CHAPTERa

Overview of the CORBA Security
Features

This topic includes the following sections:

e The CORBA Security Features
e The CORBA Security Environment

e Oracle Tuxedo Security SPIs

Notes: The Oracle Tuxedo product includes environments that allow you to build both
Application-to-Transaction Monitor Interfaces (ATMI) and CORBA applications. This
topic explains how to implement security in a CORBA application. For information
about implementing security in an ATMI application, see Using Security in ATMI
Applications.

The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Java client and Oracle Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

The CORBA Security Features

Security refers to techniques for ensuring that data stored in a computer or passed between
computers is not compromised. Most security measures involve proof material and data

Using Security in CORBA Applications 1-1

1-2

encryption, where the proof material is a secret word or phrase that gives a user access to a
particular program or system, and data encryption is the translation of data into a form that cannot
be interpreted.

Distributed applications such as those used for electronic commerce (e-commerce) offer many
access points for malicious people to intercept data, disrupt operations, or generate fraudulent
input; the more distributed a business becomes, the more vulnerable it is to attack. Thus, the
distributed computing software, or middleware, upon which such applications are built must
provide security.

The CORBA security features of the Oracle Tuxedo product lets you establish secure connections
between client and server applications. It has the following features:

e Authentication of CORBA C++ applications to the Oracle Tuxedo domain. Authentication
can be accomplished using a standard username/password combination or the identity
inside of the X.509 digital certificate provided to the server applications.

e Data integrity and confidentiality through Link-Level Encryption (LLE) or the Secure
Sockets Layer (SSL) protocol. CORBA C++ applications can establish SSL sessions with
an Oracle Tuxedo domain. Oracle Tuxedo client applications can use LLE or SSL to
protect network traffic between bridges and domains.

e Security Service Provider Interfaces (SPIs) that can be used to integrate security
mechanisms that provide authentication, authorization, auditing, and public key security
features. Security vendors can use the SPIs to integrate third-party security offerings into
the CORBA environment.

e A Public Key Infrastructure (PKI) that uses the SSL protocol and X.509 digital certificates
to provide data privacy for messages sent over network links. In addition, a set of PKI SPIs
are provided.

To access the full security features of the CORBA environment, you need to install a license that
enable the use of the SSL protocol, LLE, and PKI. For information about installing the license
for the security features, see the Installing the Oracle Tuxedo System.

Note: Using Security in CORBA Applications describes the security features of the CORBA
environment in the Oracle Tuxedo product. For a complete description of using the
security features in the ATMI environment in the Oracle Tuxedo product, see Using
Security in ATMI Applications.

Table 1-1 summarizes the features in the CORBA security features in the Oracle Tuxedo product.

Using Security in CORBA Applications

Table 1-1 CORBA Security Features

The CORBA Security Features

Security Features

Description

Service Provider
Interface (SPI)

Default Implementation

Authentication

Proves the stated identity of
users or system processes;
safely remembers and

transports identity information;
and makes identity information

available when needed.

Implemented as a
single interface

Provides security at three
levels: no authentication,

application password, and
certificate authentication.

Authorization

Controls access to resources
based on identity or other
information.

Implemented as a
single interface

N/A

Auditing

Safely collects, stores, and
distributes information about
operating requests and their
outcomes.

Implemented as a
single interface

Default auditing security is
implemented via the features
of the user log (ULOG).

Link-Level Encryption

Uses symmetric key encryption

to establish data privacy for
messages moving over the
network links that connect the
machines in a CORBA
application.

N/A

RC4 symmetric key
encryption.

Using Security in CORBA Applications 1-3

Tahle 1-1 CORBA Security Features (Continued)

Security Features

Description

Service Provider
Interface (SPI)

Default Implementation

The Secure Sockets
Layer (SSL) protocol

Uses asymmetric encryption to
establish data privacy for
messages moving over network
links between Oracle Tuxedo
domains.

N/A

The SSL version 3.0
protocol.

Public key security

Uses public key (or asymmetric
key) encryption to establish
data privacy for messages
moving over the network links
between remote client
applications and the 11OP
Listener/Handler. Complies
with SSL version 3.0 allowing
mutual authentication based on
X.509 digital certificates.

Implemented as the
following
interfaces:

Public key
initialization
Key
management
Certificate
lookup
Certificate
parsing
Certificate
validation
Proof material
mapping

Default public key security
supports the following
algorithms:

* RSA for key exchange.
e AESorDESandits

variants RC2 and RC4
for bulk encryption.

e MDS5 and SHA for
message digests.

The CORBA Security Environment

Direct end-to-end mutual authentication in a distributed enterprise middleware environment such
as the Oracle Tuxedo CORBA environment can be prohibitively expensive, especially when
accomplished through security mechanisms optimized for long duration connections. It is not
efficient for principals to establish direct network connections with each server application, nor
is it practical to exchange and verify multiple authentication messages as part of processing each
service request. Instead, CORBA applications in an Oracle Tuxedo product implements a
delegated trust authentication model as shown in Figure 1-1.

1-4 Using Security in CORBA Applications

The CORBA Security Environment

Figure 1-1 Delegated Trust Model

Server
Client P nopP |
Application - ListeneriHandler | CORBA
Object
Trusted
Server
Computing

Base

BEA Tuxedo Domain

In a delegated trust model, principals (generally users of client applications) authenticate to a
trusted system gateway process. In the case of the CORBA applications, the trusted system
gateway process is the I11OP Listener/Handler. As part of successful authentication, security
tokens are assigned to the initiating principal. A security token is an opaque data structure suitable
for transfer between processes.

When a request from an authenticated principal reaches the I1OP Listener/Handler, the 11OP
Listener/Handler attaches the principal’s security tokens to the request and delivers the request to
the target server application for authorization and auditing purposes.

In a delegated trust authentication model, the 11OP Listener/Handler trusts that the authentication
software in the Oracle Tuxedo domain will verify the identity of the principal and generates the
appropriate security tokens. Server applications, in turn, trust that the 11OP Listener/Handler will
attach the correct security tokens. Server applications also trust that any other server applications
involved in the process of a request from a principal will safely deliver the security tokens.

A session is established between the initiating client application and the I1IOP Listener/Handler
in the following way:

Using Security in CORBA Applications 1-5

. When a client application wants to access an object within an Oracle Tuxedo domain, the

client application uses either a username and password or a X.509 digital certificate to
authenticate over the connection with the I1OP Listener/Handler.

. Asecurity association called a security context is established between a principal and the I1OP

Listener/Handler. This security context is used to control access to objects in the Oracle
Tuxedo domain.

The IIOP Listener/Handler retrieves the authorization and auditing tokens from the security
context. Together, the authorization and auditing tokens represent the principal’s identity
associated with the security context.

. Once the authentication process is complete, the principal invokes an object in the Oracle

Tuxedo domain. The request is packaged into an I1OP request and forwarded to the 110P
Listener/Handler. The 11OP Listener/Handler associates the request with the previously
established security context.

. The 1IOP Listener/Handler receives the request from the initiating principal.

The protection of messages between the client application and the IIOP Listener/Handler is
dependent on the security technology used in the CORBA application. The default
behavior of the Oracle Tuxedo product is to encrypt the authentication information but not
to protect the message sent between the client application and the Oracle Tuxedo domain.
The message is sent in clear text. The SSL protocol can be used to protect the message. If
the SSL protocol is configured to protect messages for integrity and confidentiality, the
request is digitally signed and sealed (encrypted) before it is sent to the 11OP
Listener/Handler.

. The 1HOP Listener/Handler forwards the request along with the authorization and auditing

tokens of the initiating principal to the appropriate server application.

. When the request is received by the server application, the Oracle Tuxedo system interrogates

the forwarded tokens of the requesting principal to determine if the request should be
processed or denied. The CORBA security features will, based on the decision of the
authorization implementation, deny the processing of any request on an object for which the
requesting principal has no permission to access.

Oracle Tuxedo Security SPIs

1-6

As shown in Figure 1-2, the authentication, authorization, auditing, and public key security
features available with the Oracle Tuxedo product are implemented through a plug-in interface,
which allows security plug-ins to be integrated into the CORBA environment. A security plug-in
is a code module that implements a particular security feature.

Using Security in CORBA Applications

Oracle Tuxedo Security SPIs

Figure 1-2 Architecture for the Oracle Tuxedo Security Service Provider Interfaces

Authentication
Plug-In
I

Authaorization

. Plug-ns
Client 0P op

Application - - ListenerfHandler |
Auditing

Plug-ns

PKI
Plug-ns

¥

CORBA Object

Authorization

Authentication

Tuxedo Domain

The Oracle Tuxedo product provides interfaces for the types of security plug-ins listed in
Table 1-2.

Using Security in CORBA Applications 1-1

Table 1-2 The Oracle Tuxedo Security Plug-Ins

Plug-In Description

Authentication Allows communicating processes to mutually
prove identification.

Authorization Allows system administrators to control access to
CORBA applications. Specifically, an
administrator can use authorization to allow or
disallow principals to use resources or services
provided by a CORBA application.

Auditing Provides a means to collect, store, and distribute
information about operating requests and their
outcomes. Audit-trail records may be used to
determine which principals performed, or
attempted to perform, actions that violated the
configured security policies of a CORBA
application. They may also be used to determine
which operations were attempted, which ones
failed, and which ones successfully completed.

Public key initialization Allows public key software to open public and
private keys. For example, gateway processes may
need to have access to a specific private key in
order to decrypt messages before routing them.

Key management Allows public key software to manage and use
public and private keys. Note that message digests
and session keys are encrypted and decrypted
using this interface, but no bulk data encryption is
performed using public key cryptography. Bulk
data encryption is performed using symmetric key

cryptography.

Certificate lookup Allows public key software to retrieve X.509v3
digital certificates for a given principal. Digital
certificates may be stored using any appropriate
certificate repository, such as Lightweight
Directory Access Protocol (LDAP).

1-8 Using Security in CORBA Applications

Oracle Tuxedo Security SPIs

Table 1-2 The Oracle Tuxedo Security Plug-Ins (Continued)

Plug-In

Description

Certificate parsing

Allows public key software to associate a simple
principal name with an X.509v3 digital certificate.
The parser analyzes a digital certificate to generate
a principal name to be associated with the digital
certificate.

Certificate validation

Allows public key software to validate an X.509v3
digital certificate in accordance with specific
business logic.

Proof material mapping

Allows public key software to access the proof
materials needed to open keys, provide
authorization tokens, and provide auditing tokens.

The specifications for the SPIs are currently only available to third-party security vendors who
have entered into a special agreement with Oracle Systems, Inc. Customers who want to
customize a security feature must contact one of these vendors or Oracle Professional Services.
For example, an Oracle customer who wants a custom implementation of public key security
must contact a third-party vendor who can provide the appropriate security plug-in or Oracle

Professional Services.

For more information about security plug-ins, including installation and configuration
procedures, see your Oracle account executive.

Using Security in CORBA Applications 1-9

1-10 Using Security in CORBA Applications

CHAPTERa

Introduction to the SSL Technology

This topic includes the following sections:

e The SSL Protocol

Digital Certificates

Certificate Authority

Certificate Repositories

A Public Key Infrastructure

PKCS-5 and PKCS-8 Compliance

Supported Public Key Algorithms

Supported Symmetric Key Algorithms
e Supported Message Digest Algorithms
e Supported Cipher Suites

e Standards for Digital Certificates

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Java client and Oracle Tuxedo CORBA Java client ORB text references, associated code

Using Security in CORBA Applications 2-1

samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

The SSL Protocol

2-2

The Secure Sockets Layer (SSL) protocol allows you to integrate these essential features into
your CORBA application:

e Confidentiality

Confidentiality is the ability to keep communications secret from parties other than the
intended recipient. It is achieved by encrypting data with strong algorithms. The SSL
protocol provides a secure mechanism that enables two communicating parties to negotiate
the strongest algorithm they both support and to agree on the keys with which to encrypt
the data.

e Integrity

Integrity is a guarantee that the data being transferred has not been modified in transit. The
same handshake mechanism which allows the two parties to agree on algorithms and keys
also allows the two ends of an SSL connection to establish shared data integrity secrets
which are used to ensure that when data is received any modifications will be detected.

e Authentication

Authentication is the ability to ascertain with whom you are speaking. By using digital
certificates and public key security, CORBA client and server applications can each be
authenticated to the other. This allows the two parties to be certain they are communicating
with someone they trust. The SSL protocol provides a mechanism that can be used to
authenticate principals to an Oracle Tuxedo domain using X.509 digital certificates. The
use of certificate authentication can be used as an alternative to password authentication.

The SSL protocol provides secure connections by allowing two applications connecting over a
network connection to authenticate the other’s identity and by encrypting the data exchanged
between the applications. When using the SSL protocol, the target always authenticates itself to
the initiator. Optionally, if the target requests it, the initiator can authenticate itself to the target.
Encryption makes data transmitted over the network intelligible only to the intended recipient.
An SSL connection begins with a handshake during which the applications exchange digital

Using Security in CORBA Applications

The SSL Protocol

certificates, agree on the encryption algorithms to use, and generate encryption keys used for the
remainder of the session.

The SSL protocol uses public key encryption for authentication. With public key encryption, a
pair of asymmetric keys are generated for a principal or other entity such as the 110P
Listener/Handler or an application server. The keys are related such that the data encrypted with
the public key can only be decrypted using the corresponding private key. Conversely, data
encrypted with the private key can be decrypted only with the public key. The private key is
carefully protected so that only the owner can decrypt messages. The public key, however, is
distributed freely so that anyone can encrypt messages intended for the owner.

Figure 2-1 illustrates how the SSL protocol works in the CORBA security environment.

Using Security in CORBA Applications 2-3

2-4

Figure 2-1 The SSL Protocol in the CORBA Security Environment

Authentication
Plug-In

file
7 / |
Authorization
oP Plug-lns

Trusted CA
file Trusted CA
CORBA
CI.'ent. ol ListenerfHandler
Application
e —
/v \\\ Peer Validation
Rule file
Peer Validation Private Key

Rule file

Private Key
file |
PKI

file

Using Security in CORBA Applications

Auditing
Plug-Ins

Plug-Ins

;

CORBA Object

Authentication

Authorization

BEA Tuxedo Domain

When using the SSL protocol in the CORBA security environment, the 11OP Listener/Handler
authenticates itself to initiating principals. The IIOP Listener/Handler presents its digital
certificate to the initiating principal. To successfully negotiate a SSL connection, the client
application must then authenticate the I11OP Listener/Handler but the I1OP Listener/Handler will
accept any client application into the SSL connection. This type of authentication is referred to
as server authentication.

When using server authentication, the initiating client application is required to have digital
certificates for certificate authorities that are to be trusted. The IIOP Listener/Handler must have

Digital Certificates

a private key and digital certificates that represents its identity. Server authentication is common
on the Internet where customers want to create secure connections before they share personal
data. In this case, the client application has a similar role to that of a Web browser.

With SSL version 3.0, principals can also authenticate to the IIOP Listener/Handler. This type of
authentication is referred to as mutual authentication. In mutual authentication, principals present
their digital certificates to the 11OP Listener/Handler. When using mutual authentication, both the
I1OP Listener/Handler and the principal need private keys and digital certificates that represent
their identity. This type of authentication is useful when you must restrict access to trusted
principals only.

The SSL protocol and the infrastructure needed to use digital certificates is available in the Oracle
Tuxedo product.

Digital Certificates

Digital certificates are electronic documents used to uniquely identify principals and entities over
networks such as the Internet. A digital certificate securely binds the identity of a principal or
entity, as verified by a trusted third party known as a certificate authority (CA), to a particular
public key. The combination of the public key and the private key provides a unique identity to
the owner of the digital certificate.

Digital certificates allow verification of the claim that a specific public key does in fact belong to
a specific principal or entity. A recipient of a digital certificate can use the public key contained
in the digital certificate to verify that a digital signature was created with the corresponding
private key. If such verification is successful, this chain of reasoning provides assurance that the
corresponding private key is held by the subject named in the digital certificate, and that the
digital signature was created by that particular subject.

A digital certificate typically includes a variety of information, such as:

e The name of the subject (holder, owner) and other identification information required to
uniquely identify the subject, such as the URL of the Web server using the digital
certificate, or an individual’s e-mail address.

e The subject’s public key.
e The name of the certificate authority that issued the digital certificate.
e A serial number.

e The validity period (or lifetime) of the digital certificate (defined by a start date and an end
date).

Using Security in CORBA Applications 2-5

The most widely accepted format for digital certificates is defined by the ITU-T X.509
international standard. Thus, digital certificates can be read or written by any application
complying with X.509. The PKI in the CORBA security environment recognizes digital
certificates that comply with X.509 version 3, or X.509v3.

Certificate Authority

Digital certificates are issued by a certificate authority. Any trusted third-party organization or
company that is willing to vouch for the identities of those to whom it issues digital certificates
and public keys can be a certificate authority. When a certificate authority creates a digital
certificate, the certificate authority signs it with its private key, to ensure the detection of
tampering. The certificate authority then returns the signed digital certificate to the requesting
subject.

The subject can verify the digital signature of the issuing certificate authority by using the public
key of the certificate authority. The certificate authority makes its public key available by
providing a digital certificate issued from a higher-level certificate authority attesting to the
validity of the public key of the lower-level certificate authority. The second solution gives rise
to hierarchies of certificate authorities. This hierarchy is terminated by a self-signed digital
certificate known as the root key.

The recipient of an encrypted message can develop trust in the private key of a certificate
authority recursively, if the recipient has a digital certificate containing the public key of the
certificate authority signed by a superior certificate authority whom the recipient already trusts.
In this sense, a digital certificate is a stepping stone in digital trust. Ultimately, it is necessary to
trust only the public keys of a small number of top-level certificate authorities. Through a chain
of digital certificates, trust in a large number of users’ digital signatures can be established.

Thus, digital signatures establish the identities of communicating entities, but a digital signature
can be trusted only to the extent that the public key for verifying the digital signature can be
trusted.

Certificate Repositories

2-6

To make a public key and its identification with a specific subject readily available for use in
verification, the digital certificate may be published in a repository or made available by other
means. Certificate repositories are databases of digital certificates and other information
available for retrieval and use in verifying digital signatures. Retrieval can be accomplished
automatically by directly requesting digital certificates from the repository as needed.

Using Security in CORBA Applications

A Public Key Infrastructure

In the CORBA security environment, Lightweight Directory Access Protocol (LDAP) is used as
a certificate repository. Oracle Systems, Inc. does not provide or recommend any specific LDAP
server. The LDAP server you choose should support the X.500 scheme definition and the LDAP
version 2 or 3 protocol.

A Public Key Infrastructure

A Public Key Infrastructure (PKI) consists of protocols, services, and standards supporting
applications of public key cryptography. Because the technology is still relatively new, the term
PKI is somewhat loosely defined: sometimes PKI simply refers to a trust hierarchy based on
public key digital certificates; in other contexts, it embraces digital signature and encryption
services provided to end-user applications as well.

There is no single standard public key infrastructure today, though efforts are underway to define
one. It is not yet clear whether a standard will be established or multiple independent PKIs will
evolve with varying degrees of interoperability. In this sense, the state of PKI technology today
can be viewed as similar to local and wide area (WAN) network technology in the 1980s, before
there was widespread connectivity via the Internet.

The following services are likely to be found in a PKI:
e Key registration for issuing a new digital certificate for a public key.
e Certificate revocation for canceling a previously-issued digital certificate and private key.
e Key selection for obtaining a party’s public key.

e Trust evaluation for determining whether a digital certificate is valid and which operations
it authorizes.

Figure 2-2 shows the PKI process flow.

Figure 2-2 PKI Process Flow

Certificate 3 . .
Authority 2/ > epository
Subject @ > Recipient

Using Security in CORBA Applications 2-1

1. The subject applies to a certificate authority for digital certificate.
2. The certificate authority verifies the identity of subject and issues a digital certificate.

3. The certificate authority or the subject publishes the digital certificate in a certificate
repository such as LDAP.

4. The subject digitally signs an electronic message with the associated private key to ensure
sender authenticity, message integrity, and nonrepudiation, and then sends message to
recipient.

5. The recipient retrieves the sender’s certificate from the certificate repository and then
retrieves the public key from the certificate.

The Oracle Tuxedo product does not provide the tools necessary to be a certificate authority.
Oracle Systems, Inc. recommends using a third-party certificate authority such as VeriSign or
Entrust. By offering a Public Key SPI, Oracle Systems, Inc. extends the opportunity to all Oracle
Tuxedo customers to use a PKI security solution with the PKI software from their vendor of
choice. See “PKI Plug-ins” on page 3-22 for more information.

PKCS-5 and PKCS-8 Compliance

Informal but recognized industry standards for public key software have been issued by a group
of leading communications companies, led by RSA Laboratories. These standards are called
“Public-Key Cryptography Standards,” or PKCS. The Oracle Tuxedo product uses PKCS-5 and
PKCS-8 to protect the private keys used with the SSL protocol.

e PKCS-5 is a specification of a format for using password-based encryption that uses DES
to protect data.

e PKCS-8 is a specification of a format for storing private keys, including the ability to
encrypt them with PKCS-5.

Supported Public Key Algorithms

Public key (or asymmetric key) algorithms are implemented through a pair of different but
mathematically related keys:

e A public key (which is distributed widely) for verifying a digital signature or transforming
data into a seemingly unintelligible form.

e A private key (which is always kept secret) for creating a digital signature or returning the
data to its original form.

2-8 Using Security in CORBA Applications

Supported Symmetric Key Algorithms

The public key security in the CORBA security environment also supports digital signature
algorithms. Digital signature algorithms are simply public key algorithms used to provide digital
signatures.

The Oracle Tuxedo product supports the Rivest, Shamir, and Adelman (RSA) algorithm, the
Diffie-Hellman algorithm, and Digital Signature Algorithm (DSA). With the exception of DSA,
digital signature algorithms can be used for digital signatures and encryption. DSA can be used
for digital signatures but not for encryption.

Supported Symmetric Key Algorithms

In symmetric key algorithms, the same key is used to encrypt and decrypt a message. The public
key encryption system uses symmetric key encryption to encrypt a message sent between two
communicating entities. Symmetric key encryption operates at least 1000 times faster than public

key cryptography.

A block cipher is a type of symmetric key algorithm that transforms a fixed-length block of
plaintext (unencrypted text) data into a block of ciphertext (encrypted text) data of the same
length. This transformation takes place in accordance with the value of a randomly generated
session key. The fixed length is called the block size.

The Public key security feature in the CORBA security environment supports the following
symmetric key algorithms:

e DES-CBC (Data Encryption Standard for Cipher Block Chaining)

DES-CBC is a 64-bit block cipher run in Cipher Block Chaining (CBC) mode. It provides
56-bit keys (8 parity bits are stripped from the full 64-bit key).

e Two-key triple-DES (Data Encryption Standard)

Two-key triple-DES is a 128-bit block cipher run in Encrypt-Decrypt-Encrypt (EDE)
mode. Two-key triple-DES provides two 56-bit keys (in effect, a 112-bit key).

For some time it has been common practice to protect and transport a key for DES
encryption with triple-DES, which means that the input data (in this case the single-DES
key) is encrypted, decrypted, and then encrypted again (an encrypt-decrypt-encrypt
process). The same key is used for the two encryption operations.

e RC2 (Rivest’s Cipher 2)
RC2 is a variable key-size block cipher.
— RC4 (Rivest’s Cipher 4)

Using Security in CORBA Applications 2-9

RC4 is a variable key-size block cipher with a key size range of 40 to 128 bits. It is faster
than DES and is exportable with a key size of 40 bits. A 56-bit key size is allowed for
foreign subsidiaries and overseas offices of United States companies. In the United States,
RC4 can be used with keys of virtually unlimited length, although the public key security
in the CORBA security environment restricts the key length to 128 bits.

e AES-256-CBC (Advanced Encryption Standard for Cipher Block Chaining)

AES-256-CBC is a 128-bit block cipher run in Cipher Block Chaining (CBC) mode. It
provides 256-bits keys

Customers of the Oracle Tuxedo product cannot expand or modify this list of algorithms.

Supported Message Digest Algorithms

The CORBA security environment supports the MD5 and SHA-1 (Secure Hash Algorithm 1)
message digest algorithms. Both MD5 and SHA-1 are well known, one-way hash algorithms. A
one-way hash algorithm takes a message and converts it into a fixed string of digits, which is
referred to as a message digest or hash value.

MDS5 is a high-speed, 128-bit hash; it is intended for use with 32-bit machines. SHA-1 offers
more security by using a 160-bit hash, but is slower than MD5.

Supported Cipher Suites

2-10

A cipher suite is a SSL encryption method that includes the key exchange algorithm, the
symmetric encryption algorithm, and the secure hash algorithm used to protect the integrity of
the communication. For example, the cipher suite RSA_ WITH_RC4_128_MD5 uses RSA for key
exchange, RC4 with a 128-bit key for bulk encryption, and MD5 for message digest.

The CORBA security environment supports the cipher suites described in Table 2-1.

Table 2-1 SSL Cipher Suites Supported by the CORBA Security Environment

Cipher Suite Key Symmetric
Exchange Key
Type Strength
SSL_RSA_WITH_RC4_ 128 SHA RSA 128
SSL_RSA_WITH_RC4_ 128 MD5 RSA 128

Using Security in CORBA Applications

Table 2-1 SSL Cipher Suites Supported by the CORBA Security Environment

Standards for Digital Certificates

Cipher Suite Key Symmetric
Exchange Key
Type Strength
SSL_RSA_WITH_DES_CDC_SHA RSA 56
SSL_RSA_EXPORT_WITH_RC4_40_MD5 RSA 40
SSL_RSA_EXPORT WITH_DES40 CBC_SHA RSA 40
SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 RSA 40
SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA Diffie- 40
Hellman
SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA Diffie- 40
Hellman
SSL_RSA WITH_3DES_EDE_CBC_SHA RSA 112
SSL_RSA_WITH_NULL_SHA RSA 0
SSL_RSA WITH_NULL_MD5 RSA 0

Standards for Digital Certificates

The CORBA security environment supports the digital certificates that conform to the X.509v3
standard. The X.509v3 standard specifies the format of digital certificates. Oracle recommends
obtaining certificates from a certificate authority such as Verisign or Entrust.

Using Security in CORBA Applications 2-11

2-12 Using Security in CORBA Applications

CHAPTERa

Fundamentals of CORBA Security

This topic includes the following sections:
e Link-Level Encryption
e Password Authentication

The SSL Protocol

Certificate Authentication

Using an Authentication Plug-in

e Authorization

e Auditing

e PKI Plug-ins

e Commonly Asked Questions About the CORBA Security Features

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Java client and Oracle Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Using Security in CORBA Applications 3-1

Link-Level Encryption

3-2

Link-Level Encryption (LLE) establishes data privacy for messages moving over the network
links. The objective of LLE is to ensure confidentiality so that a network-based eavesdropper
cannot learn the content of Oracle Tuxedo system messages or CORBA application-generated
messages. It employs the symmetric key encryption technique (specifically, RC4), which uses the
same key for encryption and decryption.

When LLE is being used, the Oracle Tuxedo system encrypts data before sending it over a
network link and decrypts it as it comes off the link. The system repeats this
encryption/decryption process at every link through which the data passes. For this reason, LLE
is referred to as a point-to-point facility.

LLE can be used to encrypt communication between machines and/or domains in a CORBA
application..

Note: LLE cannot be used to protect connections between remote CORBA client applications
and the I1OP Listener/Handler.

There are three levels of LLE security: 0-bit (no encryption), 56-bit (Export), and 128-bit
(Domestic). The Export LLE version allows 0-bit and 56-bit encryption. The Domestic LLE
version allows 0, 56, and 128-bit encryption.

How LLE Works

LLE works in the following way:

1. The system administrator sets parameters for any processes that want to use LLE to control
the encryption strength.

— The first configuration parameter is the minimum encryption level that a process will
accept. It is expressed as a key length: 0, 56, or 128 bits.

— The second configuration parameter is the maximum encryption level a process can
support. It also is expressed as a key length: 0, 56, or 128 bits.

For convenience, the two parameters are denoted as (min, max). For example, the values
(56, 128) for a process mean that the process accepts at least 56-bit encryption but can
support up to 128-bit encryption.

2. An initiator process begins the communication session.

3. A target process receives the initial connection and starts to negotiate the encryption level to
be used by the two processes to communicate.

Using Security in CORBA Applications

Link-Level Encryption

4. The two processes agree on the largest common key size supported by both.

5. The configured maximum key size parameter is reduced to agree with the installed software's
capabilities. This step must be done at link negotiation time, because at configuration time it
may not be possible to verify a particular machine's installed encryption package.

6. The processes exchange messages using the negotiated encryption level.
Figure 3-1 illustrates these steps.

Figure 3-1 How LLE Works

BEA Tuxedo Domain
Machine 1)
Initiating Process 1 [Machine 2
Target Process
UBBCONFIG File N] _
MINENCEYFTEITS 40 40, 1z UBBCONFIG File
MAXENCRYETEITS 1z& Bit MINENCRYPTEITS 40
Encryptien MAXENCRYPTEITS 128

Encryption Key Size Negotiation

When two processes at the opposite ends of a network link need to communicate, they must first
agree on the size of the key to be used for encryption. This agreement is resolved through a
two-step process of negotiation.

1. Each process identifies its own min-max values.
2. Together, the two processes find the largest key size supported by both.

Determining min-max Values

When either of the two processes starts up, the Oracle Tuxedo system (1) checks the
bit-encryption capability of the installed LLE version by checking the LLE licensing information

Using Security in CORBA Applications 3-3

in the lic. txt file and (2) checks the LLE min-max values for the particular link type as
specified in the two configuration files. The Oracle Tuxedo system then proceeds as follows:

e |f the configured min-max values accommodate the installed LLE version, then the local
software assigns those values as the min-max values for the process.

o If the configured min-max values do not accommodate the installed LLE version, for
example, if the Export LLE version is installed but the configured min-max values are (0,
128), then the local software issues a run-time error; link-level encryption is not possible at
this point.

o |f there are no min-max values specified in the configurations for a particular link type,
then the local software assigns 0 as the minimum value and assigns the highest
bit-encryption rate possible for the installed LLE versions as the maximum value, that is,
(0, 128) for the Domestic LLE version.

Finding a Common Key Size

After the min-max values are determined for the two processes, the negotiation of key size begins.
The negotiation process need not be encrypted or hidden. Once a key size is agreed upon, it
remains in effect for the lifetime of the network connection.

Table 3-1 shows which key size, if any, is agreed upon by two processes when all possible
combinations of min-max values are negotiated. The header row holds the min-max values for one
process; the far left column holds the min-max values for the other.

Table 3-1 Interprocess Negotiation Results

(0,0 (0, 56) (0,128) (56, 56) (56, 128) (128, 128)
(0,0) 0 0 0 ERROR ERROR ERROR
(0, 56) 0 56 56 56 56 ERROR
(0, 128) 0 56 128 56 128 128
(56, 56) ERROR 56 56 56 56 ERROR
(96, 128) ERROR 56 128 56 128 128
(128, 128) ERROR ERROR 128 ERROR 128 128

34 Using Security in CORBA Applications

Password Authentication

WSL/WSH Connection Timeout During Initialization

The length of time a Workstation client can take for initialization is limited. By default, this
interval is 30 seconds in an application not using LLE, and 60 seconds in an application using
LLE. The 60-second interval includes the time needed to negotiate an encrypted link. This time
limit can be changed when LLE is configured by changing the value of the MAXINITTIME
parameter for the Workstation Listener (WSL) server in the UBBCONFIG file, or the value of the
TA_MAXINITTIME attribute in the T_WSL class of the wS_MIB(5).

Development Process

To use LLE in a CORBA application, you need to install a license that enables the use of LLE.
For information about installing the license, see Installing the Oracle Tuxedo System.

The implementation of LLE is an administrative task. The system administrators for each
CORBA application set min-max values in the UBBCONFIG file that control encryption strength.
When the two CORBA applications establish communication, they negotiate what level of
encryption to use to exchange messages. Once an encryption level is negotiated, it remains in
effect for the lifetime of the network connection.

Password Authentication

The CORBA security environment supports a password mechanism to provide authentication to
existing CORBA applications and to new CORBA applications that are not prepared to deploy a
full Public Key Infrastructure (PKI). When using password authentication, the applications that
initiate invocations on CORBA objects authenticate themselves to the Oracle Tuxedo domain
using a defined username and password.

The following levels of password authentication are provided:

e None—indicates that no password or access checking is performed in the CORBA
application.

e Application Password—indicates that users are required to supply a domain password in
order to access the CORBA application.

e User Authentication—indicates that users are required to supply an application password as
well as the domain password in order to access the CORBA application.

e ACL—indicates that authorization is used in the CORBA application and access control
checks are performed on interfaces, queue names, and event names. If an associated ALC
is not found for a user, it is assumed that access is granted.

Using Security in CORBA Applications 3-5

e Mandatory ACL—indicates that authorization is used in the CORBA application and
access control checks are performed on interfaces, queue names, and event names. The
value of Mandatory ACL is similar to ACL, but permission is denied if an associated ACL
is not found for the user.

When using Password authentication, you have the option of using the

Tobj : :PrincipalAuthenticator:: logon() or the

SecuritylLevel2: :PrincipalAuthenticator: :authenticate() methods in your client
application.

If you use password authentication, the SSL protocol can be used to provide confidentiality and
integrity to communication between applications. For more information, see “The SSL Protocol”
on page 3-9.

How Password Authentication Works

Password authentication works in the following way:

1. The initiating application accesses the Oracle Tuxedo domain in one of the following ways:

— Through the CORBA Interoperable Naming Service (INS) Bootstrapping mechanism.
Use this mechanism if you are using a client ORB from another vendor. For more
information about using CORBA INS, see the CORBA Programming Reference in the
Oracle Tuxedo online documentation

— The Oracle Bootstrapping mechanism. Use this mechanism if you are using Oracle
CORBA client applications.

2. The initiating application obtains credentials for the user. The initiating application must
provide proof material to be used by the Oracle Tuxedo domain to authenticate the user. This
proof material consists of the name of the user and a password.

— The initiating application creates the security context using a
PrincipalAuthenticator object. The request for authentication is sent to the 11OP
Listener/Handler. The proof material in the authentication request is securely relayed to
the authentication server, which verifies the supplied information.

— If the verification succeeds, the Oracle Tuxedo system constructs a Credentials
object that is used by all future invocations. The Credentials object for the user is
associated with the Current object that represents the security context.

3. The initiating application invokes a CORBA object in the Oracle Tuxedo domain using an
object reference. The request is packaged into an I1OP request and is forwarded to the 11OP
Listener/Handler that associates the request with the previously established security context.

Using Security in CORBA Applications

Password Authentication

4. The IIOP Listener/Handler receives the request from the initiating application.

5. The IIOP Listener/Handler forwards the request, along with the credentials of the initiating
application, to the appropriate CORBA object.

Figure 3-2 illustrates these steps.

Figure 3-2 How Password Authentication Works

‘ Browse Courses |

CORBA Cs+ Client ‘ Get Course Details |

Application

University
Senver Application

L 4

|Lugun‘ ‘ Get Student Details | :

University
Databhase

I:I Security Required

Development Process for Password Authentication

Defining password authentication for a CORBA application includes administration and
programming steps. Table 3-2 and Table 3-3 list the administration and programming steps for
password authentication. For a detailed description of the administration steps for password
authentication, see “Configuring Authentication” on page 7-1. For a complete description of the
programming steps, see “Writing a CORBA Application That Implements Security” on page 9-1.

Using Security in CORBA Applications 3-7

3-8

Table 3-2 Administration Steps for Password Authentication

Step Description

1 Set the SECURITY parameter in the UBBCONFIG file to APP_PW, USER_AUTH,
ACL, or MANDATORY_ACL.

2 If you defined the SECURITY parameter as USER_AUTH, ACL, or
MANDATORY_ACL, configure the authentication server (AUTHSRYV) in the
UBBCONFIG file.

3 Use the tpusradd and tpgrpadd commands to define lists of authorized users
and groups including the 11OP Listener/Handler.

4 Use the tmloadcf command to load the UBBCONF G file. When the UBBCONFIG

file is loaded, the system administrator is prompted for a password. The password
entered at this time becomes the password for the CORBA application.

Table 3-3 Programming Steps for Password Authentication

Step Description

1 Write application code that uses the Bootstrap object to obtain a reference to the
SecurityCurrent object or CORBA INS to obtain a reference to a
Principal Authenticator object in the Oracle Tuxedo domain.

2 Write application code that obtains the Principal Authenticator object from the
SecurityCurrent object.

3 Write application code that uses the
Tobj: :PrincipalAuthenticator::logon() or
SecuritylLevel2: :PrincipalAuthenticator: :authenticate()
operation to establish a security context with the Oracle Tuxedo domain.

4 Write application code that prompts the user for the password defined when the

UBBCONFIG file is loaded.

Using Security in CORBA Applications

The SSL Protocol

The SSL Protocol

The Oracle Tuxedo product provides the industry-standard SSL protocol to establish secure
communications between client and server applications. When using the SSL protocol, principals
use digital certificates to prove their identity to a peer.

The default behavior of the SSL protocol in the CORBA security environment is to have the 11OP
Listener/Handler prove its identity to the principal who initiated the SSL connection using digital
certificates. The digital certificates are verified to ensure that each of the digital certificates has
not been tampered with or expired. If there is a problem with any of the digital certificates in the
chain, the SSL connection is terminated. In addition, the issuer of a digital certificate is compared
against a list of trusted certificate authorities to verify the digital certificate received from the
I1OP Listener/Handler has been signed by a certificate authority that is trusted by the Oracle
Tuxedo domain.

Like LLE, the SSL protocol can be used with password authentication to provide confidentiality
and integrity to communication between the client application and the Oracle Tuxedo domain.
When using the SSL protocol with password authentication, you are prompted for the password
of the I1OP Listener/Handler defined by the SEC_PRINCIPAL_NAME parameter when you enter
the tmloadcf command.

How the SSL Protocol Works

The SSL protocol works in the following manner:
1. The IIOP Listener/Handler presents its digital certificate to the initiating application.

2. Theinitiating application compares the digital certificate of the 11OP Listener/Handler against
its list of trusted certificate authorities.

3. Ifthe initiating application validates the digital certificate of the IIOP Listener/Handler, the
application and the 11OP Listener/Handler establish an SSL connection.

The initiating application can then use either password or certificate authentication to
authenticate itself to the Oracle Tuxedo domain.

Figure 3-3 illustrates how the SSL protocol works.

Figure 3-3 How the SSL Protocol Works in a CORBA Application

Using Security in CORBA Applications 3-9

3-10

SSEL Protocol

CORBA Client lIoP
Application Certificate for Listeners
nop Handler

Listener/Handler

Requirements for Using the SSL Protocol

To use the SSL protocol in a CORBA application, you need to install a license that enables the
use of the SSL protocol and PKI. For information about installing the license for the security
features, see Installing the Oracle Tuxedo System.

The implementation of the SSL protocol is flexible enough to fit into most public key
infrastructures. The Oracle Tuxedo product requires that digital certificates are stored in an
LDAP-enabled directory. You can choose any LDAP-enabled directory service. You also need
to choose the certificate authority from which to obtain digital certificates and private keys used
in a CORBA application. You must have an LDAP-enabled directory service and a certificate
authority in place before using the SSL protocol in a CORBA application.

Development Process for the SSL Protocol

Using the SSL protocol in a CORBA application is primarily an administration process.
Table 3-5 lists the administration steps required to set up the infrastructure required to use the
SSL protocol and configure the I1OP Listener/Handler for the SSL protocol. For a detailed
description of the administration steps, see “Managing Public Key Security” on page 4-1 and
“Configuring the SSL Protocol” on page 6-1.

Once the administration steps are complete, you can use either password authentication or
certificate authentication in your CORBA application. For more information, see “Writing a
CORBA Application That Implements Security” on page 9-1.

Using Security in CORBA Applications

Note:

The SSL Protocol

If you are using the Oracle CORBA C++ ORB as a server application, the ORB can also
be configured to use the SSL protocol. For more information, see “Configuring the SSL
Protocol” on page 6-1.

Table 3-4 Administration Steps for the SSL Protocol

Step Description

1 Set up an LDAP-enabled directory service. You will be prompted for the name of
the LDAP server during the installation of the Oracle Tuxedo product.

2 Install the license for the SSL protocol.

3 Obtain a digital certificate and private key for the 11OP Listener/Handler from a
certificate authority.

4 Publish the digital certificates for the IIOP Listener/Handler and the certificate
authority in the LDAP-enabled directory service.

5 Define the SEC_PRINCIPAL_NAME, SEC_PRINCIPAL_LOCATION, and
SEC_PRINCIPAL_PASSVAR parameters for the ISL server process in the
UBBCONFIG file.

6 Set the SECURITY parameter in the UBBCONFIG file to NONE.

7 Define a port for secure communication on the I1OP Listener/Handler using the -S
option of the ISL command.

8 Create a Trusted Certificate Authority file (trust_ca. cer) that defines the
certificate authorities trusted by the 11OP Listener/Handler.

9 Use the tmloadcf command to load the UBBCONFIG file.

10 Optionally, create a Peer Rules file (peer_val . rul) for the IIOP
Listener/Handler.

11 Optionally, modify the LDAP Search filter file to reflect the directory hierarchy in

place in your enterprise.

If you use the SSL protocol with password authentication, you need to set the SECURITY
parameter in the UBBCONFIG file to desired level of authentication and if appropriate, configure

Using Security in CORBA Applications 3-11

the Authentication Server (AUTHSRV). For information about the administration steps for
password authentication, see “Password Authentication” on page 3-5.

Figure 3-4 illustrates the configuration of a CORBA application that uses the SSL protocol.

Figure 3-4 Configuration for Using the SSL Protocol in a CORBA Application

Nor
ListeneriHandler

CORBA Client
Application ISL —= -a
SEC_PRINCIFAL_HAME
SEC_PRINCIPAL_LOCATION
SEC_PRINCIFAL PASSVAR

Y

trust_ca. cer

LDAP
Directory Service

Private Key for
orP
ListeneriHandler

Certificate for IOP
Listener/Handler

Certificates for
Certificate
Authorities

Certificate Authentication

Certificate authentication requires that each side of an SSL connection proves its identity to the
other side of the connection. In the CORBA security environment, the 11OP Listener/Handler
presents its digital certificate to the principal who initiated the SSL connection. The initiator then
provides a chain of digital certificates that are used by the 11OP Listener/Handler to verify the
identity of the initiator.

3-12 Using Security in CORBA Applications

Certificate Authentication

Once a chain of digital certificates is successfully verified, the IIOP Listener/Handler retrieves
the value of the distinguished name from the subject of the digital certificate. The CORBA
security environment uses the e-mail address element of the subject’s distinguished name as the
identity of the principal. The IIOP Listener/Handler uses the identity of the principal to
impersonate the principal and establish a security context between the initiating application and
the Oracle Tuxedo domain.

Once the principal has been authenticated, the principal that initiated the request and the 11OP
Listener/Handler agree on a cipher suite that represents the type and strength of encryption that
they both support. They also agree on the encryption key and synchronize to start encrypting all
subsequent messages.

Figure 3-5 provides a conceptual overview of the certificate authentication.

Figure 3-5 Certificate Authentication

SSL Protocol

CORBA Client orP
Application Certificate for Listener!
nop Handler

Listener/Handler

Commonly, X.509 V3 CA certificates are required to contain the Basic Constraints extension,
marked as being from a Certificate Authority (CA), and marked as a critical extension (see IETF
RFC 2459). Ensuring that V3 CA certificates protects against non-CA certificates from
masquerading as intermediate CA certificates.

For more information, please refer to the following URL.:

http://www.ietf.org/rfc/rfc2459.txt

Note: This default behavior will not check Basic Constraints on X.509 V1 and V2 certificates,
as these versions of X.509 certificates do not support certificate extensions.

Using Security in CORBA Applications 3-13

3-14

There is a mechanism provided to control the level of enforcement that will be performed in order
to avoid problems with some customer’s applications:

The mechanism is used by setting the value of the environment variable
TUX_SSL_ENFORCECONSTRAINTS. The levels of enforcement are as follows:

0

This level disables the enforcement entirely. This is not recommended as a solution unless
you really have no other choice.

For example, a customer has purchased certificates from a commercial CA and the chain
does not pass the new checks. Most current commercial CA certificates should work under
the default level 1 setting.

TUX_SSL_ENFORCECONSTRAINTS=0

This level is the default. No checking is performed on V1 or V2 certificates in the
certificate chain. The Basic Constraints for V3 CA certificates are checked and the
certificates are verified to be CA certificates.

TUX_SSL_ENFORCECONSTRAINTS=1

This level does the same checking as level 1, and additionally enforces two more
requirements:

All CA certificates in the certificate chain must be V3 certificates.

The Basic Constraints extensions of the CA certificates must be marked as “critical™ in
accordance with IETF RFC 2459.

This is not the default setting because a number of current commercially available V3 CA
certificates do not mark the Basic Constraints as critical.

TUX_SSL_ENFORCECONSTRAINTS=2

How Certificate Authentication Works

Certificate authentication works in the following manner:

1. The initiating application accesses the Oracle Tuxedo domain in one of the following ways:

Through the CORBA INS Bootstrapping mechanism. Use this mechanism if you are
using a client ORB from another vendor. For more information about using CORBA
INS, see CORBA Programming Reference in the Oracle Tuxedo online documentation.

Using Security in CORBA Applications

Certificate Authentication

— The Oracle Bootstrapping mechanism. Use this mechanism if you are using the Oracle
client ORB.

2. The initiating application instantiates the Bootstrap object with a URL in the form of
corbaloc://host:port or corbalocs://host:port and controls the requirement for
protection by setting attributes on the SecurityLevel2: :Credentials object returned as
a result of the SecurityLevel2: :PrincipalAuthenticator: :authenticate operation.

Note: You can also use the SecuritylLevel2: :Current: :authenticate() method to
secure the bootstrapping process and specify that certificate authentication is to be used.

3. The initiating application obtains the digital certificates and the private key of the principal.
Retrieval of this information may require proof material to be supplied to gain access to the
principal’s private key and certificate. The proof material typically is a pass phrase rather than
a password.

The security context is established as result of a
SecuritylLevel2::PrincipalAuthenticator: :authenticate() method.

The 11OP Listener/Handler receives and validates the application’s digital certificate as part
of the authentication process.

4. Ifthe verification succeeds, the Oracle Tuxedo system constructs a Credentials object. The
Credentials object for the principal represents the security context for the current thread of
execution.

5. The initiating application invokes a CORBA object in the Oracle Tuxedo domain using an
object reference.

6. The request is packaged into an I1OP request and is forwarded to the 11OP Listener/Handler
that associates the request with the established security context.

7. The request is digitally signed and encrypted before it is sent to the 11OP Listener/Handler.
The Oracle Tuxedo system performs the signing and sealing of requests.

8. The IIOP Listener/Handler receives the request from the initiating application. The request is
decrypted.

9. The OP Listener/Handler retrieves the e-mail component of the subjectDN of the principal’s
and uses that as the identity of the user.

10. The I1OP Listener/Handler forwards the request, along with the associated tokens of the
principal, to the appropriate CORBA object.

Using Security in CORBA Applications 3-15

3-16

Figure 3-6 How Certificate Authentication Works

CORBA Client

Bootstrap Object

Tobj_ Bootstrap
{orh,corbalocs://sling.com, 2143)

SSL
Protocol

SecurityLevel2::Current Object
authenticatce |
Tokj::Certificatebased
emall address
rassphrase) ;

BEA Tuxedo
Domain

nop
Listener!
Handler

Simple-rto_upper():

AN

CORBA
Object
Simple

Development Process for Certificate Authentication

To use certificate authentication in a CORBA application, you need to install a license that
enables the use of the SSL protocol and PKI. For information about installing the license, see

Installing the Oracle Tuxedo System.

Using certificate authentication in a CORBA application includes administration and

programming steps. Table 3-5 and Table 3-6 list the administration and programming steps for
certificate authentication. For a detailed description of the administration steps, see “Managing

Public Key Security” on page 4-1 and “Configuring the SSL Protocol” on page 6-1.

Using Security in CORBA Applications

Certificate Authentication

Table 3-5 Administration Steps for Certificate Authentication

Step Description

1 Set up an LDAP-enabled directory service. You will be prompted for the name of
the LDAP server during the installation of the Oracle Tuxedo product.

2 Install the license for the SSL protocol.

3 Obtain a digital certificate and private key for the 11OP Listener/Handler from a
certificate authority.

4 Obtain digital certificates and private keys for the CORBA client applications from
a certificate authority.

5 Store the private key files for the CORBA client applications and the [1OP
Listener/Handler in the Home directory of the user or in
$TUXDIR/udataobj/security/keys.

6 Publish the digital certificates for the IIOP Listener/Handler, the CORBA
applications, and the certificate authority in the LDAP-enabled directory service.

7 Define the SEC_PRINCIPAL_NAME, SEC_PRINCIPAL_LOCATION, and
SEC_PRINCIPAL_PASSVAR for the ISL server process in the UBBCONFIG file.

8 Set the SECURITY parameter in the UBBCONFIG file to USER_AUTH, ACL, or
MANDATORY_ACL.

9 Configure the Authentication Server (AUTHSRYV) in the UBBCONFIG file.

10 Use the tpusradd and tpgrpadd commands to define the authorized Users and
Groups of your CORBA application.

11 Define a port for SSL communication on the 11OP Listener/Handler using the -S
option of the ISL command.

12 Enable certificate authentication in the 11OP Listener/Handler using the -a option
of the ISL command.

13 Create a Trusted Certificate Authority file (trust_ca. cer) that defines the
certificate authorities trusted by the 11OP Listener/Handler.

12 Create a Trusted Certificate Authority file (trust_ca. cer) that defines the

certificate authorities trusted by the CORBA client application.

Using Security in CORBA Applications 3-17

Table 3-5 Administration Steps for Certificate Authentication (Continued)

Step Description

13 Use the tmloadcf command to load the UBBCONFIG file. You will be prompted
for the password of the IIOP Listener/Handler defined in the
SEC_PRINCIPAL_NAME parameter.

14 Optionally, create a Peer Rules file (peer_val . rul) for both the CORBA client
application and the I1OP Listener/Handler.

15 Optionally, modify the LDAP Search filter file to reflect the directory hierarchy in
place in your enterprise.

Figure 3-7 illustrates the configuration of a CORBA application that uses certificate
authentication.

3-18 Using Security in CORBA Applications

Certificate Authentication

Figure 3-7 Configuration for Using Certificate Authentication in a CORBA Application

CORBA Client IOP
Application ListeneriHandler
corbalocs: 77 .

host port "] ISL —= -a

£

SEC_FRINCIFPAL_HAME

SEC_PRINCIPAL_LOCATION
peer_val.rul \ SEC_PRINCIPAL_PASSVAR

trust_ca. cer

trust_ca. cer LDAP
Directory Service

Certificate for IOP peer_wal rul
Listener/Handler

Private Key for
CORBA Client Certificates for

Application Certificate
Authorities

Private Key for
oP
Cerfificates for ListeneriHandler

CORBA Client
Applications

Table 3-6 lists the programming steps for using certificate authentication in a CORBA
application. For more information, see “Writing a CORBA Application That Implements
Security” on page 9-1.

Using Security in CORBA Applications 3-19

Table 3-6 Programming Steps for Certificate Authentication

Step

Description

1

Write application code that uses the corbaloc or corbalocs URL address
formats of the Bootstrap object. Note that the CommonName in the Distinguished
Name of the certificate of the IIOP Listener/Handler must match exactly the host
name provided in the URL address format. For more information on the URL
address formats, see “Using the Bootstrapping Mechanism” on page 9-1.

You can also use the CORBA INS bootstrap mechanism to object a reference to a
Principal Authenticator object in the Oracle Tuxedo domain. For more information
about using CORBA INS, see the CORBA Programming Reference.

Write application code that uses the authenticate() method of the
SecuritylLevel2: :PrincipalAuthenticator interface to perform
authentication. Specify Tobj : : CertificateBased for the method argument
and the pass phrase for the private key as the auth_data argument for
Security: :Opaque.

Using an Authentication Plug-in

The Oracle Tuxedo product allows the integration of authentication plug-ins into a CORBA
application. The Oracle Tuxedo product can accommodate authentication plug-ins using various

authentication technologies, including shared-secret password, one-time password,

challenge-response, and Kerberos. The authentication interface is based on the generic security

service (GSS) application programming interface (AP1) where applicable and assumes
authentication plug-ins have been written to the GSSAPI.

If you chose to use an authentication plug-in, you must configure the authentication plug-in in the
registry of the Oracle Tuxedo system. For more detail about the registry, see “Configuring

Security Plug-ins” on page 8-1.

For more information about an authentication plug-ins, including installation and configuration

procedures, see your Oracle account executive.

Authorization

Authorization allows system administrators to control access to CORBA applications.

3-20

Specifically, an administrator can use authorization to allow or disallow principals to use

resources or services provided by a CORBA application.

Using Security in CORBA Applications

Auditing

The CORBA security environment supports the integration of authorization plug-ins.
Authorization decisions are based in part on the user identity represented by an authorization
token. Authorization tokens are generated during the authentication process so coordination
between the authentication plug-in and the authorization plug-in is required.

If you chose to use an authorization plug-in, you must configure the authorization plug-in the
registry of the Oracle Tuxedo system. For more detail about the registry, see “Configuring
Security Plug-ins” on page 8-1.

For more information about authorization plug-ins, including installation and configuration
procedures, see your Oracle account executive.

Auditing

Auditing provides a means to collect, store, and distribute information about operating requests
and their outcomes. Audit-trail records may be used to determine which principals performed, or
attempted to perform, actions that violated the configured security policies of a CORBA
application. They may also be used to determine which operations were attempted, which ones
failed, and which ones successfully completed.

The current implementation of the auditing feature supports the recording of logon failures,
impersonation failures, and disallowed operations into the ULOG file. In the case of disallowed
operations, the value of the parameters to the operation are not provided because there is no way
to know the order and data types of the parameter for an arbitrary operation. Audit entries for
logon and impersonation include the identity of the principal attempting to be authenticated. For
information about setting up the ULOG file, see Setting Up an Oracle Tuxedo Application.

You can enhance the auditing capabilities of your CORBA application by using an auditing
plug-in. The Oracle Tuxedo system will invoke the auditing plug-in at predefined execution
points, usually before an operation is attempted and then when potential security violations are
detected or when operations are successfully completed. The actions taken to collect, process,
protect, and distribute auditing information depend on the capabilities of the auditing plug-in.
Care should be taken with the performance impact of audit information collection, especially
successful operation audits, which may occur at a high rate.

Auditing decisions are based partly on user identity, which is stored in an auditing token. Because
auditing tokens are generated by the authentication plug-in, providers of authentication and
auditing plug-ins need to ensure that these plug-ins work together.

The purpose of an auditing request is to record an event. Each auditing plug-in returns one of two
responses: success (the audit succeeded and the event was logged) or failure (the audit failed

Using Security in CORBA Applications 3-21

and the event was not logged the event). An auditing plug-in is called once before the operation
is performed and once after the operation completes.

e The preoperation audit allows the auditing of both attempts to call an operation, and also
allows storage of input data for the postoperation check.

e The postoperation audit reports the status of the completion of an operation. For failure
status, the postoperation audit is called to report a potential security violation. Usually this
type of report is issued when a preoperation or postoperation authorization check fails or
when some other potential security attack is detected.

Multiple implementations of the auditing plug-in can be used in a CORBA application. Using
multiple authorization plug-ins causes more than one preoperation and postoperation auditing
operation to be performed.

When using multiple auditing plug-ins, all the plug-ins are placed under a single master auditing
plug-in. Each subordinate authorization plug-in returns SUCCESS or FAILURE. If any plug-in fails
the operation, the auditing master plug-in determines the outcome to be FAILURE. Other error
returns are also considered FAILURE. Otherwise, SUCCESS is the outcome.

In addition, an Oracle Tuxedo system process may call an auditing plug-in when a potential
security violation occurs. (Suspicion of a security violation arises when a preoperation or
postoperation authorization check fails or when an attack on security is detected.) In response,
the auditing plug-in performs a postoperation audit and returns whether the audit succeeded.

The auditing process is somewhat different for users of the auditing feature provided by the
Oracle Tuxedo product and users of auditing plug-ins. The default auditing feature does not
support preoperation audits. If the default auditing feature receives a preoperation audit request,
it returns immediately and does nothing.

If you chose to use an auditing plug-in other than the default auditing plug-in, you must configure
the auditing plug-in the registry of the Oracle Tuxedo system. For more detail about the registry,
see “Configuring Security Plug-ins” on page 8-1.

For more information about auditing plug-ins, including installation and configuration
procedures, see your Oracle account executive.

PKI Plug-ins

The Oracle Tuxedo product provides a PKI environment which includes the SSL protocol and the
infrastructure needed to use digital certificates in a CORBA application. However, you can use
the PKI interfaces to integrate a PKI plug-in that supplies custom message-based digital signature

3-22 Using Security in CORBA Applications

PKI Plug-ins

and message-based encryption to your CORBA applications. Table 3-7 describes the PKI

interfaces.

Table 3-7 PKI Interfaces

PKI Interface

Description

Public key initialization

Allows public key software to open public and
private keys. For example, gateway processes may
need to have access to a specific private key in
order to decrypt messages before routing them.

Key management

Allows public key software to manage and use
public and private keys. Note that message digests
and session keys are encrypted and decrypted
using this interface, but no bulk data encryption is
performed using public key cryptography. Bulk
data encryption is performed using symmetric key

cryptography.

Certificate lookup

Allows public key software to retrieve X.509v3
digital certificates for a given principal. Digital
certificates may be stored using any appropriate
certificate repository, such as Lightweight
Directory Access Protocol (LDAP).

Certificate parsing

Allows public key software to associate a simple
principal name with an X.509v3 digital certificate.
The parser analyzes a digital certificate to generate
a principal name to be associated with the digital
certificate.

Certificate validation

Allows public key software to validate an X.509v3
digital certificate in accordance with specific
business logic.

Proof material mapping

Allows public key software to access the proof
materials needed to open keys, provide
authorization tokens, and provide auditing tokens.

The PKI interfaces support the following algorithms:

e Public key algorithms: Rivest, Shamir, and Adelman (RSA) and Digital Signature

Algorithm (DSA)

Using Security in CORBA Applications

3-23

e Symmetric key algorithms:
— Data Encryption Standard for Cipher Block Chaining (DES-CBC)
— Two-key triple-DES
— Rivest’s Cipher 4 (RC4)
e Message digest algorithms:
— Message Digest 5 (MD5)
— Secure Hash Algorithm 1 (SHA-1)

If you chose to use a PKI plug-in, you must configure the PKI plug-in in the registry of the Oracle
Tuxedo system. For more detail about the registry, see “Configuring Security Plug-ins” on
page 8-1.

For more information about PKI plug-ins, including installation and configuration procedures,
see your Oracle account executive.

Commonly Asked Questions About the CORBA Security
Features

3-24

The following sections answer some of the commonly asked questions about the CORBA
security features.

Do | Have to Change the Security in an Existing CORBA
Application?

The answer is no. If you are using security interfaces from previous versions of the WebLogic
Enterprise product in your CORBA application there is no requirement for you to change your
CORBA application. You can leave your current security scheme in place and your existing
CORBA application will work with CORBA applications built with Oracle Tuxedo 8.0 or later.

For example, if your CORBA application consists of a set of server applications which provide
general information to all client applications which connect to them, there is really no need to
implement a stronger security scheme. If your CORBA application has a set of server
applications which provide information to client applications on an internal network which
provides enough security to detect sniffers, you do not need to implement the additional security
features.

Using Security in CORBA Applications

Commonly Asked Questions About the CORBA Security Features

Can | Use the SSL Protocol in an Existing CORBA
Application?

The answer is yes. You may want to take advantage of the extra security protection provided by
the SSL protocol in your existing CORBA application. For example, if you have a CORBA server
application which provides stock prices to a specific set of client applications, you can use the
SSL protocol to make sure the client applications are connected to the correct CORBA server
application and that they are not being routed to a fake CORBA server application with incorrect
data. A username and password is sufficient proof material to authenticate the client application.
However, by using the SSL protocol, the message request/reply information can be protected as
an additional level of security.

The SSL protocol offers CORBA applications the following benefits:

e Protection of the entire conversation including the initial bootstrapping process. The SSL
protocol protects against Man-In-The-Middle attacks, replay attacks, tampering, and
sniffing.

e Even if you only use the default settings, the SSL protocol provides signed and sealed
protection since the default encryption settings are a minimum of 56 bits by default.

e Client verification of the connected I10P Listener/Handler using the digital certificate of
the 11OP Listener/Handler. The client application can then apply additional security rules to
restrict access to the client application by the I1OP Listener/Handler. This protection also
applies to 11OP Listener/Handlers connecting to remote server applications when using
callback objects.

To use the SSL protocol in a CORBA application, set up the infrastructure to use digital
certificates, change the command-line options on the ISL server process to use the SSL protocol,
and configure a port for secure communications on the 11OP Listener/Handler. If your existing
CORBA application uses password authentication, you can use that code with the SSL protocol.
If your CORBA C++ client application does not already catch the Inval idDomain exception
when resolving initial references to the Bootstrap object and performing authentication, write
code to handle this exception. For more information, see “PKI Plug-ins” on page 3-22.

When Should | Use Certificate Authentication?

You might be ready to migrate your existing CORBA application to use Internet connections
between the CORBA application and Web browsers and commercial Web servers. For example,
users of your CORBA application might be shopping over the Internet. The users must be
confident that:

Using Security in CORBA Applications 3-25

3-26

e They are in fact communicating with the server at the online store and not an impostor that
mimics the store’s server to get credit card information.

e The data exchanged between the user of the CORBA application and the online store will
be unintelligible to network eavesdroppers.

e The data exchanged with the online store will arrive unaltered. An instruction to order
$500 worth of merchandise must not accidently or maliciously become a $5000 order.

In these situations, the SSL protocol and certificate authentication offer CORBA applications the
maximum level of protection. In addition to the benefits achieved through the use of the SSL
protocol, certificate authentication offers CORBA applications:

e |IOP Listener/Handler verification of the client application that initiates a request using the
digital certificate of the client application. In addition, the 11IOP Listener/Handler can apply
additional rules which restrict access to the client application based on the identity
established by the digital certificate. A remote ORB acting as a server application can also
be configured to allow mutual authentication and verify the identity of a client application
based on a digital certificate.

o Inside the Oracle Tuxedo domain, the client application can still have an Oracle Tuxedo
username and password. The I1OP Listener/Handler maps the identity defined in a digital
certificate to an Oracle Tuxedo username and password thus allowing existing CORBA
applications to have an identity in native CORBA server applications.

For more information, see “PKI Plug-ins” on page 3-22.

Using Security in CORBA Applications

