command-Line Utilities

To build an Oracle Tuxedo Domains (multiple-domain) application, you integrate your existing
Oracle Tuxedo application with other domains. To do so, you must add a domain gateway group
of system servers (DMADM, GWADM, and GWTDOMAIN) to your UBBCONFIG file. These servers are
described in “Oracle Tuxedo Domains (Multiple-Domain) Servers” on page 3-14.

All Domains configuration information for an Oracle Tuxedo application involved in a Domains
configuration is stored in a file known as DMCONF1G. Similar to the UBBCONFIG file, the DMCONFI1G
file may have any name as long as the content of the file conforms to the format described on
reference page DMCONFIG(5) in Oracle Tuxedo File Formats, Data Descriptions, MIBs, and
System Processes Reference. You use a text editor to create and edit the DMCONFIG file, and then
use the command-line utility named dmloadcf to translate the text file (DMCONFIG) to a binary
file (BDMCONFIG). The BDMCONFIG file must reside on the machine that will run the DMADM server.

Note: The DMADM server may run on any machine (master machine, non-master machine) in an
Oracle Tuxedo domain.

The following list identifies the command-line utilities that you can use to configure and operate
the domain gateway group of system servers for an Oracle Tuxedo application involved in a
Domains configuration:

e dmloadcf(1)—a command, run on the same machine as the DMADM server, that allows you
to compile an application’s DMCONFIG file into the binary BDMCONFIG file. The dmloadcf
command loads the binary file to the location defined by the BDMCONF1G environment
variable.

Introducing Oracle Tuxedo ATMI 4-1

e dmunloadcf(1)—a command, run on the same machine as the DMADM server, that allows
you to translate the binary BDMCONFIG file back to a text version, so that the DMCONF1G and
BDMCONFIG files can be synchronized. The dmunloadcf command prints the text version
to standard output.

Note: Dynamically updating the binary BDMCONFIG file does not update the text DMCONF1G
file.

e dmadmin(1)—an interactive meta-command, typically run on the same machine as the
DMADM server, that enables you to run subcommands to configure, monitor, and tune
domain gateway groups. You can use the dmadmin command before your application is
booted (in configuration mode) or when your application is running.

See Also

e Oracle Tuxedo Command Reference.

e DMADM(5), DMCONFIG(5), GWADM(5), GWTDOMAIN(5), and UBBCONFIG(5)in Oracle
Tuxedo File Formats, Data Descriptions, MIBs, and System Processes Reference

e “Using Command-line Utilities to Monitor Your Application” in Administering an Oracle
Tuxedo Application at Run Time

e “Oracle Tuxedo Administration Processes” on page 3-5
e “Oracle Tuxedo Message Queuing Servers” on page 3-12

e “Oracle Tuxedo Domains (Multiple-Domain) Servers” on page 3-14

Managing Operations Using the MIB

4-12

The Oracle Tuxedo MIB is used to administer an Oracle Tuxedo application. It defines the parts
of an application that are required in every Oracle Tuxedo domain. MIB defines an Oracle
Tuxedo application as a set of classes (for example, servers, groups, machines, domains), each of
which is made up of objects that are characterized by various attributes (for example, identity and
state).

When an Oracle Tuxedo server machine becomes active, it advertises the names of its services in
the bulletin board (BB), which is the run-time (dynamic) representation of the MIB. (The bulletin
board is where global and local state changes to the MIB are posted.) The Oracle Tuxedo system
uses the binary TUXCONFIG file on the master machine to construct the bulletin board, and

propagates a copy of the TUXCONF G to the non-master machines in the application to set up the

Introducing Oracle Tuxedo ATMI

Managing Operations Using the MIB

bulletin board on those machines. A bulletin board runs on each server machine in an Oracle
Tuxedo application.

The following figure presents a high-level view of Oracle Tuxedo MIB operation.

Figure 4-3 High-Level View of Oracle Tuxedo MIB Operation

Oracle Tuxedo Domain

Machine 1
(Master Machine)

Machine 2

* TUXCONFIG File

Note:
DBBL and BBLs are not shown.

AdminAPI

The AdminAPI is an application programming interface for directly accessing and manipulating
system settings in the Oracle Tuxedo MIB. You can use the AdminAPI to automate
administrative tasks, such as monitoring log files and dynamically reconfiguring an application,
thus eliminating the need for human intervention. This advantage can be crucially important in
mission-critical, real-time applications. Using the MIB programming interface, you can manage
operations in the Oracle Tuxedo system easily. Specifically, you can monitor, configure, and tune
your application through your own programs. The MIB can be defined as:

Introducing Oracle Tuxedo ATMI 4-13

4-14

e An implementation-independent management database defined as a set of Field
Manipulation Language (FML) attributes.

e A programming interface that enables you to query the Oracle Tuxedo system (that is, to
obtain information from the system through a get operation) or to update the Oracle
Tuxedo system (that is, to change information in the system through a set operation) at
any time using a set of ATMI functions. Examples of these functions include tpalloc,
tprealloc, tpgetrply, tpcall, tpacall, tpenqueue, and tpdequeue.

Types of MIB Users

The MIB defines three types of users: system (or application) administrators, system operators,
and others. The following table describes each type.

Type of User Characteristics
System (or application) Person responsible for keeping an application running
administrator successfully. The administrator is authorized to use all

administrative tools and all MIB administrative capabilities.
The administrator configures, manages, and modifies a running
production application.

System operator Person responsible for monitoring and reacting to the daily
operation of a production application. An operator monitors
statistics about a running application, sometimes reacting to
events and alerts by taking actions such as booting servers or
shutting down machines. An operator does not reconfigure an
application, add servers or machines, or delete machines.

Other People or processes (such as custom programs) that may need
to read the MIB but are not authorized to change the
application.

Classes, Attributes, and States in the MIB

Classes are the types of entities such as servers and machines that make up an Oracle Tuxedo
application. Attributes are characteristics of the objects in a class: identity, state, configuration
parameters, run-time statistics, and so on. There are a number of attributes that are common to
MIB operations and replies and common to individual classes. Every class has a state attribute
that indicates the state of the object.

Introducing Oracle Tuxedo ATMI

Managing Events Using EventBroker

Independent of classes is a set of common attributes that are defined in the MI1B(5) reference
page. These attributes control the input operations, communicate to the MIB what the user is
trying to do, and/or identify to the programmer some of the characteristics of the output buffer
that are independent of a particular class.

See Also

e ACL_MIB(5), APPQ_MIB(5), DM_MIB(5), EVENT_MIB(5), MIB(5), TM_MIB(5), and
WS_MIB(5)in Oracle Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference

e Programming an Oracle Tuxedo Application Using FML

Managing Events Using EventBroker

An event is a state change or other occurrence in an application program or the Oracle Tuxedo
system that may be of interest to an administrator, an operator, or the software. Examples of
events are “a stock traded at or above a specified price” or “a network failure occurred.”

Oracle Tuxedo EventBroker provides asynchronous routing of application and system events
among the processes running in an Oracle Tuxedo ATMI application. Application events are
occurrences of application-defined events. System events are occurrences of system-defined

events.

Differences Between Application-Defined and
System-Defined Events

Application-defined events are defined by application designers and are therefore application
specific. Any of the events defined for an application may be tracked by the client and server
processes running in the application.

System-defined events are defined by the Oracle Tuxedo system code and are generally
associated with objects defined in TM_MIB(5). A complete list of system-defined events is
published on the EVENTS(5) reference page in Oracle Tuxedo File Formats, Data Descriptions,
MIBs, and System Processes Reference. Any of these events may be tracked by users of the
Oracle Tuxedo system.

Introducing Oracle Tuxedo ATMI 4-15

4-16

Preparing an Application for Event Monitoring

The following table presents the basic tasks for preparing an Oracle Tuxedo application for event
monitoring.

Task Description

1. Decide which eventsto Application programs are written to (a) detect when an event
monitor of interest has occurred and (b) post the event to the
EventBroker through tppost(3c).

Application designers decide which events should be
monitored. For system events, application designers select
system-defined events from the EVENTS(5) reference page.

2. Create an events list A list of the application event subscriptions is made available
to interested users, just as the Oracle Tuxedo system provides
a list of system events available to users with EVENTS(5).
System-defined event names begin with a dot (.);
application-defined event names may not begin with a dot (.)

To prepare an application-defined events list, application
designers should consult the EVENTS(5), TMUSREVT(5),
TMSYSEVT(5), and Field_tables(5) reference pages.

Subscribing to Events

As the administrator for your Oracle Tuxedo application, you can enter subscription requests on
behalf of a client or server process by making calls to tpsubscribe(3c) using the published list
of application-defined or system-defined events. EVENTS(5)lists the notification message
generated by a system event as well as the event name (used as an argument when tppost(3c)
is called). Subscribers can use the wildcard capability of regular expressions to make a single call
to tpsubscribe that covers a whole category of events.

Each subscription for a system-defined event specifies one of several notification methods. One
such method is placing messages in the ULOG: using the T_EVENT_USERLOG class of
EVENT_MIB, subscribers can write system USERLOG messages. When events are detected and
matched, they are written to the ULOG.

The EventBroker recognizes over 100 meaningful state transitions in a MIB object as system
events. The postings for system events include the current MIB representation of the object on
which the event has occurred.

Introducing Oracle Tuxedo ATMI

Managing Events Using EventBroker

See Also

e “Oracle Tuxedo Publish-and-Subscribe Servers” on page 3-13
e “About the EventBroker” in Administering an Oracle Tuxedo Application at Run Time
e “Subscribing to Events” in Administering an Oracle Tuxedo Application at Run Time

e tppost(3c), tpsubscribe(3c), and tpunsubscribe(3c)in Oracle Tuxedo ATMI C
Function Reference

e EVENTS(5), EVENT_MIB(5), TMSYSEVT(5), TMUSREVT(5), and UBBCONFIG(5) in Oracle
Tuxedo File Formats, Data Descriptions, MIBs, and System Processes Reference

e “Using Event-based Communication” in Tutorials for Developing Oracle Tuxedo ATMI
Applications

Introducing Oracle Tuxedo ATMI 4-11

4-18 Introducing Oracle Tuxedo ATMI

